
Control Program-67 /Cambridge Monitor System
(CP-67 /CMS) Version 3.1
Program Number 3600-05.2.005
CP-67 Program Logic Manual

This publication describes the internal logic of the
CP-67 (Control Program-67) system. The system
consists of a Control Program that creates a multi­
programming, time-sharing environment by providing
virtual machines for users to run their own operating
systems concurrently with other users. This manual
is directed to personnel who will be responsible for the
maintenance and modification of CP-67.

GY20-0590-1

Type 111 Class A Program

PRE.FACE

The following documents are referenced in the CP-67 Program Logic
Manual:

Functional Characteristics and Principles of Operation

IBM System/360 Model 67: Functional Characteristics, A27~2719

IBM system/360 Principles of Operation, A22-6521

Assembler

IBM OS/360: Assembler Language, C28-6514

IBM OS/360: Assembler (F} Programmer's Guide, C26-3756

The following documents provide further information on CP-67:

CP-67/CMS User's Guide, GH20-0859

CP-67 Operator's Guide, GH20-0856

CP-67/CMS Installation Guide, GH20-0857

CP-67/CMS System Description Manual, GH20-0802

CP-67 Program Logic Manual, GY20-0590

CMS Program Logic.Manual, GY20-0591

CMS SCRIPT User's Manual, GH20-0860

CP-67/CMS Hardware Maintainability Guide, GH20-0858

CP-67: Operating Systems in a Virtual Machine, GH20-1029

Second Edition {October 1971)

This edition is a major revision of, and obsoletes, GH20-0590-0.

This Type III Program performs functions that may be fundamental to the operation and maintenance
of a system.

It has not been subjected to formal test by IBM.

Until the program is reclassified, IBM will provide for it: {a) Central Programming Service, including
design error correction and automatic distribution of corrections; and {b) FE Programming Service,
including design error verification, AP AR documentation and submission, and application of Program
Temporary Fixes or development of an emergency bypass when required. IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

You are expected to make the final evaluation as to the usefulness of this program in your own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

This edition applies to Version 3, Modification Level 1, of Control Program-67/Cambridge Monitor
System {3600-05 .2.005) and to all subsequent versions and modifications until otherwise indicated in
new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter{GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been. provided at the back ofthis publication for readers' comments. If this form has been
removed, address comments to: IBM Corporation, Technical Publications Department, 1133 Westchester
Avenue, White Plains, New York i0604.

(

TABLE OF CONl'ENTS

Section 1: Introduction to CP-67 1
Machine configuration 1
Virtual computers 3
T~es~r~g 4
Program States 4
Paging 5
Reader/Printer/Punch Input-Output 9
Other Input-Output 9

Section 2: Method of Operation 11
system Setup Operations 11

Cylinder Allocation 12
Establishing User Directories 13
Additional Control Statements 13

USER Statement Processing 13
CORE Statement Processing 14
UNIT Statement Processing 14
OWN Statement Processing 14
EOU and *EOD* Statement Processing 14

System Backup Operation 15
Control Program Initialization 15

CHKPT Program 15
CPINIT Program 18

Core Table Initialization 23
Allocation Table Chaining 23

Attaching a User to the System 25
IDENTIFY Routine 25
CONSINT Routine 27
LOGON Routine 27

UTABLE Initialization 28
Segment Table Creation 29
swap Table creation 30
Virtual I/O Block Creation 30
User Accounting Statistics 33

Processing control Program I/O Requests 33
Real Multiplexer Channel I/O Operations 35

Card Reader Interruption 37
Printer or Punch Interruption 37

Real Terminal I/O Operations 38
Read from a Terminal - RDCONS 38
Write to a Terminal - WRTCONS 40
Stack or Start Terminal I/O Requests - STCONSIO 42
Processing Terminal I/O Interruptions - CONSINT 44

Real Selector Channel Operations 45
Initiating Selector Channel I/O 45

Processing Selector Channel I/O Interruptions 48
Processing of I/O Errors - IOERROR 48

Processing User Selector Channel I/O Requests 48
Program Interruption Handler - PROGINT 49
Privileged Instruction Simulator - PRIVLGED 49
Virtual Machine I/O Executive Program - VIOEXEC 49
CCW Translator - CCWTRANS 54
CCW Untranslator - UNTRANS 58
ccw Return to Free Storage - FREECCW 59
Virtual I/O Request Queueing Routine - QUEVIO 59
Virtual Channel Interruption Handler - VIRA 63
Routine to Analyze and Record Errors - RECERROR 63
Main Dispatcher and Control Routine - DISPATCH 64

Processing User Multiplexer Channel I/O Requests 70
SIO on a Virtual Multiplexer Channel 75
TIO on a Virtual Multiplexer Channel 78
TCH on a Virtual Multiplexer Channel 78
HIO on a Virtual Multiplexer Channel 79
Pseudo Timer Device - TIMR 79

Processing Dedicated Multiplexer Devices 79
Processing Virtual 2702 Lines 80
Processing a DIAL Request 82
Virtual RPQ's 83
Interruption Handling 84

SVC Interruptions 84
External Interruptions 87
Program Interruptions 89

Paging Interruptions 91
Privileged Operation Interruptions 93
The Diagnose Instruction 93

Machine Check Interruptions 96
Machine Check Error Recording Routine - MCKERR 96

Interruption Reflection 98
Main Storage Management (Paging) 100

Required Page in Core 100
Required Page Not in Core 100
Required Page in Transit 101
Obtaining Core for a Paging Operation 101
Reading a Required Page into Core 102
Returning Control 103
Shared Pages 103

Free Storage Management 103
Execution control 105

Queue Management 107
'Real Timers' 109
Handling cf a Virtual 67 111

Control Blocks · 111
Different Format of the PSW 112
Reset Function 112
New Instructions 112

Handling Virtual Dynamic Address Translation 113
Virtual 67 Restriction 116

console Functions 117
Console Function Subroutines 118
Console Function Descriptions 120

ACNT 120
ATTACH 121
BEGIN 122
CLOSE 123
DCP 124
DMCP 125
DETACH 126
DISABLE 127
DIRECT 128
DISCONNECT 129
DISPLAY 130
DRAIN 132
DUMP 133
DUMP 134 - - -ENABLE 135
EXTERNAL 136
IPL 137
IPLSAVE 138
KILL 139
LINK 140
LOCK 142
LOGIN 143
LOGOUT 144
MSG 145
PURGE 146
QUERY 147
READY 149
REPEAT 150
RESET 151
SEI' 152
SHUTDOWN 154
SLEEP 155
SPACE 156
SPOOL 157
START 158
STCP 159
STORE 160
TERMINATE 161
UNLOCK 162
WNG 163
XFER 164

Section 3: Programming Conventions 165
Maintenance 165
Assembly Deck Format 165

Equivalence Packages and Control Block Definitions
CP-67 Device Codes
CP-67 Equate Package - EQU67
Definition of Statistics Counters in CP Core
Subroutine Conventions and Register Usage
System Macro Usage

BAS, BASR, LMC, STMC, and LRA
CALL

ENTER and EXIT
GOTO

TRANS

section 4: Tables and Control Block Formats
ALLOC
CC"WPKG
CORT ABLE
CPEXBLOK
CPFDENT
CPFFDBLK
CPFRECRD
EXTUTAB
I OT ASK
LOGCDATA
LOGIDATA
LOGMDATA
MD ENT
MR DEB LOK
MRIBUFF
MVDEBLOK
MVIBUFF
PAGTABLE
RHEADR and RCCWLIST
RCHBLOK
RCUBLOK
RDCONPKG
RD EV BLOK
RECBUF
SAVEAREA
SEGTABLE
SFBLOK
SWPTABLE
TR EXT
UFDENT
UT ABLE
VCHBLOK
VCUBLOK
VDEVBLOK

165
167
168
171 ,,

173
174
174
175

176
177

178

179
181
183
184
185
186
187
188
189
190
192
192
193
195
196
198
200
202
204
205
206
207
208
209
211
212
213
214
215
216
218
219
224
225
226

Section 5: Subroutine Descriptions 227
System Modules 227

ACCTON 233
ACNTIME 234
ACNTOFF 235
CCWTRANS 236
CF SC OM 237
CFSDBG 238
CFS IPL 239
CFS MAIN 240
CFSPRV 241
CFSQRY 242
CFS SET 243
CFSSPL 244
CF STACH 245
CHKCUACT 246
CB.KPT 247
CONS INT 248
CONVRT 250
CPCORE 252
CPFILE 253
CPI NIT 255
CPSTACK 256
CPSYM 257
DEDICATE 258
DIAGDSK 259
DIAL 261
DISPATCH 262
DSKDUMP 264
EXTEND 265
FREE 266
IOERROR 269
IOI NT 271
IPL 272
LINK 273
LOGFILES 274
LOGIN 275
MRIOEXEC 276
MVIOEXEC 277
PACK 279
PAGEGET 280
PAGTR 281
PAGTRANS 282

PR IV LG ED 284
PROGINT 285
PSA 286
QUEVIO 288
RDCONS 289
RD SCAN 290

.!(· ,,

REC FREE
RESINT
SAVECP
SCAN UNIT
SCHEDULE
SCREDAT
STCONSIO
TMPSPACE
TRACER
UNSTIO
UNTRANS
USERLKUP
USEROFF
VIOEXEC
VSERSCH
WRTCONS

Utility Modules
BUZZARD
DIRECT
FORMAT
SAVESYS
VD UMP

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:

Save Areas
Register Usage
Core Layout
CP-67 ABEND
CP-67 Measurement Hooks
CP-67 Control Blocks

Alphabetical Listing of System Modules
by Entry Point

291
292
293
294
295
296
297
298
299
300
302
303
304
306
307
308
310
311
312
313
314
315

316
317
318
320
321
323

324

(

LIST OF FIGURES AND TABLES

Figure

1 Sharing Storage Among Concurrent Users
2 Page Swapping
3 Paging Operation
4 Tables and Files created by DIRECT
5 CP-67 CHKPT
6 CP-67 Main Storage
7 CP-67 CPSAVE
8 CP-67 CPINIT
9 Chaining of Allocation Tables and Real Device Blocks
10 CP-67 Overview of Attaching a User to the System
11 LOGON Tables
12 Virtual Addressing
13 Virtual-Real I/O Blocks
14 CP-67 I/O Interrupt Handler
15 CP-67 ~..RIOEXEC
16 CP-67 RDCONS
17 CP-67 WRTCONS
18 CP-67 STCONSIO
19 Processing Real Selector Channel I/O Tasks
20 CP-67 VIOEXEC
21 CP-67 MVIOEXEC
22 CP-67 CCWTRANS
23 CP-67 QUEVIO
24 Virtual SIO Selector Channel
25 Virtual SIO MPX Channel (Nondedicated Punch or Printer>
26 Virtual SIO MPX Channel (Nondedicated Reader>
27 Real SIO MPX Channel (Punch or Printer>
28 Real SIO MPX Channel (Reader)
29 Real Terminal SIO (Write)
30 Real Terminal SIO (Read)
31 Virtual Terminal SIO (Write)
32 Virtual Terminal SIO (Read)
33 Processing a Virtual 2702 Line
34 CP-67 SVC Interrupt Handler
35 CP-67 External Interrupt Handler
36 CP-67 Program and PRIVLGED Interrupt Handler
37 CP-67 PAGTRANS
38 CP-67 Machine Check Interrupt Handler
39 Processing and Reflecting of Interrupts
40 State Representation of Scheduling Algorithm
41 CP-67 Dispatcher Scheduling Algorithm
42 Virtual 67 - Monosegment Machine

6
7
8
12
17
19
20
21
24
26
28
30
31
34
36
39
41
43
47
50
52
55
60
62
66
67
68
69
71
72
73
74
81
85
88
90
92
97
99
110
111
114

43 Virtual 67 - Multisegment Machine 115
44 CP-67 FREE 268
45 CP-67 UNSTIO 301
46 CP-67 Real Low Core 319

""--Tables

1 Summary of Access Allowed to DASD Devices by LOGON 32
2 Summary of Access Allowed by LINK 141
3 system Modules with Entry Points 231

SECTION 1: INTRODUCTION TO CP-67

CP-67 is a Control Program designed for execution on an
IBM System/360 Model 67. Its objective is to create an
environment in which many users can simultaneously perform
work and in which each user can perform his own work under
the supervision of the programming system of his choice. It
achieves its objective by generating a "virtual computer"
for each user and by sharing the resources of the real
computer (CPU time, main storage, etc.) among the virtual
computers for all users that are concurrently logged into
the system.

When a user identifies himself from a terminal, the
Control Program "creates" for his personal use a virtual
computer from a predefined configuration. (Before the
system becomes available to users, the systems administrator
defines the configuration of each user's virtual machine.
He may define different configurations for different users.)
To the user, his virtual computer appears real and he uses
it as if it were. The Control Program also provides, as part
of the virtual computer, commands that parallel the
functions of the buttons and switches on an operator's
console. The user issues these commands from his terminal,
and, thus, the terminal becomes a pseudo-console for his
virtual machine.

After the control Program has created the virtual
computer, the user equips it with the programming system
that gives him the desired functional capabilities. He does
this by issuing a command from his terminal. CP-67 is
designed so that the user can run the programming system
(for example, Operating systero/360) of his ·choice on his
virtual computer. The user who desires a terminal-oriented,
conversational programming system that allows him to
directly monitor his work will choose CMS.

MACHINE CONFIGURATION

Devices Supported by CP-67

CP-67 is structured to run on an IBM System/360 Model 67.
The minimum machine configuration for CP-67 is:

2067-1 or 2067-2 Processing Unit
Recommended feature:

#4434 Floating Storage Addressing (Model 1 only>

2365
1052
1403

Processor Storage
Printer-Keyboard Model 1
Printer

- 1 -

2540 card Read Punch
3 2311 Disk Storage Drives or 2314 Direct Access Storage

Facility C2 drives minimum)
2400 Nine-Track Magnetic Tape Unit. 800 or 1600 bpi
2702 or 2703.Transmission control or

2701 Data Adapter Unit

Terminals supported by CP-67 as
Machine Operator's console

1051/1052 Model 1 or Model 2 Data Communication System
Features and Specifications:
Data Set Attachment (#9114)
IBM Line Adapter (#4647)
Receive Interrupt (#6100 or RPQ E27428) required
Transmit Interrupt (#7900 or RPQ E26903) required
Text~Time-out Suppression (#9698) required

1056 card Reader Model 3

2741-1,-2 communication Terminals
Features and Specifications:
Data Set Attachment (#9114)
Data Set Attachment (#9115>
IBM Line Adapter (#4635, #4647)
Dial-Up (#3255) required
Receive Interrupt (#4708) required
Transmit Interrupt (#7900 or RPQ E40681) required
Print Inhibit (#5501) desirable

Line control for teletypewriter
with the IBM Telegraph Terminal
(8-level ASCII code at 110 bps) •.

terminals C*> compatible
Control Type II Adapter

Transmission Control Units Supported
by CP-67

2701 Data Adapter Unit
Terminals 2701 Adapter
---~----- ------------
8-level ASCII. 7885

110 bps*

2702 Transmission control
Terminal

Terminals Control Base

2741s. 1050 9696 or 7935
8-level ASCII. 9697 or 7935

110 bps*

- 2 -

Terminal
control

4615. 9684. 8200**
7912

/

Line
Adapter

3233
3233

,(
f:I
'(';
'(

2703 Transmission Control
Line Speed Line Terminal

Terminals Option Set Control

--------- ---------- ---------
2741s,1050 4878 3205/6 4619,4696,8200****
8-level ASCII, 4877 3205/6 7905, 7912

110 bps*

* The customer is responsible for terminal compatibility
with this program. IBM assumes no responsibility for the
impact that any changes to the IBM•supplied products or
programs may have on terminals provided by others.

** Feature 8200 on the 2702 is equivalent to the 2741 Break
feature #8055 and the Type I Break RPQ E46765 on the 2702.

**** Feature 8200 on the 2703 is equivalent
Break feature #8055 and the Type I Break RPQ
2703.

Other Devices Supported by CP-67

Additional devices used by CP-67 are:

2301
2303

Drum Storage
Drum Storage

2870 Multiplexer Channel

to the 2741
E53715 on the

#6990, 6991, 6992 1, 2, 3 Selector Subchannels

Devices Used Only by an Operating system
in a Virtual Machine and not by CP-67

2321

2400

2250
2260

Data Cell Drive

Magnetic Tape Units

Display Unit
Display Station

2860 Selector Channel
#1850 Channel-to-Channel Adapter

2780
1130

Data Transmission Terminal
Computing System

VIRTUAL COMPUTERS

A virtual computing system is a time~sharing system
that provides greater flexibility of application to the
user. A time-sharing system provides a set of software
facilities through which users share machine facilities: the

- 3 -

Line
Bases

7505
7505

extent of the software facilities available to a user
depends on how the system is defined. A virtual computing
system simulates hardware f aci1ities that allow the user to
load a software system (Operating system/360, for example>
that provides the particular facilities he requires: the
user - not the system - determines the facilities available
to him.

For each user, CP-67 creates a virtual computer which
is an exact replica of a System 360: a programmer at a
remote installation can use the computing system as if it
were exclusively his. CP-67 accomplishes this by:

Scheduling and allocating main storage space, CPU time,
and I/O devices to the virtual computers

Handling all interruptions

Protecting system files, user programs, and user data
during execution

Keeping statistics on the use and performance of the
•real" system

CP-67 can simulate a Model 65 or Model 67 (simplex, 24
bit addressing) computing system, capable of executing any
instruction except Diagnose.

For direct access storage devices, CP-67 will support
more than one "user" or virtual machine on a pack. This
concept is called "mini-disks". Essentially, a virtual
machine is allocated a number of contiguous cylinders from
the disk pack, and these cylinders can be located starting
at any "real" cylinder address. A "relocation" factor and
"boundary• number define the start and extent of a user's
"mini-disk".

TIME SHARING

The Control Program shares execution time in the
central processing unit (CPU) among the virtual computers on
a demand basis and on a scheduled basis. The Control
Program schedules and allots units of CPU time to the
virtual computers. When a particular virtual computer has
used up its unit of time, the Control Program locates the
next "runnable• virtual computer and passes control to it
for a corresponding interval of time. If the virtual
computer currently in control must wait for some event, the
Control Program gives control to another virtual computer
which bas demanded the CPU.

PROGRAM STATES

When instructions in the Control Program CCP-67> are

- 4 -

being executed, the real computer is in the supervisor
state: at all other times, when running virtual machines, it
is in the problem state. Therefore, privileged instructions
can be executed only by the control Program. Programs
running on a virtual computer can issue privileged
instructions: such an instruction causes an interruption
that is handled by the control Program. Under certain
conditions, the control Program simulates the virtual
privileged instructions.

PAGING

Paging is the technique used by the Control Program to
share main storage among concurrent users. The objective of
this technique is to keep in main storage only those
portions of each user•s program that are required at a given
point in time. This eliminates the need for the programmer
to externally segment each program into manageable units.
The units automatically used by CP-67 are 4096-byte blocks
called "pages". By breaking programs into pages, main
storage can be allocated in page increments, and pages can
be loaded dynamically for execution. Thus, at execution
time, main storage holds only the active part of each user•s
program.

When a user starts his session, the control Program, as
a result of an IPL operation (see the description of IPL
under "Console Function Subroutines• in Section 2) places
the user•s programming system IPL program into main storage.
The page is loaded into an available block of main storage
that starts on a page boundary. The page is not necessarily
loaded at the same relative main storage position as it
would occupy were the programming system running on a real
computer. This is possible because of the dynamic address
relocation abilities of the Model 67. <Refer to
IBM System/360 Model 67: Functional Characteristics,
A27-2719.)

As the user•s program is executing, the hardware
dynamically converts references to relative addresses into
actual main storage addresses. When the program refers to
an address in a page that is not in main storage, an
interruption occurs and the Control Program loads the
required page into main storage. Then execution continues
with the referenced addresses being dynamically relocated.

Because of the dynamic address relocation feature, the
pages of a user program need not occupy contiguous locations
and may be scattered throughout main storage <see Figure 1).
Also, because of the high demand for main storage in a
multiple-user environment, the Control Program shares main
storage among the active pages of the programming systems of
competing users.

- 5 -

Secondary
Storage

Dormant
pages of
users A,
B, and C.

Active pages in main storage

FIGURE 1. Sharing Storage Among Concurrent Users

Finally, when main storage is completely filled and it
becomes necessary to bring in another page, page swapping
occurs. An appropriate page of one user's program in main
storage is written onto secondary storage and the required
page is brought into main storage in its place. (If the
page to be replaced has previously been swapped, and has not
been modified since it was last swapped, it is not necessary
to write it onto secondary storage because a copy already
exists there.) When the particular page that was replaced
is again required, it is obtained from secondary storage and
swapped with one that is in main storage Csee figure 2).

- 6 -

(

I

I
I
I

Paging
Area

Main storage

overflow

Swapped page

needed again

Main
Storage

First reference

to page

FIGURE 2. Page Swapping

Origin

The following list contains some statistics on the
drums and disks used for paging.

Paging Devices

2301
2303
2314

2311

4096 bytes/record
4096 bytes/record
829 bytes/record.

5 records/page
829 bytes/record.

5 records/page

9 records/2 tracks
1 record/track
15 records/2 tracks

4 records/track

number of cylinders
Note that CP-67 does
until each page has

The following are guidelines for the
required for paging virtual memory.
not allocate pages for virtual memory
been referenced. When the first page
address of the swapping area is put
These guidelines represent the total
required if all the pages of 256K
referenced.

Virt Memory Size

256K
256K

is referenced. the
in the swap table.
number of cylinders
virtual memory are

Device Type Number of Cylinders Required
for Paging

2311 8
2314 3

- 7 -

(X)

__ _!)~!'._A_!£'i. __
Attempt to dispatch
this user should
be runnable now

~~E~ 1..Q .l_O~~ !QL_
Chain IOTASK to
RCHBLOK

If channel is free,
call CHFREE

OUEVIO (CHFREE)

If control unit is
free, issue SI 0

FIGURE 3.

Virtual Program

Page relocation exception
program interrupt

Virtual
Machine

Hardware
Channel
and
Device

Control Program

PROGi NT
1ssuefi:!"Aiiislnacro - - - -

Page in core go to DISPATCH

Page not in core

call PAGE TRANS

PAGETRANS

locate core
table entry
Set up PAGETABLE,
CORE TABLE, SWPTABLE

Create IOTASK block

Set up CCW's to
read a page

Call QUERIO

Increment page
wait count

Set up CPROUEST
(CPEXBLOK)

Chain CPEXBLOK
to IOTASK

Go to DISPATCH

DISPATCH

Page wait is on
for this user

Dispatch another user

Paging Operation

Paging
Device

1/0 interrupts
from reading a page

IOINT

Lo~t;;° 1701-.;sk bi.;;;k
Process interrupts

Return to program
that created the
1/0 task, IOTASK­
TASKIRA

goto DISPATCH

DISPATCH

Process CPROUEST
back to PROGINT.
TRANS macro is
reexecuted

PAGETRANS(WAITPAGE)

Find user decrement
page wait count

Update SWPTABLE
with keys

Release IOTASK block

Call CPSTACK

CPSTACK

Put CPEXBLOK
in CPSTACK
(CPROUEST)

"z:I
l.Q
c:
11
(!>

w
l.Q
<
(!>
Ul

llJ
::I

~
(!)

~
~
0
Hi

s:
(!>

~
llJ

l.Q
::I

l.Q

0
~

~
llJ
rt"
0
::I

(

READER/PRINTER/PUNCH INPUT-OUTPUT

The Control Program simulates card readerr punchr and
printer operations requested for programs running on virtual
computers by using a spooling operation to simulate multiple
virtual unit record devices. If a program running on a
virtual machine is to process a card filer that file must
first be submitted to the machine-room operatorr headed by a
card identifying the user for whom it is intendedr and
entered by the operator into the system. When the operator
enters the file (through the real card reader> the Control
Program converts it to a disk file which is associated with
the corresponding virtual computer. Thenr when a program
running on that virtual machine issues a start input-output
(SIO) instruction to the virtual card readerr the Control
Program intercepts itr takes the appropriate card image from
the disk filer and makes it available to the program in the
same manner as the real card reader would. This process is
repeated for each subsequent operation directed to the
virtual card reader. This process works in reverse for
punch and printer operation. When a program on a virtual
machine wishes to create printer or punch outputr it issues
successive SIO operations to its virtual printer or punch.
The Control Program intercepts these attempted input-output
operationsr obtains the print line or punched card imagesr
and creates a disk file from them. The disk file is then
printed or punched on the real devices at a later time when
the device is available for use.

OTHER INPUT-OUTPUT

Other input-output operations issued by programs
running on a user's virtual machine are converted to real
input-output operations by the Control Program. Translation
consists of four major steps: Cl> device address
translationr (2) command sequence translation with
appropriate paging operationsr (3) scheduling the
input-output operation on the real hardwarer and (4)
receiving and properly reflecting the interrupts returning
from the input-output operation after being started.

During device address translationr the Control Program
converts the virtual device address associated with the SIO
operation to its real equivalent. This conversion is
required because each virtual device has been mapped to an
extent or area on an equivalent device on the real computer
during system set-up operations. To illustrate how this
conversion worksr assume that the user has a virtual disk at
address 190 and that this has been mapped to an extent
starting at cylinder 10 on a real disk whose label is
DISK01. Assume further that at system start-up time it has
been ascertained that DISKOl is currently mounted on real
disk drive 235. If a user program issues a write to cylinder
00 track 0 record 1 of the virtual disk 190r the Control
Program will intercept it and convert it to a write to
cylinder 10 track O record 1 of the real disk at 235.

- 9 -

Conversion of
similarly.

reads from virtual disks are handled

During command sequence translation, the Control
Program (via CCWTRANS) converts the channel command sequence
provided by the virtual machine into an equivalent real
channel command word list. This is required because virtual
channel command words can refer to contiguous virtual memory
space overlapping a page boundary. In the real machine,
these virtual pages would not necessarily be in contiguous
real pages, and the channel command word involved must be
split Cvia the chain data feature) into two or more channel
command words which ref er to the real core addresses and
which perform the same function. Thus the entire virtual CCW
sequence is translated into an equivalent sequence held in
free storage. The channel is then run off of the real
sequence. Note that this is the· source of a major
restriction in CP-67--channel command sequences may not be
modified while the input-output operation is in progress.
The modifications will not be reflected in real memoryr on
which the real channel is running.

If the ISAM option has been chosen during the
generation of CPr and a virtual machine has been assigned
the ISAM option in the directory, certain self-modifying I/O
sequences will be supported (specifically OS-ISAM). The
channel program is scanned to determine whether any of the
channel command words modify other channel command words
within this I/O sequence. The channel program is
retranslated and reexecuted for each channel command word
that modifies another channel command word within the
channel program. (See "CCW Translator - CCWTRANS" for
details.)

The scheduling of the input-output operation is handled
by QUEVIO and CHFREE, which are discussed elsewhere. They
return to the virtual input-output executive CVIOEXEC) when
the operation is finished.

The interruption processing is provided by VIOEXEC
after initial processing by IOINT. The interrupts are
unstacked to the user in the same order as they would
appear in the real machine. UNTRANS is called to convert the
addresses returned in the channel status word <which refer
to the input-output string in real memory) to the virtual
addresses required by the user.

- 10 -

(

SECTION 2: METHOD OF OPERATION

This section segments CP-67 into its functional units
and discusses each as an entity.

SYSTEM SETUP OPERATIONS

Before initializing the control Program, the DIRECT
stand-alone utility routine must be used to allocate
cylinders between permanent file space and
spooling and paging space.. It is assumed that
packs involved have been formatted and labeled
FORMAT utility) into the CP-67 format.

temporary
the disk
(via the

Input to DIRECT may be of two types: (1) control
statements specifying allocation of DASD cylinders
(ALLOCATE) and (2) control cards defining a user's virtual
system (DIRECTORY). Figure 4 illustrates the relationships
of tables and files created by DIRECT.

- 11 -

System
Residence
Volume

•

System
File
Directory

-... •

User
Directory
(U DIRECT)

.

Owned
List

-

User
Machine
Description
File

FIGURE 4. Tables and Files Created by DIRECT

Cylinder Allocation

DIRECT reads the allocation table from the volume
specified in the ALLOCATE statement and determines whether
temporary or permanent allocation is requested.

Temporary cylinder allocation (making the cylinders
available for temporary usager such as paging and spooling>
is indicated by placing an x'OO' in the corresponding
allocation table entry. Permanent cylinder allocation
(making cylinders available for permanent file residence> is
indicated by placing an x'Ol' in the entry. Cylinders to be
used as T (temporary> disk space are designated by an x'02'
while cylinders containing user directories are marked
x'04'.

- 12 -

(

At the end of an allocation run for a particular volume
(indicated by an *EOA* statement>, cylinder 0 is permanently
allocated (for the allocation table itself and the label)
and an x'OF' is placed in the last allocation table entry.

Establishing User Directories

When a DIRECTORY control statement is read by DIRECT, a
system residence volume will be created on the unit
specified in the control statement. The allocation table is
read from the system residence volume, and the "owned" list
is initialized to contain the system residence volume. The
owned list, beginning with the first byte after the
allocation table, contains the VOLIDS of all volumes to be
considered owned by the Control Program and available for
possible temporary allocation. The system residence volume
VOLID becomes the first entry in the owned list..

The "system file directory" is created; the system file
directory contains information (such as file name, volume
label, and device position of first record) for all files
used internally by the Control Program. An entry for the
"user directory file" CU.DIRECT) is initially placed in the
system file directory.

Additional Control Statements

After the owned list and the system file directory have
been initialized, additional control statements which
identify users and configure their virtual machines are
read. The following paragraphs describe the processing
performed for each record type.

USER Statement Processing

USER statements supply identification and accounting
information for users of CP-67. Before a user directory file
entry is created for the USER statement, the user machine
description file must be opened, and the first four bytes of
a new machine description entry are reserved for the virtual
machine core size. Entries are created for USER statements
and written onto disk as records in the user directory file
CU.DIRECT). User directory entries contain the following
information for each user:

User's external identification

User's password

Accounting information

User's machine description file name

User's privilege class

- 13 -

User's priority

User's options

CORE Statement Processing

CORE statements define the size of core storage in the
virtual machine being defined for the user identified in the
preceding USER statement. The core size desired must be a
multiple of 8K <=8192) bytes and may be specified as either
"nnnK" or "nnnM". The size is entered into the first four
bytes of the user's machine description record.

UNIT Statement Processing

UNIT statements define virtual devices in the virtual
machine being defined for the preceding USER card. The
following type of information is placed in the user machine
description file entry CMDENT) for each specified device:

Virtual device address

Device type

Device relocation factor for DASD devices

Device bound for DASD devices

Passwords and status information for device access

See the description of control block MDENT in Section 4
for details.

OWN Statement Processing

OWN statements specify the VOLIDs of volumes to be
considered "owned" by the control Program. Each specified
VOLID is added to the "owned" list, which is retained after
the allocation table on cylinder O head O record 3 of the
system residence volume. An "owned" volume is any disk on
which an allocation table bas been written; it contains user
files and/or temporary spooling and paging areas used by the
Control Program.

EOU and *EOD* Statement Processing

An *EOU* statement indicates the end of a machine
description for a particular user. A unique name is
generated for the user machine description file (actually a
floating point number starting at 1.0 and incrementing by
1.0 for each new file), and is placed in the corresponding
user directory entry. The user machine description file is
then written onto disk.

- 14 -

An *EOD* statement indicates the end of input for the
user directory creation process. The user directory
CU.DIRECT), the system file directory, and the system
residence volume allocation table are written onto the disk
to complete DIRECT processing.

Complete specifications for creating the user directory
are contained in the CP-67 Operator's Guide under "Directory
Allocation and Creation•.

System Backup Operation

The CMS Tape Dump command is designed for user virtual
machine back-up functions. The CMS programr CPDMPRSTr is
available for both users and the operations departmentr to
back-up 2311 or 2314 disk packs--either minidisks or full
volumes containing one or more minidisks of varying formats.
During dumps, if a bad track is encountered for which an
alternate track was assigned by the MINIDASD program, data
from the alternate location will be written to the dump
volume. The restore function, however, cannot make such use
of alternate track assignments; during a restorer a bad
track will cause a fatal I/O error.

The CPDMPRST program is modeled after the stand-alone
dump/restore utility program of OS/360.

CONTROL PROGRAM INITIALIZATION

CHKPT Program

The IPL sequence reads the CHKPT program from the
IPL'ed disk into low core at location X'800'. The CHKPT
program performs the following functions:

Examines the CPID word at X'1FC'. If the word contains
"CP67" or "SHUT", the IPL is to a "warm" machine (that
is, CP-67 has been running, and accounting information
and spool file data is available in core); if the CPID
word contains anything else, a "cold" machine is
assumed and the CHKPT program proceeds to the second
phase of initialization described below.

For a "warm" machine, the CHKPT program retrieves user
accounting data from the UTABLES and unpunched
accounting cards; gets accounting for dedicated
devices; saves the system LOGMSG; saves spool file
control blocks for active printers and punches and all
"closed• user spool files. The data is written on the
IPL'ed disk at the SYSWRM cylinder.

- 15 -

If the CPID word contains "CP67", the CHKPT program
proceeds to the second phase below. If the CPID word
contains "SHUT", shutdown messages are printed, and
processing is completed.

The second phase of initialization involves reading the
SAVECP program and VOLID from the IPL'ed disk <records
2 and 3) into high core (X'25000') and transfering
control to the RESTORE function of SAVECP.

SAVECP (RESTORE function) reads
disk CSYSDNC cylinder) into
X'25000'; control is transfered
now loaded at X'23000'.

the CP-67 nucleus from
core from X'33D' to
to the CPINIT program

See Figure 5 for a diagram of the CHKPT program operation.

- 16 -

(

Enter

module CH KPT
entry CHKPT

Warm
Start

Set up program
and machine
PSWS

Issue HIO to
all real
MPX devices

Write account
info to warm
start cyl

Save
LOGMSG

Save
spooling
blocks

SIO to console
'SYSTEM ACCT
AND SPOOL FILES_._Y_es __ <
SAVED SYSTEM

HUTDOWN
COMPLETE'

LPSW
WAIT Move 'warm'

to IDENT

FIGURE 5.

SIO to SYSRES
read SAVECP
program and
VOLID

o to
CPSAVE

RESTORE)

CP-67 CHKPT

No

Yes

IPL sequence reads 'CHKPT'
program from the IPL'ed disk
into core and XFERS control
to 'CHKPT'

Move 'Cold'
to IDENT

- 17 -

CPINIT Program

The CPINIT program performs the following functions: (See
Figures 6, 7, and 8 for flowcharts of Main Storage, CPSAVE,
and CPINIT operation.>

- 18 -

//
i~

(

Sub pool
Allocation

i

t
Non-Subpool
Allocation
>29 DBL WDS

,

'-

' ,

'

00

_J

NEXT

......
NEXT

< ...

c NEXT

0

<.
0

.......
0

CP-67 NUCLEUS

FREE LIST SUBTABLE

] SIZE DBL WDS

SIZE DBLWDS

CORE TABLE

100 SAVE AREAS

l SIZE 1

USER AREA

..

EXTENDED PAGE

I SIZE T

J

J

J

I SIZE J

Figure 6. Flowchart of Main Storage Operation

""'

t----"I

~

.,)

- 19 -

Enter

module CPSAVE
entry restore

Read CP-67
nucleus
from disk

Goto
CPINll

Figure 7~ Flowchart of CPSAVE Operation

- 20 -

f

Enter

module CPINIT
entry CPINIT

Set up
new PSWS

Set dump unit
to printer
(for CPINIT
ABEND)

Clear CPU
and channel
Logouts

Clear LOW
core

Set CPSTATUS
to IDLE

SIO sense to
IPLEO disk
(SYSRES)

Load control
registers

Compute real
machine
core size

WAIT for 1/0
int from
SIO sense

Get address
of SYS RES
from int
code

Set GREG 4
for all
enabled

Figure 8.

Create and
initialize
the CORETABLE

Initialize
100 save
areas

Lock and
mark CP
pages
•cp•

Set user
pages to
not in use

FREE (FRETR)

Fret unused
part of last
CP page

FREE

Obtain working
free storage
area

FREE (FRET)

Select channel
for right or
left GP. CONS.

RUNITSGN

Look for
RD EV BLOK
IPLED device

Set up allocation
table and
RDEVBLOK for
IPLED device.
Set OWNED and
SYSTEM

Read vol. ser.
of all avail.
real DASO
devices

Get
emergency
console

Force an
interrupt

nter CPlEMRG
from CONSINT

after INT

Set WARMGOLD
=BO

No

Set up allocation
tables, owners list
and RDEVBLOK
of all CP volumes

Locate 1052
operators
console

Issue normal
start or restart
message to
operator

Set up
operators
UT ABLE

LOGIN the
SYS operator

Enable 1/0
interrupts
reset CFWBll
for operator

Issue not
mounted message
for devices in
owner list and
not mounted

Check real -
SYSGEN core
size issue
message. If not =

Flowchart of CPINIT Operation (1 of 2)

No Ring
alarm

No

LOGON
No LOGON the

system
operator

Yes

-21-

Enter after msg.
turn on timer

WRTCONS

Message
turn on timer

Goto
DISPATCH

WRTCONS

Issue
shutdown
msg.

LPSW
WAIT

Figure 8.

-22-

Yes

WRTCONS

Messages for
set date
and time

RDCONS

Read date
and time
from console

Clear files
from chains

WRTCONS

Msg.for
start

Read start
parameters

Set WARMCOLD
= 02

Yes Update
Clock

Read accounting
info. from
WARM START
cyl.

Chain account
cards to
MREALIO

Read
LOGMSG

Chain
LOGMSG

Read spooling
blocks

Chain spooling
blocks to
printers, readers,
or punches

Set WARMCOLD
=01

Set WARMCOLD
=02

4

No

4

WRTCONS

Issue msg.
'WARMSTART'

Clear warm
start cyl

Cale. disk
space needed
for a dump

TEMPSPACE
- - -

Get space
on disk
for dump

Set up
spooling file
block for
dump

FINDLOG - - -
Sut up 1/0 and
MCK error
recording CYL

LOGFILES
- --

Count number of
closed spooling file
entries ROR, PCH,
PTR

..Y!'_R!£0~
Issue msg for
number of
spooling file
entries

Flowchart of CPINIT Operation (2 of 2)

Get spooling
file blocks
RDR, PCH, PTR

MRIOEXEC - - -
Initiate
1/0
operations

Count number
of closed
spooling file
entries ROR,
PCH, PTR

No

/

Get
MRDEBLOK

Set IDENT
=CP67

Exit
to CONSINT

Go to
DISPATCH

I
I
l

/ ' / '
Do your

thing CP ·--
You're turned

on·-

'

(

Determines, by
initializing is
dump

examining the CPID word, whether
on a warm machine after a disk ABEND

Loads the 360/67 control registers

Sets the new PSW's

Computes the real machine core size

Creates and initializes the CORTABLE at the end of the
resident nucleus (size is determined by "real" machine
size)

Initializes 35 save areas for CP-67 linkage at the end
of the CORTABLE

Determines whether IPL'ed on left or right half of a
possible duplex configuration

Calls FREE and FRFI' to obtain working free storage area
based upon "real" machine size

Creates control block for IPL' ea disk allocation table
and OWNED list

Determines availability of all DASD devices defined in
the real I/O (RIO) configuration; reads VOLID of all
available DASD devices; chains allocation tables of all
available OWNed volumes

Locates 1052 system console and writes initialization
message; if message fails, rings alarm, locates
emergency console, and initializes for emergency
startup

Calls LOGIN to log in the system operator

Checks the OWNED list for volumes not mounted and gives
messages

Checks core size for SYSCORE size; gives message if not
equal

Checks for timer in operation

Prompts operator to set date and time and to specify
startup parameters

For a WARM start, reads
cylinder and restructures
control blocks; chains the
punching

the data from the SYSWRM
the LOGMSG and spool file
accounting information for

Invalidates the SYSWRM data to avoid future erroneous
startup

Gets spooling space and control blocks for a disk dump

-23-

Calls FINDLOG to initialize the error recording

Commences spooling output if any

Sets the CPID word to "CP67"

Runs the system

Core Table Initialization

The core table consists of a 16-btye entry for each
page (4096 bytes) of real core. Each core table entry will
point to a corresponding entry in the swap table, which is
used by core management routines in paging. The physical
location of a page in real core is determined by the
relative location of its corresponding entry in the core
table; for example, the first core table entry corresponds
to the first page of real core. The core table entries for
the pages which contain the control Program are locked with
an identifier of "*CP*" to make them unavailable for paging
operations. The remainder of the core table entries are
initialized to X'OOFFFFFF'.

For a real machine with a 256K main storage, the unused
portion of the last Control Program page and six additional
pages are reserved as a Control Program work area. For each
additional core box, six more pages are reserved for the
larger expected number of users. The pages for free storage
are also locked and identified with "FREE".

Allocation Table Chaining

The address of the system residence VOLID and of the
allocation table for the system residence volume is passed
to CPINIT by the routine SAVECP. The VOLID and allocation
table address are entered into the real device control block
CRDEVBLOK) for the system residence device.

Each additional real device control block is examined
to determine whether the corresponding device is mounted.
VOLIDs are read from all mounted devices and compared
against the entries in the OWNED list (obtained from the
system residence volume). Allocation tables from all owned
volumes are read and chained according to device type.

Figure 9 illustrates the chaining of allocation tables
and their relationship to real device control blocks.

-24-

(

T2311 1--

T2314
1-------<

System
Residence Volume

(2311)
Allocation Table

... ..
--.-

~
•

OF

I ,1r RDEVBLOK

RDEVTYPE

~
RDEVALLN

(2301)
Allocation Table

T2301 ~
1-~~~~---11 "--~-------,,--~~-.---~~

~>-------I ..

OF

1S RDEVBLOK

_... ..

(2311)

Allocation Table

,r

• .-

OF

W RDEVBLOK

,1r

(2301)
Allocation Table

~,__ ___ o_. ..

OF

IS RDEVBLOK

(2311)
Allocation Table ..

-..

.-

I l
1 l

OF

• RDEVBLOK

FIGURE 9. Chaining of Allocation Tables and
Real Device Blocks.

0

-25-

ATTACHING A USER TO THE SYSTEM

(See Figure 10 for an overview diagram.)

IDENTIFY Routine

When the Control Program receives the initial interrupt
from a terminal (normally initiated by dialing in on a
data-phone) the IDENTIFY routine is entered. IDENTIFY
performs the following operations:

-26-

Determines the terminal device type (1050 or 2741) and
enters the type into the multiplexer real device block
CMRDEBLOK) •

Writes to the terminal the message "CP-67 Online".

Places the address of the BREAK routine in. the
multiplexer interrupt return address (MIRA).

Puts the terminal line in a state to receive an
attention.

Console or
terminal

1/0 interrupts
from 270X and terminal

IOINT

Get MRDEBLDK

Get users UTABLE

Call CONSINT
to process
interrupts for the
device
MIRA= entry points
in CDNSINT

Go to dispatch

DISPATCH

Dispatch any user

If CFMAIN issued a
normal read a CPRQUEST
is outstanding.
Process CPR QUEST
return to location
designated by CFMAIN
{CON R ET) return
address in RDCONPKG

CFMAIN (CONRETI

Scan input line
separate fields

Test for valid
command and branch
to command routine

Do the command
processing

Return from command
routine determined
by command routine

Go to dispatch

DISPATCH

Dispatch any user

Hardware
Channel
and Device

Control Program

CONSINT (IDENTIFY)

Send break

Set device type in
MR DE BLOK

Send break, write,
msg. 'CP-67 on line'

Send prepare-read

Call LOGON

Call BREAK

Get CCWPKG

In attention
call BREAK

If read edit and
translate input line

Call CPSTACK

If more CCWPKG's get
next and issue SIO

If no CCWPKG's issue
prepare

Note:

LOGON

Initialize UTABLE

Initialize MVDEBLOK
for terminal device

Prompt for USERID &
password (calls to
WRTCONS & RDCONS)

Initialize segment,
page & swap tables

Initialize 1/0 blocks

Type log msg.
(call to WRTCONS)

CFSMAIN (BREAK)

Type 'GP' (call to
WRTCONS)

Issue read to the
Terminal
(call to R DCONS)

CPSTACK

Put RDCONPKG in
CPSTACK - CPRQUEST

During LOGIN 'CONS1NT' and 'LOGON' change
the return address in MR OE BLOK - Ml RA
for return entries into 'CONSINT' and 'LOGON'.

1 = Initial entry after dial-up Ml RA= IDENTIFY

2 = Entry after break Ml RA= I DENT1

3=Entryafterwrite MIRA=SNDPRP

4 = Entry after prepare-read Ml RA= PREPCH K

5 =Normal entry after LOGIN MIRA= RTN41ND
for command processing.
Normal entry for operators console Ml RA= CONSI NT

Figure 10. CP-67 Overview of Attaching a User to the System

See overview of
real 510 terminal
write and read

-27-

CONSINT Routine

When the next terminal interrupt occursr the CONSINT
routine receives control Cvia MIRA). CONSINT is also entered
whenever the input-output interrupt handler CIOINT)
determines that a terminal interrupt has occurred from the
request or attention button on the terminal. CINSINT
determines whether a user is logged on at the terminal; if
notr the LOGON routine is called to attach the new user to
the system.

LOGON Routine

Operations performed by LOGIN are:

Allocating and initializing the primary user control
table (UTABLE).

Checking the user's external identification CUSERID)
and password against entries in the user directory.

Allocating and initializing the segment table, page
table, and swap table for the user's machine.

Allocating the UTABLE extension
virtual machine is a Model 67.

(EXTUTAB) if the

Creating virtual I/O blocks to describe the user's
virtual machine.

Mapping virtual devices to real devices by chaining
virtual device blocks to real device blocks.

Figure 11 indicates the relationships of tables created by
the LOGIN routine. When LOGIN functions are completed, the
user is placed in console function mode with a read on his

-28-

(

terminal by CONSINT calling BREAK.

UT ABLE SEGTABLE Page Table

SEGTABLE

Page Table

EXTUTAB

Multiplexer Virtual
Virtual Channel
Device Block Block

Page Table

UT ABLE

Core Table
Swap Table

DASO

•

FIGURE 11. LOGON Tables

UTABLE Initialization

The primary user control table CUTABLE) contains a
description of the user's virtual machine and information on

-29-

the status of the machine. When
space is obtained for his UTABLE
following information is entered:

a new user is logged on,
from free storage, and the

The start of the virtual multiplexer device block list
(the address of the virtual multiplexer block MVDEBLOK
created for the user•s terminal device).

USERID after it has been verified by comparing it
against the entries in the user directory.

Virtual machine core size (obtained from the user•s
machine description file).

Address of the segment table.

Address of the first virtual channel block in the
virtual channel list.

Address of the UTABLE extension, if the virtual machine
has the ability to run in extended mode <virtual 67).

Segment Table Creation

LOGIN creates a four-byte segment table entry for each
page table generated. The segment table entry contains the
length and address of its corresponding . page table. The
address of the segment table (aligned on a 64-byte boundary>
is placed in the UTABLE.

The relationship of the virtual storage addresses to
I the segment table and page tables is illustrated in Figure
I 12. The twelve low-order bits of the address provide
I addressability for 4K bytes of storage Cone page); this
I number is used as a displacement from the beginning of the
I page, as defined by the page table entry. The next eight

bits of the address provide addressability for 1024K bytes
of storage Cone segment); this number is used to find the
appropriate page by providing a displacement from the
beginning of the page table (the beginning of a segment is
the address of the first page in the segment>. The four
high-order bits of the address provide addressability for
4096K bytes of storage; this number is used to find the
appropriate segment by providing a displacement from the
beginning of the segment table.

-30-

Address

Bits 4 6 12
,-----,- - - -T - - -------,
I Segment I Page I Displacement into I
I I I page I

}------*----+-::::----------\
I / \ I " "

I / \ """ \,
I // \ I "'- "'- ~

I / \ I "'--"'-- "
I // \ I "" '--

I / I / ""'- '
/ / \ ('-- Page

I / I ,---~tj-11..,.._-'--,

>---SE_G_T_A-BL_E _ __.f \\ '""""'' ~.

Core Storage

Page ·

FIGURE 12. Virtual Addressing

Swap Table Creation

For each page table entry, LOGIN creates a
corresponding eight-byte entry in a swap table (SWPTABLE> •
Whereas a page table entry contains the address of a page
when it is core resident, a swap table entry contains the
DASO address of a page when it is not core resident. The
DASO address is contained in bytes 4-7 of the swap table
entry; bytes 0-3 contain control information.

Virtual I/O Block Creation

When page and swap table creation is completed, LOGIN
reads entries for I/O devices from the user's machine
description file. After determining the channel type
(selector or multiplexer), LOGIN creates the required

-31-

virtual I/O blocks. Figure 8 illustrates the relationship
of virtual and real I/O blocks.

List of List of
Virtual Virtual
Channel Control
Blocks Unit Blocks

VCHANPT

VCULIST

r----,
I I I

I t
I I
I I
I I

List of
Virtual

Device
Blocks

VPNTREAL

-----,
I
t
I
I
I
I

I

List of
Real
Device
Blocks

-----,
I
I
I
I
I
I I

List of
Real
Control
Unit Blocks

----,
I
I
I
I
I
I

List of
Real

-----, ~-- - _J
L ___ _J L ___ _J L---J -----,

I I
I I
t I
I • • I

I I I
I I L ___ _J • • L ___ ...J

• I I • I I
I I

Virtual, , Real

I I
I

I Interface I

FIGURE 13. Virtual-Real I/O Blocks

For multiplexer devices, a new virtual multiplexer
device block CMVDEBLOK) is created and chained to the last
created MVDEBLOK. The address of the first MVDEBLOK in the
chain Cthe MVDEBLOK for the user's terminal> is entered into
the UTABLE.

For devices attached to selector channels, a virtual
device block is created, and, if necessary, control unit and
channel blocks.

A pointer to each virtual I/O block that is created is
entered in the previous block, resulting in a chain Clist>
of virtual I/O blocks. Virtual device blocks are also
chained to corresponding real device blocks Csee Figure 13).

LOGON determines the right Of access to a virtual DASO
device based on information contained in the machine
description entry of the user directory.

These rights of access are summarized in Table 1. The

-32-

normal mode of access to a DASD device is read/write. In
general, unless overridden by the presence of WRMULT, only
one user can access a DASO device with write privileges.
Any number of users can have simultaneous read-only access.
The WRMULT parameter results in existing links being
ignored. The use of WRMULT requires that the virtual
machine operating system contain the proper data set
protection mechanisms; in addition, CMS does not have
interlocks. Therefore, WRMULT should be used with caution.

See the CP-67 Operator's Guide under "Directory Creation
and Allocation".

Table 1. Summary of Access Allowed to DASD Devices by LOGIN

Directory
Specification

RDONLY WRMULT

Existing Links
to Other

Virtual Machines

Access Mode
Allowed

Messages
<see below>

---------------------------------------~~-----------------------

No No

Yes No

No Yes

Yes Yes

1. DEV xxx IN
2. DEV xxx IN
3. DEV xxx IN

None
Read-only
Read/Write

None
Read-only
Read/Write

None
Read-only
Read/Write

None
Read-only
Read/Write

USE BY userid;
USE BY userid;
USE BY use rid

Read/Write
Read-only
None

Read-only
Read-only
None

Read/Write
Read/Write
Read/Write

Read-only
Read-only
Read-only

SET TO R/O
NOT ATTACHED

1
2

2

3
3

-33-

User Accounting Statistics

In the UTABLE for each virtual machine, three fields
are used for time accounting.

TIMEON is a six-byte field that contains the date and time
in packed decimal of user login. This is used with
logout time and is punched in the user accounting card
to give connect time.

TIMEUSED is a fullword binary value that represents all
CPU time charged to this virtual machine. The time is
in extended precision (high resolution) time units and
includes both user execution time and CP supervisor
time executed for this user.

VTCJI'TIME is the same as TIMEUSED except that it includes
only user CPU execution time.

In addition there are statistics for user I/O activity.
These are:

VMSSIO - number of selector channel SIO
VMPNCH - number of virtual "cards" punched
V¥1LINS - number of virtual "lines• printed
VMCRDS - number of virtual "cards" read
VMPGRD - number of pages read

Also, there are four words reserved for user data gathering
that may be used by the installation. These are:

VMUSERl, VMUSER2, VMUSER3, and VMUSER4

PROCESSING CONTROL PROGRAM I/O REQUESTS

Control Program requested input-output operations can
be divided into two general categories: (1) those initiated
by a user (virtual) I/O request, and (2) those initiated by
the Control Program itself (for example, paging or spooling
requests). The following text describes the routines called
by the Control Program to perform specific I/O operations.
Processing required to analyze virtual I/O requests and to
translate them to specific real operations is discussed
later in this section under "Processing User Selector
Channel I/O Requests" and "Processing User Multiplexer
Channel I/O Requests•. See Figure 14 for a flowchart of I/O
Interrupt Handler operation.

