/j - hi’* .

Control Program-67/Cambridge Monitor System
(CP-67/CMS) Version 3.1

Program Number 360D-05.2.005

CP-67 Program Logic Manual

This publication describes the internal logic of the
CP-67 (Control Program-67) system. The system
consists of a Control Program that creates a multi-
programming, time-sharing environment by providing
virtual machines for users to run their own operating
systems concurrently with other users. This manual

is directed to personnel who will be responsible for the
maintenance and modification of CP-67.

Type Il

GY20-0590-1

Class A Program

PREFACE

The following documents are referenced in the CP-67 Program Logic
Manual:

Functional Characteristics and Principles of Operation

IBM System/360 Model 67: Functional Characteristics, A27-2719

IBM System/360 Principles of Operation, A22-6521

Assembler
IBM 0S/360: Assembler Language, C28-6514

IBM 0S/360: Assembler (F) Programmer's Guide, C26-3756

The following documents provide further information on CP-67:
CP-67/CMS User's Guide, GH20-0859
CP-67 Operator's Guide, GH20-0856
CP-67/CMS Installation Guide, GH20-0857
CP-67/CMS System Description Manual, GH20-0802
CP-67 Program Logic Manual, GY20-0590
CMS Program Logic. Manual, GY20-0591
CMS SCRIPT User's Manual, GH20-0860
CP-67/CMS Hardware Maintainability Guide, GH20-0858

CP-67: Operating Systems in a Virtual Machine, GH20-1029

Second Edition (October 1971)
This edition is a major revision of, and obsoletes, GH20-0590-0.

This Type III Program performs functions that may be fundamental to the operation and maintenance
of a system.

It has not been subjected to formal test by IBM.

Until the program is reclassified, IBM will provide for it: (a) Central Programming Service, including
design error correction and automatic distribution of corrections; and (b) FE Programming Service,
including design error verification, APAR documentation and submission, and application of Program
Temporary Fixes or development of an emergency bypass when required. IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

You are expected to make the final evaluation as to the usefulness of this program in your own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

This edition applies to Version 3, Modification Level 1, of Control Program-67/Cambridge Monitor
System (360D-05.2.005) and to all subsequent versions and modifications until otherwise indicated in
new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.
A form has been provided at the back of this publication for readers’ comments. If this form has been

removed, address comments to: IBM Corporation, Technical Publications Department, 1133 Westchester
Avenue, White Plains, New York 10604.

TABLE OF CONTENTS

Section 1: Introduction to CP-67
Machine Configuration
Virtual Computers
Time Sharing
Program States
Paging
Reader/Printer/Punch Input-Output
Other Input-Output

Section 2: Method of Operation
System Setup Operations
Cylinder Allocation
Establishing User Directories
Additional Control Statements
USER Statement Processing
CORE Statement Processing
UNIT Statement Processing
| OWN Statement Processing
EOU and *EOD* Statement Processing
| System Backup Operation
Control Program Initialization
CHKPT Program
CPINIT Program
Core Table Initialization
Allocation Table Chaining
Attaching a User to the System
IDENTIFY Routine
CONSINT Routine
LOGON Routine
UTABLE Initialization
Segment Table Creation
Swap Table Creation
Virtual I/0 Block Creation
| User Accounting Statistics
Processing Control Program I/0 Requests
Real Multiplexer Channel 1I/0 Operations
Card Reader Interruption
Printer or Punch Interruption
Real Terminal I/0 Operations
Read from a Terminal - RDCONS
Write to a Terminal - WRTCONS
Stack or Start Terminal I/0 Requests - STCONSIO
Processing Terminal I/0 Interruptions - CONSINT
Real Selector Channel Operations
Initiating Selector Channel I/0

A

COoOUVEFWRE

Processing Selector Channel I/0 Interruptions 48

Processing of 1/0 Errors - IOERROR 48
Processing User Selector Channel I/0 Requests 48
Program Interruption Handler - PROGINT 49
Privileged Instruction Simulator - PRIVLGED 49
Virtual Machine I/0 Executive Program - VIOEXEC 49
CCW Translator - CCWTRANS 54
CCW Untranslator - UNTRANS 58
CCW Return to Free Storage - FREECCW 59
Virtual I/0 Request Queueing Routine - QUEVIO 59
Virtual Channel Interruption Handler - VIRA 63
Routine to Analyze and Record Errors - RECERROR 63
Main Dispatcher and Control Routine - DISPATCH 64
Processing User Multiplexer Channel I/0O Requests 70
SI0 on a Virtual Multiplexer Channel 75
TIO on a Virtual Multiplexer Channel 78
TCH on a Virtual Multipiexer Channel 78
HIO on a Virtual Multiplexer Channel 79
Pseudo Timer Device - TIMR 79
Processing Dedicated Multiplexer Devices 79
Processing Virtual 2702 Lines 80
Processing a DIAL Request 82
Virtual RPQ's 83
Interruption Handling 84
SVC Interruptions 84
External Interruptions 87
Program Interruptions 89
Paging Interruptions 91
Privileged Operation Interruptions 93
The Diagnose Instruction : 93
Machine Check Interruptions 926
Machine Check Error Recording Routine - MCKERR 96
Interruption Reflection 98
Main Storage Management (Paging) 100
Required Page in Core 100
Required Page Not in Core 100
Required Page in Transit 101
Obtaining Core for a Paging Operation 101
Reading a Required Page into Core 102
Returning Control : 103
Shared Pages 103
Free Storage Management 103
Execution Control 105
Queue Management 107
‘Real Timers' 109
Handling of a Virtual 67 111
Ccontrol Blocks 111
Different Format of the PSW , 112
Reset Function v 112

New Instructions 112

Handling Virtual Dynamic Address Translation 113

Virtual 67 Restriction 116
Console Functions 117
Console Function Subroutines 118
Console Function Descriptions 120
ACNT 120
ATTACH 121
BEGIN 122
CLOSE 123
DCP 124
DMCP 125
DETACH 126
DISABLE 127
DIRECT 128
DISCONNECT 129
DISPLAY 130
DRAIN 132
DUMP 133
DU MP 134
ENABLE 135
EXTERNAL : 136
IPL 137
IPLSAVE 138
KILL 139
LINK 140
LOCK 142
LOGIN 143
LoGOoUuT 14y
MSG 145
PURGE 146
QUERY 147
READY 149
REPEAT 150
RESET 151
SET 152
SHUTDOWN 154
SLEEP 155
SPACE 156
SPOOL 157
START 158
STCP ' 159
STORE 160
TERMINATE 161
UNLOCK 162
WNG 163
XFER lo64
Section 3: Programming Conventions 165
Maintenance 165

Assembly Deck Format 165

Equivalence Packages and Control Block Definitions
CP-67 Device Codes
CP-67 Equate Package - EQU67
Definition of Statistics Counters in CP Core
Subroutine Conventions and Register Usage
System Macro Usage

BAS, BASR, LMC, STMC, and LRA

CALL

ENTER and EXIT
GOTO

TRANS

Section 4: Tables and Control Block Formats
ALLOC
CCWPKG
CORTABLE
CPEXBLOK
CPFDENT
CPFFDBLK
CPFRECRD
EXTUTAB
IOTASK
LOGCDATA
LOGIDATA
LOGVMDATA
MDENT
MRDEBLOK
MRIBUFF
MVDEBLOK
MVIBUFF
PAGTABLE
RHEADR and RCCWLIST
RCHBLOK
RCUBLOK
RDCONPKG
RDEVBLOK
RECBUF
SAVEAREA
SEGTABLE
SFBLOK
SWPTABLE
TREXT
UFDENT
UTABLE
VCHBLOK
VCUBLOK
VDEVBLOK

165
167
168
171
173
174
174
175

176
177

178

179
181
183
184
185
186
187
188
189
190
192
192
193
195
196
198
200
202
204
205
206
207
208
209
211
212
213
214
215
216
218
219
224
225
226

,,,mm‘r-,g?g‘

Section 5: Subroutine Descriptions 227

System Modules 227
ACCTON 233
ACNTIME 234
ACNTOFF 235
CCWTRANS 236
CFSCOM 237
CFSDBG 238
CFSIPL 239
CFSMAIN 240
CFSPRV 241
CFSQRY 242
CFSSET 243
CFSSPL 244
CFSTACH 2u5
CHKCUACT 246
CHKPT 247
CONSINT 248
CONVRT 250
CPCORE 252
CPFILE 253
CPINIT 255
CPSTACK 256
CPSYM 257
DEDICATE 258
DIAGDSK 259
DIAL 261
DISPATCH 262
DSKDUMP 264
EXTEND 265
FREE 266
TOERROR 269
IOINT 271
IPL 272
LINK 273
LOGFILES 274
LOGIN 275
MRIOEXEC 276
MVIOEXEC 277
PACK 279
PAGEGET 280
PAGTR 281
PAGTRANS 282
PRIVLGED 284
PROGINT 285
PSA . 286
QUEVIO . 288
RDCONS 289

RDSCAN 290

RECFREE
RESINT
SAVECP
SCANUNIT
SCHEDULE
SCREDAT
STCONS IO
TMPSPACE
TRACER
UNSTIO
UNT RANS
USERLKUP
USEROFF
VIOEXEC
VSERSCH
WRTCONS
Utility Modules

BUZZARD
DIRECT
FORMAT
SAVESYS

VDUMP

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

A:
B:
C:
D:
E:
F:
G:

Save Areas

Register Usage

Core Layout

CP-67 ABEND

CP-67 Measurement Hooks

CP-67 Control Blocks
Alphabetical Listing of System Modules
by Entry Point

291
292
293
294
295
296
297
298
299
300
302
303
304
306
307
308
310
311
312
313
314
315

316
317
318
320
321
323

324

LIST OF FIGURES AND TABLES

Fiqure

VOO UEWNR

Sharing Storage Among Concurrent Users
Page Swapping

Paging Operation

Takles and Files Created by DIRECT

CP-67 CHKPT

CP-67 Main Storage

CP-67 CPSAVE

CP-67 CPINIT

Chaining of Allocation Tables and Real Device Blocks
CP-67 Overview of Attaching a User to the System
LOGON Tables

Virtual Addressing

Virtual-Real I/0 Blocks

CP-67 I/0 Interrupt Handler

CP-67 MRIOEXEC

CP-67 RDCONS

CP-67 WRTCONS

CP-67 STCONSIO

Processing Real Selector Channel I/0 Tasks
CP-67 VIOEXEC

CP-67 MVIOEXEC

CP-67 CCWTRANS

CP-67 QUEVIO

Virtual SIO Selector Channel

Virtual SIO MPX Channel (Nondedicated Punch or Printer)

Virtual SIO MPX Channel (Nondedicated Reader)
Real SIO MPX Channel (Punch or Printer)

Real SIO MPX Channel (Reader)

Real Terminal SIO (Write)

Real Terminal SIO (Read)

Virtual Terminal SIO (Write)

Virtual Terminal SIO (Read)

Processing a Virtual 2702 Line

CP-67 SVC Interrupt Handler

CP-67 External Interrupt Handler

CP-67 Program and PRIVLGED Interrupt Handler
CP-67 PAGTRANS

CP-67 Machine Check Interrupt Handler
Processing and Reflecting of Interrupts
State Representation of Scheduling Algorithm
CP-67 Dispatcher Scheduling Algorithm
Virtual 67 - Monosegment Machine

12
17
19
20
21
24
26
28
30
31
34
36
39
41
43
47
50
52
55
60
62
66
67
68
69
71
72
73
74
81
85
88
90
92
97
99
110
111
114

43 virtual 67 - Multisegment Machine
44 CP-67 FREE

45 CP-67 UNSTIO

46 CP-67 Real Low Core

Tables

1 Summary of Access Allowed to DASD Devices by LOGON
2 Summary of Access Allowed by LINK
3 System Modules with Entry Points

115
268
301
319

32
141
231

M,

SECTICN 1: INTRODUCTION TO CP-67

CP-67 is a Control Program designed for execution on an
IBM System/360 Model 67. Its objective is to create an
environment in which many users can simultaneously perform
work and in which each user can perform his own work under
the supervision of the programming system of his choice. It
achieves its objective by generating a "virtual computer"”
for each user and by sharing the resources of the real
computer (CPU time, main storage, etc.) among the virtual
computers for all users that are concurrently 1logged into
the system.

When a user identifies himself from a terminal, the
Control Program “creates"™ for his personal wuse a virtual
computer from a predefined configuration. (Before the
system becomes available to users, the systems administrator
defines the configuration of each user's virtual machine.
He may define different configurations for different users.)
To the user, his virtual computer appears real and he uses
it as if it were. The Control Program also provides, as part
of the virtual computer, commands that parallel the
functions of the buttons and switches on an operator's
console. The user issues these commands from his terminal,
and, thus, the terminal becomes a pseudo-console for his
virtual machine.

After the Control Program has created +the virtual
corputer, the user equips it with the programming system
that gives him the desired functional capabilities. He does
tnis by issuing a command from his terminal. CP-67 is
designed so that the user can run the programming system
(for example, Operating System/360) of his choice on his
virtual computer. The user who desires a terminal-oriented,
conversational programming system that allows him to
directly monitor his work will choose CMS.

MACHINE CONFIGURATION

Devices Supported by CP-67

CP-67 is structured to run on an IBM System/360 Model 67.
The minimum machine configuration for CP-67 is:

2067-1 or 2067-2 Processing Unit
Recommended feature:
#4434 Floating Storage Addressing (Model 1 only)

2365 Processor Storage
1052 Printer-Keyboard Model 7
1403 Printer

2540 Card Read Punch
3 2311 Disk Storage Drives or 2314 Direct Access Storage
Facility (2 drives minimum)
2400 Nine-Track Magnetic Tape Unit, 800 or 1600 bpi
2702 or 2703 Transmission Control or
2701 Data Adapter Unit

Terminals Supported by CP-67 as
Machine Operator's Console

105171052 Model 1 or Model 2 Data Communication System
Features and Specifications:
Data Set Attachment (#9114)
IBM Line Adapter (#4647)
Receive Interrupt (#6100 or RPQ E27428) required
Transmit Interrupt (#7900 or RPQ E26903) required
Text Time-out Suppression (#9698) required

1056 Card Reader Model 3

2741-1,-2 Communication Terminals
Features and Specifications:
Data Set Attachment (#9114)
Data Set Attachment (#9115)
IBM Line Adapter (#4635, #4647)
Dial-Up (#3255) required
Receive Interrupt (#4708) required
Transmit Interrupt (#7900 or RPQ E40681) required
Print Inhibit (#5501) desirable

Line control for teletypewriter terminals (*) compatible
with the IBM Telegraph Terminal Control Type II Adapter
(8-level ASCII code at 110 bps).

Transmission Control Units Supported
by CP-67

2701 Data Adapter Unit
Terminals 2701 Adapter
8-level ASCII, 7885
110 bps*

2702 Transmission Control
Terminal Terminal
Terminals Control Base Control
2741s, 1050 9696 or 7935 4615, 9684, 8200%**
8-level ASCII, 9697 or 7935 7912
110 bps#*

Line

Adapter
3233
3233

&

2703 Transmission Control

Line Speed Line Terminal Line
Terminals Option Set Ccontrol Bases
2741s,1050 4878 320576 4619,4696,8200**** 7505
8-level ASCII, 4877 3205/6 7905, 7912 7505

110 bps*

* The customer 1is responsible for terminal compatibility
with this program. IBM assumes no responsibility for the
impact that any changes to the IBM-supplied products or
programns may have on terminals provided by others.

** Feature 8200 on the 2702 is equivalent to the 2741 Break
feature #8055 and the Type I Break RPQ E46765 on the 2702.

**** Feature 8200 on the 2703 1is equivalent to the 2741

Break feature #8055 and the Type I Break RPQ E53715 on the
2703.

Other Devices Supported by CP-67

Additional devices used by CP-67 are:

2301 Drum Storage
2303 Drum Storage

2870 Multiplexer Channel
#6990, 6991, 6992 1, 2, 3 Selector Subchannels

Cevices Used Only by an Operating System
in a Virtual Machine and not by CP-67

2321 Data Cell Drive
2400 Magnetic Tape Units

2250 Display Unit
2260 Display Station

2860 Selector Channel
#1850 Channel-to-Channel Adapter

2780 Data Transmission Terminal
1130 Computing System

VIRTUAL COMPUTERS

A virtual computing system is a time-sharing system
that provides greater flexibility of application to the
user. A time-sharing system provides a set of software
facilities through which users share machine facilities; the

extent of the software facilities available to a user
depends on how the system is defined. A virtual computing
system simulates hardware facilities that allow the user to
load a software system (Operating System/360, for example)
that provides the particular facilities he requires; the
user - not the system - determines the facilities available
to him.

For each user, CP-67 creates a virtual computer which
is an exact replica of a System 360; a programmer at a
remote installation can use the computing system as if it
were exclusively his. CP-67 accomplishes this by:

Scheduling and allocating main storage space, CPU time,
and I/0 devices to the virtual computers

Handling all interruptions

Protecting system files, user programs, and user data
during execution

Keeping statistics on the use and performance of the
"real"™ system

CP-67 can simulate a Model 65 or Model 67 (simplex, 2u
bit addressing) computing system, capable of executing any
instruction except Diagnose.

For direct access storage devices, CP-67 will support
more than one "user" or virtual machine on a pack. This
concept is called "mini-disks". Essentially, a virtual
machine is allocated a number of contiguous cylinders from
the disk pack, and these cylinders can be located starting
at any "real" cylinder address. A "relocation" factor and
"boundary"™ number define the start and extent of a user's
"mini-disk".

TIME SHARING

The Control Program shares execution time in the
central processing unit (CPU) among the virtual computers on
a demand basis and on a scheduled basis. The Control
Program schedules and allots units of CPU time to the
virtual computers. When a particular virtual computer has
used up its unit of time, the Control Program locates the
next “runnable"™ virtual computer and passes control to it
for a corresponding interval of time. If the virtual
computer currently in control must wait for some event, the
Control Program gives control to another virtual computer
which has demanded the CPU.

PROGRAM STATES

When instructions in the Control Program (CP-67) are

being executed, the real computer is in the supervisor
state; at all other times, when running virtual machines, it
is in the problem state. Therefore, privileged instructions
can be executed only by the Control Program. Programs
running on a virtual computer can issue privileged
instructions; such an instruction causes an interruption
that 1is handled by the Control Program. Under certain
conditions, the Control Program simulates the virtual
privileged instructions.

PAGING

Paging is the technique used by the Control Program to
share main storage among concurrent users. The objective of
this technique 1is to keep in main storage only those
portions of each user's program that are required at a given
point in time. This eliminates the need for the programmer
to externally segment each program into manageable units.
The units automatically used by CP-67 are u4096-byte blocks
called "pages". By breaking programs into pages, main
storage can be allocated in page increments, and pages can
be loaded dynamically for execution. Thus, at execution
time, main storage holds only the active part of each user's
program.

When a user starts his session, the Control Program, as
a result of an IPL operation (see the description of IPL
under "Console Function Subroutines®™ 1in Section 2) places
the user's programming system IPL program into main storage.
The page is loaded into an available block of main storage
that starts on a page boundary. The page is not necessarily
loaded at the same relative main storage position as it
would occupy were the programming system running on a real
computer. This is possible because of the dynamic address

relocation abilities of the Model 67. (Refer to
IBM System/360 Model 67: Functional Characteristics,
A27-2719.)

As the wuser's program 1is executing, the hardware
dynamically converts references to relative addresses into
actual main storage addresses. When the program refers to
an address in a page that is not in main storage, an
interruption occurs and the Control Program 1loads the
required page into main storage. Then execution continues
with the referenced addresses being dynamically relocated.

Because of the dynamic address relocation feature, the
pages of a user program need not occupy contiguous locations
and may be scattered throughout main storage (see Figure 1).
Also, because of the high demand for main storage in a
multiple—user environment, the Control Program shares main
storage among the active pages of the programming systems of
competing users.

Secondary
Storage

<>

Dormant
pages of
users A,
B, and C.

N~ —

N\

v —

Cc A|B AlA C|B|A|B |A]JA|C

Active pages in main storage

FIGURE 1. Sharing Storage Among Concurrent Users

Finally, when main storage is completely filled and it
becomes necessary to bring in another page, page swapping
occurs. An appropriate page of one user's program in main
storage is written onto secondary storage and the required
page is brought into main storage in its place. (If the
page to be replaced has previously been swapped, and has not
been modified since it was last swapped, it is not necessary
to write it onto secondary storage because a copy already
exists there.) When the particular page that was replaced
is again required, it is obtained from secondary storage and
swapped with one that is in main storage (see figure 2).

<> Main storage <>
- —
. First reference
Paging overflow Main
Area Storage |gg Origin
Swapped page to page
P
needed again
~—_ _— ~—
FIGURE 2. Page Swapping
The following list contains some statistics on the

drums and disks used for paging.

Paging D

-——

2301
2303
2314

2311

The foll

required for

not allo
been ref
address

required
referenc

evices

——— e

4096 bytess/record
4096 bytes/record
829 bytes/record,
5 records/page
829 bytes/record,
5 records/page

owing are guidelines
paging virtual memory.
cate pages for virtual memory
first page
swapping area 1is put
These guidelines represent the total

if all the

erenced.
of the

ed.

Virt Memory Size

256K
256K

When the

pages of

—— . o

9 records/2 tracks
1 record/track
15 records/2 tracks

4 records/track

256K

for the number of cylinders
Note that CP-67 does

until each page has

is referenced, the
in the swap table.
number of cylinders
virtual memory are

Device Type Number of Cylinders Required

for Paging

- — e —————— — ————— - —— . <

Virtual Program

1
Page relocation exception
program interrupt

Virtual | Hardware
Machine Channel
| and

| Device

Control Program

Attempt to dispatch
this user should
be runnable now

Page not in core
call PAGE TRANS

PROGINT
Issue TRANS macro |
Page in core go to DISPATCH -

QUEVI0 (QUERIO)

e o — — = —— —]

Chain IOTASK to
RCHBLOK

If channel is free,
call CHFREE

QUEVIO (CHFREE)

If control unit is
free, issue SIO

PAGETRANS
Locate core
table entry
Set up PAGETABLE,

Create IOTASK block
Set up CCW's to

read a page

Call QUERIO

Increment page
wait count

Set up CPRQUEST
(CPEXBLOK)
Chain CPEXBLOK
to IOTASK

Go to DISPATCH

b —

CORE TABLE, SWPTABLE

>

Paging
Device

1/0 interrupts
from reading a page

Locate 1/0O Task block
Process interrupts

Return to program
that created the
1/0 task, IOTASK-
TASKIRA

go to DISPATCH

PAGETRANS(WAITPAGE

Find user decrement
page wait count
Update SWPTABLE
with keys

Release IOTASK block
Call CPSTACK

Y

DISPATCH

Process CPRQUEST
back to PROGINT.
TRANS macro is
reexecuted

y 1

CPSTACK

Put CPEXBLOK
in CPSTACK
(CPRQUEST)

FIGURE 3.

Y

DISPATCH

Page wait is on
for this user

Dispatch another user

Paging Operation

‘uotrjexado burbed syl jo moTAISAO UP sSOATD ¢ Lanbtga

READER/PRINTER/PUNCH INPUT-OUTPUT

The Control Program simulates card reader, punch, and
printer operations requested for programs running on virtual
computers by using a spooling operation to simulate multiple
virtual wunit record devices. If a program running on a
virtual machine is to process a card file, that file must
first be submitted to the machine-room operator, headed by a
card identifying the wuser for whom it 1is intended, and
entered by the operator into the system. When the operator
enters the file (through the real card reader) the Control
Program converts it to a disk file which is associated with
the corresponding virtual computer. Then, when a program
running on that virtual machine issues a start input-output
(SI0O) instruction to the virtual card reader, the Control
Program intercepts it, takes the appropriate card image from
the disk file, and makes it available to the program in the
same manner as the real card reader would. This process is
repeated for each subsequent operation directed to the
virtual card reader. This process works 1n reverse for
punch and printer operation. When a program on a virtual
machine wishes to create printer or punch output, it issues
successive SIO operations to its virtual printer or punch.
The Control Program intercepts these attempted input-output
operations, obtains the print line or punched card images,
and creates a disk file from them. The disk file is then
printed or punched on the real devices at a later time when
the device is available for use.

