19th Annual HP User Conference and Expo

Interex'93

San Francisco, CA = September 19-23, 1993

RETURN TO:
HPL/RESEARCH LIBRARY
BUILDING #2L
P.0. BOX 10490 :
7
PALO ALTO, CA. 94303- 09
PHONE # 415-857-3092

VOLUME 1

Proceedings

Sponsored by Interex, The International Association of Hewlett-Packard Computer Users

YA 7. &
HIq9 #1587

@95
vV, |

Proceedings

Volume 1 of the

19th Annual HP User Conference and Expo
Interex 93

in
San Francisco, CA e
September 19-23, 1993

Interex The International Association of Hewlett-Packard Computer Users

Index by Paper Number

Koo1 - . Technotrends: Going Beyond Your Competition
Daniel Burrus - Burrus Research Associates, Inc.

P0O5 ; Rightsizing: The Key Technology and Business Choices We Face
John R. Logan - Aberdeen Group, Inc. .

1000 Using RTE More Effectively in an Increasingly non-RTE HP World
Stephen Gauss - U.S. Naval Observatory

1001 E Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
Gerald Lisowski - Zeneca, Inc. .

1002 . Golf and the HP1000
Dave Medlicott - Hewlett Packard Co. . . .

1003 Managing Multiple Identical RTE-A Systems: A Customized Approach
Larry Ridgley - Hewlett-Packard Co. .

1005 Using Modems on the HP 1000 A Series Computers
Alan lebetts Consultant

1006 Standards-Based Networking Services on the HP 1000
Lynn Rodoni, Mydung Tran - Hewlett-Packard Co.

1007 - An HP-UX Compatible Spooler for RTE
Todd Poynor - Hewlett-Packard Co. .

1008 The HP-RT Real-Time Operating System
Kevin Morgan - Hewlett-Packard Co.)

1010 Managing PA RISC Machines for Real-Time Systems.
George Anzinger - Hewlett-Packard Co. .

1011 RTE to UNIX Migration Tools and Techniques
Robert Combs - Combs International .

1013 Stump the RTE Experts
Alan lebetts Consultant

1014 MEF Users - Should I consider an Upgrade?
Esther Heller - Hewlett-Packard Co. :

2000 Remote Network Monitoring and Fault Isolation Using OpenView
Jeff Hodges - Hewlett-Packard Co.

2001 Evaluating System Capability: IBM to HP-UX Benchmark Case Study
Raymond Riedel - Hewlett-Packard Co. i

2002 Unlocking the Secrets of UNIX Security
Donna Borsani - Hewlett-Packard Co.

2004 Unix Panic? Don't Panic!
Dennis McClure HP - Nonh American Response Center

;2006 Migrating to a Client/Server Computmg Architecture One Step at a Tlme

Patricia O’Brien - Hewlett-Packnrd Co.

2007 Why Did My Backup Fail?
Wolfgang Fnednch Hewlett-Packard Co. . .

2008 AWK Programming
David Totsch - La Salle National Bank

2009 High Speed Network Transition
Mohammad Malik, Sam Sudarsanam - Hewlett-Packard Co. | ;

2010 . Measuring and Monitoring Business Transactions in an Open Systems Environment
Jim Grant - Hewlett-Packard Co

2011 - Meeting Customer’s Security Requirements A Crypto

Michael Ferachulou - Hewlett-Packard Co

Index by Paper Number

2012
Ron Zambonini - Cognos
3000

Janet M. Muto - Hewlett-Packard Co.
3001

Leo Lucas - AimTech Corporation
3002 PR ‘

Renato Assini - Hewlett-Packard
3005

Tom Burdon - Softool Corporation
3006

Colin Bodell - Micro Focus
3007

Diana Headrick - Hewlett Packard
3010

David Marks - Walker, Richer & Quinn
4001

Rikki Kirzner - Dataquest
4002 {

Tom Harris - Operations Control Systems
4003

Dave Mahler - Remedy Corporation
4004 :

Frank Recchia - Hewlett-Packard Co.
4005

Roger McKee - Consultant
4006

Todd Hutto - Dun & Bradstreet Software
4008

Paul Cubbage - Dataquest
4009 :

Don Dailey - Quarterdeck Office Systems
4011

Doug Blackwood - Hewlett Packard
4012

Judy Walker - Hewlett-Packard Co.
4013

David Harris - The X Business Group, Inc.
4014 :

4015

David Weinberger - Interleaf, Inc.
4016

Andrew McCasker - Systems Center
4017

Ken Oliver - Hewlett-Packard Co.
4019 j

Gwen Peterson - Clarity Softw:

Giving End Users Access to Corporate Data

Setting a Desktop Strategy: Workstations as Desktops for Business Professionals

Developing Cross-Platform Multimedia Applications Using Icon Author

HP Task Broker Release 1.1

of Softy Confi son M

Glen Johnson - CSI Computer Solutions, Inc.
‘ Real-World Unix for Open System Enterprise Document Management

1 4 -3 S

COBOL: The Move to the Desktop
Computational Clusters from Hewletlj Packard Company

Evaluating X on the PC

Living with Open System Standards: How to Survive Acronym Shock

. The Special Req of C ial UNIX Data Centers

Getting Your Money’s Worth Out of Network Computing
Delivering Multimedia in a Networkéd Environment
Introduction to Network Manage.ment

Approaches to the Open System Transition

Emerging Trends in Client/Server Development

Porting Applications Between Unix and DOS Using X-windows
68K Workstation Operating System Strategy

SoftBench Framework and ToolTalk: A Technical Comparison
X For the Non-Expert: A Tutorial on The X Window System

Tuning the HP-UX Series 800 File System

Overview of DME

X Application Performance on Client/Server Systems

UNIX: The Universal Gateway For Cross- Platform Communications

[S
[

Index by Paper Number

4020 ‘ Analysis of a Mainframe Replacement Project
Gary Gagliardi - FourGen Software, Inc. ;

4021 The Business Case for Open Systems
Bob Lewin - XOpen) '

4022 - SNMP: What Can It Do for Me?
Andrew J. Phillips - Hewlett-Packard Co.

4023 Commercial Client/Server: How to Develop Business Solutions
Ron Rolland - And Consulting

4024 " Getting Ready for the New Standards in Distributed Systems Management
Mike O’Rourke - Tivoli Systems, Inc. :

4025 The Open Systems Decision
Jesse Bornfreund - UNIX International

4026 Adaptive Applications for a Client/Server Environment
Tom Axbey - Applix, Inc.

4027 Future Directions for OSF User Environment Technology
Cathy Betz, Vania Joloboff - Open Software Foundation

4028 “ National Language Support: Providing Data Processing Applications for the
Natasha Flaherty - Oracle Corporation Global Marketplace

4029 E Business Issues of EDI: 12 Steps to S ful EDI Impl
Phyllis Sokol - Sterlmg Software

4030 g Effective Manag t of HP-UX Sy : Problems and Solutions
Carla Fitzgerald, Alan Paller - Computer Associates, International

4031 Object Database and 4GLs - A Paradigm Shift or a Paradigm Transition
Michael Consoli, Marlene Nesson - Information Builders, Inc.

4032 Implementing HP 9000-890 Platforms: A Case Study
Sameul C. Ellis - Portland Community College

4033 Client/Server for Neophytes
Bob Petrovic - Speedware Corp. < : :

4034 Downsizing to Hewlett-Packard Platforms
John Woolsoncroft - Concepts Dynamic, Inc.

4035 HP Programmer’s Toolset: New HP-UX Software Developmem Tools
Valerie Ho Gibson - Hewlett-Packard Co.

4036 z Designing For Usability
Scott McGregor - Prescient Software

4037 Performance and Capacity Management of Distributed UNIX Systems: The Glasshouse
Boris Geller - BGS Systems Approach

4039 Systems Optimization vs Migration to Open Systems
Elliott Chuang - Chuang Associates "

4040 Multimedia Support for Relational Database Management Systems
Richard Kozicki - Empress Software :

4041 : - Testing System Performance by Emulating the Real World
Duane Dorch - PERFORMIX, Inc. :

4042 Orientation to C++
Ray Swartz - Berkeley Decision/Systems ’

5000 Are You My Priority?
Jeff Odom - Bahlsen, Inc. :

5001 Volume Management: A Mainframe Implementation

Steven Cole - Northern Telecom

-
[N
[

Index by Paper Number

5002 MPE/iX Command File Tips and Techniques
Jack Bailie - Exxon Company, U.S.A.

5004 RF/DC and the HP 3000
Joe Howell - Professional Products

5005 Software Quality and the HP 3000
Bob Mead - Hewlett- Packard Co.)

5006 The MPE iX Architected Interface Facility--A Case Study Overview
Lee Courtney - Monterey Software Group

5007 ’ Past, Present and Future of Upgrading MPE iX
Tad Olson, et al - Hewlett-Packard

5008 SQL: The Outside Story
Alfredo Rego - Adager)

5010 Overview of Image SQL
Jim Sartain - Hewlett-Packard Co.

5011 A Programmer Looks at MPE/iX
Kevin Cooper - Hewlett-Packard ;

5012 How Did Image Become Relational?
Brad Tashenberg - Bradmark Technolgies, Inc. ;

5013 Optimizing the Usability of HP. OpenView System Manager: A Usability Engineering
Christine N. Gandel - Hewlett-Packard Co. Case Study
5014 Migrating PowerHouse Applications to UNIX

Ben Foulkes - Cognos
5016 . . System Management MPE/iX Backup Review and Implementing New Technology Overview
Al Dulaney Hewlett-Packard Co.
5017 How Messy is My Database
David Greer - Robelle Consulting Ltd. -
5018 Client/Servier for MPE -- The Sequel
Joseph Geiser - I Data Prc ing, Inc.

5019 Getting Started with ALLBASE/SQL
John Schmid - 3M Company

5020 I'm Confused! What’s the Difference Between Image and Relational Databases?
Brad Tashenberg - Bradmark Technolgies, Inc.
5021 101 (More or Less) Moral Things to Do with HP Susan and the Other MPE/iX
David Largent - N.G.Gilbert Corp. . Predefined Variables in the Harem.
5022 Securing a DOE Installation
George Malcolm - Brookhaven National Laborabory

5023 Performance Issues With Large Disks
Sam Yamakoshi - Hewlett-Packard

5024 Using Software to Automate Technical Support
Ken Robertson - Robelle Consulting Ltd.

5025 A Prototype for an MPE/iX Menu-Based User Interface
Mark Farzan - Santa Fe Drilling Co.

5026 Accessing Turbolmage From Your PC
Todd Hubbard, Ed Roden - Crowe Chizek ’

5027 P, ing and Integration of Busi Information from Decentralized
Miguel Cooper, et al - Industrias Resistol, S.A. 8 Operations
5030 A Primer on Software Objects

Jim Wowchuk - Vanguard Comp Services -

Index by Paper Number

5031 English 1A -- A DP Professional’s Guide to Writing
Pamela Dickerson - ECI Computer, Inc.

5032 Managing HP3000’s Disc Space
Vladimir Volokh - Vesoft :

5033 HP3000 to PC Interoperability
Nick Demos - Performance Software Corporation

5034 i Working with Native Mode Spooling
Royden Somerville - University of Notre Dame

5035 Designing an INTRINSIC Procédure in Your Favorite Language
Craig Nickerson - United Electric Controls Company '

5037 . What’s New with MPE V?
Bob Holdsworth - Hewlett-Packard Co. :

5038 Centralized Enterprise Manag with HP OpenView System Manager
Diane Bassett - Hewlett-Packard Co. :

5039 - STREAMX as a Second Language
Scott DeChant - MEDSTAT Systems, Inc. ’ .

5040 What'’s in a Name Anyhow?
Gordon Gavin - Johnson Hill Press . .

5042 i Secrets of MPE V Tables III: Square Pegs for Round Holes
Craig Nickerson - United Electric Controls Company

5043 How to Win at Your Next EDP Audit!
Tom Harris - Operations Control Systems

5045 It’s Hard to Remember Your Objective When Your’e Up to Your @#$ in Auditors
Michael Lam - g

5046 . Some Useful HP 3000 System Management Techniques
Gilles Schipper - G. Schipper & Associates Inc.

6000 Introduction to Object-Oriented Technologies
Orly Larson - Hewlett-Packard Co. i

6001 g Incorporating Dynamic Electronic Forms into HP 3000 Applications
Ross G. Hopmans - Brant Technologies, Inc.

6003 - The Systems Management Services Partnership
Kyle Adler - Hewlett-Packard Co.

6004 The Myths and Realities of Client-Server Application Development in the 90s
David W. Haberman - Speedware Corp.

6005 Thinking Relational
Alan Camburn - Richard Irwin Associates, Ltd.

*6006 DSIS -- Promoting Information Standards for Open Systems Services
Bill Bowman - Hewlett-Packard Co.

6007 . - Using ALLBASE for High End, Mainframe- Class Production Applications
Vish Krishnan, et al - Hewlett-Packard Co. :
6008 P Client/Server Application Design Using Graphical User Interfaces and
Tim Ryan - Hewlett-Packard Co. Distributed Object Technology
6009 . Integrated Imaging in Fi ial Systems
Adam Thier - Computron Technologies Corp. :

6010 Client/Server: The Best Archi for Busi Application
Gia Knaus - PeopleSoft, Inc.

6011 - Improving the Efficiency and Accuracy of Your Information Capture Through
Ray Agrusti - Eagle Consulting & Development Corp. = Automated Data Collection

Index by Paper Number

6012
Billy S. Hollis - Zortec
6013
Frank Quemada - Hewlett-Packard Co.

Moving to Open Systems with a 4GL

Information Integration -- Issues and Approaches

6014 - Using Application Response Times as a Metric for Service-Level Agreements

Doug McBnde Hewlett-Packard Co.
6015

Trevor Richards - M.B. Foster Associates, Inc.

Integrating EDI into your Business

6016 Exploring HP-UX: An Investigation Into its Performance Envelope Especially For

Robert Lund - Lund Performance Solutions
6017

Rolf Brandt - Infosoft GmbH
6019

Richard Tinker - Hewlett-Packard Co.

MPE/iX Fans
Do We Need Transactlon monitors on Open Systems?

Business Use of the Internet

6020 How to Manage Change When Making a Mainf Al ive D

Peggy Parskey - Hewlett-Packard Co.
6021

Jim Rice - Hewlett-Packard Co.
6024
Bob Gibb - Cognos
6025 -
Dave Wiseman - Proactive Systems
- 7000

David Rubinstein - Innovative Information Systems

HP Predictive Support File Transfer: Case Studies in Implementation

PowerHouse: The Technology Behind the 4GL
‘Why and How You Should Move to SQL

Mainframe Migration Alternatives

7001 Distributed Transaction Processing: CICS, Encina and DCE on HP Comp\lters

George Stachnik - Hewlett-Packard Co.
7002

Narendra Sharma - Meriter Hospital, Inc.
7003
Bryan Dean - Hewlett-Packard Co.
7004 :

Debra Canfield - Dairylea Cooperative Inc.

7005

Robert Hillseth - Epson America
7006

Husni S. Sayed, et al - IEM, Inc.
7007

Steve Rajavouri - O’Pin Systems
7008

Andrew J. Phillips - Hewiett-Packard Co.
7009

Charles Knouse - Hewlett-Packard Co.
7010

Suzanne Harmon -
7011

John L. Vandegrift - Hewlett-Packard Co.
7012

Ralph Carpenter - Hewlett-Packard Co.

Economic Justification for a System Upgrade
SharePlex/iX: HP3000 Clustering Solution

Printing Checks on LaserJets

Network to Support Change

Data Archiving with Optical Technology
Programming for POSIX Compliance

HP’s Use of Bt;siness Workstations

Guidelines for Writing DCE Applications in COBOL

and 4GL Methodol g

Project Manag
95LX: Tips, Tricks and Talents

Developing HP3000 Software Using a UNIX Workstation

Index by Paper Number

7013 LAN Migration Strategies
Paul Morgan-Witts - Hewlett-Packard

7014 How-to’s of Presentations
Kathy Lee Robertson - Va Department of Housing & Comm. Develop

7015 Exploring Client/Server Computing
Robert Davia - Hewlett-Packard Co.

7016 HP OpenODB in the Oil and Gas Industry
Douglas Dedo - Hewlett-Packard Co. : :

7017 Meeting the Networking Challenge: Connecting Your PCs, Hosts and LAN Services
Karl Crabs -

7018 Network Planners: Is High-Speed Networking in Your Future?
John Selep - Hewleu Packard Co.

7019 : Client/Server with ALLBASE/SQL and IMAGE/SQL
Bryan Carroll, et al - Hewlett-Packard Co.

7020 Troubleshooting Client/Server Applications
Steven L Adams - Hewlett—Packard Co. :

7021 Developing Reliable Systems at Minimal Cost -- A Case Study
Joe A. Sitver - Martin Marietta Energy Systems, Inc.

7022 Networked Computing
Richard Ponschock - Revlon

7023 Breaking Down the Client/Server Barriers Integrating MPE/iX, Posix, Netware/iX
Bill Lund, Ca!hy Gunn - Hewlett-Packard Co. and AppleTalk/iX

7024 . 'CONQUEST - An Object Oriented HP Configuration and Quote System
Bob Lewis, Susan Stavish - Hewlett-Packard ?

7025 SCSI: A View From Both Ends of the Cable
Michael Rusnack - Hewlett-Packard Co.

7026 - An Innovative Solution for Monitoring the Grouting Operanon at Waddell Dam
Mike Lemanski, et al - Hewlett-Packard Co.

7027 Systems Administration - MPE to HP-UX
Ann McDermott - Information Builders

7028 The Management Consultant’s Toolbox, Don’t Be Left Without It
Leonard Block - The Apex Group

7029 : Creating a Low-Cost Client-Server:Application
Mark Halstead - Aircast, Inc.

7030 What’s So-Hard About Software on CD?: A CD-ROM Informatlon Publishing Primer

. Katherine Armstrong - Hewlett-Packard Co.

7031 EDI Processing Environments
Richard Peasley - EDI Solutions Inc.

7032 Rightsizing Your Mainfram -- Performance Criteria
James Hepler - Hewlett-Packard Co.

7034 Developing Systems with Your Users as Well as for Your Users

Pamela Herbert - Octet Consulting, Inc.

Index by Author

Adams, Steven L

7020, Hewlett-Packard Co.
Adler, Kyle

6003, Hewlett-Packard Co.
Agrusti, Ray

6011, Eagle Consulting & Development Corp.

Anzinger, George

1010, Hewlett-Packard Co.
Armstrong, Katherine

7030, Hewlett-Packard Co.
Assini, Renato

3002, Hewlett-Packard
Axbey, Tom

4026, Applix, Inc.
Bailie, Jack

5002, Exxon Company, U.S.A.
Bassett, Diane

5038, Hewlett-Packard Co.
Betz, Cathy, Joloboff, Vania

4027, Open Software Foundation
Blackwood, Doug

4011, Hewlett Packard
Block, Leonard

7028, The Apex Group
Bodell, Colin

3006, Micro Focus
Bornfreund, Jesse

4025, UNIX International
Borsani, Donna

2002, Hewlett-Packard Co.
Bowman, Bill

6006, Hewlett-Packard Co.
Brandt, Rolf

6017, Infosoft GmbH
Burdon, Tom

3005, Softool Corporation
Burrus, Daniel

K001, Burrus Research Associates, Inc.

Camburn, Alan

6005, Richard Irwin Associates, Ltd.
Canfield, Debra

7004, Dairylea Cooperative Inc.
Carpenter, Ralph

7012, Hewlett-Packard Co.
Carroll, Bryan, et al

7019, Hewlett-Packard Co.
Chuang, Elliott

4039, Chuang Associates

Troubleshooting Client/Server Applications

The Systems Management Services Partnership

Improving the Efficiency and Accuracy of Your Information Capture Through

. Automated Data Collection
Managing PA RISC Machines for Real-Time Systems.

What’s So Hard About Software on CD?: A CD-ROM: Information Publishing Primer

HP Task Broker Release 1.1
Adaptive Applications for a Client/Server Environment

MPE/iX Command File Tips and Techniques

Centralized Enterprise Management with HP OpenView System Manager

Future Directions fo} OSF User Environment Technology

68K . Workstation Opemting System Strategy

The Management Consultant’s Toolbox, Don’t Be Left Without It
kCOBOL: The Move to the Desktop

The Open Systems Decision

ljnlocking the Secrets of UNIX Security

DSIS -- Promoting Information Standards for Open Systems Services
Do We Need Transaction monitors on Open Systems?

Successful Implementation of Software Configuration Management
Technotrends: Going Beyond Your Competition

Thinking Relational

Printing Checks on LaserJets

Developing HP3000 Software Using a UNIX Workstation
Client/Server with ALLBASE/SQL and IMAGE/SQL

Systems Optimization vs Migration to Open Systems

Index by Author

Cole, Steven Volume Manag A Mainft Impl
5001, Northern Telecom :
Combs, Robert ’ RTE to UNIX Migration Tools and Techniques

1011, Combs International
Consoli, Michael, Nesson, Marlene Object Database and 4GLs - A Paradigm Shift or a Paradigm Transition
4031, Information Builders, Inc. .

Cooper, Kevin - A Programmer Looks at MPE/iX
5011, Hewlett-Packard :
Cooper, Miguel, et al Prc ing and Integration of Busi Information from Decentralized
5027, Industrias Resistol, S.A. Operations
Courtney, Lee The MPE iX Architected Interface Facility--A Case Study Overview
5006, Monterey Software Group g

Crabs, Karl i Meeting the Networking Challenge: Connecting Your PCs, Hosts and LAN
7017, Services

Cubbage, Paul . Emerging Trends in Client/Server Development
4008, Dataquest

Dailey, Don Porting Applications Between Unix and DOS Using X-windows
4009, Quarterdeck Office Systems .

Davia, Robert & Exploring Client/Server Computing
7015, Hewlett-Packard Co.

DeChant, Scott STREAMX as a Second Language
5039, MEDSTAT Systems, Inc.

Dean, Bryan SharePlex/iX: HP3000 Clustering Solution
7003, Hewlett-Packard Co.

