File Number 1800-36
Order Number GC26-3793-1

Systems Reference Library

IBM 1800 Time-Sharing Executive System
Concepts and Techniques

The purpose of this publication is to describe the facilities provided
by the IBM 1800 Time-Sharing Executive (TSX) System, and to
explain the basic concepts and techniques underlying their use. It

is intended as a reference and guide for customer systems personnel
in the implementation of the TSX system.

The manual is divided into four sections. The first section servés as
an overall introduction to the TSX system. The second and third
sections describe the three main executive programs and discuss
some of the important design considerations that bear on the use

of standard TSX components. The final section provides selections
of programming techniques covering a wide spectrum of TSX usage.

The general approach taken is to explain each concept as it is
encountered, and, where possible, elucidate that concept by means
of an example. Numerous sample problems are included to acquaint
the programmer with recommended techniques of TSX programming,
A detailed TSX Sample System is specially provided as a tutorial

on all aspects of TSX design, usage and implementation.

PREFACE

This publication describes the facilities provided by
the IBM 1800 Time-Sharing Executive System, and
discusses the concepts and techniques underlying
their use. It is intended as a reference and guide for
customer systems personnel in the implementation of
the TSX system.

The manual is written in four progressive sections
where information in one section is sometimes
necessarily related to information in another section.
These comprise:

e Overview of the IBM 1800 Time-Sharing Executive
System

e Functions of Executive Programs
e System Design Considerations

e Programming Techniques

The approach taken is to explain each concept as it
is encountered. In some instances, a subject con-
cept is necessarily included in a section prior to its
definition later on in that section or a subsequent
section. Sample problems are scattered throughout
the text as illustrative examples designed to clarify
concepts discussed and to familiarize the user with
recommended techniques. They should not be con-
strued as models.

The first section gives a rapid survey of the TSX
system. It defines the executive system, its modes
of operation and system requirements; discusses
some of the basic TSX system concepts employed;
and describes the various components of the system,
and their inter-relationships to the total system.

The second section describes the three main
executive programs (TASK, the System Director, and
the Nonprocess Monitor) in terms of their functions
and capabilities. Numerous examples are included
as demonstration of sound programming practice and
technique. Subjects discussed embrace: Program

Second Edition (June 1970)

Scheduling, Handling of Interrupts, Use of Interval
Timers, Use of Time-Sharing, Error Alert Control
and Procedures, and Nonprocess Monitor Usage.

The third section discusses some of the important
design considerations bearing on the use of standard
TSX system components such as the System Loader,
IBM Nonprocess System, Temporary Assembled
Skeleton (TASK), and the System Director., Subjects
discussed include: Assignment of Interrupt Levels
and Restrictions, Level Work Areas, Disk System
Configuration, and the System Skeleton.

The final section incorporates selections of pro-
gramming techniques covering a wide spectrum of
TSX uses. The purpose of this section is to aid the
programmer, acquaint him with recommended
techniques of TSX programming, and to help him to
build on the fundamentals discussed in earlier sec-
tions of this manual. A detailed TSX Sample System
at the end of the section touches on every facet of
TSX design, use and implementation.

- For details of TSX system generation procedures,
System Loader assignment cards, TASK and System
Director equate cards, and all Nonprocess Monitor
control cards, the user is referred to IBM 1800
Time-Sharing Executive System, Operating Pro-
cedures, Order No. GC26-3754.

To derive maximum benefit from "Concepts and
Techniques', the user should have a working knowl-
edge of the following TSX support publications:

IBM 1800 Data Acquisition and Control System,

Functional Characteristics, Order No. GA26-5918

IBM 1800 Assembler Language, Order No.

GC26-5882

IBM 1130/1800 Basic FORTRAN IV Language,

Order No. GC26-3715
IBM 1800 Operating Procedures, Order No.

GA26-5753

IBM 1130/1800 Plotter Subroutines, Order No.
GC26-3755

IBM 1800 Time-Sharing Executive System
Subroutine Library, Order No. GC26-3723

This is a major revision of, and obsoletes, GC26-3703-0 and Technical Newsletters N33-8020, N33-8032,
N33-8039, N33-8063, GN33-8074. Changes to the text, and small changes to illustrations, are indicated
by a vertical line to the left of the changej changed or added illustrations are denoted by the symbol @

to the left of the caption.

This edition applies to version 3, modification 8, of IBM 1800 Time-Sharing Executive System and to
all subsequent modifications until otherwise indicated in new editions or Technical Newsletters. Changes
are periodically made to the specifications hereiny before using this publication in connection with the

operation of IBM systems, consult the latest SRL Newsletter, Order No.

that are applicable and current.,

GN26-1800, for the editions

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch

office serving your locality.

A form is provided at the back of this publication for readers comments.

If the form has been removed,

comments may be addressed to IBM Corporation, Programming Publications, Department D78, Monterey

and Cottle Roads, San Jose, California 95114,

© International Business Machines Corporation 1967,1970

OVERVIEW OF THE IBM 1800 TIME-SHARING EXECUTIVE

SYSTEM |,vevrunnnnns
Introduction , ., ., ...coveueeeennnnss
Minimum System Requirements , ,
Modes of Operation
System Concept, . .. ¢.uveueensessnns
Role of the Skeleton Executive , ,......

Time-Sharing ,,, ...

“ e e

e e 0 s 0 s s s 0 e s e 0 e

Versatility in System Configuration ,
Conceptof @ CoreLoad. .. vvuunesens
Local Subprograms ,
Reentrant Coding
CommonAreasveuvrenennens
Multi-Level Programming ,
System Components

T R R)

PR R A]

s s e 0o s 0 e s s e e

e s e e s e s e s s e

Control Programs
Processing Programs « « ¢ o o« e e 000000

FUNCTIONS OF EXECUTIVE PROGRAMS . . .
Temporary Assembled Skeleton (TASK). « + « «
The System DireCtor « « « « o s e o o 000 00 s 0
Program Scheduling .« .. eeoeveavavens
Handling of Interrupts « « « « o o o s e s 000
Use of Interval TimerS o « c oo e oo s e o s
Use of the Operations Monitor « « « « « « s « «
Error Alert Control « « v ¢ v st v e 000 s e
The Nonprocess MORItOr « . o ¢ o s s
Nonprocess Supervisor (SUP) « « ¢« ¢ o e 0 v ot
Disk Utility Program (DUP) « « e o e o o v o«
FORTRAN Compilere s eeeeoesoeeases
Assembler
Simulator Programu.enn.. ..

R R I R R B N R S P

Examples of Nonprocess Monitor Usage . ., .

SYSTEM DESIGN CONSIDERATIONS
Temporary Assembled Skeleton (TASK)
Task Equate Cards v v o v vvvoevsoeson
Buffering of Messages to Disk ¢ e v v v v e
Calculating Task Core Size
The IBM Nonprocess SYystem .« v o v o o s s 0 0 o o
System Loader Operationeeee.e
Function of the *Assignment Cards« « v . « »
The *DEDIT Control Card ¢« e e o
Summary of Assignment Card Restrictions .
Sector Break Records for Absolute Programs
System Director. . . .
Size of System Director « « o « o e o s a0 0o
Definition of Functions Required . .

D A A I I

s e s 0 0 s e e e s

oo

Summary of Nonprocess Monitor Control Cards

..

Allocation of Internal and External Interrupt Levels
Number of Call Count Subroutines Required by User-
Disk System Configuration e« s« e eooceovesoecesss

Disk Organization s+ s e e oo oo v o s oo e e

.

.

W 00NN U1 Ul W W w R =

128
130
131
133
134
147
147
148

iii

The DEFINE CONFG Operation « « o v o oo s
Disk Cartridge Initializatione .o oo
Summary of Disk Storage Requirements and
Assignment Restrictions
System Skeleton
Constitution of the System Skeleton « + « « «
Skeleton Core Siz€ ¢ e v s s s o s e v e v o eees
Calculating Skeleton Core Size « « ¢ ¢ ¢ ¢ ¢ o«
Use of XINCLD Control Cards « « « e ¢ ¢ e« o
Summary of the Skeleton Build Process .« « « «

P I I BN SR Y

PROGRAMMING TECHNIQUES « ¢ ¢ v v e e e aue
Writing Assembler Language Subroutines . « . « .
LIBF Subroutines « .. eeee oo eecesascs
Input/Output Subroutines . « o s s« s o s v o

Programming Subroutines Using Reentrant Coding

Need for Reentrant Coding .+« e ¢« o«
Concept of Level Work Areas = ¢« ¢« s o+«
Mechanism for Reentrant Control « « +«« + »
Masking Out the Interrupts « « » « « ¢+ ¢ e+ oo

ProgrammingNotes e e s e e s e b e s aean

Writing User-Programs for Execution Under the TASK

Absolute Loaders - «
Program/Data Format « « « « ¢ + o ¢ +
Absolute Loader Operation ¢ «+ + ¢ ¢ ¢ s e s s o

c e s s e

Basic Concepts of Data Acquisition and Process Control

Systems (DACS)
IntroducCtion o « ¢ s e o o ¢ 6 6 s 0 s s 006000 o0
Data Acquisition Systems « « «
Operator Guide/Supervisory Control « « « « « «
Direct Digital Control . « « « «
TSX Sample System . 4 v e v e e e seaanons
SystemDesign eiieri it nanns
Periodic Program Scheduler¢c 000
Sample System Error Design « « v 0 e v e v v v
Closed Loop Control « o v v v e v v voevases
Operator Guide Control « . v v oo
System Design for Optimum Time-Sharing

D I N

.

Process Operator’s Console « v v v oo v v an e

System Documentation « ¢« ¢ o oo e v eae o
Description of Sample System Flowchart . . .
Coding Techniques
System Generation « « v s e e o s s s s s a0 e
On-Line Output from the Sample System ..

R EE R

APPENDIX A. TSX SYSTEM COMPOSITION AND

.

CAPABILITIES + ¢ ¢ ¢ e v v v nvnase

APPENDIX B.

APPENDIX C. ASSEMBLER LANGUAGE TSX CALLS

o s e 0.

SUMMARY OF TSX CALL STATEMENTS

APPENDIX D. CONTENTS OF THE FIXED AREA OF CORE

INDEX

© 6 5 06 8 e 0 0 s s e s s e s e s s e e

CONTENTS

151
157

159
161

‘161

164
172
173
173

181
181
182
182
185
185
185
185
186
187

187
187
188

191
191
193
194
195
195
196
197
197
199
200
200
200
203
203
203
206
208

291
292
294
297

300

ILLUSTRATIONS

Figures
1. IBM 1800 Time-Sharing Executive System « e ¢.o ¢ s o oo
2, A TSX On-Line System -- Illustrating the Skeleton
Executive o oo v o e oo I A S e e e s e e
3. TFour Types of Core Loads Commonly Used in TSX
4, TASKOrganization « eeecosseeseocsocoescsoess
5. Correspondence between TASK and the System Skeleton.
6. Program or Event Sequence « + « e seosoeesavessense
7. Ilustrating Time Dependency o+« ce oo oo eooosen
8. Interruptlnitiau'on........................
9. Example of Multi-Level Programming . « « e v v a s v 0 o s
10. Use of Chaining (or Sequence-Type) Call Statements . .
11. Use of Queueing Statements « .« co e o oo v s o oo
12, TIllustrating a Method of Segmenting Mainlines Based on
Scheduling Requirementso oo v oesnoesean
13, Use of the CALL QIFON Statement+ v oo osese
14. Use of the CALL VIAQ Statement .. . s e vvie s o sase
15. Initial CoreLoad. ..o vevvnvrnnenerosaonnns
16. Mainline Core Load ALPHA v vt e et eneens
17, CountRoutine PEROD. vt v v vt eeneesenass
18. Priority Interrupt Level Structure and Assignment
19. Summary of Characteristics of Process Interrupt
Servicing Routines. . .. oo v o v v veevenveenoeens
20. Use of the CALL INTEX, CALL DPART, and RETURN
Statements eeeoeient it e o0
21. Action of MIC During an Interrupt . . . o v v o v v v v v v
22, Action of MIC During an Interrupt «o oo oo s oo
23. Exit from MIC After an Interrupt has been Serviced
24, Timer Locations in Core Storage « v o v o v o s s o s o s o v s
25. Subroutine A for Example 5 -~ Queueing an Analog
SCan Program « e e oo s o es oo ot o sovssosasonns
26. General Pioblem Logic Flow -- Example 2
27. Action of EAC when an Error OCCUrs « e e« s s e e o o s o
27.1. Effects of Restart and Reload on Timers and Interrupts . .
28. The Nonprocess MONitor « ¢ e e o s s s e e s v o oo s sans
29, Illustrating Nonprocess Monitor Action During
Time-Sharing. « . . . St et st et ea e
30, Tlustrating 2 JOBe e v et s e s s s st eoessoncncsos
31. Assemble/Compile and Execute a Nonprocess
CoreLoad o vt v evvesvooncrsononasonnnssns
32. Assemble and Execute a Nonprocess Program from
the Temporary Area .« « o o e o o v s s s s s v avanovasss
33. Compile and Store a Nonprocess Program in the
Relocatable Program Area (User Area) on-Disk«
34, Compile and Execute a Nonprocess Program from the
Core Load Area .+ 4o vvvvervnssoeaneceanosns
35. Delete a Process Mainline, Combination, or
Interrupt Core Load from the Core Load Area
36. Replacing a Nonprocess Core Load in the Core Load
L
37. Replace a Relocatable Program in the Relocatable
Program Area
38. On-Line Rebuilding of Process Core Loads + ¢+ s e o e s
39, Reserving a File Area in the Core Load Area « + s ¢ v ¢ o s
40. Illustrating Various Card Arrangements in Dumping
a Program/Data to Nonprocess Working Storage,
Punched Cards, and the List Printer o+« ¢ s 0.0 00000 0s
41, Reloading Core Loads to User Sequence + o+ « ¢ oo+ o oo

12
15
16
16
16
19
21

22
24
25
26
26
27
28

32
34
36
37
38
43
47
50
69

71
72

73
80

81

81

82

83

84

85

86

87
97

98.

99

42,
43,
44,
45.

46.
47.
48,

49,
50.
St.
52.
53.
54.

55.
56.
57.
58.

59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

74.
75.

76.
77.
78.
79.
80.
81.

82,

83.
84.

- 85.

iv

86.

Dumping a Relocatable Program from the User Area .
Moving a Data File within the Core Load Areas « + « »
Reloading a Program to Nonprocess Working Storage
Showing the Relationship of Local Groups or Blocks

to Associated Core Load within the Core Load Area
onDisk e s o0 0enn
IHustrating the Implementation of LOCALs « « ¢ « ¢ s
Repacking User Area on Disk Drive 1+« v 0o v v ev v
Repacking the Relocatable Subroutine Area
Following a Removal of Various Portions of the TSX
Subroutine Library + o o o e o o o sc0 oo s 0.0 00 000 e

@ s e % s e s s 8. 0.0 000000

Reproduction of Cards « « ¢ « oo sov o st s oo eaenn
Dump LET/FLET of Disk Drives O, 1 and 2 + 4 s s o

LET Entries +
FLET Entries .
Cold Start for an On-Line System .. .
Relationship of Physical Disk Drive Units to
Logical NUumber « .« o.vco oo s oo os
Cold Start for an Off-Line System . « . .
Preparing a GUARD or Dummy Interrupt Core Load .
Illustrating Logic of Console Interrupt « e ¢ o ¢ oo v o
Illustrating Perpetual Time-Shared Nonprocess

Monitor Operation.

s 8 s s s s e e e e s s e s e s 00
e e 0 s e e e s e s e s e s s s e e

e s s o s e s e e

e e e e e e

System Generation Overview « « s« soevos s
TASK Source Deck and TASK Equate Cardse « « « « « «

A Set of TASK Equate Caxds for the TSX Sample

System (see Programming Techniques) « e e ¢ ¢« e oo v+

The IBM Nonprocess Systemes « e s s oo o soa e v 0 s s s
Sequence of Control Cards at System Load Time .
Disk Drive O after a System Load Operation
System Director Source Deck and EQUATE Cards -
Example of a Set of System Director Equate Cards
Maintine Core Load Queue Table « » .
Example of Interrupt Level Status Word Assignmen
Layout of a Level Work Area « ¢ s s s s v e v o0 e oo
Interrupt Core Load Table « -«
Disk Storage Unit Conversion Factors + « s o ¢ o ¢ v 0 o0

.

e e s e

.
.

PR T N

e s s 00 s e e e 00 e

Disk Layout of a Single Disk Drive TSX System: « v oo oo

Overview of the DEFINE CONFG Operation
(Disk Drive 0)
Illustrating Direction of Disk Configuration « « - - « « .
Establishment of System Areas at High Address End

Of aDisk oo v veenersossesocssosesnsronasee
Establishment of Message Buffer Area at System

Load Time
Mustrating Redefinition of the Message Buffer Area.
Disk Layout of Disk Drive Zero for Example 1
Definition of a Three-Drive TSX On-Line System

for Example 2.+ « « o
Definition of a Three-Drive TSX Off-Line System
for Example 3 .« ...
Constitution of the System Skeleton
A Partial Dump following a Skeleton Build to
Illustrate the Program Name Table and the Executive
Transfer Vector
On-Line (Time-Sharing) System « « + « s e e ¢ s 0 e 00

e ¢ s s s e 0 e s s s s s s s s e s e e e

e s.0 4 8 6 8 s e a0 et s et e s s s e

e s e e s 6 s s s e s e s s e s e e

P I I R

A

On-Line (Non Time-Sharing) System « ¢+ e ¢ ¢ o o v o
Off-Line System - -
Illustrating Relationship of DP I/O Devices to:

Associated Function and Conversion Subroutines =« -«

D T L R N R I

D T A

100
100
100

101
102
107

108
109
109
109
109
110

110
111
112
113

114
116
117

117
121
124
124
131
132
132
136
138
144
148
149

152
153

153
153
153
154
156
157

161

163
164

165
165

166

87. Layout of the System Skeleton as it would appear at
Skeleton Build Time in NPWS and the Skeleton Area - . 174
| Core Map for Initial and Rebuilt Skeleton ee.. 178
IBM 1800 Data Acquisition and Control System « .+« ..« 193

FE RN

Tables

1., Table of Available Timer Time Bases « ¢ v o v ¢ v v oo+ 43
2. Comparisonof Timers , ., ..,eeeennnuass. 48
3, On-Line EACError TypeCodes ,, .,00e000.0.. 61
4, On-Line EAC Errors and Recovery Procedures , ,,.,.,, 62
5. MonitorControl Cards .,00vvvnnnnanss 77
6. LoaderControl Cards ,.......co0veuvuennanes 77
7. DUPControl Cards, , vveveoveesnneaeanaes 78
8, FORTRAN Control Cards, ,vuveuosoosnsonoanss 79

Program Listings

T 10
P -1

Examples

Use of TiMeIS .u.uuvunvsrsenneserarecaiosscsosseonacseessssasdd

........... eereeneeaeas ... 44

...... e iea e ie e e i et enraaeea.. 44
P 44
4. e e e v, 45
S e srvesasdenanrarornae ettt et 46
Initiating of Time-Sharing ,................c.uus et ieee 48
. e b e e 48
20 e e e eeee e e R
Use of Non-process Monitor ,.............. et et e, 79
1. Assemble and execute a non~process program from the Tempo-

rary User Area , ,...., cerieins e cenees 80
2. Compile and store a non-process program in the Relocatable

(or User) Ateavvvvriuineinnnnenns e e 81
3, Compile and execute a non-process program from the Core

Load Area ,,.....c.vuvviinnven.n. e e 82
4, Delete a mainline, combination or interrupt core load from

the Core load Area ,.........c00vnenunnnn B -

Replace a non-process core load in the Core Load Area ,...... 85
6. Replace a relocatable program in the User Area ,,,,..........85
7A. On-line rebuilding of process core loads ,,........... ..., 86
7. Changing the sequence of linked core loads (using *xSEQCH) ..., 86
8. De-bugging the Simulator ,...,. . - 14
9. An example program which uses the Simulator P 91
10. Reserving a file area in the Core Load Areaceeeeoeecensns 97
11, Dumping a program or data file from the Core Load Area 98
12. loading a previously dumped core load back into the Core

Load Ar€a eovececcscesscocncancsnrcssccornssosansscncassssId
13. Dumping a program from the Relocatable (or User) Area 98

Moving a data file (or files) within the Core Load Area vees99

.Loading a core load back into Non-process Working Storage 99
16. A program using LOCAL sub-programs eieiencaias 102

17, Packing the User (Relocatable Program) Area .v.ovvvvvevsness..107

90. TSX Sample System Schematic Diagram =« e ¢ s e e oo 196
91. 1800 Computer Process Simulator « « « ¢ e e e e s v e v oo+ 201
92, TSX Sample System Flow Chart + « s v e s e eeeeese.. 204

9. Assembler Control Cards o s v v s e v vaveessocsasas 79
10. Simulator Control Cards 79
11. Fixed Section of a Level Work Area . . o o e s oo s v s s oo 139
12. TSX Reentrant Subroutine Work Level Requirements . .. 140
13. Comparison of TDWA, DWRAD, and DLABL features .. 159
14, TSX Sample System Table of Variables 205
15. Disk File Organizationsceeeosevecossosss 205
16. Log DeSCription « v o e e eesvsosonnasasenesss 206

e e e s s e s s e s s s s e e s s e e

17. Program Data Sheets teceeerteeeanasas 210
5~......................................170
7. . ae s nsmens e e et ess e ersereassesas. 183

18, How to reproduce cards ««..... Peeeeere et enteacensanas 107
19, Dumping a LET/FLET Table «eveetairaenninienrnnnnenrnnan. 107
20. How to call for a process core load externally cele. 107
21, How to initiate a Nonprocess Monitor operation,. 110
22. How to terminate a Nonprocess Monitor operation 111
23, Preparing a '"guard" (or "dummy") interrupt core load 111
24, Use of the Console Interruptc.civiiernenviinnneennan. 111
25, Preparing a mainline for perpetual Time-Shared Nonprocess

Monitor operation s.e.c.oeiiiiiiiia.., et ceeenn 112
Non-synchronous Periodic Scheduling e 26
How to use masks to ""set up" designated levels ...,............... 40
1. How to mask levels cee e e . 40
2, How to unmask levels PPN . cieiieiieenena.. 40
3, How tounmask alllevelsvevivriunrnennnnneennnnn. ... 40
4, How to mask some levels and unmask all others 40
The use of LUN Numbers/IAC Codes ..,......o0vvvuvunnnnnnnn. 126
Disk Configuration Operations ,,...,.......00000.... PP ceee.. 154
Lt iiiee e, e, e e 154
e S e, 155
T, e e 156
Disk Cartridge Initialisation, using DWRAD Trrretereree e 157
40 ... At Cieedeiiiseeie.., 158
Bttt irees i et ae e, e e 158
6. tunnn PP Cecerecenetestesnae e e ee e e, 158
Inclusion of Subroutines in the Skeleton PN e 164
1, cevennn Ceeraee i aina, e et crrenns 167
Dy cererieieanaas feeeeetee e e eeies et e 169
CALL-type Subroutines ., BN ... 186
LIBF-type Subroutines «+...eceoseesceneacans it et e . 186
Masking and Unmasking to interrupts e 186
Re-entrant Subroutines «..... “e et eressaees 187

Writing User Programs for execution under TASK Absolute Loader ... 187

OVERVIEW OF THE IBM 1800 TIME-SHARING EXECUTIVE SYSTEM

INTRODUCTION

With few exceptions, real-time applications are
distinguished from other applications by two chief
characteristics: 1) some process or operation going
on outside the computer system normally has a con-
tinuous need for on-line communication with the sys-
tem, 2) there is a requirement for the computing
system to keep pace with the associated process or
operation. These characteristics of the application
place some unique and stringent requirements on
real~time processing systems for use in the real-
time environment.

Recognizing the formidable programming task
associated with a system of this scope, IBM has
developed the 1800 Time-Sharing Executive System
(TSX) which relieves the user of much of the re-
quired programming effort by freeing him to con-
centrate on the primary task of problem solution.
TSX is a FORTRAN-oriented disk-resident oper-
ating system which permits the user to make opti-
mum use of an IBM 1800 Data Acquisition and Con-
trol System (DACS) for its primary purpose, the
control of processes and similar complex environ-
ments, as well as providing him with an effective
off-line monitor system for data processing and
scientific computation. TSX improves greatly the
versatility of a Data Acquisition and Control Sys-
tem (DACS) computer by making it possible for
background jobs to be processed when the real-
time foreground task relinquishes control of the
processor-controller. It is through time-sharing
that idle computer time is minimized or eliminated.
Programs may be written in FORTRAN and/or
symbolic Assembler language.

Figure 1 introduces the capabilities of TSX in
generalized form.

MINIMUM SYSTEM REQUIREMENTS

To assist users in performing their initial system
generation, a standardized "'starter' called System
Generation (SYSGEN) TASK is provided with each
installation which contains the basic elements
necessary for system generation in a form that will
be directly usable by a majority of users. SYSGEN
TASK is supplied in assembled object format as
part of the IBM Nonprocess System and consists of
the following:

e Nonprocess Monitor Linkages

o Skeleton Builder Linkages
o Absolute Loader

It is designed to support the following minimum
devices:

e 1IBM 1801 or 1802 Processor-Controller with
a minimum of 8K words of core storage

e 1 IBM 2310 Disk Storage Unit with one disk drive
e 1 IBM 1442 Card Read Punch

e 11IBM 1816 Keyboard Printer (that is, printer
portion only) or

e 1IBM 1053 Printer

The user may employ additional I/O devices on his
system, but he must satisfy the above machine con-
figuration requirements to use SYSGEN TASK. For
example, if he substitutes a 1443 Printer for a 1053
Printer or an 1816 Keyboard Printer, a card assem-
bly of the TASK source deck to include this provision
becomes mandatory. As the "starter' system is a
limited version of the Temporary Assembled Skele-
ton (TASK), it will neither buffer 1053 Printer mes-
sages to disk, nor does it contain the trace and dump
utility functions.

Machine Features Supported

In addition to the above, the following optional ma-
chine units and features are supported by the TSX
system:

e Additional core storage (up to a maximum of
32,768 words)

e Additional disk drives for IBM 2310 Disk Storage
Unit -~ up to a maximum of three disk drives

e Additional IBM 1442 Card Read Punch Unit
(up to a maximum of 2)

e Additional IBM 1816 Printer Keyboard (up to a
maximum of 2)

e Additional IBM 1053 Printer Units (up to a total
of eight 1053s and 1816s)

Overview of the IBM 1800 Time-Sharing Executive System 1

reeee—"n"

NONPROCESS :

MONITOR System
Director
Supervises Execution

of Nonprocess Pro- Supervises E t f P
o e upervises Execution of Process

N Programs. It includes: H{Sggéss
) SU:Z:;?:;SS . Time=Sharing Control PROGRAMS
. Disk Utilities . Program Sequence Control
. Fortran Compiler |l ap—— . Master Interrupt Control
. Assembler P . Interval Timer Control
_ Simulator . Error Alert Control

D GEED GD D T J

SUBROUTINE LIBRARY

NONP Arithmetic, Input/Output |
NON et e—- rithmetic, Inpu utpu
PROG;&OMCSESS and Conve;sion Process, Input/Output

\
\\u\m\m\ummu

|
|
|
|
|
|
|
|
!
|
|
!
1
|
|
|
|
1
|
|
|
|
|
|
|
|
!

Customer Process Devices

Card Magnetic Tape Printer

IBM Programs

awawe User -Written Programs

Figure 1. IBM 1800 Time-Sharing Executive System

e Additional Data Channels (up to a total of 9) e Comparator
e Additional Interrupt Levels (up to a maximum of e IBM 1443 Printer Unit
24) e IBM 2401-2402 Magnetic Tape Units (maximum of
e Multiplexer Unit (Solid state and Relay) 2)
e Analog-Digital Converter (up to a total of 2) e IBM 1627 Plotter Unit |
e Digital-Analog Output o IBM 1054 Paper Tape Reader
e Digital Input e IBM 1055 Paper Tape Punch

MODES OF OPERATION

The IBM 1800 Time-Sharing Executive System con-
sists essentially of two main parts: (1) a Skeleton
Executive and (2) a Nonprocess Monitor. It is
through the Skeleton Executive that process control
and data acquisition applications are serviced in
the on-line mode, while the Nonprocess Monitor
operates either in the time-shared mode or as an
independent programming system to provide data
processing functions in a standard off-line mode.
Each of these modes is brought into play by an ap-
propriate and corresponding system generation
procedure. The user elects the option of construc-
ting an on-line or off-line system tailored to indi-
vidual requirements.

On~Line Mode

In real-time processing, inputs arrive randomly
from a process being monitored to the processor-
controller. The computer rapidly responds to each
input usually by conveying an output back to the
process. This is in contrast with conventional batch
processing where groups of input data are processed
by passes through the computer. The notion of real-
time usually implies that a processor-controller is
responding to inputs as they occur in the physical
world.

TSX operates in this mode under the control of
the Skeleton Executive. In an on-line environment,
user-written programs may monitor and/or control
a process operation at any time. The machine is
also permitted to be shared by process and non-
process work: that is, batch work may be inter-
leaved with other work. Whenever variable core is
not required for a process program, the Nonpro-
cess Monitor may be brought into service. All
core loads and/or programs executed are accessed
from the system resident disk cartridge.

Off-Line Mode

The off-line TSX system operates in this mode
under the control of the Temporary Assembled
Skeleton (TASK) as a dedicated Nonprocess Moni-
tor System. Typical off-line operations are assem-
blies, compilations, disk utility functions, and the
execution of data processing programs.

An off-line system can be used to test problem
programs before they are permanently stored and
catalogued on the system cartridge, to execute
problem programs that require the full capacity of

available disk drives for data files, or to execute
problem programs that are used so infrequently that
their on-line storage is not justified. It is also used
to build an on-line disk resident system.

SYSTEM CONCEPT

ROLE OF THE SKELETON EXECUTIVE

The Skeleton Executive constitutes the framework of
an on-line TSX system, and must be resident in
permanent core storage before any continuous and
coordinated real-time processing can take place.
Other portions of the system are brought into core
from disk storage as they are required to perform
specific functions.

The Executive is extremely flexible and can be
assembled at system generation time so that no core
is wasted by selecting any of the numerous options
available. The user may include frequently-called
subroutines, fast response interrupt servicing rou-
tines, and other user-written programs in the skele-
ton to make the most effective use of his control
system.

A typical skeleton executive might consist of the
following parts as shown in Figure 2. The function
of each individual component will now be described.

Skeleton I/O. This is a set of input-output subrou-
tines which provides a rapid and easy method for the
user to reference the various data processing input-
output devices (e.g., card read punch, disk,
printer) for input or output of data. It includes:

o DISKN (Disk Storage Subroutine - performs all
reading from and writing to the IBM 2310 Disk
Storage Unit)

e TYPEN/WRTYN (Printer-Keyboard Subroutine -
transfers data to and from the IBM 1053 and
IBM 1816 Printer-Keyboard)

e PRNTN (Printer Subroutine - handles all print
and carriage control functions relative to the
IBM 1443 Printer

These and other basic system routines make up the
Skeleton I/0 package which corresponds to an iden-
tical set of input-output subroutines used by TASK.
A description of each subroutine will be found else-
where in the TSX Systems Reference Library.

Overyiew of the IBM 1800 Time~-Sharing Executive System 3

LOW CORE A
SKELETON 1/O

INSKEL COMMON

SYSTEM DIRECTOR SKELETON
T EXECUTIVE

USER AND TSX SUBROUTINES

VARIABLE
CORE

HIGH CORE

Figure 2, A TSX On-Line System -- Illustrating the
Skeleton Executive

INSKEI. COMMON. A uniquely labelled common
area in the skeleton set aside for communications
among the various types of core loads used in the
system. It can be referenced by any process or
nonprocess program under the on-line system.

System Director. This is the nucleus of the Skele~
ton Executive and controls all facets of process
monitoring. I directs the handling of interrupts

in a priority fashion determined by the user; super-
vises the execution of any number of mainline core
loads or programs dictated by the process; ser-
vices all error conditions with a minimum of dis-
turbance to most processes under control; main-
tains the 1800 interval timers; and makes the sys-
tem available to the Nonprocess Monitor.

User-Written Programs. The user has the option
to include as many programs and subroutines as

possible in the skeleton for reasons of frequent
usage, rapid response, and optimum utilization of
disk space. These may take the form of:

e Interrupt subroutines

e Timer subroutines

e Count subroutines

o Special trace and error subroutines

e IBM-supplied arithmetic, I/0, and other
subroutines

e Any other user-written subroutines

These are first compiled/assembled in relocatable
format and stored on disk; at skeleton build time,
they are relocated into the Skeleton Executive.

TIME~SHARING

In many industrial installations, the real-time con-
trol system will not utilize all the computer time;
therefore, time will be available to perform back-
ground jobs. Time-sharing techniques can thus be
employed when idle processor-controller time is
available in a given system environment to offer the
user the kind of service he requires. The notion

of time-sharing also implies the sharing of computer
resources, since not only time but primary and
secondary storage as well as most input-output
facilities are also shared.

When idle time is available in the IBM 1800 TSX
System, control can be automatically transferred to
an independent Nonprocess Monitor System which is
identical to any stack-job monitor system. All
assembling, compiling, simulating, and other sys-
tem activities can now be executed under the control
of the Nonprocess Monitor. Performing such jobs
time-shared has a distinct advantage in that any time
not required for process control functions can be
used for data processing functions. Also, since
process control programs and strategies tend to
change, time-sharing makes it extremely desirable
to be able to modify these programs and strategies
at the on-line installation without taking the computer
off-line. It is through the time-sharing feature that
the utilization of the 1800 system is best optimized.

VERSATILITY IN SYSTEM CONFIGURATION

A modern real-time operating system must be
geared to change and diversity. The TSX system
itself can exist in an almost unlimited variety of
machine configurations: different installations will
typically have different configurations as well as
different applications. Moreover, the configura-
tion at a given installation may frequently change.
If we look at application and configuration of an
operating system, we see that the operating sys-
tem must cope with an unprecedented number of
environments. All of this puts a premium on sys-
tem modularity and flexibility.

TSX gives the user the ability to define his con-
figuration according to his exact needs: he is there-
fore never bound to a fixed system. Furthermore,
after having specified and generated a particular
system, he is still free to move process and/or
nonprocess portions of his system from one disk
storage device to another.

In general, the input-output capability of the IBM
1800 Data Acquisition and Control System can be
backed up. For example, under program control, a
1053 Printer can have its messages automatically
switched to a back-up 1053 Printer; disk storage
drives can be logically switched or removed from
the system; and any device may be removed from
service if it continues to fail. This dual capacity
indicates that an installation may suffer from the
failure of one or more input-output devices, and
remain "on the air' under the most stringent usage
conditions. Hand-in-hand with this back-up capa-
bility, a history of hardware device failures can be
examined at any time for maintenance purposes.

CONCEPT OF A CORE LOAD

In practice, the core storage size of a data acquisi-
tion and control system is not sufficient to contain
(nor does it need contain) all of the instructions re-
quired for the execution of all functions at any one
time. Thus, the entire set of instructions must be
broken down into smaller pieces, and these pieces
be made available for immediate loading. To facili-
tate rapid loading, they should be stored on disk in
executable core image format.

The technique of program segmentation is em-
ployed in the TSX system where programs are
formed into smaller units called core loads. A
core load is, by definition, an executable program

or portion of a program which performs some user
function. It is not necessarily a program in its en-
tirety because this program may well be too large
to fit into variable core in one piece for execution.
The core load is unique in that it is stored on disk
in core load core image format to facilitate rapid
loading when it is called for execution.

Figure 3 illustrates the four types of core loads
commonly used in TSX. A core load may contain
other subroutines that are not associated with the
main program - that is, subroutines not otherwise
available in core (either included in the skeleton, or
in the form of load-on-call subprograms). A typical
core load may consist of a mainline or interrupt pro-
gram, in-core interrupt subroutines, and all other
required subroutines that are not included with the
Skeleton Executive.

Core loads are important in real-time systems
for the following reasons:

e Real-time linkages are automatically built

o The core-load is permanently built and stored
-on disk for rapid execution

e Core loads are called by name

e No compiling/assembling is needed at execution
time.

LOCAL SUBPROGRAMS

TSX provides a facility for loading subroutines at the
time they are called for in the execution of a program.
Such a subroutine is known as a LOCAL (load-on-
call). All LOCALs called by the same mainline pro-
gram in a core load use the same area of core stor-
age by overlaying one another as they are called. A
copy of each LOCAL subprogram used with a core
load is kept on disk in core-image format together
with that core load (see Figure 3).

LOCALs thus allow the user to have, effectively,
a larger program executed in core than would other-
wise be possible if all the subroutines were loaded
into core at the same time. There is no theoretical
limit to the number of LOCALs which the user wishes
to implement. This means a virtual extension of
variable core. Other advantages of this feature are
(a) the ability to read in subroutines, and (b) the
breakdown of core loads to the subroutine level.

Overview of the IBM 1800 Time-Sharing Executive System 5

Mainline
Core Load

Interrupt
Core Load

Core Load Data Words

Core Load Data Words

Interrupt Branch Table

Interrupt Branch Table

FORTRAN I/O Table

FORTRAN /O Table

Transfer Vectors

Transfer Vectors

Interrupt Status Table

Program Name Table

Program Name Table

LOCAL Parameter Table*

LOCAL Parameter Table*

Defined Files Table*

Defined Files Table*

Mainline
Program

LOCAL Loader*

Interrupt
Program

All Called
Subroutines not in
Skeleton

LOCAL Loader*

In=-Core Interrupt Routines*

All Called
Subroutines not in
Skeleton

LOCAL Subroutine

Area*

LOCAL Subroutine Area*

Combination

Core Load

Core Load Data Words

Nonprocess
Core Load

Interrupt Branch Table

Core Load Data Words

FORTRAN 1/O Table

Interrupt Branch Table

Transfer Vectors

FORTRAN 1/O Table

Interrupt Status Table

Transfer Vectors

Program Name Table

Program Name Table

LOCAL Parameter Table*

LOCAL Parameter Table*

Defined Files Table*

Defined Files Table*

Mainline
Program

LOCAL Loader*

Nonprocess
Program

All Called
Subroutines not in LOCAL Loader*
Skeleton
All Called
e Subroutines not in
In-Core Interrupt Routines Skeleton
LOCAL Subroutine LOCAL Subroutine
Area*® Area*®
*Optional

Figure 3. Four Types of Core Loads Commonly Used in TSX

REENTRANT CODING

One of the basic problems that arises in multi-level
programming is that different levels of operation re-
quire the use of the same subroutine, If a method of
reentrant coding is not used, there is often a danger
that intermediate results might be destroyed. To
allow one subroutine to be entered at any time and
from any interrupt level, without loss or degradation
of results, a method of reentrant coding which uses
level work areas is devised for TSX.

All subroutines that are required on multiple
levels in TSX are fully reentrant. That is, they can
be called repeatedly by different interrupt subrou-
tines at different levels; they are automatically re-
enterable; and they automatically keep guard of the
partial results acquired when they were interrupted.
A single subroutine can be used simultaneously at
all 26 levels, while it is servicing any other level.
The automatic accounting of the partial results of
the subroutines is a very significant step forward
which is made possible through the programming
structure of T'SX.

Some of the advantages of T'SX reentrant coding
may be summarized as follows:

o All levels of operation may execute any given
reentrant subroutine

e The size of the overall system in core and on
disk is reduced. This is because (1) core loads
do not have to contain subroutines that are in-
cluded in the Skeleton Executive, and (2) sub-
routines included in core loads are smaller
than non-reentrant subroutines

e All subroutines can share the same area of core

e The system overhead time is reduced during the
loading of core loads because (1) core loads are
now smaller, and (2) they are performing more
functions

COMMON AREAS

Three unique areas of core storage are used for
FORTRAN COMMON storage within TSX. These
are

1. INSKEL COMMON
2. Normal COMMON
3. Interrupt COMMON

INSKEIL COMMON has already been defined. To
assign a variable to this area, a special FORTRAN
statement, COMMON/INSKEL/, must be used. All
other attributes of the COMMON statement remain
the same. This area must be used for communica-
tions between

o Core loads of a different type
e Interrupt core loads

e Combination core loads (if either is executed as
an interrupt core load)

o A special core load and the mainline core load
that calls it

e A mainline core load (which called a special
core load) and the core load that restores it

o A skeleton subroutine and any other subroutine
or core load

The normal COMMON area located at the high~
address end of core storage can be referenced only
by mainline or nonprocess core loads. The normal
COMMON statement in a mainline, special, or non-
process core load is used to refer to this area.
This area is saved and restored when special core
loads or time-sharing operations are initiated or
terminated; i.e., communication between nonproc-
ess core loads is possible.

The third area for COMMON is used only for in-
terprogram communication for programs that form
an interrupt core load or, between combination core
loads when they are executed on the mainline level.
The normal COMMON statement in an interrupt or
combination core load is used to refer to this area.
The highest addressed location of this area must
be assigned by the user at system generation time,
and must be an even number. This assigned loca-
tion is the high-address boundary of the variable
core storage area that is saved when an interrupt
core load is loaded for execution. Thus, it is
necessary to save only the area specified by the
user for interrupt core loads (not the whole variable
area).

MULTI-LEVEL PROGRAMMING

The interrupt structure of the 1800 system consists
of a total of 24 hardware levels with up to 16 inter-
rupt signals per level. These can, of course, be

processed in a true priority sequence. A higher
level interrupt subroutine will always interrupt a
lower level interrupt subroutine, but beyond this,
the Skeleton Executive permits interrupts to be
Yrecorded' now for later processing.

The interrupt scheme within the Skeleton Execu-
tive also provides a great amount of flexibility and
frees the user from most of the problems of servic-
ing interrupts. Interrupt servicing subroutines may
be assigned in the following ways:

1. An interrupt subroutine which must be executed
immediately under any condition whatsoever can
be made a permanent part of the skeleton. That
is, the subroutine will always be in high-speed
core storage and will be executable in the order
of microseconds.

2. Those subroutines which are associated with a
given mainline program can be assigned in such
a way that they are always read into core stor-
age with that mainline when it is loaded from
disk. The response time of a mainline inter-
rupt routine is almost the same as that of a
skeleton interrupt routine only if the mainline
core load containing the interrupt routine is in
core when the interrupt occurs.

3. For low-priority subroutines, a core overlay
technique allows the user to call an interrupt
core load, bring it into core storage, save
what was in core storage, and on completion of
the interrupt process, restore core storage to
its original state. These multiple operations of
sequencing, saving, and replacing of core stor-
age is automatically handled by the Skeleton
Executive. All that is required of the user is to
assign the priority. It should be mentioned that
the priority interrupt sequence can be changed,
at will, under program control.

The interrupt core load response time depends on
the size of the core load and the disk layout. It is
slower than the skeleton or mainline core load inter-
rupts.

SYSTEM COMPONENTS

TSX components can be considered under two separ-
ate group-headings: (1) control programs and (2)
processing programs.

In general, control programs govern the order in
which processing programs are executed, and pro-
vide services that are required in common by the

Overview of the IBM 1800 Time-Sharing Executive System 7

processing programs during their execution. A key
control program is the System Director which is
loaded into main storage (as part of the resident
Skeleton Executive) and remains there indefinitely
to ensure continuous coordinated operation of the
system. Other parts of the system are brought into
main storage from secondary storage as they are
required to perform specific functions. Processing
programs consist of language translators and ser-
vice programs that are provided by IBM to assist
the user, as well as problem programs that are
user-written and incorporated as part of the TSX
system. Both IBM and user programs have the
same functional relationship to the control programs.

CONTROL PROGRAMS

There are three control programs within the TSX
system:

Temporary Assembled Skeleton (TASK)

System Director
Nonprocess Supervisor

Temporary Assembled Skeleton (TASK)

TASK is a stand-alone disk oriented monitor pro-
gram from which an on-line or off-line TSX system
is constructed. It performs three distinct functions:

e Supervises the generation of a disk oriented TSX
operating system according to user specifications.

° vSupports a full monitor capability so that TSX
can be used as a data processing monitor system.

e Allows the user to load absolute programs into
core for execution, or to store them on disk.

Since real-time process control installation re-
quirements vary from installation to installation, it
follows that each installation must be defined or
tailored to the specific system functional require-
ments and input-output configuration of that installa-
tion. The tailoring function, defined as system
generation, is carried out by TASK which provides
the facilities'for the creation and maintenance of a
monitor system composed of IBM and user-written
programs. The user specifies his system through
the medium of equate cards.

Figure 4 illustrates TASK organization in
simplified form.

The System Director

This control program forms the heart of the TSX
system and resides in core storage at all times as
part of the skeleton where all permanent areas are
storage-protected to ensure that they are not inad-
vertently violated or altered.

The System Director directs the handling of proc-
ess and data processing input-output interrupts, pro-
vides timer control over the process, is responsible
for the orderly transfer of control from one core load
to the next, and handles the transfer of control be-
tween the on-line and off-line modes. All process
core loads are in core-image format on disk and
are accessed at disk read speed.

The Director is read from disk only during a cold
start or reload (EAC) operation. Primary entry to
the System Director results from 1) internal and ex-
ternal hardware interrupts, 2) TSX calls from user's
programs, and 3) errors.

SKELETON 1/O

f1ASK

TASK PROGRAM

SET

VCORE g

VARIABLE
CORE

Figure 4, TASK Organization

The Nonprocess Supervisor

The Nonprocess Supervisor directs the execution of
all nonprocess core loads which may be either IBM-
supplied as part of the TSX package or user-written.
It normally operates in the time-sharing mode under
the control of the System Director, but it may also be
run as a dedicated off-line monitor system under
TASK.

Its main function is to recognize certain system
control cards and transfer control to the processing
program specified. It also initializes the nonprocess
system whenever a job control card is identified.

PROCESSING PROGRAMS

Processing programs consist of service programs
and language translators broken down as follows:

Service Programs

Cold Start Program

System Loader

Core Load Builder

Skeleton Builder

IBM TSX Subroutine Library
Disk Utility Program (DUP)

Language Translators

Agssembler
FORTRAN Compiler
Simulator

Service Programs

Service programs include a group of loaders and
builders which serve as system generation aids, as
well as a disk utility program and a comprehensive
IBM TSX Subroutine Library.

Cold Start Program

This program loads the Skeleton Executive into core,
storage protects it, starts the real-time clock and
calls the user's initial core load for execution. This
operation places the System Director in control of
the on-line system.

System Loader

The primary functions of the System Loader are to
load the initial IBM TSX system onto the disk, build
an interrupt assignment table from user-supplied

control records, and prepare the disk layout for sys-
tem operation. System assignment cards are used

to inform the System Loader of interrupt level assign-
ment of I/0 devices, interval timers, and process in-
terrupts. The loader makes entries in a directory
called the Location Equivalence Table (LET) for each
component part of the IBM TSX system.

Core Load Builder

The Core Load Builder program combines a user-
written relocatable program together with all refer-
enced subroutines not included in the Skeleton Execu-
tive into an executable core load for storage in the
Core Load Area on disk. Core loads may be of sev-
eral types: process mainline, combination, inter-
rupt, or nonprocess.

All process core loads must be built and stored on
disk prior to execution under control of an on-line
TSX system. Input to the Core Load Builder is sup-
plied by the user in the form of control records which
contain the names of relocatable mainline programs,
interrupts to be recorded, data files used, interrupt
routines included as part of the core load, and LOCAL
(load-on-call) subprograms.

Using the data provided by the System Loader and
the Skeleton Builder, as well as information from pro-
grams and subroutines, the Core Load Builder estab-
lishes all subroutine linkages, hardware interrupt
servicing linkages, and the creation of certain com-
munications areas which are integrated with instruc-
tions to make up a core load.

Skeleton Builder

The Skeleton Builder program obtains its input from
user-assigned control records, programs, subrou-
tines, and information from the System Loader to
construct the System Skeleton in core-image format
which is then stored on disk. The skeleton is read
into core for execution by a cold start operation. The
rebuilding of the skeleton is required whenever rou-
tines are added or deleted, or other modifications
are made. It is the System Skeleton which constitutes
the Skeleton Executive.

IBM TSX Subroutine Library

This comprises a comprehensive set of reentrant
subroutines as well as a select set of non-reentrant
subroutines designed to aid the user in making ef-
ficient use of the IBM 1800 Data Acquisition and

Overview of the IBM 1800 Time-Sharing Executive System 9

Control System.
following:

The library contains the

e Data processing and process input-output sub-
routines

e Conversion subroutines
e Arithmetic and functional subroutines
o TFORTRAN input-output subroutines

e Miscellaneous subroutines

Data Processing and Process I/0 Subroutines. Data
processing (printers, punches, etc.) and process
input-output (P I/0) subroutines provide a quick and
straightforward method for the programmer to refer-
ence the various data processing, digital and analog
1/0 devices for input or output of data. All I/O rou~-
tines may be called directly from FORTRAN: data
processing I/0 subroutines may be called indirectly
by the use of FORTRAN 1/0,

Conversion Subroutines. The design and operation of
the numerous input-output devices is such that many
of them impose a unique correspondence between
character representations in the external medium
and the associated bit configurations within the com-
puter. Conversion subroutines convert inputs from
these devices into a form in which the computer can
operate and to prepare computed results for output
on various devices.

Arithmetic and Functional Subroutines., The arith-
metic and functional group of subroutines includes a
selection of twenty-seven basic routines which are
most frequently required because of their general
applicability. The arithmetic library contains both
the routines that are visible to the FORTRAN pro-
grammer, as well as the many routines that are
used by the FORTRAN compiler generated object
code, which may also be used by the Assembler pro-
grammer,

FORTRAN 1/0 Subroutines. FORTRAN I/O subrou-
tines provide a link between the FORTRAN object
code and the I/O devices. They support both stand-
ard and extended precision.

10

Miscellaneous Subroutines. The miscellaneous group
provides the user with the ability to perform certain
machine operations using the FORTRAN language.
These include real-time, selective dump, trace, and
overlay routines.

Real-time subroutines are operational control rou-
tines which service the Skeleton Executive in an on-
line environment. Examples are TIMER (specify one
of two hardware interval timers for some periodic
activity), LEVEL (set one of twenty-four levels for
programmed interrupt use), and MASK (inhibit selec~
tively one or more levels of interrupt).

Selective dump subroutines allow the user to print
chosen areas of core storage during the execution of
an object program. For example, DUMP will output
on the list printer, in hexadecimal or decimal format,
a certain portion of core storage; DUMPS will print
the status of the 1800 (that is, status indicators,
contents of registers, and work areas).

The user may exercise the option of writing his
own mainline trace interrupt routine which can be
included in a core load to process a trace interrupt.
He might, for example, design such a routine to
monitor a number of conditions. The subroutine
TRPRT is available for use in tracing routines which
print a specified number of characters on the 1053/
1816 Keyboard Printer or 1443 Printer.

The TSX Subroutine Library also contains an over-
lay routine called FLIP which serves to call LOCAL
(Load-on-call) subprograms into core storage. All
LOCALs in a given core load are executed from the
same core storage locations; each LOCAL group
overlays the previous group.

In order to permit entry from multiple programs
and interrupt levels before completing computations
from a previous call, the arithmetic and functional
subroutines, and most of the /O subroutines, are de-
signed to be reentrant. That is, they can be entered
from a different level of machine operation despite
the fact that they may not have completed operation
on a previous level. Non-reentrant versions of the
arithmetic, functional, and conversion subroutines
are also supplied.

Disk Utility Program (DUP)

The Disk Utility Program is a comprehensive group
of generalized utility and maintenance routines de-
signed to aid the user in the day-to-day operation of
the TSX system. By this means, the most frequently
required services of disk and data maintenance can be

performed with a minimum of effort. The TSX DUP
philosophy is to provide as much assistance as pos-
sible to the user. DUP is a component part of the
Nonprocess Monitor.

DUP is called into service by the Nonprocess
Monitor Supervisor (SUP) whenever it recognizes a
DUP monitor control card. It is also automatically
summoned after the successful completion of an
assembly or FORTRAN compilation. DUP functions
can be summarized as follows:

1. It permits the user to store, modify, and refer
to programs and data using the compact and
economical direct-access disk storage facilities
of the system without regard to specific input-
output configurations.

2. It allows the free interchange and use of pro-
grams and data among programmers.

3. It provides a systematic method to identify and
locate programs and data, and systematic
methods to reference data after it is located.

All of these functions can be carried out while the
TSX system is on-line, as well as in the off-line
mode. Examples of DUP facilities include the fol-
lowing:

e Change sequence of execution of core loads

o Replace a core load with another core load

o Create disk files

o Replace an object program already stored on
disk

e Build core loads (in conjunction with the Core
Load Builder)

e Define the disk configuration
e Dump data/program from one medium to another

e Delete a program, core load, or a data file from
the disk

e DPack a file on the disk to eliminate unused areas,
thus minimizing disk storage requirements

o Modify core loads on-line

Language Translators

Language translators assist a programmer by
enabling him to define a problem or an application

in a language form that can be readily learned and
understood. In the TSX system, the user may define
his problem solution or application

In a flexible easy-to-use symbolic language —
Assembler language, and/or
In a form of mathematical notation — FORTRAN

Assembler

The Assembler program is a one-for-one disk
oriented symbolic type translator which assembles
object programs in machine language from source
programs written in symbolic language. It normally
resides on disk. The assembler accepts control
records and source programs in card form only.
Upon a successful assembly, the object program in
relocatable format is moved to disk where it is
permanently stored, or, alternatively, called for
execution. The Assembler Language is fully
described in the publication IBM 1800 Assembler
Language, Form C26-5882.

FORTRAN Compiler

The FORTRAN Compiler translates programs written
in the FORTRAN language into executable machine
language. The real-time TSX FORTRAN Compiler
permits the user to make the most of the digital and
analog I/0 features using a higher level language,
while at the same time allowing background jobs to
be executed. Since FORTRAN is easily understood
by technical personnel, its availability in the TSX
system reduces significantly the programming effort
required. Tor a full description of the FORTRAN
language, see IBM 1130/1800 Basic FORTRAN IV
Language, Form C26-3715.

Simulator

The Simulator is designed as a debugging aid which
allows the user to check out or test process and/or
nonprocess programs without disrupting normal TSX
system operation - that is, without taking the system
off line. It functions under the control of the Non-
process Monitor.

Overview of the IBM 1800 Time~Sharing Executive System 11

FUNCTIONS OF EXECUTIVE PROGRAMS

This section describes the functions of the three
main executive programs which constitute an IBM
1800 Time-Sharing Executive System, namely,

Temporary Assembled Skeleton (TASK)
System Director
Nonprocess Monitor

and discusses the concepts underlying their use.
Sample programs and coding are interspersed
throughout the text as demonstration of good pro-
gramming practice and technique. Since the
Temporary Assembled Skeleton (TASK) is the first
program with which the user becomes involved in
the creation of an on-line or off-line TSX system, it
is discussed at the outset.

TEMPORARY ASSEMBLED SKELETON (TASK)

It has already been mentioned that TASK (Temporary
Assembled Skeleton) is a builder or "tailor' card
monitor system with strong disk capabilities from
which an off-line or on-line TSX system is construc-
ted. The use of TASK, therefore, constitutes the

intermediate stage in system generation towards
placing a system on-line. In an on-line TSX system,
TASK control ceases at cold start time when the
System Skeleton has been loaded into core storage.
In an off-line TSX system, TASK itself functions in
much the same fashion as a System Skeleton with
permanent time-sharing.

For simplicity, TASK can be considered in two
parts (see Figure 4):

e Skeleton I/0O

o TASK Program Set

Skeleton I/0

The Skeleton I/0 is a collection of input-output and
general supporting subroutines that the TSX system
requires to be in core at all times. It is that por-
tion of a user-configurated TASK which corresponds
exactly to the Skeleton I/0 on an on-line TSX sys-
tem.

Figure 5 illustrates this correspondence, as well
as the core layout, at two time periods of an on-
line and an off-line system.

T SKELETON 1/O

SKELETON 1/0

TASK PROGRAM
SET

o SYSTEM SYSTEM
»VCORE DIRECTOR SKELETON
VARIABLE USER'S PROGRAMS
CORE +
VCORE @
VARIABLE

OFF-LINE SYSTEM

Figure 5, Correspondence between TASK and the System Skeleton

12

ON-LINE SYSTEM

The I/0 routines used by TASK form the basis of
the Skeleton I/0. These consist of the following:

e DISKN — Disk subroutine as used by TSX Oper-
ating System

e TYPEN/WRTYN — Printer/Keyboard subroutine
as used by TSX Operating System

e PRNTN — Printer subroutine as used by TSX
Operating System

o CARDN — TASK only Card I/O subroutine

A description of each of the above subroutines
will be found in the TSX Systems Reference library,

Since the TSX system requires that at least one
disk be present on the 1800, DISKN must be in core
at all times. If the user has assigned a 1053 or 1816
to his machine, TYPEN/WRTYN must also reside
permanently in core. Although CARDN is in core
during TASK execution, it does not normally form a
part of the Skeleton I/O. The user must therefore
define whether or not CARDN is to be a component
part of his skeleton by means of the TASK equate
card CDINS, If it is not, CARDN automatically be-
comes a part of the TASK Program set. It is through
the Skeleton I/O that an off-line system obtains full
monitor capabilities,

TASK Program Set

The TASK Program Set is that integral part of the
Temporary Assembled Skeleton which functions in a
similar manner to the System Director. It consists
of:

o TASK Master Interrupt Control (TMIC)

e TASK Director

e TASK Error Alert Control (TEAC)

e Absolute Loader function

o Load Monitor function
o Skeleton Build function

e TASK Conversion routines

e TASK Utilities

TMIC directs all I/O interrupts to their corre-
sponding servicing routines and resets all process
interrupts, while TEAC processes errors that have
been found by other parts of TASK. The TASK Direc-
tor initializes TASK and directs the execution of the
Absolute Loader function, Load Monitor function,
and the Skeleton Build function.

The Absolute Loader gives the user a facility to
load absolute assembled programs from cards to
core for execution. If can also be used for the stor-
ing of user-written programs or data on disk. The
use of this function is discussed later in some detail
(see Programming Techniques). The Load Monitor
function serves to initialize the TSX Nonprocess
Monitor for execution. There are two conversion
routines: (1) TASK HOLEB converts hollerith input
to one or two EBCDIC characters per word output,
while (2) TASK EBPRT converts two characters per
word EBCDIC input to two characters per word, sys-
tem, list, or EAC printer code.

A complete utility package comprised of full
trace, check/stop trace, four utility programs, and
a utility monitor can be included within TASK at
assembly time. The user elects this option through
equate cards.

Except in the case of a skeleton builder option, a
TASK disk load, or a cold start, TASK is loaded
with a 4-card TASK high core loader.

For a more complete description of TASK func-
tions and system generation procedures, the user is
referred to the IBM 1800 Time-Sharing Executive
System, Operating Procedures, Form C26-3754.