-34-

Get real unit
address from
interrupt
code

Scan for
device address
IMRDEBLDKI

Get users
UT ABLE
and
MIRA address

No

Enter
module IOINT

Save VREGS
and VPSW
in UT ABLE

Get real unit
address from
interrupt
code

Get IOTASK
block from
RDEVBLDK

Do a sense
on unit check

Find end of
generated
CCW's

Figure 14. Flowchart of I/0 Interrupt Handler Operation (1 of 2)

-35-

Do a sense
on unit
check

svco

Move sense
into
RDEVBLOK

Yes

Get user's
UT ABLE

(RDEVUSERI

Get virtual
device
address
(RATTVADDI

IOISTVDE

Set virtual
DE type

Get
operator's
UT ABLE

Goto
dispatch

Reset seek bits
set arm in
position flag

CH FREE

Restart
channel

Get UT ABLE
(IOTASKI

Get interrupt
return address
(IOTASK block)

CALL MACRO

Cati interrupt
return routine

Make CCW ,after
last used a TIC
to next CCW

No

Replace CCW
after last
used with
this TIC

Chain last
used CCW
to the TIC

Get user's
UT ABLE

Get IOTASK
and ROEVBLOK

QUERIO

Restart

PAGUNLOK

Unlock data
page of CCW
chained to TIC

Figure 14. Flowchart of I/O Interrupt Handler Operation (2 of 2)

-36-

(

Real Multiplexer Channel I/O Operations

The multiplexer real I/O executive CMRIOEXEC) is
entered whenever an interruption occurs on a unit record
device (printer, card reader, or card punch) attached to a
multiplexer channel. It is also called by the multiplexer
virtual I/O executive routine (MVIOEXEC) to perform printer
or punch input-output operations. MRIOEXEC determines the
interrupting device type and performs appropriate

I processing. See Figure 15 for processing in the MRIOEXEC
I module.

-37-

Enter

module MRIOEXEC
entry MRDIO

Set up CAW
and CCWs to
write or read
the buffer

Get
RDEVBLOK

QUERIO

Initiate
1/0 operation

Exit

Write
MSG

Set up
header
record

Figure 15.

-38-

Yes

2540R Reader

Set current
card - data
address

Set unpacked
count, get
data & address

PACK

Compress user
CCWdata
80 bytes

Set file
continued
flag 'FF'

RECFREE

Get new
record
address

Store CYL-HD
in DATAD

Enter

module MRIOEXEC, entry PRIRA
PUIRA, CAIRA

No

Initial
Entry

No

Get
operators
UT ABLE

Find
interrupting
device

Get core for
MRI BUFF -
I OT ASK

Move data to
MRIBUFF
{DATADI

Set end of
file flag
'EF'

MRDIO ----
Queue 1/0
request to
write buffer

Yes

2540P Punch
1403 Printer

Get a ten
card
buffer

Initialize
IOTASK,MRICAW
TASK IRA"
MRIWIW

Set up CCWs
to read
ten cards

Issue SIO
card reader

Exit

Get next
card from
buffer

Exit

Processing in the MRIOEXEC Module (1 of 2)

Show device
drained

Set DE int
in MVDEBLOK

Set PENDING
int in
UT ABLE

Yes

No

Yes

Enter

MRIWINT

Issue
check ro

Get old
MRIBUFF

Release card
buffer,
MRIBUFF, CSW

Chain closed file
Blok IMVIFILEC)
to end of 'readers'
chain as (SF BLOK)

Set device
free

Get reader
MVDEBLOK

Send 'cards
read' MSG
to user

Exit

(

Initial

Entry

Get core for
MRIBUFF­
IOTASK

Initialize
I OT ASK
TASKIRA­
MRIRINT

Get PR-PU
output buffer

Get SFBLOK
printers or
punches

Remove SF BLOK
from chain

Send output
msg.

Get buffer
address
(DAT AD)

Fiqure 15.

Get unspool
1/0 chain

No

Exit

>-Y'-e'-'s __ -.iSet return
MIRA= MRI NI RA

Set

MIRA=MRIOEXEC

Get SF BLOK
punches

MRDIO

Exit

Yes

Yes

Set up CAW
and CCW
issue 510

Set up one
blank CCW

Send 'start
output' msg.

Yes

Enter
MRINIRA

Get next
unspool
entry

Write
drained msg

Release
all blocks

Processing in the MRIOEXEC Module (2 of 2)

Enter
MRIRINT

Issue
check to MACRO

Get
MRDEBLOK

Set up to
read next
record

MRDIO

Close CCW
list

Get first
CCW in list
store in CAW

Issue SIO
punch or
printer

Exit

AfterSIO to

PCH or PTR

Get old
MRIBUFF

Get next
CCW DATAD

Store CCW
in CCW list

Get next
data (DATAD)

UNPACK

Unpack user
data

Move data to
output buffer

Process new
ccw

-39-

Card Reader Interruption

To perform I/O operations on a card reader, MRIOEXEC
reads card data into a buffer (ten cards at a time>,
compresses the data Cby means of the PACK routine>, and
writes the packed records into a "spooling" file on a direct
access device. The records will later be read from the
spooling file by MVIOEXEC.

If MRIOEXEC is entered as the result of an interruption
caused by the unit being made ready (that is, initial entry
into the routine), the routine obtains an in~ut buffer and a
spooling buffer, constructs a ccw list to read from the card
reader, and issues an SIO instruction.

If the interruption results from a channel end or a
unit exception, MRIOEXEC calls PACK to compress the input
data, and moves the packed data to the spooling buffer. When
the buffer is full, or at end-of-file, it creates an I/O
task block and a CCW list to write the buffer to a spooling
file on a direct access device. The routine QUERIO is
called to attach the task block to the appropriate channel
block and schedule it for service.

When the buffer has been written to the spooling file,
a test is made for an.end-of-file indication Cset when a
unit exception interruption occurred, indicating that all
cards have been read). If the end-of-file flag is on,
buffers are returned to free storage, and the file is added
to the chain of closed files. Reader files are chained off
the READERS word in MRIOEXEC.

Printer or Punch Interruption

To perform I/O operations on a printer or card punch,
MRIOEXEC reads records from a spooling file on a direct
access device, unpacks the data (by means of the UNPACK
routine>, and prints or punches the records on the specified
device.

If MRIOEXEC is entered as the result of an interruption
caused by the unit being made ready (that is, initial entry
into the routine), the routine obtains an I/O task block for
reading records from a spooling file on a direct access
device and a buffer area into which these records may be
read. Printer and punch processing check the PRINTERS and
PUNCHES chain respectively to locate a closed file entry
(spool file control block). PRINTERS and PUNCHES are words
in MRIOEXEC.

If a closed file is available, a message indicating the
output device is written to the system operator's console by
calling the routine WRTCONS. A ccw list for reading records
from the file is created, the I/O task block is initialized,
and the routine QUERIO is called to attach and schedule the
task block to the appropriate channel queue.

When records have been read from the spooling file, the

-40-

(

routine UNPACK is ca1led to unpack the spooled records, the
unpacked records are moved to an output buffer, and the next
group of spooled records is read. When the output buffer is
filled, or when the spooling file has been completely read
(logical end-of-file encountered), an SIO instruction is
issued for the appropriate device (printer or punch).

When a file has been completely written out, or if no
closed spooling file was available, MRIOEXEC processes
requests for unspooled punch output. Unspooled punch output
requests are initiated by the Control Program (typically for
accounting information cards) and are added to a MREALIO
queue by RPUNCH, a subroutine within MRIOEXEC.

Real Terminal I/O Operations

The routines used by the Control Program to communicate
with either the real operator's console or a remote terminal
are RDCONS for read operations and WRTCONS for write
operations. RDCONS and WRTCONS prepare CCW lists and I/O
task blocks for their respective I/O operations, and call
STCONSIO to stack and initiate the I/O requests. The
console interruption handler (CONSINT) receives control when
the I/O operation is completed.

Read From a Terminal - RDCONS

See Figure 16 for processing in RDCONS module.

-41-

Enter

module RDCONS
entry RDCONS

Initialize
RDCONPKG
set up return
address

Get terminal
MRDEBLOK for
this user

Get device
address

Set up
CCWPKG
construct
CCW's

Chain RDCONPKG
off CCWPKG

STCONSIO

Exit

Figure 16. Processing in RDCONS Module

-42-

(

When a read operation from a terminal is required, the
Control Program calls RDCONS, passing in register 1 the
address of a 132 byte input buffer, and, if required, in
register 2 the parameters for the EDIT and/or UCASE options.
EDIT and UCASE options, if requested, are processed by the
console interruption handler, CONSINT.

RDCONS obtains storage for and initializes a control
list for the read operation. The appropriate I/O device
block CMRDEBLOK) is initialized. If the data is to be read
from the real operator's console, the current operator's
MRDEBLOK is used; otherwise, the address of the MRDEBLOK is
obtained from the indicated user's virtual console MVDEBLOK.

An appropriate ccw list is constructed for the type of
terminal device, and the address of the CCW list is placed
in register 6. The EDIT and/or UCASE parameters, if
present, and the device type are placed in the control list,
and the routine STCONSIO is called. When control is
eventually returned to RDCONS upon completion of the read
function, an exit is taken to the calling routine.

Write to a Terminal - WRTCONS

See Figure 17 for WRTCONS module processing.

-43-

SVC 0

Entry

module WRTCONS
entry WRTCONS

Initialize
RDCONPKG
with return
address

Set
MR DE BLOK

Get device
address

Set up
CCWPKG
construct
CCWs

Translate
data

Chain RDCONPKG
(if one exists)
off CCWPKG

Yes

Yes

Entry

module WRTCONS
entry PRIORITY

Set priority
control bit

Get operator
MRDEBLOK
and UTABLE

Yes

Fiqure 17. WRTCONS Module Processing

-44-

PR I MSG

Exit

When a write operation to a terminal
Control Program calls WRTCONS, passing
information in the indicated registers:

is required, the
the following

GPR 0 - the number of bytes in the output message;

GPR 1 - the location of the first byte of the output
message;

GPR 2 - the parameters for the NORET, DFRET, OPERATOR,
NOAUTO, and ALARM options;

GPR 11 - the appropriate user's UTABLE address.

Unless the NORE'!' option was specified, WRTCONS obtains
storage for and initializes a control list in which will be
saved the return address and register contents. The
appropriate I/O device block (MRDEBLOK) is initialized. If
the message is to be written to the real operator's console,
the current operator's MRDEBLOK is used; otherwise, the
address of the MRDEBLOK is obtained from the user's UTABLE
entry.

An appropriate ccw list is constructed for the type of
terminal device being used and for the option. Option
parameters, passed to WRTCONS in register 2, are stored in a
control list preceding the CCW list~

The address of the ccw package (CCW list and control
list) is placed in register 6, the device type and
parameters for the DFR~~ option, if present, are stored in
the control list, and the routine STCONSIO is called. When
control is returned to WRTCONS, an exit is taken to the
calling routine.

Two alternate entry points, PRIORITY and CLRCONS, are
provided for the WRTCONS routine. If the routine is entered
at PRIORITY, write requests will be created as usual, except
that the STCONSIO routine will be entered at PRIMSG, causing
the write request to be stacked on a priority basis. If the
routine is entered at CLRCONS, all outstanding terminal I/O
requests to that user will be deleted.

Stack or Start Terminal I/O Requests - STCONSIO

see Figure 18 for STCONSIO module processing.

-45-

Store CCW
address in
CAW

Issue SIO

Yes

Figure 18.

-46-

Enter

module STCONSIO
entry STONSIO

Set non-PRJMSG
branch SW.

Issue HID

Queue
CCWPKG
(UTABLE-CIOREQ

Exit

Get M ROES LOK
and device
address

No Yes

STCONSIO Module Processing

Enter

module STCONSIO
entry PR l MSG

Set PR I MSG
branch SW.

PR I MSG

Get current
CCWPKG
(UTABLE-CIOREQ)

Store current
CCWPKG as
next

No Get next
CCWPKG
(for insert)

Non PRIMSG

Find end of
queue chain
(UTABLE-CIOREO)

Chain CCWPKG
to CIOREO
chain

Exit

When a ccw package has been created for a terminal I/O
operation, STCONSIO is called to add the I/O request to the
chain of pending requests, or to start the operation if no
other requests are pending. At entry to STCONSIO, register
6 contains the address of the ccw package, register 8
contains the device type, and register 11 contains the
address of the appropriate user's UTABLE.

If no other I/O requests are pending, the address of
the ccw package is placed in the channel address word and an
SIO instruction is issued. When the I/O operation has been
initiated, the current I/O request pointer is updated to
point to the CCW package of the active operation, the count
of pending I/O requests CNCIOREQ) is incremented by 1, and
an exit is taken to the calling routine.

If other I/O requests are pending, the ccw package is
added to the chain of pending requests, the count of pending
requests is incremented by 1, and the exit is taken to the
calling routine.

If the routine STCONSIO was entered at the entry point
PRIMSG, a priority operation has been requested. If other
I/O requests are pending, the current CCW package is
examined to determine the type of operation in progress. If
the current operation is a read, an HIO instruction is
issued, the priority ccw package becomes the current package
(added at the top of the chain), and the ccw package of the
halted operation becomes the "next" package <second on the
chain). If the current operation is a write, no HIO is
issued; the priority CCW package becomes the next package
(inserted after the current package in the chain>. In either
case, the count of pending requests (NCIOREQ) is
incremented, and an exit is taken to the calling routine.

Processing Terminal I/O Interruptions - CONSINT

When an I/O interruption occurs on a terminal, the I/O
interruption handler, IOINT, receives control and determines
the type of interrupting device, obtains the multiplexer
interruption return address (MIRA) from the MRDEBLOK, and
gives control to the terminal 1/0 interruption handler
(CONSINT) at the entry point specified by MIRA.

For an inte~piption following an output operation,
CONSIN'I' performs the following processing:

If the NORET option is not specified, the routine
CPSTACK is called to add an entry for the current user
to the stack of Control Program execution requests.
This entry notifies the caller of WRTCONS of the
completion of the operation.

-47-

If other terminal requests are pending for this device
an SIO instruction is issued for the next ccw package,
and pointers to the "current" and "next" CCW packages
are updated.

Control is returned to
<DISPATCH).

the main control routine

For an interruption following an input operation, CONSINT
performs the following processing:

Unless the terminal is a 1052, the
translated into EBCDIC from line code.

message is

If the EDIT option is specified, the input message is
scanned, and deletions are made as required.

If the UCASE option is specified, the input message is
translated to uppercase letters.

The routine CPSTACK is called to add an entry for the
current user to his stack of Control Program execution
requests. This entry notifies the calling Control
Program routine of completion of the input operation.

If other terminal requests are p~nding for
an SIO instruction is issued for the next
and pointers to the "current" and "next"
are updated.

control is returned to DISPATCH.

Real Selector Channel Operations

this device,
ccw package,
ccw packages

The routine QUERIO is called by the Control Program
whenever a selector channel I/O operation is to be
performed. The address of a completed I/O task block is
passed to QUERIO in register 1. QUERIO indicates that the
operation is being requested by the control Program,
attaches the task block to the appropriate channel, and
tests to see whether the channel is free.

Initiating Selector Channel I/O

If QUERIO determines that the channel is free, the
routine CHFREE is called, with the address of the
appropriate channel block (RCHBLOK) passed in register 1.
CHFREE issues an SIO instruction to the indicated channel.
The resulting condition code is checked and appropriate
action taken:

-48-

(

For a condition code of O, the task block is attached
to the real device block (RDEVBLOK), the task count is
decremented, and control is returned, through QUERIO,
to the routine which requested the I/O operation.

For a condition code of 1, csw information is obtained,
the condition code is placed in register O, and control
is passed to the routine specified in the task
interruption address CTASKIRA).

For a condition code of 2, a retry of the SIO
instr~ction is issued.

For a condition code of 3, the task block is unchained
from the channel, the task count is decremented, the
condition code is placed in register O, and control is
passed to the routine indicated in TASKIRA.

Figure 19 shows the processing of I/O tasks on the selector
channel and device blocks .•

-49-

RCH 1

IOTASK 1

ROE

ROE 1

ROE 2

Last task

IOTASK 2

ROE

IOTASK4
Current task

IOTASK 3

FIGURE 19. Processing Real Selector Channel I/O Tasks

-50-

ROE

Processing Selector Channel I/O Interruptions

When an I/O interruption occurs for a selector channel
device, the I/O interruption handler, IOINT, receives
control. Register 0 is cleared to indicate that an
interruption has occurred, and control is given to the
routine indicated in TASKIRA. When IOINT again receives
control, control is passed to DISPATCH via a GOTO macro.

Processing of I/O Errors - IOERROR

When IOINT passes control to the routine whose address
is indicated in TASKIRA, that routine issues a CHECKIO macro
to check for successful completion of the I/O. If only the
channel end and device end bits are set in the channel
status word, the routine concludes that the I/O was
successful and continues processing. In all other cases,
IOERROR is called. When IOERROR receives control, a call is
made to the subroutine RECERROR, which analyzes and, in some
cases, records the error. (For details, see the subroutine
description of RECERROR below.)

If the sense information indicates that intervention is
required, a message is sent to the operator indicating the
device address and asking •REPLY 'GO' WHEN AVAILABLE OR
'FAIL' IF NOT AVAILABLE". If the operator replies GO, the
I/O operation is retried, whereas if the operator replies
FAIL, a permanent error is assumed.

For CF-generated I/O Cpaging, spooling, and reading the
directory>, the I/O is retried up to 64 times if errors
occur. This is accomplished by setting up a special retry
I/O task consisting of a recalibrate CCW followed by a TIC
to the original IOTASK block. TASKIRA is set up so that
return is to the REPRTN entry point in IOERROR. If the I/O
completes successfully, control returns to the program which
originally generated the I/O request. If, on the other hand,
the I/O is retried unsuccessfully 64 times, a major error
message with error count, sense, and status information is
printed at the operator's terminal and the system will
ABEND.

Note that the error retry and recording procedure apply
only to selector channel devices represented by RDEVBLOKS
and not to shared unit record equipment or nondedicated
terminals.

PROCESSING USER SELECTOR CHANNEL I/O REQUESTS

When a pseudo-supervisor Cthat is, a supervisor operating
in a user's virtual machine) requests an I/O operation, a
program interruption occurs, and the Control Program must
determine the type of operation requested and the processing

-51-

required to honor the request.

The following text describes the major routines involved
in honoring user selector channel input-output requests.
Only the I/O-related operations of the routines will be

I discussed in this section. See Figure 14, CP I/O Interrupt
I Handler.

Program Interruption Handler - PROGINT

Entrance: PROGINT receives control
- interruption occurs.

when a program

Operation: PROGINT determines the mode of the user's
virtual machine (problem or supervisor> and the cause
of the program interruption (paging request, invalid
operation, or privileged operation).

I Routines called: If the program interrupt is caused by a
I privileged operation that is in virtual supervisor
I mode, PROGINT transfers PRIVLGED to simulate it.

I Privileged Instruction Simulator - PRIVLGED

I Entrance: PRIVLGED receives control via a GOTO from
I PROGINT.

I
I
I
I
I
I
I
I

Operation: For other than I/O instructions, simulation is
performed within PRIVLGED. PAGTRANS is called to bring
in pages not in core that are necessary for the
privileged instruction simulation. When simulation is
finished, exit is taken via GOTO to DISPATCH.

If the privileged operation is an input-output request,
PRIVLGED calls the virtual. machine I/O executive
program CVIOEXEC), passing the addresses of the first
and second halves of the privileged operation in
registers 4 and 5 respectively. When control is
returned from VIOEXEC, an exit is taken to the main
dispatcher and control routine (DISPATCH), via a GOTO
macro instruction.

Virtual Machine I/O Executive Program - VIOEXEC

(See Figure 20 for VIOEXEC module processing.)

-52-

SIO

Set CC=1
move device
status to VCSW

Exit

Figure 20.

MVIOEXEC

Set CC= 2
in VPSW

Set CC=1
move device
status to VCSW

Decrement
interrupt
count

No

Enter

module VIOEXEC
entry VIOEXEC

Compute
unit
address

VUNITSCN

Get VCHBLOK
VCUBLOK
VDEVBLOK

Get type
of 1/0
instruction

Clear CE
set CC= 1
store CSW
to VCSW

Exit

Set all
busy

Set CC= 1 in
VPSW set
SM and busy
in VCSW

Create IOTASK
block
TASKIRA =
VIRA

Issue TRANS
macro for
CCW page
set CCW list

VIOEXEC Module Processing (1 of 4)

Set VMSTETYS
TO IOWAIT

CCWTRANS

No

HIO

QUEVIO

-53-

Figure 20.

-54-

No

SetCC=1
VPSW

lssueHIO
{real)

cc= 2

Exit

Get real
device
address

CC= 1

Move CSW
status to
VCHCSW

Set CC= 1
set status
in VCSW

Zero status
in VCHCSW
(virtual HIO)

VIOEXEC Module Processing (2 of 4)

No

(

CC= 0

Move sense
toVCHCSW

Set CE int.
in VCHBLOK

Reset busy
VCHSTAT

CHKCUACT

Yes

Yes

Figure 20.

Move sense
to VCHCSW

UNTRANS

Set CE int
in VCHBLOK

Set pending
interrupt
in UTABLE

Reset busy
VCUSTAT

Enter

module VIOEXEC
entry VIRA

Get users
UT ABLE

Get VCH, VCU,
VDEV block
pointers

Reset busy
VCUSTAT
VDEVSTAT

IOISTVCU
Yes

IOISTVDE
Yes

>......:.~--1.r- -------

UNTRANS

FREECCW

FreeCCW
string

Release
I OT ASK
block

VIOEXEC Module Processing (3 of 4)

CC= 1 CC=3

-55-

Move CSW
to VCHCSW
and VCSW

Reset busy
VCHSTAT

CHKCUACT

Reset busy
VCUSTAT

Yes

Yes

No

Figure 20.

-56-

Reset busy
VCUSTAT
VDEVSTAT

Yes

Release
alt clocks

Set CC
in VPSW

Remove
IOWAIT
status

Attempt to
START next
I OT ASK

Exit

VIOEXEC Module Processing (4 of 4)

Reset busy
VCHSTAT

Reset busy
VCUSTAT
VDEVSTAT

Get sense
bytes

VERROR

Record
error

Entrance: VIOEXEC receives control from .the privileged
operation simulator CPRIVLGED) when a user-requested
I/O operation has caused a program interruption.

Operation: VIOEXEC determines the type of I/O operation to
be executed (SIO,TIO,HIO,TCH) and performs appropriate
processing for each type.

For an SIO operation on a selector channel, VIOEXEC:

Obtains the channel, control unit, and device
addresses, and tests for busy or status pending
conditions on the addressed path. If the ad.dressed
channel is busy, sets condition code 2 in the
virtual PSW and exits. If status is pending or
the virtual control unit or device is busy, stores
the relevant CSW status, sets condition code 1 and
exits.

If the path to the device is free, creates an I/O
task block, translating the virtual channel
address word (CAW) into a real CAW

Calls the CCW translator (CCWTRANS) to translate
virtual CCW's to real CCW's, returning the address
of the start of the chain (TASKCAW)

Sets the I/O wait indicator in the user's VMSTATUS
in UTABLE

Calls the virtual I/O
QUEVIO, to queue the
appropriate channel

request queueing
I/O task block

Transfers to DSPTCHB (DISPATCH).

routine,
on the

When the I/O operation is started, QUEVIO reflects
the condition code to the user, and resets the I/O
wait indicator to zero

For an SIO operation on a multiplexer channel, VIOEXEC:
(See Figure 21 for MVIOEXEC module processing .•)

;;_57-

Determine
type of
1/0 inst.

Get users
CCWlist

Store CSW
in MVDEBLOK

Set CE-DE
in CSW
MYDEBLOK

Set up IOTASK
TASKIRA =
MVINTR

Figure 21.

-58-

Yes

Locate
MVDEBLOK

SetCC=2
in VPSW

Exit

Set CC in VRSW
Set status
inCSW

Exit

Get core for
MYIBUFF, flag
end of buffer
for reader 'FF'

No

Enter

module MVIOEXEC
entry MVIOEXEC

SetCC=O
in VPSW

Set CC= 1
in VPSW

Exit

Yes

Yes Locate
MYDEBLOK

RECFREE

Get a disk
record address

Store CYL - NO -
REC in
MY I BUFF

Initialize
MY I BUFF

Set empty file
flag 'DF'

MVIOEXEC Module Processing {l of 4)

Set CC= 1
in VPSW

Exit

Put file
header in
buffer

SetCC=3
in VPSW

Exit

,(;'

\~

(

Enter

module MVIOEXEC
entry MVl REC

Getdata
address

MRDIO ---
Initiate the
1/0 operation

Set IOWAIT
in UTABLE

Go to
dispatch

Set UC and
intervention
required

Set CC= 1
in VPSW

Exit

Figure 21.

Enter
MVINTR

ls.sue SVC 16
release
current
save area

Issue
check lO
MACRO

Reset tOWAIT
(UTABLE)

Get the desired
SF BLOK from
readers chain

Get first
spool record
address

No

Get users
firstCCW

Muvt: CCW to
MVICCW

UNPACK

Unpack user
data

Get user
data area

Move data
to user
area

Get next
non-TIC
ccw

No

Yes

Set program
check for

Process for
NOP, sense,

or feed

Set UC
in CSW

Delete
old
file

Free blocks

Se1cc~1
in VFSW

Exit

MVIOEXEC Module Processing (2 of 4)

Yes

Exit

Punch or
Printer

Get next
ccw

Get the desired
SF BLOK from
readers chain

Delete old
file

Exit

Set status
in MVDEBLOK

Set int
pending
in UTABLE

Exit

-59-

Move CCWto
MVICCW

Get user
data area

Move data from
user area to
DA TAP

Set
continued
flag 'FF'

get a disk
record
address

Store address
in DATAD
(pointer to
next record)

MVIREC

No

Figure 21.

-60-

No

Get next
non-TIC
ccw

Move data
to disk
buffer

Set status
in MRDEBLOK

Set int.
pending
in UTABLE

Process for
SENSE NOP,
or CONTROL

Get next
non-TIC
ccw

Set status in
MVDEBLOK

Set int
pending in
UT ABLE

Set program
check in
csw

SetCC=l
in VPSW

Yes

Yes

Set end of
file flag
'EF'

Set return
TASKIRA =
MVIEFIRA

MVIREC

Set program
check in
csw

Set Pending
int in
UT ABLE

Exit

MVIOEXEC Module Processing (3 of 4)

Chain SF BLOK
to punches
or printers

Get
non-busy
MRDEBLOK

Send MSG
'start for
output'

Set up
dummy CSW
with DE

MRIOEXEC

No

Enter
MVIEFIRA

Issue
CHECKIO
MACRO

SVC16
release
current
save area

Chain SFBLOK
to readers
chain

Send msg
'cards XF-RED'

Get reader
MVDEBLOK
set DE int

Set pending
int in
UTABLE

Reset
IOWAIT in
UT ABLE

Exit

(

SENSE
NOP

Process
NOP or
SENSE

Set up
CSW

Set pending
interrupt
in UTABLE

Set to go
to console

Q

Yes

Goto
DISPATCH

Figure 21.

Yes Get next
ccw

Set break
flag

BREAK

Put in GP
mode

Exit

Set ending
status

Yes

No

Reset

exit
flag

Clear
break
flag

Set busy
(MVDESTAT)

Read

•
Set return
from RDCONS
to MVICNRD1

Set terminal
1/0 buffer
set address
in MVIOB

RDCONS

Return after
read to terminals

via RDCONS
MVIONRD1

Move data
from buffer
to user
data area

Set status

Get next
ccw

Alarm

WRTCONS

Send
alarm

Set break
flag

Return after

Set ending
status

MVIOEXEC Module Processing (4 of 4)

Yes

No

Get
next
CCW

Write

initialize
output
buffer

Store buffer
address in
MVIOB

Get data
address

PLACE

Construct output
line write line if
buffer overflows

Set return
from WRTCONS
to WRTHMVI

WRTCONS

-61-

I
I
I
I
I
I
I

-62-

Calls the multiplexer virtual
program (MVIOEXEC)

Transfers to DSPTCBA (DISPATCH).

For a TIO operation, VIOEXEC:

I/O executive

Tests the virtual channel for a pending channel
end; if found, tests for channel end for addressed
device. If channel end is found for the device,
the channel end is cleared, a condition code of 1
is set, the csw is updated, and transfers to
DSPTCHA (DISPATCH). If a channel end is found,
but not for the current device, a condition code
of 2 is set. If this is the second time this has
happened recently, DISDRQ is called to drop a user
from a queue and then transfers to DSPTCHB
CDISPA'I'CH) • "

If a pending channel end is not foundr the virtual
control unit is tested for pending interruptions.
If foundr a condition code of 1 is set, the csw is
updated, and control is returned to PROGINT.

If a pending control unit interruption is not
foundr the virtual device is tested for pending
interruptions. If f oundr the pending
interruptions are cleared, the device status and
the count of pending interruptions are updated, a
condition code of 1 is setr the CSW is updated,
and transfers to DSPTCHA (DISPATCH).

If a pending device interruption is not found, a
condition code of zero is set, and transfers to
DSPTCHA (DISPATCH).

For a TCH operation, VIOEXEC:

Finds the virtual unit address and the virtual
channel block

Tests the virtual channel for a pending channel
end. If a pending channel end is found, a
condition code of 1 is set. If the channel is
busy, a condition code of 2 is set; if not, a
condition code of zero is set.

Transfers to DSPTCHA (DISPATCH) •

For an HIO operation, VIOEXEC:

If I/O is not in progress on the device and
interrupts are not pending, sets a condition code
indicating that the device is available.

(

If I/O is in progress, issues an HIO to the device
and reflects the condition code to the virtual
machine. When the I/O is finished, VIOEXEC sets a
condition code indicating interrupt pending.

CCW Translator - CCWTRANS

Entrance: CCWTRANS is called by the virtual machine I/O
executive program (VIOEXEC) when an I/O task block has
been created and a list of virtual CCW's associated
with a user's SIO request must be translated into real
ccw•s. (See Figure 22 for CCWTRANS module processing.>

-63-

Enter

module CCWTRANS
entry CCWTRANS

Get VCCW
list
IOTASK-TASKAW

scan phase
r.-------
1 ~Cd~~!;~i~es~~~ned

~----------T-- - - -1 number double-words

I r~i;:~ ~~r~~roduce

Analysis
by device

Analysis by
command
type

Calculate
core required for
real
CCW list

Get core for
'RCCWLIST'
and set up
header

No

L ______ _
Get next
vccw

translate phase

r v7cWLITT; r;;;ada;-
1 the CCW's pre-translated.
I If a read or write cmd
I has data that crosses a

I ~;I~~ i~~~~d~~~~:r

Get
Next
vccw

No

Translate
to real
ccw

r--------
.---1..--,
I TIC I
I scan I
I phase I

Get
TIC
block

Get
next
RCCW

--------1 ofCCW'stoeliminate

Get start
of VCCW
list

Flag if TIC
command

Translate
command
type

Test for
page
boundary
condition
on data area

Figure 22.

-64-

I this condition. Control
or address data

I associated with a
1 CONTROL, SKIP, SEARCH

cmd is moved to the
I CNTR LST associated

L w~ ~e ~Cr:!!~·-_

Get next
TIC
block

No

No

r------- --­
,...---.L---.,
I I
I End of I
I CCWLIST I
I return I
I control I

CCWTRANS Module Processing

Update
VCAWto
RCAW
IOTASK­
TASKCAW

Store
RCCWLIST
address in
IOTASK
TASKCAW

Exit

Yes

Yes

Translate
to RCCW's
each
specifying
data in one page

Unflag
the
TIC

Get next
RCCWlist

Yes
Translate
TIC to
RCCW

r------
N I to scan phase
~ ____ ~ with untranslated

I virtual TIC
address L ____ _

CCWTRANS is called by IOINI' when the I/O operation is
completed from a self-modifying channel program. The
self-modifying channel program checking portion of
CCWTRANS calls CCWTRANS when retranslation of CCW's is
required.

Operation: CCWTRANS operates in four phases: a scan phase,
a translate phase, a TIC-scan phase, and a
self-modifying channel program checking scan phase if
the ISAM option was chosen.

The scan phase analyzes the virtual CCW list to
determine the total core storage requirement of the
real CCW list. Additional real CCW's are required if
the data area specified by the virtual ccw list crosses
page boundaries. Some channel commands require
additional doublewords for control information {for
example. seek addresses).

The translation phase reexamines the virtual ccw
list and translates it into a real CCW list. TIC
commands that cannot be immediately translated are
flagged for later processing by the TIC-scan phase. A
read or write command that specifies data crossing page
boundaries is translated into several CCW's, each
specifying data in only one page.

The TIC-scan phase scans the real CCW list for
flagged (untranslated) TIC commands and creates a new
virtual ccw list for the untranslated commands. Scan
phase processing is then repeated. When all virtual
CCW's are translated, the virtual CAW in the IOTASK
block is replaced by the real CAW (that is, a pointer
to the real CCW list created by CCWTRANS), and CCWTRANS
returns control to VIOEXEC. The user protection key is
preserved.

Routines called: CCWTRANS calls the page handling routine
CPAGTRANS) , via a TRANS macro instruction, to translate
virtual addresses to real addresses, and to lock in
core storage pages required by I/O operations.

The self-modifying channel program checking portion of
CCWTRANS calls CCWTRANS to retranslate the channel
program and QUEVIO to start the I/O operation.

OS ISAM Handling - CCWTRAN

Because many of the OS ISAM channel programs are
self-modifying, special handling is required in CP to
allow virtual machines to use this access method. The
particular CCW's that require special handling have the
following general format:

0 2 4 6 8
+--------+--------+--------+--------+

-65-

-66-

A READDATA C+7 10 BYTES
+--------+--------+~-------+--------+

B TIC TO E
+--------+--------+--------+--------+

c I
+--------+--------+--------+--------+

D I I
+--------+--------+--------+--------+

E I SEEK: SEEK HEAD ON D
+--------+--------+--------+--------+

F SEARCH ON D+2
+--------+--------+--------+--------+

The ccw at A reads 10 bytes of data, the last byte of
which forms the command code of the ccw at E.. In
addition, the data read ~n forms the seek and search
arguments for the CCW's at E and F. The normal CP
translated ccw string has the following format:

0 2 4 6 8
+--------+--------+--------+--------+

1 READDATA C+7 10 BYTES I
+--------+--------+--------+--------+

2 TIC TO 3 I
+--------+--------+--------+--------+

+--------+--------+--------+--------+
2A VIRTUAL ADDRESS OF SEEK AT E

+--------+--------+--------+--------+
3 SEEK: SEEK BEAD ON 6

+--------+--------+--------+--------+
4 SEARCH ON D+2 I

+--------+--------+--------+--------+
5 ETC. I

+--------+--------+--------+--------+
6 RELOCATED SEEK ARG .•

+--------+--------+--------+--------+

In order to accomplish an efficient and non-timihg
dependent translated operation for OS ISAM, the virtual
ccw string is modified in the following manner.

The ISAM scan phase of CCWTRAN is entered if, during
normal translation, a ccw of the type at A is
encountered. The scan phase locates the TIC at 2 by
searching the translated ccw strings. The TIC at 2
locates the seek at 3.

The virtual address of the virtual seek CCW at E is
located at 2A. The 4 bytes at E and the four bytes at F
are saved in the eight byte area at 6. The TIC at 2 is
altered to TIC to the virtual ccw at E. The CCW address
field at E is translated to reference D. The 4 bytes
at Fare modified to a TIC to the CCW's starting at 4.
The completed ccw string has the following format:

0 2 4 6 8
+--------+--------+--------+--------+

(

1 READDATA C+7 10 BYTES
+--------+--------+--------+--------+

2 TIC TO E
+--------+--------+--------+--------+

+--------+--------+--------+--------+
2A VIRTUAL ADDRESS OF SEEK AT E

+--------+--------+--------+--------+
3 NOT USED

+--------+--------+--------+--------+
4 SEARCH ON D+2

+--------+--------+--------+--------+
5 I ETC.

+--------+--------+--------+--------+
6 I SAVED E SAVED F

+--------+--------+--------+--------+

TRANSLATED CCW's

0 2 4 6 8
+--------+--------+--------+--------+

A READDATA C+7 10 BYTES
+--------+--------+--------+--------+

B TIC TO.·E
+--------+--------+--------+--------+

c I
+--------+--------+--------+--------+

D I
+--------+--------+--------+--------+

E SEEK: SEEK HEAD ON D
+--------+--------+--------+--------+

F TIC TO 4
+--------+--------+--------+-~---~--+

VIRTUAL CCW's

It can be seen that the virtual area c, D, E, and F
must reside in one page for the routine to function.

Once the 1/0 operation has completed, an untranslation
scan phase restores the data at E and F and sets the
correct CSW address if the channel program ended at E.

CCW Untranslator - UNTRANS

Entrance: UNTRANS is called by
type of interrupt occurs
input-output operation. Its
real CSW information into
information.

VIOINT when a channel end
for a user's virtual

function is to convert the
corresponding virtual CSW

Operation: The real ccw that caused the interrupt is
located from the virtual channel csw (VCHCSW), where
the real CSW is temporarily stored. Taking into
account the fact that some of the CCW's may be
system-generated and artificially data-chained, a
virtual csw is created to represent the csw that would

-67-

be expected from the user's virtual CCW list <s> ,.

ccw Return to Free Storage - FREECCW

Entrance: FREECCW is called when VIOINT
channel has terminated operation
list. It returns the real ccw
virtual list to free storage and
entry in the IOTASK block.

determines that the
on a user's virtual

equivalent to the
clears the TASKCAW

Operation: The real CAW is picked up from TASKCAW, which is
an entry in IOTASK. From this, the real ccw list with
its •header• information is located. The list is
scanned. All I/O commands with data references have
their referenced pages unlocked, and the received data
for Read Home Address commands for shared disks is
unrelocated. When the scanning is complete, the ccw
list is returned to free storage.

Routines called: PAGUNLOK is called to unlock the page
containing the I/O data area.

Virtual I/O Request Queueing Routine - QUEVIO

Entrance: QUEVIO is called by the virtual machine I/O
executive program (VIOEXEC) when an I/O task block has
been created and a virtual ccw list has been translated
into a real ccw list. (See Figure 23 for QUEVIO module
processing.)

-68-

(

Enter

module QUEVIO
entry OUEVIO

Increment
VIOCOUNT

Store RDEVBLOK
address in
IOTASK block

Get RCUBLOK

Store RCUBLOK
address in
IOTASK block

Get RCHBLOK

Chain IOTASK
to RCHBLOK

Exit

Figure 23.

Enter

module OUEVIO
entry QUERIO

Increment
RIOCOUNT

Flag as
CP task

Store IOTASK
address in
RDEVBLOK

Store channel
pointer in
control unit

Indicate 1/0
started and
channel busy

Unchain
active IOTASK

Get users
UT ABLE

SetCC=O
in VPSW

Reset IOWAIT

Exit

Enter

module OUEVIO
entry CHFREE

Get next
IOTASK from
IOTASK list

Get
RCUBLOK
RDEVBLOK

Turn off arm
in position
flag

Form unit
address

Move in
CAW

Issue SIO

cc= a

QUEVIO Module Processing

Exit

Issue SIO
for sense

No

Yes

No

No

Unchain
active IOTASK

Indicate
cc= 3

Get CCW
address and
store in
csw

Store IOTASK
address in
RDEVBLOK

Unchain
active \OTASK

Set CC= 1

Move CSW
for IRA
routine

TASKIRA=()

IOTASK int
return address

Exit

-69-

Operation: When QUEVIO is entered, register 1 contains the
address of an I/O task block to be queued on a real
channel, and register 2 contains the address of the
appropriate virtual device block. QUEVIO attaches the
I/O task block to the appropriate channel block,
increments the task count, and tests the real channel.

Routines called: If QUEVIO determines that the channel to
which the I/O task block has been attached is free,
CHFREE is called to start the I/O operation. If the
I/O operation is successfully started, the I/O task
block is unchained from the channel blcck and chained
to the real device block. If the I/O operation is not
successfully started, the I/O task block is unchained
from the channel block, and the task count is
decremented.

When CHFREE processing is completed, QUEVIO returns
control to its caller - VIOEXEC, after reflecting the
SIO condition code to the virtual PSW, and taking the
user out of IOWAIT.

Figure 24 illustrates the relationships of routines
which process user selector channel I/O requests.

-70-

I
-._)

I-'
I

-~

Virtual Program

Simulated
supervisor
mode

SID instruction
program interrupt

- _P !:!9q]_ l'iI -
Determines program
is in supervisor
mode and privileged
instruction

PROGINT II

Determines an 1/0
operation attempted

Virtual
Machine

Hardware
Channel
and
Device

Control
Program

..Q!~A.If.!::! __
Eventually attempts
to dispatch this user

User has pending
interrupts (UT ABLE)

Call UNSIO

Attempt to dispatch
this user, should
be runnable now

VIOEXEC Call VIOEXEC
__ D~~~H--~ Compute unit address

Dispatch this user
if SIO is successful
(non~ IOWAITt

If SIO is not successful
(IOWAIT), dispatch
another user

FIGURE 24.

SCANUNIT(VUNITSCN) ----------- ---
et VCHBLOK

VCUBLOK
VDEVBLOK

Call VUNITSCN

lf selector channel, control
unit, and device found and
free, set BUSY

Set up IOTASK block
TASKIRA = VIRA

Issue TRANS macro

'"I ---------.._______j for CAW page

__ C.f_W.IR3~ __

Get ccw list

Issue TRANS macro
for CCW pages

Translate virtual
CCW's to real CCW's

Issue TRANS macro
for user data pages
and lock pages

Call CCWTRANS

Put user in
IOWAIT status

Call OUEVIO

OUEVIO ----- ------
Get RDEVBLOK

RCUBLOK
RCHBLOK

Chain I OT ASK to RCHBLOK

If channel is free,
call CHFREE

Virtual SIO Selector Channel

Rea!
Device

1/0 inter"rupts
from 1/0 operation

IOINT -------
Locate IOTASK block

Process interrupts

Return tff program
that created the
IOTASK TASKIRA =

VIRA

Go to DISPATCH

UNSIO

Unstack and
reflect the
interrupt

UNTRANS(FREECCWI

Scans real CCW list
to locate and unlock
user data pages

Call PAGUNLOK

PAGETRANS(PAGUNLOK)

Unlock user data
page

OUEVIO (CH FREEi

If control unit is
free, issue SIO

If SIO is successful, take
user out of IOWAIT

V.!._0.§_X.§_CJ.V.!£Aj_ _

Call VUNITSCN

Call UNTRANS

Call FREECCW

Set interrupt pending
in UTABLE

Store status in
VCHBLOK,VCUBLO
VDEVBLOK

Note:

SCANUNITIVUNITSCN

VCHBLOK
VCUBLOK
VDEVBLOK

UNTRANS -----
Convert real CSW
to virtual CSW

For dedicated MPX devices, the MPX blocks
are restructured as selector blocks; thus the
MPX device is structured as a selector device.
Therefore the logic flow for selector and
dedicated MPX devices is the same.

Virtual Channel Interruption Handler - VIRA
~

Entrance: When a user-requested I/O operation is started on
a selector channel, the interruption return address
(TASKIRA) in the I/O task block points to the virtual
channel interruption handler (VIRA). When the I/O
operation is completed and an interruption occurs, VIRA
receives control from IOINT, the real input-output
interruption handler.

Operation: VIRA indicates in the user's control table
(UTABLE) that an interruption is pending, and stores
status information in the virtual channel block,
virtual control unit block, and the virtual device
block when appropriate. The I/O task block is
unchained from the real channel block and returned to
free storage if the operation is complete <that is,
channel end and device end or their equivalents
occurred). If an I/O error has occurred, control is
passed to IOERROR. See "Processing of I/O Errors
IOERROR•.

Routines called: VIOINT calls the routines IOISTVCU and
IOISTVDE (subroutines within the real I/O interruption
handler) to indicate a control unit end interruption
and a device end interruption respectively. When
VIOINT processing is completed, an exit is taken to the
main dispatcher and control routine (DISPATCH).

Routine to Analyze and Record Errors - RECERROR

Entrance: If an I/O error occurs for a user-requested I/O
operation on a selector channel, VIOINT calls RECERROR
to analyze and record the error.

Operation: RECERROR analyzes the I/O error from information
contained in sense byte zero. The following types of
I/O errors are recorded.

Type of Error

Bus out Parity
Equipment Check
Data Check
Seek Check

counter Number Bit Position
-------------- Within Sense Byte O

1
2
3
4

~------------------

2
3
4
7

counters for each of these types of errors are kept in
the RDEVBLOK for each device. Note that errors are recorded
for dedicated devices operating on a virtual multiplexer
channel (unit record equipment, virtual 2702s>. If the
error is the first encountered of a given type for a given
device, the error is recorded. If the error causes the
counter to overflow (that is, upon the eighth error of this

-72-

if
···~

type for the device), a counter overflow error record is
written. 'Ihis error may represent the failure of a
completely different channel program than the first error of
this type which was recorded. If the error is neither the
first encountered nor a cause of a counter overflow
condition, control returns to VIOINT, and the error
information is reflected back to the user's virtual machine.

The I/O error record has the following 112-byte format:

ORG
LOGSNSE DS
LOGCODE OS
LOGTYPE DS

LOGVOLID DS
LOGADDR OS
LOG DATE DS
LOGCSW OS

DS
LOGCCWS DS

LOGSKLOC OS

LOGDATA
CL6
CL1
CL1

CL6
CL2
CL6
CL8
CL2
9D

1D

DEFINE I/O ERROR RECORD
SENSE INFORMATION
DEVICE TYPE
FIRST ENCOUNTERED OR COUNTER
OVERFLOW - TYPE OF ERROR
VOLID OF DEVICE (IF AVAILABLE)
PHYSICAL ADDRESS OF DEVICE
DATE AND TIME STAMP OF ERROR
CHANNEL STATUS WORD
UNUSED
FAILING CCW STRING CUP TO NINE
OOUBLEWORDS)
LAST SEEK ADDRESS CDASD ONLY)

The CCW in the string which failed is flagged with an
asterisk in the unused fifth byte.

After the error record is written, the pointer to the
next available slot on the CE cylinder is updated. Seven
logical records are contained within one 829-byte physical
record. Since 15 records may be written on two tracks of a
2314, up to 1050 error records may be written on one
cylinder. If the attempt to write the error record fails,
it is retried eight times. Upon continued failure, an error
message "** IOERROR RECORDING FAILURE ON DEV~-" is sent to
the operator. If there is no more room on the CE cylinder
for error records, the message "**CECYL FULL; I/O ERRORS NOT
RECORDED **" is sent to the operator. Errors are not
recorded for users with privilege class c in order to
prevent the recording of intentional errors produced by CE
diagnostics. Recording will be reinitiated after the CE
executes the CLEARIO function.

Main Dispatcher and Control Routine - DISPATCH

Entrance: DISPATCH is entered from routines which have
completed their processing for a user or cannot
continue processing until some other process has been
completed. (See Figure 10.1 for DISPATCH module
processing.)

Operation: DISPATCH checks for pending interruptions and
determines which user is to receive control next.

Routines called:
interruption

When DISPATCH determines
is pending, the I/O

that an I/O
interruption

-73-

-74-

unstacking routine (UNSTIO) is called. UNSTIO updates
the virtual csw, restores virtual PSW's, and indicates
the address of the interrupting device. When UNSTIO
processing is completed, DISPATCH attempts to restart
the current user, if runnable and if his quantum is not
exhausted.

DISPATCH may be entered at 4 locations: DISPATCH,
DSPTCHA, DSPTCHB, and DSPTCHC. DISPATCH is the normal
entry point used by all routines that are not sure of a
user's status. DSPTCHA is entered from routines which
have gained control after a program interrupt for a
user and have changed the user's PSW. DSPTCHB is
similar to DSPTCHA except the PSW is at most changed in
its condition code field. DSPI'CHC is used by routines
which have done some processing for a user but in no
way changed his status.

Figures '25-28' illustrate the relationships of
routines which process an I/O interrupt returned from a
selector channel device.

I
.....i
U1
I

,~,

Virtual
Machine

DISPATCH

Eventually attempts
to dispatch this user

User has pending
interrupts (UTABLE)

Call UNSIO

Attempt to dispatch
this user should
be runnable now

Virtual Program

(Simulated

supervisor mode)

510 instruction
program interrupts

PROGi NT --------
Determines program
is in supervisor mode
and privileged
operation

Determines an 1/0
operation attempted
Call VIOEXEC
Go to DISPATCH

UNSIO

Unstack and reflect
the interrupt

PACK -------
Compress user's CGW
data

'CLOSEIO'
SIO
Invalid CCW

VIOEXEC

Compute unit address
Call MVIOEXEC

MVIOEXEC

Scan MVDEBLOK for
MPX device

If device not busy,
issue TRANS macro for
CAW page

If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation

Get MVIBUFF

Set up MVIOB (IOTASK)
TASKIRA = MVINTR

Issue TRANS macro
for CCW page

Call macro PACK

If buffer is full,
call MVREC,
get another buffer

Enter packed data
into buffer

If invalid CCW (EOF)
set TASKIRA = MVIEFIRA

call MVREC

Set status in MVDEBLOK

Set pending interrupt
in UTABLE

FIGURE 25. Virtual SIO MPX Channel
(Nondedicated Punch or Printer>

J

MVIOEXEC IMVINTRI

SVC 16 release current
save area

CHECK 10 macro

MVIOEXECIMVIEFIRA)I

CHECK 10 macro

SVC 16 release current
save area

Chain file block to
~punches) or (printers)

Call MR IOEXEC
if real 1/0 device can
be started
[See Figure 11 c)

Reset IOWAIT(UTABLE

MVIOEXEC (MVREC)

Set up CCW's to
write this buffer

Call QUERIO

Set IOWAIT(UTABLE)

Go to DISPATCH

DISPATCH

This user will wait
for spooling 1/0
operation to complete

Dispatch another user

Spooling
Device

-,,_,

1/0 interrupts
from writing spooling buffers

IOINT

Locate 1/0 task block

Process interrupts

Return to program
that created the
1/0task

OR-I 10TASK BLK TASKIRA

QUEVIO (QUERIO)

GET RDEVBLOK
RCUBLOK
RCHBLOK

Chain task to RCHBLOK

Issue SJO if channel
is free (spooling device)

Hardware
Device
and
Channel

I
-....]
O'\
I

DISPATCH

Eventually attempts
to dispatch this user

User has pending
interrupts (UTABLE)

Call UNSIO

Attempts to dispatch
this user should
be runnable now

Virtual Program

(Simulated
supervisor
mode)

SIO instruction
program interrupt

PROGi NT

Determines program
is in supervisor
mode and privileged
instruction

Determines an 1/0
operation attempted

Call VIOEXEC
Go to DISPATCH

UNSIO

Unstack and
reflect the
interrupts

_P~~(~~C~

Unpack user CCW
data

VIOEXEC

Compute unit address

Call MVIOEXEC

MVIOEXEC

s.,";, MVDEBLOKto;- -
MPX device

If device not busy,
issue TRANS macro
for CAW page

If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation

Get MVI BUFF set up
MVIOB TASKI RA;MVINTR

Issue TRANS macro
for CCW page

Get a closed file
from reader chain

Call MVIREC

Call UNPACK

Issue TRANS macro
for user pages

Move data into
current page

Set status in MVDEBLOK

Set interrupt pending
in UTABLE

Reset IOWAIT {UTABLE)

FIGURE 26. Virtual SIO MPX Channel
CNondedicated Reader)

Virtual
Machine

I
I
! Hardware

I Channel
and

L_Dev~

Control Program

MVIOEXEC (MVINTR)

SVC 16 Release
current save area

Issue CHECKIO macro

M~O~X!_C ~~~Cl_

Set up CCW's to
read this buffer

Call QUERIO

Set IOWAIT (UTABLE)
Go to DISPATCH

DISPATCH

This user wi II wait
for spaoling 1/0
operation to complete

Dispatch another user

Spooling
Device

1/0 interrUpts from
reading spooling buffer

IOINT

Locate I OT ASK block

Process interrupts

Return to program
that created the I 10
task IOTASK~TASKIRA

QUEVIO (QUERIO)

RDEVBLOK
RCUBLOK
RCHBLOK

Chain IOTASK TO RCHBLOK

If channel is free,
call CHFREE

QUEVIO (CHFREE)

If control unit is
free, issue SIO
(read spooling buffer)

I
.....J
.....J
I

.~

Punch

1/0 interrupt from
reading real device

1/0 Interrupt from
output to real device Hardware

Channel
and
Device

Control Program

IOINT

Get MRDEBLOK

Get user's UTABLE

Call MRIOEXEC to
process interrupts
for the device
Ml RA=PRI RA or PVI RA

Go to DISPATCH

DISPATCH

Dispatch any user

MRIOEXEC

Get operator's UTABL

Get MRI BUFF

Set up IOTASK
TASKIRA=MRIRINT

Get output buffer

Get spooling file block

Get device address

Call WRTCONS to
output message to
operator

Call MRDIO

MRIOEXEC (MRDIO)
s;, ;;p CcWs t-; -
read buffer from
spooling device

Call QUERIO

QUEVIO (QUERIO)

Get RDEVBLOK
RCUBLOK
RCHBLOK

Chain I OT ASK to RCHBLOK

If channel is free,
call CHFREE

QUEVIO (CHREE)

If control unit is
free issue SIO
(read spooling buffer)

MVIOEXEC(MVIEFI RAI

(See overview of virtual
SIOMPX

FIGURE 27. Real
(Punch or

SIO MPX Channel
Printer>

1/0 interrupts from
writing spooling buffer

IOINT

(See overview of virtual
SIOMPXl

Spooling
Device

1/0 interrupts from
reading spooling buffer

IOINT

Locate IOTASK block

Process interrupts

Return to program
that created the 1/0
task IOTASK-TASKIRA ,,_.,. ____ ~

Go to DISPATCH

DISPATCH

Dispatch any user

PACK (UNPACK)

Unpack user's CCW
data

Mi:!_OiX~CJ_M~l~~l.
Issue CHECKIO macro

Call UNPACK

Move unpacked data
into output buffer

Issue 510 to real
device

I
-...J
00
I

!'-1.!!.!.0~~(~l~A.!._

Get operator's UT ABLE

Get MRI BUFF

Get 10-Card buffer

Set up 10 TASK
TASKIRA=MRIWINT

Set up CCW's to read
10 cards from the
real device

Issue SIO to the
real device

FIGURE 28.