Dedo, Douglas HP OpenODB in the Oil and Gas Industry
7016, Hewlett-Packard Co. ‘

Demos, Nick HP3000 to PC Interoperability
5033, Performance Software Corporation

Dickerson, Pamela English 1A -- A DP Professional’s Guide to Writing
5031, ECI Computer, Inc. - .

Dorch, Duane ‘ Testing System Performance by Emulating the Real World
4041, PERFORMIX, Inc. .

Dulaney, Al System Management MPE/iX Backup Review and Implementing New Technology Overview
5016, Hewlett-Packard Co.

Ellis, Sameul C. . Implementing HP 9000-890 Platforms: A Case Study
4032, Portland Community College

Farzan, Mark A Prototype for an MPE/iX Menu-Based User Interface
5025, Santa Fe Drilling Co.

Ferachulou, Michael Meeting Customer’s Security Requirements A Crypto
2011, Hewlett-Packard Co. ;

Fitzgerald, Carla, Paller, Alan Effective Management of HP-UX Systems: Problems and Solutions
4030, Computer Associates, International

Flaherty, Natasha National Language Support: Providing Data Processing Applications for the
4028, Oracle Corporation - Global Marketplace

Foulkes, Ben . Migrating PowerHouse Applications to UNIX
5014, Cognos

Friedrich, Wolfgang Why Did My Backup Fail?

2007, Hewlett-Packard Co.

Index by Author

Gagliardi, Gary

4020, FourGen Software, Inc.
Gandel, Christine N.

5013, Hewlett-Packard Co.
Gauss, Stephen.

1000, U.S. Naval Observatory
Gavin, Gordon

5040, Johnson Hill Press
Geiser, Joseph

5018, Insurance Data Processing, Inc.
Performance and Capacity Management of Distributed UNIX Systems The Glasshouse

Geller, Boris

4037, BGS Systems
Gibb, Bob

6024, Cognos
Grant, Jim

2010, Hewlett-Packard Co.
Greer, David

5017, Robelle Consulting Ltd.
Haberman, David W.

6004, Speedware Corp.
Halstead, Mark

7029, Aircast, Inc.
Harmon, Suzanne

7010,
Harris, David

4013, The X Business Group, Inc.
Harris, Tom

4002, Operations Control Systems
Harris, Tom

5043, Operations Control Systems
Headrick, Diana

3007, Hewlett Packard
Heller, Esther

1014, Hewlett-Packard Co.
Hepler, James

7032, Hewlett-Packard Co.
Herbert, Pamela

7034, Octet Consulting, Inc.
Hillseth, Robert

7005, Epson America
Ho Gibson, Valerie

4035, Hewlett-Packard Co.
Hodges, Jeff

2000, Hewlett-Packard Co.
Holdsworth, Bob

5037, Hewlett-Packard Co.
Hollis, Billy S.

6012, Zortec

Analysis of a Mainframe Replacement Project

‘Optimizing the Usability of HP OpenView System Manager: A Usability Engmeenng

Case Study
Using RTE More Effectively in an Increasingly non-RTE HP World

What's in a Namé Anyhow?

Client/Servier for MPE -- The Sequel

.- Approach

PowerHouse: The Technology Behind the 4GL

Measuring and Monitoring Business Transactions in an Open Systems

Environment
How Messy is My Database

The Myths and Realities of Client-Server Application Development in the 90s

Creating a Low-Cost Client-Server Application

Project Management an';d 4GL Methodologies

X For the Non-Expert: A Tutorial on The X Window System

The Special Requirements of Commercial UNIX Data Centers
How to Win at Your/Next EDP Audit!

Computational Clusters from Hewlett- Packard Company

MEF Users - Should I consider an Upgrade?

Rightsizing Your Mainfram -- Performance Criteria

Developing Systems with Your Users as Well as for Your Users
Network to Support Change

HP Programmer’s Toolset: New HP-UX Software Development Tools
Remote Network Monitoring and Fault Isolation Using ObenView
What’s New with MPE V?

Moving to Open Systems with a 4GL

Index by Author

Hopmans, Ross G. i Incorporating Dynamic Electronic Forms into HP 3000 Applications
6001, Brant Technologies, Inc. 5

Howell, Joe' RF/DC and the HP 3000
5004, Professional Products -

Hubbard, Todd, Roden, Ed Accessing Turbolmage From Your PC
5026, Crowe Chizek :

Hutto, Todd Approaches to the Open System Transition
4006, Dun & Bradstreet Software

Johnson, Glen Tuning the HP-UX Series 800 File System

4014, CSI Computer Solutions, Inc.

Kirzner, Rikki ; Living with Open System Standards: How to Survive Acronym Shock
4001, Dataquest B

Knaus, Gia Client/Server: The Best Architecture for Business Applications
6010, PeopleSoft, Inc. ‘

Knouse, Charles : Guidelines for Writing DCE Applications in COBOL
7009, Hewlett-Packard Co.

Kozicki, Richard Multimedia Support for Relational Database M. Systems
4040, Empress Software g

Krishnan, Vish, et al Using ALLBASE for High End, Mainframe- Class Production Applications
6007, Hewlett-Packard Co. ‘

Lam, Michael - It’s Hard to Remember Your Objective When Your’e Up to Your @#$ in Auditors
5045, -

Largent; David 101 (More or Less) Moral Things to Do with HP Susan and the Other MPE/iX
5021, N.G.Gilbert Corp. Predefined Variables in the Harem.

Larson, Orly . Introduction to Object-Oriénted Technologies
6000, Hewlett-Packard Co.

Lemanski, Mike, et al " An Innovative Solution for Monitoring the Grouting Operation at Waddell Dam
7026, Hewlett-Packard Co. P

Lewin, Bob : The Business Case for Open Systems
4021, XOpen ’

Lewis, Bob, Stavish, Susan CONQUEST - An Object Oriented HP Configuration and Quote System
7024, Hewlett-Packard

Lisowski, Gerald Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
1001, Zeneca, Inc.

Logan, John R. Rightsizing: The Key Technology and Business Choices We Face
P00S, Aberdeen Group, Inc. :

Lucas, Leo 5 Developing Cross-Platform Multimedia Applications Using Icon Author

3001, AimTech Corporation
Lund, Bill, Gunn, Cathy Breaking Down the Client/Server Barriers Integrating MPE/iX, Posix, Netware/iX

7023, Hewlett-Packard Co. and AppleTalk/iX
Lund, Robert Exploring HP-UX: An Investigation Into its Performance Envelope Especially For
6016, Lund Performance Solutions MPE/iX Fans
M. Muto, Janet - Setting a Desktop Strategy: Workstations as Desktops for Business Professionals
3000, Hewlett-Packard Co. :

Mahler, Dave Getting Your Money’s Worth Out of Network Computing
4003, Remedy Corporation .

Malcolm, George Securing a DOE Installation

5022, Brookhaven National Laborabory

xi

Index by Author

Malik, Mohammad, ;Sudarsanam, Sam

2009, Hewlett-Packard Co.
Marks, David

3010, Walker, Richer & Quinn

McBride, Doug

6014, Hewlett-Packard Co.
McCasker, Andrew

4016, Systems Center
McClure, Dennis :

High Speed Network Transition

Evaluating-X on the PC

Using Application Response Times as a Metric for Service-Level Agreements

Overview of DME

Unix Panic? Don’t Panic!

2004, HP - North American R&cponse Center

McDermott, Ann

7027, Information B%uxlders‘

McGregor, Scott

4036, Prescient Software
McKee, Roger

4005, Consultant
Mead, Bob

5005, Hewlett-Packard Co.
Medlicott, Dave

1002, Hewlett-Packard Co.
Morgan, Kevin

1008, Hewlett-Packard Co.
Morgan-Witts, Paul

7013, Hewlett-Packard
Nickerson, Craig

Systems Administration - MPE to HP-UX
Designing For Usability

Introduction to Network Management
Software Quality and the HP 3000

Golf and the HP1000

The HP-RT Real-Time Operating System
LAN Migraiion Strategies

Designing an INTRINSIC Procedure in Your Favorite Language

5035, United Electric Controls Company

Nickerson, Craig

5042, United Eleétnc Controls Company

O’Brien, Patricia

2006, Hewlett-Packard Co.
O’Rourke, Mike

4024, Tivoli Systems, Inc.
Odom, Jeff

5000, Bahlsen, Inc.
Oliver, Ken

4017, Hewlett-Packard Co.
Olson, Tad, et al

5007, Hewlett-Packard
Parskey, Peggy

6020, Hewlett-Packard Co.
Peasley, Richard

7031, EDI Solutions Inc.
Peterson, Gwen -

4019, Clarity Software
Petrovic, Bob

4033, Speedware Corp.
Phillips, Andrew J.,

7008, Hewlett-Packard Co.

Secrets of MPE V Tables 111: Square Pegs for Round Holes
Migrating to a Client/Server Computing Architecture One Step at a Time

Getting Ready for the New Standards in Distributed Systems Management
Are You My Priority?

X Application Performance on Client/Server Systems

Past, Present and Future of Upgrading MPE iX

How to Manage Change When Making a Maiﬁframe Alternative Decision
EDI Processing Environments

UNIX: The Universal Gateway For émss- Pl‘atforﬁx Communications
Client/Sén;er for l;leophytes

HP’s Use of Business. Workstations

Index by Author

Phillips, Andrew J.

4022, Hewlett-Packard Co.
Ponschock, Richard :

7022, Revion
Poynor, Todd

1007, Hewlett-Packard Co.
Quemada, Frank

6013, Hewlett-Packard Co.
Rajavouri, Steve

7007, O’Pin Systems
Recchia, Frank

4004, Hewlett-Packard Co.
Rego, Alfredo

5008, Adager
Rice, Jim

6021, Hewlett-Packard Co.
Richards, Trevor

6015, M.B. Foster Associates, Inc.

Ridgley, Larry

1003, Hewlett-Packard Co.
Riedel, Raymond

2001, Hewlett-Packard Co.
Robertson, Kathy Lee

7014, Va Department of Housing & Comm. Develop

Robertson, Ken

5024, Robelle Consulting Ltd.
Rodoni, Lynn, Tran, Mydung

1006, Hewlett-Packard Co.
Rolland, Ron

4023, Anderson Consulting
Rubinstein, David

7000, Innovative Information Systems

Rusnack, Michael

7025, Hewlett-Packard Co.
Ryan, Tim

6008, Hewlett-Packard Co.
Sartain, Jim

5010, Hewlett-Packard Co.
Sayed, Husni S., et al

7006, IEM, Inc.
Schipper, Gilles

5046, G. Schipper & Associates Inc.

Schmid, John

5019, 3M Company
Selep, John

7018, Hewlett-Packard Co.
Sharma, Narendra

7002, Meriter Hospital, Inc.

SNMP: What Can It Do for Me?

Networked Computing

An HP-UX Compatible Spoder for RTE

Information Integration -- Issues and Approaches

Programming for POSIX Compliance

Delivering Multimedia in a Networked Environment

SQL: The Outside Story

HP Predictive Support File Transfer: Case Studies in Implementation

Integrating EDI into your Business

Managing Multiple Identical RTE-A Systems: A Customized Approach

Evaluating System Capability: IBM to HP-UX Benchmark Case Study

How-to’s of Presentations

Using Software to A Technical §

Standards-Based Networking Services on the HP 1000

Commercial Client/Server: How to Develop.Business Solutions
Mainframe Migration Alternatives

SCSI: A View From Both Ends of the Cable

Cllent/Server Application Des:gn Using Graphical User Interfaces and
Distributed Object Technology

Overview of Image SQL

Data Archiving with Optical Technology

Some Useful HP 3000 System Management T;miques

Getting Started with ALLBASE/SQL

Network Planners: Is High-Speed Networking in Your Future? '

- Economic Justification for a System Upgrade

Index by Author

Sitver, Joe A. Developing Reliable Systems at Minimal Cost -- A Case Study
7021, Martin Marietta Energy Systems, Inc. c

Sokol, Phyllis Business Issues of EDI: 12 Steps to S ful EDI Impl ion
4029, Sterling Software

Somerville, Royden Working with Native Mode Spooling
5034, University of Notre Dame

Stachnik, George Distributed Transaction Processing: CICS, Encina and DCE on HP Computers
7001, Hewlett-Packard Co.

Swartz, Ray . Orientation to C+ +
4042, Berkeley Decnsmn/Systems . :

Tashenberg, Brad How Did Image Become Relational?
5012, Bradmark Technolgies, Inc. :

Tashenberg, Brad I’m Confused! What's the Difference Between Image and Relational Databases?
5020, Bradmark Technolgies, Inc.

Thier, Adam . . Integrated Imaging in Financial Systems
6009, Computron Technologies Corp.

Tibbetts, Alan Using Modems on the HP 1000 A Series Computers
1005, Consultant -

Tibbetts, Alan . Stump the RTE Experts
1013, Consultant .

Tinker, Richard Business Use of the Internet
6019, Hewlett-Packard Co.) :

Totsch, David AWK Programming
2008, La Salle National Bank - .

Vandegrift, John L. 95LX: Tips, Tricks and Talents
7011, Hewlett-Packard Co. .

Volokh, Viadimir : Managing HP3000's Disc Space
5032, Vesoft :

Walker, Judy SoftBench Framework and ToolTalk: A Technical Comparison
4012, Hewlett-Packard Co.

Weinberger, David Real-World Unix for Open System Enterprise Document Management
4015, Interleaf, Inc.

Wiseman, Dave_ Why and How You Should Move to SQL
6025, Proactive Systems : :

Woolsoncroft, John Downsizing to Hewlett-Packard Platforms
4034, Concepts Dynamic, Inc.

Wowchuk, Jim A Primer on Software Objects
5030, Vanguard Computer Services

Yamakoshi, Sam Performance Issues With Large Disks
5023, Hewlett-Packard

Zambonini, Ron Giving End Users Access to Corporate Data

2012, Cognos

. -~ K001
Technotrends: Going Beyond Your Competition
Daniel Burrus
Burrus Research Associates, Inc. .
PO Box 26413, Milwaukee, WI 53226-0413
L 414-774-7790 SR
©1993 :

1 GENETIC ENGINEERING All living organisms are made of cells, and'in those cells are genes that have a
readable code defining all aspects of the plant or animal. Key tools include Recombinant DNA (fDNA)
hnology -- the mapping, restructuring, and remodeling of the gene code to eliminate or enhance a specific
trait -- and Anti-Sense RNA compounds, which have the power to block the expression of specific genes.

. 2 ADVANCED BIOCHEMISTRY Using advanced biological techniques, biochemists are creating new
disease diagnostic systems, highly effective “super drugs;” advanced drug delivery systems, and a variety of
new bioindustrial applicati Advanced biochemistry techniqy were used to create Interleukin-2, a new
class of drug that can fight diseases like cancer. Monoclonal antibodies have been produced that bind only to
a specific molecule and are used to diagnose disease, pinpoint specific genes, and purify rare substances. Two
other examples include fetal-cell pl which can be used to treat blood disorders such as sickle cell
anemia, Parkinson’s disease, diabetes and radiation exposure, and photoactive drugs, which are activated when
exposed to light.

3 DIGITAL ELECTRONICS Digital devices translate signals into the 0s and 1s that computers understand.
The original signal is sampled instant-by-instant, converted to a numerical map, and sent to a receiver.
Traditional electronic devices, as well as magnetic and optical devices, can use digital techniques. Key tools
include Digital Imaging, Digital Television, Digital Cellular Telephones, and Personal Communication
Networks. ’

4 OPTICAL DATA STORAGE Optical memory systems use lasers to read information that is stored in
digital form. Examples include all optical disks, optical film, floptical disks, and bar code readers. Optical
storage devices can randomly access digital information at high speeds. They can contain audio, video, and
computer data at the same time. By the late 1990s, most digital information sterage will be chip-based or
optical-based, allowing for more efficient use of digital data. e

5 ADVANCED VIDEO DISPLAYS There are two main types of advanced video displays, Advanced Flat-
Panel Displays that will provide us with full color, flat, and lightweight television screens in a variety of
sizes, and High Definition Television (HDTV), which describes a very high-resolution screen whose
dimensi ble that of a pi in a movie theater. HDTV displays will find their first applications in
medicine, advanced simulations, and advanced workstations. ' ’

6 ADVANCED COMPUTERS Computers are el ic calculating machines that can p information
and follow programmed instructions. - Advanced computers cover all related hardware and systems that are based
on advanced chip technology such as personal p p p and micro and minicomputers. Key
tools include Parallel Pr ing Ci s, Multimedia Computers, Electronic Notepads, Telecomputers, and
Multi-Sensory Robotics. ' :)

7 DISTRIBUTED COMPUTING ‘Distributed computing includes both enterprise and multiple enterprise
computer integration and the transparent multi-user sharing of information and applications across a multi-
vendor computer network that supports day-to-day business activities.

8 ARTIFICIAL INTELLIGENCE Al is the capability of a computer to perform functions that are normally
attributéd to human intelligence such as learning, adapting, recognizing, classifying, reasoning, self-
correction, and impr Key tools include Expert Sy Advanced Simulations, Object Oriented
Programming, Fuzzy Logic, Neural Networks, Voice Recognition, and Image Processing.

9 LASERS The word laser stands for Light Amplification by Stimulated Emission of Radiation. Laser light
covers a narrow range of lengths, tends to be coh and is emitted in a narrow directional beam of high
intensity. Laser devices can range in size from a pinhead to the size of a football field. Their light ranges from
invisible ultraviolet and infrared throtigh all colors of the rainbow. A wide range of applications are already in
use, including eye surgery, compact disks, laser scalpels, and holography. R

10 FIBER OPTICS ' Fiber optics provides a digital highway in which photons, particles of light, travel. An
optical fiber is a hair-thin strand of glass composed of silicon and other materials with a light transmitting
core and a layer of material that keeps the light from straying. When used for communications, they can carry

four signals at once: teleph television, radio, and computer data.

20 Core Technologies Shaping the Future
K001-1

11 MICROWAVES Microwaves are electromagnetic waves having a wavelength in the region between

infrared and short-wave radio. Currently, microwaves have two major ppl gories: sending wireless
digital information and heating objects by creating molecular ment inside the object. Uses range from
microwave clothes dryers and mi Ipels to heating inoperabl to a temp that

kills the cancer but leaves the healthy cells alrive.

12 ADVANCED SATELLITES As advanced satellites with diverse uses are put into orbit by more and more
countries, they will play an ever increasing role in worldwide government and business communications, as
well as in studying, mapping, and surveying the earth. Landstat is, for example, being used for oil and mineral
exploration. Navestar can be used to determine exact locations of all forms of transportation on the planet.
Surveillance will continue to play a big role for satellites. Key new tools will include Low Earth Orbit (LEO)
Satellites and Direct Broadcast Satellites (DBS). . .

13 PHOTOVOLTAIC CELLS (PV) When photons of sunlight strike a solar cell, electrons are knocked free
from silicon atoms and are drawn off by a grid of metal conductors. This action yields a flow of electricity
(direct current). PV cells require no fuel, are self- ined with no ing parts, are nonpolluting, and have a
lifetime of over twenty years. Today’s most popular type of PV cell is amorphous (non-crystalline) silicon,
which is forty times more light absorbing than crystalline silicon. Currently, PV cells can convert sunlight
directly into electricity at the efficiency rate of over twenty-eight percent. They can be used for applications
such as pocket calculators, refrigerators, portable communications, and remote and rural electrification,

14 MICROMECHANICS Mi hanics involves the designing and building of tiny mechani such as
valves, accelerometers, pressure and force sensors, and surgical tools. Micromachines can be etched in
batches on silicon wafers and then sliced into separate chips. They can then be linked up with microelectronic
circuits and used for applications such as itoring pollution, aiding medical h, and giving robots a
sense of touch.)

15 NEW POLYMERS Polymers are plex chemical str that can be combined with reinforcing
substances and adapted to many uses. By rearranging loops and chains of carbon, oxygen, hydrogen, and
i hemists are produci ly that can cond lectricity, dissolve in-sunlight, carry light

waves, and function as moving parts in automobiles. Currently, there are over 60,000 different polymers with
applications ranging from garbage bags to U.S. Army tanks.

16 HIGH TECH CERAMICS Ceramic materials are hard, chemically inert, and resistant to ‘corrosion, wear,

and high temp Any sub except carbon-based compounds can be used when making ceramic
materials. Most ceramics are electrical insul and are P to most forms of electromagnetic
diati Applications include abrasives for cutting tools, heat shields, ball bearings, engine components,

and artificial bone implants.

17 FIBER-REINFORCED COMPOSITES Composites are materials, such as ceramics and plastics, that have

been reinforced with synthetic fibers and carbon filaments. C posites are beginning place some
automobile and airplane parts because they are lightweight, resist corrosion, and are often stronger than steel.
For example, Beech Aircraft Corporation’s busi jet, the Starship, has an all posite body.
Applications range from building materials to bridges.

18 SUPERCONDUCTORS Superconductors are materials that carry electricity without any loss of energy.
Near-term applications include less expensive but more advanced gnetic imaging hines for hospitals,
superconducting TV antennas, faster, computer circuits in mainframe computers using thin-film
superconductors, and small and efficient electric motors. :

19 THIN-FILM DEPOSITION A process that deposits layers of a specific material as thin as a single atom
onto almost any surf: One p called Chemical Vapor Deposition (CVD) uses a coating material that is
heated until it vaporizes and is then allowed to condense into the surface to be coated. Another example,
Diamond Thin-Film Coating, is produced by mixing methane and hydrogen under the proper conditions,
resulting in a diamond film about a millionth of an inch thick. A third process, Molecular Beam Epitaxy, is a
semiconductor fabrication process used to build up devices one molecular layer at a time. This process allows
different materials and types of doping to be sandwiched precisely in layers.

20 MOLECULAR DESIGNING A technique for creating ‘made materials. Scientists, usinga .
supercomputer, can decide what properties they want a material to have and then, using advanced computer
graphics and modeling progr design a new material molecule-by-molecule, atom-by-atom. By
using lasers to lay down atoms in a precise p on surfaces, molecular designers can alter material

properties, such as making metals become glass and insulators become conductors. The first products to move

out of the lab are tailor-made enzymes for industry.

