- =
’HEWLETT-PAC KARD

Vectra System BIOS Technical
- Reference Manual

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett~Packard shall
not be liable for errors contained herein or for incidental or consequential damages in connection with

the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or rehability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another program language
without the prior written consent of Hewlett-Packard Company.

MS-DOS is a U.S. registered trademark of Microsoft, Incorporated

IBM is a US. registered trademark of International Business Machine Corporation.

Intel is a U.S. registered trademark of Intel Corporation.

Copyright 1988 by Hewlett-Packard Co.

Personal Computer Group
974 East Arques Avenue
P.O. Box 486

Sunnyvale, CA 94086, US.A.

First Edition - Febuary 1988, Printed in Singapore
Part Number 45945-90012

2 Vectra System BIOS Technical Reference Manual

Part Number 45945-90012

Vectra System BIOS
Technical Reference Manual

For the HP Vectra ES and RS Series
of Personal Computers

[/ ciciaro

First Edition — February 1988
Printed in U.S.A.

HP Vectra System BIOS Technical Reference
Manual

For the HP Vectra Series (ES, QS, RS) of Personal Computers

HP Vectra System BIOS Technical Reference Manual 1

Contents

Vectra System BIOS Technical Reference Manual

Chapter 1

Introduction

Terms Used In This ManuUal.ttt ittt et te et teaneeaaneeneeeanensennnenaes 1-1

RTL1 7231 B 10 & A2 1A 1-1
PN¢] TP 1210 U0 i {070 ¢ B 11 V: 30PN P I-1
1047 2R A D T3 7.3 ¢+ T 1-1
2300, BB £ 1 (.- J TR 1-1

Chapter 2

ROM BIOS Overview

.V 1315 Ty w0 D0 ToT T 4 T oY 2-1

| §1R73 0 ot o 7150 AN 2-2

ROM BIOS Drivers and FUNCHIONSuutinttiteteeetatetetetet e enenretanaeansreeteieenanreneeness 2-5
STD-BIOS DIiVEIS ...\ttt e et ie e tee ettt te et a e eeteeenes P 2-$5
Calling STD-BIOS Drivers................... e e e e, 2-6
X mBIOS DIIaVerS. . o\ttt ittt et e e ettt ettt e ettt ettt e e e e e 2-7

The CALL SYSCALL ROUIIIEottt ettt e e et et et ettt eaeens 2-7

Calling EX-BIOS Drivers . ..o\t ittit ittt et e te ettt ettt ettt teet et e tiee st as e eainennasenns 2-7
EX-BIOS Standard FUunC IO, . ..ot ttit ittt et ie et e et e a e et eeeenaeaseaseneseassnnsanans 2-8
EX-BIOS Parameter Passing COnVeNTIONSvuuurvnttntint ettt teeanstareneeneaneateneeaeennennn 2-10
EX-BIOS Return Status Codes. .. .outiiiieit ittt ettt it et et et taeeaetetianannnnans 2-10

| D7 R 7 T 4§ o1 41 1 o -1 SR 2-12
ST D -BIOS Data S rUC UL S ...t tit ittt ettt et ettt et et eter ettt eeaineeeaneeennnn 2-12
J 25,02 (0 ST B R 2] 5§ o7 41§ o 1S D 2-13
The HP _VECTOR _TABLE . ..ottt ittt ettt e et ettt et eie et aienennns 2-13
The HP_ENTRY __CODE ...ttt e et et et e ettt et e e ieaans 2-13
109 83 B 7 B RN T T D 2-14
29, €3 (0500 B ¢ 073 2 13- Ve T3 o 2 A 2-15
EX-BIOS GIobal Data ATouiitiniittitit ettt e e e e ettt ettt aenn, 2-16

Chapter 3

Video

(013 4 T3 3-1

J 07 R W0 5 | o7 40§ o - S 3-1

Video Driver (INT 10H)t et P 3-6

Video Driver Function Definmitions.oouuitirinti et et et 3-7
FI0_SET_MODE (AH = O0H) . ..ot e e e e e ettt 3-7
FIO_SET _CURSIZE (AH = O1H)oiiiii ittt et ittt 3-7
FIO_SET _CURPOS (AH = 02H)......coiiiiiiii i D 3-8
FI0O_RD_CURPOS (AH = 03H) ...ttt e e e e e e e e i 3-8

F10_RD_PENPOS (AH = O4H)oot o 3-8

F10_SET_PAGE (AH=05H) e L 3-9

F10_SCROLL_ UP (AH = 06H)......... J T R e 3-9
FIO_SCROLL_ DN (AH = 0TH) ..ottt et ittt et ettt ettt e ettt iaesannas 3-9
FI0O_RD CHARATR (AH = O8H) ..ottt ittt ittt e ittt ettt et eeiteaeeenannen 3-10
FI0_ WR _CHARATR (AH = O0H)ottt ettt eaenns 3-10
FIO_ WR _CHARCUR (AH = OAH) . ..ottt e ettt ettt it eeiaanns 3-10
FI10_SET _PALLET (AH = OBH)......o0iiiittiiitiiii e e ittt ettt e et et et ietaenareennanas 3-11
FIO_ WR _ PIXEL (AH = OCH) . .ooiiiiiiiiit ittt it ie ettt ettt et et e ee e et e e sieenenaans 3-11
FIO_RD _PIXEL (AH = ODH) ...ttt ee et e ettt iaeiieeiraiaavaaannas .. 3-12
FI0_ WR CHARTEL (AH = OEH)......oiiiiiiit ittt ettt it e i e e e ie e e anaeaeaanas 3-12
FI10_GET _STMODE (AH = OFH)ciiitiiitiitiieiet itteete e ttateaaseneinaasassneennns 3-13
Write String (AH = I3H) . oo it e ettt et ettt tr et eerenanserananens 3-13
FI0 _WRS 00 (AX = 1300H)ottt et ittt i e te ettt te e teiateseasasannsnanas 3-13
| 3 (U2 ST U 0 G T 111 § - § S 3-14
FIO_WRS 02 (AX = 1302H) .. iiuiiitititititeetietetaeeeeneenecnrnetneesnsesesesonsnecaseocnnens 3-14
FI0 _WRS 03 (AX = 1303H) .. .iiiiitttiiii ittt et eteeaetaeteeueteteteasessenionesasensnaens 3-14
HP Extended Video FUnCUIONS.o.iuiiniit ittt ittt ittt aeeteaenanenaaeenrnsanenenensnns 3-15
F10__INQUIRE (AX = 6FOOH) s 3-15
FIO_GET _INFO (AX = GFOIH) . ..ottt ittt ettt ie e e ea e eaaaenneneenenaens 3-15
FI10 SET INFO (AX = 6F02H)ottt ittt it ettt ear e ie e eaaaeaenaaaans 3-17
FI0_MOD INFO (AX = 6F03H)0oiiiiit ittt ittt ie ettt tie e eeaanenneneeneannes 3-18
FI10 _GET_RES (AX = GFO4H) ... iiititititieiitieieeeeneraeueasneenenruesnenencasssneasesesens 3-19
F10_XSET _MODE (AX = 6FOSH) ..ottt ttettene e tae e e taeeeeeaeeaenanatnaanann 3-20
Chapter 4
Input System and HP-HIL
L0 35 T3 A 4-1
Application Interface Levelttt et ientieeneeneanrneenaouenaasesnssssceeaasseansnsnns 4-1
OV BTV W, .ottt tieteeee e et et tete et e e te e e eteeaesasesesesanssasesesessesesesessnsososeosonassosonns 4-2
I 70 2 RS 6 o1 512V - 2 4-3
Logical Describe ReCOTd.oiuiii ittt ettt e e ee et eets e tataaetaeaaeneiaeseenancanaas 4-3
Logical Describe Record Definitionso.vuuiiiiiiintieiteneereneeerraeeereeosesnasnsssesacsnssesasnns 4-5
Logical ISR Event ReCOTdSoniititiiietrieaeettnatrnaneanessonsaceasossasaaneassnssncasssasasans 4-7
APDPICation EVent DriVers.ottt ittt eteteneeeneneasasasarocansasoransosassnsaosos 4-8
LOBICAl G IIVeIS. ..ot i iittii et ettt tieeeeanenneeseasasaneoesseonsassecsnsnsesssososassensnsosssssanns 4-8
V_LTOUCH Driver (BP = Q0COH)........coviiiinitittiate ettt etae e tattaeaatsnetnenteieneennns 4-8
Touchscreen Driver Functions Definitions.ootiiitiiiinrtnteneeeereeneeeeeanessssnconsasonsnsns 4-10
F_ISR (AH = O0H) ..ottt ittt tieenataereaaneeesnsnosanenasassaeeeacuesssnesssnnsonsons 4-10
SF_INIT (AX = 0200H)iiiiiitie ittt tretetieeaeetseaaeeneseacunenesoeceassssencessasossanns 4-10
SF_START (AX = 020 2H). .. .ottt itreetet it eaeneereaaaareneeaeaereaeeatnstoeuscsssnsssenns 4-11
SF_REPORT _ STATE (AX = 0204H)ooiiiiiiir ettt ittt ei e e eitia e cieaneranns 4-11
SF_VERSION _DESC (AX = 0206H).....0uiuiintrreniuarareernarnnensaaeeacsscasessssrasanorsenns 4-11
SF_DEF_ATTR (AX = 0208H)ootittiiitetrerereaeaaaeaaaeeaetaseareateacssessosesennesnsens 4-11
SF_GET_ATTR (AX = 020AH)uoiiiiiiiitiititetieeereret et eeeeeasteasesenecossnionenns 4-12
SF_SET_ATTR (AX = 020CH) .. .itiiitiiiiteieteatanetaeeensussessenessssssosssssusasaceoranns 4-12
SF_TRACK _ON (AX = O404H)ooiiiiiiiiiiiiiteteeuienernnerenerearensassocesesssnonosnns 4-12
SF_TRACK _OFF (AX = O0406H)0iiiitiiiiiietnnernenruneeesrranasnssesosasssosasscsosoenns 4-13
SF_CREATE_EVENT (AX = 0408H)co0iiniiiiiititienninerentneraaenaeeacesescneossnoensans 4-13
SF_EVENT_ON (AX = Q40AH)0iiiiiintiiitieettrenrneenrenerosnseoesessesssossasasorsonss 4-14
SF_EVENT _OFF (AX = 040CH)0iiiiiiiiiiiiitietieietttienatesnesanosussesososssasessssosvonns 4-15
SF_CLIPPING _ON (AX = 040EH)ciiniiiiiiteitteneneteeeaasiarnorasssosneremcecsasascanns 4-15
SF_CLIPPING _OFF (AX = O410H)iitiiitiiiietieeieneeteearaeeeoreaceassoreesaenasssanss 4-15

F_SAMPLE (AH = O6H). i ittt ittt ittt e itis e n e esaaaenaans 4-16

V_LPOINTER Driver (BP = 00COH)oiiiiiiiiiiiiiiineneeiiinnnn. PP 4-16

Pointer Driver Function Definitionsooiiuiiiiiiniiiiii i et es e iaeer e, 4-17
F_ISR (AH = O0H) ...t DR *3
SF_INIT (AX = 0200H) . .cooiiiiitiiii it et e e e e e e e e e e 4-18
SF_START (AX = 0202H). ..ottt e e e e e e e e 4-18
SF_REPORT _STATE (AX = 0204H)t e e 4-18
SF_VERSION __DESC (AX = 0206H).ocvnitiitiiteeti e e e e e ettt 4-18
SF_DEF_ATTR (AX = 0208H)ottt e e e e ettt 4-19
SF_GET_ATTR (AX = 020AH)ooniiiii e e e e i, 4-19
SF_SET__ATTR (AX = 020CH) ..ottt it e e e e e et 4-19
SF_TRACK_ON (AX = 0404H) . ..ot e e e e e e, 4-20
SF_TRACK__ OFF (AX = 0406H)cooiriiiiie et e e e e e e e i 4-20
SF_CREATE __EVENT (AX = O408H) ...ttt e e 4-20
V_EVENT __ POINTER Motion ISR Event Record:oooiiiiiiiiiiiiiiiiii ... 4-21
SF_EVENT_ON (AX = 040AH)oioiiii e e e e e e e 4-22
SF_EVENT_OFF (AX=040CH)ooovvuunn... R 4-22
SF_CLIPPING _ON (AX = 040 EH)ooiiiiiiiit it e e e et 4-23
SF_CLIPPING _OFF (AX = 0410H)t e e e 4-23
F_SAMPLE (AH = O6H). . ..ot e e et 4-23

V_LTABLET Driver (BP = O0BAH)oiiiiiiiiti e e 4-24

Tablet Driver Functions Definitiono..ouuiiioiin it e, 4-25
F_ISR (AH = O0H) ..ot e e e e, 4-25
SF_INIT (AX = 0200H) ...ttt e e e i, 4-26
SF_START (AX = 0202H). ... eeuniitiite ettt e e e e e e e i, 4-26
SF_REPORT __STATE (AX = 0204H) ..ottt e e e 4-27
SF_VERSION __DESC (AX = 0206H).cooiiiniiiiii et e e e e e 4-27
SF_DEF_ATTR (AX = 0208H)ttt e e 4-27
SF_GET__ATTR (AX = 020AH) ..ot e e e e e 4-28
SF_SET__ATTR (AX = 020CH)oniiitiii ettt e e e i 4-28
SF_TRACK_ON (AX = 0404H)cooiiiiiiii it e e e e e e e 4-28
SF_TRACK_OFF (AX = 0406H)oiiiitiiiiiii i e 4-29
SF_CREATE __ EVENT (AX = 0408H) ..ottt e e e 4-29
SF_EVENT_ON (AX = 040AH)oooiiiiiii e e e e e 4-31
SF_EVENT_OFF (AX = O40CH)ooiiiiitiiii e e 4-31
SF_CLIPPING _ON (AX = O40EH)ooiiii ittt e e e e 4-31
SF_CLIPPING __OFF (AX = O410H)iiiiit e e e e 4-32
F_SAMPLE (AH = O6H). ..ot e e e e e e i, 4-32

Application Event Driver EXampPleoooviiinitni ittt 4-32

Hardware Interface Level o i i e 4-37

L0175 4 T 4-37

DeviCe DIiver MaPDing. . oottt ettt ittt et e e e e e e 4-38

Device EMUIALION. oouuittititit ittt e e et e et et e e e e 4-39

Daa S TUCHUTES. ... ittt ittt ittt ettt ettt ettt e e et e e e e 4-39

Physical Describe ReCOTdoovuiiiiiiiiiii ittt e e e et 4-39

Physical Device Record Definitionuiiuiiiniitti ittt e et 4-41§

Physical ISR EvVent ReCOTASocouniineititiitiee i et 4-42

Hardware Interface Level DIiversooouiiiiiiiiii it 4-43

V_S8259 Driver (BP = O0IEH)ooiirniiiietit et e e e e, 4-43

V_S8259 Driver Function Definitionsiiiiiiinieuiiiiettiie et 4-44
F_ISR (AH 2 O0H) ..ottt et e 4-44
SE_INIT (AX = 0200H) ..ottt ittt et e e e ettt et e 4-44
SF_START (AX ® 0202H)..ccuniinititi ettt e e e e et e 4-45
SF_VERSION _DESC (AX m 0206H).ovtniitiiiniit ettt et e e et 4-45

SF_GET_IRQ (AX = 0414H) ...ttt e et 4-45

V_HPHIL Driver (BP = O114H)ooiiiiii e 4-45

V_HPHIL Driver Function Definitions.o..ooiiiiiiiiiiiiiiiiiiiiiiiiiiiainees 4-48
F_ISR (AH ® O0H) ..ooooiitinttitiitie ittt ettt e e e e e sttt et et eat e 4-48
SE_INIT (AX = 0200H) ...uniiiitntttantae ettt ettt ettt et ettt tteeiteetattnatees 4-48
SF_REPORT _STATE (AX = 0204H)ooiiiiiiiiiiiiai e 4-48
SF_VERSION _DESC (AX = 0206H).........ccooiiiiiiiiiiiiiiiiiiiiieeens et ieaereeae 4-49
SF_OPEN (AX = 020EH)uiiiiintietit ittt ettt ettt et ettt te ittt 4-49
SF_CLOSE (AX = 0210H)......ovviieiiieiiiiiiiiiiiieeainnes veeeeeseaieas e 4-50
SF_CRV _RECONFIGURE (AX = 0406H)ooooiiiiiiiiiiaii it 4-50
SF_CRV_WR _PROMPTS (AX = 0408H)ooiviiiniiiiiiiiiii i 4-50
SF_CRV_WR __ACK (AX = 040AH)oooiiiiiiiiiiiiiiii e 4-51
SF_CRV _REPEAT (AX = 040CH) ...coooiiiuiiiiiiiiiiiiiiiiii ettt 4-51
SF_CRV _DISABLE _ REPEAT (AX = 040EH)oooiiiiiiiiiiiiiiiii i 4-52
SF_CRV_SELF_TEST (AX = 0410H)......c.ooiiiiiiiiiiiiiiit e 4-52
SF_CRV _REPORT _STATUS (AX = 0412H).......coooiiiiiiiiii e 4-53
SF_CRV _REPORT_NAME (AX = 0414H) ... 4-54
F_PUT_BYTE (AH = O6H) ..ottt et 4-54
F_GET_BYTE (AH=08H).................. e e e et 4-55$
F_PUT_BUFFER (AH = 0AH)oooiiiii e 4-55
SF_GET_DEVTBL (AX = 0420H).......otirittiiiitiiiiiiiiiit ettt 4-56
SF_SET_DEVTBL (AX = 0422H)cvunuiiintiinnttiis e ee et e 4-57
SF_SET_DEVTBL (AX = 0424H)ooiiiiiiiiiiiiii it 4-57

V_SINPUT (BP = O002AH). .. .oooiiititt ittt ettt ettt sttt 4-58

V_SINPUT Driver Function Definitionscooiiiiiiiiiiiiiiiiieeee 4-59
F_ISR (AH = O0H) ..ottt ittt ettt et ettt sttt en e 4-59
SF_INIT (AX = 0200H) . ..0ovntt ittt ettt ettt ettt it e ettt cnes 4-59
SF_DEF _LINKS (AX = 0400H) ...\ .ceeuuuttiiiinientitiiit et 4-59
SF_GET_LINKS (AX = O402H)ooniiiiiii e 4-60
SF__SET__LINKS (AX = D404H) .ottt i e e 4-60
F_INQUIRE (AH = O6H) ...\t ittt ettt et e e e 4-61
F_INQUIRE_ALL (AH = 08H)outueiiitiaiit ettt e 4-61
F_INQUIRE_FIRST (AH = OAH).0uiiiiitie ittt 4-62
F_REPORT _ENTRY (AH = OCH)......ooiiiiiiiiiiiii it 4-63

Physical GID DIIVET. ...ttt ittt ettt ettt ettt ettt et ettt 4-63

Physical GID Driver Function D IMItIOMIS .+« v ot et e een et et et e e e e e e e e 4-64
F_ISR (AH = O0H) .. outint ittt et et ettt ettt sttt 4-64
SF_INIT (AX = 0200H) ..ottt ettt e 4-64
SF_START (AX = 0202H). ...\t eeeititiiieeei et ettt e 4-64
SF_VERSION _ DESC (AX = 0206H).......ooiuitiiiiiiiiiii e 4-65

V_PNULL Driver (BP = O00CH)ooouiiiiiiiiiiiiiiit ittt ene e 4-65

Hardware INterface LevVel SerVICESuurnun et ettt ernaettaeaetetiataseseessaanitroonaces 4-65

V_STRACK Driver (BP = 005AH).oooiiiiiiiiiiii e 4-65

V_STRACK Driver Function Definitionsoooiiiiiiiiiiiiiiie e 4-66
F_ISR (AH = O0H) ..ottt ittt ettt ettt ettt e 4-66
SF_INIT (AX = 0200H) ...ttt ittt ittt ettt ettt e 4-67
SF__START (AX = 0202H). ...\ttt i 4-67
F_TRACK_INIT (AH = 04H) ... e e ees 4-67
F_TRACK_ON (AH =06H) ... PR PR 4-67
E_TRACK_OFF (AH = OBH)o.iitiiuettit ittt et e 4-68
F_DEF_MASKS (AH = OAH) ... 00\ititneiiiit e aite ettt 4-68
F_SET_LIMITS_X (AH = OCH).....coooiiiiiiianiiiniiiaaciieeenn e 4-69
F_SET_LIMITS_Y (AH = OEH)...oouiutuniiiiiiiaaiiie ettt 4-70
F_PUT_SPRITE (AH = 10H)oooii e 4-70

F_REMOVE _SPRITE (AH = 12H)............ooooiiiiiiiinee. e tireesee et e s eas 4-70

V_SCANDOOR Driver (BP = 016EH)\vveeveeenn.. OSSPSR 471

V_SCANDOOR Driver Function Definitionsooiiiiieieiiiiieiiet i iiiiieeieeeiiannnn. 4-71
F_ ISR (AH = O0H) ..ottt e e e e e e e e e et vee..4-71
SF_INIT (AX = 0200H) ..ottt e e e e e e et 4-72
SF_START (AX = 0202H). ...\ttt e e ettt e e 4-72
SF_VERSION (AX = 0206H)ttt et ettt e e R 4-73
SF_GET_STATE (AX = O800H).cittiiiiit e e et e e 4-73

Chapter 5

Keyboard

L0 7 o N 5-1

| €S0 T e B B o AT ¢ T e 5-3

L0 3 T3 DD S 5-3

|9 R 278 e 41§ T 5-3

STD-BIOS Keyboard ISR (INT OOH) . ..ottt e e e e ettt 5-9

STD-BIOS Keyboard Driver (INT 16H)t e e 5-14

Keyboard Driver (INT 16H) Function Definitionsoouuuirintuen et e te e eeneneeneneenenns 5-16
F16_GET _KEY (AH = O0H) ..o e e e et 5-16
FI6_STATUS (AH = OLH) ..ot e e e et et et 5-16
F16_KEY_ _STATE (AH = O2H). ..ottt e e e 5-17
F16_SET_TYPE_RATE (AH = O3H) ..ot e, 5-17
F16 _PUT _KEY (AH = O5H). ..ottt et et et e ettt e e et 5-18
F16_GET_EXT_KEY (AH = 10H)ot ettt 518
F16_EXT _STATUS (AH = 11H) ..ot et i 5-18
F16_EXT _KEY_STATE (AH = L 2H) ...ttt ettt eiea s eanes 5-19
F16_INQUIRE (AX = 6FOOH)coiviiiiiiiiiiiiniieninnnnn. S §-20
F16_DEF _ATTR (AX = GFOIH) . .eoiiiiiii et e e e ettt s 5-20
F16_GET __ATTR (AX = GFO2H) ... oottt ettt ettt ettt 5-21
FI6_SET_ATTR (AX = GFO3H)ttt e et et ettt 5-22
F16_DEF_MAPPING (AX = OFO4H) oo e 5-22
F16_GET_MAPPING (AX = GFO0SH) ...ttt it ettt et ettt 5-23
F16_SET_MAPPING (AX = GFOGH)ooiiniiiiitiei ittt it et et ieieieiieenn, 5-23
F16_SET_XLATORS (AX = GFO0TH) ...ttt ettt ettt et et ettt ieieneinns 5-24
F16_KBD (AX = 6F08H).........covvvviiiinnnnnn.., ZR §5-25§
F16_KBD_RESET (AX = 6FO00H)c0uttititiiiittit it ie et iieeiaietarennsnennas SO 5-25§
F16_READ_SPEED (AX = 6FOAH).................. L 5-26
F16_SET_LOW_SPEED (AX = GFOBH) ..ottt iie ettt ettt ciiienenanns 5-26
F16_SET_ _HIGH_SPEED (AX = GFOCH) ..ottt ittt et ee i enens 5-26
F16_GET _INT_NUMBER (AX = 6FODH)ottt it e ieaneians 5-27