Other considerations affecting the use of TASK
are discussed under System Design Considerations.

THE SYSTEM DIRECTOR

The System Director is the nucleus of the skeleton
executive of a TSX system, and always resides in
core as part of the skeleton to direct the handling
of interrupts, to load and execute core loads, to
expand usage of interval timers, and to process
errors. Primary entry to the System Director
derives from internal and external hardware inter-
rupts, TSX calls from user's programs and errors.
Its principal component parts comprise the follow-

ing:

Master Interrupt Control (MIC). This is a reentrant
control program which automatically directs all
internal, I/0, external, and programmed interrupts
to their proper interrupt servicing routines. Con-~
trol returns to MIC as long as unserviced interrupts
exist.

Functions of Executive Programs 13

Program Sequence Control (PSC). The Program
Sequence Control Program is responsible for orderly
transfer of control from one user-specified core load
to the next. A core load may also temporarily be
saved on disk pending the processing of another core
load. All PSC functions are restricted to process
mainline core loads.

Time-Sharing Control (TSC). This controls the
time-sharing of variable core between process and
nonprocess core loads by a core exchange method.
TSC is entered selectively from the execution of a
CALL SHARE statement or automatically by a CALL
VIAQ statement when the queue is empty.

Interval Timer Control (ITC). ITC services all in-
terrupts involving three machine timers A, B, and
C, nine programmed timers, and a programmed real
time clock. The programmed timers and the real
time clock are based on timer C. Timer C is reset
by the subtraction of a fixed value; accurate timing
is therefore kept, even when the response to the
timer interrupt itself may be delayed. It also ser-
vices the "no-response routine' for the 1053/1816
printers in the Skeleton I/O. As an option, it also
services the Operations Monitor during nonprocess
execution. Periodic interrupts are generated from
interval timers rather than from the real time clock.
The programmed timers interrogate the Interrupt
Core Load Table (ICLT), but only skeleton count
routines are entered into. If there is no such routine,
the condition is recorded for later servicing.

Error Alert Control (EAC). The EAC program re-
sides in core at all times, and is called to process
all error conditions whenever an error develops.
EAC

e optionally saves core for future reference

e optionally branches to a user-written error sub-
routine (which may be included with each process
core load) for further error analysis

@ prints an error diagnostic message, and

‘® executes one of four possible error recovery
procedures

Mainline Core Load Queue Table. This is a stack
or pushdown list of names of mainline core loads
(and their respective priorities) that have been
queued (that is, put in line) for future execution.

14

Although the Queue Table forms part of the System
Director, the real-time TSX queue-calling state-
ments (e.g., QUEUE, UNQ, QIFON and VIAQ) are
designed as subroutines which may be included in
the skeleton or with the mainline at the user's
discretion. Processing of a mainline is not sus-
pended as a result of queueing a higher priority
mainline.

Level Work Areas. A level work area of 104 words
(in the skeleton) is required for

e -each interrupt level used
® process mainlines
e nonprocess core loads, and
e internal errors

A level work area contains interrupt level instruc-
tions, MIC linkages, and work areas. It is used to
allow recursive entry to those programs supplied by
IBM.

Each of the following System Director functions
will now be explained in some detail:
o Program Scheduling
e Handling of Interrupts
e Use of Interval Timers
o Use of Time-Sharing

e Use of the Operations Monitor

e Error Alert Control

PROGRAM SCHEDULING

Control processes may be classified under three
basic headings:

Program or event sequence
Time dependence
Interrupt initiation

In practice, a process may be a.combination of
all three categories, but is usually weighted more
heavily tawards one. Rarely does a process lend it-

-self to only one.

Figure 6 is a simplified version of a process
based totally on program sequence. An example
might be a crude-oil distillation unit in an oil refin-
ery. A scan is made to see what the present status
is, tests and calculations are made to verify the in-
formation, optimization towards a given product mix
is applied, required changes to process variables
are effected, data is recorded, etc. Each event
thus depends on the completion of previous events.

A process based on time is illustrated by Figure
7. This classification could be applied to a process
involving a solitary engine test stand. For example,
a given throttle position and resistance load are
set up. At specified time increments, one or more
variables are recorded, such as manifold pres-
sure, RPM, fuel flow, fuel level, oil temperature,
oil pressure, etc. When all the variables have been
recorded, the throttle position and/or load resistance
are changed and a subsequent timing cycle initiated.
Finally, when all specified combinations of throttle
and load resistance settings have been tested, the
system is initialized for another engine. Each event
in this situation depends on time.

Note that in practice, the servicing of a process
as depicted in Figure 7 is not necessarily sequen-
tial in nature. Also, it is the actual time period
that schedules the servicing of an event. The man-

S

NORMAL SPECIAL
A)
Y R

41 N

5] ©

v

e

———t e —— e — e . s —_— — - —_-—

Figure 6. Program or Event Sequence

ner in which servicing takes place is not dictated
by the type of program (e.g., mainline, interrupt
routine) which initiated the event.

The third classification is illustrated by Figure 8.
An example might be the input phase of a hospital
information system. With no input information, the
system switches over to the time-sharing mode or
remains idle. When, however, a patient enters
the hospital, certain historical information is
punched into cards. An interrupt is then initiated
by an operator. The interrupt recognition routine
sets up the card read program and the patient data
enters the system -- the system then returns to
time-sharing or to an idle condition. When, later,
a doctor requests medication for a certain patient,
in a specified quantity, at certain time increments
and duration, he sets up the proper information on
a manual entry unit and initiates an interrupt. The
interrupt recognition routine again calls the appro-
priate program which reads in the manual entry,
verifies the information, enters it in the specified
files, and once again returns the system to the
time-sharing mode. In.a similar fashion, other
input information such as records and/or schedules
for dietary, patient status, laboratory, surgery,
etc., are entered. Events thus classified are in-
itiated by interrupts.

i
CBRAR,

¥

Figure 7. Illustrating Time Dependency

Functions of Executive Programs 15

Time

Sharing
Operation

C

INTERRUPT
RECOGNITION
ROUTINE

]

Figure 8, Interrupt Initiation

It is obvious from the foregoing that if each ap-
plication illustrated were expanded to its complete
operating requirements, it would most likely con-
sist of all three classifications to some degree. For
example, in Figure 6, an inventory log of input and
output material is given every hour. This is re-

HIGHER PRIORITY INTERRUPT
ON INTERRUPT LEVEL 1

HIGHER PRIORITY INTERRUPT
ON INTERRUPT LEVEL 2

—
E——
b [

quired to update inventories, product costs, etc.
Also, an interrupt will occur whenever a heating
unit goes out of range. This will immediately
initiate a program to rectify the situation.

Multi-Level Control. A control system must be
able to immediately recognize certain situations of
a physical process. It must also be able to ignore
certain functions until they occur. In practice,

the first requirement is more critical. In either
case, the normal sequence of events will be inter-
rupted until some action is taken. The situation

is further complicated if a second interrupt, more
critical than the first, occurs during the action
phase of the first interrupt. The servicing of the
first interrupt must obviously be suspended while
attention is given to the more critical interrupt.
Such a chain of interrupts may continue through
several iterations as shown in Figure 9. Upon
completion of the required action of each interrupt,
the previously interrupted action must be continued
until the system returns to normal. From this
brief picture of multi-level operations, we see
that program scheduling now becomes more com-
plex. The user must now have the capability to
take immediate action, record the occurrence for
later action, or arrange for action to be taken as
soon as possible, but on a less critical level. To
do this, the user defines what is to be recognized
on each level and sets this up by machine configur-
ations. Later his program sets up when action is
to be taken and at what level.

N
INTERRUPT ON
INTERRUPT LEVEL 3 —» ((K——b <<L
)Y)T
'I
MAINLINE
LEVEL > » — L

\\¥

Figure 9, Example of Multi-Level Processing

16

Program Scheduling Requirements

In a control system application, the scheduling of
programs to be executed on the normal or mainline
level constitutes the main problem. During certain
phases of a control system, the user will execute
programs in a set sequence. This type of sequence
may be set up by a program condition, an interrupt,
or a given time period. Sequencing or chaining of
programs may or may not be required depending on
the user's specific application.

A direct sequence or chain of programs is re-
quired for two separate situations. The first situ-
ation is a set of programs whose functions must be
in a given order that cannot be interrupted except
for critical conditions. The second derives from a
program that is too large for core size available,
so it must be segmented into several separate
programs. These programs will now overlay each
other, and must therefore be scheduled in a fixed
sequence.

As illustrated in Figure 6, special sequences of
programs may also be required on the mainline level
under certain special conditions. These special
sequences are required under three conditions which
come under normal operation. The first requirement
is a sequence or chain of events that is common to
several different phases of a system. This is logic-
ally equivalent to a subroutine which is called by
several programs: the main difference is that a
chain of programs is now being scheduled instead
of a subroutine. The next requirement occurs when
a situation is bordering a critical point, but is still
within the limits defined by the user. In this event,
the user may want a warning, but has no real need
to be alarmed. The third situation is similar except
that the user is alarmed and cannot therefore proceed
with the present sequence of programs until certain
conditions are met. This is'a common situation in
process control where process inputs are not ac-
ceptable and a special scan is set up until valid
variables are obtained. As a result, the normal
calculation, optimization, etc., are delayed but
will be resumed as soon as possible.

The requirements stated thus far are categorized
under program sequence since they have a definite
relationship and order. Three commands are used
to implement sequence control:

1. CALL CHAIN (specify the next program to be
executed)

2. CALL SPECL (terminate the program, save
it on disk, and execute the next
program).

3. CALL BACK (return control to a program
which was partially executed).

Multi-process control, however, presents a new
scheduling problem. Since one control system is
used to control two or more processes, the definite
relationship and order of programs is normally
applicable within each process but not between
processes. However, each process must be able
to schedule its own programs in such a manner
that the control system can handle all schedules.
Also, because each process will normally contain
its own unique program sequences, one type of

scheduling problem does not necessarily eliminate

another. It should also be understood that multi-
level processing does not always dictate unrelated
program scheduling: all possible combinations must
be considered by a given program scheduling situ-
ation. The queueing technique itself will not produce
such a system, but when combined with the priority
technique, the system becomes flexible enough for
any control system's requirements. Four commands
permit this form of control:

1. CALL QUEUE (enter a core load into a waiting

queue)

(remove a core load from a

waiting queue)

3. CALL VIAQ (call the highest priority core
load waiting in the queue to be
executed next in sequence).

4. CALL QIFON (interrogate recorded interrupts)

2. CALL UNQ

Program Sequence Control (PSC)

The center of the scheduling system is the Program
Sequence Control (PSC) Program which is perman-
ently resident in core in an on-line TSX system
working under control of the System Skeleton. PSC
is a means by which mainline core loads are loaded
to core, and control transferred from one core load
to another, according to user specifications. The

Functions of Executive Programs 17

user sets up his requirements when he uses a chain
or sequence type CALL or a queueing-type CALL
statement. PSC performs the following functions:
e Loads all mainline core loads

e Saves and reloads the special core load

e Initializes the ICL Table for each core load

o Tests for errors in calls to load programs

Chaining or Sequence Technique

Chaining or sequence-type call statements permit the
programmer to control the order in which tasks are
performed, interrupts serviced, and off-line jobs
allowed. This control is important since the various
levels of control are necessarily carried out in se-
quence and the order is critical. For example, an
optimizing routine too large for core storage can be
executed in segmented parts if the programmer has
control over their sequence. Three call sequences
are used in chaining: 1) CALL CHAIN, 2) CALL
SPECL, and 3) CALL BACK. Note that core load
names referenced by the CALL statement must also
be specified in a FORTRAN EXTERNAL statement.
A core load name cannot be the name of a component
subprogram of that core load. Figure 10 illustrates
the use of these call sequences.

Such statements may be freely embedded within
process programs written in FORTRAN or in the
Assembler language. Through the use of these
commands, within programs, the programmer can
control the frequency and order in which the various
levels of control are performed. Even when the
various levels are not performed on a regular basis,
these commands allow control over the sequence.

Of equal importance is the ease by which sequence
is changed as the process control problem changes
with time.

CALL CHAIN --Normal Call

When a given core load is called for execution, the
user sets up the following statement:

18

CALL CHAIN (NAME)

where
CHAIN = Entry to PSC
and NAME = Name assigned by user to the next

sequential core load to be executed

This normal call transfers control to PSC,
thereby terminating the current mainline core load
at its last logical statement. PSC then sets up a
disk function to read in the next mainline core
load specified by NAME into variable core, over-
laying the present core load that contained the CALL
CHAIN statement. The new core load thus destroys
the previous core load. Once the core load is in
core, the disk I/0O routine reverts to PSC, which
in turn passes control to the new core load.

CALL SPECL -- Special Call

The second type of core load sequence is similar to
the CALL CHAIN, except that the current core load
and its associated parameters must be saved. This

is set up as follows:

CALL SPECL (NAME)

where
SPECL = Special entry to PSC
and NAME = Name assigned by user to a

special core load to be executed
next

The special call suspends execution of the current
mainline core load and transfers control to PSC
which saves the present variable core area and the
return address, but no registers. This information
is written to the Special Save Area on disk. Once
the save operation is complete, the disk 1/O rou~
tine returns control to PSC. The operation pro-
ceeds from this point exactly as in a CALL CHAIN,

Note that only one mainline core load can be
saved. Thus, if a CALL SPECL is used in a core

' Core Load A
= Special Call
CALL SPECL (D) /'/
o B3
a1 D
CALL CHAIN (B) Return 1o Saved i Core Load
Normal Mainline §—
Call Core Load B D
== CALL CHAIN (X)
CALL CHAIN (C) |
Né’;’;" P
Normal 27 Core Load X
Cal Y Core Load C =
CALL SPECL (F) =
——] . Special CALL BACK
CALL CHAIN (B) call]
\,
Normal ("
Call
Core Load E
CALL SPECL (F)
= Core Load F
| CALL CHAIN (&) LZ =
' Return to Saved —
Mainline =
CALL BACK
\ J

Figure 10. Use of Chaining (or Sequence-type) Call Statements

load that was referenced by another CALL SPECL,
the mainline core load saved originally is lost. A
core load called by a CALL SPECL may, however,
chain to other core loads as long as these core loads
do not contain a CALL SPECL (see Figure 10).

CALL BACK -- Return Saved Mainline

In order to return to the saved core load, a third
call statement becomes necessary. This is used

only in conjunction with the special sequence function.

It is set up as follows:
CALL BACK
where

BACK = Special entry to PSC

CALL BACK transfers control to PSC which, in
turn, initiates a disk read operation to load
variable core with the information stored in the
Special Save Area on disk as the result of a CALL
SPECL. When the read operation is complete, the
disk I/0 routine returns control to PSC, which in
turn transfers control to the restored core load,
which continues execution at the saved return ad-
dress (that is, the statement following the CALL
SPECL statement).

It should be noted that a CALL BACK statement
is required only if the saved core load is to be
restored and continued. The user may well initiate
a new core load as the result of a special core load.
This new core load could then be referenced by a
CALL CHAIN or a CALL SPECL.

A core load is terminated or suspended as the
result of any of the three calls: CALL CHAIN,
CALL SPECL, or CALL BACK. CALL CHAIN and

Functions of Executive Programs 19

CALL BACK are the last logical statements executed
in a core load. However, a CALL SPECL will not
be last logical statement of a core load if a CALL
BACK has been executed to restore the saved core
load, and to continue execution following the CALL
SPECL statement.

Queueing and Priority Techniques

Queueing techniques normally use statistical methods
to control the number of queues. The rule that
governs the input and output order in which waiting
requests are serviced is usually based on an ordered-
queue discipline -- that is, first-come, first-served.
Since we are considering the use of only one queue,

a first-come, first-served control is only valid for

a given priority. Therefore, as several priorities
are, in practice, required by most control system
applications, a priority technique must be enforced.
A priority level is one of the most common ways of
classifying interrupt requests according to their
urgency. Note, however, that the urgency may
change as a function of the condition of the servicing
system. For example, a request may be given a
higher level as waiting-time increases. Priorities
are assigned by the user to programs, processes,
and functions. The queueing and priority control
techniques employed combine to provide a flexible
method completely acceptable for scheduling un-
related core loads. Although the call sequences to
be described are referred to as queueing calls, both
queueing and priority control are implied.

CALL QUEUE -- Insert into Queue

The first of four calls is used to place a core load
entry in the Core Load Queue Table (see System
Design Considerations: System Director), and to
continue with the execution of the present function.
The format of the call is:

CALL QUEUE (NAME, P, E)

where
QUEUE = Name of the subroutine that places
the specified core load in the Queue
Table.
NAME = Name of user-assigned core load

entry to be entered in the Queue
Table (and in FLET).

P = Integer expression, specifying
queue priority of core load NAME.
This may be 1-32767. One (1) is

20

the highest priority number.

E = Designated error procedure to be
taken if the queue is full. In each
case, an appropriate error message
is printed (see Table 4: On-line
EAC Errors and Recovery Pro-
cedures). The parameter is user-
assigned as follows:

E = 0. Ignore this call, and con-
tinue execution as if the
core load had been queued.

E = 1 through 32766. Replace the
lowest priority entry cur-
rently in the queue with the
name and priority speci-
fied in this call, if the
priority of that current
queue entry is lower (that
is, numerically larger)
than E. If there is no
queue entry with a lower
priority, execute the re-
start core load specified
for this core load.

E =32767. Execute a restart core
load.

Note: When two or more entries have

the same priority, the entry tk
is at the lowest core storage
location will be executed first.

In practice, E is always set to zero. The size
of the Queue Table should be redefined by the user
if it becomes saturated. The options listed under E
(above) are provided by the Error Alert Control
(EAC) program (described later).

Figures 11 and 12 illustrate the use of these
functions. In Figure 12, an example is given of a
series of mainlines which, if executed serially with-
out interruption, would not allow queue testing for
an inordinate amount of time. In order to be able to
check the queue in some user-specified time period
to see if any high priority core loads need to be
executed, a program of the priority of the current
executing program is queued; a CALL SPECL is
then made to a core load that exits via a CALL
VIAQ. The VIAQ routine then checks the queue for
the highest priority program and executes it. When
the executed program is the core load queued by
core load A, a CALL BACK is performed which re-
stores the original calling core load to execution
status. This technique is commonly employed to
break up the execution of a long program.

Entry to core load A via CALL VIAQ
when A is highest priority in queve ,or

CALL CHAIN (A), or CALL SPECL (A)

A

ALL QUEUE (P, 301)

LL QUEUE (B, 20,0)

Q)
212N

LL VIAQ

) B

ALL QUEUE (J, 10,0)

([l

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

>

LL QUEUE (M, 20,0)

il

ALL VIAQ

’_'—_'j

J ﬂ/

Interrupt Routine

J - continued

Y

Sl

L QUEVE (X, 2,0)

0

ALL INTEX

a

L QUEUE (N, 20, 0)

Sl

LL VIAQ

\

L UNQ (M,20)
L UNQ (R,20)
L QUEUE (P, 10,0)

000
> > >
[l

2l

ALL VIAQ

At this point, the queue still contains at least
two entries for core load P and one for core
load N.

Figure 11. Use of Queuneing Statements

When a CALL QUEUE statement is executed,
control is transferred to the real-time QUEUE
routine which tests for an entry in the Queue Table
with the identical name and priority as that specified
in the user calling statement. If such an entry exists,
a further entry will not be made -- a given core load
and priority cannot, by definition, appear more than
once in the Queue Table. However, the same core
load with varying priorities may appear once for
each unique priority.

If the entry is already in the queue, control is
passed to the next executable instruction following
the CALL QUEUE statement. If this is not the case,
the QUEUE routine tests for a Queue-Table-full
condition, If the table is full, control passes to
EAC which executes the function specified by the E

parameter. If the Queue-Table-full condition test
is not satisfied, the QUEUE routine will place the
core load entry in the Queue Table, and transfer
control to the next instruction following the CALL
QUEUE statement.

CALL QUEUE may be executed in a program
that was initiated by an interrupt or a specified
time interval, or as the result of a program de-
cision. It should never be used as the last logical
statement of a core load since the QUEUE routine
returns control to the instruction immediately fol-
lowing the CALL QUEUE. A CALL ENDTS (see
Use of Time-Sharing) statement i s normally used
in conjunction with CALL QUEUE for time-sharing
systems. The main uses of CALL QUEUE can be
summarized thus:

Functions of Executive Programs 21

Problem: Repeated execution of queued core loads

during a given core load.

Solution: (The encircled numbers specify the sequence of operations.)

CALL VIAQ

Continue execution of core loads until
a CALL VIAQ is executed and core load
R is highest priority in the queuve.

Note 1:

The CALL SPECL statements cause core load A to be
saved before transferring to core load E via lines 3
and 8. The CALL BACK statement in core load R
causes core load A to be restored before the return

is made via lines 6 or 11,

i A
CALL QUEUE (R,2,0)
CALL SPECL (E) @
8
: 6
CALL QUEUE((I)?A,O)
CALL SPECL (E
§ ()
CALL CHAIN (8)
B

Note 2:

I

Q)
>

LL BACK

Between lines 4 and 5 all core loads of priorities 1 and
2 will be executed; between lines 9 and 10 all core
loads of priorities 1 through 4 will be executed.

Figure 12. Ilustrating a Method of Segmenting Mainlines Based on Scheduling Requirements

22

e To queue a core load from any program

e To queue a core load from any hardware opera-
tional level

e To queue a core load when the user is unaware
what is presently in progress on any one machine
level

e To queue a core load when the user is unaware
what machine levels are in progress, and

e To queue a core load that is not related to all
other core loads.

This is a very flexible command since related or
unrelated core loads can be scheduled on the basis
of time, a program decision, an interrupt, and from
any hardware operational level.

CALL UNQ -- Delete from the Queue
The reverse of queueing a core load entry is to-
remove such an entry from the Queue Table in the

system. The statement which gives this ability is:

CALL UNQ (NAME, P)

where
UNQ = Name of the subroutine that removes
the specified mainline core load
entry from the Queue Table
NAME = User-assigned name of mainline

core load entry to be removed

P = Priority status of user-assigned
core load NAME. This may be in
the range 1-32767.

Upon execution of a CALL UNQ statement, control
is transferred to the UNQ subroutine which searches
the Queue Table for a similar entry of the same name
and priority. If such an entry is detected, it is re-
moved (that is, deleted) from the Queue Table. If
the table does not contain a matching entry, the
Queue Table remains unchanged. In either case,
the UNQ subroutine returns control to the instruction
immediately following the CALL UNQ statement.
Like CALL QUEUE, CALL UNQ may be executed at
any time and from any level of machine operation.
Note that no error parameter is required.

CALL QIFON -- Queue Core Load if Indicator is On

The third queueing-type call is the CALL QIFON
statement.

CALL QIFON (NAME, P, 1, I, E)

where
NAME = User-assigned name of a mainline

core load

P = Priority status of each NAME, in
the range 1-32767.

E = Error parameter, as described for
CALL QUEUE

L = Interrupt priority level indicator

1 = PISW bit position indicator or

CALL COUNT indicators

In TSX, a unique L and I combination parameter
is set up for each process interrupt, program-
settable interrupt, and program interval timer rou-
tine. The significance of this combination (which is
dependent on the user's machine configuration) is
given below:

L I Reference

0-23 0-15 Process interrupts

0-23 (-)n Programmed interrupts
(see CALL LEVEL)

(-)n 0-31 Subprogram number for

CALL COUNT statements
(see Interval Timers)

Minus (-)n above refers to any minus number.

The CALL QIFON function is required only when
any of the above mentioned interrupts are set up to
be recorded (for delayed servicing). In general,
most interrupts call for immediate action, or as
soon as their appropriate servicing program can be
read from disk to variable core. Some interrupts,
however, must be recognized immediately, but do
not require action until a later time. The function
of delaying servicing is termed "recording': the
interrupt is then said to be '"recorded". CALL
QIFON thus provides the user with the ability to
interrogate recorded interrupts only when he so
desires. It is the only way a recorded interrupt
can be serviced. Figure 13 illustrates the use of
this function.

The core load entries are queued only if their
respective interrupt record indicators are on. When
an indicator is on, the QIFON routine sets up the

Functions of Executive Programs 23

PROCESS CORE LOAD

CALL QIFON (NAME 1,35,6,15,0)

QIFON ROUTINE

Pi #15

Level 6 YES NAME 1

QUEUE ROUTINE

Oueue

Recorded
?

with a priority
of 35

CALL QIFON (NAME 2,8,0,1,32767)

-

Queue

NAME 2

with a priority
—of8

CALL QIFON (NAME 3,1,-1,22,32767)

p—
-

Queve
NAME 3

with a priority
of 1

CALL QIFON (NAME 4,42,6,-1,0)

Queve
NAME 4
with a priority
of 42

Figure 13. Use of the CALL QIFON Statement

proper information and then executes a CALL
QUEUE. If the Queue Table is not full, or the
replace error option is utilized, the QUEUE rou-
tine returns control to QIFON which proceeds

with the interrogation of indicators until the QIFON
call is completed. A recorded interrupt indicator

24

is automatically turned off (that is, cleared) when-
ever the QIFON routine interrogates a program
indicator. Control is then passed to the next exe-
cutable instruction following the CALL QIFON
statement, or as specified for error conditions
under E.

CALL QIFON may be used from any level of
machine operation. It should never be used as the
last logical statement of a core load.

CALL VIAQ -- Execute Highest Priority Core Load
The fourth and last queueing statement is

CALL VIAQ
where

VIAQ = Name of the subroutine that deter-
mines the highest priority core load
entry in the Queue Table.

The CALL VIAQ statement, like CALL CHAIN,
and CALL BACK, is used as the last logical state-
ment of a core load. When executed, control is
transferred to the VIAQ routine which interrogates
the Queue Table. If the table is empty, the process
is considered to be in an idle condition (that is, the
process does not require any action at this time.)
Since variable core is not utilized in this case, by
process core loads, control is passed to the Time
Sharing Control (TSC) program for nonprocess
work if there is work to do. The Nonprocess Moni-
tor indicates that it has batch work to perform by the
execution of the Console Interrupt button, with sense
gwitch 7 on. When the operator places a job stack in
the card hopper, he turns on sens e switch 7 and de-
presses the Console Interrupt button, This informs
TSC that batch work is to be performed.

At the end of the job, the // END OF ALL JOBS
card indicates no more batch work is to be performed
until the Console Interrupt button is again depressed.
This feature is provided to reduce the amount of
disk activity, and to give faster response to the
process whenever there is no nonprocess work for
execution.

The time-sharing operation, thus initiated, will
continue for the duration of time specified at system
generation time, or until it is terminated by a CALL
ENDTS statement. Note that a CALL VIAQ is auto-
matically performed when time-sharing terminates.
If, therefore, an interrupt program has previously
placed a name in the queue, the named core load
will then be immediately executed (see also Use of
Time-Sharing). Figure 14 illustrates the use of this
calling statement.

Problem: All programs of a given priority must be
executed before a certain core load.

Solution:

CALL QUEUE (A2, 2, 0))
CALL VIAQ l——
Continue execution of core loads until a CALL VIAQ
is executed and core load A2 is the highest priority in
the queue. All core loads of priority 1 and 2 would
A2 be completed before entering A2.

]

CALL QUEUE (A3, 4, 0)
CALL VIAQ |~
Continue execution of all core loads of priority 1, 2,

A3 3, and 4 until a CALL VIAQ calls A3,

S S—

CALL CHAIN (A4)

Figure 14, Use of the CALL VIAQ Statement

In normal operations, the queue might not be
empty, in which case the VIAQ routine obtains the
name of the entry with the highest priority., If
several entries have the same (highest) priority,

. the first entry of that priority will be selected.

The VIAQ routine then sets up the proper infor-
mation for a CALL CHAIN with the core load name
derived from the Queue Table, and passes control
to PSC to execute the CHAIN function exactly as if a
CALL CHAIN had been executed. Note that a core
load containing a CALL CHAIN statement is destroyed
by the core load it calls; a core load containing a
CALL VIAQ is, therefore, similarly overlaid in
core. The CALL VIAQ and CALL CHAIN commands
are similar except for the method of obtaining the
name of the core load to be called. Both calls, how-
ever, have their own useful unique functions.

Functions of Executive Programs 25

GC26-3703-1
TNL: GN34-0036
Technical Change

Example of Non-synchronous Periodic Scheduling

The following example illustrates a simple technique
frequently used in a process control environment
whereby core loads can be executed on some periodic
time basis. This is known as non-synchronous per-
iodic scheduling. The test case is not intended as a
model: it serves only to demonstrate program sched-
uling techniques. The example is given in three easy
steps:

1. The Initial Core Load -- This is the initial
mainline core load named START which is read
into core by a cold start operation. The core
load first unmasks the system because cold
start enters the initial core load in an all-level
masked condition; it then sets a programmed
timer to initiate a continuous cycle of opera-
tions (by calling the count routine #0).

Figure 15 illustrates this core load. The use
of CALL CHAIN to call in another core load
(that is, ALPHA) is also shown.

2. Mainline Core Load ALPHA -- This is the
ALPHA core load called by the initial core load.
It is a mainline core load which prints out the
time of day (see Figure 16).

Figure 16 also shows the use of CALL VIAQ
to check the queue. If there is nothing in the
queue, the system establishes the time-sharing
mode (that is, the Nonprocess Monitor is
called).

If an // END OF ALL JOBS has just been
executed, the VIAQ routine will wait until an
interrupt occurs to check the queue. Every
time this wait is interrupted, the operations
monitor will be reset.

If time-sharing is in progress (that is, the
Nonprocess Monitor is occupied), core is ex~
changed and the Nonprocess Supervisor is read
into core, or alternatively, the interrupted non-
process program is brought into core.

3. Count Routine PEROD -- This is the count rou-
tine named PEROD which is included in the Sys-
tem Skeleton at system generation time.

It is entered by way of the Interval Timer
Control (ITC) program when the time period
specified in the initial core load START, or from
its own call, that is CALL COUNT (0, 1, 5), has
elapsed.

The function of PEROD is to end time-sharing
and to load ALPHA into the queue, so that when
time-sharing is ended and the queue is checked,
ALPHA will print out the time. It also restarts
the timer to repeat this cycle of operation (that
is, it starts the count again).

26

SAMPLE CODING FORM

i-l0 | n-20 21-30 31-40 41-50
1[2]3]dsle[7lelolof[2lz]als]e[7]8]o]o [o[3]4[5leelelo] T2[3] s elr]e]s o] [2[3]+]sTe[fsle]
ol L e b b b benaa I s oo
W FOR TEST |\ iy la vl been b byl
poeis o Aee | Lo Lo b b o b o b |
ZAGS| (TYPEWRITZIER), v | v b b s b by |
Lo Lexrermae, aePrAl ol b b o b |
L L COMMONJIMSKECAZ | o,] vl bl b]
INEEE R XN/ a? e 3 N AT NI T N N
el =gl b b b boan i b b g
i | WRZAECS, D, v b b b

Lis s 2| FORMAT (" SITART, ICORE 1L0AD"), | iy Ly il]
[CALL eQﬂdr(g\lllﬁnﬁ)lllnlInllllllllnllnxllllltkl

L | cacel CHATNGACPHAY (0L L)
; lé.ﬁ_a.l...ﬂH.|l....|...‘.|--|||....|.H|||...|
7oRECTL, M L ISTART] TEST STARZ L]
< lllllll\lllllllllllllllllIIIlIIIIIILJJlIIIII
[T/ S S I NS IS B NENEE NS SN
104 aMD OF ALL, JOBS |y Lo li vl b bl

IIIII.,..IIH|||11|||||||||‘||||||||.|||1|111||||I

Figure 15, Initial Core Load

SAMPLE CODING FORM

-0 [1i-20 21-30 31-40 4i-50
[2[34ls]e[7lelolo] [2fs[alslel lels[o]: fo[[als[e[7lefelo] [2]3]4lse lelolol 2]3]als]e] 7elslof
R : S P R WA AT AT IS WA NI
A FOR TEST b b b vn bvn s bvwa bl
LISTIALL Ly b b boona b b b a B o |
l&llolcnsl|(.T.Y.P|E|WR|IJ1E1R)1||.|-ul.|||||1'.|||||]||IIII|J_AJ
ll|||.c.°MM°|N|/|IN|s|K1E|L|/IL.1||.|1||||||||||||||x11|||1|
o LIRCT-12) a8 1w a b v b b v b s b o
II|13|.CAL|L11C|L|OQK|(HIJ||H||l.||.|111.||1||l|\|11114_AJ
ll||l'.KFAJ|/|1¢|¢|¢m1@pA||.l:l;n:.l:1||||--||||||||1L|4‘
I R P T S P PO RS PP N e
ETE .. D S D O T I B P
L lA=Axego/0pE8. |) b b e b |
|||l1|'J-l=IA|IlIII||IIllLAlAIlllAll\llllllll'lllllllllJ
Lo I KERMBHT e e e b b
lllllnTlIMEI:lKllllllll|I|4lllllllillllllllllllJl'lllll
Ly | TIMEETIME/ @A 0l v b n b b
llll|MR|I.TIE|(|1|111|)J|IIM|EI1.|||||.1||lnlllllllnnlllllLJ_l
L1 1 4] FORMAT,(\' CIORE, LIOAD, ALPHA MIME'0F9.2D v 1111]
llllIAIA:AinllllIIIIIIIIIIIIIlllll|lllI|II|I|IIIIILlI
Iilll.G.qrrK).njiqglll|||.|.||11.|||11||||||||||||1;||
T I L W RE S N NS FE B R S|

1ﬂ¢||CAL1L||V|I1A|Q!II1|x|“l.1||lllll‘l--lllllnllllnl
||Il11E|N|D||llI||]I|lllllllllllllllllllllllllllllll!
PRSTORECTIL M, ;111 (ALPHA TEST, START , 1, vl
*ClclﬁNlD-“.lnlullll|11||n||-|||l||||1|1xl|||1|11141
BT P I SRR BT R N SR U SN S

Figure 16. Mainline Core Load ALPHA

SAMPLE CODING FORM

I-10 11-20 21-30 31-40 41-50
1[2[3[4ls[ef7[elo]of 1 [2[3]a]s]el 7]e]ol o] [2[3[alsl 6] 7lelolo] [2]2l4ls [e [lefo [of i [2[34T5 6] 7[slolo
/I/lfrlolqAA|||l|||IlllllllllllllllllllAl'lIlIllllliil
NG A I RN SR IR TS Y ST NN fa
'*1‘11151711“‘11-1|||||I|||||||||||11111|11||||l[|1|||114_1J
ONE WORD ZNM7TEBERS, | | 1 a e Lo b Lo
V11, | SUBROUTIME PeRD o | vt b b b |
Vi | EXTERNAL, BLPHAL 4 oy e L b b
Ll | CALel EMOTS L b b b e b
CAL UE, CPHA L, 1L .

CALL (‘OUMT(;!,J,;) | |

ﬁf;rl/annnlllll|....|.|..||...l.l:.[n1113114_d
I 2.7, S WS PN T T BT S P
20 A W .. -1 I T S P |
ToRe)l eeRod v L b b
lIll‘lllllllll]IIJJlllllllllLlllllllllJIlllllllJll

Figure 17, Count Routine PEROD

HANDLING OF INTERRUPTS

Interrupt Philosophy

Basically, in all on-line real time control systems,
the processor-controller behaves in very much the
same fashion as a radar system. The real-time com-
puter reacts to input data from a real world environ-
ment and provides input data to correct or control
that environment. For example, a computer system
controlling a chemical process monitors the inputs
from measuring devices and instrumentation on the
operator's control panel. Later, the computer up-
dates the control mechanisms and indicators to main-
tain safe and efficient operation. Emergency condi-
tions are also sensed and appropriate action initiated.
Instrument status sensing, data computation, and re-
action control must occur within a specified interval
of time to prevent disruption of the process. How
well it is able to respond generally determines the
maximum capability of the on-line system. A sig-
nificant component in the responsive ability of any
real time system is the inclusion of a powerful and
flexible multi-priority interrupt program.

Purpose of I/0 Interrupts. There are two main
reasons for I/0 interrupts:

1. To reduce system cost by reducing control cir-
cuitry in I/O devices

2. To speed up job throughput, which is relatively
slow when compared with internal processing.

Consider a normal computer operation without
interrupts. Since the computer is basically a sequen-
tial machine, it functions sequentially (or serially,
performing one job at a time). In the simple example
below,

INPUT1 -~ PROCESS1 - OUTPUT1 - INPUT2 -
PROCESS2

when PROCESS1 is completed, the user must wait
until OUTPUT1 and INPUT2 are accomplished be-
fore he can begin PROCESS2. This could be extreme-
ly time-consuming.

Since the input device waits idly during PROCESS1
and OUTPUT1 time, the question arises: why should
this idle interval of time not be used to read in
INPUT2? This could be obviated with the use of I/0
interrupts. The I/O interrupt is based on the con-
cept of keeping I/0O devices active, thus, hopefully,
eliminating process delay caused by these devices.
The following sequence of events illustrates the type
of action that might be taken: ’

1. A mainline program initiates an I/0 device
operation.

2. The program proceeds with its processing while
the I/0 device is sending (or receiving) infor-
mation.

3. When the I/O device has transferred its infor-
mation, an interrupt signal is sent to the
Process Controller.

4. This interrupts the mainline program.

5. The interruption is serviced; that is, further
data is requested or sent.

6. The mainline resumes processing at the point
of interruption. ’

7. The cycle repeats itself during the execution
of the program.

Functions of Executive Programs 27

1800 Multi~-Interrupt Priority Scheme. In the IBM
1800 Time-Sharing Executive System, the essential
elements of the multi-interrupt priority control
scheme consist of:

® A hardware priority structure
e Core store data areas for each interrupt level

e A Master Interrupt Control Program (MIC) which
recognizes, controls, and directs the servicing
of interrupts

The hardware priority structure provides for 3
fixed and up to 24 additional interrupt levels which
are assignable by the user to I/0, process, or
programmed interrupts, as shown in Figure 18.

The interrupt philosophy can be explained in the
following way. Because of the large number and
widely varying types of interrupt requests, it is often

not desirable to cause a branch to a unique address
for each condition. For the same reasons, it is not
desirable to initiate one branch for all interrupt re-
quests and to require the program to determine the
individual requests requiring service. Grouping the
numerous request lines into a number of priority
levels (see Figure 18) accomplishes two aims:

1. It allows all interrupt requests common to a
specific interrupt level to have the privilege of
interrupting immediately, if the only requests
present are of a lower priority level. Converse-
ly, it permits interrupt requests connected to a
higher priority level to temporarily terminate
the servicing on a lower level and to immediate-
ly interrupt to the higher priority level. Service
is returned to the initial request only after all
higher level requests have been serviced.

O, TIMER, PROCESS
INTERRUPT PRIORITY DECIMAL ILSW PISW @ MASK & PROGRAM /o, INTERRUPT:
LEVEL(D) | ADDRESS ASSIGN'T | UNMASK | INTERRUPT ASSIGNMENT ALLOWED
% Internal 1 8 Yes - No No No
Trace 26 9 No - No No
CE 27 1@ No - No No No
Assigned 0 2 n Yes 2 Yes Yes Yes
Levels 1 3 12 Yes 3 Yes Yes Yes
2 4 13 Yes 4 Yes Yes Yes
3 5 14 Yes 5 Yes Yes Yes
4 6 15 Yes) Yes Yes Yes
BASIC 5 7 16 Yes 7 Yes Yes Yes
6 8 17 Yes 8 Yes Yes Yes
7 9 18 Yes 9 Yes Yes Yes
8 10 19 Yes 10 Yes Yes Yes
9 1" 20 Yes 1 Yes Yes Yes
10 12 21 Yes 12 Yes Yes Yes
11 13 22 Yes 13 Yes Yes Yes
12 14 23 Yes 14 Yes Yes Yes
SPECIAL 13 15 24 Yes 15 Yes Yes Yes
FEATURE 14 16 25 Yes 16 Yes Yes Yes
GROUP 1 15 17 26 Yes 17 Yes Yes Yes
16 18 27 Yes 18 Yes Yes Yes
‘ 17 19 28 Yes_ 19 Yes Yes Yes
18 20 29 Yes 20 Yes Yes Yes
SPECIAL 19 21 30 Yes 21 Yes Yes Yes
FEATURE 20 22 31 Yes 22 Yes Yes Yes
GROUP 2 21 23 32 Yes 23 Yes Yes Yes
22 24 33 Yes 24 Yes Yes Yes
23 25 34 Yes 25 Yes Yes Yes

@ NOTE: 1 Highest priority

27 Lowest priority
(2 24 PIsW's Basic 1BM 1800,
(3 Manually masked and unmasked by switch.

(4) Return address in I-counter stored in decimal address 0010, but hardware-generated BSC addresses decimal address 0001,

Figure 18. Priority Interrupt Level Structure and Assignment

28

2. Since a unique branch can be defined for each
interrupt priority level, it is possible to com-
bine many requests on a common priority level
and thereby use a common interrupt subroutine
to service many requests.

Each interrupt request line is thus positioned
into a table order of priority; the highest priority
being closest to the output, while the lowest priority
is farthest away. An interrupt request received at
a given level automatically causes the level to shift
from an uninterrupted to an interrupted state. If no
higher priority level is presently being served, the
scheme permits the request line to be activated. At
this time, a unique address associated with this
level is supplied to the system, which transfers

control to a core location determined by this address.

The mainline return address is now preserved and
entry made to the Master Interrupt Control Program
to direct the servicing of this interrupt. At comple-
tion of servicing, control is returned to the point

of departure (see Figure 9).

In this way, every interrupt request is obeyed
immediately, provided no priority request is
presently in execution. The biggest advantage of
this method of priority level control is a near-
optimum priority response. To guarantee minimum
response time to alarm conditions, most process
interrupt servicing routines should be in core at
all times.

Characteristics of Interrupts

Interrupts can be classified into three broad types:
e I/0

e External (that is, process), and

o Programmed

Skeleton-resident interrupts operate on a true
priority basis from the 24 levels available. An
interrupt is, by definition, a hardware feature --
it is the machine hardware, not the Master Interrupt
Control Program which determines what level the
interrupt is on. As far as the problem programmer
is concerned, he has no control over the time of
occurrence of process interrupts. He has, however,
indirect control of their time response through
masking, recording, and the allocation of priority

levels. In general, interrupts are distinguishable
from one another only in the manner in Wthh they
are serviced (see also System Degi

Priority Assignments. Some important considera-
tions affecting priority assignments can be sum-
marized thus:

o Each of the 24 levels can interrupt the mainline
program.

e Level 0 is the highest priority.

e Higher priority levels can interrupt lower
priority levels. Lower priority levels cannot
interrupt higher levels. This permits fast
access devices to interrupt slower ones.

e Hierarchy of machine operation:

Highest Interrupt level

® ® 0 ¢ 0 VKO

[\]
w

Process Mainline
Lowest Nonprocess Mainline

e Interrupt levels may be masked by programming

means. Masking inhibits interrupts to the 1800.
The user is thus allowed to inhibit or permit
specified levels of interrupts, and to allow deter-
mination of the status of interrupt levels —- that
is, whether they are inhibited or not -- at any
time. Through selective use of masking, data
channels can be kept in operation for the trans-
mission of data into and out of core storage
while process interrupts are prevented from
occurring. This gives an increased efficiency
of execution of programs.

When a request line is unmasked, the Proces-
sor-Controller is interruptible. Note that
although a level may be masked, the fact that the
interrupt has occurred is not lost. The function
of masking is used to delay recognition of an
interrupt.

Functions of Executive Programs 29

In practice, priorities must be assigned using the
interaction of functions with each other as a primary
basis. See also System Design Considerations:
System Director.

Types of Servicing Subroutines Used

An interrupt servicing subroutine may be

® AnI/O device subroutine

e An interrupt subroutine included in the skeleton
® An interrupt routine included with a mainline

o A mainline core load

e An interrupt core load

The different options are provided to permit
flexibility in terms of both core storage and response
time requirements.

I/0 Device Subroutines. An I/O device routine is a
routine that performs the second level of sensing of
a Device Status Word (DSW) or a Process Interrupt
Status Word (PISW). The first level of sensing the
Interrupt Level Status Word (ILSW) is carried out

by MIC. This means that any bit on the ILSW that
requires sensing at the second level may be executed
by an I/0 device routine.

The majority of the I/O devices in the 1800 have
IBM-supplied device routines (e.g., disk, card/read
punch). Those that require sensing by the user at the
second level include the following:

e RPQ devices

o Special PISW's that the user may wish to sense
himself (e.g., multiple PISW groups per level)

¢ Any other I/0 device (e.g., System/360 Channel
Adaptor)

These routines are entered with a BSC; they exit
by an indirect branch through word (90)1 9

The appropriate entry reflecting the ILSW will be
assigned by the user on *Assignment control cards
to the System Loader at system generation time.

30

Subroutines that are entered from the I/0 device
routine comprise count, timer, and process 1/0
subroutines. They perform specific limited tasks
associated with the event that is occurring within
the I/0O device (e.g., elapsed time on a particular
timer). Entry to the subroutine is made by a BSI;
the routine exits to its return statement by a BSC I
through the entry point. These subroutines are
included in the skeleton by *INCLD control cards.

Interrupt Subroutines included in the Skeleton, The
shortest response time (that is, the minimum time
before an interrupt servicing routine is entered
after the interrupt has been recognized) is obtained
by placing the routine in core with the System
Skeleton. The interrupt routine is included by
specifying a control card (*INCLD) at skeleton
build time. Like the interrupt core load, the in-
core interrupt routine performs a limited task.
It is masked only for short periods of time by the
system during the execution of certain reentrant
coded routines. This period of time is normally
of the order of 20-30 instructions.

These routines are entered with a BSI; they
exit through a CALL INTEX statement. Some of
the important factors governing their inclusion
in the skeleton area are discussed in detail in
System Design Considerations: System Skeleton.

Interrupt Routines included with a Mainline, Next
in length of response time to skeleton interrupt
routines are in-core routines loaded with the core
image mainlines. These are entered almost as
quickly as skeleton routines provided the mainline
is in progress when the interrupt occurs, but may
be forced to wait if the mainline is not in core.
This will be the case if a lower level interrupt
routine has been read over the mainline. The
length of delay involved would then be the balance
of the reading of the interrupt routine and the exe-
cution of that routine and the read-back of the main-
line. No immediate exchange to obtain the mainline
is done. If the interrupt that occurs has a routine
in the mainline and the interrupt is at a higher or
equal level to the interrupt being processed, the
interrupt core load assigned to this interrupt will
be read directly into core upon completion of the
interrupt core load being serviced.

An interrupt core load is always required before
any servicing of a process interrupt in-core with the

mainline can take place. If an interrupt core load
is not available, the event will be recorded even if an
interrupt servicing route is included with the main-
line. The Master Interrupt Control (MIC) Program
first ascertains if an interrupt core load is available;
if it is, the ICL table is checked to see if the routine
is in the mainline; if it is not available, the event
is recorded. The interrupt routine is always ser-
viced with the same masked status as an interrupt
core load.

Interrupt routines included with a mainline are
always entered by an indirect branch (BSI); they
exit through a CALL INTEX.

Mainline Core Loads. External (that is, process)
interrupts whose occurrences are recorded are
serviced with mainline core loads. The mainline
core load performing the servicing action is identi-
cal to any other mainline core load, except that it

is queued for execution by a CALL QIFON statement.
Since it is a queued core load, it should have a CALL
VIAQ as its last logical statement. It could, of
course, be the first core load of a special series,

in which case it would end with a CALL CHAIN to
obtain the next core load in sequence, but a CALL
VIAQ must ultimately be executed.

Note that the only major difference between an
interrupt core load and a mainline core load used
for the servicing of recorded interrupts is in the
last logical statement used. This must be a CALL
INTEX for an interrupt core load and a CALL VIAQ
for a mainline core load.

If a process interrupt is immediately serviced on
some occasions and recorded on other occasions, it
would require two core loads (one for each function)
which would be identical in all respects except for
their last logical statement. To eliminate this dupli-
cation of core loads, a special combination exit
statement (CALL DPART) is provided (see Exit
Procedures from Interrupt Servicing Routines). An
interrupt or mainline core load which terminates with
a CALL DPART is, by definition, a combination core
load.

The combination core load should not violate re-
strictions placed on either mainline or interrupt
core loads. That is, mainline interrupt subroutines
are not allowed as part of this core load: only state-
ments allowed in both mainline and interrupt pro-
grams are permitted. See also Appendix B, Sum-
mary of TSX Statements.

Interrupt Core Loads. The user may create inter-
rupt core loads which are brought into core over the
mainline when the interrupt occurs. Interrupt core
loads are essentially disk-resident routines where
the response time is not a problem. They are re-
quired for those interrupts that meet either of the
following conditions:

1. The user has specified the interrupt servicing
routine to be out-of-core.

2. The user has specified the interrupt servicing
routine to be in-core as part of a mainline
core load.

When this type of interrupt servicing routine is
executed, the area of core that the routine will
occupy is saved on disk before reading in the inter-
rupt core load. The time for this save operation,
in addition to the time for the disk read operation
needed to get the interrupt core load, causes this
method of interrupt servicing to have the longest
response time. Once an interrupt servicing core
load has begun, it may be interrupted by a higher
level routine, only if the interrupt routine for this
higher level is in the skeleton on a higher level.

The use of interrupt core loads is normally re-
stricted to the performance of a particular task at
a time, or the initiation of a task on a mainline level
which does not take an inordinate amount of time.

A typical example is the queueing of a sequence of
mainline core loads to accomplish the task that
originated an interrupt. The user should remember
that if his problem program is time-consuming, he
will, in the normal course of events, execute this
on the mainline level. The reason for this is that
interrupt core loads cannot, by definition, interrupt
other interrupt core loads. This system restriction
is because of the disk exchange time that would be
required.

Interrupt core loads are built and assigned to a
particular process interrupt bit (PISW) on pro-
grammed interrupt level. The core load then per-
forms the servicing task or sets in motion the task
that will be required when this specific bit is
activated.

Note that this type of interrupt servicing routine
does not contain an Interrupt Status Table (IST).

The reason is that the IST is used for updating the
Interrupt Core Load Table (ICLT), and the ICL table
is only updated from mainline core loads or from
combination core loads when these are executed at

Functions of Executive Programs 31

the mainline level. For the same reason, the
interrupt core load cannot include other routines
within it. Another explanation is that the programs
that might be included in an interrupt core load are
masked off during its execution.

An interrupt core load is not necessarily the
length of variable core: it has a defined length
(see System Design Considerations: Disk System
Configuration). Hence, in contradistinction to
mainline core loads, all of variable core is not
needed because of the limited function performed
by this type of core load. To increase execution

speed, therefore, the Interrupt Save Area can be
made smaller.

Note also that interrupt core loads can communi-
cate with mainline core loads (and combination core
loads when these are executed as interrupt core
loads) only through INSKEL COMMON. The inter-
rupt core load itself contains a COMMON which is
located at the end of the Interrupt Save Area.

Figure 19 gives a summary of the types, charac-
teristics, and location of process interrupt servic-
ing routines.

Type of Routine and Location

Characteristics

Skeleton Interrupt Routine

Core Storage Location

Syst /
Ske:eegn g

Skeleton Area Variable Area

Permanently in core.

Normally high priority.

Can immediately interrupt lower priority routines, and
Interrupt Core loads if no Interrupt Core load is
assigned to that level.

Fastest interrupt response.

Must CALL INTEX as last logical statement.

Mainline Interrupt Routine

Core Storage Location

Syste %
Sk:lﬂ;':n g

Skeleton Area Variable Area

Available almost as quickly as Skeleton Interrupt routines, if the mainline
is in-core,

Once execution is started, only interruptable by Skeleton Interrupt Routine
or intemnal interrupt.

Can be different with each mainline core load.

Interrupt core load is required.

Must CALL INTEX as last logical statement,

Interrupt Core Load

Core Storage Location

System

Skeleton

Skeleton Area Variable Area

Large core area available,

Once execution is started, only interruptable by Skeleton Interrupt Routine
or internal interrupt.

Mainline or nonprocess program in operation at time of interrupt is saved
before and restored after Interrupt Core Load operation.

CALL INTEX is last logical statement used. Cannot include interrupt’
routines for other interrupts.

Mainline Core Load

Core Storage Location

Skeleton

Skeleton Area Variable Area

Large core area available,
Can include interrupt routines.

Queved for execution if record indicator is on when named in QIFON statement.

If mainline core load is always queued, last logical statement should be
CALL VIAQ.

Combination Core Load

Core Storage Location

System
Skeleton

Skeleton Area Variable Area

Cannot violate any rules goveming interrupt and mainline core loads.

Large core area available.

Queued for execution if record indicator is on when named in QIFON
statement.

CALL DPART is last logical statement used.

Figure 19.

Summary of Characteristics of Process Interrupt Servicing Routines

Exit Procedures from Interrupt Servicing Routines

Three forms of exiting are used:
e CALL INTEX
e RETURN

e CALL DPART

CALL INTEX -- Interrupt Exit

All interrupt routines serviced on an interrupt level
must return control to MIC through a

CALL INTEX

statement. INTEX is the symbol for INTerrupt
EXit. CALL INTEX must be used as the last logi-
cal Statement in skeleton interrupt routines. It
can also be used in interrupt core loads.

RETURN

Subprograms called by user-written interrupt
servicing routines must use a

RETURN

statement to return to the interrupt routine or may
return control directly to MIC.

CALL DPART ~-- Departure

CALL DPART causes the level of operation to be
tested for the following conditions:

e If the present level is an interrupt level, a
CALL INTEX is executed.

e Otherwise a CALL VIAQ is executed.

Thus CALL DPART eliminates duplication of
core loads. An interrupt that is sometimes directly
serviced, and sometimes recorded, can now be
serviced with the same core load. This core load
operates from an interrupt level when servicing
is specified; it is queued and operates from the
mainline level when the interrupt is specified as
recorded.

Figure 20 illustrates the use of the two exit
CALL and RETURN Statements.

Master Interrupt Control

Once an interrupt has been detected at the hardware
level, a reentrant control program, the Master
Interrupt Control (MIC) program, takes over the
control and servicing of that interrupt. The inter-
rupt is first recognized by the interrogation of
certain indicators on a level.

The MIC routine is assembled as part of the
System Director at which time it origins out those
tables and coding not used by the system to user
specifications. MIC resides in core at all times
in an on-line TSX system when the computer is
operating under control of the System Skeleton.

It is designed to:

e Save the interrupted registers whenever an
interrupt is processed on the appropriate work
level

e Direct the interrupt to its servicing routine
® Restore the FORTRAN I/O buffers if required
e Restore the interrupted registers, and

e Return to the point of departure in the inter-
rupted program.

Detailed Action of MIC when an Interrupt Occurs

Consider the train of events that follows when a
process interrupt is generated by an event within
a process control environment. Let us assume
that this interrupt was originally assigned (at
system generation time) by the user on an NB
(System Director) equate card to level zero.
Remember that an interrupt is, by definition, a
hardware feature, and that the user has limited
control over the time of occurrence of process
interrupts, except by masking, recording, and
the allocation of priority levels. Figures 21, 22
and 23 illustrate this action in simplified form.

Entry to MIC.

1. In the 1800, an interrupt request is recognized
at the completion of the current instruction

Functions of Executive Programs 33

being executed within a mainline program. When
this happens, an indirect branch (BSI) to a fixed-
word (location 11) in core takes place. This
word contains the start address of a level work
area associated with level 0 (see System Design
Considerations: System Director). A set of in-
structions within this area then sets the level

The sequence of operations (specified by the encircled numbers) can be either
1,2 3, 4,5, 6A, 6B, 6C, 8, 9, 10, or 1, 2, 3, 4, 5, 7A, 78, 8, 9, 10.

Mainline Core Load

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

Interrupt Servicing
Routine

A

busy, saves Index Registers 1, 2 and 3, and sets
Index Register 3 as a pointer to this work level
(at entry point + 8). It is through the level work
area that an interrupt formally enters MIC --
from now on, all references to the work area
and saved information is made through the

Index Register 3 address.

CALL JOE

NTE

CALL INTEX

SAM

CALL SAM

RETURN

A

Figure 20, Use of the CALL INTEX, CALL DPART, and RETURN Statements,

34

JOE
-
~ | =
RETURN
Subprograms called
by interrupt routine.
BILL
—(
6B
g =
e RETURN
CALL DPART
&) J
@,

MIC is the entry point at which all process
(and 1/0) interrupts enter the Master Control
Program for processing. The accumulator,
the status word, and the pseudo-accumulator,
are now saved for the particular level of inter-
rupt being processed. The previous (that is,
last) work level address is also saved, and the
new (that is, current) work level address set
up for use by reentrant coded subroutines so
that they are aware of the address of the par-
ticular work level they are required to use at
this particular time. Now that the registers
of the interrupted level have been saved and the
new level (0) address set up, the question of
determining which of 16 possible interrupts is
to be serviced on this level remains. This is
done by sensing the ILSW. If no bits are "on"
in the ILSW, a check is made to see whether

a programmed interrupt has been selected for
this level; if it has been, a transfer is made
to (A) in Figure 22, and the processing pro-
cedure proceeds as for a process interrupt.

If no programmed interrupt is present, an exit
from MIC is made via (B) -- see Figure 23.

If a bit is on, a branch is made via the level
work area to the Interrupt Branch Table within
the mainline core load to determine whether
the interrupt is a process or I/0 interrupt.

Each core load (mainline, combination,
interrupt, or nonprocess) must contain an
Interrupt Branch Table which provides the
means of routing each I/0, process, or pro-
grammed interrupt to its appropriate servicing
routine. The table, built in reverse order as
shown in Figure 21, consists of single-word
entries, each of which contains either an entry
address to an I/0O device servicing routine for
an 1/0 interrupt, or a fixed address within the
Skeleton for a process interrupt. The table is
initially built by the Skeleton Builder and Core
Load Builder to the specifications of the System
Loader. Its size is determined by the number
of bits on all interrupt levels used.

Since we are concerned with a process inter-
rupt (LEVEL BIT 0 = PISW, see Figure 21)
level 0 will contain the entry point PRIE (that is,
the reentry point to MIC). (Note that if an I/O
interrupt were present instead, the I/O servic-
ing routine is entered. The case of an I/0 inter
rupt occurrence is discussed later).

The PISW derived from the work level is now
sensed. If no bits are on (that is, no event has
taken place within the process control environ-
ment) the exit route (from MIC) is taken via (B).

If a bit is on, it is reset, and the address of
the ICL table associated with this particular
interrupt set up.

Now that the process interrupt is correctly
known, the option of processing must be inter-
rogated and executed -- that is, we must now
determine what type of servicing this particular
process interrupt requires. Various tests are
performed to determine:

o Whether the interrupt is to be recorded

e Whether the interrupt servicing routine is
in core with the skeleton

e Whether the interrupt is to be serviced by
an out-of-core interrupt core load, or

o Whether the interrupt servicing routine is
in core with the mainline

in conjunction with entries made in the ICL
Table (see System Design Considerations: Sys-
tem Director).