20 Core Technologies Shaping the Future
K001-2

Rightsizing: The Key
Technology and Business
Choices We Face

Interex'93
\ August 23, 1993

John R. Logan

Vice President =
Aberdeen Group, Inc.
92 State Street
Boston, MA 02109
617/723/7890

Aberdeen Notes:

Aberdeen Group, Inc. is a computer and communications research and
consulting organization closely monitoring user nieeds, technological
changes, and market developments.

Based on a comprehensive analytical framework, Aberdeen provides fresh
insights into the future of computing and its implications for users and the
industry.

Aberdeen performs specific projects for a select group of clients requiring
strategic and tactical advice and hard answers on how to manage computer
technology.

Audience Notes:

Rightsizing: The Key Choices We Face : S . Page P005-1

Agenda |

* Why The Rush From The Mainframe
* Successful Rightsizing ACTION

* Comparing HP's Rightsizing
Technology With The Other Suppliers

* HP-experienced IS Business Role In
Rightsizing

AberdeenGroup

Aberdeen Notes:

Today’s presentation will provide a comprehensive viewpoint of how
enterprises are rightsizing their information systems from a legacy
mainframe past. And since this is a once-a-year opportunity for Interex
members to convene as a national group and discuss the state-of-the-
industry, Aberdeen will also review how HP’s competitors are approaching
the rightsizing challenge. .) ! :

The information that is being presented today is a summary of Aberdeen’s
on-going research on organizations that are actively implementing
rightsizing projects. :

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-2

- Why The Mainframe Is
Going Away

'« The BOSS said so - a strategic decision

* Line managers demand access to on-line
data -- green-stripe reports unacceptable

¢ Mainframe software fees are increasing with
no productivity benefits -- Finance
department resists

¢ HP's midrange computer technology

surpasses IBM's mainframe products
~ AberdeenGroup

Aberdeen Notes:

Enterprise’s that began the rightsizing process in the late 1980s began
obtaining the financial rewards by the early 1990s — and their competitors .
are now playing catch-up. :

Departmental managers cannot effectively manage their operations through
mainframe-generated batch reports with data that is out-of-date and must
be re-keyed into decision support applications such as Lotus on 2 PC.

Note that this is a more important impetus to move off the mainframe
today than lowering IS costs.

Finally, comparing IBM’s mainframe technology to HP’s midrange,
enterprise decision makers believe that HP has surpassed IBM.

Audience Notes:

Rightsizing: The Key Choices We Face ‘Page P005-3

Goals For Rightsizing

* Lower IS costs -- real but insular view

Management Vision to re-engineer
the enterprise for: |

e Lowering overhead (SG&A) costs
* Increasing customer satisfaction

* Creating new revenue streams
AberdeenGroup

Aberdeen Notes:

Many rightsizing projects have been initiated as a way of lowering an
enterprise’s IS costs — typically requiring that these expenses by lowered by
25%-50% over three years with no decrease in service levels. But the
reality is that non-technical management’s vision is to re-engineer the
enterprise to be successful through the rest of the decade.

The term downsizing now refers more to middle-management ranks than
computers and this is the primary financial objective of computer
rightsizing. But in addition, IS staff is being pushed to use its creativity
and imagination to recommend innovate methods for increasing customer
satisfaction and creating new revenue streams.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-4

Enterprise Financial Issues

BigCo Ltd Income Statement

100% Revenue ‘

55% Cost of Goods Sold (COGS)

35% Selling, General, and Administrative
(IS is 3% of Total Revenue)

10% Profit Before Tax (PBT) -

If IS Lowers:
e SG&A costs by 20%, PBT increases 70%
« COGS costs by 5%, PBT increases 30%

e |S costs by 50%, PBT increases 15%
. o AberdeenGroup

Aberdeen Notes:
IS has limited resources in terms of knowledgeable and capable staff that it
can apply to business-oriented rightsizing projects. B :

Past experience shows that rightsizing projects focusing on how an
enterprise operates have the potential to reduce overhead costs by 20% -
and increase profitability by 70%. The major fear of every CEO is that a
competitor will take this approach first and then reduce price to the point
that others will be driven into an unprofitable situation. ‘ i

Merely attempting to lower IS costs through rightsizing is self defeating for
an enterprise — the returns are minimal compared to business and process
re-engineering. A ‘

Audience Notes:

Rightsizing: The Key Choices We Face ¢ nind " Page P005-5

- ACTION

Architecture
| Components
Timingv E
Integration
Organization

New economics
AberdeenGroup

Aberdeen Notes:
To summarize the essential points required to successfully rightsize,
Aberdeen has created a simple acronym ACTION.

The vast majority of rightsizing projects that fail do so because IS
management does not create a vision of the future with senior business
managers. Aberdeen cannot overemphasize how important it is for IS
executives to take charge of the process to create a-rightsized information
architecture for their enterprise that automates efficient business processes
that provide superior customer satisfaction than the competitors can offer.
With this architectural vision as a basis, the technical components, timing,
application integration, organizational changes, and new economic realities
can pragmatically be derived.

Audience Notes:

Rightsizing: The Key Choices We Face) Page P005-6

Enterprise Topology

Three-tier Plus in a distributed
topology is state-of-the art

Enterprise server Plus decision support

Production/ Analytical
Consolidation m + Systztm
System ===

Repligated/departmental systems
PCs, Workstations, Macs, Terminals

! & é" AberdeenGroup
Aberdeen Notes:

Aberdeen’s research shows that the three-tier plus architecture meets the
needs of both users and IS professionals. Quite frankly, the major ;
technical failures of rightsizing projects have occurred within enterprises
that attempted to implement two-tier architectures — today’s technology
cannot support this overly simplistic approach to rightsizing.

The key to user satisfaction is the emphasis IS puts on providing line
middle managers with an analytical systems from which they can access
current data to make realtime decisions. And IS can provide remote back-
up, data integrity, security, and application version control through HP
systems software operated by IS professionals from the enterprise’s
production system.

Audience Notes:

Rightsizing: The Key Choices We Face : Page P005-7

Rightsized Central IS Architecture

Central IS
Dedicated Application
Systems

Data Mass Storage

Network
Management

= Operational
Services
Management

Distributed and Remote Sites AberdeenGroup

Aberdeen Notes:

Even central IS datacenters are rightsizing by removing the mainframe. In
this topology, an application is dedicated to a single midrange system — a
very large application can even be spread over multiple midrange systems.

This approach lowers software licensing costs and allows IS to upgrade
systems by application requirements.

Audience Notes:

Rightsizing: The Key Choices We Face * Page P005-8

Critical Technology Areas

Systems

Hardware
Software

| \ / | Multiuser

Enterprise IS versus
Topology . Single user

P

Application
Development| ¢ [Networking
Acqulsltlon

¢

AberdeenGroup

Aberdeen Notes:

Rightsized enterprise architectures are created by blending technology
components out of four main groups — hardware, systems software,
application development and/or acquisition, and networking. ‘By using
open systems components that meet industry standards, enterprises are able
to create a dynamic environment that can be improved as part ofa
continuous process over time. - : :

At the box level, too many non-technical executives are naively confusing
the single-user computing they are familiar with with multiuser enterprise
computing. The two are very different and believing that PC technology
can be used to run a coordinated enterprise will result in disastrous
mistakes. And we all need more expertise in networking technology.

Audience Notes:

Rightsiiing:‘ The Key’Choices We Face Page P005-9

- Timing

® IS must start rightsizing before CEO

¢ Evolution or Revolution is real
enterprise dilemma

* Business-critical applications rightsized
first -- Back-office applications later
Outsource mainframe applications

¢ Plan to roll fhé last mainframe out the
door in 1996

AberdéénGroup

Aberdeen Notes:

Enterprise management expects IS to be proactive and initiate rightsizing
efforts within the enterprise — or it will surmise that the current IS
organization is incapable of doing so. o

While many enterprises have been attempting to manage to an
evolutionary approach to rightsizing off the mainframe, the trend is toward
a full revolutionary stance — the business benefits are so compelling and
the results of failure to rightsize quickly enough so enormous.

Applications that have the largest impact on the enterprise such as order
entry and customer service are typically re-engineered first and then
integrated into updated count-the-money back-office applications later.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-10

 Integration

e Data conversion is a key issue

e Surround the mainframe with operational
decision support systems

¢ Asynchronous data transfer -- time
posting of data -- among applications is
key new dimension |

e Use open systems components -- today's
new applications are tomorrow's legacy
G AberdeenGroup

Aberdeen Notes: _
Never underestimate the management effort required to convert current

data into the new rightsized systems. Much legacy data is incorrect and yet
organizations have found ways of working around the problem — but)
moving to new systems brings this hidden issue to the surface.

Rightsized architectures must take into account the requirement to
integrate new applications with existing legacy ones that will be
transformed at a later date — and the fact that new applications in 1994
will be legacy applications in 1996. The open systems approach is the only
method to alleviate the problems of needing to integrate even newer
applications into the next-generation ones we are working on today.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-11

Organizational Impact

|Central IS

Network Operational
Services ‘Services
Data
i ~ Services
Information : Development
Architecture : Methods
AberdeenGroup

Aberdeen Notes:
Contrary to what some media headlines proclaim, central IS not going
away — but it is evolving to better manage rightsized architectures.

The Information Architecture function is responsible for coordinating the
enterprise’s strategy with IS’ continuously changing capabilities; Network
Services monitors performance, detects and corrects faults, and manages
program versions; Data Services coordinates personal, enterprise, customer,
supplier, electronic, and non-electronic data; Operational Services supports
and enhances departmental applications; and Development Methods acts
as the technology evaluator and establishes an enterprise-wide development
methodology and practices:

Audience Notes:

Rightsizing: Thé.Key Choices We Face * Page P005-12 -

Organizational Impact

Line | MIS

CEO clo

Director
of MIS

- Middle
Managers

MIS Staff

AberdeenGroup

Staff

Aberdeen Notes:

There are six major groups with the organization that will be impacted by

_ the transformation of IS to a rightsized environment. IS executives should
ideally meet the requirements of each of these groups to ensure a smooth

transition. ‘ .

Of particular concern are the CEO who believes today that establishing the
proper IS infrastructure is a significant part of this most senior job =~ =
function; line middle managers who are demanding better IS tools to do
their jobs more effectively; MIS staff, especially mainframe trained staff,
that know how the enterprise works but do not know the tools of rightsized

systems; and the CIO who is under increasing pressure to make business
decisions, not merely technical. .

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-13

- New Economics

* Maximize total enterprise profitability
and effectiveness -- not just IS

* Prioritize IS functions by economic
return to enterprise

* Only upgrade technical components
when economic returns justify

* Continuously evaluate ways IS can
improve business processes -- in all
areas AberdeenGroup

Aberdeen Notes:

The mainframe IS shop is viewed by senior line management as a cost
center that is a drain on the enterprise’s resources — the old economics.
The New Economics focuses on the concept that an investment in IS will
provide positive returns — IS is a way to lower costs and make money.

Almost all enterprises that have successfully rightsized report that many of
the greatest benefits came from IS executives who reviewed operational
aspects of the business with the intention of improving effectiveness
through the flexibility rightsized systems provide. In the new economics, IS
executives take even greater responsibility for the financial strength of their
entire enterprise.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-14

Minimizing the Investment Spike

Central IS Costs i
Traditional
Mainframe

Investment - Model
Spike

Open,
Client-server
Model

Today i
Time AberdeenGroup

Aberdeen Notes:

The cost justification for investing in rightsized systems is that open, client-
server systems will lead to lower IS costs than the traditional mainframe
model.

Investment costs required include training, hardware, software, and
professional services. The investment spike can be best leveled though the
use of leasing vehicles. :

Many enterprises that have actively pursued the rightsizing process for
several years report IS costs do not decline — the enterprise finds the
return of increased investments justifies expanded spending to both
increase profitability and gain a competitive advantage.

Audience Notes:

Rightsizing: The Key Choices We Face ! - Page P005-15

Buying Services versus
Internal Staff

* Buying professional services levels staffing and
promotes technology transfer

I

Maximum Requirement

100%

Staff
Needs :
PSO
O,
80% Rightsized Optimum
Time
AberdeenGroup

Aberdeen Notes:

Recognizing that managing the efficient transfer of continuously changing
technology into internal IS is a key aspect of the rightsizing process, IS
executives are staffing their internal organizations at 80% of their
maximum personnel needs and using professional service organizations to
fill the gap.

The new economics of rightsizing dictates that no IS organization is big
enough and smart enough to do everything itself. Therefore, professional
service organizations (PSOs) are used to augment internal IS staff. The
PSOs act as a technology catalyst for change and improvement.

Audience Notes:

Rightsizing: The Key Choices We Face o Page P005-16

Buying Services versus
~Internal Staff

e Buying professional services levels to hit target
completion dates for new applications

Bt ~ iSix-months is
Profit ' optimum in 1994

Benefits

»

_ Time to Project Completion
AberdeenGroup

Aberdeen Notes: .
One of the major reasons for moving to a rightsized IS topology is to put.
applications into production within a reasonable time. Quite frankly, major
mainframe applications typically take 18-30 months to implement after
approval. Senior line management finds this unacceptable.

Under the new economics, it appears that six months is the optimum time
between when major new applications are approved and when they are put .
into production. Less that six months does not seen to provide adequate
time for business planning processes — after six months and the business
environment has changed. The new economics of rightsizing shows that
purchasing PSO services should be used to augment internal IS staff
resources to meet the six-month optimum criteria.

Audience Notes:

Rightsizing: The Key Choices We Face . Page P005-17

IS Outsourcing

Lowers today's mainframe costs ASAP

Seductive to business managers wanting to
rieet next quarter's profit goals

Good mainframe transition strategy

The Dark Side of Outsourcing: 1) Assumes a
static world; 2) Restricts enterprise's use of
its own information; 3) Costs in years 2-5 are
higher than anticipated

Outsourcing solves mainframe IS cost

problem -- not enterprise SG&A problem
AberdeenGroup

Aberdeen Notes:

An alternative to mainframe IS rightsizing is simply outsourcing all the
enterprise’s central data processing resources. While outsourcing is a good
mainframe transition strategy to rightsizing, past experience shows that the
long-term benefits have proven highly elusive.

Total IS outsourcing may lower central IS costs in the short term, it does
not help the enterprise lower total overhead costs as rightsizing does.
More to the point, an enterprise that outsources its IS resources is now
faced with the very real probability that it will not be able to use IS
technology to address critical operational issues due to the costs associated
with modifying or defaulting on the outsourcing contract.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-18

Rightsizing Product Strategy

DB2 on ES/9000 -- DB2 on RS/6000 -- DB2 on 0S/2

All systems networked using DCE
Significant Issues For Interex Members

RS/6000 product transition imminent -- processor
(RIOS to PowerPC) and compilers to be changed

Marketing messages are becoming fanatical as
IBM reduces workforce dramatically

AberdeenGroup

Aberdeen Notes:

IBM is taking a very different approach to what it calls "open, client-server”
systems than HP. At IBM’s last major corporate briefing, IBM described
its rightsizing vision as one of DB2 running on the mainframe, midrange,
and PC with all systems communicating through DCE.

IBM is taking the RS/6000 through yet another technology transition to
attempt to make it right. IBM has announced that by 1995 all its major
platforms (ES/9000, AS/400, RS/6000, and PS/2) will be based on the
PowerPC processor jointly developed with Motorola. This is a major
technical challenge for a company that has had so few successes recently.
And public perceptions:may be clouded by an IBM staff that is now willing
to say just about anything-to avoid being part of the 28% personnel
downsizing effort underway.

Audience Notes:

Rightsizing: The Key-Choices We Face - Page P005-19

Sun Microsystems

Rightsizing Product Strategy

Multiprocessing SPARCserver/SPARCcenter
servers interoperating with Solaris on client

Two-tier client-server architecture is sufficient
Significant Issues For Interex Members

Sun is still going through Solaris 1.X to Solaris 2.X
transition glitches

Assumes commercial middle manager users will

accept Unix on the desktop
AberdeenGroup

Aberdeen Notes:

Sun Microsystems is aggressively promoting its two-tier client-server
architecture consisting of Unix on the client-desktop with upgradeable,
multiprocessing power built into the server. The glue to make the client
and server work together is primarily software provided by independent
RDBMS and application suppliers.

Users continue to report that a considerable amount of technical expertise
is required to support a Sun system as Sunis technically struggling with the
transition between generations of operating systems and hardware
platforms. In addition, the majority of end-users want an. MS-
DOS/Windows client on the desktop — a SPARCstation has too many
drawbacks (price, source availability, mobility) to be acceptable in 1993.

Audience Notes:

Rightsizing: The Key Choices We Face - Page P005-20

"DEC

Rightsizing Product Strategy

64-bit Alpha with either OpenVMS, NT, or OSF/1 on
all computing systems within the enterprise

Production operating environments are in flux -
Significant Issues For Interex Members

64-bit Alpha applications will not be availéble until
mid-1994 : . s

DEC is attuned mostly to the needs of its installed

base during current headcount reduction phase
o AberdeenGroup

Aberdeen Notes: i

DEC has bet the company’s ability to capture new accounts in the mid-

1990s on the success of the 64-bit"Alpha processor and OpenVMS, NT, and
OSF/1.. However, while these may be the underlying technology- -
components, Digital has a considerable amount of work to’ complete before.
its operating environments, including languages and networking, are -
compatible.

Alpha’s strength is its design for fast integer processing — its weakness isa
lack of volume sales to justify expanded R&D spending to ensure long-
term scalability. While Alpha/OpenVMS will help meet the performance
and price/performance needs of DEC’s installed base, there seems to be.
little general interest on the part of vendor-neutral IS executives today.

Audience Notes:

Righm&ing: The Key Choices We Face Page P005-21

Microsoft

Rightsizing Product Strategy

NT on Intel and Risc processors for server
applications in 1994 -- replaces 0S/2

Windows to Chicago to Cairo on desktop -- and
then Cairo on server in 1995

Significant Issues For Interex Members

Windows/DOS is what users want on desktop

NT in 1993 could be a CLD
AberdeenGroup

Aberdeen Notes:

While Microsoft dominates the desktop in the world of rightsizing, it still is
seeking a position offering the server software-of-choice. Its latest entry in
server software is Wmdows/NT The questions many IS executives are

facing are whether the product is stable enough for production apphcanons
and will Microsoft support it long term.

Based on initial evaluations, Aberdeen Group is advising its clients to be
very cautious regarding investments in Windows/NT in 1993.

Audience Notes:

Rightsizing: The Key Choices We Face B Page P005-22

Hewlett-Packard

Rightsizing Product Strategy
PA-RISC powering better than maiinframe serVers

Better than mainframe functionality in three-tier
plus topology through leading systems software

Significant Issues For Interex Members

PA-RISC will need improved integer performance
to stay ahead in 1994

HP is finally adVertiSing to CEO decision makers
AberdeenGroup

Aberdeen Notes:

Hewlett-Packard has solved all the technical problems, especially I/O
bandwidth, security, performance, and backup, that have in the past
restricted the use of midrange systems to the departmental level.

The product reasons HP systems continue to be the rightsizing platform-of-
choice is the robustness of the systems software (middleware), scalability
and power of PA-RISC, and extensibility of the entire architecture.

Now that HP is finally advertising directly to the CEO level within
enterprises, IS executives responsible for HP installations should anticipate
more requests for information about how HP-based computing is both
different and better than traditional IBM mainframe methods.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-23

HP-experienced IS Role

Proactively establish senior management
vision of how enterprise can win through IS
rightsizing =~ SRR e

Enthusiastically describe today's multiuser
technology capabilities to mainframe IS
and line managers

Base IS deci"s'ion's on ROI to total enterprise
-- not just IS

Be a catalyst to create culture of change as a

way of life within IS AberdeenGroup

Aberdeen Notes:

Just because Interex members understand how rightsized architectures -
operate, you cannot assume that either senior line management or your
mainframe-trained IS peers do.

Senior management is looking for you to proactively propose new ways to
run your enterprise’s operations. Non-technical managers do not know the
questions to ask to start or promote the rightsizing process — it is now your
obligation to assume more responsibility for the business benefits of IS
advances. This necessitates the ability to base IS decisions on the financial
benefits to the entire enterprise as well as technical capabilities.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-24

Rightsizing For Success

IBM, Unisys, NCR, DEC, SUN, ICL, Olivetti,
DG, SNI, Bull, and others tell Aberdeen that
HP is the industry leader for Rightsizing
multiuser platforms ‘

The obvious conclusion is that:

Interex members are the most
qualified in the world to lead their
enterprises by rightsizing for
success AberdeenGroup

Aberdeen Notes:

Interex members now face the challenge of managing success within their
enterprises. They now find themselves in charge of the right platform and
with the right experience. Others IS professionals using supplier
technology that did not stay ahead are racing to catch up to you.

But just being technically qualified is not enough — you must be
individually motivated to use this technical knowledge to successfully direct
your enterprise’s transition to adopt the rightsizing approach to IS. The
management concepts on which ACTION are based can provide you with a
foundation for making the correct rightsizing technical and business choices
both now and in the future.

Audience Notes:

Rightsizing: The Key Choices We Face Page P005-25

Paper 1000
Using RTE More Effectively in an Increasingly non-RTE
HP World ’
F. Stephen Gauss
U.S. Naval Observatory
3450 Massachusetts Ave. NW
Washington, DC 20392-5420
202-653-1510
fsg@sicon.usno.navy.mil

In recent years RTE has been evolving in ways that make
it easier to use in a multi-computer environment,
especially when the other computers are based on the Unix
operating system. In many cases the RTE implementation
is actually friendlier than the HP-UX implementation, but
the important point is that the computer user should be
able to move from system to system with relative ease.
With improvements made to the networking interface in
recent releases, it is quite practical to use
workstations to open multiple windows into the HP1000 and
to have many of the advantages of a windowed environment
even though RTE does not formally support such a thing.
Recent products released by both the RTE and HP-UX
support groups have provided many of the tools to ease
the use of RTE in the non-RTE environment, especially if
the other systems are HP-UX. The Gfox product provides
a graphical terminal interface that is faster than the
terminal it is emulating. Softbench/1000 permits the use
of the HP-UX program development tools with RTE, while at
the same time some of the HP-UX tools have been made
available directly in RTE. And with an Edit/1000 version
available from a third party for HP-UX, the user can work
in whatever environment he is most comfortable with and
can use the tools with which he is most familiar.