Keyboard Layout Identificationouuuuniniiitt ittt et ettt ettt ieierenenns 5-27

EX-BIOS Keyboard Drivers for the HP Vectra Keyboard/DIN.............. ... iiiviiiiiiiiiiiine.., 5-28

L0 3 T T TS 5-28

FIAT-STo> B U €370 o2 D o B D o 5 o S U 5-28

Keyboard Translators.........c.ovvvnviniinttiiiin i inannrennnnenns e e e, 5-28

804 INterface DIIIVer .. ittt et ettt ettt e e 5-29

Data S IUC UL ES. ittt ittt it ettt et et et e et e et e e, §5-29

Logical KeyDOard DrivVer . ..ottt ittt ittt ittt ettt ettt ettt ettt e ittt e ettt eaneenninns 5-31

Logical Keyboard Driver Function Definitionsovuiuniintiniriiii i ietaineaieannnns 5-33
| O F) L N 2 B 00 5-33
SF_INIT (AX = 0200H) ...ooiiiiinitit ittt ettt et e et ettt e e ie e eeasnenain 5-33

SF_VERSION_DESC (AX = 0206H)c.oviiiie ittt iitae it ieieiaenanns e 5-33

Keyboard Tramslators.oo vttt ettt ettt ettt tee e et i e 5-34

V_SOFTKEY (BP = 003CH) .. .\uuiiiiititiiietiiiettiiiieetaiereatiaaeeetusteunetaaneteiunesinaeeens 5-34

F_ISR (AH = O0H) ...ouiniiiiiiiiiiiie et iiieae e e e iaeeeeeeaaans i 5-35
SF_INIT (AX = 0200H)cuuuuniiiiiiiaieteettttettettaiateaeatnsaereaeesunetntuonsoruceesivinnes 5-35
SF_VERSION_DESC (AX = 0206H)coiiiiiiiiiiiiiiiiiiieenineeerateetiteniiieeeianans 5-35
V_QWERTY (BP = 0036H)coiuiiiniiiiiiiiiiiinenatiitinirarinereaesnnnnns e eererenesere et 5-36
F_ ISR (AH = O0H) ..ottt it iat ettt eeiaeeaneasaasanaeens 5-36
SF_VERSION_DESC (AX = 0206H)oiuuuuiiiiiiiiiiiiiin it iiiineeiineeriiiierrnanes 5-36
V_FUNCTION (BP = 0042H)ituuniitiiiniiiuiiteitnte ettt iaiaertssersessneesnieeniesanans 5-37
F_ISR (AH = O0H) .. ooniiiiiiiiiiitiii ittt ittt it ae e iie e eeieesaeenneenes 5-37
SF_VERSION_DESC (AX ® 0206H)couuiiiniiiiiiiiiiiiiiiiiiteiieniiierieeniereneesnonsns 5-37
V_NUMPAD (BP = 0048H)ouuititntttietneetnieteetueetenneeenieteunesusesensecesseeuieessesnaans 5-38
F_ISR (AH = O0H) ..ottt ittt et it et e aeaas 5-38
SF_VERSION_DESC (AX = 0206H)tiuuiiiniiiiiiiiiiiie it eiieeiieiieiieeriaenneaans 5-38
V_CCP (BP = 004 EH)ttt ittt it ttet ettt ettt ettt esteeeanetateeraiesniennans 5-39
D 1) I Q0T) 5-39
SF_INIT (AX = 0200H) ..oetuiinettiie ettt ettt etiietetueeeneeantesateeaseenueeenssoneesnn 5-40
SF_VERSION_DESC (AX = 0206H)ouuuiiuniiiiiiiiiiiiiitiiitiiieiiiieineiuneriaeeanaeens 5-40
V__OFF Driver (BP = 0009CH)................. e en e eae b b s a et st seeiuat e asssasaeosbesares 5-41
| D R RN - G 4T 5-41
SF_VERSION__DESC (AX = 0206H)cuuuiiiniiiiiiiiiiiiiitiieietiiietniitanieinieeineeaneenss 5-41
V_RAW Driver (BP = 0090H)ooinnitiitiititet et teiiiettuneeetieteaneetustosseeaniosnsonanes 5-42
F_ISR (AH = O0H) ...iiiiiiiiiiiiit it ittt ittt e et eaas e eeeaans 5-42
SF_VERSION_DESC (AX = 0206H)utiitiiutiiniiiiiittiiiieiiiininiietnneenessenaneesssuseces 5-42
V_CCPNUM (BP = 0096H)tvuiiiitittnttiaetnttenittettiestuneetusssnsieransesuiesuseenasensoes 5-43
S Y RN B0 3) T 5-43
SF_VERSION_DESC (AX = 0206H)ciuuiininiiiiiiiiuiitiiiairearaantiusesssussessessssseass 5-43
V_CCPCUR (BP = 008AH) ...oitiiiiiiiiitiiiiiiiiiit ittt ettt ttniteetetiateseniniesensosoeens 5-44
F_ISR (AH = O0H) ..ottt ittt ittt ittt e e e eraaeaanns cereeeeans 5-44
SF_VERSION_DESC (AX = 0206H)couiiniiniiiiiiiiiiiiiientitniiniiunrtieaseaneassuecenss 5-44
V_SKEY2FKEY (BP = 00A8H)coevvinviinininiinnn. ettt ettt te e enarereteaa ettt 5-45
F ISR (AH=00H) t et e e ettt ee e te ettt e bt ettt ta e tat aerareenen 5-45§
SF_VERSION_DESC (AX = 0206H)utviniiiiiiiiiiiiiiiiiiiiiiitiiiietieeienerianiessosnnens 5-45
V_8042 Driver (BP = Q0AEH) oottt ettt et iateesatioeessssosasetnarssaaens 5-46
V_8042 Driver Function Definitionscoiveeiiieiiiiruiiniirineeienranenns e eeeiiesneiaeaeas 5-47
F_ISR (AH = O0H) ..ottt ittt tiiettieetniateettneetetneseneeetssetenotonssoasoannosnnnss 5-47
SF_INIT (AX = 0200H) ...ttt ittt ettt ieeee e eeioetntouetaesanosassansssssasonnsoesasnanos 5-47
SF_START (AX = 0202H). .. .uiiiiiiiiiititititiettieteist ettt ettiteetatetunesnestunessesssasosns 5-47
SF_VERSION_DESC (AX = 0206H)ccouuitiuniiiiiiiniiiiiiiiiiiiitaietuiiteneiuseneneioonsons 5-48
SF_CREAT_INTR (AX = 040AH)........tiiiiittiiiiitiii it re et e e iaeeaanas 5-48
SF_DELET _INTR (AX = 040CH)oouuiiitiiiniiii ittt ittt ieeeiieiiniennneas 5-48
SF_ENABL_INTR (AX = 040EH)couuiiiiiiiiiitiiiiiiiiiieiiiieertetiieieneennieraecannes 5-49
SF_DISBL_INTR (AX = 04 10H)ouiittiiittiet ettt tnieteaeeneesetaassonseeasecssnssenns 5-49
SF_SET_RAMSW (AX = 041 2H) ...ttt ittt tiietiesaaasneeessaeossasasossossaees 5-49
SF_CLR_RAMSW (AX = 04 14H) ..ottt 5-50
SF_SET_CRTSW (AX = 0416H).................. et e eeeeeteeneteea e e e varaeesataencueerreneaens §5-50
SF_CLR_CRTSW (AX = 04 18H)iiniiiiiiaiii et iteeiaeteeiaeenernessnasoesstornasssenanns 5-50
SF_PASS _THRU (AX = 04 1AH) ...ttt ieetieeiietteeseesaestetensssesuessnansesnases 5-50
8042 Keyboard Controlleroiitiii it ia ettt e e ttetesetesearenasenensnsnnsnennneasnens 5-51
OV TV W, ..ttt ttt et ienseneet et etaseteesasonensessesessnseseasansnsnessnsesosensnsnsssencnsesosseseneesanens 5-51
8042 Controller and Keyboard Commandsc..o.iiiiniiiiiiiiiiiietiaiiieiiieieanrnaasaneenonnns 5-51
B ToT B 1 o7 o L= 1 A N 5-59
SCANCOAE SBE 2 ..ttt it e ettt it ee e e e e an et e et eerenan 5-61
Scancode Set 3 ...ttt ieieirieieaeaaas @ ee ettt e e e, 5-63

8042 to STD-BIOS Scancodes and Commandsovuvinvriveirererrnrerereneneererensesesoneneonsoenns 5-66

Chapter 6
Serial and Paralilel 1/0

(007 a2 on 20O PR D S 6-1
Serial and Paralle]l Port Addresses.oouutinrinn ettt i e oee ettt e a et e e s 6-1
g u TIL A 57 0153 (HB B) 5 87 = PN A 6-2
Polled and Interrupt DIriven OPeratiOnsu.uunnnteueeneneecatecnsnraancnaneacaerereenaeeseossanenns 6-2
DAt S TUCTUT S . . .t ittt ittt ettt eee e eeaeeeanesaaneoancaseneaanssesuoeesussasasesasnsneennnsaenenons 6-2
Serial Port Driver Data StrUCTUTESottt t ittt e e et e et e tae e e e e eaneeanaciiaeaanaeesaasens 6-2
Parallel Port Driver Data Structures...........c.oounruireereneamaanneannnnn e, 6-3
Print Screen Driver Data StrUCTUTES vtiirt ittt et e ete e e e erataaeeaneeaaneasonenasanaeeeanneons 6-4
Serial Port Driver (INT LAH)ottt ettt ettt e e e et e e e et et iaaeianeans 6-4
Serial Port Driver Function Definmitionsiiinrinn ittt iae e iae e et eiaceaneerneannneennannans 6-5
F14_INIT (AH = O0H)ottt e e ie e eees e 6-5
F14_ XMIT (AH = O1H) oottt e ettt e et iiae e aen e aeiaeeiaeeeee 6-7
F14_RECV (AH = 02H) ..ottt et et e et iae e iar e iaeees 6-7
F14_STATUS (AH = 03H) ...ttt it ettt ea e e ananenen 6-8
F14 INQUIRE (AX = 6FOO0H) . ..ottt atie et a e e e e e e neeeanas 6-8
F14_EXINIT (AX = 6FOTH) . ..oooi ittt e aaes 6-9
F14 PUT_BUFFER (AX = 6F02H)ottt ettt eee e 6-10
F14 GET_BUFFER (AX = 6FO3H) ...co.iiiiiiiiiiiiiiii it iaeaeiaa e ie e 6-11
F14 _TRM_BUFFER (AX=6F04H).. .. .o i i it e et e e eeas 6-11
Paralle] Port Driver (INT L 7H) ..ottt ittt iti ettt eaeeneasasasacartanaananeaasacasaceiasoseecennnan 6-13
Parallel Port Driver Function Definitionsovuntaiiiraniieaiieeaaaraaracsceeasosrantasssoneannnn 6-13
F17 _PUT_CHAR (AH = O0H).o ittt ittt iie et ata st araaaannaanaanaaaaneans 6-13
F17_INIT (AH = O1H) ..ottt et e ittt ea e e aaeaeaanane et aaeaaaaaees 6-14
F17_STATUS (AH = 02H) ...ttt ittt it ettt ie e eeaeaeaeaeaeaeaaaeaans 6-15
F17_INQUIRE (AX = 6FO00H)0ontiiiitiiiiiiiiii it et it e e e s e aiaeeaearaeaaans 6-15
F17_PUT_BUFFER (AX = 6FO02H) ...ttt iiaia e iae e e ieas e e iaeans 6-15
Print Screen Driver (INT OSH) ..ttt it ittt et eaecaa e aaataasaecoaccancacsnesseenannenns 6-16
Chapter 7
Disc
[0 378 2 1% 2N R 7-1
Physical Drive NUMI OISottt e ia e ce e e e ecateaasacaeaaaaaaecaanecneannracsnsasnserasecnnns 7-1
Flexible Disc DIiVe SUDPOIT un ittt taeeiteeie e aeeaaae e ecaeaacncanscasasasasasniosssessrasnanns 7-1
Hard DiSC DIiVE SUPPOTL . ..ottt ettt e ie e e acasacacacasaaaseaasetacsarcaassessnecsnrenaanananans 7-1
EXternal DISC DIIVes. . ..ottt ettt et et e e e eae e e eeeaeaeasenascaaaasaansaaccacscanaacenennesarenncnn 7-2
Data Structures..............ccceveenenen... e e e e e e aeeaaeteeeeaiateaeantanaaeeeneeeaaseaiacaeaeeacaanaa 7-2
Flexible Disc Operation Tableottt icatataceeanrannaaccacanaananan 7-2
Flexible Disc Parameter Table. i i ieeeeeiaaeaeeaeeaoanaacaccsseccassaceosnsocnnsnn 1-3
Flexible Disc Status Tablettt it i e eeeaaaacaaacaaasceasaeccancseseeianenannnncn 7-4
Hard Disc Parameter Table.uuitiineiii it ieeaeeeateeeaaacacaasuasasassosoceaecaannesosnnnnn 7-5
DiSC Driver (INT L13H). oottt ittt ettt et aee e e e sae e aeanaaaeassaaanaaeacaseaaerasareinnnsn 1-6
INT 13H Flexible DiSC DIiver FUNCHIONScuunnreneerrenasaneanocnececsassascanasocasesaasonecesncnorns 7-6
Flexible Disc Driver Function Definitionsountiirmimiira et e et e csctttannancaarennans 1-7
Reset Flexible Disc Subsystem (AH = O0H) ... oo i iie i reri e eicerannarancaaanns 1-7
Get Status of Last Operation (AH = O1H). ..o . i it tritem e eaenecnnnns 7-7
Read Sectors from Flexible Disc (AH = O2H ooiiiiin i i ieietaaicacnranarnrenninnens 7-1
Write Sector to Flexible Disc (AH = O3H). ..coonin ittt tcaeecaatemcasancaaaaacaaeaacatccacaannn T-7
Read Verify Sectors on Flexible Disc (AH = O4H).ot i 7-8
Format Track (AH = OSH) . .co .ttt ittt et aemaaanr e eaenaneas 7-8

Get Drive Parameters (AH = O8H)ttt it eiteiaeeranaeneeescaansaannaaansacoaacaeaenan 7-9

Get Disc Change Line Status (AH = 16H)ooiiniiittin e i 7-10
Set DASD Type for Format (AH = 1TH) ..ottt e e e e, 7-10
Set Media Type for Format (AH = L18H)ttt e 7-10
Note 1: Number of sectors (AL).ooiiiiiii it e e e e e, 7-10
Note 2: Sector Number (CL):.. .. vt e e e e e e, 7-11
Note 3: Cylinder number (CH): ...ttt e e e e e e i, 7-11
INT 13H Hard Disc Driver FUNCLIONS ottt e e i 7-11
Hard Disc Driver Function Definitionsoouuuiunit ettt et e e e 7-12
. Reset Hard and Flexible Disc Subsystem (AH = OOH)oooinieninintee e 7-12
Get Status of Last Operation (AH = O1H) ... i e, 7-12
Read Sectors from Hard Disc (AH = O2H)ttt e e, 7-13
Write Sector to Hard Disc (AH = O3H)ttt e e e e i 7-13
Read Verify Sectors on Hard Disc (AH = O4H)........ooieinone e 7-13
Format Track (AH = OSH) . ..o e e e e e, 7-14
Get Drive Parameters (AH = O8H) ... e e e 7-14
Set Drive Parameters (AH = O8H)ttt e i, 7-15
Read Sectors and ECC from Hard Disc (Read Long) (AH = 0AH)oooiimiiiniinninnnnnnn. 7-15
Write Sectors and ECC to Hard Disc (Write Long) (AH = OBH)cccoiviuneniiaannnnn.. 7-15
Seek to Specified Cylinder (AH =0CH)oooiiiiiiinennnnn... R 7-16
Alternate Disc Reset (AH = ODH) ..ottt e e e 7-16
Test Drive Ready (AH = 10H)ttt eaeaan e e 7-16
Recalibrate Drive (AH = 11H) ...t e e, 7-16
Controller Diagnostics (AH = 14H) i et e e, 7-16
Get DASD Type (AH = 15H) ..ot e e et et e e e et e e e et 7-17
Chapter 8
System Drivers
10 33 ot T3S 8-1
Memory Size And Equipment Determination.iuiuiiiininiriii et e eeeneaenenanrannn 8-1
Extended System SUP PO . ..o it e e 8-2
129, € 13 (0 500 B, 9 877 oY) o 1) o A0S 8-2
RAM AlIOCAtION . ..ottt e e e e e e e s e 8-2
HP__VECTOR__TABLE Manipulationiiiiiiiiiinieinineniennenaneninnnns e e 8-5
System String Control et e e 8-5
CMOS Memory Controlccoovtn.. e e e et e e et e et e 8-7
System Clock FUnC IOnSottt ittt e et et ettt et e et e et esaanens 8-7
DIata S TUCHUTES. ... i i e it et et e e e 8-7
Equipment Determination Driver (INT 11H) ...ttt et ieiaaeain, DU 8-8
Memory Size Determination Driver (INT 12H)ottt ettt eeeeeeiaeneannns 8-9
System Support Driver (INT 15H) oot et e e e ettt et e, 8-9
System Support Driver Function Definitions ...ttt ettt iaaanans 8-10
FI5_DEVICE _OPEN (AH = BOH)ot ettt e i et e s eree s 8-10
FI15_DEVICE _CLOSE (AH = S1H)ottt et ettt e e e et 8-10
FIS_PROG_TERM (AH = 82H). ..oitiiiiiiiie ettt e e et e e e ettt 8-10
FIS5_ _WAIT _EVENT (AH = 83H). ..ot e e et e e e et ettt 8-11
FIS5_JOYSTICK (AH = B4H) e e et e e et e et e et 8-11
FIS_SYS_REQ (AH = 85H) . ..ooooieitt e e e, 8-12
FI5_ WAIT(AH =86H)cooivviia... e vt e v eeeee et 8-13
F15_BLOCK_MOVE (AH = 8TH) ...ttt e, I8-14
FIS_GET_XMEM_SIZE (AH = 88H) ...ooonenie e e, 8-15
FIS5_ENTER__PROT (AH = 8OH) ittt et e e e e, 8-16
FIS_DEV_BUSY (AH = 90H)ottt e, 8-18

FI5_INT_COMPLETE (AH = 91H)ot 8-19

Time and Date Driver (INT LAH). .. .ooniirittiti ittt ettt e ataeaeerasneraaaaansnans 8-19

Time and Date Driver Function Definitions.coueieiiiiiiiiiiiiiiiiiriiiniaeeaeenietieraenns 8-19
FIA_RD_CLK_CNT (AH = 00H)ottt iee e et aanans 8-19
FIA_SET _CLK_CNT (AH = O1H)ooiiiii e 8-20
FIA_GET_RTC (AH = O2H) .. .oouiiiitiiti et aeaens 8-20
FIA_SET _RTC (AH = 03H). ..ottt ettt eaaaes 8-20
FIA_GET_DATE (AH = 04H)oiiiiiiiiii ettt 8-20
FIA_SET_DATE (AH = OSH) ...ttt e 8-21
FIA_SET _ALARM (AH = 06H).....ooouuiiiiiiiie ittt eaaaes 8-21
FIA_RESET_ALARM (AH = OTH)oooiii e 8-21

V_SCOPY Driver (BP = 0000H)o.oiiiiititiiiti et 8-22

V_DOLITTLE Driver (BP = 0006H).........ooiitutiitatttiiitieeee ettt 8-22

V_PNULL Driver (BP = 000CH)iiiiiiii ettt iea e 8-22

V_SYSTEM Driver (BP = 0012H) ... 8-22

V_SYSTEM Driver Function Definitions.ooueriiieiiniiiiiiiiiiiiiiii i, 8-24
F ISR (AH = O0H) ..ottt ettt e ettt e e e e s e et e ettt 8-24
F_SF_INIT (AX = 0200H)otouuiiiinittttt et ettt ettt e e 8-24
F_INS BASEHPVT (04H) ...ttt et 8-24
F_INS XCHGFIX (AH = 06H)coiiiiii i e 8-25
F_INS XCHGRSVD (AH = 08H). .. oottt 8-25
F_INS_ XCHGFREE (AH = 0AH) ...ttt i e e e 8-26
F_INS FIXOWNDS (AH = OCH)ottt ittt et i et e et 8-26
F_INS_FIXGETDS (AH = OEH)ooiiiii ittt iiet et iee e e ie et e eneeaes 8-26
F_INS_FIXGLBDS (AH = T0H) ..ottt e et iie e aieeaes 8-27
F_INS FREEOWNDS (AH = 12H) ..cooiuiiii e e e e 8-28
F_INS_FREEGETDS (AH = 14H)ooiiiiii it iae e 8-28
F_INS_FREEGLBDS (AH = 16H)oiiiiiiiii e ie e 8-30
F _INS FIND (AH = I18H) ..ottt et e it aeaaes 8-30
F_RAM_GET (AH = 1EH) ..ottt et eiiaeees 8-31
F _RAM_RET (AH = 20H). ...ttt ittt et e it iee e aaa e e aaeannes 8-32
F_CMOS _GET (AH = 22H) ..ottt i e i e ettt e e a e ieeae e 8-33
F_CMOS_RET (AH = 24H). ...ttt 8-33
F_YIELD (AH = 2AH) ..ot e e e et 8-34
F_ SND CLICK_ENABLE (AH = 30H)ottt ie e iaeaeeanees 8-35
F_SND_CLICK_DISABLE (AH = 32H) ...ccutiiiiiiii i ia e eeieeens 8-35
F_SND_CLICK (AH = 34H) . ..o e e iie e e e ineeaenaees 8-35
F_SND_BEEP_ENABLE (AH = 36H) ..ottt iie e eeietnaanaenees 8-35
F_SND_BEEP_DISABLE (AH = 38H)cooiiiiiiiiiiiiii i eeeaaaeaeas 8-35
F_SND_BEEP (AH = 3AH) ... oottt et 8-36
F_SND_SET_BEEP (AH = 3CH).......uuiiiiiiiiiiii it e e dacee 8-36
F_SND_TONE (AH = 3EH) ..ottt ittt ettt it te e e e saaenaaas 8-36
F_STR_GET_FREE_INDEX (AH = 40H) ...ttt ee e 8-37
F_STR_DEL_BUCKET (AH = 42H).....coouuiitiiiiiiii ittt aaennaeeans 8-37
F_STR_PUT_BUCKET (AH = 44H)ot i iee e e iasaenaees 8-38
F_STR_GET _STRING (AH = 46H)cooioiiiiiiiiiiiiii i e iie e i iaeeeaaes 8-39
F_STR_GET_INDEX (AH = 48H)ot it ea e 8-40