The first test ascertains whether this particu-
lar interrupt is to be recorded. If it is, a sub-
routine records the interrupt. If it is not to be
recorded, a check is made to see if the interrupt
servicing routine is included with the skeleton.
If it is, it is serviced by that subroutine. The
next test determines whether an interrupt core
load has been loaded to the disk to service this

interrupt. If it has not, the interrupt is auto-

matically recorded. If it has, all interrupt
levels serviced by out-of-core routines will be
masked. This also prevents a user from un-
masking any level that is asssociated with out-
of-core interrupts.

A test is now made to determine if the inter-
rupt servicing routine is in core with the main-
line program. If it is in core with the mainline,
the mainline itself is in core, and we are not in
an exchange of variable core; the Index Register
is then set to the transfer vector, and the entry
point of the interrupt servicing routine is located
in the Interrupt Status Table. Entry points to
interrupts in core with the mainline are situated
in a table known as the Interrupt Status Table
(IST). The format of the table consists of:

® One word indicating the length of the table
for each level

® One word for interrupts that are in core
with the mainline

Functions of Executive Programs 35

MAINLINE PRIORITY LEVEL WORK AREAS

S/R AREA
~

PROGRAM INTERRUPT
LEVELS [
-4 ! k
LEVEL LOCATION -«
0 n 4 MICGJWORK] AREA
1 12 .IL

000w N

MASTER INTERRUPT
CONTROL (MIC)

ISIT
A PROGRAMMED
INTERRUPT
?

EXIT IF NO

(SEE FIGURE 23) (SEE FIGURE 22)

Figure 21. Action of MIC During an Interrupt

36

|
L
T‘
I

PROCESS INTERRUPT

ENTRY POINT

[PRIE | XIO PISW |
°
°
°
°
°

99

INTERRUPT

BRANCH TABLE

[[J

L] [

[] []

[] []

[] [

[] []

[] []

[] []

[] []
LEV3BITO 1442
LEV2BIT1 1053
LEV2BITO PISW
LEV1BITO 1443
LEVOBITI DISK
LEVOBITO PISW

-4
[

BSC | 90

1/0 ROUTINES
ENTRY POINT

e One word for interrupts which are to be
recorded on a particular level

followed by as many words as are necessary to
contain the start address of interrupts in core
with the mainline. The size of the table is
determined by the user when he defined his
system.

If the interrupt is an out-of-core interrupt,
I/0 must be completed in the mainline area
prior to either exchanging core, or, if we are
in an exchange, prior to reading in the inter-
rupt core load. Once the interrupt core load
is read into core, Index Register 3 is set to
the transfer vector and the interrupt entered
for execution. An exchange means that variable
core has been saved in the Interrupt Save Area
on disk. The area exchanged will be the size of
the largest interrupt program specified by the
user.

Note that due to cycle stealing I/0, some
area may be either modified or recorded at the

femm———
RECORD TEST
I For Recoro >~ ——+ = !
2
¥ |
(D R | T N — + - -
Y
E SERVICE
i
(SEE FIGURE 23)
I
MASK ALL [t
OUT-OF -CORE
INTERRUPTS

Fe—————e———— ==

Figure 22. Action of MIC during an Interrupt (Continued)

————————— —§ IN-SKELETON

time the process interrupt occurred. This
means that out-of-core interrupts must always
be assigned to a priority level lower than all
I/0 devices.

Exit from MIC. All process interrupt routines
terminate by a return CALL INTEX statement to
MIC. INTEX is the address to which interrupt
servicing routines return upon completion of their
processing. If the servicing routine just executed
was an out-of-core routine, all out-of-core inter-
rupts are unmasked at this point to allow other out-
of-core interrupts to occur, so that it is not necess-
ary to carry out an exchange of variable core for
the servicing of that particular interrupt. For both
in-core-with-Skeleton and out-of-core routines a
common exit from MIC is taken via (C) and (B) - -
see Figure 21 and 23 - - if this is the last servicing
required (no further PISW bits on). Note that this
is also the exit path for all I/0 interrupt routines.

1f additional process interrupts are indicated

INTERRUPT
CORE LOAD
TABLE (ICLT)

IN MAINLINE P~ — =

RECORD

START
ADDRESS
SECTOR
ADDRESS

IS
EXCHANGE SAVE
NECESSARY CORE
GO TO START
ADDRESS OF
INTERRUPT
SERVICE
ROUTINE IN
MAINLINE
READ IN
OUT-OF-CORE
INTERRUPT
PROGRAM

Functions of Executive Programs

37

(that is, more bits for PISW sensing are on) the

exit routine proceeds to (A) -- see Figure 22 ~ -
and the procedure continues in the normal fashion of
a process interrupt. A closed loop is thus main-
tained until all process interrupts have been ser-
viced, finally exiting through the common exit point
(C) for all categories of interrupts. At (C) a test

is made to see if a programmed interrupt is re-
questing service on this level, If yes, the user’s
interrupt servicing routine will be executed. This
routine will eventually exit to INTEX, and the test
at (C) will be made again. Since there can be only
one programmed interrupt per level, this time there

ALL INTERRUPTS PROCESS INTERRUPT

RESTORE
FORTRAN
1/O BUFFERS

MASK ALL
INTERRUPTS

BITS ON

RESTORE
REGISTERS

UNMASK
ALL

INTERRUPTS TEST FOR
PROGRAMMED
INTERRUPT

(See Figure 21)

XIO ALL
PROGRAMMED
INTERRUPTS

RETURN TO
INTERRUPTED
PROGRAM

Figure 23. Exit from MIC After an Interrupt Has Been Serviced

38

will be a branch to (B). Here it is decided whether
variable core is to restored or not. If variable core
has been saved as the result of an interrupt on the
same interrupt level as the current level, all out-
of-core levels are masked and variable core re«
stored to its proper status which existed prior to
the interrupt. The system is then unmasked to the
user’s level, If the current interrupt level is of
higher priority than the level on which variable
core was saved, no restoring is performed since
this will be done when the current level has been
left, and the lower priority interrupt level is

allowed to resume execution, (See Figure 23).

UNMASK ALL
OUT-OF-CORE
INTERRUPTS
MASK ALL
OUT-OF-CORE
INTERRUPTS
READ IN

TEST IF SAVED VCORE
OTHER PISW

BITS ON

UNMASK TO
USER’S LEVEL

(=LAST CALL
MASK OR CALL
UNMK)

MASK ALL
OUT-OF-CORE
INTERRUPTS

READ IN
MAINLINE

UNMASK ALL
OUT-OF-CORE
INTERRUPTS

©

TEST FOR

PRO GRAMMED
INTERRUPT
(See Figure 21)

The Case of I/O Interrupts. When an I/O device
interrupt occurs, a similar procedure to that dis-
cussed in 1), 2), and 3) is adopted. In 3), it was
mentioned that in the case of an I/0 interrupt, the
I/0 servicing routine will be entered through its
entry point in the Interrupt Branch Table (IBT).
Some of the important aspects of the I/0 device
routine are discussed elsewhere in this section.
The last instruction in an I/0O device interrupt sub-
routine is an indirect branch BSCI 90 back to MIC.
Before an exit is made through the common exit
point ((B) -~ see Figures 21 and 23) for all cate-
gories of interrupts, a check is performed to deter-
mine the presence of a programmed interrupt within
the two groups of possible programmed interrupts --
group 1 (levels 0-13) and group 2 (levels 14-23).
Only the bit associated with a level is tested. If a
programmed interrupt is present, a branch is made
to (A) and processing proceeds as for process inter-
rupts. The I/O device interrupt, otherwise, under-
takes to exit from MIC through the common route (B).
At this point, the FORTRAN I/O buffers are re-
stored to their former state. All interrupt levels
are masked, Index Registers 1, 2, and 3, and the
accumulator, and words 54 and 55 are restored and
the system is unmasked to the user's level. Pro-
grammed interrupts are now turned on (they were
previously turned off) and a return is made to the
interrupted mainline program.

Masking, Servicing, and Recording of Interrupts

An interrupt may occur at any time, but it will not
be recognized by MIC until the level on which it is
assigned is unmasked and of a higher priority than
the current level of machine operation. It is the
1800 hardware, not MIC, that determines which
level the interrupt is on. Interrupt levels are user-
specified at system generation time. The user may
delay any interrupt from being recognized by
masking the level on which that interrupt has been
assigned. For example, it may be to his advantage
to delay the servicing of an interrupt to minimize
core exchanges such as when it is known that a pro-
gram is short and the interrupt can wait. In another
situation, he may desire to prevent interrupts en-

tirely from occurring, such as when a routine can-
not be reentrant and may be called from more than
one level. Once an interrupt has been recognized,
MIC will determine if it is to be (1) serviced im-
mediately or (2) recorded for servicing at a later
time. Servicing an interrupt may be delayed by
the user by simply setting a record option on that
interrupt. The options of recording or servicing
interrupts immediately may be changed from one
mainline core load to another. This designation

is made when the core load is initially built. MIC
also services interrupts (a maximum of 384) in an
optimized sequence within the user's specifications.

Masking of Interrupts

Interrupts can be prevented from occurring by
masking. This is accomplished by using four
real-time subroutines provided in TSX:

e CALL MASK
e CALL UNMK
e CALL SAVMK
e CALL RESMK

Call Mask. CALL MASK can be used to lock out
for some time period those designated interrupt
levels on which the user does not want interrupts
to occur during some time-dependent programs.
This routine gives him the facility to inhibit or
mask out groups of interrupt levels (0-13; 14-23)
or selectively chosen interrupt levels. The
status of levels not designated remain unchanged.
The format of this statement is:

CALL MASK (I, J)

Where I and J are integer expressions which
designate the level(s) to be masked. Bits 0-13
of I refer to levels 0-13. Bits 0-9 of J refer
to levels 14-23. Each one bit specifies a level
to be masked. Both parameters are always
required.

Functions of Executive Programs 39

EXAMPLE 1. In this and following examples, DATA
statements are used in conjunction with the CALL
MASK and CALL UNMK statements to set up desig-
nated levels. See IBM 1130/1800 Basic FORTRAN
IV Language, Form C26-3715.

The problem is to mask levels 5, 7, 11, 12, 21,
22 and 23.

DATA I, J/Z0518, Z01C0/
CALL MASK (I, J)

Call Unmask. CALL UNMK gives the user the abil-
ity to unlock an interrupt level -- that is, it allows
interrupts to be recognized on a level. Thus, he
may, if he wishes, selectively allow or unmask
interrupts, one level at a time. This is a required
routine (and procedure) for the initial core load —-
the first core load called into the system by the
Cold Start program. The statement format is

CALL UNMK (I, J)
Where I and J are integer expressions which
designate the levels to be unmasked within

the two groups of levels as for CALL MASK.

EXAMPLE 2. The problem is to unmask levels 1,
2, 3, 5, 12, and 21.

DATA 1, J/Z7408, Z0100/
CALL UNMK (1, J)
From Examples 1 and 2 we see that
e Levelsl, 2, 3, 5, 12, and 21 are unmasked,
e Levels 7, 11, 22, and 23 are masked.
o Levels 4, 6, 8, 9, 10, 13-20 are unchanged.
The mask and unmask subroutines maintain a
current record of the interrupt level mask status.
This is necessary since the system sometimes
masks all levels and then restores the status of
these levels according to this record. The user
should always mask and unmask via these routines

to keep this record current.

EXAMPLE 3. The problem is to unmask all levels
(as at cold start time).

CALL UNMK (-1, -1)

40

Call Save Mask. CALL SAVMK allows the user to
save the masked condition (that is, the contents of
the current mask words) that existed prior to his
calling for masking. The statement format is:

CALL SAVMK (I, J)

Where I and J are integer variables that will
receive the contents of the retained mask words.

For example, a mainline has just masked cer-
tain levels of interrupts. The user may not be
aware of this condition -- that is, he may not know
which bits are on (masked). So, he executes a
CALIL SAVMK to save this condition prior to mask-
ing those levels of interrupt he plans to have masked.
When he is ultimately ready to unmask these levels,
he executes a CALL RESMK which restores or re-
turns the masked register to its original condition.
This acts, effectively, as a mask and unmask rou-
tine and is closely analogous to the saving and re-
storing of registers, etc., during the handling of
an interrupt.

Call Restore Mask. CALL RESMK is used to per-
form a mask and unmask operation to restore the
interrupt mask register to its previously saved
condition. The variables used as parameters are
normally those named in a previous CALL SAVMK
statement. Its format is:

CALL RESMK (I, J)

Where I and J are as for CALL MASK, except
that each one bit specifies a level to be masked;
each zero bit specifies a level to be unmasked.

EXAMPLE 4. The problem is to mask levels 5, 7,
9, 10, and 12; unmask all other levels.

DATA 1, J/Z0568, Z0/
CALL RESMK (I, J)

Restrictions. It is not possible to unmask an out-of-
core interrupt level:

1. while an out-of-core interrupt level specified
on the System Director equate cards ICLL1-2
is.being serviced,

2. while a mainline core load is being loaded by
the Program Sequence Control (PSC) program
-- e.g., by CALL CHAIN, CALL BACK,
CALL SPECL.

Servicing of Interrupts

In the servicing of interrupts, the answers to three
vital questions must be known:

1. What caused the interrupt?
2. How fast is its response?
3. How often does it occur?

In practice, the service action taken depends to
a large extent on the frequency of occurrence of an
interrupt, and the time required to service it --
that is, its servicing time span. There are, in
general, four approaches in servicing interrupts:

® The servicing routine may reside in the skeleton.

e It may be located on disk as an interrupt core
load.

o The user has the option to include the servicing
routine as an integral part of a mainline core
load.

o The user has the option to record the interrupt.
That is, he may delay its servicing until it is
cleared by a CALL CLEAR or serviced by a
CALL QIFON.

CALL CLEAR -- Clear Recorded Interrupts

The CALL CLEAR Statement is used to ignore or
clear interrupts which have occurred but which
were recorded for later servicing. The statement

format is:

CALL CLEAR (M, L, I, L, I,)

Where M an integer constant which specifies

the number of parameters to follow.

If M = 0, all indicators specifying
the recorded status are changed to
indicate '"not recorded".

as for CALL QIFON (see Program
Scheduling).

Land I

CALL CLEAR can be used in any process
program.

The above four general approaches provide a
variety of ways of handling a specific interrupt.
For example, an INSKEL interrupt routine may
set up a programmed interrupt for a level which

is serviced by an out-of-core interrupt core load.
This core load may, in turn, be made to queue a
mainline core load or a series of mainline core
loads to alter, say, the entire user control strategy.

Consider another example. A mainline core load
may begin a chain of operations by setting up a pro-
grammed interrupt for a specific level. This inter-
rupt may be recorded, or it may be immediately
serviced.

The user will always obtain rapid and immediate
servicing of interrupts if he (1) includes his inter-
rupts as part of the System Skeleton, (2) does not
record these interrupts. Interrupts that reside in
core with the skeleton never require an exchange,
while those that are included with a mainline core
load may require an exchange if a nonprocess pro-
gram is in memory on a time-sharing operation.

If, however, time-sharing is not being used (that is,
the mainline core load is in memory) or another
interrupt serviced by an interrupt core load is not in
progress, interrupts in core with the mainline core
load will be serviced almost immediately.

In general, therefore, interrupt servicing rou-
tines should be short in execution time. The reason
for this is that the 1800 hardware locks out lower
priority level interrupts for whatever time that is
involved on that level. That portion of the inter-
rupt routine that is not required for execution at
this priority level should, therefore, be carried
out either at the mainline level or at a lower priority
level.

If mainline core loads are used to service inter-
rupts through the queueing technique, then the user
must ensure that his mainline core loads do not
remain in execution for a period of time that is
unacceptable to him prior to checking the Queue
Table. A mainline core load may be interrupted
by a CALL SPECL in such a core load (see Pro-
gram Scheduling).

Recording of Interrupts

In general, interrupts may be recorded, that is,
deferred service, under any of three different sets
of circumstances:

1. When the user has one or more mainline core
loads that must be executed within a certain
time span.

2. When the user is adjusting or optimizing the
process control and creating conditions which
would cause interrupts to occur, and he elects
to ignore them.

Functions of Executive Programs 41

3. The user may wish to record interrupts for
later servicing, but he prefers to do this
through a CALL QIFON procedure rather than
have them serviced on an interrupt level.

Interrupts to be recorded are entered on a
*RCORD control card (in any order) and assembled
at core load build time. The data set up in the card
is later placed into the Interrupt Core Load Table
from the Interrupt Status table (within each core
load) by PSC.

The action of MIC when an interrupt occurs and
the procedural flow through its servicing has al-
ready been described elsewhere in this section.

Rules Governing the Servicing of Interrupts

1. 1If an interrupt is serviced by a subroutine lo-
cated in the variable area, it must be at a
lower priority level (higher number) than the
I/0 device. This applies to:

Interrupt and combination core loads
Interrupt subroutines included with the
mainline

The exception to this rule is that an interrupt must
be on a level of priority lower than the I/0 device

it intends to use except for the disk and the 1053
typewriter. DISKN and TYPEN are so written that
if either the disk or the typewriter detects that its
call was executed from a level with a higher priority,
it will remain in itself until the servicing operation
is completed. This is achieved by sensing the ap-
propriate Device Status Word (DSW).

2. If a servicing routine does not use any I/0
device, it may be on any level, but the routine
must be in the skeleton -- not in the variable
area of core.

3. Interrupts on levels that are serviced by out-
of-core interrupt core loads are serviced in
the masked mode so that they cannot be inter-
rupted by another interrupt serviced by an out-
of-core routine. Only one level of exchange
is maintained.

USE OF INTERVAL TIMERS
In most industrial control installations, some portion

of the control of the user's system will require re-
sponse in time -- that is, the user may want to

42

schedule his programs periodically or at a specific
time of day. For example, he may wish to print a
shift log on a synchronous basis, say at 8 a.m.,
4:30 p. m., and midnight each day; or he may take
periodic scans of his process instrumentation once
every five minutes; or there may be certain loops
to time out.

An interval timer is, by definition, a clocking
device which cycles a value contained in a full word
of main storage. It thus provides a computer sys-
tem with the ability to read elapsed time in second
or millisecond increments, and to inform the system
when a specified period of time has passed.

A simple cyclic timer serves, in effect, both as
a basic interval counter and clock. In order to
measure an elapsed time interval, a predetermined
total count is loaded into the counter word storage
by program control and a count down to zero is
initiated. As the particular counter reaches zero,
an internal interrupt signal is sent to the system.

Information about elapsed time and local time
is often required by control computer systems to
initiate hourly logs, to time the period between con-
trol actions on the process, for process data
updating, etc. The time of day is required for
printing logs, alarm records, and so on.

Clock interrupts can be used to start a scheduled
computer operation. For example, in the control of
a complex distillation plant process, periodic inter-
rupts have been used to initiate the recalculation of
the reflux ratio required to maintain a desired sepa-
ration in the tower. In this situation, control of a
dependent process quantity is possible through a
periodic reexamination of process conditions re-
quiring extensive computer time.

To accomplish the above, the Interval Timer
Control (ITC) program provides for FORTRAN
language control of three hardware interval timers,
A, B, and C which operate on various user-specified
time bases (see Table 1). Timers A and B are
available to the user, while Timer C is used ex-
clusively by TSX for time-sharing control purposes
and as a real-time clock. Furthermore, Timer C
is expanded into nine additional programmed interval
timers -- thus making available to the user a total
of 11 interval timers. As shown in Figure 24, each
interval timer is assigned a fixed location in core
storage.

ITC also performs three additional functions:

o Resets the Operations Monitor during time-sharing
e Tests fdr no response from 1053 printers

o Performs end of time-sharing

Name Core Storage Location
Machine Timers
A 00004
B 00005
C 00006

Programmed Timers

1 00062
2 00065
3 00068
4 00071
5 00074
6 00077
7 00080
8 00083
9 00086
Time~Sharing Clock 00089

Figure 24, Timer Locations in Core Storage

The establishment of the two principal time bases,
the Primary (or Interrupt) Time Base and the Sec-
ondary (or Programmed) Time Base, and their re-
lationships to the system are discussed in the section,
System Design Considerations: System Director.

Each timer is assigned to a wired-in time base
by the user at system generation time, selectable
from the table of available time bases given in
Table 1.

The .125ms time base is available only on a 2usec
machine; the 128ms time base, only on a 4usec
machine. Each timer is assigned a permanent time
base by the user. Note that a different time base can
be selected for each timer, but all three timers (A,
B, and C) must be assigned to the same interrupt
level. In order to schedule programs based on hours,
minutes, or seconds, the wired-in time base for
interval timer C must be an even divisor of one
second (e.g., .5, 1, 2, 4, 8). The servicing of all
interrupts is controlled by ITC.

Hardware Timers A and B

CALL TIMER

In order to use timers A and B, the system pro-
vides a basic call statement:

CALL TIMER (NAME, I, INT)
where

NAME = Name of the user's subprogram
that is executed when the specified
time elapses. Note that NAME
must also appear in a FORTRAN
EXTERNAL statement (see IBM
1130/1800 Basic FORTRAN IV
Language, Form No. C26-3715).

I = An integer expression whose value
must be:

1 for Timer A (word 00004)
2 for Timer B (word 00005)

INT = A user-assigned positive integer
expression which specifies the
number of interval counts before
the user's subprogram is executed.

The subprogram specified in a CALL TIMER
statement must be in core storage when the interrupt
generated by the timer is recognized. The interrupt
occurs when the time specified has elapsed, but it
is only recognized

1. When the level of current operation is lower
than the timer interrupt level, and
2. If the timer level is unmasked.

Table 1, 'Table of Available Timer Time Bases

g;:‘ieStﬁ,rnaegf Available Time Bases (In Milliseconds)
2 usec L1251 .250 5] 1 2 4 | 8 |16 32]64
4 usec 2515 1 2|4 8 | 16132 64 |128

Functions of Executive Programs 43

At the end of the elapsed time, the timer resets
itself. Note that, when zero time has been .reached,
the timer continues to operate -- that is, zero is not
a not-busy condition.

In the section System Design Considerations: Sys-
tem Director, it is pointed out that it is the user’s
responsibility to ensure that the mainline program
containing the call statement remain in core until
the end of the elapsed specified time -- that is,
until the timer times out, He achieves this either
by

1, including the subroutine named in the Call
Timer Statement in the Skeleton, or

2. masking out all out-of-core interrupt levels,
and forbidding a core load exit until the timer
interrupts.

Unless previously loaded with the System Skele-
ton, the subprogram is automatically loaded with
the calling mainline core load.

In addition, periodic programs (that is, programs
initiated by interval timers) should not, as a rule,
be executed on the timer level: they should make
use of the programmed interrupt technique.

The following examples assume that the timers
specified are called from only one level. If possible,
it is preferable not to share timers among two dif-
ferent programs.

EXAMPLE 1. Assume hardware Timer A is wired
for the .125ms time base.

CALL TIMER (SCAN1, 1, 35)

When this statement is executed, ITC initializes
Timer A (by setting it to -35) and returns control
to the next executable instruction following the CALL
TIMER statement. When the Primary (or Interrupt)
Time Base (= 35 X .125 = 4,375ms) elapses, an
interrupt occurs and control passes to the subpro-
gram named SCAN1,

EXAMPLE 2. Assume hardware Timer A is wired
for the 1ms time base. :

SAMPLE CODING FORM

1-10 11-20 21-30 31-40 41-50__ |
1[e[3]4lslel7lelolol [l [als [l el ol f2[slelslelelefol f2[zlels[elrlefofo] To[3]4]s el Aelolo
RN PN A EVS RN AR T PR NN SRS FEeee
T P T N RN PR TN e PE R SRS rreey
ERTE FEEEE _N ET R RS PR NS PR FPT RS SRS SR EE
1 | CALY TIMAR (TS o BRARD . |l
[TS RN RN PN TS P NTEEE NS S |
[T PN T RN R I T RS P SRR
llllllAlJl’llllIIIIIIIALJIIAIALAIIAlLLllllIllil]LJllI
2\, | CALLL TEMER (M2, 12, 2D T NS B EN
I P WS I BRIV TR S B R
R P WY TR DU U P S W S|
INETY PO L RN S S PR T B feee
lllll.nulllnnllxlnlIxn‘l.l.l..||.||||1.||‘|||||_L4|]

If we assume that the Primary Time Base
(= 500ms) for statement 1 in the above coding
has not elapsed, the Timer A interrupt will occur
2ms after execution of statement 2 when subpro-
gram MILL2 will be executed. Subprogram MIL5H
will never be executed because Timer A was reset
before the 500ms time elapsed. Although this con-
dition can be prevented (see Example 3), its logic
can prove useful under certain practical conditions.

EXAMPLE 3. Assume identical conditions as for
Example 2. This example illustrates the use of the
LD functional subroutine in testing for a timer-busy
condition.

The format of this function is:

LD(I)
where

1 = A user-assigned integer expres-
siun that specifies a core storage
address. The contents of this
address are moved to the accumu-
lator. This permits a test for
busy, etc., of known locations
outside of the program area.
Timer storage locations are
given in Figure 24.

SAMPLE CODING FORM
\ I-10 1-20 21-30 31-40 41-50
[zll4fslel7Ielslo] [2laJafsefefe]o] T2[3]s}s{e[7[elsfo] To[s[alslelelo ol [2[3[als el 7[efs[o
T TR A REEEE I RN S NSNS FwE Y RS NNl S|
[T PN . RER RN ST PR P T TS NN e |
ILJIL‘LILLI I USRI E RS NI fEEY STy RNl SR RN |
1|lllllC|A|LLLJZ-L[lML (”I[LLJnlll’lﬁdq lll‘lllx‘tllllllll'

0

TN S L RN FREE NS P e FREE RN fEe
[T P LIS IR IS IR WA I N A S|
IILAJ_LA1¢I.|1|IL|11|I|J||lLLJnl¢|x4|u|(llltlllull
J_l_LJiLAL4l|L111||1|]“.|||||||A|||||‘||||LL‘1L.|J
2 1 L LACUBEIN2,3630 L b b L Ly |
B3 | cALt| TIMER (MILL2, (1, 2)
J_LLLJ_L114II+.ALH|elHLJ_]IAJ.IL.A‘LJ_Lle.IJ|lLH;]

Statement 2 tests if Timer A is busy. If it is
busy (that is, negative in core location 00004), a
programmed loop is activated until Timer A is no
longer busy (that is, when subprogram MIL5H
is executed) at which time statement 3 is processed.

EXAMPLE 4. Another example is given to illustrate
the use of the LD subroutine function for a test for
timer-busy condition.

This test is required if subprogram SUBRYT is not
yin the skeleton and time-sharing is utilized.
B In this example, statement 12 tests if Timer A is
busy, and waits until subprogram SUBR?7 has been
executed before passing to the CALL VIAQ statement.

SAMPLE CODING FORM
1-10 11-20 21-30 31-40 41-50

[ef3]4]sle[7[elslof]2[z]4[slellelolo] [[3[4[s]el7]elelo] [2]3[aBlel]elo o] [2]s[aTs el 7]elelol

[T I LTS R § FE T SEETy ST Wl FYRES SRR FNEs
INETN PR NI RER RN SRR PSS PN e NN NS
JJJJ_Lu_u_EL;_uJ_LLu_h_uJ_LJ_Lu_LLJJ_LLLLuJ_u_u_Lu_uJ
Ly LCALL SAVAK (A b b L Ll
llllllculaélLll/’{IAllll\ll zl)ltlllxlllll|AI|II||(II«I{IIIII
L LEALH TAMAR (3YBR7, ¢ '14.@_L11L]11»»|1|1||||1_|_]
||llILAtiI’lIJltIIAIIllllltIllJ_l_l‘l_LIJALlllI‘Llll_lLlJ
|1|||»|||].||1|l||>||||JJ_li4|]1|1L||1|¢]1|1|J_J_11l4|

MM@MMMM
IllllIF(ZID(4)) ll'x_lllsjn IIA31AIIJ‘LLLJ_L‘IJIAI_IILI|J_IIJA|
_I_El_wl.c‘ﬂalnél 255]/1 .‘rl’l‘jl)lﬁllltlllllllLJ_Ll 1LLL.J44AAJ
_LlllllcfdlzlLIIVl]-lAlqllllIl!llIlllnllAII[IJII]JAII]IJGA]

lll|l‘.||l|||xl|||1lexu'.:n:lnxj_L'J_Lnij_lLLlli_xnlj

NOTE: The execution of a machine interval timer
busy-test using the LD (I) functional subroutine in
an IF statement may fail to indicate the correct
busy status if (1) the timer interrupt occurs immedi-
ately after the loading of the timer not-busy indi-
cation (a zero), and (2), in servicing the interrupt,
the timer is reinitialized on another level.

Thus, when a timer is shared by different levels,
a solution (see below) would be to follow the first
busy-test by a second busy-test in order to prevent
an interrupt out of the busy-test.

SAMPLE CODING FORM

1-10 i-20 | 21-30 31-40 41-50

i[23lals]e[7]efelo] [2[3]a]s]e]]e[o] o] [2]al4ls]e] 7]e]o]o] 2] z]4ls]e 7]e]e [o] 1 Jo]2]a]s 6] 7]efelo

o) CALL| U, Ly J

I PO NS WS ST SR PR NN RS F W

NS PN SRS RS TR SUETY FENES ST S P RN

T NI NS RN FUN TS NN S SWE AR
LA(.4 12,1

13 | CALd MASK (Ty Dy o Lo b b L b

“lIF,(L[g(gm%li,ll..,lu..lnH.lnllnl.tnnlluul

b CALL TIMER .

CALL Umg&(,g, J)

w@w@@w

Notice that although the not-busy status remains
in the accumulator after the return from the inter-
rupt, it will be initialized for testing in the following
load instruction.

Real-Time Clock

ITC also provides a programmed real-time clock
which keeps time on a 24-hour basis and is updated
each time Timer C decrements to zero (that is, it
is incremented from 00. 000 to 23. 999; then returns
to 00.000). The clock accuracy is a function of the
Primary (or Interrupt) Time Base discussed in the
section System Design Considerations: System
Director

CALL SETCL -- Set-up Programmed Real-time
Clock

Note that the clock is set at cold start time (a user
option), but if it is required to be set at any other
time through a user program, the following statement
is provided.

Functions of Executive Programs 45

CALL SETCL (I)
where

I = A user-assigned integer expression
specifying the time of day setting
desired in hours and thousandths
of hours (e.g., 8 a.m. = 08000;
10.45 a.m. = 10750)

CALL CLOCK -- Read Programmed Real-time Clock

If the user desires to read the clock, say, for time-
recording of his output to the printer, disk, etc., he
does so through a

CALL CLOCK (J)
where
I = A user-assigned integer variable
which indicates the core location
where the readout time is stored.
Note that the clock is also used by the Exrror Alert

Control (EAC) Program to time-stamp error mes-
sages.

Programmed Timers

The mechanism of programmed timers is covered in
the section System Design Considerations: System
Director.

CALL COUNT

Programmed interval timers are controlled by the
following statement.

CALL COUNT (IN, I, INB)
where

IN = A user-assigned integer constant
or integer variable that specifies
the number of the program to be
executed or recorded when the speci~
fied time elapses. The number must
be in the range which is established
by the System Director NITP1 and
and NITP2 EQU cards, Its maximum
size can be between 0 and 31. The

46

number is assigned at System Skel-
eton build time. Program numbers
are used instead of names to pro- |
vide the record interrupt option.

I = An integer expression, identifying
the number (1-9) of the program-
med timer.

INB = A user-assigned expression that

specifies the number of interval
counts before the called program
is executed. This number is a
function of the Secondary (or Pro-
grammed) Time Base.

An additional programmed timer is used as the
time-sharing control timer for the allocation of time
slicing for non-process operations (see Use of Time
Sharing).

EXAMPLE 5. The problem is to queue an analog

scan program every five minutes with a priority of 7

if JTEST (a programmed indicator in INSKEL COM-

MON) is set to zero; if it is non-zero, queue the

same program every minute with a priority of 1.
Assume the following:

1. Subroutine 19 is SUBROUTINE A which was in-
cluded in the Skeleton at Skeleton build time by
an include card

*INCLD A/2703

thus assigning it as count routine number 19.
2. Primary Time Base = 8ms (Timer C wired

time base) X 125 (user-assigned number) =

1 second

Secondary Time Base = 1 (Primary Time Base)

X 15 (user-assigned number) = 15 seconds

To solve the problem, a CALL COUNT statement
must be given in a mainline core load, thus:

SAMPLE CODING FORM

i-10 11-20 21-30 31-40 41-50
[2Js4fsef7lefslo] To[3]4]sTe[le[o]o] l2[3f4[e] [alelo] [[3[als [e[felo [o] [2[3[+[s e[Jefelo
WEE N R RN E T N RS NN R NN SR R
[T S I N RN NN R NN e T R SN P
[T PN U RN SR N ST BT P S|
||llIlclArLlLllClOI(/lﬁ,]-rl\(lllgl’lﬂhl’llalq)lllllllllllllllllllill'
[EETE N . N RN PETE SRS NI R ST paee
R U PR LR RN S S SRS RN SN R
NS T U RN P T SR RN P S|
111|...111|1|LL1A|||41111|L411lnillnnui_utlllJ_Lll

This designates that subroutine 19 is to be called
in 5 minutes; thereafter, the subroutine calls itself
within the specified time period. Its coding is shown
in Figure 25.

SCAN is the name of a mainline core load that
will be executed at mainline level as the result of
a CALL VIAQ when SCAN is the highest priority
entry in the queue.

In order to effect immediate execution of the scan
routine, the CALL QUEUE statement may be re-
placed by a CALL LEVEL statement to cause an
interrupt on a lower level. This allows the user
the flexibility of executing the SCAN routine either
as an interrupt core load, an INSKEL interrupt
servicing routine, or as a routine included with a
mainline. The advantage is that the timer interrupt
level is not tied up. It also gives the user the ability
to call other I/O devices within the SCAN routine.

If the time-sharing mode is not used, the CALL
ENDTS statement has no effect. If it is used, the
time-sharing clock is set to zero and a return made

to the calling program. See Use of Time-Sharing
for further action.

A further example is given elsewhere in this
section (see Program Scheduling).

Table 2 provides a ready comparison of the
salient features in the usage of interval timers
and programmed timers.

USE OF TIME-SHARING

In many industrial control installations, the user
will have a large amount of time that is not utilized
by the process being controlled. To allow him to
make effective use of this time, the time-sharing
feature of the TSX system gives him the ability to
compile, assemble, and simulate without taking

the system off-line. In this manner, low-priority
jobs are automatically interrupted whenever the need
arises to execute a higher-priority task. In addition,
the inclusion of this feature gives the user the capa-
bility of modifying the logic of his control strategy.

SAMPLE CODING FORM
1-10 11-20 21-30 31-40 41-50 51-60 61- 70 71-80
[efz[dfslel7[efolo] Tels[s[sle[e[e]o] Tels[<lsle[[e[olo] [2[s[slelele o] 2[sla[s e felolol [o[es[e[Helolo] 3 [4fslellelolo] [2[s[afs[e] 7lefelo
Lt | SUBRouTIME Ay 1y L s Lo Laa e b Lo i b Lo Lo
G MUMBER (16, IS \ASSTGMED 70, THTIS, SUBRAUTIME AT SKeek7oN, \BUZe D 7IMe | 1y)0y
s lexreemae 1S6Am 1yl b b b Lo bees e b b e L
| LA(ArESTIIB 2048 1o L Loy e e ey i b b b e ey
CL 7657, TNOTCATIOR Tw, \TMskee common |y o L Ly e e beenn b bean e
R A > =2 W R N T PR SRR SR Nl FN RS PR T SN SRR SN NSRS NN
vl ZPRIEL bbb b b b b Lo b b b i
¢ sE7 4P FOR PERIOD |0F 1 MINUTIE AND BRZORZTV 0F & | vy Loyl b b b i
! 6a 70 3 | Lol b b Lo b b s Lo b b b aa
g | ZPeR=28 L b e b b b b b e b b e e b
AETE P .- AN R PR DU FEETE SURE P N RS S N NN S SN,
G |S; PER, 0, &S, AMD 7 A
3¢ 1 CALL CQ,I/Mr‘ig, Py Vo772 3| IR T A REFT WA WAV A W N A N N
o Ak, Furls SuBRowTiIWE T CAUSE FERIODEC! [&EdﬂTJlellllllllll&llll|l1|lIll]llll
111 CALL.QggaI,g (SICIAMy g]g&;,' M’)||||||||||1|||:|||||llx||\|||\111\|||l|||1||||||
C%}élﬂf}’é&[@l’ic SCAW, CORE V7.7 I N N R RN FR R RSN NS RS SR
i leasd evors o b Lo b o b b b Lo b e b s b by g
C, \TERMINATIE, TIME-SHARING A OM ot v Lo b o b b b Diw i by
i L RETARM L b b b b b b b Lo b b b b a
0 RaRN ro Lrd by v b b s b e b v b b e e v b o
RT3 T RN R SN R SN NS RS RS KR N SRR NN RN WS R
RN BRI ST AR R RS N RS RN S R R NN R NN ST N RS

Figure 25. Subroutine A for Example 5 -~ Queueing an Analog Scan Program

Functions of Executive Programs 47

Table 2. Comparison of Timers

INTERVAL USED WHEN SUBROUTINE CANNOT BE SUBROUTINE IS EXIT WITH
TIMERS SHORTER TIME CALLED MUST BE A RECORDED EXECUTED ON A RETURN
182 BASE IS INCO INTERRUPT INTERRUPT STATEMENT
SPECIFIED SKELETON OR LEVEL OF
INCLUDED WITH INTERVAL
MAINLINE) WHEN TIMERS
TIMER ELAPSES
PROGRAMMED USED WHEN SUBROUTINE MAY | IF SUBROUTINE MAY BE EXIT WITH
TIMERS LONGER TIME | OR MAY NOT BE |IS NOT IN CORE,] EXECUTED ON A RETURN
BASE 1S IN CORE WHEN IT IS HANDLED INTERRUPT OR CALL
NEEDED TIMER ELAPSES AS A RECORDED LEVEL OR VIAQ
(E.G., HOURS) INTERRUPT MAINLINE LEVEL

Methods of Initiating Time-Sharing

Time-sharing can be initiated in two ways: selec-
table method (CALL SHARE) and automatic method
(CALL VIAQ).

Selectable Method -- CALL SHARE

The user will know at some predetermined point in
his program that he wishes to discontinue being in
the process mode for a specific period of time. He
therefore enters the time-sharing mode by the exe-
cution of a CALL SHARE (that is, he gives up con-
trol to the Nonprocess Monitor via the CALL
SHARE). This statement may be part of the user's
process program intended for those special appli-
cations where time-sharing is desired without the
use of the queueing technique. Its format is as
follows:

CALL SHARE (I)

Where I is an integer expression which specifies the
number of time intervals allowed for the nonprocess
program operation. The basic time interval is
assigned by the user at system generation time (see
System Design Considerations - System Director;
also Use of Interval Timers).

The meaning of the I parameter is clarified by
the following example.

EXAMPLE 1. Assume that the secondary time base
is 15 seconds (see Use of Interval Timers). Then

48

Time-Sharing Required
Interval Requested Statement

1 minute

5 minutes
30 seconds

1.75 minutes

CALL SHARE (4)
CALL SHARE (20)
CALL SHARE (2)
CALL SHARE (7)

The time-shared operation is terminated when-
ever the time interval specified by the user has
elapsed; it is usually not terminated before. Thus,
if 1 minute of time-sharing is indicated, it is usually
1 minute before control is returned to the next exe-
cutable instruction following the CALL SHARE
statement. The exchange time is not part of the 1
minute specification. This 1 minute is the length
of the time in the share mode. All interrupt time
is alloted against this 1 minute span.

Note that the Nonprocess Monitor will perform
a WAIT operation if there are no off-line jobs for
execution. Also, interrupts will be serviced as
they occur. If an interrupt routine recognizes a
need for the process program to resume operation,
it can terminate the time-sharing mode by executing
the following call:

CALL ENDTS

CALL ENDTS can be used only in an interrupt
routine where it sets the time-sharing clock to
indicate zero time. The first Timer C interrupt
that occurs after control is returned to the non-
process program causes the time-sharing operation

to be terminated; control then reverts to the process
mainline program. Note also that whenever time-
sharing is not in force the CALL ENDTS statement
is ineffective.

Automatic Method -- CALL VIAQ

The second method uses the queueing technique to
load a mainline or combination core load when the
Core Load Queue Table is empty, by executing a
CALL VIAQ (See Program Scheduling).

Note that a CALL VIAQ (when referenced) forces
a CALL SHARE statement for execution when the
queue is empty only if the user has indicated through
the use of the Console Interrupt button, with sense
switch 7 on, that batch work is to be carried out.

As a result, the process core load which is in
progress, or which has just been completed, is
saved on disk and control transferred to the Non-
process Monitor (or the nonprocess core load if one
had been interrupted and stored on disk). The period
of time allocated to time-sharing is specified by the
user in a System Director equate card, TISHA, at
system generation time. The computer remains in
the nonprocess mode for this specified period unless
a CALL ENDTS is executed by an interrupt routine.

At the completion of the specified time, another
CALL VIAQ is automatically forced by the system.
1f, in the meantime, a core load has been queued,
it is then executed. If the queue remains unchanged
(that is, nothing has been added to it), another time-
sharing operation will be triggered.

- If, at the end of a nonprocess job, the // END OF
ALL JOBS card indicates that there is no further
nonprocess work for execution, the VIAQ routine
will WAIT until either some addition has been made
to the queue or the Console Interrupt (C.I.) button
is again depressed for the commencement of a new
nonprocess job.

This method of entering time-sharing is, in
practice, preferred to CALL SHARE. CALL SHARE
may, however, be desirable in certain special
situations.

Two additional functions performed by the Time-
Sharing Control (TSC) program are CALL LINK
and CALL EXIT when these are referenced from
nonprocess programs.

EXAMPLE 2. (See Program Listing No. 1). In
order to illustrate some of the many TSX usages
without complex FORTRAN/Assembler language
coding, the following example was devised. Note

that in this example, the system and list printers
have been defined as the same device (1443). In
actual practice, the system printer would be a
1053; the list printer, a 1443 or another 1053.

Three analog inputs, A, B, and C, are to be
read at 15-second intervals. After C has been
read, linear interpolation is used between point A
and point B, and between point B and point C. The
values A, B, and C are temperatures: the tempera-
tures between A and B, and B and C are linear.

The point at which temperature A is taken is 25 feet
away from the point where temperature B is taken;
similarly for B and C.

A temperature histogram showing temperature
versus distance is to be printed on the list printer.

A nonprocess program is to be written which
simply lists numbers: this program is to be exe-
cuted in the time-sharing mode.

Timer 2 is used to produce an interrupt every 15
seconds so that one of the three analog inputs may
be read.

The skeleton contains a timer service subroutine
for Timer 2, called SCAN, which calls programmed
interrupt level 7 when 15 seconds have elapsed
(that is, SCAN executes a CALL LEVEL (7)). Timer
2 has a base (TBASE) of 1 millisecond. ,

The problem was solved under TSX using the in-
skeleton subroutine SCAN and the following five core
loads:

COLDC
WAITC
READC
CALCC
SHOWC

Figure 26 illustrates the general problem logic
flow.

COLDC (referred to at execution time as C/L #1).
This is a mainline core load which is directly
called by the cold start program. Its primary
function is to unmask all interrupt levels, set
timer to 15 seconds, and chain to core load
WAITC.

WAITC (referred to at execution time as C/L #2).
This core load merely calls VIAQ which results
in either a queued program being executed, or
the beginning of time-sharing.

READC (referred to at execution time as C/L #3).
This is the solitary interrupt core load which is

Functions of Executive Programs 49

executed on level 7. The SCAN routine in skele-
ton executes a programmed interrupt to level 7
each time the 15-second interval elapses. The
*STORECI control card for this core load contains
level and bit indicators equal to 2407 -- which
indicates programmed interrupt level 7.

When this core load is executed, an indicator
named ICNT, which is in INSKEL COMMON, is
interrogated. If this indicator is 1, the first
point A is read, timer 2 is reset (for another 15-
second interval), and the core load exits by way
of a CALL INTEX.

If the indicator is 2, the second point B is
read, the timer is reset, and the core load exits.

If the indicator is 3, the third point C is read,
the timer is reset, two core loads CALCC and

SCAN
COLD P
START

COoLDC (MAINLINE)

(INSKEL S/R)

CALL LEVEL (7)

CALL TIMER(SCAN, 2, 15000)

CALL CHAIN(WAITC)

Y

WAITC (MAINLINE)

TESTS QUEUE AND
TIME-SHARES IF
EMPTY

%

READC I (INTERRUPT)

CALL VIAQ

CALL TIMER(SCAN, 2, 15000)
CALL QUEUE(CALCC, 1,0)
CALL QUEUE(SHOWC, 2,0)
CALL ENDTS _

CALL INTEX

T

'

CALCC | (MAINLINE

CALL VIAQ

L

CALL VIAG

I

|

|

SHOWC (MAINLINE) ’
]

Figure 26, General Problem Logic Flow -- Example 2

S0

SHOWC are queued, time-sharing is terminated,
and the core load exits via a CALL INTEX.

CALCC (referred to at execution time at C/L #4).
CALCC takes the three analog readings, A, B,
and C, which have been stored in INSKEL COM-
MON, interpolates and stores the 51 results
back into INSKEL COMMON.

The core load is executed by a CALL VIAQ.

SHOWC (referred to at execution time as C/L #5).
SHOWC takes the 51 interpolated results from
INSKE L, COMMON and outputs a scaled histo-
gram on the list printer. It then calls VIAQ.

NOTE: Each core load prints a message on entry
to and on exit from the core load itself. This
message identifies the core load as C/L. 1, C/L 2,
C/L 3, C/L 4, or C/L 5.

This diagnostic message is accomplished by a
CALL-type FORTRAN subroutine which is included
in the skeleton. Its format is as follows:

CALL ENT (I, J)

where ENT is the name of this subroutine.
Either of two messages, depending on the
parameters I and J, will be printed:

A) ENTERED C/L NO.
B) EXITED C/LNO.....
ENTERED will be printed whenI = 1.
EXITED will be printed when1 = 2.

J is the core load identification number as
follows:

J =1 = COLDC
J = 2 = WAITC
J = 3 = READC
J = 4 = CALCC
. J = 5 = SHOWC

The on-line results on the list printer (Program
Listing No. 1) also clearly indicate when time-
sharing has taken place.

PROGRAM LISTING NO. 1: EXAMPLE 2

FLET

PACK LABEL
00000 begin)
0428
0488
063A

+FIOS 001B 03A0
DUMMY 0092 0488
/PRSV 4000 O05AC

/EPDM T7FFF
DUMIN 005A
«SKEL 0038

03BB
0489
05E0

/EPSV 0780
NONPR OQOFOC
+EPRG 0022

0422 /INSV 2280
048A NP 0098
0618 /CLST 0780

DUP FUNCTION COMPLETED

/7 J0B

// FOR COLDP
#10CS(1443PRINTER)
%LIST ALL

EXTERNAL SCAN,WAITC

COMMON/ INSKEL/I19124134INCNT
CALL UNMK(=1l,4=1)

CALL ENT(1,1)

INCNT=1

CALL TIMER (SCAN,2,415000)
CALL ENT(241)

CALL CHAIN (WAITC)

END

VARIABLE ALLOCATIONS

Il =FFFF* 12 =FFFE%x I3 =FFFD* INCNT=FFFCx
FEATURES SUPPORTED

ONE WORD INTEGERS

10CS

CALLED SUBPROGRAMS

SCAN WAITC UNMK ENT TIMER CHAIN PRNTN EBPRT

INTEGER CONSTANTS

1=0004 2=0005 15000=0006

CORE REQUIREMENTS FOR COLDP

COMMON 0 INSKEL COMMON 4 VARIABLES 4 PROGRAM 40

END OF COMPILATION

COLDP

DUP FUNCTION COMPLETED
// DuUP

*STORECIM M COLDC COLDP COLDC
*CCEND

CtB,y BUILD COLDC

CORE LOAD MAP

TYPE NAME ARGl ARG2
*CDW TABLE 4002 000C
*I8T TABLE 400E 001D
*FI10 TABLE 4028 0010
*ETV TABLE 4038 O0OOF
*VTV TABLE 404A OOlE
*IST TABLE 4068 0036
#*PNT TABLE 409E 000C
MAIN COLDP 40B1

PNT COLDC 40AO

PNT COLDC 40A4

CALL UNMK 40D6

CALL ENT 413D

CALL TIMER 415C

PNT WAITC 40A8

LIBF SUBIN 41B2 404A
LIBF COMGO 41EC 404D
LIBF MWRT 43C8 4050
LIBF MIOI 447E 4053
LIBF MCOMP 4455 4056
LIBF I0U 487TA 4059
CALL JOFIX 4932

/NPSV 4000
9DUMY OOEC

oE

COFO

(Note: This is the state of FLET before compilations

0444 «MESS 0010 0478
048C /SPSV 4000 0578
0488

Functions of Executive Programs

51

CALL BT1BT 4962

CALL SAVE 48CE

LIBF ADRCK 49Cé6 405C
LIBF FLOAT 4A18 405F
LIBF IFIX 4A34 4062
LIBF NDRM 4A60 4065
CORE 4A8E 3572

CLBy COLDC LD XO

D 45 CORELOADS NOT FOUND
WAITC
DUP FUNCTION COMPLETED

// 308

// FOR WAITP

*LIST AlLc

*10CS (1443PRINTER)

CALL ENT(1,2)
CALL ENT(2,2)
CALL VIAQ

END

FEATURES SUPPORTED
ONE WORD INTEGERS

10CS
CALLED SUBPROGRAMS

ENT VIAQ PRNTN EBPRT
INTEGER CONSTANTS

1=0000 2=0001

CORE REQUIREMENTS FOR WAITP

COMMON 0 INSKEL COMMON 0

END OF COMPILATION

WAITP

DUP FUNCTION COMPLETED

7/ DUP

*STORECIM M WAITC WAITP COLDC
*CCEND

CLBy BUILD WAITC

CORE LOAD MAP
TYPE NAME ARGl ARG2

*CDW TABLE 4002 000C
*IBT TABLE 400E 001D
*F10 TABLE 4028 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A O0O0lE
*JST TABLE 4068 0036
*PNT TABLE 409E 0008
MAIN WAITP 40A8
PNT WAITC 40A0
PNT COLDC 40A4
CALL ENT 40CF
CALL VIAQ 40EE
LIBF SUBIN 414E 404A
LIBF COMGO 4188 404D
LIBF MWRT 4364 4050
LIBF MIOI 441A 4053
LIBF MCOMP 43F1 4056
LIBF I0U 4816 4059
CALL IOFIX .48CE
CALL BT1BT 48FE
CALL SAVE 486A
LIBF ADRCK 4962 405C
LIBF FLOAT 4984 405F
LIBF IFIX 4900 4062
LIBF NORM 49FC 4065
CORE 4A2A 35D6

CLBy WAITC LD XQ
DUP FUNCTION COMPLETED

52

VARIABLES

0

PROGRAM

This is a genuine TSX warning message. It Indicates
that core load WAITC was not built at this stage.

12

// JoB

// FOR READP
¥I0CS(1443PRINTER)
*LIST ALL

EXTERNAL SCAN,CALCC,SHOWC
COMMON/INSKEL/IALyIA24IA3,ICNT
CALL ENT(1,3)
L=ICNT
GO TO (5410515)yL
5 K=76
GO TO 20
10 K=79
GO TO 20
15 K=127
20 CALL AIP(O,JTEST)
GO TO (25930)9JTEST
25 GO TO 20
30 CALL AIP(01000,ITEMP,K)
70 CALL AIP(O,JTEST)
GO TO (71472)+JTEST
71 GO TO 70
72 GO TO (35940445),L
35 IA1=ITEMP
GO TO 50
40 TA2=1TEMP
GO TO 50
45 TA3=1TEMP
50 WRITE(3,100) ICNT
100 FORMAT (' ICNT=',13)
ICNT=ICNT+1
CALL TIMER (SCAN,2,15000)
GO TD (55955955460) ¢ ICNT
55 CALL ENT(2,3)
CALL INTEX
60 ICNT=1
CALL QUEUE(CALCC,1,0)
CALL QUEUE(SHOWC,2,0)
CALL ENDTS
CALL ENT(2,3)
CALL INTEX
END

VARIABLE ALLOCATIONS
1Al =FFFF% 1A2 =FFFE* IA3 =FFFD* ICNT =FFFC* L =0000 K =0001 JTEST=0002 ITEMP=0003

STATEMENT ALLOCATIONS
100 =000D 5 =0023 10 =0029 15 =002F 20 =0033 25 =003D0 30 =003F 70 =0044 71 =004E 72 =0050
35 =0057 40 =005D 45 =0063 50 =0067. 55 =0081 60 =0087

FEATURES SUPPORTED
ONE WORD INTEGERS
10CS

CALLED SUBPRDGRAMS
SCAN CALCC SHOWC ENT AIP TIMER INTEX QUEUE ENDTS COMGO MWRT MCOoMP MIOI PRNTN EBPRT

INTEGER CONSTANTS
1=0004 - 3=0005 76=0006 79=0007 127=0008 0=0009 1000=000A 2=0008 15000=000C

CORE REQUIREMENTS FOR READP
COMMON O INSKEL COMMON 4 VARIABLES 4 PROGRAM 156

END OF COMPILATION

READP
DUP FUNCTION COMPLETED

/7 buP

*STORECIM | READC READP 2407 READC is an interrupt core load responding to o
*CCEND progrommed interrupt on level 07.

CLB, BUILD READC
ROC ANINT 0023 LEV.O

CORE LOAD MAP
TYPE NAME ARGl ARG2

Functions of Executive Programs

*CDW TABLE 4002 000C
*IBT TABLE 400&E 001D
*F10 TABLE 4028 0010
*ETV TABLE 403B O0OOF
*VTV TABLE 404A 0021
*PNT TABLE 406C 000C
MAIN READP 408C
PNT READC 406E
CALL ENT 4135
LIBF COMGO 4154 404A
CALL AIP 41A6
LIBF MWRT 435C 404D
LIBF MIOI 4412 4050
LIBF MCOMP 43E9 4053
CALL TIMER 480E
CALL QUEUE 4864
PNT CALCC 4072
PNT SHOWC 4076
CALL ENDTS 4926
LIBF SUBIN 4930 4056
CALL QZ010 496A
CALL QZERQ 49BE
LIBF AIPTN 49CC 4059
LIBF I0U 4A4E 405C
CALL IOFIX 4BO6
CALL BT1BT 4836
CALL SAVE 4AA2
LIBF ADRCK 4B9A 405F
LIBF FLOAT 4BEC 4062
LIBF IFIX 4C08 4065
CALL GAGED 4C34
CALL UNGAG 4C45
CALL ANINT 4CS54
LIBF NORM 4D90 4068
CORE 4DBE 1242

CLBy READC LD XQ

D 45 CORELOADS NOT FOUND
CALCC SHOWC
DUP FUNCTION COMPLETED

// Jos

// FOR CALCP

*LIST ALL

*10CS (1443PRINTER)

DIMENSION N(51)
COMMON/ INSKEL/J1,J24yJ34sICNTHN
CALL ENT(1,4)
WRITE (346) J14J2yJ3

6 FORMAT (' READINGS',y3110)
N(l)=J1
N(26)=J2
N({51)=J3
DO 4 I=2425

4 NAI)=N(1)+((N(26)=N(1,,/725)%(]-1)
DO 5 I=27,50

S N{I)=N(51)+((N(26)=N(51))/25)%(51-1)
WRITE (3,7) (N(I)yI=1,51)

7 FORMAT (12110)
CALL ENT(2y4)
CALL VIAQ
END

VARIABLE ALLOCATIONS
J1 =FFFF% J2 =FFFE* J3 =FFFD* ICNT =FFFC* N =FFFB%* I =0002

STATEMENT ALLOCATIONS
6 =000E 7 =0017 4 =003E 5 =006A

FEATURES SUPPORTED
ONE WORD INTEGERS
10CS

CALLED SUBPROGRAMS
ENT VIAQ 1STOX MWRT MCOMP MIOIX MIOI sussC PRNTN

54

EBPRT

INTEGER CONSTANTS

1=0006

4=0007 3=0008

CORE REQUIREMENTS FOR CALCP

COMMON 0

INSKEL COMMON

END OF COMPILATION

CALCP

DUP FUNCTION COMPLETED
// DUP
*STORECIM M CALCC CALCP COLDC
*CCEND

CLBy BUILD CALCC

CORE LOAD MAP

TYPE NAME ARGL ARG2
*CDOW TABLE 4002 000C
*IBT TABLE 400f 001D
*FI0 TABLE 402B 0010
*ETV TABLE 403B O0O0OF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN CALCP 40CA

PNT CALCC 40AA

PNT COLDC 40AE

CALL ENT 417D

LIBF MWRT 4326 404A
LIBF MIOI 43DC 404D
LIBF MCOMP 43B3 4050
LIBF ISTOX 47D8 4053
LIBF SUBSC 47F8 4056
LIBF MIOIX 43E8 4059
CALL VIAQ 4824

LIBF SUBIN 4884 405C
LIBF COMGO 48BE 405F
LIBF I0U 4910 4062
CALL IOFIX 49C8

CALL BT1BT 49F8

CALL SAVE 4964

LIBF ADRCK 4A5C 4065
LIBF FLOAT 4AAE 4068
LIBF IFIX 4ACA 4068
LIBF NORM &4AF6 406E
CORE 4824 34DC
CLBy CALCC LD X0

DUP FUNCTION COMPLETED

// JOB
// FOR SHOWP

*10CS
*LIST

100

(1443PRINTER)
ALL

DIMENSION N(51)4M(51),4L(120)
COMMON/INSKEL/11412,I3,ICNTyN
CALL ENT(1,5)

DO 2 IK=1,120

LIIK)=0

DO 3 I=1,51

MI=N(1)/300

M(I)=TABS(MI)

DO 4 J=1,51

K=M(J)/2

WRITE (3,100) Jy(L{I)sI=1yK)
FORMAT (13,1X,5812)

CALL ENT (245)

CALL VIAQ

END

VARIABLE ALLOCATIONS

Il
J

=FFFE* I3
=00AF

=FFFF% 12
=00AE K

2=0009

56 VARIABLES

=FFFD* ICNT =FFFC* N

25=000A

6

PROGRAM

=FFFB* M

27=0008

170

=0032

L

50=000C

=00AA

IK

51=0000D

=00AB I =00AC MI =00AD

Functions of Executive Programs

55

STATEMENT ALLOCATIONS
100 =00BA 2 =00C7

FEATURES SUPPORTED
ONE WORD INTEGERS
10Cs

CALLED SUBPROGRAMS
ENT 1ABS VIAQ

INTEGER CONSTANTS
1=0082 5=0083

3 =00E9 4

ISTOX MWRT

120=0084

CORE REQUIREMENTS FOR SHOWP

COMMON 0 INSKEL COMMON

END OF COMPILATION

SHOWP

DUP FUNCTION COMPLETED
// DUP
*STORECIM M
*CCEND

CLB, BUILD SHOWC

CORE LOAD MAP
TYPE NAME ARGL ARG2

*CDW TABLE 4002 000C
*IBT TABLE 400E 0010
*FI0 TABLE 402B 0010
*ETV TABLE 403B 00OF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN SHOWP 416F

PNT SHOWC 40AA

PNT COLDC 40AE

CALL ENT 41FF

LIBF SUBSC 421E 404A
LIBF ISTOX 424A 404D
CALL TABS 426A

LIBF MWRT 440E 4050
LIBF MIOI 44C4 4053
LIBF MIOIX 44D0 4056
LIBF MCOMP 449B 4059
CALL VIAQ 48CO

LIBF SUBIN 4920 405C
LIBF COMGO 495A 405F
LIBF ADRCK 49AC 4062
LIBF IOU 49FE 4065
CALL IOFIX 4AB6

CALL BTI1BT 4AE6

CALL SAVE 4AS52

LIBF FLODAT 4B4A 4068
LIBF IFIX 4B66 406B
LIBF NORM 4B92 406E
CORE 4BCO 3440

CLBy SHOWC LD X0

DUP FUNCTION COMPLETED
*DUMPLET F

FLET

PACK LABEL
00000

SHOWC SHOWP COLDC

«FIOS 0018 03A0 /EPDM TFFF 03BB
DUMMY 0092 0488 DUMIN O05A 0489
READC 0ODBC 049E CALCC 0B22 04A9
+SKEL 0038 O05€E0 +EPRG 0022 0618

DUP FUNCTION COMPLETED

56

=0109

MCOMP MIOIX

0=008B5

56 VARIABLES

/EPSV 0780
NONPR 0OOFO
SHOWC OBBE
/CLST 0780

MIOI suBscC

51=0086 300=0087
178 PROGRAM 128
0422 /INSV 2280
048A NP 0098
0482 9DUMY 008C
063A .E 00FO0

PRNTN EBPRT

0428
0488
048BC
0488

2=0088 3=0089

/NPSV 4000
COLDC OAS8C
/SPSV 4000

0444
048C
0578

+«MESS 0010
WAITC OA28
/PRSV 4000

0478
0495
05AC

ENTERED C/L
EXITED
ENTERED C/L
EXITED C/L

// JOB

// XEQ NPJOB

*CCEND

c/L

NN

CLBy BUILD NPJDB

ENTERED C/L 3

ICNT= 1

EXITED C/L
ENTERED C/L

ICNT= 2

W

EXITED C/L 3
CLBy NPJOB LD XQ

W WNOI P WN -

10
11
12
13
14
15
16
17
18
19
20

ENTERED C/L 3

ICNT= 3

EXITED C/L 3

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ENTERED C/L 4

READINGS
9000
10440
11880
13320
14760

9000
9120
10560
12000
13440
14880

EXITED C/L 4
ENTERED C/L 5
ENTERED C/L 3

ICNT= 1
EXITED
1 0000
2 0000
3 0000O
4 0000
5 0000

[Nl oNoNe]

L

c/
0
0
0
[o]
0

(=NeleNaio)
cCoocoow
o000

EFTA
EFTA
EFTA
EFTA

EFTA

EFTA
EFTA

EFTA

EFTA

EFTA

cooooo
coo0oo
o000

15000

9360
10800
12240
13680

9480
10920
12360
13800

9600
11040
12480
13920

Time~Sharing begins here.