[Reader 1

..--~___,I ~I ~~~
1/0 lnterr~pt 1/0 interrJpt
from reading real device from reading real device

--..!9~--
Get MRDEBLOK

Get user's UT ABLE

Call MRIOEXEC to
process interrupts
for the device
MIRA=CRIRA

Go to DISPATCH

DISPATCH

Dispatch any user

IOINT

Get MRDEBLOK

Get user's UT ABLE

Call MRIOEXEC to
process interrupts
for the device
MIRA=CRIRA

Go to DISPATCH

DISPATCH

Dispatch any user

PACK

Compress user
CCWdata

~~I~~~~
If cxmtrol unit is
free, issue SIO
(write spooling buffer)

Real SIO MPX Channel
(Reader>

Hardware
Channel
and
Device

Spooling
Device

1/0 interrupt
from writing spooling buffer

Control Program

MRIOEXEC ICRIRAI

Get operator's UT ABLE

Call PACK

Move data into
spooling buffer

If buffer is full
or EDF, write this
spooling buffer
Call MRDIO

MRIOEXEC(MRDIOI

Set up CCW's to write
buffer to spooling
device

Call QUERIO

QUEVIO (QUERIO)

Get RDEVBLOK
RCVBLOK
RCHBLOK

Chain IOTASK to RCHBLOK

If channel is free,
call CHFREE

MRIOEXEC(MRIWINTI

IOINT

L;;-.;teToTASK bl~
Process interr_upts
Return to program
that created the 1/0 Task
IOTASK--TASKIRA

- - - - -;---.i Goto DISPATCH
Issue CHECKIO macro

If not end-of-file,
process more data

If end-of-file, chain
spooling file buffer
to reader's chain

Call WRTCONS to
send CARDS READ
message to the user

DISPATCH

Dispatch any user

(

PROCESSING USER MULTIPLEXER CHANNEL I/O REQUESTS

When a pseudo-supervisor (that is. a supervisor operating
in a user's virtual machine) requests an I/O operation for a
device attached to the multiplexer channel. the program
interrupt handler (PROGIN'l'). and the virtual machine I/O
receive control. (See preceding section headed "Processing
User Selector Channel I/O Requests".) When VIOEXEC
deterndnes that an I/O operation has been requested for a
device attached to the· multiplexer channel. the multiplexer
virtual I/O executive program (MVIOEXEC) is called. Figures
'29-32' illustrate the relationships of routines which
process user multiplexer channel I/O requests.

-79-

I
00
0
I

Any Control
Program Module

1---- ------•
• Call WRTCONS

I L ___ '!Y_RTCONS - -
Set up RDCONPKG if
NORET not specified with or without I..... I

NORET (no return) option

Go to DISPATCH

• •
Routine to process
the write if NOR ET
not specified

• •
~

Get MRDEBLOK and
device address

Construct CCW package
for write

Call STCONSIO

• •
STCONSIO

1---""""""'.------

FIGURE 29.

Get MRDEBLOK

If previous console
1/0 request outstanding,
queue this request
UT ABLE-Cl OREO

If no requests
outstanding, issue
SIO for this request
and queue this request
UTABLE-CIOREO

J

Real Terminal SIO (Write)

1/0 interrupts
from write to terminal

1-
IOINT

I- - - - - - --l
Get MRDEBLOK

Get user's UTABLE

Call CONSINT
to process interrupts
for the device
MIRA=CONSINT

Or if "attention"
interrupts, call BREAK

Go to DISPATCH

I- __ E_!SPATC!:!_ _ _,

Eventually attempt
to dispatch user that
initiated the write

User has outstanding
CPROUEST (if NORET
not specified)

Process CPROUEST,
return to location
designated by the
program that called
WRTCONS (return
address in RDCONPKG)

.---
-

Hardware
Channel
and
Device

Control Program

---~ _ CONSl~T- __ _

Get CCW package

Process interrupts

If NORET not specifieH CPSTACK
call CPSTACK - - - -- -
to set up return Put RDCONPKG in
If more CCW packages CPSTACK
in stack, start the
next one (issue SIO)

co
......
I

~~

Any Control
Program Module

1--------- -•
•
•

Call RDCONS

Go to DISPATCH

•
•
•

Routine to precess
the read

•
•

14-

... ..
RDCONS

1------ ----
Get MRDEBLOK and
initialize for device
type and address

Set up RDCONPKG

Construct CCW package
for read

Call STCONSIO

D
STCONSIO r---------

Get MRDEBLOK

If previous console
1/0 request outstanding
queue this request
UT ABLE-Cl OREO

If no requests
outstanding, issue SIO
for this request and
queue this request
UTABLE-CIOREO

FIGURE 30. Real Terminal SIO (Read)

1/0 interrupts
from read to terminal ---r---

IOINT r- -- - -------
Get MDDEBLOK

Hardware
Channel
and
Device

Control Program

I ~ -- ~ONS~~ - --

Get user's UTABLE

Call CONSINT

r-

to process interrupts
for the device
MIRA=CONSINT

Go to DISPATCH

DISPATCH

-i-

l
1---- - -----1

Eventually attempt
to dispatch user that
initiated the read

User has outstanding
CPR OU EST

Process CPROUEST
return to location
designated by the
program that called
RDCONS (return
address in RDCONPKG

Get CCW package

Process interrupts

Get read data and
process for EDIT and
UCASE if specified

Call CPSTACK

If more CCW packages
in stack, start the next
one (issue SIO)

-.-=r- CPSTACK --- - ---- --
Put RDCONPKG in
CPSTACK

.. ·-.

-+------- ---

Virtual Program

(Simulated
supervisor
mode)

SIO instruction
progr~terrupt

--_j_--

1--~~NT --
Determines program is
in supervisor mode and
privileged instruction

Determines an 1/0

Virtual Machine

Control Program

I- _ Y.!SJEXE~ _ -i MVIOEXEC
1-- - -- ---

Scan MVDEBLOK for
DISPATCH operation attempted

Compute unit addtess
MPX device

Call MVIOEXEC -1----- --- _ CallVIOEXEC
Eventually attempts I----! Go to n1<::PATCH

-... If device not busy,
issue TRANS macro

to dispatch this user

User has pending
interrupts (UTABLE)

Call UNSIO

Attempt to dispatch
this user should be
runnable now

I-_ DISPATC.!2_ _

(See overview of real
terminal $10)

Process CPROUEST,
return to location
designated by the

r'- program that called ~
't" WRTCONS (return.

address in RDCONPKG)

UNSIO t-------
Unstack and
reflect the
interrupt

-- for CAW page

If no interrupts pending,
set up normal interrupt
condition in MVDEBLOK

PLACE(PLACINIT) for this operation
f------~

Issue TRANS macro
Obtain terminal - for CCW page
110 buffer -- Call PLACININT ---.. Save buffer address

in MVDEBLOK-MIOB

PLACE
I- - - - - - - - Call PLACE

Move user CCW data 1----,.-a•I Process all CCW's if
into 110 buffer _ chaining is on

PLACE (FORCE) -- If the end of line,
I- - - - - - ~[---••-t.__:;ca::l~I :_FO~R:::_C=.E ___ _J

To print a line ..
call WRTCONS
with RETURN=
FORCERET

Go to DISPATCH

If any of the line
remaining to force out

1,..-,...,.t-----.r---------, - call WRTCONS with
- 1-- _ ~RTC~S __ i...l----lreturn = WRTNMVI

1----1 .. ~ -;; and go to DISPATCH
(See overview of real
terminal SIO)

~-- --- __ 1---- Set device end in
MVDEBLOK

PLACE (FORCERET)
1-------

Test for break and
process if any

Reinitialize the
buffer

Set interrupt
pending in UTABLE

~----- ---
DISPATCH ~ MVIOEXEC(WRTNMVI)

~ - - - - - - -~1- -- - - - - - -
Dispatch any
user

Test for break and
process if any

Set device end in
MVDEBLOK

Set interrupt
pending in UT ABLE

~-----~OR~-----------·~---------------'

FIGURE 31. Virtual Terminal SIO (Write}

-82-

I
CX)

w
I

~

DISPATCH

Eventually attempts
to dispatch this user

User has pending
interrupts (UTABLE)

Call UNSIO

Attempt to dispatch
this user should
be runnable now

Virtual Program

(Simulated
supervisor
mode)

SIO instruction
program jnterrupt

PROGi NT

Determines program is
in supervisor mode
and privileged
instruction

Determines an 1/0
operation attempted

Call VIOEXEC
Go to DISPATCH

UNSIO
~-------

Unstack and
reflect the
interrupt

Virtual Machine

Control Program

_ _yl.QEJ5.E.£ __

Compute unit address

Call MVIOEXEC

RDCONS

(See overview of real
terminal 510)

DISPATCH

Dispatch any
user

FIGURE 32. Virtual Terminal SIO (Read)

MVIOEXEC

Scan MVDEBLOK for
MPX device

If device not busy,
issue TRANS macro
for CAW page

If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation

Issue TRANS macro
for CCW page

Get terminal 1/0
buffer

Save buffer address
in MVDEBLOK-MVIOB

Call RDCONS

Go to DISPATCH

DISPATCH

(See overview of real
terminal 510)

Process CPR QUEST,
return to location
designated by the
program that called
RDCONS {return
address in RDCONPKGI

MVIOEXEC(MVICNRDl) , 9------~

·r-;stf;;:- break and - -
process if any

Issue TRANS macro
for user Page

Move CCW data to
user page

Process remaining
CCS's if chaining
is on

Set device end in
MVDEBLOK

Set interrupt pending
in UTABLE

SIO on a Virtual Multiplexer Channel

When MVIOEXEC determines that an SIO operation has been
executed, the page handling routine CPAGTRANS) is called,
via the TRANS macro, to obtain the user's virtual ccw list
starting address (from the virtual CAW), and an I/O task
block and buffer area are created. If an interruption
(device end or channel end) is pending on the virtual
device, an indicator is set in the multiplexer virtual
device block CMVDEBLOK), and an exit is taken to VIOEXEC.

If no interruptions are pending, MVIOEXEC determines the
type of device for which the SIO operation is requested. If
the device is a printer or card punch, the user's ccw data
must be packed Cvia the PACK routine) and placed into a
spooling buffer (829 bytes>, preparatory to being written
into a spooling area on a direct access device. If the
device is a card reader, data will be read from a direct
access spooling area into a buffer; it must then be unpacked
Cby means of the UNPACK routine) to be made available to the
user.

If the device is a user's terminal, the virtual ccw is
saved, and the type of command CSENSE,NOP,ALARM,READ, or
WRITE) must be determined; special processing is required
for each command.

Following is a summary of the processing required for SIO
operations for devices attached to the multiplexer channel:

SIO - Printer or Punch: For an SIO operation to a printer
or card punch, MVIOEXEC does the following:

Initializes MVIBUFF, which contains a buffer for user•s
packed ccw data, CCW's to write the buffer onto a
direct access device, and control information..

Calls PAGTRANS to bring into core the pages which
contain the user's CCW data.

Calls PACK to compress the user's ccw data.

Enters the packed data into the buffer; when the buffer
is filled, it is written into a spooling file on a
direct access device by calling QUERIO.

calls the multiplexer real I/O executive program
CMRIOEXEC) to perform the input-output operation when
the spooling file is closed. CThe file may be closed by
the user including an illegal ccw or issuing a CLOSE
command from console functions.) If the real printers
and punches on the system are busy, the closed spooled
file is placed in chains starting from PRINTERS or
PUNCHES .•

-84-

Note: If CP console function XFER had been previously
initiated, no real deck is punched. Instead, the
spooled card deck is set up as an input deck in the
virtual card reader for the userid specified in the
XFER command.

SIO - Card reader: For an SIO operation on a card reader,
MVIOEXEC does the following:

Initializes MVIBUFF, which contains an area into which
the user's packed data will be read. CCW's to read the
data from a direct access device spooling area, and
control inf orrnation. The READER chain on the system is
scanned to find a spooled file for the user. If none
are found, the SIO is indicated to have terminated by
an intervention-required condition.

Calls QUERIO to read packed
records packed into 829-byte
direct access spooling file
ID.

Calls PAGTRANS to bring the
core storage.

data C80-byte card image
physical records) from the
associated with the user's

required user~s pages into

Moves data into the specified area in the user's
page Cs).

SIO - User terminal:

Sense Command - User terminal: For a SENSE command on a
user terminal, MVIOEXEC does the following:

Calls PAGTRANS to determine the address of the area
into which the sense information will be placed.

Moves sense information from the multi~lexer virtual
device block into the provided area.

NOP Command - User terminal: For a NOP co~mand on a user
terminal, MVIOEXEC does the following:

Scans virtual ccw flags. If the cc or CD flag is on,
the next CCW in the chain is examined.

Indicates a pending multiplexer interruption in the
user's UTABLE if neither the CC nor the CD flag is on.

-85-

I
I

WRITE Command - User terminal: For a WRITE command to a
user terminal, MVIOEXEC does the following:

Calls PAGTRANS to obtain the user's pages associated
with the I/O transfer.

Moves the user's data into the output buffeL.

Processes each successive ccw in the chain if the
chained data flag is on. All chained data is moved into
the output buffer.

Calls WRTCONS to write the data contained in the output
buffer on the user's terminal. <control is given to
DISPATCH until the real WRITE operation is completed.)

READ command - User terminal: For a READ command for a user
terminal, MVIOEXEC does the following:

Calls FREE to obtain an input buffer.

Calls RDCONS to read data into the input buff er from
the user terminal. (Control is given to DISPATCH until
the real READ operation is completed.)

Calls PAGTRANS to obtain the address of the user's
pages into which data will be placed.

Moves data from the input buffer to the specified areas
in the user's pages.

Processes virtual ccw flags.

Processes each successive CCW in the chain if the
chained data or chained command flag is on .•

ALARM Command - User terminal: For an ALARM command for a
user terminal, MVIOEXEC does the following:

Calls WRTCONS to write an "alarm" message on the user
terminal (control is given to DISPATCH until the ALARM
is completed> •

-86-

Processes each successive ccw in the chain if the
chained data or chained command flag is on.

'...,. __

(

When special processing for each type of command is
completed, MVIOEXEC performs the following:

Checks for command chaining and processes the next
command if on.

Calls PAGTRANS to determine the address of the virtual
csw, stores the virtual csw, and removes the I/O wait
indication from the user's UTABLE.

Calls BREAK if the attention key was activated during a
read or write operation.

Returns control to the virtual machine I/O executive
program CVIOEXEC).

TIO on a Virtual Multiplexer Channel

When MVIOEXEC determines that a TIO operation has been
requested, the multiplexer virtual device block CMVDEBLOK)
is examined to determine whether an interruption (channel
end or device end) is pending for the virtual device.

If a channel end interruption is pending, the channel end
indication is removed from the MVDEBLOK. If a device end
interruption is pending, the device end indication is
removed, and device end is indicated in the virtual csw.
For either type of interruption, a condition code of 1 is
set in the virtual PSW. If no interruptions are pending,
the condition code remains zero.

When the condition code has been set, the normal MVIOEXEC
exit is taken:

The virtual csw is stored, and the I/O wait indication
is removed from the user's UTABLE.

The BRKWR or BRKRD routines are called if required or
if an •attention• is seen.

Control is returned to the virtual
e·xecutive program CVIOEXEC).

TCH on a Virtual Multiplexer Channel

machine I/O

When MVIOEXEC determines that a TCH operation has been
requested, a SCAN macro is issued to obtain the channel
status. If the channel is not operational Cthat is, no
channel by that number is defined in the virtual machine>, a
condition code of 3 is set. If any interruptions are pending
for the channel, a condition code of 1 is set. If the
channel is busy, a condition code of 2 is set. If no

-87-

interruptions are pending for the channel and it is not
busy, a condition code of 1 is set.

When TCH processing is completed, control is returned to
the virtual machine I/O executive program CVIOEXEC).

EIO on a Virtual Multiplexer Channel

When MVIOEXEC determines that an HIO operation has been
requested, it sets the user's condition code to zero if
there is an interruption pending, and to 1 if there is no
interruption pending.

Pseudo Timer Device - TIMR

When MVIOEXEC detects an SIO to a virtual multiplexer
device type TYPTIMR, it fills in the specified read buffer
with the time of day (hh/mm/ss>. date Cmm/dd/yy>. total
virtual CPU time (VTOTTIME), and total CPU time CTIMEUSED)
used since logging in. No actual I/O operation is performed,
and no real device is associated with this operation. There
is no interrupt from this device after the data is
transferred. The SIO ends with a condition code of zero for
a successful operation, or 3 if the pseudo timer does not
exist in the user's virtual machine configuration.

PROCESSING DEDICATED MULTIPLEXER DEVICES

If multiplexer devices are dedicated to a
particular user, they are structured and handled by CP-67 as
though they were selector type devices. Thus a virtual SIO
to a dedicated printer, for instance, would go through the
selector I/O processing logic and not through the
multiplexer spooling logic. Any CP-67 multiplexer device
can be dedicated to a user at the time he logs in to CP-67
or through the ATTACH capability.

When a multiplexer device is attached to a user on
a nonshared (dedicated) basis, a restructuring of the real
and virtual control blocks is required. As an example,
suppose t~e operator is attaching the real printer to a user
as a dedicated device. The real printer is "030" and the
virtual address is "OOE". The user cannot already have a
device of address OOE in either his virtual selector devices
or multiplexer devices. The real multiplexer device block
CMRDEBLOK) for the printer.030 is located. If the printer
is not busy or already attached, the MRDEBLOK is marked as
"dedicated". A routine called DEDICATE then creates a real
selector channel, control unit, and device block for the
printer, and chains these blocks with the other real blocks
CRCHBLOK, RCUBLOK, and RDEVBLOK). Then virtual selector
channel, control unit, and device blocks are created and are
linked to the newly created real blocks by VPNTREAL in the

-88-

VDEVBLOK. Since the device is now structured as a selector
device, I/O simulation and interrupt handling will be as
outlined in "Processing User Selector Channel I/O Requests".
This structure will be maintained until the user detaches
the dedicated device or logs out. In either case, the
logout routine (USEROFF) will detect a dedicated device that
was structured using DEDICATE and will call RELEASE to free
the real channel, control unitr and device blocks and to
free Cundedicate) the device on the multiplexer CMRDEBLOK)
chains. The device (printer, for example) is now available
for CP-67 spooled output.

PROCESSING VIRTUAL 2702 LINES

Virtual 2702 lines in a
special consideration because of
teleprocessing applications that these

user's machine require
the nature of the
virtual machines may

run.
For a virtual machine with nondedicated virtual

2702 lines defined in the CP-67 directoryr the virtual I/O
blocks are built as selector I/O blocks. Every virtual 2702
line bas its own virtual selector channel, control unit, and
device block (VCHBLOK, VCUBLOK, and VDEVBLOK). The blocks
are structured this way so that a dedicated 2702 line can be
linked to them when linkage is initiated by DIAL <see the
next section for DIAL processing). In order to properly
process a DIAL request, the virtual 2702 block must be
initialized. This is under control of the virtual machine.
When the virtual machine issues an "enable" sequence to a
virtual 2702 line, CP-67 performs all the normal handling
for a user selector I/O request with one major exception.
Since there is no real device on which to perform the I/O
operation when the "enable" is issued, the IOTASK created by
VIOEXEC is held waiting for a DIAL request. The user is
given the condition that the I/O is started, but it will not
complete, of course, until a DIAL is handled, simulating a
call completion. The •enable" ccw is changed to a "write
circle C" to effect line behavior as though a call had been
completed. Any SAD commands are made NOP since the real
line has already been set by CP-67 and the SAD number could
be different for virtual machines. The module CCWTRAN
detects I/O to virtual 2702 lines and changes the "enable"
and SAD commands. CCWTRAN also retains the IOTASK (pointed
to by VPNTREAL in the VDEVBLOK for the virtual 2702 line)
and indicates to VIOEXEC (which called CCWTRAN) not to call
QUEVIO since no real device yet exists.

Figure 33
2702 lines before
issued.

illustrates the processing of virtual
and after a DIAL console function is

-89-

v - 2702

VCH vcu VDO -------,

RCH re -- RCH - -+--?

,, ,,
RCU RCU

9

,, ,,

RDV ~ ... RDV RDV ~ -

----/

MDEV 0 I ·I MDEV 0 l·..._______.MDEV

1/0 block chain before (--)

and after (- ----1

a DIAL procedure

-VIRT ENABLE

\
\
\
\
\

-

1/0 TASK

\
\

\

~ -

MDEV

ENABLE
CCW(s)

RCH

RCU

RDV

-
----- "

Did a DIAL

FIGURE 33. Processing a Virtual 2702 Line

-90-

I
- _ _j

MDEV

PROCESSING A DIAL REQUEST

The DIAL method of attaching to a virtual machine
is an alternative to LOGIN with a unique userid. After
making contact with the computer and receiving the message
"CP-67 online", a user can enter "dial xxxx", where xxxx is
the userid of a virtual machine with virtual 2702 lines.
The DIAL request can be considered as a self-initiated
request to "attach" the terminal to the desired virtual
machine on a dedicated basis. The module DIAL will search
for an "enabled" (virtually> 2702 line that is not in use on
the requested virtual machine. When one is found, DIAL will
call DEDICATE to attach the terminal that entered "DIAL" to
the virtual machine. DEDICATE will mark the terminal from
the MRDEBLOK chain as dedicated and create real selector
channel, control unit, and device blocks. These will be
linked to the already existing virtual selector channel,
control unit, and device blocks. The IOI'ASK that was being
held (from the "enable" sequence> is now allowed to proceed
by DIAL calling QUEVIO. I/O interrupts and subsequent I/O
requests to that virtual 2702 line will now be handled in
exactly the same fashion as dedicated multiplexer devices.
However, in order to expedite the efficient handling of
dedicated (DIALed) 2702 lines, a further step is taken. In
CCWTRAN, detection is made when a virtual machine issues a
disable to a DIALed 2702 line. When a virtual "disable" is
detected, CCWTRAN creates a dummy CSW with normal completion
and calls VIRA to process what appears to be the completion
of the "disable"; however, no I/O operation is performed.
CCWTRAN then calls RELEASE to free the real selector blocks
for the dedicated 2702 line. RELEASE will set processing in
effect to go to OFFHANG in CONSINT. OFFHANG writes a
message to the terminal indicating that the terminal is now
under CP-67 control. OFFHANG will then either disable the
line and then reenable (as done in LOGOUT) or proceed to
IDENT2, which will start with "CP-67 online" and then wait
for a LOGIN or a DIAL (as done in LOGOUT HOLD). The
alternative is an installation option defined in CONSINT.

Special handling is also required if the virtual
machine with virtual 2702 lines either detaches 2702 lines,
does an HIO to "dialed" or "enabled" lines, or logs out of
CP-67. Since "enabled" lines have IOI'ASK blocks pending,
these must be released if the virtual line is to be
considered no longer active. The VIOEXEC module has special
code to handle an HIO to an "enabled" 2702 line. VIOEXEC
will call VIRA to indicate that the "enable" has been
halted. HIO to a "dialed" 2702 line is allowed to proceed
in the normal fashion. The RELEASE module Cin USEROFF) also
has code to call VIRA, release the IOTASK block, and return
the device to the MRDEBLOK chain.

-91-

VIRTUAL RPQ'S

Five special functions are provided by CP- 67 to virtual
machines; these functions either are not available on a real
System/360 or normally would require operator intervention.

RPQ Timer - This is a special device type (TIMR) defined in
the directory to provide time information to a virtual
machine. The device can have any address, but for CMS
it is defined as OFF. The virtual machine issues an SIO
to the device with a •read• ccw using a 24-byte data
area, which must not cross a page boundary. The
following information is placed in the 24-byte data
area.

Location

0-7
8-15
16-19
20-23

Data

date as MM/DD/YY
time as HH • .MM.SS
value from TIMEUSED
value from VTO'I'TIME

There is no interrupt from the device after the data
transfer.

Readable punch - This function is provided by the XFER
console command. It routes the output from a user's
spooled card punch to his or another user's spooled
card file input. This £unction operates simply by
SFBLOK routing. When a user issues CLOSE to a spooled
punch, the SFBLOK is chained on the spool READER chain
for the XFERed userid to read instead of being chained
on the PUNCH chain for real punch output. The XFER for
a printer works in a corresponding fashion.

Rereadable reader - This function is provided by the SET
CARDSAVE ON console command. This function is
accomplished by exception handling when a spool reader
is CLOSEd by a user. Instead of scheduling the file
for deletion from the spooling space, the SFBLOK is
maintained on the READER chain so that the file can be
reread from the beginning.

Wide card reader - There are two types of special spool card
readers. The first type is a "wide" 2540 reader that
allows the user to read more than 80 bytes from one
•card". For instance, this capability is used by CMS
when reading a spool reader, since that reader may
contain 80-byte •card• files or 132-byte "card" files
as a result of XFERed printer files. The second type
is used to retrieve spool data in special format. This
type (called RPRT or RPUN) is used to read the CP-67
system disk dump, for instance. It is a spooling
reader that transfers to the user data areas (CCW
addresses> up to 825 bytes of packed spool data. No
attempt is made by CP-67 to analyze op-codes, lengths,

-92-.

or data. Thus, core dumps on disk can be read by a
virtual machine having this type of card reader. RPRT
is for reading files normally scheduled for printer
output, and RPUN is for punch output.

DIAGNOSE - This privileged instruction cannot be simulated
or allowed to execute. Accordingly, this op-code is
used as a means of communication at the programming
level between a virtual machine and various CP-67
functions. See "The Diagnose Instruction" for a
description of each code allowed.

INTERRUPTION HANDLING

Five major types of interruptions must be handled by the
Control Program: SVC interruptions, external interruptions,
program interruptions, machine check interruptions, and I/O
interruptions. Handling of I/O interruptions is discussed
under the earlier heading "Processing Control Program I/O
Requests". This section describes how the other four types
are handled.

SVC Interruptions

When an SVC interruption occurs, the SVC interruption
routine CSVCINT) is entered. If the machine is in problem
mode, the type of interruption is placed into register 1q,
and the REFLECT routine is called to reflect the
interruption back to the pseudo-supervisor (that is, the
supervisor operating in the user's virtual machine). If the
machine is in supervisor mode, the SVC interruption code is
determined, and a branch is taken to the appropriate SVC
interruption handler. See Figure 3q for a flowchart of the
SVC Interrupt Handler.

-93-

DIE
svco

Save GPR's

Goto
OSK DUMP

Determine No
SVC code

Dump
SVC4

Enter

module PSA
entry SVCINT

Link
SVCS

Get a save
area from
'NEXTSAVE'

Save GPR's
12and 13

Save SVCOPSW
address as
return address

Go to
called routine

Yes Load address
of SVCOPSW
in R14

RET
SVC 12

Store return
address from
SAVEAREAin
SVCOPSW

Release save
area to
'LASTSAVE'

Restore GP R's
12 and 13

LPSW
SVCOPSW

Figure 34. Flowchart of the SVC Interrupt Handler

-94-

Go to
REFLECT

RLSE
SVC 16

Release save
area to
'LASTSAVE'

Restore
GPR 13

LPSW
SVCOPSW

(

SVC O - Impossible condition or fatal error: If the SVC
interruption code is O, the SVCDIE routine initiates an
ABEND by going to the DSKDUMP routine.

SVC 4 - Reserved for future use.

SVC 8 - Link request <transfer control from calling routine
to called routine specified by register 15): If the
SVC interruption code is B, the SVCLINK routine saves
registers, sets up a new save area, inserts the
contents of register 15 Cthe address of the routine for
which the link is requested) into the SVCOPSW {and
register 12), saves the old addressability in the save
area, saves the old save area address in the new save
area, and issues an LPSW instruction for the SVCOPSW to
restart the Control Program at the linked address.

SVC 12 Return request Ctransf er control from called
routine to calling routine): If the SVC interruption
code is 12, the SVCRET routine is entered to restore
registers 12 and 13 (addressability and save area
address saved by SVCLINKJ, places the user's return
address (also saved in the area) back into the SVCOPSW,
and returns control to the calling routine by loading
the SVCOPSW.

SVC 16 - Release current save area from the active chain
<and thereby also remove linkage pointers to the
calling routine): If the SVC interruption code is 16,
the SVCRLSE routine releases the current save area by
placing the address of the next higher save area in
register 13, and returns control to the current routine
by loading the SVCOPSW. This SVC is used by second
level interrupt handlers to bypass returning to the
first level handler under specific circumstances.

SVC 20 - Obtain a new save area: if the SVC interruption
code is 20 the SVCGET routine places the address of the
next available save ar~a in register 13 and the address
of the previous save area in the save area pointer
field of the current save area.

There are 35 save-areas initially set up by CPINIT for use
by the SVC linkage handlers. In addition, if the supply of
available save areas drops to O, the linkage handlers will
call FREE to obtain one.

External Interruptions

-95-

When an external interruption occurs, the external
interruption handler (EXTINT) is entered. See Figure 35 for
an overview of the ~ternal Interrnytion Handler.

-96-

Locate system
operator
(UTABOPTR)

Mark
disconnect

LPSW
EXOPSW

No

Enter

module PSA
entry EXTINT

Yes

Get current
UT ABLE
(RUNUSER)

Save VGPRS
and VFPRS

Update VPSW
from EXOPSW

Provide DISPATCH
with user to
be charged ti me

Goto
DISPATCH

Yes

Yes

Find
RUNUSER

No

(Idle)

Provide DISPATCH
with operator to be
charged time

Figure 35. Overview of External Interruption Handler

-97-

If EXTINT is entered because of a timer interruption, the
machine mode must be determined. If the machine was in
supervisor mode, control is transferred to the main
dispatcher and control routine (DISPATCH>, which will become
idle until another interruption occurs. If the machine is
in pro bl em mode, the address of the current user• s UTABLE is
obtained from RUNUSER. The user's current PSW (VPSW) is
updated from the external interruption old PSW (EXOPSW), the
address of the current UTABLE is placed in register 11, and
control is transferred to DISPATCH.

If EXTINT is entered because of the operation of the
console interrupt button (EXTERNAL), the following steps are
taken: (1) the current system operator is located (via
REALOPI'R), and (2) his virtual machine is disconnected. He
may now log in from another terminal. The operation of the
console interrupt button is used to implement an alternate
operator's console.

Program Interruptions

When a program interruption occurs, the program
interruption handler (PROGINT) is entered. (See Figure 36
for an overview of PROGINT.) Program interruptions may
result from (1) paging requests, (2) privileged operations
CI/O), and (3) privileged operations (non-I/O). PROGINT
determines the cause of the interruption by examining the
interruption code. If (3) has occurred, PROGINT transfers
control to PRIVLGED.

-98-

Get address
of simulation
routine

Get save area
from 'NEXTSAVE'
and save GP R's

simulation
routine

Yes

Save Reg's

Go to
DSKDUMP

Save VM status
VPSW and YR EG's

Go to
PRIVLGED

r utin

Enter
module

PROGi NT

Save GPR's
10- 15 in
TEMPSAVE

No

Yes

No

Get user
(RUN USER)

Segment

Set invalid
address

Yes

Yes

Page

Save VM status
VPSW and REG's

Get address
to be
translated

Initiate paging
operation

(PARM= BRING+
USED)

Go to
DISPATCH

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (1 of 4)

-99-

LPSW

Get absolute
data address

Move data to
VPSW (address)

0

SSM SSK

Get SEGTABLE

Get absolute
data address

Store data to
VPSW (MASK)

PAGTABLE
SWPTABLE

Get key from
user VGPR

Set the key
(SSK inst.)

4

Move CP
locations to
VM locations

EX

Get

Get absolute
address of
instruction to
be executed

ISK

SEGTABLE
PAGTABLE
SWPTABLE

Read key
(ISK inst.)

Store key
in VGPR
(pass key to
user)

8

Get CP·67
console
function

COMENTRY

Execute the
console
function

DIAG

Get DIAG
code

Set invalid
operation
code

10

FMTILOG

Format 1/0
error cyl.

1/0

VIOEXEC ---
Initiate I /0
operation

20

FMTMLOG

Format M/C
error cyl.

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (2 of 4)

-100-

LRA

Get absolute
inst. address
and register
receiving
results

Get virtual
SEGTABLE and
PAGTABLE

Get virtual
address

Store results
in VGPR and
VPSW

Get EXTUTAB

Get data and
number of
CREG's to be
moved

Move data
from VCREG's
to data area

Get EXTUTAB

Get data and
number of
CREG's to be
moved

Move data
from data area
to VCREG's

Write Invalid
DIRECT OP. CODE

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (3 of 4)

-101-

Move first
word of VPSW
to VOPSW

Move VNPSW
to VPSW

Move second
word of OPSW
to VOPSW

Set interrupt
code in
VOPSW

Construct
restart
VPSW

Set interrupt
code in int.
code location
(VIRTUAL)

Yes

LPSW
VPSW

Go to
dispatch

Set interrupt
code in
VOPSW

Go to
dispatch

No

Issue TRANS
macro for
page zero

Move VPSW
to
VOPSW

MoveVNPSW
to VPSW

Set interrupt
code in int.
code location
(VIRTUAL)

Go to
dispatch

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (4 of 4)

-102-

(_

Paging Interruptions

If the program interruption is caused by a paging
request, and if the interruption occurs when a virtual
360/67 is running in extended mode with translation on, a
special processing takes place. See •Running a Virtual 67"
in the CP-67 Operator's Guide. Otherwise, PROGINT
determines whether a segmentation error Ca segment of the
program missing) has occurred. If the interruption code
resulted from a segmentation error, an invalid address
interruption code is set, and the interruption is reflected
to the user's virtual machine supervisor.

If a segmentation error has not occurred, the user's
current PSW is updated from the program old PSW CPROPSW),
the address of the current UTABLE is placed in register 11,
and PAGTRANS is called to obtain the required page. When
the paging operation is completed, control is returned to
DISPATCH. (See Figure 37 for an overview of PAGTRANS.)

-103-

Load mach. size
in R2, set
condition code
in RO

Exit

(Seg excp)
01

Enter

module PAGTRANS
entry PAGTRANS

Translate
virtual
address
(LRA inst.)

Get SEGTABLE
entry

Get PAGTABLE
entry

Get SWPTABLE
entry

Set transit
bit in
SWPTABLE

Set up
CORTABLE
search limits

00 (in core)

Set condition
code= 1

Exit

Fi.id paging
task block
with matching
page int.

Locate
CORT ABLE
entry

Set changed/
used·bits if
required

Set lock bit
increm·ent
lock count

Figure 37. Overview of PAGTRANS (l of 3)

-104-

Get
CORT ABLE
entry

Set lock bit
increment
lock count

Set condition
code= a

Exit

Create
CPEXBLOK

Chain OPEXBLOK
to I OT ASK with
matching
page int.

Issue SVC 16
release
cu.rrent
save area.

Goto
DISPATCH

Exit

Save this
entry

Figure 37.

Set page-not­
in-core bit
in old
PAGTABLE

Yes

Get CORT ABLE
entry
(next)

Store UTABLE
pointer in
CORT ABLE

Set transit
bit in
CORT ABLE

Calculate
physical
address of
page

Store page
address in
PAGTABLE

Set transit
bit in
CORT ABLE

Set read
code for
ccws

Store SWPTABLE
pointer in
CORT ABLE

Overview of PAGTRANS (2 of 3)

Get UTABLE
belonging
to this user

Get SWPTABLE
for this
page

Set PAGEWAIT
increment
PAGEWAIT
count

Set page-not­
in-core bit
in old
PAGTABLE

Set write
code for
ccws

Yes

SVC 0

PAGEGET

Allocate space
for a page on
drum or disk

Decrement
PAGEWAIT
count

-105-

Set up IOTASK
block
TASKIRA=
WAITPAGE

Put IOTASK
block in
paging queue

Get real
device
type

Build CCWS
for 1/0
operation

__ q_UEf'!.!Q._
Queue 1/0
task for 1/0
operation

Read

Chain CPRQUEST
from IOTASK

Set PAGEWAIT
and increment
PASWCT
(UTABLE)

Set changed/
used bits if
required
(SWFTABLE)

Write

PAGDUM
DUm"iTIYcai1to

save regs. and
do defer if
requested

Set lock bit
increment
lock count

Enter
/

odule PAGTRANS
entry PAGDUM

Restore REGS
for return
to caller

Exit

Goto
DISPATCH

If shared page
get key 'O'
Non~shared page
get key 'F'

~ --~Set up CPRQUEST

Set condition
code= O

Exit

Figure 37.

-106-

block

Chain CPROEUST
from IOTASK

Goto
DISPATCH

Overview of PAGTRANS (3 of 3)

Enter
/' ' module PAGTRANS

entry PAGEWAIT

Start channel
again if free

Decrement
PAGEWAIT count
reset PAGEWAIT
bit when
count= 0

Reset
transit bit
(CORT ABLE)

Reset transit
bit
(SWPTABLE)

Set storage
keys

Exit

No

svco

Issue SVC 16
release
current
save area

Save
CPEXBLOK
if any

Set PAGEWAIT
bit ON

_.£~111£~-
Put CPEXBLOK
in CPSTACK
queue

Privileged Operation Interruptions

If the program interruption is caused by the
pseudo-supervisor issuing a privileged instructionr PRIVLGED
obtains the address of the privileged instruction and
determines the type of operation requested.

For I/O instructionsr PRIVLGED calls the virtual I/O
executive program (VIOEXEC). PRIVLGED simulates valid
non-I/O privileged instructions and returns control to
DISPATCH. For invalid privileged instructions, the routine
sets an invalid interruption code and reflects the
interruption to the pseudo-supervisor.

The non-I/O privileged instructions that are simulated
are LPS~J r SSMr SSKr ISKr and DIAG. For the "Virtual 6 7"
optionr the privileged instructions LRAr STMCr and LMC are
also simulated.

The Diagnose Instruction

The diagnose instruction (DIAG) has special handling
under CP-67. The diagnose command is used for coromunication
between a virtual machine and the Control Programr CP-67.
The machine-coded format for the diagnose command is:

83 R1 R2 CODE

The "CODE" is a base value that is used to
particular specialized CP function. The codes
assigned and their associated functions are:

CODE FUNCTION

0 Dump CP core

4 Fetch CP location

8 Virtual console function

c Pseudo timer

10 Release pages

14 Reserved for future IBM use

18 Disk I/O

lC Clear I/O error recording

20 Clear M/C error recording

24-FC Reserved for future IBM use

select a
currently

-107-

I
I
I
I

Note: User defined DIAG Codes:

X'OO' through X'FC'
X'lOO' through X'lFC'

Reserved for IBM use
Reserved for users

Diag code should always be a multiple of 4.

See the module PRIVLGED for analysis and/or implementation
of these functions.

The execution of diagnose code Or dump systemr causes
system abend by issuing SVC 0 (dump). This can only
executed by a privilege class A user. The format of
command is:

I
I 83000000
I

a
be

the

I The execution of diagnose code 4r fetch CP locationsr can
I only be issued by users with privilege class A or B. The
I format of the command is:

83 Rl R2 0004

Rl contains the virtual address of a list of CP <rea1)
addresses.

Rl+l contains a count of entries in the list.

R2 contains the virtual
that will hold the values
locations.

address of the result field
retrieved from the CP Creal>

The execution of function Br virtual console functionr
allows a virtual machine to perform CP-67 console functions.
The format of the diagnose command is:

83 Rl R2 0008

where Rl is a register that contains the address <virtual)
of the CP console function command and parametersr and R2 is
a register that contains the length of the associated
console function inputr up to 132 characters.

The following example will illustrate the virtual console
function:

-108-

LA
LA
DC

CPFUNC DC
CPFUNCL EQU

R6,CPFUNC
R10,CPFUNCL
X'83',X'6A',XL2'0008'

C'QUERY FILES'
*-CPFUNC

The output of the console function is to the user's
terminal, and then execution continues. Any valid and
authorized console function can be executed in this manner.

A completion code is returned to the user as a value in the
register specified in R2. Code 0 is normal, 4 is invalid
command, and 8 is bad argument. Other condition codes may be
used by processing routines in CP-67. LINK, for example,
returns several codes to indicate device status Csee LINK
module).

I Diagnose code c - pseudo timer. The format of the command
I is:

I
I I
I I 83 R1 00 00 oc
I

I
I
I
I

I

R1 contains the virtual address that will
bytes of data in a format identical to the
pseudo-timer device (for example, 'OFF' in
data is provided by 'diagnose' as a faster
SIO.

receive 24
SIO to the

CMS). This
method than

Diagnose code 10 - release pages. The format of the command
is:

83 R1 R2 0010

R1 contains the virtual address of the first page to be
released and R2 contains the virtual address of the
last page to be released. Any of the virtual pages in
real core or auxilliary storage are released.

Diagnose code 14 - reserved.

Diagnose code 18 - Disk I/O. The format of the command is:

83 R4 R8 0018

R4 contains the device address of the disk.

-109-

R8 points to a standard ccw chain to Read or Write the
disk record of up to 4096 bytes.

Standard CCW string:

SEEK,A,CC,6
SRCH,A+2,CC,5
TIC, *- 8, 0, 0
RD or WRT,DATA,cc,<4096
NOP,0,SILI,1

A SEEK and SRCH arguments

The execution of diagnose code lC, clear I/O recording, can
only be issued by a privilege class c user. This code calls
the FMTILOG routine to clear the I/O error recording data on
disk. The format of the command is:

8300001C

The execution of diagnose code 20, clear MC recording, can
only be issued by privilege class c user. This code calls
the FMTMLOG routine to clear the machine check error
recording data on disk. The format of the command is:

83000020

Machine Check Interruptions

When a machine check occurs in supervisor mode (CP-67
nucleus), a message is printed to the operator, the alarm is
rung, and the system will ABEND with a dump.

When a machine check occurs in problem <user> mode, a
message is typed on the operator's console, and a message is
sent to the affected user. The user's machine is placed in
console function mode. If the user enters "BEGIN", his
machine will take a "machine check" by CP loading his
machine check new PSW. CP-67 and other users are not
affected.

Machine Check Error Recording Routine - MCKERR

See Figure 38 for an overview of the Machine Check
Interruption Handler.

-110-

(

Get console
address

Send message
to operator
(multiple
mach. checks)

LPSW
wait state

Yes

Get operator
(UTAGOPTRI

No

_ ~s_K~R_!:! _

Put machine
check on
disk

WRTCONS
Send m7g't0-
operator (mach
check CP-67
supervisor mode)

D~~i:!:H
Dispatch until
msg.write
complete

svco

WRTCONS
~dm;Qt7;-
operator lmach
check problem
mode USER ID= I

Goto
DISPATCH

No

Yes

Enter

module PSA
entry MCHEKINT

Save 'GPRs' and
FPR'S in
'stopped'
status area

Set message
(mach. check)

Send message
to user

Put user in
CP mode

Yes

No

Get interrupted
user {RUNUSER)

Save VGPA'S

UpdatttVPSW
from MCOPSW

MCKERA ---- -
Put machine
check on
disk

Yes

Update VPSW
from MCNPSW

Set message
(mach. check­
CP entered
request, please)

Figure 38. Overview of Machine Check Interruption Handler

-111-

All machine checks, whether supervisor or problem state,
are recorded by CP-67. The first two tracks of the CE
cylinder are reserved for machine checks. The format of the
machine check error record is as follows:

ORG LOGDATA M/C ERROR RECORD
LOGMDATE DS CL6 DATE AND TIME
LOGMCODE OS CL2 MACHINE CHECK CODE
LOGMCPU DS 22D CPU LOGOUT DATA
LOGMPSW OS 50 OLD PSW's
LOGMGRS DS 16F GENERAL REGISTERS
LOGMCRS OS 16F CONTROL REGISTERS
LOGMFPRS OS 40 FP REGISTERS

Two machine check error records are contained within one
physical record. Thus a maximum of 30 records may be
contained within two tracks of a 2314 SYSRES. When the
machine check log is full, the message "** CECYL FULL; M/C
ERRORS NOT RECORDED **• is printed at the operator's
terminal, and subsequent machine checks are not recorded
until CLEARMC is run by the customer engineer. Pointers are
kept to the next available slot in the log so that machine
check errors are recorded sequentially. If an I/O error
occurs when attempting to write a machine check error
record, it is retried eight times. Upon continued failure,
an error message "** IOERROR RECORDING FAILURE ON DEV~- **•
is sent to the operator.

INTERRUPTION REFLECTION

When an SVC interruption or a program interruption occurs
and the user's virtual machine is operating in problem mode,
the interruption is reflected back to the user's supervisor
(pseudo-supervisor) for handling.

The program interruption handler (PROGINT), upon
determining that the interrupted user is operating in
problem mode, saves the virtual registers and their old PSW
(PROPSW).

The current PSW is moved into the old PSW, and the
interruption code is set. If necessary, PAGTRANS is again
called to obtain the address of the new PSW, and the new PSW
is moved into the current PSW. When adjustment of PSW's is
complete, control is returned to DISPATCH, which will
eventually allow the user to resume processing.

Figure 39 illustrates the processing and reflection of
interrupts.

-112-

Real Machine State

Interrupts

External

SVC

Program

Privileged

Real Supervisor State

GP

Masked off

For subroutine
linkage

ABEND

Not possible

--- - --- - - -+-- - --------- - ----- -
Machine check ABEND

---------- -------------------

1/0 Masked off

Real Problem State

Virtual Supervisor
State

OS or CMS

Virtual Problem
State

Problem Program

Start another user; end of 50 ms time slice for this user.
External Virtual interrupts
Timer simulated

----------------- - ------ - - ---- ---1

Reflect interrupt to virtual machine

----- --- ---- - ------- - - ----------

Reflect interrupt to virtual machine

-:,:;;~~~~~~~.~-------r : .. ~~-------
- -- -:B~N~---- --- ----t--A~~:D--------
- - -- - -- --- - -- ---- --- ---------

Restart channel.
Record the device status in virtual
machine description if virtual 1/0.

'------------ ------ ----- ------ ·'------------- ------- -- -- --- - - - -

Reflect on interrupt:
Current PSW - - - ._Old PSW
New PSW- - - - Current PSW
Set interrupt code; decrement timer;
timer interrupt if required.

FIGURE 39. Processing and Reflecting of Interrupts

.-113-

MAIN STORAGE MANAGEMENT (PAGING)

The PAGTRANS routine is responsible for satisfying the
paging demands placed on the system by user programs. It
satisfies requests for page access via the TRANS macro from
various parts of the control Program, including the program
interrupt handler CPROGINT> for paging faults, the
input-output string handler CCCWTRANS) for user-initiated
input-output operations, etc. PAGTRANS has the
responsibility for freeing up main memory space when
required, performing the input-output operations necessary
to free the space, and protecting the system against "paging
overload" conditions that may arise during periods of peak
demand for the memory resource.

All calls to PAGTRANS are made through the use of the
macro instruction TRANS. If LOCK is not specified in the
TRANS macro and the virtual page is already resident in
memory, there is no need to call PAGTRANS, and the call is
bypassed by the macro generation.

Required Page in Core

When PAGTRANS translates the virtual address Cvia the
LRA instruction) and finds that the page containing the
address is currently core resident, a test must be made to
see whether the LOCK option has been specified. (Normally,
this will be the case, for the TRANS macro would not have
generated the call to PAGTRANS for an in-core page if the
LOCK option was omitted.) If lock is requested for the page,
the lock count for that page is incremented, and the lock
flag is set in the core table entry for that virtual page.
When the lock flag is set, the page is not available for
"swapping• (that is, it will be retained in storage until
the lock count is reduced to zero and the lock flag is
cleared). The lock count cannot be greater than 65,535.

When lock processing is completed (or if LOCK was not
requested), a condition code of zero is set, the translated
address is stored in the calling routine's save area, and
control is returnE!d to the calling routine. A condition
code of zero indicates that the address translation was
successful and that the specified virtual page is in core.
(Note that the TRANS macro will automatically perform an LRA
instruction after the return from PAGTRANS. In some
instances, it would be possible for the paging routines to
return a page as in core and have it chosen for swapping,
and therefore nonresident, before the actual return to the
caller. This is true only in DEFER cases.>

Required Page Not in Core

When PAGTRANS translates the virtual address and finds
that the page is not core resident, the entry for that page
in the user Is SWPTABLE is found. The SWPI' ABLE entry

-114-

(

contains the direct access storage address of the required
virtual page. A test is made to determine whether the BRING
option was specified when PAGTRANS was called. If BRING was
not specified, a condition code of 1 is set, and control is
returned to the calling routine. A condition code of 1
indicates that the required page is not in storage.

Required Page in Transit

If the required page is not in core and the BRING
option is specified, the transit flags in the SWPTABLE entry
are examined to determine whether the virtual page is in
transit <that is, a previous request to read in the page or
a request to write the page out has not yet been completed.)
If the page is in transit, a Control Program execution
request block (CPEXBLOK) is created and chained to the

I input-output task block (IOTASK) for the pending read or
I write operation, and PAGEWAIT is indicated in the VMSTATUS
I entry of the user's UTABLE. When the page I/O operation has
I completed, the CPEXBLOK is added to the CPRQUEST queue, and
I control is returned to DISPATCH. If the operation was a
I read, the PAG~"'WAIT condition is removed and the CPEXBLOK
I indicates a return to the initial caller of PAGTRANS. If the
I operation was a write, the CPEXBLOK indicates a re-enter to
I PAGTRANS to retest the transit flags.

Obtaining Core for a Paging Operation

If the required virtual page is neither in core nor in
transit, and the BRING option has been specified, PAGTRANS
must prepare to read the page into storage. An available
page of core into which the required virtual page may be
read roust be found.

The table used for managing the real machine core
allocation is called the CORTABLE. There is one 16-byte
entry in CORTABLE for each 4096-byte page of real core. See
the description of the CORTABLE control block for the bit
usage.

Each entry of the CORTABLE is examined in a round-robin
manner to determine whether the associated page is available
for a paging operation. The search begins at the first entry
after the last selected page.

The Lock MASK byte must be zero in order to have that
page eligible for paging.

On the first pass each entry is examined, and if either
of the following two conditions is satisfied, the
corresponding page is selected:

1. An entry with bytes 5-7 equal to X'FFFFFF' (pages
not in use by any user).
2. Neither of the keys for the page has the reference
bit set on.