OTHER INPUT-OUTPUT

Other input-output operations issued by programs
running on a user's virtual machine are converted to real
input-output operations by the Control Program. Translation

consists of four major steps: 1) device address
translation, (2) command sequence translation with
appropriate paging operations, 3) scheduling the

input-output operation on the real hardware, and (4)
receiving and properly reflecting the interrupts returning
from the input-output operation after being started.

During device address translation, the Control Program
converts the virtual device address associated with the SIO
operation to 1its real equivalent. This conversion 1is
required because each virtual device has been mapped to an
extent or area on an equivalent device on the real computer
during system set-up operations. To 1illustrate how this
conversion works, assume that the user has a virtual disk at
address 190 and that this has been mapped to an extent
starting at cylinder 10 on a real disk whose label is
DISK01l. Assume further that at system start-up time it has
been ascertained that DISKO1l is currently mounted on real
disk drive 235. If a user program issues a write to cylinder
00 track O record 1 of the wvirtual disk 190, the Control
Program will intercept it and convert it to a write to
cylinder 10 track 0 record 1 of the real disk at 235.

Conversion of reads from virtual disks are handled
similarly.

During command sequence translation, the Control
Program (via CCWTRANS) converts the channel command sequence
provided by the virtual machine 1into an equivalent real
channel command word list. This is required because virtual
channel command words can refer to contiguous virtual memory
space overlapping a page boundary. In the real machine,
these virtual pages would not necessarily be in contiguous
real pages, and the channel command word involved must be
split (via the chain data feature) into two or more channel
command words which refer to the real core addresses and
which perform the same function. Thus the entire virtual CCW
sequence is translated 1into an equivalent sequence held in
free storage. The channel is then run off of the real
sequence. Note that this is the - source of a major
restriction in CP-67--channel command sequences may not be
modified while the input-output operation is in progress.
The modifications will not be reflected in real memory, on
which the real channel is running.

If the IsSAM option has been chosen during the
generation of CP, and a virtual machine has been assigned
the ISAM option in the directory, certain self-modifying I/0
sequences will be supported (specifically OS-ISAM). The
channel program is scanned to determine whether any of the
channel command words modify other channel command words
within this 1I/0 sequence. The channel program is
retranslated and reexecuted for each channel command word
that modifies another channel command word within the
channel program. (See "CCW Translator - CCWTRANS" for
details.)

The scheduling of the input-output operation is handled
by QUEVIO and CHFREE, which are discussed elsewhere. They
return to the virtual input-output executive (VIOEXEC) when
the operation is finished.

The interruption processing is provided by VIOEXEC
after 1initial processing by IOINT. The interrupts are
unstacked to the wuser in the same order as they would
appear in the real machine. UNTRANS is called to convert the
addresses returned in the channel status word (which refer
to the input-output string in real memory) to the virtual
addresses required by the user.

- 10 -

SECTION 2: METHOD OF OPERATICN

This section segments CP-67 into its functional units
and discusses each as an entity.

SYSTEM SETUP OPERATIONS

Before 1initializing the cControl Program, the DIRECT
stand-alone wutility routine must be used to allocate
cylinders between permanent file space and temporary
spooling and paging space. It 1is assumed that the disk
packs involved have been formatted and 1labeled (via the
FORMAT utility) into the CP-67 format.

Input to DIRECT may be of two types: (1) control
statements specifying allocation of DASD cylinders
(ALLOCATE) and (2) control cards defining a user's virtual
system (DIRECTORY). Figure 4 illustrates the relationships
of tables and files created by DIRECT.

- 11 -

System
Residence

Volume
T Vs ya
\\
~
\ Allocation / -
Table List
'
° - L]

System User User

File . Directory Machine

Directory (U DIRECT) Description
File

FIGURE 4. Tables and Files Created by DIRECT

Cylinder Allocation

DIRECT reads the allocation table from the volume
specified in the ALLOCATE statement and determines whether
temporary or permanent allocation is requested.

Temporary cylinder allocation (making the cylinders
available for temporary usage, such as paging and spooling)
is indicated by placing an x'00' in the corresponding
allocation table entry. = Permanent cylinder allocation
(making cylinders available for permanent file residence) is
indicated by placing an x'01' in the entry. Cylinders to be
used as T (temporary) disk space are designated by an x'02°'
while cylinders containing user directories are marked
x'04°'.

- 12 -

N

At the end of an allocation run for a particular volume
(indicated by an *EOA* statement), cylinder 0 is permanently
allocated (for the allocation table itself and the label)
and an x'0F' is placed in the last allocation table entry.

Establishing User Directories

When a DIRECTORY control statement is read by DIRECT, a
system residence volume will be created on the wunit
specified in the control statement. The allocation table is
read from the system residence volume, and the "owned" list
is initialized to contain the system residence volume. The
owned 1list, beginning with the first byte after the
allocation table, contains the VOLIDS of all volumes to be
considered owned by the Control Program and available for
possible temporary allocation. The system residence volume
VOLID becomes the first entry in the owned list.

The "system file directory" is created; the system file
directory contains information (such as file name, volume
label, and device position of first record) for all files
used internally by the Control Program. An entry for the
"user directory file"™ (U.DIRECT) is initially placed in the
system file directory.

Additional Control Statements

After the owned list and the system file directory have
been initialized, additional control statements which
identify wusers and configure their virtual machines are
read. The following paragraphs describe the processing
performed for each record type.

USER Statement Prccessing
USER statements supply identification and accounting

information for users of CP-67. Before a user directory file
entry is created for the USER statement, the user machine
description file must be opened, and the first four bytes of
a new machine description entry are reserved for the virtual
machine core size. Entries are created for USER statements
and written onto disk as records in the user directory file
(U.DIRECT). User directory entries contain the following
information for each user:

User's external identification

User's password

Accounting information

User's machine description file name

User's privilege class

- 13 -

User's priority
User's options
CORE Statement Processing

CORE statements define the size of core storage in the
virtual machine being defined for the user identified in the
preceding USER statement. The core size desired must be a
multiple of 8K (=8192) bytes and may be specified as either
"nnnkK" or "nnnM". The size is entered into the first four
bytes of the user's machine description record.

UNIT Statement Processing

UNIT statements define virtual devices in the virtual
machine being defined for the preceding USER card. The
following type of information is placed in the user machine
description file entry (MDENT) for each specified device:

Virtual device address

Device type

Device relocation factor for DASD devices
Device bound for DASD devices

Passwords and status information for device access

See the description of control block MDENT in Section 4
for details.

OWN Statement Processing

OWN statements specify the VOLIDs of volumes to be
considered "owned"™ by the Control Program. Each specified
VOLID is added to the "owned™ 1list, which is retained after
the allocation table on cylinder 0 head 0 record 3 of the
system residence volume. An "owned" volume is any disk on
which an allocation table has been written; it contains user
files and/or temporary spooling and paging areas used by the
Control Program.

EOU and *EOD* Statement Processing

An *EOU* statement indicates the end of a machine
description for a particular user. A unique name is
generated for the user machine description file (actually a
floating point number starting at 1.0 and incrementing by
1.0 for each new file), and is placed in the corresponding
user directory entry. The user machine description file is
then written onto disk.

- 14 -

e

—_g—

An *EOD* statement indicates the end of input for the
user directory creation process. The user directory
(U.DIRECT), the system file directory, and the system
residence volume allocation table are written onto the disk
to complete DIRECT processing.

Complete specifications for creating the user directory
are contained in the CP-67 Operator's Guide under "Directory
Allocation and Creation".

System Backup Operation

The CMS Tape Dump command is designed for user virtual
machine back-up functions. The CMS program, CPDMPRST, is
available for both users and the operations department, to
back-up 2311 or 2314 disk packs--either minidisks or full
volumes containing one or more minidisks of varying formats.
During dumps, if a bad track is encountered for which an
alternate track was assigned by the MINIDASD program, data
from the alternate 1location will be written to the dump
volume. The restore function, however, cannot make such use
of alternate track assignments; during a restore, a bad
track will cause a fatal I/0 error.

The CPDMPRST program is modeled after +the stand-alomne
dump/restore utility program of 0S/360.

CONTROL PROGRAM INITIALIZATION

CHKPT Program

The IPL sequence reads the CHKPT program from the
IPL'ed disk into 1low core at location X'800'. The CHKPT
program performs the following functions:

Examines the CPID word at X'1FC'. If the word contains
“"CP67" or "SHUT", the IPL is to a "warm™ machine ({(that
is, CP-67 has been running, and accounting information
and spool file data is available in core); if the CPID
word contains anything else, a "cold" machine is
assumed and the CHKPT program proceeds to the second
phase of initialization described below.

For a "warm" machine, the CHKPT program retrieves user
accounting data from the UTABLES and unpunched
accounting cards; gets accounting for dedicated
devices; saves the system LOGMSG; saves spool file
control blocks for active printers and punches and all
"closed" user spool files. The data is written on the
IPL'ed disk at the SYSWRM cylinder.

- 15 -

If the CPID word contains "CP67", the CHKPT program
proceeds to the second phase below. If the CPID word
contains "“SHUT", shutdown messages are printed, and
processing is completed.

The second phase of initialization involves reading the
SAVECP program and VOLID from the IPL'ed disk (records
2 and 3) into high core (X'25000') and transfering
control to the RESTORE function of SAVECP.

SAVECP (RESTORE function) reads the CP-67 nucleus from
disk (SYSDNC cylinder) into core from X'33D' to
X'25000"; control is transfered to the CPINIT program
now loaded at X'23000°.

See Figure 5 for a diagram of the CHKPT program operation.

- 16 -

SIO to console
'SYSTEM ACCT
AND SPOOL FILES
SAVED SYSTEM
ISHUTDOWN
COMPLETE’

LPSW
WAIT

FIGURE 5.

Enter

module CHKPT
entry CHKPT

IPL sequence reads ‘CHKPT’
program from the IPL‘ed disk
into core and XFERS control
to ‘CHKPT’

Set up program
and machine

PSWS

Issue HIO to
all real
MPX devices

Write account

info to warm
start cy!

I

Save
LOGMSG

Save
spooling
blocks

No

Move ‘warm’
to IDENT

Move ‘Cold’
to IDENT

’

SI10 to SYSRES
read SAVECP
program and
VvOLID

o to
CPSAVE
RESTORE)

CP-67 CHKPT

17

CPINIT Program

The CPINIT program performs the following functions: (See
Figures 6, 7, and 8 for flowcharts of Main Storage, CPSAVE,
and CPINIT operation.)

- 18 -

PN

Subpool
Allocation

Non-Subpool
Allocation
> 29 DBL WDS

00

FREELIST

-

CP-67 NUCLEUS

SUBTABLE

SIZE DBL WDS

SIZE DBL WDS

CORE TABLE

L} 100 SAVE AREAS
—— next | size]

USER AREA
-
EXTENDED PAGE
\ >
——fnext [sz |
C

|

NEXT

q
i

T

Y

| size |

Figure 6. Flowchart of Main Storage Operation

19

Enter

module CPSAVE
entry restore

Read CP-67
nucleus
from disk

Go to
CPINIT

Figure 7, Flowchart of CPSAVE Operation

Enter

module CPINIT
entry CPINIT

Get
emergency
console

Force an
interrupt

Go to
DISPATCH

nter CPIEMRG
from CONSINT

Set up allocation
tables, owners list
and RDEVBLOK
of all CP volumes

Locate 1052
operators
console

1052
available

Issue normal
start or restart
message to
operator

after INT

Set WARMCOLD

Set up Create and
P initialize
new PSWS the CORETABLE
A
Set dump unit Initialize
to printer 100 save
(for CPINIT
ABEND) areas
Y
Clear CPU Lock and
and channel mark CP
Logouts pages
cp
A
Clear LOW Set user
core pages to
not in use
FREE (FRETR)
b —
Set CPSTATUS Fret unused
to IDLE part of last
CP page
A
SI0 sense to — ﬂE.E_. —
IPLED disk Obtain working
(SYSRES) free storage
area
y
FREE (FRET)
Load control I -
registers
Compute real Select channel
machipe for right or
core size left CP. CONS.
RUNITSCN
WAIT for /O — — =
int from Look for
SIO sense RDEVBLOK
IPLED device
A
Get address ts:g|: 2&'1' ocation
of SYSRES RDEVBLOK for
from int IPLED device.
code Set OWNED and
SYSTEM
Read vol. ser.
Set CREG 4 of all avail.
for all real DASD
enabled devices

Figure 8.

L

LOGON
successful

reset CFWBIT
for operator

A
Issue not
mounted message
for devices in
owner list and
not mounted

Check real -
SYSGEN core
size issue
message. If not =

Flowchart of CPINIT Operation (1 of 2)

Ring
alarm i
Set up
operators
UTABLE
y
LOGON (AUTOLOG)
pr —— — —
LOGIN the
SYS operator
LOGON
LOGON LOGON the
successful system
operator
Yes
Enable /O
interrupts

-2 1-

WRTCONS
Enter after msg. Yes Update U —— Get
turn on timer Clock Issue msg. MRDEBLOK
‘WARMSTART'
No
>
WRTCONS X
- = = 7 Interval No ARMCOL! Get spooling No
Message timer =01 file blocks
turn on timer (COLD) RDR, PCH, PTR
Yes Yes
>
Read accounting
Go to info. from Clear warm Set IDENT
DISPATCH WARM START start cyl =CP67
cyl.
y
WRTCONS
_—— - Chain account Calc. disk
Messages for cards to space needed
set date MREALIO for a dump
and time
RDCONS | TEMPSPACE
Read date Read B -?iet_s—ace- Card
and time LOGMSG on di:k Reader
from console for dump
N
A
Set up MRIOEXEC
Clear files Chain spooling file B _Init.i_;e - Go to
from chains LOGMSG block for 1/0 DISPATCH
dump operations
"“ |
|
4 1
N
| WATCONS] | FINDLOG | - ~
Msg. for Read spooling Sctup 1/0 and “ Do your
start blocks MCK error thing CP -
parameters recording CYL You're turned
on....
Count number
RDCON:
. — ‘:‘3 E_ Chain spooling | _L_OG_F_ILE_S_ _ of clqsed)
] blocks to Count number of 5009“"%8”3
Read start printers, readers, closgd spooling file entries B
parameters or punches Sr_;_tFr;es ROR, PCH, PCH, PTR
WRTCONS
- ==Y
Set WARMCOLD Issue msg for
-01 number of
spooling file
entries

WRTCONS

msg.

Set WARMCOLD
=0

Set WARMCOLD 2
=02

Figure 8. Flowchart of CPINIT Operation (2 of 2)
22

R

Determines, by examining the CPID word, whether
initializing is on a warm machine after a disk ABEND
dump

Loads the 360/67 control registers
Sets the new PSW's
Computes the real machine core size

Creates and initializes the CORTABLE at the end of the
resident nucleus (size is determined by "real"™ machine
size)

Initializes 35 save areas for CP-67 linkage at the end
of the CORTABLE

Determines whether IPL'ed on left or right half of a
possible duplex configuration

Calls FREE and FRET to obtain working free storage area
based upon "real" machine size

Creates control block for IPL'ed disk allocation table
and OWNED list

Determines availability of all DASD devices defined in
the real 1I/0 (RIO) configuration; reads VOLID of all
available DASD devices; chains allocation tables of all
available OWNed volumes

Locates 1052 system console and writes initialization
message; if message fails, rings alarm, locates
emergency console, and initializes for emergency
startup

Calls LOGIN to log in the system operator

Checks the OWNED list for volumes not mounted and gives
messages

Checks core size for SYSCORE size; gives message if not
equal

Checks for timer in operation

Prompts operator to set date and time and to specify
startup parameters '

For a WARM start, reads the data from the SYSWRM
cylinder and restructures the LOGMSG and spool file
control blocks; chains the accounting information for
punching

Invalidates the SYSWRM data to avoid future erroneous
startup '

Gets spooling space and controltblocks for a disk dump

23

Calls FINDLOG to initialize the error recording
Commences spooling output if any
Sets the CPID word to "CP67"

Runs the system

Core Table Initialization

The core table consists of a 16-btye entry for each
page (4096 bytes) of real core. Each core table entry will
point to a corresponding entry in the swap table, which is
used by core management routines in paging. The physical
location of a page 1in real core 1is determined by the
relative location of its corresponding entry in the core
table; for example, the first core table entry corresponds
to the first page of real core. The core table entries for
the pages which contain the Control Program are locked with
an identifier of "*CP*" to make them unavailable for paging
operations. The remainder of the core table entries are
initialized to X'OOFFFFFF'.

For a real machine with a 256K main storage, the unused
portion of the last Control Program page and six additional
pages are reserved as a Control Program work area. For each
additional core box, six more pages are reserved for the
larger expected number of users. The pages for free storage
are also locked and identified with "FREE".

Allocation Table Chaining

The address of the system residence VOLID and of the
allocation table for the system residence volume is passed
to CPINIT by the routine SAVECP. The VOLID and allocation
table address are entered into the real device control block
(RDEVBLOK) for the system residence device.

Each additional real device control block is examined
to determine whether the corresponding device is mounted.
VOLIDs are read from all mounted devices and compared
against the entries in the OWNED 1list (obtained from the
system residence volume). Allocation tables from all owned
volumes are read and chained according to device type.

Figure 9 illustrates the chaining of allocation tables
and their relationship to real device control blocks.

-24-

T2311
T2314

T2301

FIGURE 9.

System
Residence Volume
(2311)

(2311)
Allocation Table

(2311)
Allocation Table

Allocation Table

OF OF
RDEVBLOK RDEVBLOK
RDEVTYPE
hzs hza
RDEVALLN
(2301) (2301

Allocation Table

Allocation Table

—~

[]

* RDEVBLOK

128

*

OF

OF

RDEVBLOK

:E]

h44‘

RDEVBLOK

|144

:E]

Real Device Blocks.

:E]

Chaining of Allocation Tables and

25

ATTACHING A USER TO THE SYSTEM

(See Figure 10 for an overview diagram.)

IDENTIFY Routine

When the Control Program receives the initial interrupt
from a terminal (normally initiated by dialing in on a
data-phone) the IDENTIFY routine 1is entered. IDENTIFY
performs the following operations:

Determines the terminal device type (1050 or 2741) and
enters the type into the multiplexer real device block
(MRDEBLOK) .

Writes to the terminal the message "CP-67 Online".

Places the address of the BREAK routine 1in_ the
multiplexer interrupt return address (MIRA).

Puts the terminal 1line 1in a state to receive an
attention.

26

Hardware
Channel
and Device

Console or

terminal

1/0 interrupts
from 270X and terminal

Control Program

I0INT CONSINT (IDENTIFY) LOGON
Initialize UTABLE
Get MRDEBLOK 1 Send break ni
Get users UTABLE] Initialize MV DEBLOK
Call CONSINT Set device type in for terminal device
to process MRDEBLOK
interrupts for the S — —»| X Prompt for USERID &
device 2 Send break, write, password (calls to
MIRA = entry points msg. ‘CP-67 on line WRTCONS & RDCONS)
in CONSINT — 3 B _‘Sev;:l-p;)am—-rea; - :
Go to dispatch _— e — — — = mn:g?;:g?:l;‘l:s
— [——p Call LOGON pag
4 -
Call BREAK Initialize 1/O blocks See overview of
______ - ¢ Tyee| real SIO terminal
L— | ——p e log msg. i
5 Get CCWPKG (c?l’l t:?ngCONS) write and read
In attention
call BREAK
DISPATCH
- = = = — - If read edit and
Dispatch any user translate input line
1f CFMAIN issued a ——
normal read a CPRQUEST Call CPSTACK "
is outstanding.
Process CPRCQIUEST If more CWPKG‘s get R CFSMAIN (BREAK)
return to location next and issue S10 _Ty; cpr ((El' o]
designated by CFMAIN X WRTCONS)
(CONRET) return I1f no CCWPKG's issue
address in RDCONPKG prepare Issue read to the
Terminal
(call to RDCONS)
CFMAIN (CONRET)
Scan input line CPSTACK
separate fields —_——— e —— —]
Test for valid Put RDCONPKG in
command and branch CPSTACK - CPRQUEST
to command routine
Do the command
processing Note:
Return from command
routine determined During LOGIN ‘CONSINT’ and ‘LOGON’ change
by command routine the return address in MRDEBLOK - MIRA
. for return entries into ‘CONSINT’ and ‘LOGON".
Go to dispatch
1 = Initial entry after dial-up MIRA = IDENTIFY
2 = Entry after break MIRA = IDENT1
3 = Entry after write MIRA = SNDPRP
y 4 = Entry after prepare-read MIRA =PREPCHK
—_— ._DlitAEH_ — 5 = Normal entry after LOGIN MIRA = RTN41ND
I~ for command processing.
Dispatch any user Normal entry for operators console MIRA = CONSINT

Figure 10. CP-67 Overview of Attaching a User to the System
...27_

CONSINT Routine

When the next terminal interrupt occurs, the CONSINT
routine receives control (via MIRA). CONSINT is also entered
whenever the input-output interrupt handler (IOINT)
determines that a terminal interrupt has occurred from the
request or attention button on the terminal. CINSINT
determines whether a user is logged on at the terminal; if
not, the LOGON routine is called to attach the new user to
the system.

LOGON Routine

Operations performed by LOGIN are:

Allocating and initializing the primary user control
table (UTABLE).

Checking the user's external identification (USERID)
and password against entries in the user directory.

Allocating and initializing the segment table, page
table, and swap table for the user's machine.

Allocating the UTABLE extension (EXTUTAB) if the
virtual machine is a Model 67.

Creating virtual I/0 blocks to describe the user's
virtual machine.

Mapping virtual devices to real devices by chaining
virtual device blocks to real device blocks.

Figure 11 indicates the relationships of tables created by

the LOGIN routine. When LOGIN functions are completed, the
user is placed in console function mode with a read on his

_28...

terminal by CONSINT calling BREAK.

UTABLE SEGTABLE Page Table

Y
A

SEGTABLE

VMXSTART VCHSTART \
L Page Table

Core Storage

NEXTUSER EXTUTAB

=3

Multiplexer Virtual
Virtual Channel
Device Block| Block

Y \

Page Table

\

=12 [
L
|

2

UTABLE PR

Core Table

Swap Table

ha— DASD

r» 'y

FIGURE 11. LOGON Tables

UTABLE Initialization

The primary user control table (UTABLE) contains a
description of the user's virtual machine and information on

29

the status of the machine. When a new user is 1logged on,
space is obtained for his UTABLE from free storage, and the
following information is entered:

The start of the virtual multiplexer device block list
(the address of the virtual multiplexer block MVDEBLOK
created for the user's terminal device).

USERID after it has been verified by comparing it
against the entries in the user directory.

Virtual machine core size (obtained from the wuser's
machine description file).

Address of the segment table.

Address of the first wvirtual channel block in the
virtual channel list.

Address of the UTABLE extension, if the virtual machine
has the ability to run in extended mode (virtual 67).

Segment Table Creation

LOGIN creates a four-byte segment table entry for each
page table generated. The segment table entry contains the
length and address of its corresponding page table. The
address of the segment table (aligned on a 64-byte boundary)
is placed in the UTABLE.

The relationship of the virtual storage addresses to
the segment table and page tables is illustrated in Figure
12. The twelve low-order bits of the address provide
addressability for 4K bytes of storage (one page); this
number is used as a displacement from the beginning of the
page, as defined by the page table entry. The next eight
bits of the address provide addressability for 1024K bytes
of storage (one segment); this number is used to find the
appropriate page by providing a displacement from the
beginning of the page table (the beginning of a segment is
the address of the first page in the segment). The four
high-order bits of the address provide addressability for
4L096K bytes of storage; this number is wused to find the
appropriate segment by providing a displacement from the
beginning of the segment table.

30

Address
Bits 4 6 12

r—____1_ R
| Segment : Page |l Displacement into |
}__ page |
—m ek T -
/ an / ~ AN
/ / \ / ~ ~ h
; \ ~ h
/ / \ / ~ \
~
/ / /
\ ~ N\
/ ~ Core Storage
/ / \ / ~ N
s \ S
/ ~
/ y \ Page
/
SEGTABLE / \\\ Page Table Q\
\.