Interrupt core load on level 07 takes precedence over
P job. Prog d interrupt level 07
initiated from in-skeleton timer routine called SCAN.

During time-sharing, a cess job is executed and
prints out a pattem of n rs in an increasing order
of magnitude, as shown. This list of numbers is
interrupted by core loods (mainline process or inter-
rupt process) at a higher level.

Third entry of core load READC calls end time-sharing
Time-sharing terminates the next time timer C interrupts.

Core lood 4 is executed from the QUEUE,

9720 9840 9960 10080 10200
11160 11280 11400 11520 11640
12600 12720 12840 12960 13080
14040 14160 14280 14400 14520

Core load 5 is executed from the QUEUE.

Core load 5 (SHOWC) prints histogram.

10320
11760
13200
14640

Functions of Executive Programs

pt core load

g of the histogram, interry
into core and executed.

£=
to
58
Lo
£.2
28
s
1)
cooooo
coocoocooooco00
o coooocoo00o0OOOCOOO
cooocoo cocoo0o0O0OO0OOCOODOOO
cooococoooo0o0O0 cooo0O0OOO0OOCOOO0O0O
cooooOOOCOOOOO OO coooooo0000OOOOO0O
OO0 O0000O0O0OOOO0 000000 ccoocooocoo00O0OC
0O 000000000000 0000000OO0000 00000000 CO0O00 O
0000000000000 DO0C00O0O000000O000O COOOO0O00O0OOOO0O
R R e e e e e o e e o k) CoooCo0OoOO0OC00
0000000 00000000000 OO0000000O000D O ccoooo0o0OOOO0O00
0000000000000 OO0000DO000OO00000O00 COC0000000OD0DO
[eNoNoNoNeNooNoYoNol=NoReNoRoNaNoRol=NolooN=NoloNol=NoNeNole) COO0OO0OO0OCOQOQC0OQC0O0
000000 00000000000 000000000000N LO0OOO000000600 N
0000000 000000000000 000000000000N HLOOOOO00OOOO000 oW
0000 0000000000000 O000O0O00O Q0D 0000000000000 O
000D 0000000000000 000000000000 M MOOOOOOCODOOOOO ON
0000000 000000000000 000000000000 Co0O00O00O0OD00O000O0
0000000 000000000000 000000000000N N000000000000Dd 0N
000000 O0OCO00OOBO00D0000000000. “ooooocooooo00060"
0000000000OOOOOOOOOOOOOOOOOOOOOM goocooocoooo0o000000a
0000000000000 DO000O 000000000000 UWNFOOODOC000OOCOOOOO MAMIN ON~DO O
0000 000000000000 000 000000000000 Z XO00D000000006000K . TIFIrssavn
OOOO000OOO000000000OOOOOOOOOOOOEWEOOOOOOOOOOOOOOOE
oreo oINaLALLATSNNS NANRARANG SRS T RARPIYRILIS LSRR

The cycle of events repeats itself.

EFTA
EFTA

3
3

3
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
7
78

51
52
ENTERED C/L

ICNT=
EXITED C/L

58

USE OF THE OPERATIONS MONITOR

The Operations Monitor is an optional watch-dog type
,Timer device which warns the user when the proces-

or-controller is not executing a predicted sequence
of instructions. This may be caused by power fail-
ure, computer hang-up, or computer looping.

The watch-dog timer works on the principle that
a contact closes upon completion of a preset time-
out period. When this occurs, a separately-powered
alarm or indicator (supplied by the user) is brought
into play. The time-out period is settable within the
range 5-30 seconds. Note that the time interval
selected must be greater than the secondary time
base specified by the Interval Timer Control (ITC)
program.

The user may also exercise the option of manual
or automatic reset of the Operations Monitor. This
option is specified in the OPMON equate card at
system generation time (see System Design Consid-
erations: System Director). Automatic resetting
is undertaken by ITC during time-sharing operations.
If the Operations Monitor is used, it is the user's
responsibility to ensure that a reset (XIO) instruc-
tion is executed frequently enough in his program so
as to prevent timeout during normal operation. If
the reset command is not given during the selected
interval, timeout occurs and the alarm circuit is
closed.

The Call Operations Monitor subroutine is used
":o reset the monitor. Its format is:

CALL OPMON

Consider the following example. A particular
program (say, a logging program) has been designed
for execution every 15 seconds, and therefore ideally
suited for Operations Monitor reset. If the program
is not, for some reason, executed within this allowed
time span, the Operations Monitor is set, causing an
alarm in the warning device the user has attached to
the Operations Monitor.

ERROR ALERT CONTROL

Error procedures in the IBM 1800 Time-Sharing
Executive System are provided by a program pack-
age called the Error Alert Control (EAC) Program
which is designed to analyze errors that are:

1. Basic to the hardware, and
2. which may result from incorrect use of soft-
ware programs.

Since errors affect all real-time systems, from
the largest to the smallest, the policy adopted
towards all errors is to keep the system on-line if
'at all possible, and to minimize operator decisions.

NOTE: On all entries to EAC, the system is placed
in a fully masked state. On exit from EAC, the
system mask registers are restored by the calling
program, or PSC, or MIC, or on a system reload,
by the cold start core load. All interrupts that
occurred while the system was masked are then
serviced.

Since EAC masks the whole system, the I/0 op-
erations performed by EAC (saving of the part of
variable core where the disk resident parts of EAC
are to be read in, reading in EDP and error de-
cision program, error update program if hardware
error, restoring of the saved area of variable core,
printing of the error message on the EAC printer)
cannot be overlapped. This means that the system
can be masked for quite long. For example, on an
error like '"1443 not ready' the system will be
masked for about 3.5 seconds (about 6 seconds if all
of core is dumped to the /EPDM area on disk for
later error analysis) with a 1053 typewriter as EAC
printer. With a 1443 as EAC printer these times
are about 2,5 and 4. 0 seconds respectively. These
figures are for a 32K system with fast-access disk
units.

Features of EAC

Error Conditions Serviced

The Error Alert Control program provides error
recovery for the following conditions:

o An input/output error which persists despite
repeated corrective action by an I/O subroutine.

e® Occurrence of an internal machine error (e.g.,
invalid operation code, parity, storage protect
violation)

e Other control subroutine error conditions (e.g.,
QUEUE, FORTRAN 1/0)

Error Analysis Provisions

Provision is also made for the following features.

Dump of Core Storage to Disk. An optional dump of
all core storage to disk is provided if this option is
elected through the System Director equate card
DUMP1 at system generation time. If, for example,
DUMPI1 is equated to 1, the DUMP routine is included
(at System Director assembly time) with the EAC
program package. This feature is only applicable to
subroutine type errors.

The DUMP routine writes core into the EDP
DUMP AREA (/EPDM) on disk. Before writing this
routine tests word 3 of fixed core. If it is negative,
core will not be dumped to /EPDM since a negative
value means either that the user has not set it (it is
initialized to -1) or that core has already been

Functions of Executive Programs 59

dumped to /EPDM on a previous entry to EAC, If
word 3 is non-negative but not equal to the actual
error code, no saving of core is performed. If
word 3 equals the actual error code, it is set nega-
tive to prevent /EPDM from being overlaid by later
entries to EAC, and core is dumped to /EPDM,
Since permanent core may be storage protected, and
the disk routine must insert the sector address at
the start of each sector to be written, the dump
routine moves blocks of six sectors of permanent
core to variable core and copies it to disk. After
all of permanent core has been copied, that portion
of variable core used is restored,

The copied data on disk can now be dumped to an
output device by the DUP *DUMP function. The
data can also be dumped to cards by the EDMP
program for analysis by the dump analysis program
DMPAN.

User Error Subroutine. In a process program, EAC
branches to a user-written error subroutine if this
is included with the mainline core load. This action
is bypassed for internal machine errors, if an

error subroutine is not included and if a nonprocess
program is in core.

A user-written error subroutine can be optionally
included with each process core load. The purpose
of this subroutine is to allow the user to have con-
trol before EAC overlays the variable area with the
disk portion of EAC. For example, there may be
special data or other information that the user wants
to save. Output, such as special core dumps, mes-
sages, or contact operate functions, can also be
executed. The error subroutine cannot be written in
FORTRAN and must be a CALL type subroutine,

Before entering the user's error subroutine,
error identification data is placed in words 00115-
00119. These words will contain the followings

Input/Output Errors

00115 Error type code

00116 Address of illegal call or
address of the device table

00117 Address of level work area

00118 Address of originating call

Queue Overflow
00115 Error type code

00116 Word count of core load
named in CALL QUEUE

00117 Sector address of core load
named in CALL QUEUE

00118 Priority of core load named
in CALL QUEUE

00119 Error parameter of core

load named in CALL QUEUE

60

The meaning of on-line EAC error type codes is
given in Table 3. Table 4 contains a description of
all on-line errors serviced by EAC, the format of
each EAC message printout, and corrective action

specifications.
A standard recovery procedure is executed by

EAC according to the type of error (see Table 4).
User options are specified in the same table (see
USER OPTION column), However, under certain
conditions, EAC overrides the user option. The
EAC option is always executed if an error subrou-
tine is not used or the user does not specify an op-
tion. Options can be specified by the user before
returning to EAC by loading the A-register with -10
for S (RESTART) or -1 for I & R (CONTINUE).

The last logical statement in the error subroutine
must be a BSC I entry to the error subroutine.

The core load named for the restart option can be
an error analysis core load, or it can be the first of
a new series of core loads. If queueing techniques

are used, the restart core load can be simply a
CALL VIAQ statement (CALL QUEUE can be exe-
cuted in the restart core load or the error subrou-
tine).

The statements listed below cannot be used in an
error subroutine: :

CALL BACK CALL QIFON
CALL CHAIN CALL RESMK
CALL DPART CALL SAVMK
CALL ENDTS CALL SHARE
CALL EXIT CALL SPECL
CALL INTEX CALL UNMK
CALL LEVEL CALL VIAQ
CALL LINK

CALL MASK

Update Error Counters Maintained on Disk. For
each I/0 unit on the system, a hardware counter is
maintained on the disk for printout to the Customer
Engineer for maintenance purposes.

Back-up Capability for D.P. I/0O Units. The option
of including backup units for the 1053 and the 1816,
as well as the logical removal of the 1443 from
service, can be specified at system generation time.
If backup is not provided, the 1053 printer will be
automatically removed from service when multiple
failures occur without taking the system off-line.
Backup for the EAC printer is achieved by defin-
ing multiple EAC printers at TASK assembly time
(if the EAC printer is defined as a 1053). When an
output error occurs, or if the unit is not ready
(that is, interrupt response is not received), EAC
will logically disconnect the unit in error and substi-

tute the backup unit. When backup is initiated be-
cause of a hardware malfunction, the message in
progress on the failing unit is not continued on the
backup device. When the error condition is cor-
rected, the unit can be restored to its original
status by using the C. E. Interrupt routine. See

C. E. Interrupt Routine in the publication IBM 1800

Time-Sharing Executive System, Operating Proce-
dures, Form C26-3754.

EAC Program Breakdown

EAC can be considered in terms of four component
parts; each component functions as a separate sub-
program, the four parts remaining interdependent
insofar as the status information of the error (de-
tected) is shared by all routines concerned. In
addition, EAC sets up a level work area for the use
of reentrant coded programs when it is processing

Functions of Executive Programs 60. 1

oTable 3. On-Line EAC Eror Type Codes

EAC MESSAGE FORMAT

*INN CL.OCK AC-M PNAME LOCN

* - INDICATES PROCESS CORELOAD IN CORE
BLANK -~ INDICATES NON-PROCESS CORELOAD IN CORE

GENERAL /O
PROCESS I/0O
FORTRAN

QUEUE

MASK
MISCELLANEOUS

NN - TWO DIGIT NUMBER INDICATING TYPE OF ERROR
CL.OCK - TIME IN THOUSANDTHS OF AN HOUR

AC - AREA CODE FOR THE ASSOCIATED 1/0 DEVICE
M - MODIFIER IF MORE THAN ONE FOR THAT AREA CODE

PNAME - NAME OF THE PROGRAM IN CORE AT THE TIME OF
THE MESSAGE (NOT NECESSARILY THE ONE WHICH
ORIGINATED THE CALL LEADING TO THE ERROR
CONDITION)

LOCN - LOCATION OF THE CALL

USER ERROR TYPE CODES FOR DP |/O

i01 PARITY

102 STORAGE PROTECT

103 ILLEGAL CALL

104 NOT READY

105 //BLANK CARD

106 FEED CHECK

107 READ-PUNCH CHECK

108 DATA OVERRUN

109 WRITE SELECT

110 NO PRINT RESPONSE

11 DATA ERROR

112 INVALID MESSAGE ON DISK
113 FILE PROTECT ERROR

114 TAPE ERROR

15 EXCESSIVE TAPE ERRORS

116 END OF TAPE

1z INVALID CALL TO ERROR ROUTINE
118 NO RESPONSE FROM DISK
119 INVALID DISK ADDRESS

USER ERROR TYPE CODES FOR PROCESS I/O

P01 PARITY DATA OR COMMAND REJECT
P02 STORAGE PROTECT VICLATION

P03 ILLEGAL CALL

P04 PARITY CONTROL

P05 OVERLAP CONFLICT

P17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR QUEUING

QO1 ERROR OPTION IS ZERO - CALL IGNORED
Q02 ERROR OPTION NOT ZERO -

NO LOWER PRIORITY IN QUEUE
Q03 QUEUE ENTRY REPLACED BY NEW CALL QUEUE

Q04 QUEUE CALL NOT HONORED -
RESTART INITIATED
Q17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR FORTRAN

F90 ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
Fo1 ILLEGAL INT USED IN A COMPUTED GO TO

USER ERROR TYPE CODES FOR FORTRAN (CONTINUED)

DISK 1/O
F92 FILE NOT DEFINED
F93 RECORD NUMBER TOO LARGE, ZERO OR NEGATIVE

NON-DISK 1/0O

USER ERROR TYPE CODES FOR MASK ROUTINES

MO ILLEGAL CALL RESMK
M02 ILLEGAL CALL UNMK
M17 INVALID ERROR CODE

USER ERROR TYPE CODES FOR PROGRAM
SEQUENCE CONTROL

X01 ILLEGAL CALL BACK

X02 INTERRUPT LEVEL ERROR

X03 CORELOAD NOT LOADED ON DISK

X04 RESTART CORELOAD NOT LOADED ON DISK
X17 INVALID ERROR CODE

F94 INPUT RECORD IS IN ERROR
F95 RANGE OF NUMERICAL VALUES S IN ERROR
F96 OUTPUT FIELD TOO SMALL TO CONTAIN THE NUMBERS
F97 ILLEGAL UNIT REFERENCE
F98 REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
F99 WORKING STORAGE AREA INSUFFICIENT FOR
DEFINED FILES
F17 INVALID ERROR CODE
UNEDITED I/O
F87 ILLEGAL UNIT REFERENCE
F88 READ LIST EXCEEDS LENGTH OF WR'TE LIST
F89 RECORD DOES NOT EXIST FOR READ LIST
ELEMENT

Functions of Executive Programs

61

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS
DEC HEX | EAC EXIT

1053/1816 PRINTER/KEYBOARD

00 00 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1053
USER MUST CORRECT CALL IN PROGRAM
01 01 104 R,S S* 1053 NOT READY
104 CL.OCK AC-M PNAME 1053 NOT READY
CHECK FORMS

03 03 104 R,S R,S 1816 KEYBOARD NOT READY
104 CL.OCK AC-M PNAME 1816 NOT READY
MAKE READY
04 04 102 L N STORAGE PROTECT VIOLATION FROM 1816

102 CL.OCK AC-M PNAME 0000
USER MUST CHECK PROGRAM
05 05 101 S R KEYBOARD PARITY ERROR
101 CL.OCK AC-M PNAME 1816 PARITY
LAST CHARACTER TYPED MAY BE INVALID
06 06 101 I N* PRINTER PARITY ERROR
101 CL,OCK AC-M PNAME 1053 PARITY
AN ATTEMPT TO PRINT HAS BEEN MADE 2 TIMES
07 07 110 R N* NO PRINT RESPONSE
101 CL,OCK AC-M PNAME NO PRINT RESP
NO OP COMPLETE HAS BEEN RECEIVED
08 08 n2 R N INVALID MESSAGE ON DIsK
112 CL.OCK AC-M PNAME
THIS MESSAGE IS NOW LOST

1442 CARD READ-PUNCH

10 0A 103 S N ILLEGAL CALL TO 1442
103 CL.OCK PNAME LOCN 1442
USER MUST CORRECT CALL IN PROGRAM
1 0B LAST CARD
12 oC 101 R S PARITY ERROR
101 CL.OCK AC PNAME 0000 1442 PARITY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
13 oD 102 L N STORAGE PROTECT VIOLATION
102 CL.OCK AC PNAME 0000
USER MUST CHECK PROGRAM
14 3 106 R S FEED CHECK
106 CL.OCK AC PNAME 1442 NOT READY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
15 OF 108 DATA OVERRUN
108 CL.OCK AC PNAME 0000 1442 NOT READY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
16 10 107 R S READ=-PUNCH CHECK
107 CL.OCK AC PNAME 1442 NOT READY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
17 n 105 S N //BLANK CARD
105 CL.OCK AC PNAME 0000
CONTROL CARD ENCOUNTERED - CHECK DECK
19 13 104 R S 1442 NOT READY
104 CL.OCK AC PNAME 1442 NOT READY
PRESS START ON UNIT

1054/1055 PAPER TAPE READER/PUNCH

20 14 103 N N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1054
USER MUST CORRECT CALL IN PROGRAM
21 15 101 S | PUNCH PARITY ERROR
101 CL.OCK AC PNAME 0000 1055 PARITY
LAST CHARACTER OUT MAY BE INVALID
22 16 104 R,S S READER NOT READY
104 CL,OCK AC PNAME 1054 NOT READY
MAKE READY
23 17 104 R,S S PUNCH NOT READY
104 CL.OCK AC PNAME 1055 NOT READY
MAKE READY

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

1 - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT

* = INTERNAL BACKUP ATTEMPTED

62

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND. OPTION
DEC HEX EAC EXIT

ERROR MESSAGE
AND COMMENTS

1054/1055 PAPER TAPE READER/PUNCH (Cont'd)

24 18 101 S |
25 19 102 oL N
1810 DISK
30 1E 163 S : N
31 1F 104 SR S
32 20 108 S 1
33 21 109 S |
34 22 11 S !
35 23 102 L N
36 24 101 S |
37 25 19 S N
38 26 113 S N
39 27 18 S N

1627 PLOTTER

4 29 101 S |

42 2A 104 R,S s
1443 PRINTER

50 32 103 S N

53 35 110 R,S R,S

54 36 101 S, 1 |

55 37 104 R,S R,S

READER PARITY ERROR

IO1CL.OCK AC PNAME 0000 1054 PARITY
LAST CHARACTER READ IN MAY BE [N ERROR
READER STORAGE PROTECT

102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)

ILLEGAL CALL
103 CL.OCK PNAME LOCN 1810
USER MUST CORRECT CALLING SEQUENCE
DISK NOT READY
104 CL,OCK AC PNAME 1810 NOT READY
MAKE READY
DATA OVERRUN
108 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR
INVALID DATA FROM DISK AFTER 10 TRIES
LOCN = OOFF indicates a seek error
on fast access disks.
WRITE SELECT
109 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR
STOP DISK AND START AGAIN TO RESET
DATA ERROR
111 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR
EXCESSIVE WD CT FOR SECTOR OR MODULO 4 ERROR
STORAGE PROTECT ERROR
102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)
PARITY ERROR
101 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR
ERROR PERSISTS AFTER 10 TRIES
INVALID DISK ADDRESS
119 CL.OCK AC PNAME 0000
INVALID ADDRESS OR UNEXPECTED HOME BIT ON
FILE PROTECT ERROR
113 CL.OCK AC PNAME 0000
USER TRIED WRITING IN A FILE PROTECTED SECTOR
NO RESPONSE
118 CL,OCK AC PNAME 0000 1810 HARDWARE ERROR
DID NOT RECEIVE OR LOST RESPONSE FROM DISK

PARITY ERROR

101 CL,OCK AC PNAME 0000 1627 PARITY
NO ATTEMPT IS MADE TO REPLOT THE POINT
NOT READY

104 CL,OCK AC PNAME 1627 NOT READY
MAKE READY

ILLEGAL CALL

103 CL.OCK PNAME ~ LOCN 1443
USER MUST CORRECT CALL IN PROGRAM
NO PRINT RESPONSE

110 CL.OCK AC PNAME 1443 NOT READY
PUSH START ON THE PRINTER
PARITY ERROR OR SYNC CHECK

101 CL.OCK AC PNAME 0000 1443 PARITY
NO ATTEMPT IS MADE TO REPRINT THE LINE
NOT READY

104 CL,OCK AC PNAME 1443 NOT READY
PUSH RESET AFTER CORRECTING PRINTER ERROR THEN

PUSH START

LEGEND FOR EAC STANDARD EXIT AND USER OPTION;
I - CONTINUE AT THE POINT OF INTERRUPT

R = RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

S - RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

Functions of Executive Programs

63

GC26-3703-1
TNL: GN34-0036
Technical Change

Table 4« On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND, OPTION
DEC HEX EAC EXIT

ERROR MESSAGE
AND COMMENTS

ANALOG INPUT BASIC

60 3C P03 S N
61 3D P02 L N
62 3E P04 S N
63 3F PO1 S N
64 40 P05 S N
65 41 S N
66-68

P17 S N

DIGITAL INPUT BASIC

70 46 PO3 S N
71 47 PO} S N
72 48 P02 L N
73 49 s N
74-79

P17 S N

DIGITAL AND ANALOG QUTPUT BASIC

80 50 PO3 S N
81 51 POI s N
82 52 s N
83-89

P17 s N

2402 MAG TAPE

90 5A 103 S N

91
92 5C 102 L N

ILLEGAL CALL
P03 CL.OCK PNAME LOCN AIN
ILLEGAL CALL SEQUENCE IN PROGRAM
STORAGE PROTECT VIOLATION
P02 CL,OCK AC PNAME 0000 AIN
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED
PARITY CONTROL ERROR OR A CAR CHECK
PO4 CL,OCK AC PNAME 0000 AIN
PARITY ERROR ON DATA OR CONTROL CYCLE
PARITY DATA ERROR
POT CL.OCK AC PNAME 0000 AIN
PARITY ERROR DURING TRANSMISSION
OVERLAP CONFLICT
PO5 CL.OCK AC PNAME 0000 AiN
RELAY POINTS IN RANDOM READ FUNCTION TOO CLOSE
TOGETHER
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE
P17 CL.OCK PNAME AIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DIN
ILLEGAL CALL SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT
POT CL.OCK AC PNAME 0000 DIN
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
STORAGE PROTECT ERROR
P02 CL.OCK AC PNAME 0000 DIN
WRITE OPERATION TRIED iN MEMORY PROTECTED LOCN
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE
P17 CL.OCK PNAME DIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL

P03 CL.OCK PNAME LOCN DAO
ILLEGAL CALLING SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT

PO1 CL.OCK AC PNAME 0000 DAO
DATA TRANSMITTED INCORRECTLY OR ILL, REQUEST
INTERMEDIATE INTERRUPT '
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME DAO
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
103 CL.OCK PNAME LOCN 2402
ILLEGAL CALL SEQUENCE IN PROGRAM
NOT USED
STORAGE PROTECT VIOLATION
102 CL,OCK AC PNAME 0000 2402
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:
| - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR

S ~ RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)

o Table 4. On-Line EAC Errors and Recovery Procedures

ERROR
CODE
DEC HEX

TYPE
CODE
EAC

EAC

STAND.
EXIT

USER
OPTION

ERROR MESSAGE
AND COMMENTS

FORTRAN

2402 MAG TAPE (Contd)

93 5D
94 5E

95 5F

96-97
98 62

99 63

101 65

102 66

103 67

104 68

105 69

107 6B

108 6C

150 96

113

115

114

116

117

F90

91

F92

F93

F99

Fo4

F95

F96

F97

F98

F17

F87

R,S

DISK 1/0

COMMAND REJECT
113CL.OCK AC PNAME 0000 2402-COMMAND REJ

ILL MT OPERATION REQUESTED. USER CHECK PROGRAM
EXCESSIVE TAPE ERRORS

115 CL.OCK AC PNAME 0000 2402-EXCESS ERR
TOO MANY FAILS ON THIS REEL. MOUNT NEW REEL
TAPE ERROR

114 CL. OCK AC PNAME 0000 2402-TAPE ERR DSW
DSW-DEVICE STATUS WORD
PARITY ERROR OR OTHER FAIL CONDITION
AFTER 100 READ ATTEMPTS OR 3 WRITE ATTEMPTS
NOT USED
NOT READY

104 CL.OCK AC~M PNAME 2402-NOT READY
MAKE READY
END OF TAPE

116 CL.OCK AC PNAME 0000 2402-END OF TAPE
OPERATION ATTEMPTED PAST END OF TAPE
INVALID ERROR CODE

117 CL.OCK PNAME MAG
INVALID ERROR CODE FROM EAC

ILLEGAL ADDR COMPUTED IN AN INDEXED STORE

SUBSCRIPTED VALUE OUTSIDE LIMITS OF ARRAY

F90 CL.OCK PNAME LOCN

LOCN CONTAINS BASE ADDRESS OF ARRAY

ILLEGAL INTEGER VALUE IN COMPUTED GO TO
F91 CL.OCK PNAME LOCN

FILE NOT DEFINED
F92 CL, OCK PNAME LOCN

FILE REQUESTED NOT DEFINED IN DEFINE FILE
STATEMENT

LOCN CONTAINS RETURN ADDRESS

REQUESTED FILE RECORD NUMBER TOO LARGE, ZERO, OR
NEGATIVE

F93 CL. OCK PNAME LOCN

LOCN CONTAINS RETURN ADDRESS

NON-DISK I/O

N

WORKING STORAGE AREA INSUFFICIENT
FOR DEFINE FILES
F99 CL. OCK PNAME LOCN
LOCN CONTAINS RETURN ADDRESS
INPUT RECORD IN ERROR
F94 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS WITHIN THE 1/0O AREA
WHERE THE ERROR OCCURRED
ILLEGAL CHARACTER IN NUMERIC FIELD
OR ILLEGAL CONVERSION
RANGE OF NUMERICAL VALUES IS IN ERROR
F?5 CL.OCK PNAME LOCN
FIXED OR FLOATING PT NUMBER OUTSIDE DEFINED
LIMITS
REQUESTED OUTPUT FIELD TOO SMALL
F96 CL,OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FIO TABLE
ILLEGAL UNIT REFERENCE
F97 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FIO TABLE
UNIT NOT DEFINED IN 10U TABLE OR IOCS CONTROL
CARD
REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
F98 CL. OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FIO TABLE
RECORD SIZE TOO LARGE
INVALID ERROR CODE
F17 CL.OCK PNAME FOR
INVALID ERROR CODE FROM EAC

UNFORMATED 1/O

ILLEGAL UNIT REFERENCE

F87 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FIO TABLE
UNIT NOT DEFINED IN 10U TABLE, ON |OCS
CARD, OR FOR UNFORMATED |/0

Functions of Executive Programs

65

Table 4. On-Line EAC Frrors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS
DEC HEX EAC EXIT

FORTRAN (Cont'd)

151 97 F88 S N READ LIST EXCEEDS LENGTH OF WRITE LIST
F88 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS WITHIN THE 1/0 AREA
WHERE THE ERROR OCCURRED
LIST IN READ STATEMENT IS LONGER THAN
LIST IN CORRESPONDING WRITE STATEMENT
152 98 F89 S N RECORD DOES NOT EXIST FOR
READ LIST ELEMENT
F89 CL.OCK PNAME LOCN
LAST PHYSICAL RECORD OF LOGICAL RECORD
HAS BEEN EXHAUSTED
MISCELLANEQUS

110 6E X01 S N PSC CALL BACK ERROR
X01 CL.OCK PNAME LOCN
CALL BACK TRIED BEFORE CALL SPECIAL
m 6F X03 N N - CORELOAD NOT LOADED ON DISK
X03 CL,OCK PNAME COREN
COREN - CORELOAD NOT LOADED
12 70 X04 L N RESTART CORELOAD NOT LOADED ON DISK
X04 CL.OCK PNAME COREN
COREN - CORELOAD NOT LOADED
X17 INVALID ERROR CODE
X17 CL,OCK PNAME CLB
INVALID ERROR CODE FROM EAC
120 78 Qo1 S N QUEUE CALL IGNORED
ERROR OPTION ZERO
Q01 CL.OCK WC SA P
WC- 5 DIGIT WORD COUNT
SA - 5 DIGIT SECTOR ADDRESS
P - 5 DIGIT PRIORITY
120 78 Q02 QUEUE CALL NOT HONORED-NO LOWER PRIORITY IN
QUEUE
ERR OPTION 1 TO 32766
Q02 CL.OCK WC SA P
120 78 Q03 QUEUE CALL HONORED-CALL ENTERED IN QUEUE
ERR OPTION 1 TO 32766
Q03 CL.OCK WC SA P
REPLACES WC SA P
120 78 Qo4 QUEUE CALL NOT HONORED-RESTART INITIATED
ERR OPTION 32767
Q04 CL.OCK WC SA P
Q17 INVALID ERROR CODE
Q17 CL.OCK PNAME QUE
INVALID ERROR CODE FROM EAC
130 82 MO1 S N CALL RESMK ERROR
MO1 CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM
131 83 MO02 S N CALL UNMK ERROR
M02 CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM
M17 INVALID ERROR CODE
M17 CL.OCK PNAME MSK
INVALID ERROR CODE FROM EAC
140 8C X02 S N INTERRUPT LEVEL ERROR
X02 CL.OCK PNAME LOCN
ATTEMPT TO CALL LEVEL UNDEFINED FOR SYSTEM
X17 INVALID ERROR CODE
X17 CL.OCK PNAME LEV
INVALID ERROR CODE FROM EAC

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

| - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT

* - INTERNAL BACKUP ATTEMPTED

66

Table 4. On-Line EAC Errors and Recovery Procedures

INTERNAL ERRORS

CAR CHECK ERROR

996 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RESTART

OP CODE VIOLATION

997 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RESTART

STORAGE PROTECT VIOLATION

998 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RELOAD

PARITY ERROR

999 CL.OCK PNAME OPTION
SKELETON - RELOAD
VARIABLE - RESTART:

OPTION WILL BE RELOAD (IF ERROR IS IN
SKELETON), RESTART (VARIABLE CORE - ABORT OF
NONPROCESS JOB, OR USER'S RESTART CORE LOAD
IF PROCESS), OR COLD START (REQUIRED IF EAC

IS UNABLE TO RELOAD SYSTEM)

MULTIPLE ENTRANCE TO EA

MLPT EAC .

AN ERROR HAS OCCURRED WHILE EAC WAS PROCESSING
A PREVIOUS ERROR., MUST GO TO A COLD START.

NORMALLY THIS ERROR INDICATES THAT THE
SYSTEM DISK IS DOWN. THIS ERROR WILL ALSO
OCCUR IF AN ERROR OCCURS IN EAC WHILE EAC
IS ATTEMPTING TO PROCESS A SYSTEM ERROR.

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT

R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

L - RELOAD

N - NO OPTION - MUST TAKE EAC EXIT

* - INTERNAL BACKUP ATTEMPTED

(Continued)

Functions of Executive Programs 67

an error. Note that the user cannot call from his
error subroutines any routine that utilizes more
than 14 words of the subroutine work area (a portion
of the level work area). This area is principally
used for those calls to disk and output printers used
by EAC. It may be increased in size if the user
elects to remove this restriction.

The EAC program is entered whenever an error
occurs or a condition arises that calls for operator
intervention. An error message is then given on the
EAC printer and the program takes one of five pos-
sible exits after proper analysis has determined
which exit may be taken for the error in question,
Where more than one exit pertains to a given error
condition, the user has the option of specifying the
exit desired from his (user) error subroutine.

The four component parts are described below.

EAC In-Core. The in-core component of EAC is an
integral part of the System Director and resides in
core storage at all times. Its main function is to
channel one of the several possible types of errors
to a specific entry such that information relating to
this particular error is passed on correctly to the
analysis section. It also saves the current machine
status so that after an error has been processed,
the exit routine can return the machine back to the
user without loss of information, EAC in-core
also has the ability to dump variable core to disk if
this is specified by the user at System Director
assembly time (see System Design Considerations:
System Director). This program also determines
conditions such as process or nonprocess mode, in-
valid operation code, parity errars, and user error
subroutine availability.

Error Disk Program (EDP). EDP resides perma-
nently on disk, except when it is called to core by
the EAC in-core program. Once EDP is in core,
it takes the error information from the fixed area
and determines what type of error has arisen, the
approximate address at which it occurred, and the
appropriate error processing subroutine; prior to
this, the correct entry addresses for the conversion
and error routines are initialized. When the error
processing routine has completed its task, certain
information such as perform a Cold Start or Re-
start, or this error was not corrected but we are
continuing the process, or this error has been
successfully corrected, etc., are passed to the
Exit component.

68

Error Decision Subroutines. These subroutines re-
side on disk at all times until called to main core

by EDP to process a particular error. After the
error processing has taken place, a decision is made
on the type of recovery procedure required (e.g. ,
Continue processing, Restart, Reload). This infor-
mation is then passed to the Exit component of EAG
for execution.

EAC Exit. This is the means by which a branch is
made to the recovery exit prescribed by the Error
Decision Subroutine. Note that there is no normal
exit from EAC.

Action of EAC When an Error Occurs

Consider the train of events that takes place when an
error occurs, as shown in the simplified block dia-
gram, Figure 27. The error may be an Internal
Machine Error, a C.E. Interrupt, or a Miscellaneous
Subroutine Error which may be an error or condition
requiring outside intervention. Depending on the

type of error, one of three possible entries is made
to EAC, as follows:

Internal Errors: EACO00
C.E. Interrupt: EACO1
Miscellaneous Error: EACO02

The explanatory paragraphs that follow are given in
an alphabetic sequence which corresponds exactly to
blocks within Figure 27.

A. An Internal Machine Error may be the result of:
e Parity
e An invalid operation code
o A storage protect violation, or
o A Channel Address Register (CAR) check

When such an error occurs, the hardware
generates a BSI indirect to EAC00 through
word 8 where the processing procedure begins.
The return address, the status of the accumula-
tor and its extension, the type of error and
certain registers are now saved, and the ma-
chine put in a fully masked state. For each

INTERNAL
ERRORS

C. E.
INTERRUPT

EAC CALL
ENTRY

MASK LEVELS,
SAVE SYSTEM
STATUS

MASK LEVELS,
SAVE SYSTEM
STATUS

MASK LEVELS,
SAVE SYSTEM

STATUS

DUMP CORE
TO DISK

BRANCH TO
USER ERROR
ROUTINE

G

WRITE TO DISK
LAST 1800 WORDS
OF CORE. READ
1N ERROR DISK
PROGRAM

DETERMINE
WHICH ERROR
DECISON S/R

IS TO BE
USED

READ N ERROR
DECISION S/R
TO UPPER 640
WORDS ‘OF CORE

PRINT OUT

BRANCH TO EXIT
PRESCRIBED BY

ERROR DECISON
S/R

ERROR MESSAGE

BRING IN ERROR
RECORD ROUTINE
TO INCREMENT
COUNTER FOR
THAT SPECIFIC
DEVICE

v 1

€ UNMASK TO
COLD START ORIGINAL
STATUS
CONTINUE RELOAD RESTART EXIT THROUGH

INTERRUPT LEVEL

Figure 27, Action of EAC when an Error Occurs

Functions of Executive Programs

69

70

error level, EAC then sets up a work area
within the Fixed Area. Note that the user's
error routine (if included with his core load)
will be ignored on all internal machine errors
and nonprocess programs. A direct branch
is then made to the variable core procedure (G).
A C.E. Interrupt routine forms part of a TSX
on-line system to allow the user to check and
modify system unit assignments of 1053 output
printers, 1443 printers, and 2310 disk drives,
and to initiate backup procedures if and when
this becomes necessary. This is normally a
Customer Engineer responsibility. When the
C.E. LEVEL INTERRUPT toggle switch, lo-
cated on the C. E. panel, is activated, a C.E.
interrupt occurs, forcing a BSI to that level,
and, after some processing, another BSI is
generated to an entry EACO1 in EAC.

On entry to EACO01, the return address,
the status of the Accumulator and its extension,
and certain registers are now saved, and the
machine put in a fully masked state. A direct
branch is then taken to G.
A Miscellaneous Error which is neither an
internal machine error nor a C. E. interrupt
may be either an error or a condition that re-
quires outside intervention. For example, a
not-ready condition on an I/0 device has arisen.
This condition has been detected by the I/O
routine, which then sets up an error code and
additional parameters in locations 115 through
119, and finally executes a BSI through location
120 to an entry EACO02 in EAC., On entry to
EACO02, the return address, the status of its
accumulator and its extension, and certain re-
gisters are now saved, and the machine put in
a fully masked state.
If the dump-core-to-disk option was specified
by the user at System Director assembly time,
and the Selective Dump Word (word 3 of the
Fixed Area) matches the EAC Error Code, the
whole of core is written to the Error Dump
Area on disk for interrogation at a later date,
and the Selective Dump Word is overlayed
(replaced by -1). Only the latest error is kept
since there is only one Save Area,
A determination is now made if the core load in
error is a process core load.
If it is, a branch is made to the user's error
subroutine, if it has been included in the core
load, to allow him to perform such processing
as he may require for his particular system.
This also permits him to modify some system
options. Upon return from this routine, any
indicator that may have been set is saved. If it
is not a process core load, an exit is made to
the common variable core procedure at G.
At this point, DISKN is called in from the Skele-

ton to write out the last (1920);, words of core,
and to read the Error Disk Program (EDP) into
this area. The EDP program is origined such
that it will always reside in the final (1920)
words of variable core. The very last 6407
words of EDP is the overlay area for the appro-
priate Error Decision Subroutine when called.

H. TUpon entering the Error Disk Program, an an-
alysis is made to determine which Error Decis-
ion Subroutine is to be used.

I. For an EACO0 entry, the Level 0 routine is used;
for a C.E. Interrupt entry, the C. E. Interrupt
routine is used. If the entry was made through
EACO02, the routine used will be determined by
the error code stored in location 115 by the rou-
tine which determined the error.

The appropriate Error Decision Subroutine
is now read into the upper (640);y words of
core; it then builds and prints the error mes-
sage on up to four output printers, as defined at
TASK assembly time, and sets a predetermined
exit indicator or the indicator set by the user's
error subroutine. A return is made to the EDP
program.

J and K. A hardware error check is now carried out.
Assuming that an internal machine error had
occurred, an error record routine is brought in
to increment (that is, update) a counter associa-
ted with that particular piece of hardware. The
record of the hardware error is kept such that
when maintenance is required, the counter is out-
put to inform the Customer Engineer how often
a particular hardware device has failed. Con-
trol is then returned to EAC, and the stage set
for recovery action.

L. The system is now unmasked to the original

s tatus by the user calling program, PSC, or MIC.
As shown in Figure 27, five types of recovery
action (as prescribed by the appropriate Error
Decision Routine) are possible,
Cold Start
Continue
Reload
Restart, and
Exit through an interrupt level

o oo

Cold Start. Whenever an error occurs which cannot
be corrected, EAC prints a cold start procedure
message, and comes to a wait state. For example,
consider a machine parity error which has occurred
when one of the 18 bits of information has been lost.
A parity error routine then attempts to clear the
error by successively loading and storing data into
the affected location. If the error persists after re-
peated attempts at recovery, the routine prints the
location of the parity error, and comes to a wait.

Continue. The error is noted, but it is not of such
a nature as to interfere with the program in progress.
For example, the entry to EAC may have been a
C.E. Interrupt or a request to print a message for
outside intervention reflecting a not-ready state, a
non-fatal error, or a printer parity.

The ""continue' recovery action implies that the
program proceeds at the point of interruption. Con-
sider an I/0O device which has just completed its
operation -- an interrupt is generated. This will
transfer control to the I/O routine which then deter-
mines the correct error condition, and branches to
EAC. This exit option bypasses the I/0 routine and
returns control to the point in the program at which
the interrupt developed.

Reload. The Reload recovery routine is brought into
core whenever it is suspected that some of the non-
storage protected words in permanent core may have
been destroyed.

The routine saves the tables necessary for the
completion of previous core loads, having first veri-
fied that these tables have not been destroyed. The
Skeleton (from disk) is then read by sectors into a
buffer area. Each word in the buffer is compared
with the corresponding word in core. If these words
are not identical, the word in core is overlayed by
the word in the buffer.

Upon completion of the Skeleton reload, various
conditions and indicators are initialized and the
routine exits by way of a CALL CHAIN to the initial
core load.

If a storage protected word is different to its
corresponding word on disk, because of a program-
ming operation or hardware error, the Reload
recovery routine prints a message which gives the
address of the protected word, at the same time indi-
cating that a cold start must be performed.

Note that if an error has occurred outside of the
Skeleton Area, the present core load is aborted and
the initial core load is read into main core for
execution,

The CAR error may be caused by incorrect usage
of the "XIO" instruction or incorrect chaining of
data tables, etc. This is always a reload condition.

Restart. An error has occurred which prohibits the
present core load from continuing. Three types of
"restart" are used:

1. If the error, such as an illegal call, occurred
in a process core load, the program in pro-
gress is aborted and its restart core load is
called into core for execution.

2. If the error occurred in a nonprocess core
load, the job is aborted by calling in the Non-
process Supervisor.

Changes to (+) on a RESTART on a RELOAD

Timer A, Timer B If the subroutine to Turned OFF
be entered when the
timer times out is

included in the Ske-
leton, Timer A and
Timer B are left ON,

otherwise they are

turned OFF.

Timer C Left ON Set to -1 (shortest
time possible) and
turned ON

Real-time clock Unchanged Incremented by the
approximate reload
time (3400ms)

Programmed timers Unchanged Set to zero

1-9

Programmed inter- Unchanged Unchanged

rupts

External interrupts Unchanged Turned OFF

Started interrupt Aborted Aborted

routines

Figure 27. 1., Effects of Restart and Reload on Timers and Interrupts.

3. If the error occurred in an interrupt core load,
this core load is aborted, and the restart core
load of the current process core load is called
for execution. This means that the user's re-
start routines must be written in such a way as
to analyze his system and determine what pro-
gram will be called for execution.

Exit through an Interrupt Level. A restart condition
has arisen on a level other than the mainline level.
The level on which the error occurred is terminated
and the Restart procedure taken when the mainline
level is reached.

THE NONPROCESS MONITOR

The Nonprocess Monitor (NPM) is an independent
programming system which is designed to function
in one of two possible modes within a TSX system:

e In the on-line mode, it operates under the control
of the System Director.

® It can also be run in the off-line mode as a dedi-
cated monitor system under TASK control.

The user elects either system (that is, an on-line
or off-line system) at system generation time (see
System Design Considerations).

The NPM serves a three-fold purpose:

Functions of Executive Programs 71

It permits better computer utilization through
time-sharing.

It allows the user to compile, assemble, store,
delete, and modify programs with extreme flexi-~
bility. Because the system programs are resi-
dent on disk, only source statements and data
cards are required to be read in.

It provides for job stacking at the Card Reader,
which is fast because less card handling is re-
quired. A stacked-job environment permits
automatic and uninterrupted operation.

The primary function of the Nonprocess Monitor
isto provide continuous processor-controller oper-
ation during a sequence of jobs that might otherwise
involve several independent programming systems.
The monitor coordinates the processor-controller
activity by establishing a common communications
area in core storage, which is used by the various
programs that make up the monitor. It also guides

Functions of Executive Programs 71.1

the transfer of control between monitor programs
and the user's programs. Operation is continuous
and setup time is reduced to a minimum, thereby
effecting a substantial time saving in processor-
controller operation and allowing greater program-
ming flexibility.

Figure 28 illustrates the five distinct but interde~
pendent programs which make up the Nonprocess
Monitor.

NONPROCESS SUPERVISOR (SUP)

The Nonprocess Supervisor directs and controls the
execution of all nonprocess programs which may be
either IBM-supplied as part of the TSX package
(e.g., FORTRAN Compiler, Assembler, Core Load
Builder, Disk Utility Program and Simulator) or
user-written. It is composed of several separate
but closely-related routines; its two principal com-
ponents are:

e The Skeleton Supervisor, and
e The Monitor Control Record Analyzer

Skeleton Supervisor. This contains the requisite
direction and control logic for the orderly transition
of one program to another. The Skeleton Supervisor
is read into core storage whenever monitor system
operation is initially started, and provides the com-
munications link between monitor programs and user
programs.

Monitor Control Record Analyzer. This component
of the Nonprocess Supervisor reads the monitor
control record, prints its contents on the list and/or
System Printer, and calls the appropriate monitor
program. oo

Analysis of monitor control records extends over
columns 1-5 only, except for the // JOB card. Inval-
id control records result in an error message and
cause an abort. Blank cards are bypassed and not
stacker-selected. The card I/O routine, CARDN, in
the skeleton is used; if CARDN is not included by the
user, the monitor program uses its own card 1I/O rou-
tine. The // JOB control record resets the abort in-
dicator and the effective address for the Nonprocess
Working Storage on disk. It can also specify which of
logical disk drives 1 and 2 are expected to be opera-
tional, and, accordingly, checks the labels on their
disk packs when indicated. The //END control record
directs the Nonprocess Supervisor into a wait state.

72

- = — — Time -Sharing
I Control Program

(1SC)
Nonprocess
Supervisor
Bﬁhw Assembler | | FORTRAN Simulator
Program Program Compiler Program

Figure 28. The Nonprocess Monitor

Specifically, the Nonprocess Supervisor per-
forms the following functions:

1. Analyzes all monitor control records (e.g.,
// JOB, // ASM, // FOR)

2. Performs JOB initialization

3. Calls and transfers control to the requested
monitor program (e.g., FORTRAN Compiler,
Assembler)

4. Performs PAUS (that is WAIT) and END OF ALL
JOB functions when requested

5. Also analyzes control records for the Core
Load Builder following the // XEQ, *STORECI
and *SIMULCI.

Method of Operation

The Nonprocess Supervisor, including all monitor
programs, must reside on logical disk drive zero
where it occupies 21 sectors (see System Design
Considerations: IBM Nonprocess System). The
first 168 words of the Disk Communications Area
(DCOM) of sector 00000 on this disk (the system disk
pack) contains the Nonprocess Communications Area
which provides the logical linkages between monitor
programs and user programs. This area holds ad-
dress words, error indicators (used by DUP, FOR,
ASM, SUP, etc.), the name of the program or core
load being executed, as well as a loader for the
monitor programs.

DCOM is always brought into core each time a
// JOB control record is read. Certain words are
then initialized to reflect the current status of the
disk as reflected by LET/FLET. Note that recog-
nition of a // JOB control record by the Nonprocess

Supervisor also removes all temporary entries
from LET. Whenever a // END or // XEQ control
card is encountered, DCOM is written back to disk.

Entry to the Nonprocess Supervisor occurs
through a) Console Interrupt, b) a CALL SHARE (or
CALL VIAQ) statement in a process mainline, ¢)
FORTRAN Compiler, d) Simulator, or e) Disk Utility
Program.

In an on-line TSX system, process interrupts are
serviced as they occur, the interrupt servicing time
being applied against the time specified by the user
for nonprocess operations. As an example, assume
a process mainline calls for one minute of time-
sharing. This one-minute span is the length of time
in the share mode. If, during this period, ten sec-
onds are used up for process interrupt servicing,
only fifty seconds are actually available for nonproc-
ess work.

If all nonprocess jobs are completed before the
end of the user-specified time, the Nonprocess Sup-
ervisor program performs a WAIT operation for the
remainder of the time allotted. In other words, if
the CALL SHARE statement specified one minute of
time-sharing, control is not returned to the process
program until one minute has elapsed, or alternative-
ly, a CALL ENDTS statement is executed by an inter-
rupt routine (see Use of Time-Sharing).

Figure 29 illustrates, in simplified form, Non-
process Monitor action during time-sharing.

If a nonprocess job is not completed before the
specified time is up, it is saved on the disk. When
the next CALL SHARE statement is executed, oper-
ation of the nonprocess job is resumed at the point
of termination.

When an unfinished job is waiting, the CALL
SHARE statement causes it to be read in and execu-
ted. Otherwise, the Nonprocess Supervisor pro-
gram is read into core and determines, by checking
a program indicator located within the System
Director, if any time-sharing operations are to be
performed. This indicator is turned on by the execu-
tion of a special console interrupt routine, supplied
with the system. ;

The following example illustrates a typical use of
the Nonprocess Monitor whenever nonprocess jobs
are ready for execution.

1. Operator stacks jobs in Card Reader and starts
Reader.

2. Time-Sharing is typically initiated by an oper-
ator interrupt, with a coded number set up in

Process | Nonprocess Monitor Nonprocess
Program Program

Read-in
Unfinished
Job and
Continuve
Execution

CALL _|
SHARE
)

Unfinished
Job?

N;

Job
Indicator

ON?,

<

Perform
Job

Wait until
time has
elapsed

Figure 29. Ilustrating Nonprocess Monitor Action during
Time-Sharing

the console switches to indicate a time-sharing
request.

3. Interrupt routine sets a program indicator to a
process mainline.

4. Process mainline calls for time~sharing when it
is idle. It specifies the time interval.

5. Nonprocess programs may be interrupted and
later continued by an external (that is, process)
interrupt or timer interrupt This will involve
an exchange to the disk save area if the inter-
rupt program is not in core, or if the shared
period has timed out.

6. Nonprocess jobs are completed in sequence
until no jobs remain (program ends on a WAIT
instruction) or until // END OF ALL JOBS
control record is reached.

7. During time-sharing, the Skeleton Supervisor
will be in transient core, identifying monitor
control records and initiating monitor pro-
grams.

Functions of Executive Programs 73

DISK UTILITY PROGRAM (DUP)

DUP is a set of routines designed to aid the user in
the day-to-day maintenance of data and programs
on disk packs. That is, it has the capabilities of
storing, deleting, and outputting user's programs
as well as defining system and machine parameters.
It also updates the location equivalence table (LET)
and maintains other communications areas. The
Disk Utility Program is called into operation by a
// DUP monitor control record; it can be used on-
line or off-line.

The // DUP monitor control record must be fol-
lowed by at least one DUP control statement that
selects the desired routine. DUP control statements
are identified by an asterisk in column 1. Columns
2 through 10 contain a symbolic code which identifies
the routine (e.g. *STORE, *DELETE, *SEQCH).
The columns following the coded routine name pro-
vide additional information used by the routine itself.

Like the Nonprocess Supervisor, DUP must re-
side on logical disk drive zero where it occupies
68 sectors. Primary entry to DUP derives from
a) Nonprocess Supervisor, b) FORTRAN Compiler,
c) Assembler, and d) Core Load Builder.

DUP uses the card I/O routine, CARDN, if this is
included in the skeleton; otherwise, it uses its own
card I/0 routine. Blank cards are skipped and

stacker-selected when searching for control records.

Non-DUP or non-monitor control records result in
an error message. All DUP control records and
messages are printed on both the System and List
printers.

Essential data for most DUP functions to com-
municate with a disk pack include the following:

e Disk sector addresses
o Numeric label in word 0, sector 0

e Disk Communications Area (DCOM) -~ This pro-
vides information on the size and location of
work storage areas, LET for the Relocatable
Program Area and FLET for the Core Load Area.

e Valid entries in LET/FLET

A list of all DUP functions is given in the Sum-
mary of Nonprocess Monitor Control Records. See
also Examples of Nonprocess Monitor Usage.

74

FORTRAN COMPILER

The TSX FORTRAN Compiler is a disk-resident ver-
sion of the 1800 card compiler, and occupies 103
sectors on logical disk drive zero. Provision is also
made for the user to easily make use of input-output,
conversion and arithmetic subroutines that are a part
of the TSX subroutine library., The FORTRAN
language is described in IBM 1130/1800 Basic
FORTRAN IV Language, Form C26-3715.

The // FOR monitor control record is used to call
the FORTRAN compiler into operation, and to name
the mainline program. The compiler reads the con-
trol records and source program in card form only.
After a successful compilation, the object program
in relocatable format is moved to the temporary area
on disk, and an entry (name and disk block count) is
made in LET. It can, henceforth, be called for exe-
cution by an // XEQ control record, or it can be
stored permanently in the Relocatable Program Area
by a DUP (*STORE) operation. All FORTRAN pro-
grams are compiled in relocatable format. A list of
FORTRAN control records is given in the summary
at the end of this section.

ASSEMBLER

The Assembler program for the 1800 TSX system is
a disk-resident version of the 1800 card assembler.
It is designed to translate source program statements
written in a symbolic format into a binary format
which may be stored and/or dumped by the Disk
Utility Program (DUP), or executed directly from the
Nonprocess Work Storage on disk. The Assembler
Language is fully described in IBM 1800 Assembler
Language, Form C26-5882.

The Assembler program resides on logical drive
zero and occupies seven cylinders. Entry to it is
obtained via a // ASM monitor control record. The
Assembler accepts control records and source pro-
grams in card form only. Upon a successful assem-
bly, the object program in relocatable format is
moved to the temporary area on disk where it can be
called for execution by a // XEQ control record or
stored permanently in the Relocatable Program Area
by a DUP (*STORE) function. A list of Assembler
control records is given in the summary at the end
of this section.

SIMULATOR PROGRAM

The simulator is designed as a debugging aid which
allows the user to checkout or test process and/or
nonprocess programs without disrupting the normal
operations of the TSX system -~ that is, without tak-
ing the system off-line. It functions under the control
of the Nonprocess Monitor.

Each instruction in the object program is analyzed
for a valid operation code and format before its oper-
ation is simulated. In addition, addresses of store
and branch instructions are checked to ensure that
the instruction would not alter anything outside of
the areas of the defined program, COMMON, INSKEL
COMMON, or the level work area, if they are act-
ually executed on-line. Process input values may
be read from cards or derived from a random num-
ber generator. Since System Skeleton routines are
_ used during simulation, it is mandatory that the
skeleton area be built before simulation of process
core loads can be performed.

Since the primary function of the Simulator is to
detect programming errors in the object project,
several optional debugging features are available to
aid the user. These include Snapshot, Branch Trace
and Dump. Simulated COMMON can be dumped on
cards so that a run can be executed in several dif-
ferent parts. In addition, the branch and arithmetic
trace provided by the FORTRAN Compiler can be
operative in the simulator mode.

Simulation runs for process programs are called
by a DUP control record, *SIMULCI; runs for non-
process programs are called by a // SIM monitor
control record. Details of operating procedures and
stacked-input for a typical simulation run are des-
cribed in IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Subroutines

General Input/Output

Each time the Simulator encounters a user-called
sequence to an I/0 subroutine, the location of the
calling sequence and the subroutine name are
printed on the List printer. Each time the Simulator
encounters a subroutine test function (I/0 function
digit = 0), the following occurs: the first time a test
is encountered, a busy return is made; the second
time, a not busy return is made. Succeeding entries
alternately cause busy and not-busy returns.