-115-

If the first pass fails to find an eligible page, then
I on the second pass any entry with a Lock MASK of zero is
I selected, since all such pages are equal candidates for
I selection. Both passes are initiated and terminated at the
I next entry after the last · one used. All non-locked pages
I that are examined and not selected have their reference bits
I turned off.

If the selected page has a changed bit on, the page
must be written to its DASD location (that is, swapped)
before the new virtual page is read in. The DASD address is
obtained from the corresponding swap table entry, an
input-output task block is created, the page table entry for
the page is marked •not-in-core•, and the IOTASK block is
queued for execution.

The address of the page selected for the paging
operation is stored in the page table, and the not-in-core
flag is set in the page table entry.

Reading a Required Page into core

When an available page of real core has been found, the
page address is stored in the page table entry and the
not-in-core flag is set. The transit flag is set in the
corresponding swap table entry, and the transit bit is set
in the core table entry.

The DASD address of the required virtual page is
obtained from the SWPTABLE, and an IOTASK block and a
channel command word (CCW) list for reading the page in are
created: the routine QUERIO is then called to queue the task
to the input-output task list.

The "recompute" flag is used when a new swapping DASD
address is to be used when the page is changed. At login
time (and at a re-IPL for a virtual machine> the swap table
entries are all set to the DASO address of a "zeros• page on
the CP-67 system residence volume.

The recompute bit is set in each entry by LOGIN so that
the page will be assigned an appropriate secondary storage
location when it is referenced. This process, called
dynamic page allocation, ensures that only those pages in a
user's virtual machine which change and must be rewritten
are assigned paging space on drum or disk. When a page is to
be written out for the first time (that is, the recompute
bit is set>, a routine called PAGEGET is called. This
routine finds an available location on drum or disk Cin that
sequence> and saves the address of that DASO location in the
SWPTABLE entry for that page. This DASD address will be
used on all subsequent reads or writes of that page for the
duration of the user's session. If the user logs out or
re-IPL's a system, a routine called PAGEREL is called. This
routine returns all of the user's paging DASD locations to
the available pool and resets each SWPTABLE to zeros. Only
those user pages which have actually been written out to

-116-

(

secondary storage (that is, for which the recompute bit is
off) are reclaimed at PAGEREL time.

Returning control

When all other PAGTRANS operations are completed, the
used and changed flags are set in the SWPTABLE entry for the
page being read. If the LOCK option was specified when
PAGTRANS was called, the lock count is incremented, and the
lock flag in the core table entry is set.

If the DEFER option was not specified when PAGTRANS was
called, control is returned to the calling routine. If the
DEFER option was specified, PAGEWAIT is indicated in the
current user's UTABLE, a Control Program execution request
block is created, and a pointer to the request block is
placed in the IOTASK block which was created to read in the
required page. Control is then returned to DISPATCH.

When the page has been read in, the PAGEWAIT bit is
reset in the UTABLE, and the Control Program execution
request block is added to the CPRQUEST queue. The next time
DISPATCH is entered, the control Program execution request
block will be honored, and since the required page is now
resident in storage, the completion of the paging operation
will be indicated.

Shared Pages

When more than one user is using a given operating
system such as CMS, which has reentrant pages, it becomes
possible to share those pages among those users. In order to
allow CP to share these pages, the operating system must be
IPL'd by name (for example, IPL CMS).

When the first user of a shared system issues the IPL
command, all the shared pages are brought into core and
locked to prevent their being swapped out. When a subsequent
user IPL's the same system, no paging is required, but the
PAGTABLE of such a user is set to point to the shared pages.

For store protection of the shared pages, the users are
run with protection key = F. All shared pages' storage keys
are set to zero and all other pages belonging to these users
have storage keys = F.

Note: The module SYSTEM has to be assembled to indicate
which of the pages of a given system are shareable. If none
are so indicated, no pages will be shared.

FREE STORAGE MANAGEMENT

Note: &TRACE(4) option must be chosen at sysgen time in
order to gather statistics in FREE/FRET .•

-117-

The FREE routine is responsible for the efficient
management of free storage, as heavily used within CP-67 for
I/O tasks, CCW strings, various I/O buffers, and the like.
It is used, in fact, for practically all such applications
except real channel, control-unit, and device-blocks, and
the CORTABLE.

Block sizes of 29 double words or less, constituting
about 99 3 of all calls for free storage, are grouped into
ten subpool sizes, and are handled by very fast LIFO <push
down stack) logic.

Blocks of greater than 29 double words are strung off a
chained list in the classic manner.

Subpool blocks are generally obtained, when none are
available, from the first larger sized block at the low
sized end of available free storage. Large blocks, on the
other hand, are obtained from the high-numbered end of the
last larger block. This procedure tends to keep the
volatile small subpool blocks separated from the large
blocks, some of which stay in core for much longer periods
of time, thus undue fragmenting of available core is
avoided.

The various cases of calls to FREE for obtaining free
storage, or to FRET for returning it, for subpool sizes and
large sizes, are handled as follows:

Call to FREE for a Subpool Size:

Subpool Available:
If a call for a subpool size is made and a block of the

suitable size is available, the block found is detached from
the chain, the chain patched to the next subpool block of
the same size (if any>, and the given block returned to the
caller.

Subpool Not Available:
If there is no suitable block when a call to FREE is

made for a subpool size, then the chained list of free
storage is searched for a block of equal or larger size. The
first block of larger or equal storage is used to satisfy
the call Can equal-size block taking priority), except that
blocks within pages previously obtained from EXTEND are
avoided if at all possible. If no equal or larger block is
found, all the subpool blocks currently not in use are
returned to the main free storage chain, and then the free
storage chain is again searched for a big enough block to
satisfy the call. If there is still not a big enough block,
then EXTEND is called to obtain another page of storage, and
the process is repeated to obtain the needed block.

Call to FREE for a Large Block:
If a call to FREE is made for a block larger than 29

double words, then the chained list of free storage is
searched for a block of equal or larger size. If an equal

-118-

(

size block is found it is detached from the chain and given
to the caller. If at least one larger block is found, the
desired block size is split off the high numbered end of the
last larger block found, and given to the caller. If no
equal or larger block is found, EXTEND is called to obtain
another page of storage, and the above process is repeated
Cas necessary) to obtain the needed block.

Call to FRET for a Subpool Size:
If a subpool size block is given back via a call to

FRET, the block i~ attached to the appropriate subpool chain
on a LIFO Cpush down stack) basis, and return is made to the
caller. If, however, the block was in a page previously
obtained from EXTEND, the block is returned to the regular
free storage chain instead.

Call to FRET for a Large Block:
If a block larger than 29 double words is returned via

FRET, it is merged appropriately into the regular free
storage chain. Then, unless exactly one page was given back
<i.e. by EXTEND), a check is made to see if the area given
back (after all merging has been done) is a page previously
obtained from EXTEND. If so, it is returned via PAGFRET for
use by the remaining programs in CP for their use.

The FREE/FRET logic as described above allows the
number of pages allotted for main storage to "breathe" as
necessary, expanding via calls to EXTEND when extra pages
are needed, and contracting via PAGFRET when such pages have
all been FRET'd and are no longer needed.

Initialization
The number of pages allocated to free storage depends

upon the number of core boxes upon which CP is running, and
is initialized by CPINIT. A special entry FRETR in the
FREE/FRRI' routine is used by CPINIT and EXTEND to return
blocks to the regular free storage chain regardless of their
size.

EXECUTION CONTROL

When all interruption handling routines complete their
processing, they transfer control <via a GOTO macro> to the
main dispatcher and control routine (DISPATCH). DISPATCH
charges time used within the control Program to the
appropriate user and determines which user is to receive
control next.

Each time DISPATCH is entered, the time used by the
current (interrupted) user within the Control Program is
computed and added to the TIMEUSED entry in the user'•s
UTABLE. If the current user has not exhausted his allotted
time for this quantum, he will be restarted. In this case,
his pending interrupts are reflected, and then if runnable
he is restarted. If no time remains for the interrupted

-119-

user, any CPRQUEST's are honored.
chosen for running.

Then another user is

The following checks are made by DISPATCH upon each
entry to it and prior to the running of a new user:

The queue of Control Program execution requests
CCPRQUEST) is examined for any pending work. If any
requests are found, the appropriate execution request block
CCPEXBLOK) is used to load the registers and dispatch
control to a specified section of the Control Program. This
section will return control to DISPATCH via a GOTO macro.

If the current user is not runnable and the CPRQUEST
stack is empty, a new user is selected to run.

In order to prevent paging overload, the system allows
only a subset of the users to run at any given time.
Interactive users are in Ql, and the users who put a heavy
load on the system in terms of CPU cycles required or amount
of nonterminal I/O done are in Q2. There is a maximum limit
on Ql. A table in the module EXTEND is used to set the
maximum for Ql, depending upon the real core size. The limit
of users in Q2 is dynamic and is dependent on current paging
activity.

A user will be in one of the following five modes at
any given time:

In Ql
Waiting to get into Ql
In Q2
Waiting to get into Q2
Dormant, not requiring system resources

Moreover, a user may or may not be runnable, regardless
of whether be is in the queues. A user is not runnable if he
is waiting for:

A page to be brought in
An I/O operation to be started
A CP console function
A VM interrupt (VM in wait state)

The next user to be run is selected according to the
following priorities:

1. current user if runnable
2. First member of Ql encountered
3. Oldest runnable candidate for Ql if Ql is not full
4. Oldest runnable candidate for Q2 if Q2 is not full
5. Oldest member of Q2 not CPU-limited
6. Oldest member of Q2 if CPU-limited

To start Cor restart> a user, DISPATCH loads the
appropriate control registers from the contents of the
chosen user's UTABLE entries, loads the interval timer with
the user's quantum (or the unused portion of it>, and gives
control to the user by entering the problem mode.

-120-

I
I
I
I

I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

Queue Management

Definitions:

Dispatching of users is described in terms of their movement
from one state to another. The four states are described as
follows, as well as the definition of an interactive and
non-interactive user.

State 1

State 2

State 3

State 4

- runnable in Q:
virtual machine not in wait state

not in page wait
not in I/O wait

- not runnable in Q:

-

virtual machine in wait state, but enabled for
an I/O interrupt on a busy channel

in page wait
in I/O wait

runnable not in Q:
virtual machine not in wait state

not in page wait
not in I/O wait

but CPU time exceeded (.4 or 5 seconds) and
number of interactive users at maximum, or
paging activity index when added with in Q
users will exceed system paging index.

- not runnable not in Q:
- virtual machine in wait

enabled with no busy
console function mode -

state and disabled or
channels; stopped, CP
'ATTN' on terminal.

Interactive user:
interrupt from terminal
use less than .4 seconds of CPU time
have a priority between 0 and 15

Non-Interactive user:
no terminal activity
use more than .4 seconds of CPU time
have a priority between 16 and 215

I A user goes from runnable (in Q) to eligible {runnable, not
I in Q) when his CPU time (.4 for Ql, or 5 seconds for Q2) is
I exceeded; in order to be runnable Cin Q), he must not be in
I I/O, console function or page wait, or virtual machine wait
I state. When any of these conditions pertains, he will be
I dropped to a non-runnable (whether in Q or not in Q) status.
I A user is advanced from eligible (runnable, not in Q) to
I runnable Cin Q) on the basis of interrupt status or virtual
I machine priority.

(Movement from state to state is illustrated in detail in the

-121-

I
I
I
I

I
I
I
I

I
I
I
I
I

following chart:

From
State

To
State

1 ----> 2
1 ----> 3
1 ----> 4

3 ----> 1
3 ----> 2
3 ----> 4

2 ----> 1
2 ----> 3
2 ----> 4

4 ----> 1
4 ----> 2
4 ----> 3

causing
condition

Pagewait; IOwait; VMwait-IOactive
CPU time exceeded (.4 or 5 seconds>
VMwait-no IO active; VM stopped-CFwait

Scheduled by Interrupts or priority
Not possible
VM stopped-CPwait

PageIO; IOstarted; IOinterrupt
Not possible
VM stopped-CFwait

Not possible
Not possible
AsynIOint; VM not stopped-begin

Note: 3 = 'eligible'

Users within states 1, 2, and 3 are ordered by priority.
Priority is determined by a combination of paging activity
index, user directory priority, and system priority number.

Number of in Q users:

interactive users limited by a specific maximum
based upon real machine size;

i.e. 512K machine = 6
768K machine = 9

1024K machine = 12

I non-interactive users limited by paging activity
I index so that a system paging index is not exceeded.
I System paging index is a function of real machine
I size;
I i.e. 512K machine = 40
I 768K machine = 70

Figure 40 is a state diagram illustrating the flow of
users from one state to another.

I Virtual timers are maintained in one of two ways. The
I default method is to increment a user's virtual timer
I (virtual location hex 50) by only the amount of virtual CPU
I time the user uses. A 'real timer' option is also available
I which will also update a user's virtual timer"by the amount
I of time the user spends in virtual wait.

Note: this does not supply the user with a timer that runs

-122-

the same as 'wall clock'.
is not incremented by the
waiting for his chance to
the system.

'Real Timers•

For instance, the virtual timer
amount of time a user spends

run while appearing runnable to

The real timer option attempts to provide a clock for
systems maintaining time-slice environments. For this
purpose the 'timer' (virtual location 50) is updated by the
time spent in virtual execution Call virtual timers are
updated by this value) and the time the virtual machine
spends in virtual wait (or voluntary wait). The clock is
not updated for elapsed time while the virtual machine is in
IOWAIT or PAGEWAIT or while the virtual machine is runnable
but cannot run because CP-67 has given control to some other
user with a higher priority. This enables time-slicing
systems to give reasonably constant time-slices independent
of the activity going on in the overall CP-67 system.

The critical facility that 'real timers' supply that
ordinary timers in CP-67 do not is the ability to have the
timer cause an external interrupt while the virtual machine
is in virtual wait. To provide this facility, CP-67
maintains on 'elapsed binary timer'. When a virtual machine
enters waitstate, it is 'time stamped' with a value equal to
the sum of its virtual timer plus the value of the binary
timer, if the virtual timer value is positive. This
represents the time when the virtual machine will expect an
external interrupt. The lowest time stamp value is always
kept by the real timer routine and every time the binary
timer is updated it is compared against the lowest time
stamp value. If the binary timer value exceeds the lowest
time stamp value, the real timer routine is entered to
update the virtual machines with real timers; otherwise,
normal processing continues.

Figure 41 is an overview of the Dispatcher Scheduling
Algorithm.

-123-

1/0 WAIT

Console
1/0 and
WAIT

FIGURE 40.

-124-

Runnable and
01 not full

Time-slice interrupt

Accumulated time> 0.4 sec.

without console operation

Console operation and WAIT

Runnable and
02 not full

1/0 WAIT or
time-slice
interrupt

Accumulated
time> 5 sec.

State Representation of Scheduling Algorithm

. f
I~.

~--- 1/0 Wait

Reset
in Q

status

Console operator
and wait

Console operator
and wait

Dispatch from this
Q if current
user nonrunnable

User in
console 0

Runnable and
Q not full

User waiting
to enter
console Q

UT ABLE+ CB= TIMING

Time at which 80 = console (1

the user is to be 00 ==non-CONS 0
removed from 0
(cut-off time)

Dispatched from
console 0

Current

Dispatched from
non-console a

Time slice
interrupt ---~

Time in 0 > 0.4
sec. without
console operation

Time in
Q > 5 sec.

l/Owaitor
time slice int.

Dispatch from this
Q if no runnable
candidate in console Q

User in
nonconsole Q

Runnable and
0 not full

User waiting
to enter
nonconsole Q

A user is considered
in a 0 if TlMINQ + 2 = 01
(set and reset by dispatch)

Reset
in Q
status

FIGURE 41. overview of the Dispatcher Scheduling Algorithm

Handling of a Virtual 67

Six areas are discussed in this section:

1. Control blocks

2. Different format of the PSW

3. Special processing of the reset function

4. New instructions

5. Handling of the virtual dynamic address translation

6. Restrictions

Control Blocks

EXTUTAB is created at LOGIN time •

Each time a virtual 6 7 enters extended PSW, by loading

-125-

control register 6 with bit 8 set to 1 Cby means of the LMC
instruction or STORE X6 console function), space is reserved
for the shadow segment table and one shadow page table
belonging to segment O.

If the virtual 67 uses segments 1 to 15, a "copy
segment table", an "image segment table" and the necessary
number of additional shadow page tables will be allocated.

All those tables, if any, except EXTUTAB,
returned to free storage each time the virtual
extended PSW mode by loading control register 6
set to O, or by the reset function.

Different Format of the PSW

will be
67 leaves

with bit 8

The format of the PSW in a 360/67 running in extended
mode (that is, bit 8 of control register 6 set to 1) differs
from that of a standard System/360. Contents of certain
reserved lower core locations are different after an
interrupt has occurred. (See IBM System/360 Model 67
Functional Characteristics, A27-2719). The following modules
have been modified to take into account that difference:

CFS MAIN
DISPATCH
IOI NT
MVIOEXEC
PROGINT

Reset Function

PSA
QUEVIO
UNSTIO
VIOEXEC

When a reset function is executed for a virtual 360/67,
control register 6 is reset to COOOOOFF, and all the control
blocks specified for a 67, except EXTUTAB, are returned to
free storage. The module affected is RESINT.

New Instructions

Among the five new instructions, two are nonprivileged
and are executed normally CBAS,BASR), and three are
privileged and thus simulated CLRA,LMC,STMC).

LRA modifies the condition code and the contents of the
first operand register, according to the contents of the
segment and page tables, which are located in the virtual
machine core and pointed to by <virtual) control register 0.

For LMC and STMC, only control registers 0,2,4, and 6
are retained in EXTUTAB: the others always contain zeros and
cannot be modified by LMC.

When loading control register 0, a possible data
exception is reflected.

-126-

When loading control register 6,
the mode (normal or extended) is
contents.

bit 8 is examined and
set according to its

The module affected is PRIVLGED.

Handling Virtual Dynamic Address Translation

In this description the following terminology is used:

First level memory. The memory of the real 360/67.

Second level memory. The memory of a virtual 360/67.

Third level memory. The memory of a virtual machine running
under the virtual 360/67.

Shadow segment and paqe tables. Segment and page tables used
by the real machine. When CP gives control to a virtual 67
running in extended mode with translation on, these tables
(in first level memory) will describe the third level memory
and will be used to control the real address translation
hardware.

Copy segment table. A copy, in first level memory, of the
segment table, in second level memory, used by the virtual
67 when running in extended mode with translation on.

Irnaqe seqment table. A copy, in first level memory, of the
shadow segment table, with 00 in the first byte of each
entry, and bit 31 set to 1 (unavailable bit) in each entry.

Monosegment machine. A virtual 67 in which segments 1
through 15 are not used.

Multiseqment machine. A virtual 67 which has already used
at least one segment other than segment O.

For example, a virtual 360/67 running CP-67 and
generating any number of virtual machines will be a
monosegment machine so long as all these virtual machines
use a core size less than or equal to one megabyte. That
machine will become (dynamically> a multisegment machine as
soon as it runs a virtual machine using more than one
megabyte. Monosegment virtual machines are handled with
much less overhead than multisegment virtual machines.

Each time CP-67 gives control Cby means of DISPATCH) to
a virtual 67 running in extended mode and with the
translation control bit on, it checks the validity of the
shadow tables: if those tables have been invalidated by a
previous loading of control register 0 or by a previous
paging interrupt, the following steps are taken:

-127-

1. For a multisegment machine, a copy of the actual
segment table is brought from second level memory into
the copy segtable.

For a monosegment machine, the first entry of the
actual segment table is brought from second level
memory into IMAGESGT, and the size of the actual third
level memory is updated into COPYSEGT.

2. For a multisegment machine, the image segment table
is copied into the shadow segment table in order to
reset it quickly with all the entries flagged with the
unavailable bit on.

For a monosegment machine the single shadow page table
is reset with the first n entries flagged with the
unavailable bit on, n being the page table length.

If the shadow tables have been invalidated because a
page of the virtual 67 has been removed from first level
memory, only step 2 is taken. (See Figures 42 and 43)

Second Level Memory

~

Segment
Table

Page Table

FIGURE 42.

-128-

I
I

First Level Memory

I
i_ ____ -·- ------···-·- VCR 0 VCR 2

/

I
I
I
I
I
I

Shadow
Page
Table

--

Note:

Shadow Segment
Table

.._
VCR4

SHADVCR 0

CDPYSEGT

VCR 6

I l
IMAGESGT

COPYSEGT contains the length of the actual third level memory size
available (computed from the page table length), and IMAGESGT
contains the first entry of the virtual segment table, brought from the
second level memory.

Virtual 67--Monosegment Machine

I
I

Second Level Memory I First Level Memory

r--~--s====~--t -- VCRO VCR2

Page Tables

t
I
I
I
I
I
I
I
I
I
I
I
I
I

Shadow
Page
Tables

A

I Shadow
Segment
Table

VCR4 VCR6

SHADVCRO

COPY SE GT IMAGESGT

EXTUTAB

Copy Segment
Table

-D
Image Segment
Table

FIGURE 43. Virtual 67--Multisegment Machine

When a paging interrupt takes place, if the virtual
machine interrupted is a 360/67 using the virtual dynamic
address translation, the processing is the following:

If the interrupt is a page exception (interrupt code
11) a check is made to see whether the interrupt should
be reflected; if it should not, a request is issued for
the missing page, if necessary; otherwise Cif the page
is already in first level storage), the proper entry in
the right shadow page table is loaded, and the virtual
machine restarted.

If the interrupt is a segment exception (interrupt code
10) a check is made to see whether the interrupt should
be reflected. If it should not, and if a shadow page
table has already been allocated to the segment

-129-

originating the interrupt, the unavailable bit is
removed from that entry of the shadow segment table,
the page table length is loaded, the corresponding
shadow page table, according to that length, is reset
with the unavailable bit in each entry, and the
processing continues as for a paging interrupt for a
multisegment machine.

If a shadow page table has not yet been allocated, one
such table is allocated and, furthermore, if the virtual 67
is switching from rnonosegment to multisegment machine, the
copy and image segment tables are allocated and initialized;
then control is given to the dispatcher.

The modules modified to handle this algorithm are
mainly DISPATCH and PROGINT and also CFSDBG and PAGTRANS.

Virtual 67 Restriction

A virtual machine may be a 360/67 provided it has a
simplex CPU, with 24-bit addressing.

-130-

CONSOLE FUNCI'IONS

When a console interruption occurs because the
attention key has been activated at a user's terminal, the
I/O interruption handler (IOINT) calls the CONSINT routine.
CONSINT then calls BREAK in CFSMAIN if the terminal has a
logged-on user.

BREAK determines whether the user was executing or was
waiting for completion of a console function when the
"attention" occurred. If the user was waiting for a console
function, the "attention" is reflected to the user's machine
as an online console attention button interrupt. If the user
was executing, the routine RDCONS is called to read the
console function request, and control is returned to the
interrupted routine. If the user was receiving output from a
console function request when the attention button was
depressed, that output function is terminated, and the
keyboard is unlocked waiting for another console function
request.

When the console function request has been read, the
console function processor CFSMAIN is entered to analyze the
request. CFSMAIN determines the type of function requested
and gives control to the appropriate subroutine. When all
console functions have been processed, control is returned
to the calling routine.

The console functions can also be executed from the
virtual machine level by the diagnose instruction (code 8)
and the required buffers. (See "Program Interruptions"
earlier in Section 2.)

The following console function descriptions cover the
four privilege classes of users:

A - operator
B - administrator
C - customer engineer
D - a normal user

Also included is the system operator class, which
belongs to the first user to log in with privilege class A.
Normally he is the operator of the Model 67.

The following console functions are described:

ACNT punch and reset accounting information for
active users

ATTACH - attach a device to a user or to the system
BEGIN - initiate execution of a virtual machine
CLOSE - give logical EOF on unit record equipment
DCP - display contents of real memory and registers
DMCP - dump contents of real memory and registers
DETACH - remove a unit from a virtual machine or from

the system
DISABLE - inhibit 2702 line access to the system
DIRECT - allow and inhibit system DIRECTORY access

-131-

DISCONN - disconnect a terminal from a running virtual
machine

DISPLAY - display contents of memory and registers
DRAIN - quiesce a unit record input or output
DUMP - dump contents of memory and registers
D_U_M_P - cause a system ABEND dump
ENABLE - enable 2702 lines for access to the system
EXTERNAL - give virtual external trap
IPL - perform an initial-program-load sequence; reset

virtual memory to binary zeros
IPLSAVE - perform an IPL without resetting virtual

memory to ZERO
KILL - log a user off the system
LINK - attach a DASD device using a directory unit

description
LOCK - lock selected user pages in core
LOGIN - log into the system
LOGOUT - log out of the system
MSG - send a message to the user<s> or operator
PURGE - delete a user's spooled input or output files
QUERY - query the status of the system
READY - ready a virtual device
REPEAT - repeat the output of a currently active file

on the real unit record devices
RESET - reset the interrupt status of a virtual machine
Sh"'T - establish system parameters or machine status
SHUTDOWN - bring the system to orderly shutdown
SLEEP - place a terminal in dormant state to receive

messages
SPACE - force printed output for a file to single space
SPOOL direct and control spool input and output
START - commence unit record output after a drain or

when requested
STCP - store into real memory locations
STORE - store into memory or registers
TERM - terminate current unit record operation
UNLOCK - release previously LOC:Ked pages
WNG - issue a warning message to user<s>
XFER transfer spooled punch output to a user's

spooled reader input

Console Function Subroutines

The following brief descriptions cover some of the
important subroutines in console function processing.

CON START this
function has been
goes to COMANL to
function.

routine is entered after the console
read by RDCONS. It analyzes the data and

scan the command list for the desired

SCANFLD - this routine will return to the caller <via BAL}
the starting location and the length of the next field in

-132-

{
l

the command input, or an indication that no more data
exists.

BEGIN this routine releases the read buffer and large save
area, resets the user's CFWAIT status, and exits.

BREAK - this routine is the entry point called when the user
actuates the attention key. It will get a 17-doubleword
buffer used by RDCONS to read the console function and a
17-doubleword large save area, which is used on subsequent
call by CONSOL to other routines and as general working
storage for various functions.

SIMATTN - this routine is entered if the user actuates the
attention key while in console function mode, thus giving an
"attention" to his virtual machine.

FINDUSER - this routine will search the chain of UTABLES for
a specified "userid". A message is given if the user is not
found, or his UTABLE address is returned in register 10.

The module CFSMAIN contains all these subroutines.
CFSMAIN remains addressable through register 12 for all
command processing. Individual commands are placed together
in several other modules, each module addressable by
register 9.

-133-

Console Function Descriptions

The following conventions are used throughout these
descriptions: (1) variable information is indicated in
lowercase letters, and system keywords are indicated in
uppercase letters, whereas either case may be used when
communicating with the system; (2) "<" and ">" are used to
bracket choices when applicable in the description (for
example, "MSG <userid,ALL>" would be used to indicate that
"MSG userid" or "MSG ALL" could be used), whereas the
brackets are not typed when communicating with the system.

ACNT (ACNT) - class A and B

ACNT

The following steps are taken:

for each UTABLE in the system call ACNTIME to give
accounting to each user

- call ACNTOFF for each user to punch an accounting
card and reset the accounting data

I Note: ACNT does not punch an accounting card or reset the
I accounting data for dedicated devices.

-134-

(

ATTACH (A) - class A and B

ATTACH CCU TO userid AS xxx
ATTACH CCU TO SYSTEM AS valid
ATTACH RDR I PRT I PUN TO userid AS xxx

The following steps are taken when attaching a device to a
user or to the system.

- scan the selector device chain for the device "ccu"

check that the device is not "owned" or already
attached

- issue a sense command for DASO types to determine
that the device is "ready"

check that the •userid" is currently logged in to
the system

check that the "userid" does not already have a
device of address "xxx"

- create the virtual device blocks for the user and
link them to any existing blocks

- call DEDICATE if the device being attached is in the
real multiplexer chain. DEDICATE will create and
chain a set of real selector device blocks.

link the virtual and real device blocks on an
attached Cnonshared) basis

- send a message to the "userid" that the device has
been attached

if the device is being attached to the system, CP
will read and verify the "valid" and check that the
volume is not already mounted

- ATTACH will check the "owned list" Cin the CPDSK1
allocation table) to see whether the attached
volume has a CP allocation table

if the attached volume is "owned", the allocation
table is linked to the real device block and to the
allocation table chain

if a "spooling" device CRDR PRT PUN) is being
attached to a user, a virtual multiplexer block is
created and chained to the user's virtual device
chain

various diagnostics are issued for a variety of
error conditions that can occur

-135-

BEGIN CB) - any user (class A,B,C,D)

BEGIN <hexadd>

This command transfers control from CP console function mode
to running the virtual machine.

The following steps are taken:

-136-

- set the user's virtual PSW to the address specified,
if any

- free the console functions read buff er

- free the console functions large save area

- take the virtual machine out of "console function"
wait

exit to run the user

CLOSE CC) - any user (class A,B,C,D)

CLOSE CCU

The CLOSB command completes a user's spooled operation for
the current file and schedules it for output, or clears the
buffers for input.

The following steps are taken:

- locate the specified virtual device in the user's
multiplexer chain

- call MVICLCR or MVICLPR or MVICLPN to close a reader
or printer or punch, respectively

output files will be scheduled for
punching or the punch file may be
reader input if it was XFERed

printing or
chained to a

- readers
input.

are cleared to accept the next
Remaining input is flushed.

spool file

-137-

DCP (DCP) - class A and B

DCP argl arg2 ••• argN

where the
location< s > •

arguments (argl ••• argN) are real
The output goes to the terminal.

The following steps are taken:

memory

1. The steps are the same as those for DISPLAY, except
that the data is taken from real memory instead of
virtual memory.

-138-

r
r

(

DMCP (DMCP) - class A and B

DMCP argl arg2 ••• argN

where the arguments are the same as those for the DCP
Console Function. The output goes to the first virtual
printer defined in the user's virtual machine.

The following steps are taken:

1. The flag in the output buff er is set to indicate that
the output is to go to the printer.

2. The remainder of the steps are the same as those for
DISPLAY. except that the data is taken from real memory
instead of virtual memory.

-139-

DETACH (DET) - any user <class A,B,C,D), except for certain
functions

DETACH CCU

The DETACH command allows any user to delete any virtual
device from his current configuration.

The following steps are taken:

-140-

the virtual device block(s) are located in the
user's chain of devices

- a check is made to ensure that no tasks are queued
for this device

- the virtual device blocks Cf or either selector or
multiplexer devices) are removed from the chain and
returned to free storage

- call RELEASE; if it is a nonshared device, RELEASE
will make the real device available for use by
other users. If the real device blocks were
created by DEDICATE, the blocks are released to
free storage, and the real multiplexer device is
marked available (undedicated).

- a message is sent to the user indicating that the
device is detached

- a message is sent to the operator if the DETACH has
freed a previously dedicated device

- an operator (class A) can detach a device from a
user by entering DETACH Rccu, where ccu is the real
device address. The device must not be in use to
do this.

DISABLE CDISA) - system operator only

DISABLE CCU CCU CCU
ALL

This command allows the operator to selectively or generally
inhibit access to the system from communication lines.

The following steps are taken:

- scan the MRDEBLOK chain for the selected Cor ALL)
terminal lines

- set the DISABLE bit in the MRDESTAT field of the
block

if the line is in use, return

if the line is not in use, issue an SIO and HIO of a
sense to kill any enables and force an interrupt

- CONSINT will handle the interrupt, detect the DISABLE
bit and "disable" the line

-141-

DIREcr (DIR) - class A and B

DIRECT <lock,unlock>

This command inhibits or allows access to the system
DIRECTORY. The following steps are taken:

-142-

- locate the directory lock byte and open file count

if the directory is in use, exit with a diagnostic

if the directory is not in use, set or reset the lock
byte

- issue diagnostics if the byte was not already locked
Clock) or unlocked (unlock)

(

DISCONNECT (DISC) - any user <class A,B,C,D)

DISCONN <xxx>

This command is used to release the user's terminal from his
virtual machine but allow the virtual machine to continue
running. The terminal is then free to log in as another
virtual machine or to reconnect at a later time .•

The following steps are taken:

- write a "disconnect• message to the user's terminal:
if the optional field is present, do not disable
the phone connection

set the DISCNBIT in the user's UTABLE CTIMERMOD
field)

release the •console functions• read buffer and
large save area

- write a "disconnect• message to the operator

- exit to run the virtual machine

-143-

DISPLAY (D) - any user (Class A,B,C,D)

DISPLAY CD) argl arg2 arg3 arg4 ••• argN

where the arguments Cargl ••• argN) specify
locationCs>, general-purpose registerCs>,
register(s}, control registerCs>, storage
PSW. The output goes to the user's terminal.

virtual memory
floating-point

keyCs), and/or

The following steps are taken:

1. An 18 double word output buff er acquired from Free
Storage.

2. The maximum number of characters to be displayed is set
based upon the user's terminal type--16 bytes for
teletype, 32 bytes for all other terminals.

3.

A BAL to subroutine DISWRITE to output any partially
full buffer and reinitialize the buffer.

The location and length of the next argument is
obtained by doing a BAL to SCANFLD. If there are no
more arguments the output buffer is returned to Free
Storage and return is made to READI in CFSMAIN.

I 4.
I

The first character of the argument is inspected for a
type code CP, G, Y, L, T, K, or x>. If none is found
an L is inserted in front of the argument. The code is
used to select the routine to branch to branch to, to
perform the unique processing for each type of display.

I
I
I

5. Each routine sets the default ending address and
address increment and does a BAL on register 7 to
subroutine DISINIT to determine the beginning and
ending addresses of the data to be displayed.

6. Each routine loads the next four bytes of data to be
displayed into register 3 and branches to DISCOMM.

DISCOMM does a BAL to subroutine DISHEAD to build the
header for the line if the buffer is empty .•

7. The data is then converted to hexadecimal and stored in
the next location in the output buffer.

8. If the buffer is full, a BAL is done to subroutine
DISWRITE to output the buffer.

9. The next address to be displayed is computed by adding
the increment address to the current address. If this
address is greater than the ending address, the next
argument is fetched (step 3). If this address is not
greater than the ending address, the n~xt four bytes
are displayed by returning on register 7 Cto step 6).

Subroutines:

-144-

DISINIT scans the argument for a hyphen or a blank. A
hyphen indicates that a range of addresses is to be
displayed. If the ending address is larger than the
default ending address, the default address is used to
end the display. If the beginning address is larger
than the ending address, a "BAD ARGUMENT XX" message is
sent to the user and the display terminated. If either
the beginning address or ending address is omitted the
default for that address is used in the display.

DISHEAD builds the header and trailer sections of each
output line. For a register display, the register
character identification is woved to the first three
byt€s of the output buffer and the register number is
stored in bytes 5 and 6. For a display of core storage
the next line to be displayed is compared to the last
line. If both lines are the same, the "SUPPRESSED
LINES" message is built in the buffer. If the lines
are not the same, the last line is outputed and the
current line is saved. For a display of core, the line
is also translated to EBCDIC and moved to the trailer
portion of the buffer. Before returning to the calling
routine, the buffer pointer is set to the 8th byte of
the buffer and the buffer count set to 7.

DISWRITE outputs the buffer either to the
terminal or virtual printer based upon a flag
buffer. After the I/O completes, the pcinter
back to the start of the buffer, the byte count
to zero, and the buffer is cleared with blanks.

user's
in the
is set
is set

-,145-

DRAIN (DR) - system operator only

DRAIN <xxx • . • nnn>

This command will cause the specified unit record devices to
stop processing at the completion of the currently active
spool file.

The following steps are taken:

-146-

- find the specified real multiplexer device block, or
locate each device in the chain if doing all
devices

- set the MRIDRAIN bit in the MRIFLAG field of the
MRDEBLOK

if the device is not busy, print a message to the
operator indicating the device is drained

- loop for all devices (readers, punches, printers> if
draining all

DUMP (iJU) - any user (class A,B,C,D)

DUMP argl arg2 ••• argN

where the arguments are the same as those for the DISPLAY
Console Function. The output goes to the first virtual
printer defined in the user's virtual machine.

The following steps are taken:

1. The flag is set in the output buffer to indicate that
the output is to go to the printer.

2. The remainder of the steps are the same as those for
DISPLAY.

-147-

D_U_M_P <D_U_M_P) - system operator only

DUMP

This command will issue SVC O to cause a system ABEND dump.

The following steps are taken:

- verify complete command typed (no abbreviation>

- issue SVC O

-148-

' \

ENABLE CEN) - system operator only

ENABLE CCU CCU CCU • • • •
ALL

This command allows the operator to selectively or generally
enable 2702 lines for communication with CP-67.

The following steps are taken:

- scan the MRDEBLOK (multiplexer real device block)
chain for the selected, or for every, 2702 line
type

- determine whether the device is already enabled or
otherwise in use; bypass if it is

- reset the DISABLE bit in the MRDFSTAT field

issue an SIO and HIO of a sense to force an
interrupt

CONSINT will receive the interrupt, issue the
required Cif any) SAD and ENABLE commands, and set
the ENABLED bit in MRDESTAT

- set the return address (MIRA) to IDENTIFY for the
termination of the ENABLE

-149-

EXTERNAL (EX) - any user (class A,B,C,D)

EXTERNAL

This command simulates the operation of the CPU interrupt
button to the virtual machine.

The following steps are taken:

-150-

set a pending external interrupt status in the
user's UTABLE (PENDING flags)

- exit to BEGIN2 to run the user's virtual machine

r(

IPL (I) - any user (class A,B,C,D)

IPL xxx

This command will cause the loading and execution of a
Control Program of the user's choice, where xxx is a virtual
device containing an IPLable Control Program or is a
presaved system name of a potentially shareable Control
Program or "operating system".

The following steps are taken:

- call RESINT to reset the virtual machine status;
that is, no interrupts pending

- call PAGOUT to clear the user's page table and the
necessary system CORETABLE entries

- set the swap table entry for the user's virtual page
number hex 20 (or the page at half virtual memory
size, whichever is the smaller) to the location on
the SYSRES volume of the IPL simulator page

- find the user's virtual device block if not IPLing
by system name

- set the virtual address of the IPL simulator in the
user's VPSW and exit to run the virtual machine
CIPL simulator>

- if IPLing by system name, bring in the SYSTEM module
which contains the table of system names and is
actually the module, SYSTEM

- search for the desired system name

- move into the user's swap table entries the DASD
locations of the saved system

- set a pointer to the shared page table, if any

- set the user's VPSW to the saved system execution
address, and exit to run the virtual machine

-151-

IPLSAVE CIPLS) - any user (class A,B,C,D)

IPLS xxx

This command will initiate execution of the CP-67 IPL
simulator in the user•s virtual memory space for a device
specification in xxx. xxx may be the name of a presaved
system.

The following steps are taken:

-152-

call RESINT to reset the virtual machine status

bypass the call to PAGOUT so user's pages remain
nonzeroed

- proceed as in IPL (after call to PAGOUT)

(

KILL CK) - system operator only

KILL userid

This command is used to force the logout of a particular
user.

The following steps are taken:

- locate the desired user by linking to FINDUSER

call the module ADSET Cin USEROFF) to force the
logout of the user

the user receives a message indicating a forced
logout by the operator

-153-

LINK (LI) - any user <class A,B,C,D)

LINK userid xxx yyy <W R> <CNOPASS) I PASS= password>

The link command will attach to the user a virtual DASD
block of the specified address Cyyy> from information
contained in the system directory for user "userid" and his
device, xxx. The user may request read or write status and
may be prompted for a password. The user may also link to
himself without a password. If LINKing to himself, the user
may specify* for "userid". LINK can also be used as a
virtual console function with a special (PASS= password)
form to provide the password with the command.

The following steps are taken:

- retrieve all the parameters from the input command

- issue a "protected" read for the password if not
linking to himself

- set up the parameters for, and then call LINK module

- on return, index on an error code to give a message

- the LINK module will grant the desired access and
set up the necessary device blocks

The access modes permitted by the LINK command are
summarized in 2. Note that when linking to one's own
userid, access allowed is the same as at LCGIN. WRMULT is
examined only when linking to oneself. The table assumes
that the password supplied is correct and the device is
shareable for the requested access mode.

-154-

Table 2. Summary of Access Allowed by LINK

Directory Access Existing Access Mode Established
Specification Requested Links Link to Link to

Oneself Another User id
RDONLY WRMULT
------------------------------------~~--------------------------

No No Read None Read Read
Read Read Read
Write None None

No No Write None Write Write
Read Read Read
Write None None

Yes No Read or Write None Read Read
Read Read Read
Write None None

No Yes Read Any Read

No Yes Write Any Write

Yes Yes Read or write Any Read

(

-155-

LOCK CLOC) - system operator only

LOCK userid xxx nnn

This command is used to lock specified pages of a user's
virtual machine in core so that they will not be paged.

The following steps are taken:

-156-

locate the desired userr who must be logged in to
CP-67

- starting with the specified page <xxx>r and looping
for a number of contiguous pages Cup to and
including page nnn>, call PAGTRAN if the page is
not in core to BRING. Calculate the CORTABLE entry
of the specified page and set the LOCKM bit in its
CORTABLE entry.

LOGIN CL) - any user (class A,B,C,D)

LOGIN userid

The LOGIN command is used to initiate a terminal session.
Although included here with console functions, the LOGIN
command is processed by the LOGON module, and technically is
not a CONSOL command.

When the connection between the terminal and the system is
established, a recognition message will be sent from the
system c•cP-67 Online•) indicating that the system is ready
to receive users. If the attention key C2741) or the break
key (1050) is depressed, the system will respond with a
carriage return, and it will unlock the keyboard waiting for
an attempted logon process.

The format is LOGIN userid where "userid" is the
eight-character or less external identification code
assigned to the user by the systems administrator. If the
userid is not found in the directory CU.DIRECT>, a message
is sent to the terminal and the terminal is reinitialized.
If the external identification is found in the directory, a
request is made for the user to enter his password:

ENTER PASSWORD:

and the printer is disabled in preparation for the receipt
of his password. In the case of a TTY terminal, each space
of the eight-character input area is preprinted with an H,

I *, and s to hide the password. For the the 1050, and for the
I 2741 not equipped with the print inhibit feature, the same
I password protect characters can be obtained by either of the
I following methods:

I issue an x after your userid:
I login 'userid' x
I or
I hit RETURN after the message ENTER PASSWORD is
I printed.

The password is checked against the directory, and if a
match is made, the user is informed of the message of the
day CLOGMSG), if any, and of any failures in allocating his
virtual machine. Finally, the time and day of login are
indicated at the terminal. If the password does not match
the one in the directory, an appropriate message is issued.
During the LOGIN procedure, CP-67 uses the 2702
read-with-time-out function to prevent unnecessary line
tie-up.

-157-

LOGOUT (LOG) - any user (class A,B,C,D)

LOGOUT <xxx>

where <xxx> is any nonblank character. xxx will prevent
disconnect of the line.

This command will cause the user's virtual machine to be
deleted from the CP-67 system.

The following steps are taken:

-158-

- free the CONSOL functions read buffer and large save
area

- call ADSET to process the machine logout

/

MSG (M)

MSG userid text-of-message any user <class A,B,C,D)

MSG ALL text-of-message class A and B
(class A or B)

This command is used to communicate with other users
currently logged in to CP-67. The users with operator
privileges (privilege class A or B) can send a message to
all users by specifying ALL for a userid.

The following steps are taken:

find the desired user; if the ID is "CP", find the
system operator

- format the message to identify the sending user

- call WRTCONS to send the text to the user's terminal

if ALL is specified, repeat the WRTCONS for all
users

send a message to the issuing user if the desired
user is not currently accepting messages

-159-

PURGE CP) - any user (class A,B,C,D)

PURGE RDR 1 PRT I PUN

This command will delete all the user's particular spool
files that are still awaiting processing.

The following steps are taken:

-160-

starting from the PRINTERS, PUNCHES, or READERS
chain, find the spool file blocks for the user

- call MRIDEL to delete the spool file block and to
release all the records used by this spool file

- call WRTCONS to give the user a confirmation message

QUERY CQ> - any user Cclass A,B,C,D), except for certain
functions

QUERY parameter

where parameter is either USERS, NAMES, PORT, userid,
LOGMSG, MAX, Q2, DEVICE, FILES, or TIME. The parameters can
be abbreviated to a unique value, for example, Q F will give
the file status.

The following steps are
parameter:

taken for processing each

USERS - prints the number of logged on and "dialed"
users

NAMES - prints the "userid" and 2702 line address of
all currently active terminals with virtual
machines. Terminals in the process of LOGIN
and virtual machines that are DISCONNECTED
are shown. The names are displayed four to a
line .•

"userid" if the user is logged in, a message of the
"NAMES" format is given; if not, "USER NOT ON
SYSTEM" is given

LOGMSG - the current LOGMSG is printed

MAX the current setting for maximum users is given
(class A and B)

Q2 the current size of the "nonconsole" queue <see

DEVICE

"DISPATCH" in Section 5) is given <class A
and B)

- the address and
device or of all
given (operator and
A and B)

status of the particular
DASO and TAPE devices is

subsystem operator class

PORTS - the address and status Cuserid associated with
line, or **FREE**) of the particular line or
of all lines, or of all "free" lines is given
as requested (class A and B)

FILES - the number of reader, printer, and punch spool
files awaiting processing for the user. For
the system operator, the status given is for
all users, that is, the total number of
files.

TIME - gives the connect, virtual and total time used
so far by the user

DUMP - prints address of the ABEND dump unit (class A
and B)

-161-

-162-

VIRTUAL - interrogates virtual machine configuration:
'all' as an option Cor null option> elicits
entire configuration; 'core' for core size,
only; 'ccu' for specified device.

READY {R) - any user (class A,B,C,D)

READY xxx

where xxx is a virtual device address.

The READY command will set a "device-end" interrupt status
in the virtual device block.

The following steps are taken:

- locate the user's virtual device block

set a "device-end" status in the block (VDEVSTAT>

set a "pending" interrupt status in the user•s
UTABLE

-163-

REPEAT (REP) - class A

REPEAT CCU <nn>

This command will cause the currently active output of the
specified device to be repeated nn times C 1 is default> •

The fo1lowing steps are taken:

-164-

- find the specified device block, MRDEBLOK

- if the device is not active, print a message to the
operator

- in the current spool fi1e block, set a bit and a
count to indicate that, upon reaching the end, the
output should be restarted

RESET (RES) - any user (class A,B,C,D)

RESET

This command performs a "system reset" of all the user's
virtual devices. All interrupts are cleared.

The following steps are taken:

- call the module RESIN!' to perform a reset on all
virtual devices

-165-

I

I
I

SET CSET) - any user (class A,B,C,D), except for certain
functions

SET parameter

where parameter is either WNG ON, WNG OFF, MSG ON, MSG OFF,
RUN ON, RUN OFF, CARDSAVE ON, CARDSAVE OFF, MAX=nn, LOGMSG,
or Q2=nn. The parameters cannot be abbreviated.

The following steps are taken to process each parameter:

WNG ON - reset the WNGBIT in the user's TIMERMOD
field of the UTABLE to allow receipt of
•warnings•, that is, priority messages

WNG OFF - set the WNGBIT in the user's UTABLE field
CTIMERMOD) to inhibit receiving "warnings"

MSG ON - reset the MSGBIT to receive messages

MSG OFF - set the MSGBIT to inhibit receiving messages

RUN ON - set the RUNON bit to allow the virtual
machine to keep running in •coNSOL function"
mode (after "ATTN9 interrupt)

RUN OFF - reset the RUNON
machine operation,
on "ATTN"

bit for "normal" virtual
that is, to stop running

CARDSAVE ON - set the MVIFSAV bit in the MVIFLAG field
of all the users' virtual card readers

CARDSAVE OFF - reset the MVIFSAV bit in all the users''
virtual card readers

TRACE ON - initiate tracing functions as specified by
the included parameters

TRACE OFF - terminate tracing functions

ADSTOP xxxxxx - stop execution at virtual instruction
address xxxxxx

ADSTOP OFF - terminate an address stop function.

The following functions are for class A and B only:

-166-

MAX=nn - for the system operator
for the maximum number
log on CO=no limit>

only; to set a value
of users allowed to

Q2=nn - for the system operator only; to
for the "non-CONSOL" dispatching
•oISPATCH" in Section 5)

set a value
queue <see

LOGMSG - to set or add to the system LOGMSG

LOGMSG NULL
message

to delete the entire existing log

LOGMSG n - to set or delete LOGMSG line n

DUMP xxx - to change dump unit and core area dumped

-167-

SHUTDOWN (SH) - system operator only

SHUTDOWN

This command will immediately terminate system operation
with no messages.

The following steps are taken:

-168-

- set the CPID word to SHUT to indicate shutdown

- go to the DSKDUMP routine at RESTART to force an IPL
of the system so that CHKP can save the machine
status

(

SLEEP (SL) - any user <class A,B,C,D)

SLEEP

This command places the terminal in a "prepared" status so
that it may receive messages.

The following steps are taken:

- GOTO the DISPATCHER leaving the user in CEWAIT mode
(nonrunnable)

- an ATTN will awaken the user

-169-

SPACE (SPA) - class A

SPACE CCU

This command will cause the current output on
<spool file) to be forced to single spacing.
avoid excessive forms skipping.

The following steps are taken:

the printer
This will

- find the specified printer real multiplexer device
block

-170-

set the MRISPACE bit in the MRIFLAG field Of
MRDEBLOK

(

SPOOL (SPO) - any user (class A,B,C,D)

SPOOL ccu <ON xxx, OFF>
SPOOL ccu <CONT, OFF>

This command is used to direct the output of a user's
virtual printer or punch to a specific real printer or
punch. The command can also specify "continuous" input for
virtual card readers.

The following steps are taken:

- find the user's virtual device block <ccu>

- find the system real device block <xxx>

- set the MVIFRMT bit in the MVIFLAG of the user's
MVDEBLOK

- store the address of the desired MRDEBLOK in the
MVPNTREL field of the MVDEBLOK

reset these bits if no real device is specified

for a virtual card reader, set the MVICONT bit in
the MVIFIAG field of the MVDEBLOK; or reset the bit
for no "CONT" specified

-171-

START (STA) - system operator only

START <xxx • • • yyy>

This command is used to start a previously drained unit
record device.

The following steps are , .. taken:

-172'"'."

- the same logic of DRAIN is followed to locate the
desired device or devices

the MRIDRAIN list is reset in the device block

- a dummy •device end• CSW is created and a call is
made to MRIOEXEC• this will cause any closed spool
file blocks to commence output on the device

(

STCP (STCP) - class A and B

STCP arg1 arg2 ••• argN

where the arguments (argl ••• argN) are a real memory location
and the data to be stored.

The following steps are taken:

1. The steps
data is
memory.

are the same as
stored in real

those for STORE
memory instead

except the
of virtual

-173-

I
I
I
I
I
I
I
I

STORE CST) - any user Cc1ass A,B,C,D)

STORE argl arg2 ••• argN

where the arguments Carg1 ••• argN) specify a virtual memory
1ocation, a genera1-purpose register, a floating-point
register, a control register, and/or PSW and the data to be
stored.

The f ol1owing steps are taken:

1. Fetch the next argument and branch to the routine to
handle that particu1ar store function by doing a BAL to
subroutine STOSCAN.

2. Each store routine sets the
a BAL to subroutine STOADDR
address to binary.

increment address and does
to convert the beginning

3. A BAL to STOSCAN is done to obtain the next argument.

4. If the current address is greater than the maximum
allowable for the type, a "BAD ARGUMENT XX" message is
sent to the user and the store function terminated.

5. The argument is converted to binary and stored at the
current address.

6. The increment address is added to the current address
to obtain the next address, and the store continues by
fetching the next argument Cstep 3).

Subroutines:

-174-

STOSCAN does a BAL to SCANFLD to obtain the location
and length of the next argument. The first character of
the argument is inspected for a type code CP, G, Y, L,
or x>. The code is used to se1ect the routine to branch
to, to perform the unique processing for each type of
store. If no valid code is found, the argument is
assumed to be data and return is made to the calling
routine to continue the store.

STOADDR converts the beginning address to binary, saves
it, and returns to the caller.

(

TERMINATE (TERM) - system operator only

TERM xxx

where xxx is the real address of a unit record device whose
output it is desired to terminate.

The following steps are taken:

- find the MRDEBLOK for the specified device

set the TERMINAT bit in the MRIFLAG field of
MRDEBLOK

-175-

UNLOCK (UN) - system operator only

UNLOCK userid xxx nnn

This command will unlock a previously LOeKed page.

The following steps are taken:

-176-

the same logical steps as in LOCK, but turn off the
LOCKM bit in the core table entry it the §peqifiE}d
page is in core

(

WNG. CW> - class A and B

WNG userid text-of-message
ALL

The "warning" function operates the same as MSG except that
a priority call is made.