‘ix

/ > Page

Page °

FIGURE 12. Virtual Addressing

Swap Table Creation

For each page table entry, LOGIN creates a
corresponding eight-byte entry in a swap table (SWPTABLE).
Whereas a page table entry contains the address of a page
when it 1is core resident, a swap table entry contains the
DASD address of a page when it is not core resident. The
DASD address 1is contained in bytes 4-7 of the swap table
entry; bytes 0-3 contain control information.

Virtual I/0 Block Creation
When page and swap table creation is completed, LOGIN
reads entries for I/0 devices from the wuser's machine

description file. After determining the channel type
(selector or multiplexer), LOGIN creates the required

31

virtual I/0 blocks. Figure 8 illustrates the relationship
of virtual and real I/0 blocks.

List of List of

)) _ Real Real
List of List of List of Device Control

Virtual Virtual Virtual)
. Blocks Unit Blocks
Channel Control Device Channel

List of
Real

Blocks Unit Blocks Blocks \ Blocks
- . o
VCHANPT ‘/’ VDEVLIST kK VDEVPNT 7 |RDEVPNT RDEVLIST RCULIST
=% L3 — —=2 : =3 1=
VCULIST VCUPNT VPNTREAL RDEVCU RACTCHAN RCHANPNT
— = * D
RCUPNT
- — »———— r———— -7
! I | | ! | | [
I | | | : ! | |
| |] I ! | !
[| | | I I ! I
| [| i [] I I
I | l I] | I
I
| _ — e L1 IR | e
- - - - L Lt i —
| | | |
[| I I
| I ! |
I : o () ! I
| | |
| |
L __ ® ® [|
@ ' @
I I

| |

Virtual «——————p| Real
|]
i

| Interface '

FIGURE 13. Virtual-Real I/O Blocks

For multiplexer devices, a new virtual multiplexer
device block (MVDEBLOK) is created and chained to the last
created MVDEBLOK. The address of the first MVDEBLOK in the
chain (the MVDEBLOK for the user's terminal) is entered into
the UTABLE.

For devices attached to selector channels, a virtual
device block is created, and, if necessary, control unit and
channel blocks.

A pointer to each virtual I/0 block that is created is
entered in the previous block, resulting in a chain (list)
of wvirtual I/0 blocks. Virtual device blocks are also
chained to corresponding real device blocks (see Figure 13).

LOGON determines the right of access to a virtual DASD
device based on information contained 1in the machine
description entry of the user directory.

These rights of access are summarized in Table 1. The

-32-

normal mode of access to a DASD device is read/write. 1In
general, unless overridden by the presence of WRMULT, only
one user can access a DASD device with write privileges.
Any number of users can have simultaneous read-only access.
The WRMULT parameter results in existing 1links being
ignored. The use of WRMULT requires that the virtual
machine operating system contain the proper data set
protection mechanisms; in addition, CMS does not have
interlocks. Therefore, WRMULT should be used with caution.

See the CP-67 Operator's Guide under "Directory Creation
and Allocation".

N

Table 1. Summary of Access Allowed to DASD Devices by LOGIN
Directory Existing Links Access Mode Messages
Specification to Other Allowed (see below)

Virtual Machines
RDONLY WRMULT
No No None Read/Write
Read-only Read-only 1
Read/Write None 2
Yes No None Read-only
Read-only Read-only
Read/Write None 2
No Yes None Read/Write
Read-only Read/Write 3
Read/Write Read/Write 3
Yes Yes None Read-only
Read-only Read-only
Read/Write Read-only
1. DEV XXX IN USE BY userid; SET TO R/O
2. DEV XXX IN USE BY userid; NOT ATTACHED
3. DEV XXX IN USE BY userid

33

User Accounting Statistics

In the UTABLE for each virtual machine, three fields
are used for time accounting.

TIMEON is a six-byte field that contains the date and time
in packed decimal of user login. This is wused with
logout time and is punched in the user accounting card
to give connect time.

TIMEUSED is a fullword binary value that represents all
CPU time charged to this virtual machine. The time is
in extended precision (high resolution) time units and
includes both user execution time and CP supervisor
time executed for this user.

VTOTTIME is the same as TIMEUSED except that it includes
only user CPU execution time.

In addition there are statistics for wuser I/0 activity.
These are:

VMSSIO - number of selector channel SIO
VMPNCH - number of virtual "cards" punched
VMLINS - number of virtual "lines"™ printed
VMCRDS - number of virtual "cards" read
VMPGRD - number of pages read

Also, there are four words reserved for user data gathering
that may be used by the installation. These are: ’

VMUSER1, VMUSER2, VMUSER3, and VMUSER4

PROCESSING CONTROL PROGRAM I/O REQUESTS

Control Program requested input-output operations can
be divided into two general categories: (1) those initiated
by a user (virtual) I/0 request, and (2) those initiated by
the Control Program itself (for example, paging or spooling
requests). The following text describes the routines called
by the Control Program to perform specific I/0 operations.
Processing required to analyze virtual I/O requests and to
translate them tc specific real operations is discussed
later in this section under "Processing User Selector
Channel I/O Requests™ and "Processing User Multiplexer
Channel I/0 Requests®™. See Figure 14 for a flowchart of I/0
Interrupt Handler operation.

34

=y

Get real unit

Enter
module IOINT

Real
machine in

Save VREGS
and VPSW
in UTABLE

Get real unit
address from
interrupt

code

RUNITSCN
_— — = —
Get
RCHBLOK
RCUBLOK
RDEVBLOK

Scan for
device address
(MRDEBLOK)

Get IOTASK
block from
RDEVBLOK

Get users
UTABLE

and
MIRA address

Figure 14.

Is
there an

I0TASK
{RDEVTASK)?

Previous

DE
with
attention

error in this
k

= @
’ N
Channel
error

o
No

L |

Do a sense
on unit check

Flowchart of I/0

Command
chain

Find end of
generated
CCW's

!

CE, DE,
incorrect
length

ce
generated
W's

Interrupt Handler Operation (1 of 2)

35

Yes No
Yes
Do a sense uc CHFREE 4 Make CCW after f&&".ii.ccw
on unit (ASYNC. last used a TIC :
interrupt) Restart t0 next CCW used with
check channel this TIC
[No L
Get user's Yes Chain last
UTABLE user's UTABLE? used COW
(RDEVUSER) to the TIC
Get virtual Get
device operator’s Get user's
address UTABLE UTABLE
(RATTVADD)
[YT ot
e dispatch Get UTABLE Get IOTASK
VCHBLOK K RDEVBLOK
VCUBLOK (I0TASK) and
VDEVBLOK
QUERIO
Virtual Yes —_— =
1/0 blocks
found Restart
No
10ISTVDE PAGUNLOK
- = - - Reset seek bits Get interrupt - - - — -
Set virtual set arm in return address Unlock data
DE type position flag (IOTASK block) page of CCW
interrupt chained to TIC
CALL MACRO
Move sense Yes uc _ _CHF_REE_
into (ASYNC. - -— -
RDEVBLOK interrupt) Restart Call interrupt
channel return routine

Figure 14. Flowchart of I/O Interrupt Handler Operation (2 of 2)

36

Real Mulitiplexer Channel I/0 Operations

The multiplexer real I/0 executive (MRIOEXEC) 1is
entered whenever an interruption occurs on a unit record
device (printer, card reader, or card punch) attached to a
multiplexer channel. It 1is also called by the multiplexer
virtual I/0 executive routine (MVIOEXEC) to perform printer
or punch input-output operations. MRIOEXEC determines the
interrupting device type and performs appropriate
processing. See Figure 15 for processing in the MRIOEXEC
modul e.

._37._

Enter

module MRIOEXEC
entry MRDIO

Set up CAW
and CCWs to
write or read
the buffer

Get
RDEVBLOK

QUERIO

Initiate
1/0 operation

Exit

to reader

Write
MSG

Set up
header
record

2540R Reader

Enter

odule MRIOEXEC, entry
PUIRA, CRIRA

PRIRA)

Get
operators
UTABLE

After SIO |Yes

Set current
card — data
address

Find

2540P Punch
1403 Printer

interrupting
device

Initial
Entry

Get core for
MRIBUFF -

I0TASK

Get a ten
card
buffer

Initialize

I0TASK, MRICAW!
TASKIRA =
MRIWIW

Set up CCWs
to read
ten cards

Set unpacked
count, get
data & address

Enter

MRIWINT

Issue
check 10
macro

Get old
MRIBUFF

Issue SIO
card reader

FILE
continued

Release card
buffer,
MRIBUFF, CSW

Chain closed file
Blok (MVIFILEC)
to end of ‘readers’
chain as (SFBLOK)

Set device
free

Figure 15.

38

PACK Exit
 — — X Show device Device
Sompress user drained drained
80 bytes
b L
Move data to Get next
MRIBUFF card from
(DATAD) buffer
Set file End
continued of card Get reader
flag ‘FF" buffer MVDEBLOK
RECFREE Set end of
Get new fi?e ?Ir;g ° this the Set DE int
record ‘EF’ last card in MVDEBLOK
address ?
MRDIO Send “card
—————— nd ‘cards
Store CYL-HD Queue 1/0 Exi _Sett -PENDING read’ MSG
in DATAD xit intin
n request to UTABLE 0 user
write buffer
Exit

Processing in the MRIOEXEC Module (1 of 2)

Initial
Entry

No

Punch
avail. and
unspooling
todo?

Device
drained

Get core for
MRIBUFF-
I0TASK

Get unspool
1/0 chain

After SIO to
PCH or PTR

Initialize
I0OTASK
TASKIRA-
MRIRINT

Get PR-PU Set
output buffer MIRA=MRIOEXEC

Set return
MIRA = MRINIRA

Set up CAW
and CCW
issue SI0

Y

Enter
MRINIRA

Get next
unspool
entry

Repeat
request
?

punches

Any
SFBLOCK
?

Device
drained

Get SFBLOK ‘ Exit ’
printers or

Remove SFBLOK
from chain

Get SFBLOK
punches

— l

Set up one
blank CCW

MRIDEL
Delete the
file

Enter
MRIRINT

Get old
MRIBUFF

Issue

check to MACRO

Get
MRDEBLOK

Set up to
read next
record

MRDIO

Get next
CCW DATAD

file or contin
EF
flag]

Room
to store
ccw

Store CCW
in CCW list

Get next
data (DATAD)

v

Send ‘start
output’ msg.

Send output
msg.
MRDIO
Get buffer L —
address >
(DATAD)
Exit

Figure 15.

Device
drained
?

Write
drained msg

Release
all blocks

Processing in the MRIOEXEC Module (2 of 2)

'S

Close CCW
list

Get first
CCW in list
store in CAW

Issue SIO
punch or
printer

Exit

UNPACK

Unpack user
data

Move data to
output buffer

Process new
ccw —

_39..

Card Reader Interruption

To perform I/0 operations on a card reader, MRIOEXEC
reads card data into a buffer (ten cards at a time),
compresses the data (by means of the PACK routine), and
writes the packed records into a "spooling®™ file on a direct
access device. The records will 1later be read from the
spooling file by MVIOEXEC.

If MRIOEXEC is entered as the result of an interruption
caused by the unit being made ready (that is, initial entry
into the routine), the routine obtains an input buffer and a
spooling buffer, constructs a CCW list to read from the card
reader, and issues an SIO instruction.

If the interruption results from a channel end or a
unit exception, MRIOEXEC calls PACK to compress the input
data, and moves the packed data to the spooling buffer. When
the buffer is full, or at end-of-file, it creates an I/0
task block and a CCW list to write the buffer to a spooling
file on a direct access device. The routine QUERIO is
called to attach the task block to the appropriate channel
block and schedule it for service.

When the buffer has been written to the spooling file,
a test 1is made for an.end-of-file indication (set when a
unit exception interruption occurred, indicating that all
cards have been read). If the end-of-file flag is on,
buffers are returned to free storage, and the file is added
to the chain of closed files. Reader files are chained off
the READERS word in MRIOEXEC.

Printer or Punch Interruption

To perform I/0 operations on a printer or card punch,
MRIOEXEC reads records from a spooling file on a direct
access device, unpacks the data (by means of the UNPACK
routine), and prints or punches the records on the specified
device.

If MRIOEXEC is entered as the result of an interruption
caused by the unit being made ready (that is, initial entry
into the routine), the routine obtains an I/0 task block for
reading records from a spooling file on a direct access
device and a buffer area into which these records may be
read. Printer and punch processing check the PRINTERS and
PUNCHES chain respectively to 1locate a closed file entry
(spool file controcl block). PRINTERS and PUNCHES are words
in MRIOEXEC.

If a closed file is available, a message indicating the
output device is written to the system operator's console by
calling the routine WRTCONS. A CCW list for reading records
from the file is created, the I/0 task block is initializeqd,
and the routine QUERIO is called to attach and schedule the
task block to the appropriate channel queue.

When records have been read from the spooling file, the

.40

routine UNPACK is called to unpack the spooled records, the
unpacked records are moved to an output buffer, and the next
group of spooled records is read. When the output buffer is
filled, or when the spooling file has been completely read
(logical end-of-file encountered), an SIO instruction is
issued for the appropriate device (printer or punch).

When a file has been completely written out, or if no
closed spooling file was available, MRIOEXEC processes
requests for unspcoled punch output. Unspooled punch output
requests are initiated by the Control Program (typically for
accounting information cards) and are added to a MREALIO
queue by RPUNCH, a subroutine within MRIOEXEC.

Real Terminal I/0 Operations

The routines used by the Control Program to communicate
with either the real operator's console or a remote terminal
are RDCONS for read operations and WRTCONS for write
operations. RDCONS and WRTCONS prepare CCW 1lists and I/0
task blocks for their respective I/0 operations, and call
STCONSIO to stack and initiate the I/0 requests. The
console interruption handler (CONSINT) receives control when
the I/O operation is completed.

Read From a Terminal - RDCONS

See Figure 16 for processing in RDCONS module.

-41-

Enter

module RDCONS
entry RDCONS

Initialize
RDCONPKG
set up return
address

Get terminal

MRDEBLOK for
this user

I

Get device
address

I

Set up
CCWPKG
construct
CCW's

I

Chain RDCONPKG
off CCWPKG

:

STCONSIO

Figure 16, Processing in RDCONS Module

42

When a read operation from a terminal is required, the
Control Program calls RDCONS, passing in register 1 the
address of a 132 byte input buffer, and, if required, in
register 2 the parameters for the EDIT and/or UCASE options.
EDIT and UCASE options, if requested, are processed by the
console interruption handler, CONSINT.

RDCONS obtains storage for and initializes a control
list for the read operation. The appropriate I/0 device
block (MRDEBLOK) is initialized. If the data is to be read
from the real operator's console, the current operator's
MRDEBLOK is used; otherwise, the address of the MRDEBLOK is
obtained from the indicated user's virtual console MVDEBLOK.

An appropriate CCW list is constructed for the type of
terminal device, and the address of the CCW 1list is placed
in register 6. The EDIT and/or UCASE parameters, if
present, and the device type are placed in the control 1list,
and the routine STCONSIO is called. When control is
eventually returned to RDCONS upon completion of the read
function, an exit is taken to the calling routine.

Write to a Terminal - WRTCONS

See Figure 17 for WRTCONS module processing.

43

Entry

module WRTCONS module WRTCONS
entry WRTCONS entry PRIORITY

Entry

Write
length zero

or minus

Set priority
control bit

Get operator
MRDEBLOK
and UTABLE

]

Initialize
RDCONPKG
with return
address

Set
MRDEBLOK

Get device
address

|

Set up
CCWPKG
construct
CCWs

Translate
data

I

Chain RDCONPKG
(if one exists)
off CCWPKG

For
operator

Priority
msg

STCONSIO

PRIMSG

Exit

Figure 17. WRTCONS Module Processing

44

When a write operation to a terminal 1is required, the
Control Program calls WRTCONS, passing the following
information in the indicated registers:

GPR 0 - the number of bytes in the output message;

GPR 1 - the location of the first byte of the output
message;

GPR 2 - the parameters for the NORET, DFRET, OPERATOR,
NOAUTO, and ALARM options;

GPR 11 - the appropriate user's UTABLE address.

Unless the NORET option was specified, WRTCONS obtains
storage for and initializes a control 1list in which will be
saved the return address and register contents. The
appropriate I/0 device block (MRDEBLOK) is initialized. If
the message is to be written to the real operator's console,
the current operator's MRDEBLOK 1is used; otherwise, the
address of the MRDEBLOK is obtained from the user's UTABLE
entry.

An appropriate CCW list is constructed for the type of
terminal device being used and for the option. Option
parameters, passed to WRTCONS in register 2, are stored in a
control list preceding the CCW list.

The address of the CCW package (CCW list and control
list) is placed 1in register 6, the device type and
parameters for the DFRET option, if present, are stored in
the control list, and the routine STCONSIO is called. When
control is returned to WRTCONS, an exit is taken to the
calling routine.

Two alternate entry points, PRIORITY and CLRCONS, are
provided for the WRTCONS routine. If the routine is entered
at PRIORITY, write requests will be created as usual, except
that the STCONSIO routine will be entered at PRIMSG, causing
the write request to be stacked on a priority basis. If the
routine is entered at CLRCONS, all outstanding terminal I/O
requests to that user will be deleted.

Stack or Start Terminal I/0 Requests - STCONSIO

See Figure 18 for STCONSIO module processing.

45

Enter

‘module STCONSIC
entry PRIMSG)

Set non-PRIMSG Set PRIMSG
branch SW. branch SW.
[
Get MRDEBLOK
and device
address
Any
stacked 1/0 PRIMSG Non PRIMSG
requests
Prepare Get current Find end c_)f
up on line i Dl CCWPKG queue chain
(UTABLE-CIOREQ (UTABLE-CIOREQ)
No
Store CCW Read Get next Chain CCWPKG
address in Issue HIO request CCWPKG to CIOREQ
CAW d (for insert) chain
A
Queue Store current Exit
Issue SIO CCWPKG CCWPKG as
(UTABLE-CIOREQ next
Exit
Figure 18. STCONSIO Module Processing

46

T‘ \

When a CCW package has been created for a terminal I/O
operation, STCONSIC is called to add the I/0 reguest to the
chain of pending requests, or to start the operation if no
other requests are pending. At entry to STCONSIO, register
6 contains the address of the CCW package, register 8
contains the device type, and register 11 contains the
address of the appropriate user's UTABLE.

1If no other I/0 requests are pending, the address of
the CCW package is placed in the channel address word and an
SIO instruction is issued. When the I/0O operation has been
initiated, the current I1/0 request pointer is updated to
point to the CCW package of the active operation, the count
of vending I/0 requests (NCIOREQ) is incremented by 1, and
an exit is taken to the calling routine.

If other I/0 requests are pending, the CCW package is
added to the chain of pending requests, the count of pending
requests is incremented by 1, and the exit is taken to the
calling routine.

If the routine STCONSIO was entered at the entry point
PRIMSG, a priority operation has been requested. If other
I/0 requests are pending, the current CCW package is
examined to determine the type of operation in progress. If
the current operation 1is a read, an HIO instruction is
issued, the priocrity CCW package becomes the current package
(added at the top of the chain), and the CCW package of the
halted operation becomes the "next"™ package (second on the
chain). If the current o¢peration is a write, no HIO 1is
issued; the priority CCW package becomes the next package
(inserted after the current package in the chain). In either
case, the count of pending requests (NCIOREQ) is
incremented, and an exit is taken to the calling routine.

Processing Terminal I/0 Interruptions - CONSINT

When an I/0 interruption occurs on a terminal, the I/0
interruption handler, IOINT, receives control and determines
the type of interrupting device, obtains the multiplexer
interruption return address (MIRA) from the MRDEBLOK, and
gives control to the terminal I/0 interruption handler
(CONSINT) at the entry point specified by MIRA.

For an interxuption following an output operation,
CONSINT performs the following processing:

If the NORET option is not specified, the routine
CPSTACK is called to add an entry for the current user
to the stack of Control Program execution requests.
This entry notifies the caller of WRTCONS of the
completion of the operation.

47

If other terminal requests are pending for this device
an SIO instruction is issued for the next CCW package,
and pointers to the "current" and "next" CCW packages
are updated.

Control 1is returned to the main control routine
(DISPATCH) .

For an interruption following an input operation, CONSINT
performs the following processing:

Unless the terminal is a 1052, the message 1is
translated into EBCDIC from line code.

If the EDIT option is specified, the input message is
scanned, and deletions are made as required.

If the UCASE option is specified, the input message is
translated to uppercase letters.

The routine CPSTACK 1is called to add an entry for the
current user to his stack of Control Program execution
requests. This entry notifies the calling Control
Program routine of completion of the input operation.

If other terminal requests are pending for this device,
an SIO instruction is issued for the next CCW package,
and pointers to the "current" and "next" CCW packages
are updated.

Control is returned to DISPATCH.

Real Selector Channel Operations

The routine QUERIO is called by the Control Program
whenever a selector channel I/0 operation is to Dbe
performed. The address of a completed I/O task block is
passed to QUERIO in register 1. QUERIO indicates that the
operation 1is being requested by the Control Program,
attaches the task block to the appropriate channel, and
tests to see whether the channel is free.

Initiating Selector Channel 1I/0

If QUERIO determines that the channel 1is free, the
routine CHFREE is called, with the address of the
appropriate channel block (RCHBLOK) passed in register 1.
CHFREE issues an SIO instruction to the indicated channel.
The resulting condition code 1is checked and appropriate
action taken:

18-

i,

For a condition code of 0, the task Dblock is attached
to the real device block (RDEVBLOK), the task count is
decremented, and control is returned, through QUERIO,
to the routine which requested the I/0 operation.

For a condition code of 1, CSW information is obtained,
the condition code is placed in register 0, and control
is passed to the routine specified in the task
interruption address (TASKIRA).

For a condition code of 2, a retry of the SIO
instruction is issued.

For a condition code of 3, the task block is unchained
from the channel, the task count is decremented, the
condition code is placed in register 0, and control is
passed to the routine indicated in TASKIRA.

Figure 19 shows the processing of I/0 tasks on the selector
channel and device blocks.

49

RCH 1

IOTASK 1

Last task

IOTASK 2

RDE

IOTASK 3

_*>
RDE

RDE 1

RDE 2

4>

I0TASK 4
Current task

FIGURE 19.

50

RDE

Processing Real Selector Channel I/0O Tasks

Processing Selector Channel I/0 Interruptions

When an I/0 interruption occurs for a selector channel
device, the 1I/0 interruption handler, IOINT, receives
control. Register 0 1is cleared to indicate that an
interruption has occurred, and control is given to the
routine indicated in TASKIRA. When IOINT again receives
control, control is passed to DISPATCH via a GOTO macro.

Processing of I/0 Errors - IOERROR

When IOINT passes control to the routine whose address
is indicated in TASKIRA, that routine issues a CHECKIO macro
to check for successful completion of the I/0. If only the
channel end and device end bits are set 1in the channel
status word, the routine concludes that the I/O0 was
successful and continues processing. In all other cases,
IOERROR is called. When IOERROR receives control, a call is
made to the subroutine RECERROR, which analyzes and, in some
cases, records the error. (For details, see the subroutine
description of RECERROR below.)

If the sense information indicates that intervention is
required, a message 1is sent to the operator indicating the
device address and asking "REPLY 'GO' WHEN AVAILABLE OR
'FAIL' IF NOT AVAILABLE". If the operator replies GO, the
I/0 operation is retried, whereas 1if the c¢perator replies
FAIL, a permanent error is assumed.

For CP-generated I/0 (paging, spooling, and reading the
directory), the I/0 is retried up to 64 times if errors
occur. This is accomplished by setting up a special retry
I/0 task consisting of a recalibrate CCW followed by a TIC
to the original IOTASK block. TASKIRA is set up so that
return is to the REPRTN entry point in IOERROR. If the I/0
completes successfully, control returns to the program which
originally generated the I/0O request. If, on the other hand,
the I/0 1is retried unsuccessfully 64 times, a major error
message with error count, sense, and status information is
printed at the operator's terminal and the system will
ABEND.