Listed below are the general input/output subrou-
tines (IBM-supplied) recognized by the Simulator,
and corresponding operations which the Simulator

performs:
SUBROUTINE OPERATION

Read a card, feed a card, simulate
punch a card

CARDN (Simulated card
subroutine)

DISKN (Simulated disk
subroutine)

Read disk, write disk, simulate
disk seek

MAGT (Simulated mag-
netic tape subroutine)

Simulates all read, write, and
control functions relative to 2401
and 2402 magnetic tape units

Simulate reading paper tape, simu-
late punching paper tape)

PAPTN (Simulated paper
tape subroutine)’

PLOTX (Simulated plotter
subroutine)

Simulate plotter output

PRNTN (Simulated printer
subroutine)

Print a line, simulate a carriage
operation

TYPEN or WRYTN (Simulated
printer keyboard subroutine)

Simulates printing on 1816 printer
keyboard or 1053 printer

The Simulator requires that the card reader, disk,
and List printer be physically present on the system.

Process Input/Output

Call sequences which specify input from pulse input
points, digital input points, process contact points,
and analog input, may obtain input from two sources:
cards and a random number generator.

Data cards are used if samples of specific values
are desired; the points can be read in a nonprocess
program and punched into cards to be read by the
Simulator. Any value can be simulated when using
cards, but in order to obtain the desired results, the
input data must be sequenced according to the flow of
the process input subroutines called. In other words,
the card feature requires careful ordering of the
card deck.

A random number generator, within the Simulator
program, produces numbers that fall into a user-
specified range. With this option, the user can em-
ploy a wide variety of input data to check program
operation. A psuedo-process input environment can
also be created through the use of a random number
generator. All input values are printed on the list
printer as they are called.

In the program being simulated, call sequences
that specify output for the contact operate, pulse out-
put, digital output, and digital-to-analog output fea-

Functions of Executive Programs 75

tures are printed when they are encountered. Input
call sequences, error messages, and data are
included in the printed output. This provides a com-
plete chronological record of all that occurred dur-
ing the simulation.

IBM-supplied process input/output subroutines
are functionally simulated; that is, the subroutines'
call parameters are analyzed according to specifica-
tions supplied in the form of control records. The
routine name, calling parameters, and data are
printed on the List printer. Listed below are the
process input/output subroutines recognized by the
Simulator, and corresponding operations which the
simulator performs. Special~condition returns are

also simulated.

SUBROUTINE

AIPTN or AIPN (Simulated
analog input point)

AIRN (Simulated analog
input random)

AISON or AISN (Simulated
analog input sequential)

DAOP (Simulated digital-
analog output)

DICMP (Simulated digital
input: read compare)

DIEXP (Simulated digital
inputt read expand
function)

DINP (Simulated digital
input: hardware functions)

OPERATION

Simulates the read of a single
analog point

Simulates reading random analog
input points

Simulates reading sequential
analog data points

Simulates the transfer of digital
or analog information

Simulates the reading in of
digital input values under program
control and compares these values
to a table of user~supplied values.
Only the first compare error is
detected. A single entry to the
special routine is made with
appropriate indication. The
end-of-table interrupt will not
occur if 2 comparator error
occurs.

Simulates the reading in of a
digital input value and expands
it into 1, 2, 4, 8, or 16 words.

Simulates the reading in of
digital input values

Arithmetic and Conversion Subroutines

Copies of the IBM-supplied arithmetic and conver-
sion subroutines are contained within the Simulator.
It is these copies that are executed when a call to an
arithmetic or conversion subroutine is encountered.
The requested operations are performed in a psuedo-
processing environment maintained under control of
the Simulator.

76

General TSX Subroutines

When a call to a TSX control subroutine is recognized
by the Simulator, the subroutine name and its calling
sequence parameters are printed. There are two
categories of subroutines designed for control and
communication with the TSX system: the termination
class and the functional simulate class.

The following subroutines comprise the termina-
tion class, and when encountered, cause the Simula-
tor to execute the close-job procedure:

BACK PAUSE
CHAIN SPECL
DPART STOP
INTEX VIAQ
LINK EXIT

The subroutines listed below comprise the func-
tional simulate class, and when encountered, cause
the Simulator to simulate the function, i.e., they
analyze the call parameters for validity and print
the routine name, the calling parameters, and the
data contained within the subroutine.

CLEAR REMSK
COUNT SAVMK
ENDTS SETCL
LEVEL SHARE
MASK TIMER
OPMON UNMK
QIFON UNQ
QUEUE

User-Written Subroutines

User-written subroutines are simulated in the same
manner as mainline programs.

Common Area

The simulated COMMON area can be dumped on
cards whenever a program being simulated is ter-
minated. The output cards can be used for input
to reload COMMON, thus providing communication
from one core load to another.

Restrictions

Restrictions placed upon the use of the Simulator
program are listed below:

1.

2.

Nonprocess work storage must be used if actual
data is to be transferred between disk and core.
Link or chain jobs must be simulated by pre-
senting one core load at a time.

The Simulator utilizes LIBF and CALL instruc-
tions for special purposes. When analyzing post-
mortem dumps, the contents of LIBF and CALL
locations should be ignored by the user.

All 1/0 must be performed by Simulator sub-
routines. An execute I/O (XIO) instruction is
not simulated but will be recorded on the List
printer.

A wait (WAIT) instruction will be recorded on

A storage protect setting instruction (STS with
both the F-bit and the 9th bit equal to zero) will
result in a termination.

An attempt to store into a skeleton area other
than the INSKEL. COMMON and work level
areas will result in a termination.

Operation codes of 00, 38, 58, 78, and FF are
invalid and will result in a termination.

A subroutine I/0 area parameter pointing to the
skeleton will result in a termination.

SUMMARY OF NONPROCESS MONITOR CONTROL
CARDS

Tables 5-10 give a brief summary of all Nonprocess
Monitor control cards. For details of card prepar-
ation and their functions, see IBM 1800 Time-Sharing
Executive System, Operating Procedures, Form

the list printer. C26-3754.
Table 5. Monitor Control Cards
// JOB Initializes a nonprocess job
// DUP Reads the disk utility program into core for execution
// XEQ Reads the user's progroms into core for execution
// ASM Reads the Assembler into core for execution
// FOR Reads the FORTRAN compiler into core for execution
// SIM Reads the Simulator program into core allowing a nonprocess program to be simylated
// PAUS Causes the system to WAIT
// END or
// END OF ALL JOBS Signals the Nonprocess Supervisor that all nonprocess work is complete
Table 6. Loader Control Cards
*INCLD Causes a named program to be included in the skeleton or in a mainline core load
*RCORD Records interrupts that occur during the execution of process core loads
*FILES Provides for the designation of disk areas to be used by the FORTRAN program in which the files were defined
*LOCAL Permits groups or blocks of subprograms to be loaded into core when they are called
*CCEND Last loader control card, calls the Core Load Builder

Functions of Executive Programs 77

Table 7. DUP Control Cards

Stores relocatable programs in the Relocatable Program Area (user or temporary) on disk

Replaces a program name in LET or FLET with the name 9DUMY thus making the program area available to the

Allows the user to modify existing nonprocess core loads and relocatable programs without previously

Used to change the sequence of existing core load linkages for process or nonprocess core loads

Reads the Simulator program into core, allowing a process program to be simulated

OCORE Specify the size of object core

NDISK Specify the number of disk drives on the system
*DEFINE CONFG Specify the system configuration with respect to disk areas

REMOV Allow the user to delete FORTRAN or the Assembler from the monitor disk

PAKDK Pack relocatable programs into unused areas identified by *DELET
*DLABL Labels a disk pack and, if not system pack, writes addresses
*STORE
*STOREDATA Stores blocks of data in Core Load (core image) Area on disk
*STORECI Causes a core load to be built and stored in the Core Load Area on disk
*DUMP Dumps programs from the disk to the system 1/O device or list printer
*DUMPDATA Dumps blocks of data as indicated in *DUMP
*DUMPLET Dumps LET and/or FLET on the. list printer
*DELET

_store function
*DWRAD Allows the user to write addresses on a specified area of disk
*STOREMD
deleting them

*SEQCH
*SIMULCIH
*DICLE Allows the user to modify the interrupt core lood table

Table 8. FORTRAN Control Cards

*IOCS (CARD, TYPEWRITER, KEYBOARD, 1443 PRINTER, PAPER TAPE,
MAGNETIC TAPE, DISK, PLOTTER)

** Header information to be printed on each compiler output page

*ONE WORD INTEGERS

*EXTENDED PRECISION
*ARITHMETIC TRACE
*TRANSFER TRACE

*LIST SOURCE PROGRAM
*LIST SUBPROGRAM NAMES
*LIST SYMBOL TABLE

*LIST ALL

*NONPROCESS PROGRAM
* PUNCH

Delete any not used

(Store integer variables in one word) This function is automatic in
process programs.

(Store floating point variables and ¢onstants in 3 words instead of 2)
(Switch 15 ON to print result of each assignment statement)

{Switch 15 ON to print value of IF or Computed GO TO)

(List source program as it is read in)

(List subprograms called directly by compiled program)

(List symbols, statement numbers, constants)

(List source program, subprogram naomes, symbol table)

{Identifies this compilation as a nonprocess program)

(Causes DUP to punch an object deck ofter successful compilation)

Table 9. Assembler Control Cards

*TWO PASS MODE
working storage

*LIST DECK

*LiST DECK E

*PRINT SYMBOL TABLE
*PUNCH SYMBOL TABLE
*SAVE SYMBOL TABLE

*OVERFLOW SECTORS n

*COMMON n n = fength of COMMON in words (decimal)

Read source deck twice; must be specified when *LIST DECK or *LIST DECK E is specified, or when intermediate output fills

*LIST Print a listing on the principal printing device

Punch a list deck on the principal 1/0O device (requires *TWO PASS MODE)

Punch only error codes (cc 18-19) into source program list deck (requires *TWO PASS MODE)
Print a listing of the symbol table on the principal printing device

Punch a list deck of the symbol! table on the principal I/O device

Save symbol table on disk as a system symbol table

*SYSTEM SYMBOL TABLE Use system symbol table to initialize symbol table for this assembly

*PUNCH A relocatable binary deck will be punched by DUP following this assembly

n = number of sectors of nonprocess working storage allowed for symbol table overflow

Table 10. Simulator Control Cards

*SAVE COMMON
*LOAD COMMON

*WAIT Suppresses printing of WAIT instructions
*START SIMULATION

*END DATA Terminates Simulator run

*SNAP Displays up to 10 locations following execution of an instruction
*TRACE Traces or displays same information as for *SNAP
*DUMP Dumps simulated core storage

Punches out binary deck of process and variable COMMON
DEFINES and analyzes COMMON from *SAVE COMMON OUTPUT deck

*XI0 Suppresses printing of IOCC words referenced by XIO instruction

Signals that all Simulator control cards have been read

EXAMPLES OF NONPROCESS MONITOR USAGE

The prime purpose of this section is to illustrate a
few of the many possible uses of 1800 TSX features,
and to accentuate the many more possibilities based
upon the ability of the user to apply the basic con-
cepts and techniques. Numerous sample programs
and coding examples are presented as demonstration
of good programming practice and technique. These
examples conform strictly to standard TSX coding
conventions.

The JOB

When a programmer is given a problem, he analyzes
that problem and defines a precise problem-solving
procedure: that is, he writes a program or a series
of programs. To the monitor system, executing a
mainline program (and any subroutines and subpro-

grams that it calls) is a job step. A job consists of
executing one or more job steps.

At its simplest, a job consists of one solitary job
step. For example, assembling or compiling a pro-
gram is a job consisting of one job step. Similarly,
executing a FORTRAN mainline program to invert a
matrix is a job consisting of a single job step.

If the problem is complex, one job may consist
of a series of job steps. Such a job may include
multiple assemblies, compilations, disk utility
functions, and executions. A job always begins with
a // JOB control card which is the first statement
in the sequence of control statements that describes
a job.

The JOB Deck

The input to the Nonprocess Monitor may consist of
one or more job decks. Each job deck is preceded
by a // JOB. The processing of each job deck is

Functions of Executive Programs 79

controlled by the Supervisor program as specified in
the monitor control cards. As an example, consider
the following stacked input arrangement (see Figure
30).

The above sequences will compile, store and
execute both program PROG1 and program PROG2
provided that:

1. There are no source program errors, and
2. There is sufficient room in the Nonprocess
Work Storage area.

A source program error will cause the DUP

Store Operation to be bypassed for that program, and
all following // XEQ requests preceding the next

// JOB card will be disregarded. This feature (that
is // XEQ -- request disregard) can prove very use-
ful when the successful execution of one program de-
pends upon the successful completion of the previous
program. A combination such as this should be con-
sidered as one job. The // XEQ control cards should
not be separated by a // JOB card. Note from Fig-
ure 30 that it would not be necessary to store the two
programs if they were executed on a one-shot basis.

Assembling/Compiling Programs

Programs are of two types: process and nonprocess.
A process program is one that continuously monitors

SAMPLE CODING FORM

110 11-20 21-30 31-40 41-50
1[2J3]4fs]e[7[s]ofo] 1 [2[3]als]el7]e[o[o] 2[3J4s]el 7[efe]ol i [2[2]«ls[e][e[s]o] 23] s e[felefol
W OB b b b b b b b oo
Ll A PR ' N N NN W U NI R |
NN P PR RN N e SRR SN S SR

mmgmmmalljllnl4llll“nlnlll .|

RN POYE FEREE RTREE FUNEE PUNTE ST N TS SRR o
V] AN PR RS SRR R PR Ty ST SR
msrplkgnnnlnllllll||[ﬁ7£0éﬂ|x|.|1|1.|111|‘|<||I||||I
N FOR PROGZ 1 o i Ll ea by b s dbaa bl

Ill'll.:..l:ln|1111|||..||.|x.||1||||.1nl|1|1||||1'

L1 o (SouRcE PROGRAM PROGIZY, ot oo Lo lean 1]

WL Y FEEW RN P S DTS R ST PR |
’IIlquIP.l||I|||||'|||1||.|‘|.||.'|x1111||(l|11|||||||
Mn-Illx)lllllllllllllln-xl
Ab_wjleulllnulnu|||||1|I|l|||(|x|||| |

(a7, S IR AR ERRY ST FRwTl RN FR e feae
Eﬁ_‘mzln||1||||||||||||A||||||1|l|||||1|||||{
GiC) WS PR ERURE RN WS S EWE RN SRR S|
Mnnnlllllll|llllllllllxlIIIIII!IIIIIJll[IlAII

INETE FEUTY SWEEE N N T FETTE PNy SRS R

Figure 30. Illustrating a JOB

80

a control process. All application programs are,
by definition, process programs. A nonprocess
program, on the other hand, is not directly related
to the control process itself. An assembler pro-
gram is an example of a nonprocess program: other
examples include compilers, data reduction, pay-
roll, bookkeeping, simulation of new and existing
programs, and linear programming.

Process and nonprocess programs may be fur-
ther classified as main programs or subroutines.
Subroutines can be subdivided into the following:
LIBF (library functions), CALL, Interrupt, IBM-
supplied, and LOCAL subroutines.

In the off-line or time-sharing mode of operation,
the user may exercise any of four options in assem-
bling/compiling and executing a nonprocess program.
Figure 31 illustrates these approaches in simplified
form. A distinction should be drawn between proc-
ess and nonprocess programs. The initial process
program can only be executed through a cold start
procedure for an on-line TSX system. If the proc-
ess, mainline, or combination core load is already
disk-resident (in the Core Load Area) it is called
by a CALL CHAIN or CALL QUEUE.

EXAMPLE 1, ASSEMBLE AND EXECUTE A NON-
PROCESS PROGRAM FROM THE TEMPORARY
AREA (see Figure 32).

The Assembler is unable to differentiate between
process and nonprocess programs -- these are
treated alike. Following assembly, the object pro-
gram in relocatable format is moved to the tempor-
ary area on disk, and its entry (name, word count,
and sector address) made in LET.

If the user desires to perform only an initial
check on his program, and not execute it, // XEQ
and *CCEND are not required. If he plans to verify
the program logic and results (if any), he will exe-
cute it. The presence of the // XEQ and *CCEND
control cards calls in the Core Load Builder, and a
core load is built and executed. In addition, a list-
ing of source statements as well as the correspond-
ing object program, and a directory of all valid
labels used in the program can be obtained by speci-
fying these options with the appropriate Assembler
control cards. The order in which programs are
assembled is important when the *SAVE SYMBOL
TABLE control card is used in assembling related
programs.

Note that the relocatable program will reside in
the temporary disk area until it is deleted by the
next // JOB card. An *CCEND control card must
always follow an // XEQ card if a relocatable
program is referenced in the // XEQ card.

ASSEMBLE
and/or
COMPILE
Store in Store in
Relocating ’q— Disk TEMP
Disk Area Areo*

Store in Build Core Build Core Store in
Disk Core tagp— Loads Loads —»| Disk Core
Image Area *STORECI *STORECI Image Area
EXECUTE ** EXECUTE *** EXECUTE *** EXECUTE **
// XEQ FX // XEQ // XEQ // XEQ FX
*CCEND *CCEND

Note:

* This is automatic if the assembly or compila~
tion is successful .

** Execution occurs through a Cold Start, CALL LINK
or // XEQ.

*** Execution can only occur through a // XEQ.

Figure 31. Assemble/Compile and Execute 2 Nonprocess Core Load

Figure 32. Assemble and Execute a Nonprocess Program from the
Temporary Area

EXAMPLE 2. COMPILE AND STORE A NON-
PROCESS PROGRAM IN THE RELOCATABLE PRO-
GRAM (OR USER) AREA ON DISK (see Figure 33).
Unlike the Assembler, the Fortran Compiler dis-
tinguishes between the two types of programs by the

SAMPLE CODING FORM absence or presence of the ¥*NONPROCESS PROGRAM
1-10 11-20 21-30 3i-40 41-50. control card. In a process program, each integer
1[2[3]4fslef7]elolo]i [23]a[sle[7[e[e] o] [2]3]als]e[7[ele]o] |2 [3]4ls]el]efo o] fel3]aT6 Jel e felo] variable automatically occupies one word of storage.
;L:L'fgz “:K: 'c'l‘ s T A NEEES IRNUE FENEE In a nonprocess program, however, the *ONE WORD
IL:Iier - Iq"'} - : ' :""i"":' "':""l""h:": INTEGERS control card forces the compiler to allo-
31?' r”” S Eil“.“l::.li iJl'tiih:ﬁi“'ij cate one word of storage to each integer variable; in
beAgmel Ll il bl the absence of this card, the same allocation (that is,
ol il i it il i i two words) for real variables is made. In the case of
. & PRO - # (1B AZ a large array, this could be prohibitive.
. . . All FORTRAN programs are compiled in relocatable
Y P format. Following compilation, the relocatable
CiC A W TN P TS T S N T object program is moved to the temporary disk area,
U S IS I I B SR I S S| and an entry made in LET. If can now be called for
J ER| DAT execution or loaded to the Relocatable Program (that
IO S I ST I BN N ST B SR is, the User) Area on disk.
[T S TS I A AT PP I A B S In Example 2, the relocatable program MAIN2 is
WEVEIFEN TN RN TR TS TS U T e stored in the Relocatable Program (User) Area. The
NETY P NS RUNE SN S SN SR SU W S|

actual storing of the program consists of physically
moving the program to its destination area (the User
Area) from the temporary area of Nonprocess Working

Functions of Executive Programs 81

SAMPLE CODING FORM

-0 | n-20 21-30 31-40 41-50
[e[s[dsle[7[ele]o] [2[3]«]s[e[7le]s[o] e[z alsle[7[e[olo] [2[3[4fs e llefo o] To[sJals el elelo]
[V S SR TR TN SR T T PR R WS SN e
Iy FOlR MAZWZ | iy b a e e s b b el
14y 4 I.V72% NS RER RN NS TS Ny BTN S S FE
0 < Vs RAM | Loy b b b e

.Sl (14 ARIMTER,

& [Wo 7EGERS Lyl e ool
'RETL A P R DTS NS R NUE N W S
i ‘éﬂk@fﬁgﬁ&ﬁﬁgﬁﬂﬁ)nnlu|||l|||||||||il|1|
IREL N N B DA I NS I S P
(V7.7 SN I I (P PP VS IS ISR

Illllllllll

FM”.I.H.I..l.lm.zmzi....l....l..,
llllInlllllllllnlllll,\LLllJlxll||1!l|1

lllllkl!ll

Figure 33, Compile and Store a Nonprocess Program in the
Relocatable Program Area (User Area) on Disk

Storage. When the storing operation is completed,
LET is updated and the communications and fixed
area parameters reset to reflect these changes.

Note that a store from the temporary (TEMP) area
to the permanent Relocatable Program Area causes
TEMP to be packed to reflect that program moved.
An exception exists when the program is the last
entry in TEMP or when there is only one TEMP pro-
gram initially.

EXAMPLE 3. COMPILE AND EXECUTE A NON-
PROCESS PROGRAM FROM THE CORE LOAD
AREA (see Figure 34),

This example illustrates the third and fourth options
which may be taken to assemble/compile and execute a

nonprocess program from the Core Load Area. Note

that subroutines TIMSB, ERROR, and PRINT are com-

piled and stored in the User Area as these subroutines

are frequently referenced by this and other nonprocess
In building process mainline and combina-
tion core loads, it may not be necessary to store these

programs.

subroutines. The store core image routine is used to
store a program in core image form (as a core load)
in the core load area and to assign the core load a
name. By making column 9 of the *STORECI control
card non-blank, a map of the locations and names of
subroutines and subprograms loaded with the core
load is obtained. When the nonprocess core load is
correctly built, DUP will search through its program
name table, find the name of the core load just built,
and add its disk address and word count to the table.
In addition, any programs referenced in this core

82

load name table are looked up in FLET and their
disk addresses and word counts added to the table.
The core load is then executed from the Core Load
Area. FX in columns 16 and 17 of the // XEQ
monitor control card signifies that the input program
is in core image format and that FLET is to be
searched for this program name.

Deleting and Replacing Relocatable Programs,
Core Loads, and Data Files

The *DELETE function allows the user to delete any
named :

Relocatable program

Mainline core load
Combination core load
Interrupt core load
Nonprocess (or link) core load
Data file

from the disk. An entry of a program in LET or a
core load/data file in FLET takes the normal form

LET: NAME DISK BLOCK
COUNT
FLET: NAME WORD SECTOR
COUNT ADDRESS

where each LET and FLET entry occupies three and
four words of disk space respectively. Whenever a
program or a core load is deleted, its NAME in LET
or FLET is replaced by the symbolic 9DUMY and
henceforth the system is no longer cognizant of this
program or core load. Furthermore, the area on
disk previously occupied by a program or core load
is now available for the storage of other programs,
core loads, or data files. These areas are available,
but only used after all previously available areas have
been used.

A core load may be deleted and, in addition, have
its reference replaced by another core load's word
count and sector address. The replacement core
load must be of the same type. That is, a mainline

SAMPLE CODING fFORM
=10 11-20 21-30 31-40 41-50 51-60 61- 70 71-80
[2[3[dls[e[7lelolo] [2[3]a[sle[7le[s]o] [o[3[lsle[[sfs]o] [2[3[]s el [slo o] 1T2[3[<]s e[efelo] [2[3[<]5 e[e[olo] 2[3[d[s e[Tefelo] Tf[els[e[fe]e[o]
11 JQBIII'lIL]ll[IALllIIIIILl||llIIIIIIlllllI'llll]llll|l|lll|lll|11L111|ll|lIII
//ﬁGK01ﬂ5|.||||\I‘x|¢||.||.|.|||||||1||1|11L1||1|1||||||||||||1|4H[|nAlllJ!l

0 cesls PrROAGRAM | ol o e b b v v b b b s g Ll
TEWDED C, 0,
MZI0CS| (1A#3 PRINTERY | L b b b b o o e g

1 IIIllIlllnIllll'lll\ililllllll[llllIIIIIJiIIlIlLIllIllllIlLJ

CAL L 7.1 M58 [T P TR NN NS SRR SRS F RS RN S N

K FORMAT. (|1 FL| ROUTIINE | |TIME, Megs))
T N X156 .+ I B I I N NS ST

_I_l_l_l_L.lﬂ-D—l—tlllIlllJ_LIxnllllelIl|||'111|||l||1J¢AJII N
lllllﬁoklllllLl||IIII|||||[|1I|||Illlllnlll ‘1||

YISy Y2 % N DR T TS P RS D N R B
*lPﬂWICHIIIIIIIl]llllllllllll!\lllllillllilllI[lllllIIIlll\IlllIJlJJIII
| SusrovTIne TImss ol L Lo Lo b b i

lnIllllllf{l'l:}l’({llllil

I I T PN RS N)

R FUW NS N

||||IAAI| |||«|||||1|»||I|1L

s
[N

lLlllIl

||||||||||

vl

W R

T N

NETE PEEL IR REWEE R NS RN R N SR S SR

1
]
|||||I|1|||
|
|

||l|Illlx.‘lllllI|Il|\||llll£||l |IIIII|I|III[IlIIllllllLlll

l]llli}lillillllLLlll

I
]
|
|
N IS AT NI R AN WA S,
|
|
!
|

llll||||1.11|||]1114L]1||1||||‘i|11||

Réréhg”lIl\llltllllllll\llIII'II\ IAII]IL
! | 7Y/, S N S WA AT T SN WA M S N

|
l

N el e N
|

AT T T R A I N RN

N P FE S R R R B S B
||I||||||°I‘QBL|AMKIICIAK|D|SI)|x||l|:|l|||||v||l||

||I||||}I|

Lol ey TS N

Lol

AIIIII ll[llll!l

R PRI B NN NS RN R N
II/IIEOIk.Jan||||IIILJ|«|11111.]| |||||||l,111|||||||11x|||1|11,|\\|l\1
&Iélflslﬂ.A.Llﬁill|i||ll1L[1|||llJ_u|l b by bea g b
el A N AR N NS W NI RN DN e N
Mﬂmﬂﬂﬁlﬁﬁgbﬁ|lll|“llnu|”uil.

TIIILJ_I_LI\lllI|lII||II|l\‘]|VI
1]||||.||.J||||1(|l|11||:1||||]1|||||1|1111

[

RS L. S RIS N A WS R

S N

i E N R e NN R

\lln|1|1l|(‘||14l(||ll[

IIIJ[J

Iltiillllllllll]lltl\‘ll

L

TETE P S RS R S T R

Lol

llLJ_LII

\llle[lllllllllllIlllilul

IIL¢||[11|1II||‘IK||||1|

MW A=r77] 1AE REEE RS R NN RS NS RN W S S N

1)y P
IIlIlENﬂl\II\llllLlllll‘llllllll\lllllllllll\illllllllllllIIILLLIAI IlllL|||
NN . NS N N SR N BRI NN ST N R ST RN e N

|lllxl.i(IBILIAwkllclAKlolsl)llflIlllllll‘lllllllllLl_Llll|I||)llll

llﬁllllll.llllllllll|Illxlilll‘l|II]|ll'IIlAI|III|I‘IlI1|1|\| 1l||lJl|| llllill

/Illlﬁoklnllllll\llllIIllIAlIIlt‘IllllllllIlAlLI Illlllkl#ll(lllllllll ||1|l|4

U3 474 W77 N TS I W R R R A IR e N

a2« AP NS NNl R RN Sl BN SN W e
111t SUBRleuTINE PRIWT | v 1y vl Loy by b b 1
|

|I|||[11|

I T

l|11¢111

llll|llll

llllll!llllllllll‘

||||i|1||

1Ill|nn.|.lx111]1111|||IA||1|||I>|||\|J||||I||11|||l|||J|ruxl||||||Illllll!ll

IR L ST N R FEETE R ETE FRT ST NN S N R SRR RS SRy N e fRN e

lllllll!lllJIlL

N PO PR RN N
W W.4727,.2 A R RN NS NS SRS PN SWRT e e
|11|£{V.D.l|“.l||||lnlunluqunll||.|..|.|..{||I|.||||‘||14..
TN . FEN EURWH SR FENTY NS S N P O e

1 Loy “éL:ﬁMKllQA’KDS:)..l.u..l.||||||||11||x|1|11|1uzLLJ||

llllllll‘l[lil]II|l|Alll||ll|111|n||ll||1|l||l||||ll|lIll||

|||||1 1|||||lL

|
|
|
1
|
{
|
|
|
|
|
|
fllx}l[1ll|lJ_l_Lll
|
|
|
|
|
l
|
|
|
|

n||11||||IIIII|

Illltlllllllllll

LanlxllllJltlll

IlllllllllllllL

RN NN N

W g‘m’...n‘l\lul||1|||.||l>.|||||||.||||n|||||l||||||l|.|||||
LT A S I 1 /.- I IS R B DI ST P

L ERROR il a1y

RN B F W R

|
|
|
I
|
|
I
|
|
f
|
|II‘LLIlIIIIlIlIllllAI'IlIl||11]lll
]
|
|
|
|
I
|
|

OLOE | { [
Al||llll|ll|]|llll‘IllllilllllllllllllllllIlllnllllllllllllllll|li
LEll;llﬂXlllilllll:nnlLLlll|Il||1|111

|||‘4|||IlJ_I_L‘lllLlllll|lllllllLl’ll.||Ll!r|lll|l|l|l[l|l||l|11||lxllllll
Figure 34. Compile and Execute a Nonprocess Program from the Core Load Area

coaa o e e by b v laa g

Functions of Executive Programs

83

core load may be replaced by another mainline core
load, an interrupt c.:e load by an interrupt replace-
ment core load, a combination core load by a re-
placement core load, and a nonprocess core load by
a nonprocess replacement core load. Replacement
of the four types of core loads is governed by cer-
tain rules which are summarized as follows. Note
that the replacement function within an *DELETE
operation does not alter the core load name, but only
its word count and sector address.

If a logical drive is specified in column 19 of the
*DELETE card, only that drive is searched for the
core load to be deleted. When the replacement
function is used and a logical drive is specified, also
the replacement core load must reside on that drive.
If no logical drive is specified all drives are
searched, starting with the temporary drive.

Combination and Interrupt Core Loads. In deleting a
combination or interrupt core load, all references to
this core load in the Program Name Table (PNT)
and/or Interrupt Core Load Table (ICLT) must be
replaced by a replacement core load name. Absence
of this specification in the control card invalidates
the deleting function. Furthermore, if an interrupt
core load or combination is used to service multiple
interrupts, all interrupt core load entries in the PN
Tables, Queue Table, and ICL Table are automatically
replaced with a single delete operation by specifying
9999 for the interrupt level and bit positions on the
control card (columns 39-42).

The rule is never to allow a previous serviceable
level and its bit indicator to remain unserviceable.

Mainline and Nonprocess (or Link) Core Loads. In
general, a mainline or nonprocess core load that is
not currently being called by other core loads does
not require replacement. If, however, it is still
being referenced in the Queue Table, the PNT within
the System Skeleton or some other PNT, deletion

is restricted because it is still necessary to maintain
this core load identity in the system. Note that a
nonprocess core load may be deleted without a re-
placement core load even though it is still refer-
enced. A negative value is then placed in the word
count position of the PNT entry in those core loads
referencing the deleted nonprocess core load. A
nonprocess core load is also referred to as a link.

Data Files. By definition, a data file is an area in
the Core Load Area established by an *STOREDATA
function with a D in column 11. Data files can be
deleted but not replaced. In deleting a data file from
the disk, the user should be aware that the system
does not check to see whether this data file is still
being referenced by currently executing core loads.
This means that if he wishes to delete a data file, he

84

has to ensure by some programming means that
there is no reference to this file: that is, no reading
from or writing to this file. If there is a reference,
there is a distinct possibility that core loads writing
to or reading from this file might destroy one or
more core loads stored in the same location the

data file was located.

EXAMPLE 4. DELETE A PROCESS MAINLINE,
COMBINATION OR INTERRUPT CORE LOAD FROM
THE CORE LOAD AREA (see Figure 35).

In deleting a process mainline core load, the
user should ensure that this core load is not being
referenced or called by any other core load that may
in turn reference further core loads. If such a sit-
uation exists, up to 14 names of calling core loads
will be listed; if the number of calling core loads
exceeds 14, any excess will not be indicated in the
error message. The solution here is to eradicate
the excess core loads from the Fixed Area, either
by a sequence change or a deletion.

The delete operation is merely one of removing .
or eliminating an entry from the FLET table with a
system mnemonic name 9DUMY, indicating an un-
used area on disk. Note that in a fresh (that is,
new) disk pack, the Core Load or Core Image Area
is initially represented in FLET by a 9DUMY
entry thus:

NAME (= 9DUMY)
SECTOR COUNT
SECTOR Address

Subsequent *STORECI operations will move this
entry. A delete simply replaces a core load with a
9DUMY. In practice, a delete is normally followed
by a replacement unless the core load being deleted
is considered "dead, ' thus making its replacement
unnecessary.

Example 4 also demonstrates the use of
*¥DUMPLET as an effective programming tool. A
dumplet following a delete operation is good program-
ming practice; it shows conclusively that a program

SAMPLE CODING FORM

I-10 1-20 21-30 31~40 4i-50
[2Lslafs[e[7lefolo][2l3[alslel7[e[o[o]: fo]3[4[sle[Tello] 2 s[4l [eFlefo ol els e le e b0
i) S S RN SRR R SRR T ST R fa |
_/L/L_lﬂ_uh.‘:Iul.Jlxl|||||1|x|1.|-1|||:|11||||||||11|
Pklfmllﬁn;nlllll||A||l||x.||nvnlnujllnunlllllnl
21|||lelmllllllllll
kl!lzlhllllIlllIllllllllllllllllllllllllll|l|l

e7E 6l [PROGS PROGI% | BTG | L
kerr A/ bbby b b Lo by e
IEI.IIL|1||H|1|PKJQMQQQ_LL_LLI_:_AQMJ_A_LL_A_J_|J

mAcer L L
Ll

ol

P I |

;
NP I P IS S
,

. P

Figure 35, Delete a Process Mainline, Combination, or Interrupt
Core Load from the Core Load Area

P e

llllllllln

lAIllllIl(lllxl sl

or core load is in fact removed from the FLET
table. For an understanding of LET/FLET tables,
the user is referred to the Systems Reference Li-
brary: IBM 1800 Time-Sharing Executive System,
Operating Procedures, Appendix F, Form C26-3764.

In all three cases, the FLET table is searched for
the core load name to be deleted, and its replace-
ment name. Any references to the old program in
the Program Name Table of all core loads are then
replaced with the word count and sector address of
the replacement core load. The old program name
is finally deleted from the FLET table.

In the case of combination and interrupt core
loads, the interrupt level and PISW bit position indi-
cators are obtained from the card buffer, converted,
and stored in the nonprocess communications area.
The ICL Table is then updated.

Note also that in all cases, except for the deletion
or replacement of nonprocess programs, a check of
the queue in the skeleton is made to see if the pro-
gram to be deleted or replaced is in the queue. If it
is, the queue is updated.

EXAMPLE 5. REPLACING A NONPROCESS CORE
LOAD IN THE CORE LOAD AREA (see Figure 36).
Like process mainline, combination and interrupt
core loads, a nonprocess core load can also be
deleted and replaced by an *DELETE operation (see
Figure 35).

A nonprocess core load can also be replaced by
storing a replacement core load to the Fixed Area, as
illustrated in Figure 36. The user can thus modify
existing nonprocess core loads without previously de-
leting them.

SAMPLE CODING FORM

-0 T ni-eo T 21-30 31-40 41-50
[el3[dslel7lelolo] Tefs[afsle[7lele[of [e[s[alse[7[ele[o] [2[3[45 [elrlele [o] e 3als el efelo]
W OB e L b o b Lo b by g
W Fo MAMEZ | o Ll b g be s b big gl
Mo, 0CESIS PROGRAM | 4y vl Loty v ligadd
Et.z.s.ﬂ,squ,ﬂc.e..Pﬁmmm..,.|..lLl....1“1.1.1..!|..JJ

RIW|T E SKGICA R,
N L A A TR AT E A T A AT W S W
hd P M7 A, !
TS . RS R N BT P ST RN SN
C, L EX |

2.7 N I W B BN NI U B P
hi QMP....(xxw|||l||[.l|.'..|.’.||1|||‘|'1.11JL|:.1
ToRlemO , |\ | FX) WAMEN Mama2 oL L]
Clclmnnnlelll||||||||.|‘||.lx|111+L‘||||||1L|||l

llllIllll]lllL|l|\||IIIIIALIIIIIllllJllllLlllLllll

Figure 36. Replacing a Nonprocess Core Load in the Core Load Area

This is achieved by an *STOREMD operation. An
*STOREMD with a Fixed Area destination is exactly
equivalent to an *STORECI of a nonprocess core load
provided that

1. The replaced entry must be in FLET for a
Core Load Area

2. If the function is to modify the Core Load Area,
the existing FLET entry must be for a nonproc-
ess core load.

A search through FLET is first made to see if
the replacement core load name is already an entry.
A further search is then made for a large enough
9DUMY entry to contain the core load. On a find,
the sector count of the 9DUMY is checked against the
required sector count. The check is successfully
terminated by locating a large enough entry on a
specified drive which can also take an additional
FLET entry. A successful find supplies a destina-
tion sector address, and, if previously unknown, the
logical drive. Once it is determined that there is
space to store the core load, the core load Program
Name Table is updated.

Note that the replacement program can either be
in the temporary area (of Nonprocess Working Stor-
age) or in the Relocatable Program (that is, User)
Area on disk. The name assigned to this program
must not be the same as that of the program to be
replaced. In Example 5, NAME1 and NAME2 desig-
nate two different names. NAME1 (which was pre-
viously resident in the Core Load Area) is deleted
from the Fixed Area and its entry in FLET removed.
The replacement core load NAME2 is stored in the
Core Load Area and its name, size in words, and
starting sector address then entered into the FLET
table.

EXAMPLE 6. REPLACE A RELOCATABLE PRO-
GRAM IN THE USER AREA (RELOCATABLE PRO-
GRAM AREA) (see Figure 37).

Figure 37 illustrates a sequence of control cards
that might be used to accomplish this. NAMEL is
the name of the replacement program being stored.
It must be compiled or assembled with the identical
name of the relocatable program being replaced
(that is, also NAME1), and it must be the prime
entry point. This name must be in the temporary
area of Nonprocess Working Storage.

Note that the control card name for the existing
program to be replaced must have a LET entry of
the same name for a User Area replacement. The
replacement program will not overlay the current
program, but only cause it to be deleted from the
LET table. Thus, the size of a replacement pro-
gram and the number of entry points in a relocatable-

Functions of Executive Programs 85

SAMPLE CODING FORM

1-10 11-20 21-30 31-40 41-50
1[2]3]4lsfe] 7lelofo] 1 [2]3]4]sle|7lelo] o] [2]3]als]6] 7[8lo]o]i]2]3]4ls e[]elolof 2] 3]als 6] 7lalelo
[0) I I R R T PN SN PR fe |
/|/|A5M;{ZAﬁ5|1|.||||||||||ll.||nl||||||||||||v|||||||
L|Il$711|llllllxlllllIltllllllllJ LLlLLlllLILlLllllll
EMJML_QMIOIMVIAALLEI|.||A111|111Ln.ln:.llln!lllnul
WAUMCH, |

RN P I RN N A PR N e S
L4 C 7 7 8L L

AI|III>[IIIIIlAlIIl!IAIIIlllllllillllllllll

||Il.lnlllilllllllllllllllIIll[lIIIII[I]IIAII]II]II
/lllquy’..LJiullxlul||...||.|..||1||||.|.||x.||.||.]

Phsrogema 1, Lo MAMES L L Lo]
/|/||EMDAIIJIIIIllﬂllllJJll[llJLllIlllllllllllllkllll

llllIlLlnIllnxl.llllnnl-l.n|nl:1||[1|1£1.11|11||||

llJl||||l||IAII|III]AI||I|1I|]Illlllllllllllllllll

Figure 37. Replace a Relocatable Program in the Relocatable
Program Area

program are governed only by the standard restric-
tions on any *STORE operation, and not by the size
and number of entry points of the existing program.

Other than the above considerations, an *STORE-
MD with a User Area destination is essentially equiv-
alent to an ordinary *STORE function to the User
Area: the same coding is thus used for storing the
program. This procedure is mainly used for the
modification of existing user-written or IBM-sup-
plied programs.

Changing Core Load Linkages. Through the *SEQCH
function, the user is given a powerful programming
tool to alter the sequence or order of existing core
load linkages for either process or nonprocess core
loads. This means that he can now modify a core
load Program Name Table such that all references
to a core load originally specified will subsequently
reference a replacement core load. Note that no
deletion of core loads takes place as in an *DELETE
with-replacement operation.

This is known as selective replacement, since
the existing referenced core load, the replacement
core load, and all other core loads in which changes
are to be implemented are all specified.

Note also that the replacement and existing core
loads must be type-compatible. That is, a mainline
or combination core load may replace either a main-
line or combination core load, but a nonprocess or
link core load may only be replaced and called by a
link. Process calls may emanate from any type of
core load.

86

EXAMPLE 7. CONSIDER THE FOLLOWING
SITUATION, In a typical operation, core loads
ALPHA, BETA1, and DELTA will call or reference
core load NAME1 by a CALL QUEUE statement, thus:

CALL QUEUE (NAMEL, 1, 0)

The user now elects to replace NAMEL by
NAME?2 such that all further references to NAME1
by ALPHA, BETA1, and DELTA will be changed to
NAME2. NAMET1 can either be a combination or
mainline core load resident in the Core Load Area;
by definition, NAME2 must either be a combination
or mainline core load -- assume that it is also
stored (by an *STORECI) in the Core Load Area.
The following sequence of control cards may be
used to effect this change.

SAMPLE CODING FORM

-0 | n-20 [21-30 [31-40 [ai-s0
2[4fslel7lelelo] [2ls[alslel[efelo] l2[=[s[e[fele[o] [2[z[« el Te[o[o] f2[3[+[5 6] [s[olo
IIIIIJOBILII|I|«|IllllllllljllllllllllllllLlL!llllll
TN -2 I N N BT N Wl R NN N

E1QC AMEL Ny 2|y 1AL 1 7

- N N T ANV TS ST T S N
III!IIA:]I)[IllIIlVIllllllllllllllllllllllllllllll

This will modify the Program Name Table of
each of the core loads ALPHA, BETA1, and DELTA
so that whenever they call NAME]1, the call will
refer to NAME2.

At this point in the operation, the user may have
no further use for this sequence change, and may
well delete core load NAME1, thus:

*DELETE M NAME1

In practice, however, he will probably not delete
NAME]1 but prefer to return to his original sequence,
thus:

*SEQCH NAME2 NAME1, ALPHA, BETA1l, DELTA

Note that because of the type-compatibility be-
tween existing and replacement core loads (mentioned
earlier), a restriction exists in the case of nonproc-
ess core loads. If, for example, NAME1 were a
nonprocess core load, then NAME2, ALPHA,
BETA1, and DELTA must, by definition, be also
nonprocess core loads.

EXAMPLE 7A, AN ALTERNATIVE METHOD (TO
THE *STOREMD FUNCTION) OF ON-LINE RE-

BUILDING OF PROCESS CORE LOADS. Figure 38
illustrates the technique employed, where

e CLALl is the core load name to be modified;
assume the core load is on disk. RELPR is the
relocatable program which has been modified.

e CLA2 is a temporary core load name used to
achieve proper deletion and replacement of the
new version of CLA1.

Process Programs

1. Using TASK (with TASK EAC) in an off-line
system only. To do this, the process program
must first be written as a nonprocess program;
when fully tested, it is reconstituted into a
process program for execution (in an on-line
environment).

2. Using the Simulator in either the on-line or
off-line environment.

The advantages of the Simulator as a debugging tool

Debugging Core Loads using the Simulator lie mainly in

The powerful diagnostic messages printed by
the Simulator, which allow the user to deter-
mine the logic flow of the program by noting
the subroutines called, and,

2. in the fact that a process or nonprocess core
load may be fully tested without taking the sys-
tem off-line.

Several options are available to the user for the de- 1.
bugging of process and nonprocess programs. These
are summarized below:

Nonprocess Programs

1. Using TASK (with TASK EAC) in an off-line
system only.

2. Using the Simulator in an (a) off-line, or
(b) on~line system.

The following examples illustrate the simulation
of assembly language process programs.

EXAMPLE 8 (PROGRAM LISTING NO. 2). This
program is written for the purpose of debugging the
Simulator. If the Simulator erred in the reading of
analog input cards, error messages would be
printed.

Actual simulation is initiated after the core load
build function has been completed. The first thing

l SAMPLE CODING FORM done by the Simulator is to read the Simulator con-
1-10 t-20 | 21-30 [3i-40 41-50 trol cards *XIO *START SIMULATION. Not
i[2[3]4]s]e]7[elofo] i [2[3]4]s]e[7e]o]o] 2]zl 6]]elo[o] Tel3[<ls [e Flele]ol 1l2[3[aJs]e] 7]s]olo] ﬂi:t :i; :th er Sirs-:.lﬂ(.lat or control cards, such aSO ©
’I 1 11 1 1 1 10 1] 1111 1 11 1 11 L1l ’ r
/:/: g;phi : : : i:i' ' : : : ' : : :‘ i *DUMP, *SNAP, etc., should precede the *START
i Lo cens oo cias [T{T] SDIULATION card: data cards should follow the
GCEMA L Lyl bbb L b L] *START SIMULATION card. Since no control card
Eggggm:. N Y VAR Y. T T e is used to describe the source of analog data, it is
STORIECZL My |1y ICLAL | RECAR CLAS 1y] assumed that this data will emanate from card input.

After reading the control cards, the Simulator
will proceed to interpret the instructions in the
user's program, exactly as in execution. The first
instruction being a LIBF AISQN, the Simulator
prints the S50 message, giving the name of the rou-
tine and the absolute address of the LIBF. The S20
message is printed by the Simulator AISQN routine

(47" W IS A P T S TR RN S|
|E|llwlllllll IlCILlAlzlllc‘lLIAcﬂlIIIII\II[Illlllllll

o b b b b byl

L
LJIIIIIII||||||||AIIIIIIAA!I
1

|]|1||||||‘|.||||||||’||.1l.|l|||||:]

'lllllllllllllll

lll|[..nx|||

Figure 38. On-Line Rebuilding of Process Core Loads

Functions of Executive Systems 87

and consists of a description of the calling sequence.
Since it is an analog input, a data card is read.
However, due to the fact that column 5 is blank,
the Simulator is not aware of the format of data on
this card and informs the user accordingly with the
S12 message. This is likewise the case with the
next two cards. Note that the Simulator is still in
the process of simulating the first AISQN call. It
will continue reading cards until it completes this
call. The next card read has a D in column 5, im-
plying digital data input.

However, an absence of the E parameter in
column 72 signifies an end of data and thus the S15
message. Only the number +00123 is read into the
buffer since the word count is 2, one word of which
is the analog address.

Upon completion of the first LIBF, the busy test
is encountered. The Simulator will always take the
busy exit the first time through a busy test. The
second time through, it will exit at the not-busy in-
struction. Thus, if the busy exit contains an MDX
back to the busy test, the Simulator output will show
two "goes' through the busy test, one after another,
as in the printout of the two S21 messages.

Next, in sequence, another LIBF AISQN is encoun-
tered. Again, the S50 message identifies the sub-
routine and the absolute address of the LIBF. The

88

520 message gives the calling sequence. A card is
read with correct format and an E in column 72.
However, only the numbers 1234 and FF12 are
read, the first blank terminating the data. Since
the word count for AREA2 is four, there is insuf-
ficient data on the cards to fill the buffer. Hence
the S16 message.

Note that an E in column 72 terminates the call
to the subroutine. Therefore, if there had been no
E in the last card read, the Simulator would have
tried to fill the buffer with data from the next card.
The busy test following this is then simulated.

The last call recognized is that to VIAQ, and
this terminates the job. The following S99 message
is a snapshot of the instruction which caused
termination.

Anytime a job is terminated, a snapshot is given
to allow the user to determine why the job was
terminated.

If the user had wished to see the status of regis-
ters at some point of the program, a *SNAP or a
*TRACE card could have been added giving the rela-
tive address (obtained from the assembly) of the
instruction. Note also that the WAIT instruction can
be used as a trace aid since the Simulator automatic-
ally gives a snapshot of registers upon encountering
a WAIT.

PROGRAM LISTING NO. 2 -- EXAMPLE 8

// JoB
/] *

*LI1ST

0000
0001
0002
0003
0004
0005
0006
0007
0008
0004
0008
000C
000D
000E
000F
0010
00ll
0012
0013
0015
0017
0019
001A
001B
001D
001E
0020
co21
0022
0023
0024
0025
0026
0028
0029
0039
0046
0054
005D
00SE
006D
007C
0085
0086
0088

NO ERRCRS IN ABOVE ASSEMBLY.

DB638

O o (=]

OQO OoONOHONOOOONOMON
(-]

~ WO~ WWOo
o [-N~-Nd

30

o o

[~

TEST CASE DB638 START
// ASM DB638

01262615
1000
0020
3000
01262615
0000
70FD
co1ls
4200017
01262615
1000
0024
3000
01262615
0000
70FD
cole
9073
4C200018
25241600
14162897
0029
70EF
14162897
005E
25241600
0002
1001
0001
0000
0004
lo01
0002
AAAA
0020
0019
001C
0012
0002
0010
001D
0011
0002
AAAA
0000

*THIS TEST CHECKS ABILITY OF THE SIMULATOR TO

*
*
*
*

*PRINTER MESSAGES UPON SUCCESSFULL TEST SHOULD BE
S12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
READ CARDS UNTIL E IN COL 72

*
*
*
*

START

OUP FUNCTION COMPLETED

// bupP

*SIMULCIL M

*CCEND

CLBs BULlLDL DB638

CORE LOAD
TYPE NAME

MAP
ARG1

*CDW TABLE 3E82
*IBT TABLE 3ESE
*F10 TABLE 3EAB
*ETV TABLE 3EBB
*1ST TABLE 3FOF
*PNT TABLE 3F46
MAIN DB638 3F4E
PNT DB638 3Fs48
PNT 0B638 3F4C

CALL VIAQ

3FD6

CALL MESSP 4036

CORE

40BE

NEXT

NEXT1

NEXT2

ERR1

ERR2

AREAL

AREA2

ERR1P

ERR2P

CONST

S15 TOO MUCH DATA,

le REJECT DATA CARDS WITH INCORRECT FORMAT

2
3.

SKIP EXCESS DATA CARDS
SENSE INSUFFICIENT DATA IS SUPPLIED

S16 INSUFFICIENT DATA TO FILL I/0 AREA, J0OB

CONTINUED

LIBF AISQN

nC /1000

DC AREA1

WALT NOT EXECUTED

LIBF AISQN

DC /0000

MDX NEXT

LD AREA153 CHECK THAT NO MORE
BSC L ERR1sZ THAN 1 DATA CARD WAS
LIBF AISON USED FOR DATA,

nC /1000

D AREA2

WAL T NOT EXECUTED

LIBF AISQN

DC /0000

MDX NEXT2

LD AREA2%4 CHECK THAT 1/0 AREA
S CONST ABOVE DATA CARDS WAS
BSC. L ERR2,7 NOT ZERQED.

CALL VIAQ

CALL MESSP

DC ERR1P

MDX NEXT1

CALL MESSP

DC ERR2P

CALL VIAQ

nC 2

oC /1001

BSS 1

DC /0000

DC 4

DC /1001

BSS 2

DC /AAAA

EBC . NOT SUCCESSFULs EITHER CARD.
EBC « WITH BAD FORMAT WAS NOT .

EBC +RECOGNIZED OR TOO MANY DATA .

EBC «CARDS WERE READ IN,

EBC o$%,

EBC . NOT SUCCESSFUL, 1/0 AREA,
EBC « ZEROED ABOVE AREA FOR WHICH .
EBC +DATA WAS SUPPLIED.

EBC .53,

DC /AAAA

END START

DB&38 DB638 DB638

ARG2

000C
001D
0010
0054
0036
0008

3F42

Functions of Executive Programs

89

CLB»

*X10

DB638 LD XxQ

*START SIMULATION

50
20
14
12
14
12
14
12
14
1s
la
S0
21
s0
21
50
20
la
16
50
21
50
21
56
99

VUL VNV nnn Lo

3F4E AISGN
CONTROL WORD11000, 10 AREAI3F6E+SPECIAL ENTRY 13000
INPUT CARD 1 %Al 511120-11134502561-198258631562
UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
INPUT CARD t *AIX 12340210FF12FEDC
UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
INPUT CARD ! *Al 00001010010001100000011111111111
UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
INPUT CARD ¢t *AI D $00123-00010%00127-02047
TOO MUCH DATA, READ CARDS UNTIL E IN COL 72
INPUT CARD ! *AI H 12340210FFL2FEDC
3F52 AISGN
BUSY TEST
3FS2 AISGN
BUSY TEST
3FS8 AISGN
CONTROL WORD!1000, 10 AREA!3F72,SPECIAL ENTRY !3000
INPUT CARD t *Al H 1234FF12 FEDC
INSUFFICIENT DATA TO FILL 1/0 AREA
3FSC AISGN
BUSY TEST
3F5C AISGN
BUSY TEST
TSX VIAQ NOT EXECUTED
0015 3F63 3F65 5400 3FD6 0000 0000 0000 0000 0000

NO8 ILLEG LDR CD

*END
// =

20

DATA
DB8638 END

3F38

EXAMPLE 9 (PROGRAM LISTING NO. 3). The
Simulator control cards are read in and initializing
processes are begun. The three analog input cards
signify card input for data. Note that one or all of
these cards could have specified the random number
generator as an input source. Note also that in a pro-
gram such as this, extreme care must be taken in
setting up the data cards, remembering that an E
parameter in column 72 terminates any attempt to
fill an analog buffer.

The 856 message reflects the call in the FORTRAN
program. Note that the parameters are also printed.
If either of these parameters had been improper, a
message would be printed accordingly.

The next block of four PRNTN calls refer to the
WRITE (M, 10) statement. A FORTRAN call fo
output or input, generally, translates to several
calls to the I/O subroutine, including busy tests,
actual I/0, and special functions as in the carriage
control shown here. The line after S33 gives the
message which the user would see if the program
were executed.]

The three CARDN calls listed next are the result
of the FORTRAN statement 20 READ (N, 30). The
card image in hexadecimal is printed and the busy
tests performed.

Next, in sequence, are four print calls: the re-
sult of the FORTRAN statement 35 WRITE (M, 40).
Again, the line after S33 gives the users actual
printout.

Note that the FORTRAN statement at 30+1 is an
IF statement. The Simulation output gives no indica-
tion of this because no major subroutines are called;
that is, the Simulator does not show when some
arithmetic function or subroutine is called. However,
all instructions of this statement have been simulated.

The first DAOP call in the Simulator output is the
result of the FORTRAN CALL DAC statement.

Again, a rundown of the calling sequence is given in
S20. The S10 message describes the type of output,
that is, random, sequential, etc. The four words
of analog output are given just ahead of the next

S50 message. The DAOP busy tests are a result

of the second DAC call.

Next, in sequence, is a series of analog input
calls, each one reading some point from cards.
These are a direct result of the analog input calls
in the FORTRAN program.

Again, there are four calls to the PRNTN routine:
the result of WRITE (M, 65).

At this point, the IF following statement 65 and
the IF at statement 90 force a return to statement
20 and a second "'go' through the loop is simulated.
The message "GOT THIS FAR'" is printed out a
second time, and for a third time, statement 20 is
executed and a card is read. At this point, the IF
at 30+1 forces a transfer to statement 120.

The CALL QUEUE, CALL SHARE, and CALL
VIAQ are then simulated by the S56 messages. Note
that in the case of CALL QUEUE, the name of the
called program TC152 is also printed out. A snap-
shot of the terminating instruction is then printed.

Since the user included a *DUMP control card,
the program is dumped. The addresses are abso-
lute. The address in statement S98 gives the abso-
lute address of the first word of the user's pro-
gram. The XXXX at the end of the dump refers to
undefined core.

A dump of the transfer vector may be obtained by
using a negative number as the lower limit.

One method of tracing through a FORTRAN pro-
gram is by strategic PAUSE (I) statements. When
the Simulator encounters such a statement, it will
print out the S56 PAUSE message together with the
appropriate parameter. Thus, some idea of pro-
gram flow may be obtained.