Chapter 9

System Processes

2 =1 AU 9-1

Protected Mode Support.......c.covvviiiiniininiaiiaiaaeann. bt et ee e eat e e e e eeaaas 9-2
ShUtAOWN StatUS BYte. . ..ottt ittt ie et e e e e eaeinteueneeaaanterioraasaarananas 9-2

Power-On Self Test (POST).........coviviniiiiiiniiniiniiiinieieaaanns e i 9-3

Table 9-2a and 9-2b Legend: et e e et e et e -9-4

Memory ALIOCALION 9-17
The HP__VECTOR _TABLE Initializationooooiiiininieee e, 9-18
EX-BIOS Driver Initialization. ... 9-18
Adapter and Option ROM Module Integration.............o.ooeiereeoneioe e, 9-18
Shadow RAM (HP Vectra RS Series Only)........ooonimnimee e 9-19
Boot Process (INT TOH) ..ot e e e e, 9-19
Booting From a Flexible DiSC...........oiiiiiiii e e 9-19
Booting From @ Hard DIiSC........ ..ottt e 9-19

Appendix A
BIOS Interrupts

EX-BIOS Drivers and FUunCtionsottt e e A-8

Appendix B

Memory Map

System Memory MaD ... oo B-1

STD-BIOS Data StrUCULESttt e e e e e e e e e, B-2
RS-232 Communication Port Addresses...........ccoiuniunemnniunee et e, B-2
Parallel Printer Port Addressesottt e B-3
Equipment Byte Data Aread...........cooiuniiiiiiii ittt e B-3
Keyboard Data ATead..ot e B-4
Flexible DisC Data ATeaooiiiiinii e e e e e e e e B-6
Video Display Data ATeaoounininitii e e e e e B-7
Option ROM Data ATooiiiii it e e e e e e, B-8
TIMEE DAt ATBA. ...ttt e ittt e e et e e e e e e e B-8
System Data Flags e et e e e B-8
Hard Disc Data ATeaooiiiiiiii ittt e e e e B-9
Printer Timeout COUNTEISouni ittt et e e e e e e e e e, B-9
Keyboard Buffer POInters. e e e B-9
Enhanced Graphics Adapter (EGA) Data ATea..........oouinenmminee e, B-10
Flexible Disc Data Rate AT@aooiuiniiiii it e e et B-10
Extended Hard Disc Data ATea..............ioniuiuiininiiiii i e e i B-10
Extended Flexible Disc Data ATea....... ..ottt e e e e B-11
Keyboard Mode INdicator.ttt e e e e e e e B-11
Real-time Clock Data ATEaooiiniininiiti e e e e e e e, B-13
Pointer t0 EGA Data ATCac.oouioiiii ittt et e e e, B-13
Flexible Disc Expander Adapter Data Area.................... e e e e e e B-13
Intra-application COMMUNICALIONS ATovnrnnnetee et et e B-14
Print SCreen Status.iiiiiiii i e e e B-14
DOS Data AT ...ttt ittt e e e et e e e e B-14
ReESErVEd Data AT@aS.ottt e e e e e e e e B-14

EX-BIOS Data Area Map ..o e e e e eeeereiaans B-15
Option ROM Data Segments.coouiiiniii ittt e e e e e e e B-16
EX-BIOS Global Data Areaiuiuiuiiii it e e e e B-16

ROM BIOS MeMOTY MaP. ..ottt e e e e e e e e e e e e e i B-17

Product Identification i B-18

Product Identification Definitions it e e B-18
Processor Clock Rate. B-18
HP Vectra PC D o e e B-19
Machine Capability MarKer B-19

Year of the ROM BIOS Release (in BCD) ...t e e, B-20
Week of the ROM BIOS Release (in BCD). ..ot e B-20

Appendix C
CMOS Memory Layout and Real-Time Clock

Real-Time CIOCK/CMOS ACCESS ...ttt et et e e e e e, Cc-2
Real-Time Clock (CMOS Address O0H-0DH) i Cc-2
Diagnostic Status Byte (CMOS Address OFEH) oo c-4
System Shutdown Byte (CMOS Address OFH) EE N C-4
Flexible Disc Descriptor Byte (CMOS Address 10H)o, C-5
CMOS Hard Disc Type (CMOS Address 12H) i C-6
Equipment Byte (CMOS Address 14H) i e C-6
System Base Memory Size (CMOS Address 15SH=-16H) C-6
System Extended Memory Size (CMOS Address 1TH=18H) C-7
Extended Hard Disc Type for Drive C: (CMOS Address 19H), Cc-7
Extended Hard Disc Type for Drive D: (CMOS Address TAH) ... e, C-7
STD-BIOS Checksum Word (CMOS Address 2EH-2FH) Cc-17
Low and High Extended Memory Byte (CMOS Address 30H-31H)o i, C-8
Date Century Byte (CMOS Address 32H) ... e C-8
Test Information Byte (CMOS Address 33H) i C-8

Appendix D
1/0 Port Map

DMA Channel Controlleroooiiiinit e e e e e D-2

I/0 Port Addresses for DMA CONtrollerS........ooouimnenie et e e D-3
8259A Interrupt ControllerS .. .ot e e D-4
8254 Timer Controller (I/0 Ports 40H through 43H). D-6
Keyboard Data Buffer (60H)t e e e D-6
SPU Control Port (61H) ..o e e D-7
Speaker Controlo D-8
Keyboard I/0 POtttt e e e e D-8
Real-Time Clock PoOrtsot e D-8
Hard Reset Enable Port ... D-8
NMI Sources and Involved 1/0 POrtSo.oovnnie i e D-9

Appendix E
Default Device Mapping

DI, . o ettt E-2
Character I/0 DevViCes.ovuie i e e e e e e e E-2
Appendix F
Driver Writer's Guide
INtrodUCTION . ..o F-1
Installation of Device DIIVerS. ... i F-2
Initialization...... e e e e it e e e e e e e e e e e e e e F-2
Product Identificationc... oo F-2
STD-BIOS Extended FUNCUIONS ...t i F-3
Obtaining Memory From the EX-BIOS F-3
Getting @ Free Vector ..ottt e e e e e F-4

EX~BIOS Driver FUNCLIONS.o. i e e e e e F-4

EX-BIOS Driver Function Definitionsouunntntorinietenteattiteearorensatasteiroreneononearoncan F-6

F_ISR (AH = O0H) ..ottt ettt ettt e ettt tae e F-6
F_SYSTEM (AH = 02H)o ittt a e e F-6
SF_INIT (AX = 0200H)ottt ettt ettt ettt it teaaeenes F-6
SF_START (AX = 0202H). ...ttt ettt e e e F-17
SF_REPORT _STATE (AX = 0204H)oooiiiiiiii e F-7
SF_VERSION _DESC (AX = 0206H)......cooiiiiiiiiiii e F-17
SF_DEF_ATTR (AX = 0208H)ttt F-7
SF__GET_ATTR (AX = 020AH) ...t e F-8
SF_SET__ATTR (AX = 020CH)ottt F-8
SF_OPEN (AX = 020EH).ttt iie ettt ittt e e e et e et F-8
SF_CLOSE (AX = 0210H)t ettt ettt F-9
SF_TIMEOUT (AX = 0212H) ..ottt ittt ettt et F-9
SF_INTERVAL (AX = 0214H) ittt F-9
SF_TEST (AX = 0216H).ottt e F-9
F_ IO _CONTROL (AH = 04H)ottt et F-10
SF_LOCK (AX = 0400H).t ettt ettt iaaie e re et et F-10
SF_UNLOCK (AX = 0402H)ttt F-10
F_PUT_BYTE (AH = O6H)ottt ettt F-10
F_GET_BYTE (AH = O08H) o e F-10
F_PUT_BUFFER OR F_PUT_BLOCK (AH = OAH).........ooiiiiiiiieens F-11
F_PUT_BUFFER (AH = 0AH) ... F-11
F_PUT_BLOCK (AH = 0AH) e F-11
F_GET _BUFFER OR F_GET_BLOCK (AH = OCH) ..ottt F-11
F_GET_BUFFER (AH = OCH) ...ttt e e F-11
F_GET_BLOCK (AH = OCH)......oiiiiiiiiitt ittt F-12
F_PUT_WORD (AH = OEH).ottt et eiecaeees F-12
F_GET_WORD (AH = 10H).o e F-12
REtUTT SEAtUS COBES . . ot e et e eetet et ettt et e eaeaneneatosansaeansnsasesosannesossssensacencssonsneasonns F-13
[0 R L o (Vs 1= - It R R R F-14
HP_SHEADER Fieldsoooiiiiiiiiit ittt F-14
DIAVET MaDPIME . o oottt e e ettt ettt ettt ee e e s ettt e F-19
Accessing Driver from an AppliCatIONuuiiii et F-19
Examples of EX-BIOS DIIVEISootitiiiiiittteiiii ettt ettt iiea et F-20
Cursor Pad Scancode To HP MoOUSE DIIVer.otnnetiinniiiiteieareeriereaneetauteoanrconneannnas F-20
Application Resident EX-BIOS DIIVEToooiouuieiiiiiiiiiiittiiiiiie e eeeanns F-34
NON-HP-HIL INDUL DVICESot tittitiiitetttae e e e e ttee et et etetiieeaaseiaaeeeeecnns F-34
Glossary

References

Introduction

This manual contains a detailed description of the ROM Basic Input/Qutput System (BIOS) of the HP
Vectra ES, QS, and RS series of personal computers. Entry points, including the industry standard ROM
BIOS entry points and function calls, are documented in this manual.

This manual deals extensively with programming and programming concepts. It presumes that the reader
is familiar with the Microsoft Macro Assembler (MASM), and the Intel iAPX 80286 (HP Vectra ES
series) and iAPX 80386 (HP Vectra QS and RS series) processor architecture.

Terms Used In This Manual

In this manual, the term CPU (Central Processing Unit) will be used to refer to both the 80286 and
80386 processors when a function or operation described is exactly the same for both. Other
abbreviations, acronyms, and terms used throughout this volume are listed in a glossary at the back of
this volumn. Related documents which may be of interest to programmers and advanced users are also
listed at the end of this volume in the "References" section.

System Software

Software operating on the system may be viewed as a three-level hierarchy: application programs,
operating system, and ROM BIOS. These three levels are defined as follows:

Application Programs

An application program is the top level of software. It performs application-specific functions (i.e.,
spreadsheet or word processing functions). Application programs rely on either DOS or the ROM BIOS for
system functions such as character or disc 1/0.

Operating System

The operating system provides the control and support functions necessary for an application program to
be executed. The operating system provides file-oriented functions, as well as providing basic support for
character 1/0.

ROM BIOS

The ROM BIOS provides the interface between operating system <oftware and the hardware. The ROM

BIOS provides a dual function; it constitutes the low level interface between the hardware and operating
systemn, as well as providing extended functions to application programs.

Introduction 1-1

The higher the software level, the more powerful the functions provided by the software. However, along
with this power often comes additional overhead which reduces performance and flexibility. A system
programmer should choose the level of software interface required by the individual set of design
constraints. It is good programming practice to use the highest level of system software that gets the job
done. Some system functions can be performed only on the highest level, since only system software
supports the function. However, other system functions may be performed at more than one level. Using a
lower level such as the ROM BIOS provides improved speed of execution and additional flexibility. Using
ROM BIOS routines may affect program portability to future HP products, and to other
industry-standard PCs.

The ROM BIOS provides a powerful set of system functions, allowing application programs full access to
the capabilities of the system while maintaining a hardware-independent interface. The ROM BIOS also
allows the programmer or system designer to tailor the system to a specific set of design constraints. Some
of the tailoring methods provided to the programmer are:

® The number of interrupts can logically expand to fit requirements.

[] Adapter cards can obtain a limited amount of RAM from the system BIOS without installing device
drivers.

® Applications can expand the features of the keyboard without replacing the industry standard driver
(INT 16H).

These methods maintain application compatibility with minimal effect on system performance.

1-2 Introduction

ROM BIOS Overview

The ROM BIOS is divided into two components, the Standard BIOS (STD-BIOS) and the Extended BIOS
(EX-BIOS). The STD-BIOS supports the industry standard set of BIOS functions The EX-BIOS is unique
to the original HP Vectra PC as well as to the HP Vectra series of PCs discussed in this manual. It
provides a wide range of system functions and support for HP peripherals. The STD-BIOS and the
EX-BIOS are contained in the system ROM which resides at the top of system memory.

NOTE

Throughout the remainder of this manual the terms ROM BIOS, STD-BIOS,
and EX-BIOS will be used. STD-BIOS and EX-BIOS are defined above.

The term ROM BIOS will be used to indicate the union of STD-BIOS and
EX-BIOS. As mentioned before, the term CPU (Central Processing Unit)
will refer to both the 80286 and 80386 series of processors.

This chapter contains an overview of the components of the ROM BIOS. These components are the
interrupt (also called "INT") vectors, code modules, and data structures. Interrupt vectors form the link
between the operating system, applications, and the ROM BIOS. The code modules perform the ROM
BIOS functions. Data structures provide the means for the ROM BIOS (and to some extent the
applications) to maintain driver variables, data buffers, etc.

Memory Locations

Code modules are accessed through interrupt vectors. The interrupt vectors reside in the first 1KB of
system RAM. Usually a code module has an associated data structure. The data structures for the
STD-BIOS code modules reside in system RAM in absolute memory locations 00400H through 00SFFH.
The data structures for the EX-BIOS code module reside at the top of system RAM. The address of the
EX-BIOS data area will vary depending on the particular configuration of the system.

Figure 2-1 shows the components of the ROM BIOS and their location within the system memory. Each
of the ROM BIOS components is discussed in detail in the remainder of this chapter.

ROM BIOS Overview 2-1

000000H

Interrupt Vectors

000400H
STD-BIOS Data Area "
STD-BIOS Data Expansion Area and
Temporary DOS Buifers 000700
Disc Operating System — (DOS) Variable *

Application Program Area

Top of Available RAM **
EX-BIOS Data Area

Top of RAM ***

OAQPBbH A ooo©
Video Display Memory

0CO000H \=
Video Adapter Card ROM 0CB000H c g o oo
Adapter Card Option ROM J—
::;c:sﬁs:; ROM Extension OF0000H :

100000H 2"
Extended Memory (Up to 15 MB) .

FEOOOOH

Image of ROM at 0EO000H — OFFFFFH

* The length of the operating system Is revision dependent.
** The Top of Available RAM is dependent on system configuration;
in a 640 KB system it is usually 0SFOOOH. Refer to the corresponding
hardware TRM for more information.
*** The Top of RAMis dependent on system configuration;
in a 640 KB system it is 09FFFFH. Refer to the corresponding
hardware TRM for more information.

Figure 2-1. Memory Map Block Diagram

Interrupts

The interface to the ROM BIOS is through the interrupt structure of the CPU. The system allows for
three types of interrupts.

B Processor Interrupts--These interrupts allow system software to recover from error conditions and
other hardware exceptions.

® Hardware Interrupts—-These interrupts are generated by two compatible (8259A) interrupt
controllers integrated into a VLSI chip (P/N 82C206) located on the Processor PCA. Hardware
interrupts indicate that a system hardware component or peripheral requires service.

[Software Interrupts--These interrupts are generated through the software "INT n" instruction.
Software interrupts allow system functions to be quickly and easily called by any program.

Interrupt vectors for the processor interrupts are defined by the CPU. Interrupt vectors for the hardware
interrupts are mapped by the values programmed into the 8259A interrupt controllers which are
initialized by the ROM BIOS. Processor and/or hardware interrupts may be simulated by a software
interrupt mapped to the same interrupt vector. For example, Interrupt 0 is mapped by the CPU for
Divide-by-0 error. The service routine for this error condition may be executed by an INT 0 instruction.

Each interrupt has an interrupt vector associated with it. The interrupt vector contains the Code Segment
and Instruction Pointer of the service routine for that interrupt. Each of these vectors consists of two

words (four bytes). The CPU architecture supports 256 interrupt vectors which occupy the first 1024
bytes (00000H-003FFH) of system memory.

2-2 ROM BIOS Overview

The interrupt vectors maintain industry standard compatibility while offering the expanded capabilities of
the HP EX-BIOS functions. Table 2-1 lists the interrupt vector assignments.

In order for the system to function properly, processor and hardware interrupt vectors are initialized to
valid service routines. Most unused vectors point to a null routine in the BIOS, which issues an

End-of-Interrupt (EOI) signal to the 8259A interrupt controllers (when required) and returns. The

Keyboard Break and Timer Tick software interrupt vectors point to an interrupt return (IRET)
instruction in the BIOS. These vectors are indicated by an IRET in Table 2-1. Several software vectors

are used as pointers to data blocks instead of interrupt service routines. These vectors are indicated by an
interrupt vector used as a pointer to data (PT) in Table 2-1.

Table 2-1. Interrupt Vector Assignments

INT Address Function Type/ Service
Routine*
0 000-003H Divide by Zero PI (1) STD-BIOS
1 004-007H Single Step PI (1) STD-BIOS
2 008-00BH Nonmaskable PI STD-BIOS
Interrupt
3 00C-00FH Breakpoint PI (1) STD-BIOS
4 010-013H Arithmetic PI (1) STD-BIOS
Overflow
5 014-017H Print Screen SW (2) STD-BIOS
6 018-01BH Invalid Opcode PI (1) STD-BIOS
7 01C-01FH Reserved PI (1) STD-BIOS
8 020-023H Timer Interrupt HW
9 024-027H Keyboard ISR HW STD-BIOS
(IRQ 1)
A 028-02BH Reserved (IRQ 2) HW STD-BIOS
B 02C-02FH Serial Port 1 HW (1) STD-BIOS
’ Nty ISR (IRQ 3)
C 030-033H . Serial Port 0 HW (1) STD-BIOS
‘ cees ISR (IRQ 4)
D ‘034-037H Printer Port 2 HW (1) STD-BIOS
ISR (IRQ §)
E 038-03BH Flexible Disc HW STD-BIOS
ISR (IRQ 6)
F 03C-03FH Printer Port 1 HW (1) STD-BIOS
ISR (IRQ 7)
10 040-043H Video SW (2) STD-BIOS
11 044-047H Equipment Check SW (2) STD-BIOS
12 048-04BH Memory Size SW (2) STD-BIOS
13 04C-04FH Flexible Disc/ SW (2) STD~-BIOS
Hard Disc
14 050-053H Serial SW (2) STD-BIOS
15 054-057H System Functions SW (2) STD-BIOS
16 058-05BH Keyboard SW (2) STD-BIOS
17 05C-05FH Printer SW (2) STD-BIOS
18 060-063H Reserved SW (3) STD-BIOS
19 064-067H Boot SW (2) STD-BIOS

ROM BIOS Overview

2-3

Table 2~1. Interrupt Vector Assignments (Cont.)

INT Address Function Type/ Service
Routine *
1A 068-06BH Time and Date SW (2) STD-BIOS
1B 06C-06FH Keyboard Break SW (3) STD-BIOS
IC 070-073H Timer Tick SW (3) STD-BIOS
1D 074-077H Video Parameter PT STD-BIOS
Table
1E 078-07BH Flexible Disc PT STD-BIOS
Parameter Table
1F 07C-07FH Graphics Character PT STD-BIOS
Table
20 080-083H Program Terminate SwW DOS
21 084-087H DOS Function Calls SwW DOS
22 088-08BH DOS Terminate PT DOS
Address
23 08C-08FH DOS <CTRL>- SW DOS
<Break> Address
24 090-093H DOS Critical Error SwW DOS
25 094-097H DOS Absolute Disc SwW DOS
Read
26 098-09BH DOS Absolute Disc SW DOS
Write
27 09C-09FH DOS Terminate SwW DOS
Stay Resident
28-32 0A0-0CBH Reserved for DOS SwW DOS
33 0CC-0CFH Mouse (RAM SW (2) N/A
driver)
34-3F 0DO0-0FFH Reserved for DOS SwW DOS
40 100-103H Alternate Flexible SwW STD-BIOS
Disc
41 104-107H Hard Disc PT STD-BIOS
~ Parameter Table
(0)
42-45 108-117H Reserved SwW STD-BIOS
46 118-11BH Hard Disc PT STD-BIOS
Parameter Table
(1)
47-SF 11C-17FH Reserved SwW STD-BIOS
60-67 180-19FH Reserved for User SW N/A
Programs
Programs
68-6E 1A0-1BBH Unused SwW N/A
6F 1BC-1BFH Default EX-BIOS SW (2) EX-BIOS
Entry Point
70 1C0-1C3H Real-time Clock HW STD-BIOS
ISR (IRQ 8)
71 1C4-1C7TH SW Redirected HW STD-BIOS
: (IRQ 9)
72 1C8-1CBH Reserved (IRQ 10) HW (1) STD-BIOS

2-4 ROM BIOS Overview

Table 2-1. Interrupt Vector Assignments (Cont.)

INT Address Function Type / Service
Routine*
73 1CC-1CFH Reserved (IRQ 11) HW (1) STD-BIOS
74 1D0-1D3H HP-HIL (default HW EX-BIOS
IRQ 12)
75 1D4-1D7H Coprocessor HW STD-BIOS
(IRQ 13)
76 1D8-1DBH Hard Disc ISR HW STD-BIOS
(IRQ 14)
77 1DC-1DFH Reserved (IRQ 15) HW (1) STD-BIOS
78-7F 1EO-1FFH Not Used SwW N/A
80-FO 200-3C3H Reserved SW N/A
F1-FF 3C4-3FFH Not Used SwW N/A
* PI--Processor interrupt
HW--Hardware interrupt
SW--Software interrupt
PT--Interrupt vector used as pointer to data
N/A--Not applicable
(1) UlI--Unused interrupt ISR
(2) DRVR--Application callable entry point
(3) IRET--Interrupt return

ROM BIOS Drivers and Functions

The ROM BIOS is comprised of many drivers. For example, there is a driver to perform video functions,
one to perform disc functions, etc. The ROM BIOS drivers are organized into two components. One
component contains the STD-BIOS drivers that support the STD-BIOS functions. The second component
contains EX-BIOS drivers that support unique HP features.

Each driver supports one or more functions. A function can be viewed as a specific task. For example, the
Video Driver supports 22 separate functions that perform tasks such as setting the display mode, moving
the cursor, and displaying characters.

STD-BIOS Drivers

Drivers in the STD-BIOS are accessed through an interrupt. STD-BIOS drivers are accessed through
interrupts O5H and 10H through 1CH. Drivers are accessed by performing a software INT n instruction,
where n is the interrupt number assigned to the driver (refer to Table 2-1.)

The function code and any required data are passed in the CPU registers. Data passing conventions for
STD-BIOS drivers vary; however, there are aspects which are common.

ROM BIOS Overview 2-5

m Most of the STD-BIOS drivers support more than one function. Therefore, multi-function drivers
must have the desired function code passed as part of the data. The AH register is used on all
multi-function drivers to pass the function code.

= Byte and word data are passed in the internal registers of the CPU. Registers AL, BX, CX, and DX
are usually used for this purpose. The register assignments and number of registers used depend on
the driver and driver function.

= If the amount of data cannot fit in the internal registers of the CPU, a data buffer in system
memory is used. This buffer is usually pointed to by ES:BX, ES:BP, or ES:SI.