Note that the error retry and recording procedure apply
only to selector channel devices represented by RDEVBLOKS
and not to shared unit record equipment or nondedicated
terminals.

PROCESSING USER SELECTOR CHANNEL I/O REQUESTS

When a pseudo-supervisor (that is, a supervisor operating
in a user's virtual machine) requests an I/0 operation, a
program interruption occurs, and the Control Program must
determine the type of operation requested and the processing

51

required to honor the request.

The following text describes the major routines involved
in honoring user selector channel input-output requests.
Only the I/0O-related operations of the routines will be
discussed in this section. See Figure 14, CP I/0 Interrupt
Handler.

" Program Interruption Handler — PROGINT

Entrance: PROGINT receives control when a program
interruption occurs.

Operation: PROGINT determines the mode of the user's
virtual machine (problem or supervisor) and the cause
of the program interruption (paging request, invalid
operation, or privileged operation).

Routines Called: If the program interrupt is caused by a

privileged operation that is in virtual supervisor
mode, PROGINT transfers PRIVLGED to simulate it.

Privileged Instruction Simulator - PRIVLGED

Entrance: PRIVLGED receives control via a GOTO from
PROGINT.

Operation: For other than I/C instructions, simulation is
performed within PRIVLGED. PAGTRANS is called to bring
in pages not 1in core that are necessary for the
privileged instruction simulation. When simulation is
finished, exit is taken via GOTO to DISPATCH.

If the privileged operation is an input-output request,
PRIVLGED calls the virtual machine I/0 executive
program (VIOEXEC), passing the addresses of the first
and second halves of the privileged operation in
registers 4 and 5 respectively. Wwhen control is
returned from VIOEXEC, an exit is taken to the main
dispatcher and control routine (DISPATCH), via a GOTO
macro instruction.

Virtual Machine 1I/0 Executive Program - VIOEXEC

(See Figure 20 for VIOEXEC module processing.)

52.

__

Enter

‘module VIOEXEC
entry VIOEXEC

Compute
unit
address

VUNITSCN

Get VCHBLOK
VCUBLOK
VDEVBLOK

Get type
of 1/0
instruction

v

sI0 TI0 TCH HIO
MVIOEXEC
Selector —— — — — 7 Selector
CH-CU - DEV >N 8o encUDEY
found found
Yes L
CH Yes SetCC=2
busy in VPSW
No 3
CE uc
interrupt Yes »le No interrupt interrupt
pending pending pending
No
CUE For Clear CE
interrupt Yes this No setCC= 1 £
pending device store CSW
to VCSW
No Yes l
»y
v y
uc Yes Clegcc:l;lE Set CC=1in Device
interrupt b] VPSW set interrupt
pending in VPSW Exit SM and busy di ’
;etsst_JnEvez:nSdW in VCSW pending
u 1
No
Device No Device No
busy interrupt
pending
Yes Yes
&
y v
_ Create IOTASK QUEVIO
'Sne;‘g% elice im‘et cecd:e T . Set all block Set VMSTETYS | = — — — — =
oV vic bus P! TASKIRA = TO IOWAIT
status to VCSW status to VCSW Y VIRA
A
A
becrement Issue TRANS CCWTRANS
. ! macro for = -~ =77
Exit mtervtup(CCW page
coun set CCW list
Figure 20. VIOEXEC Module Processing (1 of 4)

..53_

Get real

roue HIO device
address
cC=3 wy CC= cC=1
4 \
——
P Y
" CE Move CSW
|nterr4upt status to
pending VCHCSW
¥
Set cc = 1 ttatus
VPSW in VCSW

!

CE
interrupt
pending

No

Exit

Figure 20. VIOEXEC Module Processing (2 of 4)

54

Zero status
in VCHCSW
(virtual H10)

Cue

L]

interrupt
pending

cC=0

Enter

module VIOEXEC
entry VIRA

Get users
UTABLE

Get VCH, VCU,
VDEV block
pointers

v

cC=1

cC=3

Figure 20.

L |

10ISTVCU
Move sense Cue N_VYes = fomm—m—m————a
to VCHCSW requested
A
UNTRANS Reset busy
Movesense | = === ————-— -
to VCHCSW VCUSTAT
VDEVSTAT
A
I0ISTVDE
Set CE int. Set CE int Yes | _]
in VCHBLOK in VCHBLOK
No
-
A
i FREECCW
Reset busy iizai";‘ng | FREECCW |
VEHSTAT in UTABLE Fre_:e cew
string
H Release
I0TASK
block
UNTRANS
UNTRANS
cu Yes fmemm———ea T
CHKCUACT busy
No I
Reset busy
VCUSTAT

VIOEXEC Module Processing (3 of 4)

55

Move CSW
to VCHCSW
and VCSW

Reset busy
VCHSTAT

Reset busy
VCHSTAT

Reset busy
VCUSTAT
VDEVSTAT

Error
flagged in

Reset busy
VCUSTAT
VDEVSTAT

[|

Release
all clocks

Set CC
in VPSW

CHKCUACT

Reset busy
VCUSTAT

L

Figure 20.

-56-

Remove
IOWAIT
status

I0TASK

Get sense
bytes

Yes

CHFREE
Attempt to
START next
10TASK

Exit

VIOEXEC Module Processing (4 of 4)

| Entrance: VIOEXEC receives control from the privileged
| operation simulator (PRIVLGED) when a user-requested
I/0 operation has caused a program interruption.

Operation: VIOEXEC determines the type of I/0 operation to
be executed (S10,TIO,HIO,TCH) and performs appropriate
processing for each type.

For an SIO operation on a selector channel, VIOEXEC:

Obtains the channel, control unit, and device
addresses, and tests for busy or status pending
conditions on the addressed path. If the addressed
channel 1is busy, sets condition code 2 in the
virtual PSW and exits. If status is pending or
the virtual control unit or device is busy, stores
the relevant CSW status, sets condition code 1 and
exits.

| If the path to the device is free, creates an 1/0
task Dblock, translating the virtual channel
address word (CAW) into a real CAW

Calls the CCW translator (CCWTRANS) to translate
virtual CCW's to real CCW's, returning the address
of the start of the chain (TASKCAW)

Sets the I/0 wait indicator in the user‘'s VMSTATUS
in UTABLE

Calls the virtual I/0 request queueing routine,
QUEVIO, to queue the I/0O task block on the
appropriate channel

| Transfers to DSPTCHB (DISPATCH).

| When the I/0 operation is started, QUEVIO reflects

| the condition code to the user, and resets the 1/0
| wait indicator to zero

| For an SIO operation on a multiplexer channel, VIOEXEC:
| (See Figure 21 for MVIOEXEC module processing.)

;57_

module MVIOEXEC

Enter

entry MVIOEXEC

Set CC=0
in VPSW

SetCC=3
in VPSW

tl);:)t:r(:?ine Locate No Yes
1/0 inst. - MVDEBLOK
SIo
TIO
. Int
Device Set CC =2 oending
o in VPSW on device
Get users i Set CC=1
CCW list Exit in VPSW
Store CSW Exit
in MVDEBLOK
Set CC in VRSW
Set status
in CSW

Set CE — DE
in CSW
MVDEBLOK

File
being
processed

Get core for
MVIBUFF, flag
end of buffer
for reader ‘FF’

Punch or
printer

Locate
MVDEBLOK
Interrupts
pending
SetCC=1
in VPSW
RECFREE
7 Exit
Get a disk
record address
Store CYL — NO —
REC in
MVIBUFF
Initialize
MVIBUFF
A
Set empty file
flag ‘DF’
Put file
Punch X
tran:fgfred header in
buffer

]

Yes

Set up IOTASK
TASKIRA =
MVINTR

Figure 21.
-58-

MVIOEXEC Module Processing

(1 of 4)

Exit

Enter

module MVIOEXEC
entry MVIREC

Enter
MVINTR

Issue SVC 16
Get data release Get users
address current first CCW
save area
MRDIO
P e —— Issue : Set program
Valid No prog
Initiate the check 10 ccw check for
1/0 operation MACRO user
Punch or
Reader Yes Console Printer
2
Set IOWAIT Reset iIOWAIT — Move CCW to
in UTABLE (UTABLE) MVICCW
No
Go to Is No Process for Get next End
dispatch Exit CCWa NOP, sense, cecw of CCW
read or feed list
Yes Yes
Set UC and Any Current Continue Get the desired
intervention No data in Yes record ended spool Yes SFBLOK from IS:;\AS:/aS:ESBLOK
required file flag ‘FF’ reading readers chain
Yes No No
- End Set int
e SFBLOK Yes of file Yes Set UC pending
open flag ‘EF’ in CSW in UTABLE
No No
UNPACK
Get the desired —_— Delete Delete old
Exit SFBLOK from old " Exit
readers chain (ljanack user file file
lata
&
No File Get user
found dato area Free blocks
Yes
Get first Move data Close
spool record to user by con_sole
address area function
MVIREC
e — =
Chaining
on?
Get next
non-TIC §et cc=1
ccw in VFSW
4
No ¢cD Yes
o7n Exit
MVIOEXEC Module Processing (2 of 4) -59-

Figure 21.

Enter
MVIEFIRA

Issue
CHECK 10
MACRO

SVC 16
release
current
save area

Chain SFBLOK
to punches
or printers
Get Chain SFBLOK
non-busy to readers
MRDEBLOK chain
Send msg

‘cards XFRED’

Move CCW to
Mviccw
Is
No Illegal
CC‘-N 2 command
write
Yes
Get user Process for
datauarea SENSE NOP,
or CONTROL
No
Move data from Yes Get next
user area to non-TIC
DATAP ccw
Get next Set end of
51?7 non-TIC No file flag
ccw EET
Yes
PACK
- - Set status in Set return
s
. MVIREC
Room Yes Move data Setint I AL R
in disk to disk pending in
buffer 1 buffer UTABLE
No
Set Yes
continued
flag ‘FF’
RECFR!
| RECFREE
. Set status
get a disk in MRDEBLOK
record
address
?;toDrZ?rd: o Set int. Set program Set program
l(rllluinter t‘g pending check in check in
next record) in UTABLE CSw cswW
MVIREC .
T SetCC=1 Set Pending
in VPSW
continue UTABLE
‘ Lt nd
A
Exit

Figure 21.
_60..

MVIOEXEC Module

Processing (3 of 4)

Get reader
MVDEBLOK
set DE int
A
Send MSG Set pending
‘start for intin
output’ UTABLE
Set up Reset
dummy CSW. IOWAIT in
with DE UTABLE
MRIOEXEC .
—— — — Exit

Reset
exit
flag
Clear
break
flag
d
Set busy
(MVDESTAT)
SENSE
NOP Read Alarm Write
P * WRTCONS PLACINIT
rocess Set return - = — =
NOP or from RDCONS Send l')r‘(:yhlj'e and
SENSE initialize
to MVICNRD1 alarm output
message buffer
y
v G Set terminal
cc es et next 1/0 buffer No haini Yes Store buffer
on ccw set address c z:zmg address in
in MVIOB MVIOB
No
&
L b —P
RDCONS
- - = =
Set up Get data
csw
address
No 4
Set pending Return after __PLACE
interrupt read to terminals Set break Yes cc -
- Ur{"fBLE via RDCONS flag (._Ionstn:nct output
MVIONRD1 on line write line if
buffer overflows
Return after '
Set to go Set break Yes i i
write to terminals
to cransole flag Break via WRTCONS
WRINMVI
L No
»le
La
| __BR_E_AK_ 1 Move data G
from buffer et L
. to user next
Put in CP
mode data area cCcwW
v K
Set return .
Set status from WRTCONS
to WRTHMVI
WRTCONS
Set ending No F— — =
status L
Yes
< .
No

Yes Get next Set ending
ccw status

Figure 21. MVIOEXEC Module Processing (4 of 4)
61

Calls the multiplexer virtual I/0 executive
program (MVIOEXEC) -

Transfers to DSPTCHA (DISPATCH).

For a TIO operation, VIOEXEC:

Tests the virtual channel for a pending channel
end; if found, tests for channel end for addressed
device. If channel end is found for the device,
the channel end is cleared, a condition code of 1
is set, the CSW is updated, and transfers to
DSPTCHA (DISPATCH). If a channel end is found,
but not for the current device, a condition code
of 2 is set. If this is the second time this has
happened recently, DISDRQ is called to drop a user
from a queue and then transfers to DSPTCHB
(DISPATCH). *

If a pending channel end is not found, the virtual
control unit is tested for pending interruptions.
If found, a condition code of 1 is set, the CSW is
updated, and control is returned to PROGINT.

If a pending control unit interruption is not
found, the virtual device is tested for pending
interruptions. If found, the pending
interruptions are cleared, the device status and
the count of pending interruptions are updated, a
condition code of 1 is set, the CSW 1is updated,
and transfers to DSPTCHA (DISPATCH).

If a pending device interruption is not found, a
condition code of zero is set, and transfers to
DSPTCHA (DISPATCH).

For a TCH operation, VIOEXEC:

Finds the virtual wunit address and the virtual
channel block

Tests the virtual channel for a pending channel
end. If a pending channel end 1is found, a
condition code of 1 is set. If the channel is
busy, a condition code of 2 1is set; if not, a
condition code of zero is set.

Transfers to DSPTCHA (DISPATCH) .

For an HIO operation, VIOEXEC:

If I/0 is not 1in progress on the device and
interrupts are not pending, sets a condition code
indicating that the device is available.

If I/0 is in progress, issues an HIO to the device
and reflects the condition code to the virtual
machine. When the I/0 is finished, VIOEXEC sets a
condition code indicating interrupt pending.

CCW Translator - CCWTRANS

Entrance: CCWTRANS 1is called by the virtual machine I/0
executive program (VIOEXEC) when an I/0 task block has
been created and a 1list of virtual CCW's associated
with a user's SIO request must be translated into real
CCW's. (See Figure 22 for CCWTRANS module processing.)

63

Enter

module CCWTRANS
entry CCWTRANS

Get VCCW
list
I0TASK-TASKAW

®

Analysis
by device

Analysis by
command
type

Calculate

core required for
real

CCW list

Get core for
‘RCCWLIST’
and set up
header

Get next
VCCW

translate phase
VCCWLIST is reread and
the CCW's pre-translated.
If a read or write cmd
has data that crosses a
page boundry it is

scan phase
VCCLIST is scanned
to determine the
number double-words
required to reproduce
itin real terms

Get
Next
veew

Data
cross page
boundary

Translate
to real
ccw

Translate

to RCCW's

each

specifying

data in one page

End
of VCCW
list

Yes

I Get
] TIC
block

on data area

split into a number
. — — — — ——] of CCW's to eliminate
1 this condition. Control
or address data
| associated with a
Get start | CONTROL, SKIP, SEARCH
of VCCW cmd is moved to the
list | CNTRLST associated
L_with the ACCW list.
Flag if TIC Get next
command block
r——-
E—
Translated 1 End of
comman | CCWLIST
type 1 return
| control I
Test for
page
boundary
condition

Get
next
RCCW

Update
VCAW to
RCAW
IOTASK-
TASKCAW

Store
RCCWLIST
address in
I0TASK
TASKCAW

Exit

Figure 22. CCWTRANS Module Processing

64

TiC
address
found

Get next
RCCW list

Any
more RCCW
list

No
————-d

Translate
TIC to
RCCW

to scan phase
with untranslated
virtual TIC
address

CCWTRANS is called by IOINT when the I/0 operation is
completed from a self-modifying channel program. The
self-rodifying channel program checking portion of
CCWTRANS calls CCWTRANS when retranslation of CCW's is
required.

Operation: CCWTRANS operates in four phases: a scan phase,
a translate phase, a TIC-scan phase, and a
self-modifying channel program checking scan phase if
the ISAM option was chosen.

The scan phase analyzes the virtual CCW list to
determine the total core storage requirement of the
real CCW list. Additional real CCW's are required if
the data area specified by the virtual CCW list crosses
page boundaries. Some channel commands require
additional doublewords for control information (for
example, seek addresses).

The translation phase reexamines the virtual CCW
list and translates it 1into a real CCW list. TIC
commands that cannot be immediately translated are
flagged for later processing by the TIC-scan phase. A
read or write command that specifies data crossing page
boundaries is translated into several CCW's, each
specifying data in only one page.

The TIC-scan phase scans the real CCW 1list for
flagged (untranslated) TIC commands and creates a new
virtual CCW 1list for the untranslated commands. Scan
phase processing 1is then repeated. When all virtual
CCW's are translated, the virtual CAW in the IOTASK
block is replaced by the real CAW (that is, a pointer
to the real CCW list created by CCWTRANS), and CCWTRANS
returns control to VIOCEXEC. The user protection key is
preserved.

Routines called: CCWTRANS calls the page handling routine
(PAGTRANS) , via a TRANS macro instruction, to translate
virtual addresses to real addresses, and to lock in
core storage pages required by I/0 operations.

The self-modifying channel program checking portion of

CCWTRANS calls CCWTRANS to retranslate the channel
program and QUEVIO to start the I/0O operation.

0OS ISAM Handling - CCWTRAN

Because mwany of the 0OS ISAM channel programs are
self-modifying, special handling is required in CP to
allow virtual machines to use this access method. The
particular CCW's that require special handling have the
following general format:

65

66

A | READDATA C+7 10 BYTES I
tm——————— e ————— tm——————— tm—————— +
B | TIC TO E l
tm——————— fm—————— tmm—————— tm—————— +
c | I !
tm———————— tm———————— t———————— tmm—————
D | . |
tm———————— Frm—————— t———————— e ——— +
E | l SEEK: SEEK HEAD ON D I
fm——————— fm—————— $m——————— trm—————— +
F | SEARCH ON D+2 l
tmm—————— tmm————— Fmm————— Ftm—————— +

The CCW at A reads 10 bytes of data, the 1last byte of
which forms the command code of the CCW at E. In
addition, the data read in forms the seek and search
arguments for the CCW's at E and F. The normal CP
translated CCW string has the following format:

0 2 4 6 8
———————— e ——— - e ————— +
1 | READDATA C+7 10 BYTES |
Fm——————— tm—————— tmm——————— tm——————— +
2 | TIC TO 3 I
t———————— tm——————— tm—————— tmm——————— +
e —————— e ——— tm—————— e —————— +
2A | VIRTUAL ADDRESS OF SEEK AT E |
e ——— e —————— tm—————— tm—————— +
3 SEEK: SEEK HEAD ON 6 l
tm———————— o ———— tm——————— tmm——————— +
T SEARCH ON D+2 |
———————— tm——————— tm———————— tm——————— +
5 | ETC. l
tm—————— tm——————— e ————— e +
6 | RELOCATED SEEK ARG. |
m——————— e ———— o —————— tm——————— +

In order to accomplish an efficient and non-timihg
dependent translated operation for 0OS ISAM, the virtual
CCW string is modified in the following manner.

The ISAM scan phase of CCWTRAN is entered 1if, during
normal translation, a CCW of the type at A is
encountered. The scan phase locates the TIC at 2 by
searching the translated CCW strings. The TIC at 2
locates the seek at 3.

The virtual address of the virtual seek CCW at E is
located at 2A. The 4 bytes at E and the four bytes at F
are saved in the eight byte area at 6. The TIC at 2 is
altered to TIC to the virtual CCW at E. The CCW address
field at E 1is translated to reference D. The 4 bytes
at F are modified to a TIC to the CCW's starting at 4.
The completed CCW string has the following format:

1 READDATA C+7 10 BYTES I

fm——————— tm——————— tm——————— o ———— +
2 | TIC TO E l
e ————— m—————— tm——————— tm—————— +
fm——————— fm——————— fm——————— tm——————— +
2A | VIRTUAL ADDRESS OF SEEK AT E |
fm——————— tm—————— fm—————— o ————— +
3 | NOT USED I
fm——————— tm—————— tm——————— tm——————— +
4 | SEARCH ON D+2 |
tm———————— o ————— m———————— t———————— +
S | ETC. |
tm——————— fm——————— tm———————— tm——————— +
6 | SAVED E I SAVED F I
fm——————— tm——————— ———— —— e ————— +

0 2 4 6 8
f———————— tm——————— Fm—————— Fmm——————— +
A | READDATA C+7 10 BYTES |
fm———————— fm—————— fm——————— fm——————— +
B | TIC TO.E I
fm———————— tm—————— fm——————— e ———— +
c | | I
tm——————— fm——————— e ————— fm——————— +
D | |
tm——————— Fm—————— e o ————— +
E | I SEEK: SEEK HEAD ON D I
tm———————— fm——————— fm—————— o ————— *
F | TIC TO 4 1
fm——————— e ————— trm——————— et &

VIRTUAL CCW's

It can be seen that the virtual area C, D, E, and F
must reside in one page for the routine to function.

Once the I/0 operation has completed, an untranslation

scan phase restores the data at E and F and sets the
correct CSW address if the channel program ended at E.

CCW Untranslator - UNTRANS

Entrance: UNTRANS 1is called by VIOINT when a channel end
type of interrupt occurs for a user's virtual
input-output operation. Its function is to convert the
real CSW information into corresponding virtual CSW
information.

Operation: The real CCW that caused the interrupt is
located from the virtual channel CSW (VCHCSW), where
the real CSW 1is temporarily stored. Taking into
account the fact that some of the CCW's may be
system—generated and artificially data-chained, a
virtual CSW is created to represent the CSW that would

67

be expected from the user's virtual CCW list(s).

CCW Return to Free Storage - FREECCW

Entrance: FREECCW is called when VIOINT determines that the
channel has terminated operation on a user's virtual
list. It returns the real CCW equivalent to the
virtual list to free storage and clears the TASKCAW
entry in the IOTASK block.

Operation: The real CAW is picked up from TASKCAW, which is
an entry in IOTASK. From this, the real CCW list with
its "header" information is located. The 1list is
scanned. All 1I/0 commands with data references have
their referenced pages unlocked, and the received data
for Read Home Address commands for shared disks is
unrelocated. When the scanning is complete, the CCW
list is returned to free storage.

Routines called: PAGUNLOK is called to wunlock the page
containing the I/0 data area.

Virtual 1I/0 Request Queueing Routine - QUEVIO

Entrance: QUEVIO is called by the virtual machine I/0
executive program (VIOEXEC) when an I/0O task block has
been created and a virtual CCW list has been translated
into a real CCW list. (See Figure 23 for QUEVIO module
processing.)

_68—

Enter

module QUEVIO
entry QUEVIO

Increment
VIOCOUNT

Enter

module QUEVIO
entry QUERIO

Increment
RIOCOUNT

Store RDEVBLOK
address in
I0TASK block

Get RCUBLOK

A

Flag as
CP task

Enter

module QUEVIO
entry CHFREE

Channel
busy

Control
unit busy

No
Get next Get CCW
IOTASK from address and
. store in
I0TASK list store

L]

Control unit
available

Issue SIO
for sense

Yes

Device
270X

Channel
error

Issue TIO

No

Shared
device

Store RCUBLOK Store IOTASK Get SI0
address in address in RCUBLOK for sense
IOTASK block RDEVBLOK RDEVBLOK started
Store channel)
Get RCHBLOK pointer in Seek in —
control unit progress
. Indicate 1/0
fh:g':%-{‘g?('(started and
© channel busy
Yes Unchain Turn off arm
active IOTASK in position
flag
No
| CHFREE | v
s Form unit
address
No
y
Exit
Get users Move in
UTABLE CAW
SetCC=0
in VPSW Issue SIO
cC=0 cc=1 CcC=3
Reset IOWAIT
1
Exit

Figure 23. QUEVIO Module Processing

Store IOTASK
address in
RDEVBLOK

Unchain Unchain
active IOTASK active IOTASK

Indicate -1
cc=3 Set CC

Move CSW
for IRA
routine

I0TASK int
return address

Exit

69

Operation: When QUEVIO is entered, register 1 contains the
address of an I/0 task block to be queued on a real
channel, and register 2 contains the address of the
appropriate virtual device block. QUEVIO attaches the
I/0 task block to the appropriate channel block,
increments the task count, and tests the real channel.