Functions of Executive Programs 91

PROGRAM LISTING NO, 3 -- EXAMPLE 9

// JuB A

/7 %

// FOR TC152

*LIST ALL

*10CS(1443 PRINTER)
%(JNE WORD INTEGERS

SIMULATOR TEST CASE 152

=% SIMULATOR TEST CASE 152
EXTERNAL TC152
DIMENSTON NOUTA(10),IN1(9),IN2(10),ID1(10)
CALL UNMK(-1s-1)
IXIT=0
N =2
M= 3
ITOL = 20
WRITE (M,10)
10 FORMAT (24H1INTERLEAVED AIP,AIS,AIR)
20 READ(Ny30) (NOUTACT)oI=1s4)sINLCL)oIN2(L1),IXIT
30 FORMAT(616,11)
IF(IXIT) 120435,120
35 WRITE (My40) (NOUTA(I)sI=14s4)sIN1C1)sIN2(1)
40 FORMAT (1H +617)
CALL DAC (01101,NOUTA(1)+NOUTA(5))
50 CALL DAC (0,J)
GOTD (50,60),J
60 CALL AIP (01000,JP,IN1(1))
CALL AIS (02001,ID1(1)+ID1(3)+IN2(1))
CALL AIR (02001,ID1(1)+ID1(2)sIN2(1)»IN2(1) 00
CALL AIS (02001,IDl(1)+ID1(¢3)sIN2(1))
CALL AIR (02001,ID1(1)+ID1(2)4IN2(1)4+IN2C(Y), 00
CALL AIP (01000,JP,IN1(1))
WRITE(M,6S5)
65 FORMAT(13H GOT THIS FAR)
IF (IABS(ID1(1)=-NOUTA(3))-1T0L) 90.+90,70
70 WRITE (M,80) ID1(1)
80 FORMAT (10H 1D1(1l) = ,I7/17H OUT OF TOLERANCE®D
90 IF (IABS(NOUTA(1)=-JP)-1TOL) 20,20 +100
100 WRITE (M,110) JP
110 FORMAT (6H JP = ,17/17H OUT OF TOLERANCE)
GO To 20
120 CALL QUEUE(TC152+1+5)
CALL SHARE (300)
CALL VIAQ
130 6O TO 130
END
VARIABLE ALLOCATIONS
NOUTA=000D 1INl =0016 1IN2 =0020 IDl1 =002A IXIT #002B N
JP =0031
STATEMENT ALLOCATIONS
10 =004D0 30 =0058 40 =005F 65 =0064 80 #0060 110
70 =0188 90 =01C3 100 =01D2 120 =01DA 130 #01lE5
FEATURES SUPPORTED
ONE WORD INTEGERS
10CS
CALLED SUBPROGRAMS
TC152 UNMK DAC AIP ALS AIR I1ABS QUEUE
MIO1 SUBSC PRNTN EBPRT
INTEGER CONSTANTS
1=0042 0=0043 2=0044 3=0045 20#0046
300=004C
CORE REQUIREMENTS FOR TC152
COMMON 0 INSKEL COMMON 0 VARIABLES 66 PROGRAM

END OF COMPILATION

TCls2

DUP FUNCTION COMPLETED

// pup

*DELET M TCl52

TC182

D25 NAME NOT IN L/F

*SIMULCIL M ° TC152 TC152 TCl152
* INCLDTRACE /2800

*CCEND

CL8, BUILD TC1S2

CORE LOAD MAP

TYPE NAME ARGl ARG2

92

#002C

#0080

SHARE

4#0047

422

00000000
00000010
00000030

00000050

00000060
00000070
00000080
00000090
00000100

00000130
00000140
00000150
00000160
00000170

00000200

00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320

00000330

M #0020

20

#0083

VIAQ

COMGO

1101#0048

35

ITOL #002E

#0006

MRED

1000#0049

I =C02F J
50 =0106 60

MWRT MCOMP
2001=004A

=0030

=0110

MIOIX

5=0048

*COW
*IBT
*F10
*ETV
*VTV
*IST
*PNT
MAIN
PNT

PNT

CALL
CALL
CALL
CALL
PNT

CALL
LIBF
LIBF
CORE

CLB,

*AIP
*AIR
*ALS
*X10
*DUMP
*STAR
S 56

S S0

NOT EXECUTED

S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3100

S 50

TABLE 3E82 000C
TABLE 3E8E 001D
TABLE 3EAB o0o0l0
TABLE 3EBB 0054
TABLE 3FOF 0006
TABLE 3F1l5 0036
TABLE 3F4C 000C
TC152 3FE9
TC1S2 3F4E
TC152 3Fs2
UNMK 4140
AlP 418A
AIR 4lB8
QUEUE 42CA
TC152 3Fse6
VIAQ 438(C
AIPTN 43EC 3FOF
AIRN 446E 3F12
4544 3ABC
TC152 LD XxQ
c
c
c
0000 7FFF
T SIMULATION
TSX UNMK
oC FFFF
DC FFFF
293A PRNTN
293C PRNTN

S 33-0 LIST PRNTR OUTPT CONTROL WORD t /21

INTERLEAVED AIP,AIS,AIR

S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S so0 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S so 2928 CARDN
S 27-0 CARD _INPUT, WORD COUNT 1 80
0000 0000 0000 0000 1000 2000 0000 0000 0000 0000 0000 2000
0000 0000 0000 1000 0000 0000 0200 2000 0010 0080 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ©0000 0000
S so 292C CARDN
S 21-0 BUSY TEST
S S0 292C CARDN
S 21-0 BUSY TEST
S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3DOO
S s0 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD t /2110
10 [} 20 1 4096 4097
S so 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S so 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S s0 1A48 DAOP
S 20 CONTROL WORD!1010 ,1/0 AREA ADDRESS: 3F61 ,SPECIAL RETURN ADDRESS!
S 10 WRITE OUTPYT - - - - - RANDOM ADDRESSING
WORD COUNT1/0004

0001 0014 0000 O000A

50 1A48 DAOP

21 BUSY TEST

50 1A48 DAOP

21 BUSY TEST

50 1Aa8 AIPTN

20 CONTROL WORD!1000 ,AREA 13F89 ,MULTIPLEXER ADDRESS ! 0201

14
1

14
50
20
14
50
20
1a
50
20
14
50

VLLLLLNnLnLLLLLLLBLLLOVLONLLKLOLO®D

1a

INPUT CARD t *AI D &00010

1A48 AlSG

1A48 AIRN

CONTROL. WORD!1000 10 AREA ADDRESS!3F81,MULTIPLEXER TABLE

N

20 CONTROL WORD12000,

N

10

10 AREA13F80,SPECIAL ENTRY 10000
INPUT CARD 1 *Al D £00020

INPUT CARD 1 *Al D £00020

1A48 AlSQ

CONTROL WORD12000,

1A48 AIRN

CONTROL WORD11000 10 AREA ADDRESS!3F81,MULTIPLEXER TABLE

N

N

10 AREA13F80,SPECIAL ENTRY !0000
INPUT CARD 1 %Al D £00020

INPUT CARD 1t %Al D £00020

1A48 AIPT

N

INPUT CARD 1t *Al D &000l0

20 CONTROL WORD!1000 +»AREA 13F89 ,MULTIPLEXER ADDRESS ! 0201

ADDRESS!

0000 0000 0000
0200 2000 0010
0000 0000 0000
0000 0000 0000

3F11

E

E

E

0000
0040
0000
0000

ADDRESS! 3F78yRELAY ADDR!000O

3F784RELAY ADDR!0000

E

Functions of Executive Programs

0800
0000
0000
0000

2000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

93

S S50

293A

PRNTN

S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3DOO

S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD ! /2110
GOT THIS FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S so 2928 CARDN
S 27-0 CARD INPUT, WORD COUNT t 80
0000 0000 0000 0000 1000 2000 0000 0000 0000 0000 0000 2000
0000 0000 0000 1000 0000 0000 0200 2000 0010 0080 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
S 50 292C CARDN
S 21-0 BUSY TEST
S 50 292C CARDN
S 21-0 BUSY TEST
S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD 1S /3D0O
S S50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD 3§ /2110
10 [20 1 4096 4097
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 1A48 DAOP
S 20 CONTROL WORD11010 ,I1/0 AREA ADDRESSt 3fF61 ,SPECTIAL RETURN ADDRESS!
S 10 WRITE QUTPUT - = - = = RANDCOM ADDRESSING
WORD COUNT! /0004

0001 0014 0000 000A
S 50 1A48 DAOP
S 21 BUSY TEST
S 50 1A48 DAOP
S 21 BuUSY TEST
S 50 1A48 AIPTN
S 20 CONTROL WORD11000 ,AREA 13F89 ,MULTIPLEXER ADDRESS ! 0201
S 14 INPUT CARD t %Al D &00Ol0
S so 1A48 AISON
S 20 CONTROL WORD12000, IO AREAI3F80,SPECIAL ENTRY 10000
S 14 INPUT CARD ! *Al D &§00020
S 50 1A48 AIRNN
S 20 CONTROL WORD!1000 ,10 AREA ADDRESS!3F81,MULTIPLEXER TABLE ADDRESS!
S 14 INPUT CARD 1t %Al D £00020
S s0 1A48 AISGN
S 20 CONTROL WORD!12000, IO AREA!3F80,SPECIAL ENTRY !0000
S 14 INPUT CARD 1 %A1 D £00020
S s0 1A48 AIRNN
S 20 CONTROL WORD!11000 ,10 AREA ADDRESS!3F81,.MULTIPLEXER TABLE ADDRESS!
S 14 INPUT CARD ! *AI D £00020
S SO 1A48 AIPTN
S 20 CONTROL WORD!1000 ,AREA 13F89 MULTIPLEXER ADDRESS ! 0201
S 14 INPUT CARD t %Al D &000l0
S so 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3D0O0
S SO 293C PRNTN
S 33~0 LIST PRNTR OQUTPT CONTROL WORD t /2110
GOT THIS FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
-1 2928 CARDN
S 27-0 CARD INPUT, WORD COUNT ! 80
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0COC 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
S so0 292C CARDN
S 21-0 BUSY TEST
S 50 292C CARDN
$ 21-0 BUSY TEST
S 56 TSX QUEUE NOT EXECUTED

CALL TC1S2

oC 0001

oC 0005
S 56 TSX SHARE NOT EXECUTED

ocC 012C
S 56 TSX VIAQG NOT EXECUTED
S 99 01E3 413B 413D 5400 438C 0001 0000 0000 0000 28D3 3F38
S 98 OUMP OF SIMULATED CORE 3F58

0000
0200
0000
0000

0000
2000
0000
0000

0000
0010
0000
0000

0000
0040
0000
0000

3F11

E
3F78,RELAY ADDR!0000

E

E
3F78,RELAY ADDR!0000

E

E
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

0800
0000

0000
0000

0000
1000
0000
Qo000

2000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

3F50
3F60

3F80
3F90
3FAO
3FBO
3FCoO
3FDO
3FEO
3FFO0
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
40A0
4080
40C0
40D0
40EO
40F0
4100
4llo
4120
4130
4140
4150
4160
4170
4180
4190
41A0
4180
41C0
4100
41E0
41F0
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
42A0
4280
42Co0
4200
42€0
42F0
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
43A0
4380
43Co
43D0
43E0
43F0
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4470
44B0

0000
3F70
0002
0000
044D
6BC1
csco
40D6
E4E3
3F9A
3F90
D400
4012
3FB7
9400
6D00
3F9B
418A
6000
0000
3F78
3F78
40CC
7500
7000
3F78
3FBC
3F86
3F89
4C00
0000
0001
E96C
D16E
0030
4820
DB4O
0098
D342
D340
€330
700A
c200
C344
4480
C342
EODS
C33D
€330
4F00
C33D
Clo3
DooC
DOFC
4C80
0036
c400
B33F
4480
4C20
0030
7010
7401
oCoo
0037
0000
80C8B
6680
7001
c200
1810
DOF6
0032
3E29
617F
0037
70F7
1808
4C28
0037
4Cc08
00AC
4529
4C20
0036
09BS

0004

0000

T0 3F7F

0001
0000
03ES8
coD9
E240
C640
40D6
D400
D400
3F87
6500
C400
3F9F
405(C
3F 88
3FAl
408D
7500
7000
3F78
6500
3F82
6D00
3F9B
5395
4cos
0400
400B
ocoo
0036
D025
Cl3o
ocoo0
7019
COOE
F000
9052
8042
EO03A
C2FF
D680
D580
0098
4820
D780
EOC6
EO0B4
003A
4804
208
1081
T0F2
4282
807A
007A
7015
0098
434E
6E00
701C
0037
0030
C33E
0Co0
D343
007A
7008
9036
D200
5480
ocoo
7400
6600
7401
5480
8201
4444
D213
4464
5480
617F
4494
71FB
C204

0028
0000
07D1
BOOD
c6Cl
E3D6
640
3FS5A
3Fa5
53A1
0000
3F9A
4Co8
6500
6580
3F89
6500
3IF82
D00
3F98B
0000
7000
4O0EF
6500
6500
4118
3F58
5400
0032
Cl64
co25
EO15
00A0
C33D
D342
5304
D343
D341
D33D
9200
0000
FFFF
7202
7044
0041
4820
E8B5
C345
7011
7102
4804
0000
0000
D33A
Ao68
7014
6000
€343
0037
c780
71FF
7088
D480
0032
c780
clo0
7103
4C20
72FF
3E3E
0034
4402
0000
0037
3E44
D2o1
Clos
0A00
T4FF
3E29
c480
7401
703C
4C08

0000

CONTAINS

o001l
0000
0005
2006
D940
D3C5
E3D6
5400
400
3F8A
539E
D400
4035
FFFC
3F8s8
3F6E
0000
7000
40Bo
6500
7500
6D00
6500
0000
0000
5392
5480
42CA
0Coo0
4C18
E96D
D130
0Co0
EOL1D
4Foo0
003C
C330
C400
€340
4808
Cloo
702F
c200
C400
C33D
702C
033D
EOA2
6780
70C2
7008
1010
0000
c780
1090
407C
0037
9039
C341
0043
T0F6
401C
0037
0C00
0043
D054
Cloo
438D
D200
43C7
4C80
7004
4804
5480
FFFD
7401
7001
cao08
0007
7400
0037
0037
4D80
44B7

0000

0000

0002
0000
ol12C
9006
Boo8
D9Cl
D3CS
4140
3F9E
FFFF
3F6E
3F87
6500
7500
S53A4
6500
7500
6000
6500
0000
3F78
40ED
0000
7500
c500
3F85
3E34
5400
0034
4168
D023
Cl6F
00A2
901F
003A
3000
E058
0037
7400
7006
D580
0001
D680
0037
EOD5
1010
4Fo00
D680
0067
6780
lolo
1082
429D
003A
8400
clLoo0
C400
D343
9400
4C20
T2FD
c780
7401
0034
D343
4C18
4C18
7202
4012
70B8
43DE
co2C
T21E
3E28
c2o0l
0037
1010
4480
7000
4485
6600
7401
44A9
0981

0000

0003
0000
5018
2001
500A
D5C3
09C1
3F58
D400
3F87
539E
53A1
0000
3F65
0002
0000
3F78
40AE
0000
7500
7000
6500
7500
3F6E
3F82
3FC5
3F58
3F56
6934
€680
coDA
EOl2
4C80
4818
C009
0000
9054
1001
0036
£828
0000
0002
FFFD
90DE
4818
D341
003A
0000
5307
0067
108D
DooC
4282
D342
0079
B33F
0037
C341
0037
434E
6E00
0043
0037
4C80
C780
43C9
439F
€200
4480
3000
0000
1008
1804
1801
E1l3
C480
8106
0062
1010
7008
0000
0037
44AB
0981

0000

0014
0000
F1C9
B003
40C9
€540
D5C3
3F5A
3F86
8001
3F78
3FBA
539E
7000
405E
7500
7000
6500
7500
3F82
6000
FFFF
3F78
7000
6500
6500
9400
3F9A
6A35
0000
D174
D16F
4140
700€
D33E
53D7
4c18
8400
802D
D345
€345
OFFF
80ED
4820
7007
7102
€330
70CC
0000
5307
D007
1081
€002
€480
D400
7057
D343
9036
4co8
€343
0037
4C20
C33F
4370
0043
4047
€041
9033
0064
7086
0000
4C10
D346
4C04
D201
0037
D20A
0000
D20A
co21
4804
5480
44AA
70F7

0000

0005
0000
D5E3
5001
C4F1
BO12
€540
€400
5392
539€
5398
FFFF
3F6E
6000
4068
3F82
6000
FFFF
3F78
7000
40CD
7500
7000
6000
FFFE
0000
3F86
3FA3
6100
El6C
coz21
7402
0000
6680
€008
003C
426A
0036
D33E
7400
900D
0020
D341
70C8
cio1
6D00
EOAE
1804
70FD
0001
4400
4804
DOFA
0036
0037
7056
71FD
D341
4353
D400
€400
434E
D480
6100
D177
6951
4036
4C20
0000
0000
0000
43F8
1804
4458
1010
D208
E106
D214
D20C
1008
721E
3e28
44AE
C34F

FFF2
0000

0002
0000
C5D9
6840
4DF1
5006
BO10
3F9B
3F85
3F65
3F83
3F87
539E
4050
6500
7000
408E
7500
7000
6D00
5480
3F82
6D00
40FD
9500
539E
4C08
5480
6680
D173
D173
4140
0000
0036
D33F
40EC
C342
D400
cl00
0036
D780
1000
7102
c200
D342
0036
ESBO
D342
C038
T0FD
0000
700D
70F0
D33D
D341
c780
T2FF
C343
7203
0037
0037
C343
0037
c780
4480
c100
8100
438D
43E6
ocoo
0000
C480
D347
617F
D219
7401
D204
coca
D211
4C10
1804
5480
44AD
D219

0000
0000

0018
0000
D3C5
2007
5040
40D1
1010
D400
3FAS
7401
5395
8001
3F78
5480
0000
6D00
5480
3F82
6D00
40CB
3E35
7000
40F0
5400
3F65
3F82
4008
3E3E
4140
C680
4480
6500
0083
€200
4F00
4480
4808
0036
D344
7006
0041
3000
€100
0680
coD6
1010
T0F9
€345
6680
co28
42AD
1010
0003
CF80
1810
0042
70€3
D400
€780
6103
0343
D400
7094
0042
0078
DO4E
70EC
€200
7103
002€
0000
4422
1804
0983
€346
0037
c188
D214
D204
447D
D34C
3E44
452D
7401

FFFF
0000

FFFD
0001
ClES
9006
TE40
D740
9400
3F83
5395
3F87
€400
539¢E
5395
3E36
7500
408C
3E35
7000
4081
6500
3FA2
6D00
5400
418A
0400
5395
5392
3FA4
C132
0001
0078
0000
40FB
D33E
003A
009A
7032
6580
7400
7032
T4FF
4000
D580
0000
D343
D340
c8B5
9099
42C4
6680
42AE
108D
0000
003D
D343
T1FE
4065
0037
0042
€200
7002
0037
0C00
D176
T0DE
7102
1000
D02C
T2FF
0C00
0000
7001
4C20
0985
100F
C480
p21cC
7086
D20F
C480
1804
D187
D34F
0037

0000
0000

0000
0000
cs5C4
8004
2007
TE40
3F9A
€400
53AA
€400
3F83
3F65
6500
3FAQ
3F6E
6500
3FA2
6D00
5400
FFFE
3F82
40EE
4188
3FAL
3F58
6500
3F85
5400
F680
EL6D
Cl2E
6600
4480
€201
coo7
CBFA
7401
0036
0036
6E00
0037
5000
FFED
€100
cobs
€330
DB3E
D680
6780
42Cs
4C80
D007
4480
4C08
6580
8100
€343
6680
8200
D480
0003
c780
002E
CB3E
0078
€100
4028
1810
70C6
0030
0000
€026
4415
€204
1808
0037
ClE9
0Al4
D219
4499
D34D
1010
D34E
480

0000
0000

0000
0002
40C1
500D
7000
2007
D400
3F9C
3F84
3F87
4C20
7401
0000
3F65
7000
FFFE
3F82
4OAF
4188
7500
3F80
6500
3FA2
3F89
5480
0000
3FD8
438C
0000
E973
E01A
0000
0094
D33F
5480
5480
0036
€33D
8027
0036
7015
FFLF
70C1
D580
D344
EOCO
€33D
0000
0068
T0EE
429D
4400
0094
42FE
0037
706D
4C18
0037
10F4
0037
0001
0042
0C00
D974
0000
DO4D
T0F2
D200
€400
4C80
0000
0005
€204
4C08
8201
D200
D217
€204
D21A
7001
1804
D34E
7001
0037

0000
0000

0000
0003
€907
40C7
5011
7000
3F58
D400
3FB3
9400
4132
3F87
7500
3F61
6000
7500
3F80
6500
3FA2
3F82
3F78
0000
3F82
3F6E
3E34
€500
5398
4C00
D039
4C18
D12E
0C00
c824
7402
3E24A
3E28
6680
E039
D33F
coB9
€340
FOOO
€343
0000
7002
908¢C
E0A8
T4FF
D341
0000
0000
0000
7401
DB3E
c1o00
706C
4377
0C00
70F3
1810
0002
D480
0030
coop
6580
71FE
4030
T2FF
0029
4307
4480
D058
4C20
4624
D201
€680
7401
4Cl18
7043
CO1B
4C20
D34F
D34F
D001

0000
0000

0000
0014
68C1
D6E3
40D6
5011
1010
3F84
€400
3F9F
5392
€400
3F65
5480
4073
3F82
3F78
0000
3F82
7000
6500
7500
3F81
5392
3F58
3F65
3F89
4130
Cl134
4168
Cl6E
002E
5480
0036
0000
D400
0036
D400
91FF
5480
D680
€000
4818
€345
csol
4810
EBAC
0037
€102
1010
0000
42C2
0036
6680
4C18
7403
c780
002E
4041
D200
0C00
0037
7102
D173
0079
4038
6680
c200
4C08
0000
00AC
C480
4411
09AF
€347
0000
0037
4464
0000
D006
449A
CO3E
617F
6500

Functions of Executive Programs

0000
0000

0000
0004
C9E2
40€3
E4E3
4006
9400
€400
3F9A
4C08
3F85
3F87
7000
3E36
5400
7000
6500
7500
3F81
6D00
0000
3F78
3F78
3F85
9400
9400
5395
0000
F680
€027
E0L7
0C00
3E28
C80E
4480
0037
€200
0036
4830
3E24
FFFF
0000
7042
9004
DB42
7006
D33D
70A2
D20A
1082
co19
42C3
€400
0074
4302
0036
0043
0C00
B200
7201
002E
7401
7097
€334
7101
72FF
43E9
D026
4305
0C00
5480
0037
7401
0981
100E
1003
C480
c214
4480
D400
€204
6580
0983
0000

95

44Co
44D0
4480
44F0Q
4500
4510
4520
4530
4540

BFSO

6918
0000
6680
c34C
0037
680
0A08
4536
4494
4550
XXXX

Cleo
4C20
0037
100F
C480
00o1l8
CO0A
CZ1A
0000
T0

XXXX

NO4 READY READER

96

1001
44DF
4C80
1808
0037
4C20
D214
4Co8
0000

BF4F

XXXX

4C02
Clo0
0072
8207
D213
4519
coBo
4536
0000

CONTAINS

XXXX

44C8
8008
8000
D207
7401
613C
D204
74FF
XXXX

XXXX

XXXX

4C28
D004
1001
C34D
0037
6680
D211
0007
XXXX

XXXX

44E5
9005
1802
100E
C480
0037
C206
7000
XXXX

XXXX

7020
4C18
D100
1808
0037
4C80
4480
1010
XXXX

XXXX

1001
44E8
617F
8207
D218
0072
0062
020A
XXXX

1802
6500
C480
D207
C1B8
7401
0000
D20C
XXXX

DoOl
0000
0037
7401
D21cC
0037
D21A
D211
XXXX

7500
TOES
D206
0037
ClE9
C480
7013
D204
XXXX

0000
0000
€207
C480
D217
0037
FEFD
D20F
XXXX

7101
0001
E113
0037
C34E
0212
OAl4
D219
XXXX

C100
0020
EBEF
D208
4C04
D20B
C204
D21A
XXXX

F580
613C
D207
7401
451F
CA06
4Cl8
4C00
XXXX

Data Manipulation

EXAMPLE 10. RESERVING A FILE AREA IN THE
CORE LOAD AREA. The only method of reserving
a file area in the Core Load Area on disk is through
an *STOREDATA function. Depending on the intent
and purpose of the user at the time this function is

| performed, two options are open to him:

1. Create a file in the Core Load Area and store
directly into that file data input via the Card
Reader (D in column 11, RD in columns 13-14,
and FX in columns 17-18).

2. Create a file in the Core Load Area and store
into that file data from Nonprocess Working
Storage (D in column 11 and FX in columns
17-18). In this situation, information in Non-
process Working Storage is physically moved to
a data block that starts at the beginning of the
next available sector in the Core Load Area,

3. Create a file area in the Core Load Area for
future use, such as an output file for a core load
program. The method of accomplishing this is
analogous to option 2 except that the data being

stored may be superfluous to the storing function,

To reserve a data file, therefore, implies that there
is movement of information or data which may be
valid or invalid. Note that the *STOREDATA func-
tion transfers this information to disk without any
change of format.

To accomplish this, certain parameters must be
known to DUP and the Core Load Builder. These
are:

e Type of source input

e Logical drive number

e Destination area

e Name of data file

e Sector count and/or word count

Figure 39 gives the sequence of control cards that
might be used in a typical situation, where the source
input is data cards.

A data file, FILEI, one sector long, is reserved
in the Core Load Area, and given a FLET entry.
Since this is a data FLET entry,. the control card
sector count, or the sector equivalent of the word
count, is contained in the entry.

GC26-3703-1
TNL: GN34-0036
Technical Change

The DEFINE FILE statement (see IBM 1130/1800
Basic FORTRAN IV Language, Form C26-3715)
specifies to the FORTRAN Compiler the size and
quantity of disk data records within a file (or files)
that will be used for processing with a particular
program and its associated programs; in this exam-
ple, one data block of 320 words is used. Since we
are storing data to be used by a FORTRAN program
from cards, the associated *FILES control record
must contain the identical name (that is, FILE1) of
the data block established by the *STOREDATA
function. Note that it is from the *FILES card that
the Core Load Builder obtains the necessary data
(name, file number and drive code) to construct the
DEFINE FILE TABLE within a core load. This is a
three-word table which equates program defined file
numbers to symbolic disk data files specified on the
*FILES card.

We have seen that in moving data from the Non-
process Working Storage to the Core Load Area, the
direction of movement is from the start of Non-
process Working Storage on the disk drive specified.

SAMPLE CODING FORM
i-io [=20 [21-30 [31-40 41-50
\[2]3[4]s]e[7[ele]o]1[2[3]a]s]e[sl o] [2]3]4ls[6]7[e]o]o]]2]3[4]s]e]7[ele o] 1 Te]3]4]s]6] 7]8]s]ol
/lllproatllllllli||||‘llllllllL11Allll|lI]II!I‘lIAl!
[N/ -2 N BN Rl BN NS i FR s N
7 AT, FIX) AZiL L 2,
I IR VIS AT WA IS AN P PR S
*| . .(DATA CARDS, SlauRCE Iaiﬁl_/ﬂ)“||||||[|1.||»nm‘
I ST NS WIS A I NIl ST W R
[T Aol R Y N I A AT N e N
/v Aok ALPWA L Lo b Lo b b d
ZoG 7 e84 PRINT, |
U e=YA N Y2 B NN D S N R PR N
*‘IFWMCIQ.’..JL;LJHI1|.|“|‘.HJA¢11[11.|[..1||||411
L1 | peRrvE maes 13)(4,, 520, 0, 006G Ly |y]
e bbb b ben i b Lo b by o
|i||lnllw.l\Ill!llllllllLll.llIllllIlIIIlIlIlJIlJ_I_]
T PN PR RS RS SW TN NS SN SR S
llll||w|KI|ﬂE|‘(l1|3|’I-ll)lI‘mnlll\||LJ111|ll|llltl|lll|4LJ_]
llllIlllA.lllllllll\llllllllllll|‘|I|IIIIl|‘Ill|1I]I]
I AR TS A AT PP B RN WA W N Ny
CALLNIAQ |y vy Ll b b b |
v levo oyl b b b b e by b
IS P RS SR N RN SN SR R N
KS7ToRECT WM RO | |) | ALPHA ALPHA ALAMA | |]
ALic, Sulazeetly@d 1y b e b b s b
fetat=). BN I NN N RS N RN NN R NN SN
N7, - S T RN B NS NS WA P R
ot b b bt b e b b |

Figure 39. Reserving a File Area in the Core Load Area

Functions of Executive Programs 97

However, in the case of data files referenced by
FORTRAN I/0 in Nonprocess Working Storage, the
direction of movement starts from the end of Non-
process Working Storage, and therefore the *3TORE-
DATA function cannot move a temporary data file
established by the execution of a FORTRAN-written
program,

EXAMPLE 11, DUMPING A PROGRAM OR DATA
FILE FROM THE CORE LOAD AREA., A program
or a block of data in the Core Load Area may be

1. moved to the Nonprocess Working Storage,
2. punched into cards, or
3. printed on the List Printer.

Figure 40 illustrates these three cases.

The primary difference between the two dump
functions, ¥*DUMP and *DUMPDATA, lies in the
handling of relocatable programs. *DUMP converts
relocatable programs from disk system format
either to card system format when dumping to cards,
or to printer format when the List Printer is sel-
ected as the I/O media. *DUMPDATA performs no
conversion and outputs a relocatable program as data
identical to its original format.

Programs and/or data in the Core Load Area are
assumed to be in disk core image format. The name
of the program or data file must always be given.

Note that when dumping from the Core Load Area
to punched cards, an *CCEND control card is punch-
ed out as the last card in the output deck. This card
also contains the word and sector count needed in a
*STOREDATA operation. (Note also that, although -
the *STOREDATA function requires that these counts
be contained in the control card, the punched-out
*CCEND card may be used in a subsequent store of
the dumped core load.) PN specifies the Card Punch
as the principal system output device, while PR
specifies the List Printer.

In the same fashion, it is also possible to dump a
mainline, combination, or interrupt core load to
Nonprocess Working Storage or to any available I/0
media.

EXAMPLE 12. LOADING A PROGRAM OR DATA
BACK INTO THE CORE LOAD AREA. One of the

" features of the Disk Utility Program (DUP) is the
ability to load (that is, store) a previously built core
load, which has been dumped to cards by the
*DUMPDATA function, back to the Core Load Area.
One significant use of this ability is the reordering
(that is, rearrangement) of the position of core loads
within the Core Load Area.

98

Consider the following example. Core loads
ALPHA, BETA1l, DELTA, and GAMMA reside in
this order-sequence in the Core Load Area. It is
desired, for chaining purposes, to use them at on-
line time in some other arrangement: say, GAMMA,
BETA1l, ALPHA, and DELTA. The four core loads
are first dumped to cards by a series of ¥*DUMP-
DATA operations, and then deleted from the Core
Load Area. A reload of the new sequence of core
loads is now performed in the order desired. The
result is a greater efficiency in the usage of the
disk by the reduction of disk seek time.

Figure 41 illustrates a possible card deck ar-
rangement for this situation.

EXAMPLE 13. DUMPING A PROGRAM FROM THE
RELOCATABLE PROGRAM (OR USER) AREA, A
dump of a user-written or IBM program may be made
from the User Area to any of the following I/O media:

=

Nonprocess Working Storage (NPWS)
2. Punched cards
3. List Printer

SAMPLE CODING FORM
1-10 [n-e0] 21-30 [31-40 41-50
ifz[3[dlse[7[fo[o] T23]4]sle[7Ja[e]o] 2[s[4ls]e[ele[o] 1 [2[3[4ls[el ele o]t [2[3]4[5 e[[efe]o
/ P, PRO&RAM |7 Vad S, [¢) ate)
LTI/ S N R R B T P B S S|
/I’IIQUH|1||||||1|||||||||||1||1|||1|1||||‘||||||1||
boumA | FXE WSE ALPHA L L gl |
EIQ‘_/MPIL.F.Z-:IHHIH||l4_||||.11|||1;1||H||||.||111_|J
LI % |DUMP A PROIGRAM 110 CARDS , |\ 0 il b
[,/ 1
/lllnql-’l/"..nllnnlll||||]|||:l|1:.||x“l.‘u-llnnllJLil;l
oumA XA AN WePHAL L L b |
WL IR IS NI B BTN Y S NI e |
. LIAN, C)
AL I IS I T D SIS I B N I
MMMMLMM
Vi1, o loump, |a DATA BLolck 7d ¢ IsA PRIMAER | 100
/lllquQI|lllll|||||l‘llllllllllll|Ill||l||l||l|lllLJ
Il’l‘qmpllJ_L[llll||l|||lljllllll(|]II’II.II[(II,I]I[]
M&M_L;_mﬂkl|M:L|P|M4|11.||1|J||1||11|||||||1J
ﬁBgMPIL.EI.IF....l.H.I..n.l....l....l....lx.nJ;..ll
Aﬂ_ﬁm.;lnln|||1|1‘lj_:|||\|n.||||A1“1LL|||1|M‘||
N U NS W N I WS RSN WA N RN

Figure 40, IHNustrating Various Card Arrangements in Dumping a
Program/Data to Nonprocess Working Storage, Punched
Cards, and the List Printer

C

el

SAMPLE CODING FORM

list printer is identical for both *DUMPDATA and
*DUMP).

Se-

Since the source specified is the User Area, a
LET search is performed. In dumping a program to
NPWS, a check is made to see if there is sufficient
space in the designated area; if so, a physical move
operation takes place. As mentioned earlier (see
Example 11) the *DUMP function converts relocatable
programs from disk system format to a format of the
1/0 media selected. (Note that the print format to

I-10 T n-20 21-30 31-40 41-50 - . .
[ZBlsle[ERo] EREEIelo] 2RIl Jelelol [2[z[als [[elo o] [l l]s el felelo Figure 42 gives a typical sequence of control
/ 0L, |LoAnS| To cards used.
1/ Tos , , Note that a relocatable program may also be
V7R,) - S N R T S S S PTRe NRa dumped from the Temporary Area to any I/0O media.
X A | A relocatable program dumped from the User
I NCUTE NS I U DAV NS U R o B Area to punched cards may be later reloaded, if de-
Ny ZAZ ool b b | sired, to the User Area by an *STORE function.
lllllJiLnulnilLJ_LlnuljlnAL.ILJJJu_L_]Hln\llHile]
X, eTAL L b b L | EXAMPLE 14, MOVING A DATA FILE (OR FILES)
T Y I VTS P S WIS S e S WITHIN THE CORE LOAD AREA. This is equivalent
S B BT WA to dumping a data file (or files) from one disk to
T U S S e U I R TS EE . another -- that is, the copying of process data.
. "'413“““4 CARDIS) Ll i Ll | Figure 43 illustrates one possibility.
AT LI EUTINE INWINETES AR SUEN PRI SPTITE BT B
i) ET R
y et 7 CORIE. L OADS, FROM FINED AREA |t Lol .ol EXAMPLE 15, LOAD A PROGRAM/DATA BACK
1 g0 il b L INTO THE NONPROCESS WORKING STORAGE (see
1 o Figure 44). A reloading operation implies that the
i A il il L] program or data to be reloaded is the product of an
ol BETA Lol] *DUMP or *DUMPDATA function. That is, they
e R R must be in binary format (54 words per card).
T Y T I NN T T T Data card input decks have seventy-two columns
T N e | of data, and a seven-column sequence number.
EL EW SiE o quence columns 78-80 are assumed to be numeric
/] - S IS N B N NS SR S R (the first being 001) as punched during a *DUMP-
LI/ - S W W I E N R RIS N e SR | DATA function. In the reload operation, the card
WS TioRlEOATAM. RO | FXG 1GAMMAL . ST 100324 1] deck is read and stored, and a check made for con-
b bl b b e b e b e | secutive sequence, modulo 1000. A sequence break
° AR wcle zwaer) Loy bey b is interpreted as a potential end of the deck. If the
W U U NN U S W U S S card generating the break is a *CCEND card, the
STOREDATAN RO | FXG BETAL . P03., @32 . 1.1 | *STOREDATA proceeds to store the card data
W LU S NI S I WA WU S S directly into its destination area.
L ARD, O & Z, 7
' L NN NI U NS IS i s N
. : Lo r TN :x. JiLPJJ_. L lLL.J . u: T Implementation of LOCALs
Lo (ICARD ISOURCE INAGTY, |\ L e be]) .
TR An introduction to the term "LOCALs' has already
% STOREDATAN RO | FXB IDELTA |\, OBL, . 188328 . .|, . .] been made in the introductory section: Overview
b i L L of the IBM 1800 Time-Sharing Executive System. A
L%, [CARD SouRCA IMPAT) L L il L] local is classified in TSX as a subprogram or sub-
NN T T T routine that is associated with a given core load, but
RN MR NN T N AR T N S| not initially loaded with that core load. When a
I L WA WA TSI I NS G NS S call for a local is encountered during the execution
ADUMALET (|0 A Ll b b | of the core load, the local is read in from the disk,
T B R W WS EPSS WA G S N overlaying the area between the end of the core load
Figure 41. Reloading Core Loads to User Sequence and the beginning of COMMON, unless the local is

already in core. Control is then passed to the local
routine.

Locals may be employed as individual subpro-
grams or groups of subprograms. In the latter case,
whenever a call for a given local is encountered,
the entire group of which it is a member is loaded.
Subsequent calls for other locals within the same
group may then be made without necessitating

Functions of Executive Programs 99

SAMPLE CODING FORM

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

1[2[3]4]s[ef7sle]o

1[23]a]5]el7]s]e]o]

1[2]3]4]s]6]7]e]o]o

1[2]s[als]el]gfo[o

1]2]3]a]s]elJelelo

1[2[3J4]5]e] 7els]o]

1[2f]4fslelefolo]

1[2[3]4]s]e] 7]elolo

L/ % BUMP_|A RELIOCATABLE PROGRAM FROM wSER AREM rio 1PRwAER | 11) L by,

MllllillllIIIlllllllllIlllIlllllllllllllll]_llll!lIIIll]llllIIIllIlvIIIIIII
-7 S P R R NN ERENS NN NS FER S SN SRS ST FN T SRR NN FEN W w P
M‘_u_]_LJ_ﬁLA‘lel&IKIAMQNIIIIIIlllllllLIlll]l'lLALle]IIllllIllIlIllllll\lllllll
FﬂgMPiL.E.ZJAJJ;l1|1|||-1|l.1|n||...ln..ln.lln.ull.“||||1||.|1|.J11||||:||_1||
nhoEMe g b b b b e b by by bae o b b Ly a
RS P P RN P B ST TN NS PR N R ST NN PR N
Figure 42. Dumping a Relocatable Program from the User Area
SAMPLE CODING FORM
1-10 I n-20 21-30 31-40 41-50 51-60 61~ 70 71-80
[z[2ldls[e[[e[s[o] J2lz]4ls]e[Ja]e]o] [2[z]4]sle] alolo] [2[34lslef]e]o o] [2]3]4[5[e]7[elelof T2[3[<]s e[7le[s[o] 23] Islel 7lefelo] T2[3[4]s]e] le[s]o]
i V.E A /.S /v, 7] / V22t Y T R R R R NS NI
M_MIIIIII|J|ZM§LIIIIIIIIII|IllllullllllllllllllllllIlllllllll|Jlllll\l|JLl}1
/AP WA RN R NN F e RSN RN UE Rl SR YR SN SN SRS NN SR
PoazA | FXd WSO oAaTALl o L e Lo e e b iy b b en i iy
ﬁXJ.IDA.r.AJI‘.“Il..Ju;n:Mn.:lln.|||||Il.||||11411111|1||1
Vit 2 A IR AT T ARAP BT AP PO WA WA T N WA SRS RN W S N
Mhlllllltllllll|l|IlltllLllA||I|I111I|IIIIII|'IIII|Ill|llJJJ|II|III!\llllll
'R P RN TS ST TS NEEE SRS SN SRR N TN PN R S F e S
Figure 43. Moving a Data File within the Core Load Area
SAMPLE CODING FORM
i-10 =20 21-30 31-40 41-50 51-60 61— 70 71-80
[2l3ls[el7[efolo] 2l lslel7lels[ol [2lsals[el[elelol T2[=[4l5]e[felo o] o 2[5 el lelolol F2ls[s[5Tel 7efolo] e[[4[slel Jelolof T23[alsle[s olo]
M/—.OMQ-A..PIRO@&AM.HQI/{QN&QCQQ WORK|/ M6, STOQQ&E|)||||xl||1I1|n||||||1|||11|
-, - AN P RN P T PR ST RN P SR TN SN SR FE R PR Y SR
II/Ilql/PnH||l|11111|1|111||11||||||1||.1il||11|)1||[|n||||||11||ll||||||l|||||ll|
7] AT S NS ERITE PN RS R WS FR S PR R
R P PR SN FUEEE DT N RN RS NN DTN PR e SR SR NS SR SR
sl 0], DATIA CARIDS SOURCE MPUT) L ol o by bpva b b ea beaa biay
T U S R DT D PR BUWE FE RN NS SN EN FE T N RS S wn SR R
’!Lclcnfn‘vp...nlnull|||||n.||1|||.l|||111“111:1|flull’llu[xln[lluxluuu.ll|.|||||x
=] N T SN D NS R P I SRS P SR P fa e R a
I!II[.:oulllllIIlI|||||I||sllllllllllLJJLJllJllllllll]lllnlllllllltl|I|All]|||
Figure 44. Reloading a Program to Nonprocess Working Storage

100

reloading from disk. Since all local groups occupy
the same area in core, a call for a local in another
group will involve a load from disk of the new group,
overlaying the first group. At this point, another
call to a local in the first group will require reload-
ing that group from disk. Local groups or blocks are
important for the following reasons: (1) specification
requirements, (2) disk space utilization, and (3) disk
efficiency. The area of core used is directly propor-
tional to the size of the largest block. Data is passed
to or from a local through its parameters, COMMON,
or working storage.

The only difference between a local and a normally
called subroutine is that a localized subroutine is not
assembled as part of a core load. After the associa-
ted mainline program and all of its in-core subpro-
grams (and their in-core subprograms) are relocated,
each local subprogram block is converted to core
image format and stored, sectorized, immediately
following the core image core load, as shown in the
schematic diagram below (Figure 45). See also
Figure 3.

One advantage of the local feature is that logical
subroutines can now be broken off from a large pro-
gram. This means a virtual extension of core.

There is no theoretical limit to the number of local-
ized subprograms that can be implemented: the user
can specify any number of locals within a group as
long as the sum total of all assembled relocatable
programs does not exceed the size of the Local Sub~
routine Area.

Communications Linkages

At object time, locals are located between the end
of the main core load and COMMON. Linkage to and
from locals is accomplished via a loader called
FLIP (a miscellaneous subroutine within the TSX
Subroutine Library) as follows.

CALLS. A call to a local consists of a BSI L. X,
where X is the location of a six-word entry in the
Local Parameter Table (LPT) which is built by the

- CORE LOAD AREA >
- ™~ am
CORE | DATA | CORE [<% < s | Ja| CORE
toap | FILE | LOAD |83 |88 | 83| P
A B C = 5 e} 6] 6

Figure 45. Showing the Relationship of Local Groups or Blocks to
Associated Core Load within the Core Load Area on Disk

Core Load Builder as part of each core load in
which locals are specified. The table provides the
linkage between the core load and the localized sub-
programs via the FLIP relocatable subroutine.
There is one entry in the LPT for each entry point in
the specified local subroutines that are referenced
either on an *LOCAL control card, in the mainline
program, or in one of the other subroutines loca-
lized in that group. Each LPT entry has the following
format:

WORD CONTENTS

MEANING

X DCO A linkage word

X+1 BSI L Long BSI to FLIP routine

X+2 FLIP

X+3 wWC Word count of the local
group with which this routine
is loaded

X+4 SA Sector address of the first
sector for the local group.
This address is relative to
the first local sector
for the core load

X+5 EP Absolute address of the

entry point when the local
group is loaded

The word at X is used for the return linkage;
X+1 and X+2 are executed to link to the FLIP routine
which uses the word count and sector address at
X+3 and X+4 to load the proper local group from
disk, if required. The necessity for loading is
based upon a comparison of the WC and SA words
with those of the local group currently in core. The
word at X+5 is the address of the entry point of the
local that is called. The FLIP routine stores the
return address, at X, into the entry point of the
local and then executes a branch to the instruction
folbwing the entry point (BSC L EP+1), thus simulating
a BSI into the localed subroutine.

LIBFs. A LIBF to a local consists of a short BSI to
an entry in the Variable Transfer Vector (VTIV)
associated with each core load. The VTV logic then
executes a BSI L Y where Y is the first word of a
LPT block, similar to that just described.

Functions of Executive Programs 101

Restrictions on the Use of LOCALS

Certain rules apply with respect to the constitution of
locals, calling locals, and to calls made by locals.
These are summarized below under legal and illegal
uses.

Legal Uses

A mainline can call a local. Note that a mainline
(which can be a process, interrupt, combination,
or nonprocess core load) can, by definition, in-
clude any subroutines loaded with the core load.
Although routines in the main core load can call
locals, all such calls must be completed (that is,
corresponding returns to the calling routine
made) before any call on a local in a second local
group can be made.

A local can call a mainline.
A local can call a skeleton subroutine.

A local can call a local provided both locals are
contained in the same local group.

Illegal Uses

A local cannot call another local in a different
local group.

Due to the transient nature of local routines,
1/0 routines cannot be designated as locals.

Conversion routines (e.g., HOLL, EBPA, PRT)
cannot be designated as locals.

Interrupt servicing subroutines cannot be desig-
nated as locals.

In-skeleton subroutines cannot be used as locals.

Other Considerations

One other restriction in specifying subroutines as
locals is that if a subroutine has more than one entry,
i.e., EDBR, EDBRX, EDIV, and EDIVX, and more
than one entry point is called, then all called entry
points must be indicated on the ¥}LOCAL control card,

The user should also beware of hidden locals. If,
for example, A, B, and C are subroutines, and A
calls B, and B calls C, A and C should not be made
locals because C would be hidden from the relocatable
loader when A was prepared for loading, and on exe-
cution, local C would destroy local A. To overcome
this problem, A and B, or Band C, or A, B, and C
could be named as locals.

If the Local Subroutine Area includes a device I/0O
buffer area, no local should exit to a non-blocked

102

(that is, non-local) subprogram until it has tested
for a device routine not-busy status.

EXAMPLE 16. In certain application situations, por-
tions of a problem program may not lend themselves
to segmentation into individual core loads. In order
to overcome this difficulty, by being able to contain
such a program in the available machine core size,
the local concept is immensely useful. The imple-
mentation of the load-on-call facility means that
subroutines within the main body of a program can

be called into core on demand.

The following example has been devised to illus-
trate this type of situation. It should not be construed
as a model.

Assume a 32K system with a 16K skeleton. If all
of FORTRAN I/O were used for all devices called by
the nonprocess program, NCATE, core size limita-
tions require that FORTRAN I/0 be localized (see
Figure 46). Since all FORTRAN I/0 taken together

SKELETON

VCORE= /4000 <
DIMENSION

MAINLINE MAINLINE

> &
SUBROUTINES

ARITH. & FUNC. S/RS

IOFIX, 10U, SAVE, MAGT

/6164
UFIO, MFIO,
LOCALS MDFIO, &
MDFND
/6890
COMMON
/7FFF

Figure 46. Illustrating the Implementation of LOCALSs

would comprise approximately 3500 words, by local-
izing them, the largest local block will be only ap-
proximately 1600 words, and thus small enough to be
accommodated within the 1830 words available.

Note that subroutines common to FORTRAN I/0
(that is, called by FORTRAN 1/0 and not by the
mainline) are automatically included in the mainline
such that they may be shared. MAGT, being included

in the mainline, can be referenced by either MFIO
or UFIO.

Program Listing No. 4 also indicates the order of
control cards acceptable to the Core Load Builder.
For nonprocess programs, these must all be placed
between the *STORECI (or // XEQ) control card and
a ¥CCEND control card. Only the *RCORD control
is not allowed.

Functions of Executive Programs 103

PROGRAM LISTING NO. 4: EXAMPLE 16

// JOB

// DUP

#*STOREDATAD WSO FXO FILE2 2
DUP FUNCTION COMPLETED

// J0B

// FOR NCATE

*LIST ALL

*NONPROCESS PROGRAM

*JOCS(CARD, 1443 PRINTER,DISK,TAPE)
*0ONE WORD INTEGERS

NONPROCESS MAINLINE--FORTRAN 1/0 1S LOCALIZED
~-=1/0 SEGMENTATION IS ALWAYS DESIRABLE

LARGE DIMENSION IMPLIES SIMULATION OF EXTRA CODE
FOUND IN LARGE PROGRAM

[zXsXe Nz e NaNaXal

DIMENSION SPACE (2000) ,ROOM(500)
COMMON ARRAY{2000),POINT{997),A,B,C

(]

DEFINE FILE 1(320,1,U,IFIL1)
DEFINE FILE 2(320,1,U,IFIL2)

CALL INOUT(1)

DO HIGHLY SOPHISTICATED PROGRAMMING

o000 O

SPACE(1) = A*B/C+A*%BH*ATAN(C)-B*%2
ROOM(1} = ABS{A)*ALOG(B)*EXP(C*A)/(A*COS(C)*TANH(B))

USER~WRITTEN NON 1/0 DUMMY PROCESSING ROUTINES
WHICH MIGHT BE LOCALIZED

CALL COMPT
CALL SURCH
CALL SORT
CALL CAMPH

OO OMO

CALL INOUT(2)

[}

CALL EXIT
END
VARIABLE ALLOCATIONS
ARRAY (RC)=FFFE~-F060 POINT(RC)=FOSE-E896 A(RC)=E894 B(RC)=E892 C(RC)=EB90 SPACE(R)=0FAA-000C
ROOM(R)=1392-0FAC IFIL1(I)=139E IFIL2(1 r=139F

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
INOUT FATAN FABS FALOG FEXP FCOS FTANH FAXB FADD FMPY FDIV FLD FSTO FSTOX FSBR
FDVR FAXI .

INTEGER CONSTANTS
1=13A2 2=13A3

CORE REQUIREMENTS FOR NCATE
COMMON 6000 INSKEL COMMON 0 VARIABLES 5026 PROGRAM 88

END OF COMPILATION

NCATE

DUP FUNCTION COMPLETED
// FOR

*NONPROCESS PROGRAM
*0ONE WORD INTEGERS

*LIST ALL

C

C DO NOTHING 1/0 STATEMENTS FOR ILLUSTRATIVE PURPOSES ONLY
c

SUBROUTINE INOUT(I)
COMMON ARRAY (2000) 4POINT(997) ,A,B,C

GO TO (142),1

104

1 READ(2,3) A,B,C
FIND(2'1)
RETURM

N

READ(2'1) ARRAY
WRITE(1'1) ARRAY
READ(5) A,3,C
WRITE(6) AyB,C
END FILE 6
BACKSPACE 5
REWIND 6

RETURN

3 FORMAT(3F10.3)
END

VARIABLE ALLOCATIONS

ARRAY (RC)=FFFE=F060 POINT(RC)=FO5F~ER96 A(RC)=FR94
STATZMENT ALLOCATIONS

3 =0004 1 =0012 2 =0021
FEATURES SUPPORTED

NOMPROCESS

ONF WORD INTEGFERS

CALLED SURPROGRAMS
COMGO URED UNWRT
MDAF MDFND

ucnmp MRFD MCOMP MINF BCKSP

INTEGER. CONSTANTS

2=0000 1=0001 5=0002 6=0003

CORE REOQUIREMENTS FOR INOUT

COMMON 6000 INSKFL COMMON 0 VARIABLES 0 PROGRAM

END OF COMPILATION

INDUT

DUP FUNCTION COMPLETED
*STORECIL NCATE NCATE
*FILES(2,FILEZ,0)

*LOCAL (MDF IO yMDAF 4 MDAT 4 MDCOMyMNF 4 MDT y MDFX 4 MDIX s MNDRED 4 MDWRT o MNFENM)
#*LOCAL (MFIOyMRED ¢yMWRTyMCOMP yMIDAF 4 MIOQAT 4MIDF 4 MIOL MIOFXsMINIX)
#LOCAL(UFIOyUREDyUWRT,,UIOT yUTOFyUTOAT,UINAF,UTINFX,UINTX$UCOMP)
*CCEND

CLBy BUILD NCATE

CORE LDAD MAP

TYPE NAME ARGl ARG2
#*COW TARLE 4002 000C
*]1BT TARLE 400f 0023
*FI0 TARLE 4031 0010
*ETV TABLE 4041 000C
*VTV TABLE 404D 00AE
*PNT TABLE 40FC 0004
*LPT TABLF 4100 0O0BA
*DFT TABLE 41BA 000C
MAIN NCATE 555E

PNT NCATE 40FE

CALL FLIP 5584

LOCL MDFIO 4100 404D
LOCL MDAF 4106 4050
LOCL MDAI 410C 4053
LOCL MDCOM 4112 4056
LOCL MDF 4118 4059
LOCL MDI 411E 405C
LOCL MDFX 4124 405F
LOCL MDIX 412A 4062
LOCL MDRED 4130 4065
LOCL MDWRT 4136 4068
LOCL MDFMD 413C 4068
LOCL MFIO 4142 406F
LOCL MRED 4148 4071
LOCL MWRT 414FE 4074
LOCL MCOMP 4154 4077
LOCL MIDAF 415A 407A
LOCL MIOAI 4160 407D
LOCL MIOF 4166 4080
LOCL MIOI 416C 40R3
LOCL MIOFX 4172 4086
LOCL MIDIX 4178 4089
LOCL UFIO 417E 40RC

B{RC)=FB892

EOF RFUND

74

C(RCHY=FRON

SUBIM

uIneF MDRFN MPWRT MNCNAM

Functions of Executive Programs

105

LOCL
toct
LocL
toct
LOoCL
LocL
Loce
Loct
Locr
CALL
LIBF
LIBF
LIBF
LIBF
CALL
CALL
LIBF
LIBF
LIBF
LIBF
CALL
CALL
CALL
CALL
CALL
LIBF
LIBF
CALL
CALL
CALL
LIBF
CALL
LIBF
LIBF
LIBF
LIBF
LIBF
LIBF
LIBF
LIBF
LIBF
CALL
CALL
CALL
LIBF
CALL
LIBF
LIBF
LIBF
LIBF
LIBF
LIBRF
CORE
COMM

CLB,

URED
UKRT
uInt
UIOF
UIDAI
UIDAF
UIOFX
uiorx
ucnmp
INOUT
FLD
FMPY
FDIV
FSTO
FAXB
FATAN
FADD
FAXT
FSBR
FSTOX
FARS
FALOG
FEXP
FCOS
FTANH
FDVR
ADRCK
BT2BT
SAVE
I0FIX
10U
BTI18T
FLOAT
IFIX
MAGT
SUBIN
COMGO
EOF
BCKSP
REUWND
FARC
FTNTR
FTRTN
FLN
FMPYX
FXPM
XMDS
FADDX
FSUBX
FDIVX
FLDX
NORM

NCATE

4184
418A
4190
4196
419C
41A2
41A8
41AF
41B4
5615
56RBC
56D5
5717
56A2
5781
57C2
588C
590fF
586C
565R
594E
596A
59FE
S5ATA
5B0E
575D
5862
5BCé
5BE2
5C46
5C76
5CCE
5032
5D4E
5D7A
5F33
5FD2
605D
6064
6024
60B0O
60E4
60FE
597A
5600
SAOE
610E
5886
5878
5712
5687
6136
6164
6890

LD X0

408F
4092
4095
4098
4098
409F
40A1
404
40AT

40AA
40AD
40RO
40R3

40B6
40R9
40BC
40RF

40C2
40CS

40C8

40C8
40CF
4001
40N4
40N7
40NA
40NN
40EQ
40E3

40L6

40E9
40EC
40EF
40F2
40F5S
40F8
072C
1770

DUP FUNCTION COMPLETED

106

General Utility Functions

EXAMPLE 17. PACKING THE USER (RELOCATABLE
PROGRAM) AREA, It has been mentioned that during
a delete operation, the LET table is searched for the
name of the program to be deleted and that entry re-
placed by a 9DUMY. The space (that is, area) pre-
viously occupied by the deleted program remains
unused until an *DEFINE PAKDK operation has been
performed: it then becomes available for the storage
of other programs (through the *STORE function).
The user is therefore advised to repack relocatable
programs for optimum disk utilization at convenient
intervals.

When repacking is performed, the user should
ensure that a current record of disk storage exists
as a safeguard against any errors which might occur
while packing is in progress. The amount of time
involved in this operation is directly proportional to
the quantity of data moved. The sequence of control
cards for a typical packing operation is given in Fig-
ure 47. Note that the *DEFINE PAKDK function
serves only to pack relocatable programs on disk.

Figure 48 illustrates how various portions of the
TSX subroutine library can be deleted or removed
from the disk if they are not needed for a given user
system. The Relocatable Subroutine Area is then
packed to conserve disk space.

EXAMPLE 18. HOW TO REPRODUCE CARDS.

When the input to the *STOREDATA function is in

card form, this function requires the card deck to be
sequenced, modulo 1000, i.e. 1001, 1002, 1003, etc..
Any form of input may exist from columns 1-72, as
no conversion takes place. Fifty—four words are
stored from each source card, The last card of

the source input must be *CCEND,

SAMPLE CODING FORM

i-lo T ii-20 [21-30 3i-40 41-50
[2[dls]e[7lefelo]: [2[s]a]sle[e]s[o] e[z[alslelelolo] [2fa[aF el ele ol [2[]4ls 6l Teled]
Ly % RACK USER WREA BM O/NSK DRIVEG & 1 (L]
). S T RN P TS Y S ey S
FYINT-7] -2 N R RS NN NS e STEEE ey SR
EF ME P I EEE T N BT P B P f
wAceEr e b e b e b b Lo |
IR S T R R PR R RN TR F ey

||Ill||||ll|lllIIIIIllkl]LlLJllllAlllllIIlllIllll‘

Figure 47. Repacking User Area on Disk Drive I

This function may be used to reproduce source
decks prior to assembly (e.g., the TASK source
deck), or compilation, An example of Card repro-
duction is shown in Figure 49.

EXAMPLE 19. DUMPING A LET/FLET TABLE.
The *DUMPLET function is used to dump to the List
Printer the contents of the LET or FLET or both
tables for one or all drives specified during a partic-
ular job. The control card sequence for a LET/
FLET dump is shown in Figure 50.

The format of a LET/FLET entry is summarized
in Figures 51 and 52. A detailed explanation of the
contents of both tables is given in the IBM 1800-
Time-Sharing Executive System, Operating Proce-
dures, Form C26-3754.

EXAMPLE 20. HOW TO CALL FOR A PROCESS
CORE LOAD EXTERNALLY. Once an on-line TSX
system has been built, the question remains of in-
itializing or starting system operation. This is only
possible through a cold start procedure -- Figure
53 illustrates a typical sequence of control cards for
a three-drive system.
The cold start program is supplied with the IBM
System and is normally resident on disk. It is read
into high-addressed core storage by a two-card
bootstrap (COLD START LOADER CARDS 1 and 2),
and control passed to its first executable instruction.
The Skeleton is then loaded to core storage, and
certain mask registers in the Fixed Area are set to
/FFFT thus forcing the Skeleton I/0 routines to op-
erate in a masked mode. Note that it is the user's
responsibility to unmask his system, accordihg to
his configuration determined at system generation
time, through his initial (that is, first) process core
load.
The third control card in the sequence, the COLD
START name card, specifies
1. Whether or not storage protection is required
(1 or 0 in column 14).

2. Whether or not a request is made for the man-
ual entry of the time of day (1 or 0 in Column 16).

3. The logical assignments of physical disk drives
on the system.

4. The name of the initial process core load.

If the storage protection option is elected, the
Skeleton I/0, the System Director, the Executive
Branch Table, and certain words in the Fixed Area
are protected against any user violation. When the

Functions of Executive Programs 107

s/ J0B

e THE FOLLOWING SET OF TSX MONITOR CONTROL CARDS IS USED
s TO DELETE VARIOUS PARTS OF THE TSX SUBROUTINE LIBRARY IF THEY
r7 ARE NOT NEEDED FOR A GIVEN USER-CONFIGURATED SYSTEM

s’ *

e

’r* THE FIRST DELET ELIMINATES CARDN IF THE USER HAS ASSEMBLED
’7 % TASK WITH CARDN INCLUDED-~NOTE THAT FOR OFF-LINE SYSTEMS CARDN
e SHOULD BE INCLUDED IN TASK SINCE THIS SAVES EXECUTION TIME
rr® CORE l+Ees CDINS EQUATED TO 1

/7 DUP

*DELET CARDN

Za IF THE USER DOES NOT MAVE MAGNETIC TAPE ON HIS SYSTEM THE
s7 % FOLLOWING DELETS APPLY

77 OUP

*DELET MAGT

*DELET REWND

*DELET uF10

s IF THE USER DOES NOT HAVE PAPER TAPE ON HIS SYSTEM

rr % THE FOLLOWING DELETS APPLY

77 DUP

*DELET PAPTN

*DELET PAPEB

#DELET PAPHL

*DELET PAPPR

’7 % IF THE USER DOES NOT HAVE A PLOTTER ON HIS SYSTEM THE

ss 0w FOLLOWING DELETS APPLY

77 DUP

*DELET FCHAR

#DELET SCALF

*DELET FGRID

#DELET FPLOT

#DELET ECHAR

*DELET SCALE

*DELET EGRID

*DELET EPLOT

*DELET POINT

*DELET FCHRX

*DELET FRULE

#DELET ECHRX

*DELET ERULE

*DELET XYPLT

#DELET PLOT!