However, there remain a number of areas where
integrated solutions do not yet exist. Methods have been
devised to work around some of these areas and they will
be described in the remainder of this paper. Some
involve features provided at release 6.0 of RTE, some
interact with HP-UX systems via Berkeley Sockets and some
provide temporary workarounds for features that are known
to be under development at HP. In cases where code can
be modularly developed to support the operation, that
code has been contributed to either the 1993 CSL or the
1993 swap tape. Where modules are required on both the
RTE and HP-UX platforms, those modules have been
contributed to both CSL’s. ' :

Using RTE In An Increasingly non-RTE HP World
1000~ 1

E-Mail Support via Modem

In the Unix world a system of inter-machine communication
called uucp was developed to allow computers to talk to
each other regardless of the mechanism available. RTE
has a fine E-mail support system,.consisting of Mail/1000
and either NS/DS1000 or the ARPA smtp service. However,
one of our RTE systems is located in another country and,
for a number of reasons, no network connection is
available. There are dial-up modems operating at 9600
baud and a scheme has been implemented to allow standard
E-mail to be passed back and forth between RTE systems in
batches. This process has been- given the name "bulk-
mail". The CONNECT program from ICT is used to provide
the communication interface. - Because of the delays in
the signal when communicating half way around the world,
the ENQ-ACK handshaking used on HP .computers is
unsuitable. The ports and the modem must be set to use
XON-XOFF. 'Because certain RTE programs use some of the
handshaking characters for identification purposes, it is
important that all of the XON-XOFF characters be passed
through the modems. Most modems have such a "pass-thru"
mode associated with the XON-XOFF menu choice. In
addition the HP1000 mux port must be set to half-HP mode
(203b), which allows both XON-XOFF and ENQ-ACK to appear
on the port, even though only XON-XOFF is used for
handshaking. . Fr a

Bulk-mail transfers can be initiated from either end of
the connection. For purposes of illustration, let the
computer where the operator is located be called the
local system and the unattended computer at the other end
be called the remote system. At release 6.0 a feature
was added to Mail /1000 allowing -mail .directed to a
specific node to be diverted into a directory. The node
name of the remote computer is given the same address as
the local computer. Thus, any mail sent to the remote
computer’s node name arrives at the local computer and is
redirected into. a directory called /MAIL/BULK_OUTMAIL.
Since the remote computer is NOT connected to the same
network, there is no problem in assigning the two node
names to a single address. At this point the remote
computer appears :to be a perfectly legitimate E-mail
address. However, all mail sent to it ends up as files
in the above mentioned directory on the local computer.
Note, though, that within those E-mail files, the To:
address specifies the name of the remote computer, not
the local computer. The next step is to make a modem
connection using CONNECT between the two systems and to
use Kermit to transfer all the files in the

Using RTE In An Increasingly non-RTE HP World
1000= .2

/MAIL/BULK_OUTMAIL directory to a /MAIL/BULK_INMAIL
directory on the remote computer. In the same operation
all files in the /MAIL/BULK OUTMAIL directory on the
remote computer are transferred to the /MAIL/BULK INMAIL
directory on the local computer. Thus, all accumulated
mail on both systems is transferred to the other system.
This can be done at a scheduled time (when phone rates
are low, for example) or whenever someone dlals up the
other system for any other reason.

Oonce the files are transferred, the sendmail program is
scheduled on each of the files. Since the node name
referenced in each message is now the real node name of
the computer that the mail is on, the ma11 is dellvered
to the proper address.

There are a few caveats; mail sent to lists of names on
the remote computer is delivered to each name at the
local computer, but then when the file is transferred to
the remote computer it is redelivered to the same list,
thus causing multiple messages to be delivered. This can
be avoided by editing the file to use the TO: line rather
than the To: line. Occasionally, a transmission problem
will cause the process to abort, so as the mail is sent
off it 1is also copied into a /MAIL/BULK SCRATCH
directory, which can be purged every once in awhile.

This system works reasonably well and provides a
transparent method for passing standard E-mail over
modems. It requires several transfer files for CONNECT
and EDIT/1000 and they are shown in Appendix A. These
files are provided here for purposes of illustration
only. While they are slightly modified copies of worklng
files, no guarantee that they will work as shown is
implied.

Remote HP-UX Services

When working in a mix of RTE and HP-UX environments it is
convenient to have some frequently used information
available on both systems. An efficient way to pass
information back and forth is via Berkeley Sockets. Once
a client-server relationship has been established, it is
quite feasible to send almost any kind of information
between the two systems. Such a mechanism has been
presented previously in both a paper ("Using BSD IPC to
Synchronize RTE and HP-UX System Times", King,
Proceedings of the Interex 1992 Conference) and programs
contributed to the CSLs (King, Schmidt and Gauss, 1992
CSL/RTE and CSL/HP-UX). Wendy King and Rich Schmidt
developed client-server programs to synchronize time

Using RTE In An Increasingly non-RTE HP World
1000~ 3

between an HP-UX system and an RTE system. Since either
one .could act as the source of the time, four modules
were developed to allow either system to be the client
and either one the server. Using the same basic code, it
was relatively easy to create a new set of programs to
provide information about the users logged on to either
system. The program WHOZN had been written for RTE and
allowed an RTE system to show who was logged onto itself
or any other RTE system. It used both NetIPC and DS
transparency so that it worked with both RTE-A and RTE-6.
It has since been cenhanced to add a BSD module, which
permits it to access HP-UX systems as well. In addition
the complementary modules were written for HP-UX to allow
the same functions to be performed from that end. Thus,
a user on an HP-UX system can display users logged onto
that system, other HP-UX or RTE systems and a user logged
on to an RTE system can see who is logged on.to other RTE
or HP-UX systems. The user runs the -.client which
connects to a server module on the other computer and
supplies the required information. :

However, WHOZN was somewhat complicated to write, since
it needs to access system tables in RTE to obtain the
necessary information. A new set of programs (r server,
r_client) was written to handle the simpler situation
where all that is necessary is to have the remote
computer run a program to obtain the information and then
pass it back to the local (calling) computer. This
program pair provides an NSLOOKUP function for RTE,
displays disk space information. for both RTE and HP-UX
systems, allows HP-UX manual pages to be displayed on the
RTE system and allows a method of communicating with a
user on another system.

The programs take advantage of a new feature at RTE
release 6.0, symbolic 1links, that provides a way to
create multiple names for the same file (or program)..
Using symbolic links, a single program can be called by
several names. The program can examine its runstring to
determine which name was used to call it and act
accordingly. Thus, the single program, r_client, can be
called by the names nslookup, bdf, man and to_user.

In each case the sequence of events is as follows:

the r_client program
o determines which service is to be prov1ded
o sends the service number. and any parameters

to the. other system :

o . sends any data to the other system
o waits for a completion

the r_server program

Using RTE In An Increasingly non-RTE HP World
1000- 4

‘o is scheduled by inetd :
o retrieves the service number and parameters
-from the input stream
o schedules a program or shell script, passing
: it the necessary parameters and d1rect1ng its
output into a temporary file
‘0 reads the temporary flle and sends it back to
the calling system

The operation of the program when called by each of these
names is as follows:

nslookup, node name, [remote system]

nslookup is an HP-UX utility that searches the network to
determine the IP address of a given node name. This is
an "easy way to determine whether you have the right -
spelling for an address or whether such an address
exists. If nslookup doesn’t know about it, there is no
point in sending E-mail to it! The RTE user types
nslookup and the name of a node that is to be looked up.
The name of a system where the nslookup utility is to be
run can, optionally, be given, but the program provides
for a name to be built in as a default. This system
should be a name server or have access to a name server
and must be running the r_server part of the pair. The
node name is passed to the remote system, which runs
nslookup on the node name and returns the information
that it finds to the calling program which displays it.

bdf([, remote system]

bdf is an HP-UX utility that displays the free space
available on the disks. This can be useful to know
before transferring 1large amounts of data onto .the
system. The name of the remote system whose disk space
is desired must be given.: If no system name is given,
then the local system is assumed. As in the previous
example, the remote system runs the bdf utility (or, if
it is an RTE system, FREES +M) and passes the 1nformat10np
back to the calling systen. .

man, man page[,remote system]

man is an HP-UX utility that displays the manual pages
for .a given subject or utility. Its format is not
particularly friendly. This function only makes sense
when run from an RTE system, since all HP-UX systems have
the same man pages. In this case, the request is sent to
the HP-UX system which then opens an anonymous ftp
connection back to the RTE system (for information on

Using RTE In An Increasingly non-RTE HP World
1000- 5

setting up an anonymous ftp account, see below). It then
transfers the man page to the RTE system. The man
program (r_client) on the RTE system then lists ways to
display the man page using the more friendly RTE
utilities. = The information is given in a way that the
command stack can be used to access them. Both Edit/1000
and LI can be used, although, since man pages tend to be
full of HP-UX control sequences (tabs, etc.), it is
sometimes faster to use Edit/1000 and kill the HP-UX
tabs.

to_user, logon name[, remote system]

to_user is used to send a message from an HP-UX or an RTE
system to a user logged onto the same or another system.
The logon name must be the name that the user is logged~
on by. If no remote system is specifled the message is
sent to the local system. To_user is interactive and
allows you to enter a message. TAt the conclusion of the
message it is sent to the user. If the user is located
on an HP-UX system, the utility xmessage is used to put
the message into an X-window. Note that the xmessage -
utility is a previous CSL contribution that creates a
message window on the user’s session. If the user is
located on an RTE system, the message is simply copied to
a temporary file and the program BC is used to inform the
user of this fact. BC is a previous CSL contribution:
that puts a single line message in the soft key area of
the screen without disrupting the user’s display. If the
user is not 1logged on, an appropriate message is
returned. The user name "all" can be used to send the
message to everyone who is logged on.

The services provided by r_server and r_client can be
easily expanded by simply adding modules to the program.
The connection across the network is provided
automatically by one-line entries in the /etc/inetd.conf
and /etc/services files, which now exist on RTE as well
as HP-UX systems. A file, /etc/r_server.file, contains
entries for the name of the local system and the name of
the default remote system.

Anonymous ftp

HP-UX systems generally have -an anonymous ftp account,

which allows any user to connect to a directory for the
purpose of uploading or downloading files. Many system-
managers prefer to have files required by outside
(anonymous) users placed in this temporary directory,

rather than directly into user accounts. It provides
better security, since the user does not need to know a

Using RTE In An Increasingly non-RTE HP World
1000- 6

password, has no access.to user directories and need not
even know about the accounting structure on the system.
Furthermore, the directory can be managed such that large
file sizes will not use up critical disk space. This
type of account can be set up on an RTE system in the
following way. - An anonymous account with no password is
created using GRUMP. To prevent anyone from logging on
to this unprotected account, the startup command
(normally RU,CI) should be an 1nva11d string (I use RS).
The home dlrectory for the account should be placed on a
disk LU by itself or in an area where no harm will be
done if a user fills the directory with a very 1arge
file. The account should have as many LU’s disabled in
the LU map table as possible. This account is also
useful for programs that must automatically transfer data
to the RTE system, since it does not require that a
password be written into a program. The previously
described man utility makes use of this account to
transfer the man pages from the HP-UX system to the RTE
systemn.

The addition of Berkeley Sockets along. with HP-UX-like
utilities to RTE has provided considerable f1ex1b111ty in
developing interactions between the two. It is becoming
increasingly easy to move between RTE and HP-UX, which
has enhanced the attractiveness of adding HP-UX-systems
to an RTE network, while extendlng the useful life of the
RTE systems.

Using RTE In An Increasingly non-RTE ' World
1000~ 7

Appendix A
COmmandefiles that make up the bulk_mail operation.

File 1. /cmdfiles/bulk_mail.cmd
Command file on remote system to initiate the transfer of
mail between the local and the remote systems

set direct = $wd
* Set up inmail directory to receive flles from remote
* Set up outmail directory to send files to remote

wd /mail/bulk_inmail

pu /mail/bulk outmail/tempfile.tmp

edit -b /mail/bulk_ outmail/tempflle tmp i&&&}er
pu @.tmp ok

* Start kermit in server mode

* Break back to CONNECT and run the command file
* on the inmail directory

%*

echo N
echo ‘== Enter your CONNECT break character ==}
echo ‘== then tr,bulk_mail ==\
echo b
echo * ©

kermit server

* .

* All files transmitted in both directions
* Prepare a command file that will pass the
* file names to sendmail

*

pu send.cmd

pu tempfile.tmp

dl @.tmp s send.cmd

if is S$returnl = -50 =i
then

echo ‘No files transferred TO.‘
else

Create the command file needed to pass the file names
* to sendmail and transfer to that command file
edit -b send.cmd seasof!tr,/mail/bulk/send.edit
echo ‘Sending mail to addressees.‘
tr,send.cmd
fi
*
* Preserve the files in a temporary directory in case
* of transmission problems
*
mo /mail/bulk_outmail/@.tmp /mail/bulk scratch/
wd $direct
unset direct

Using RTE In An Increasingly non-RTE HP World
1000~ 8

File 2. /connect/bulk mail.cmd
Command file on:local system to carry out transfers
interacting with the remote system

This command file is stored on the directory
from which CONNECT is run and the modem is
operated (assumed to be /connect)

Switch the working directory to inmail

%* ¥ % ¥ ¥ ¥ %

ru,ci,/mail/bulk_inmail/sd.cmd, /mail/bulk_inmail
pu /mall/bulk outmail/tempfile.tmp i

* Create a command file for kermit to communicate with
* the kermlt server that 1s now actlve on the other

* end }

*

edit -b /mail/bulk_outmail/tempfile.tmp i---|er

*

* Send the mail files

*

kermit tr /mail/bulk/send mail.krmt
of ,kermit

Escape back to connect and complete the operation
of mailing out the files that were sent to the
local end

ru,ci,/mail/buik/finish_get.cmd
ru,ci,/mail/bulk_inmail/sd.cmd, /connect

(-2 T N

&&

File 3. /mail/bulk_inmail/sd.cmd

command file for CI to switch working directories
(required by CONNECT)

wd, $1

Using RTE In An Increasingly non-RTE HP World
1000- 9 .

File 4. /mail/bulk/finish_get.cmd
Command file to complete the transfer and send the
mail on the local system

Mail out all of the files that were passed from the
remote system to the local system

* ¥ ¥ ¥*

wd /mail/bulk_inmail

*

* Save files in case of transmisison problems

%*

mo /mail/bulk outmallltmsg@ tmp /ma11/bu1k scratch/
pu send.cmd

pu tempfile.tmp

*

* List all received files into a file that will be
* edited into a command file

* .

dl @.tmp s send.cmd

if is $returnl = -50 -i
then

echo ‘No files transfered FROM.‘
else

*

* Create a command file that passes the names of the
* mail files to sendmail then transfer to that file
*
edit -b send.cmd seasof|tr,/mail/bulk/send.edit
echo ‘Sending mail to addressees.‘
tr,send.cmd
fi
ex

File 5. /mail/bulk/send.edit
Edit a directory list file into a sendmail file

$
P&E&&ETIIEES
1

1,3,d,/&&&%%%&6&E&/,a

sele20

bk

sele

sewcl,1
1,$,u//tr,\/mail\/bulk\/sendout /q
sewc

1,$,d,/886%%%8588/,a,V

er

Using RTE In An Increasingly non-RTE HP World
1000- 10

File 6. /mail/bulk/sendmail.krmt
Kermit command file to communicate with the kermit server

send /mail/bulk_outmail/@.tmp
get /mail/bulk outmail/@.tmp
finish

quit

File 7. /mail/bulk/sendout.cmd
Sends out the mail on the remote system

For each file, change any occurrences of
"apparently to" to "to", make sure that the correct
node is used in the case of LHOPs and then pass the
file name to sendmail

* % * ¥ *

*

set file = $1

edit $file seasof]‘l1,$,x/Apparently-To:/To:/|er®

edit $file seasof}tr,/mail/bulk/node.edit

sendmail -s $file

File 8. /mail/bulk/node.edit

Edit file to ensure that the proper "To" routing is used

sereon

secfof

£f/TO +\</

x/TO /TO\:/

secfon

.+1 $ x/To\:/To /
b/to\: @\@alpha/
x/{to\: @}\@alpha.@/&l
x/{@}%{.[~%]}/&1@&2/
x/\<//

x/\>//

er

Using RTE In An Increasingly non-RTE HP World
1000- 11

Paper 1001
Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC

by Gerald Lisowski and Dan Kukla
ZENECA, Inc.

Western Research Center
1200 S. 47th Street
Richmond, California 94804
510-231-1390

In the PC world HPGL has become a de facto graphics standard. Most
graphics plotters accept HPGL input and most graphics programs can
produce HPGL output. Recently h‘iigh end word processors, such as
WordPerfect by WordPerfect Corp. and Word by Microsoft, have acquired
the ability to import HPGL graphics. They can import the graphics either
directly (Microsoft Word) or through a conversion program (WordPerfect).

Incorporating graphics into our documents is an important feature. Before
our word processors obtained this ability, the only work around was to create
the graphic separately and leave space for it in the document. If the graphic
occupied space in the body of the text we would usually paste the graphic
and document together and photocopy the resulting page. This increased
the time and effort needed to produce a document. If something was later
added or removed, it usually meant the whole process would need to be
repeated, typically with a lot of aggravation. If the graphic occupied a whole
page, things were a little bit easier. But even with full page graphics we often
need to add captions, running heads, or page numbers. We still had to go
through the paste and photocopy routine. Now we let the word processor
handle the layout details. It does it faster and smoother than we ever could.

~ One type of graphic we are especially interested in is chromatograms. When
a chemist in{)ects a mixture of compounds into a machine called a
chromatograph, the chromatograph separates the compounds and sends
them to a detector. The detector sends the output to a device capable of
accepting its signal. If the device is a recorder a chromatogram is obtained.
A chromato plots detector response on the y-axis verses time on the x-
axis. The chromatogram contains two valuable pieces of information, the
retention time and peak area. The retention time is how long the compound
spent in the. chromatograph, and can help the chemist identify the
compound. The peak area is proportional to how much of the compound
was placed in the chromatograph. Using this information the chemist can
quantitate how much of the material was in the original sample. Figure 1,
supplied by HP as part of its Laboratory Automation System (LAS) training
course, is an example of a chromatogram. Figure 2 is the same
chromatogram with the base lines drawn in after processing by LAS.

Transferring CPLOT and LPLOTOOGraphics from the HP 1000 to a PC
1001-1

ool

e ! w.aol
-]
g a
g
§ % ol
—
1B n A n " .
020 163 336 war 632 s [E na 106
RT in minutes
SAMPLE: LAD EXPT 2 INJECTED AT 14:15:23 oW SEP 16, 1980
Meth: OPMOL Raws OPROL - Procs OPPO1 -

Figure 1. Raw chromatogram
]

4524 b

13307 b

-3 g 107.13 L
Q
o -
5 E
E % ‘l.‘lo -
& ! 3
5 I
15.06 - 1 ' s .) 1 - L
0.00 1.63 3.26 ° 4.9 6.52 8.i3 2.70 1.41 13.04
DEMOP RT in minutes LAB EXERCISE 1
SAMPLE: LAB EXPT 2 INJECTED AT 14:15:123 ON SEP 16, 1980
Meth: OPMO1 Raws OPRO1 Proc: DEMOP

Figure 2. Processed chromatogram

A recorder is not the only device capable of accepting the signal from a
chromatographic detector. The signal also could go to a computer with the
hardware necessary to receive the signal, and the software necessary to process it.
Such a system is called a chromatography data system. - Given that HP is a leader
in analytical instrumentation and computers, it's not surprising that they make a
chromatography- data system. In fact they make several.. One family of these, the
LAS systems; are based on the HP 1000. The system used on an E/F series
computer running RTE-6 is the 3357 while the system used on an A series
computer running RTE-A is the 3350A. Both units can store the raw data points
to allow for subsequent reanalysis and replotting of the data. ; s

One program that can replot the data stored in a 3357 or 3350A is CPLOT.
Another program, available only for the HP-3350A is LPLOT.! Both programs
are available from Hewlett-Packard.2 CPLOT and LPLOT use Graphics/1000-I

- Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC .
1001-2

and can take the chromatographic data and replot it on a graphics terminal, or
send the plot to various graphics printers or plotters. Two supported devices are
the HP7475 and HP7550, both HPGL plotters. CPLOT output also can be sent to
a spool file. Using CPLOT we can send the output to a spool file that CPLOT
thinks is an HP7475 or HP7550. LPLOT is able to directly output to a file. The
file is a text file that can be sent to a PC using a variety of programs. The
program we use is Reflection 7 by Walker Richer & Quinn, Inc.

Preliminary setup
CPLOT

On both RTE-6 and RTE-A systems, file "USERC or /SYSTEM/USERC.TXT
needs to be set up correctly before CPLOT can be used to produce an HPGL file.
It must contain spool table entries for at least one of the two supported HPGL
plotters. The text below was taken from a "USERC file set up to allow the
spooler to emulate either the HP7475 or the HP7550.

ISPOOL :

spool table - line 1=no. of entries, each entry on separate line:
wsp name, plot limits x1,x2,y1,y2,direction code,aspect ratio
==y 5 TH
W7475,0.,0.,0.,0.,250,.6232

W7550,0.,0.,0.,0.,250,.7700

Information on what the entries mean and how to modify "USERC or
/SYSTEM/USERC.TXT can be found in the CPLOT manual.

You also may need to modify the pen section of "USERC or
/SYSTEM/USERC.TXT to have all the pens be 1. When Microsoft Word prints
an incorporated HPGL file, the characters drawn with pens other than 1 are fuzzy.
The characters drawn with pen 1 are nice and sharp. -

If CPLOT is run from CI, the work station programs (Wsp files) must be in the
PROGRAMS or working directory.

LPLOT .

For LPLOT you need to have a device definition file. These are usually in the
/LAS/DEVICE directory and have the extent DEV. These files are described in
the LPLOT manual. Although not necessary, a PLOTTOFILE.DEYV file may be
used. If this file does not already exist it can be prepared by copying an existing
HP7550 device definition file. The files are text files and can be modified with
EDIT. The following lines may need to be changed. . ,

LU =Any valid spoolabie LU.