Routines called: If QUEVIO determines that the channel to
which the I/0 task block has been attached is free,
CHFREE is called to start the I/O operation. If the
I/0 operation is successfully started, the I/O task
bilock is unchained from the channel blcck and chained
to the real device block. If the I/O operation is not
successfully started, the I/0 task block is unchained
from the channel block, and the task count 1is
decremented.

When CHFREE processing is completed, QUEVIO returns
control to its caller - VIOEXEC, after reflecting the
SIO condition code to the virtual PSW, and taking the
user out of IOWAIT. A

Figure 24 illustrates the relationships of routines
which process user selector channel I/0 requests.

70

-TL-

Virtual Program

_______ 4 l
. Virtual Hardware
Lt Simulated Machine l Channel
supervisor and
mode . l Device
S10 instruction I
program interrupt
4 — 4 -
Control
r— _ _Pl-'(_OG_Il\l_‘[_ Program
Determines program
is in supervisor
mode and privileged
instruction
_ DISPATCH __ _ <&
Eventually attempts
to dispatch this user
User has pending
interrupts (UTABLE)
Call UNSIO
ttempt to dispatch
PROGINT Il Attempt to dispata

Determines an 1/0
operation attempted

< >

Real
Device

/O interrupts
from 1/O operation

Locate IOTASK block
Process interrupts

Return to program
that created the
IOTASK TASKIRA =

ViRA
Go to DISPATCH

Unstack and

this user, should

be runnable now

-

DISPATCH

Dispatch this user
L if SIO.is successful
(non — IOWAIT})

(IOWAIT), dispatch
another user

Call VIOEXEC

1f S10 is not successful

- Go to DISPATCH

Get VCHBLOK

FIGURE 2u.

8

VIOEXEC

Compute unit address

Call VUNITSCN

If selector channel, control
unit, and device found and

reflect the
interrupt

UNTRANS(FREECCW) [

Scans real CCW list
to locate and unlock
user data pages

Call PAGUNLOK

VIOEXEC (VIRA) _4——» SCANUNIT(VUNITSCN
Call VUNITSCN Get VCHBLOK
Call UNTRANS VCUBLOK
Call FREECCW VDEVBLOK
Set interrupt pending
in UTABLE
Store status in
VCHBLOK, VCUBLOK — UNTRANS _
VDEVBLOK
Convert real CSW
to virtual CSW

PAGETRANS(PAGUNLOK)

Unlock user data
page

Virtual SIO Selector Channel

VCUBLOK free, set BUSY
VDEVBLOK Set up IOTASK block
TASKIRA = VIRA
Issue TRANS macro
for CAW page
B CCWTRANS Get CCW list
- " -1 | Call CCWTRANS
Get CCW list .
Put user in
Issue TRANS macro IOWAIT status
:" CTW pages ' Call QUEVIO
ranslate virtua
CCW's to real CCW's v A
Issue TRANS macro QUEVIO _
foruserdatapages | [- T TTTT°% 7
and lock pages Get RDEVBLOK
RCUBLOK
RCHBLOK

Chain IOTASK to RCHBLOK

If channel is free,
call CHFREE

free, issue SIO
If S10 is successful, take

If control unit is

user out of IOWAIT

Note:

For dedicated MPX devices, the MPX blocks
are restructured as selector blocks; thus the
MPX device is structured as a selector device.
Therefore the logic flow for selector and
dedicated MPX devices is the same.

Virtual Channel Interruption Handler - VIRA

Entrance: When a user-requested I/0 operation is started on
a selector channel, the interruption return address
(TASKIRA) in the 1I/0 task block points to the virtual
channel interruption handler (VIRA). When the 1I/0
operation is completed and an interruption occurs, VIRA
receives control from IOINT, the real input-output
interruption handler.

Operation: VIRA 1indicates in the wuser's control table
(UTABLE) that an interruption is pending, and stores
status information in the virtual channel block,
virtual control unit block, and the wvirtual device
block when appropriate. The I/0 task block is
unchained from the real channel block and returned to
free storage if the operation is complete (that 1is,
channel end and device end or their equivalents
occurred). If an I/0 error has occurred, control is
passed to IOERROR. See "Processing of I/0 Errors -
IOERROR".

Routines called: VIOINT calls the routines IOISTVCU and
IOISTVDE (subroutines within the real I/O interruption
handler) to indicate a control unit end interruption
and a device end interruption respectively. When
VIOINT processing is completed, an exit is taken to the
main dispatcher and control routine (DISPATCH).

Routine to Analyze and Record Errors - RECERROR

Entrance: If an I/0 error occurs for a user-requested I1I/0
operation on a selector channel, VIOINT calls RECERROR
to analyze and record the error.

Operation: RECERROR analyzes the I/0 error from information
contained in sense byte zero. The following types of
I/0 errors are recorded.

Type of Error Counter Number Bit Position
——————————————————————————— Within Sense Byte 0

Bus Out Parity 1 2
Equipment Check 2 3
Data Check 3 1)
Seek Check 4 7

Counters for each of these types of errors are kept in
the RDEVBLOK for each device. Note that errors are recorded
for dedicated devices operating on a virtual multiplexer
channel (unit record equiprent, virtual 2702s). If the
error is the first encountered of a given type for a given
device, the error is recorded. If the error causes the
counter to overflow (that is, upon the eighth error of this

72

type for the device), a counter overflow error record is
written. This error may represent the failure of a
completely different channel program than the first error of
this type which was recorded. If the error 1is neither the
first encountered nor a cause of a counter overflow
condition, control returns to VIOINT, and the error
information is reflected back to the user's virtual machine.

The I/0 error record has the following 112-byte format:

ORG LOGDATA DEFINE I/0 ERROR RECORD

LOGSNSE Ds CL6 SENSE INFORMATION

LOGCODE DS c11 DEVICE TYPE

LOGTYPE DS CL1 FIRST ENCOUNTERED OR COUNTER
OVERFLOW -~ TYPE OF ERROR

LOGVOLID DS CL6 VOLID OF DEVICE (IF AVAILABLE)

LOGADDR DS CL2 PHYSICAL ADDRESS OF DEVICE

LOGDATE Ds CL6 DATE AND TIME STAMP OF ERROR

LOGCSHW DS CL8 CHANNEL STATUS WORD

DS CL2 UNUSED

LOGCCWS DS 9D FAILING CCW STRING (UP TO NINE
DOUBLEWORDS)

LOGSKLOC DS 1D LAST SEEK ADDRESS (DASD ONLY)

The CCW in the string which failed is flagged with an
asterisk in the unused fifth byte.

After the error record is written, the pointer to the
next available slot on the CE cylinder is wupdated. Seven
logical records are contained within one 829-byte physical
record. Since 15 records may be written on two tracks of a
2314, wup to 1050 error records may be writtem on one
cylinder. 1If the attempt to write the error record fails,
it is retried eight times. Upon continued failure, an error
message "** TOERROR RECORDING FAILURE ON DEV__ " is sent to
the operator. If there is no more room on the CE cylinder
for error records, the message "**CECYL FULL; I/0 ERRORS NOT
RECORDED **" 1is sent to the operator. Errors are not
recorded for wusers with privilege class C in order to
prevent the recording of intentional errors produced by CE
diagnostics. Recording will be reinitiated after the CE
executes the CLEARIO function.

Main Dispatcher and Control Routine - DISPATCH

Entrance: DISPATCH is entered from routines which have
completed their processing for a user or cannot
continue processing until some other process has been
completed. (See Figure 10.1 for DISPATCH module
processing.)

Operation: DISPATCH checks for pending interruptions and
determines which user is to receive control next.

Routines called: When DISPATCH determines that an 1I/0
interruption is pending, the 1/0 interruption

73

’74

unstacking routine (UNSTIO) is called. UNSTIO updates
the virtual CSW, restores virtual PSW's, and indicates
the address of the interrupting device. When UNSTIO
processing is completed, DISPATCH attempts to restart
the current user, if runnable and if his quantum is not
exhausted.

DISPATCH may be entered at 4 1locations: DISPATCH,
DSPICHA, DSPTCHB, and DSPTCHC. DISPATCH is the normal
entry point used by all routines that are not sure of a
user's status. DSPTCHA is entered from routines which
have gained control after a program interrupt for a
user and have changed the wuser's PSW. DSPTCHB is
similar to DSPTCHA except the PSW is at most changed in
its condition code field. DSPTCHC is used by routines
which have done some processing for a user but in no
way changed his status.

Figures '25-28' illustrate the relationships of
routines which process an I/0 interrupt returned from a
selector channel device.

-Gl -

Virtual
Machine

Virtual Program
(Simulated

DISPATCH
Eventually attempts
to dispatch this user
User has pending
interrupts (UTABLE)
Call UNSIO
Attempt to dispatch
this user should
be runnable now

Y

supervisor mode)

Spooling

Device

1/0 interrupts

from writing spooling buffers

R—

]

FIGURE 25.

Locate 1/0 task block
Process interrupts

Return to program
that created the
1/0 task

I0TASK BLK TASKIRA

Hardware
Device
and
Channel

QUEVIO (QUERIO)

GET RDEVBLOK
RCUBLOK

RCHBLOK
Chain task to RCHBLOK

Issue SI10 if channel
is free (spooling device)

‘CLOSEIO’
SI0
SI10 instruction Invalid CCW
program interrupts
— P
PROGINT MVIOEXEC (MVINTR)
__________ ————— ——
Determines program SVC 16 release current
is in supervisor mode save area
and privileged CHECK 10 macro
operation
VIOEXEC MVIOEXEC(MVIEFIRA)
Determines an 1/0 Compute unit address CHECK 10 macro
operation attempted Call MVIOEXEC SVC 16 release current
Call VIOEXEC save area
Go to DISPATCH [Chain file block to
(punches) or (printers)
Call MRIOEXEC
if real 1/0 device can
be started
UNSIO _MV_IPQ(E_C.__._._ (See Figure 11¢)
———————— Scan MVDEBLOK for Reset IOWAIT(UTABLE
Unstack and reflect MPX device
the interrupt If device not busy,
issue TRANS macro for MVIOEXEC (MVREC)
CAW page —_—— ——— — -
. . Set up CCW’s to
If no interrupts pending) ?
set up normal interrupt ¢ write this buffer
condition in MVDEBLOK Call QUERIO
PACK for this operation Set IOWAIT(UTABLE)
————————— Get MVIBUFF Go to DISPATCH
Compress user’s CGW [@— Set up MVIOB (I0TASK)
data TASKIRA = MVINTR
> Issue TRANS macro
for CCW page
Call macro PACK —
If buffer is full, | DISPATCH

call MVREC,

get another buffer

Enter packed data
into buffer

If invalid CCW (EOF)

set TASKIRA = MVIEFIRA
call MVREC

Set status in MVDEBLOK
Set pending interrupt

in UTABLE

e —
This user will wait

for spooling 1/0
operation to complete

Dispatch another user

Virtual SIO MPX Channel

(Nondedicated Punch or Printer)

-9/ -

Virtual Program

Virtual
Machine

Hardware
Channel
and

I
l
l
|

Control Program

MVIOEXEC (MVINTR)

Spooling
Device

1/0 interrupts from
reading spooling buffer

SVC 16 Release
current save area

Issue CHECKIO macro

(Simulated
S supervisor
mode)
S10 inst:uction
program interrupt
__Jr_________ —_—— e
PROGINT _
Determines program
is in supervisor
mode and privileged
instruction
VIOEXEC
Determines an 1/0 i
operation attempted > glrln;'uvtleoug:;gdress
DISPATCH Call VIOEXEC l——
——————— 1 Go to DISPATCH
Eventually attempts
to dispatch this user \
User has pending
interrupts (UTABLE) UNSIO
CallUNSIO | o e — = MVIOEXEC
Attempts to dispatch Unstack and Scan MVDEBLOK for .
this user should reflect the MPX device
be runnable now interrupts If device not busy,
issue TRANS macro
for CAW page
If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation
Get MVIBUFF set up
MVIOB TASKIRA=MVINTR
Issue TRANS macro
for CCW page
PACK (UNPACK) =g Get a closed file
———————— from reader chain
Unpack user CCW > Call MVIREC
data Call UNPACK
Issue TRANS macro
for user pages
Move data into
current page
Set status in MVDEBLOK
Set interrupt pending
in UTABLE
Reset IOWAIT (UTABLE)
FIGURE 26. Virtual SIO MPX Channel

(Nondedicated Reader)

]

I0INT

Locate IOTASK block
Process interrupts

Return to program
that created the 1/0
task IOTASK-TASKIRA

MVIOEXEC (MVIREC)

Get RDEVBLOK

RCUBLOK
RCHBLOK

Set up CCW's to
read this buffer
Call QUERIO

Set IOWAIT (UTABLE)
Go to DISPATCH

Chain IOTASK TO RCHBLOK

If channel is free,
call CHFREE

DISPATCH
This user will wait

for spooling 1/0
operation to complete

Dispatch another user

QUEVIO (CHFREE)
If control unit is

free, issue SIO

(read spooling buffer)

-LL-

Printer Spooling

Device

1/0 interrupt from 1/0 Interrupt from
reading real device output to real device Hardware
Channel X . 1
and 1/0 interrupts from 1/0 interrupts from
Device writing spooling buffer reading spooling buffer
Control Program
10INT I0INT 10INT
S R —— S Y (S
Get MRDEBLOK (See overview of virtual Locate IOTASK block
Get user's UTABLE SI10 MPX) Process interrupts
Call MRIOEXEC to MVIOEXEC(MVIEFIRA) &‘:{U";e;feﬁ'?g;a;yo
process interrupts MRIOEXEC r——-———-—--=
for the device - —_————— (See overview of virtual task IOTASK-TASKIRA
MIRA=PRIRA or PVIRA Get operator's UTABL. SI10 MPX Go to DISPATCH
Go to DISPATCH Get MRIBUFF -
Set up IOTASK o
TASKIRA=MRIRINT
DISPATCH Get output buffer DISPATCH
L e o e] Get spooling fileblock { e —————— .
Dispatch any user Get device address Dispatch any user
Call WRTCONS to
output message to
operator ‘
Call MRDIO MRIOEXECMRIRINT)_|
Issue CHECKIO macro
\ PACK (UNPACK) |« Call UNPACK
Unpack user’'s CCW M;Jve urpa:l;ec:fdata
MRIOEXEC (MRDIO) data into output buffer
S:tu|2 E(-IV_VE(? - Issue SIO to real
read buffer from device
spooling device
Call QUERIO

v A

QUEVIO (QUERIO)

Get RDEVBLOK
RCUBLOK

RCHBLOK

Chain IOTASK to RCHBLOK

If channel is free,
call CHFREE

y |

QUEVIO (CHREE)

If control unit is

free issue SIO

(read spooling buffer)

FIGURE 27. Real SIO MPX Channel
(Punch or Printer)

-8/ -

MRIOEXEC(CRIRA)

Get operator's UTABLE
Get MRIBUFF
Get 10-Card buffer

Set up 10 TASK
TASKIRA=MRIWINT

Set up CCW's to read
10 cards from the
real device

Issue SI10 to the
real device

FIGURE 28.

Reader

1/0 Intern‘th

from reading real device

1
1/0 interrupt
from reading real device

Get MRDEBLOK
Get user's UTABLE
Call MRIOEXEC to

la@§—— Process interrupts

for the device

—® MIRA=CRIRA

Go to DISPATCH

— - JOINT__

Get MRDEBLOK

Hardware

Channel
and
Device

Control Program

Get user’'s UTABLE

Call MRIOEXEC to
process interrupts
for the device
MIRA=CRIRA

Go to DISPATCH

1]

DISPATCH

Dispatch any user

DISPATCH

Dispatch any user

CCW data

QUEVIO(CHFREE)

I control unit is
free, issue SIO

Compress user >

MRIOEXEC (CRIRA)
Get operator’s UTABLE|
Call PACK

Move data into
spooling buffer

If buffer is full
or EOF, write this 4—‘
spooling buffer
Call MRDIO

Issue CHECKIO macro

If not end-of-file,
process more data

If end-of-file, chain
spooling file buffer
to reader’s chain
Call WRTCONS to
send CARDS READ
message to the user

[—— I0TASK--TASKIRA
L' —#{ Go to DISPATCH

>

Spooling
Device

1/0 interrupt
from writing spooling buffer

Process interrupts

Return to program
that created the /0O Task

'

DISPATCH

Dispatch any user

y 1

MRIOEXEC(MRDIO)

Set up CCW's to write
buffer to spooling
device

Call QUERIO

']

(write spooling buffer)

QUEVI0 (QUERIO)
e e e ———

Get

Chain IOTASK to RCHBLOK

If channel is free,
call CHFREE

RDEVBLOK
RCVBLOK
RCHBLOK

Real SIO MPX Channel

(Reader)

PROCESSING USER MULTIPLEXER CHANNEL I/O REQUESTS

When a pseudo-supervisor (that is, a supervisor operating
in a user's virtual machine) requests an I/0 operation for a
device attached to the multiplexer channel, the program
interrupt handler (PROGINT), and the virtual machine 1I/0
receive control. (See preceding section headed "Processing
User Selector Channel 1I/0 Requests".) when VIOEXEC
determines that an I/0 operation has been requested for a
device attached to the multiplexer channel, the multiplexer
virtual I/O executive program (MVIOEXEC) is called. Figures
'29-32' 1illustrate the relationships of routines which
process user multiplexer channel I/0 requests.

79

-08 -

Any Control
Program Module

o
Call WRTCONS
with or without
NORET (no return) option

Go to DISPATCH
[]
o

Routine to process
the write if NORET
not specified

Console or
Terminal

y 1
1/0 interrupts
from write to terminal

| ____WRTCONS _ _
Set up RDCONPKG if

| NORET not specified

Get MRDEBLOK and

device address

Construct CCW package
for write

Call STCONSIO

Get MRDEBLOK
Get user’'s UTABLE

Call CONSINT

to process interrupts
for the device
MIRA=CONSINT

Or if “attention”’
interrupts, call BREAK

Go to DISPATCH

Hardware
Channel
and
Device

Control Program

y !

Y

FIGURE 29.

STCONSIO

Get MRDEBLOK

If previous console

1/0 request outstanding,
queue this request
UTABLE—-CIOREQ

If no requests
outstanding, issue
SIO for this request
and queue this request
UTABLE—-CIOREQ

DISPATCH

Eventually attempt
to dispatch user that
initiated the write

User has outstanding
CPRQUEST (if NORET
not specified)

Process CPRQUEST,
return to location
designated by the
program that called
WRTCONS (return
address in RDCONPKG)

CONSINT

Get CCW package
Process interrupts

If NORET not specifieJ >
call CPSTACK
to set up return

If more CCW packages
in stack, start the
next one (issue SI0O)

-

CPSTACK
Put RDCONPKG in
CPSTACK

Real Terminal SIO (Write)

-T18 -

Any Control
Program Module
- -
[
[J
Call RDCONS
Go to DISPATCH
[J
[]
[
Routine to prccess
the read
[J
[}

Console or
Terminal

1/0 interrupts
from read to terminal

RDCONS

Get MRDEBLOK and
initialize for device
type and address

Set up RDCONPKG

Construct CCW package
for read

Call STCONSIO

Get MDDEBLOK
Get user's UTABLE
Call CONSINT

to process interrupts
for the device
MIRA=CONSINT

Go to DISPATCH

y 4

Y

FIGURE 30.

STCONSIO

Get MRDEBLOK

If previous console

1/0 request outstanding
queue this request
UTABLE—CIOREQ

If no requests
outstanding, issue SIO
for this request and
queue this request

UTABLE—CIOREQ

DISPATCH

b e e — — o ———— —

Eventually attempt
to dispatch user that
initiated the read

User has outstanding
CPRQUEST

Process CPRQUEST
return to location
designated by the
program that called
RDCONS (return

address in RDCONPKG)

Real Terminal SIO (Read)

Hardware
Channel
and
Device

Control Program

———P CONSINT

~<— | Get CCW package

Process interrupts

Get read data and
process for EDIT and
UCAGSE if specified

Call CPSTACK

If more CCW packages

in stack, start the next
one (issue SI0

CPSTACK

Put RDCONPKG in
CPSTACK

Virtual Program
(Simulated
supervisor
mode)

T
SI0 instruction
program interrupt

PROGINT

Determines program is
in supervisor mode and
privileged instruction

Determines an 1/0

Virtual Machine

Control Program

VIOEXEC

Compute unit address

MVIOEXEC
Scan MVDEBLOK for

82

operation attempted MPX device
DISPATCH pef P Call MVIOEXEC .
b —— —— —— - Call VIOEXEC If device not busy,
Eventually attempts [*l———] @ issue TRANS macro
to dispatch this user L Goto DISPATCH | for CAW page
User has pending If no interrupts pending,
interrupts (UTABLE) set up normal interrupt
Call UNSIO condition in MVDEBLOK
] UNSIO PLACE(PLACINIT) for this operation
Attempt to dispatch —_————— T T T Issue TRANS macro
this user should be] Unstack and Obtain terminal for CCW page
runnable now reflect the 1/0 buffer [
interrupt Call PLACININT
! Save buffer address
] in MVDEBLOK-MIOB
PLACE
- T T > Call PLACE
Move user CCW data P I CCW's if
into 1/0 buffer rocess a st
i chaining is on
DISPATCH PLACE (FORCE) If the end of line,
P —— ——— —————— — — call FORCE
(See overview of real To print a line
terminal S10) call WRTCONS If any of the line
Process CPRQUEST, :g;gg;’é}?N— remaining to force out
return to location “ call WRTCONS with
designated by the A Go to DISPATCH T _VVIE:ONS__ et return = WRTNMVI
A~ program that called Y - ————»| and go to DISPATCH
qr’ WRTCONS (return (See overview of real
address in RDCONPKG) terminal SI10)
L o o e] Set device end in
MVDEBLOK
PLACE (FORCERET) .
e —— — —] Set interrupt
Test for break and pending in UTABLE
process if any L e e e]
Reinitialize the
buffer DISPATCH | MVIOEXEC(WRTNMVI) |
] — T T Test for break and
Dispatch any process if any
user . .
Set device end in
MVDEBLOK
Set interrupt
pending in UTABLE
OR
FIGURE 31. Virtual Terminal SIO (Write)

-£8-

Virtual Program

FIGURE 32.

MVIOEXEC

MPX device

If device not busy,

issue TRANS macro

for CAW page

If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation

ssue TRANS macro
for CCW page

Get terminal 1/0

buffer

Save buffer address
in MVDEBLOK-MVIOB

(Simulated
— supervisor
mode)
SI0 instruction Virtual Machine
program interrupt
PROGINT Control Program
Determines program is
in supervisor mode
and privileged
instruction
| _VIOEXEC __
Determines an /0 Compute unit address
operation attempted > Call MVIOEXEC
Call VIOEXEC
| __ DISPATCH _ |«@—— GotoDISPATCH |«
Eventually attempts
to dispatch this user
User has pending
Z\tlelr:,u::'(()UTABLE) UNSIO
. 1 Unseckana |
Attempt to dispatch nstack an RDCONS
this user should lag—| reflectthe) |~ RDCONS
be runnable now interrupt]
(See overview of real
terminal S10)
| _ _DiseaTcH |
Dispatch any
user

Virtual Terminal SIO (Read)

Call RDCONS
with return =
MVICNRD1

Go to DISPATCH

Test for break and
process if any

Issue TRANS macro
for user page

Move CCW data to
user page

Process remaining
CCS’s if chaining
ison

Set device end in
MVDEBLOK

Set interrupt pending
in UTABLE

Scan MVDEBLOK for |

L terminal SI0)

DISPATCH

(See overview of real

Process CPRQUEST,
return to location
designated by the
program that called
RDCONS (return
address in RDCONPKG)

SIO on a Virtual Multipiexer Channel

When MVIOEXEC determines that an SIO operation has been
executed, the page handling routine (PAGTRANS) is called,
via the TRANS macro, to obtain the user's virtual CCW list
starting address (from the virtual CAW), and an I/0 task
block and buffer area are created. If an interruption
(device end or channel end) 1is pending on the virtual
device, an indicator is set in the multiplexer virtual
device block (MVDEBLOK), and an exit is taken to VIOEXEC.