® Drivers may modify one or more registers. The registers which are maintained and the registers
which are modified vary from driver to driver. The registers which are modified are listed in each
function description.

Calling STD-BIOS Drivers

The following program example demonstrates how a typical STD-BIOS driver is accessed. The function
sets the position of the cursor on display page 0 to row 20, column 10. The function code (02H) is passed
in register AH. The row position, the column position, and the page number are passed respectively in
DH, DL, and BH.

MOV AH,02H 3;Function number

MOV DH,14H ;Row number (Row 20)

MOV DL,0AH ;Column number (Column 10)
MOV BH,OH ;Page number

INT 10H ;Call Video driver

The STD-BIOS drivers support all industry standard BIOS functions. In addition, many of the drivers
have functions that support enhanced features. These functions are referred to as "HP extensions"
throughout the remainder of this manual. These enhancements are accessed through function code
(default 06FH) of their respective driver. Most of these extended functions are further divided into
subfunctions. For example, the HP extended function for the Video driver has six subfunctions which
allow access to the enhanced features of the Multimode Video Display Adapter. The function code
(06FH) is placed in the AH register and the subfunction code is placed in the AL register for all HP
extensions.

The following program example uses HP extensions to turn off the HP cursor control keypad on the
Vectra Keyboard/DIN (this keyboard is available for Vectra ES series computers only).

MOV AH,6FH. 3 HP Function

MOV AL,07H 3 Switch Keyboard

MOV BL,02H ; Disable CCP: Turn Cursor Control Pad Off
INT 16H 3 Call Keyboard Driver

We suggest you verify that HP extensions to each STD-BIOS driver are available prior to actually calling

them. This is accomplished through subfunction O on each driver. An example of this can be found in
Chapter 3 of this manual under the F10__INQUIRE (AX = 6F00H) function description.

2-6 ROM BIOS Overview

EX-BIOS Drivers

The EX-BIOS drivers provide a wide range of functions not found in the STD-BIOS drivers. The
EX-BIOS drivers are accessed through a a software interrupt vector called the "HP__ENTRY" interrupt
(default 06FH). Since this interrupt number can change from its default, a routine called "CALL
SYSCALL" should be used in its place. This routine finds and calls the correct HP interrupt number.

Due to the large number of EX-BIOS drivers, it would be impossible to give each driver its own interrupt
vector and still maintain industry standard compatibility. Therefore, each driver is assigned its own
number, which is placed in the BP register.

The CALL SYSCALL Routine

The following shows how the CALL SYSCALL routine works:

------- SYSCALL

Issue an HP system call. This routine assumes that the EX-BIOS
is enabled.

When first called, this routine will patch the first instruction
"JMP SHORT PATCH" to become "INT XXH" where XXH is the current HP
interrupt number.

Ve we we we ws we we e ©

SYSCALL PROC NEAR

JMP SHORT PATCH 3 Patch the jump if first time.
RET :
PATCH:
PUSH AX
MOV AX,6FODH ; Get current interrupt.
INT 16H 3 Extended INT 16H call.
CMP AH,2 ; Is it unsupported.
JNE PATCH2 ; No, AH is the interrupt number.
MoV AH,6FH ;s Assume default 6FH.
PATCH2:
MOV AL ,0CDH 3 INT instruction opcode.
MoV WORD PTR [SYSCALL],AX ; Patch JMP SHORT PATCH above.
POP AX ; Recover used register.
JMP SYSCALL s Perform the call.

SYSCALL ENDP

Calling EX-BIOS Drivers

As with the STD-BIOS drivers, each EX-BIOS driver may support one or more functions. A function code
placed in the AH register selects the desired function within the driver. In addition, a subfunction code
passed in the AL register is required by many EX-BIOS functions.

ROM BIOS Overview 2-7

The following program example demonstrates access to a typical EX-BIOS driver. The function executes a
"beep" on the speaker.

MOV AH, 3AH ; Function: F_SND_BEEP
MOV BP, 12H 3 Driver Name: V_SYSTEM
PUSH DS 3

CALL SYSCALL s Call EX-BIOS driver
popP DS 3

On leaving the EX-BIOS driver the BP and DS registers will be modified while the AH register usually
contains the return status of the driver call.

It is good programming practice to verify that the EX-BIOS is accessible, and to identify the HP interrupt
number (once) prior to actually calling it by using the "CALL SYSCALL" routine.

EX-BIOS Standard Functions

Many EX-BIOS drivers support a standard set of functions and subfunctions as listed in Table 2-2. While
these functions and subfunctions are defined, it is not required that they all be implemented by every
driver. In addition, EX-BIOS drivers may implement functions other than those listed. Most EX-BIOS
drivers use a standard set of return status codes reported in the AH register at the completion of a
driver’s function call. Some of these return status codes and their definitions are listed in Table 2-3.

A driver may return status code of RS__UNSUPPORTED (02H) for a given function.

Function codes and return statuses are described in detail in Appendix G.

Table 2-2. EX-BIOS Defined Functions

Function Register
Subfunction Definition AH AL
F_ISR Responds to a logical Interrupt Service Request 00
(ISR).
F_SYSTEM Executes one of several standard subfunctions.
SF__INIT Starts the initialization of a driver. 02 00
SF_START Completes the initialization process of the driver. 02 02
SF__REPORT_STATE Reports the state of the driver. 02 04
SF__VERSION_DESC Reports the revision number and date code of 02 06
the driver.
SF_DEF__ATTR Reports the default configuration of the driver. 02 08
SF_GET_ATTR Reports the current configuration of the driver. 02 0A
SF_SET_ATTR dO\{errides the current configuration of the 02 0C
river.

2-8 ROM BIOS Overview

Table 2~2. EX-BIOS Defined Functions (Cont.)

Function Register
Subfunction Definition AH AL
SF__OPEN Reserves the driver for exclusive access. Requests 02 OE
any resources required by the driver.
SF__CLOSE Releases the driver from exclusive access. 02 10
SF_TIMEOUT Reports to the driver that a requested timeout 02 12
has occurred.
SF_INTERVAL Reports to the driver that a requested 60 Hz in- 02 14
terval has expired.
SF__TEST Performs a hardware test. 02 16
F_10_CONTROL Executes the following subfunctions and any
' driver-dependent subfunctions.
SF_LOCK Reserves the sub-address device specified for ex- 04 00
clusive access.
SF_UNLOCK Releases the sub~address specified from the ex- 04 02
clusive access.
F_PUT_BYTE Writes a byte of data. 06
F_GET_BYTE Reads a byte of data. 08
F_PUT_BUFFER Writes a variable~-length buffer of data (support- 0A
ed by character devices).
F_PUT_BLOCK Writes a fixed-length buffer of data (supported 0B
by block devices).
F_GET_BUFFER Reads a variable-length buffer of data (support- 0C
ed by character devices).
F_GET_BLOCK Reads a fixed-length block of data (supported by 0C
block devices).
F_PUT_WORD Writes a word of data. OE
F_GET_WORD Reads a word of data. 10

ROM BIOS Overview 2-9

EX-BIOS Parameter Passing Conventions |

When calling EX-BIOS drivers, the function code is placed in the AH register, and the subfunction code
(if any) is placed in the AL register. Note that the function and subfunction codes are multiples of two
in order to facilitate decoding by the drivers.

The general parameter passing conventions used by the EX-BIOS drivers are also defined. These register
conventions are as follows:

On Entry: BP

AH

AL

CcX

ES:DI

On Exit: AH
CX

ES:DI

DS, BP

V_DRIVER_NAME

F _FUNC CODE

SF FUNC _CODE (if requ1red by drlver)

On write: byte count (if required by driver)

On read: maximum permissible. byte count

(if required by driver)

Buffer pointer or context area (if required by driver)

Return status

On read: byte count (if required by drxver)

On write: number of bytes written (if required by dr1ver)
Buffer pointer or context area (if required by driver)
Always modified (unless otherwise indicated)

EX-BIOS Return Status Codes

EX-BIOS drivers are expected to report a Return Status Code upon completion. This code is returned in

the AH register.

Several return status codes have been defined in Table 2-3.

2-10 ROM BIOS Overview

Table 2-3. EX~-BIOS Return Status Codes

Return Status Variable Return Status Code Indication

RS__ SUCCESSFUL 000H : The requested function ex-
ecuted correctly.

RS_UNSUPPORTED 002H The requésted function or
subfunction is not imple-
mented or is unsupported.

RS_FAIL OFEH (-02H) The driver failed the opera-
tion in an error state.

RS _BAD _PARAMETER OFAH (-06H) The driver received a bad

: parameter.
RS_BUSY OF8H (-08H) The requested driver is busy.
RS__NO__VECTOR OF6H (-OAH) EX-BIOS Vector table is out
: of RAM or room for more

drivers.

RS__OFFLINE OF4H (-OCH) ‘ Device is offline.

RS _OUT_OF_PAPER OF2H (-OEH) Device is out of paper.

If additional drivers are installed in the system, they should conform to the defined statuses wherever
possible. However, to maintain coding efficiency and/or functional accuracy, a driver may create a
return status other than those listed in Table 2-3. '

NOTE

Return status conditions are always multiples of two. Negative return
status codes indicate error conditions, while positive status codes indicate
exceptional conditions to the caller. For example, the status code
RS__UNSUPPORTED indicates the driver does not support a function
which may or may not be an error, while RS _OUT__ PAPER requires some
kind of response by the caller.

ROM BIOS Overview 2-11

Data Structures

BIOS drivers require RAM data area to perform their functions. The layout and placement of the data
areas for the STD-BIOS and EX-BIOS drivers differ. This is discussed in the following subsections.

STD-BIOS Data Structures

The data area for the STD-BIOS is in absolute memory locations 00400H through 005FFH, which
conforms to the industry standard. Table 2-4 summarizes the assignments within this block of memory.

Refer to Appendix B for a detailed description of these data fields.

Table 2-4. STD-BIOS Data Area Summary

Address Assigned Function
400H-407H RS-232 Communication Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H Equipment Flag
417H-43DH Keyboard Data Area
43Eh-448H Flexible Disc Data Area
449H-466H Video Display Data Area
467TH-46BH Option ROM Data Area
46CH-470H Timer Data Area
471H-473H System Data Flags
474H-477H Hard Disc Data Area
478H-47FH Printer Time out Counters
480H-483H Keyboard Buffer Pointers
484H-488H Enhanced Graphics Adapter (EGA) Data Area
489H-48AH Reserved for Display Adapters
48BH-48BH Flexible Disc Data Rate Area
48CH-48FH Extended Hard Disc Data Area
490H-495H Extended Flexible Disc Data Area
496H-497H Keyboard Mode Indicator/LED Data Area
498H-4A0H Real-Time Clock Data Area
4A1H-4A7TH Reserved for Network Adapter Cards
4A8H-4ABH Pointer to EGA Data Area
4ACH-4EFH Reserved
4FOH-4FFH Intra-application Communication Area
SO0H-500H Print Screen Status
501H-503H Reserved
504H-504H DOS Data Area
S05H-5FFH Reserved

2-12

ROM BIOS Overview

EX-BIOS Data Structures

Data structures for the EX-BIOS drivers are located in a block of memory at the top of system RAM.
The address of this block varies depending on the amount of RAM contained in the system and the
hardware configuration.

There are three types of data structures in the EX-BIOS data area. These structures are: the
HP__VECTOR_TABLE and its associated HP_ ENTRY__CODE, the driver data areas, and the EX-BIOS
global data area.

The HP__VECTOR__ TABLE

Each of the CPU interrupt vectors contains the Code Segment default (CS) and Instruction Pointer (IP)
of its associated service routine. The HP_ENTRY interrupt vector (default 06FH) contains the CS:IP of
the HP_ENTRY__CODE. This routine uses the value contained in the BP register (an offset into the
HP__VECTOR_TABLE, vector address) to branch to the appropriate EX-BIOS driver. The
HP__VECTOR__TABLE resides at the base of the EX-BIOS data area. The HP__VECTOR__TABLE consists
of an array of 3-word (six bytes) entries, one for each EX-BIOS driver. Each entry consists of the IP, CS,
and Data Segment (DS) of a driver. '

Figure 2-2 illustrates the relationship between the CPU interrupt vectors, the HP_ VECTOR_ TABLE,
HP__ENTRY__CODE, and the EX-BIOS drivers.

The HP__ENTRY_ CODE

The CS:IP in the HP__ENTRY interrupt vector points to a piece of code which branches to the desired
EX-BIOS driver. The vector address passed in BP must be a multiple of six. The code is as follows:

HP_ENTRY_CODE:
MoV DS,CS: [BP+4]
JMP FAR PTR CS: [BP]

This code resides directly after the last entry in the HP_ VECTOR _TABLE. Therefore, the CS:IP entry

in the HP__ENTRY interrupt vector provides two further pieces of information. CS:0 is the starting
address of the HP_ VECTOR_ TABLE and IP is the length of the HP_ VECTOR__TABLE.

ROM BIOS Overview 2-13

STD-BIOS
#1 DRIVER
INTERRUPT HP_VECTOR_
VECTORS TABLE EX-BIOS DRIVER
INTOH
P P
cs cs EX-BIOS
DS DRIVER
P 4 P CODE
o8 Cs: g
cs:ip
INT 06FH *
P 4 P
s gg DS:0
HP_DRIVER
csip | . " HEADER
INTOFFH = EX-BIOS
cs HP_ENTRY. DRVER
DATA
CODE AREA

* This vaiue may: change. Refer to “The CALL SYSCALL Routine”
in this chapter to determine the correct value.

Figure 2-2. Interrupt Vectors and HP_VECTOR_TABLE

Driver Data Areas

Each driver has an independently specified data area. Some EX-BIOS drivers share the same data areas.
The data areas for the EX-BIOS drivers are above the HP_ VECTOR__TABLE and the
HP_ENTRY__CODE shown in Figure 2-2. Although each driver has its own data area, the DS for each
driver is stored in the HP_ VECTOR__TABLE, and its data area must start at DS:0. Each data area must
reside on a paragraph boundary. ‘

The data area for each driver consists of a driver header, followed by an optional variable storage area.
The variable storage area is unique to each driver. Table 2-5 provides a general description of the
contents of an EX-BIOS driver header.

Table 2-5. HP_ DRIVER__HEADER -

Variable Offset Description Offset Type
DH__ATR ‘ Driver Attribute Field 0 Word
DH_NAME_INDEX Driver String Index Field 2 Word
DH_V_ DEFAULT Driver’s Default Logical Device 4 Word

Vector

DH_P_CLASS Driver’s Parent Class : 6 Word
DH_C_CLASS Driver’s Child Class 8 Word
DH_V_PARENT Driver’s Parent Vector OAH Word
DH_V_ CHILD Driver’s Child Vector OCH Word
DH_MAIJOR Sub Address Field OEH Byte
DH__MINOR Sub Address Field OFH Byte

2-14 ROM BIOS Overview °

EX-BIOS Driver Headers

The following defines each of the EX-BIOS driver header fields. Additional information on these fields

can be found in Appendix G.

DH_ATR:

DH__NAME__INDEX:

DH_V_DEFAULT:

DH_P_CLASS and
DH_C_CLASS:

DH_V_PARENT:

DH_V_CHILD:

DH__MAIJOR and DH_ MINOR:

Each bit in the DH__ATR field indicates a property of the
driver for device mapping purposes. These bits are defined in
Appendix G.

The DH__NAME__INDEX is used to derive the localization
string index of -the driver. This string index is given by the
function F_STR. GET_STRING in the V_SYSTEM driver.
See Chapter 8 for additional information. ,

The DH__V__DEFAULT field contains the driver’s default vec-
tor address.

In conjunction, these fields indicate which drivers may be
mapped together. DH__P_ CLASS and DH_C_ CLASS are bit
masks. Each bit position represents a set of drivers. If a bit is
set, then the driver is in that set of drivers. The

DH__P CLASS field indicates a driver is in from O to 16 dif-
ferent driver sets. A driver can only map to another driver if
its DH__P__ CLASS field matches at least one bit position of
the other driver’s DH__C__CLASS field. Furthermore, the
DH__ATR field is another condition of mapping. The bits are
defined in Appendix G.

The DH__ V__PARENT field contains a vector to the driver
that is called when the current driver receives an F__ISR func-
tion code that it cannot or doesn’t know how to process.

The DH__V__CHILD field contains a vector to the driver that

is called if this driver decides it cannot handle the request
function (as long as that function is not F__ISR).

Device bus address information.

ROM BIOS Overview 2-15

EX-BIOS Global Data Area

The method for locating the EX-BIOS global data area is found in the "EX -BIOS Data Area Map" of
Appendix B. The EX-BIOS global data area is shared between several EX-BIOS drivers. It contains
temporary and permanent variables that are required by the BIOS to function properly. Some of these
variables can be modified by application programs. As with any modification to the STD-BIOS data area,
care should be taken with the EX-BIOS global data area. Table 2-6 defines the contents of this area.

Table 2-6. Definition of Global Data Area Contents

Byte Type Name of Driver Definition
0-1DH Reserved
1EH Word T _STR_NEXT INDEX Next unused string index
number.
20H and up Reserved

2-16 ROM BIOS Overview

Video

The HP Multimode Video Display Adapter provides a wide variety of display modes, resolution, character
attributes, and other features. The purpose of the video driver is to allow programs to access these
features and control the video display.

Overview

In the text mode, the Multimode Video Display Adapter uses an 8 x 16 character cell which generates
high quality characters. Access to the display memory is fully synchronized to eliminate the "snow"
problem present in many color display adapters. (Snow occurs when writing a character to display
memory while the video memory is being accessed by the display refresh circuitry.) This full
synchronization makes the INT 10H video driver faster, since there is no need to wait for a vertical
retrace to place characters on the screen.

The Multimode Video Display Adapter provides seven more display modes than the industry standard
color graphics adapter. Four of the modes allow 27 lines of text on the screen. The other three modes
allow graphics modes that double the graphics resolution of the display (320x400 and 640x400 pixels).
The standard INT 10H video driver has been extended to allow the programmer to set these modes. No
other support is provided to make use of these modes. Refer to HP Vectra Accessories Technical Reference
Manual (for either the Vectra ES or RS) for more information on the Multimode Video Display Adapter.

Data Structures

The Multimode Video Display Adapter has 32KB of video memory starting at address OB80OOOH. This
allows graphics resolutions of 320x400 in medium resolution modes and 640x400 in high resolution
modes. The following is a discussion of how this memory is organized, depending on the video mode
selected.

In either of the text modes (80x25 or 40x25), ‘memory is organized as sequential pages. Fach page
contains character cells that are made up of an 8-bit character code and an 8-bit attribute (see Figure
3-1) ‘

Graphics modes can be of two types: medium resolution (320x200 or 320x400) and high resolution
(640x200 or 640x400). In the medium resolution mode, each pixel corresponds to two bits of memory, so
four colors can be displayed. In the high resolution modes, each pixel corresponds to one bit of memory,
and only one color can be displayed (the background color is always black). See Figures 3-2 and 3-3 for
more details.

Video 3-1

Character Cell Organization

Color Values

Byte 0 Bywo 1 ! RG B | Color
s|r{a|8|i|R]|c|B
| | BEEELERE o T
8 Bit Char Code [000 1 Blue
0010 Green
ink bit 0.0 1.1 Cyan .
Blnk o0 - 0 100 | Red
T a9 O 0 1 0 1 Magenta
0= Biinking off 01 1 0 | Brown
001 1.1 Light Grey
Background color 1000 Dark Grey
K ity bit @ 100 1 Light Biue
1. High 101 0 | LghtGreen
0=Low 101 1 Light Cyan
1100 Light Red
Foreground color < : : ? ; I;J‘g‘::wMaQOMI
111 White
80 x 25 Text Memory Page
Col0 cal1 Col 79
Page0 | Byw 0 Byw1] l . . l Row 0
0B800:0H - Fow
! Row 24
Page 1 l [. 1 Row 0
(0B800-OFAOH) Fow 1
Figure 3-1. Text Display Memory Organization
320 x 200 Graphics Display Memory Scan ine
oasoook | Bywo [Byt Jeye2 | coe . | syoro] o
2
. 4
088002000 | Byw0 [By 1 [Bye2 | e . [owre]
§ 3
s
0B800:4000H ayso]amt layuz [] Byw79
Writing to heee addresses
Not Accessible actually writes to addresses
0BB00:0H through 0BB00:3FFFH

0B800:7FFFH

Byte / Pixel Organization

(0 1 2
0 0 - 1 of 16 Background Color
01 - Grean/Cysn
1 0 - RadMagenta
1 1 - Brown/light Grey

bit number

Figure 3-2. 320 x 200 Graphics Display Memory Organization

3-2 Video’

640 x 400 Graphics Display Memory

Scan line
0B800:0H ByteOlBy\ﬂlB/\sZ[... | o] o
4
8
08800:2000H| Byte o | Byse 1 Imz] B [Bre7o 1
) 5
9
08800:4000H| Byte 0 | Byte 1 loye2 | e | Bremo| 2
6
10
08800:6000H] Byteo [By 1 [By®2 | e | Bremm] 3
7
1

Byte / Pixel Organization

7 6 5§ 4 3 2 1 0 bit number

NEEEEEE :
01 2 3 4 5 6 7 pixel number
0 - Background Color (Black)

1 - 1of 16 Foreground Coiors

Figure 3-3. 640 x 400 Graphics Display Memory Organization

In all the graphics modes, the memory used for scan lines is not sequential but it is interleaved at fixed
intervals of 8K. In the modes that are 200 scan lines, even scan lines start at offset O and odd scan lines
start at offset 2000H. In the modes that are 400 scan lines, the following table can be used to determine
the appropriate offset:

Scan line is multiple of 4
(0,4,8,12 ...) use offset O
Scan line is multiple of 4 plus 1
{(1,5,9,13 ...) use offset 2000H
Scan line is multiple of 4 plus 2
(2,6,10,14...) use offset 4000H
Scan line is multiple of 4 plus 3
(3,7,11,15...) use offset 6000H

All the scan lines of a particular group are organized sequentially ’within a particular offset. See Figures
3-2 and 3-3.

Other video driver data structures are located in the STD-RIOS data area. They are stored in memory
addresses 449H (40H:49H) through 466H («0if:66H). Table 3-1 lists the STD-BIOS Video Driver
memory locations and their definitions.

Video 3-3

Table 3-1. STD~BIOS Video Driver Data Area

Address Type Definition
00449H Byte Current Video Display Mode

0044 AH Word Number of columns

0044CH Word Regen Buffer length

0C44EH Word Starting address of regen buffer
00450H Word Cursor position for Display Page 0
00452H Word Cursor position for Display Page 1
00454H Word Cursor position for Display Page 2
00456H Word Cursor position for Display Page 3
00458H Word Cursor position for Display Page 4
0045AH Word Cursor position for Display Page $
0045CH Word Cursor position for Display Page 6
0045EH Word Cursor position for Display Page 7
00460H Word Current cursor mode

00462H Byte Active page number

00463H Word Address of current display adapter
00465H Byte Mode (current setting of status register)
00466H Byte Pallet setting

Video data structures are also maintained in the EX-BIOS data area. These structures are accessible
through the data segment of the EX-BIOS video service routine. The following code sets the ES register to
the EX-BIOS video driver’s (V_SVIDEO’S) data segment:

NOTE

The current value of HP__ ENTRY must be determined once using the
"CALL SYSCALL" routine.