Workstation = /programs/w7475.run or [programs/w7550.run

XAspect ' : SR
YAspect = : :

Transferring CPLOT and LPLOT Graphics from the HP 1000 to aPC
1001-3

These should be set for the aspect ratio of the surface to be printed on. For
example on a 6 inch wide piece of paper, Microsoft Word for D(gS says a 4.411"
high picture will preserve the aspect ratio of the picture. For the best fit for these
circumstances, the XAspect would be set to 600.0 and the YAspect would be set
to 441.1. ‘ - ' '

Producing the HPGL. file on the 1000
The first step in getting the PC graphic is to create the HPGL file on the 1000.
CPLOT

CPLOT does not have a procedure to directly plot to file. Two indirect pro-
cedures can be used, interactive and batch. : :

Interactive mode

The interactive mode is available only with the RTE-6 version of CPLOT. It's
more involved than the batch mode, but also more flexible.

The first thing is to set up the spool file that will contain the HPGL commands.
Log on with a capability of at least 30. Next use the CR command to create a
type 3 or 4 file to hold the HPGL commands. With the CR command you must
specify a size for the file. A size of 24 is suggested. This is the default size for
scratch files, and the Programmer's Reference Manual recommends it for user
created files. If more file space is needed the system will automatically create it.
Next issue the command RP,SMP, if SMP has not already been RP'd. Finally
issue the command SL,lu,filenamr,WR. LU must be in your SST and should not
be in use. Filenamr is the name of the type 3 or 4 file created above with the CR
command. You now are set up to redirect output from an lu into a file.

Next run CPLOT. In CPLOT select your raw file and any other parameters you
wish to modify. If necessary, you can modify, plot, and analyze until satisfied
with the results. When all the parameters are set press F4, the menu function key.
Then press F5, the plotter function key. In the plotter menu, press F6, and type
the number of the spool LU. Then press F7 to choose the plotter. Type W7475 or
W7550, whichever is in the spool table in "USERC. Plot to the spool file by
pressing the plot function key, FS. After plotting is complete press F4, the menu
function key. Finally press the end key, F8, to exit, and answer yes to the "ARE
YOU SURE YOU WANT TO QUIT" question. At this point you will be in
graphics mode. If you are using Reflection, get back to alpha mode by pressing:
alt-7 on the numeric key pad. ;

Once you are back into RTE type CS,lu,EN to close the spool\file. If you do not
want to keep SMP around, and you have the capability, type OF,SMP.

Batch mode ;
Batch mode can be used with the RTE-6 version of CPLOT, and is the only way

to get an HPGL file from the RTE-A version. As in the interactive mode, the
RTE-6 version of CPLOT requires setting up a spool file to contain the HPGL

Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC -
1001-4

commands. This is done using the same commands described above for the in-
teractive mode.

Spooling HPGL output on older version' RTE-A systems requires that the
appropriate plotting device is fpws«ant in the system, and its LU is below 64. A
dummy LU can be generated for plotting purposes. The following is an example
of an Interface and Device Table entry for an RTE-A answer file to generate a
dummy LU (LU 9) to support plotting to HP7475 and HP7550 plotters:

IFT,%ID*37::RTE_A,SC:27B
DVI‘,,,TO 2000,DT:77B,TX:0,DX:1: 36B,PR 0 LU:009

Newer versions of RTE-A do not require this dummy LU, or that the plottmg
device be present in the _?‘Ks;em When the output LU is specified, an unused LU
should be designated. will insure that lcgmmate output is not accidentally
routed to a spool file.

Turn spooling on to redirect the output. from the LU to a file by entering
SP,ON,LU,FILENAME, where LU is the number: of the plotter LU and
FILENAME is the name of the HPGL file you want to create.

After the LU is set up to direct its output to a spool file, generate the plot by
running CPLOT in batch mode. On an RTE-A system the spooling-(SP) option
must be used along with the codes for adding retention times, names, and base
~ lines to the plot. This is done by issuing the command
CPLOT,WSP LU,,RESULTFILE, SP... at the system prompt. The run strmg
parameters are described.in the CPLOT manual.

As an example, on an RTE-A system the commands

SP,ON,9,PLOT.PLT
CPLOT,W7475,9,,DATA.RES,,SPBL

will redirect output from LU 9 to the file PLOT.PLT and generatc a plot
emulating an HP7475 based on the chromatographic data in the file DATA.RES.
The plot will have base lines drawn in.

On an RTE-6 system the spooling option must not be used. For an RTE-6 system
the equivalent set of commands is

CR,PLOT::-17:3:24

RP,SMP (if SMP is not already RP'd)
SL,33,PLOT::-17,WR ,
CPLOT,W7475,33, DATA,,BL

On an RTE-6 system the spool file should be closed after the plotting is finished.
As in the interactive mode type CS,lu,EN. On an RTE-A system the spool ﬁle is
automatically closed when the plotting is completed. .

Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
1

LPLOT

LPLOT has the capability of creating an HPGL file as a menu choice from within
the program. First get the plot on the screen and set any normalizations. The
output will be determined by the specified normalizations, not what is on the
screen. From the top menu select OUTPUT. .Then choose Select Device from
the side menu. The program will ask for a device definition file name. Type in
the appropriate file name, for example PLOTTOFILE. Finally select Output to
File from the side menu. The program will ask for a plot file name. After the
name is entered LPLOT will send the plot to the designated file.

Transferring the HPGL ﬁle toa PC

You now have the HPGL file on the 1000 How do you get it to the PC" If the
HPGL file was a normal text file the answer would be simple. Do a LOG ‘
BOTTOM with the TO DEVICE set to TO DISK. Then copy, store, or dump the
file to LU 1. Unfortunately this won't work with HPGL files. HPGL files are not
normal text files. To see why, run EDIT on-the HPGL file. If you list it out it
looks like a regular text file. However if you go into screen edit mode you get
somethmg like figure 3.

}) l 1 st ontl 0 reads 36 ontl 0 cntl Q aborts !*ll*l**((

ub wb G690, 506,0.300:140,9, 16170 6090,51’ 596, 8,635; Pl;SP1;
: f,ﬁz émi;za.vfz.'.a,ma,lzaa 16120, 786416593, 8. 632; P AF '

]

 PASH
816.169 0 303 l’ﬁ P02631 1453, ED
t FNJECHED AT 14:15:23 ON SEP 16, 1988 ¥@

-m ,
LBlleth: ohm Raw; OPRAL Proc: OPPRL (
PU:BA2i25, 1757;8 ;
LBRT n umutes OE
BlI: PA3S ,1757|

%bmaiz 241&
RARDLITOhE wﬁm

Bl; mzss 2414¢
ﬁania zed
Pll; PA4@99, 2414 I

bIi,66g, 0.
Pll Pazsie, mb I
...... llle e e e mms 1? 3 72

ontrol abs/ce config & keys mnstex1

Figure 3. EDIT screen of an HPGL ﬁle

The funny looking characters3 at the end of some of the lines are control
characters that are an integral part of the HPGL file. In Reflection a simple LOG
BOTTOM strips out these necessary characters. A way must be found to transmit

Transferring CPLOT and LPLOT Graphics from the HP:1000 to.a PC
1001-6

these characters to the PC. In Reflection 7 this is done with the CAPTURE
command. i

The CAPTURE command passes through all characters. The following command
file can be used to transmit an HPGL file to a PC. '

DISPLAY "What is the host filename?"
ACCEPT V1

DISPLAY ""M"J"

DISPLAY "What is the PC filename?"
ACCEPT V2 ;
DISPLAY "*"M"J"

TRANSMIT "** $1,1"

OPEN $2

‘"WAIT FOR "*Q"
CLOSEDISK -
SET CAPTURE NO

Where ** is DU for an RTE-6 system and CO for an RTE-A system. The HPGL
file is now ready to be used by MS-DOS programs.

Using the above command file causes some header and ending "junk" to be
introduced into the PC file. This seems to present no problems, either to
programs that use the file directly, such as Microsoft Word, or programs that
translate the file into their own format, such as Word Perfect.

One fact needs to be mentioned about the HPGL file. It can contain a lot of space
around its border. . CPLOT output to.an HP-7550 using the settings described
carlier produces the least amount of extraneous space. Figure 4 is a directly
imported HPGL file with a box around its perimeter. It is the file used to produce
figure 1. e . ; '

Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
1001-7

245.24.
199,20
15397,
3
g N 10713,
8=
h g
g [IR]: X
- g’
t s
€ [|
18, " " 2 A L A X
00 1.63 3.26 4.88 | 6.52 8.15 9.78 1n.s 13.04

0.
RT in minutes

SAMPLE: LAB EXPT 2 INJECTED AT 14:15:23 ON SEP 16, 1980
Meth: OPMO1 Raow: OPRO1 Proc: OPPO1

Figure 4. Directly imported HPGL chromatogram

You can see that there is a lot of blank space around it, especially at the top and
bottom. If you use a program like WordPerfect for Windows, with its own
graphics editing, this is only a minor annoyance. On the other hand if you use a
program like Microsoft Word, with no graphics editing capabilities, you probably
will want to use another program to edit out the superfluous blank space.

Although we have described using CPLOT and LPLOT to generate the HPGL file
and Reflection 7 to get the file to a PC, the techniques we have demonstrated can
be adapted to other programs. Any HP 1000 program that can send graphics to an
HPGL plotter should be able to have its output redirected to a spool file, either
directly or indirectly. Any good terminal emulator should allow you to copy the
HPGL file from the HP 1000 to your PC. Just remember to make sure that it
passes control characters as well as normal alphanumeric characters.

References

1. HP19471A Advanced Graphic Chromatogram Processor.

Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
1001-8

2. Hewlett-Packard sells and supports CPLOT for the HP-3350A. CPLOT is
bundled with new HP-3350A systems. HP no longer sells CPLOT for the HP-
3357. If you wish to obtain CPLOT for an HP-3357 contact your sales rep.

3. Figure 3 was taken from the screen of a PC with a Hercules compatible
graphics card. The control characters are shown in their IBM character set
representation. HP terminals display the control characters differently.

Transferring CPLOT and LPLOT Graphics from the HP 1000 to a PC
1001-9

Golf and the HP1000

Dave Medlicott

Hewlett-Packard
Software Technology Division
11000 Wolfe Road
Cupertino, CA.

Introduction

For the past several years, one of the projects that everyone in the RTE lab agrees we must
do, but which always seems to get put on the back burner until the last possible minute, is a
good demonstration for the INTEREX conference. When we speak of a “good demo”, there
are a few key requirements that must be met: it must demonstrate an important capability
of the HP1000, such as realtime response or network connectivity, it must be interesting
(to at least a few people) and we must be able to do it. Thus, we have had to scrap such
ideas as a mock factory floor and (one of my favorites) an automated chicken farm (where
real chickens would lay eggs that would roll onto a conveyor belt, etc.).

This year, one of the proposals involved combining the favorite activity of some of the RTE
lab engineers, golf, with work. The idea was a realtime golf swing analyzer. When a golfer
swings the club at a golf ball, many factors affect how the ball will travel after contact has
been made. These factors include the weather, the ball construction, the club construction
and the various components of the swing itself. At impact, the major components of the
swing that will affect the ball’s flight path are: the speed at which the head of the club is
moving, the path that the club is moving along, the angle at which the clubface meets the
ball and the location on the clubface where contact with the ball is made.

Our goal was to develop a device to measure these factors using the HP1000 as the realtime
data collector and analyzer. Devices which measure these components and analyze the
golfers swing are already widely available. However, these devices require dedicating a
processor to the task. In addition to collecting and analyzing the data, our goal was to
show that the HP1000 can do this while simultaneously performing other tasks. In other
words, it is not necessary to dedicate your HP1000 to a single realtime task.

The three components of such a collection and analysis system are: the detector, the col-
lector and the analyzer. The detector is a specialized device consisting of an array of
photovoltaic sensors that detect a break in a light source. The output of these sensors is
connected to an HP 12006A Parallel Interface Card (PIC) which is controlled by a privi-
leged interface driver k(ID55) on the HP1000. Data analysis is performed by a FORTRAN
program on the HP1000. This paper will discuss the driver that was written for this pur-
pose with an emphasis on why a privileged driver was required and the major differences
between standard non-privileged drivers and privileged drivers.

Golf and the HP1000 1002-1

Introduction to Drivers

In general, programs do not directly communicate with interface cards. The usual procedure
is for a program to make an EXEC request to RTE, passing it the parameters specifying an
input or output operation, buffer location and size and to which device the request should
be directed. RTE then looks through its tables to determine which of the operating system
modules will be called to perform the processing needed to execute the requested task.
These operating system modules are the I/0 drivers.

Under RTE-A, drivers may be classified as device drivers or interface drivers. This is because
a variety of devices may be connected to the same interface card. The device driver packages
device specific requests to the interface driver which then issues the I/0 instructions that
allow the interface card to perform the requested tasks. In many cases, including ours, it is
possible that only one device will be connected to an interface card. In these cases, a device
driver may not be required. This is the case for many devices connected to the PIC card.
ID.50 is the standard PIC driver supplied with RTE-A. It is a non-privileged driver and
usually there is no device driver associated with it. Though ID.50 would suffice for many
of our tasks, there were a few requirements of our application which required a privileged
driver. We will get to that in a few moments. First, however, we will examine the interface
between the operating system and the drivers.

Operating System Functions

1/0O Tables

The operating system must perform several tasks which ease the task of the driver designer.
Most RTE supplied drivers are written to handle a wide variety of devices while most
user written drivers are written for a very specific interfacing task. RTE implements a
standard set of tables and protocols which allows drivers to be written with a standard set
of procedures.

Among the tables which RTE maintains are the interface table (IFT) and the device table
(DVT). The IFT contains an entry for every interface and the DVT contains an entry for
every device. When an I/0 request is made, RTE takes the information from the request
and places it in the tables at locations known to the driver designer. This gives the driver
the flexibility of servicing several interfaces or devices.

Driver Entry

Before entering the driver, RTE sets up the IFT and DVT for the current request. It may
also be necessary for RTE to initialize an I/0 port map. This is a map that describes the
area of memory where the I/O buffer resides. When a user makes an I/0 request with an
EXEC call, the address of the I/O buffer is within the user’s address space. If the I/O
transfer is a direct memory address (DMA) transfer, then the transfer will begin executing

Golf and the HP1000 1002-2

and control may proceed on to a different user program. The map set which describes the
new user program is different than the one which describes addresses used in the DMA
transfer. For this reason, the memory map that is used for the DMA transfer must be
independent of the memory map used for user program execution.

Prior to entering the driver, RTE sets a code in the A-register telling the driver why it is
being entered. The codes and usages are as follows:

- Abort the request in progress

- Initiate a new request

The interface has generated an interrupt (Continuation)
- The current request has timed out

- The system powerfailed

w» WwN = o
'

The entries of primary interest for us are the Initiation entry and the Continuation entry.
For both privileged and non-privileged drivers, initiation requests are made through RTE.
That is, RTE processes the request and sets up the tables as described above. Once the
I/O transfer has been started, the driver may exit and return to RTE which then goes
on to perform other tasks. When the I/O transfer completes, the interface card generates
an interrupt. After acknowledging the interrupt, the next instruction to be executed will
be the one at the memory location (trap cell) that corresponds to the select code of the
interface card generating the interrupt. For all non-privileged interface cards this instruction
is a branch to the central interrupt processor ($CIC) within RTE. For privileged interface
cards, this is a branch directly into the interface driver.

For most non-privileged drivers, the sequence of operations is as follows:

1) An EXEC call is made to perform an I/0 request.

2) RTE is entered and tables are initialized.

3) The driver is entered with an Initiation code.

4) The driver starts the I/0 transfer and returns to RTE.
with an indication that the I/0 is underway.

6) The I/0 transfer proceeds at the same time that RTE dispatches
another user program. :

6) The I/0 transfer completes, generating an interrupt.

7) RTE is entered again.($CIC) which sets up the required tables.

© and passes control to the driver with a Continuation code.

8) The driver performs any clean up tasks and returns to RTE.
with an indication that the I/0 is done.

9) RTE. performs its clean up and returns status indicators to the.
program which made the EXEC .call. -

Golf and the HP1000 1002-3

For privileged drivers, the sequence is the same up until step 6. Figure 1 shows the non-
privileged entries and exits for our privileged driver.

Standard (Non-—Privileged)
ID55 Entries and Exits

—e

Read
Initiate Standard ‘Started
(Non—PrivuIegted)
Exil

The Standard entry does the following:
® Save IFT and DVT addresses needed later
® Configure DMA read transfer
* Enable STO interrupt

Figure 1

Privileged drivers have two entry points. The first entry point is the same as for standard
drivers except that there is no continuation entry. Continuation entries are made when an
interface card generates an interrupt. For privileged drivers, the trap cell contains a branch
to a privileged entry point within the driver thereby bypassing RTE. Thus, when a privileged
driver is entered after an interrupt, RTE has not set up the tables or performed any of the
processing that it performs before entering a standard driver. The driver is responsible
for setting up the table addresses and any of the other processing normally done by RTE.
When a standard driver returns to RTE, it is much like returning from a subroutine call.
However, since RTE did not make the “call” to the privileged driver, the privileged driver.
cannot simply “return” to the OS. Before looking at the special processing required of a

Golf and the HP1000 1002-4

privileged driver, we will look at the situation that required us to use a privileged driver in
the first place.

Why use a privileged driver?

RTE-A is shipped with interface drivers which control a wide variety of interface cards;
none of them privileged. So it may be reasonable to wonder why a privileged driver is ever
necessary. The answer is that for many realtime applications, it is critical to service an
interrupt as quickly as possible. Except for the period where RTE is saving or restoring the
state of the machine, privileged interrupts are always enabled. Non-privileged interrupts are
only enabled when a user program is being executed. They are always disabled during RTE
processing. This period can be on the order of milliseconds depending on the functions that
the operating system is performing. For many realtime applications, this delay is excessive.

In our example of the golf swing, most professional golfers can swing a golf club in excess
of 100 miles per hour. At this speed, the clubhead will travel 1 inch in 568 microseconds.
For us to collect all of the data, it is critical that we detect the interrupt and read the data
as fast as possible. If we don’t, then we miss the swing. For many I/O transfers, the time
constraints are much less stringent. For example, when reading a disk, the data will still be
on the disk whether we get to the interrupt immediately or in the near future.

Golf Swing Analysis

Before going on to further discussion of privileged drivers, we will need to further clarify
some of the needs of our specific application. When a golfer starts to swing the club, quite
often the clubhead will move back and forth a bit before starting the actual swing. In golf
parlance, this is called a waggle. It is important for the analyzer to distinguish between a
waggle and a real swing. Thus, triggering is an important factor. Once the club has been
taken all the way back and a downswing started, the plane along which the clubhead moves
is critical. The clubhead can move along one of three paths: outside in, straight or inside
out. At impact, the clubface can be open, straight or closed. The combination of these is
what will determine the flight path of the ball. For example, an inside out swing with a
closed clubface will cause the ball to draw (slight curve from right to left) or hook (severe
curve from right to left). A slice (severe curve from left to right) is caused by bringing the
clubfrom the outside in and leaving the clubface open.

After careful consideration (and some trial and error) we determined that building the data
collector with the geometry used in Figure 2 suited our needs best.

The PIC card is a 16-bit parallel card. We were able to get 32-bits of sensitivity by tying
the photocells in the left column to the corresponding photocell in the right column. During
a normal golf swing, the 16-bits will start off at 0. As the club passes through the right
column of photocells, some bits will get set. Because the distance between the left and right
columns is greater than width of the head of the golf club, all bits will return to 0 as the
club clears the right column. Then, more bits will get set as the clubhead crosses the left
column. Finally, after the clubhead strikes the ball, all bits will return to 0 again.

The PIC card has 4 bits available for the swing analyzer to use as status bits. These are

Golf and the HP1000 1002-5

labeled STO, ST1, ST2 and ST3. A feature of the PIC card is that STO can be programmed
so that triggering it will generate an interrupt to the HP1000. We have tied two photocells
to STO and two to ST1. When either STO cell is triggered, an unsolicited privileged interrupt
is generated and our special interface driver ID55 is entered. ID55 then goes into a loop
checking to see if an ST1 photocell has triggered. Our processing must take into account
any waggle that may be underway. If the timing is not correct, the driver must then re-
enable the STO trigger and exit the driver at the point at which the system was interrupted.
If the timing is acceptable, the driver starts a DMA transfer of up to 32k readings of the
photocells.

Golf Swing Analyzer

Rts O
R4 O
O us rs O
O L Rz O
O us Rit O
O L2 Rio O
O w e O
O Lo R8s O suO s0
Ow [2o
Ot rRe O
O w Rs O
O s R O
O ts Rs O
O R O
O R O
O wu o O
o u
Ball o w <—— Direction of Swing O s00
Figure 2

This is where some of the key distinguishing characteristics of our needs comes into play.
The photocells put out a continuous voltage that to us looks like a 0 (not triggered) or a
1 (triggered). Our measurements require that we know the relative times that the various
photocells are triggered. For example, if we know that R5 triggered at t1 and L5 triggered
at t2, then the velocity of the clubhead can be calculated by taking the distance d(R5,L5)
and dividing by the time difference (t2-t1). Likewise, the angle of the clubface at impact
can be determined by taking the time differential between triggering cells L3 and L5. For
example, if L5 triggers before L3, then the clubface is closed. The time difference tells us
by how much. :

Golf and the HP1000 1002-6

Since we are taking data continuously from the start of the downswing until 32k samples
have been collected, the question is how do we time tag the data? Normally, once a DMA
transfer has begun, the driver will return control to RTE which will then determine the next
task to perform. Under this scenario, when a DMA transfer is underway, the I/O processor
(IOP) on the interface card is always competing with the CPU for memory cycles. When
the IOP is granted control of the memory bus, it will transfer a data value directly from the
interface card to memory. Then the IOP and CPU will contend for the memory bus again.
This means that we cannot assume that the time period between any two data elements
is a constant. In order to ensure a constant time value, our driver must begin a DMA
transfer and then, instead of returning to RTE, it goes into a WFI (Wait For Interrupt)
cycle (see Figure 3). This will hold off any other processing in the machine except for our
data transfer.