If no interruptions are pending, MVIOEXEC determines the
type of device for which the SIO operation is requested. If
the device is a printer or card punch, the wuser's CCW data
must be packed (via the PACK routine) and placed into a
spooling buffer (829 bytes), preparatory to being written
into a spooling area on a direct access device. If the
device is a card reader, data will be read from a direct
access spooling area into a buffer; it must then be unpacked
(by means of the UNPACK routine) to be made available to the
user.

If the device is a user's terminal, the virtual CCW is
saved, and the type of command (SENSE,NOP,ALARM,READ, or
WRITE) must be determined; special processing is required
for each command.

Following is a summary of the processing required for SIO
operations for devices attached to the multiplexer channel:

SIO - Printer or Punch: For an SIO operation to a printer
or card punch, MVIOEXEC does the following:

Initializes MVIBUFF, which contains a buffer for user's
packed CCW data, CCW's to write the buffer onto a
direct access device, and control information.

Calls PAGTRANS to bring into core the pages which
contain the user's CCW data.

Calls PACK to compress the user's CCW data.

Enters the packed data into the buffer; when the buffer
is filled, it is written into a spooling file on a
direct access device by calling QUERIO.

Calls the multiplexer real I/0 executive program
(MRIOEXEC) to perform the input-output operation when
the spooling file is closed. (The file may be closed by
the user including an illegal CCW or issuing a CLOSE
command from console functions.) If the real printers
and punches on the system are busy, the closed spooled
file 1is placed in chains starting from PRINTERS or
PUNCHES.

84

Note: If CP console function XFER had been previously
initiated, no real deck is punched. Instead, the
spooled card deck is set up as an input deck in the
virtual card reader for the userid specified in the
XFER command.

SI0O - Card reader: For an SIO operation on a card reader,
MVIOEXEC does the following:

Initializes MVIBUFF, which contains an area into which
the user's packed data will be read, CCW's to read the
data from a direct access device spooling area, and
control information. The READER chain on the system is
scanned to find a spooled file for the wuser. If none
are found, the SIO is indicated to have terminated by
an intervention-required condition.

Calls QUERIO to read packed data (80-byte card image
records packed into 829-byte physical records) from the
direct access spooling file associated with the user's
ID.

Calls PAGTRANS to bring the required user's pages into
core storage.

Moves data 1into the specified area 1in the wuser's
page(s).
SIO - User terminal:

Sense Command - User terminal: For a SENSE command on a
user terminal, MVIOEXEC does the following:

Calls PAGTRANS to determine the address of the area
into which the sense information will be placed.

Moves sense information from the multiplexer virtual
device block into the provided area.

NOP Command - User terminal: For a NOP command on a user
terminal, MVIOEXEC does the following:

Scans virtual CCW flags. If the CC or ¢D flag is on,
the next CCW in the chain is examined.

Indicates a pending multiplexer interruption in the
user's UTABLE if neither the CC nor the CD flag is on.

85

WRITE Command - User terminal: For a WRITE command to a

READ

user terminal, MVIOEXEC does the following:

Callis PAGTRANS to obtain the user's pages associated
with the I/0 transfer.

Moves the user's data into the output buffe:.

Processes each successive CCW in the chain if the
chained data flag is on. All chained data is moved into
the output buffer.

Calls WRTCONS to write the data contained in the output

buffer on the user's terminal. (Control 1is given to
DISPATCH until the real WRITE operation is completed.)

Command - User terminal: For a READ command for a user
terminal, MVIOEXEC does the following:

Calls FREE to obtain an input buffer.
Calls RDCONS to read data into the input buffer from
the user terminal. (Control is given to DISPATCH until
the real READ operation is completed.)

Calls PAGTRANS to obtain the address of the user's
pages into which data will be placed.

Moves data from the input buffer to the specified areas
in the user's pages.

Processes virtual CCW flags.

Processes each successive CCW 1in the chain if the
chained data or chained command flag is on.

ALARM Command - User terminal: For an ALARM command for a

user terminal, MVIOEXEC does the following:

Calls WRTCONS to write an "alarm"™ message on the user
terminal (control is given to DISPATCH until the ALARM
is completed).

Processes each successive CCW in the chain if the
chained data or chained command flag is on.

86

When special processing for each type of command is
completed, MVIOEXEC performs the following:

Checks for command chaining and processes the next
command if on.

Calls PAGTRANS to determine the address of the virtual
CSW, stores the virtual CSW, and removes the I/0 wait
indication from the user's UTABLE.

Calls BREAK if the attention key was activated during a
read or write operation.

Returns control to the virtual machine I/0O executive
program (VIOEXEC).

TIO on a Virtual Multiplexer Channel

When MVIOEXEC determines that a TIO operation has been
requested, the multiplexer virtual device block (MVDEBLOK)
is examined to determine whether an interruption (channel
end or device end) is pending for the virtual device.

If a channel end interruption is pending, the channel end
indication is removed from the MVDEBLOK. If a device end
interruption 1is pending, the device end indication is
removed, and device end is indicated in the virtual CSW.
For either type of interruption, a condition code of 1 is
set in the virtual PSW. If no interruptions are pending,
the condition code remains zero.

When the condition code has been set, the normal MVIOEXEC
exit is taken:

The virtual CSW is stored, and the I/O wait indication
is removed from the user's UTABLE.

The BRKWR or BRKRD routines are called if required or
if an "attention" is seen.

Control is returned to the virtual machine I/0
executive program (VIOEXEC).

TCH on a Virtual Multiplexer Channel

When MVIOEXEC determines that a TCH operation has been
requested, a SCAN macro is issued to obtain the channel
status. If the channel is not operational (that is, no
channel by that number is defined in the virtual machine), a
condition code of 3 is set. If any interruptions are pending
for the channel, a condition code of 1 is set. If the
channel 1is busy, a condition code of 2 is set. If no

87

interruptions are pending for the channel and it is not
busy, a condition code of 1 is set.

When TCH processing is completed, control is returned to
the virtual machine I/0 executive program (VIOEXEC).

EIO on a Virtual Multiplexer Channel

When MVIOEXEC determines that an HIO operation has been
requested, it sets the user's condition code to zero if
there is an interruption pending, and to 1 if there is no
interruption pending.

Pseudo Timer Device - TIMR

When MVIOEXEC detects an SIO to a virtual multiplexer
device type TYPTIMR, it fills in the specified read buffer
with the time of day (hh/mm/ss), date (mm/dd/yy), total
virtual CPU time (VTOTTIME), and total CPU time (TIMEUSED)
used since logging in. No actual I/0 operation is performed,
and no real device is associated with this operation. There
is no interrupt from this device after the data is
transferred. The SIO ends with a condition code of zero for
a successful operation, or 3 if the pseudo timer does not
exist in the user's virtual machine configuration.

PROCESSING DEDICATED MULTIPLEXER DEVICES

If multiplexer devices are dedicated to a
particular user, they are structured and handled by CP-67 as
though they were selector type devices. Thus a virtual SIO
to a dedicated printer, for instance, would go through the
selector I/0 processing logic and not through the
multiplexer spooling 1logic. Any CP-67 multiplexer device
can be dedicated to a user at the time he 1logs in to CP-67
or through the ATTACH capability.

When a multiplexer device is attached to a user on
a nonshared (dedicated) basis, a restructuring of the real
and virtual control blocks is required. As an example,
suppose the operator is attaching the real printer to a user
as a dedicated device. The real printer is "030" and the
virtual address is "00E". The user cannot already have a
device of address O0OE in either his virtual selector devices
or multiplexer devices. The real multiplexer device block
(MRDEBLOK) for the printer 030 is located. If the printer
is not busy or already attached, the MRDEBLOK is marked as
"dedicated™. A routine called DEDICATE then creates a real
selector channel, control unit, and device block for the
printer, and chains these blocks with the other real blocks
(RCHBLOK, RCUBLOK, and RDEVBLOK). Then virtual selector
channel, control unit, and device blocks are created and are
linked to the newly created real blocks by VPNTREAL in the

per

VDEVBLOK. Since the device is now structured as a selector
device, I/0 simulation and interrupt handling will be as
outlined in "Processing User Selector Channel I/0 Requests"™.
This structure will be maintained until the wuser detaches
the dedicated device or 1logs out. In either case, the
logout routine (USEROFF) will detect a dedicated device that
was structured using DEDICATE and will call RELEASE to free
the real channel, control unit, and device blocks and to
free (undedicate) the device on the multiplexer (MRDEBLOK)
chains. The device (printer, for example) is now available
for CP-67 spooled output.

PROCESSING VIRTUAL 2702 LINES

Virtual 2702 lines in a user's machine require
special consideration because of the nature of the
teleprocessing applications that these virtual machines may
run.

For a virtual machine with nondedicated virtual
2702 lines defined in the CP-67 directory, the virtual I/0
blocks are built as selector I/0 blocks. Every virtual 2702
line has its own virtual selector channel, control unit, and
device block (VCHBLOK, VCUBLOK, and VDEVBLOK). The blocks
are structured this way so that a dedicated 2702 line can be
linked to them when linkage is initiated by DIAL (see the
next section for DIAL processing). In order to properly
process a DIAL request, the virtual 2702 block must be
initialized. This is under control of the virtual machine.
When the virtual machine issues an "enable"™ sequence to a
virtual 2702 1line, CP-67 performs all the normal handling
for a user selector 1/0 request with one major exception.
Since there is no real device on which to perform the I/0
operation when the "enable"™ is issued, the IOTASK created by
VIOEXEC is held waiting for a DIAL request. The user is
given the condition that the I/0 is started, but it will not
complete, of course, until a DIAL is handled, simulating a
call completion. The "enable™ CCW is changed to a "write
circle C" to effect line behavior as though a call had been
completed. Any SAD commands are made NOP since the real
line has already been set by CP-67 and the SAD number could
be different for virtual machines. The module CCWTRAN
detects I/0 to virtual 2702 lines and changes the "enable"
and SAD commands. CCWTRAN also retains the IOTASK (pointed
to by VPNTREAL in the VDEVBLOK for the virtual 2702 line)
and indicates to VIOEXEC (which called CCWTRAN) not to call
QUEVIO since no real device yet exists.

Figure 33 illustrates the processing of virtual
2702 1lines before and after a DIAL console function is
issued.

89

V —2702

VCH ——t—»{ VeCU ——p VDO - — — — — — — — =
i |
l
—VIRT ENABLE |
|
|
1/0 TASK |
) I
T I
‘ |
\ |
\ ENABLE |
\ CCW(s) l
\ |
\ |
N |
\ |
|
RCH o— — RCH — 4 — RCH l
T l
|
L l l |
|
RCU RCU RCU ,
i |
I
I
|
RDV O P RDV RDV RDV - —

- T~

-
— - ~
~
MDEV o—{ —pw! MDEV o—{p»| MDEV o— gl MDEV o—|p MDEV

1/0 block chain before |

)

and after (-——=9

a DIAL procedure

FIGURE 33.

90

Processing a Virtual 2702 Line

&b Did a DIAL

i,

PROCESSING A DIAL REQUEST

The DIAL method of attaching to a virtual machine
is an alternative to LOGIN with a wunique userid. After
making contact with the computer and receiving the message
"CP-67 online", a user can enter "dial xxxx", where xxxx is
the userid of a virtual machine with virtual 2702 lines.
The DIAL request can be considered as a self-initiated
request to "attach"™ the terminal to the desired virtual
machine on a dedicated basis. The module DIAL will search
for an "enabled" (virtually) 2702 line that is not in use on
the requested virtual machine. When one is found, DIAYL will
call DEDICATE to attach the terminal that entered "DIAL" to
the virtual machine. DEDICATE will mark the terminal from
the MRDEBLOK chain as dedicated and create real selector
channel, control unit, and device blocks. These will be
linked to the already existing virtual selector channel,
control unit, and device blocks. The IOTASK that was being
held (from the "enable"™ sequence) is now allowed to proceed
by DIAL calling QUEVIO. 1I/0 interrupts and subsequent I/0
requests to that virtual 2702 line will now be handled in
exactly the same fashion as dedicated multiplexer devices.
However, in order to expedite the efficient handling of
dedicated (DIALed) 2702 lines, a further step is taken. 1In
CCWTRAN, detection is made when a virtual machine issues a
disable to a DIALed 2702 line. When a virtual "disable" is
detected, CCWTRAN creates a dummy CSW with normal completion
and calls VIRA to process what appears to be the completion
of the "disable"™; however, no I/0 operation 1is performed.
CCWTRAN then calls RELEASE to free the real selector blocks
for the dedicated 2702 line. RELEASE will set processing in
effect to go to OFFHANG in CONSINT. OFFHANG writes a
message to the terminal indicating that the terminal is now
under CP-67 control. OFFHANG will then either disable the
line and then reenable (as done in LOGOUT) or proceed to
IDENT2, which will start with "CP-67 online™ and then wait
for a LOGIN or a DIAL (as done in LOGOUT HOLD). The
alternative is an installation option defined in CONSINT.

Special handling is also required if the virtual
machine with virtual 2702 lines either detaches 2702 lines,
does an HIO to "dialed" or "enabled"™ lines, or 1logs out of
CP-67. Since "enabled" lines have IOTASK blocks pending,
these must be released if the virtual 1line is to be
considered no longer active. The VIOEXEC module has special
code to handle an HIO to an "enabled®™ 2702 1line. VIOEXEC
will call VIRA to indicate that the "enable™ has been
halted. HIO to a "dialed"™ 2702 line is allowed to proceed
in the normal fashion. The RELEASE module (in USEROFF) also
has code to call VIRA, release the IOTASK block, and return
the device to the MRDEBLOK chain.

91

VIRTUAL RPQ'S

Five special functions are provided by CP-67 to virtual

machines; these functions either are not available on a real
System/360 or normally would require operator intervention.

RPQ Timer - This is a special device type (TIMR) defined in

the directory to provide time information to a virtual
machine. The device can have any address, but for CMS
it is defined as OFF. The virtual machine issues an SIOC
to the device with a "read™ CCW using a 24-byte data
area, which must not cross a page boundary. The
following information is placed in the 24-byte data
area.

Location Data
0-7 date as MM/DD/YY
8-15 time as HH.MM.SS
16-19 value from TIMEUSED
20-23 value from VTOTTIME

There is no interrupt from the device after the data
transfer.

Readakle punch - This function is provided by the XFER

console command. It routes the output from a user's
spooled card punch to his or another user's spooled
card file input. This function operates simply by

. SFBLOK routing. When a user issues CLOSE to a spooled

punch, the SFBLOK is chained on the spocol READER chain
for the XFERed userid to read instead of being chained
on the PUNCH chain for real punch output. The XFER for
a printer works in a corresponding fashion.

Rereadable reader - This function is provided by the SET

Wide

CARDSAVE ON console command. This function is
accomplished by exception handling when a spool reader
is CLOSEd by a user. Instead of scheduling the file
for deletion from the spooling space, the SFBLOK is
maintained on the READER chain so that the file can be
reread from the beginning.

card reader - There are two types of special spool card
readers. The first type is a "wide" 2540 reader that
allows the wuser to read more than 80 bytes from one
"card". For instance, this capability is used by CMS
when reading a spool reader, since that reader may
contain 80-byte "card"™ files or 132-byte “card" files
as a result of XFERed printer files. The second type
is used to retrieve spool data in special format. This
type (called RPRT or RPUN) is wused to read the CP-67
system disk dump, for instance. It is a spooling
reader that transfers to the user data areas (CCW
addresses) up to 825 bytes of packed spool data. No
attempt is made by CP-67 to analyze op-codes, lengths,

-92-

iy,

or data. Thus, core dumps on disk can be read by a
virtual machine having this type of card reader. RPRT
is for reading files normally scheduled for printer
output, and RPUN is for punch output.

DIAGNOSE - This privileged instruction cannot be simulated
or allowed to execute. Accordingly, this op-code is
used as a means of communication at the programming
level between a virtual machine and various CP-67
functions. See "The Diagnose Instruction" for a
description of each code allowed.

INTERRUPTION HANDLING

Five major types of interruptions must be handled by the
Control Program: SVC interruptions, external interruptions,
program interruptions, machine check interruptions, and I/0
interruptions. Handling of I/C interruptions is discussed
under the earlier heading "Processing Control Program I/O
Requests®™. This section describes how the other four types
are handled.

SVC Interruptions

When an SVC interruption occurs, the SVC interruption
routine (SVCINT) is entered. If the machine is in problem
mode, the type of interruption is placed into register 14,
and the REFLECT routine is called to reflect the
interruption back to the pseudo-supervisor (that is, the
supervisor operating in the user's virtual machine). If the
machine is in supervisor mode, the SVC interruption code is
determined, and a branch 1is taken to the appropriate SVC
interruption handler. See Figure 34 for a flowchart of the
SVC Interrupt Handler.

93

Enter

module PSA
entry SVCINT

Machine

Load address

Go to
REFLECT

Determine
in problem of SVCOPSW
SVC code Fr)node‘ in R14
DIE Dump Link RET RLSE
svco SvC4 svCcs8 SvC 12 SVC 16
Store return
Save GPR" aGrzza;r:r‘rle address from zzlae:ze save
ve s . , SAVEAREA in : '
NEXTSAVE SVCOPSW LASTSAVE
Go to
DSKDUMP Save GPR's gz'::s: save Restore
12and 13 ‘LASTSAVE’ GPR 13
LPSW
Save SVCOPSW Restore GPR's SVCOPSW
address as 12and 13
return address
Go to LPSW
called routine SVCOPSW
Figure 34. Flowchart of the SVC Interrupt Handler

SVC 0 - Impossible condition or fatal error: If +the SVC
interruption code is 0, the SVCDIE routine initiates an
ABEND by going to the DSKDUMP routine.

SVC 4 - Reserved for future use.

SVC 8 - Link request (transfer control from calling routine
to called routine specified by register 15): If the
SVC interruption code is 8, the SVCLINK routine saves
registers, sets up a new save area, inserts the
contents of register 15 (the address of the routine for
wnich the link is requested) into the SVCOPSW (and
register 12), saves the old addressability in the save
area, saves the o0ld save area address in the new save
area, and issues an LPSW instruction for the SVCOPSW to
restart the Control Program at the linked address.

SVC 12 - Return request (transfer control from called
routine to calling routine): If the SVC interruption
code is 12, the SVCRET routine is entered to restore
registers 12 and 13 (addressability and save area
address saved by SVCLINK), places the user's return
address (also saved in the area) back into the SVCOPSW,
and returns control to the calling routine by loading
the SVCOPSW.

SVC 16 - Release current save area from the active chain
(and thereby also remove 1linkage pointers to the
calling routine): If the SVC interruption code is 16,
the SVCRLSE routine releases the current save area by
placing the address of the next higher save area in
register 13, and returns control to the current routine
by 1loading the SVCOPSW. This SVC is used by second
level interrupt handlers to bypass returning to the
first level handler under specific circumstances.

SVC 20 - Obtain a new save area: if the SVC interruption
code is 20 the SVCGET routine places the address of the
next available save area in register 13 and the address
of the previous save area 1in the save area pointer
field of the current save area.

There are 35 save-areas initially set up by CPINIT for use
by the SVC linkage handlers. In addition, if the supply of
available save areas drops to 0, the 1linkage handlers will
call FREE to obtain one.

External Interruptions

95

When an external interruption occurs, the external
| interruption handler (EXTINT) is entered. See Figure 35 for
| an overview of the FXternali Interruption Handler.

96

Locate system

operator
(UTABOPTR)

Enter

module PSA
entry EXTINT

Timer
interrupt

Timer
while

Mark
disconnect

Running
. user
interrupted

No

excecuting
supervisor

Find
RUNUSER

LPSW
EXOPSW

Get current
UTABLE
(RUNUSER)

Save VGPRS
and VFPRS

Update VPSW
from EXOPSW

Provide DISPATCH
with user to
be charged time

Was
machine
in problem

mode

Provide DISPATCH
with operator to be
charged time

Go to
DISPATCH

Figure 35. Overview of External Interruption Handler

97

If EXTINT is entered because of a timer interruption, the
machine mode must be determined. If the wmachine was in
supervisor mode, control 1is transferred to the main
dispatcher and control routine (DISPATCH), which will become
idle until another interrupticn occurs. If the machine is
in problem mocde, the address of the current user's UTABLE is
obtained from RUNUSER. The user's current PSW (VPSW) is
updated from the external interruption old PSW (EXOPSW), the
address of the current UTABLE is placed in register 11, and
contrcl is transferred to DISPATCH.

If EXTINT is entered because of the operation of the
console interrupt button (EXTERNAL), the following steps are
taken: (1) the current system operator is 1located (via
REALCPTR), and (2) his virtual machine is disconnected. He
may now log in from another terminal. The operation of the
console interrupt button 1is used to implement an alternate
operator's console.

Program Interruptions

When a program interruption occurs, the program
interruption handler (PROGINT) is entered. (See Figure 36
for an overview of PROGINT.) Program interruptions may
result from (1) paging requests, (2) privileged operations
(1/0), and (3) privileged operations (non-I/0). PROGINT
determines the cause of the interruption by examining the
interruption code. If (3) has occurred, PROGINT transfers
control to PRIVLGED.

-908-

s,

Instructio
to be
simulated
(SLT)

Get address
of simulation
routine

Get save area
from ‘'NEXTSAVE’
and save GPR's

Go to

simulation
routine

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (1 of 4)

Invalid
operation
(int. code
01)

Save Reg's

Go to
DSKDUMP

Privileged
instruction

Enter
module
PROGINT

Save GPR's
10-15in
TEMPSAVE

Real
machine in Get user

(RUNUSER)

Relocation
exception

Segment

Page

User’s
No machine in Set invalid
problem address
ode

Yes

Save VM status
VPSW and YREG's

Go to

PRIVLGED
routin

Virtual

Save VM status
VPSW and REG’s

Get address
to be
translated

PAGTRANS

Initiate paging
operation
(PARM = BRING +
USED)

Go to
DISPATCH

—99_

LPSW SSM SSK EX ISK DIAG

1/0
R VIOEXEC
Get SEGTABLE Get SEGTABLE Virtual —_———
Get absolute PAGTABLE PAGTABLE 67 Initiate 1/0
data address SWPTABLE SWPTABLE machine operation |
1
No
5
Get absolute
Get absolute address of Get DIAG 6
data address instruction to code
be executed
3 invali
Move data to Get key from Read key gg:,:—::ii:,d
VPSW (address) user VGPR (ISK inst.) code
|
Store data to
VPSW (MASK)
Store key
Set the key in VGPR !
(SSK inst.) (pass key to
user)
1
4
c, 10,
0 4 8 14, 18 10 20
PRCLASS PRCLASS Get CP-67 PRCLASS PRCLASS
operator 1or3 console SUBSYSOP SUBSYSOP
function
COMENTRY FMTILOG FMTMLOG
Move CP —é—'—t'th——- - — — - = — ——
f xecute the
I\7l(\:llatlIc:)cr;stitoons console Format I/0 Format M/C
function error cyl. error cyl.
y
4

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (2 of 4)

-100-

Y

e

LRA

STMC

LMC

Write
DIRECT

Invalid
OP. CODE

v

v

v

Get absolute
inst. address
and register

Get EXTUTAB

Get EXTUTAB

receiving
results
Get virtual Get data and Get data and
number of number of
gEg_TrAg‘-‘é and CREG's to be CREG's to be
AGTABL moved moved
Get virtual Move data Move data
ad from VCREG’s from data area
address to data area to VCREG's

Store results
in VGPR and
VPSW

1

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler

-101-

(3 of 4)

Move first

Enter

module PSA
entry reflect

Yes

Issue TRANS

word of VPSW
to VOPSW

Move VNPSW
to VPSW

Restart
possible

Move second
word of OPSW
to VOPSW

Virtual

67

Set interrupt
code in
VOPSW

Set interrupt
code in int.
code location
(VIRTUAL)

Any
pending
interrupts
in VPSW

No

Construct
restart
VPSW

1/0
enabled

1/0
pending

Ext. int.

macro for
page zero

Move VPSW

Go to
dispatch

to
VOPSW

Move VNPSW
to VPSW

Set interrupt
code in
VOPSW

Set interrupt
code in int.
code location
(VIRTUAL)

enabled

Ext.
pending

Go to
dispatch

VPSW
translate
mode

Valid
virtual

Figure 36.