*DELET PLOTX

s 0w IF THE USER IS BUILDING AN OFF-LINE SYSTEM THE FOLLOWING
7 DELETS APPLY--NOTE, DO NOT ASSEMBLE AND STORE THE SYSTEM
s = DIRECTOR

/7 DUP

*DELET CLEAR

*DELET cLock

#DELET COUNT

*DELET DPART

*DELET ENDTS

*DELET LEVEL

*DELET MASK

*DELET OPMON

*DELET QIFON

*DELET QUEUE .
*DELET RESMK

*DELET SAVMK

#DELET SETCL

*DELET TIMER

*DELET UNMK

*DELET UNG

#DELET viaQ

*DELET CONHX

#DELET TRPRT

e IF THE USER HAS NO PROCESS 1/0 ON HIS SYSTEM THE FOLLOWING
e DELETS APPLY

a1

#DELET AIPTN

*DELET ATSON

#DELET AIRN

*DELET ANINT

*DELET oINe

#DELET DIEXT

#DELET p1cMp

#DELET DAOP

#DELET 10PE

#DELET XSAVE

#DELET GAGED

*DELET atP

#DELET Als

#DELET AIR

*DELET cs

#*DELET csc

#DELET csx

#DELET pac

#DELEY QZERQ

*DELET Q@z010

s JOB

sr n THE SUBROUTINE AREA WILL NOW BE PACKED TO CONSERVE DISK SPACE
77 bwp

#DEF INE PAKDK 0

s/ 0B

/7 END OF EXTRA SUBROUTINE DELETS

Figure 48. Repacking the Relocatable Subroutine Area Following a Removal of Various Portions of the TSX Subroutine Library

108

SAMPLE CODING FORM .TEMP XX XX YYYY

=10 11-20 2i-30 3i~-40 41-50
STARTING DISK BLOCK ADDRESS
\[2l3[dfslef7[elolo] [2l3Jals ef7Iefofol: [o[3[alsle] 7[elofof 1 2[3]as el7]ele]o] [2[3]als €] 7lelslo) I OF .TEMP MUST BE A CYLINDER
oty 6 HOW TIO REPRODUCIE CARIDS v L1 v s o biw il i BOUNDARY
vaos by e b b by by b e b !
VI, - TR RIS U TS NI RS S SR THE NEXT DISK BLOCK ADDRESS TO BE USED FOR
T I M‘h 1t M&Z@Lu_u.l_n_;u.l STORING RELOCATABLE PROGRAMS
lII||.||‘||||11|1[1J_L|1LAJ_Llnnll111[I1|1l||||||||||
. I WILL BE THE SAME AS . TEMP’S IF NOTHING IS
R N I RIS R I R R Tl P IN .TEMP

|
!
| EL XXXX, YYYY

. WPIDAITA iil|lJ_|_LAllI||lmll_lllll|'14L‘L_A;
TETWE LN R NS N R RS ST S Sy STARTING DISK BLOCK ADDRESS NPWS 1S

R T TR Y- N S NS S P ALWAYS AT LEAST A SECTOR BOUNDARY
T BN P SRS R ST PR R SR U N fRE
|I..E|T.||L|||||||1|[>|||||1|.||1x.nl..lllnlll...lJ
Y N SN N FEETE T R S eS| DISK BLOCK ADDRESS OF (END OF NPWS+1)
IS ALWAYS AT LEAST A SECTOR BOUNDARY
Figure 49. Reproduction of Cards N_AﬁAJE XXXX YYYY
[
k STARTING DISK BLOCK ADDRESS OF PROGRAM
OR AREA SPECIFIED
SAMPLE CODING FORM DISK BLOCK COUNT OF PROGRAM
I-10 [1H-20 21-30 31-40 41-50
\2l[asle[7elelo] [R5l el ol e o} T2 FaElerTellol 2Rl s ekl PROGRAM OR TABLE NAME
Il P LET, 710 ! IVE . .
LLLL_@QJQ_A_LIMtLN||||xlxx||1-|||llulluxlx|LJIJJ1|||| Figure 51. LET Entries
i BgH|||!¢IIIIIIII'lAIIlIlLlII||I111AJI|IALJIIII!
VA0 N MR DU W NI U DR SR 1= COMBINATION C.L,
e il il bl 0= INTERRUPT C.L. DISK DRIVE CODE 0,1,2
WEEE P IR ETREY R T R RTINS {

Yyvyy
Figure 50, Dump LET/FLET of Disk Drives 0, 1 and 2

Ff-—‘SECTOR ADDRESS
NAME X X X X YYyy
Note to Figure 52: Ina FLET entry, the first two ; ‘ ‘
e 1 indi £ Program STARTING SECTOR ADDRESS
bits in NAME are used to indicate the type o Noge FOR THIS ENTRY
entry:
Bit Values Indication
00 data file —————— WORD COUNT FOR/ENTRIES OR CORE LOADS
01 nonprocess core load
10 mainline core load
; mbinati load SECTOR COUNT FOR (’) ENTRIES, DATA FILES
11 interrupt or combination core loa OR 9DUMY
.E X X X X Yyyy

| STARTING SECTOR ADDRESS OF

CORE IMAGE AREA

TOTAL NUMBER OF SECTORS USED FOR CORE
IMAGE PROGRAMS AND DATA FILES
Figure 52. FLET Entries

Functions of Executive Programs 109

SAMPLE CODING FORM
1-10 1120 21-30 31~40 41-50 51-60 61- 70 71-80

1[2[3[dls]el7lefolof: [2[zla[se[le]s]o] o3 [alslel7lelolo]1 [2]z[«ls e lefe ol T2l afalsTel AAslslo] 2[z[a]s]e] Aelsio] [2[2]4s]e] Tfelolol [z[3]fsle[F[sfelo]
N1 o |RREPARE SYISTEM |FOR OW -L INE OPERATION « o |4 vty oo Lo b e ben o Lol
(/1 dh lcoLa ISTART LOADER CARD 4 |SUPPLTED WITH ZBM SYSTEM | o1y Loyl
ﬁmmmmg&_@dg&ﬁgemm#mm_mlu-..lm-l-..-l».-.LJ--

& CARID FoRl CHD START (| (1,
Liaaly 1|IIII:llllllliILI:Il_LJLAAlIlli4IIl|I'IJAIIl|]1lllllllnll]llll!llllJ_Llll

Figure 53. Cold Start for an On-Line System

clock option is selected, the user manually enters

the time of day in decimal hours and minutes
(switches 0-7 and 8-15 respectively): when CONSOLE
START is depressed, this is converted into hexadeci-
mal hours and thousands of hours (see also System
Design Considerations: System Director).

The assignment of physical disk drive units in a
multi-disk system is based on a logical scheme to
give maximum flexibility, as shown in Figure 54.

Note that the physical arrangement of the disk
drive units (up to three) in a 2310 Disk Storage Unit
is fixed in the sequence: disk drive 2, disk drive 0,
and disk drive 1. Columns 18, 20, and 22 on the
COLD START name card always designate a logical
number sequence: 0, 1, and 2 in that order. These
columns are used at cold start time to establish a
relationship between a physical disk drive (either 2,
0, or 1) and its equivalent logical reference. For
example, a 1 punched in column 18 means that a pro-
gram that references logical 0 will refer to the
physical drive (disk drive 1) which was assigned at

COLD START NAME CARD
2
coL. 18 | coL. 20 | cot. 22
(LOGICAL | (LOGICAL|(LOGICAL
NO.0) | NO. 1) | NO. 2
0 0 1 2
] 0 2
ASSIGNMENT
1 OF 2 1 0
PHYSICAL
DISK
DRIVE UNITS 2 0 1
PHYSICAL DISK
DRIVE UNIT
ARRANGEMENT 1 2 0
IN 2310 DISK
STORAGE UNIT 0)]

Figure 54, Relationship of Physical Disk Drive Units to Logical Number

110

cold start time to that logical number (0). In Fig-
ure 53, physical disk drives 0, 1, and 2 have been
assigned to logical 0, 1, and 2 respectively. One of
the advantages of this flexibility in assigning physical
disk drives in a multi-disk system is backup capabil-
ity.

EXAMPLE 21. HOW TO INITIATE A NONPROCESS
MONITOR OPERATION. In an on-line system:

e CALL SHARE from a mainline program only, or
e CALL VIAQ (when the queue is empty). This
forces a CALL SHARE.

CALL SHARE is deliberately used when time-
sharing is desired at specific times and for specific
durations. The amount of time is specified by the I
parameter, and is variable depending upon the length
of time the user wishes to be away from his process
on the mainline level. This time is set in the pro-
grammed timer run under Timer C. Time-sharing
is terminated when the timer returns to zero or is,
alternatively, set to zero by a CALL ENDTS state-
ment (see also System Design Considerations:
System Director).

A CALL VIAQ when the Queue Table is empty
forces a CALL SHARE statement: the time used in
the CALL SHARE is the value set by TISHA (see
System Design Considerations: System Director;
also Use of Time-Sharing).

In an off-line system, Nonprocess Monitor oper-
ation may be initiated by

1. A COLD START TASK procedure, or
2. Loading a TASK object deck to core with a
four-card High Core TASK Loader.

The COLD START TASK procedure is identical to
the on-line COLD START PROCEDURE (see Example
20), except that the TASK operating system is now

read into core storage (instead of the System Skele-
ton). A typical sequence of control cards is shown
below (Figure 55).

An alternative method of starting an off-line sys-
tem is to load a TASK object deck (previously assem-
bled to user specification) to core-storage with a
four-card bootstrap loader (High Core TASK Loader).
The procedure is summarized below (see also IBM
1800 Time-Sharing Executive System, Operating
Procedures, Form C26-3754).

e Clear core. The 16 data switches may be set off,
or to some predetermined value. Depress
CLEAR CORE and START buttons simultaneously.

e Depress STOP button
o Reset registers to zero. Depress RESET button.

e Ready Card Reader. Depress PROGRAM LOAD
on reader.

o Set Sense Switch 7 up. Depress CONSOLE
INTERRUPT.

o Depress START button (on response to sense
switches).

EXAMPLE 22. HOW TO TERMINATE A NONPROC-
ESS MONITOR OPERATION (OFF-LINE SYSTEM
UNDER TASK CONTROL). Two methods are pos-
sible:

1. Set Sense Switch 7 up
Depress CONSOLE INTERRUPT

This immediately aborts the current job being proc-
essed, and proceeds to next stacked job.

2. Whenever the Card Reader is empty, the Non-
process Supervisor will indicate this situation
by printing the following message:

N04 READER READY

Place next stacked job deck on hopper.
Ready reader. Depress START.

Note: With sense switch 7 on, the Console Interrupt
routine is executed in fully masked mode.

EXAMPLE 23. PREPARING A GUARD (DUMMY)
INTERRUPT CORE LOAD. If an interrupt occurs on
a level designated as "out-of-core' and there is no
interrupt or combination core load associated with it,
the interrupt will be recorded automatically. To pre-
vent this, it is good practice to provide a guard or
dummy interrupt core load to service all interrupts on
all assigned out-of-core interrupt levels until each
interrupt has its final interrupt core load built and
stored on disk. The substitute core load should give
some indication (such as a message) that the interrupt
has occurred.

In the example (Figure 56), levels 8, 9, 10, and
11 were defined as "out-of-core'' interrupt levels by
the System Director equate cards ICLL1 and ICLL2.
The relocatable main program is identified by
GUARD located in the temporary portion of LET.

Its entry address is 5. The interrupt core load

is also identified by GUARD but is in FLET. The
DICLE statement specifies that GUARD is entered
in the ICL Table for each bit position on each level
assigned. When the named program is later de-
leted and replaced by another program, all of the
ICLT entries will be replaced.

EXAMPLE 24. USE OF THE CONSOLE INTER~
RUPT. The Console Interrupt is used by the system
and may also be used by the user.

The system uses the Console Interrupt with sense
switch 7 on either to abort a nonprocess job or to

SAMPLE CODING FORM
1-10 11-20 21-30 3i-40 41-50 51-60 61-70 71-80

i[eI3lafs[ellefole] [2l3]alslele]olo] [[elalslel Tefelo]: [2[z]alsle[lelelo] i To 3[afs [e]leelo] [2f3{afs[e] [elslo] [efs et lelofol 1 T2[[alslel [efe[o]
/ REPARE OFF-L YSIZ.E, RoPeRATZION [v Lo g o b b
Ll % jCoLD START (LOADER CARD 4, ISUPPLIZED WETH Z8M SYSTEM |\ o 1oy Jo il
W % lcocn 5TARTI LOADIER CARD 2. 15U PPULED WITH JBM SYSTeM | (il by valeiyy
Fugslr. TASK 1@ M 2 0AF-LIME SYSITEM Cloco SEART, WaMeE lcARD L1y Loy el
N P PR RR R ST T NS RTTE SR SR T F RN SNy SR EE P S

Figure 55, Cold Start for an Off-Line System

Functions of Executive Programs 111

SAMPLE CODING FORM

1-10 11-20 21-30 31-40 41-50 51-60 61- 70 71-80
TSR BRI R FR TR Rl EEE el EER I b = BRI B FRo

&EPAIRT: A; S OR DY, ERRUPIT €10 L, NN R SRS FENT PR TS N

0 L
I FolR GeaRD vyt e b b b b b b b g b d g
arsiace 1oL Lo b b s by b e e Lo b bvnn e b
&M&m&a}lJ}llulegllIII‘III!‘IIlI‘llIl‘IIII]lllllJAll]llllJllllllll

) |
L ' INTIER, v.ZdED I lew, #hS, laC £p'

CALL -0 AR AP TS T BT W W N N RN S NN S N N
lll|lx£:Ma|1||xlxlljln.x:l:x;;ln111||.1.||11||.411’L1;1LLJ.l‘nnulluunnlxleitll
hSTORECT , 1T, |y BuaRd £9aRD Ly L b e e b e bin
ES]SMDAILJ_LLIIIlIIIIlllAleJAIlIJII[lJ\lnLJlI!JJlll_llJlll\!'\liv1.|l\l‘lll|ll(ll
HOTCLlE CUARD B.(184518,.23)0(18,.00.253) L A A5 302, 3) S, L2y 3) L0 Ly Lyl
LLL{_]LI_I_LIIJ_I_LJII':IAII:II.'I|ll||||ll|lllllx||lllil1ll\l‘ijlll||lkllll|Jl\ll
||l|l.|.|I‘Au|||||1[|||x||AJ_A[|lLllnll|[|J||l||||||_|_L1111c|]l|||LLJ:;L(ll:JJiIL

Figure 56. Preparing a GUARD or Dummy Interrupt Core Load

commence Nonprocess Monitor action. This oper-
ation is required after a // JOB, // END OF ALL
JOBS combination.

A block diagram of the generalized logic flow is
given in Figure 57.

The user may have an interrupt program executed
on a chosen level by depressing the Console Inter-
rupt button with sense switch 7 off. The level is
assigned by the user on the equate card CONTA at
TASK assembly time.

The servicing routine or core load is written by
the user and handled in the same way as a program-
med interrupt servicing routine, with appropriate
LLBB designations. It is through the programmed
interrupt servicing routine that the Console sense/
data switches are interrogated and which, in turn,
direct this routine to the course of action desired.

One of the functions the servicing routine or core
load must perform is to queue up a mainline core

112

load which will notify the Customer Engineer when
he can depress the C. E. Interrupt button for the re-
moval or addition of I/O devices from the system;
and also to print out error counters where hardware
malfunctions have been recorded.

EXAMPLE 25. PREPARING A MAINLINE CORE
LOAD TO PERMIT PROLONGED EXECUTION OF
THE NONPROCESS MONITOR FOR THE DEBUG-
GING OF PROCESS PROGRAMS, The example
(Figure 58) illustrates the use of the CALL SHARE
statement which will continue to provide time for
Nonprocess Monitor operation when the increment I
for timesharing has expired and the mainline core
load is reentered.

This mainline core load will be specified in the
COLD START procedure when only nonprocess work
is to be accomplished.

SET
SENSE SWITCH 7

¥

DEPRESS
CONSOLE
INTERRUPT

BUTTON

/

CONSOLE
INTERRUPT
SERVICING SR
IN SKELETON 1/O

IS S/SW7

SET
PROGRAM
INTERRUPT

W

ABORT
NONPROCESS
JoB

Y

EXIT
VIA 1/O RETURN

Figure 57. Illustrating Logic of Console Interrupt

Functions of Executive Programs

113

SAMPLE CODING FORM

=10 J 11-20 21-30 31-40 41-50 51-60 61-70 71-80
23] 4fs]ellelslo]: [2fs[afs[e[7[e]s[o] [o[s[4ls]el 7fa[s[o] [2[3[els [elrlefo o] [2fa eI el Telslo] [ols[a[s[e] Aelolol [2[3[als]e] 7]alo o] [2[[a[sle] e]o]o
E,P AR T, A I WL €0 L 7 PROL E1XE] vats Fr

111 InHE MomPROICESS WONMITIOR FOR TiHE DESUEGING| 0F, PROCESS PLROSRAMS] | | il 11

LLII_LJEB||1JIIALJIIIJ‘lﬁl_llllLJln|41|J|4LL1|||||IIIIIII||[x|l||

I[lllllllllJ_lll

L1l
TV A=Y i R N T I TR P R P N U SR ET SN S e fREe
g‘rgnlﬁngtlllllLilllJ_llAl_L!llJ_LllIllllllIIIl|IllJllIlLJLIIIlIIllIIj_LJIIII||IIII|A
L7 AN WU RN BN R FENel P T R R T N FETTE FENTE SR e SN SRR e SN
RN 2V A RS I B S B B S P PR NN S WSS NN e R
‘M&MM&‘[I'III:I-L&')IIlllljlll|4J|I|41|IJ_III[4JIILLI|IJ_lJ]'IIIIIIll:[lIIIIII[I
LLLJ.}!LEﬁéﬁLéM&H(rL)JU.J|..LJ||«¢|||.4.||LL||.11.||_L.1|44.|I41“|...|l|||||||||

‘__L_l_j_l__Lélan‘qlllllIIIl]lllAlAllllllllllllllllllllllllllll!lllA[llllLLLlllllll[l]ll

&
7, BLANMK, DS, |FOR, OBIECT OUTAUT), 11y o1 ius iy,

G IR AT WA N
Mm:..lnn|1l|1111.||nl.|41l‘|11|.11.l|L11|14_nll|t|1\::ullllnLLlnxJ_LALln_]_Lil
7} .C.-Z:L.M;MAL]nlllw%fﬂLMMﬁlllulllnxlllllll]xl||||||n'1|“||||||||11
C| > X P U W WS S N SR SR SN ST NN SR R P SR
W= N I RS N S N N S N NN NI N W P R s N
NN P PSR S SN W G W (I e U S A RS N R

Figure 58, Illustrating Perpetual Time-Shared Nonprocess Monitor Operation

114

In industrial control systems, individual user in-
stallation requirements may vary from installation
to installation either in the hardware itself or in
dissimilarities inherent in the application. These
differences may take the form of:

o Different processes

e Special process I/O hardware

e Different input-output configurations

e Different core storage sizes
® Response time

e Throughput

o Priority considerations

This means that each installation must be defined
or tailored to the specific system function require-
ments and input-output-configuration of that instal-
lation. The tailoring function is defined as system
generation which provides the facilities for the
creation and maintenance of a monitored system
composed of IBM and user-written programs and
subroutines. The end product of system genera-
tion is a disk-resident operating system which is
custom built to provide an efficient Executive Sys-
tem for a specific machine environment.

In the IBM 1800 Time-Sharing Executive System,
the builder or "tailor' is a stand-alone monitor
program -called the Temporary Assembled Skeleton
(TASK). TASK permits a system to be constructed
on one or more disk cartridges from absolute and
relocatable program decks which contain the exe-
cutable phases and the relocatable programs the
installation elects to include in its system. Further-
more, the installation may modify the IBM-supplied
configuration, delete functions not required by the
installation and add installation-created functions
and programs. The modular design and availability
of many features and attachable units make possible
numerous IBM 1800 configurations tailored to indi-
vidual application requirements.

*

SYSTEM DESIGN CONSIDERATIONS

System Generation

As noted above, System Generation is the process
of preparing a specially-tailored operating system
to match the machine configuration and operating
system options selected by the user. In general,
two types of systems may be generated:

1. An on-line system,
2. An off-line system.

On-line System

An on-line system is one that responds continuously
to the demands of the real-time world. For ex-
ample, in industrial process control systems, a
number of rapidly changing variables must be moni-
tored, analyzed, and controlled at all times to
produce an optimum result. A TSX on-line system
implies a real-time operating system in which user-
written programs continuously monitor and control
a process operation under the command of an execu-
tive program (the System Director), The executive
provides a means of supervising the use of input-
output data and communications channels, evaluating
and interpreting data, transmitting and storing in-
formation and programs, detecting and correcting
errors, and interlacing time-sharing functions.

It also controls the system's response to various
optional requests, giving priority to emergency
demands and postponing low-priority requests that
may require considerable time to perform. Emer-
gency actions can be scheduled at frequent intervals.
This immediate response is secured through the
medium of a powerful and flexible priority interrupt
system.

In the on-line mode, the executive also permits
the system to be time-shared (when free time is
available) by the controlled process and unrelated
nonprocess functions. This means that nonprocess
programs may be assembled, compiled, simulated,
and debugged without interfering with the on-line
process. It is the rule rather than the exception
that process control programs are subject to change,
and it is a definite advantage to be able to implement
changes at the installation without taking the system
off-line.

System Design Considerations 115

Off-line System

An off-line system is completely unrelated to the
real-time world, its main purpose being the
handling of sequential job operations under the
control of a monitor system. A TSX off-line system,
by definition, constitutes a stack-job nonprocess
monitor system which functions under the direction
of TASK. In this mode, nonprocess operations such
as assemblies, compilations, disk utility operations,
and execution of user-written programs may be
performed.

1. Prepare The System Decks

l

Load System Generation TASK
and Write Disk Addresses

3 Load the IBM System
° Decks
4. “Assemble TASK

Yes

Since TASK core size is considerably less than
System Skeleton core size, core storage require-

. ments are less demanding for the cff-line system.

Also, as the various disk save areas are not now
required, disk space is conserved. For those
users who do not plan to utilize time-sharing, a
nonprocess monitor system working under TASK
gives the ability to build coreloads for an on-line
system, It is from a non-process monitor system
that an on-line system is ultimately constructed.
Figure 59 is a pictorial representation of the steps
required for system generation,

Card Assembler

Note: The card assembler is
required only if your system
does not include the units

required by SYSGEN TASK.

Off-Line Pack
?

. Assemble the System
Director

L

System
16.] Generation 6 Define the System
) Options . Configuration
12,13, 14,15

L

Assemble and/or Compile
User Skeleton Subroutines

Build the System
Skeleton

Assemble and/or Compile
User Process Programs

Build Process Core
Loads

—10.

—11.

On-Line Cold Start

Figure 59, System Generation Overview

116

Define the System
Configuration

l

Build a Nonprocess
Monitor Pack

-

15, Off-Line Cold Start

13 Store Relocatable Programs
: on Disk from Cards

For details of step-by-step system generation
operational procedures, the user is referred to the
System Reference Library, IBM 1800 Time-Sharing
Executive System, Operational Procedures, Form
C26-3754.

TEMPORARY ASSEMBLED SKELETON (TASK)

TASK EQUATE CARDS

Before TASK can be used to tailor a TSX system,
like the System Director, TASK itself has to be
assembled from a source deck. To do this, two
groups (Groups 1 and 2) of equate cards must be
_physically placed in the TASK source deck to
define the particular system. The relationship

of the equate cards to the source deck is illustrated
in Figure 60.

The size of the assembled TASK is directly pro-

portional to the number of TASK functions the user
elects to include in his system. For example, if
he decides to include the complete TASK utility
package which will assist him to debug his pro-
grams prior to a skeleton build, he equates TRORG
to 1. If he decides to include CARDN in the Skele-
ton I/0, he equates CDINS to 1. If he decides to
make use of the 1053/1816 backup capability, he

/ {// END OF ALL JOBS
// JOB '

(END STPOO
Blank Cards
(2-3 inches) /

TASK Group 2
EQUATE Cards

L

TASK Source Deck

/

TASK Group 1
EQUATE Cards

(ABS

(*PRINT SYMBOL TABLE

(*PUNCH

(*LIST
(*ovsmow SECTORS 32
(// ASM TASK

// JOB

Figure 60. TASK Source Deck and TASK Equate Cards

GC26-3703-1
TNL: GN34-0036
Technical Change

equates the BD1-BD8 cards accordingly to identify
the backup printer(s) assigned.

Like the System Director, TASK can be assem-
bled with extreme flexibility so that no core is
wasted by selecting any of the numerous options
available. Furthermore, portions of the package
can be deleted. The user thus elects a configura-.
tion that best matches the functions required. This
is illustrated by the example given in Figure 61

*IBM 1800 TSX SAMPLE SYSTEM TASK EQUATE CARDS

CORSZ EQU 32 OBJECT SIZE IS 32K

COMSz EQU 01000 INSKEL COMMON SIZE 1S 1000 WORDS
DORG1 EQU 1 NOT A ONE-DRIVE SYSTEM

DORG2 EQU 0 THIS IS A TWO-DRIVE SYSTEM

PRILO EQU 01 INTERRUPT LEVEL OF DRIVE ZERO IS 01
PRIL1T EQU 02 INTERRUPT LEVEL OF DRIVE ONE IS 02
PRIL2 EQU 00 THERE IS NO DRIVE TWO

TORG EQU 1 SYSTEM HAS 1816 KEYBOARD

TORG? EQU 1 MORE THAN ONE 1053/1816 GROUP 1
TORG2 EQU 1 MORE THAN TWO 1053/1816 GROUP 2
TORG3 EQU 0 SYSTEM HAS THREE 1053/1816 GROUP 1
TORG4 EQU 1 ONE 1816 KEYBOARD GROUP 1

TORG5 EQU 0 NO 1816/1053 GROUP 2

TORG6 EQU 1 OTHER THAN ONE 1053/1816 GROUP 2
TORG7 EQU 1 OTHER THAN TWO 1053/1816 GROUP 2
TORG8 EQU 1 OTHER THAN THREE 1053/1816 GROUP 2
TORGY9 EQU 0 NO 1816 KEYBOARD GROUP 2

TORGN EQU 1 SYSTEM HAS 1816/1053 PRINTERS
BLAST EQU 1 BLAST CMD ON 1053 AFTER NO RESPONSE
BZ1 EQU 090 MESS UNIT SIZE FOR 1053-1 GROUP 1
BZ2 EQU 090 MESS UNIT SIZE FOR 1053-2 GROUP 1

BZ3 EQU 090
BZ4 EQU 090
BZ5 EQU 090
BZ6 EQU 090
BZ7 EQU 090
BZ8 EQU 090

MESS UNIT SIZE FOR 1053-3 GROUP 1
MESS UNIT SIZE FOR 1053-4 GROUP 1
MESS UNIT SIZE FOR 1053-1 GROUP 2
MESS UNIT SIZE FOR 1053-2 GROUP 2
MESS UNIT SIZE FOR 1053-3 GROUP 2
MESS UNIT SIZE FOR 10534 GROUP 2

NOCYL EQU 20 20 CYLINDERS FOR MESS BUFF

NUMBE EQU 16 16 NONPROCESS MESS BUFF SECTORS
NOBUF EQU 1 DISK MESSAGE BUFFERING

TYPL1 EQU 04 1053/1816 GROUP 1 INT LEVEL 04
TYPL2 EQU 00 1053/1816 GROUP 2 INT LEVEL 00
INTK2 EQU 12 USER KB REQ RTN INT LEVEL KB1
INTK1 EQU 0 USER KB REQ RTN INT LEVEL KB2
PORG EQU 1 1443 PRINTER ON SYSTEM

LVPRT EQU 05 1443 PRINTER INTERRUPT LEVEL 05
LORG1 EQU 1 LIST PRINTER IS 1443

SORG1 EQU 1 SYSTEM PRINTER IS 1443

SLORG EQU 1 CARD INEFFECTIVE SEE LORG1/SORG1
ECPT1 EQU [o] EAC PRINTER IS A 1053

ECPT2 EQU 07 EAC COMBINATION EQUATE VALUE IS 7
ECPT3 EQU 0 EAC PRINTER IS A 1053 GROUP 1
CRDNO EQU 0 ONE 1442 ON SYSTEM

CDINS EQU 1 CARDN IS IN SKELETON 1/O

ORLP1 EQU 1 OVERLAP ON ANALOG I/P BASIC

ORLP2 EQU 1 OVERLAP ON ANALOG I/P EXPANDER
PTSKP EQU 1 LOOPS UNTIL READY IN NONPROCESS MODE
NULEV EQU 16 15 INT LEVELS INSYSTEM

MKLEV EQU 1 15 OR MORE INT LEVELS

CONTA EQU 14 LEVEL OF USER CONSOLE INT RTN IS 14
PRICS EQU 0 STANDARD PRECISION IS USED

TRORG EQU 1 TASK UTILITY PACKAGE INCLUDED
TAO1 EQU 1 FULL TRACE INCLUDED

TAO02 EQU 1 CHECK STOP TRACE INCLUDED

TAO03 EQU 1 DISK DUMP INCLUDED

ONLIN EQU 1 ALL TASK FUNCTIONS ARE USED

1053-2 GROUP 1 BACK-UP UNIT
1053-3 GROUP 1 BACK-UP UNIT
1053-1 GROUP 1 BACK-UP UNIT
1053-1 GROUP 1 BACK-UP UNIT
1053-1 GROUP 1 BACK-UP UNIT
1053-1 GROUP 1 BACK-UP UNIT

BDT1 EQU DT2
BDT2 EQU DT3
BDT3 EQU DT1
BDT4 EQU DT1
BDTS EQU DT1
BDT6 EQU DT1

Figure 61. A Set of TASK Equate Cards for the TSX Sample System
(see Programming Techniques)

System Design Considerations 117

which depicts a set of TASK equate cards chosen
for the TSX Sample System described in Program-
ming Techniques. The significance of each of the
60 cards is clearly denoted. The majority of these
cards are self-explanatory; a few, however, call
for some explanation. These include the following:

e NOBUF

e BZ1-8
e NOCYL
¢ NUMBE

e INTK1

e INTK2
e CONTA

e ECPT2
e CDINS
. PRICé
e ONLIN

e COMSZ

NOBUF. This label indicates whether or not the
buffering of messages to disk is required. It should
be equated to zero if the user

1. Has a 16K - 32K system where very few
messages on all typewriters are printed
2. System is restricted in skeleton core space.

NOBUF should be equated to 1 if the user has a
16K - 32K system, and has adequate core space
(about 300 words) for the buffering feature in TYPEN.

BZ1-8 (Message Unit Size). If the user has adequate
core space, makes efficient use of disk space, or if
he plans to print long messages, the message unit
size should be large. If, however, core space is
restricted, but there is sufficient disk space for a
number of sectors for the buffering of messages,
the message unit size should be small -- that is,
of the order of 20 - 40 words.

In general, increasing the buffer size results in
a more efficient use of disk space and a corresponding
less effective utilization of core storage (see Buffer-
‘ing of Messages to Disk).

118

NOCYL. This should be basically equal to the
largest possible message capacity in disk cylm—
ders at any point in time.

For example, assume that all messages for a
specific system are each less than 40 words long,
and that the message unit size for all 1053 printers
is 40 words. Then, if in any 10 minute period, the
user calls for 80 messages to be printed, NOCYL
should be equated to 10. That is, an 80-sector
buffer is reserved. Note that 8 words of core
storage are reserved for every increment of NOCYL
(see Buffering of Messages to Disk).

NUMBE. This specifies a limit for the buffering of
nonprocess messages. If at any moment, the num-
ber of message buffer sectors in use for nonprocess
messages is equal to or greater than this number,
no further buffering of nonprocess messages will,
occur until the nonprocess buffer utilization drops
below NUMBE. NUMBE must not exceed NOCYLXS,

INTK1, INTK2., These equate cards specify the inter-
rupt levels on which 1816 devices will be serviced on
a keyboard request interrupt. If an out-of-core
interrupt servicing program is to be used for this
purpose, INTK1 and INTK2 must be equated to
interrupt levels lower in priority than all other I/O
interrupt levels.

CONTA. The user must specify the level to be
program-interrupted for the servicing of the Con-
sole Interrupt.

The interrupt servicing routine would then inter-
rogate the sense/data switches to determine the
course of action required by the interrupt.

One of the uses of this routine is to queue up a
mainline core load that will enable the Customer
Engineer to utilize the C. E. Interrupt facility.

(See INTKY; also Examples of Nonprocess Monitor
Usage -- Example 24.)

ECPT2. If two 1053 Printers form part of the user's"
valid system, he should always define (at least) these
two printers as EAC printers for backup purposes.
CDINS. " For off-line systems, this should always be
equated to 1. Note that this saves about 300 words
of variable core. For on-line systems, this should
be zero unless the user plans to include in the skele-
ton a subroutine which calls the 1442 card reader.
PRICS. The user must anticipate what type of arith-
metic precision is required in his process programs.
He should remember that once this is defined, sub-
routines used by process programs are assembled
with this same precision.

ONLIN. If the user plans to operate (only) an off-
line disk monitor system, this should be equated
to zero. This gives the user 600 more words of
variable core.

COMSZ. This equate card specifies the size of
INSKEL COMMON. In an off-line system, this
card has no effect since INSKEL COMMON is
only present in an on-line system.

BUFFERING OF MESSAGES TO DISK

Efficient I/0 handling is the most important single
factor in the effective utilization of processor time.
Input-output devices, being slow compared to the
internal speed of the processor, must be program-
med to overlap their operation with mainline compu-
tations whenever possible to

1. Greatly increase efficiency of I/0 operations
2. Provide more throughput of data.

Consider the following situation. The incore
1053 Printer buffer (whose size is determined by
the TASK equate cards BZ1-8) contained within the
D.P. I/O subroutine TYPEN is full, and the printer
is in the process of writing a message. If disk
buffering were provided, the next message called
would be temporarily stored on disk, and later re-
turned to core when the current message is com-
pleted. This means that the processor-controller
is not locked up and waiting for the input-output
operation to be completed, and is thus able to con-
tinue with its processing.

The significance of disk buffering is that queueing
of output messages or information can now be easily
accomplished without putting excessive loads on core
size or disk access capabilities of the system.

Without disk buffering, the system becomes
printer-limited, and might deteriorate into a 15
character per second system.

We thus see that the buffering of messages to
disk is important for two reasons:

1. It maximizes processor time. That is, it
allows computing to continue after a call to
the printer is given.

2. It frees the user from having to optimize his
message requests, thus permitting more
effective use of the device.

The interrelationship between disk message buf-
fering and total skeleton core requirements can be
shown by the following example.

Without buffering: Assume four 1053 Printers

Minimum message unit size
= 81 words

Total core = 324 words
With buffering: Assume four 1053 Printers

Minimum message unit size
= 20 words

Add additional portion of
TYPEN = 300 words

Total core = 380 words
It is seen, in this example, that the user obtains

all the advantages of buffering at the small sacrifice
of 56 words.

Message Unit Size

The user must define the message unit size for the
1053 Printer(s) attached to his 1800 TSX System at
TASK assembly time. The printers may belong to
Group 1 or Group 2 on the condition that the maximum
number of 1053 Printers used does not exceed 8.

Message unit size is defined as somewhat larger
than the average size of the message or information
to be printed out. This may be within the range of
20-319 words which is dictated by the minimum and
maximum core sizes that may be specified for a
message buffer. In practice, an optimum size may
fall between 40 and 80 words (80 to 160 characters).

Definition of the message unit size is also depen-
dent on whether messages to the 1053 Printer are to
be buffered.

If non-buffering is employed, the message must
never be greater than that defined for a message
unit. If the user plans to print out long messages
or a large number of messages; has adequate core
storage, and makes efficient use of disk space, the
message unit size should be large. Assuming
FORTRAN compilation is planned, the message unit
size should be at least 81 words (162 characters).

If buffering is preferred (because the user is
pressed for core storage, but has enough disk space
for a number of sectors for the buffering of mes-
sages), the size of a message can be any length;
that is, greater than the size of the message unit.
The message unit size can now be defined as small
as 20 words (40 characters).

In general, a large buffer size results in a more
efficient use of disk space and a corresponding less
effective utilization of core storage.

System Design Considerations 119

Determination of Disk Buffer Size

The following guide rules may be used for deter-
mining the size of the disk buffer:

Rule 1. For random message requests, if the
user plans to print out less than 10, 000
characters per hour on a single 1053
Printer, the device utilization will be less
than 20%. A large percentage of applica-
tions falls into this category. In this situ-
ation, for a single 1053 Printer, the user
will almost never require more than three
disk message buffer spaces.

Rule 2. If the user plans to print out a large number
of messages in a small interval of time
(e.g., data logging at 50 messages), he
will require a large number of disk message
spaces. The length of the log determines
how big the disk buffer shall be.

The following example illustrates a representative
calculation. Assume:

1. A 10 message-unit log at the end of every 15
minutes.

2. An average of 50 operational information mes-
sage units per hour.

3. An average of 10 alarm message units per hour.

4. Message unit size for 1053 Printer (i.e., BZ1)
= 50 words.

5. Average length of messages = 30 words.

To handle a 10 message-unit log will probably
require 9 sectors; that is, assuming that all 10 mes-
sages are called to be typed at the same instant of
time. The reason for the 9 is because 1 message is
moved directly to the output area, the remaining 9
being buffered on disk.

Let us further assume that the remaining 60 mes-
sage units are randomly distributed across the hour
(that is, 10 in one 10 minute period, and perhaps none
in the next 10 minute period, etc.).

Then,
Number of characters typed = 60x30x 2
‘ 2
Time to type these characters= (ig_x_30_x_
15 x 60
= 4 minutes

The utilization of the 1053 Printer during the hour
is

4 _
30 6.67%

120

Therefore, the number of sectors required
for the messages sent at random is 3 (From Rule 1).

And the number of sectors required for the log
is 9 (From Rule 2). Total number of sectors re-
quired is 9 + 3 = 12 sectors.

Now, assuming more than one typewriter is used,
sum the number of sectors needed for each addi-
tional 10563 printer (computed as above). Let the
total overall number of sectors = X.

X + 7 .
Then NOCYL = ———8———— complete cylinders
(ignore remainder)
. 12 + 7
In this example, NOCYL = 5 - 2 com-

plete cylinders. If three extra 1053 printers were
included to handle random message requests, then
from Rule 2, six additional sectors will be required.
+
NOCYL now becomes }2——g—+—7 = 3 com-

plete cylinders.

The user may also use the above guide rules to
compute nonprocess disk buffering. Assuming a
random message distribution pattern, each 1053
printer will require three sectors. Unless he has
excessive disk storage, nonprocess disk require-
ments should be kept to a bare minimum.

CALCULATING TASK CORE SIZE

1. For an off-line system, the size of TASK is
calculated as follows:

TASK

]

FIXED AREA
Disk device tables
DISKN
1053 device tables
1816 device tables
TYPEN
1053-1443 Timing Response Routine
1443 device table
PRNTN
Constants, work areas, etc.
CAREN (always included)
TASK Program Set

I i

Where
TASK Program Set = 1690 + 8 X N + 653 X ONLIN

+ 200 X TRORG
+ 221 X TAO01 X TRORG
+ 358 X TA02 X TRORG

+ 162 X TA03 X TRORG
+ 20X MKLEV
+ 110 X DORG1

TRORG, ONLIN, TA01-3, DORG1, and MKLEV
are TASK equate cards.

The remaining parameters have already been
given in the calculation for Skeleton I/0: see

System Design Considerations: System Director.

Once the system is built, the starting address
of variable core is found at word 66 hexadecimal
(102 decimal) of the Fixed Area. The label of
this location is $VCOR. For an on-line system,
the start address of variable core is equal to

THE IBM NONPROCESS SYSTEM

The IBM Nonprocess System is a nonprocess system
deck which constitutes the major portion of the TSX
system. It is composed of control programs and a
complete package of IBM relocatable subroutines
necessary for the proper execution of the TSX sys-
tem. A breakdown and brief description of each of
its component parts in the order in which it is sup-
plied and loaded to disk follows below (see Figure 62).

Cold Start Cards. The on-line or off-line system is
brought into operation by three cold start cards (two
Cold Start and one Name Card) which initiate the
Cold Start program. A cold start requires that a

VCORE., :
/
(OTHER UTILITIES
(SAMPLE PROBLEM
{TASK SOURCE DECK
SYSTEM DIRECTOR
SOURCE DECK
*DEDIT CONTROL
CARD FILLED IN
BY USER { STAND-ALONE UTILITIES
SKELETON BUILDER
DISK
RESIDENT
PROGRAMS
ASSIGNMENT
CARDS FILLED
IN BY USER \(

A
{ SYSTEM LOADER DECK

{ SYSGEN TASK DECK

/

{ TASK HIGH CORE LOADER

COLD START CARDS

NOTE: DISK RESIDENT
PROGRAMS COMPRISE THE
FOLLOWING:

LET

DCOM
BOOTSTRAP LOADER
NONPROCESS SUPERVISOR
CORE LOAD BUILDER
COLD START PROGRAM
DISK UTILITIES
ASSEMBLER
FORTRAN COMPILER
SIMULATOR
ERROR PROGRAMS

IBM TSX SUBROUTINE LIBRARY

Figure 62. The IBM Nonprocess System

System Design Considerations 121

minimum of one core load be resident in the core
load area on disk for execution. The name of the
initial core load as well as the logical assignments
of the physical disk drives are obtained from the
Name Card.

System Generation (SYSGEN) TASK and Loader
Cards. SYSGEN TASK is the "starter'" system
which contains the basic minimum components for
initial system generation. It is loaded to memory
by a four-card TASK High Core Loader.

System Loader. The System Loader performs
three essential functions at system generation
time: It 1) loads the IBM Nonprocess System to
disk drive zero and file-protects this disk drive
from sector 0 to the start of Nonprocess Work
Storage, 2) builds the Assignment (AT) and Input-
Output Unit (IOUT) Tables and stores them on disk
and 3) edits the disk and the Disk Communications
Area with a standard layout as a base for TSX non-
process programs. It is also used for reload pur-
poses and to make partial modification, if any, to
the TSX system.

Disk LET/FLET Tables. LET (Location Equivalence
Table) serves as a disk map for system programs,
subroutines, and relocatable programs. It contains
the name of each function and its size (that is, disk
block count, where 1 disk block = 20 words). Each
entry point in a subroutine has an entry in the LET
table. As the user stores his own relocatable pro-
grams on the disk, entries for these programs are
also made in LET.

FLET (Fixed Location Equivalence Table) is a
map of core loads and data stored in the Process
Core Image Storage (or Core Load) Area, and the
Save Areas on disk.

Disk Communications Area (DCOM). DCOM is used
by all nonprocess system programs and is stored on
logical disk drive zero at sector 00000. It is essen-
tially a disk communications map of vital information
needed by nonprocess system programs. Some
words within DCOM are used by process programs
such as Cold Start.

This area is brought into core each time a // JOB
is read; certain words are then initialized to reflect
the current status of the disk as depicted by the LET/
FLET tables. Whenever a // END or // XEQ card
is encountered, DCOM is written back to disk.

Bootstrap for Nonprocess Supervisor. This is a
relocatable program that can be located anywhere in

122

core for any one system. When VCORE (the start
address of variable core) is established, its entry
point in variable core is fixed. The bootstrap
serves as a linkage between the System Director
or TASK, and the Nonprocess Supervisor. It is
updated during system generation by TASK, the
System Loader, and the Skeleton Builder program.
It always resides on sectors 1 and 2 of logical disk
drive zero.

Nonprocess Supervisor (SUP). This program directs
all nonprocess monitor operations. It decodes the
monitor control records in the stacked input for non-
process jobs, and calls the appropriate monitor
program (Assembler, FORTRAN Compiler, Simu-
lator, etc.) to perform the desired operation. The
supervisor provides continuous processor-controller
operation during a sequence of jobs that might other-
wise involve several independent programming sys-
tems. It also supervises the transfer of control
between monitor and user programs.

Core Load Builder (CLB). This program constructs
mainline, nonprocess and interrupt core loads from
user-written programs. Using data contained in
control records and in the program itself, the Core
Load Builder combines the mainline program, re-
quired subroutines, generated work area tables and
transfer vectors into an executable core load.

Cold Start Program (CLST). This program initiates
the TSX system into operation. In an on-line sys-
tem, it loads the System Skeleton to core and trans-
fers control to the System Director. In an off-line
system, TASK is loaded to core, and control trans-
ferred to the first executable instruction within
TASK.

Disk Utility Program (DUP). DUP is a set of rou-
tines designed to aid the user in performing the
functions of disk maintenance. That is, it has the
capabilities of storing, deleting, and outputting user
programs, defining system and machine parameters,
and also of maintaining communications areas. DUP
also automatically updates the LET/FLET tables to
reflect all changes to the disk. It is called into
memory by the Nonprocess Supervisor.

Assembler (ASM). The Assembler is a disk-oriented
symbolic assembly program that translates programs
written in symbolic language into machine language.
Basically, it is a one-for-one type assembly pro-
gram. Provision is also included for the user to
easily make use of input-output, conversion, and

arithmetic subroutines that form a part of the sub-
routine library.

FORTRAN Compiler (FOR). This is a disk-oriented
program that translates programs written in the
FORTRAN language into machine language, and
automatically provides for the calling of the appro-
priate arithmetic, functional, conversion, and input-
output subroutines.

Simulator (SIM). The Simulator provides the user
with the means for testing and debugging programs
without disruption to the on-line process.

Error Programs. This is a collection of error
subroutines called by the TSX Error Alert Control
(EAC) program. EAC is executed when an internal
or TSX detected error occurs.

Subroutine Library. The Subroutine Library is a
package of IBM TSX and user-written subroutines
resident in the relocatable subroutine area of disk.
IBM TSX subroutines include: Real-time subrou-
tines, Arithmetic and Functional subroutines, Con-

version subroutines, FORTRAN I/O subroutines,
and DP I/O subroutines.

Skeleton Builder. The Skeleton Builder uses tables
constructed by the System Loader, user-assigned
control records, and user-specified programs and
subroutines to build the System Skeleton. The Sys-
tem Skeleton constitutes that portion of the system
that remains in core during the execution of a TSX
on-line system.

Stand-alone Utilities. Five of these optional utility
routines can be loaded and executed only under the
control of TASK (in an OFF-line system) or the

System Director (in an ON-line system). The five

utilities are: TASK Card to Disk, TASK Disk to Card,

TASK Disk Patch, TASK Disk Duplication, and TASK
Disk Loader,

Two self-loading programs are included:
Relocatable Dump to Cards (CRDMP) and Relocatable
Dump (UT7A).

A dump analysis program (DMPAN) is included,

It consists of two parts, DMPA1 and DMPA2,

DMPAI1 must be loaded for execution by the T ASK
absolute loader.

DMPA?2 is loaded and executed as a non-process
core load.

System Director. This is the nucleus of the System
Skeleton. It maintains control over the on-line
process application by servicing all interrupts,
handling error conditions, providing timer control

over the process, and process program sequencing.
The System Director is supplied as a source deck.

TASK. TASK is a "builder" operating system which
controls the system generation process, and provides
for the definition of the TSX system according to user
specifications. It is supplied in source format.

Note that control programs are supplied assem-
bled in absolute format; subroutines, in relocatable
format. The System Director and TASK are the
only exceptions: they are supplied as source decks.

In its original form, the IBM Nonprocess System
does not contain those parameters which define and
differentiate a system currently under construction
from another, and is therefore unsatisfactory for
direct use by a customer installation. Variability
of interconnection of input-output devices is, how-
ever, permitted at the hardware level, and it is
these variations which need to be communicated to
the I/0 subroutines if correct and intended operation
is to be realized.

This communication is accomplished through the
medium of the System Loader which accepts as in-
put a statement of the system configuration (including
the correlation between external device and inter-
rupt identification, and internal hardware-sensed
codes) and the IBM Nonprocess System master deck.
To ready the IBM Nonprocess System for system
loading, data from assignment cards is integrated
into the master deck.

SYSTEM LOADER OPERATION

The System Loader assumes at system load time
that only one disk drive (logical disk drive 0) is
present on the system. After the IBM Nonprocess
System is loaded, the user has the option of reloca-
ting certain disk areas (such as the Core Load Area,
Process Work Storage, etc.) to an auxiliary disk
drive or drives. This and other aspects of disk
organization are discussed in System Lesign Con-
siderations: Disk System Configuration.

Three essential functions are accomplished
during a system load operation. These are:

o Loading the IBM Nonprocess System, including
the subroutine library, to disk

e Building various TSX operating tables

o Editing the disk layout
Loading the IBM Nonprocess System

A typical sequence in which the input programs
are loaded by the System Loader is given in Fig-
ure 63.

System Design Considerations 123

ccn | |3] |s| |7 Jof |u| pa| hs|] |17
AVARIAS E{M]|L][O D|E

‘* AlS|S I‘GNM EIN TI l ‘ ‘

Assignment
Cards

*|C|C|E [N]|D AlS|S]I |GINIMIE N |T
*|L{D|D S |K LIELT

*IL|DID |S |K D|IC|O M

*L|D|D|S |K S (U]lP

*ILiD|D |S | K . |C|IL B

*(L]ID]|D |S |K /1CciL|s [T

*{L|D|D (S K D|U|P

*IL|[D|D [S | K AlS |M

*IL|D|D |S |K F|O|(R

*{L|D|D [S | K S{I M

*L|D|D [S | K . |[E|P IR |G

*|1C|CJE IN|D S |Y|S|T |EIM

*L|D|D |S K S |BIR T

avak s{y[pfl [Rr

*|C|C|E [N|D S {B|R|T

*IDIE|D [I §T ciy L

Figure 63. Sequence of Control Cards at System Load Time

Each program in the IBM Nonprocess System is
preceded by an *LDDSK Control card which is read
and analyzed by the System Loader. As a single
sector at a time of a program is accepted, the ap-
propriate sector address to which it is written on
disk is determined by the first two words following
a sector break record. A sector break record is a
header record which serves two purposes:

o Enables the System Loader to establish a new
disk sector either at a relative or absolute
sector address

o Indicates if the phase of a program being read
in involves either a principal I/O device or a
principal print device, and, if any, which one.

Each phase within a program contains one sector
break record. For example, since the FORTRAN
Compiler is made up of 27 phases, it has 27 sector
break cards. Sector break records are supplied
in binary format (see IBM 1800 Time-Sharing Execu-
tive System, Operating Procedures, Form C26-
3754. A separate discussion of sector break records
is given at the conclusion of this section).

124

As each program is loaded to disk, an entry in
the respective LET/FLET tables is updated accord-
ingly. Note that the relocatable subroutine library
may include user-written subroutines provided they
are assembled/compiled by the TSX Assembler/
FORTRAN Compiler. During the System Load
stage, an error program within the System Loader
ensures proper handling of error situations. Fig-
ure 64 reflects the layout of the IBM Nonprocess
System on logical disk drive 0 after a system load
operation.

Building the TSX Operating Tables

After the assignment cards have been read, two
tables are built: 1) the Assignment Table, 2) the
1/0 Unit Table.

The input to the table-building phase are the
assignment cards which are prepared by the user
and merged with the IBM Nonprocess System.

Y Y |

DCOM

MBT-AT

SKSUB

CLB

DUP
FILE
ASM PROTECTED

FOR

SIM

LET
LET/FLET ENTRIES

IBM SUBROUTINE
LIBRARY

S |

T WORK M~

NONPROCESS

STORAGE

MESSAGE BUFFER

K} FLET
ERROR PROGRAMS FILE ENTRIES

CLST

PROTECTED J

Figure 64. Disk Drive O after a System Load Operation

The Assignment Table (AT) serves to inform the Note that the boundaries of the following areas:
Skeleton Builder (at Skeleton build time) which

I/0 device or PISW is assigned to a specific ILSW
bit on a specific interrupt level. A 16-bit (IAC)

code entry is furnished for each ILSW bit, which

the Skeleton Builder later replaces by a branch ad-
dress to transform it into the Master Branch Table
(MBT). The (AT) table is stored on disk in reverse
sequence; that is, level zero in highest location,
etc. The number of AT entries and I/O interrupts
are counted during the table build process and stored
in sector 1 of logical drive zero.

The I/0 Unit Table is constructed from the logi-
cal unit number (LUN) and/or its associated inter-
rupt assignment code (IAC). The table is 44 words
in length and is built in descending sequence; a
maximum of 19 entries is allowed. The IOU Table
is stored in the last 87 words of sector 2.

Nonprocess Save Area
Process Save Area
Special Save Area

depend on the estimated size of the System Skele-
ton (see System Design Considerations: Disk Sys-
tem Configuration).

LET/FLET Entries. Fixed entries, derived from
control cards, exist in LET for the following:

Disk Communications Area (DCOM)

Master Branch Table/Assignment Table (MBT/AT)
Skeleton Subroutine Map (SK-SUB)

Nonprocess Supervisor (SUP)

Core Load Builder (CLB)

Disk Utility Program (DUP)

Assembler (ASM)

FORTRAN Compiler (FOR)

Simulator (SIM)

Editing the Disk Layout

The disk editing phase is entered after all absolute
(or core image) and relocatable programs have been
stored on disk, and the *DEDIT control card has An entry for each subroutine is made while it
been read. is being loaded.

The editing function initiates the disk and disk FLET entries, on the other hand, are made
communications area with a standard layout as a from computed and assumed sizes for the following:
base for TSX nonprocess programs. It uses LET/
FLET and DCOM as communications areas.

In order to fix the boundaries of the various disk
areas, certain information is required:

Cold Start
Error Programs
Message Buffer

e Size of core of the Object Machine. This should
be specified on the *DEDIT control card; other- After these FLET entries have been made, the
wise, the source core size is construed as object -E entry of LET is updated to reflect the boundaries
core size. of the Nonprocess Work Storage for the remaining

disk space available.

e Size of Message Buffer. Note that the only area
definition made by the user before the IBM Non-
process System is loaded is the length of the
message buffer. This must be specified on the
*DEDIT control card and should correspond to

DCOM Entries. The first sector address of each
of the following areas are entered in DCOM:

NOCYL (TASK equate card) at TASK assembly
time. The calculation of message buffer size

is discussed at some length in the section System
Design Considerations: TASK.

Size of IBM Nonprocess System areas. These
are made known to the System Loader after the
system is loaded to disk.

Nonprocess Supervisor (SUP)

Disk Utility Program (DUP)

Assembler (ASM)

FORTRAN Compiler (FOR)

Simulator (SIM)

Location and Fixed Location Equivalence
Tables (LET/FLET)

Nonprocess Work Storage (NPWS)

System Design Considerations 125

FUNCTION OF THE *ASSIGNMENT CARDS

The assignment card serves to assign the various
I/0 devices and machine functions to a particular
interrupt level and bit. Assignments are in the
form of interrupt assignment codes (IAC) which are
fixed for each device, and logical unit numbers
(LUN) which are selected by the user for linkage
to user-written FORTRAN programs.

Through the assignment card, the user

1. Assigns IAC codes to the various interrupt
levels and ILSW bits (within the level used
on the system).

2. Assigns LUN numbers as they are used in
user-written FORTRAN programs, to certain
data processing input-ocutput (DP 1/0) devices
by equating them to corresponding IAC codes.

Interrupt assignment codes uniquely define all
process interrupts, I/O devices, console interrupts,
and interval timers. They are fixed and may not be
changed by the user. Their values range from 00
through 63.

Logical unit numbers on the other hand are used
to identify DP I/0 devices in user-written FORTRAN
programs, and are specified by the user at system
load time. The LUN's are entered into the I/O
Unit Table to permit communication of FORTRAN
programs with FORTRAN I/0 at object time. Once
fixed, they cannot be changed without repeating the
Assignment Table building phase of the System
Loader and Skeleton rebuild under certain conditions,
as well as the recompilation of every user-written
FORTRAN program utilizing DP I/0 devices
affected.

A maximum of 19 different LUN's is possible on
a TSX system with a full complement of I/0 devices.
LUN values range from 01 through 44. Note that
no LUN may be assigned to more than one particular
device. In a minimum (8K) TSX system, it is ad-
visable, for purposes of space conservation,to use
the lowest LUN numbers first, since the System
Loader will build a table providing space for all
LUN's up to the largest number assigned. Keeping
LUN numbers small, therefore, conserves core
storage. The reader should refer to IBM 1800
Time-Sharing Executive System, Operating Pro-
cedures, Form C26-3754 for details of assignment
card formats and operational procedures.

Examples of the Use of LUN Numbers/IAC Codes.

Consider the following assignment cards:

126

EXAMPLE 1.
213| 1816| 18)3]/14]L]51212]5[3(71/ 811, |2]5]5|3(3] B8]

Level 3 contains 6 ILSW bits. IAC 01 repre-
sents an 1816/1053 printer which has a LUN of 41
assigned to it, while IAC 02, representing a 1442
card/read punch, has the same LUN as its IAC;
that is, it requires no LUN entry. The combination
37/01 represents another printer to which a LUN of
01 is assigned by the user; IAC 05 represents a
1627 plotter unit with the same LUN number as its
TIAC code (that is, 05). IAC 33 represents a process
interrupt. IAC 08 represents a 2310 disk drive
which has no assignable LUN number.

EXAMPLE 2. olo| 1#12| 14131/19]1|,14141/|#s] | |

The 1816 keyboard on group 2 has a LUN of 1
while the second magnetic tape drive has a LUN of 9.

EXAMPLE 3.

//SYSTEMLOADER
*ASSIGNMENT

00 02 33,00

01 04 33,04,08,09

02 02 33,14

03 05 33,01,36,37,38
04 03 33,34,35

05 05 33,10,16,11,12
06 02 33,06/03

07 02 33,02

08 03 33,32,05/07

09 01 33

10 01 33

11 01 33

*CCEND ASSIGNMENT

DEVICE LEV BIT IAC LUN

PISW [o]o] 00 33
TIMERS 00 0L 00
PISW 01 00 33
DISK-1 0l 01 04
DISK-2 01 02 08
DISK-3 0l 03 09
PISW 02 00 33
MAGT-1 02 0l 14 14
PISW 03 00 33
TYPLGL 03 0L 01 0l
TYP2GL 03 02 36 36
TYP3GL 03 03 37 37
TYP4GL 03 04 38 38
PISW 04 00 33
COMP-1 04 0L 34
COMP-2 04 02 35
PISW 05 o]0} 33
ADC-1 05 0L 10
ADC-2 05 02 16
DINP 05 03 11
DAOP 05 04 12
PISW 06 00 33
PRNT-1 06 0L 06 03
PISW 07 00 33
CARD-1L 07 0L 02 02
PISW 08 00 33
CONSOL 08 0L 32
PLOT-L 08 02 05 07
PISW 09 o4} 33
PISW 10 00 33
PISW 11 00 33

YOU DEFINED 000018 I/0 DEVICES
AND A TOTAL OF 000031 ILSW BITS

This illustrates an example of user assignment
of 1/0 devices and process interrupts to 12 levels
of interrupts defined in a sample machine configu-
ration given in System Design Considerations: Sys-
tem Director.