MOV AX,O ;segment at O

MOV ES,AX H

MOV AX,ES: [HP__ENTRY*4+2] ;read the base address
sof the HP_VECTOR_TABLE

MOV ES,AX
MOV AX,ES: [V_SVIDEO+4] ;read base address of (V_SVIDEO = 54H)
MOV ES,AX ;video parameters

The addresses listed are offsets into this data segment. Table 3-2 gives the data maintained in
V__SVIDEO’s (0054H) data segment:

3-4 Video

Table 3-2. Video EX-BIOS Data Structures

Variable Name

Definition

Offset

Type

Driver Header

VID_PRIMARY

VID__SECONDARY

VID_ FOUND__ROM

VID__IDS

VID_STATUS

VID_EXT_STATUS

VID__PARM_ BLOCK

VID_LAST _IBM_MODE

VID_EXT_MODE

Device Header Attributes,
Name, Index, and Default
Vector

The current primary display:

00 - Card at I/0O Address 3BOH
01 - Card at 1/0 Address 3COH
02 - Card at I/0O Address 3DOH
03 - Card containing ROM
Code.

If two cards are in the system,
same number as

VID _PRIMARY for the second
card.

Flag set to true if ROM code is
found in any video adapter card.

of IDs of all cards found.

RAM copies of the status
register.

RAM copies of the extended
status register for each possible
card in the system.

Reserved for saving the video
parameters stored in the stan-
dard BIOS data area when
switching between primary and
secondary video boards.

Used to detect if a 'rogue’
program changed the modes
without telling the HP system.

Specifies the current video mode
(0...15).

Reserved

9-0CH

OD-010H

11-014H

15-03BH

03CH

03DH

03E-03F

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Video

- 3-5

Video Driver (INT 10H)

The video driver functions (summarized in Table 3-3) can be broken down into the following categories.

[] Display Control--These functions control the display appearance, cursor and light pen position,
active text memory page, and scrolling through text memory.

m Character Handling Functions--These functions manipulate characters on the screen.
® String Functions--These functions allow placement of strings of text on the screen.

® Graphics Functions--These functions provide an interface to the graphics capabilities of the
machine.

@ Extended Video Functions--These functions support extra video capabilities of the Multimode Video
Display Adapter hardware.

Table 3-3. Video Driver Function Code Summary

Equate Value L ‘inition
00H Fi0_SET_MODE Set video mode
O1H F10_SET_ CURSIZE Set cursor size
02H F10__SET_ CURPOS Set cursor position
03H F10_RD__CURPOS Read cursor position
04H F10_RD__PENPOS Read light pen position
OSH F10_SET_PAGE Set active display page
06H F10_SCROLL__UP Scroll rectangle up
07TH F10_SCROLL__DN Scroll rectangle down
08H F10_RD__CHARATR Read character and attribute at cursor position
09H F10_WR__CHARATR Write character and attribute at cursor position
0AH F10__WR_CHARCUR Write character at cursor position
OBH F10_SET_PALLET Set color pallet
OCH F10_WR__PIXEL . Write pixel
ODH F10_RD_PIXEL Read pixel
OEH F10_WR_CHARTEL Write teletype character
OFH F10_GET_STMODE Get video state and mode
10H-12H Reserved
Write string functions:
1300H F10_WRS_00 Global attribute -
1301H F10_WRS_ 01 Global attribute, move cursor
1302H F10_WRS_02 Individual attributes
1303H - F10__WRS_03 Individual attributes, move cursor

Extented video functions:

6FO0OH F10 INQUIRE EX-BIOS present

6FO1H F10 GET_INFO Get video parameters
6F02H F10 SET_INFO Sets video parameters
6F03H F10_MOD INFO Modifies video parameters
6F04H F10_ GET_RES Reports video resolution
6FO05SH F10__XSET_MODE Sets video resolution

3-6 Video'

Video Driver Function Definitions

The following gives a detailed description of each of the functions in the video driver.

F10_SET__MODE (AH = 00H)

This function sets the display mode of the video adapter. The new mode is determined by the value passed
in the AL register. Refer to the Vectra Accessories Technical Reference Manual (for either the Vectra ES
or RS) for additional information on the various video display modes available on the Multimode Video
Display Adapter. .

On Entry: AH
AL

F10_SET MODE (00H)
Mode

Data Definition

00 40 x 25 Black and White Alphanumeric
01 40 x 25 Color Alphanumeric

02 80 x 25 Black and White Alphanumeric
03 80 x 25 Color Alphanumeric

04 320 x 200 Color Graphics

05 320 x 200 Black and White Graphics

06 640 x 200 Black and White Graphics -

07 Only valid if a monochrome display adapter is present.
On Exit: No values returned

Registers Altered: AX

F10_SET _ CURSIZE (AH = 01H)

This function sets the size of the cursor displayed in the alphanumeric display modes. Each character cell
in the alphanumeric display modes is eight scan lines high. The cursor size is defined by specifying the
starting and ending scan lines within the character cell. The scan lines are numbered from O (top of cell)
to 7 (bottom). The starting and ending scan lines are passed in registers CH and CL. This function
performs no operation if the Multimode Video Display Adapter is in one of the graphics modes.

On Entry: AH
CH
CcL

F10_SET_CURSIZE (O1H)
Starting scan line
Ending scan line

it n

On Exit: No values returned.

Registers Altered: AH

video 3-7

F10__SET _ CURPOS (AH = 02H)

This function sets the row and column address of the cursor to the specified page and moves the cursor to
that address. When the Multimode Video Display Adapter is in one of the graphics modes, a page number
of 0 must be specified.

On Entry: AH = F10_SET_CURPO$ (02H)
BH = Display page number
DH = Row address of cursor. (0. . .24)
DL = Column address of cursor. (0. . .79)

On Exit: No values returned.

Registers Altered: None

F10__RD__CURPOS (AH = 03H)

This function returns the current address and size of the cursor on the specified page. If the Multimode
Video Display Adapter is in one of the graphics modes, a page number of 0 must be specified. Otherwise,
the values returned for the cursor size in the graphics mode will be invalid.

On Entry: AH
BH

F10_RD_CURPOS (O3H)
Display page number

On Exit: CH = Starting scan line

CL = Ending scan line
DH = Row address of cursor. (0. . .24)
DL = Column address of cursor. (0. . .79)

Registers Altered: CX, DX

F10_RD__PENPOS (AH = 04H)

This function returns the current state and position of the light pen if it is activated. The position is
reported in both character row/column and graphic pixel formats.

On Entry: AH = F10_RD_PENPOS (04H)
On Exit: AH = Light Pen state
Data Definition:

0 Not activated
- Activated

BX = Horizontal pixel position of light pen

CH = Vertical pixel position of light pen (200 line mode)
DH = Row position of light pen

DL = Column position of light pen

Registers Altered: AH, BX, CH, DX

3-8 Video

F10__SET__PAGE (AH = 05H)

This function sets the active display page in the alphanumeric mode. Valid page numbers are 0 through
7 for 80 x 25 modes, and O through 7 for 40 x 25 modes. This function is not valid for graphics modes.

On Entry: AH

F10_SET_PAGE (O5H)
Page number (0 through 7)

On Exit: No values returned.

Registers Altered: AX

F10__SCROLL__UP (AH = O6H)
This function scrolls the contents of a window up a specified number of lines. The window is defined by
the row and column addresses stored in the CX and DX registers. The number of lines to be scrolled is

passed in register AL. If AL is set to O, the function interprets this as a command to scroll all lines.

F10_SCROLL_UP (06H)

On Entry: AH =
AL = Number of lines to scroll (0 = scroll all)
BH = Attribute to place in blanked lines
CH = Row address of upper left corner of window (0. . .24)
CL = Column address of upper left corner of window (0. . .79)
DH = Row address of lower right corner of window (0. . .24)
DL = Column address of lower right corner of window (0. . .79)

On Exit: No values returned.

Registers Altered: None

F10 _SCROLL__DN (AH = 07H)

This function scrolls the contents of a window down a specified number of lines. The window is defined
by the row and column addresses stored in the CX and DX registers. The number of lines to be scrolled is
passed in register AL. If AL is set to O, the function interprets this as a command to scroll all lines. This
function is only valid when the Multimode Video Display Adapter is in one of the alphanumeric modes.

On Entry: AH F10_SCROLL_DN (OTH)

AL = Number of lines to scroll (0 = scroll all)

BH = Attribute to place in blanked lines

CH = Row address of upper left corner of window (0. . .24)

CL = Column address of upper left corner of window (0. . .79)
DH = Row address of lower right corner of window (0. . .24)

DL = Column address of lower right corner of window (0. . .79)

On Exit: No values returned.

Registers Altered: None

Video 3-9

F10_RD _ CHARATR (AH = 08H)

This function returns the character byte and attribute byte at the current cursor location. If the
Multimode Video Display Adapter is in one of the alphanumeric modes, a page number must be specified.
If the video display adapter is in one of the graphics modes, only the character is returned since
characters do not have attribute bytes in the graphics modes

On Entry: AH
BH

F10_RD_CHARATR (08H)
Page number {(alphanumeric modes only)

on

On Exit: AH
AL

Attribute byte (valid only in alphanumeric modes)
Character

Registers Altered: AX

F10_WR __ CHARATR (AH = 09H)

This function writes character and attribute bytes at the current cursor location. If the Multimode Video
Display Adapter is in one of the alphanumeric modes, a page number may be specified. If the Multimode
Video Display Adapter is in one of the graphics modes, only the character is written. More than one
character and attribute can be stored by placing the number of copies desired in CX. This function will
wrap around both line and screen if too many characters are specified. Note that this function makes
copies of a single character/attribute combination; it does not print a string. Refer to the Write String
function for that operation.

On Entry: AH = F10_WR_CHARATR (O9H)

AL = Character

BH = Page number (alphanumeric modes only)

BL = Attribute byte {(valid only in alphanumeric modes)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

F10__ WR __ CHARCUR (AH = 0AH)

This function writes a character to the current cursor location, retaining the existing attribute byte. The
function is identical to the F10_ WR__CHARATR function, except that no attribute byte is written.

On Entry: AH = F10_WR_CHARCUR (OAH)

AL = Character »
BH = Page number (alphanumeric modes only)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

3-10 Vvideo

F10__ SET __PALLET (AH = OBH)
This function allows setting the background color (if BH = 0) or the foreground color pallet (if BH = 1).

On Entry: AH
BH

F10_SET_PALLET (OBH)
Color Select 1D

Data Definition

0 Set the background color (in medium resolution
modes) or the foreground color (in high resolution
modes) based on the low bits of BL (bits 0. . .3)
to one of 16 colors.

1 Select color pallet (for medium resolution modes)
based on the least significant bit of BL. If
bit 0 of BL = 0 then select the green, red,
brown pallet. If bit 0 of BL = 1 then select the
cyan, magenta, light gray pallet.

BL = Color select value
On Exit: No values returned

Registers Altered: None

F10_WR _ PIXEL (AH = OCH)

This function writes a pixel on the screen. If the Multimode Video Display Adapter is in one of the "Four
color" modes (320 x 200) the color of the pixel may be passed in register AL. Bits 0 and | of AL are
interpreted as the color bits. If bit 7 of AL is set, bits 0 and 1 are "XORed" with the current pixel color
bits, otherwise they replace the current pixel color bits. If the Multimode Video Display Adapter is in the
"Two color” mode (640 x 200), the bit corresponding to the desired pixel is set.

On Entry: AH
AL

Flo_wR_PIXEL (OCH)
Color

In "Four color” mode (320x200):

Bit Data Definition

7 1 Bits 0 and 1 XORed with
current pixel.
0 Bits 0 and 1 replace current pixel.
0,1 Color bits.

video 3-11

In "Two color"” mode (640x200):

Bit Data Definition

T 1 Bit 0 XORed with current pixel.
0 Bit O replaces current pixel.
0 Color bit.
CX = Horizontal pixel address

DX = Vertical pixel address
On Exit: No values returned.

Registers Altered: AX

F10__RD __ PIXEL (AH = ODH)

This function returns the color code of the specified pixel.

On Entry: AH = F10_RD PIXEL (ODH)
CX = Horizontal pixel address
DX = Vertical pixel address

On Exit: AL = Color value of pixel

Registers Altered: AX, CX, DX

F10__WR —CHARTEL (AH = OEH)

This function writes a character to the active page, then advances the cursor one location. At the end of
a line, the cursor will wrap to the next line; at the end of the screen, the cursor will scroll. In the
alphanumeric modes, this function maintains the current video display attributes. In the graphics modes,
the foreground color is passed in register BL. The ASCII characters Line Feed (OAH), Carriage Return
(ODH), Backspace (08H), Bell (07H), and Tab (09H) are interpreted by this function as ASCII commands
and are executed as such.

On Entry: AH
AL
8L

F10_WR_CHARTEL (OEH)
Character
Foreground color (in graphics modes only)

On Exit: No values returned.

Registers Altered: AX

3-12 video

F10__GET __STMODE (AH = OFH)

This function returns the current Multimode Video Display Adapter state. The mode, number of
characters per line, and current dispilay page are returned.

On Entry: AH F10_GET_STMODE (OFH)

Number of characters per line
Current mode

Current display page

On Exit: AH
AL
BH

Registers Altered: AX, BH

Write String (AH = 13H)

This function writes a string of characters to the screen. This function consists of four separate
subfunctions which control whether each character has its own attribute byte or not, and whether the
cursor is moved or not. Each of the subfunctions is detailed in the following. The ASCII characters Line
Feed (0AH), Carriage Return (ODH), Backspace (08H), Bell (07H), and Tab (09H) are interpreted by
this function as ASCII commands and are executed as such. .

F10__WRS_ 00 (AX = 1300H)

Write string attribute without moving cursor.

On Entry: AX = F10_WRS_00 (1300H)
BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character
ES:BP = Pointer to start of string. Format of string is:

Char, Char, . . ., Char
On Exit: No values returned.

Registers Altered: None

Video 3-13

F10__WRS_ 01 (AX = 1301H)
Write string attribute and move cursor.

On Entry: AX = F10_WRS_O1 (1301H)

BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character
ES:BP = Pointer to start of string. Format of string is:

Char, Char, . . ., Char
On Exit: No values returned.

Registers Altered: None

F10__WRS_ 02 (AX = 1302H)
Write character attribute without moving cursor.

On Entry: AX = F10_WRS_02 (1302H)

BH = Display page number
CX = Length of string
DH = Row address of first character
DL = Column address of first character
ES:BP = Pointer to start of string. Format of string is:

Char, Attr, Char, Attr, ..., Char, Attr
On Exit: No values returned.

Registers Altered: None

F10_WRS__ 03 (AX = 1303H)
Write character attribute and move cursor.

On Entry: AX = F10_WRS_03 (1303H)

BH = Display page number
CX = Length of string
DH = Row address of first character
DL = Column address of first character
ES:BP = Pointer to start of string. Format of string is:

Char, Attr, Char, Attr, ..., Char, Attr
On Exit: No values returned.

Registers Altered: None

3-14 Video

HP Extended Video Functions

This set of functions support the features of the Multimode Video Display Adapter which are not covered
using the standard video functions. This function consists of separate subfunctions which support the
various extended capabilities of the Multimode Video Display Adapter (implemented through the
EX-BIOS). Each of these subfunctions is defined in the following subsections.

F10_INQUIRE (AX = 6FO0H)

This subfunction determines whether or not the extended HP functions are available. If the extended
video functions are available, the BX register will be set to 48 50H (which is the ASCII characters "HP").

On Entry: AX = F10_INQUIRE (6FOOH)
BX = Any value except 4850H (“HP")
On Exit: BX = "HP” (4850H)

Registers Altered: AX, BX

F10__GET __INFO (AX = 6FO01H)

This function returns information about the active display adapter.

On Entry: AX = F10_GET_INFO (6FO1H)

On Exit: AH = Status register information

Bit Data Definition

0 1 Display Enabled.
1 1 Light Pen Trigger Set.
2 1 Light Pen Switch Made.
3 1 Vertical Sync.
4 Monitor Resolution
0 350 or 400 line monitor
1 200 line monitor
S Display type
Color
1 Monochrome
6-7 Diagnostic Bits

AL = Card ldentifier

video 3-15

Data Definition

O0H Non HP card with ROM and possibly its own INT 10H driver.
41H Muktimode Video Display Adapter

42H Reserved

43H Reserved

44H Reserved

45H Industry Standard Monochrome Display Adapter

46H Industry Standard Color Display Adapter

S1H Reserved

CL = Current value of Extended Control register. This register
is only valid when the Card Identifier is 41H.

This description applies to data returned when a Multimode Video Display Adapter is in the system.

Bit Data Definition

0 Current screen resolution
0 200 line
1 400 line

1 Underline enable.

0 Blue bit of foreground attribute
interpreted as color blue.

1 Blue bit of foreground attribute
interpreted as underline.

2 Font Selected.
0 PC-8
1 HP ROMANS

3 Memory disable.

Memory enabled for CPU access.

1 Memory disabled for CPU access.

4 16/32K Memory select.

Wrap second 16K of RAM into first 16K.

1 Allow access to full 32K of memory.

5 Page select.

Select first 16K of memory.

1 Select second 16K of memory.

6-7 Unused :

Registers Altered: AX, CL

3-16 Video

F10_SET __INFO (AX = 6F02H)

This function modifies the value of the Extended Control register port 3DDH on the Multimode Video
Display Adapter. (Refer to the Vectra Accessories Technical Reference Manual - for either the Vectra ES
or RS - for more information about this port.)

On Entry: AX
BL

F10_SET_INFO (6F02H)
Byte of data to be written to
the Extended Control Register.

Bit Data Definition

0 Current screen resolution
0 200 line
1 400 line

1 Underline enable.

0 Blue bit of foreground attribute
interpreted as color blue.

1 Blue bit of foreground attribute
interpreted as underline.

2 Font Selected.
0 PC-8
1 HP ROMANS

3 Memory disable.

0 Memory enabled for CPU access.
Memory disabled for CPU access.
4 16/32K Memory select.
Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory.
5 Page select.
0 Select first 16K of memory.
Select second 16K of memory.
6-7 Reserved

—

-

On Exit: No values returned.

Registers Altered: AX, BL

video 3-17

F10__MOD __INFO (AX = 6FO3H)

This function modifies individual bits in the Extension Control register (port 3DDH) of the Multimode
Video Display Adapter. A mask byte is passed in register BH, which allows individual bits to be modified
without changing the state of other mode bits in the register.

On Entry: AX = F10_MOD_INFO (6F03H) ~
BH = Mask. Bits with a mask value of "1" are not modified; bits
with a mask value of "0" are modified.
BL = Bits to change. The bits indicated by the mask (BH)

take the value of the BL register.

Bit Data Definition

0 Current screen resolution
0 200 line
1 400 line

1 Underline enable.

0 Blue bit of foreground attribute
interpreted as color blue.

1 Blue bit of foreground attribute
interpreted as underline.

2 Font Selected.
0 PC-8
1 HP ROMANS

3 Memory disable.

0 Memory enabled for CPU access.
Memory disabled for CPU access.
4 16/32K Memory select.
0 Wrap second 16K of RAM into first 16K.
Allow access to full 32K of memory.
5 Page select. :

0 Select first 16K of memory.

1 Select second 16K of memory.
6-7 Reserved

-

-

On Exit: No values returned.
Registers Altered: AX
Example:

MOV AX,F10_MOD_INFO
MOV BL,00000100B
MOV BH,11111011B
INT 10H

EX-BIOS Function - Modify Ex-Reg (6FO03H)
Select Character Font: HP ROMANS

Only Modify Character Font

Call Video Interrupt

we we we we

3-18 Video

F10__GET__RES (AX = 6F04H)

This function returns the current video mode and screen resolution.

On Entry: AX = F10_GET_RES (6F04H)

On Exit: AL

Current video mode (See Set Mode.)

Data Definition

O0H
O1H
02H
03H
04H
O5H
06H
O7H
08H
OSH
OAH
O0BH
OCH
ODH
OEH
OFH

If in one of the graphics modes:

BX
CX

Hon

40
40
80
80
320
320
640
80
80
80
40
40
640
640
320
320

If in one of the text modes:

BX
CX

X X X X X X X X X X X X X XXX

25 Alphanumeric Black and White
25 Alphanumeric Color

25 Alphanumeric Black and White
25 Alphanumeric Color

200 Graphics Color

200 Graphics Black and White
200 Graphics Black and White

25 Only Valid for Monochrome Cards
27 Alphanumeric Black and White
27 Alphanumeric Color

27 Alphanumeric Black and White
27 Alphanumeric Color

400 2 Color

400 Graphics Black and White
400 Graphics Color

400 Graphics Black and White

Horizontal resolution in pixels
Vertical resolution in pixels

Number of characters per row
Number of rows ~

Registers Altered: AX, BX, CX

Video 3-19

F10__XSET __MODE (AX = 6F05H)

This function places the HP Multimode Video Display Adarpter in one of sixteen possible modes of
operation. Modes O through 7 are identical to the modes available with function F 10_SET__MODE of
the video driver. Modes 8 through 15 are unique to the HP Vectra and the Multimode Video Display
Adapter and may only be set using this function.

Programmers must exercise caution when setting video modes with both F10_SET MODE (0H) and
F10_XSET_MODE (6F05SH). Whenever F10__ XSET _MODE is used to select one of the "HP only"
modes (8-15), F10__XSET__MODE (not F10__SET_MODE) must be used to return to one of the
industry standard modes (0-7). This "pairing" of function calls is necessary because F10__ XSET _MODE
modifies an I/O port not normally affected by the industry standard modes. F 10_SET _MODE does not
deal with this 1/0O port.

On Entry: AX
BL

F10_XSET _MODE (6FO5H)
Video mode

Data Definition

OOH 40 x 25 Alphanumeric Black and White
01H 40 x 25 Alphanumeric Color :
02H 80 x 25 Alphanumeric Black and White
O3H 80 x 25 Alphanumeric Color

04H 320 x 200 Graphics Color

O5H 320 x 200 Graphics Black and White
06H 640 x 200 Graphics Black and White
O7H 80 x 25 Only Valid for Monochrome Cards
08H 80 x 27 Alphanumeric Black and White
OSH 80 x 27 Alphanumeric Color

OAH 40 x 27 Alphanumeric Black and White
OBH 40 x 27 Alphanumeric Color

OCH Reserved .

ODH 640 x 400 Graphics Black and White
OEH 320 400 Graphics Color

OFH 320 x 400 Graphics Black and White

X X X

On Exit: No values returned.

Altered Registers: AX, BL

Example:

MOV AX,F10_XSET_MODE 3 Call EX-BIOS function Set mode (6FOSH)

MOV BL,ODH_ 3 Select 640 x 400 line mode
INT INT_VIDEO 3 Call video interrupt (10H)

3-20 Vvideo

Input System and HP-HIL

The Input System is a set of drivers which support the HP-HIL input devices. Up to seven HP-HIL input
devices may be connected at one time. The Input System can support properly integrated non-HP-HIL
devices as well.

Overview

The standard devices that connect to the system via the HP-HIL link are the mouse, touchscreen, and
tablet. The interfaces for simple mouse, touchscreen, and tablet support are described in this Chapter.