Privileged
ID55 Entries and Exits

Read Completes

Ny
<>

STO Generates : :
Interrupt ¢
if RTE interry,
queue IFT oﬂm
Downswing saved
Started machine
If User interrupted,

. move saved state
vt ATE
When STO Interrupts: by

« Save state of machine

« Check ST1 ;

ST1 valid
it ST1 not valid (waggle): OMA
R e ess Start DMA Completes
(User or RTE) Transfer

Figure 3

Golf and the HP1000 1002-7

Once CPU contention had been eliminated, there was still one other factor to think about.
Because the A900 and A990 CPUs have a cached memory structure the time differential
between any two data items collected on them may not be constant. For example, A990
cache lines are 32 bits and writing a 16 bit word to memory may result in a hit or a miss to
16 of the 32 bits. Depending on the circumstances, a write may result in no write to main
memory, a write to memory or a read from memory then a write. The effect is that. we can
never be sure exactly what the time between any two data items is on a cached machine.

" One other effect that we considered was the dynamic memory refresh cycles. Dynamic
RAMs require being refreshed periodically. This varies from every 2 to 4 milliseconds
depending on the size of the RAMs. The refresh only takes 1 memory cycle, however, so
these effects can be ignored.

Thus, we determined that in order to obtain the most consistent time differential between
samples, we needed to use an A600 or A400 CPU using a privileged driver which did not
re-enter the operating system during the DMA transfer.

Privileged Drivers

The initiation section of our driver is fairly indistinguishable from a standard driver. Upon
entry, the request type (read,write or control) is obtained from word 15 of the DVT ($DV15).
Some drivers have various flavors of these requests (for example, binary, ASCII, Z-buffer
etc.). Our driver, however, is designed for a very specific purpose and is therefore fairly
simple. It can handle only a very few control requests (specifying how sensitive to make
the trigger sensing) which are used mainly for calibrating the photocells.

The write function was added to send output to a bus mouse. This allows our PIC card to
send the commands to a PC which look like someone is moving the mouse. When the driver
receives a write request, it configures and starts the DMA write. One of the bits in the DMA
control word specifies whether or not the interface card should generate an interrupt when
the transfer is complete. For the write, we tell the card not to interrupt on completion.
Thus, once we start the DMA write, we return to RTE telling it that the request has been
successfully completed (even though it is taking place at that very moment).

The read request is where the true privileged aspect of the driver comes into play. The
read request can be broken into three distinct sections. The initiation section is the non-
privileged entry into the driver. The driver performs all initialization functions here and
enables the STO bits to generate an interrupt.

When STO is triggered, the interface card generates an interrupt request and a branch is
made to the privileged portion of the driver. The interrupt could be generated by a waggle
or by a real downswing. The driver polls ST1 to see if it triggered within a pre-determined
amount of time and if so, we initiate a DMA read. If not, STO is re-enabled and control
is returned to the point that was interrupted (either a user program or the OS). To the
interrupted process, the interrupt is totally transparent.

When the DMA read is started, all interrupts are disabled except those from the PIC card
and the driver executes a .WFI instruction. The result is that the only activity on the

Golf and the HP1000 1002-8

system is the DMA transfer of the swing data. When the last word is transferred, the
interface card generates an interrupt which again branches to the privileged portion of the
driver. Because the driver was entered without knowledge of RTE, the driver must place
the I/O transfer status information in a location known to RTE and then inform RTE that
it has done so. At some future point, RTE will return. control to the calling program and
inform it that the requested transfer is now complete.

We will now look at the three sections of the read request in greater detail.

Read Initiation

The initiate section of the driver is entered from and returns to the operating system. The
read request performs three functions: save any required parameters, set up the DMA
transfer, enable the STO interrupt. Because the read initiation section is called by RTE
all I/0O table setup and mapping has been performed. During the initiation section, the
driver performs all the set up and configuration tasks needed to execute the read, but it
doesn’t actually start the read. Instead, it enables the STO interrupt and returns to the
operating system telling it that the read is underway. At that point, RTE determines which
process (if any) to schedule next and normal system operations continue. When STO does
trigger, indicating a potential downswing, the PIC card will generate an interrupt and the
privileged section of the driver will be entered directly. That is, RTE will be bypassed and
the tables needed for the I/O transfer will not be configured. Any pointers that need to be
accessed during the privileged operation must be saved during the non-privileged initiate
section. Our driver only needs to save the address of the 7th word of the IFT ($IFT7), the
16th word of the DVT ($DV16) and the starting address of the IFT extension ($IFTX) (a
driver specific number of words beyond those allocated by default for an IFT). Local copies
of these addresses are stored within the driver’s address space.

The driver next configures the DMA transfer. That is, it sets the appropriate bits in the
DMA control block which specifies how the DMA transfer should proceed. Normally at this
point, the next step is to send the address of the DMA control block to the interface card
and then issue the command to start the transfer. However, we are not yet ready to take
the data. We configure it now because we won’t have time to do it later when the actual
downswing begins.

The DMA control block we use specifies an input transfer, in word mode, which will cause
an interrupt when the requested number of words is transferred. Also, a Device Command
Signal will be asserted for each data element transferred. The Device Command Signal is
critical to our application. The interface card sets Device Command to signal the device
that it is ready for the I/O transfer to begin. The device puts the data on the input lines
and asserts the Device Flag Signal to indicate that the data is available. In our case, the
data is always available and we are just waiting for the card to read it. Thus, we have tied
Device Command to the Device Flag. When the interface card is ready to receive data, it
sets Device Command. This in turn sets Device Flag which tells the interface card that
the data is ready. The interface then latches the data on the input lines and saves it as an
input value. :

Golf and the HP1000 1002-9

Before returning to RTE, the driver has one last function to perform. It must send a
message to the PIC card telling it to generate an interrupt when the STO is set. We send
a command to the PIC card that tells it to allow this bit to generate an interrupt when it
is enabled.

LDA =b420
0TA 31b
STC 30b,c

As mentioned earlier, when the device is ready, it sets Device Flag which causes the card to
generate an interrupt. The above instruction sequence causes Device Flag to get set when
STO gets set. The STC instruction, however, stands for Set Control. This instruction is
what enables the card to generate an interrupt. Because our device has the control and
flag signals tied together, this has the effect of not only telling the card to allow ST to
generate an interrupt, but it will generate an interrupt immediately unless we clear the flag
signal. Before returning to the operating system we must issue the CLF 30b instruction
which clears the flag and therefore the interrupt request.

Privileged Interrupt on STO

When STO is triggered, a privileged interrupt is generated and the driver is entered directly.
The driver first disables the interrupt system to prevent another event from causing us to
lose this interrupt. Next, the driver checks to see if this interrupt was caused by STO being
triggered or because the DMA read transfer completed. In order to determine this, the
driver sets a flag when it starts the DMA transfer. When the DMA transfer begins, the
STO interrupt is disabled. So, the next interrupt after the DMA transfer starts, must be
the DMA completion. Before discussing the processing that must be done after the transfer
completes, we will look at what happens during the STO interrupt processing.

When STO causes an interrupt, it could be a waggle or an actual downswing. The difference
is determined by the time difference between setting ST0 and setting ST1. If this difference
is not within the predetermined limits, then the process that was interrupted is resumed
with the state of the machine set to exactly what it was when it was interrupted. This is
done by saving the state of the machine when STO interrupts. The values that are saved
are: the A, B, E, O, WMAP, C, Q, Z and global registers and the interrupt mask. Also
saved are the point of suspension for the interrupted process and the RTE flag SMPTF.
This flag will allow us to determine later whether it was RTE or a user process that was
interrupted.

If it was a real downswing, then we are ready to start our DMA read. The driver issues
a CLC 6 to turn off the TBG, starts the DMA transfer, turns the interrupt system on
and executes the WFI instruction. The net effect is that our DMA transfer is the only
thing happening on the system. When the DMA transfer completes, the interface card will
generate an interrupt and the driver will be re-entered.

Golf and the HP1000 1002-10

DMA Completion Interrupt

When the DMA completes, the driver must then tell RTE that the transfer completed and
then transfer control to the operating system. There are two cases to consider: whether
it was RTE or a user program that was interrupted by ST0. If it was RTE that was
interrupted, then we must return control to RTE at the point at which it was executing
prior to the interrupt. This is because RTE is not re-entrant. Before returning to RTE,
though, the address of the IFT extension ($IFTX, which was saved when the read request
was initiated) must be linked off the privileged driver done list headed by the system entry
point $Q.PV. When we return, RTE will check this queue after it finishes processing its
current task. To return to RTE, we follow the same procedure as returning from the STO
interrupt above. The state of the machine that was save is restored and a branch to the
interrupted location is executed.

If the interrupted process was a user routine, the return is much different. The state of the
machine at interrupt reflects the state of the user program. The saved registers are stored
in the program’s ID segment, the interrupt system is enabled and a branch to the system
entry point $PDON is made. When the branch to $PDON is made, the B-register is set to
the IFT address for the interface card whose interrupt was just serviced. RTE then uses
this address to determine which process initiated the I/O request on that interface and it
later returns control to that process telling it that the transfer was successful.

Conclusion

The major differences between privileged drivers and standard drivers are in the services
provided by RTE and in returning from the driver to RTE. Standard drivers provide most
of the functionality of privileged drivers, but when the time between generating an interrupt
and servicing the interrupt is critical, privileged drivers are the solution.

It should be noted that it may not be a good idea to disable all interrupts during a DMA
transfer as we have. By using a logic analyzer, we were able to determine that we did achieve
our desired results. The spacing between data items was a constant of 1.6 microseconds.
For a 32k transfer, this means that all interrupts, including the TBG, will be disabled for
> 50 milliseconds. For many applications, this could be unacceptable. For other privileged
drivers, it is often acceptable to keep privileged interrupts enabled, but increment the
$MPTF flag. This allows the TBG tick to interrupt, but normal processing for the tick will
be held off until after the privileged driver has completed its processing.

Golf and the HP1000 1002-11

MANAGING MULTIPLE IDENTICAL RTE-A SYSTEMS:
A Customized Approach

When supporting multiple RTE-A systems it becomes necessary
to have a high degree of commonality among them, especially
if geographically separated. To simplify this standardization,
identification of locally customized system variables is
necessary. Once this is done, a way to make these variables
modifiable without making many repetitive changes to the
system is necessary.

This paper describes a method where this commonality is
obtained. It also briefly discusses a program developed to
provide the link to these localized variables contained in a
central configuration file.

Larry Ridgley
Hewlett Packard Company
1412 Fountaingrove Parkway, M/S 1BS-C
Santa Rosa, CA 95403
(707) 577-2155

9 July, 1993

INTRODUCTION

The project I manage (MAXS+ by Combs International, Inc.) requires me to
support over a dozen HP1000 systems at several out-of-area and out-of-state
sites within the Hewlett-Packard organization. When a new release of the
application software or the RTE-A operating system comes along, it requires
efficient distribution to each user site. It must be standardized, needing
minimum customization by the HP1000 system manager (some of whom have
limited operating-system and/or programming knowledge). - This paper
describes one solution developed to handle this situation.

DEFINITION

Several tasks were identified that must be done to meet the goal of producing
generic, customizable, bundled systems (these may be done in any sequence):

1. Define the variables. List all items that are uniquely different between
. systems. :

2. Define the constants. This list should include those items that do NOT
(or rarely) change. Group them by product or subsystem.

3. Define standards. Decide éarly—on what form the variables will take
(name, style). Also define how they will be made available to both
users and to the operating system. [That is what this paper is about.]

After making the first rough list of variables and grouping them by product
or subsystem I came up with several unique items (this is only a partial list):

- Pro r tem: None; system identifiers

Variable and value: System ID = CPU0001
O/S rev. = 6000
Gen. rev. = CA

Product or m: NS-ARPA/1000

Variable and value: Nodename = HPXYZZY
IP Address = 123.4.56.7
Domain = PLUGH.COM
Gateway IP = 123.4.0.1

Managing Multiple Identical RTE-A Systems ; : - Paper 1003 - Page 1

A much longer list of constants was produced (just about everything else fit
in this class!), so I'll list only a few examples: root directories and their
locations (/SYSTEM, /PROGRAMS, /LIBRARIES,...), device LU numbers,
etc. This list was informative, but useful only as a reference during the
customization process. .

With all of the unique variables identified, the next step involved standards
definition. First, all of these variables are in a single flat text file that could
be easily edited and viewed. Second, the syntax for all variable defimtxons is
fixed as well. This resulted in the following criteria:

1. Filename and location: /SYSTEM/ENVIRONMENT.VARS
(Type 4 file)

2. Comment lines start with ** with blank lines allowed.

3. Variable names to be a minimum of 2 and a maximum of 16
characters long and could contain only alphanumeric and
underscore characters; not case-sensitive. Also, they should not
begin with a number (i.e., "A1" would be valid, but "1A" would
not).

4. The value of a variable may be of any type (text or numeric),
separated from the variable name by an ’=’. It may contain
embedded blanks and punctuation and may be as long as the
rest of the line allows (i.e., "FOO = Hello, World!").

S. The variables must be accessable by both CI and user programs.

The resultant file would be created by EDIT/1000 and madc to look similar
to the following figure:

Managing Multiple Identical RTE-A Systems Paper 1003 - Page 2

Example ENVIRONMENT.VARS file

IMPLEMENTATION

After identifying the variables and placing them in the
ENVIRONMENT.VARS file, it is necessary to write a program to access the
file and the variables within.

The prograni is to provide the following (minimum) types of access to the
variables:

1. Return the value of the variable specified in the runstring into
the CI variable SRETURN_S. :

2. Change the value of the variable specified in the runstring.
3. List the variables and their values to the terminal or printer.
4. Provide a user-callable routine to perform the same functions

as items 1 and 2 above.

The resultmg program is named ENV.RUN. This program is de51gned to be
used in several ways:

Managing Multiple Identical RTE-A Systems L i Paper 1003 - Page 3

RU,ENV,opt [, >list] [, <fromfile]

or
RU,ENV,var [, =,value] [, <fromfile]
where . ,
opt =Option: = ’’ or '?’ gives help information.
"I’ shows list of variables in file.
'-q’ quiet mode; no printed error msgs.
list =List device or file for ’-I' option (leading ’>’ is
required).
var =Variable name to get (or change) value of.
=’ =Required if variable’s value is to be changed.
value =Value to change the variable to; may be text or
numeric. If text string, be sure to put “’s around it to
prevent Cl from modifying the string.
fromfile =If specified (leading ' <’ required) use this file for the
variables instead of the default,
ENVIRONMENT.VARS.
Returns:
$RETURN_S =Value of variable requested or changed.
$RETURN1 =Will be <0 if an error was detected; otherwise

will be > =0 if successful.

ENV is intended for use within CI command files. The results of the call to
get a variable’s value is assignable to a CI variable (usually of the same
name). Here is an example:

Example CI command file

Executing this command file will display: System ID is CPU0001.

Changing the value of an exlstmg variable is also simple (NOTE If a
variable does not exist, an entry is appended to the file): :

Managing Multiple Identical RTE-A Systems “Paper 1003 - Page 4

Example of changing a variable

Note that ENV returns a negative value in $RETURN1 if an error occurs
during variable access. An error message is displayed, unless the *-q’ option
is specified (as in this example).

CUSTOMIZATION

After all system variables have been defined and placed within the
ENVIRONMENT.VARS file, one can now proceed to customizing the system
to use them. To simplify maintenance of the system I have tried to limit this
customization to command files. EDIT/1000 is used in batch mode to edit
template files with the environment variable values.

Since the number of customized files may vary, depending on your needs, I
have chosen one example that shows the flexibility of this method.

All that is required to customize a file is to have a current copy of the specific
file with your values in place. Copy it into.a template file. Now edit the
template file, substituting a unique pattern for the actual value that you will
be substituting for it later.

The following example initializes - NS-ARPA/1000 (WELCOME1.CMD
schedules NS INIT.CMD at bootup). The original file was
/ETC/NSINIT.ANS The new template file is /ETC/NSINITTPT The
locahzed ﬁle is localsystemzd NSINIT TEMP.

Managing Multiple Identical RTE-A Systems I Paper 1003 - Page 5

Here is the process (only portions of the actual files are shown for brevity):

Original file: Template file:
* /ETC/NSINIT.ANS * JETC/NSINIT.TPT
2 2
HPXYZZY.PLUGH.COM Inodename!.PLUGH.COM
/D S /D
N N
123.4.56.7,255.255.248.0,LAN,,140,E lipaddr!,255.255.248.0,LAN,,140,E

/D /D

Here is a portion of the command file (NS_INIT.CMD) that copies the
template file and then performs the batch edits of the resulting localized file:

Example using variables for customizing

The actual flle created from the template (m our example system) would be
/ETC/CPU0001_NSINIT.TEMP. Continue in this same manner with any of
your files that need localization.

Managing Multiple Identical RTE-A Systems) - Paper 1003 - Page 6

SUMMARY

This customized, centralized approach to managing multiple systems is of
great benefit. Much time (time =$$$) and effort is saved by this method. The
ENV program is a powerful tool that allows centralized control of global
environment variables. (NOTE: The ENVIRONMENT program and
associated modules are available through the INTEREX CSL/1000
distribution channels.) Used with the enhancements to RTE at 6.0 (an EVB
for each user) makes a very versatile combination. The use of these ideas is
limited only by your imagination.

Managing Multiple Identical RTE-A Systems Paper 1003 - Page 7

PAPER NUMBER: 1005

TITLE: Using Modems on the HP 1000 A Series
Computers

PRESENTER: Alan Tibbetts
Consultant

3498 Gibson Ave.
Santa Clara, CA 95051
408-247-7280

HANDOUTS WILL BE AVAILABLE AT TIME OF PRESENTATION.

Standards-based Networking Services on the HP 1000

Lynn Rodoni
Mydung Tran

Hewlett-Packard Company
Software Technology Division (SWT)
11000 Wolfe Road
Cupertino, CA 95014

This paper discusses the industry standard networking services available on the HP
1000. General descriptions of FTP and TELNET as well as detailed descriptions of
enhancements in the 6.0 release of RTE-A will be provided. These will cover the
areas of functionality, interoperability, RTE unique features, and performance. The
addition of Inetd into the networking services model will also be presented.

1. INTRODUCTION

Resource sharing and information exchange are significant features of computer networking. NS-
ARPA/1000 is a data communication product that enables HP 1000 systems to share access to
resources such as disc files, printers, magnetic tapes, terminals, etc. with other computers. The
layered design architecture of NS-ARPA/1000 offers a structured, modular approach to the different
tasks that have to be performed in order to transmit and interpret data across a network.

At the top of the model are User Services such as file transfer, remote command execution, and
remote file access. There are no separate Session Layer, Presentation Layer, or Application Layer
within the NS-ARPA/1000 and ARPA/1000 architectures. Rather, each service incorporates the
appropriate networking protocol within its individual implementation. This has historically been a
common approach to network implementations.

Below is a summary of the different services available on the HP 1000. The ARPA Services are
available in both the ARPA/1000 and the NS-ARPA/1000 products. The remaining services are only
available in the NS-ARPA/1000 product. DS Networking and NS Networking were developed as
proprietary solutions and made available on HP systems including the HP 1000. Proprietary
solutions are too restrictive for many within today’s world. TCP/IP and ARPA Services have become
the defacto standard within the industry and are supported by the HP 1000 in the NS-ARPA/1000
and ARPA/1000 products. In addition, there are a number of services developed at UC Berkeley
called the Berkeley Services which are often found along with the services defined by ARPA. At this
time, Berkeley Sockets or BSD IPC is available with the NS-ARPA/1000 product.

ARPA Services: TELNET, FTP

Berkeley Services: BSD IPC

NS Common Services : NFT, NetIlPC, RPM

DS/1000-IV Compatible Services: these services are also part of the DS/1000-IV product
(the predecessor to NS-ARPA/1000)

. RTE-RTE Services that can used for backward compatibility with DS/1000-IV as well
as for NS-ARPA/1000 to NS-ARPA/1000 communication.

. Transparent File Access (TRFAS), part of RTE-RTE services, also known as DS File
Transparency, which allows users to access HP 1000 remote files using RTE file
manipulation commands.

) RTE-MPE services that can be used for backward compatibility with DS/3000 as well
as for NS-ARPA/1000 to NS3000/V communication.

Standards-based Networking Services on the HP 1000 1006-1

o Tor

The Transport Layer handles end-to-end communication between source and destination systems.
TCP is the ARPA transport protocol and NetIPC or Berkeley Sockets provide programmatic access
to the network at the Transport level.

The Network Layer (also referred to as the IP layer) is responsible for addressing functions. It makes
sure that packets of data are acquired by the system to which they are addressed.

The actual transmission of the data over the communication link is govemned by the Data Link Layer.
This layer is a combination of 1O card and driver on the HP 1000. They work together to send and
receive data in useful chunks called packets.

The lowest layer, the Physical Layer, provides electrical and mechanical specification for the
transmission of bits across the link. This corresponds to the LAN cable or other means of physically
transmitting the data from one system to another.

Figure 1 illustrates the overall NS-ARPA/1000 architecture.

Inetd

Network Remote
File Process FTP TELNET | SMTP User Services
Transfer Management (Mail)
NetIPC BSDIPC - Transport Interface
TP Transport Layer
P Network Layer
IEEE 802.3 Ethernet Data Link Layer
| l Physical Layer

Figure 1: NS-ARPA /1000 Architecture

Standards-based Networking Services on the HP 1000 - 1006-2

NFT (Network File Transfer) and RPM (Remote Process management) are proprietary services
which are available over TCP/IP. These services are supported for compatibility with other HP
systems. SMTP is a standard protocol used by electronic mail facilities in a TCP/IP network. It is
used by MAIL/1000. Berkeley Sockets (BSD IPC) is an interface to the Transport Layer and is
discussed in detail in the NS-ARPA/1000 BSD IPC Reference Manual as well as BSD IPC on the
HP1000, a paper published as part of the San Diego INTEREX Proceedings, 1991. NetIPC is an HP
proprietary interface to the Transport Layer. These services and interfaces will not be discussed
within the rest of this paper.

The main focus of this paper is on the User Services, specifically those which are a part of the ARPA
Services. These are FTP and TELNET which are both included in ARPA/1000 and NS-
ARPA/1000. Imetd, a general monitoring facility for user services, will also be discussed. This
monitor has been incorporated into NS-ARPA/1000 and ARPA/1000 as of the 6.0 Release and
replaces previous individual monitors for FTP and TELNET. ;

2. FIP

Description

FTP stands for File Transfer Protocol and allows authorized users to log into a remote system,
identify themselves, perform file management operations, such as changing, listing, creating and
deleting remote directories. Simple text or executable binaries can be transferred via FTP reliably and
efficiently. FTP shields users from variations in file storage systems among hosts.