The following steps are taken:

find the
specified,
users:

specified
do the

•userid",
following

or if
for all

"ALL" is
logged~on

- format the message to identify the originator

- call PRIORITY to send the message to the user
immediately

send a message to the originator if a user is not
receiving warnings

-177-

XFER CX) - any user Cclass A,B,C,D)

XFER CCU TO userid
XFER CCU OFF

This command is used to transfer a punch spooled file to the
reader input spool files of the specified user.

The following steps are taken:

-178-

- find the desired punch device Cccu)

call USERLKUP to search the CP-67 directory to
determine that the •userid" is valid

- move •userid" to the MVIXUSER field in the MVDEBLOK

- set the MVIXFER bit in the MVIFLAG of the MVDEBLOK

- for the OFF option of the XFER command, reset the
MVIXFER bit and blank the MVIXUSER field

-~. _/

SECTION 3: PROGRAMMING CONVENTIONS

To allow for the orderly maintenance and growth of the
CP-67 operating system, the programming conventions
described should be followed by anyone working with CP-67
programs.

MAINTENANCE

The CP-67 system is maintained using the Cambridge
Monitor system. A set of catalogued procedures <EXEC files)
are distributed with the system Csee the CP-67 Installation
Guide for their descriptions).

ASSEMBLY DECK FORMATS

All decks contain a TITLE card as the physically first
card with a unique label field and a suitable title in the
operand field.

The primary entry point of a routine is indicated with
a START card, which is the second card of the assembly deck
in the absence of macro definitions or comments <required by
the loader).

Unless required otherwise, all COPY statements are
located at the end of the deck.

The END card must not have any operands. The loader
will accept only one of such type, and this must be the one
in SAVECP.

Information used by more than one routine will be
contained in the file CPMACS MACLIB. This file will contain
the macro definitions, equivalence packages, and control
block definitions CDSECTs). All parameters and flag bits
should be assigned symbolic names and defined in the
appropriate equivalence package.

EQUIVALENCE PACKAGES AND CONTROL BLOCK DEFINITIONS

These packages will be included in an assembly by means
of the COPY pseudo-operation.

CPFDEF defines the CPFILE control blocks.

DEVTYPES defines the CP-67 device type codes.
A printout of DEVTYPES follows this list.

EQU67 defines references to physical lower core,

-179-

IOBLOCKS

OPl'IONS

LOCAL

UDIRECT

UT ABLE

channel command words, CALL parameters,
CPEXBLOK definition, etc. A printout Of EQU67
follows this list.

defines the input-output control blocks
and IOTASK block.

contains assembly option switches and
macro definitions.

contains assembly option with settings for
the particular installation.

defines the directory blocks MDENT and UFDENT.

defines the UTABLE and EXTUTAB blocks and
included flag bits.

Obtain a listing of the appropriate ASP360 or COPY file from
the CP-67 distributed system for a detailed and accurate
description of the contents of each file.

-180-

CP-67 DEVICE CODES

**
*

I·

*
*
*

CP-67 DEVICE TYPE CODES *
*

**
* TYP1052 EQU
TYP1050 EQU
TYP2250T EQU
'l'YP2260T EQU
'rYP2741T EQU
TY'P 1052T EQU
TYP2703T EQU
TYP2702T EQU
T'lP2701T EQU
T :!'PTT3 ST EQU
TYPTTY35 EQU
TYPTIMER EQU
TYP1403 EQU
T'.!P2540P EQU
TYP2540R EQU
TYP2671 EQU
TYPRMPRT EQU
TYPRMPUN EQU
TYPM20 EQU
TYP1800 EQU
TYP2311 EQU
TYP2314 EQU
TYP2302 EQU
TYP2321 EQU
TYP2301 EQU
TYP2303 EQU
TYP2250 EQU
TYP2260 EQU
TYP2400 EQU
TYP2404 EQU
TYP2402 EQU
TYP2403 EQU
TYP7340 EQU
TYP2701 EQU
TYP2701L EQU
TYP2702L EQU
TYP2703L EQU
TYP2700L EQU
TYP2702D EQU

*

0
4
8
12
16
20
24
24
24
28
TYPTT35T
44
48
52
60
64
X'44'
X'48'
96
100
128
132
136
140
144
148
180
184
192
192
192
192
204
208
208
208
208
208
212

MPX/2702 2741
1052

MDL 35 TELETYPE

SIMULATED CHRONOLOG

REMarE PRINTER READER
REMOTE PUNCH READER

GENERAL MAG TAPE

L IS A DEDICATED LINE

D IS A DIAL CONNECTED LINE

**
*

:-181-

CP-67 EQUATE PACKAGE - EQU67

* * * CP-67 EQUIVALENCE AND MACHINE DEFINITION PACKAGE *
* *

*
*
* PROBMODE
WAIT
MCHEK
ASCII

*
*
* MODE32
TRANMODE
I OMA SK
EXTMASK

*
*
*
ATTN
SM
CUE
BUSY
CE
DE
UC
UE

* PCI
WLR
PRGC
PRTC

*
*
* CD
cc
SILI
SKIP
PCIF

*
*
* RCXIS
RCSUDO.
RCUTIC
RCIO
RCGEN
RCDATA
RC02

-182-

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

BITS IN STANDARD PROGRAM STATUS WORD

X' 01''
X' 02 I
X'04'
X'08'

PROBLEM MODE BIT.
WAIT BIT.
MACHINE CHECK.
ASCII BIT.

BIT ASSIGNMENTS IN EXTENDED PROGRAM STATUS WORD

X'08'
X'04'
X'02'
X'Ol'

24/32 ADDRESSING MODE BIT.
DYNAMIC TRANSLATION MODE BIT.
OVERALL I/O MASK BIT.
OVERALL EXTERNAL INTERRUPTION MASK BIT.

DEFINED BITS IN CHANNEL STATUS WORD

X'80'
X'40'
X'20'
X'lO'
X'08'

. XI 04 I
X' 02''
X'Ol'

X'80'
X'40'
X'20'
X'lO'

FLAGS

X'80'
X'40'
X'20'
X'lO'
X'' 08''

DEFINED

ATTENTION BIT.
STATUS MODIFIER BIT.
CONTROL UNIT END BIT.
BUSY BIT.
CHANNEL END BIT.
DEVICE END BIT.
UNIT CHECK BIT •
UNIT EXCEPTION BIT.

PROGRAM-CONTROLLED INTERRUPT
WRONG-LENGTH-RECORD BIT.
CHANNEL PROGRAM CHECK
CHANNEL PROTECTION CHECK

IN CHANNEL COMMAND WORDS

CHAIN DATA FLAG.
CHAIN COMMAND FLAG.

BIT.

SUPPRESS INCORREcr LENGTH INDICATOR FLAG.
SUPPRESS TRANSFER OF INFORMATION.
PROGRAM-CONI'ROLLED-INTERRUPT FLAG.

FLAGS DEFINED IN FIFTH BYTE OF CCW TO AID CCW TRANSLATION

EQU X'U 80'' CHECK ISAM INDICATOR
EQU X' 40' PSEUDO 2311 INDICATOR
EQU x•20• UNTRANSLATED TIC
EQU X'lO' I/O CCW
EQU X'08' CP GENERATED ccw
EQU X'04' CP GENERATED CHAIN DATA
EQU X' 02' RESERVED FOR FUTURE USE

(

RC01

*
EQU X'Ol' RESERVED FOR FUTURE USE

*
*

DEFINED LOCATIONS IN MACHINE (EXTENDED AND STANDARD)

IPLPSW
IPLCCW
INTCODES
EXOPSW
SVCOPSW
PROP SW
MCOPSW
IOOPSW
csw
CAW
TIMER
EXNPSW
SVCNPSW
PRNPSW
MCNPSW
IONPSW
SCANOUT
CHANLOG

*
*
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

RUNUSER EQU
CPSTATUS EQU

*
* CPIDLE EQU
VMDONE EQU
*IOMASK EQU

*
* MONTHS
DAYS
YEARS
HOURS
MINUTES
SECONDS

* START IM
BIN TIME
DISPSW

*

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

0
8
14
24
32
40
48
56
64
72
80
88
96
104
112
120
128
304

INITIAL PROGRAM LOAD PSW.
INITIAL PROGRAM LOAD CCWS.
INI'ERRUPI'ION CODES (EXTENDED)
EXTERNAL INTERRUPT OLD PSW.
SUPERVISOR CALL INTERRUPT OLD PSW.
PROGRAM INTERRUPT OLD PSW.
MACHINE CHECK INTERRUPT OLD PSW.
INPUT-OUTPUT INI'ERRUPT OLD PSW.
CHANNEL STATUS WORD.
CHANNEL ADDRESS WORD.
MACHINE INTERVAL TIMER.
EXTERNAL INTERRUPT NEW PSW.
SUPERVISOR CALL INTERRUPT NEW PSW.
PROGRAM INTERRUPT NEW PSW.
MACHINE CHECK INTERRUPT NEW PSW.
INPUT-OUTPUT INTERRUPT NEW PSW.
DIAGNOSTIC SCAN-OUT SECTION.
CHANNEL LOGOUT AREA (2860,2870)

STORAGE LOCATIONS USED BY THE CONTROL PROGRAM

X'160'
RUNUSER+4

BITS DEFINED IN CPSTATUS

x' 80''
X'40'
X'02'

CPSTATUS+1
MONTHS+l
DAYS+1
YEARS+l
HOURS+l
MINUTES+l

HOURS+4
STARTIM+8
BINTIME+4

ON •• FOR I~o ENABLED PROCESSOR

NOTE: MUST BE DOUBLE WORD BOUNDARY

* CP POINTERS FOR CPINIT, CHKPT AND BUZZARD

* ASYSWRM
ASYSINF
ASYSCNSL
CPID
ARMXST
ARECBUF
AZ VOL
APRINI'
AP UNCH
AREADERS
AMREAL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DISPSW+8
ASYSWRM+4
ASYSINF+4
ASYSCNSL+4
CPID+4
ARMXST+4
ARECBUF+4
AZVOL+4
APRINT+4
APUNCH+4
AREADERS+4

WARM START CYL ADDRESS
LOGMSG START
1052 CONSOL ADDRESS LOC
CP-67 IDENTIFIER
REAL MPX CHAIN START
SPOOL BUFFER START
ZERO VOLUME DEVICE
PRINTER FILE CHAIN
PUNCH FILE CHAIN
READER FILE CHAIN
ACCOUNTING CARD CHAIN

-183-

ARCHSTRT EQU

* CPUTAB
CPUOTH
CPU ID
CPUSCR

*

EQU
EQU
EQU
EQU

TEMPSAVE EQU

* BALRSAVE EQU

* DISPATWK EQU

* RU NI NT IM
DSCRO
KALG
LOCK OU NT
MAXLOCK

*
*

EQU
EQU
EQU
EQU
EQU

.AMREAL+4

ARCHSTRT+4
CPUTAB+23
CPUTAB+27
CPUTAB+31

CPUTAB+48

TEMPSAVE+64

BALRSAVE+80

DISPATWK+32
RUNINTIM+4
DSCR0+4
KALG+4
LOCKOUNT+2

REAL SEL CHAN START

TABLE OF CPU'S AND PREFIXED PAGE 0
CPU IDS OF OTHERS
CPU ID WITHOUT EXTRANEOUS BITS
SCRATCH BYTE FOR CPUL/F

TEMPORARY SAVE FOR INTERRUPT HANDLERS

FAST LINKAGE SAVE •• 80 BYTES

WORK AREA FOR DISPATCH (8 WORDS)

1 SECOND INTERVAL BINARY TIMER
CURRENT SEGMENT TABLE ORIGIN
PAGING ACTIVITY CONTROL
COUNT OF CURRENTLY LOCKED PAGES
MAX. VALUE OBTAINED BY LOCKOUNT

***** PSA ASSEMBLED DATA STARTS AT X'340'.

*
***** CURRENT DEFINITION OF STAT COUNTERS STARTS AT X'' 350''.

*
*
* CPTIME
PROBTIME
WAITTIME

* OVERHEAD
WAIT IDLE
WTPAGE
WTUSR
WTUSRA

*
*
*
* KPGEX
PG READ
PGSWAP
QCOUNT

*
*

TIMING MEASUREMENTS:
EQU X'350'
EQU CPTIME+4
EQU PROBTIME+4

EQU
EQU
EQU
EQU
EQU

WAITTIME+4
OVERHEAD+4
WAITIDLE+4
WTPAGE+4
WTUSR+4

CPU EVENT COUNTERS:

EQU
EQU
EQU
EQU

WTUSRA+4
KPGEX+4
PGREAD+4
PGSWAP+4

CPU TIME IN SUPERVISOR STATE
CPU TIME IN PROBLEM STATE
CPU TIME IN WAIT STATE

SUPVR TIME NOT CHARGED TO USERS
WAIT TIME FROM PERIODS GTE 1/4 SEC.
TIME SPENI' WAITING FOR A PAGE
TIME SPENT WAITING WITH N-IN-Q RUNNABLE USER
WTUSR * NUMBER OF NON-IN-Q RUNNABLE USERS

COUNT OF PAGING EXCEPTIONS
PAGES READ IN
PAGE SWAPS
COUNTER: USER IN Q LOST PAGE

* INSTALLATION USER (4 WORDS):

* INSTWRDl EQU
INSTWRD2 EQU
INSTWRD3 EQU
INSTWRD4 EQU

*
*

QCOUNT+4
INSTWRD1+4
INSTWRD2+4
INSTWRD3+4

* USER EVENT COUNTERS:

* STATUSER EQU INSTWRD4+4 COUNTERS FOR USER INSTR. STREAM EVENTS.

* *

-184-

(

*
*

DEFINITION OF STATISTICS COUNTERS IN CP CORE -­
COUNTERS OF USER EVENTS.

*
*

* * ***
STATINST EQU STATUSER
* COUNT OF INTERRUPTS
STATUEXT EQU STATINST
STATUSVC EQU STATUEXT+4
STATUPGM EQU STATUSVC+4
STATUIOI EQU STATUPGM+4

*

COUNT
COUNT
COUNT
COUNT

OF USER
OF USER
OF USER
OF USER

EXT
SVC
PGM
I/O

INTERRUPTS
INTERRUPTS
INTERRUPTS
INTERRUPTS

REFLECTED
REFLECTED
REFLECTED
REFLECTED

* COUNT OF PRIVILEGED INSTRUCTIONS
STATSSK EQU
STATISK EQU
STATSSM EQU
STATLPSW EQU
STATDIAG EQU
STATDDSK EQU
STATS IO EQU
STATTIO EQU
STATHIO EQU
STATTCH EQU

* * PRIVILEGED
STATWRD EQU
STATSTMC EQU
STATLAA EQU
STATLMC EQU

*

STATUIOI +lJ
STATSSK+4
STATISK+4
STATSSM+4
STATLPSW+4
STATDIAG+4
STATDDSK+4
STATSI0+4
STATTI0+4
STATHI0+4

INSTRUCI'IONS
STATTCH+4
STA'l'WRD+ 4
STATSTMC+4
STATLRA+IJ

COUNT OF USER I SSK' INSTRUCTIONS
COUNT OF USER 'ISK' INSTRUCTIONS
COUNT OF USER 'SSM' INSTRUCTIONS
COUNT OF USER I LPSW' INSTRUCTIONS
COUNT OF USER 'DIAGNOSE' INSTRUCTIONS
COUNT OF DIAGNOSE DISK IO INSTRUCTIONS
COUNT OF USER 'SIO' INSTRUCTIONS
COUNT OF USER 'TIO' INSTRUCTIONS
COUNT OF USER 'HIO' INSTRUCTIONS
COUNT OF USER 'TCH' INSTRUCTIONS

FOR VIRTUAL 67
COUNT OF 67 USER
COUNT OF 67 USER
COUNT OF 67 USER
COUNT OF 67 USER

0 WRD' INSTRUCTIONS
'STMC' INSTRUCTIONS
'LRA' INSTRUCTIONS
'LMC' INSTRUCTIONS

* MODULE COUNTERS
STATDSP EQU STATLMC+4 COUNT OF CALLS TO CKUSR IN DISPATCH

*
*
* BRING
CHANGED
USED
DEFER
LOCK

* SHARED
TRANSIT
RECOMP

*
*TRANSIT
LOCK ON
LOCK CM

*
*
*
EDIT
UCASE
NOR ET
DFRET
NO AUTO
OPERA'I'OR
ALARM

*

EQU
EQU
EQU
EQU
EQU
BITS
EQU
EQU
EQU
BITS
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

BITS DEFINED FOR CORE MANAGEMENT ROUTINES

X'Ol'
X'02'
X'04'
X'08'
X'10'

SE'I' IN SWPTABLE

BRING REQUESTED PAGE IN.
STORAGE KEY r PAGE CHANGED
STORAGE KEYr PAGE REFERENCED
RETURN CONTROL ONLY AFrER PAGE IS
S~~ LOCK BIT ON REQUESTED PAGE.
ENI' RIES

IN CORE

X'lO'
X'80'

PAGE IS SHARABLEr SET IN SWPTABLE
TRANSIT BIT FOR CORE HANDLER ROUTINES

X'40' RECOMPUTE DASD ADDRESS IN SWPTABLE
SET CORTABLE ENTRIES
X'80'
X'40'
X' 20'

SAME AS SWAPTABLE
NON-ZERO LOCK COUNT FOR THIS PAGE
LOCK COMMAND SET FOR THIS PAGE

PARAMETER VALUES PROVIDED TO 'RDCONS' OR 'WRTCONS'

1
2
4
8
16
32
64

PERFORM LINE EDITING FUNCTION.
TRANSLATE LOWER TO UPPER CASE.
DON'T RETURN WHEN THROUGH.
PERFORM 'FRET' OF SPECIFIED AREA.
NO AUTOMATIC-CARRIAGE-RETURN WANTED
MESSAGE TO/FROM OPERATOR
SEND ALARM TO USER TERMINAL

-185-

* REGISTER EQUIVALENCES

*
RO
Rl
R2
R3
R4
RS
R6
R7
R8
R9
RlO
Rl 1.
R12
R13
R14
R15

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CPE.kBLOK DSECT

0
l
2
3
4
5
6
7
8
9
10
11
12
13
14
15

CPEXNEXT DS lF
CPBXADD DS lF
CPEXRLGS DS 16F
CPEXtViISC DS 2F

*
CPEXSIZ EQU (*-CPEXBLOK)/8

*

CONTROL PROGRAM EXECUTION REQUEST BLOCK
POINTER TO NEXT REQUEST.
ADDRESS TO RECEIVE CONTROL.
REGISTERS TO RESTORE (EX. 15)
UNASSIGNED.

*

*

-186-

SUBROUTINE CONVENTIONS AND REGISTER USAGE

Except for certain isolated instances, the following
conventions relative to subroutine calling sequences and
addressability apply throughout CP-67.

Addressability is via register 12. subroutines may
assume that register 12 is properly loaded at the time the
subroutine is entered.

The first instruction of a normally called subroutine
should be the ENTER macro described in the section on macro
usage. The return point of the subroutine should use the
EXIT macro.

Register 13 points to a valid save area usable by the
routine being called. It is 24 words in length. The first
three words are reserved and used by the call linkage
handler to save return information. Word 1 is the return
address, word 2 is the caller's R12 (return base>, and word
3 is the caller's R13 {return save area>. The remainder of
the space is used as the called routine sees fit. The ENTER
and EXIT macros will store the saved registers into the area
beginning at the fourth word of the save area. The called
subroutine may not change the contents of register 12 or 13.
Any registers that are changed must be restored, with the
exception of registers 14 and 15, which may be considered
destructible.

Subroutines expecting to return to the calling program
should be called with the CALL macro. Subroutines which are
called with the CALL macro and which will not return via the
EXIT macro should perform an SVC 16 to return the currently
assigned save area back to usable storage. This type of code
should be avoided, if possible. It is used by second level
interrupt handlers to bypass returning to the first level
handler under specific circumstances.

Unconditional transfers to routines which expect no
return should be made via the GOTO macro. The routine thus
called has access to the same save area which the calling
routine used.

Parameter transfers to subroutines will generally be
via general purpose registers to enhance the ease of coding
in a reentrant fashion. The specific calling sequences
depend upon the subroutine being called, with the exception
that if the PARM= parameter of the CALL macro is used,
register 2 will be modif~ed within the CALL macro.

Register 11 contains the UTABLE address for the user
being serviced.

-187-

SYSTEM MACRO USAGE

The following
explained:

macros are defined and their usage

CALL establishes subroutine linkages via SVC
interrupt

CPUF, CPUL - CPU lock protect for multiprocessing <not
now functioning>

ENTER, EXIT - save and restore registers at entry and
exit of system routines

GOTO - same parameters as CALL, but no return from
called routine

TRANS - facilitates translation of virtual to physical
memory address, with necessary paging

BAS, BASR, LMC, STMC, and LRA

Macros BAS, BASR, LMC, STMC, and LRA are merely defined
to be equivalent to the machine instructions to be
assembled. These macros are provided in the absence of the
corresponding mnemonics of the F-level OS/360 Assembler so
as to include them in its operation dictionary.

-188-

(

CALL

Subroutine linkages in the Control Program <with the
exception of the call to SVCINIT in CPINIT) are made via the
CALL macro, which generates the appropriate call (via SVC
interrupt) to the supervisor, enabling automatic generation
and stacking of save areas, etc. The format is:

llabell CALL <subr,gpr>,IEXTERNALl,IPARM=(arg1+arg2+ •.• >I

where "label" refers to the first generated machine
instruction in the expansion; "subr" refers to a subroutine
name <either defined internally or externally>, or "gpr"
refers to a general purpose register number <self-defining,
not "R1"). "EXTERNAL" as an optional argument indicates that
a V-type address constant is to be generated. The optional
"PARM" argument, if included, provides for the loading of
GPR 2 with the parameters indicated (specified normally as
EQU values). If all parameters are to be turned off, PARM=O
must be specified; otherwise, GPR2 will not be set in the
macro expansion.

-189-

ENTER and EXIT

The ENTER and EXIT macros are placed at the entry and
exit points of system routines within the control Program.
They perform the function of saving and restoring registers
and exiting to the calling program. Their format is:

llabell ENTER l<regl l.reg21>1
EXIT

With the standard calling sequence under the CALL macro
description above. provision is made for the standard supply
of save areas in an efficient manner. The ENTER and EXIT
macros enable easy use of this facility.

If no arguments are provided. no saving of registers
takes place at entry to the routine. If a single register
is stated. it alone is saved in the provided save area at
12C13). If a range is provided. these registers are saved
beginning at 12(13). The first three words of the save area
are never to be modified except by the SVCINT routine.
Sufficient space is provided for the saving of all
registers. Care must be taken that the registers are
restored Cvia the EXIT macro) in the same manner as they
were stored in the ENTER instruction. The parameters for
matching ENTER and EXIT pairs should be identical.

-190-

Garo

'Ihe format of the GO'I'O macro is:

I label I GOTO <subr ,gpr> I,, PARM= Cargl +arg2+arg3+ .•. > I

The parameters are identical to those of the CALL macro
<see "CALL"}. The difference is that the routine doing the
Garo will not expect a return from the called routine.
Therefore, no provision is made for the generation of a save
area address. The called subprogram may make use of the
same save area as the calling program.

-191-

TRANS

The TRANS macro is used whenever a virtual address is
to be translated to a physical memory address, and the page,
if not core resident, may be required to be paged in. Its
format is as follows:

llabell TRANS rgpr,vgprl,OPT=CaC1),aC2>, ••• >1

where •rgpr• is the register to receive the translated
address; •vgpr• is the register containing the virtual
address. OPT is an optional parameter which has as
subparameters those options provided to the PAGTRANS routine
via the CALL macro. These options will be passed in the
event a call to PAGTRANS is required. They are discussed
below.

Note: •rgpr• and •vgpr• cannot be the same register.

If LOCK is specified, PAGTRANS is called as it would be
normally. If BRING is specified, the LRA instruction is
used to determine whether the page is currently resident.
If it is not, PAGTRANS is called as it would be normally;
otherwise the call is bypassed. If neither is specified,
the LRA alone is used and the condition code set. Note that
if a call to PAGTRANS is required, registers 1,2, and 15
will not be preserved over the macro. If DEFER is
specified, control will not be returned until the page is in
core. If USED is specified, the used bit will be set for the
specified page. If CHANGE is specified, the changed bit
will be set for the specified page.

The following conditional branch macros are defined:

-192-

BCN)PECR)
B(N)RE(R)
B (N) SE CR)

Branch on Cno) page exception CRX, RR>;
Branch on Cno) reloc. exception CRX, RR>:
Branch on Cno) segment exception CRX, RR).

SECTION 4: TABLES AND CONTROL BLOCK FORMATS

This section contains illustrations representing
the formats of blocks and tables used by the control
program. A brief description of the contents and use
of the tables is also given. Further details may be
found in the preceding and following sections. <In the
list below, •1/• means one per user, device, etc.>

The following control blocks are described:

ALLOCTBL - index to DASO space available to CP for
paging and spooling

CCWPKG - one for each request for a CP-67 terminal read
or write

CORTABLE eight-byte entry/page of real memory,
indicating resident virtual page, user, and
real page lock condition

CPEXBLOK - request for some CP-67 program execution
that has been previously def erred pending an
event

CPFDENT - CPFILE. system dictionary entry containing
file name and location of first record

CPFFDBLK - a file descriptor block/open file in CP File
System routines (CPFILE), describing
read/write status, etc.

CPFRECRD record format of CPFILE records <user
directory files,machine descriptor files,
system directory) on systems tracks

EXTUTAB one for each virtual 360/67. It is an
extension of the U'I'ABLE containing the
information peculiar to a virtual 67a

IOTASK - 1/active user selector channel task and each
CF-initiated I/O operation

LOGCDATA - describes the format of the error records
saved by CP-67 for channel checks

LOGIDATA - describes the format of the error records
saved by CP-67 for I/O errors

LOGNDATA - describes the format of the error records
saved by CP-67 for machine checks

~.lJENT - machine description entry created by DIRECT to
describe a device in a user's virtual machine

MRDEBLOK - 1/real multiplexer device defined in the
system

MRIBUFF - buff er for spooled packed data when handled
for real equipment; chained from MTASK in
MR.DEB LOK

MVDEBLOK - 1/virtual multiplexer device attached to a
user's UTABLE

MVIBUFF - buffer for spooled packed data; chained from
MVIOB in MVDEBLOK

PAGTABLE - describes status and main storage address
of a virtual memory page

RHEADR, RCCWLIST - 1/user CCW list describing location

-193-

I
I
I

and number, etc., of CCW's in user list
RCHBLOK - 1/real channel, describing pending tasks,

channel address and status, attached control
units, etc.

RCUBLOK - 1/real control unit, describing channel and
devices attached as well as control unit
status, address, etc. " /

RDCONPKG - one for each request for a CP-67 terminal

RDEVBLOK

RECBUF

SAVEAREA

SEGTABLE
SFBLOK -

SWPTABLE

TREXT -

UFDENT

UTABLE -

read; contains return status information
1/any real device, describing address,

device type, control unit, task block., etc.
1/cylinder, describing records available/in
use, cylinder number., etc.

- format of the active and inactive save areas
used in subroutine linkage

- 1/user, describing user page table entries
one for each •closed" file for spooled input
and output

- 1 entry/PAGTABLE entry., describing page swap
area addresses

built as a UTABLE extension when user invokes
tracing functions

user file directory user information
CID,password,etc.) and user system access
information (privilege class., priority code)

1/user; primary control block onto which other
user blocks are strung., reflecting complete
virtual machine status

VCHBLOK - 1/virtual channel for each user., describing
channel status., address, attached control
units, etc.

VCUBLOK - 1/virtual control unit describing control
unit status, address., attached devices., etc.

VDEVBLOK - 1/virtual device for each user., describing
device address, status., corresponding real
device control block., etc.

-194-

(

ALLOC

There is an allocation block for each volume which is
"owned" by the system for uses such as paging and spooling.
The module TMPSPACE scans down a list depending on device
type (T2311 for 2311 disks, T2301 for 2301 drums, etc.>.
The format of the allocation table block in free storage is
as follows:

0 2 4
+--------+-----~--+

O I Pointer to next I
+--------+--------+

4 f Pntr. to RDEVBLOKI
+--------+--------+

8
Allocation

Data

256 Bytes - 2301
200 Bytes - 2303
202 Bytes - 2311,2314

+----+---+--------+
I OF I +----+

where:

The first word is a pointer to the next block in the
allocation queue for this type of device.

The second word is a pointer to the real device block
on which this volume is mounted.

The allocation data for the drum consists of one bit
for every page on the drum indicating whether the page
is available for system paging (bit contains a 0) or in
use (bit contains 1). The allocation tables are
preformatted so that only those pages on a given drum
track which are available for paging are initialized to
zero. For the 2301 drum, one byte represents one drum
track. Since five pages may fit on even track address
and four on odd track address, the allocation table is
initialized to X'270F070F ••• 070FFF so that unavailable
pages or illegal addresses are not selected as swapping
space.

The halfword at location 212 contains the
allocated records on this device and the
located at bytes 220-256 contain pointers to
IO task which references the corresponding
through 9 on the drum.

count of
9 words

the first
records 1

For the 2303 drum, the mask is set to
X'2FOFOFOF •••• OFOFFF'. The value FF indicates the end
of the allocation table.

The allocation data for the 2311 and 2314 disks

-195-

-196-

consists of one byte per cylinder indicating
the cylinder is available for temporary use.
cylinder is available, the byte contains OO: if
contains 08. The OF indicates the end
allocation table for this device.

whether
If the

not, it
of the

For 2311 and 2314, any cylinder on an "owned" volume
can be allocated for "temp" use (paging or spooling>:
•perm" Cnot available>: •tdsk" (for T-disk allocation>:
or •drct• Cfor directory. use>. Only those cylinders
marked •temp• cx•oo•> are available for spooling or
paging.

/ '

(

CCWPKG

There is one CCWPKG for
or write) generated by CP-67
1052 I/O). The CCWPKG's are
at CIOREQ.

each terminal I/O request <read
or the virtual machine (virtual
chained from each user's UTABLE

where:

0 2 4 6 8
O+--------+--------+-~-----•+--------+

I NEXTCCWP IJSPARE INUMWDCCWI
8+--------+--------+--------+--------+

I PNTRDCON I JDEVICE I
16+--------+--------+--------+--------+

I CCWLIST I

I
I +--------+--------+--------+--------+

NEXTCCWP is a pointer to the next CCWPKG or zero
if it is the last.

JSPARE are flag bytes for processing; the second
byte contains the parameters Chits in R2 24-31) of
the call to RDCONS or WRTCONS for the I/O. for
example. NORET=X'04'• OPERATOR=X'20'.

NUMWDCCW is the size of this package in
doublewords.

PNTRDCON is a pointer (zero if none) to a
RDCONPKG which becomes a CPEXBLOK for CPSTACK upon
completion of this I/O operation.

JOE VICE is the terminal address.

CCWLIST is one or more (depending upon terminal
type and operation) CCW's to perform the I/O.

-197-

CORT ABLE

The CORTABLE contains a 16-byte entry for each 4096
bytes of real memory. It is created by CPINIT at system
initialization time, depending on the size of real memory.
The relative position of the entry indicates the core
address of the page described. Its format is as follows:

0 2 4

+--------+--------+--------+--------+
0 Pointer to SWPTABLE Entry I

+--------+--------+--------+---~----+
4 !Lock MSKI UTABLE Pointer I

+--------+--------+--------+--------+
8 I Unused

+--------+--------+--------+--------+
c I Unused Lock CNT

+--------+--------+--------+--------+
where:

The first four bytes contain a pointer to the
corresponding SWPTABLE entry for the virtual page which
currently occupies this real page (or zero if not in
use).

The Lock MSK is a one-byte availability indicator. The
bit X'80' indicates that the page is in transit. The
bit X'40' indicates a nonzero Lock CNI'. The bit X'20'
indicates that the lock command has been issued for
this page.

The UTABLE Pointer points to the user whose page is in
that core space. A value of X'OOFFFFFF' indicates that
the page is available. If the UTABLE Pointer contains
CP, that core space contains the CP nucleus; if FREE,
it is for CP's free storage.

The Lock CNT is an integer indicating the number of
outstanding locks on this real page for input-output
purposes. The maximum lock count is 65,535.

-198-

CPEXBLOK

A CPEXBLOK represents a request for some CP-67 program
execution that has been previously def erred pending an
event. The CPEXBLOKs are chained to the desired user's
UTABLE. and have the following format:

0 4 8
+--------+---------+

0 ICPEXNEXT ICPEXADD I
+--------+---------+

8 ICPEXREGS
I
I
+------~-+---------+

481CPEXMISC
+------------------+

where:

CPEXNEXT
any.

is a pointer to the next CP request block if

CPEXADD
execution.

is the instruction address to resume CP

CPEXREGS are the 16 general registers saved when the
deferred execution request was set up.

CPEXMISC is for miscellaneous use by the routine that
created the block.

-199-

CPFDENT

The CPFDENT block is the description of an entry in the
system file directory which resides on the system residence
volume. It is contained in a data record which is described
in CPFRECRD. Its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 I CPFDNAME
+--------+--------+--------+--------+

8 I CPFVOLl f xxxxxxxxf
+--------+--------+--------+--------+

101 CPFDPOS
+--------+--------+--------+--------+

where:

-200-

CPFDNAME is the eight-character file name.

CPFVOLl is the volume label
containing the first record.

of the disk volume

CPFDPOS is the position within the first volume of the
first record - in the format BBCCHHRx.

(

CPFFDBLK

'!'here is one CPFS file
file in the Control Program
Its format is as follows:

descriptor block for each open
File System routines CCPFILE).

0 2 4 6 8
+--------+--------+--------+--------+

0 CPFNEXT CPFRDEV
+--------+--------+-------~+--------+

8 I CPFNAME
+--------+--------+--------+--------+

10 I CPFVOLID I C*l I C*2 I
+--------+--------+--------+--------+

18 CPFFDPOS
+--------+--------+--------+--------+

20 ICPFUPDPTICPFRDPT ICPFBYTERlxxxxxxxxl
+--------+--------+--------+--------+

28 CPFBUFAD CPFPQUE
+--------+--------+--------+--------+

where:
CPFNEXT points to the next open file.

CPFRDEV points to the real device of the current record
being read.

CPFNAME is the eight-character file name.

CPFVOLID is the volume identification of the current
record.

C*l - CPFSTAT is the file status:
X'80' indicates file open for writing;
X'40' indicates file open for reading.

C*2 - CPFLOCK is the file lock (for use by writing and
updating).

CPFFDPOS is the position of the current record on the
real device.

CPFUPDPT is the pointer for the update function.

CPFRDPT is the pointer for the read function.

CPFBYTER is the count of the bytes remaining to be read
or updated.

CPFBUFAD is the buffer address for this open file.

CPFPQUE is the queue of locked file requests Cnot
implemented).

-201-

CPFRECRD

The following is a description of the record format of
all CPFILE records on system-owned tracks:

0 2 4 6 8
+--------+--------+--------+--------+

0 CNEXTVOL lxxxxxxxxl
+--------+--------+--------+--------+

8 CNEXTPOS
+--------+--------+--------+--------+

10 CRECLNG
+--------+--------+

- 829 Bytes
CPFDATA

+--------+--------+--------+------~-+

where:

CNEXTVOL is the label of the pack containing the next
record. (Note: A zero entry indicates that this is the
last record.}

CNEXTPOS is the position of the next record within the
pack specified by CNEXTVOL.

CRECLNG is the number of valid data bytes in CPFDATA.

CPFDATA is the actual data in the record, which may be
user directory files, machine description files, or the
system directory itself.

Note: All physical records
(currently 829} • CRECLNG
valid data in the buffer.
of a length defined by the
are not split over physical

-202-

are CPRECSZ bytes long
establishes the end of the

Logical records, which are
calling program to CPFILE,
records.

(

I
I
I
I
I
I
I

EXTUTAB

There is one EXTUTAB for each virtual 67 in the system.
It contains all the information peculiar to a virtual 67;
its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+
I VCRO I VCRl I
/-----------------+-----------------/

/-----------------+-----------------/
I VCR14 I VCR15 I
+-----------------+-----------~-----+
I SHADVCRO IE*11E*21COPYPAGT I
+-----------------+-----------------+
I COPYSEGT IMAGESGT
+-----------------+-----------------+

where:

VCRO to VCR15 are the contents of the virtual control
registers O to 15.

SHADVCRO is a pointer to the shadow segment table.

LSTBYTST CE*l) is the last byte of the free storage
area address reserved for the shadow segment table.

NBVSEGT CE*2) contains 0 if the virtual machine is
using only segment O, and 1 if not.

COPYSEGT contains the length of virtual segment O
<minus 1) if the virtual machine is using only segment
O; otherwise, it contains the address of the copy of
the virtual segment table currently in use.

If.'".iAGESGT contains the first virtual segment table entry
if the virtual machine is using only segment O;
otherwise, it contains the address of the image of the
shadow segment table, with the unavailable bit in each
entry.

-203-

IOI'ASK

There is one IOTASK block for each user selector
channel task active in the system. A task is active from the
time the user performs the SIO operation Cat which time the
block is created from free storage and queued onto the
appropriate channel task list) until the device is freed Cat
which time the block is returned to free storage). Its
format is:

0 2 4 6 8

+--------+--------+--------+------~-+
0 TASKRDEV TASKRCU

+--------+--------+--------+--------+
8 TASKPNT ITP* ITF* ITASKVADD I

+--------+--------+--------+--------+
10 TASKUSER TASKCAW

+--------+--------+--------+--------+
18 TASKIRA I TASKMISC

+--------+--------+--------+--------+
I +--------+--------+--------+--------+

where:

TASKRDEV is the pointer to the real device control
block for this task.

TASKRCU is a pointer to the real control unit on which
this task is being executed.

TASKPNT is the pointer to the next task on the list
strung on the channel.

TP*-TASKPATH contains a bit
corresponding to the control unit
to be executed; this bit is
availability of the control unit.

in the position
on which the task is

used to scan for

TF*-TASKFLAG contains a bit pattern to indicate task
status. The following bits are defined:

XI 80'
X'40'
X'20'
X'10'
x' 08'
X' 04'
x '02'
X'Ol'

reserved for future use
reserved for future use
error in this I/O operation
CP-67 I/O Cpaging,spooling,etc.)
CP-67 split seek
channel free on this interrupt
processing CC 1 for this task
stand-alone seek operation

TASKVADD is the address of the
originating the input-output request.

virtual device

TASKUSER is a pointer to the appropriate user's UTABLE

-204-

block.

TASKCAW is a pointer to the real channel command list
for this operation.

TASKIRA is a pointer to the routine which will be given
control on any interrupt resulting from this operation.
If a nonzero condition code is encountered on the SIO
for this task within the CHFREE module, control will be
passed to the TASKIRA. with register O containing the
condition code. on an interrupt, register O will
contain a zero to so indicate.

TASKMISC is a slot which may be used by the originator
of the IOTASK block for whatever purposes required.

For user selector channel operations, TASKMISC holds
the values of registers 6. 7, and 8 (three words) which
are the addresses of the virtual channel, control unit,
and device blocks respectively. These values are used
to re-load the same registers upon receiving the I/O
interrupt.

Note: The IOTASK for CP-initiated I/O functions is
generally associated with other control blocks and is
often integrated with them (for example, MVIBUFF) .• In
these cases. only the first four doublewords of the
IOTASK are present.

-205-

LOGCDATA

LOGCDATA is a description of the format of the error
records saved by CP-67 for channel checks:

0 2 4 6 8
0 +--------+--------+--------+--------+

I LOGSNSE I LOG I LOG I
I ICODEITYPI

8+--------+--------+--------+--------+
I LOGVOLID ILOGADDR I

16+--------+--------+--------+--------+
I LOGDATE I unused I

24+--------+--------+--------+--------+
I LOGCSW I

32+--------+--------+--------+------~-+
I LOGIOPSW I

40+--------+--------+--------+--------+
I LOGCHLOG I

64+--------+--------+--------+--------+
I LOGCAW I

68+--------+--------+--------+--------+

where:

LOGSNSE, LOGCODE, LOGTYPE, LOGVOLID, LOGADDR, LOGDATE
and LOGCSW are the same as in the LOGIDATA control
block.

LOGIOPSW is the old I/O PSW which was stored at the
time of the error.

LOGCHLOG contains the channel logout data.

LOGCAW contains the channel address word at the time of
the error.

-206-

(

LOG I DATA

LOGIDATA is a description of the format of the error
records saved by CP-67 for I/O errors:

0 2 6 8
O+--------+--------+--------+--------+

I LOGSNSE ILOG ILOGI
I ICODEITYPI

8+--------+--------+--------+--------+
I LOGVOLID ILOGADDR I

16+--------+--------+--------+--------+
I LOGDATE !unused I

24+--------+--------+--------+--------+
I LOGCSW I

32+--------+--------+--------+--------+
I LOGCCWS I

104+--------+--------+--------+--------+
I LOGS KLOC I

112+--------+--------+--------+--------+

where:

LOGSNSE contains the six I/O sense bytes.

LOGCODE contains the type of I/O or channel error.

LOGTYPE is ·the type of device upon which the error
occurred.

LOGVOLID is the volume serial nurrher of the device upon
which the error occurred (if known to CP>.

LOGADDR is the channel/unit address of the erring
device.

LOGDATE contains the date and time of the error.

LOGCSW contains the channel status word at the time of
the error.

LOGCCWS contains the failing ccw string (up to nine
CCW's).

LOGSKLOC contains the last seek address prior to the
failure.

-207-

LOGMDATA

LOGMDATA is a description of the format of the error
records saved by CP-67 for machine checks:

0 2 4 6 8
O+--------+--------+--------+--------+

I LOGMDATE I LOGMCODE I
8+--------+--------+--------+--------+

I LO GM CPU I
184+--------+--------+-------..;+--------+

I LOGMPSW I
224+--------+--------+--------+--------+

I LOGMGRS I LOGMCRS I
352+--------+--------+--------+--------+

I LOGMFPRS I
384+--------+--------+--------+--------+

where:

LOGMDATE contains the date and time of the machine
check.

LOGMCODE contains the machine check code.

LOGMCPU contains the CPU logout data.

LOGMPSW contains the five old PSW's at the time of the
machine check (external, SVC, program, machine check,
and input-output).

LOGMGRS contains the values of the general registers at
the time of the failure.

LOGMCRS contains the values of the extended control
registers at the time of the failure.

LOGMFPRS contains the values of the floating point
registers at the time of the failure.

-208-

MD ENT

MDENT is the machine description entry created by
DIRECT to describe a device in a user's virtual machine. It
is pointed to by a UFDENT entry. The format of MDENT is as
follows:

0 2 4 6 8
+--------+----+---+--------+--------+

0 I MDADR IM*l IM*21 MDID
+--------+----+---+--------+--------+

8 I MDID lxxxxxxxxl MDRELN I MDSIZE I
+--------+--------+--------+--------+

10 I MDRDPASS
+-----------------------------------+

18 MDRWPASS
+-----------------------------------+

where:

MDADR is the virtual device address.

M*l - MDSTAT is the unit status information:
UNITEMP X'80' indicates temporary device

allocation.
UNITDED X'40' indicates that the real device

specified in MDID is to be dedicated to
this user.

UNRDONLY X'20' indicates a read-only volume.
UNITRMT X'10' indicates that spooled output is to

be sent to the real device specified by
MDID.

UNRWRIT X'08' if on denotes that the device is
shareable in write mode.

UNCONT X'04' if on denotes that the virtual card
reader will read all spool files as one.

UNRWMULT X'02' if on denotes that multiple write
users are allowed.

UNRDSHAR X'Ol' if on, denotes that the device is
shareable for read-only.

M*2 - MDTYPE contains the virtual device type.

MDID contains a six-byte volume label for DASO volumes.
If UNITDED or UNITRMI' is on, MDID is of the form
•roccu•, where •ccu• is a real device address.

MDRELN is the cylinder offset for a shared DASD device.

MDSIZE is the size of the virtual device.

MDRDPASS is an eight-byte password used to determine
eligibility for read-only sharing.

MDRWPASS is an eight-byte password used to determine
eligibility for write sharing.

-209-

MRDEBLOK

There is one MRDEBLOK for each multiplexer device
defined in the system. The definition is contained in the
REALIO module by macros. Its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 MRDEVPNT IMRDEVADDIM*l IM*21
+--------+--------+--~-----+--------+

8 MUSER I MIRA
+--------+--------+--------+--------+

10 MRDEVIO I MTASK
+--------+--------+--------+--~-----+

18 MRPNTVIR IM*31 MRDCSWAD
+--------+--------+--------+--------+

20 IMRDERRCTIM*41M*5 IM*6IM*7 IM*8 lxxxt
+--------+--------+---~----+--------+

where:

MRDEVPNI' is a pointer to the next real device block.

MRDEVADD is the device address of this real device.

M*l - MRDESTAT is the real device status:

-210-

X'80' indicates prepare issued (2702 only)
X'40' indicates HIO issued (2702 only>
X'20' indicates sense issued
x'lO' indicates not ready
X'08' indicates enabled (2702 only)
X'04' indicates ATS terminal (2741 only)
X'02' indicates device is dedicated
X'Ol' disable line

M*2 - MRDEVTYP contains the real device type number.

MUSER contains the UTABLE address of the user owning
this device.

MIRA is the interruption return address for this
device.

MRDEVIO contains a pointer to closed files for this
device (for spooling operations only).

MTASK contains a pointer to open MRIBUFF blocks for
this device (for spooling operations only).

MRPNTVIR contains a pointer to the virtual device
equivalent to this device (for nonspooling operations
only).

M*3 - MRDESENS contains the sense byte information

(2702).

MRDCSWAD contains a pointer to
information (2702 only).

the saved csw

MRDERRCI' contains the count of errors on this device.

M*4 - MRREI'RY is the retry counter for attempted error
recovery.

M*S - MRFI'R contains device or line features, such as
the SAD number 0,1,2,3, or 4.

M*6 - MRIFLAG is the flag for MRIOEXEC:
MRIDRAIN X'08' drain spooling operations
MRISPACE X'04' force printer to single space
TERMINAT X'01' terminate spooled I/O when

interrupt comes in
UNSPOOL X'02' punch available for unspooled I/O,

that is, accounting cards.

M*7 - MRWRTFLG is used by CONSINT to identify the
terminal.

M*8 - MRDEBRCI' is reserved for future use.

-211-

MRI BUFF

The following buffers and their descriptions apply to
those blocks used in the "unspooling• operations associated
with MRIOEXEC and the real hardware.

MRIBUFF is the buffer for spooled packed data when being
handled for the real equipment. It is chained from MTASK in
the multiplexer real device block CMRDEBLOK). Its format is:

where:

0 2 4 6 8
+--------+--------+--------+--------+

0 IOTASK

+--------+--------+--------+--------+
I

20 I MRICAWl
I +--------+--------+--------+--------+

48 I BB CC HH R lxxxl
+--------+--------+--------+--------+

so IMRICOUNTI
+--------+

DAT AD

+--------+--------+--------+--------+
I

3901
I

MRICAW2

+--------+--------+--------+--------+
I

3E81
I

DAT AP

+--------+--------+--------+--------+
4701 REGSAVE BAD DR

+--------+--------+--------+--------+
I

4781
I

MRIFILEC

+--------+--------+--------+--------+

IOTASK is the
this buffer to
only.

IOTASK block associated with bringing
and from the disk; four doublewords

MRICAWl are the CCW's required to bring the buffer off
the disk or write it to the disk; five CCWs: SEEK,
SEARCH, TIC *-8, RD or WRT, NOP.

MRINEXT is the pointer to the next buffer on the disk;

-212-

t
··~

BBCCHHRx. x is device table code <index).

MRICOUNT is the pointer within the buffer to the next
byte to be processed.

DATAD is the packed data read or written on disk.

MRICAW2 are the unit record ccw•s required for this
buffer.

DATAP is the output buffer for the
reader) or the output buff er for
(printer and punch).

PACK routine <card
the UNPACK routine

REGSAVE is a temporary register save area.

BADDR is a pointer to the unpacked input-output buff er
for unit record data.

MRIFILEC is a three-doubleword pointer for DASD record
address. It contains data to build the SFBLOK when the
file is completed (reader only).

The following is a description of the buffer
unit record operations chained from BADDR of the
block (preceding):

0 2 4 6 8
+--------+--------+--------+--------+

0 ICUR. CCWICUR. DATI CAW 1xxxxxxxx1
+--------+--------+--------+--------+

8 DATA

+--------+--------+--------+--------+

for the
MRIBUFF

-213-

MVDEBLOK

There is an MVDEBLOK for each virtual multiplexer
device attached to a user's UTABLE (from VMXSTART); its
format is as follows:

0 2 4 6 8
+--------+--------+--------+------~-+

0 I MVDEVPNT IMVDEVADDIM*l IM*21
+--------+--------+--------+-------~+

8 I MVPNTREL MVIOB
+--------+--------+--------+--------+

10 MVCSW
+--------+--------+--------+--------+

18 MVDEVIO IM*3 IM*41M*51M*6 I
+--------+--------+--------+--------+

20 MVIXUSER
+--------+--------+--------+--------+

where:

MVDEVPNT is a pointer to the next virtual device on the
virtual multiplexer channel.

MVDEVADD is the virtual device address.

M*l - MVDESTAT is the virtual device status; the bit
definition is the same as the bit definition of byte 4
of a csw, for example, CE=X'08', BUSY=X'lO'.

M*2 - MVDEVTYP is the virtual device type number.

MVPNTREL is the
(MRDEBLOK) •

pointer to the real terminal

MVIOB is the current buffer address for this device;
MVIBUFF for unit record: or terminal I/O buffer.

-214-

MVCSW is the virtual CSW for this subchannel.

MVDEVIO is the pointer to closed files for this virtual
device (spooling operations only>: for terminals
<virtual 1052), address of current ccw.

M*3 - MVSENSE is the sense information for the device.

M*4 - MVIFLAG are miscellaneous status bits:

MVIFCCW X'Ol' current CCW is first in chain
MVIFCLOS X'02' file closed by CONSOL function
MVIFRMT X'04' spooled output to go to MVPNTREL
MVIFSAV x•os• keep virtual card reader files

after use
MVIXFER X'lO' punch file to be made a card reader

file for MVIXUSER

MVIEXIT
MVICONT

X'20'
X'40'
X'80'

MVIOEXEC has done EXIT, go to DISPATCH
continuous card spooling
reserved for future use

M*S - MVIOKEY is the virtual CAW storage protection
key.

M*6 - MVIOBRK is a flag to indicate CX'FF') that the
attention key was hit during virtual console I/O.

MVIXUSER - for punch or printer; contains userid to
transfer output if MIVXFER list in MVIFLAG is on; for
terminals (virtual 1052), contains current CCW being
processed.

-215-

MVIBUFF

This section is a description of the various buffers
used by the spooling mechanism of the control Program.

MVIBUFF is a buffer for packed spooled data. It is
chained from MVIOB in the multiplexer virtual device blocks
and has the following format:

0 2 4 6 8

+--------+--------+--------+--------+
I

o I
I
I

IOTASK

+--------+--------+--------+--------+
20 IMRICAW1 I

I I
I l
I I
I I
+--------+--------+--------+--------+

48 MVINEXT

+--------+--------+--------+--------+
50 IMVICOUNTI

+--------+
I
I
I

DATAD

+--------+--------+--------+--------+
3901 MVICCW

+--------+--------+--------+-------·+
3981 Temporary save Area

+--------+--------+--------+--------+
I I

3AOI DATAPAC I
I I +--------+--------+--------+--------+
I I

3COI DATAP I
I I
+--------+--------+--------+--------+

448IMVIRECS I
+--------+

MVIFILEC

+--------+--------+--------+--------+

where:

-216-

IOTASK is the task control block for reading or writing
the disk buffers; four doublewordsords only.

£

'

MRICAWl are the CCW's required to write or read the
buffer to secondary storage; five CCW's: SEEK, SEARCH,
TIC •-8, RD or WRT, NOP.

MVINEXT is the pointer to the next record; BBCCHHRx,
where x is device code.

MVICOUNT is the byte address within the following data
area, DATAD, of the next byte.

DATAD is the buffer of packed data (830 bytes long>.

MVICCW is the user's current ccw.

DATAPAC is the output buffer for the PACK routine (see
•pAcK• in Section 5).

DATAP is the input buff er for the PACK routine or the
output buffer for the UNPACK routin~, depending on the
spooling function being performed.

MVIRECS (MVIFILEC):

When the file is open, it is the number of records
in this file (two bytes).