-102-

time
expired

CP-67 Program and PRIVLGED Interrupt Handler

Go to
dispatch

(4 of

-
/ A

Paging Interruptions

If the program interruption is caused by a paging
request, and if the interruption occurs when a virtual
360/67 is running in extended mode with translation on, a
special processing takes place. See "Running a Virtual 67"
in the CP-67 Operator's Guide. Otherwise, PROGINT
determines whether a segmentation error (a segment of the
program missing) has occurred. If the interruption code
resulted from a segmentation error, an invalid address
interruption code is set, and the interruption is reflected
to the user's virtual machine supervisor.

If a segmentation error has not occurred, the user's
current PSW is updated from the program old PSW (PROPSW),
the address of the current UTABLE is placed in register 11,
and PAGTRANS is called to obtain the required page. When
the paging operation is completed, control is returned to
DISPATCH. (See Figure 37 for an overview of PAGTRANS.)

-103-

Enter

module PAGTRANS
entry PAGTRANS
Translate
virtual
address
(LRA inst.)
Load mach. size (Seg excp) LRA . . G
: 00 (in core) et
in R2, set 01 condition CORTABLE
pondmon code code entry
in RO
02
(not in core)
A
. BRING Set condition
Exit option code = 1
Y Set lock bit
et lock bi
Get SEGTABLE Exit increment
entry lock count
»
A
Find paging
Page task block Set condition
exception ke with matching code = 0
page int.
Locat y
ocate
Get PAGTABLE CORTABLE Exit
Y entry
y A
Set changed/ '
f:t‘rfWPTAB"E used bits if
- required
Page LOCK DEFER
in

option option

transit

Set transit Set lock bit
bit in increment g;eé;fmox
SWPTABLE lock count
A
Set up Chain OPEXBLOK
. to |0T. i
CORTABLE : ‘ "‘:a'?hi:f K with
search limits page int.
y A
1 Issue SVC 16
release
current
. save area
Go to
DISPATCH

Figure 37. Overview of PAGTRANS (1 of 3)
-104-

First
user page
encountered

Save this

entry

Figure 37.

User
ina
dispatch Q

Get CORTABLE
entry
(next)

nlocked
no transit
slot

Store UTABLE
pointer in
CORTABLE

End
of search
limit

Get UTABLE
belonging
to this user

v

Set transit
bit in
CORTABLE

Calculate
physical

address of
page

Store page
address in
PAGTABLE

Set transit
bit in
CORTABLE

Set page-not-
in-core bit
inold
PAGTABLE

|

Overview of

Set read
code for
Ccws

Store SWPTABLE
pointer in
CORTABLE

Il

Get SWPTABLE
for this
page

Keys
indicate

Set PAGEWAIT
increment
PAGEWAIT
count

Set page-not-
in-core bit

in old
PAGTABLE

PAGEGET

Allocate space
for a page on
drum or disk

Recompute
bit on

Set write
code for
ccws

Decrement
PAGEWAIT
count

PAGTRANS (2 of 3)

-105-

Set up IOTASK
block
TASKIRA =
WAITPAGE

Y

Put IOTASK
block in
paging queue

y

Get real
device
type

Build CCWS
for 1/0
operation

y

Queue I/0
task for 1/0
operation

Qugsio]

y Read

Write o

Chain CPRQUEST
from IOTASK

Dummy call to
save regs. and
do defer if
requested

Set PAGEWAIT
and increment
PASWCT
(UTABLE)

Set changed/
used bits if
required
(SWFTABLE)

Lock
option

Set lock bit
increment
lock count

]

Defer
request

Set up CPRQUEST
block

Set condition
code =0

Chain CPRQEUST
from IOTASK

-«

Go to
DISPATCH

Figure 37.

-106-

Overview of

entry PAGDUM

No

Restore REGS
for return
to caller

Exit

Go to
DISPATCH

If shared page
get key ‘0"
Non-shared page
get key 'F’

Enter

module PAGTRANS
entry PAGEWAIT,

CE, DE
interrupt

Start channel
again if free

Decrement
PAGEWAIT count
reset PAGEWAIT
bit when

count =0

Reset
transit bit
(CORTABLE)

[IOERFOR _

Retry

Issue SVC 16
release
current

save area

Reset transit
bit
(SWPTABLE)

Save
CPEXBLOK
if any

Shared
system
(UTABLE)

PAGTRANS (3 of 3)

Set PAGEWAIT
bit ON

No
>
A
Exit
Set storage returnsto 3
keys
Y
| CPSTACK _ |
CPEXBLORN Y® | put CPEXBLOK
& OTASK in CPSTACK
queue
No
Exit

s,

Privileged Operation Interruptions

If the program interruption 1is caused by the
pseudo-supervisor issuing a privileged instruction, PRIVLGED
obtains the address of the privileged instruction and
determines the type of operation requested.

For 1I/0 instructions, PRIVLGED calls the virtual I/0
executive program (VIOEXEC). PRIVLGED simalates valid
non-I/0 privileged instructions and returns control to
DISPATCH. For invalid privileged instructions, the routine
sets an invalid interruption code and reflects the
interruption to the pseudo-supervisor.

The non-1I/0 privileged instructions that are simulated
are LPSW, SSM, SSK, 1ISK, and DIAG. For the "Virtual 67"
option, the privileged instructions LRA, STMC, and LMC are
also simulated.

The Diagnose Instruction

The diagnose instruction (DIAG) has special handling
under CP-67. The diagnose command is used for cormunication
between a virtual machine and the Control Program, CP-67.
The machine-coded format for the diagnose command is:

——— e ———— ———— ————— —_————— ————— —————

The "CODE" is a base value that is used to select a
particular specialized CP function. The codes currently
assigned and their associated functions are:

CODE FUNCTION

0 Dump CP core

4 Fetch CP location

8 Virtual console function

C Pseudo timer

10 Release pages
14 Reserved for future IBM use
18 ~Disk 170
1cC Clear 1/0 error recording
20 Clear M/C error recording
24-FC Reserved for future IBM use

-107-

Note: User defined DIAG Codes:

X*'00"' through X*FcC* Reserved for IBM use
X'100"' through X'1FC*' Reserved for users

Diag code should always be a multiple of 4.

See the module PRIVLGED for analysis and/or implementation
of these functions.

The execution of diagnose code 0, dump system, causes a
system abend by issuing SVC 0 (dump). This can only be
executed by a privilege class A user. The format of the
command is:

I l
| 83000000 |
I 1

The execution of diagnose code 4, fetch CP 1locations, can
only be issued by users with privilege class A or B. The
format of the command is:

| i
| 83 R1 R2 0004 |
1 1

Rl contains the virtual address of a list of CP (real)
addresses.

R1+1 contains a count of entries in the list.

R2 contains the virtual address of the result field
that will hold the values retrieved from the CP (real)
locations.

The execution of function 8, virtual console function,
allows a virtual wachine to perform CP-67 console functions.
The format of the diagnose command is:

| |
| 83 RL R2 0008 |
] L

where R1 is a register that contains the address (virtual)
of the CP console function command and parameters, and R2 is
a register that contains the 1length of the associated
console function input, up to 132 characters.

The following example will illustrate the virtual console
function:

-108-

LA R6,CPFUNC
LA R10, CPFUNCL
DC X'83',X"6A',XL2'0008"

CPFUNC DC C'QUERY FILES'
CPFUNCL EQU *-CPFUNC

The output of the console function 1is to the user's
terminal, and then execution continues. Any valid and
authorized console function can be executed in this manner.

A completion code is returned to the user as a value in the
register specified in R2. Code 0 is normal, 4 is invalid
command, and 8 is bad argument. Other condition codes may be
used by processing routines in CP-67. LINK, for example,
returns several codes to indicate device status (see LINK
module).

Diagnose code C - pseudo timer. The format of the command
is:

| |
| 83 R1 00 00 OC |
] l

R1 contains the virtual address that will receive 24
bytes of data in a format identical to the SIO to the
pseudo-timer device (for example, 'OFF' in CMS). This
data is provided by 'diagnose' as a faster method than
SIO.

Diagnose code 10 - release pages. The format of the command
is:

[|
| 83 Rl R2 0010 |
| 1

R1 contains the virtual address of the first page to be
released and R2 contains the virtual address of the
last page to be released. Any of the virtual pages in
real core or auxilliary storage are released.

Diagnose code 14 - reserved.

Diagnose code 18 - Disk I/0. The format of the command is:

l I
| 83 R4 R8 0018 |
1 1

R4 contains the device address of the disk.

-109-

R8 points to a standard CCW chain to Read or Write the
disk record of up to 4096 bytes.

Standard CCW string:

SEEK,A,CC,6
SRCH,A+2,CC,5
TIiC,*-8,0,0
RD or WRT,DATA,cc,<8096
NOP,0,SILI,1

A SEEK and SRCH arguments

The execution of diagnose code 1C, clear I/0 recording, can
only be issued by a privilege class C user. This code calls
the FMTILOG routine to clear the I/0 error recording data on
disk. The format of the command is:

| [
| 8300001C |
I 1

The execution of diagnose code 20, clear MC recording, can
only be issued by privilege class C user. This code calls
the FMTMLOG routine to clear the machine check error
recording data on disk. The format of the command is:

| l
| 83000020 |
1 1

Machine Check Interruptions

When a machine check occurs in supervisor mode (CP-67
nucleus), a message is printed to the operator, the alarm is
rung, and the system will ABEND with a dump.

When a machine check occurs in problem (user) mode, a
message is typed on the operator's console, and a message is
sent to the affected user. The user's machine is placed in
console function mode. If the user enters "BEGIN", his
machine will take a "machine check™ by CP 1loading his
machine check new PSW. CP-67 and other users are not
affected.

Machine Check Error Recording Routine - MCKERR

See Figure 38 for an overview of the Machine Check
Interruption Handler.

-110-

Enter

module PSA
entry MCHEKINT

Save ‘GPRs’ and
FPR'S in
‘stopped’

status area

Was
Get operator No machine Yes o] Get interrupted
(UTAGOPTR) in problem — %1 user (RUNUSER)
mode
Save VGPR'S
A
| - MCKERR _ |

Get console Put machine Update VPSW
address check on from MCOPSW

disk

WRTCONS MCKERR
Send message -S-en:fm?ga__ - —
to operator Put machine
(multiple operator (mach check on
mach. checks) check CP disk
supervisor mode)
LPSW L DISPATCH
wait state Dispatch until Set message
msg. write (mach. check)
complete machine check
N
sveo [_wATcons]
Update VPSW
Send message from MCNPSW
to user

| _WRTCONS | Set message
Send msg to Yes User (mach. check-
operator (mach disconnected CP entered

check problem
mode USERID =)

Go to L — B_RE_A'i . ..l
DISPATCH .
Put user in

CP mode

L1

request, please)

]

Figure 38. Overview of Machine Check Interruption Handlexr

-111-

All machine checks, whether supervisor or problem state,
are recorded by CP-67. The first two tracks of the CE
cylinder are reserved for machine checks. The format of the
machine check error record is as follows:

ORG LOGDATA M/C ERROR RECORD
LOGMDATE DS CL6 DATE AND TIME
. LOGMCODE DS CL2 MACHINE CHECK CODE
LOGMCPU DS 22D CPU LOGOUT DATA
LOGMPSW DS 5D OLD PSW's
LOGMGRS Ds 16F GENERAL REGISTERS
LOGMCRS DS 16F CONTROL REGISTERS
LOGMFPRS DS 4D FP REGISTERS

Two machine check error records are contained within one
physical record. Thus a maximum of 30 records may be
contained within two tracks of a 2314 SYSRES. When the
machine check log is full, the message "** CECYL FULL; M/C
FERRORS NOT RECORDED #**" 1is printed at the operator's
terminal, and subsequent machine checks are not recorded
until CLEARMC is run by the customer engineer. Pointers are
kept to the next available slot in the log so that machine
check errors are recorded sequentially. If an I/0 error
occurs when attempting to write a machine check error
record, it is retried eight times. Upon continued failure,
an error message "** TOERROR RECORDING FAILURE ON DEV___ **"
is sent to the operator.

INTERRUPTION REFLECTION

When an SVC interruption or a program interruption occurs
and the user's virtual machine is operating in problem mode,
the interruption is reflected back to the user's supervisor
(pseudo-supervisor) for handling.

The program interruption handler (PROGINT), upon
determining that the interrupted user is operating 1in
problem mode, saves the virtual registers and their old PSW
(PROPSW) .

The current PSW 1is moved into the o0l1ld PSW, and the
interruption code is set. If necessary, PAGTRANS 1is again
called to obtain the address of the new PSW, and the new PSW
is moved into the current PSW. When adjustment of PSW's is
complete, control is returned to DISPATCH, which will
eventually allow the user to resume processing.

Figure 39 illustrates the processing and reflection of
interrupts.

-112-

Real Machine State
- Interrupts Real Supervisor State Real Problem State
Virtual Supervisor Virtual Problem
State State
OS or CMS Problem Program
cp
————————————————————————————————— - ——— ——— — —— — — — — — o ko —— ——— — ——— — — — o —— o]
External Masked off Start another user; end of 50 ms time slice for this user.
External Virtual interrupts
Timer simulated
et B B et
svc For subroutine Reflect interrupt to virtual machine
linkage
_________________________________ e]
Program ABEND Reflect interrupt to virtual machine
—————————————————————————————— r——————-—-——— —_—— e e —— . — — — — —
Privileged Not possible Simulate instruction Reflect
Do 1/0 for SIO
___________ e . ———— — e e F — o — e ——— —_—— e, e - —
Machine check ABEND ABEND ABEND
e e e e .
1/0 Masked off Restart channel.
Record the device status in virtual
machine description if virtual 1/0.

Reflect on interrupt:

Current PSW — — — = Old PSW
New PSW— — — 4 Current PSW
Set interrupt code; decrement timer;
timer interrupt if required.

FIGURE 39. Processing and Reflecting of Interrupts

=113~

MAIN STORAGE MANAGEMENT (PAGING)

The PAGTRANS routine is responsible for satisfying the
paging demands placed on the system by user programs. It
satisfies requests for page access via the TRANS macro from
various parts of the Control Program, including the program
interrupt handler (PROGINT) for paging faults, the
input-output string handler (CCWTRANS) for user-initiated
input-output operations, etc. PAGTRANS has the
responsibility for freeing up main memory space when
required, performing the input-output operations necessary
to free the space, and protecting the system against "paging
overload" conditions that may arise during periods of peak
demand for the memory resource.

All calls to PAGTRANS are made through the use of the
macro instruction TRANS. If LOCK is not specified in the
TRANS macro and the virtual page is already resident in
memory, there is no need to call PAGTRANS, and the call is
bypassed by the macro generation.

Required Page in Core

When PAGTRANS translates the virtual address (via the
LRA instruction) and finds that the page containing the
address is currently core resident, a test must be made to
see whether the LOCK option has been specified. (Normally,
this will be the case, for the TRANS macro would not have
generated the call to PAGTRANS for an in-core page 1if the
LOCK cption was omitted.) If lock is requested for the page,
the lock count for that page 1is incremented, and the lock
flag is set in the core table entry for that virtual page.
When the 1lcock flag is set, the page is not available for
"swapping"™ (that 1is, it will be retained in storage until
the 1lock count 1is reduced to zero and the 1lock flag is
cleared). The lock count cannot be greater than 65,535.

When lock processing is completed (or if LOCK was not
requested), a condition code of zero is set, the translated
address is stored in the calling routine's save area, and
control is returned to the calling routine. A condition
code of zero indicates that the address translation was
successful and that the specified virtual page 1is in core.
(Note that the TRANS macro will automatically perform an LRA
instruction after the return from PAGTRANS. In some
instances, it would be possible for the paging routines to
return a page as in core and have it chosen for swapping,
and therefore nonresident, before the actual return +to the
caller. This is true only in DEFER cases.)

Required Page Not in Core
When PAGTRANS translates the virtual address and finds

that the page is not core resident, the entry for that page
in the wuser's SWPTABLE is found. The SWPTABLE entry

-114-

contains the direct access storage address of the required
virtual page. A test is made to determine whether the BRING
option was specified when PAGTRANS was called. TIf BRING was
not specified, a condition code of 1 is set, and control 1is
returned to the calling routine. A condition code of 1
indicates that the required page is not in storage.

Required Page in Transit

If the required page is not 1in core and the BRING
option is specified, the transit flags in the SWPTABLE entry
are examined to determine whether the virtual page 1is in
transit (that is, a previous request to read in the page or
a request to write the page out has not yet been completed.)
If the page 1is in transit, a Control Program execution
raquest block (CPEXBLOK) 1is created and chained to the
input-output task block (IOTASK) for the pending read or
write operation, and PAGEWAIT is indicated in the VMSTATUS
entry of the user's UTABLE. When the page I/O operation has
completed, the CPEXBLOK is added +to the CPRQUEST queue, and
control is returned to DISPATCH. If the operation was a
read, the PAGEWAIT condition is removed and the CPEXBLOK
indicates a return to the initial caller of PAGTRANS. If the
operation was a write, the CPEXBLOK indicates a re-enter to
PAGTRANS to retest the transit flags.

Obtaining Core for a Paging Operation

If the required virtual page is neither in core nor in
transit, and the BRING option has been specified, PAGTRANS
must prepare to read the page 1into storage. An available
page of core into which the required virtual page may be
read must be found.

The table used for managing the real machine core
allocation is called the CORTABLE. There 1is one 16-byte
entry in CORTABLE for each 4096-byte page of real core. See
the description of the CORTABLE control blcck for the bit
usage.

Each entry of the CORTABLE is examined in a round-robin
manner to determine whether the associated page is available
for a paging operation. The search begins at the first entry
after the last selected page.

The Lock MASK byte must be zero in order to have that
page eligible for paging.

On the first pass each entry is examined, and if either
of the following two conditions is satisfied, the
corresponding page is selected:

1. An entry with bytes 5-7 equal to X'FFFFFF' (pages

not in use by any user). '

2. Neither of the keys for the page has the reference

bit set on.

-115-

If the first pass fails to find an eligible page, then
on the second pass any entry with a Lock MASK of zero is
selected, since all such pages are equal candidates for
selection. Both passes are initiated and terminated at the
next entry after the last one used. All non-locked pages
that are examined and not selected have their reference bits
turned off.

If the selected page has a changed bit on, the page
must be written to its DASD location (that is, swapped)
before the new virtual page is read in. The DASD address is
obtained from the corresponding swap table entry, an
input-output task block is created, the page table entry for
the page 1is marked "not-in-core", and the IOTASK block is
queued for execution.

The address of the page selected for the paging

operation is stored in the page table, and the not-in-core
flag is set in the page table entry.

Reading a Required Page into Core

When an available page of real core has been found, the
page address is stored in the page table entry and the
not-in-core flag is set. The transit flag is set in the
corresponding swap table entry, and the transit bit is set
in the core table entry.

The DASD address of the required virtual page is
obtained from the SWPTABLE, and an IOTASK block and a
channel command word (CCW) list for reading the page in are
created; the routine QUERIO is then called to queue the task
to the input-output task list.

The "recompute®" flag is used when a new swapping DASD
address is to be used when the page is changed. At login
time (and at a re-IPL for a virtual machine) the swap table
entries are all set to the DASD address of a "zeros"™ page on
the CP-67 system residence volure.

The recompute bit is set in each entry by LOGIN so that
the page will be assigned an appropriate secondary storage
location when it 1is referenced. This process, called
dynamic page allocation, ensures that only those pages in a
user's virtuwal machine which change and must be rewritten
are assigned paging space on drum or disk. When a page is to
be written out for the first time (that is, the recompute
bit is set), a routine called PAGEGET 1is called. This
routine finds an available location on drum or disk (in that
sequence) and saves the address of that DASD location in the
SWPTABLE entry for that page. This DASD address will be
used on all subsequent reads or writes of that page for the
duration of the user's session. If the wuser logs out or
re-IPL's a system, a routine called PAGEREL is called. This
routine returns all of the user's paging DASD locations to
the available pool and resets each SWPTABLE to zeros. Only
those user pages which have actually been written out to

-116-

secondary storage (that is, for which the recompute bit is
off) are reclaimed at PAGEREL time.

Returning Control

When all other PAGTRANS operations are completed, the
used and changed flags are set in the SWPTABLE entry for the
page being read. If +the LOCK option was specified when
PAGTRANS was called, the lock count is incremented, and the
lock flag in the core table entry is set.

If the DEFER option was not specified when PAGTRANS was
called, control is returned to the calling routine. If the
DEFER option was specified, PAGEWAIT is 1indicated in the
current user's UTABLE, a Control Program execution request
block is created, and a pointer to the request block is
placed in the IOTASK block which was created to read in the
required page. Control is then returned to DISPATCH.

When the page has been read in, the PAGEWAIT bit is
reset in the UTABLE, and the Control Program execution
request block is added to the CPRQUEST queue. The next time
DISPATCH is entered, the Control Program execution request
block will be honored, and since the required page is now
resident in storage, the completion of the paging operation
will be indicated.

Shared Pages

When more than one user 1is using a given operating
system such as CMS, which has reentrant pages, it becomes
possible to share those pages among those users. In order to
allow CP to share these pages, the operating system must be
IPL'd by name (for example, IPL CMS).

When the first wuser of a shared system issues the IPL
command, all the shared pages are brought into core and
locked to prevent their being swapped out. When a subsequent
user IPL's the same system, no paging is required, but the
PAGTABLE of such a user is set to point to the shared pages.

For store protection of the shared pages, the users are
run with protection key = F. All shared pages' storage keys
are set to zero and all other pages belonging to these users
have storage keys = F.

Note: The module SYSTEM has to be assembled +to indicate

which of the pages of a given system are shareable. If none
are so indicated, no pages will be shared.

FREE STORAGE MANAGEMENT

Note: §&TRACE(4) option must be chosen at sysgen time in
order to gather statistics in FREE/FRET.

-117-

The FREE routine 1is responsible for the efficient
management of free storage, as heavily used within CP-67 for
I/0 tasks, CCW strings, various I/0 buffers, and the like.
It is used, 1in fact, for practically all such applications
except real channel, control-unit, and device-blocks, and
the CORTABLE.

Block sizes of 29 double words or 1less, constituting
about 99 % of all calls for free storage, are grouped into
ten subpool sizes, and are handled by very fast LIFO (push
down stack) logic.

Blocks of greater than 29 double words are strung off a
chained list in the classic manner.

Subpool blocks are generally obtained, when none are
available, from the first larger sized block at the 1low
sized end of available free storage. Large blocks, on the
other hand, are obtained from the high-numbered end of the
last 1larger block. This procedure tends to keep the
volatile small subpool blocks separated from the large
blocks, some of which stay in core for much longer periods
of time, thus undue fragmenting of available core is
avoided.

The various cases of calls to FREE for obtaining free
storage, or to FRET for returning it, for subpool sizes and
large sizes, are handled as follows:

Call to FREE for a Subpool Size:

Subpool Available:

If a call for a subpool size is made and a block of the
suitable size is available, the block found is detached from
the chain, the chain patched to the next subpool block of
the same size (if any), and the given block returned to the
caller.

Subpoocl Not Available:

If there is no suitable block when a call to FREE is
made for a subpool size, then the chained 1list of free
storage is searched for a block of equal or larger size. The
first block of larger or equal storage is used to satisfy
the call (an equal-size block taking priority), except that
blocks within pages previously obtained from EXTEND are
avoided if at all possible. - If no equal or larger block is
found, all the subpool blocks currently not 1in use are
returned to the main free storage chain, and then the free
storage chain 1is again searched for a big enough block to
satisfy the call. If there is still not a big enough block,
then EXTEND is called to obtain another page of storage, and
the process is repeated to obtain the needed block.

Call to FREE for a Large Block:

If a call to FREE is made for a block larger than 29
double words, then the chained list of free storage is
searched for a block of equal or larger size. If an equal

-118-

e

size block is found it is detached from the chain and given
to the caller. If at least one larger block 1is found, the
desired block size is split off the high numbered end of the
last larger block found, and given to the caller. If no
equal or larger block is found, EXTEND is called to obtain
another page of storage, and the above process is repeated
(as necessary) to obtain the needed block.