FTP is used to transfer files interactively or programmatically. Users can extract and deposit files
from one system to another via the network rather than using tapes or other physical media to
transport data from one geographical location to another. The saving in time is great especially when
the two locations are quite far apart. FTP simplifies the file transfer task a great deal. With FTP, one
computer can act as the go-between for two other computers. In other words, users can initiate a
transfer between two computers other than the host. A special service, "Anonymous FTP", is easily
used to distribute software. Users can deposit whatever files they want to make available to others
into a special directory.

Example

The following example describes a session of FTP in which multiple files are transferred from an HP
1000 computer to an HP 9000 system. At the system prompt (system1>) the user invokes the FTP
program specifying the source system. The source or remote system is where the files to be
transferred reside. The user is prompted to enter the user account and password on the source
system. If the correct information is entered, the login process completes successfully and the user
can change the destination directory (where the files will be deposited) and the source directory
(where the files to be copied reside). In this example a source directory listing is requested to
confirm the existence of the desired files (nssys libraries, cds and non_cds versions). The user sets
the transfer mode to binary and initiaties the transfer. Since this is a multiple file transfer, FTP
validates each file before transferring it. Finally, the user exits the FTP program.

Below is the dialog representing the example described above. The text which the user specifies is in
italics and underlined. Comments describing the specific actions/results are mdented and are not a
part of the actual dialog.

Standards-based Networking Services on the HP 1000 1006-3

system1> fp sustem?
Connected to system?2.

220 FTPI1000 Rev. 6000 Service ready for new user.

System] and system?2 are now connected. Access to system2 must be validated.

Name (system2: maung)

331 User name okay, need password.
Password:

230 User logged in, proceed.

Remote system type is RTE-A.

The user has successfully logged in to system2 which is recognized as an RTE-A
system.

ftp> Led dmp
Local directory now #tmp

The local directory (on system1) is now /tmp.

ftp> cddibraries
250 CD command successful.

The remote directory (on system 2) is now /libraries.

ftp> lens@

200 PORT command successful.

150 Opening data connection for file list.
total 4906

+wr-r—1 system system 601344 Dec 9 1991 nssysiib
+wr-r-1 system system 654080 Dec 9 1991 nssys_cds.lib
“wr-r—1 system system 654080 Dec 9 1991 nssys_cds_s.lib
“+wr-r- 1 system system 601344 Dec 9 1991 nssys_s.lib

226 Closing data connection.

A listing of the interesting source files (on system 2) is requested and displayed.

ftp> Lin
200 Type setto |.

The transfer mode is set to binary.

ftp> mgelnssys@
The user requests a transfer of multiple files be initiated.
Standards-based Networking Services on the HP 1000 1006-4

mget nssys.lib? y
FTP asks the user o validate the transfer of the first file it finds matohing nssys(@ in the
mget nssys.lib? i

FTP asks the user to validate the transfer of the second file it ﬁndsmatblﬁngns:y:@mme
source directory.

200 PORT command successful.

150-Opening BINARY mode data connection for

150 NSSYS.LIB:::5:2350:128

226 Closing data connection.

601346 bytes received in 13.48 seconds (43.58 Kbytests)

FTP completes the transfer and reports statistics regarding the transfer to the user directory.

This dialog continues until all files selected are transferred.

mget nssys_cds.lib? i

200 PORT command successful.

150-Opening BINARY mode data connection for

150 NSSYS_CDS.LIB::5:2556:128

654082 bytes received in 17.93 seconds (35.63 Kbytesis)

mget nssys_cds_s.lib? 2

Here is an example of a file the user does not want transferred.

mget nssys_s.lib? »
ftp> Lre :

221 Service closing control connection.

The user exits FTP,

Standards-based Networking Services on the HP 1000 1006-5

The FTP model

For NS-ARPA/1000, FTP allows users to transfer files among HP 1000, HP 3000, HP 9000, HP
Vectra PC, IBM PC, Sun, VAX, and other computers which support the transport and routing
protocol TCP/IP. The ARPA Services on the HP 1000 use standards defined by the Advanced
Research Project Agency (ARPA) and FTP uses ARPA Standard File Transfer Protocol.

The FTP model, illustrated in Figure 2, consists of two programs, the client and the server. There are
control process with the server control process which camies commands. The data transfer
carries all data. !

CLIENT SERVER
Data /\ Data
Control Control
Transfer Transfer
Process \l” s Process Process
hy il '\r 3]
File File -
System System
Control Connection
Data Connection

Figure 2: The FTP Model

Standards-based Netwerking Services on the HHP 1000 1006-6

List of commands

The commands currently supported as of the 6.0 Release are listed in the table below. Note that all
commands, other than those with an asterisk (*) in the RTE Only column, are supported by HP-UX
FTP Services with the identical syntax. This provides for interoperability at the user level with a
minimum amount of 'special' commands to remember.

Command RTE | Description
Only 3

! * Invokes CI on the local host.

201 ?7? : Displays FTP commands and help information. Same as
HELP.

* Sets the working directory on the remote host to the parent

directory, i.e. one level above the cument one.

/ ¥ Displays the FTP command stack.

APPEND Transfers local file to the end of remote file

ASCII ; Sets the FTP file transfer type to ASCII

BELL Sounds a bell after each file transfer completes.

BINARY | Sets the FTP file transfer type to BINARY.

BYE ek | Closes the remote connection and exits from FTP. Same
as EXIT and QUIT.

CD) Set the working directory on the remote host to the

| specified remote directory.

CLOSE Closes the remote connection and remains in FTP.

DEBUG * Prints commands that are sent to the remote host.

DELETE Deletes the specified remote file or empties the remote
directory.

DIR Writes an extended directory listing of a remote directory

o or remote file to the terminal or to a local file.

DL) 1 * Writes an extended directory listing in RTE-A DL format
to the terminal o to a local file.

EXIT * Closes the remote connection and exits from FTP. Same
as BYEand QUIT.

FORM . Sets the FTP file transfer form to the specified format. The
only supported format is non-print.

GET Transfers remote file to local file. Same as RECV.

GLOB Toggles file name globbing (expansion) for multiple file

: . operations. -

HASH Toggles hash-sign (#) printing for each data block
transferred.

HELP Displays FTP commands and help information. Same as ?
and ?7.

LCD Sets or displays the local working directory.

LL * Specifies a log file to which FTP sends the commands and
miscellaneous messages ordinarily displayed to the user's

§ terminal.

LS Writes an extended dxrectory listing of a remote ducctory
or remote file to the terminal or to a local file.

MDELETE . Deletes multiple remote files.

MDIR ‘ . Writes an extended directory listing of remote d:rectones or

remote files to a local file.

Standards-based Networking Services on the HP 1000 1006-7

MGET Transfers multiple remote files to the local system, using
the same file names.

MKDIR Creates a remote directory.

MLS Writes an abbreviated directory listing of remote directories
or remote files to a local file.

MODE Sets the FTP file transfer mode to the specified mode. The

. only supported mode is stream.

MPUT Transfers multiple local files to the remote system, using -~

the same file names. .
| NLIST Writes an abbreviated directory listing of a remote directory

or remote file to the terminal or to a local file

OPEN Establishes a connection to the remote host.

PROMPT Toggles interactive prompting.

PUT Transfers local files to remote files. Same as SEND.

PWD Writes the name of the remote working directory to the

QUIT Closes the remote connection and exits FTP. Same as BYE
and EXIT.

QUOTE Sends arbitrary FTP server commands to the remote host.

RECV Transfers remote file to local file. Same as GET.

REMOTEHELP Requests help information from the remote host.

RENAME Renames a remote file or remote directory.

RMDIR Deletes an empty remote directory.

RTEBIN Sets the FTP file transfer type to BINARY. PUT will create
destination file names with the full RTE file descriptor.

SEND Transfers local file to remote file. Same as PUT.

SITE Performs server specific services.

STATUS Writes the current status of FTP to the terminal.

STRUCT Sets the FTP file transfer structure to the specified
structure. The only supported structure is file.

SYSTEM Shows the remote system type.

TR Specifies an input file from which to get FTP commands.

1 TYPE Sets the FTP file transfer type to the specified type. ASCII

and BINARY are the types currently supported.

USER Logs into the remote host on the current connection, which
must already be opened

VERBOSE Toggles verbose output. When verbose output is enabled,
FTP displays responses from the remote host.

3. TELNET
Description

The TELNET protocol is a standard ARPA service that provides a virtual connection to a remote
system on the network. It enables a user to logon to-a remote system as if he/she was on a terminal
directly attached to the remote system. The user enters commands and receives responses at the
local terminal just as if the user's session were local. Input and output to the local terminal pass
through a "virtual” terminal configured on the remote system. The remote commands are transmitted
over network connections, sent to the virtual terminal, and subsequently executed on the remote
system.

Standards-based Networking Services on the HP 1000 1006-8

To connect to a remote host that is known on the user's network, the user simply invokes TELNET
specifying the name of the desired remote system as an argument. Users can also chain several
TELNET sessions. Chmmgmakesnpombletohopmﬂmnetwmkwmmmchu
notknowndmcﬂywﬂlmﬂwusex‘smachmemhetbutmgaﬁmm ie. systems that are attached
totwoornwremtworh

Telnet __Telnet
| Session #1 Session #2 :
Local Host | .~ Remote Host #1 'Remote Host #2

e

Figure 3: Chained Telnet sessions to reach a distant host

The TELNET model

Similar to FTP, TELNEralsoemmstsoftwoprogmms,mechmtonﬁxemdsmadnmmdthe
server on the remote system. A TCP connection is established between the client and the server.
Keystrokes are typed on the user's terminal, accepted by the client program, and sent over the
connection to the server. The server sends back characters and the client displays them on the user's

CLIENT SERVER

Users
Terminal

keystroke

User’s Terminal

Figure 4: The Telnet Model

Standards-based Networking Services on the HP 1000 1006-9

TELNET commands

TELNET has 12 commands which are listed below.

Command RTE Description
ONLY

? Displays TELNET commands and help
information . Same as HELP

CLOSE Closes the remote connection and logs off the

- remote session.

ESCAPE * Defines the TELNET escape character.

EXIT * Closes the remote connection, logs off the remote
session, and terminates TELNET. Same as QUIT.

HELP * Displays TELNET commands and help
information. Same as ?.

INTERRUPT | * Changes the TELNET remote interrupt character.

MODE Changes the data transmission to either line or
character mode.

OPEN Establishes a connection to a remote host.

QUIT loses the remote connection, logs off the remote
session, and terminates TELNET. Same as EXIT.

RUN * Runs a local program.

SEND Sends special characters or commands to the
remote system..

STATUS Displays status of the TELNET remote connection.

4. New 6.0 features

For networking in the 6.0 release ther were two primary goals. The first was to maintain networking
performance relative to 5.24. This was of particular interest for FTP since a major new RTE file
system feature, symbolic links, introduced some significant file handling overhead. The performance
data presented in the next section shows that this goal was achieved. The second goal was to make
FTP easier to use and address particular RTE issues. This section describes new FTP command
sadded as of the 6.0 release.

Enhancements were made to FTP at release 6.0 to take advantage of the RTE file system features.
File attributes (file type, file size, and record size) are retained for transfers between one RTE
revision 6.0 or later and a second RTE revision 6.0 or later system. Whenever a transfer between
two RTE revision 6.0 or later systems occurs, FTP automatically sets the transfer type to BINARY
for better performance. Along with performance improvement, new commands for useability were
added : : o

Standards-based Networking Services on the HP 1000 1006-10

DL this command requests an RTE-A format directory listing from a revision 6.0 or later
FTP HP-1000 server, therefore, it only works when a revision 6.0 or later FTP client
communicates with a revision 6.0 or later FTP server.

NLIST provides an abbreviated directory listing. The following table shows the FI‘P commands
available for listing remote directories and files: :

DIR
| DL extended RTE listing

LS extended listing MLS extended listing
NLIST _ abbreviated listing : Tl

MDIR extended listing

Examples

1. To obtain information such as protection mode, owner, file size, time stamp of files, invoke the dir
command in FTP.

fip> 247

200 Type setto A.

200 PORT command successful.

150 Opening data connection for file list.

total 3

+w-r—r— 1 manager system 628 Sep 30 1992 inetd.conf
-rwr-r— 1 manager system 532 Sep 30 1992 services
226 Closing data connection.

147 bytes transferred in 0.21 seconds [0.70 kbytesisecond]
200 Type setto I

2. To get RTE file attributes, the df command is the correct one for FTP.
ftP> 2

200 Type setto A. '

200 PORT command successful.

150 Opening data connection for file Iist.

directory /INTHETC

name ex prot type blks wordsrecs addrilu
NETD.CONF rwir r 4 3 314 13 32776016
SERVICES rwir r 4 3 266 12 32832016
226 Closing data connection. ' ‘
204 bytes transferred in 0.21 seconds [0.97 kbytes/second]
200 Type setto I

Standards-based Networking Services on the HP 1000 1006-11

3. For UNIX users who happen to work on RTE, the Is command is more familiar than the dir
command. =

fip> L5

200 Type setto A. v

200 PORT command successful.

150 Opening data connection for file list.

total 3 :
“w-r-r— | manager system 628 Sep 30 1992 inetd.conf
“w-r—r— 1 manager system 532 Sep 30 1992 services
226 Closing data connection.

147 bytes transferred in 0.23 seconds [0.63 kbytesisecond]
200 Type setto I

4. Ifone s only interested in the list of the files and does not care about other file attributes such as
size, time stamps..., ﬂlenlixtconunandprowdesafastertesponseespemallyw}mﬂnduwtoty
contamsala:genmnberofﬁles ;

ftp> MLLST

200 Type setto A.

200 PORT command successful.

150 Opening data connection for file list.

inetd.conf

services

226 Closing data connection.

22 bytes transferred in 0.17 seconds [0.12 kbytesi/second]
200 Type setto I

RTEBIN This new command is specific to RTE. It has two functions. It sets the transfer
type to BINARY. It also causes FTP to add the file type, size and record length to
the destination file descriptor(s) when the user does a PUT or MPUT, thus retaining
this information in their file names on non-RTE-A systems. This command is
recommended when using PUT or MPUT from a revision 6.0 or later to a pre-
revision 6.0 RTE HP 1000 system to preserve the file attributes and improve
performance.

SITE This command is used to pass commands that request server-specific functions.
The user must use a REMOTEHELP SITE cormnmdtohstﬂ\eﬁmcumsﬁmtﬂm
server supports.

SYSTEM The server will respond with its system type when this command is used. When

FTP knows that the server is an HP 1000, it will set the transfer mode to BINARY
and transfer the file type, size and record length along with the file.

Standards-based Networking Services on the HP 1000 1006-12

Inetd

Inétd has been added to NS-ARPA/1000 and -ARPA/1000 to replace FTPMN (FTP Monitor) and
TNMON (TELNET Monitor). Inetd is the monitor that listens for incoming FTP, TELNET, and
Mail/1000 connection requests and schedules the appropriate server to handle the connection.
Similar to the inetd super daemon in UNIX, inetd must be running before other hosts can connect to
the local host through mail, fip, or TELNET. Inetd is scheduled by NSINIT. Inetd-also offers an
extra level of security by allowing users to specify which hosts may or may not use a service. With
inetd as the only monitor that can listen to many servers, system resources such as number of
processes and the system load are reduced. -Pre-6.0 revision, three processes (ftpmn, thmon, and
inetd) were required to monitor incoming request for fip, telnet, mail services.. With 6.0 or later
revision, only one process, inetd is required. -

5. 6.0 Performance Data

’I‘he followmg tab[e summarizes Fl'P perfonmmce results on three dlﬁ'erent platfonns the A400, the
A900, and the A990.

F’l‘l‘ Througllpnt
KByte/sec
CPU Release 5.2 Release 5.24 Release 6.0 Improvement | Improvement
5210524 5241060
A400 7-15 10-21 10-21 40-43% (3)-0%
A900 16-21 23-43 - 39-44%
A990 ” 44-75 ‘NA N/A

FTP on the A400 experienced a slight degradation (3%) only during PUTs using the ASCII transfer
mode. BINARY mode 1s the preferred transfer method in any event since it always results in a faster
transfer rate.

Networking on the A400 is the lower limit in all cases. Of more interest to many is the A990 which
delivers twice the throughput of the AS00 on 5.24. In some cases it is even better. 6.0 FTP on an
A990 is almost a factor of 4 faster than 5.2 FTP on an A900. Ttusxsacombmnon of improved CPU
performance and improved networking software.

The following table summarizes TELNET performance results on three different platforms and three
software releases.

TELNET Transfer Rate
Char/sec
CPU Release 5.2 Release 5.24 Release 6.0 Improvement | Improvement
5.2t05.24 5.24106.0
A400 2247-2659 3104-3494 3350-3750 31-38% 7-8%
A900 4190-4588 5330-5797 - 26-27% o
A990 8650-9300 N/A N/A

As can be seen, the A400 TELNET performance continued to improve by 7-8% in the 6.0 release.
Another way to look at TELNET is to compare the performance of a TELNET connection to that of a
terminal connected directly to the system. The Transfer Rate in this case is roughly 5800 char/sec for
all platforms. This means that a TELNET connection to an A990 will see better performance than a
direct connect terminal!

Standards-based Networking Services on the HP 1000 ~ 1006-13

&._Summary

Without data communication products, a user is limited to using one computer system at a time
unless he/she is surrounded by several terminals each connected to a different system. Networking
products provide the user with the capability of sitting in front of only one screen able to connect to
-any computer known to the user's network. Resources are more efficiently utilized via the network,
ie. many computers can share disks, printers, tape devices

ARPA Services and TCP/IP have become a defacto standard across many platforms in the industry.
The HP. 1000 incorporates these in two products, ARPA/1000 and NS-ARPA/1000. The primary
differences between these two products is that NS-ARPA/1000 includes a number of services and
transports for compatibility with other HP proprietary networking and programmatic interfaces to the
transport.

With the 6.0 release, FTP, the ARPA service for transfemring files, was enhanced to support new and
existing features of the RTE file system. This was done in three ways. The first was to automatically
select the optimum transfer mode for RTE to RTE transfers between systems running 6.0 and later
revisions. The second was to add the command RTEBIN to preserve RTE file attributes when

transferring files using a UNIX system as an intermediary. Finally, FTP supports the new file system
feature, symbolic links.

BIBLIOGRAPHY

1. NS-ARPA/1000 User/Programmer Reference Manual

2. NS-ARPA/1000 BSD IPC Reference Manual

3. Postel, J. and J.Reynolds, RFC 959 File Transfer Protocol, ISI, October 1985.
4. Comer, D. E., Intemetworking with TCP/IP Volume I, Prentice-Hall, Inc. 1991,

S. Rhadakrishnan, R., BSb IPC onﬂle‘HPIOOO,SanDiego INTEREX Proceedings, 1991. -

Standards-based Networking Services on the HP 1000 1006-14

An HP-UX C’ompat_ible Spooler for RTE

Todd Poynor

Hewlett-Packard Company
Software Technology Division (SWT)
11000 Wolfe Road
Cupertino, CA 95014

The forthcoming 6.1 release of RTE-A/VC+ provides a new printer spooling
system that offers interoperability with the HP-UX spooler. This paper aims to
introduce the spooler at a very high level, as well as discuss a number of design
choices made in the HP 1000 implementation.)

Background on the New Spooler Project

This paper will plunge into a description of the new spool system all in good time. But
first, we try to begin at the beginning by presenting some of the issues that influenced the
overall design of the system.

The existing RTE-A/VC+ spooler, that is, the SP program and friends, is among today’s
most glaring examples of RTE functionality in a state of disrepair. A perennial least-favorite
among customers and HP personnel, the strikes against it include both a sizable collection
of outstanding defect reports and a lack of flexibility to accomodate the many enhancements
requested of it. In addition, long-time RTE users are fond of pointing out that the RTE-A
spooler lacks significant functionality included in its predecessors on RTE-IVB and RTE-6.

HP has indicated for some time now that we intend to take action on the spooling situation.
At the 1992 INTEREX conference we solicited suggestions on spooler improvements and
future directions from the INTEREX membership !, with the implication that your feedback
would be addressed in a future RTE release.

Rationale Fox" A New Spool System

Tt is possible that the existing spool system could have been brought up to a reasonable level
of quality through major revamping, but concern for backward compatibility suggested that
we leave that system more or less intact. Tt is difficult to envision the many needed modi-
fications being made without adversely affecting established applications in some manner.
For instance, the layout of the basic data structure used to keep track of spooling operations
is documented. This data structure may be passed to customer-written software by a sup-
ported means, thereby forbidding any major changes to it if some semblance of backward
compatibility.is to be maintained. ‘

1 Open Discussion on Spooling and Graphics Enhancements, moderated by Scott Anderson and this au-
thor. Transcript available from INTEREX.

An HP-UX Compatible Spooler for RTE ~ 1007-1

Additionally, we wished to implement a “standard” user interface and networked spooling
strategy, as detailed in a following section. The existing spooler suffers the twin drawbacks
of a clumsy interactive interface and a programmatic EXEC call interface (via the SMP
program) that is quite limiting.

For these reasons, we chose to develop a new system that can execute concurrently with
the existing system. This is not to imply that the old spooler is neglected in the 6.1 release;
indeed, a large percentage of the outstanding defect reports and enhancement requests are
addressed in the release. Furthermore, the old spooler still occupies an important position
in the RTE-A/VC+ prod“ct since it provides functionality not covered by the new system,
as we shall see.

Design Guidelines for the New Spooler

From the outset, it was decided that the new spool system would be geared toward the
spooling of output destined for printers. This is by far the most common usage of the
existing system, and the subject of most enhancement requests we receive. Nonetheless,
any device handled by the existing system may be serviced by the new system through
custom device handlers.

Certain “exotic” aspects of the old system are not addressed in the new spooler. These
include:

o The “redirection of I/O between LUs” feature.
o The “redirection of I/O bound for an LU to a file” feature.

o The “system error logging” feature.