When the file is closed, it is a three-doubleword
pointer for DASO record address. It is used to
build an SFBLOK when the file is completed.

-217-

PAGTABLE

There is one PAGTABLE for each user; its format is as
follows:

where:

-218-

0 12 15
+-----------+-+----+

SWPTBL PNT
+-----------+-+----+
I Page Add. I lxxxxl
+-----------+-+----+

I
I
I up to
I 256 Entries
I 512 Bytes maximum
I
I
I +-----------+-+----+

I I +-----------+-+----+

SWPTBL PNT is a pointer to the SWPTABLE associated
with this PAGTABLE, one fullword in size. The
remainder is made up of halfword entries .• Each entry
describes the status and main storage address of a
virtual memory page, as follows:

Bits 0 through 11 are the address of a page in
real memory (if resident).

Bits 12 through 15 are a control field:

Bit 12 indicates status of the page:

0 indicates core resident.
1 indicates not in core.

Bits 13-15 are reserved for future use <they must
be zero for the 360/67).

RCCWLIST

There is one RCCWLIST for each user ccw list; its
format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 VLIST TAD DR
+--------+--------+--------+--------+

8 VCNT RCNT I IDENT SCNT
+--------+--------+--------+--------+

10 IR*ll RADDR I R * 2 I R * 31 RB YTE
+--------+--------+--------+--------+

where:

VLIST is the location of ccw•s in user•s program.

TADDR is the real address of the next CCW list (0 if
none).

VCNT is the number of user•s CCW's in this list.

RCNT is the number of CCW's required to represent
user's list.

!DENT is the halfword
x•FFFF'.

marker (used in UNTRANS>;

SCNT is the number of doublewords reserved for control
data.

R*l - RCOMND is the actual CCW op-code for the channel.

RADDR is the real (translated) address for the data
transfer or argument.

R*2 -
ccw• s.

RFLAG is the real flag field for the channel

R*3 - RCNTL is the control field used by CCWTRAN and
UNTRANS to identify certain types of CCW's:

RC XIS x•so• check for ISAM read
RCS UDO x• 40• pseudo 2311 or 2314
RC UT IC x•20• untranslated TIC
RCIO x•10• I/O CCW
RC GEN X'08' CP-generated ccw
RCDATA x• 04• CP-generated CD
RC02 x•o2• reserved for future use
RCOl x• 01 • reserved for future use

RBYTE is the real ccw data count.

-219-

RCHBLOK

There is one RCHBLOK for each real channel: its format
is as follows:

0 2 4 6 8
+--------+--------+--------+~-------+

0 RCHANPNT RCULIST
+---~----+--------+--------+~-------+

8 TASKLIST IR*11R*2 IRCUCOUNTI
+--------+--------+--------+--------+

10 IRCHANADDI TASKCNTI TASKLAST
+--------+--------+--------+--------+
IRCHCOND IR*31R*4 IR*51R*6 IRF.sERVEDI
+--------+---~----+--------+--------+

where:

RCHANPNT is the pointer to the next channel .•

RCULIST is the pointer to connected control units.

TASKLIST is the pointer to pending tasks.

RCUACT CR*l} is the active control unit mask.

RCHSTAT CR*2} are channel status bits:
X'80' indicates channel busy.
X'40' indicates rescan required in CHFREE.

RCUCOUNT is the count of attached control units.

RCHANADD is the real channel address.

TASKCNT is the count of pending tasks.

TASKLAST is the pointer to last task on this channel.

RCHCOND is channel status after a channel error(**>.

R*3
R*4
R*5
R*6

RCHDATCK
RCHCONCK
RCHIFCC
RCHANCC

count of channel data checks
count of channel control checks

count of interface control checks
count of channel chaining checks

<**> channel error is defined as any error indicated by
R•3, R*4, R*S, or R*6.

-220-

' /

RCUBLOK

There is one RCUBLOK for each real control unit; its
format is as follows:

0 2 4 6 a
+--------+--------+--------+--------+

0 RDEVLIST RC UP NT
+--------+--------+--------+--------+

8 RACTCHAN IR*llxxxxxxxxxxxxxl
+--------+--------+--------+--------+

10 I RCUADD I RCUSTATIRTAILCNTIRDECOUNTI
+--------+--------+--------+·-------+

18 RCUTAILl RCUTAIL2
+--------+--------+--------+------•-+

where:

RDEVLIST is the pointer to connected devices.

RCUPNT is the pointer to next control unit.

RACTCHAN is the pointer to active channel; zero value
initially; filled in from RCUTAILl after SIO.

R*l - RCUPATH is the path for this control unit.

RCUADD is the real control unit address.

RCUSTAT is the real control unit status <not currently
used) •

.RTAILCNT is the tail count for this control unit <not
currently used).

RDECOUNT is the count of devices on this unit.

RCUTAILl is the pointer to channel for tail 1.

RCUTAIL2 is the pointer to channel for tail 2 (not
currently used).

-221-

RDCONPKG

There is one RDCONPKG for each CCWPKG that requires
control to be.returned upon completion of the associated I/O
operation. Its format is:

where:

-222-

0 2 4 6 8

O+--------+--------+--------+--------+
I NEXTCPRQ I JSRETADD I

8+--------+--------+--------+--------+ .
I JS REGS I

+--------+--------+--------+--------+
I JSPARE3 I JSPARE4 I

48+--------+--------+--------+--------+

NEXTCPRQ is a pointer (always zero until queued
by CPST ACK) •

JSREADD is the return address (becomes CPEXADD
in CPEXBLOK).

JSREGS are registers for return.

JSPARE3 is a spare.

JSPARE4 is a spare.

RD EV BLOK

There is one RDEVBLOK for each real device; its format
is as follows:

0 2 4 6 8
+--------+--------+--------+------~-+

0 RDEVPNT RDEVCU
+--------+--------+--------+--------+

8 IRDEVADD IR*l IR*21 RDEVTASK
+--------+--------+-----~--+--------+

10 I RVOLSER IRDEVCODEI
+--------+--------+--------+---·----+

18 I RDEVALLN IRDEVERCTIRDEVSTATI
+--------+--------+--------+--------+

20 I RDEVUSER IRATTVADDIR*3 IR*41
+--------+--------+--------+--------+
I RDEVSEN IC*O IC*21
+--------------------------+--------+

RDEVTMON
+-------+---------+------~-+--------+

where:

RDEVPNT is a pointer to the next device on the chain.

RDEVCU is a pointer to the real control unit.

RDEVADD is the real device address (control unit and
device portions only).

R*l - RDEVTYPE is the device type code.

R*2 RDECUPTH is the control unit path for this
device.

RDEVTASK is a pointer to the attached task block (if
active).

RVOLSER is the six-character EBCDIC volume label (if
DASD volume and attached to the system).

RDEVCODE is the halfword identification number (index
into RDEVTABL).

RDEVALLN is the pointer to the allocation table Cif
CP-owned).

RDEVERCT is the error count for this device ..

RDEVSTAT is the real device status:

RDEVOWND X'80' indicates CP-owned volume (DASD
only).

RDEVATTD X'40' indicates dedicated (nonshared)
device.

-223-

RDEVDED X' 20'
and device
DEDICATE.

indicates channel, control unit,
block dynamically created by

RDEVSEEK X'08' indicates a seek is in progress.
RDEVPOSD X'04' indicates 2311,2314 comb positioned

for next read/write operation.
RDEVSYS X'02' device attached to system.

RDEVUSER is the UTABLE pointer for the current user
(for dedicated devices>.

RATTVADD is the current user's virtual address (for
dedicated devices).

R*3 - RDEVFTR Real device features. Used to describe
dedicated communication lines SAD value.

R*4 - RDEVSLEN device sense byte count

RDEVSEN contains up to six sense bytes for device

C*O - command reject counter

C*2 - bus out parity error counter

C*3 - equipment check error counter

C*4 - data check counter

C*1 - seek check <sense bit 7, byte O> counter

RDEVTMON is the attached time for a dedicated device
(MMDDYY HHMM).

-224-

(

RECBUF

One RECBUF block of the following format is created for
each cylinder. The start of the RECBUF block's chain is
RECSTART. Its format is:

0 2 4
+--------+---·----+

O I Pointer to next I
+--------+--------+

4 IR*1 IR*21CNUMIDCDI
+·-------+--------+

8 DATA - 202 Bytes

+--------+--------+

where:

The first word is the pointer to the next RECBUF block.

CR*1) is the number of records in use on this cylinder.

CR*2) is the maximum number of records available in
this cylinder.

CNUM is the cylinder number of this cylinder.

DCD is the real device code for the device for this
cylinder.

The remaining bytes are:

For a 2314, two bytes for each pair of even-odd
tracks. There are 15 records per pair of tracksr
and each bit (0-14) indicates whether the
corresponding record (1-15) is available. Bit 15
is always set to 1.

For a 2311r two bytes for each track. There are
four records per track. Bits 4 through 15 are set
to 1. A 1 indicates that the corresponding record
is in use.

.-225-

SAVEAREA

The active SAVEAREA format is:

0 4 8
+-----------------+-----------------+
I RETURN ADDRESS I CALLERS R12
+-----------------+-----------------+
I CALLERS R13
+-----------------+
I 21 WORD REGISTER SAVEAREA
I and WORKAREA
+-----------------------------------+

where:

RETURN ADDRESS
following the
save area.

is the instruction address immediately
SVC 8 call which obtained the current

CALLE.RS Rl2 is the base register of the calling
routine.·

CALLERS R13 is the address of the active save area.

21 WORD REGISTER SAVEAREA and WORKAREA is normally used
by the ENTER macro to save the caller's registers. Up
to 16 registers can be saved, although only registers
0-11 are significant. Words not used for register
saving can be used as a scratch area by the called
program.

The inactive (available) SAVEAREA format is:

0 4 8
+-----------------+--------------·--+
I NEXTSAVE I
+-----------------+-----------~-=---+
I I
I I
I I
+-----------------------------------+

where:

NEXTSAVE is a pointer to the next 24-word save area in
the chain of available save areas. The pointer is
updated in the last save area on the chain when a save
area is released by SVC 12 or SVC 16.

-226-

/ '

SEGTABLE

CP-67 contains one SEGTABLE for each user; its format
is as follows:

0 1 4

+--------+------------------------+
I PAGE CNT I PAGE TABLE ADDRESS
+--------+------------------------+
I
I
I
I
I +--------+------------------------+
+--------+------------------------+

16 Entries
64 Bytes

Each four-byte entry defines a page table, as follows:

Byte 1 - Number of page table entries Cless 1).

Bytes 2-4 - Address of page table origin.

-227-

SFBLOK

SFBLOK is a control block for a closed spool file. The
format is as follows:

0 2 4
+--------+--------+
I Pointer to next I
+--------+--------+

BB cc
+--------+--------+

HH I R 1codel
+--------+--------+

MRDEBLOK
+--------+--------+

User id

+--------+--------+

When this file is being used by MRIOEXEC, the pointer is
removed from the chain and hooked up to MRDEVIO in the
multiplexer real device block CMRDEBLOK).

MRDEBLOK is filled in if the spooled output is directed
to a particular device.

The high-order byte of this field is also used for a
repeat of the output in MRIOEXEC. An x'80' means output is
directed to the MRDEBLOK address in the remaining three
bytes. An x'4x' means repeat the output up to x times.

-228-

(

SWPTABLE

The SWPTABLE contains an eight-byte
entry in a user's PAGTABLE. It is generated
its length depending on the size of a user's
It is in the following format:

entry for each
at LOGON time,

virtual memory.

0 1 2 3 4

+--------+--------+--------+--------+
IS*l I VPAGNO I KEY1 KEY2
+--------+--------+--------+--------+
IRDEVCODEI CYL HEAD I RECORD I
+--------+--------+--------+--------+

where:

S*1 has the following meaning:

X'80': Transit bit, page in
X'40': Recompute bit, DASD

page, get new DASD
required

transit Cin>
address is

address if
source of
write is

X'20': Transit bit, page in transit Cout>
X'lO': Shared bit, page is shared and protected
X'08': first half page was used since last SSK Cif

in core>
X'04': first half page was modified since last SSK

(if in core>
X'02': second half page was used since last SSK

(if in core)
X'Ol': second half page was modified since last

SSK (if in core>

VPAGNO is the virtual page number of the user using the
page.

KEYl and KEY2 are the virtual keys for the bottom and
top halves of this page, respectively.

RDEVCODE is the real device
containing this page.

code of the device

CYL, HEAD, and RECORD are the physical location of the
nonresident page on the device indicated by RDEVCODE.

-229-

TR EXT

This control block is built as a UTABLE extension when the
user invokes tracing functions.

0 2 4 6 8

+--------+--------+--------+--------+
I TRSVCI I TRBRI I TRSTI I T*llT*21
+--------+--------+--------+--------+
IT*3 IT*41 UNUSED I TRSVCIA
+--------+--------+--------+--------+

TRBRIA TRSTAD
+--------+--------+--------+--------+

TRSTSV TREXINS I
+--------+--------+--------+--------+

UNUSED I
+--------+--------+--------+--------+

TRSVLCO
+--------+--------+--------+--------+
I TRPWK I
+--------+----~---+--------+--------+
I I
I I
/ TRLIN /
/ /

I I
I I
+--------+--------+------·-+--------+

TRSVCI - saved 2 bytes of next instruction.

TRBRI - saved 2 bytes of branch-to instruction.

TRSTI - saved 2 bytes of address stop instruction

T*l-TRCNSL - console tracing options.

T*2-TRPRT - printer tracing options.

T*3-TRINTF - interrupt type flag.

T*4-BRSW - processing control switch.

TRSVCIA - next instruction address.

TRBRIA - branch-to instruction address

TRSTAD - address stop location.

TRSTSV - address of executed NSI.

TREXINS - executed NSI contents.

TRSVLCO - saved location zero 8 bytes.

-230-

TRPWK -

TRLIN -

pack data work area.

output data buffer.

-231-

UFDENT

The following is a de8cription of an entry in the user
file directory (U.DIRECT) which contains information about
the user and his access privileges to the system:

0 2 4 6 8
+--------+--------+--------+--------+

0 UFDID
+--------+--------+--------+--------+

8 UFDPASS
+--------+--------+--------+--------+

10 UFDACCT
+--------+--------+--------+--------+

18 UFDMDEF
+--------+--------+--------+--------+

20 IU*ll u•21xxxxxxxx1
+--------+--------+

where:

UFDID is the eight-character user identification.

UFDPASS is the eight-character user password.

UFDACCT is the user accounting information.

UFDMDEF is the eight-character file name of the user's
machine description file.

U*l - UFDPRIV is the user's privilege class code .•

U*2 - UFDPRIOR is the user's priority code Cl-9) .•

-232-

UT ABLE

There is one UTABLE block for each user in the system.
It is the primary control block from which all user blocks
are strung. It completely reflects, with the virtual I/O
blocks, the status of the virtual machine. Its format is:

0 2 4 6 8
+--------+--------+--------+--------+

0 VGPR's

+--------+--------+--------+--------+
40 VFPR's

+--------+--------+--------+--------+
60 VPSW

+--------+--------+--------+--------+
68 SEGTABLE VMACHSIZ

+--------+--------+--------+--------+
70 VCHSTART IVCHCOUNTI PENDING!

+------~-+--------+--------+--------+
78 IULOCKS f VMSTATUSI TIMEUSED

+--------+--------+--------+--------+
80 NEXTUSER VTIMER

+--------+--------+--------+-------~+
88 USERID I

+--------+--------+--------+--------+
90 DVTOT I USYSTAB I

+--------+--------+--------+--------+
98 VMXSTART I VMXPOINT

+--------+--------+--------+--------+
AO IULOCKL IU*1 IU*21 UTREXT

+--------+--------+--------+--------+
A8 CIOREQ INCIOREQ IDNMPAGE I

+--------+--------+--------+--------+
BO fVMXCOUNTISEGTBDSPI ADEXTAB

+--------+--------+--------+--------+
B8 TIMEON

+--------+--------+--------+--------+
co ACCTNG

+--------+--------+--------+--------+
C8 I TIMINQ I NUMPAGES I PRIOR IT I

+--------+--------+----~---+--------+
DO I VTOTTIME IU*S IU*6 IUPIOCNTI

+--------+--------+----+---+--------+
DB I UVIOCNT I UCPCOMND

+--------+--------+--------+--------+
FO TIMSTAMP NEXTRTMR I

+--------+--------+--------+--------+
F8 NXTQ PRVQ I

+--------+--------+--------+--------+
100 I VMUSER1 VMUSER2

+--------+--------+--------+--------+
1081 VMUSER3 VMUSER4

-233-

+--------+--------+--------+--------+
1161 USERINST TRSW

+--------+--------+--------+--------+
1241 VMSSIO VMPNCH I

+--------+--------+------~-+--------+
1321 VMLINS VMCRDS I

+--------+--------+--------+--------+
1401 VMPGRD RESERVED

+--------+--------+----~---+--------+
1481 RESERVED

+--------+--------+--------+--------+
1561 RESERVED

+--------+--------+---~----+--------+

where:

VGPR's are the user's 16 general purpose registers
saved on an interrupt.

VFP.R's are the user's four double-precision floating
point registers.

VPSW is the user's virtual PSW .•

SEGTABLE is a pointer to 'the user's segment table.

VMACHSIZ is the size of the virtual machine <last valid
address +1).

VCHSTART is a pointer to the first selector channel
block.

VCHCOUNI' is the number of virtual selector channels
attached.

PENDING contains a bit for each channel which has a
pending interrupt.

ULOCKS is reserved for future use.

VMSTATUS is a halfword containing bits reflecting the
state of a user machine:

Byte 0
PAGEWAIT
IOWAIT
CFWAIT
SYSOPBIT
UARPQ
VIRCOMSW

INLOGOFF
INLOGON

Byte 1
X'80'

X'40'

-234-

X'80'
X'40'
X'20'
X' 10'
X'08'
X'04'

X' 02'
X' 01'

user waiting for a page or pages
user SIO being analyzed
user in console function mode
user is system operator
reserved for future use
virtual console function in
execution
user in logoff process
user in login process

indicates that the current runuser
has not been charged for virtual time
reserved

X'08' user is
X'04' user is

runnable
in a Q

X' O 2' us er is running shared system
TIMEUSED is the total time
state plus CP overhead).

used since logon <problem

NEXTUSER is the pointer to the next user's UTABLE.

VTIMER is the user's virtual timer.

USERID is the eight-character user identification.

DVTOT is the VTOTTIME value on entry to a queue or the
virtual time used during the last time in a queue.

USYSTAB is the pointer to the table for the system
which this user is sharing.

VMXSTARI' is the pointer to the first virtual device
block on the virtual multiplexer channel.

VMXPOINT is reserved for future use.

ULOCKL is reserved for future use.

U*l - UOPTDEF is the user options from the DIRECTORY:

X'80' - real timer RTIMR
ISAM
V67

X'40' - self-modifying DASO ccw checking
X'20' user can operate in virtual

extended PSW mode

U*2 - PRCLASS is the user's privilege class and priority
level:

SYSCTLOP X'80' indicates system operator.
SYSADMIN X'40' indicates system administrator.
SUBSYSOP X'20' indicates subordinate system
operator.
SYSUSER X'10' indicates system user.

The low-order four bits contain
priority level Cl-9).

the user's

UTREXT built when user invokes tracing functions.

CIOREQ is the pointer to pending console operation
requests.

NCIOREQ is the number of pending console operations.

DNMPAGE is paging activity value for this user.

VMXCOUNT is the count of multiplexer devices for this
user.

SEGTBDSP is the displacement of SEGTABLE from start of
free storage block.

-235-

ADEXTAB is the address of the UTABLE extension, used
for a virtual 67.

TIMEON is the user time on.

U*3 - TIMERMOD is the virtual timer mode switch:

DISCNBIT x'80' user terminal disccnnected
PRIDISP x'40' request for priority dispatch
RUNCP x'04' virtual machine running with

console function read active
MSGBIT x•20• user set MSGOFF
WNGBIT X'lO' ignore warnings
MULTCH X'08' more than one virtual channel
may exist with same channel address

U*4 PAGWCNT is the count of user outstanding page
requests.

ACCTNG is the user accounting information.

TIMINQ is used by DISPATCH for scheduling.

NUMPAGES is number of pages the user has in core.

PRIORIT is priority to reenter the queue.

VTOTTIME is the total problem state time used by user
since login.

U*S - WORKSET is not presently used.

U*6 - CNTRLMOD is the status of the virtual 360/67:

EXTCM X'80' indicates the virtual machine is in
extended control mode.

INVCRO X '2 0'
describing the
rebuilt.

indicates that all
third-level memory

the
have

tables
to be

INVSHADT X'10' indicates that the shadow segment
and page tables have to be rebuilt.

UPIOCNT is the number of page reads done for this user
while in a queue. Reset to zero each time on entry to
a queue.

UVIOCNT is the number of virtual sros issued by this
user.

UCPCOMND is the last CP console function executed by
the user.

'I'IMSTAMP is time stamp at status change.

NEXTRTMR next user with a real timer.

-236-

NXTQ next user in this runnable list.

PRVQ previous user in this eligible list.

VMUSER1-4 for installation use .•

USERINST for saving privileged instructions.

TRSW trace switch.

VMSSIO number of selector channel SIO's.

VMPNCH number of spooled cards punched.

VMLINS number of spooled lines printed.

VMCRDS number of spooled cards read.

VMPGRD number Of pages read.

-237-

VCHBLOK

There is one virtual channel block for each virtual
channel on each user. Its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 VCHANPNT VCULIST
+--------+--------+--------+---~----+

8 IVCHANADDIVCUCOUNI'I V*llxxxlV*2 txxxt
+--------+--------+--------+--------+

10 IVCEUNIT fVNPNDCUitxxxxxxxxxxxxxxxxxt
+--------+--------+--~-----+--------+

18 VCHCSW
+--------+--------+--------+--------+

where:

VCHANPNT is the pointer to this user's next virtual
channel.

VCULIST is the pointer to the connected control unit
blocks.

VCHANADD is the virtual channel address.

VCUCOUNT is the count of virtual control units attached
to this channel.

VCHSTAT CV*l> is the virtual channel
definition for channel status is the same
byte 4; for example, BUSY=X'lO', CE=X'08'.

VCHFLAG CV*2) is reserved for future use.

status; bit
as the csw,

VCEUNIT is the address of the unit for which the
pending channel end, if any, occurred.

VNPNDCUI is the number of pending
interruptions.

control unit

VCHCSW is the virtual channel status word for channel
end type interruptions.

-238-

VCUBLOK

There is one virtua1 control unit block for each
virtual control unit; its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 VDEVLIST VCUPNT
+--------+--------+--------+--------+

8 I VCUADD IVDECOUNTI VCUSTATlxxxxxxxxt
+--------+--------+--------+--------+

10 IVCUEUNITIVNPNDDEilxxxxxxxxxxxxxxxxxl
+--------+--------+--------+--------+

where:

VDEVLIST is the pointer to the
connected to this control unit.

virtual devices

VCUPNT is the pointer to the next virtual control unit
in the chain from the virtual channel.

VCUADD is the virtual control unit address <no channel
or device included).

VDECOUNT is the number of virtual devices attached.

VCUSTAT is the status of the virtual control unit; bit
definition is the same as the CSW, byte 4; for example,
BUSY=X'lO'.

VCUEUNIT is the unit for which a control unit end
condition, if any, is pending.

VNPNDDEI is the number of pending device interruptions.

-239-

VDEVBLOK

There is a virtual device block for each virtual device
for each user in the system• its format is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 VDEVPNT IVDEVADD IV*l IV*21
+--------+--------+--------+--------+

8 I VPNTREAL I VDEVREL I VDEVBND I
+--------+--------+--------+--------+

10 I VDEVPOS
+--------+--------+--------+--------+

18 VDEVSNSE IV*3 IV*4 I
+--------+--------+--------+--------+

where:

VDEVPNT is the pointer to the next device on the chain
from the control unit.

VDEVADD is the virtual device address.

V*l - VDEVSTAT is the virtual device status; bit definition
is the same as the csw, byte 4; for example,
BUSY=X'lO', DE=X'04'.

V*2 - VDEVTYPE is the virtual device type code.

VPNTREAL is the real device control block corresponding
to this virtual device.

VDEVREL is the relocation factor within the real device
for the start of this virtual device Cfor DASD only).

VDEVBND is the size of this virtual device CDASD only>.

VDEVPOS is the current virtual arm position of this
device (as BBCCHH).

VDEVSNSE is the virtual device sense information
(filled when an error is detected on the virtual device
to save the conditions for shared devices.)

V*3 - VDEVFLG contains miscellaneous device status bits:
TEMPDEV X'Ol' indicates a TDSK allocation
READONLY X'02' indicates read-only status
VSHARED X'04' reserved for future use
VDVENBL X'08' virtual 2702 line is enabled
VDVDIAL X'lO' virtual 2702 line is in use

V*4 - VDEVSLEN is the sense byte count.

-240-

SECTION 5: SYSTEM MODULES

This section consists of descriptions of the modules
contained in both CP-67 and the stand-alone utilities. They
are arranged in alphabetical order according to module name.
Listed below are the module names with a brief description
of each. Table 3 gives the module entry points for each
module.

ACCTON for individual installations, additional
processing and/or checking of users at
LOGIN time

ACNTIME - computes and prints on user's terminal the
total connect, virtual and actual CPU

ACNTOFF
time

- for individual
module for
LOGOUT time

installations, a replaceable
accounting functions at

CCWTRANS - prepares user CCW's for execution by real
machine, and creates user ccw at end of
operation

CFS COM

CF SD BG

CF SI PL
CFS MAIN

CFSPRV

CFSQRY
CFS SET
CFSSPL

CFSTACH

CHKCUACT -

CHKPT

CONS INT

CONVRT

CPCORE

contains the commands WNG, MSG, READY,
LOGOUT, SLEEP, and DISCONNECT

contains the commands DCP, DUMP, DMCP,
DISPLAY, STCP, and STORE

contains the commands IPL and IPLSAVE
calls user console functions and operator

functions; entered during BREAK on
user's terminal, or virtual machine idle
state

contains the commands ENABLE, DISABLE, LOCK,
UNLOCK, SHUTDOWN, KILL, ACNT, DIRECT,
and D U M P - - -

contains the command QUERY
contains the command SET

- contains the commands TERM, CLOSE, XFER,
SPACE, DRAIN, START, PURGE, SPOOL, and
REPEAT

contains the commands ATTACH, DETACH, and
LINK

determines control
end time based
channel program
was executed

unit status at channel
on last ccw executed by

and device on which it

saves accounting records and in-core spool
pointers on disk after an ABEND
condition

initializes and identifies remote terminals
and processes their interrupts

data conversion routines CBINHEX, FPCONV,
BINDEC, etc.) for CP-user communication

currently contains constants for the IPL
command

-241-

CPFILE enables CP-67 to open, read, and close
various internal working disk files

CPINIT - volume recognition and initialization of
core Cset new PSW's, compute real core
size, etc.> for CP-67

CPSTACK - queues requests for CP service (CPRQUEST
blocks)

CPSYM - resident loadmap of CP-67 modules and major
entry points

DEDICATE - switches device from MRDEBLOK's to selector
channel real device blocks for dedicated
use

DIAGDSK - responds to diagnose call for a specialized
I/O task on a 2311 or 2314

DIAL removes user terminal from CP control and
attaches it as a dedicated device to an
existing virtual 2701, 2702, or 2703
line

DISPATCH at completion of interrupt processing,
searches for pending job CCPRQUEST
queues, interrupted user, higher
priority user>, then either loads
runnable user or enters idle condition,
after totaling times in various states

DSKDUMP for debugging; takes core dump of CP and
performs a software re-IPL

EXTEND - calls PAGFREE to obtain pages for CP common
buffer space, called Free Area

FREE - maintains and allocates units of system free
storage, with minimum fragmentation

IOERROR - analyzes and records selected I/O errors and
retries CF-generated I/O to selector
channel devices

IOINT - receives control from the I/O new PSW,
determines further action, and normally
exits to IOTASK block's TASKIRA

IPL virtual memory resident; simulates and
interprets various IPL sequences for
several devices

LINK - processes the CP console function "LINK"
used by CMS for file sharing

LOGFILES counts the number of spool file blocks
awaiting processing and returns address
of a message to caller

LOGIN allocates free storage control blocks and
machine resources required in setting up
and logging in a new user

MRIOEXEC entered from unit record interrupt;
completes reading of cards, printing and
punching of pending data in disk buffers

MVIOEXEC - handles all virtual I/O operations to user's
multiplexer channel, including terminal
and spooling functions

PACK - packs and unpacks blanks from the spooling
data used by MRIOEXEC and MVIOEXEC

PAGEGEI' - allocates and deallocates DASD areas for
paging

PAGTR - handles page sharing and page releasing

-242-

I
I
I
I
I

I
I

PAGTRANS

PRIVLGED
PROGINT

PSA

QUEVIO

RDCONS

RDS CAN

handles all functions which
knowledge of the nature of
device <virtual address
storage key settingr etc.)

require a
the mapping

translationr

simulates privileged instructions
entry from program interrupt new PSW;

determines type of interrupt CCP-issued
simulated instructionr or user-issued
privileged instruction> and takes
appropriate action

- handles SVCr externalr and machine check
interrupts

- queues selector channel I/O
channel availabilityr
access armsr and
operations

requestsr checks
positions DASO

initiates I/O

creates a ccw "package"r according to
terminal typer that can be stacked as a
read request for that terminal

- determines whether a virtual DASO device is
currently attached to the virtual
machine of an active user (that isr a
"link" exists)

RECFREE - handles spooling requests for available disk
records in much the same way as free

RES INT

SAVECP

storage handles main memory
performs virtual systems reset when
explicitly asked or when implied by an
IPL request

writes core-image of CP-67 onto system
residence volume at end of card or tape
load of CP-67 into core; procedure is
reversed at IPL time <read in core
image)

SCANUNIT - for a real or virtual device addressr scans
appropriate list and sets up pointers to
various level blocks

SCHEDULE

SCREDAT

maintains real timer and runnable list
chains at logon and logof f and clock
maintenance at 60 second intervals.

contains 10 bytes of EBCDIC for system
identification

STCONSIO - starts an I/O request
it if there are
(entry via PRIMSG
stack)

to a console or stacks
outstanding requests

gives priority in the

TMPSPACE - dynamically allocates DASO cylinders from
devices of specified type

TRACER - performs analysis and output formatting of

UNSTIO
user specified tracing functions

- unstacks and reflects virtual I/O interrupts
from both selector and multiplexer
devices

UNTRANS - computes from hardware csw the virtual csw to
be reflected to the user

USERLKUP - finds the entry in the U.DIRECT file for a

-243-

specified userid
USEROFF - functions associated with logging off a user

from the system <initiate logout
sequence, delete virtual machine from
system, log user off, detach nonshared
I/O device)

VIOEXEC intercepts virtual I/O commands: itself
handles selector channel requests and
passes multiplexer requests on to
MVIOEXEC

VSERSCH searches RDEVBLOK's for a given volume
serial number

WRTCONS - allows a remote terminal to be used for
output as though it were an operator's
1052 console

-244-

·-.... < .. /

lfi
·.~

Table 3. system Modules with Entry Points

Module Name

ACCTON
ACNI'IME
ACNTOFF
CCWTRANS
CFSCOM
CF SD BG

CFS IPL
CFSMAIN
CFSPRV

CFSQRY
CFSSE.'T
CFSSPL

CF STACH
CHKCUACT
CHKPT
CONSINT

CONVRT

CPCORE
CPFILE

CPINIT
CPSTACK
CPSYM
DEDICATE
DIAGDSK
DIAL
DISPATCH

DSKDUMP
EXTEND
FREE
IO ERROR

IO INT
IPL
LINK
LOGFILES
LOGIN
MR IO EXEC
MVIOEXEC

PACK
PAGEGET

Entry Point Cs)
------~-------

ACCT ON
ACNTIME
ACNI'OFF, DEVOFF
CCWTRANS, VSMCPIR, CP6IRA
WNG, MSG, READY, LOGOUT, SLEEP, DISCONN
DCP, DUMP, DMCP, DISPLAY, STCP, STORE

FREEPST, FRETPST
CFSIPL, IPISAVE
BREAK, BRKRD, BRKWR, COMENTRY
ENABLE, DISABLE, LOCKC, UNLOCK, SHUTDOWN,

KILL, CFSACNT, CFSDIR, ABEND
QUERY
SET
TERM, CLOSE, XFER, SPACE, DRAIN, START,

PURGE, SPOOL, REPEAT
ATTACH, DETACH, CLINK
CHKCUACT
CHKPT
CONSINT, IDENTIFY, PREPLINE, RTN41WT,

RTN52WT, RTN41ND, RTN52ND,
OFFHANG, OFFEN!', CPIENT

BINHEX, HEXBIN, DECBIN, BINDEC, FPCONV,
DATETIME

CPCORE
CPFOPENR, CPFOPENW, CPFCLOSE, CPFREAD,

READTASK, WRITTASK, CPFDLKUP, CPFDCLOS
CPI NIT
CPSTACK
CPSYM
DEDICATE
DIAGDSK
DIAL
DISPATCH, DSPTCHA, DSPTCHB, DSPTCHC,

DISDRQ, DISIO, DISACT
DSKDUMP
EXTEND
FREE, FRET, FRETR
IOERROR, VERROR, RECERROR, MCKERR,

FINDLOG, FMI'LOG, LOGRETN, FINDMC,
FINDIO, FMI'MLOG, FMTLOGM, FMTILOG, FMTLOGI

IOINT, IOISTVDE, IOISTVCU
IPL
LINK
LOGFILES
LOGON, OPMSG, AUTOLOGON
MRIOEXEC, RPUNCH, PRIRA, CRIRA, PUIRA
MVIOEXEC, MVICLPR, MVICLPN, MVICLCR,

MVIPRINT
PACK, UNPACK
PAGEGET, PAGERLE

.-245-

PAGTR
PAGTRANS

PROGINT
PRIVLGED
PSA
QUEVIO
RDCONS
RDS CAN
REC FREE
RESINT
SAVECP
SCA NU NIT
SCHEDULE
SCREDAT
STCONSIO
TMPSPACE
TRACER
UNSTIO
UNTRANS
USERLKUP
USEROFF
VIOEXEC
VSERSCH
WRTCONS

-246-

PAGSHARE, PAGOUT, PAGFRET
PAGTRANS, PAGUNLOK, PAGFREE,

CORUSER, DRMWAIT, CORTENT, WAITPAGE
PROGINT, REFLECT
PRIVLGED
SVCINT, SVCINIT, EXTINT, MCHEKINT, SVCDUt
QUEVIO, QUERIO, CHFREE
RDCONS
LINKSCAN, RDSCAN, DEVSCAN
RECFREE, RECFRET
RESINT, RESIRA
SAVECP
RUNITSCAN, VUNITSCAN
SCHEDULE, SCLOCK
SC RE DAT
PRIMSG, STCONSIO
TMPSPACE, TMPRET, T2311, TMPERTN

TRACER, TRINT
UNSTIO
UNTRANS, FREECCW
USERLKUP
USEROFF, ADSET, ADSETOUT, RELEASE, RUNRET
VIOEXEC, VIRA
VSERSCH
WRTCONS, PRIORITY, OPTIME

!

(

ACCTON

Module name: ACCTON

Entry point: ACCTON

Purpose: To provide individual installations with the
ability to add additional processing and/or checking of
users at LOGIN time.

---·----
Entry conditions: Called from LOGIN after all other

functions are complete except for message to operator
and writing of LOGMSG to user.

Exit conditions: Condition code 0 - continue.
Condition code not O - log off user.

-247-

ACNTIME •

Module name: ACNTIME

Entry point: ACNTIME

Purpose: This module computes the total connectr virtualr
and actual CPU time used by the user and prints a
formatted message on the user's terminal.

Registers 0-15 are saved upon entry to this module.

Entry point: ACNTIME

Entry conditions: GPRll pointing to user's UTABLE

Exit conditions: None

-248-

ACNTOFF

Module name: ACNTOFF

Entry points: ACNTOFFw DEVOFF

Purpose: To provide individual installations with a
replaceable module for performing accounting functions
at LOGOUT time.

Entry point: ACNTOFF - punch accounting card for USER.

Entry conditions: GPR 11 points to the UTABLE.

Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: DEVOFF - punch accounting card for a dedicated
device.

Entry conditions: GPR 11 points to UTABLE; GPR 2 points to
RDEVBLOK.

Registers 0-11 are saved upon entry.

Exit conditions: None

-249-

CCWTRANS

Module name: CCWTRANS

Entry points: CCWTRANS, VSMCPIR, CP6IRA

Purpose: The CCWTRANS module prepares the user program
channel command words for execution by the real
machine, and creates the user program's channel status
word on termination of the operation.

Entry point: CCWTRANS - translate user's virtual ccw list
into an equivalent real list.

Entry conditions: GPR 1 is 0, indicating no I/O is to be
performed, or it points to the IOTASK block which will
represent this task. GPR 6 points to the virtual
device block (VDEVBLOK) on which the operation is to be
performed. The TASKCAW entry in the task block points
to the user's virtual ccw list.

Exit conditions:
The TASKFLAG
multi track
preserved.

The TASKCAW points to the real ccw list.
in the task block indicates whether any

CCW's are present. Other registers are

Entry point: VSMCPIR - restart ISAM I/O operation.

Entry conditions: GPR9 points to the IOTASK block. GPR10
points to the channel status word.

Registers 0-15 are saved upon entry to VSMCPIR.

Exit conditions: None

Entry point:
original
CCW's.

CP6IRA - restore user's virtual core to its
condition after executing certain OS ISAM

Entry conditions: Same as VSMCPIR

Exit conditions: None

-250-

CESCOM

Module name: CFSCOM

Entry points: WNG, MSG, READY, LOGOUT, SLEEP, DISCONN

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See "Console Functions" in Section
2 for individual command processing.

Exit condition: Return to CFSMAIN via branch table after
handling command.

-251-

I CFSDBG

Module name: CFSDBG

Entry points: DCP, 'DISPLAY, DMCP, DUMP, STCP, STORE

I Purpose: Each entry point corresponds to a console command.

I DCP - displays real core storage on the operator's
I console.
I DISPLAY - displays virtual core storage, etc. on
I the user's terminal.
I DMCP - dumps real core to the printer.
I DUMP - dumps virtual core, etc. to the user's
I virutal printer.
I STCP - stores into real core from the operator" s
I console.
I STORE - stores into the user's virtual core, etc.

I Entry conditions: Register 9 contains the address of the
I entry point in this module. It is immediately
I changed to point to the beginning of csect CFSDBG,
I in order to provide addressability to the entire
I module. Register 12 contains the base address of
I a branch table in CFSMAIN. This table is used to
I branch to various subroutines in CFSMAIN.
I Register 13 contains the address of an 18 double
I word savearea. Register 11 contains the address of
I the UTABLE for the user issuing the command.

I Exit conditions: Return is made to CFSMAIN via the branch
I table after handling the command.

I External routines used--

I Called routines:
I PAGTRANS, WRTCONS, MVIPRINT, BINDEC, BINHEX,
I DECBIN, HEXBIN, FPCONV, DISPATCH, FREE, FRET,
I FREEPST, FRETPST.

I Routines in CFSMAIN which are branched or branch and
I linked to:
I SCANFLD, BADCOM, BADARG, READ!.

I References to other locations in the CP nucleus:
I RMACHSIZ, TREBCDIC.

-252-

(
\

CFS IPL

Module name: CFSIPL

Entry points: CFSIPL, IPLSAVE

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See •console Functions• in Section
2 for individual command processing .•

Exit condition: Return to CFSMAIN via branch table after
handling command.

-253-

CFS MAIN

Module name: CFSMAIN

Entry points: BREAK, BRKRD, BRKWR, COMENTRY

Purpose: The CFSMAIN module calls the user console
functions and the operator functions. It is entered
when a BREAK occurs on the user's terminal or the
virtual machine goes idle (detected in DISPATCH).

---------------------------------------~------------------

Entry point: BREAK - entered when a user activates the
attention key.

Entry conditions: GPR 6 points
GPR 10 points to the
interrupt.

to the terminal's MRDEBLOK.
csw information from the

Registers 0-15 are saved upon entry.

Exit conditions: None. CONSOL exits by making the user
runnable and returning to DISPATCH, after a BEGIN or
IPL command, or if ATTN key actuated while in console
function mode. Also exits immediately after a virtual
console function .•

Entry point: COMENTRY entered from PROGINT when a
virtual console DIAGNOSE instruction specifying a

function has been detected.

Entry conditions: GPR2 points to a buffer containing the
command line. GPR3 contains the number of bytes in the
input line. GPRll points to the user UTABLE.

Registers 0-15 are saved upon entry.

Exit conditions: GPR2 contains an error code as follows:

-254-

O - No errors
4 - INVALID CP REQUEST (message not printed by CP)
8 - BAD ARGUMENT (message not printed by CP)
x Code dependent upon specific function <error

message usually printed by CP-67)

CFSPRV

Module name: CFSPRV

Entry points: ENABLE, DISABLE, LOCKC, UNLOCK, SHUTDOWN,
KILL, CFSACNT, CFSDIR, ABEND

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See "Console Functions" in Section
2 for individual command processing~

Exit condition: Return to CFSMAIN via branch table after
handling command.

-255-

CFSQRY

Module name: CFSQRY

Entry point: QUERY

Purpose: Each entry point corresponds to a console command
and contains logic for that command .•

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See "Console Functions" in Section
2 for individual command processing .•

Exit condition: Return to CFSMAIN via branch table after
handling command.

-256-

(

CFS SET

Module name: CFSSET

Entry point: SET

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

--~·------------

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See "Console Functions" in Section
2 for individual command processing.

Exit condition: Return to CFSMAIN via branch table after
handling command.

-257-

C.FSSPL

Module name: CFSSPL

Entry points: TERM. CLOSE. XFER. SPACE. DRAIN. START.
PURGE. SPOOL. RE.PEAT

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

-------------------------------------~---------------------

Entry conditions: Register 9 is used for addressing this
module. and register 12 for addressing a branch table
located in CFSMAIN. See •console Functions• in Section
2 for individual command processing.

Exit condition: Return to CFSMAIN via branch table after
handling corornand.

-258-

CF STACH

Module name: CFSTACH

Entry points: ATTACH, DETACH, CLINK

Purpose: Each entry point corresponds to a console command
and contains logic for that command.

--~---

Entry conditions: Register 9 is used for addressing this
module, and register 12 for addressing a branch table
located in CFSMAIN. See "Console Functions" in Section
2 for individual command processing.

Exit condition: Return to CFSMAIN via branch table after
handling command.

-259-

CI:KCUACI'

Module name: CHKCUACT

Entry point: CHKCUACT

Purpose: CHKCUACT will examine the last ccw executed by a
channel program and decide whether. for the device type
on which the sequence was executed. the control unit is
freed at channel end time.

Registers 0-4 are saved upon entry to CHKCUACT.

Entry point: CHKCUACT (BALR)

Entry conditions:
for which the
8 points to
operation was

GPR 6 points
input-output
the virtual
executed.

to the virtual channel block
operation was executed. GPR
device block for which the

Exit conditions: The condition code is set nonzero if the
control unit remains busy after the channel end
occurring on the indicated ccw operation code, It is
set to zero if the control unit may be considered free.

-260-

CHKPT

Module name: CHKPT

Entry point: CHKPT

Purpose: To save user accounting information and in-core
spool pointers on disk.

--~-

Entry point: CHKPT

Entry conditions: If low core location CPID <hex 'lFC')
contains "CP67" or "SHUT", records will be written
to disk; otherwise no action is taken.

Exit conditions: If CPID does not contain "SHUT", CP-67 will
be IPL'ed by software; otherwise CHKPT will enter
the wait state.

-261-

CONS IN!'

Module name: CONSINT

Entry points: CONSINT, IDENTIFY, PREPLINE, RTN41WT, RTN52WT,
RTN41ND, RTN52ND, OFFHAND, OFFENT, CPIENT

Purpose: This module initializes and identifies
terminals and processes all interrupts from
terminals. (Terminals presently supported are
1052, 2741-1, and 2741-2.)

Entry point: CONSINT

remote
those
1050,

Entry conditions: All 1052 console interrupts are serviced
via this entry point. GPR 10 is the location of the
CSW associated with the interrupt, and GPR 6 is the
MRDEBLOK for the interrupting device.

Exit conditions: If the previous I/O terminated normally,
another I/O is initiated.
If only a CE has been received, the DE is waited for.
If an irregular ending occurred, the "ready" interrupt
or the •termination-of-sense" is waited for.
Control is returned to DISPATCH via IOINT.

Entry point: IDENTIFY

Entry conditions: The 2702 lines once they are enabled have
their first interrupt enter at IDENTIFY. GPR 6
contains the address of the terminal's MRDEBLOK and
GPRlO points to the relevant csw.

Exit conditions: The terminal is identified and its
MRDEVTYP stored or it is indicated to be an unknown
type. The line is initialized with a "Prepare" command
and is waiting for a "login" attention break.

Entry point: PREPLINE

Entry conditions: GPR 6 points to the MRDEBLOK of a
terminal of known device type CMRDEVTYP). The terminal
line is then initialized with a "Prepare" command.

Exit conditions: The line sits in a "prepared" state
waiting for a "login" attention break.

Entry points: RTN41WT, RTN52WT, RTN41ND, RTN52ND

Entry conditions: GPR6 points to a terminal MRDEBLOK of
known device type that has completed an I/O operation

-262-

i
l

(

by HIO, ATTN, or carriage return.

Exit conditions: the next I/O operation is started, if any,
or the line is put in •prepare• status .• control is.
returned to DISPATCH via IOINT.

Entry points: OFFHANG, OFFENT

Entry conditions: GPR6 points to a terminal MRDEBLOK. A
message is written to the' terminal and an interrupt
return address (OFFENT) is set up.

Exit condition: Return is to the caller (CCWTRAN>.

-263-

CONVRT

Module name: CONVRT

Entry points: BINHEX, HEXBIN, DECBIN, BINDEC, FPCONV,
DATE TIME

Purpose: CONVRT is a collection of data conversion routines
to assist CP-67 in communicating with the user.

Entry point: BINHEX

Entry conditions: GPR 1 contains the number to be converted
from binary to hexadecimal notation.

Exit conditions: GPR's 0 and 1 contain the converted number
in hexadecimal notation with leading zeros not
suppressed.

Entry point: HEXBIN

Entry conditions: GPR 1 contains a pointer to a string of
eight or fewer characters in hexadecimal notation
(EBCDIC) which are to be converted. The length of the
string is in GPR O.

Registers 0-5 are saved upon entry.

Exit conditions: The condition code is set nonzero if an
illegal hexadecimal character is encountered in the
string: otherwise, the condition code is zero. The
converted number is returned right-justified in GPR 1.

Entry point: FPCONV

Entry conditions: GPR 2 contains a pointer
which contains the floating point word
to standard floating point notation
.00000000000 E 00) and GPR 1 contains a
output buffer of at least 17 characters.

Registers 0-5 are saved upon entry.

to a doubleword
to be converted

Cfor example,
pointer to an

Exit conditions: The routine will fill the buffer pointed
to by GPR 1 with the number in standard floating point
notation.

-264-

Entry point: BINDEC

Entry conditions: GPR 1 contains a binary number to be
converted to the equivalent in decimal notation.

Exit conditions: BINDEC returns the low-order eight decimal
digits in GPR's O and 1.

Entry point: DECBIN

Entry conditions: GPR 1
EBCDIC form Of a
converted to binary
length of this field

points to a field containing the
decimal number which is to be

equivalent. GPR 0 contains the
(in bytes>.

Exit conditions: The condition code is set nonzero if the
specified string contains invalid decimal information,
or the length exceeds 15; otherwise, the condition code
is set to zero. GPR 1 is returned with the converted
n~b~.

Entry point: DATETIME

Entry conditions: GPR 1 points to a field into which the
date will be entered (as mm/dd/yy>. GPR 2 points to a
field into which the time will be entered <as
hh.mm.ss>. The date and time data are obtained from
their locations in lower memory. If either pointer is
zero, that parameter will not be provided.

Exit conditions: The fields are filled in as specified.

-265-

CPCORE

Module name: CPCORE

Entry point: CPCORE

Purpose: Contains only constants, no executable code.
currently contains constants for the IPL command,
(DASDIPL - disk address of IPL module, DASDIPLN - disk
address of SYSTEM module, and CMSTABLE - table for CMS
shared system).

-266-

CPFILE

Module name: CPFILE

Entry points: CPFOPENR, CPFOPENW, CPFCLOSE, CPFREAD,
READTASK, WRITTASK, CPFDLKUP, CPFDCLOS

Purpose: CPFILE is the mechanism by which CP-67 reads the
various internal working disk files required, for
example, system and user file directories and machine
description files. Various routine entries are
provided to allow opening, reading, and closing various
files.

Entry point: CPFOPENR - open a file for reading.

Entry conditions: GPR 3 points to an eight-character file
name.

Exit

Registers 0-8 are saved upon entry.

conditions: GPR 2
System (CPFS) block
access to the file.
later use in calling

points to a control Program File
which will be used to control

(Note: this must be preserved for
for actual file input-output>.

Entry point: CPFOPENW - open a file for writing.

Entry conditions: This routine is not implemented yet - its
calling conditions will be identical to CPFOPENR.

Registers 0-8 are saved upon entry.

Exit conditions: None

Entry point: CPFREAD - read data from a previously opened
file.

Entry conditions: GPR 0 contains the number of bytes to be
read. GPR 2 points to the CPFS block which was
provided when the file was opened (see CPFOPENR).

Registers 2-7 are saved upon entry.

Exit conditions: GPR 1 points to the desired data <which
resides in a CPFS-owned buffer> or zero if an
end-of-file condition was encountered.

-267-

Entry point: CPFCLOSE - close a previously opened file.

Entry conditions: GPR 2 points to the appropriate CPFS file
descriptor block.

Registers 0-5 are saved upon entry.

Exit conditions: None

Entry point: READTASK

Entry conditions: GPR 1 points to a buffer at least CPRECSZ
bytes long (currently 829 bytes). GPR 2 points to the
real device block. GPR 3 points to the record to be
read (as BBCCHHR).

Registers 0-15 are saved upon entry.

Exit conditions: None. If the operation was not completed
successfully, IOERROR is called to attempt recovery.

Entry point: WRITTASK - perform a write operation to disk.

Entry conditions: Same as READTASK

Exit conditions: Same as READTASK

Entry point: CPFDLKUP - finds specified directory entry.

Entry conditions: GPR 3 points to an eight-character file
name.

Exit

Registers 3-6 are saved upon entry.

conditions: Condition code=O for file found,
points to DIRECTORY CPFRECRD; GPR 2 points to
CPFDENT. Otherwise, condition code=l for
found·, and GPR 2 points to first empty entry.

Entry point: CFDCLOS - closes open directory file.

Entry conditions: GPR 2 points to CPFFDBLK.

Registers 0-3 are saved upon entry.

Exit conditions: None

-268-

and GPR 1
DIRECTORY
file not

(

CPI NIT

Module name: CPINIT

Entry point: CPINIT

Purpose: This is the CP-67 initialization module. Its
function is to create the necessary control blocks such
as CORTABLE and allocation tables cased upon the
hardware configuration present. For a detailed
description of the functions performed see the section
•control Program Initialization• in section 2.

Entry point: CPINIT

Entry conditions: GPR 2 contains a pointer to the
allocation table address of the system residence
volume. GPR 6 contains the device address of the
residence volume.

Exit conditions: Exits to DISPATCH.

-269-

CPSTACK

Module name: CPSTACK

Entry point: CPSTACK

Purpose: This routine queues requests for CP execution
(CPREQUEST blocks def erred pending an event occurrence>
on the request stack (CPRQFST) defined in DISPATCH.

Registers 0-3 are saved upon entry to CPSTACK.

Entry point: CPSTACK - queue CPRQUEST blocks (BALR)

Entry conditions: GPR 1 points to a CPRQUEST block.

Exit conditions: None

-270-

(

CPSYM

Module name: CPSYM

Entry point: CPSYM

Purpose: The CPSYM module does not contain executable code.
It is essentially an in-core load map of the CP-67
nucleus. It contains the EBCDIC name and hex address
of each CP module as well as some of the more important
entry points and control words.

-271-

DEDICATE

.Module name: DEDICATE

Entry point: DEDICATE

Purpose: This module creates from CP-67 free storage a set
of RCHBLOK, RCUBLOK, and RDEVBLOK control blocks to
define a dedicated (nonshared) multiplexer device. The
control blocks are chained on to the existing chain of
control blocks pointed to by RCHSTART. The .MRDEBLOK is
flagged (in MRDEFLAG) as being dedicated (MRIDED>; the
UTABLE address of the owning user is stored in MUSER.