The architecture of the Input System is divided into two levels (see Figure 4-1). The application interface
level allows the programmer to communicate with the HP-HIL devices with minimum overhead. The
second level, the hardware interface level, allows programmers to manipulate the internals of the system.
With this interface, support for additional devices can be added or the data path of existing ones
re-directed.

The first portion of this chapter provides an overview of the application interface level, a detailed

description of the actual interfaces, and how to access them. The second portion of this chapter describes
the hardware interface level.

Application Interface Level
Application programs interface with the Input System through a set of logical device drivers. The Input

System has an application interface for the tablet, pointer (simple mouse), and touchscreen input devices.
The Input System device drivers are shown in Figure 4-1.

Input System and HP-HIL 4-1

Application

Touch Pointer Tablet
Screen (Simple Mouse) interface
Interface Interface (V_LTABLET)
(V_LTOUCH) (V_LPOINTER)
Application Intarface Level
Hardware
Interface
Drivers

Hardware interface Level

I Physical Input Devices]

Figure 4-1. Input System Block Diagram

The tablet, pointer, and touchscreen application program interface drivers are grouped together in Figure
4-1 as they are all Graphic Input Device (GID) drivers. GID drivers accept relative graphic motion data,
absolute graphics data, and button scancode data from the input devices. Data from these devices is
represented in a consistent manner throughout the Input System, making programmatic access to different
Graphic Input Devices a simple task (see the Application Event Driver Example later in this chapter).

Overview

The Input System supports three logical GID drivers; one for each of the standard GID data types. There
is a GID driver for each of the touchscreen, pointer (simple mouse), and tablet devices called
V__LTOUCH, V_LPOINTER, and V_LTABLET respectively. Each of these drivers has a fixed location
in the HP__ VECTOR _TABLE. They all share a common code module (i.e., they have the same CS:IP in
the table), but have different data areas.

The GID drivers perform clipping and scaling under certain conditions. Absolute devices like the
touchscreen and tablet are always scaled but clipping is user selectable. Relative devices like the mouse
can have both scaling and clipping selected by the user.

The logical GID drivers perform two additional tasks. The first is graphics cursor movement (sprite
tracking). This is performed by the EX-BIOS driver V_ STRACK, which is called by the logical GID
driver if tracking is enabled. The second task is to provide interrupt service to the application. The
application may install a routine to be called by the logical GID driver every time a GID event occurs, as
opposed to the application calling the GID driver repeatedly (polling) to see if an event has occurred.

The following text outlines the actions that occur for touchscreen input, from touching the screen to
application data retrieval.

1. The user touches the screen. This causes the physical device to generate input data and interrupt the
hardware interface level.

4-2 Input System and HP-HIL

2. The hardware interface level processes the interrupt and passes the data (ISR Event Record) to the
logical touchscreen driver (V__LTOUCH).

3. V_LTOUCH scales the event to fit the current dimensions of the screen. At this point two optional
things may happen. First, the data may be clipped. Second, the user defined event driver will be
called if it is installed and enabled.

4. If the user event routine was not installed and enabled, then the application must call (poll)
V_LTOUCH with the F__SAMPLE function {(see V__LTOUCH functions) to get the input data.

There are two methods for applications to receive data from the Input System: polled mode and interrupt
mode. In polled mode, the application must continually interrogate the logical GID driver using the
F__SAMPLE function to determine if any input has occurred. In interrupt mode, the application must
first install an ISR event handling routine (application event driver) using SF_ CREATE EVENT to
handle interrupt calls from the logical GID driver. After installation, the application informs the logical
GID driver that it is ready to receive interrupts by calling the SF__ EVENT__ON subfunction. After event
interrupts have been enabled, the application will receive an interrupt every time the logical GID driver
receives data from the hardware interface level.

Data Structures

The application interface level uses two major data structures: the Logical Describe Record and the
Logical ISR Event Record(s). These data structures help keep track of the numerous events occurring in
the Input System.

Logical Describe Record

The Logical Describe Record is used by the logical GID drivers to keep track of the current state of their
respective devices. Each of the logical GID drivers has a Logical Describe Record associated with it, which
is located directly after the driver header starting with memory address DS:0010H. Table 4-1 lists the
field types and offsets of the Logical GID Driver Describe Record. An explanation of the Logical GID
Driver Describe Record follows the table.

Table 4~-1. Logical GID Driver Describe Record

Field Description Type Offset
Driver Header Driver Header (see Chapter 2) 00H
LD_SOURCE Device GID type BYTE 10H
LD_HPHIL_ID Physical device ID BYTE 11H
LD_DEVICE_STATE Status bits for the logical device WORD 12H
LD INDEX Physical device vector number BYTE 14H
LD MAX_ AXIS Maximum number of axes BYTE 15H
reported

Input System and HP-HIL 4-3

Table 4-1. Logical GID Driver Describe Record (Cont.)

Field Description Type Offset
LD_CLASS Device class BYTE 16H
LD__PROMPTS Number of button/prompts BYTE 17H
LD_PARAGRAPHS Size of this record in paragraphs BYTE 18H
LD RESERVED Reserved BYTE 19H~-1BH
LD_TRANSITION Button transitions BYTE ICH
LD_STATE Current state of the buttons BYTE IDH
LD_RESOLUTION Logical device resolution WORD IEH
LD_SIZE_X Maximum x-axis count WORD 20H
LD_SIZE_ Y Maximum y-axis count WORD 22H
LD ABS_X X position data for absolute WORD 24H
devices
LD_ABS_ Y Y position data for absolute WORD 26H
" devices
LD_REL_X X delta for relative devices WORD 28H
LD_REL_Y Y delta for relative devices WORD 2AH
LD_ACCUM_X X-axis scaling accumulator WORD 2CH
LD_ACCUM_Y Y -axis scaling accumulatbr WORD 2EH
LD_SIZE_Z Maximum z-axis count WORD 30H
LD_ABS_Z Z position data for absolute WORD 32H
devices
LD_REL_Z Z delta for relative devices WORD 34H
LD_ACCUM_Z Z-axis scaling accumulator WORD 36H

4-4 Input System and HP-HIL

Logical Describe Record Definitions

LD_SOURCE

LD_HPHIL_ID

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the ap-
propriate logical GID data type (Table 4-5). Bits 3-0 are reserved.

ID byte of the physical device which last reported data. Table 4-2 lists
the HP-HIL device ID bytes.

Table 4-2. HP-HIL Device ID Bytes

Device Type ID Range Device Description

Other OOH-2BH Reserved
2CH-2FH Tone Generator
30H-3FH Reserved

Character Entry 40H-4FH Reserved
SO0H-5BH Reserved
SCH-SFH Bar code Reader

Relative Positioners 60H-67H Reserved
68H-6BH Mouse
6CH-6FH Trackball
70H-7FH Reserved

Absolute Positioners 80H-87H Reserved
88H-8BH Touchpad
8CH-8FH Touchscreen
90H-97H Graphics Tablet
98H-9FH Reserved

Other OAOH-OFFH Reserved

LD_DEVICE_STATE

Bit

OFH-05H
04H
O3H
02H
O1H
OCH

LD_INDEX

LD _MAX_AXIS

Definition

Reserved.
Event enabled when sat.

Tracking enabled when set.
Clipping enabled when set.
Button error occurred
Interrupt in progress

Status bits for the logical device:

when set.
when set.

This contains :he vector address divided by 6 of the last physical device

that reported lata.

Maximum nur;ber of

axes supported by the device. Valid range is 0-2.

input System and HP-HiL 4-5

LD_CLASS
LD_ PROMPTS
LD_PARAGRAPHS

LD_TRANSITION

LD_STATE

LD__RESOLUTION

LD_SIZE_X
LD_SIZE_Y

LD_ABS_X

LD_ABS_Y

LD_REL_X
LD_REL_Y

LD_ACCUM_X

LD_ACCUM_Y

LD SIZE_Z
LD _ABS_Z

LD REL Z

LD _ACCUM_Z

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 con-
tain the number of prompts. Bits 3-0 contain the number of buttons.

Size of this record in paragraphs: 0 means 3 paragraphs, 1 means 4
paragraphs. :

Transitions reported per button, i.e., a set bit indicates that the cor-
responding button was either pushed or released. Bit 7 corresponds to
button 7 etc.

Current state of the buttons. 1 is down, 0 is up. Bit 7 corresponds to
button 7 etc. If LD_STATE is XOR’ed with LD _TRANSITION the
result is the previous button state.

This is the resolution of the logical device. For logical devices this is
typically one.

Maximum count (in units of resolution) for the x-axis.
Maximum count (in units of resolution) for the y-axis.

X position data for devices which report absolute coordinates (absolute
devices).

Y position data for devices which report absolute coordinates.

Latest change in x position for devices which return coordinates relative
to the previous position (relative devices).

Latest change in y position for devices which return coordinates relative
to the previous position.

Accumulator used to sum partial movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the x-axis.

Accumulator used to sum partial movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the y-axis.

Maximum count (in units of resolution) for the z-axis.

Z position data for devices which report absolute coordinates.

Latest change in z position for devices which return coordinates relative
to the previous position.

Accumulator used to sum part:al movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the z-axis.

4-6 Input System and HP-HIL

Logical ISR Event Records
A Logical ISR Event Record is not a data structure in the truest sense, but is a set of register definitions
for inter-driver communication of input events. These definitions apply not only to Input System drivers

but to application event drivers as well. The following define the Logical ISR Event Records.

GID Button ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H - Reserved
OTH 1 Button up
0 Button down
06H-00H - Button number (0-7)
DH = Data Type
ES:0 = Pointer to Physical device driver

header and Physical Describe Record.

GID Motion ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver’s vector address / 6
BX. = X axis motion in raw data form.
CX = Y axis motion in raw data form.
SI = Z axis motion in raw data form.
DH = Data Type
£S:0 = Pointer to physical device driver

header and Physical Describe Record.

The button number in the Button information field (BX) denotes which button on the device is reporting
data. Of special interest is button seven (proximity indicator) which is currently used by absolute devices
to indicate that the device measurement field is active. For example, someone is touching the touchscreen,
or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of logical GID data stored in the
event record. For button events this value will be T_KC_ BUTTON. For logical GID motion events,
permissible types are: T_TS, T__POINTER and T_ TABLET, which correspond to data originating from
V__LTOUCH, V__LPOINTER, and V_ LTABLET respectively. For a complete list of logical GID event
data types see Table 4-3.

Input System and HP-HIL 4-7

Table 4-3. Logical GID Event Data Types

Type Value Definition

T_KC_BUTTON 09H Button data

T_TS 45H Specially formed data (80x25--default)
generated by V_ LTOUCH

T_TABLET 46H Specially formed data (640x200 range--default)
generated by V_ LTABLET

T_POINTER 47H Specially formed data (640x200 range--default)
generated by V_ LPOINTER

Application Event Drivers

As previously mentioned, applications may install a routine to handle interrupts from the logical GID
drivers. Three predefined vectors in the HP_ VECTOR_TABLE are initialized to the null driver
(V_PNULL). The three vectors are V_EVENT__TOUCH, V__EVENT_ POINTER, and

V_EVENT_ TABLET which are called by the logical GID drivers V__ LTOUCH, V__LPOINTER, and
V_LTABLET respectively when event interrupts are enabled by a call to SF_EVENT_ON. A call to
SF_CREATE__EVENT sets the corresponding event vector to point to the user application event

The application event driver is required to support only one function, F__ISR. The driver should return
RS _UNSUPPORTED for all unimplemented functions.

Logical GID Drivers
The drivers V_LTOUCH, V_ LPOINTER, and V_LTABLET represent the application interface to the

Input System. These drivers provide functions to poll for data, enable/disable application event interrupts,
enable/disable tracking, and enable/disable clipping and/or scaling.

V_LTOUCH Driver (BP = 00C6H)

This section contains a detailed description of the touchscreen driver. Table 4-4 is a summary of the
touchscreen driver function code.

4-8 Input System and HP-HIL

Table 4-4. Touchscreen Driver Function Code Summary

Function Function
Value Equate Definition
V_LTOUCH Application interface to Touchscreen
00 F_ISR Logical Interrupt
02 F_SYSTEM System functions
02/00 SF__INIT Initialize the driver data area
02/02 SF_START Start driver
02/04 SF_REPORT _STATE Report state of device
02/06 SF__VERSION _DESC Report driver version number
02/08 SF_DEF_ATTR Set default logical scaling attributes
02/0A SF_GET_ATTR Get scaling attributes
02/0C SF_SET__ATTR Set scaling attributes
04 F_IO_CONTROL 1/0 Control functions
04 /00 SF_LOCK Unsupported
04/02 SF_UNLOCK Unsupported
04/04 SF_TRACK_ON Turn cursor track on
04/06 SF_TRACK__OFF Turn cursor track off
04/08 SF_CREATE _ EVENT Establish a new routine to be called on logical device
events
04/0A SF_EVENT_ON Enable event call to parent driver
04/0C SF_EVENT_ OFF Disable event call to parent driver
04/0E SF__CLIPPING _ ON Enable logical device clipping
04/10 SF__CLIPPING _ OFF Disable logical device clipping
06 F_SAMPLE Report absolute position of GID

Input System and HP-HIL 4-9

Touchscreen Driver Functions Detinitions

F__ISR (AH = 00H)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_TOUCH, (if EVENT is enabled). In addition, this function passes the event to V_STRACK
$0 that the sprite can be updated (if TRACK is enabled). This function is a response to a logical hardware
interrupt and not user callable.

On Entry: AH = F_ISR (OOH)
DH = Data Type
DL = Physical device driver’s vector index.
ES:0 = Pointer to Physical device driver header and Physical
Describe Record.
BP = V_LTOUCH (00C6H)

For Button Event:
BX = Button information.

Bit Value Definition
OFH-08H - Reserved
O7H 1 Button up

0 Button down

06H-00H Button number (0-T)

For Motion Event:

BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT ON, SF_TRACK_ON

SF__INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F_SYSTEM (O2H)

AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LTOUCH (0OCBH)
On Exit: AH = Return Status Code
BX = New 'last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

4-10 Input System and HP-HIL

SF__START (AX = 0202H)

This subfunction starts the logical touchscreen driver.

On Entry: AH = F_SYSTEM (O2H)
AL = SF _START (02H)
BP = V_LTOUCH (O0CBH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__REPORT _STATE (AX = 0204H)
This subfunction returns the LD_ DEVICE_ STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (02H)

AL = SF _REPORT_STATE (04H)
BP = V_LTOUCH (00C6H)
On Exit: AH Return Status Code

DX = LD_DEVICE_STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF__VERSION __DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

F_SYSTEM (02H)
SF _VERSION_DESC (06H)
v_ LTOUCH (00C6H)

On Entry: AH
AL
BP

On Exit: AH Return Status Code

BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS
SF__DEF_ATTR (AX = 0208H)

This subfunction sets the attributes of the logical touchscreen driver to their default values. The default
attributes for the touch screen driver are: LD_SIZE_ X = 79 and LD _SIZE_ Y = 24.

Input System and HP-HIL 4-11

On Entry: AH
AL
BP

F_SYSTEM (02H)
SF_DEF_ATTR (08H)
v_LTOUCH (0OCEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_GET__ATTR (AX = 020AH)
This subfunction returns the current scaling attributes, LD__SIZE_ X and LD_SIZE_ Y.
On Entry: AH

AL
BP

F_SYSTEM (02H)
SF_GET_ATTR (OAH)
V_LTOUCH (0OCEH)

Wonn

On Exit: AH
BX
CX

Return Status Code
LD SIZE X (logical size along X axis)
LD_SIZE_ Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF_SET__ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE_ X, and LD__SIZE_Y, in the Logical Describe
Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF _SET_ATTR (OCH)
BX = LD_! " SIZE X (logical size along X axis)
CX = LD_: “SIZE Y (logical size along Y axis)
BP = V_ LTOUCH (0OCEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__TRACK__ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be called
to update the graphics cursor (sprite) position.

F_10 _CONTROL (04H)
SF_TRACK_ON (04H)
V_LTOUCH (00C6H)

On Entry: AH
AL
BP

On Exit: AH = Return Status Codé

Registers Altered: AX, BP, DS

4-12 Input System and HP-HIL

SF__TRACK __ OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF TRACK _OFF (06H)
BP = V_LTOUCH "~ (00C6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CREATE__EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V_EVENT__TOUCH driver in the HP_ VECTOR__TABLE, V_EVENT_ TOUCH being the parent of the
logical touchscreen driver. The IP, CS, and DS of the previous routine are returned to the caller. Note
that this subfunction does not enable the event call to the parent routine; this must be done explicitly
using SF__ EVENT__ ON.

The ISR event records passed to the V. EVENT__TOUCH driver will have one of the following two
formats, depending on the Data Type stored in DL.

V_EVENT_TOUCH Button ISR Event Record:

AH = F_ISR (OOH)
DL = Physxcal device drivers vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H - Reserved
O7H 1 Button up
06H-00H - Button number (0-7)
DH = Data Type
ES:0 = Pointer to V_LTOUCH device driver .

header and Logical Describe Record.

V_EVENT_TOUCH Motion ISR Event Record:

AH = F_ISR (00H)
DL = Physical device driver’s vector address / 6
BX = A number between 0 and LD SIZE X
CX = A number between 0 z1d LD SIZE Y
DH = Data Type
ES:0 = Pointer to V_LTOUCH 1evice driver

header and Logical [2scribe Record.

, input System and HP-HIL 4-13

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CREATE_EVENT (08H)
BP = V_LTOUCH (00CSBH)
DX = DS of new V_EVENT _TOUCH routine
SI = IP of new V_EVENT TOUCH routine
ES = CS of new V_EVENT_TOUCH routine
On Exit: AH = Return Status Code
DX = DS of previous V_EVENT_TOUCH routine
SI = IP of previous V_EVENT TOUCH routine
ES = CS of previous V_EVENT_TOUCH routine

Registers Altered: AX, DX, SI, BP, ES, DS
Related Functions: SF_EVENT_ON

The following example shows how to use the SF_ CREATE_EVENT function. The routine EVENT will
be the event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH,F_ISR jonly support function F_ISR
JE PROCESS_EVENT
MOV AH, RS_UNSUPPORTED
IRET
PROCESS EVENT:
. code to process data
(see touchscreen
event record)

return successful completion

we we we we

MOV AH, RS_SUCCESSFUL
IRET
EVENT ENDP

MOV AH, F_IO CONTROL
MOV AL, SF_CREATE_EVENT
MOV BP, V_LTOUCH

MOV DX, DS ;3 want to use the current data segment for event DS
PUSH CS

POP ES 3y current CS also segment of event routine

LEA SI,CS:EVENT ; get the IP of the event routine

PUSH DS 3 save current DS

CALL SYSCALL ; call extended BIOS driver

POP DS

SF_EVENT__ON (AX = 040AH)

This subfunction enables the event (parent) call to the touchscreen event routine (V__ EVENT__TOUCH).
The link to the touchscreen event routine must have already been established using
SF_CREATE_EVENT

4-14 Input System and HP-HIL

F_I0 CONTROL (04H)
SF_EVENT_ON (OAH)
V_LTOUCH (00CEH)

On Entry: AH
AL
BP

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS
Related Functions: SF_CREATE_EVENT,
SF_EVENT_OFF
SF_EVENT__OFF (AX = 040CH)

This subfunction disables the call to the touchscreen event routine.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_EVENT_OFF (OCH)
BP = V_LTOUCH (0OCEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING __ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CLIPPING ON (OEH)
BP = V_LTOUCH (0OC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CLIPPING __ OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical space, but
overfiow or urderflow may occur.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CLIPPING OFF (10K
BP = V_LTOUCH (OOCEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

input System and HP-HIL. 4-18§

F__SAMPLE (AH = 06H)

This function allows an application to poll the touchscreen device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (06H)
BP = V_LTOUCH (0OC6H)

On Exit: AH = Return Status Code

BX = Current logical position along X axis

CX = Current logical position along Y axis

DL = LD_TRANSITION field of Logical Describe Record

DH = LD STATE field of Logical Describe Record

ES:0 = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES
The following is an example of how to call the F_ SAMPLE function.

MOV AH, F_SAMPLE
MOV BP, V_LTOUCH

load function code
load vector address

we we we we ve

PUSH DS save the current DS
CALL SYSCALL call extended BIOS driver
POP DS restore DS

V_LPOINTER Driver (BP = O0OCOH)

This section contains a detailed description of the pointer driver. Table 4-5 summarizes the functions
supported by the pointer driver.

Table 4-5. Pointer Driver Function Code Summary

Function Vector Funec,
Equate Definition Address Value
V__LPOINTER Application interface to 00COH
Pointer / Mouse
F_ISR Logical Interrupt 00COH 00
‘F_SYSTEM System functions 00COH 02
SF__INIT Initialize the driver data area O00COH 02/00
SF_START Start driver 00COH 02/02
SF_REPORT __STATE Report state of device 00COH 02/04
SF_VERSION _DESC Report driver version number 00COH 02/06
SF_DEF _ATTR Set default logical scaling 00COH 02/08
attributes
SF_GET _ATTR Get scaling attributes 00COH 02/0A
SF_SET ATTR Set scaling attributes 00COH 02/0C
F_I0_CONTROL 1/0 Control Functions O0COH 04
SF_LOCK Unsupported 00COH 04/00
SF_UNLOCK Unsupported 00COH 04/02

4-16 Input System and HP-HIL

Table 4-5. Pointer Driver Function Code Summary (Cont.)

Function Vector Func.
Equate Definition Address Value
SF_TRACK _ON Turn cursor track on 00COH 04/04
SF_TRACK _ OFF Turn cursor track off 00COH 04/06
SF_CREATE _EVENT Establish a new routine to be 00COH 04/08
called on logical device events
SF_EVENT _ON Enable event call to parent 00COH 04/0A
driver
SF_EVENT _ OFF Disable event call to parent O0OCOH 04/0C
driver
SF__CLIPPING _ON Enable logical device clipping 00COH 04/0E
SF__ CLIPPING _ OFF Disable logical device clipping 00COH 04/10
F_SAMPLE Report absolute position of GID 00COH 06

Pointer Driver Function Definitions

F__ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_ POINTER, (if EVENT is enabled). In addition, this function passes the event to
V__STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response to a
logical hardware interrupt and not user callable.

On Entry: AH = F_ISR (OOH)
DH = Data Type
DL = Physical device drivers vector index.
ES:0 = Pointer to physical device driver
header and Physical Describe Record.
BP = V_LPOINTER (OOCOH)

For\Button Event:
BX = Button information.

Bit Value Definition

OFH-08H - Reserved

O7H 1 Button up
0 Button down

06H-00H Button number (0-7)

For Motion Event:

BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
SI = Z axis motion in raw data form.

Input System and HP-HIL 4-17

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_ON, SF_TRACK_ON

SF__INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F_SYSTEM (02H)

AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LPOINTER (O0OCOH)

On Exit: AH Return Status Code

BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)
This subfunction starts the logical pointer driver.
F SYSTEM (02H)

SF_START (02H)
V_LPOINTER (OOCOH)

On Entry: AH
AL
BP

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_REPORT __STATE (AX = 0204H)

This subfunction returns the LD _DEVICE_ STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE (04H)
BP = V_LPOINTER (00COH)
On Exit: AH = Return Status Code
DX = LD_DEVICE _STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF__VERSION _ DESC (AX = 0206H)

This subfunction returns the release date code and a double word puinter 1o the current version number.
The date code consists of two BCD coded bytes containing :ae year and week of release. i ne BL register
contains the number of years since 1960 and the BH registes cortains the week of the year.