Call to FRET for a Subpool Size:

If a subpool size block is given back via a call to
FRET, the block is attached to the appropriate subpool chain
on a LIFO (push down stack) basis, and return is made to the
caller. 1If, however, the block was 1in a page previously
obtained from EXTEND, the block is returned to the regular
free storage chain instead.

Call to FRET for a Large Block:

1f a block larger than 29 double words is returned via
FRET, it is merged appropriately into the reqular free
storage chain. Then, unless exactly one page was given back
(i.e. by EXTEND), a check is made to see if the area given
back (after all merging has been done) is a page previously
obtained from EXTEND. If so, it is returned via PAGFRET for
use by the remaining programs in CP for their use.

The FREE/FRET 1logic as described above allows the
number of pages allotted for main storage to "breathe" as
necessary, expanding via calls to EXTEND when extra pages
are needed, and contracting via PAGFRET when such pages have
all been FRET'd and are no longer needed.

Initialization

The number of pages allocated to free storage depends
upon the number of core boxes upon which CP is running, and
is 1initialized by CPINIT. A special entry FRETR in the
FREE/FRET routine 1is used by CPINIT and EXTEND to return
blocks to the regular free storage chain regardless of their
size.

EXECUTION CONTROL

When all interruption handling routines complete their
processing, they transfer control (via a GOTO macro) to the
main dispatcher and control routine (DISPATCH). DISPATCH
charges time used within the Control Program to the
appropriate user and determines which user 1is to receive
control next.

Each time DISPATCH is entered, the time used by the
current (interrupted) user within the Control Program is
computed and added to the TIMEUSED entry in the user's
UTABLE. If the current user has not exhausted his allotted
time for this quantum, he will be restarted. In this case,
his pending interrupts are reflected, and then if runnable
he is restarted. If no time remains for the interrupted

-119-

user, any CPRQUEST's are honored. Then another user 1is
chosen for running.

The following checks are made by DISPATCH upon each
entry to it and prior to the running of a new user:

The queue of Control Program execution requests
(CPRQUEST) 1is examined for any pending work. If any
requests are found, the appropriate execution request block
(CPEXBLOK) is used to load the registers and dispatch
control to a specified section of the Control Program. This
section will return control to DISPATCH via a GOTO macro.

If the current user is not runnable and the CPRQUEST
stack is empty, a new user is selected to run.

In order to prevent paging overload, the system allows
only a subset of the users to run at any given time.
Interactive users are in Q1, and the users who put a heavy
load on the system in terms of CPU cycles required or amount
of nonterminal I/0 done are in Q2. There is a maximum limit
on Q1. A table in the module EXTEND is used to set the
maximum for Q1, depending upon the real core size. The limit
of users in Q2 is dynamic and is dependent on current paging
activity.

A user will be in one of the following five modes at
any given time:

In Q1

Waiting to get into Q1

In Q2

Waiting to get into Q2

Dormant, not requiring system resources

Moreover, a user may or may not be runnable, regardless
of whether he is in the queues. A user is not runnable if he
is waiting for:

A page to be brought in

An I/0 operation to be started

A CP console function

A VM interrupt (VM in wait state)

The next user to be run is selected according +to the
following priorities:

1. Current user if runnable

2. First member of Q1 encountered

3. Oldest runnable candidate for Q1 if Q1 is not full

4. Oldest runnable candidate for Q2 if Q2 is not full

5. Oldest member of @2 not CPU-limited

6. Oldest member of Q2 if CPU-limited

To start (or restart) a user, DISPATCH 1loads the
appropriate control registers from the contents of the
chosen user's UTABLE entries, loads the interval timer with
the user's quantum (or the unused portion of it), and gives
control to the user by entering the problem mode.

-120-

Queue Management

Definitions:

Dispatching of users is described in terms of their movement
from one state to another. The four states are described as
follows, as well as the definition of an interactive and
non-interactive user.

State 1 - runnable in Q:
- virtual machine not in wait state
not in page wait
not in I/70 wait

State 2 - not runnable in Q:
- virtual machine in wait state, but enabled for
an I/0 interrupt on a busy channel
in page wait
in I/0 wait

State 3 - runnable not in Q:
- virtual machine not in wait state
not in page wait
not in I/0 wait
but CPU time exceeded (.4 or 5 seconds) and
number of interactive users at maximum, Or
paging activity index when added with in Q
users will exceed system paging index.

State 4 - not runnable not in Q:
- virtual machine in wait state and disabled or
enabled with no busy channels; stopped, CP
console function mode - 'ATTN' on terminal.

Interactive user:
- interrupt from terminal
- wuse less than .4 seconds of CPU time
- have a priority between 0 and 15

Non-Interactive user:
- no terminal activity
- use more than .4 seconds of CPU time
- have a priority between 16 and 215

A user goes from runnable (in Q) to eligible (runnable, not
in Q) when his CPU time (.4 for Q1, or 5 seconds for Q2) is
exceeded; in order to be runnable (in Q), he must not be in
I/0, console function or page wait, or virtual machine wait
state. When any of these conditions pertains, he will be
dropped to a non-runnable (whether in Q or not in Q) status.
A user 1is advanced from eligible (runnable, not in Q) to
runnable (in Q) on the basis of interrupt status or virtual
machine priority.

Movement from state to state is illustrated in detail in the

-121-

following chart:

From To Causing
State State Condition

1 —> 2 Pagewait; IOwait; VMwait-IOactive
1 -——> 3 CPU time exceeded (.4 or 5 seconds)
1 -——->14 VMwait-no IO active; VM stopped-CFwait

— w— — w—— — o w— = - e - — - w—— — n e e e e e o e w— om—— w— —

3 1 Scheduled by Interrupts or priority
3 ——=> 2 Not possible
3 4 VM stopped-CPwait

2 1 PageIO; IOstarted; IOinterrupt
2 ——> 3 Not possible
2 4 VM stopped-CFwait

4 1 Not possible
4 ———=> 2 Not possible
4 3 AsynIOint; VM not stopped-begin

Note: 3 = ‘'eligible'

Users within states 1, 2, and 3 are ordered by priority.
Priority is determined by a combination of paging activity
index, user directory priority, and system priority number.

Number of in Q users:

- interactive users 1limited by a specific maximum
based upon real machine size;

i.e. 512K machine = 6
768K machine = 9
1024K machine = 12

- non-interactive users 1limited by paging activity
index so that a system paging index is not exceeded.
System paging index is a function of real machine
size;

i.e. 512K machine
768K machine 70
Figure 40 is a state diagram illustrating the flow of
users from one state to another.

Virtual timers are maintained in one of two ways. The
default method 1is to increment a wuser's virtual timer
(virtual location hex 50) by only the amount of virtual CPU
time the user uses. A 'real timer' option is also available
which will also update a user's virtual timer by the amount
of time the user spends in virtual wait.

Note: this does not supply the user with a timer that runs

-122-

win

the same as '"wall clock'. For instance, the virtual timer
is not incremented by tne amount of time a user spends
waiting for his chance to run while appearing runnable to
the systemn.

'Real Tiners'

The real timer option attempts to provide a clock for
systems maintaining time-slice environments. For this
purpose the "timer' (virtual location 50) is updated by the
time spent in virtual execution (all wvirtual timers are
updated by this value) and the time the virtual machine
spends in virtual wait (or voluntary wait). The clock 1is
not updated for elapsed time while the virtual machine is in
IOWAIT or PAGEWAIT or while the virtual machine is runnable
but cannot run because CP-67 has given control to some other
user with a higher priority. This enables time-slicing
systems to give reasonably constant time-slices independent
of the activity going on in the overall CP-67 system.

The critical facility that ‘'real timers' supply that
ordinary timers in CP-67 do not is the ability +to have the
timer cause an external interrupt while the virtual machine
is 1in virtual wait. To provide this facility, CP-67
maintains on 'elapsed binary timer'. When a virtual machine
enters waitstate, it is "time stamped' with a value equal to
the sum of its virtual timer plus the value of the binary
timer, if the wvirtual timer value 1is positive. This
represents the time when the virtual machine will expect an
external interrupt. The lowest time stamp value is always
kept by the real timer routine and every time the binary
timer is updated it is compared against the lowest time
stamp value. If the binary timer value exceeds the lowest
time stamp value, the real timer routine 1is entered to
update the virtual machines with real timers; otherwise,
normal processing continues.

Figure 41 1is an overview of the Dispatcher Scheduling
Algorithm.

-123-

Time-slice interrupt

1/0 WAIT

Accumulated time > 0.4 sec.

without console operation

Accumulated
time > 5 sec.

Console Runnable and Runnable and
1/0 and Q1 not full Q2 not full
WAIT

Console operation and WAIT

1/0 WAIT or
time-slice
interrupt

FIGURE 40. State Representation of Scheduling Algorithm

-124-

1/ Wait Time slice

Dispatched from I interrupt
console Q
TimeinQ > 0.4
— C:;s:;?'operator — — sec. without —
a console operation
- _ Current _ _ _|
user
Time in
Q> 5 sec.
Dispatched from .
Console operator non-console Q — 1/0 wait or
and wait time slice int. T
Dispatch from this Dispatch from this
Qif current Qif no runnable
user nonrunnable candidate in console Q
] |
» User in User in ‘__J
— console Q nonconsole Q
Reset Runnable and Runnable and Reset
inQ Qnot full Qnot full inQ
status | l status
User waiting User waiting
> to enter to enter
console Q nonconsole Q

UTABLE + C8 = TIMINQ

0 l [J l] 4 A user is considered

inaQif TIMINQ+2=01
—_—_— e — (set and reset by dispatch)

Time at which 80 = console 2
the user istobe 00 = non-CONS Q
removed from Q

(cut-off time)

FIGURE 41. oOverview of the Dispatcher Scheduling Algorithm

Handling of a Virtual 67

Six areas are discussed in this section:

1. Control blocks
2. Different format of the PSW

3. Special processing of the reset function

4. New instructions

5. Handling of the virtual dynamic address translation

6. Restrictions

Control Blocks
EXTUTAB is created at LOGIN time.

Each time a virtual 67 enters extended PSW, by loading

-125-

control register 6 with bit 8 set to 1 (by means of the LMC
instruction or STORE X6 console function), space is reserved
for the shadow segment table and one shadow page table
belonging to segment 0.

If the virtual 67 uses segments 1 to 15, a "copy
segment table"™, an "image segment table"™ and the necessary
number of additional shadow page tables will be allocated.

All those tables, if any, except EXTUTAB, will be
returned to free storage each time the virtual 67 leaves
extended PSW mode by loading control register 6 with bit 8
set to 0, or by the reset function.

Different Format of the PSW

The format of the PSW in a 360/67 running in extended
mode (that is, bit 8 of control register 6 set to 1) differs
from that of a standard System/360. Contents of certain
reserved 1lower core locations are different after an
interrupt has occurred. (See IBM System/360 Model 67
Functional Characteristics, A27-2719). The following modules
have been modified to take into account that difference:

CFSMAIN PSA
DISPATCH QUEVIO
1O0INT UNSTIO
MVIOEXEC VIOEXEC
PROGINT

Reset Function

When a reset function is executed for a virtual 360/67,
control register 6 is reset to CO00000FF, and all the control
blocks specified for a 67, except EXTUTAB, are returned to
free storage. The module affected is RESINT.

New Instructions

Among the five new instructions, two are nonprivileged
and are executed normally (BAS,BASR), and three are
privileged and thus simulated (LRA,LMC,STMC).

LRA modifies the condition code and the contents of the
first operand register, according to the contents of the
segment and page tables, which are located in the virtual
machine core and pointed to by (virtual) control register 0.

For LMC and STMC, only control registers 0,2,4, and 6
are retained in EXTUTAB; the others always contain zeros and
cannot be modified by LMC.

When 1loading control register 0, a possible data
exception is reflected.

-126-

e,

When loading control register 6, bit 8 is examined and
the mode (normal or extended) 1is set according to its
contents.

The module affected is PRIVLGED.

Handling Virtual Dynamic Address Translation

In this description the following terminology is used:

First level memory. The memory of the real 360/67.

Second level memory. The memory of a virtual 360/67.

Third level memory. The memory of a virtual machine running
under the virtual 360/67.

Shadow segment and page tables. Segment and page tables used
by the real machine. When CP gives control to a virtual 67
running in extended mode with translation on, these tables
(in first level memory) will describe the third level memory
and will be used to control the real address translation
hardware.

Copy segment table. A copy, in first level memory, of the
segment table, in second level memory, used by the virtual
67 when running in extended mode with translation on.

Image segment table. A copy, in first level memory, of the
shadow segment table, with 00 in the first byte of each
entry, and bit 31 set to 1 (unavailable bit) in each entry.

Monosegment machine. A virtual 67 in which segments 1
through 15 are not used.

Multisegment machine. A virtual 67 which has already used
at least one segment other than segment 0.

For example, a virtual 360/67 running CP-67 and
generating any number of virtual machines will be a
monosegment machine so long as all these virtual machines
use a core size less than or equal to one megabyte. That
machine will become (dynamically) a multisegment machine as
soon as it runs a virtual machine using more than one
megabyte. Monosegment virtual machines are handled with
much less overhead than multisegment virtual machines.

Each time CP-67 gives control (by means of DISPATCH) to
a virtual 67 running in extended mode and with the
translation control bit on, it checks the validity of the
shadow tables: 1if those tables have been invalidated by a
previous loading of control register 0 or by a previous
paging interrupt, the following steps are taken:

-127-

page

memory, only step 2 is taken.

Second Level Memory

1. For
segment table is brocught from
the copy segtable.

a multisegment machine, a copy of the actual
second level memory into

For a monosegment machine, the first entry of the
actual segment table is brought from second level
memory into IMAGESGT, and the size of the actual third
level memory is updated into COPYSEGT.

2. For a multisegment machine, the image segment table
is copied into the shadow segment table in order to
reset it quickly with all the entries flagged with the
unavailable bit on.

For a monosegment machine the single shadow page table
is reset with the first n entries flagged with the
unavailable bit on, n being the page table length.

If the
of the virtual

shadow tables have been invalidated because a
67 has been removed from first level
(See Figures 42 and 43)

First Level Memory

Page Table

VCR O VCR 2

VCR 4 VCR 6

SHADVCR 0 l l
COPYSEGT IMAGESGT

Segment
Table

Shadow Segment
Table

Shadow
Page
Table
Note: COPYSEGT contains the length of the actual third level memory size
available (computed from the page table length), and IMAGESGT

contains the first entry of the virtual segment table, brought from the
second level memory.

— |
|

FIGURE 42. Virtual 67--Monosegment Machine

=128~

Second Level Memory First Level Memory

I
‘H""+ - . o VCR O VCR 2
J{ A VCR4 VCR 6

T SHADVCRO l I
e COPYSEGT IMAGESGT

/ EXTUTAB

[Shadow Copy Segment |
Segment Table

Table ‘

Image Segment
} Table

Page Tables

l
l
l

Shadow
Page
Tables

|
5
|
|
: | “
|
|
|
|
|
|

FIGURE 43. Virtual 67--Multisegment Machine

When a paging interrupt takes place, 1if the virtual
machine interrupted is a 360/67 wusing the virtual dynamic
address translation, the processing is the following:

If the interrupt is a page exception (interrupt code
11) a check is made to see whether the interrupt should
be reflected; if it should not, a request is issued for
the missing page, if necessary; otherwise (if the page
is already in first level storage), the proper entry in
the right shadow page table 1is loaded, and the virtual
machine restarted.

If the interrupt is a segment exception (interrupt code
10) a check is made to see whether the interrupt should
be refliected. TIf it should not, and if a shadow page
table has already been allocated to the segment

-129-

such

originating the interrupt, the unavailable bit 1is
removed from that entry of the shadow segment table,
the page table 1length is 1loaded, the corresponding
shadow page table, according to that length, 1is reset
with the wunavailable bit in each entry, and the
processing continues as for a paging interrupt for a
multisegment machine.

If a shadow page table has not yet been allocated, one
table is allocated and, furthermore, if the virtual 67

is switching from monosegment to multisegment machine, the

copy
then

mainl

and image segment tables are allocated and initialized;
control is given to the dispatcher.

The modules modified to handle this algorithm are
y DISPATCH and PROGINT and also CFSDBG and PAGTRANS.

Virtual 67 Restriction

A virtual machine may be a 360/67 provided it has a

simpl

-130-

ex CPU, with 24-bit addressing.

et N

CONSOLE FUNCT IONS

When a console interruption occurs Dbecause the
attention key has been activated at a wuser's terminal, the
I/0 interruption handler (IOINT) calls the CONSINT routine.
CONSINT then calls BREAK in CFSMAIN if the terminal has a
logged-on user.

BREAK determines whether the user was executing or was
waiting for completion of a console function when the
"attention" occurred. If the user was waiting for a console
function, the "attention"™ is reflected to the user's machine
as an online console attention button interrupt. If the user
was executing, the routine RDCONS 1is called to read the
console function request, and control is returned to the
interrupted routine. If the user was receiving output from a
console function request when the attention button was
depressed, that output function is terminated, and the
keyboard is unlocked waiting for another console function
request.

When the console function request has been read, the
console function processor CFSMAIN is entered to analyze the
request. CFSMAIN determines the type of function requested
and gives control to the appropriate subroutine. When all
console functions have been processed, control is returned
to the calling routine.

The console functions can also be executed from the
virtual machine level by the diagnose instruction (code 8)
and the required buffers. (See "Program Interruptions"
earlier in Section 2.)

The following console function descriptions cover the
four privilege classes of users:

- operator

- administrator

- customer engineer
- a normal user

Cnwy

Also 1included is the system operator class, which
belongs to the first user to 1log in with privilege class A.
Normally he is the operator of the Model 67.

The following console functions are described:

ACNT - punch and reset accounting information for
active users

ATTACH - attach a device to a user or to the system

BEGIN - initiate execution of a virtual machine

CLOSE - give logical EOF on unit record equipment

DCP - display contents of real memory and registers

DMCP - dump contents of real memory and registers

DETACH - remove a unit from a virtual machine or from
the system

DISABLE - inhibit 2702 line access to the system

DIRECT - allow and inhibit system DIRECTORY access

-131-

DISCONN - disconnect a terminal from a running virtual
machine

DISPLAY - display contents of memory and registers

DRAIN - quiesce a unit record input or output

DUMP - dump contents of memory and registers

D U M P - cause a system ABEND dump

ENABLE - enable 2702 lines for access to the system

EXTERNAL - give virtual external trap

IPL - perform an initial-program-load sequence; reset
virtual memory to binary zeros
IPLSAVE - perform an IPL without resetting virtual

memory to ZERO

KILL - log a user off the system

LINK - attach a DASD device using a directory unit
description

LOCK - lock selected user pages in core

LOGIN - log into the system

LOGOUT - log out of the system

MSG - send a message to the user(s) or operator

PURGE - delete a user's spooled input or output files

QUERY - query the status of the system

READY - ready a virtual device

REPEAT - repeat the output of a currently active file
on the real unit record devices

RESET - reset the interrupt status of a virtual machine

SET - establish system parameters or machine status

SHUTDOWN - bring the system to orderly shutdown

SLEEP - place a terminal in dormant state to receive
messages

SPACE - force printed output for a file to single space

SPOOL - direct and control spool input and output

START - commence unit record output after a drain or
when requested

STCP - store into real memory locations

STORE - store into memory or registers

TERM - terminate current unit record operation

UNLOCK - release previously LOCKed pages

WNG - issue a warning message to user(s) ‘

XFER - transfer spooled punch output to a wuser's
spooled reader input

Console Function Subrocutines

The following brief descriptions cover some of the
important subroutines in console function processing.

CONSTART - this routine is entered after the console
function has been read by RDCONS. It analyzes the data and
goes to COMANL to scan the command list for the desired
function.

SCANFLD - this routine will return to the caller (via BAL)
the starting 1location and the length of the next field in

-132-

/Mmfﬁg‘

the command input, or an indication that no more data
exists.

BEGIN - this routine releases the read buffer and large save
area, resets the user's CFWAIT status, and exits.

BREAK - this routine is the entry point called when the user
actuates the attention key. It will get a 17-doubleword
buffer used by RDCONS to read the console function and a
17-doubleword large save area, which is used on subsequent
call by CONSOL to other routines and as general working
storage for various functions.

SIMATTN - this routine is entered if the user actuates the
attention key while in console function mode, thus giving an
"attention"™ to his virtual machine.

FINDUSER - this routine will search the chain of UTABLES for
a specified "userid". A message is given if the user is not
found, or his UTABLE address is returned in register 10.

The module CFSMAIN contains all these subroutines.
CFSMAIN remains addressable through register 12 for all
command processing. Individual commands- are placed together
in several other modules, each module addressable by
register 9.

-133-

console Function Descriptions

The following conventions are used throughout these
descriptions: (1) variable information is 1indicated in
lowercase letters, and system keywords are indicated in
uppercase letters, whereas either case may be used when
communicating with the system; (2) "<" and ">" are used to
bracket choices when applicable in the description (for
example, "MSG <userid,ALL>" would be used to 1indicate that
"MSG userid™ or "MSG ALL"™ could be used), whereas the
brackets are not typed when communicating with the system.

ACNT (ACNT) - class A and B
ACNT
The following steps are taken:

- for each UTABLE in the system call ACNTIME to give
accounting to each user

- call ACNTOFF for each user to punch an accounting
card and reset the accounting data

Note: ACNT does not punch an accounting card or reset the
accounting data for dedicated devices.

-134-

AR

ATTACH (A) - class A and B

ATTACH ccu TO userid AS XXX
ATTACH ccu TO SYSTEM AS volid
ATTACH RDR | PRT | PUN TO userid AS xxX

The following steps are taken when attaching a device to a
user or to the system.

scan the selector device chain for the device “ccu"

check that the device 1is not "owned" or already
attached

issue a sense command for DASD types to determine
that the device is "ready"

check that the "userid"™ 1is currently logged in to
the system

check that the "userid®™ does not already have a
device of address "xxx"

create the virtual device blocks for the user and
link them to any existing blocks

call DEDICATE if the device being attached is in the
real multiplexer chain. DEDICATE will create and
chain a set of real selector device blocks.

link the virtual and real device blocks on an
attached (nonshared) basis

send a message to the "userid®™ that the device has
been attached

if the device is being attached to the system, CP
will read and verify the "volid" and check that the
volume is not already mounted

ATTACH will check the "owned list"™ (in the CPDSK1
allocation table) to see whether the attached
volume has a CP allocation table

if the attached volume is "owned", the allocation
table is linked to the real device block and to the
allocation table chain

if a "spooling"™ device (RDR PRT PUN) is being
attached to a user, a virtual multiplexer block is
created and chained to the user's virtual device
chain

various diagnostics are issued for a variety of
error conditions that can occur

-135-

BEGIN (B) - any user (class A,B,C,D)
BEGIN <hexadd>
This command transfers control from CP console function mode
to running the virtual machine.
The following steps are taken:

- set the user's virtual PSW to the address specified,
if any :

free the console functions read buffer
- free the console functions large save area

take the virtual machine out of "console function"
wait

- exit to run the user

-136-

AT,

CLOSE (C) - any user (class A,B,C,D)

CLOSE ccu
The CLOSE command completes a user's spooled operation for
the current file and schedules it for output, or clears the
buffers for input.

The following steps are taken:

-.locate the specified virtual device in the user's
multiplexer chain

- call MVICLCR or MVICLPR or MVICLPN to close a reader
or printer or punch, respectively

- output files will be scheduled for printing or
punching or the punch file may be chained to a
reader input if it was XFERed

- readers are cleared to accept the next spool file
input. Remaining input is flushed.

-137-

DCP (

where
locat

DCP)

- class A and B

DCP argl arg2...argN

the argunents

(arqgl...argN) are

real

jon(s). The output goes to the terminal.

The following steps are taken:

1.

-138-

The steps are the same as
is taken from real memory instead of

that the data
virtual memory.

those for

DISPLAY,

memory

except

i,

DMCP (DMCP) - class A and B

DMCP argl arg2...a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>