Entry conditions: GPR 11 contains the UTABLE address.
GPR 1 contains the real device address.

Exit conditions:
Successful:

Unsuccessful:

-272-

Condition code 0 - GPR 1 contains the
address of the RDEVBLOK created.
Condition code 1 Nonexistent real
device
condition code 2 - Device in use

DIAGDSK

Module Name: DIAGDSK

Entry Point: DIAGDSK

Purpose: This module is entered from PRIVLGED when a user
has issued a diagnose call for a specialized I/O task
to be performed on a 2311 or 2314. DIAGDSK checks for
various calling errors; if none is present, an I/O task
is made up and scheduled for execution by calls to
QUERIO and DISPATCH. Upon completion, a condition code
of O indicates to the user that the I/O has been
completed with no errors <no csw being returned to the
user). Errors are signalled to the user as indicated
below. The use of DIAGDSK for simple I/O provides a
significant speed improvement for CMS or other users
who have a ccw string of similar format.

Entry point: DIAGDSK

Entry conditions: GPR5 points to user's "R1", which must
hold the device address. GPR4 points to user's "R2",
which must point to a ccw-string of the following
format:

(1) SEEK BBCCHHR (below)
(2) SEARCH EBCCHHR+2 (below)
(3) TIC BACK TO SEARCH
(4) READ OR WRITE OF UP TO 4096 BYTES

Cup to 824 bytes for CMS)
(5) NO-OP
(6) BBCCHHR SEEK/SEARCH ARGUMENTS (7 bytes)

Exit Conditions: CUpon return to user via DISPATCH)

Condition-Code CCC) = 0: I/O complete with no errors.

cc = 1: SIO failed, CSW stored.
(CSW+4 6 CSW+5 returned to user>

CC = 2: Either an attempt to write on a read-only disk
<program-check returned to user>

or
other I/O error on completion
csw CS bytes) returned to user
<sense bytes available if user does a 'SENSE'>

cc = 3: Not attached, neither 2314 nor 2311,
or invalid DIAGNOSE call by user.
Error-code returned to user in his R15, as follows:

1 = Not attached (error from VUNITSCN in CP)
2 = Device is neither 2314 nor 2311

-273-

I
I
I
I
I
I
I
I
I
I

3 = Pointer to user's ccw-string not dbl-word aligned
4 = SEEK/SEARCH arguments not within user core
5 = Read/write CCW neither read (06) nor write COS>
6 = Read/write byte-count = 0
1 = Read/write byte-count greater than 4096
8 = Read/write buff er not within user core
9 = condition-code 2 <busy> on actual SIO

as attempted by CP
10 = condition-code 3 (not operational) on actual SIO

as attempted by CP

-274-

DIAL

Module name: DIAL

Entry point: DIAL

Purpose: Attaches user's terminal as a dedicated device to
an existing virtual 2701, 2702, or 2703 line in the
virtual machine specified. The UTABLE and MVDEBLOK are
returned to free storage and the user terminal is
removed from CP control.

Registers 0-11 are saved upon entry to DIAL.

Entry conditions: Entry is from LOGIN after a DIAL command.
GPR 10 points to an eight-character userid. GPR 11
points to a UTABLE.

Exit conditions: If successful, GPR 11 is set to zero.

-275-

DISPATCE

Module name: DISPATCH

I Entry points: DISPATCH, DSPTCHA, DSPTCHB, DSPTCHC, DISACT,
I DISDRQ, and DISIO

I DISPATCH is entered when some process has been completed or
I cannot continue any further until some other even~ has
I completed (an I/O operation). It updates the user'• s
I control blocks to reflect his current status. If a
I user was running, DISPATCH attempts to restart him. If
I it cannot restart the running user or if there was
I none, DISPATCH will dequeue any CP-67 deferred work
I requests and start them. When all CP requests are
I exhausted DISPATCH will run the highest priority,
I runnable, and in queue user if there is one, or it will
I enter enabled wait state.

Entry point: DISPATCH

Entry conditions: GPR 11 points to a valid UTABLE to be
charged for time spent in CP-67 since the last charge.

Entry point: DSPTCHA

Entry conditions: Same as DISPATCH except entered after
processing a program interrupt from a running user
where processing has not changed the virtual PSW.

Entry point: DSPTCHB

Entry conditions: Same as DSPI'CHA except processing has
changed the virtual PSW.

Entry point: DSPTCHC

Entry conditions: No change to user pointed to by R11 .•

Entry point: DISACT

,Entry condtions: Charge user for CPU time used
charge. Called when a routine has changed
of a user.

Exit conditions: None.

-276-

since last
the status

Entry point: DISDRQ - drop a user from a queue (called>

Entry conditions: GPR 11 points to user to be dropped from a
queue.

Exit condtions: None.

Entry point: DISIO (called)

I Entry conditions: GPR 11 points to user that has had his
I status changed. Called by routines which have updated a
I user's status and are not returning or going to
I DISPATCH (either directly or indirectly>, with GPR 11
I pointing to this user.

-277-

DSKDUMP

Module name: DSKDUMP

Entry point: DSKDUMP

Purpose: This module is entered from module PSA when CP-67
issues an SVC 0 ABEND, on activation of the PSW
restart button, or from PROGINI' for a system program
error. The module contains code to dump core' to a
printer, tape or disk. The dump will be of all core
or of only those pages marked as *CP* or FREE in the
CORT ABLE.

Entry point: DSKDUMP

Entry conditions: General registers are stored at GREGS.

Exit conditions: An exit is taken by performing a software
re-IPL of the system.

-278-

/

!

EXTEND

Module name: EXTEND

Entry point: EXTEND

Purpose: EXTEND is used to obtain a number of pages for
CP-67 common buffer space called Free Area. It has a
table, EXT1, to indicate the number of pages required,
depending upon the rea1 machine core size. It calls
PAGFREE repeatedly to get these pages. It is called by
FREE.

Registers 0-15 are saved upon entry to EXTEND.

Entry point: EXTEND

Entry conditions: None

Exit conditions: GPR 1 points to an area which may be
incorporated into the free storage zone. GPR 0 contains
the length of this area in bytes .•

-279-

I (See Figure 44 for an overview of FREE processing.)

I Note: 'TRACE(4) option must be chosen as sysgen time in
I order to gather statistics in FREE/FRET.

Module name: FREE

Entry points: FREE, FRET, FRETR

Purpose: To maintain and allocate uni ts of system free.
storage, with minimum fragmentation. Free storage is
utilized by CP-67 for I/O tasks, ccw strings,
buffers--in fact, for all but real channel-control
unit-device blocks, CORTABLEs, and save areas.

The most frequently used storage block sizes, some 29
in number, constituting about 99~ of all FREE/FRET
calls, have been allocated into ten subpools. All
FREE/FRET calls for the doubleword block size listed in
the left column below receive ~he corresponding
doubleword block in the right column:

Number of double words
called for

1
2 or 3
4
5
6, 7 or
9 or 10
11 - 14
15 - 18
19 - 23
24 - 29

8

Subpool size actually
used

-~-------------------

1
3
4
5
8
10
14
18
23
29

A block from the subpool chain is given priority in a
call to FREE for a subpool size; a block is selected
from the regular free storage chain only if none is
available from the subpool chain, or if the call to
FREE is for a block greater than 29 doublewords. A
FRET call, likewise, is checked for subpool size; if it
corresponds, the block returned is patched into the
chain on a LIFO (last-in-first-out> basis, that is,
push-down stack.

A special entry, FRETR, enables CPINIT and EXTEND to
bypass subpool consideration whether or not the block
being returned is subpool size.

Various statistical information is now kept in the FREE
routine, starting at entrypoint FREELIST. The code for
statistical information can be removed by revision of a
SETA symbol, if speed of performance takes precedence

-280-

\. ... - _,./

over statistics gathering: by assigning SE'TA a value of
1, statistics are included; a value of O causes their
removal. The following is a partial list of pointers,
counters, and statistical quantities of interest (the
names in parentheses are labels of these quantities):

end of highest subpool block given out (ENDSUB)
address of lowest regular block given out (BEGINREG)
end of free area in lower core (ELOFREE)
beginning of free area in high core (BHIFREE)
subpool FRET calls requiring regular FRET CSBFRTREG)
table of pointers to subpools (SUBTABLE)
number of times subpools returned (SUBRETN)
number of times EXTEND is called (EXTCALL)

Other statistical quantities (for debugging and
operations research, only)
maximum value attained by FREENUM (MFREENUM)
FREE/FREI' calls for sizes not in subpools (FREEUSED,FRETUSED)
counts of satisfied and unsatisfied FREE subpool calls

(SUBFREE,USUBFREE)
count of successful FRET subpool calls (SUBFRE'T)

Statistical counters for each subpool size

number of subpool blocks in use; number left CSUBLEFT)
maximum value attained by SUBUSED CMSUBUSED)
cumulative times spent in FREE and FRET CTIMEFREE,TIMEFRET)
count of subpool-range sizes referenced CSIZEREF)

Entry point: FREE
CBALR>

allocate a region of free storage

Entry conditions: GPR 0 contains the number of doublewords
requested.

Registers 0-15 are saved upon entry.

Exit conditions: GPR 1 contains a pointer to the region of
the size requested. This region will always be on a
doubleword boundary.

Entry point: FRET - return a region to free storage CBALR>

Entry conditions: GPR 0 contains a count of the number of
doublewords being returned. GPR 1 contains a pointer
to the initial doubleword of the region. This pointer
must always be on a doubleword boundary.

Register 0-15 are saved upon entry.

-281-

Exit conditions:
after it has

None. No reference may be made
been returned to free storage.

to a region

Entry point:
as FRET
(BALR)

FRETR return
except does not

a region to free storage. Same
attempt to use subpool logic

Entry conditions: Same as FRET
Exit conditions: Same as FRET

EXTEND

extend free
storage Estend ._ ____ _.sw ..

Save this block
as a possible
(looking for
lmt large block)

No

Yes

Enter

module FREE
ontry FREE

Convert DBL
word request
to bytes

Search free
storage ~ocks
for one bigger
than needed

Remove requested
size from this
block

Update free
storage block
size and
pointer

Save block
address for
caller

Exit

No

Extend SW
not ..

Remove requested
size from hiW!
end of last
large block

Update free
storage block
size and
pointer

Save block
address for
caller

No

Figure 44. CP-67 FREE (1 of 2)

-282-

Searcll
subpools

Yes Save block
address
for caller

Exit

f
I

Update pointers
in subpool table
to include
this block

Exit

Figure 44.

Yes

No

Get last
block in
chain

No

Enter

module FREE
entry FRET

Get beginning
of chain

Scan FREE
storage
chain

Get pointer
and size from
preceding
block

CP-67 FREE (2 of 2)

Yes

Chain block
off free list
store size
in block

Get pointer
and size from
succeeding
block

Yes

No

Increment
error
count

Merge sizes
update pointers
and size

Yes

Exit

-283-

IO ERROR

Module name: IOERROR

Entry points: IOERROR, VERROR, RECERROR, MCKERR, FINDLOG,
FMTLOG, LOGRETN, FINDMC, FINDIO, F.MI'MLOG, FMTLOGM,
FMTILOG, FMTLOGI

On entry to each, registers 0-11 are saved.

Purpose: The IOERROR routine analyzes and retries
CP-generated I/O errors incurred while paging,
spooling, or reading the directory .• Selected I/O errors
and machine check errors are recorded on the SYSRES
volume at a predefined location. Warning messages are
sent to the operator when repeated I/O errors occur on
a device used by CP-67 for paging, spooling, or
directory space. The routine also contains code to
locate and/or format the error-recording records to be
used. The locate function is initiated by CPINIT. The
format function (actually erasing any previous data> is
performed by a special diagnose code executed by a
privilege class c user only.

Entry point: IOERROR

Entry conditions: GPR 6 contains a pointer to the real
device block for the device on which the error
occurred. GPR 9 contains a pointer to the IOTASK block
which did not execute properly.

Exit conditions: If retry is successful, control returns to
the program which issued the original I/O request
(return address in TASKIRA). If 64 retries of the I/O
are all unsuccessful, exit is to the dispatcher, and
the system will ABEND.

Entry point: VERROR

Entry conditions: GPR 8 contains a pointer to the virtual
device block.

Exit conditions: None

Entry point: RECERROR

Entry conditions: Called by IOERROR and VERROR

-284-

Exit conditions: The appropriate counter in the real or
virtual device block will be updated to reflect the
error. If the error is the first of its type to be
encountered for this device, or the error counter
overflows, the CE LOGREC will be updated to reflect the
latest error.

Entry point: MCKERR

Entry conditions: Entered whenever a machine check occurs,
whether in supervisor or problem state.

Exit conditions: Return is to the machine check interrupt
handler, MCHEKINT.

Entry point: FINDLOG

Entry conditions: Called by CPINIT

Exit conditions: Returns to caller

Entry point: FMTLOG

Entry conditions: Called by FINDLOG and "Diagnose• by
customer engineer to clear and format CE cylinder

Exit conditions: If successful, return to caller.. If
permanent I/O error, system will ABEND.

-285-

IOINI'

Module name: IOINT

Entry points: IOINT, IOISTVDE, IOISTVCU

Purpose: IOINT receives control from the I/O new PSW. It
saves the state of the running user's machine, if any,
and determines what further action is required,. In
normal processing, an exit is taken to the IOTASK
block's TASKIRA.

If the &TRACE (2)
in the LOCAL COPY
entries in the
respectively.

and/or the &TRACEC3) options are seiected
file, then the IOINT module also generates
selector and/or multiplexor trace table

Entry point: IOINT

Entry conditions: Receives control from the I/O new PSW.

Exit conditions: Exits through a call to TASKIRA followed
by a transfer to DISPATCH with GPR 11 pointing to the
chargeable user.

Entry point: IOISTVCU
count CBALR)

increment control unit pending

Entry conditions: GPR 6 points to a virtual channel block.

Exit conditions: None.

Entry point: IOISTVDE - increment device pending count and
control pending count if device count was zero CBALR)

Entry conditions: GPR 7 points to a virtual control unit
block and GPR 6 points to a virtual channel block.

-286-

IPL

Module name: IPL

Entry point: IPL

Purpose: The IPL module is responsible for simulation and
correct interpretation of various IPL sequences
supported for several devices. It is unique in that it
resides in virtual memory. The virtual memory location
is the page boundary closest to half the virtual memory
size or page X'20000', whichever is the smaller.

Entry point: IPL

Entry conditions: The IPL module resides in virtual memory
and its parameters are passed by the control program
through the use of the first 24 bytes of page zero of
that virtual memory. (Note: Since the IPL sequence
destroys these bytes on the real machine, no alteration
of behavior from the real machine is seen .• > The
information passed consists of Cl) the virtual device
address and (2) the virtual device type code.

Exit conditions: The IPL module transfers control to the
system just IPL'ed via user's lower core location zero.

-287-

LINK

Module name: LINK

Entry point: LINK

Purpose: To dynamically attach virtual DASO devices based
on a machine description entry (MDENT) found in the
appropriate machine description file. Supports the LINK
console function. Called from CPSTACH. link command.

Entry point: LINK

Entry conditions:
GPR 1 points to a parameter list as follows:

DC CL8'userid'.CL8'password'.XL2'XXX'.XL2'YYY'
where XXX is the virtual address to be found
in the directory, and YYY is the address to
be used in attaching the device.

GPR 2 contains zero for read-only access. 1
for read/write access.

GPR 11 contains UTABLE address of requesting user.

Exit conditions:
GPR 2 contains an error code as follows:

-288-

O - Successful. attached as requested
1, 2 - Not used
3 - 'userid' found. address XXX not in directory
4 - Device YYY already attached
5 - Password is bad or the device is not shareable

for the given access mode
6 - 'userid' is in INLOGON state
7 - A write link to XXX already exists. LINK denied.
8 - The required volume is not mounted or not

attached to system
9 - Attached in read-only. not in write as requested
10 - 'userid' not in directory
11 - Address XXX not a DASD device
12 - Directory locked

_

LOG FILES

Module name: LOGFILES

Entry point: LOGFILES

Purpose: This module counts the number of spool file blocks
awaiting processing for the user and returns th~
address of a message to the caller. Called by LOGIN and
CFSQRY Cqueue files command).

Registers 0-15 are saved upon entry to LOGFILES .•

---~-----------~----

Entry point: LOGFILES

Entry condition: GPR11 pointing to user's UTABLE

Exit condition: None

-289-

LOGIN

Module name: LOGIN

Entry points: LOGIN, OPMSG, AUTOLOGIN

Purpose: The LOGIN module is responsible for setting up and
logging in a new user, creating from free storage those
control blocks required and allocating the required
machine resources.

Entry point: LOGIN - to log in a new user .•

Entry conditions: GPR 6 contains a pointer to the MRDEBLOK
desiring entrance to the system.

Registers 0-15 are saved upon entry.

Exit conditions: GPR 11 contains the address of the new
user UTABLE if the logon was successfully completed;
otherwise GPR 11 contains zero.

Entry point: OPMSG
LOGOUT activity.

Inform system operator of LOGIN,

Entry conditions: GPR 11 contains address of UTABLE; GPR 7
contains character string CL4' OFF' or CL4'' ON•.

Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: AUTOLOGIN - sets up pointers for automatically
logging on a specified user, and joins standard logon
code. Called from CPINIT.

Entry conditions: Same as LOGIN

Registers 0-15 are saved upon entry.

Exit conditions: Standard LOGIN exit

-290-

/,,..-

MRIOEXEC

Module name: MRIOEXEC

Entry points: MRIOEXEC, RPUNCH, PRIRA, CRIRA, PUIRA

Purpose: These routines are entered when an interrupt
occurs on the unit record equipment.. For a reader
interrupt, all of the cards are read and stored. For a
printer or punch interrupt, the corresponding disk
buff er is checked, and if there is pending data in the
buffers, it is printed or punched.

Entry points: MRIOEXEC, PRIRA, PUIRA, CRIRA

Entry conditions: All of these entries are entered from
IOINT on the appropriate interrupt. GPR 6 contains the
address of the corresponding MRDEBLOK, and GPR 10
contains a pointer to a doubleword of CSW information
from the interrupt.

Exit conditions:
entry points
the user for
processed.

After performing their functions, all
return to DISPATCH with GPR 11 pointing to
whom the input-output operation was being

Entry point: RPUNCH

Entry conditions: GPR 4 points to the buffer containing the
accounting information to be punched.

Exit conditions: The accounting information is punched when
a punch is available.

-291-

MVIOEXEC

Module name: MVIOEXEC

Entry points: MVIOEXEC, MVICLPR, MVICLPN, MVICLCR, MVIPRINT '-, /

Purpose: The MVIOEXEC module
input-output operations to
channel. This includes

handles all virtual
the user's multiplexer

terminal and spooling
functions.

--~---~---

Entry point: MVIOEXEC handle virtual input-output
requests to the multiplexer. Called by VIOEXEC.

Entry conditions: GPR 4 points to the first half of the
instruction. GPR 5 points to the second half,. GPR 9
contains the virtual device address. The user's
virtual CAW is pointing to the virtual ccw list.

Exit conditions: The user's condition code is set to
reflect the status of his virtual device.

Entry points:
files.

MVICLPR, MVICLPN - close printer and punch

Entry conditions:
virtual device
closed.

GPR 8 contains
block for which

the
the

address
file is

of
to

the
be

Exit conditions: If there was an open file, it is closed;
that is, it is put in the closed file chain, and real
output is initiated if the corresponding device is
available.

Entry point: MVICLCR - close file on card reader.

Entry conditions: same as for MVICLPR

Exit conditions: If there was an open file, it is closed;
that is, any remaining data in that file is discarded
and the next file, if any, is made accessible.

-292-

Entry point:
printer.

MVIPRINT print a line on the virtual

Entry conditions: GPR 1 is the address of a buffer
containing data for printer output. GPR 0 contains the
byte count of the data.

Exit conditions: Data is packed and put in the spooled
file.

-293-

PACK

Module name: PACK

Entry points: PACK, UNPACK

Purpose: To pack and unpack blanks from the spooling data
used by MRIOEXEC and MVIOEXEC.

Entry point: PACK - compress blanks from input data .•

Entry conditions: GPR 1 is the address of a byte containing
input data count, followed by the input data. GPR 2 is
the address of the output buffer.

Registers 0-7 are saved upon entry.

Exit conditions: First byte of output buffer contains
output data count, followed by output data.

Entry point: UNPACK

Entry conditions: GPR 1 contains the address of the input
buffer, in the same format as the output buffer for
PACK. GPR 2 contains the address of the output buffer.

Registers 0-6 are saved upon entry.

Exit conditions:
buffer.

-294-

The unpacked data appears in the output

/

PAGEGET

Module name: PAGEGET

Entry points: PAGEGET, PAGERLE

Purpose: The module handles DASD storage requirements for
paging.

--~---

Entry point: PAGEGET - allocate space for one page. Called
by PAGTRANS.

Entry conditions:
entry.

None. Registers 0-12 are saved upon

Exit conditions: GPR 2
address, if found.

contains device index and DASO
If not found, GPR 2 contains o.

Entry point: PAGERLE - release paging DASD area for this
user. Called by PAGOUT.

Entry conditions: GPR 11 points to this user's UTABLE and
registers 0-12 are saved upon entry. GPR 5 points to
a SWPTABLE entry containing the address of the
record to be released.

Exit conditions: None

-295-

PAGTR

Module Name: PAGTR

Entry points: PAGOUT, PAGFRET, PAGSHARE

Purpose: This module handles functions which require a
knowledge of the nature of the mapping device.

---·------------

Entry point: PAGOUT remove a user's pages from core.
Called from CFSIPL or USEROFF.

Entry conditions: GPR 11 points to the UTABLE of the user
whose pages are to be scrapped,.

Registers 0-13 are saved upon entry .•

Exit conditions: None.

Entry point: PAGFRET

Entry conditions: GPR 2 points to first page to be made
available for users, and GPR O is count of pages.

Exit conditions: None.

I Entry point: PAGSHARE - called by CONSOL for first user of a
I named system to bring into core and lock any shareable
I pages.

I Entry conditions: GPR 1 = first shared page number; GPR 5 =
I PAGTABLE address; GPR 6 = count of saved pages: GPR 7 =
I address of first entry of saved SWPTABLE; GPR 11 =
I UTABLE address.

Registers 1-7 are saved upon entry.

Exit conditions: None.
locked.

-296-

All required pages are in core and

PAGTRANS

Module name: PAGTRANS

Entry points: PAGTRANS, PAGUNLOK, PAGFREE, CORUSER, CORTENT,
WAITPAGE, DRMWAIT

Purpose: This module handles functions which require a
knowledge of the nature of the mapping device.

Entry point: PAGTRANS - translate virtual address and page
in, if required.

Entry conditions: GPR 1 contains the virtual byte address.
GPR 2 contains control parameters in byte 3 as follows:
BRING, to bring the page into core; LOCK, to lock the
page in core <implies BRING) ; - DEFER, to prevent return
to caller until page is in core; CHANGE, to set changed
bit for this page; USED, to set used bit for this page.

Registers 0-15 are saved upon entry.

Exit conditions: GPR 2 contains the real byte address.

Entry point: PAGUNLOK - unlock a virtual page CBALR>

Entry conditions: GPR 2 contains a real byte address within
the page to be unlocked.

Registers 0-7 are saved upon entry .•

Exit conditions: None

Entry point: PAGFREE - obtain free page for free storage.
Called by EXTEND.

Entry conditions:
entry.

None. Registers 3~11 are saved upon

Exit conditions: GPR 1 points to the page address which can
be included in the free area.

-297-

Entry point: CORUSER
Fullword containing address of first page available to
users, set by PAGFREE. Initialized value is ACCPEND>.

Entry point: CORTENT
Fullword containing address of end of CORTABLE, set by
PAGFREE.

Entry point: WAITPAGE - reflects completion of page I/O.
Called by IOINT.

Entry conditions: GPR 9 points to IOTASK; GPR 10 points to
csw.

Registers 0-15 are saved upon entry.

Exit conditions: None

Entry point: DRMWAIT - After a 2301 drum paging interrupt,
stacks CPREQUEST blocks for each additional page if the
I/O operation involved more than one page. Chains
together any IOTASKS queued off the allocation block
and calls QUERIO.

Entry conditions: GPR 9 points to IOTASK; GPR 10 points to
csw.

Exit conditions: Transfers to WAITPAGE.

-298-

/ '

/

1-~

I

I
I
I
I

I

I
I

I
I
I

PRIVLGED

Module Name: PRIVLGED

Entry points: PRIVLGED, FREEPST, FRETPST

Purpose: Provide non-I/O privileged instruction simulation.

If the ~TRACE(5) option is selected
then the PRIVLGED module accumulates
<defined in STAT COPY) about the
privileged instructions executed.

in the LOCAL COPY file,
statistics in low core

number and type of

Entry point: PRIVLGED

Entry conditions: R13 points at the real address of the
privileged instruction.

Exit conditions: Via a GOTO to VIOEXEC
is for I/O or to DISPATCH after
simulated.

if the instruction
the instruction is

Entry point: FREEPST - creates real copies of virtual 67
page tables.

Entry conditions: Register 11 points to UTABLE.

Registers 0-4 are saved upon entry.

Exit conditions: None.

I Entry point: FRE'TPST - releases real copies of virtual 67
I page tables.

Entry conditions: Register 11 points to UTABLE.

Registers 0-5 are saved upon entry .•

Exit conditons: None.

-299-

PRO~INT

Module name: PROGINT

Entry points: PROGINT, REFLECT
I

Purpose: PROGINT is entered from the program interruption
new PSW. ·It attempts to determine whether the
interruption occurred from the Control Program issuing
a simulated instruction (f~ exampler SLT) or the user
issuing a privileged i:t)Struction; in the latter easer
control is passed to/PRIVLGED, which interprets and
simulates user-issued privileged instructions.

Entry point: PROGINT

Entry conditions: PROGINT is entered from the program
interrupt new PSW.

I Exit conditions:
I
I If the interruption occurred as the result of a

program interruption in the Control Program indicating
program trouble, a terminal system dump occurs. If the
program interruption was the result of a user issuing a
privileged operation <the usual condition>r control is
passed to PRIVLGED.

Entry point: REFLECT - reflect an interrupt to the user.

Entry conditions: GPR 13 points to the old PSW for the
interruption condition which is to be reflected,. The
user's registers have already been saved.

Exit conditions: After making changes in the user's UTABLE
to reflect the interrupt, REFLECT transfers control to
DISPATCH with GPR 11 pointing to the affected user.

Note: The use of register 13 in this case to point to the
proper old PSW is a deviation from standard calling
sequence practice.

-300-

/

PSA

Module name: PSA

Entry points: SVCINT, SVCINIT, EXTINT, MCHEKINT, SVCDUMP

Purpose: To initialize and maintain the save areas provided
as a part of the calling protocol maintained within
CP-67. SVCINIT is called to initialize the save
areas, and SVCINT is entered by the SVC interrupt
occurring, indicating a request for linkage or
return by a CP-67 module. Also handles external and
machine check interrupts.

I If the ~TRACE(1) option is selected in the LOCAL COPY file,
I then PSA also places entries in a trace table for CP SVC's.

Entry point: SVCINIT - initialize save area.

Entry conditions: Entered via a BALR 14,15 to initialize
the save areas from CPINIT.

Exit conditions: Initialized save areas.

Entry point: SVCINT

I Entry conditions: Entered via an SVC O, 4, 8, 12, 16, or 20
I to perform, respectively, DIE, DUMP, LINK, RETURN,
I RELEASE, or SAVEGET.

Exit conditions: See "SVC Interruptions" in Section 2.

Entry point: EXTINT

Entry conditions: Eritered from the external interrupt new
PSW. If the interrupt occurred because of the
external interrupt pushbutton, the system operator
is logged out. This allows him to log in again from
an alternate console. If the interrupt occurred
because of a timer interrupt, the running user, if
any, is saved, and an exit is taken to DISPATCH to
determine whether there is any work.

Exit conditions: Exits to DISPATCH under normal conditions
with GPR 11 pointing to the interrupted user.

E~try point: MCHEKINT

Entry conditions: Upon detection of a hardware malfunction.

-301-

Exit conditions: After printing warning messages, if
machine check was in CP-67 mode, terminate all
processing. If machine check was in user mode, the
user is informed that a machine check has occurred.
The machine check is reflected back to the virtual
machine, which is placed in CP console function
mode; this enables a console function to be issued.

Entry point: SVCDUMP - branched to from within PSA on an
SVC 0 or entered from a PSW restart. Branches to
DSKDUMP to abnormally terminate.

Entry conditions: None

Exit conditions: None

-302-

/

QUEVIO

Module name: QUEVIO

Entry points: QUEVIO, QUERIO, CHFREE

Purposes: This module queues requests for input-output
operations on the selector channels, determines whether
the channels are available, prepositions access arms on
direct access devices, and initiates the input-output
operations.

Entry point: QUEV10 - queue virtual task block CBALR)

Entry conditions: GPR 1 points to an IaI'ASK block which is
to be queued. GPR 2 points to the virtual device block.

Registers 0-14 are saved upon entry.

Exit conditions: None. Transfer is to CHFREE, to initiate
operation of the task.

Entry point: QUERIO - queue real task block CBALR)

Entry conditions: GPR 1 points to an IOTASK block which is
to be queued. GPR 6 points to the real device block on
which the input-output operation is being performed.

Registers 0-14 are saved upon entry.

Exit conditions: None. Transfer is to CHFREE, to initiate
operation of the task.

Entry point: CHFREE - start idle channel CBALR)

Entry conditions: GPR 1 points to a real channel block for
which input-output operations are to be initiated, if
possible.

Registers 0-14 are saved upon entry.

Exit conditions: None. If the operation can be started, a
zero condition code from the SIO operation causes the
user to be removed from the IOWAIT condition if the
operation originated from a virtual machine. For a
nonzero condition code, CHFREE calls the TASKIRA with
the condition code indicated in GPR 0. CHFREE can also
call itself recursively if it determines that the
operation just initiated has freed the channel.

-303-

RDCONS

Module name: RDCONS

Entry point: RDCONS

Purpose: This module creates a CCW "package" (according to
the type of terminal it is servicing> that can be
stacked as a read request for that terminal. It allows
the different remote terminals to be treated as though
each were a 1052.

Registers 0-10 are saved upon entry to RDCONS.

----------------------------------~-----------------------

Entry point: RDCONS

Entry conditions: GPR 1 contains the address of the input
buffer (132 bytes). GPR 2 holds the options that are
requested when RDCONS is called: EDIT, OPERATOR, or
UCASE. If EDIT is specified, character or line
deletions are performed as specified. If UCASE is
specified, all lowercase letters are translated to
equivalent uppercase letters. If OPERATOR is
specified, a read is performed from the operator's
terminal. GPR 3 contains the address to which the
Control Program will return control after completion of
the console I/O. GPR 11 points to the UTABLE of the
user to whom the read is directed.

Exit conditions: The return is made from RDCONS immediately
with all registers restored. At the termination of the
read operation, GPR 0 contains the byte count of the
input message; GPR 2 contains an error condition code,
if any. Control is returned to the address specified
in GPR 3 at the call to RDCONS.

-304-

(

RI:SCAN

Module name: RD SCAN

Entry points: LINKSCAN, RDSCAN, DEVSCAN

Purpose: To determine whether a virtual DASD device is
currently attached to the virtual machine of an active
user (that is, a •1ink" exists>. Definition: Two
virtual devices having the same RDEVBLOK and relocation
factor are the same.

Registers 0-9 are saved upon entry to this module.

Entry point: LINKSCAN

Entry conditions: GPR 11 is the UTABLE address of the
current user, not to be included in the search. GPR 10
is the UTABLE address of the first user to be scanned.
GPR 0 is the relocation factor of the virtual device,
and GPR 1 is the address of the RDEVBLOK.

Exit conditions:
Condition code O
Condition code 1
Condition code 2

No link exists ..
Read-only linkCs> exists.
Read/Write link exists-

GPR 10 is the UTABLE address of the user having the
link. For no link, GPR 10 is equal to GPR 11.

Entry point: RDSCAN

Entry conditions: Same as LINKSCAN

Exit conditions: Same as LINKSCAN
are read-only, no return
machines have been examined
encountered.

except that if all links
is made until all user
or a read/write link is

Entry point: DEVSCAN

Purpose: To determine whether any link exists to the real
device regardless of the relocation factor.

Entry conditions: Same as LINKSCAN except GPR O is not
used. To include current user in search, set GPR 10
equal to GPR 11.

Exit conditions:
condition code 0 - No link exists.
Condition code 3 A link exists .• GPR 10 points to

UTABLE of first link encountered.

-305-

REC FREE

Module name: REC FREE

Entry points: RECFREE, RECFRET

Purpose: To handle the spooling requests for available disk
records in much the same manner as free storage handles
main memory.

Entry point: RECFREE - obtain free record.

Entry conditions: None. Registers 2-6 are saved upon entry.

Exit conditions: GPR 0 = 1; GPR 1 is the address of a
doubleword containing the DASD record address and
device code in the following format: bytes 0-1 are
zero; bytes 2-3 contain the cylinder number; bytes 4-5
contain the track number; byte 6 contains the record
number; and byte 7 contains the device code.

Entry point: RECFRET - return disk record to free storage.

Entry conditions: GPR 1 contains the address
doubleword in the RECFREE format.

Registers 0-7 are saved upon entry .•

Exit conditions: None

-306-

of a

RES INT

Module name: RESINT

Entry points: RESINT, RESIRA

Purpose: This module performs a virtual system reset.

Entry point: RESIN'!'

Entry conditions: GPR 11 points to the UTABLE of the user
for whom the reset is desired.

Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: RESIRA interrupt return address set by
RESINT for IOTASKS queued up for a user to be reset:
clears interrupt without resetting virtual machine
status; entered from IOINT.

Entry conditions:
csw.

GPR 9 points to IOTASK. RIO points to

Registers 0-11 are saved upon entry.

Exit conditions: None

-307-

SAVECP

Module name: SAVECP

Entry point: SAVECP

Purpose: This module writes the core image of CP-67 onto
the system residence volume (currently specified by a
REP card in the SAVECP module) at the end of a card or
tape load of CP-67 into core. At IPL time the SAVECP
function is reversed and it reads in the core image.

Entry point: SAVECP

Entry conditions: The module requires that the disk address
be loaded with it, and that the device be a 2311 or
2314. The addressability of the module is contained in
GPR 3 (not 12 as in the norm>.

Exit conditions: The disk address is stored in word O, and
the address of the location containing the label is
stored in GPR 2, when control is transferred to CPINIT
after SAVECP-restore. After a SAVECP-save a DISK LOAD
OK message is printed.

-308-

/

SCAN UNIT

Module name: SCANUNIT

Entry points: RUNITSCN, VUNITSCN

Purpose: To accept a device address. either real or
virtual, and scan down the appropriate list. setting up
pointers to the various level blocks.

Registers 0-8 are saved upon entry to this module.

Entry point: RUNITSCN - scan for real device block CBALR)

Entry conditions: GPR 8 contains the address to be searched
for.

Exit conditions: GPR 6 contains the pointer to the real
channel block, if found. GPR 7 contains a pointer to
the real control unit block. if found. GPR 8 contains
a pointer to the real device block. if found. The
condition code is set as follows:

0 - all blocks found
1 - channel block not found {no pointers valid)
2 - control unit block not found {channel pointer valid)
3 - device block not found {channel and control unit

pointers valid

Entry point: VUNITSCN
CBALR)

scan for virtual device block

Entry conditions: GPR 8 contains the address to be searched
for. GPR 11 points to the user whose blocks are to be
searched.

Exit conditions: Same as for RUNITSCN except pointers are
to virtual blocks.

-309-

SCHEDULE

Module name: SCHEDULE

Entry points: SCHEDULE, SCLOCK

Purpose: Contains extended DISPATCH functions.

Entry point: SCHEDULE

Entry conditions: Rl is non-zero if the UTABLE pointed to by
Rll is in logon and is to be added to the real timer
chain if that option is specified. Otherwise, Rl is
zero and the Rll UTABLE is in logoff and it is to be
removed from all chains that it currently may be on.

Exit conditions: None.

Entry point: SCLOCK

Entry conditions: Entered once a minute on a call from
DISPATCH to update the decimal clock and to recalculate
the paging activity variable. Also once an hour it
resets the elapsed binary timer and any other locations
dependent on its current value.

Exit conditions: None.

-310-

SCREDAT

Module Name: SCREDAT

Purpose: Contains system identification information that may
be changed for each system created.

-311-

STCONSIO

Module name: STCONSIO

Entry points: PRIMSG, STCONSIO

Purpose: This module will start an I/O request to a console
or stack it if there are outstanding requests. If
entered via PRIMSG, the request is stacked ahead of all
current outstanding requests.

Entry point: STCONSIO

Entry conditions:
I/O request to
device address
user's UTABLE.

GPR 6 contains the address of the console
be started or added. GPR 8 contains the

and GPR 11 points to the appropriate

Exit conditions: The address of the CIOREQ pointer in the
UTABLE will be changed to that of the current request,
if the operation can be started immediately.

Entry point: PRIMSG

Entry conditions: Same as STCONSIO

Exit conditions: Same as STCONSIO, except the operation is
always started and CIOREQ entry is always altered.

-312-

TMPSPACE

Module name: TMPSPACE

Entry points: TMPSPACE, TMPRET, TMPERTN, T2311

Purpose: TMPSPACE dynamically allocates cylinders on DASO
devices from devices of a specified type.

Registers 0-11 are saved upon entry to this module.

Entry point: TMPSPACE - obtain free cylinder.

Entry conditions: GPR O contains the number of contiguous
cylinders desired. GPR 1 contains the desired device
type code. GPR2 contains the type of space desired <for
example, paging or spooling space, T-disk space, or
directory space).

Exit conditions: GPR O contains the relocation factor of
the allocated cylinder. GPR 1 points to the RDEVBLOK
of the selected device. If space is not available, GPR
1 is set to zero.

Entry point: TMPRET - return a cylinder to free storage.

Entry conditions: GPR O contains the relocation factor of
the allocated cylinder. GPR 1 points to the
appropriate RDEVBLOK. GPR 2 contains the number of
contiguous cylinders.

Exit conditions: None

Entry point: TMPERTN - interrupt
IOTASK that erases TRK 00 of a
released; entered from IOINT.

return address for an
T-DISK that has been

Entry conditions: GPR 9 points to IOTASK. GPR 10 points to
ccw.

Registers 0-11 are saved upon entry,.

Exit conditions: None

-313-

TRACER

Module Name: TRACER

I Entry points: TRACER. TRINT

I Purpose: This module handles the analysis and formatting of
I user specified tracing, functions. Tracing is
I controlled by a table extension to the UTABLE. This
I table is located by the UTREXT entry in the OTABLE.
I The trace functions are controlled by a one-byte switch
I named TRSW defined in the UTABLE. The trace extension
I block called TREXT is defined in the UTABLE COPY. It
I contains control words. storage areas, and output
I buffers for the trace function. The TREXT block is 25
I double words in size.

Entry point: TRACER - output trace data

Entry conditions: GPRl contains the address of the output
buffer.

Exit conditions: The buffer is cleared to all C132) blanks
after being passed for console and/or printer output.

I Entry point: TRINT - trace interrupt

I Entry conditions:
I GPRl - virtual old PSW address
I GPR3 - interrupt code
I GPR4 - SVC extended interrupt code
I GPR6.7 - SVC extended old PSW contents

Exit conditions: Trace buffer has been formatted and printed
by calling TRACER. All necessary instructions have
been restored and any •trace-following• SVC's have been
set. The virtual machine PSW is ready to run from the
correct location.

-314-

UNSTIO

(See Figure 45 for an overview of UNSTIO processing.)

Module name: UNSTIO

Entry point: UNSTIO

Purpose: To unstack
interrupts from
devices.

and
both

reflect virtual
the selector and

input-output
multiplexer

Registers 1-8 are saved upon entry to this module .•

--

Entry point: UNSTIO

Entry conditions: GPR 11 points to a user who has at least
one enabled interrupt condition .•

Exit conditions: The user's UTABLE and virtual page 0 have
been altered to reflect the appropriate interrupts.

-315-

Move MVDESTAT
(MVDEVBLOK)
to virtual CSW

Remove attn
from VCSW

Leave attn
in MVDESTAT

Figure 45.

-316-

Yes No

No

Enter

module UNSTIO
entry UNSTIO

Get
interrupting
channel

Move MVDESTAT
(MVDEVBLOK)
to virtual
CSW

CP-67 UNSTIO (1 of 2)

Move MVCSW
(MVDEBLOK)
to virtual
csw

Move interrupt
device to
virtual

Move VPSW
to VIODPSW

Move VIONPSW
to VPSW

Exit

No

Move int
unit to
virtual

Move VPSW
to VIOCPSW

Move VIONPSW
to VPSW

Reset
pending in
UT ABLE

Exit

Figure 45.

PAGTRANS

Yes

CP-67 UNSTIO (2 of 2)

Move int
unit (VCUEUNIT)
to virtual

Move int
device and
channel to
virtual

Move VDEVSTAT
(VDEVBLOK) to
virtual CSW

Remove attn
and UC from
vcsw

Leave attn
and UC in

VDEVSTAT

Move int
device and
channel to
virtual

No

No

Get next
VCUBLOCK

Get next
VDEVBLOK

-317-

UNTRANS

Module name: UNTRANS

Entry points: UNTRANS, FREECCW

Purpose: The module computes from the hardware CSW the
virtual csw to be reflected to the user. The real ccw•s
are released to free storage.

Registers 0-12 are saved upon entry to this module.

Entry point: UNTRANS CBALR)

Entry conditions: The GPR6 is pointing to the VCHBLOK which
contains the csw..

Exit condition: The VCHBLOK contains the translated CSW.

Entry point: FREECCW

Entry conditions: GPR8 points to the user's VDEVBLOK, and
GPR9 points to the IOTASK block.

Exit conditions: All I/O pages are unlocked, the RHA data
is relocated, and the real ccw lists have been
released.

-318-

/-

USERLKUP

Module name: USERLKUP

Entry point: USERLKUP

Purpose: To find the entry in the U.DIRECI' file for a
specified userid.

Registers 0-5 are saved upon entry to this module.

Entry conditions:
GPR 1 points to
GPR 2 points to

to UFDENTLN

Exit conditions:
Condition code

Condition code

an eight-byte userid.
a buffer of size greater than or equal

(the size of the UFDENT DSECT) •

nonzero: Userid found in directory.
Caller's buffer contains a copy of
the user file directory entry CDSECT
UFDENT).
zero: Userid not found .•

-319-

USEROFF

Module name: USEROFF

Entry points: USEROFF, ADSET, ADSETOUT, RELEASE, RUNRET

Purpose: The USEROFF module handles the details of logging
a user off the system.

Entry point: USEROFF - Deletes the virtual machine from the
system.

Entry conditions: GPR 11 contains UTABLE address.

Exit conditions: GPR 11 set to zero .•

Entry point: ADSET - initiate the logout sequence.

Entry conditions: GPR 11
is set to 1 if the
hangup). GPR 2 is
SHUTDOWN. Otherwise,

points to the user's UTABLE. GPR 2
logoff is forced Cline error or

set to 2 if called by KILL or
GPR 2 is set to zero.

Registers 0-10 are saved upon entry.

Exit conditions: INLOGOFF bit is set in VMSTATUS and normal
exit taken.

Entry Point: ADSETOUT - log user off the system.

Entry conditions: User has no outstanding I/O operations.
GPR 11 points to the user's UTABLE.

Registers 0-10 are saved upon entry.

Exit conditions: GPR 11 contains zero.

-320-

Entry point: RELEASE
device.

detach a nonshared input-output

Entry conditions: GPR 11 points to the user UTABLE. GPR 2
points to the RDEVBLOK of the device to be detached. If
the device is a tape unit, the volume mounted is
rewound and unloaded. If the device is a dedicated
multiplexer unit, the selector channel real I/O blocks
are returned to free storage, and the original MRDEBLOK
is restored to the list.

Exit conditions: None

Entry point: RUNRET
IaI'ASK that rewinds
detached.

interrupt return address for an
and unloads a tape after being

Entry conditions: GPR 9 points to IOTASK. GPR 10 points to
csw.

Registers 0-15 are saved upon entry .•

Exit conditions: None

-321-

VIOEXEC

Module name: VIOEXEC

Entry points: VIOEXEC, VIRA

Purpose: VIOEXEC is responsible for intercepting virtual
input-output corrunands and determining how they will be
handled. It performs operations required for handling
selector channel requests and passes multiplexer
requests onto MVIOEXEC.

Entry point: VIOEXEC

Entry conditions:
input-output
GPR 5 points
point to the

GPR 4 points to the first half of the
instruction which caused entry to VIOEXEC.
to the second half. The virtual CAW will

virtual ccw list to be executed.

Registers 0-10 are saved upon entry.

Exit conditions: Goes to DSPTCHB. The condition code in the
virtual PSW is set as follows:

0 - I/O initiated or performed
1 - csw stored
2 - device busy
3 - device not operational

Entry point: VIRA - generalized interrupt return address
for IOTASK performing user-dedicated I/O operations;
sets condition and stacks a virtual pending interrupt.

Entry conditions: GPR 9 points to IOTASK. GPR 10 points to
csw.

Registers 0-15 are saved upon entry.

-322-

f

VSERSCH

Module name: VSERSCH

Entry point: VSERSCH

Purpose: Searches RDEVBLOK's for a given volume serial
number.

Registers 0-11 are saved upon entry to this module.

Entry point: VSERSCH

Entry conditions: GPR 1 points to a six-byte field
containing the volume serial label desired.

Exit conditions: GPR 1 points to the desired RDEVBLOK. If
the given label is not currently recognized by the
systero, this register will be zero.

-323-

WRTCONS

Module name: WRTCONS

Entry points: WRTCONS, PRIORITY, OPI'IME

Purpose: This module allows each
for output as though it
console. It will create and
specific terminal <with
requested).

remote terminal to be used
were an operator's 1052
stack a CCW package for a
a priority status, if

---~

Entry point: WRTCONS

Entry conditions: GPR 0 contains the byte count of the
output message (must be nonzero). GPR 1 contains the
starting address of the output message <see DFRET note
below). GPR 2 contains 0 or parameters as follows:
NORET specifies that no return is to be made on
completion of the operation, that is, GPR 3 (below> is
not set up. ALARM specifies that the audible alarm is
to be given, if available, at the completion of the
operation. DFRET causes the output buffer to be
automatically returned to free storage at the
completion of the operation. (Note: In this case, the
data in GPR•s 3 and 1 must be appropriate for return to
the FRET routine; that is, GPR 1 is on a doubleword
boundary, and GPR 3 contains the number of doublewords
to return to free storage.> OPERATOR specifies that the
message is to go to the operator's terminal, GPR 11
need not be established for this call. NOAUTO
specifies that the message is to be written without an
automatic carriage return following the message. GPR 3
contains the return address, if NCRET was not
specified. It contains the number of doublewords to be
returned to free storage if NORET and DFRET were
specified.

Registers 0-4 are saved upon entry.

Exit conditions: An immediate return is made from WRTCONS
before the operation is completed. All registers are
saved here. Upon completion of the operation, GPR 2
contains an error code, if any. Return (if NORE'I' was
not specified) is to the location specified by GPR 3.

-324-

Entry point: PRIORITY

Entry conditions: Same as for WRTCONS

Exit conditions: Same as for WRTCONSr except that the
console write is requested to be queued ahead of any
other currently stacked I/O for that terminal.

Entry point: OPTIME - writes time of day to operator's
terminal.

Entry conditions: None

Registers 0-15 are saved upon entry~

Exit conditions: None

-325-

UTILITY MODULES

The CP-67
stand- alone
follows:

utility
except

modules, all
for VDUMP, are

of which
provided

are
as

-326-

BUZZARD - upon abnormal system failure,
Cl> saves accounting cards for
billing, and (2) saves starting
OASD address of spooled printer,
punch and virtual card reader
files.

DIRECT writes the user
SYS RES

DASO
directories onto
allocates space on
used as system device.

file
volume;
devices

FORMAT - formats DASO devices used as
system device •

. SAVESYS - writes a pageable core image
copy of an operating system, such
as CMS, which is run in a virtual
machine under CP-67; enables the
saved operating system to be IPL'ed
by name.

VDUMP - runs in a virtual machine to
retrieve any system ABEND dumps
from the system disk.

BUZZARD

Utility module name: BUZZARD

Entry point: BUZZARD

Purpose: The BUZZARD module is responsible for performing
three distinct functions. It saves the accounting
records on disk after an abnormal system failure. The
system LOGMSG is also saved so that when the system is
re-IPL'ed with the WARM start option, this message will
appear on the user's console at login time. Moreover,
if there were any files in the spooled area of the
system waiting to be printed or punched, it saves a
table of the starting DASD address of such files and
writes out the table on CP-67 system residence disk,
cylinder 202. It also saves virtual card reader files
in the same way. When the system is IPL'ed the next
time and the WARM start option is specified, the
spooled output is continued.

--
Entry point: BUZZARD

Entry conditions: None

Exit conditions: Prints completion message on 1052 console
and goes into wait.

-327-

DIRECT

Utility module name: DIRECT

Entry point: DIRECT

Purpose: The DIRECT program writes the user file
directories onto the system residence volume and
allocates space on that volume and other volumes which
are to be used for permanent file residence. paging.
and spooling ..

Entry point: DIRECT

Entry conditions: Entered from stand-alone loader ... No other
entry conditions ..

Exit conditions: Sets WAIT state PSW after completion of
all allocation and directory creation activities. and
termination wessage to operator console.

-328-

(

FORMAT

Utility module name: FORMAT

Entry points: FORMAT

Purpose: To format any DASD device that CP-67 uses for a
system device (that is, for residence, paging or
spooling>. currently those devices are 2311, 2314,
2303, and 2301.

Entry point: FORMAT

Entry conditions: All required variable data is collected
by the program interrogating the operator for (1)
device type, (2) device address, (3) volume label, (4)
start address (optional), and (5) end address of
cylinders or tracks to be formatted.

Exit conditions: Program prints FORMAT ENDS.

-329-

SAVESYS

Utility module name: SAVESYS

Entry point: SAVESYS

Purpose: This module is used to write a pageable core
image copy of an operating system such as CMS, which is
run in a virtual machine under CP-67. The operating
system <such as CMS) is IPL•ea on a bare machine, with
an appropriate address stop set. Then the program
SAVESYS is IPL•ed from the card reader. The control
card describes the core limits to be saved and the
device and cylinder address of where to save it. <see
Operator•s Guide for procedure.)

The module SYSTEM has to be set up to reflect
the page numbers and cylinder addresses where the core
image was saved. This allows the user to IPL the
virtual system by name, such as

IPL CMS

The advantage of IPL•ing by name is in speed
since it requires less I/O and paging than normal IPL.
Moreover, in order to share CMS system pages among
users, it is necessary to IPL by name.

-330-

'"- ___ /

(:

VDU MP

Utility module name: VDUMP

Entry point: VDUMP

Purpose: This module runs in a CMS virtual machine
specially configured to retrieve the system ABEND dumps
from disk. Only the user specified for a SYSDUMP in
the SYSGEN macro can operate this program. That user•s
virtual machine must have defined in the CP-67
directory a special spool file reader defined as:

UNIT 0 Fl• RPRT

as well as a standard CMS machine. VDUMP will reside
on that user•s P-disk. The program uses the special
reader COF1) to access any system dumps. The dump
input is then formatted and printed on the CMS printer
COOE>. which is spooled. As VDUMP proceeds. it prints
a message indicating each 10,000 bytes of core printed
as:

DUMPING STORAGE LOCATION xxxx

Upon completion. VDUMP prints END OF DUMP and closes
the virtual printer.

-331-

APPENDIX A: SAVE AREAS

Register 13 normally points to a 96-byte save area.
The first 12 bytes are reserved for use by the SVC handler
for keeping linkage information. Modules normally use the
next 12 to 16 words for saving the registers of the calling
routine (the ENTER macro generates an STM of the specified
register<s> into an area whose beginning is displaced 12
bytes off register 13). The remaining bytes are optionally
used as a work area. The first word of an active save area
will contain the interrupt return address in the calling
routine. The second word contains the caller's register 12,
and the third word the caller's register 13. Very seldom
are more than registers 0 through 11 saved since Cl) 14 and
15 are normally work registers, and <2> 12 and 13 have
already been saved by the SVC handler. Inactive save areas
will contain a pointer to the next inactive area in the
first word of the save area. A word in the SVC handler
points to the first available (inactive> save area.