4-18 input System and HP-HIL

On Entry: AH = F SYSTEM (02H)

AL = SF_VERSION_DESC (06H)
BP = V_LPOINTER (00COH)
On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF_DEF_ATTR (AX = 0208H)

This subfunction sets the attributes of the logical pointer driver to their default values. The default
attributes for the pointer driver are: LD_SIZE X = 639, LD SIZE_Y = 199 and LD_SIZE_Z = 100.

On Entry: AH = F_SYSTEM (02H)
AL = SF_DEF_ATTR (08H)
BP = V_LPOINTER (0OCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__GET__ATTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD_SIZE_X LD_SIZE_ Y and LD_SIZE_Z.

On Entry: AH = F_SYSTEM (02H)
AL = SF_GET_ATTR (0AH)
BP = V_LPOINTER (O0COH)
On Exit: AH = Return Status Code
BX = LD_SIZE X (logical size along X axis)
CX = LD SIZE Y (logical size along Y axis)
SI = LD _SIZE_Z (logical size along Z axis)

Registers Altered: AX, BX, CX, BP, DS
SF_SET__ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE X, LD_SIZE _Y and LD_SIZE Z in the Logical
Describe Record.

Input System and HP-HIL 4-19

On Entry: AH = F SYSTEM (02H)
AL = SF _SET_ATTR (OCH)
BX = LD_! " SIZE _X (logical size along X axis)
CX = LD_ " SIZE Y (logical size along Y axis)
SI = LD SIZE _ “Z (logical size along Z axis)
BP = V_ LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__TRACK__ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V__STRACK will be called
to update the graphics cursor (sprite) position.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_TRACK_ON (04H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__TRACK__OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_TRACK_OFF (06H)
BP = V_LPOINTER (0OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CREATE __EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V__EVENT__POINTER driver in the HP__ VECTOR_TABLE, V_EVENT__POINTER being the parent of
the logical pointer driver. The IP, CS, and DS of the previous routine are returned to the caller. Note
that this subfunction does not enable the event call to the parent routine; this must be done explicitly
using SF__ EVENT_ ON.

The ISR event records passed to the V. EVENT__POINTER driver will have one of the following two
formats depending on the Data Type stored in DL.

4-20 input System and HP-HIL

V_EVENT_POINTER Button ISR Event Record:
AH = F_ISR (O0OH)

DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H - Reserved
O7H 1 Button up
0 Button down
O6H-00H - Button number (0-7)
DH = Data Type
ES:0 = Pointer to V_LPOINTER device driver

header and Logical Describe Record.

V_EVENT _POINTER Motion ISR Event Record:

AH = F_ISR (OOH)

DL = Physical device driver’s vector address / 6

BX = Relative movement in the X direction
(Positive number indicates movement to the right)

CX = Relative movement in the Y direction
(Positive number indicates movement down)

DH = Data Type

ES:0 = Pointer to V_LPOINTER device driver header and
Logical Describe Record.
On Entry: AH = F_IO_CONTROL (04H)

AL = SF_CREATE_EVENT (08H)

BP = V_LPOINTER (OOCOH)

DX = DS of new V_EVENT_POINTER routine

SI = IP of new V_EVENT_POINTER routine

ES = CS of new V_EVENT_POINTER routine

On Exit: AH Return Status Code

DX = DS of previous V_EVENT_POINTER routine
SI = IP of previous V_EVENT_POINTER routine
ES = CS of previous V_EVENT_POINTER routine

Registers Altered: AX, DX, SI, BP, ES, DS
Related Functions: SF_EVENT_ON

This example shows how to use the SF_ CREATE__EVENT function. The routine EVENT will be the
event procedure that is called when events are enabled.

Input System and HP-HiIL. 4-21

EVENT PROC FAR
CMP AH, F_ISR 3 only support function F_ISR
JE PROCESS_EVENT '
MOV AH, RS_UNSUPPORTED
IRET
PROCESS _EVENT:
. code to process data (see
pointer event record)

we we

MOV AH, RS_SUCCESSFUL ; return successfulvbdmplétion
IRET
EVENT ENDP

MOV AH, F_IO CONTROL
MOV AL, SF_CREATE_EVENT
MOV BP, V_LPOINTER

MOV DX, DS 3y want to use the current data segment for event DS
PUSH CS

POP ES ; current CS is also segment of event routine

LEA SI, CS:EVENT ; get the IP of the event routine

PUSH DS ; save current DS '

CALL SYSCALL ; call extended BIOS driver

POP DS ‘

SF_EVENT__ON (AX = 040AH)

This subfunction enables the event (parent) call to the pointer event routine (V_ EVENT _POINTER).
The link to the pointer event routine must have already been established using SF_ CREATE__EVENT.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_EVENT_ON (OAH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT OFF

SF_EVENT__ OFF (AX = 040CH)
This subfunction disables the call to the pointer event routine.
On Entry: AH

AL
BP

F_IO_CONTROL (04H)
SF_EVENT_OFF (OCH)
V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4-22 Input System and HP-HIL

SF__CLIPPING __ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CLIPPING ON (OEH)
BP = V_LPOINTER {OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING _ OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical space, but
overflow or underflow may occur.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CLIPPING_OFF (10H)
BP- = V_LPOINTER (OCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F__SAMPLE (AH = 06H)

This function allows an application to poll the pointer device. This function reports the current absolute
position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (O06H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

BX = Current logical position along X axis

CX = Current logical position along Y axis

SI = Current logical position along Z axis

DL = LD_TRANSITION field of Logical Describe Record

DH = LD_STATE field of Logical Describe Record

ES:0 = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, 3P, DS, ES

Input System and HP-HIL 4-23

MOV AH, F_SAMPLE
MOV BP, V_LPOINTER
PUSH DS

CALL SYSCALL

POP DS

e we we we e

load function code

load vector address

save the current DS

call extended BIOS driver
restore DS

V__LTABLET Driver (BP = O0BAH)

This section contains a detailed description of the tablet driver. See Table 4-6 for a summary of
functions supported by the tablet driver.

Table 4-6. Tablet Driver Function Code Summary

Vector Function Function
Address Value Equate Definition

00BAH V_LTABLET Application interface
to Tablet

00BAH 00 F_ISR Logical Interrupt

O0OBAH 02 F_SYSTEM System functions

0CBAH 02/00 SF__INIT Initialize the driver
data area

OOBAH 02/02 SF_START Start driver

00BAH 02/04 SF_REPORT Report state of device

__STATE :
00BAH 02/06 SF_VERSION _ DESC | Report driver version
' number

0OOBAH 02/08 SF_DEF __ ATTR Set default logical
scaling attributes

00BAH 02/0A SF_GET _ATTR Get scaling attributes

00BAH 02/0C SF_SET __ATTR Set scaling attributes

O0OBAH 04 F 10 CONTROL 1/0 Control Functions

OOBAH 04/00 F_SF _10OCK Unsupported

00BAH 04/02 F_SF _UNLOCK Unsupported

4-24

Input System and HP-HIL

Table 4-6. Tablet Driver Function Code Summary (Cont.)

Vector Function Function
Address Value Equate Definition
O00OBAH ' 04/04 F_SF _TRACK _ON | Turn cursor track on
00BAH 04/06 F_SF _TRACK Turn cursor track off
__OFF
00BAH 04/08 F_SF _CREATE Establish a new
: __EVENT ‘ routine to be called on
logical device events
00BAH 04/0A F_SF _EVENT _ON Enable event call to
‘ parent driver
00BAH 04/0C vF__SF _EVENT Disable event call to
__OFF | parent driver
O0BAH 04/0E F_SF _ CLIPPING Enable logical device
_ON chpping
00BAH 04/10 F_SF _ CLIPPING Disable logical device
_ OFF clipping
00BAH 06 . F_SAMPLE Report absolute posi-
tion of GID

Tablet Driver Functions Definition

F__ISR (AH = O0H)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_TABLET, (if EVENT is enabled). In addition, this function passes the event to V__STRACK
80 that the sprite can be updated (if TRACK is enabled). This function is a response to a logical hardware
interrupt and not user callable.

On Entry: AH = F_ISR (OOH)
DH = Data Type
DL = Physical device driver’s vector index.
ES:0 = Pointer to physical device driver header
and Physical Describe Record.
BP = V_LTABLET (OOBAH)

For Button Event:
BX = Button information.

Input System and HP-HIL 4-25

Bit Value Definition

OFH-08H Reserved
1 Button up
0 Button down
06H-00H Button number (0-T7)

For Motion Event:

BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
SI = Z axis motion in raw data form.

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_ON, SF_TRACK_ON

SF__INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LTABLET (00BAH)
On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)
This subfunction starts the logical tablet driver.
F SYSTEM (02H)

SF_START (02H)
V_LTABLET (OOBAH)

On Entry: AH
AL
BP

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4-26 Input System and HP-HIL

SF_REPORT __STATE (AX = 0204H)

This subfunction returns the LD DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (O2H)
AL = SF_REPORT_STATE (04H)
BP = V_LTABLET (0OBAH)
On Exit: AH = Return Status Code
DX = LD DEVICE_STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION _ DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number. '
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION DESC (06H)
BP = V_LTABLET (0OBAH)

On Exit: AH Return Status Code

BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF__DEF__ATTR (AX = 0208H)

This subfunction sets the attributes of the logical tablet driver to their default values. The default
attributes for the tablet driver are: LD _SIZE X = 639, LD SIZE_Y = 199 and LD_SIZE_Z = 100.

On Entry: AH
AL
BP

F_SYSTEM (02H)
SF_DEF_ATTR (08H)
V_LTABLET (0OBAH)

nonou

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL .- 4-27

SF_GET__ATTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD_SIZE X, LD_SIZE_ Y and LD_SIZE_Z.

On Entry: AH = F_SYSTEM (02H)
AL = SF_GET_ATTR (OAH)
BP = V_LTABLET (0O0BAH)
On Exit: AH = Return Status Code
BX = LD_SIZE X (logical size along X axis)
CX = LD_SIZE_Y (logical size along Y axis)
SI = LD _SIZE Z (logical size along Z axis)

Registers Altered: AX, BX, CX, BP, DS

SF__SET__ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE_ X, LD_SIZE_ Y and LD_SIZE _Z in the Logical
Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_SET_ATTR (OCH)
BX = LD SIZE X (logical size along X axis)
CX = LD SIZE Y (logical size along Y axis)
SI = LD SIZE Z (logical size along Z axis)
BP = V_LTABLET (00BAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK_ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be called
to update the graphics cursor (sprite) location.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_TRACK_ON (04H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4-28 Input System and HP-HIL

SF_TRACK__OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_TRACK_OFF (06H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CREATE __EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V_EVENT__TABLET driver in the HP_ VECTOR_TABLE, V_ EVENT _TABLET being the parent of
the logical tablet driver. The IP, CS, and DS of the previous routine are returned to the caller. Note that
this subfunction does not enable the event call to the parent routine; this must be done explicitly using
SF_EVENT_ON.

The ISR event records passed to the V__ EVENT_TABLET driver will have one of the following two
formats depending on the data type stored in DL.

Format 1:
V_EVENT_TABLET Button ISR Event Record:

AH = F_ISR (O00H)
DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H - Reserved
O7H 1 Button up
(¢} Button down
06H-00H - Button number(0-7)
DH = Data Type v
ES:0 = Pointer to V_LTABLET device driver header

and Logical Describe Record.

Input System and HP-HIL 4-29

Format 2:
V_EVENT_TABLET Motion ISR Event Record:

AH = F ISR (OOH)
DL = Physlcal device driver’s vector address / 6
BX = A number between 0 and LD _SIZE X
CX = A number between 0 and LD _SIZE_Y
SI = A number between O and LD_SIZE Z
DH = Data Type
ES:0 = Pointer to V_TABLET device driver header and Logical
Describe Record.
On Entry: AH = F_IO_CONTROL (04H)
AL = SF CREATE EVENT (O08H)
BP = V_ LTABLET (0OBAH)
DX = DS of new V_EVENT TABLET routine
SI = IP of new V | _EVENT_ "TABLET routine
ES = CS of new V EVENT "TABLET routine
On Exit: AH = Return Status Code
DX = DS of previous V_ EVENT TABLET routine
SI = IP of previous V EVENT “TABLET routine
ES = CS of previous vV _EVENT_ “TABLET routine

Registers Altered: AX, DX, SI, BP, ES, DS
Related Functions: SF_EVENT_ON

This example shows how to use the SF_ CREATE__EVENT function. The routine EVENT will be the
event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH, F_ISR 3 only support function F_ISR
JE PROCESS_EVENT
MOV AH, RS_UNSUPPORTED
IRET
PROCESS EVENT:
code to process data (see
tablet event record)

we we

.

MOV AH, RS_SUCCESSFUL ; return successful completion
IRET
EVENT ENDP

MOV AH, F_IO_CONTROL
MOV AL, SF CREATE _EVENT
MOV BP, V_ LTABLET
MOV DX, DS ; want to use the current data segment
s segment for event DS
PUSH CS
POP ES ; current CS is also segment of event routine
LEA SI, CS:EVENT 3 get the IP of the event routine

e we we »

PUSH DS save current DS
CALL SYSCALL call extended BIOS driver
POP DS

4-30 Input System and HP-HIL

SF_EVENT__ON (AX = 040AH)

This subfunction enables the event (parent) call to the tablet event routine (V__EVENT__TABLET). The
link to the tablet event routine must have already been established using SF_ CREATE__EVENT.

On Entry: AH = F_IO _CONTROL (04H)
AL = SF_EVENT_ON (OAH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_OFF

SF_EVENT__OFF (AX = 040CH)

This subfunction disables the call to the tablet event routine.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_EVENT_OFF (OCH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CLIPPING __ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH
AL
BP

F_IO_CONTROL (04H)
SF_CLIPPING_ON (OEH)
V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 4-31

SF__CLIPPING __ OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical space, but
overflow or underflow may occur.

On Entry: AH
AL
BP

F_IO_CONTROL (04H)
SF_CLIPPING_OFF (10H)
V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_SAMPLE (AH = 06H)

This function allows an application to poll the tablet device. This function reports the current absolute
position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F SAMPLE (O6H)

BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

BX = Current logical position along X axis

CX = Current logical position along Y axis

SI = Current logical position along Z axis

DL = LD_TRANSITION field of Logical Describe Record

DH = LD _STATE field of Logical Describe Record

ES:0 = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES
The following is an example of how to call the F_ SAMPLE function.
PUSH BP, V_LTABLET

MOV AH, F_SAMPLE
MOV BP, V_LTABLET ;

load function code
load vector address

e we we e we

PUSH DS save the current DS
CALL SYSCALL call extended BIOS driver
restore DS

POP DS

Application Event Driver Example

The following program is an example of how to input touchscreen data using application event interrupts.
The program installs an application event driver using the SF_ CREATE__EVENT function and enables
event interrupts using the SF_ EVENT_ON function. The event handler supports only the F__ ISR
function which processes both button and motion Logical ISR Event Records.

4-32 Input System and HP-HIL

Touch Example

286¢
page
title

®%=DRIVER HEADER===ssscssuessuussnsssessnnuenssnsnnssannnansenannannnns

NAME
DESCRIPTION
LIST OF SECTIONS:

NOTE

Since the HP interrupt number can change, all "int HP_ ENTRY" lines in
the following example should be replaced with "CALL SYSCALL" (this
routine finds and uses the current HP interrupt number).

TOUCH Example

TOUCH Example

This program demonstrates how touch works

0000000000
OO0 000000O
COMMOPBBABNOC

[R-Z-T-X-T-Y-X-F-¥-T-3
@
il

LR IR AR
o
(=]
o
o

cocococoococoo
coooococoo0o
OCO0OO0O0O0O0O
ococococoo

page

HP_SHEADER

HP_ENTRY

SYSCALL
1fab

ondif

ATR MP
CL_RuLL
F_TISR

b

F_IO CONTROL
SF_CREATE EVENT
SFTEVENT_OFF
SF”EVENT_ON
RS_SUCCESSFUL
RS UNSUPPORTED
T_RC_BUTTON

T TS
VIDOLITTLE
V_LTOUCH
V_EVENT_TOUCH

TERMINATE_PROC

TS_EVENT_HEADR
EXAM_HP_ATTR

TLE.V_DOLITTLE>

TS_EVENT _HEADR
DATA_SEQ

macro
<vector>
mov

int
endm
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

segment
10
HP_SHEADE

ends
segment

[=X-T-X-Y-Y-Y-¥-¥-1

O8FH
vector

bp,vector
HP_ENTRY

8000H
0000H
0000H
0004H
0008H
000CH
000AH
0000H
00024
09H iver to the logical drive
_KC_BUTTON and filters
daTa stream

80 x 0. 25 range - defa

reported b{ the gh{iicul
PGID translates T_KC_ITF
. any other scancode out o
4SH . Specially formed data
0008H

00C6H

0060H

OlH
100000008
4CH

* ~<

ATR_HP
<EXAM_HP_ATTR.V_EVENT_TOUCH/8 V_EVENT_TOUCH.CL_NULL . CL_NULL.V_

Input System and HP-HIL 4-33

Touch Example (cont.)

2277 SAVE_CS ©dw ?
2?27 SAVE_IP dw ?
2227 SAVE DS dw ?
SO0 [STACK dw 80 dup (?7)
77?72
)|
77?77 STK_TOP dw ?
DATA_SEG ends
CODE_SEG segment
assume cs:CODE SEG ds :DATA_SEG,ss DATA_SEG
B8 ---- R BEGIN: mov ax ,DATA”S :Load up the ds register with the data segment
8E D8 mov ds , ax
8¢ DO mov 13, ax :The stack segment is also in the code segment
88 26 00A6 R mov sB.STK TOP ;Point to the top of the stack
E8 001D R call TOUCH_ENABLE
84 01 INPUT_LOOP: mov ah.REID_CHAR_ECHO :Read a character w/echo until "~*
CcD 21 int 21H
3C SE cmp al "~" ;Is this the exit character?
75 F8 jne INPUT LOOP
E8 0084 R EXIT_PROG: call TOUCH RESTORE
B4 4C mov ah, TERMINATE_PROC (Exit
co 21 int 21R
TOUCH_ENABLE proc
B4 04 L mov ah F_IO_CONTROL :Move my touch event handler into the HP vector tab
e
80 08 mov al,SF_CREATE_EVENT
8C CB mov bx, cs
8E C3 mov es . bx
8D 36 0048 R lea si,TOUCH_ HANDLER
BA ---- mov dx, TS _EVENT_HEADR
syscall V_LTOUCH
BD 00C6 + mov bg.v LTOUCH
CD 6F + in! H NTRY
8C Co mov ax, ;Save the old event values
A3 0000 R i mov word ptr SAVE_CS ax
89 36 0002 R mov word ptr SAVE_IP si
89 18 0004 R mov word gtr SAVE DS ,dx
B4 04 mov 0 _CONTROL ;Start accepting calls
B0 0A mov al SF EVENT_ON
syscall v_LT0OCH
BD 00C6 + mov bg,v LTOUCH
CD 6F + int HP_ENTRY
c3 ret
TOUCH_ENABLE endp
TOUCH_HANDLER proc
80 FC 00 cmp ah,F ISR :Logical interrupt?
74 03 je PROCESS ISR . yes, continue
Bé 02 mov ah RS_UNSUPPORTED ‘set return code
C iret
80 PROCESS_ISR: pusha .Save all the regixterl
80 FE 45 cmp dh T_TS ;1s this a position report or a make/break report
74 07 je short POS_REPORT
80 FE 09 cmp dh,T_KC_BUTTON

4-34 input System and HP-HiL

Touch Example (cont.)

~

>
O rOO0O0OH-O0OO0NH—-OUMONO
O OrTMOPWOrTMMPUL—NOOW—NWM

00000 000000000000 OOOOODOCODOOD
OOO0O0O0O OOO0O00O0OO00OOCOOO0OOOOOODOSOOO
WWONMEX PDOBPPVEEPONNNANLLTDAODDBHO AU N
N TNMOM® D&2ee6WFOMOPRRAENCOMOONNW-NTTW®©
-]
v

B4 04
B0 0C
BD 00C6 .
CD 6F +
B4 04
B0 08
88 1E 0000 R
8E C3
0097 8D 36 0002 R
0098 8B 18 0004 R
008F BD 00C6 +
00A2 CD 6F +
00Ad C3
00AS TOUCH_RESTORE
00AS5 CODE_SEG

POS_REPORT:

80 BUTTON_REPORT

BUTTON_PUSH

EXIT_TOUCMH:

TOUCH HANDLER
TOUCH RESTORE

je
)mp
mov
mov
mov
mov
int
mp
est
j2
mov
mov
mov
int
jmp
mov
mov
mov
int
popa
mov
iret
endp
proc
mov
mov
syscall

mov
mov

mov

mov

lea
mov
syscall

ret
endp
ends
end

short BUTTON REPORT
short EXIT_TOUCH
ah,02H

dh . cl

dl.bl

bh.0

10H

short EXIT TOUCH

bl MAKE BREAK BIT
shor!HBUTYON_FUSH

10H

short EXIT_TOUCH
ch.0

cl. 0fh

ah, 1

10H

ah RS_SUCCESSFUL

ah F_I0 CONTROL
al.SF_EVENT_OFF

V_LTOUCH
mov bp .V _LTOUCH
int Hg ENTRY

ah F_I0 _CONTROL
al,SF_CREATE_EVENT
bx ,word ptr SAVE_CS
es bx

si word ptr SAVE_IP
dx .word ptr SAVE DS
V_LTOUCH

mov bB,V LTOUCH
int HP_ENTRY

BEGIN

.Move the cursor to the recieved position
.using the standard IBM BIOS int 10

:That finishes that ISR
.See 1if this is a touch or a release

:0n a release make the cursor back into
.a line

.That finishes a release ISR
.Make the cursor into a box on touch

.Restore all the registers
.Set the return stafus
.Return from the ISR

.Stop accepting calls

.Restore the old event handler

Input System and HP-HIL 4-35§

Touch Example (cont.)

Macros:

SYSCALL .

Structures and records:

HP_SHEADER
DM_ATR
DHZNAME _ INDEX

DH_V

V_DEFAU

Segments and Groups:

CODE SEG

DATA

~SEQ
TS_EVENT_HEADR
Symbols:

BUTTON_PUSH. .
BUTTON REPORT.

vv;u:‘nﬂmmn
orzd 2 2
»

Xz
x
0

ort
co
[<1-)

»
x =
-
Ay

CONTROL

SF CREATE _EVENT.