Note that only two I/0 devices have been assigned

LUN numbers:

i
il

1627 Plotter (IAC
1443 Printer (IAC

05) = 07
06) = 03

Il

The remaining devices use their IAC codes (a
user option) as LUN's. Note also that process
interrupts and certain DP I/O devices have no
assignable LUN's. The map correlates each
process interrupt or device with its level, bit,

IAC code, and LUN (if any).

Note that IAC/LUN groups may contain either
the JAC code alone or a combination of the IAC
code and the LUN as assigned by the user to that
IAC (and separated by a slash). When the LUN
number is omitted, it means that either no LLUN
is defined (that is, not assignable) or that the Sys-
tem Loader considers the LUN to be identical to
the IAC code. The user has the option of assigning
the value of the corresponding IAC code to the LUN
for a particular device.

Devices with no Interrupt-entry on any Level

The 1816 Keyboard units on printer groups 1 and 2
and the second Magnetic Tape drive have no separate
defined interrupts, their interrupts being the same
as that of the first 1816/1053 printer and first mag-
netic tape drive respectively. However, a LUN has
to be assigned to them whenever they are used in
connection with FORTRAN programs. In these
three special cases, a dummy interrupt level number
99 is defined, followed by a standard format entry
for bit count and IAC code. The dummy level 99

can be omitted should all three possible devices have
a LUN identical to their IAC code.

THE *DEDIT CONTROL CARD

The *DEDIT Control card starts the disk editing
phase: that is, it starts the function of editing the
layout of the disk during which time the System
Loader uses LET/FLET and DCOM as communi-
cations areas. Some of the activities carried out

during this phase include (see Editing the Disk
Layout):

1. [Initialization of the FLET area on disk

2. Calculation of the source core size

3. Entry of the object core size into the disk
communications area (DCOM)

4. Entry of message buffer size in cylinders
into DCOM

5. File protection of the IBM Nonprocess System

Parameters

Two important parameters must be specified by
the user:

1. Size of core of the object machine
2. Size of message buffer size

The calculation of the core size of the source
machine (that is, the machine on which the IBM
Nonprocess System is loaded) is achieved by
TASK and the result is stored in the Fixed Area
in core. The System Loader then places this result
in DCOM. The user may exercise the option to de-
fine a different core size for the object machine
(that is, the machine on which the TSX system is
executed). This will also be stored in DCOM. If
the object core size is not specified on the *DEDIT
card, the source core size will serve as object
core size.

As noted earlier, the only area definition made
by the user before the IBM Nonprocess System is
loaded is the definition of the length of the disk
message buffer. This is specified in cylinders in
the *DEDIT card and must equal NOCYL (TASK
equate card). The calculation of the size of the
message buffer is discussed in detail in System
Design Considerations: TASK.

An example of the use of the *DEDIT card is
given below:

*DEDIT 16K 01L1CYL

THE SOURCE CORE-SIZE IS 016384
THE OBJECT CORE-SIZE IS 016384

The *DEDIT control card is the last card recog-
nized by the System Loader.

System Design Considerations 127

Reentering the Disk Edit Phase

The disk editing function permits a reentry by the
user after the IBM Nonprocess System is loaded
and control returned to SYSTEM TASK. This may
be needed for:

Rebuilding the FLET table.

Changing the Message Buffer Size.

Changing Object Core Size.

Changing the assignment of LUN numbers, such
as, for example, if an error was made in the
user-assighment of an JAC or a LUN.

B N

SUMMARY OF ASSIGNMENT CARD RESTRICTIONS

Assignment designation is governed by the following
rules:

1. A separate assignment card is used for each
interrupt level. Assignment cards may be
in any order of interrupt level number.

2. The number of IAC/LUN codes specified per
level must be equal to the number of interrupt
level status word (ILSW) bits used.

3. Only the IAC code 33 (for process interrupts)
may be used more than once. In the case of
LUN numbers, the same LUN cannot be assigned
to more than one device, nor can a device have
more than one LUN assigned to it.

4. For IAC codes 42, 43, and 44, a dummy inter-
rupt level entry of 99 must be specified. These
refer to the 1816 keyboards on printer groups
1 and 2 and the second magnetic tape drive.

5. For RPQ devices, IAC codes 20 - 31 and 45 -
63 may be used. In any TSX system, IAC
codes 00, 02, 04, and 32 must be used; 01 or
06 must also be used.

6. If more than one group of process interrupts
are assigned to a particular level, the second
group must be treated as an RPQ device, given
an RPQ IAC code and a user-written ISS sub-
routine to accommodate this device. The sub-
routine will indicate to the System Loader which
IAC code it responds to; it will have to be core-
resident at all times.

SECTOR BREAK RECORDS FOR ABSOLUTE
PROGRAMS

Absolute programs are generated by an absolute 1800
assembly and are loaded by the System loader, one

128

record at a time (taking info account all data breaks
and origin changes), to disk in true Core-Image
Format. That is, each program resides on disk
in exactly the same format in which it will reside
in core storage. Core-Image Format is also
called Data Format because a program thus stored
on disk can be transferred to core by a single call
(to DISKN) without any data manipulation. All IBM
system programs (e.g., Assembler, FORTRAN
Compiler, Simulator) are stored in this format.

However, it is from a header or sector break
record that the absolute loader portion of the Sys-
tem Loader determines the sector address at which
succeeding data is to be stored. The sector within
which the data is to be stored is first read into
core, one word of data at a time, until that sector
in core is completed. When full, the 320-word
sector buffer is written to disk and the next sector
break record is read to locate the next sector to
be written.

Four types of Sector Break Records are used by
the System Loader:

Type 1
Type 2
Type 9
Type E

Note that Type F cards are 'trailer'' or ''trans-
fer' cards which occur at the end of a binary deck.
The format of each card is in the IBM 1800 Time-
Sharing Executive System, Operating Procedures,
Form C26-3754.

From each type of sector break record, the
System Loader interprets the sector address as
follows:

Type 1: As an absolute address.

Type 2: As a displacement from the last sector
loaded.

Type 9: As a displacement from the last abso-
lutely defined sector address (that is,
defined by a Type 1 sector break record).

Type E is a special sector break record type
used only by the Simulator subroutine package. It
is treated by the System Loader like a Type 1, ex-
cept that it causes data to be streamed to the disk
contiguously, ignoring data breaks brought about
by BSS's; or by an ORG to the same location as
the data card immediately following the Type E
record.

The Type 1 sector break record is generated by
an ABS statement in an absolute assembly; Type 9

or Type E records must be inserted manually in
the object deck by the user. Type 2 sector break
records are generated during 1) assembly of
mainline-type programs without an ABS statement,
and 2) FORTRAN compilation of mainline pro-
grams.

The sector address on disk to which the System
Loader begins writing the program is defined in the
second word of the program following the ABS and
first ORG statements. The first word may contain
any value; no word count is required. An example
is given below:

SAMPLE CODING FORM

21-30 31-40 41-50 51-60 61-70

Y [elsl4lele[7lele[o] T2[3]afs el [elo o] Hel3als [el7[slelo] [2[z]a[5]e] Jelslc] 2= [4ls [l e folo
SllllllAIBIslllI|l||||||I|II|1\IJ‘1I|[II\IIIIIIII}IILJ

O 538 1 v b v b b |
i 1 8SG L No WORD, COUMT REPYIREL [y a0
>JIAI]IDICII[III\/QMI%ILlLJi|III|||1I||)I|lllJ_L|J||IJ
}JlII[|.AII|llll(IllJ‘IllllljlllllllIIllIIIlll’IIII[
Llllll‘llxllll]llllllllll[llllILlll|ILJI|I|II]IIIIJ
L.llll'ln.llu.luuhlH|1|||'x..|||||.I||||}|||!J
Llnnlun.ll||.|n-wl||1|L||»||1||.|||u|l\|\|l|1||J

The first DC is at location /0538, the second
at /0539. The System Loader will start to load at
sector /0100. The first word of the sector is at
/053A -- the content of /0538 is not loaded to disk
since it does not constitute an integral part of the
program. If this program was later called from
the disk, the word count and sector address would
be specified by the AREA (portion) of the disk call
required at /0538 for proper execution.

If the first two words of the program are followed
by another ORG statement, as shown below, the
program will be placed in a location on disk reflec-
ting a displacement from the address defined by the
first ORG.

SAMPLE CODING FORM

-0 [un-20 [21-30 31-40 41-50
\[2[3[d]s]e]7[e]slo] 2[3]a[s]6[7[e]e]o] Je[z]alsle 7 elo]o] T2 3[als el el [o] 1 [o[3]4]se] 7[elolo]
RS N I I B AN A1 R R ST N
| ORG /igs38 ; .
I P N AR I W i~ (20 D . NS e N
llllJ_J_L.|||||||HJ_L|1-|||.D|CH|AJJM_,_L1_._LL_[1_w|_L_|
I T B AT S 21 L WOA... -2 W
b e e b 1 L ORE Ly MR Ly]
llllx4|l||lll|IIIII||\llll.lllLIIAlJ_LLllllI|]1|11J
T I TR APV IS BALIN ANArars A N S |
llllunlllllllllLLIAlnllwI.lxllI|l|\||||l||l|l|lL[

The program will be loaded starting at position
15 of sector /0100, leaving positions 0 through 14
at whatever value they previously had on disk. The
displacement D could have any value -- thus skip-
ping over several sectors.

Note, however, that D cannot have a negative

value.

This is a necessary requirement of the TSX

system which is designed such that it is impossible
to inadvertently destroy a program residing on pre-
ceding sectors by back-origining. Thus, the lowest
origin in the program is required to be immediately

after the ABS statement.
constitutes, in no way, a system limitation.

As shown below, this

Note

that normal back origins, as they occur in every
program, are perfectly legal.

SAMPLE CODING FORM

21-30 31-40 41-50 51-60 61— 70
{[2I3l4lsle[7[sfelo] i [2[3]afs]ef[elo]o] [2[3[afs e[7]elelo]]2]]4]s]e] Jelsfo|][z als]el 7fefelo]]
Ll ABS Ly b Lo b b b b baa o b
0 538 1l bt oo b
N I~ <2 NI - N NS R N TS RS RN RN
NN A I T T
Y T A I R T
LLIA'II‘AAI!I|1]|III!II|I|I\IIII|1\|Il|l||l|l]|ll|]L
XLII\'II.AAIIIIII]IIIll|lLJ_|\llILIIlll_l_LllIIll}lll'll
(meluu‘u\:Hulxmnl]u||||HQ_LI“L144||1U_L|||114\

Ty
P

Ll oRE |

L JI@53A 1L,

NTHIS, LS PERFECTIY, IM OROER

RS P N

\!ll

Aklll

|

T BT NI ST I

T

P B

sa Ly

1LJ4|1‘|14|‘|||J|||1||||||\||

[~

L

\u\|||||\||1111LJ_LA\I111||||1[\

System Design Considerations

129

The program will be correctly located on disk
reflecting exactly the layout in core.

The following example illustrates an ERROR
STOP (System Loader error message - LO5)
situation.

} SAMPLE CODING FORM
S 21-30 31-40] 41-50 51-60 61- 70
(EBEBIE R 2 IeF e e e RBRle o 7ol e 7BElo
11|L1A;érstllllll|1||||l|J_LI|AI|LILJ|1\J|l||1|J_L|_L|]
Vil OR6 1, Y8538 1 o b b b b
1Illl[lalcllllIMIIIIIIIIIIIIIJIIIIIlllllillllllllll
o< [N NN E R SN NS SRR
J_Lillll'lllILIIIIJ_LIIII|llll|[l|IllfllJlLlIALILlI_LlJ
7x|x.|‘|’“|.1||i|1||||||||||r|’|.||'||1|f||||||||||
)lllllll.lllll|1||ll||||l||l||l|l|l|]IlJALlIJ_‘J_LI_LlJ
L. 1 ORS |, . @480 |\, WIS IS HOT, ALLIOWED |, . . |

}.4|LA|L|l|L||1|‘||||||||||\1|11||quml:ul:]:ull

This is clearly illegal because whatever program
that was residing on sector /00FF would be de-
stroyed.

The final example below illustrates Type E sector
break record functioning:

SAMPLE CODING FORM
-0 [1-20 21-30 31-40 41-50
e BRI Rl ERFEETEEIo I EEIRE FEE] (Bl ER bl kR EED
[ERE TS N ETREE FERTN .- 0 NN e N FEw e fNes
RN P PR Lll\lilLl]lollell||I/|¢|5[318||IL\L‘IIILJ
1 0< Q
DL 4, : J
RN PS RIS U N WIS NIRRT S S N
N S PR R W NN LT NS RS RN S
RIS P NS TN B IPIU S N RS R
lltlllllLl\Jllll!\llLlL]'lolRﬁl|llllrlpﬁ-laall\llltllll’
I_LALLJ_l‘_IxilLlu\Jl;xU';DuCJxLl|A¢1|.|.|\||1l||1:’
DC |
l_LlllLlLJILlL[lll]]LlLIIAI.JALIlJllllilllLlLl\A)lI
] . . ’
N T

130

If this sequence is preceded by a Type 1 or
Type 9 sector break record, the data up to the
second ORG would not appear on disk, but would be
overlaid by the second sequence. If, however, the
sequence is preceded by a Type E card, all the
data would appear on disk, and the data following
the second ORG statement would immediately follow
the first with no sector break being forced.

SYSTEM DIRECTOR

When the IBM Nonprocess System is loaded, assign-
ment cards supply the System Loader with data which
relate to the interrupt level allocation of I/0 units,
process interrupts, interval timers, etc. That is,
they provide a statement of the system and interrupt
configurations.

At System Director assembly time, the System
Director must also be tailored to meet the exact
requirements set by the user. These requirements
include:

1. Definition of the size of the System Director
2. Definition of functions required
3. The allocation of internal and external inter-

rupt levels
4, The number of CALL Count routines to be
included by the user

Since the System Director must be assembled and
stored on disk before the TSX System Skeleton can
be built, some means must be employed to make the
System Director aware of these requirements. To
achieve this, a set of System Director EQUATE
cards (provided pre-punched by IBM) is prepared
by the user and physically placed in the System
Director source deck. The resulting integrated
deck is then assembled under the control of an off-
line nonprocess monitor. Figure 65 depicts the
physical relationship of the EQUATE cards to the
System Director Source Deck.

Figure 66 illustrates an example of a complete
set of System Director EQUATE cards. In terms
of definition requirements, the set can be broken
down into convenient subsets as follows:

// END OF ALL JOBS

System Director

SOURCE Deck

Blank Cards
(2 inches)

*PRINT SYMBOL TABLE
*PUNCH

*SYSTEM SYMBOL TABLE

*OVERFLOW SECTORS 32

System Director
EQUATE Cards

ABS

*SAVE SYMBOL TABLE

r*LIST

(// ASM SDEQU

// JOB

Figure 65. System Director Source Deck and EQUATE Cards

a) Size of System Director @ VCORE, NUQUE;
also a function of b},
¢), and d)

b) Functions required ITCUS, TBASE,
(Interval Timer Control, CBASE, TIME1-2,
Time-Sharing, Opera- TISHA; TIMES;
tions Monitor, and OPMOI and DUMP1
Error Alert Control
(EAC) DUMP)

c) Allocation of internal NULEV, USE00-23,
and external interrupt NB00-23, NIL00-23,
levels NLWS1-2, and

ICLL1-2

d) Number of CALL Count NITP1-2
routines required by user

SIZE OF SYSTEM DIRECTOR

Since the System Director is a component part of the
System Skeleton, it must be core-resident at all
times in an on-line system in order to respond to
the real-time world. Its required core size will,
however, vary according to the user's machine con-
figuration, process requirements, and other options.

For example, if the user specifies when the sys-
tem is assembled that time-sharing is to be used,
the Time-Sharing Control (TSC) program will be
included in core. If he has no use for time-sharing,
TSC may be eliminated.

Similarly, if the user specifies that interval
timers are not used, the Interval Timer Control
(ITC) program as well as TSC may be eliminated.

It is a rule, however, that ITC must be in core if
time-sharing is utilized. The Program Sequence
Control (PSC), Error Alert Control (EAC), and
Master Interrupt Control (MIC) programs must
always be used, but each is variable in size accord-
ing to the number of interrupt levels elected.

In addition, a work area is associated with each
interrupt level; for example, if the user elects 12
levels of interrupts, 12 work areas are required;
if he elects 24 levels, the System Director will re-
quire 24 work areas. Three other additional work
areas are included: one each for Error, Mainline,
and Nonprocess.

System Design Considerations 131’

NULEV
USEOQO
USEO1
USEO2
USEO3
USEO4
USEOS
USEQ6
USEOQ7?
USEO8
USEO9
USE10
USE1!
USE12
USE13
USE1ls
USE1S
USE1l6
USE17
USE18
USE19
USE20
USE21
USE22
USE23
NBOO

NBO01

NBO2

NBO3

NBO4

NBOS

NBO6&

NBO7

NBO8

NBO9

NB10

NB11

NB12

NB13

NB14

NB1S

NB16

NB17

NB18

NB19

NB20

NB21

NB22

NB23

NILOO
NILO1
NILO2
NILO3
NILO&
NILOS
NILO6
NILO7
NILO8
NILO9
NIL10
NIL11
NIL12
NIL13
NIL14
NIL1S
NIL16
NIL17
NIiLie
NIL19
NI1L20
NIL21
NIL22
NIL23
NLWS1
NLws2
NITP1
NITP2
1cLLl
icuL2
1TCus
TBASE
CBASE
TIMEL
TIME2
NORSP
VCORE
NUQUE
DUMP1
OoPMO 1
TISHA
TIMES

EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQu
EQuU
EQU
EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU -

EQU
EQU
EQU
EQu
QU
EQU
EQU
EQU
EQU
EQU
EQU
£qQu
EQU
£EQU
EQU
EQU
EQU
EQU
2]
EQu
EQU
Equ
EQU
EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
£QU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

n

O= 0000000 O0O0O00OO0 oun - 6\001# OO0O0O0O000COO0O0CO=m=m WNNUGUW N PNOCOO OO0 O OO0 OO = = re = e 1 st 4t be b0 a e

® =
o

/007F
/FFFF

=500

/0000
/0700
1
10000
S0

1

1
32767
1

NUMBER OF LEVELS USED

1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US

1-LEVEL USED
1-LEVEL USED

1-LEVEL uUs

1-LEVEL USED

1-LEVEL vus

1-LEVEL USED

1-LEVEL US|
1-LEVEL US
1-LEVEL US|
1-LEVEL US
1-LEVEL US|
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US
1-LEVEL US|
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+4HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1 +HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
14HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
14HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1 +HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
1+HIGHEST
14+HIGHEST
1+HIGHEST
1+HIGHEST
NOe« PROGe
NOe¢ PROGe
NOe COUNT
NOe COUNT

ED 0-NOT USED
ED 0-NOT USED
ED 0-NOT USED
ED 0-NOT USED
0-NOT USED
0-NOT USED
ED 0-NOT USED
0~NOT USED
ED 0-NOT USED
0=NOT USED
ED 0~NOT USED
ED 0-NOT USED
ED O-NOT USED
ED 0-NOT USED
ED 0=-NOT USED
ED 0-NOT USED
ED 0-NOT USED
ED 0-NOT USED
ED 0-NOT USED
ED 0-NOT USED
ED 0~NOT USED
ED 0-NOT USED
ED O-NOT USED
ED 0=-NOT USED
ILSw BIT = USED
ILSW BIT = USED
ILSW BIT = USED
ILSw BIT = USED
ILSW BIT = USED
ILSwW BIT = USED
ILSw BIT = USED
ILSw BIT = USED
ILSW BIT = USED
ILSW BIT = USED
1ILSW BIT = USED
ILSW BIT = USED
ILSW BIT = USED
ILSw BIT = USED
ILSW BIT = USED
1LSwW BIT = USED
ILSW BIT = USED
ILSw BIT = USED
ILSw BIT = USED
ILSW BIT = USED
ILSW BIT = USED
ILSW BIT = USED
ILSw SIT = USED
ILSw BIT = USED
PIsw BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
Plsw BIT = USED
PISw BIT = USED
Plsw BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
PISW BIT = USED
INT. GROUP 0-13
INT. GROUP 14-23
SUBRSe GROUP 1
SUBRSe GROUP 2

INTe CORELOAD LEVEL MASK
INTe CORELOAD LEVEL MASK
0=-NOT USED
CLOCK BASE=MILSEC*TBASE
COUNT BASE=MILS*TBASE*CBASESYDO0870
TIMER C MILS*TBASE

TIMER C MILS*TBASE

NO-RESPONSE TIME BASE
ADDRe 1ST WORD VARIABLE CORSYDOO900
NUMBER OF QUEUE ENTRIES

1-1TC USED

1~-EAC DUMP USED 0-NOT USED
1-1TC RESETS 0-USER RESETS

TIME~SHARING PERIOD
1-TSC USED 0-TSC NOT USED

SYDO0060
SYD0O0070
SYDOO0BO
SYD00090
syboo1oo
SYDOO110
SYDO0120
SYDOO0130
SYDOO140
SYD00150
SYDO0160
SYD0O170
SYD0O0180
SYD0OO190
SYD00200
SYD00210
SYD00220
5YD00230
SYD00240
SYD00250
SYD00260
SYD0O0270
SYD00280
SYD00290
SYD00300
SYD0O0310
SYD00320
SYD0O0330
SYD00340
SYD00350
SYDO0360
SYD0O0370
SYD00380
SYD00390
SYD00400
SYD00410
SYD00420
SYD00430
SYD00440
SYD00450
SYD00460
SYD00470
SYD00480
SYD00490
SYD0O0500
SYD00S10
SYD00520
SYD00530
SYD00540
SYD00550
SYD00560
SYD0O0570
SYD00580
SYD00590
SYD00600
SYD00610
SYD00620
SYD00630
SYD00640
SYD0O0650
SYD00660
SYD00670
SYD00680
SYD00690
SYD0OO700
SYDOO710
syDo0720
SYD00730
SYD0O740
SYD0OO750
SYD0OO760
SYD0OO770
SYD0OO780
SYD00790
SYD00800
SYD0O0810
syDoo0820
SYDO0830
SYD00840
SYD00850
SYD00860

sSyYboo88o
SYD00890
SYD00895

SYD0OO910
SYDo0920
SYD0O0930
SYD0O0940
SYD0O0%®50

Figure 66. Example of a Set of System Director Equate Cards

132

PRIORITY
ENTRY 1 WORD COUNT
SECTOR ADDRESS

PRIORITY
WORD COUNT ENTRY 2
SECTOR ADDRESS

Figure 67, Mainline Core Load Queue Table

Mainline Core Load Queue Table

Resident within MIC is a Queue Table made up of
three-word entries used for the stacking of main-
line core loads requested for execution, as shown
in Figure 67.

Each time the QUEUE routine is called, an entry
is made in the queue if there is not a like entry of
equal priority and sector address already in the
queue. Entries are removed from the Queue Table
by the subroutines UNQ and VIAQ (see Program
Scheduling).

The size of this table -~ that is, its maximum
number of entries -- is specified by the user on
the NUQUE equate card. It should be large enough
so that the Queue Table shall not overflow under
normal operating conditions.

VCORE determines the starting address, which
must always be even, of the variable core area.
The appropriate value of VCORE can be arrived at
by calculating the size of the System Director,
Skeleton I/0 and the user-written subroutines.

Calculating System Director Core Size

As discussed above, core size is a function of
several parameters which are in turn determined
by the number of features the user elects to include
in his TSX system. The computation of this value
in 16-bit words can be simplified by using certain
equate card entries as multiplication factors as
shown below, where System Director Core Size

is given as a summation of the following (these
figures may change with modifications and versions
of the system):

1116 (constant for MIC, PSC, and EAC and
their work areas)
+ 220 (if ITC is included: that is, when

ITCUS = 1)
+ 95 (if EAC dump is required: that is, when
DUMP1 = 1)

+ 109 multiplied by the number of interrupt
levels (that is 109 x NULEV)

+ 3 multiplied by the number of Queue
entries (that is, 3 x NUQUE)

+ 2 multiplied by the number of process
interrupts (that is, 2 x sum of NIL0O
through NIL23)

+ 2 multiplied by the number of programmed

interrupts on levels 0 through 13 (that
is, 2 x NLWS1)

+ 2 multiplied by the number of programmed
interrupts on levels 14 through 23 (that
is, 2 x NLWS2)

+ 2 multiplied by the number of count sub-
routines 0-15 (that is, 2 x NIPT1)
+ 2 multiplied by the number of count sub-

routines 16-31 (that is 2 x NIPT2)

+ 334 (if TSC is included: that is, when
TIMES = 1)

+ 66 (if more than 14 levels are used)

+ 6 (if more than 14 levels are used and
ITC is included)

+ 8 (if more than 14 levels and TSC is
included)

From the configuration set out in Figures 66

and 68, a typical calculation is deduced below.

System Director Core Size = 1116
+ 220

+ 95

(109 x 12) + 1308
(50 x 3) + 150
(2 x 57) + 114
(2 x12) + 24
(2x0) + 0
(2 x 16) + 32
(2 x 8) + 16
TSC + 334

3409 words

DEFINITION OF FUNCTIONS REQUIRED

Interval Timer Control

When the ITCUS label is equated to 1, the ITC pro-
gram is included within the System Director and

serves to set up user-specified times and correct
linkages to the user's subprograms. Once this is
done, ITC will control the timers until one or more
specified intervals have elapsed, at which point
control is transferred to a user's subprogram.

Specifications for any timer may be set or
changed in relation to the timer base at any time
during an on-line process operation by the calling
sequence.

It was mentioned in Functions of Executive
Programs: The System Director, that a program-
med real-time clock, a time-sharing control timer,
and nine programmed interval timers are controlled
(that is, updated) by the third machine interval timer
C. It is, however, the user's responsibility at
assembly time to establish:

1. A primary time base (TBASE) for the real-
time clock; that is, how often the clock should
be updated.

2. A secondary time base (CBASE) for the pro-
grammed timers and time-sharing control
timer.

Primary Time Base

This is that interval of time used to update the real-
time clock, and is called the Interrupt Time Base.
It is the product of the wired-in hardware time base
and a number chosen by the user (TBASE) at assem-
bly time, expressed as follows:

INTERRUPT TIME BASE = (WIRED-IN HARD-
WARE TIME BASE) X (USED-ASSIGNED

NUMBER)

For example, if the machine interval timer C is
wired for a four millisecond time base and the real-
time clock is to be updated every two seconds, the
user-assigned number can be calculated to be 500.
TBASE is thus equated to minus (-) 500. A negative
number is used because the interval timer is incre-
mented in the positive direction, causing an inter-
rupt when zero is reached. The primary time base
for the real-time clock in this example (that is,
how often it is to be updated) is thus two seconds.

To enable ITC to keep track of elapsed time
since the last or previous interrupt occurred, a
double-word TIME1 and TIME2 is equated to the
hexadecimal equivalent of the interrupt time base.
This value is added to the real-time clock each time
an interval timer C interrupt occurs.

System Design Considerations 133

In the above example, TIME1l and TIME2 are
equated to /0000 and /07D0. The label TIME1
is always /0000 unless the calculated interrupt time
base exceeds 65,535 milliseconds.

The NORSP equate card is used to specify the
time period that elapses between no-response checks
of the 1053 and 1443 printers. NORSP must be a
positive decimal integer, ranging between 1 and 127,
and is the number of timer C interrupts that occur
before the no-response check is made. For example,
if timer C is wired to a four millisecond time base,
TBASE is equated to -500, and NORSP is equated to
one, two seconds will elapse between no-response
checks. NORSP should be adjusted to give a time
value between two and three seconds.

Secondary Time Base

The programmed timer base for the nine pro-
grammed timers and time-sharing control timer
is a user-assigned multiple of the interrupt time
base established for the real-time clock, and ex-
pressed as follows:

PROGRAMMED TIMER BASE = (INTERRUPT
TIME BASE) X (USER-ASSIGNED NUMBER)

For example, if the interrupt time base is fixed
at two seconds, and the user wants the programmed
timers to operate at 30-second intervals, the label
CBASE is equated to 15.

This base is used specifically for the nine pro-
grammed timers and the time~sharing control timer,
and is the smallest interval of time that can be
specified for the programmed timers or for time-
sharing operations.

Time-Sharing

The TIMES label specifies at assembly time whether
or not time-sharing is to be used.

It was noted in the preceding section that the pro-
grammed timer base is the smallest interval of time
that can be specified for programmed timing or
time-sharing operations. When time-sharing is
used, a user-assigned multiple of the programmed
timer base is established.

For example, if the programmed timer base is
fixed at 30 seconds and the user desires time-sharing
operations of two minutes’ duration whenever the
queue is empty, the label TISHA is equated to 4.
Thus, the time-shared operation is terminated
whenever the time interval specified (in this case
two minutes) has elapsed. TISHA is identical to
the parameter I in the requesting CALL SHARE
statement in the mainline program. If the user

134

wishes to remain in time-sharing until some core
load name is put into the queue by an interrupt
program which uses CALL ENDTS, then TISHA may
be specified for the longest possible numerical value,
that is, 32767. The reason for this is to keep the
time-sharing function from exchanging core unneces-
sarily at frequent intervals to check the Queue Table
when no entries have been put in the queue. This is
the recommended procedure.

Operations Monitor

The user may select an option in ITC to reset the
Operations Monitor (a hardware feature) during
nonprocess operations. He does this by equating

the OPMOI card to 1 or 0: a 1 indicates that the
monitor is to be reset by ITC; a 0 indicates that

the monitor is to be reset by user program control.
It should be noted that the Nonprocess Monitor does
not incorporate the Operations Monitor reset instruc-
tion. ITC will only execute the reset if time-sharing
is in progress.

Error Alert Control (EAC) Dump

The label DUMP1 gives the user the option of in-
cluding the dump routine (dump core to disk) for
subsequent user error analysis. The functions of
EAC are explained in another section of this manual
(see Functions of Executive Programs: The System
Director).

ALLOCATION OF INTERNAL AND EXTERNAL
INTERRUPT LEVELS

Interrupts can be generated by events which originate
in the plant or the environment that is being con-
trolled, or by conditions internal to the computer
hardware itself. These may be classified as exter-
nal (or process) interrupts and internal interrupts.

Internal interrupts may be caused by an error
condition being detected, an input/output operation
being completed, an interval timer interrupt, a
computer operator setting a switch, etc.

External or process interrupts may be caused
by the closing of an electrical contact, a rise in
temperature above a set limit, etc.

Since the number of internal and external inter-
rupts required by a particular system is decided
by the user, the System Director must be provided
with a labelled assignment of each interrupt used.

Interrupt Levels

A level of interrupt represents a degree of removal
from the normal computer mode. The multi-
interrupt feature of the IBM 1800 Data Acquisition
and Control System is composed of a maximum of

24 levels, each level containing 16 request positions,
thus making available 384 interrupt lines to signal
the computer to halt the program being executed and
branch to unique hardware memory locations.

The number of interrupt levels (NULEV) planned
by a user is assigned contiguously to the 24 available
levels, starting from zero to 23. If, for example,
16 interrupt levels are elected by the user, levels
0-15 are used. The numerical value to which the
label NULEV is equated is always 1 plus the highest
numbered interrupt level used.

Priority assignments are necessary in order
that an order of precedence (that is, a level) can
be established among the several interrupt con-
ditions. In configurating a multi-interrupt system,
the user should remember that certain 1/0 devices
such as the disk, magnetic tape, and timers re-
quire high response capabilities. Other I/0 devices
such as the list printer, typewriter, and card-reader
do not demand such a critical response.

In general, process interrupts (PISW's) are
assigned lower priority levels than data processing
and process 1I/0 devices, except for process inter-
rupts that do not require I/0 and demand immediate
response or initiate extended operations at lower
levels through the programmed interrupt feature.
The reason process interrupts are assigned lower
priorities than I/O devices is that user-written sub-
routines for the servicing of these process interrupts
can then utilize all I/0 devices. 1/0 devices must
receive an operations complete interrupt, which
cannot occur if it is located on a lower priority
level than the level from which the I/0 device is
called. Exceptions to this rule are the disk and the
1053 Printer where the I/O routine is so written
that it will remain within itself until the operation
is complete. These exceptions were allowed due
to EAC requirements, but should not, in general, be
considered as acceptable practice.

The amount of computer time required to service
a particular interrupt can influence its priority
assignment. If, for example, its servicing is rela-
tively short, an interrupt may be accorded higher
priority than one which entails more elaborate
servicing procedures.

Those basic I/0 devices that demand fast response
include the disk, magnetic tape, and timers. Be-
cause the 1053 Printer uses the disk when it buffers
messages, the analog interrupts should be at a higher
level than the assignment of the 1053 Printers due to
a possible loss of comparator interrupts. It should

be pointed out that although fast response is not
normally required by the 1053 Printer, this device
should be assigned to a high enough interrupt level
to allow it to run continuously at a maximum rate.
Thus, typewriter messages will be serviced without
overloading the message buffer.

It is recommended that the Analog Input Com-
parator feature be assigned to a higher priority
level than the Analog Input. The remaining I/0
devices do not possess any special characteristics
for assignment at a high level, except that they
must be at a level higher than the highest level
from which they are called, and at a higher level
than any assigned interrupt core load (see equate
card ICLL1, Figure 66).

Figure 68 (in conjunction with Figure 66) illus-
trates how a multi-interrupt system configuration
might ook in the IBM 1800 Data Acquisition and
Control System for a typical process control appli-
cation. The example serves to convey some of the
principles noted above: it should not be taken as a
model.

The machine configuration chosen for this
example includes:

1 IBM 1802 Processor - Controller
16K words of core storage
1 IBM 2310 Disk Storage Unit with three
disk drives
IBM 2401 Magnetic Tape Unit
IBM 1053 Printer Units
IBM 1443 Printer Unit
IBM 1442 Card Read Punch Unit
IBM 1627 Plotter Unit
Analog Input Basic with Comparator
Analog Input Extended with Comparator
Digital Input
Digital and Analog Output
Interrupt levels

[= = T = i =

[uy
[\V]

Other considerations are:

57 Process Interrupts (spread over 12 levels)
24 Count Servicing Subroutines

12 Programmed Interrupts

3 Timers

Queue Table size = 50

A group of process interrupts is assigned to

each of 12 levels, 0-11. Note that process inter-
rupts are normally factory wired to terminals in

System Design Considerations 135

INTERRUPT
LEVEL

20

21

22

23

INTERRUPT LEVEL STATUS WORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PISW | TIMERS
1 |A,B,C
PISW | 2310/ | 2310/ | 2310/
2 1 2 3
PISW 2401
3
PIW | miec | arec
PW | am | A€ | DI | DAO
PISW | 1053/ | 1053/ | 1053/ | 1053/
6 i 2 3 4
PISW | 1443
7
PISW | 1442
8
PISW C.1I 1627
9
PISW
10
PISW
1
PISW
12
NOTE
1. Interval Timers must be on a higher interrupt level
than the 2310, 1816/1053, 1442 and 1443 devices.
2. The 1816/1053s must be on a lower interrupt level
than the 2310s.

Figure 68. Example of Interrupt Level Status Word Assignment

136

groups of 4 to corresponding bit positions of one or
more PISW's. In this example, only 1 process
interrupt is utilized on each of the levels 0-8, and
16 process interrupts on each of levels 9-11, giving
a total of 57 process interrupts.

The three timers A, B, and C are assigned to
the highest interrupt level (level 0) in order to
give them high response. They are thus placed to
interrupt any event or device in progress. With the
timers at this level, the timer servicing routines
should not be calling any I/0 device, but should
make use of the programmed interrupt or queueing
a mainline technique for servicing requirements.
The reason for this is that it is not possible to call
an I/0 device from a level of higher priority than
the 1/0 device being called (as already explained).
In addition, it is not desirable to remain on the
timer level for a period of time long enough to
cause the system to miss a timed-out interval of
higher priority than the one being processed.

Disk drives are assigned the next highest level
(level 1) in order that the sector-gap can be made;
that is, the disks can then operate at their maximum
speed without incurring the penalty of a full revolu-
tion of disk time (40 ms.). The magnetic tape unit
is placed at the next level (level 2) also for the same
ability to service it at full capacity.

The Analog Input Basic with Comparator (AIBC)
and Analog Input Extended with Comparator (AIEC)
are recommended to be assigned a higher level
(level 3) than their corresponding Analog Input Basic
(AIB) and Analog Input Extended (AIE) devices
(level 4). They must always be assigned to a higher
level than the 1053 Printers. |

The 1053 Printers are placed on level 5 because
they are continually active, but do not require
much execution time. Thus, assigning them above
the process interrupts give these devices the ability
to print while user's core loads are in execution.

The remaining devices present no real demand
problems, and are assigned to lower levels as shown
in Figure 68.

Summary of Interrupt Assignment Restrictions

For proper operation of the TSX system, the follow-
ing interrupt assignment restrictions must be
observed:

1. All I/0 device interrupts must be assigned
to a higher priority interrupt level than external
interrupts, unless the external interrupt is
serviced by a skeleton interrupt routine.

2. If external interrupts and I/O devices are both
assigned to the same level, the external inter-
rupts must be serviced by skeleton interrupt
routines. '

3. A skeleton interrupt routine cannot use an I/0
device whose interrupt is assigned to the same
or a lower priority level, except for the disk,
1053 Printer, and 1443 Printer; however, the
1053 test function cannot be used.

4. ILSW bits must be assigned contiguously, be-
ginning with position 0.

Interrupts Per Level

It has been noted that a level of interrupt repre-
sents an order of precedence or priority, and that
each level contains a total of 16 request positions.

When one or more lines are connected to any one
priority level, it is necessary by programming
means to identify the specific condition which caused
that interrupt level to request service. . To do this,
a 16-bit word called the Interrupt Level Status Word
(ILSW) is used. The programmer does not specify
the ILSW in his instructions; this specification is
fixed. That is, one ILSW is hardware assigned to
each of 24 interrupt levels. Through the ILSW,
the operational status or condition of an I/0 device
or process is revealed to the executive system.

The choice of interrupting I/0 devices and/or
process conditions on a specific interrupt level is
specified by the user on the NB00-23 equate cards.
If, for example, one process interrupt and four I/0
devices are assigned contiguously (starting from
bit zero) to level 10, the user equates NB10 to 5.
The NB label is always equated to a numerical value
equal to the rightmost bit (on the ILSW) plus 1 for
a level. If no devices or process interrupts are
assigned to a level, the label is equated to zero.
Note that the NB00-23 equate cards must reflect
exactly the number of bits on the System Loader
assignment cards. Also, those levels that use
programmed interrupts only do not contain ILSW
bits; the NB cards for these levels are, therefore,
equated to zero.

Level Work Areas

Whenever an interrupt caused by an I/O, a process
interrupt, or a programmed interrupt occurs, an
indirect branch takes place to a fixed word in core.
This word contains the address of a communications
area known as a Level Work Area. There is one

System Design Considerations 137

work area per level of interrupt specified by the
usér, and only those levels configurated by the user
will be assembled and will be available when the
System Skeleton is built. In addition, three addition-
al work areas are always assigned to the system:

one each for Nonprocess Core Loads (if time-sharing
is used), Mainline (that is, Process) Core Loads,
and Errors (Trace and C.I. Interrupt). If time-
sharing is not used, the Nonprocess work area is
origined out at System Director assembly time.

Briefly, the level work area serves as a means
of communications whenever the computer transfers
contro! from one level of interrupt to another. The
address of the interrupted level is then saved and
the address of the work area for the current level
set up. When the level in progress has completed
its processing, the address of the interrupted level
is restored. This method of coding automatically
saves all reentrant coded subroutine work
areas.

Figure 69 illustrates the layout of a level work
area which is 104 words in length, but this may be
increased or decreased by the user (at System
Director assembly time), depending on the functions
related to each level of interrupt. Note that for
proper testing of errors and time-sharing, the MIC
work area portion should not be deleted.

Work levels are divided into two major sections:
a fixed section and an overlay section. Each word
in the fixed section is assigned to one specific pro-
gram and may be core protected. The manner in
which it is assigned is shown in Table 11.

Words in the overlay section may be assigned
to several different programs providing these pro-
grams do not call one another. This section cannot
be core protected.

The overlay section begins with the 58th word of
a level work area (see Table 12). If this section is
used, the user is advised to reference this ""start"
position with a label, thus eliminating extensive
program modification in the event the fixed section
has increased or decreased. If a modification is
required, the first word of the overlay section (the
58th word) will always be an even core location to
facilitate double load and store instructions, etc.
Also, programs using the overlay section should
always commence at the beginning, except those
programs that are called by a program already
using this area. For example, DP I/O programs
use the first 25 words of the overlay section; there-
fore any program that requires storage locations in
this section and also calls a DP I/O routine cannot
use the first 25 words. The later program will thus
start at the 26th or 27th word of the section.

ST & OF
I—- MIC WORK AREA CT— _T’ "'l. "'I'. ‘r— SUBROUTINE WORK AREA —'1
|
I A :
| T
| R N
I [O R B
' Lo
l I S T I
,|4 40 57

r

FIXED SECTION

Figure 69, Layout of a Level Work Area

138

!
|
|
|
!
—‘—i"— OVERLAY SECTION

| I R

Table 11, Fixed Section of a Level Work Area
WORD PROTECTION WORD PROTECTION
POSITION STATUS CONTENTS POSITION STATUS CONTENTS
-4 N Save interrupt exit 27 N Save location for the address of the work level
in use at the time the interrupt occurred; i.e.,
-3 N Not used word 68 |, of the Fixed Area in core.
-2 N Busy indicator address for UFIO: indicates 28 Save location for the A-register.
that unformatted 1/O buffer has been saved
to disk and must-be restored by MIC. 29 Save location for the Q-register
-1 N UFIO restore indicator; non-zero if a 30 N Save location for WK4, word 36]6 of the Fixed
restore is needed. Area in core.
0 Y Address of word 5 of the ICLT entry for this 31 N Save location for WK5, word 37, , of the Fixed
tevel. Area in core.
1 Y Address of word 1 (in-core-with-skeleton 32 N CARDN indicator, If zero, detection of a //
indicator word) of the ICLT entry for this card causes an error,
level.
33 N Save location for MDFIO sector address on a
2 Y Address of word 2 (in-core-with-mainline save operation
indicator word) of the ICLT entry for this
level. 34 Busy indicator address for MDFIO
3 Y Address of word 3 (record indicator word) of 35 N File protect indicator; this must be set non-zero
the ICLT entry for this level. prior to every write to a file-protected area.
4 Y Address of word 4 (recorded indicator word) 36 N First word of ICLT (in-core skeleton address)
of the ICLT entry for this level.
37 N . Second word of ICLT (in-core mainline address)
5 Y Address of word O of this level work area
38 N Third word of ICLT (RECORD address)
6 N Status save location
39 N Fourth word of ICLT (RECORDED address)
7 Y Level number
40 N Fifth word of ICLT (first entry).
8 N Entry point to interrupt level coding Words 36-40 constitute the work area used by
MIC. This area is loaded with addresses from thg
9 Y STX sets this level busy ICLT entry for this level to inform the ALLGO
routine how to handle the interrupt and/or where|
10 Y STX saves XR3 to find the servicing routine or core load.
1 Y Sets XR3 to work level 41-43 N Save locations for FORTRAN FAC (floating
accumulator)
12 Y
44-49 N Locations used by QZSAV/QZEXT to save and
13 Y Saves XR2 restore:
A-register
14 Y Saves XR1 Q-~register
XR1
15 Y BSC long to MIC XR2
Carry and Overflow indicators
16 Y XR3
17 Y BSC long indirect to interrupt via the 50-54 N Locations used by TVSAV/TVEXT to save and
Master Branch Table, restore:
A-register
18 Y Q-register
XR1
19 N MFIO restore indicator; non-zero if a XR2
restore is needed Carry and Overflow indicators
20 N Busy indicator address for MFIO; also first 55 FORTRAN functional error indicator
word of PISW IOCC.
56 FORTRAN divide check indicator
21 N Second word of PISW IOCC. Thisisa
standard PISW set-up by TSX for this level. 57 FORTRAN overflow indicator
If the user wishes to sense a PISW other than
the standard for this level, Word 21 would
have to be modified by him, See SYSTEM
DESIGIN CONSIDERATIONS, SYSTEM
DIRECTOR: PISW Assignment Restrictions.
22 N Save location for XR1
23 N Save location for XR2
24 N Save location for XR3
25 N Level busy indicator. Positive, if the level
is busy; zero if not.
26 N Save locatian for PISW sense

System Design Considerations 139

Table 12, TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG,
QZSAV
SUBROUTINES Lv(gl'?\lgEENTRANT —j l FIXED OVERLAY
FADD, FADDX, FSBR, FSBRX, FSUB, FSUBX X X 41-43, 52 58, 64-66
FALOG, FLN X X 41-43, 55 68, 69, 72
FATAN, FATN X X 41-43 68, 69, 70-71, 72-73, 74
FAVL, FABS X 41-43
FAXB, FAXBX X 41-43, 46, 48, 49, 55 73-79
FAXI, FAXIX X 42, 52, 55 67, 70-72
FDIV, FDIVX, FDVR, FDVRX X 41-43, 52, 56 58, 59, 64-66
FEXP, FXPN X 41-43 60-63
FLD, FLDX, FSTO, FSTOX X 41-43, 52 58, 89, 90
FMPY, FMPYX X 41-44, 52 58, 59, 64, 65
FSIN, FSINE, FCOS, FCOSN X X 41-43, 55 68, 69
FSQRT, FSQR X 41-43, 57 72
FTANH, FTNH X 41-43, 46, 48, 49 68-73
FTRTN, FTNTR X 80-84
EADD, EADDX, ESBR, ESBRX, ESUB, ESUBX X X 41-43, 52 58, 65-67
EALOG, ELN X X
EATAN, EATN X X
EAVL, EABS X
EAXB, EAXBX X
EAXI, EAXIX X 42, 52, 55 69, 72, 96, 97, 99
EDIV, EDIVX, EDVR, EDVRX X 41-43, 52, 56 76-80, 85
EEXP, EXPN X X 41-43
ELD, ELDX, ESTO, ESTOX X X 41-43 83-84
EMPY, EMPYX X 41-43, 52 64-66
ESIN, ESINE, ECOS, ECOSN X X NONE
ESQRT, ESQR X NONE
ETANH, ETNH X NONE
ETRTN, ETNTR X 52 92-97
ADRCK X 7
COMGG, COMGI X 59-63
DATSW X NONE
DVCHK X 56
ESIGN (EXTENDED PRECISION) 41-43 70-75
FSIGN (STANDARD PRECISION) X 41-43 70-75
FCTST X 55
10U X 59-63
ISIGN X NONE
ISTOX X 50, 52
LDFAC, STFAC, SBFAC, DVFAC X 42
MDFIO, MDAF, MDAI, MDCOM, MDF, MDFX,
MDI, MDIX, MDRED, MDWRT 41-43 70-92
MDFND X 72-75, 77
MFIO, MRED, MWRT, MCOMP, MIOAF,
MIOIX, MIOAI, MIOI, MIOFX, MIOF 19-20, 41-43, 55
MGOTO, MFIF, MIIF, MEIF X 70-72, 74-78
MIAR, MIARX, MFAR, MFARX, MEAR, MEARX X 70, 71, 74-85, 89
OVERF X 57
PAUSE X NONE
SAVE, IOFIX X -1,7, 11,19, 33, 34 70-73, 88, 93, 97
SLITE, SLITT X NONE
SSWTC X NONE
STOP NONE

140

Table 12, TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG,
QZSAV

SUBROUTINES NOT REENTRANT — * l l FIXED OVERLAY
SUBIN X 58-83
SUBSC X | NONE
TSTOP x | NONE
TSTRT X | NONE
TTEST, TSET X NONE
UFIO, UFIOX, UIOIX, UCOMP, UIOI,

UIOF, UIOAI, UIOAF x | -1,-2,55
TRACE (TRPNT) NONE
FARC X | 41-43, 57
FBTD, FDTB X 41-43 58-89
FLOAT X 41-43, 50, 52, 53 59-62
FIXI, FIXIX X x | 50-52, 55
IABS x | NoNe
IAND NONE
IEOR NONE
IFIX X x | 41, 4,50, 55
IOR NONE
LD NONE
NORM X 41-43 58
SNR x | 42,43
XDD X 42, 43, 50-54 66-75
XMD X 42, 43, 50, 51 58-65
XMDS X | 42-44 58-59
XSQR X 44, 48 58, 59
DMPHX, DMP, DMPDC X NONE
DMPS, DMPST X 41-43
DPART X 7
ENDTS X NONE
LEVEL x | NONE
MASK X | NONE
OPMON NONE
QIFON X X | 44-49 66, 67, 69-75, 77-84, 86-94
QUEUE X X 58, 61-63, 65-67
RESMK x | ~None
SAVMK x | ~one
SETCL X NONE
TIMER x | NONE
UNMK x | NONE
UNQ X X 58, 61-63, 66, 67
VIAQ X x | ~one
COUNT x | NONE
CLOCK X NONE ,
CLEAR X X 58, 61-67
CONHX X NONE
TRPRT X NONE
FLIP X 7

(Continued)

System Design Considerations 141

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV
SUBROUTINES TNv(g‘IA\I;EENTRANT — FIXED OVERLAY
CARDN X X 32
PAPTN X 50-54
MAGT X NONE
PLOTX X X 65
REWIND/BCKSP/EOF -2 66-68, 71-73, 75, 79, 85, 89
DAOP X X 70-75
AIPTN, AIPN X X 70, 71
AISQN, AISN X X 70-72, 74
AIRN X X 76-78
DIEXP X X 70-73
DICMP IS REENTRANT
DINP X X 50 70-72, 74, 75
ANINT, COMP1, AINT1, COMP2, AINT2 X NONE
AlP X 58, 61-66
AlS X 58, 61-71
AIR X 58, 61-69
€O, DO, PO, DAC X 58, 61-65
Cs, VX, PI, DI X 58, 61-65
CSC, VSC, PIC, DIC 1S REENTRANT
CSX, VSX, PIX, DIX X 58, 62-65
IOPE, OUSLY, ETS X 7
XSAVE, XEXIT, XLOAD X 7
GAGED, UNGAG X 54
QZERQ X NONE
QZ010 X 58-66
BTIBT X X NONE
BT2BT X NONE
BINDC X 50 61, 62
DCBIN X 50, 55 81
BINHX X 50 61
HXBIN X 50, 55 61
HOLEB X 55 61-65
HOLPR X 55 61-66
EBPRT X 55 61-66
PAPEB X 55 58-67
PAPHL X 55 58-66
PAPPR X 55 58-66
EBPA X NONE
PRT X NONE
FCHAR X NONE
SCALF X NONE
FGRID X NONE
FPLOT X NONE
ECHAR X NONE
SCALE X NONE
EGRID X NONE
EPLOT X NONE
POINT X NONE
FCHRX, FCHRI, WCHRI X NONE
FRULE, FMOVE, FINC X NONE
ECHRX, ECHRI, VCHRI X NONE

142

(Continued)

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV
TVSAV
SUBROUTINES NOT REENTRANT—; ‘ FIXED OVERLAY
ERULE, EMOVE, EINC X NONE
XYPLT X NONE
PLOTI, PLOTS X NONE
SKELETON 1/O
DISKN X X 35 58-69
PRNTN X 70-80
TYPEN/WRTYN X 70-80

Table 12 illustrates the work level requirements
of TSX reentrant subroutines. These may depend
on various modification levels of the TSX system.
If absolute information is required, the current
listings should be referred to.

The five status columns (NOT REENTRANT,
TVSAV, QZSAV, A-REG, and MASKED) indicate
whether each subroutine is reentrant, and if it is,
what modes of reentry are used. For example, FADD
(Floating-point ADD) is reentrant since the first
column is blank; it uses TVSAV, but note that it
also masks all levels at one or more points within

- the subroutine.

Some subroutines are reentrant, but do not use
any words in the level work area. ENDTS is such
an example. VIAQ is not reentrant; it does, how-
ever, mask all levels to prevent the Queue Table
from being modified by QUEUE, QIFON, and UNQ
during several instructions.

Level work areas are defined by the USE labels
USE00-23), the number of work areas being deter-
mined by NULEV. If a USE label is equated to 1,
a work level is included on that level; if zero, no
work level is included. For example, if NULEV
=17, USE00-06 are all equated to 1; the remaining
USE cards being equated to zero.

See also: Programming Subroutines Using
Reentrant Coding.

Process Interrupts Per Level

Like the ILSW, the Process Interrupt Status Word
(PISW) is a 16-bit word associated with the use of
process interrupts. Process interrupts are phys-
ically terminated on 16-position terminal blocks
within the 1800 system. The PISW indicators are
turned on or off by contact closures or voltage

shifts in the process. A total of 24 PISWs are
allowed in the system for normal usage. To provide
.the maximum number of interrupt levels for process

(Concluded)

interrupts, one PISW could be assigned to each
ILSW. For multiple groups per level, see PISW
Assignment Restrictions.

The System Director must also be aware of the
number of process interrupt bits on each of the 24
hardware levels. This information is provided by
the user on the NIL00-23 equate cards. If, for
example, one process interrupt is assigned to inter-
rupt level 10, the bit configuration for the PISW
for that level could be bits 0 to 15. For example,
if bits 0 to 7 are assigned, the NIL10 label will be
equated to 8. The NIL label will always be equated
to a numerical value equal to the rightmost PISW
process bit position used plus one. If no process
interrupts are assigned to a level, the label will be
equated to zero.

With this information, an interrupt core load table
(ICLT) is built which contains an entry for each
interrupt level assigned by the user plus two entries
for programmed interrupts and two entries for
count routines. The user specifies how many
process interrupts he has on a particular level and
only those words that are necessary to contain his
configuration are entered in the table.

Figure 70 illustrates a partial ICL table, for
one level, say level seven.

IN SKELETON represents the PISW bits of the
PISW associated with the level this entry serves. If
a subroutine is loaded as part of the skeleton to serve
a process interrupt, a bit is set up in this word which
corresponds to the bit on the PISW. For example, if
the user has a process interrupt on level 0, and this
PISW is wired such that when the interrupt occurs
the zero bit comes on, a bit is put into the correspond-
ing zero bit of the IN SKELETON word of the level
zero ICLT entry.

The start address of the servicing routine is then
loaded into START ADDRESS.

IN MAINLINE CORELOAD and RECORD are set
up each time a mainline core load is read into core.
The former word specifies that the interrupt servicing

System Design Considerations 143

GC26-3703-1
TNL: GN34-0036
Technical Change

IN SKELETON

IN MAINLINE CORE LOAD

RECORD

RECORDED

START ADDRESS/WORD COUNT

FOR
BITO
SECTOR ADDRESS
L L
i nv
START ADDRESS/WORD COUNT
FOR
BIT 15

SECTOR ADDRESS

Figure 70. Interrupt Core Load Table

routine is in with the core load. RECORD means
that the interrupt is not to be serviced, but only
an indication that it has occurred is to be set.

RECORDED is used whenever an interrupt has
been specified to be recorded during the processing
of core loads. In such an event, if the interrupt
occurs, the corresponding bit is set on by MIC and
the interrupt turned off. These indicators are reset
by the CALL QIFON and CALL CLEAR subroutines
when called by the user.)

The first four words of the ICL table are fixed,
two additional words being required for each bit of
the PISW used (see Figure 70). ICL table size is
dictated by the NIL equate cards. In the example
given (see Figure 66), 57 process interrupts were
used; this required 258 words. If the maximum
possible number of process interrupts (384) were
utilized, 768 plus 4 (multiplied by the number of
levels used) words of storage would be required.

If the interrupt routine were not in the skeleton,
START ADDRESS would contain the word count of
the routine on disk to service the interrupt. SEC-

TOR ADDRESS would then contain the sector address

of this out-of-core interrupt core load.

It should be noted that a programmed interrupt
does not make use of a PISW bit for operational
indication. The indicator which specifies that a
programmed interrupt has occurred is set-up by
the user's routine in core when he does a Call
Level (see Programmed Interrupts).

144

PISW Assignment Restrictions

PISW (Process Interrupt Status Word) groups can be
assigned to interrupt levels either as a single group
per level or in multiple groups per level. For
proper operation of the TSX system, the following
rules and restrictions must be observed.

One Group Per Level

Normal usage of process interrupts requires that
only one group of process interrupts be assigned to
each interrupt level. Process interrupts assigned
in this way can each be serviced with separate inter-
rupt routines. The servicing routines must reside
in the skeleton area only if their associated inter-
rupt level is equal to or higher than any 1/0 device
interrupt level.

When only one PISW is connected to a level, the
correlation of the interrupt level number to the
PISW group number is as follows:

Interrupt PISW Second Word of I0OCC

Level Group for PISW Sensing

0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05
[[] [
[} [[]
[] ° []

22 23 /5F18

23 24 /5F19

~Note that MIC performs the ILSW and PISW
sensing, and transfers control to the proper inter-
rupt servicing routine.

Multiple Groups Per Level

In special cases, such as (1) when fast response is
desired, and (2) when each bit does not require a
unique program to service it (such as when all the

on-bits in a group might represent a particular code),

it is desirable to have more than one PISW group

assigned to an interrupt level. The PISW that is to be
sensed by the user must be assigned (on the *ASSIGN-

MENT card at system generation time) as an RPQ
device, and the following restrictions must be ob-

served by the user's subroutine. It must:

1. Reside within the skeleton area

2. Service the interrupt as though it were an interrupt

from an RPQ device. Thus the subroutine must be -

coded with an ISS (interrupt service subroutine)
statement with the IAC (interrupt assignment code)
number following the ISS statement matching the
RPQ number given to the PISW at system genera-
tion time.
3. Sense all PISWs assigned to the level
4. Upon completion, exit to MIC via the I/O exit
(that is, BSC I 90).
When assigned in this way, there is no correla-
tion restriction between the interrupt level number
and the PISW group number.

Combination PISW Assignments

It is also possible to combine the two assignment
methods and have some interrupt levels with only
one PISW each, and other levels with more than one
PISW. The same rules and restrictions for each
type outlined above still apply. For example, to
have two groups of four PISWs each assigned to
interrupt levels 4 and 5, one valid combination is:

Interrupt PISW Second Word of IOCC
Level Group for PISW Sensing
0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05
4 One or more User-Sensed
groups of PISWs
5 One or more User-Sensed
groups of PISWs

6 7 /5F08
7 8 /5F09
° ° °
'Y ° °
° ° °

17 18 /5F13

18

19 Not assignable;
° usage assumed on
° levels 4 and 5-
.

23

Any combination can be used for the PISW assign-
ments on levels 4 and 5.

Note that the user is not restricted in assigning
multiple PISWs only to those levels which are not
sensed by MIC: they can be assigned to any level.
For example, if level 7 has the standard sense for

group of assigned PISWs, the user could include

GC26-3703-1
TNL: GN34-0036
Technical Change

on that level another group of PISWs which he de-
sires to sense himself. User-written interrupt