Note: In OS, register 13 normally points to a 20-word
save area for use by the called routine. If a called
routine wishes to call, it will provide core or dynamically
obtain core for its called routine·• s save area. In CP-67,
register 13 points to a save area for the currently active
routine, containing the saved registers of the calling
routine and the necessary linkage information to return.
The maintaining of linkage information and chains for active
and available save areas is all done by the SVC handler.
There is one exception to this rule: in CFSMAIN, the
routine obtains its own, extra large save area, and it
temporarily replaces the normal save area in the chain with
the extra large one.

-332-

APPENDIX B: REGISTER USAGE

Register

0

1

2

3-5

6

7

8

9-10

11

12

13

14

15

variable Cmany times count of doublewords for
FREE or FRET linkage)

variable (many times pointer to temEorary storage
obtained from FREE)

CALL macro parameters if PARM is used

variable

variable CI/O routines use commonly as channel
block pointer)

variable CI/O routines use commonly as control
block pointer)

variable CI/O routines use commonly as device
block pointer)

variable

pointer to the user•s status table CUTABLE) for
the user CP is currently working on

base

save area pointer

variable Csome use as BAL, BAS, etc. within
particular modules)

variable (address of entry point of currently
active module or last called module, set
by CALL macro>

Registers O and 1 are commonly used to pass arguments to
subroutines. Registers 14 and 15 are not preserved over a
subroutine call and therefore should not be used for any but
very temporary use.

-333-

APPENDIX C: CORE LAYOUT

The following items are of particular importan~e in
debugging CP-67. For a complete description of lower core
see the listing of EQU67 COPY file from the CPMAX macro
library. (EQU67 is listed in •ep-67 Equate Package - EQU67•
in Section 3: Programming conventions of this manual.>

See Figure 46 for a diagram of real low core.

Hexadecimal
Address

0 Eight-byte PSW restart

E External old PSW interrupt code

10 SVC old PSW interrupt code

12 Program old PSW interrupt code

14 Machine check old PSW interrupt code

16 I/O old PSW interrupt code

160 UTABLE address of the currently active or last

340

CPEND

-334-

run user

Address of CPSYM module.. CPSYM contains a twelve­
byte entry for each CP module, an eight-byte
EBCDIC name. and a four-byte ADCON.

Address variable depending on system, represents
highest address of permanently resident CP
code. Beginning on the first 32-byte aligned
boundary following CPEND is the CORTABLE, one
16-byte entry for each 4K page in the machine.
Following the CORTABLE, beginning on the first
following 32-byte boundary are the initial 100
96-byte save areas.

000 IPLPSW

008
IPLCCW EXT. INT. CODE

010 SVC INT. CODE 1 PROG. INT. CODE l MCK. INT. CODE 1/0 INT. CODE

018
...

OLDPSW'S ...

040
CSW

048
CAW

050
TIMER

058
.... ..l., I NEWPSW'S T

0801--------------11

SC 0 T ,.. AN u

RUNUSER CPSTATUS l MONTHS l DAYS] YEARS

HOURS I MINUTES I SECONDS l STARTIM

160

168

170 STARTIM BINTIME

178
DISPSW

180
ASYSWRM ASYSINF

188
ASYSCNSL CPID

190
ARMXST ARDEVT

198
AZVOL APR INT

1AO
AP UNCH AR EADE RS

1A8
AM REAL ARCHSTRT

Figure 46. CP-67 Real Low Core (1 of 2)

-335""'."

180 l

IEO I CPUTAB

220 I
TEMPSAVE

270 I
BALRSA\lE

1
[

I
1 DISPAGWK
I

290
DSCRO

298 KALG LOCKOUNT I MAX LOCK

~

350
CPTIME PROBTIME

358
WAITTIME OVERHEAD

360 WTPAGE WAITIDLE

368
WTUSR WT US RA

370
KPGEX PG READ

378 OCOUNT PGSWAP

380
INSTWRD1 INSTWRD2

388
INSTWRD3 INSTWRD4

390

STATUSER

Figure 46. CP-67 Real Low Core (2 of 2)

·-336-

APPENDIX D: CP-67 ABEND

The first occurrence to check for in an ABEND dump is
an SVC O Ca halfword zero in the SVC interrupt code at
location hex 10), and supervisor state in the SVC old PSW
CPSW at hex location 20 does not contain problem state bit,
bit 01, byte 1). There are two possible SVC O's which
should be eliminated before proceeding any further: (1) an
SVC O issued by the machine check handler when there has
been a machine check while in supervisor state, and (2) the
SVC O issued by the command handler in response to the
operator command D_U_M_P.

If an SVC O is not found, the second possibility to
check for is a program interrupt in supervisory mode. The
program old PSW Chex address 28) will not contain the
problem state bit.

The third possibility is that the operator has pushed
the STOP and PSW RESTART buttons on the CPU. In this case
there should be additional information provided by the
operator on what CP-67 was doing to force the operator to
take an ABEND dump.

-337-

APPENDIX E: CP-67 MEASUREMENT HOOKS

Low Core Cdef ined in EQU67)

RUNUSER - running user
MONTHS, DAYS, YEARS, HOURS, MINUTES, SECONDS -

current date and time accurate to one second
STARI'IM - system IPL date and time
BINTIME - binary timer; one hour elapsed time
RUNINTIM - binary timer; one second elapsed time
LOCKOUNT - number of "locked" pages
MAXLOCK - maximum number of "locked" pages
CPTIME CPU time in supervisor state
PROBTIME CPU time in problem state
WAITTIME - CPU time in wait state
OVERHEAD - supervisor time not charged to users
WAITIDLE wait time system idle
WTPAGE wait time while paging
KPGEX - count of paging exceptions
PGREAD - pages read in
PGSWAP - pages written out
QCOUNT pages stolen from in Q users
INSTWRDl installation counter
INSTWRD2 - installation counter
INSTWRD3 installation counter
INSTWRD4 - installation counter

Low Core Cdef ined in STAT)

STATUEXT - user external interrupts
STATUSVC - user SVC interrupts
STATUPGM - user program interrupts
STATUIOI - user I/O interrupts
STATSSK - user SSK instructions
STATISK - user ISK instructions
STATSSM - user SSM instructions
STATLPSW - user LPSW instructions
STATDIAG - user DIAG instructions
STATDDSK - user diagnose disk I/O instructions
STATSIO - user sro instructions
STATTIO - user TIO instructions
STATHIO - user BIO instructions
STATTCH - user TCH instructions
STATWRD - virtual 67 user WRD instructions
STATSTMC - virtual 67 user STMC instructions
STATLRA - virtual 67 user LRA instructions
STATLMC - virtual 67 user LMC instructions
STATDSP - count of calls to CKUSR in DISPATCH

User Data Cdef ined in UTABLE)

TIMEUSED - total CPU time user
TIMEON - login time CMMDDYYHHMMSS)
PRIORIT - priority to enter Q
VTOTTIME - virtual CPU time used

-338-

UPIOCNT
UVIOCNI'
VMUSERl
VMUSER2
VMUSER3
VMUSER4
VMSSIO
VMPNCH
VMLINS
VMCRDS
VMPGRD

DISPATCH

- pages read while in queue
- virtual SIO count
- installation counter
- installation counter
- installation counter
- installation counter
- selector channel SIO
- spool cards punched
- spool lines printed
- spool cards read
- pages read

NUMUSERS - current logged in user count

MVIOEXEC

VMIO - total user MPX SIO count

QUEVIO

VIOCOUNI' - total user SIO count
RIOCOUNT - total CP SIO count

-339-

I APPENDIX F: CP-67 CONTROL BLOCKS

T2311 or 2314
00 AVAILABLE TEMP
08 ASSIGNED TEMP
01 PERM (USER) SPACE
02 T DISK AVAILABLE

c T2311 r+'"'--,-oin-.. -,""'.,-,-.. -,-...;' ~o VCH~NPNT 4 vcu:IST µ- .-J.i VOE:LIST 4 vcu:NT B
t--- a VCHANADDivcucouNT v·'C{ xxx} v·2I xxx a vcuAoo l voecouNr vcusrAT Ixxxxxxxx

0 2 4 6 8

r--.!f--__ v.;:.o;;.;EV_P_NT __ 4l....:.:vo:::':::VA.;:.O;;.;O-+-v;;.;·;;.;1lLv;;.;·~2
~1---v_PN_T_RE_A_L _ __.l_v_o,_v_RE_L....t....V_o_Ev_s_N-lo

0 I 2 3 4 0 2

~ s•1 l VPAGNOl KEYi l KEY2 ~ PointNtoSWPTABLEEntry

RDEVCDDE_j_ CYL J HEAD J RECORD 4 Lock MSK I UT ABLE Pointer !--!-----{-(RUNUSER) OA T DISK ASSIGNED
04- DIRCETORY AVAIL
OC=OIRECTOAY ASSIGN HJ
OF= ENO,

2301 &
0- REC AVAIL
1- REC ASSIGNED
07-FF REC 1 to 5

NEXTSAVE

NEXT

24 '.'<'OROS

REfUFIN ADO RESS

CALLERS R13

CALLERS Al?

21 WORD REGISTER SAVEAREA
Jnd WO AK AREA

LAST SAVE

J!'i AVAIL SAVE AREAS

FREE LIST

NEXT

NEXT

All· UTABLE
R12 BASE
R13 SAVEAAEA

SVCO ABEND DUMP
SVCB UNK
SVC12 RETURN
SVC16 RELEA~
SVC20 GET SAVEAREA

-340-

SIZE

SIZE

J

4 Pntr. to RDEVBLOK

Allocation
Data

~ ALLCC

rl__ SUBPOOL SIZE GROUP

t r{ SUBPOOL SIZE GROUP

L SUBTABLE

1
r-,__ __ ,_,_xr __ __,

1
.-1,__ __ ,_,_x'-----<

l

l
r-,__ __ ,_,_xr __ ---<

l

10 VCEUNIT l VNPNOCUI xxxxxxxxxxxxxxxxx 10 VCUEUNIT I VNPNOOE1 xxxxxxxxxxxxxxxxx

18 VCHCSW VCUBlOK

VCHBLOK

.-{ RCHSTART)

2 4 6

~l---RC_H_A_NP_NT---+--..--R-CU-l~IST----1
,.......!.f----'-•';.,',:.";;.;"---+-"-·-1l._•_·2.Jl1..."-'-"'-'-"'~'

10 RCHANA01 TASKCNT TASKLAST

RCHCOND I w3 I R·4 R·sJ wsJ RESERVED

RCHBLOK

2 4 6

O VLIST TAODR

r-"1.l--VC_N_T__,l,..--RC-NT--+--,O-EN-T--,l,..--sc-NT--1

10 R·1 I RADDR R·2 J R'3l ABYTE

RCCWLIST

0 2 4 6

~1---"-"_'v_'_'''---+--..--"-'-"'-'-'----1
,.....!-f--_.;:.R;;.;A;;.;CTrCH.;:.A;;.;N_-j;;.;R;;.;'1;;.;lLXC:XC:X~XX.;:.X.;:.XX.;:.X.;:.X.;:.XX.:::.jX

10 RCUAOD l RCUSTAT RTAILCNT lRDECOUNT

~ RCUTAlll ACUTAIL2

RCUBLDK

TASKRDEV TASKRCU

T ASKPNT

r1£1 TASK USER TASKCAW ~
181---T A-S-Kl-RA--+---TA_SK_M_IS_C _ __,
~~

IDT ASK

10 VDEVPOS
1-----------.--..---l

VOEVSNSE v·31 v·4 tB

VDEVBLOK

L...-r0 ----'2~--r4 ----""6 ---'i8---i
--- ADEVPNT l RDEVCU w

1-"-"'_v_•o_o_,_•_.,_J...._R'_2l.._ __ •o_E~vr_•_"_---1l-i
RVOLSER RDEVCOOE

'--1---"-'_'v_A_u_N __ I+-•-o_Ev_E_RC_T-+-R-OE_vrsT_A-lT
,-1---'-"-'v_u_SE_• __ l.._•_•_n_v_•o_o-+-"-·'-l+-•·-1'

RDEVSEN c·oJ c·2

ROEVTMON

ROEVBLOK

SWPTABLE 8 Unused

c._ __ u_""-~-'--~I.__ __ ,_"_''-'-'---'
1 4

CORT ABLE
VGPA'S

[0 I 12 15
40 VFPR'S

SliPTBL PNT PAGECNTl

~r-'-""'-Ad_'l_....___J...._x_xx_x-1
PAGE TABLE ADDRESS VPSW SQ

~1---SE-GT_A_Bl_E--,.----V-M-AC_H_Sl_Z_--t

I
II

SE GT ABLE

PAGTABLE

1~0~0 ~' ____,__' -----=:.:.;' .::..:...._____' l§0 o z ' s s l.2.L NEXTCPRO I JSRETADD ~ NEXTCCWP II JSPARE INUMWDCCW r JSREGS 1 1~:====PN=T=RO=C=O=N =========JO=E:Vl=CE====1:
48}1----J,-,.-,-,,--,1---J-sP_A_RE-,---tJ T~------"-w_"'_' _____ ~T

RD CON PKG CCWPKG

i....t---2.'!.~---v'-"~''_AR_r_-+_v_cH_co_u_NT_J~•-EN_o1_NG---<
" 1-"-'o_c_,_s ~I._v_M_si_•r_u_s +---"-"'-"-''-'---t
BO NEXTUSER ~ VTIMER

USE.RID
OVTOT USYSTAB 90

~~--V-MX_ST_A_R_T--+--V-M-X-PO_IN_T_--t

AO u1ccKL J u·1lu·2 UTREXT

CIOREO NCIORE.Q l DNMPAGE

BO VMXCOUN~ SEGTBOSP AOEXTAB t-
BBl-----Tl-ME_o_N ____ l~u-·3~1-u_-._,

ACCTNG co
1-------..---..-----t

CS TIMING NUMPAGES l PRIORIT

U'!> I U'6 I UPIOCNT Oil VTOTTIME

DB UVIOCNT I UCPCOMNO

TIMSTAMP NEXTRTMR _}_

~8 NXTO ")_ C PAVO

~---------------~--...~--'1illl VMLJSi:R1 VMUSE.RZ

RMXSTART)
VMUSER3 VMUSER4

l TRSW llti USE RINSl

T o 2 4 s s
L.2.i---.-,O~E-VP_N_T_--.-.-.o-,-V-AO-oJT-.-.-,Ir,-,.-.,

L--..!, MUSER MIRA
L-".._BOl-----'---+4---'~__.--lBl---i----------------..... -+-i'--------------, --- MVDEVPNT MVDEVAOOI M'l I M·2 ~

MVPNTREL MVIOB 1.:11

VMPNCH

VMLIN\ VMCRDS

VMPGHU RESERVED

,--!.!!.l---M-R~o,-v-10--+----.-,.-,,--~l-i IQ MVCSW

t---2.!.. MRPNTVIR M'J l MRDCSWAO

20 MROERRC~ M'41M'5 M'6Jw1J M·sJ xxx
~1---•_vo_E_v1_0 _ __,_•_·_Jl....__"_"'_l~"-·-'l....__•_·'-1
''~-----•-v_1x_u_s•_• _____ __,

MROEBLOK MVDEBLOK

L..f-----------------~----;-(READERS)

IOTASK

MAICAWl

48 BB l CC

~~
OAT AO

MRICAW2

JES OAT AP

47Q REGSAVE

418 MRIFILEC

MRI BUFF

HH l R lxxx

BAOOR

~
~

2 4

~1---'-'_int_"T'"-"'-"--1
BB l CC

HH I A IcooE

MROEBLOK ~------~

User id

SF BLOK

TERMINAL 110 BUFFER "Hi1-------'-H_~•_H_v1_u _____ _,

BB~------------~ UTABtE

lOTASK

~~"----''---,'.-----'-----.'
~ VI.HO I VCHI ~

RECSTART)

0 2

Pointer to next

20 MRICAWI

48
50 l-M-V_IC_OU_N_T_J..-----------1

MVINEXT

VCH14 l VCR1~
SHAOVCHIJ I E"".I l·t I COPYPAGT

COPYSEGT I IMAGESGT

EX TUT AB

DAT AO

B DATA

390 MVICCW

RECEUF
398 Temporary S<ive Area
1--------------<

CPRQUEST) 3AO DATAPAC

0 4 B

CPEXNEXT I CPEXADO
JCQ OAT AP

CPEXREGS
448 MVIAECS J

MVIFILEC
48 CPEXMISC

CPEXBLOK MIJIBUFF

APPENDIX G:
Alphabetical Listing of System Modules by Entry Point

ABEND CFSPRV
ACCTON ACCT ON
ACN'l'IME ACNTIME
ACNTOFF ACNTOFF
ADS ET USEROFF
AD SE TOUT USE ROFF
ATTACH CF STACH
AUTOLOGON LOG ON
BIND EC CONVRT
BINHEX CONVRT
BREAK CFSMAIN
BRKRD CFS MAIN
BRKWR CFSMAIN
CCWTRANS CCWTRANS
CFSACNT CFSPRV
CFSDIR CFSPRV
CFS IPL CFS IPL
CHFREE QUEVIO
CHKCUACT CHKCUACT
CHKPT CHKPI'
CLINK CFSTACH
CLOSE CFSSPL
COM ENTRY CFSMAIN
CONSINT CONS INT
CORT ENT PAGTRANS
CORUSER PAGTRANS
CPCORE CPCORE
CPFCLOSE CPFILE
CPFDCLOS CPFILE
CPFDLKUP CPFILE
CPFOPENR CPFILE
CPFOPENW CPFILE
CPFREAD CPFILE
CPI ENT CONS INT
CPI NIT CPINIT
CPSTACK CPS TACK
CPSYM CPSYM
CP6IRA CCWTRANS
DATETIME CONVRT
DCP CFSDBG
DECBIN CONVRT
DEDICATE DEDICATE
DETACH CFSTACH
DEV OFF ACNTOFF
DEVSCAN RD SCAN
DIAGDSK DIAGDSK
DIAL DIAL
DISABLE CFSPRV
DIS ACT DISPATCH
DISCONN CFS COM
DISDRQ DISPATCH
DIS IO DISPATCH
DISPATCH DISPATCH
DISPLAY CFSDBG

-341-

DMCP CFSDBG
DRAIN CFSSPL
DRMWAIT PAGTRANS
DSKDUMP DSKDUMP
DSPTCHA DISPATCH
DSPTCHB DISPATCH
DSPTCHC DISPATCH
DUMP CFSDBG
ENABLE CFSPRV
EXTEND EXTEND
EXT INT PSA
FIND IO IO ERROR
FIND LOG IOERROR
FINDMC IO ERROR
FMTILOG IOERROR
FMI'LOG IO ERROR
FMTLOGI IOERROR
FM!' LO GM IO ERROR
FMTMLOG IOERROR
FORCE PLACE
FOR CEA PLACE
FPCONV CONVRT
FREE FREE
FREECCW USERLKUP
FREE PST CFSDBG
FRET FREE
FRETPST CFSDBG
FRETR FREE
HEXBIN CONVRT
IDENTIFY CONS INT
I OE RR OR IOERROR
IO INT IO INT
IOISTVCU IOI NT
IOISTVDE IO INT
IPL IPL
IPLSAVE CFS IPL
KILL CFSPRV
LINK LINK
LINKSCAN RDS CAN
LOCKC CFSPRV
LOGFILES LOG FILES
LOGIN LOGIN
LOGOUT CFS COM
LOGRETN IO ERROR
MCHEKINT PSA
MCKERR IO ERROR
MRIOEXEC MRIOEXEC
MSG CFS COM
MVICLCR MVIOEXEC
MVICLPN MVIOEXEC
MVICLPR MVIOEXEC
MVIOEXEC MVIOEXEC
MVIPRINT PACK
OFF ENT CONS INT
OFF HANG CONSINT
OPMSG LOGON
OPT I ME WRTCONS
PACK PACK

-342-

PAGEGET PAGEGET
PAGERLE PAGEGET
PAGFREE PAGTRANS
PAGFRET PAGTR
PAGO UT PAGTR
PAGSHARE PAGTR
PAGTRANS PAGTRANS
PAGUNLOK PAGTRANS
PIACE PLACE
PLACINIT PLACE
PRE PLINE CONS INT
PRIMSG TMPSPACE
PRIORITY WRTCONS
PR IRA MR IO EXEC
PRIVLGED PRIVLGED
FROG.I'm'- PROGINT
PRTINIT PLACE
PU IRA MRIOEXEC
PURGE CFSSPL
QUERIO QUEVIO
QUERY CFSQRY
QUEVIO QUEVIO
RDCONS RDCONS
RDS CAN RDS CAN
READ TASK CPFILE
READY CFS COM
REC ERROR IOERROR
REC FREE REC FREE
RECFRET RECFREE
REFLECT PROGINT
RELEASE USE ROFF
REPEAT CFSSPL
RES INT RESIN!'
RES IRA RES INT
RP UNCH MRIOEXEC
RTN41ND CONS INT
RTN41WT CONS INT
RTN52ND CONSINT
RTN52WT CONS INT
RUN IT SCAN SCANUNIT
RUNRET USE ROFF
SAVECP SAVECP
SCHEDULE SCHEDULE
SCLOCK SCHEDULE
SCREDAT SCREDAT
SET CFS SET
SHUTDOWN CFSPRV
SLEEP CFS COM
SPACE CFSSPL
SPOOL CFSSPL
START CFSSPL
STCONSIO STCONSIO
STCP CFSDBG
STORE CFSDBG
SVC DUMP PSA
SVC IN IT PSA
SVC INT PSA
TERM CFSSPL

-343-

TMPERTN
TMPRET
TMPSPACE
TRACER
TRINI'
T2311
UNLOCK
UNPACK
UNSTIO
UNTRANS
USEROFF
VERROR
VIOEXEC
VIRA
VSERSCH
VSMCPIR
VUNITSCAN
WAITPAGE
WNG
'WRITTASK
WRTCONS
XFER

TMPSPACE
TMPSPACE
TMPSPACE
TRACER
TRACER
TMPSPACE
CFSPRV
PACK
UNSTIO
UNI' RANS
USEROFF
IOERROR
VIOEXEC
VIOEXEC
VSERSCH
CCWTRANS
SCANUNIT
PAGTRANS
CFS COM
CPFILE
WRTCONS
CFSSPL

Obtaining ~ cross-Reference Chart of CP

I To obtain a cross-reference chart of CP, run CP nucleus text
I decks through the OS linkage editor, then run the OS utility
I LMODMAP. This produces a cross-reference listing of all CP
I control sections and entry points.

-344-

READER'S COMMENT FORM

Control Program-67 /Cambridge Monitor System

(CP-67 /CMS) Version 3.1 PLM

GY20-0590-1

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GY20-0590-1

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

fold fold

..

Attention: Technicol Publicotions

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

...

fold

International Buainaaa Machin11 Corporation
Data Proceaaing Diviaion
1133 W11tch11ter Avenue, White Plaina, New York 10604
[U.S.A. only]

I BM World Trade Corporation
821 United Nationa Plaza, New York, New York 10017
[International]

fold

()
0
~
2.
"O

0
~

"' 3
Oi
-J n
"' 3
g-
a:
~
s:
0
:i
;:+
Q
en
<
"'
(!)

3
0
"O
Oi
-J --() s:
~
< (!) ..
"' o·
:i

~
"O
r s:
"O ..
3'
(!)

c.
:i

c
i:n
~
G'l
-<
"' 0
6
$
~

•I

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

"ti
r s:

IBM Technical Newsletter
®

Control Program - 67 /Cambridge Monitor System
(CP-67 /CMS) Version 3.1
CP-67 Program Logic Manual
Program Number: 3600-05.2.005

Base Puhl. No. GY20-0590-1

This Newsletter No. GN20-2502

Date January 24, 1972

Previous Newsletter Nos. None

This Technical Newsletter, a part of Version 3, Modification Level 1, of Control Program - 67 /Cambridge
Monitor System, provides replacement pages for the subject manual. These replacement pages remain
in effect for subsequent versions and modifications unless specifically altered. Pages to be inserted
and/or removed are listed below.

1, 2
73, 74
181, 182
207,208
223,224
239,240
339,340

Minor additions and changes have been made to provide program support information on the
IBM 3420 Magnetic Tape Unit.

A vertical rule in the left margin indicates that a change has been made to either text or illustration.

Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Technical Publications Dept., 1133 Westchester Avenue, White Plains, N. Y. 10604

Printed in U.S.A.

.
(

SECTION 1: INTRODUCTION TO CP-67

CP-67 is a control Program designed for execution on an
IBM system/360 Model 67. Its objective is to create an
environment in which many users can simultaneously perform
work and in which each user can perform his own work under
the supervision of the programming system of his choice. It
achieves its objective by generating a "virtual computer•
for each user and by sharing the resources of the real
computer (CPU time, main storage, etc.> among the virtual
computers for all users that are concurrently logged into
the system.

When a user identifies himself from a terminal, the
Control Program "creates• for his personal use a virtual
computer from a predefined configuration. (Before the
system becomes available to users, the systems administrator
defines the configuration of each user's virtual machine.
He may define different configurations for different users.>
To the user, his virtual computer appears real and he uses
it as if it were. The Control Program also provides, as part
of the virtual computer, commands that parallel the
functions of the buttons and switches on an operator's
console. The user issues these commands from his terminal,
and, thus, the terminal becomes a pseudo-console for his
virtual machine.

After the control Program has created the virtual
computer, the user equips it with the programming system
that gives him the desired functional capabilities. He does
this by issuing a command from his terminal. CP-67 is
designed so that the user can run the programming system
(for example, Operating System/360) of his choice on his
virtual computer. The user who desires a terminal-oriented,
conversational programming system that allows him to
directly monitor his work will choose CMS.

MACHINE CONFIGURATION

Devices Supported by CP-67

CP-67 is structured to run on an IBM System/360 Model 67.
The minimum machine configuration for CP-67 is:

2067-1 or 2067-2 Processing Unit
Recommended feature:

#4434 Floating Storage Addressing (Model 1 only>

2365
1052
1403

Processor storage
Printer-Keyboard Model 7
Printer

- 1 -

Page of GY20-0590-1
Revised January 24, 1972
By TNL GN20-2502

2540 Card Read Punch
3 2311 Disk storage Drives or 2314 Direct Access Storage

Facility (2 drives minimum)
· I 2400 or 3420 Nine-Track Magnetic Tape Unit, 800 or 1600 bpi

2702 or 2703 Transmission Control or
2701 Data Adapter Unit

Terminals Supported by CP-67 as
Machine Operator's console

1051/1052 Model 1 or Model 2 Data communication System
Features and Specifications:
Data Set Attachment (#9114)
IBM Line Adapter (#4647)
Receive Interrupt (#6100 or RPQ E27428) required
Transmit Interrupt (#7900 or RPQ E26903) required
Text Time-out Suppression (#9698) required

1056 card Reader Model 3

2741-1,-2 Communication Terminals
Features and Specifications:
Data Set Attachment (#9114)
Data Set Attachment (#9115)
IBM Line Adapter (#4635, #4647)
Dial-Up (#3255) required
Receive Interrupt (#4708) required
Transmit Interrupt (#7900 or RPQ E40681) required
Print Inhibit (#5501) desirable

Line control for teletypewriter
with the IBM Telegraph Terminal
(8-level ASCII code at 110 bps).

terminals <*> compatible
control Type II Adapter

Transmission Control Un~ts Supported
by CP-67

2701 Data Adapter Unit
Terminals 2701 Adapter

8-level A«>CII, 7885
110 bps•

2702 Transmission Control
Terminal

Terminals Control Base

2741s, 1050
8-level ASCII,

110 bps•

- 2 -

9696 or 7935
9697 or 7935

Terminal
control

4615, 9684, 8200••
7912

Line
Adapter

3233
3233

Page of GY20-0S90-l
Revised January 24, 1972
By TNL GN20-2S02

type for the device>, a counter overflow error record is
written. This error may represent the failure of a
completely different channel program than the first error of
this type which was recorded. If the error is neither the
first encountered nor a cause of a counter overflow
condition, control returns to VIOINT, and the error
information is reflected back to the user's virtual machine.

The I/O error record has the following 112-byte format:

LOGSNSE

I LOGCODE

LOGTYPE
LOGVOLID
LO GAD DR
LOG DATE
LOGCSW

LOGCCWS

LOGSKLOC

ORG
DS
DS

DS
DS
DS
DS
DS
DS
DS

DS

LOGDATA
CL6
CLl

CLl
CL6
CL2
CL6
CL8
CL2
9D

lD

DEFINE I/O ERROR RECORD
SENSE INFORMATION
FIRST ENCOUNTERED OR COUNTER
OVERFLOW - TYPE OF ERROR
DEVICE TYPE
VOLID OF DEVICE (IF AVAILABLE)
PHYSICAL ADDRESS OF DEVICE
DATE AND TIME STAMP OF ERROR
CHANNEL STATUS WORD
UNUSED
FAILING CCW STRING (UP TO NINE
OOUBLEWORDS)
LAST SEEK ADDRESS (DASD ONLY)

For a 3420 device type (LOGTYPE = X'C4') 24 bytes of
sense data are recorded. This is done by preserving the 24
sense bytes in the first 3 double words at LOGCCWS. The re­
maining 6 double words are used to contain the failing CCW
string, up to the last six CCW's only. The LOGSNSE field for
a 3420 is not used.

The ccw in the string which failed is flagged with an
asterisk in the unused fifth byte.

After the error record is written, the pointer to the
next available slot on the CE cylinder is updated.. seven
logical records are contained within one 829-byte physical
record. Since 15 records may be written on two tracks of a
2314, up to 1050 error records may be written on one
cylinder. If the attempt to write the error record fails,
it is retried eight times. Upon continued failure, an error
message ••• IOERROR RECORDING FAILURE ON DEV • is sent to
the operator. If there is no more room on the CE cylinder
for error records, the message •••CECYL FULL; I/O ERRORS NOT
RECORDED ••• is sent to the operator. Errors are not
recorded for users with privilege class c in order to
prevent the recording of intentional errors produced by CE
diagnostics. Recording will be reinitiated after the CE
executes the CLEARIO function.

Main Dispatcher and Control Routine - DISPATCH

Entrance: DISPATCH is entered from routines which have
completed their processing for a user or cannot
continue processing until some other process has been
completed. (See Figure 10.1 for DISPATCH module
processing.>

-73-

Operation: DISPATCH checks for pending interruptions and
determines which user is to receive control next.

Routines called: When DISPATCH determines that an I/O
interruption is pending, the I/O interruption
unstacking routine (UNSTIO) is called. UNSTIO updates
the virtual csw, restores virtual PSW's, and indicates
the address of the interrupting device. When UNSTIO
processing is completed, DISPATCH attempts to restart
the current user, if runnable and if his quantum is not
exhausted.

-74-

DISPATCH may be entered at 4 locations: DISPATCH,
DSPI'CHA, DSPTCHB, and DSPTCHC. DISPATCH is the normal
entry point used by all routines that are not sure of a
user's status. DSPTCHA is entered from routines which
have gained control after a program interrupt for a
user and have changed the user's PSW. DSPTCHB is
similar to DSPTCHA except the PSW is at most changed in
its condition code field. DSP'.I'CHC is used by routines
which have done some processing for a user but in no
way changed his status.

Figures '25-28' illustrate the relationships of
routines which process an I/O interrupt returned from a
selector channel device.

Page of GY20-0590-1
Revised January 24, 1972

CP-67 DEVICE CODES By TNL GN20-2502

.•
I

'"'- **
* *
* CP-67 DEVICE TYPE CODES *
* *
**
*
TYP1052 EQU 0
TYP1050 EQU 4
TYP2250T EQU 8
TYP2260T EQU 12
TYP2741T EQU 16 MPX/2702 2741
TYP 1052T EQU 20 1052
TYP2703T EQU 24
TYP2702T EQU 24
TYP2701T EQU 24
TYPI'T35T EQU 28 MDL 35 TELETYPE
TYPTTY35 EQU TY'PTT35T
TYPI'IMER EQU 44 SIMULATED CBRONOLOG
TYP1403 EQU 48
TYP2540P EQU 52
TYP2540R EQU 60
TYP2671 EQU 64
TYPRMPRT EQU X'44' REMOTE PRINTER READER
TYPRMPUN EQU X'48' RF.MOTE PUNCH READER
TYPM20 EQU 96
TYP1800 EQU 100
TYP2311 EQU 128
TYP2314 EQU 132
TYP2302 EQU 136
TYP2321 EQU 140
TYP2301 EQU 144
TYP2303 EQU 148
TYP2250 EQU 180
TYP2260 EQU 184
TYP2400 EQU 192 GENERAL MAG TAPE
TYP2404 EQU 192
TYP2402 EQU 192
TYP2403 EQU 192
TYP3420 EQU 196
TYP7340 EQU 204
TYP2701 EQU 208
TYP270l:j:. EQU 208 L IS A DEDICATED LINE
TYP2702L EQU 208
TYP2703L EQU 208
TYP2700L EQU 208
TYP2702D EQU 212 D IS A DIAL CONNECTED LINE
*
**

-181-

CP-67 EQUATE PACKAGE - EQU67

* * * CP-67 EQUIVALENCE AND MACHINE DEFINITION PACKAGE *
* * ***
*
*
* PROBMODE
WAIT
MCHEK
ASCII

*
*
* MODE32
TRANMODE
IOMASK
EXTMASK

*
*
* ATTN
SM
CUE
BUSY
CE
DE
UC
UE

* PCI
WLR
PRGC
PRTC

*
*
* CD
cc
SILI
SKIP
PCIF

*
*
* RCXIS
-RCS UDO
RCUTIC
RCIO
RCGEN
RCDATA
RC02

-182-

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

BITS IN STANDARD PROGRAM STATUS WORD

X' 01''
X' 02'
X'04'
X'08'

PROBLEM MODE BIT.
WAIT BIT.
MACHINE CHECK.
ASCII BIT.

BIT ASSIGNMENTS IN EXTENDED PROGRAM STATUS WORD

X' 08'
X'04'
x•o2•
X'Ol'

24/32 ADDRESSING MODE BIT.
DYNAMIC TRANSLATION MODE BIT.
OVERALL I/O MASK BIT.
OVERALL EXTERNAL INTERRUPTION MASK

DEFINED BITS IN CHANNEL STATUS WORD

X'80'
X'40'
X'20'
X'10'
X' 08'
x•oq•
X' 02"
X' 01'

X' 80'
X'40'
X'20'
X' 10'

ATTENTION BIT.
STATUS MODIFIER BIT.
CONTROL UNIT END BIT.
BUSY BIT.
CHANNEL END BIT •
DEVICE END BIT.
UNIT CHECK BIT •
UNIT EXCEPTION BIT.

PROGRAM-CO~TROLLED INTERRUPT BIT.
WRONG-LENGTH-RECORD BIT.
CHANNEL PROGRAM CHECK
CHANNEL PROTECTION CHECK

FLAGS DEFINED IN CHANNEL COMMAND WORDS

CHAIN DATA FLAG.
CHAIN COMMAND FLAG.

BIT.

X'80'
X'40'
X'20'
X''10'
X" 08''

SUPPRESS INCORRECT LENGTH INDICATOR FLAG.
SUPPRESS TRANSFER OF INFORMATION.
PROGRAM-CONTROLLED-INTERRUPT FLAG.

FLAGS DEFINED IN FIFTH BYTE OF CCW TO AID CCW TRANSLATION

EQU
EQU
EQU
EQU
EQU
EQU
EQU

x'• 8011

X' 40'
X' 20 11

X' 10''
X' 08'
X' 04'
X' 02'

CHECK ISAM INDICATOR
PSEUDO 2311 INDICATOR

UNTRANSLATED TIC
I/O CCW
CP GENERATED CCW
CP GENERATED CHAIN DATA

RESERVED FOR FUTURE USE

Page of GY20-0590-1
Revised January 24, 1972
By TNL GN20-2502

LOG I DATA

LOGIDATA is a description of the format of the error
records saved by CP-67 for I/O errors:

0 2 4 6 8

O+--------+--------+--------+--------+
I LOGSNSE I LOG I LOG I
I ICODEITYPI

8+--------+--------+--------+--------+
I LOGVOLID f LOGADDR I

16+--------+--------+--------+--------+
I LOGDATE !unused I

24+--------+--------+--------+--------+
I LOGCSW I

32+--------+--------+--------+--------+
I LOGCCWS I

104+--------+--------+--------+--------+
I LOGS KLOC I

112+--------+--------+--------+--------+

where:

LOGSNSE contains the six I/O sense bytes. For a 3420 device,
this field is unused.

LOGCODE contains the type of I/O or channel error.

LOGTYPE is the type of device upon which the error
occurred.

LOGVOLID is the volume serial number of the device upon
which the error occurred (if known to CP).

LOGADDR is the channel/unit address of the erring
device.

LOGDATE contains the date and time of the error.

LOGCSW contains the channel status word at the time of
the error.

LOGCCWS contains the failing CCW string (up to nine ccw•s. For
a 3420 device, the first 3 double words contain the 24 sense
bytes. The remaining 6 double words contain the failing CCW
string (up to 6 CCW 1 s).

LOGSKLOC contains the last seek address prior to the failure.

-207-

LOGMDATA

LOGMDATA is a description of the format of the error
records saved by CP-67 for machine checks:

0 2 6 8
O+--------+--------+--------+--------+

I LOGMDATE ILOGMCODEI
8+--------+--------+--------+--------+

I LOGMCPU I
184+--------+--------+--------+--------+

I LOGMPSW I
224+--------+--------+--------+--------+

I LOGMGRS I LOGMCRS I
352+--------+--------+--------+--------+

I LOGMFPRS I
384+--------+--------+--------+--------+

where:

LOGMDATE contains the date and time of the machine
check.

LOGMCODE contains the machine check code.

LOGMCPU contains the CPU logout data.

LOGMPSW contains the five old PSW's at the time of the
machine check (external, SVC, program, machine check,
and input-output>.

LOGMGRS contains the values of the general registers at
the time of the failure.

LOGMCRS contains the values of the extended control
registers at the time of the failure.

LOGMFPRS contains the values of the floating point
registers at the time of the failure .•

-208-

Page of GY20-0590-1
Revised January 24, 1972
By TNL GN20-2502

RD EV BLOK

There is one RDEVBLOK for each real device; its format
is as follows:

0 2 4 6 8
+--------+--------+--------+--------+

0 I RDEVPNT RDEVCU
+--------+--------+--------+--------+

8 IRDEVADD IR*l IR*21 RDEVTASK
+--------+--------+--------+--------+

10 RVOLSER IRDEVCODEI
+--------+--------+--------+--------+

18 I RDEVALLN I RDEVERCT I RDEVSTAT I
+--------+--------+--------+--------+

20 I RDEVUSER IRATTVADDIR*3 IR*41
~----~~--+--------+--------+--~-----t

lc*olc*2 lc*3 Jc*4 lc*7 IRDEVTMONI
+--------+--------+--------+--------+
I (CONT) I RDEVSEN I I
+--------+--------+--------+--------t
I RDEVSEN = 24 SENSE BYTES I
I FOR 3420 RDEVBLOK ONLY I
+--------+--------+--------+--------i
I I (UNUSED) I I
·--------+--------+--------+--------+

where:

RDEVPNI' is a pointer to the next device on the chain.

RDEVCU is a pointer to the real control unit.

RDEVADD is the real device address (control unit and
device portions only>.

R*l - RDEVTYPE is the device type code.

R*2 RDECUPTH is the control unit path for this
device.

RDEVTASK is a pointer to the attached task block (if
active>.

RVOLSER is the six-character EBCDIC volume label Cif
DASD volume and attached to the system).

RDEVCODE is the halfword identification number (index
into RDEVTABL) •

RDEVALLN is the pointer to the allocation table (if
CP-owned).

RDEVERCT is the error count for this device .•

RDEVSTAT is the real device status:

-223-

Page of GY20-0590-1
Revised January 24, 1972
By TNL GN20-2502

RDEVOWND X'80' indicates CP-owned volume CDASD
only).

RDEVATTD X'40' indicates dedicated Cnonshared)
device.

RDEVDED X' 20'
and device
DEDICATE.

indicates channel, control unit,
block dynamically created by

RDEVSEEK X'08' indicates a seek is in progress.
RDEVPOSD X'04' indicates 2311,2314 comb positioned

for next read/write operation.
RDEVSYS X'02' device attached to system.

RDEVUSER is the UTABLE pointer for the current user
(for dedicated devices>.

RATTVADD is the current user's virtual address (for
dedicated devices>.

R*3 - RDEVFTR Real device features. Used to describe
dedicated communication lines SAD value.

R*4 - RDEVSLEN device sense byte count

C*O - conunand reject counter

C*2 - busout parity error counter

C*3 - equipment check counter

C*4 - data check counter

C*7 - seek check (sense bit?, byteO) counter

RDEVTMON is 5 bytes for the attached time for a
dedicated device (MMDD~YHHMM)

RDEVSEN contains the sense bytes for the device
following a unit check. Ail devices
except 3420 have only 6 sense bytes
maximum available. For 3420 devices,

-224-

the RDEVBLOK is generated with 3 more
double words at the end. The RDEVSEN
field is considered to be 24 bytes long
for 3420's with 6 unused bytes at the end.

/

VCUBLOK

There is one virtual control unit block for each
virtual control unit• its format is as follows:

0 2 6 8
+--------+--------+--------+--------+

0 VDEVLIST VCUPNT
+--------+--------+--------+--------+

8 I VCUADD IVDECOUNTI VCUSTATlxxxxxxxxl
+--------+--------+--------+--------+

10 IVCUEUNITIVNPNDDEilxxxxxxxxxxxxxxxxxt
+--------+--------+--------+--------+

where:

VDEVLIST is the pointer to the
connected to this control unit.

virtual devices

VCUPNI' is the pointer to the next virtual control unit
in the chain from the virtual channel.

VCUADD is the virtual control unit address <no channel
or device included).

VDECOUNI' is the number of virtual devices attached.

VCUSTAT is the status of the virtual control unit• bit
definition is the same as the csw, byte q• for example,
BUSY=X' 10' •

VCUEUNIT is the unit for which a control unit end
condition, if any, is pending.

VNPNDDEI is the number of pending device interruptions.

VDEVBLOK

There is a virtual device block for each virtual device
for each user in the system 0 its format is as follows:

0 2 6 8
+--------+--------+--------+--------+

0 VDEVPNT IVDEVADD IV*l IV*2 I
+--------+--------+--------+--------+

8 VPNTREAL IVDEVREL IVDEVBND I
+--------+--------+--------+--------+

10 I VDEVPOS
+--------+--------+--------+--------+

18 I VDEVSNSE 1v•3 1v•q I
+--------+----~---+--------+--------+

-239-

Page of GY20-0590-1
Revised January 24, 1972
By TNL GN20-2502

where:

VDEVPNT is the pointer to the next device on the chain
from the control unit.

VDEVADD is the virtual device address.

V*1 - VDEVSTAT is the virtual device status; bit definition
is the same as the CSW, byte 4; for example,
BUSY=X'10', DE=X'04'.

V*2 - VDEVTYPE is the virtual device type code.

VPNTREAL is the real device control block corresponding
to this virtual device.

VDEVREL is the relocation factor within the real device
for the start of this virtual device <for DASD only>.

VDEVBND is the size of this virtual device (DASO only>.

VDEVPOS is the current virtual arm position of this
device (as BBCCHH).

VDEVSNSE is the virtual device sense information
(filled when an error is detected on the virtual device
to save the conditions for shared devices.>

If the virtual device type is a dedicated 3420 tape (VDEVTYPE
= X'C4') then the function of VDEVSNSE is different. Since the
3420 provides 24 sense bytes, extra space is required to contain
them. This is accomplished in the following manner. When a
unit check occurs on the 3420, 3 double words are obtained from
CP FREE storage. The address of the 3 double work area for
the 24 sense bytes is saved in the word located at VDEVSNSE in
the VDEVBLOK. Once the sense data is presented to the virtual
machine through a virtual sense operation, the 3 double word
area is FRETed (in CCWTRAN). The function is repeated for fur­
ther unit checks on the 3420 device.

V*3 - VDEVFLG contains miscellaneous device status bits:
TEMPDEV X'01' indicates a TDSK allocation
READONLY X'02' indicates read-only status
VSHARED X'04' reserved for future use
VDVENBL X'08' virtual 2702 line is enabled
VDVDIAL X'10' virtual 2702 line is in use

V*4 - VDEVSLEN is the sense byte count.

-240-

•

(

f

UPIOCNT
UVIOCNI'
VMUSER1
VMUSER2
VMUSER3
VMUSER4
VMSSIO
VMPNCB
VMLINS
VMCRDS
VMPGRD

DISPATCH

- pages read while in queue
- virtual SIO count
- installation counter
- installation counter
- installation counter
- installation counter
- selector channel SIO
- spool cards punched
- spool lines printed
- spool cards read
- pages read

NUMUSERS - current logged in user count

MVIOEXEC

VMIO - total user MPX SIO count

QUEVIO

VIOCOUNI' - total user SIO count
RIOCOUNT - total CP SIO count

-339-

I

Page of GY20-0S 90-1
Revised January 24, 1972
By TNL GN20-2502

APPENDIX F: CP-67 CONTROL BLOC:KS

T2311 or1314
00 AVAILABLE TEMP
08 ASSIGNED TEMP
01 PERM IUSERI SPACE
02 T DISK AVAILABLE
OA T DISK ASSIGNED
04 ·DIRCETDRY AVAIL
OC=OIRECTORY ASSIGNED
Df..ENO

2301 &
0-RECAVAIL

0 2 c T2311 ~ PointerlORIXI

• Pntr. to RDEVBLDK

~
. .. • AllOC11tion

~ ··~
I· REC ASSIGNED
07-FF REC 110S ~ ALLCC

NEXTSAVE

NEXT

24WOROS

RETURN ADDRESS CALLERS Rl2

CALLERS Rll

VEAREA 21 WORD REGISTER SA
ar1dWORKARE A

LASTSAYE

Ji AVAIL SAYE A

FREE LIST

NEXT

NEXT

R11·UTABLE
R12·BASE
R13 • SAVEAREA

svca ABEND/DUMP
SVCI LINK
SVCl2 RETURN
SVC16 RELEASE

'SVC20 GET SAVEAREA

-340-

REAS

SIZE

SIZE

• •
r-- SUBPDOL SIZE GROUP

c SUBPOOL SIZE GROUP

SUBTABLE

• l •
,...... NEXT

0 j
,.... NEXT

0 1
•

•
0 1

r- NEXT

8

0 l
•

• L • ...L
VCHANPNT VCULIST

r-- a VCHANADD IvcucouNT v·1J xxx I v•2J xxx
10 VCEUNIT l VNPNDCUI xxxxxxxxxxxxxxxxx
18 VCHCSW

VCHILOK

r--< RCHSTART)

4 • 2 • 6

~
RCHANPNT RCULIST

TASK LIST n·1J n·2 J RcucouNT

~ 10 RCHANAODI TASKCNT TASKLAST

RCHCOND _l R*3 _l R*4 R"51 R"6lRESERVED

RCHILOK

4

0 ' 4 6·

• VLIST TAOQR

,...!! VCNT l RCNT IOENT l SCNT

10 ···1 RADDR ···J • .,l RBYTE

RCCWLIST
4

~ RMXSTART)

4

L' 2 4 6

MRDEVPNT MROEVADiij_ M•1l M•2

L--.!. MUSER MIRA

,........!£. MROEVID MT ASK
18

MRPNTVIR ··•I t-- MRDCSWAD

4 :111 MROERRC~ M•4I M•s M·sIM·1} M·e}xxx
MRDEBLDK

• 2 4 6

• ~ IOTASK

., MRICAWl

48 •• I cc HH JR Jxxx

SJ~
DAT AD

3111 MRICAW2

'" OAT AP

470 REiGSAVE BADDR

478 MRIFILEC

MRIBUFF

• 0 2 • 6

f-J ,....]! VO EV LIST VCIJPNT

8 VCUADD l V~ECOUNT VCUST AT lxxxxxXXK
10 VCUEUNIT I VNPNODEI xxxxxxxxxxxxxxxxx

VCUILOK

0 • 2 • •
~ RDEVLIST RCUPNT

,....!.. RACTCHAN R"1 l XXXXXXXXXXXXX

10 RCUADD I RCUSTAT RTAILCNT l RDECOUNT

~ RCUTAlll RCUTAIU

RCUILOK

-

• l 0 2 4 _j_ •
L........2. TASKRDEV TASKRCU t-J

8 TASKPNT TP"'l TP l TASKVADO

,-.!.Q. TASK USER TASKCAW Q 18 TASKIRA TASKMISC

IOTASK

8

~
2 4 6

MVDEVPNT MVOEVADOJ u·1~l M•2

M.VPNTREL MVIDB

h ID MVCSW

~ MVDEVIO ··,I···I .. ,I···
20 MVIJ;USER

MVOEBLOK

..r READERS)

8 ~
~

• ' •
~ Pointer to next

•• l cc
HH l• Jc·~

MRDEBLOK

Userid

SFILDK

\,

0 2 4 ' • 0 I 2 .l. • __1_ 4

~ VOEVPNT J ·voEVADO v•1lv•2 ;+(VPAGllO I I KIY2~ !Wtt« 111 $WT All.E Entry ,., lEY 1

,....!, VPNTREAL l VOEVflEL VDEVBND RD EV CODE CYL l HEM) I RECOROJ • "'~11$• I UTAIU"i"t" ..r RUNUSER)

" YDEVPOS IWf'TAl~E I
II YOEVSNSE y•3jy•4 c lln I loll: .. CfilT

0 ' 4 6 8

YDEVILOK ct"TUU
t--1 VG PR'S

1l 40 VFPR'S

0 .!1. " I 4

• ' • • SWl'rBL PNT PAGE ml PAGET ASLI: ADD RESS 60 VP9N

L...., RDEY'ff'T .L flDEVCU 41 ...,.~ lxxxx '"+-! ~ SEGTABLE VMACHSIZ

ftOIVADO j_R•1J ••2J ROEVTASK ~ ~ VCHSTART VCHCOUNTI PENDl~G
•VOi.ii• lllDEVCODl

ULOCKS lvMSTATUS TIMEV.Sf:D
I•DIVlllCT

,,
hlVALIN IDIYITAT

NEXTUSER~
IllATTVADO •. ,I .. ·• iO VTIMER ---· l USERIO c'O .L c"2_l c•,_L c••_L c'J_ ...

•

ICQ1ITl J_ ROIYlllM II
IUTAIU 90 OVTOT USYSTAI

~ ftOEYllN • 14 ... I.,._ hw 3420 ROIYIL.OIC only VMXSTART VMJtl'OINT
PAGTAILE l l\INUllOI AO UICCKL l u·1lu·2 UTREXT

RD EVIL OK
..

NCIOREO I DNMPAGE

L; ~
CIOREQ

.i • _j_ 2 ..!.. 6 • 80 VMXCOUN1 SEGTBDSP AOEXTAB ~
NEXTCPRQ .L JSRETAOO l JSPARE lNU"4!WDCCW NEXTCCWP

lu·3Iv·•

1 •• TIMEON
PljlftQCON I JOEVICE co ACCT NG

JSREGS ·~ ·~ NUMPAGEsJ PRIORIT

4~ I
ca TIM1NO

T
CeYlllST u·sI u·s J UPIOtNT

I
00 VTOTTIME

JSPARE3 JSf'ARE4
08 UVIOCNT l UCPCOMNO

ROCOlllKG CCllll'KG FO TIMSTAMf' NEXTRTMR ..i
F8 NXTQ)_ .L. PRVO

100 VMUSERl VMUSER2

1ll8 VMUSERJ VMUSER4

-116 USERINST I TRSW

"' VMSSICJ VMPNCH

0 132 VMLINS VMCRDS

J

f
140 VMPGRD RESERVED

1 TERMINAL l/D BUFFER "' RESERVED

.J 1~6 RESERVED

UT ABLE

q 0 2 • 6 •
' 4 6 •

~ VCRO I 1 IDT ASK VCR1

RECSTART)
20 MRICAW1 VCR14 I VCR15

SHADVCRO I E·1I t·2 IcoPYPAGT

0 2 .. MVINEXT COPYSEGT I IMAGESGT •
Paintertonaxt 60 MVICDUNT j EXTUTU

• R•1In-2 JcNu~oco OA:rAD

• I DATA

'" MVICCW
RECEUF

398 Temporary Snt Ar9'

CPROUEST) 3AD DATAPAC

0 • 8

CPEXNEXT l CPEXAOD 3CO OATAP

448 MVIRECS J • CPEXREGS

MV!FILEC
48 CPEXMISC

CPfXILOK MVllUFF