SF_EVENT_OFF
SF_EVENT_ON

STACK
STK

T
TERﬂINATE PROC

TOUCH_ENABLE
TJOUCH HANDLER
TOUCH RESTORE

EVENT

_LTOUCH

J_KC_BUTTON
T°TST .
DOLITTLE

YOUCH

48576 Bytes free

warning
Errors

4-36

Severe
Error:

input System and HP-HIL

Length

0002

wWidth ¢ field
Shift wWidth
0010 0009
0000

0002

0004

00086

0008

000A

000C

000E

000F

Number

Number 000C

N PROC 0084
Number 0008
Number 0045
Number 0006
Number 0060
Number 00C8

s
Mask Initial

Combine Class

Attr

CODE_SEG
CODE_SEG
CODE_SEQG

CODE_SEG
CODE_SEG

CODE_SEG

CODE_SEQ
CODE_SEG

DATA_SEG
DATAZSEG

CODE_SEG
CODE_SEG
CODE_SEG

Length

Length
Length
Length

Hardware Interface Level

The hardware interface of the Input System is composed of a set of drivers to respond to hardware
interrupts and to process physical data from the input devices into a form usable by the application
interface drivers. These hardware interface level drivers are shown in Figure 4-2.

Overview

This section describes the drivers, data structures, and interrupt service routine (ISR) event processing
that takes place below the application interface level. The following data flow expands on step 2 of the
data flow presented previously. A detailed explanation of each step is presented after the data flow.

1. The user touches the screen. This causes a hardware interrupt which is managed by the 8259A’s
interrupt controller service (V__S8259). V_S8259 responds to the interrupt controller chip and
transfers control to the HP-HIL driver.

2. The HP-HIL driver (V__HPHIL) services the HP-HIL controller chip, retrieving the input device
data. V__HPHIL processes the input data and transfers control to the Input System dispatch service.

3. The dispatch service (V__SINPUT) transfers control to the appropriate physical device driver based
on the source of the input data (in this case the physical touchscreen driver).

4. The physical touchscreen driver builds the Physical Describe Record and transfers control to the
application interface driver V__LTOUCH.

V__S8259 provides a funnel point for managing HP specific hardware. The Input System hardware
communicates with the hardware interface drivers via two interrupts: the 8042 service request (SVC) and
the HP-HIL controller interrupt. The HP-HIL controller interrupt is chained to the HP-HIL driver
(V_HPHIL); i.e., when V__S8259 receives an HP-HIL controller interrupt it generates an HP__ ENTRY
software interrupt to transfer control to V_ HPHIL.

The HP-HIL driver services the HP-HIL controller and generates the appropriate Physical ISR Event
Record(s). After processing the input data, V_ HPHIL chains to V__SINPUT.

Input System and HP-HIL 4-37

Application

I

Application
Interface
Drivers
Application Interface Level
Touch Screen Pointer Tablet
Physical GID Physical GID Physical GID
Driver Driver Driver
input Dispatch
Service
(V_SINPUT)

HP-HIL Controller
Driver
(V_HPHIL)

8259A interrupt
Controller Driver
(V_S8259)

Hardware Interface Level

l Physical input Devices l

Figure 4-2. Hardware Interface Level Drivers

V_SINPUT chains to the appropriate physical device driver based on the vector index (vector address
divided by six) stored in the Physical ISR Event Record (DL register). It provides an entry point into the
Input System for non-HP-HIL devices. V__SINPUT also provides driver mapping functions that will be
discussed later in this chapter.

Two physical drivers will be discussed later in this chapter. The first is the physical GID driver (PGID),
which handles both absolute and relative data. Because PGID can handle both types of GID data, it can
chain to any logical GID driver; this forms the basis for Input System device driver mapping. The second
physical driver is the null device driver (V__PNULL), which serves as a handler for unsupported devices.

Device Driver Mapping

Each driver in the Input System has a vector in the HP_ VECTOR__TABLE, and a driver header. Each
driver header has two fields which determine the mapping of the driver. One field contains the vector of
the driver’s parent driver, and the other contains the vector of the driver’s child driver. Refer to Chapter
2 and Appendix G for a detailed description of driver headers.

Calls are made to the vector address contained in the parent field to pass the interrupt on to the next
driver in the device driver chain, moving the data from the hardware toward the application via the
desired logical GID driver. Hardware commands from the application are passed down the device driver
chain to the device via the vector address contained in the child vector field. By changing the value of
the parent or child vector field, the sequence of drivers called to handle an interrupt or function request
is changed. In general, an application may re-map a driver by changing the driver header directly.
Functions are provided by the V_SINPUT service to map the physical GID drivers to the logical GID
drivers.

4-38 Input System and HP-HIL

Device Emulation

Device emulation occurs when one or more physical devices are mapped to a logical device that does not
represent the original source of the data. For example, mapping a physical mouse driver to a logical
touchscreen driver allows the mouse to look like a touchscreen to the application. The key requirement
for a logical device driver to emulate other devices is that it accept both absolute and relative data. The
logical touchscreen driver which reports absolute data must accept both absolute (touch) data and relative
(mouse) data.

An example of device mapping and emulation occurring in the system is the translation of mouse input to
Cursor Control keypad (CCP) input. Since standard DOS processes keyboard input only, (not mouse
input), the physical GID driver which processes mouse input is mapped, in its default state, to a driver
called V_PGID CCP. This driver causes mouse input to emulate input from the CCP. For an application
which processes industry standard mouse input (INT 33H) to use the HP Mouse, the mouse physical GID
driver should be mapped to the installable HP-HIL Mouse Driver (V_LHPMOUSE), using the HP-HIL
mouse driver’s F33 INSTALL function. (Note that the HP-HIL Mouse Driver is shipped on a separate
disc with all ES, QS, and RS Vectra series computers)

‘Data Structures

The hardware interface level uses two major data structures: the Physical Describe Record and the
Physical ISR Event Record(s). These data structures help keep track of the numerous events occurring in
the Input System.

Physical Describe Record

The Physical Describe Record is used by the physical GID drivers to keep track of the current state of
their respective devices. Each of the physical GID drivers has a Physical Describe Record located directly
after the driver header, starting with memory address DS: 0010H. Table 4-7 gives the field types and
offsets of the Physical GID Device Describe Record. An explanation of the Physical Describe Record
fields follows

Table 4-7. Physical GID Device Describe Record

Field Description Type Offset

Driver Header Driver Header ' 00H
D_SOURC Input type and device BYTE 10H

address
D HPHIL_ID Device ID BYTE ‘ 11H
D DESC_MASK Describe header byte BYTE 12H
D 10 MASK Device I/0 descriptor byte BYTE 13H
D__XDESC__MASK Extended describe header BYTE 14H
‘| byte

Input System and HP-HIL 4-39

Table 4~7. Physical GID Device Describe Record (Cont.)

Field Description Type Offset
Driver Header Driver Header 00H

D_MAX AXIS Maximum number of axes BYTE ISH

D_CLASS Device class BYTE 16H

D_PROMPTS Number of button/prompts BYTE 17H

D_PARAGRAPHS This record size in BYTE 18H
paragraphs

D__BURST_LEN Maximum output burst BYTE 19H
length

D_WR_REG Number of write registers BYTE 1AH

D_RD REG Number of read registers BYTE 1BH

D_ TRANSITION Button transitions BYTE ICH

D_STATE Current state of the BYTE IDH
buttons

D_RESOLUTION Physical device resolution WORD 1EH

D_SIZE_X Maximum x-axis count WORD 20H

D_SIZE_ Y Maximum y-axis count WORD 22H

D ABS X X position data for absolute WORD 24H
devices

D_ABS Y Y position data for absolute | WORD 26H
devices

D_REL_X X delta for relative devices WORD 28H

D_REL_Y Y delta for relative devices WORD 2AH

D_ACCUM_ X Reserved WORD 2CH

D_ACCUM_Y Reserved WORD 2EH

D_SIZE Z Maximum Z-axis count WORD 30H

D_ABS Z Z position data for absolute WORD 32H
devices

D_REL Z Z delta for relative devices WORD 34H

D_ACCUM_7Z Reserved WORD 36H

4-40 - Input System and HP-HIL

Physical Device Record Definition

D SOURCE

D_HPHIL_ID

D_DESC_ MASK

D_I0_MASK

D_XDESC_MASK

D_MAX_ AXIS

D_CLASS

D__PROMPTS

D _PARAGRAPHS

D_BURST_LEN

D_WR_REG

D_RD_REG

D__TRANSITION

D_STATE

D_RESOLUTION

D_SIZE_X

D_SIZE_Y

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the ap-
propriate physical GID data type. (See Table 4-8.) Bits 3-0 are the link
address of the physical device.

ID byte of the physical device which last reported data. See Table 4-2
for a list of HP-HIL ID bytes.

Physical device describe byte. This byte contains information about the
physical device characteristics. See the HP-HIL Technical Reference
Manual for more information.

Physical device 1/0 descriptor byte. This byte contains information on
the number of prompts and acknowledges the device supports. See the
HP-HIL Technical Reference Manual for more information.

Physical device extended describe byte. This byte contains additional
device characteristics. See HP-HIL Technical Reference Manual for more
information.

Maximum number of axes supported by the device. Valid range is 0-2.

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 is the
number of prompts. Bits 3-0 is the number of buttons.

Indicates size of this record in paragraphs: 0 means 3 paragraphs, 1
means 4 paragraphs.

Maximum number of bytes that can be output to the device using a
single write command.

Number of write registers supported by the device.

Number of read registers supported by the device.

Transitions reported per button; i.e. a set bit indicates that the cor-
responding button was either pushed or released. Bit 7 corresponds to
button 7, etc.

Current state of the buttons. O is down, 1 is up. Bit 7 corresponds to
button 7, etc. If D__STATE is XOR’ed with D_ TRANSITION the result
is the previous button state.

This is the resolution of the physical device. The resolution is in counts
per meter for devices that report 8§ bits of data. For devices that report
16 bits of data, the resolution is in counts per centimeter.

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

Input System and HP-HIL 4-41

D _ABS_X X position data for devices which report absolute coordinates (absolute

devices).
D ABS Y Y position data for devices which report absolute coordinates.
D _REL_X Latest change in x position for devices which return coordinates relative

to the previous position (relative devices).

D REL_ Y Latest change in y position for devices which return coordinates relative
to the previous position.

D_SIZE_Z Maximum count (in units of resolution) for the z-axis .
D ABS_Z Z position data for devices which report absolute coordinates.
D_REL_Z Latest change in z position for devices which return coordinates relative

to the previous position (relative devices).

Physical ISR Event Records

A Physical ISR Event Record is not a data structure in the truest sense, but is a set of register definitions
for inter-driver communication of input events. The following define the Physical ISR Event Records.

GID Button ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H Reserved
O7H 1 Button up
0 Button down
06H-00H Button number (0-7)
DH = Data Type
ES:0 = Pointer to physical device driver

"header and Physical Describe Record.

GID Motion ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver’s vector address / 6
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
SI = Z axis motion in raw data form.
DH = Data Type
ES:0 = Pointer to physical device driver

header and Physical Describe Record.

4-42 Input System and HP-HIL

The button number in the Button Transition Information field (BX) denotes which button on the device
is reporting data. Of special interest is button seven (proximity indicator), which is currently used by
absolute devices to indicate that the device measurement field is active; ie., someone is touching the
touchscreen, or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of physical GID data stored in
the event record. For button events, this value will be T__KC_BUTTON. For a complete list of physical
GID event data types see Table 4-8.

Table 4-8. Physical GID Event Data Types

Type Value Definition
T_KC_BUTTON 09H Button data.
T_RELOS8 40H Signed 8 bit relative data
T_ RELI16 41H Signed 16 bit relative data
T__ABS08 42H Unsigned 8 bit absolute data
T__ABSI16 43H Unsigned 16 bit absolute data

Hardware Interface Level Drivers

This section describes the hardware interface level drivers in detail.

V__S8259 Driver (BP = 001EH)

The V__S8259 driver services the HP interrupt. Three interrupt sources will genterate this interrupt: the
8042 SVC (Service port) service request, the HP-HIL controller, and the 8042 SCAN interrupt.

When an HP interrupt occurs, the V__S8259 driver will determine the source of the interrupt and
perform an F__ISR call to one of the three drivers:

= the V__8042 driver for an 8042 SVC interrupt,
[] the V__ HPHIL driver for an HP-HIL controller interrupt,
@ the V_SCANDOOR driver for a SCAN interrupt.

In addition to initiating response to the hardware interrupts, the 8259A driver has other functions which
initialize the interrupt vectors and program the proper parameters into the 8259A interrupt controllers.

Input System and HP-HIL 4-43

V__S8259 Driver Function Definitions

A summary of the V__S8259 function codes is provided in Table 4-9.

Table 4-9. V__S8259 Function Code Summary

Function Vector Func.

Equate Definition Address Value
V__S8259 82v59 interrupt controller O01EH

support

F_SYSTEM System functions OO0IEH 02
SF__INIT Initialize HP-HIL IRQ O0C1EH 02/00
SF_START Enable HP-HIL interrupts 001EH 02/02
SF_VERSIOI;I __DESC Report HP version number O01EH 02/06
SF_GET_IRQ Get HP IRQ number 001EH 04/14

F__ISR (AH = O0H)
Because this driver directly services hardware interrupts from an 8259A interrupt controller, this

function is not applicable. If called, this function will return a Return Status Code of
RS UNSUPPORTED.

SF_INIT (AX = 0200H)

This subfunction sets the interrupt vectors for the HP-HIL IRQ (default IRQ 12). This subfunction leaves
interrupts disabled. They must be enabled with the SF__START subfunction.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BP = V_S8259 (O01EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4~-44 Input System and HP-HIL

SF__START (AX = 0202H)
This subfunction enables the HP-HIL interrupts.
On Entry: AH

AL
BP

F_SYSTEM (02H)
SF_START (02H)
V_S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__VERSION __DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960, and the BH register contains the week of the year.

On Entry: AH
AL
BP

F_SYSTEM (02H)
SF_VERSION_DESC (06H)
V_S8259 (001EH)

On Exit: AH Return Status Code

BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF__GET__IRQ (AX = 0414H)

This function gets the current IRQ number associated with the SCAN/STATE/HIL/SVC interrupts.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_GET_IRQ (14H)
BP = V_S8259 (001EH)

On Exit: AH
BL

RS_SUCCESSFUL (OOH)
Current IRQ

ton

Registers Altered: AX, BX, BP, DS

V__HPHIL Driver (BP = 0114H)

The HP-HIL driver retrieves input data from the HP-HIL controller and builds an ISR Event Record to
pass to V__SINPUT.

A summary of the V__HPHIL driver function codes is provided in Table 4-10.

Input System and HP-HIL 4-45

Table 4-10. V__HPHIL Driver Function Code Summary

Function Vector Func.
Equate Definition Address Value
V_HPHIL Set up HP-HIL to O114H
INPUT driver
linkage
F_ISR Logical Interrupt 0114H 00
F_SYSTEM System Functions 0114H 02
SF_INIT Initializes the driver | 0114H 02/00
data area.
SF_REPORT Reports state of 0114H 02/04
__STATE device
SF__VERSION Reports driver ver- 0114H 02/06
__DESC sion number.
SF_OPEN Put driver in open 0114H 02/0E
state.
SF__CLOSE Put driver in closed 0114H 02/10
state.
F_10_CONTROL 1/0 control to 0114H 04
driver
SF_CRV_CRV Reserved 0114H 04/04
_MAJ_MIN
SF_CRV Forces HP-HIL to 0114H 04/06
__RECONFIGURE reconfigure all
devices.
SF_CRV__WR Writes a prompt to 0114H 04/08
__PROMPTS a device
SF_CRV_WR Writes an acknow- 0114H 04/0A
__ACK ledge to a device
SF_CRV Sets either 30Hz or 0114H 04/0C
__REPEAT 60Hz repeat rate
SF_CRV Cancels keyboard 0114H 04/0E
__DISABLE repeat rate
__REPEAT
4-46 input System and HP-HIL

Table 4-10. V_HPHIL Driver Function Code Summary (Cont.)

Function Vector Funec.
Equate Definition Address Value
SF__CRV Issues seif -test 0114H 04/10
_SELF _TEST command to physi-
cal device.
SF_CRV Gets status from 0114H 04/12
_ REPORT any HP-HIL device
__STATUS that needs to report
SF_CRV Returns the ASCII 0114H 04/14
_REPORT NAME name for a device
SF__GET Gets physical device | 0114H 04/20
__DEVTBL table address
SF_SET _ DEVTBL | Sets physical device 0114H 04/22
table address
SF__DEF Sets default physical 0114H 04/24
__DEVTBL device table
F_PUT _BYTE Writes one byte to 0114H 06
specified HP-HIL
device.
F_GET_BYTE Reads one byte 0114H 08
from specified
HP-HIL device.
F_PUT_BUFFER Writes a string of 0114H OA
bytes to HP-HIL
device.

Input System and HP-HIL 4-47

V__HPHIL Driver Function Definitions

F__ISR (AH = O0H)

This function is called by the V__S8259 driver to initiate processing of an interrupt from the HP-HIL
controller. This function reads input device data from the HP-HIL controller, generates one or more ISR
Event Records, and chains to V__SINPUT. THIS FUNCTION SHOULD ONLY BE CALLED BY THE
V_S8259 DRIVER.

F_ISR (OOH)

On Entry: AH _
V_HPHIL (0114H)

BP

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__INIT (AX = 0200H)

This subfunction initializes the driver and HP-HIL controller. Refer to Chapter 8 for a complete
discussion of the protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (O0H)
BX = “Last used DS" in HP Data Area
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code
BX = New "last used DS" in
HP Data Area

Registers Altered: AX, BX, BP, DS

SF__REPORT __STATE (AX = 0204H)

This subfunction returns the current status of V. HPHIL.

F_SYSTEM (02H)
SF_REPORT_STATE (04H)
V_HPHIL (0114H)

On Entry: AH
AL
BP

Return Status Code
Status word

On Exit: AH
BX

4-43 Input System and HP--HIL

Bit

OFH
OEH

ODH
OCH
OBH
OAH
OSH
O08H
O7H
O6H

Value

O -

—

b

05SH-04H

03H
02H
O1H
OOH

— b

1

Definition

Reserved

HP-HIL is OFF

HP-HIL is ON

Reserved

Timeout has occurred

Output request has completed
Reserved

Error during output request
HP-HIL link has been reconfigured
Reserved

HP-HIL driver is open

HP-HIL driver is closed
Reserved

General failure

No devices attached.

Reserved v

Link configuration in progress

Registers Altered: AX, BX, BP, DS

SF__VERSION __ DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH
AL
BP

On Exit: AH
BX

CcX

ES:DI

Registers Altered:

F_SYSTEM (02H)
SF_VERSION_DESC (O6H)
V_HPHIL (0T14H)

Return Status Code

Release date code

Number of bytes in current version number
Pointer to the current version number

AX, BX, CX, DI, ES, BP, DS

SF__OPEN (AX = 020EH)

This subfunction puts the HP-HIL driver in the open state. When the driver has been placed in the open

state, output to the HP-HIL devices is allowed.

On Entry: AH
AL
BP

F_SYSTEM (02H)
SF_OPEN (OEH)
V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL

SF_CLOSE (AX = 0210H)

This subfunction puts the HP-HIL driver in the closed state. When the driver has been placed in the
closed state, output to the HP-HIL devices is not allowed.

On Entry: AH = F_SYSTEM (02H)
AL = SF_CLOSE (10H)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CRV __RECONFIGURE (AX = 0406H)

This subfunction instructs the HP-HIL controller to reconfigure the link.

On Entry: AH = F_IO CONTROL (04H)
AL = SF CRV RECONFIGURE (O6H)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CRV__WR __PROMPTS (AX = 0408H)

This subfunction issues a prompt command to a device on the HP-HIL link. The prompt command is
either specific (prompt number 1-7) or generic (a prompt number other than 1-7). ’

On Entry: AH = F_IO_CONTROL (04H)

AL = SF CRV WR_PROMPTS (08H)

BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved
ODH 1 Valid address is present in DH

o Reserved for future enhancement,
currently returns RS_FAIL

OCH 1 Valid register is present in DL
OBH-00H Reserved

DH = HP-HIL device address

DL = Prompt number

BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4-50 input System and HP-HIL

SF__CRV__WR _ ACK (AX = 040AH)

This subfunction issues an acknowledge command to a device on the HP-HIL link. The acknowledge
command is either specific (acknowledge number 1-7) or generic (an acknowledge number other than

1-7).

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CRV_WR_ACK (OAH)
BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved
ODH 1 Valid address is present in DH
0 Reserved for future enhancement,
currently returns RS_FAIL
OCH 1 Valid register is present in DL
OBH-00H Reserved
DH = HP-HIL device address (major address)
DL = Acknowledge number
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CRV __REPEAT (AX = 040CH)

This subfunction sets the key repeat rate of a specific HP-HIL device. A repeat rate of 30 or 60 times a
second may be specified. This subfunction will operate only if the HP-HIL driver is in the open state.

On Entry: AH = F IO CONTROL (04H)

AL = SF_CRV_REPEAT (OCH)
BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved.
ODH 1 Valid address is present in DH.
) Reserved for future enhancement,
currently returns RS_FAIL.
OCH 1 vValid register is present in DL.
OBH-0OOH Reserved.
CL = 0 for a repeat rate of 30 Hz, 1 for 60 Hz
DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 4-51

SF__CRV __DISABLE __REPEAT (AX = 040EH)

This subfunction disables the key repeat of a specified HP-HIL device. This subfunction will operate only
if the HP-HIL driver is in the open state.

On Entry: AH = F_IO CONTROL (04H)

AL = SF_CRV_DISABLE_REPEAT (OEH)
BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement,
currently returns RS FAIL.
OCH 1 Valid register is present in DL.
OBH-0O0H Reserved
DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H) '

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CRV__SELF__TEST (AX = 0410H)

This subfunction initiates device self-test on the specified HP-HIL device. The HP~HIL device will
respond with a one byte status code indicating the result of the test. This subfunction should not be called
with an HP-HIL device address of zero (all devices), as the test could then take up to 1.5 seconds to
execute. Also, if one of the devices fails, there would be no way to determine which device reported a
failure.

.On exit, the buffer has the return status of the self-test done on the physical device.

On Entry: AH = F_IO CONTROL (04H)
AL = SF_CRV_SELF_TEST (10H)
BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved
ODH 1 Valid address is present in DH
0 Reserved for future enhancement,
currently returns RS_FAIL
OCH 1 valid register is present in DL
OBH-0O0H Reserved
DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)
ES:SI = Pointer to a buffer area

4~52 Input System and HP-HIL

Return Status Code
Pointer to buffer area
Number of bytes in buffer

On Exit: AH
ES:S1
CcX

Registers Altered: AX, CX, BP, DS

SF__CRV _ REPORT __STATUS (AX = 0412H)

This subfunction issues a send status command to a specified HP-HIL device. The returned status
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to the
subfunction. This subfunction will operate only if the HP-HIL driver is in the open state.

On Entry: AH F 10 CONTROL (04H)

AL = SF_CRV_REPORT_STATUS (12H)
BX = Device address indicator
Bit Value Definition
OFH-OEH Reserved
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement,
currently returns RS_FAIL.
OCH 1 Valid register is present in DL.
0BH-00H Reserved
DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)
ES:SI = Pointer to a buffer area
On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area
CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

Input System and HP-HIL 4-53

SF__CRV _REPORT_NAME (AX = 0414H)

This subfunction issues a report name command to a specified HP-HIL device. The returned name
information ranges from 1 to 15 bytes in length. A pointer toa 15 byte buffer must be passed to the
subfunction. This subfunction will operate only