All of these features are felt to be reasonably well covered by the existing implementation,
as enhanced in the 6.1 release. The argument may also be made that these areas are
not strictly within the domain of a spooling system, when defined as a mechanism for
coordinating access to shared peripherals among multiple users.

The concept of “inspooling” is not addressed. To some people, this term suggests redirection
of input between LUs and files. This notion is usually then expanded into UNIX2-style shell
command line I/O redirection, which is, in turn, tied to the definition of “standard input
and output” files for processes. The solution to these problems quickly balloons into a much
larger issue than the spool system complaints we originally proposed to tackle. The term
“inspooling” is also sometimes used to mean input batch job processing as provided by the
RTE-IVB and RTE-6 Batch and Spooling System. Batch processing remains of importance
to a few customers, but is a much less serious concern for the vast majority of RTE users
than is printer outspooling. '

2UNIX is a trademark of UNIX Systems Laboratories, Inc. in the U.S. and other countries.

An HP-UX Compatible Spooler for RTE ~ 1007-2

Coexistence of the Old and New Systemé

Because the old spooler provides needed functionality not offered by the new system, and
because of the usual goals of backward compatibility, both the new and old spool systems
must ‘be able to execute concurrently. Both systems must thus be able to attempt to send
output to the same devices concurrently without incurring “interleaved output”, using LU
locking to gain exclusive control of the device during output.

A Paradigm for the New Spooler

Given the decision to provide a new spool system alongside the old, we then had to decide
on an overall system design: how should the spooler operate, and what user interface should
be provided? Should we invent Yet Another Spool System from. scratch, fine-tuned for the
RTE environment, or should we base our new work on existing models?

HP, in recent years, has tended to pattern new RTE functionality after existing UN IX func-
tionality. For this project, we were particularly pushed in that direction by the requirement
that the new design encompass remote spooling between RTE and HP-UX. Hence, it should
come as no great surprise that we required the user interface to be modelled after a UNIX
interface. Some seasoned RTE veterans might be happier had we copied the RTE-IVB
spooler design instead. But the HP 1000 is no longer an island; compatibility and inter-
operability with current networked services on other machmes is of paramount importance
these days.

Unfortunately, there is considerable debate over the relative merits of the various spool
systems commonly used on UNIX. There are two longtime mainstays:

o The Berkeley Software Distribution (BSD) spooler (lpr, Ipd, etc.).

o The AT&T System % spooler (Ip, lpsched, etc.). A modiﬁed version of this spooler
is currently shipped with HP-UX.

Both systems are in fairly wide disrepute for various reasons. Both receive criticism for a
lack of robustness (a familiar theme to the RTE-A community when it comes to spoolers)
Both are widely considered difficult to use, although “friendly”. interfaces, such as SAM
on HP-UX, alleviate this problem somewhat. The BSD spooler takes additional hits for a
lack of flexibility and for only.supporting relatively simple operations to be performed. One
of the most frequently-heard complaints is.that this system has precious little support for
passing device-specific options to spooled device handlers. Device-dependent: options are
typically specified by embedding the proper escape or control sequences into the spooled file,
making forms control and font management something of a headache. Debate continues as
to whether this sort of formatting is the proper domain of the spooler or whether it should
be left up to the utilities that produce the spooled output; no undisputed best answer has
been found.)

One saving grace of the BSD spooler is that it supports network printing, whereas the stock
System V spooler does not. HP-UX and other System V implementations transcend that

An HP-UX Compatible Spooler for RTE ~ 1007-3

limitation by grafting BSD-style network printing onto the System V spooler. The union
of the two is less than seanﬂess, but is serviceable.

These two spoolers are not the only systems in use on UNIX. Other spoolers have been
developed and continue to be developed that attempt to correct the deficiencies of the Big
Two spoolers. When deciding the strategy for the new RTE spooler we chose not to try to
predict the future directions in spooling that are likely to become prevalent in the computer
industry. Our customers need solutions now that are of use in present-day networks and
that are based on established models. Thus, we restricted our choice of models to the Big
Two.

While neither of the Big Two UNIX interfaces presented a clear winner, we felt that our
best strategy was to provide user interface compatibility with HP-UX. Therefore, we chose
to implement an interface very similar to the System V spooler, also implementing the BSD
networking extensions that HP-UX provides. This decision today seems fortuitous: it now
appears that the industry trend is moving away from BSD in favor of System V. Longtime
BSD stalwart Sun Microsystems has recently converted to a System V operating system
(and spooler) with a BSD compatibility layer on top.

Introducing the LP Spool System

The new spooler is named the “LP spool system”, somewhat in keeping with System V
terminology. Confusingly enough, there are now three spoolers that run on RTE-A:

. The “SP spool system”. This is the “old spooler”, historically known as the “VC+
spooler”, that we discussed in the previous section. Most of the printer spooling
capabilities of this system are superceded by the LP spool system, but are retained for
backward compatibility. The SP spool system continues to provide the only support
for LU redirection, diverting output from an LU to a file, system error logging, and
built-in support for magnetic tape devices.

e The RTE-A PRINT and PRINO programs, which are dedicated to spooling files to
printers. These programs are not usually thought of as a spool system, but a spooler
is, in effect, what is implemented. This is the only spooler available on RTE-A without
the VC+ system enhancement package. :

The new LP spool system, which spools files to local printers and plotters, and
which supports network printing between UNIX hosts and other RTE systems via
NS-ARPA /1000 or ARPA/1000.

Each of the above spoolers may execute concurrently without interfering with the operation
of the other systems. Because the output device LU is locked to the program performing the
output, all three systems may simultaneously attempt to access the same device without
disrupting the output of another system. It was not necessary to modify the existing
spoolers. to coordinate their device access with the new system. The LU locking feature of
RTE turns out to be quite useful in this regard.

An HP-UX Compatible Spooler for RTE ~ 1007-4

As discussed previously, the user interface to the LP spool system is very similar to that
of the HP-UX LP spooler. People who are already familiar with the HP-UX spooler or
with another implementation of the System V spooler will be instant experts on the RTE
implementation.

This new spool system is intended to be a replacement for the printer spooling capabilities
of the existing spoolers, both the SP and PRINT systems. Future HP efforts at improving
printer spooling functionality are expected to be focused on the LP spooler.

The rest of this section introduces LP spool system concepts at a rather high level.

LP Spool System Overview

The LP spool system consists of several programs, the majority of which present a user
interface that is very similar to the LP spool system that runs on HP-UX systems. All
programs in the system take commands only from the runstring; there are no interactive
programs. Therefore, the “programmatic” and “interactive” modes of access to the system
are very similar, the programmatic interface consisting of FmpRunProgram calls that are
functionally equivalent to entering the runstrings at a CI prompt. As an aid to program-
matic usage, most of the programs return error status to the scheduling program and allow
any output generated to be redirected to a file for programmatic processing.

Each printing task that the LP spooler handles is called a request. A request specifies that
a certain collection of files is to be printed on a certain printer (or on any member of a class
of printers, as discussed later) in a certain format. There are other properties associated
with a request as well. For example, each request has a priority value that the spooler uses
to determine which request should next be sent to a printer. Requests are usually created
when a user runs the program named lp. Each request is assigned a unique request ID that
is used when performing subsequent LP spooler commands on the request, and in tracking
the progress of the request through the system. :

The LP spooler must be told about each printer it may access. A name is associated with
the printer. That name, rather than the device LU number, is used to refer to the printer
within the LP spool system.

Output Destinations

The LP spool system refers to any device that it can output to as a printer, in keeping with
the HP-UX terminology. The actual type of output device is not restricted by the LP spool
system, although HP provides support only for printer and plotter devices.” In this paper,
the term “printer” is used to mean any output device, unless printer devices are specifically
indicated.

Three general categories of printers are accessed by the LP spool system: local printers,
which are actual print devices directly connected to the local system, network peripherals,
which are printers connected to a LAN (not to any one system), and remote printers, which
are network links to printers located on remote hosts.

An HP-UX Compatible Spooler for RTE ~ 1007-5

Local Printers

Local prmters are physical print devices directly connected to the local system, usually
through a MUX, ASIC, or HP-IB interface. The LP spooler prints to any supported printer
or plotter in a supported configuration using the standard RTE drivers.

Additionally, you can develop your own custom device handlers for other devices to which
you wish t6 spool output. The FORTRAN and Macro source code to HP’s local printer
handlers is provided with the VC+ product, complete with instructions on how to modify
the sources to support other devices..

Network Peripherals

The LP spooler prints to network peripherals connected to Ethernet LANs by HP JetDirect
cards. You must have the NS-ARPA /1000 or ARPA /1000 subsystem installed to print to
these devices. Network peripherals function somewhat as if they are local devices connected
to your system via a LAN.

The initial release of the spooler does not support printers connected to a Data commu-
nications and Terminal Controller (DTC). However, the protocol used to access JetDirect
network peripherals may also be used to access printers on certain DTC types. The JetDi-
rect protocol accesses the printer by opening a TCP connection to a certain TCP port on the
IP address of the network peripheral, sending the data to be printed across the connection,
and closing the connection. If you have a DTC printer that may be accessed in an identical
fashion, but using a different TCP port number, then the LP. spooler may be configured
to allow the printer to be accessed. The LP spooler network peripheral printer interface
allows the destination TCP port, to be configured for just such a purpose. Note that DTCs
from some manufacturers do not flush any buffered data received from the network when
the connection is closed. Thus, the DTC printer handler must send enough null characters
(ASCII 0) to flush out any data buffered in the DTC before closing the connection. This
author has no experience using DTCs, and so cannot provide pomters on which models
behave in this manner.

Remote Printers

A remote printer is a network link to a printer connected on a remote host. A request
sent to a remote printer is transferred into the spool system on the remote host via the
NS-ARPA/1000 or ARPA/1000 subsystem. The transfer is accomplished using a semi-
standardized Internet protocol. The protocol also supports performing these operations on
the local spool system from a remote host:

o Cancelling print requests.

o Obtaining listings of the spool system queues.

In this manner, each host in your network may access any printer connected to any other
host in the network. The host types that support this network printing include other RTE

An HP-UX Compatible Spooler for RTE ~ 1007-6

Interface Usage

generic Generic non-PCL local printer
pel Local PCL printer !
passthru Local plotter or other non-RTE-printer device
hpnp_pcl PCL network peripherals
hpnp_passthru Network peripheral plotters
rrte Remote printers on RTE hosts
rhpux i Remote printers on HP-UX hosts
rbsd Remote printers on BSD UNIX hosts

Table 1: LP spooler printer interfaces.

‘hosts running NS-ARPA /1000 or ARPA/1000, HP 9000 hosts running HP-UX, and BSD
UNIX machines to which NS or ARPA connectivity from the HP 1000 is supported. Both
clients and servers for the network printing protocol are provided with the LP spooler.
Thus, network spooling may occur in either direction between RTE and UNIX machines,
and between RTE and other RTE-A/VC+ machines.

Printer Interfaces

Device-specific print handlers, known as printer interfaces, may be defined for each kind
of printer. In general, a printer interface is a set of routines linked into a program named
Ipout. Each printer interface has a name that identifies that interface to the lpout program.

HP supplies a number of printer interfaces with the LP spooler. A list of these interfaces
is shown in Table 1. In that table, the term “PCL” refers the Printer Control Language
implemented by most HP printers. No LP spooler printer interface provides printer con-
figuration options for PostScript® printers, but PostScript-formatted documents may be
spooled to capable printers by sending the data in “raw” format to the printer.

As mentioned previously, the source code to the local printer interfaces is included with
the LP spooler, You may add your own interfaces or customize the existing ones, following
instructions included in the source code. The portion of the PCL local printer interface that
handles PCL-related options is also used by the PCL network peripheral printer interface.
Hence, changes made to the PCL handler for local printers may also be loaded into the
PCL network peripheral interface.

Printer Classes

A class of printers may be defined in the LP spool system. A printer class is a named
collection of local printers of similar type. For example, if a host has two printers connected,
a LaserJet Plus and a LaserJet III, then class “laserjet” could be created with both printers
as members of the class. If a print request names a class, rather than a specific printer,

3PostScript is a registered trad k of Adobe Syst Inc. in the U.S. and other countries.

An HP-UX Compatible Spooler for RTE ~ 1007-7

as the desired destination then the request is printed on the first available member of the
class. Using the same example, specifying destination “laserjet” in a request prints the
request on either the LaserJet Plus or the LaserJet III, depending on which printer first
becomes available. A printer may be a member of only one class. Neither remote pnnters
nor network peripherals may be made members of a class.

Spooled File Formats

The LP spool system does not create files to be printed, as can the SP spool system when
spooling output from an LU to a spoolfile. Instead, the LP spooier prints files that have
already been created by some other means.

Any RTE file type may be spooled. In general, the files fall into three categories:

¢ Record-structured text files of type 0 or types 2 and above. These files are printed as
a series of FMP records, using a separate XLUEX call to write each record if printed
on an RTE system.

Redirected LU output captured using the SP spool system. These files may have
headers that contain the EXEC CNTWD parameters and EXEC(3) control request
information from the redirected EXEC calls that generated the output?!. The LP
spooler can use these headers when printing the file on an RTE system to reproduce
the print formatting specified in the original EXEC calls.

o Files of type 1, which contain a UNIX-style “byte stream” of print data that is not
organized into FMP records. Type-1 files must conform to a special format used by
the LP spooler. These files are normally introduced into the spool system only by the
LP spool system itself when receiving a request spooled from a remote UNIX host.

Request Options

Various options may be specified in a request to specify print formatting and other request
characteristics. Many options are interpreted by the printer interface that handles the
printing of the request, thus, the documentation for the destination printer interface must
be consulted to determine the set of options available. The following is a generalized list of
the types of options that may be entered for a request that is printed using an RTE printer
interface. Note that some of these options are standard System V spooler options, and others
are interface-specific options that may not be interpreted by all RTE printer interfaces.
Options are available that set the following request characteristics (among others):

o Set the number of copies to print.

o Set the priority of the request.

“The feature of retaining EXEC headers in user-specxﬁed spool files is new in the 6.1 release of the SP
spooler.

An HP-UX Compatible Spooler for RTE ~ 1007-8

Program

“Usage

Ip
lpstat
cancel
Ipalt
Ipadmin
Ipsched
Ipshut
enable
disable
accept
reject
Ipmove
lpfence
lpout
rlpout

Create a print request

Display spooler status

Cancel requests

Alter requests

Spooler administration

Start up spooler

Shut down spooler

Enable printers

Disable printers

Accept new requests for destinations
Reject new requests for destinations
Move requests between destinations

Set printer priority fence

Output to directly-connected local printer
Output to remote printer or network peripheral

rlpdaemon Remote printing daemon for incoming requests

Table 2: LP spooler programs.

Send mail or run Notify when the request finishes printing.

¢ Add a user-defined banner to the banner page.

o Treat column one of the print data as FORTRAN-style carriage control.

Inhibit printing the banner page.

Inhibit standard driver-processing of the print data (such as treating trailing under-

scores as line continuation, etc.).

o Suspend before and after output for forms changes.

e Set various PCL characteristics (such as landscape mode, compressed pitch, etc.).

The LP Spool System Programs

Although this paper does not delve into the details of LP spooler usage, a listing of the-
programs provided may be useful to those of you who are familiar with the System V
spooler. The LP spool system includes an array of programs that may be overwhelming at
first. The programs are listed in Table 2 together with a brief description.

HP-UX Compatibility

An HP-UX Compatible Spooler for RTE ~ 1007-9

The reader familiar with the HP-UX spooler may be curious as to how much of the HP-UX
offering is implemented on RTE, as well as other compatibility issues.

The RTE LP spooler provides very much the same functionality as its HP-UX counter-
part, especially from the point of view of a user (as opposed to a system administrator).
In general, the runstring syntax of each RTE program is almost identical to its HP-UX
counterpart, within the limits imposed by the different runstring handling philosophies of
the two systems. The RTE implementation of some functionality is substantially different
than the HP-UX implementation in an attempt to provide greater efficiency within the RTE
environment. This is why two programs appear in Table 2, Ipout and rlpout, that do not
have UNIX counterparts, and certain “lower-level” HP-UX programs are absent, such as
rlp and rcancel.

Of the spooler “proper”, the one utility missing is the Ipana program, which prints spooler
performance analysis information. This program is apparently not in' widespread use; many
people with extensive HP-UX spooler experience have never run it.

Certain lpadmin options related to the UNIX I/O system and the HP-UX Diskless Clus-
tered Environment are not provided. No provision exists for specifying custom remote
printer cancel and status interrogation procedures; these functions are “hard-coded” to
operate using the standard protocols.

The RTE implementation provides most of the HP-UX print-time formatting options that
simply specify PCL escape sequences to be sent to printers. In fact, we added certain options
that we felt to be of value but which do not appear in the PCL-related model scripts on
HP-UX at present. However, RTE does not provide all the’ printer formatting utilities that
HP-UX does. This includes formatting utilities that are usually run before printing, such as
pr and asa, and output filters typically invoked by model scripts, such as lprpp, divpage,
reverse, etc. Thus, HP-UX offers a greater wealth of print formatting styles than does
RTE. However, some of these utilities may be provided for RTE in the future, as customers
inform HP of missing print formatting functionality that is important to them.

Differences in the I/O systems between RTE and HP-UX may cause some (hopefully minor)
headaches. Problems may arise due to printer output processing that is performed at the
driver level on one system but not on the other. For example, the treatment of tab characters
and FORTRAN-style column one carriage control is different between the two systems. This
is another area where customer feedback can be useful in letting HP know what problems
are encountered in the real world, and how the RTE LP spooler can be enhanced to coexist
more peacefully in customers’ networks.

The implementation of printer interfaces on RTE is substantially different than that of HP-
UX. On HP-UX an interface usually consists of a shell script that is invoked to perform
printer output. We chose not to go with that approach on RTE largely because the limited
CI command language does not lend itself to implementing this relatively complicated task.
The amount of code necessary to perform this task is also typically higher on RTE than on
HP-UX for a number of reasons related to the differing process scheduling and I/Q systems.

An HP-UX Compatible Spooler for RTE ~ 1007-10

On HP-UX, a file that has been spooled for printing in a request may safely be purged, even
if the request has not yet been printed. Not so on RTE, unless the spooler is specifically
told to make a copy of the spooled file somewhere else at request creation. See the following
section on Symbolic Link Files for more information. i

RTE Implementation Discussion

The remainder of this paper discusses various LP spooler implementation details that may
possibly be of interest, primarily to RTE programmers.

Disk Usage

The LP spooler keeps almost all of its state information on the disk. The spooler status
is contained in various files in a layout similar to that of HP-UX, although the contents
of each file are in an RTE-specific format. We won’t delve into the details of these files
here; suffice to say they hold information about queued requests, the status of printers and
printer classes, including which request is currently active on which printer, and so forth.
The spooler is thus a rather I/O-intensive subsystem, even apart from the actual output of
print data. However, this scheme provides a number of benefits, including:

Very little state is lost when the system is rebooted (this is a major complaint about
the SP spooler). Any requests that were actively printing at the time of reboot will
be reprinted in their entirety when the spooler is restarted, however. No method of
restarting output at any point other than the beginning of the print data exists that
is reliable for all print data and printer types.

¢ No “monitor” process must be present to coordinate spooler operations, as is the case
for many RTE applications.

Spooling activity is not restricted by the amount of information that can be held in
a static-sized memory area, as would be the case if a memory-ba.sed approach were
used.

o The inner workings of the spooler are rather visible to the outside world using the
standard file system utilities. Each control file is human-readable, that is, the contents
are represented as ASCII text. Accordingly, if any portion of the spooler “locks up”
(heaven forbid) then the spooler need not be relied upon to obtain information on the
state of the spooler, or to modify spooler “tables”. Admittedly, it is a lot harder to
do this yourself than to let the spooler handle the details.

One note for the future: the current industry trend on UNIX is to place the spooler files
in directory /var/spool/lp instead of /usr/spool/lp, in an attempt to separate “static”
portions of the file system from more “dynamic” portions. The RTE implementation may
eventually switch to that directory structure for compatibility.

Lock Files

An HP-UX Compatible Spooler for RTE ~ 1007-11

Since competing processes are reading and updating information at the same time without
a central controlling process present, a means of coordinating access to those files is needed.
The file: “open flags” maintained by the file system are useful in this regard, but alone are
insufficient for the needs of the spooler. The spooler updates text files of variable record
lengths, requiring an existing file to be copied to a new file that incorporates the changes.
If this operation is to be performed with the existing file open exclusively (as the means of
“locking” the file to the updating process) then the new file must then be copied back on
top of the existing file before the existing file is closed. This results in an extra shuffling of
the data on the disk that seems wasteful. :

Access to files that are updated by competing processes is coordinated through the use of
lock files. Lock files are a concept more familiar on UNIX systems, which historically have
not implemented exclusive file opens®. In general, the presence of a lock file on the disk
tells cooperating programs that some process has an associated data file or files “locked”
to it. A process that successfully creates a lock file is granted sole access to some other
set of disk-resident information, as defined by the cooperating processes. When access is
complete then the lock file is removed. In this manner, the file system is used to provide a
semaphoring technique.

The usage of lock files in the RTE spooler does rely on the exclusive file open feature of the
file system for reliability. A program that requires access to a data file that is controlled
in this manner attempts to exclusively open a lock file that has the same path and name
as the data file, but which has type extension .lock. If the lock file is already open then
the program sleeps for a few seconds and then retries opening the lock file. When the lock
file is opened successfully then the program holds exclusive access to the data file. The
reliability provided by the exclusive open flags that we mentioned above comes into play
when a locking process is aborted for some reason, since the exclusive open is released by
the file system.

Symbolic Link Files

The LP spooler is perhaps the first HP-supplied application to make use of the symbolic
link files capability added to the file system at the 6.0 release®. The spooler uses these files
to avoid file copying overhead and disk space usage by the print data files in requests.

Both the HP-UX and RTE spoolers do not, by default, make their own copies of the files
to be printed (unless the file is transferred to a remote system for printing). Instead,
the print data files are left where they are and links to the files are made in directory
/usr/spool/lp /request /printername. All access to the data files is made through these
link files.

On HP-UX, a different kind of link file known as a hard linkis made. We won’t try to explain
these in any. depth here; suffice to say, this type of link functions as an alternate directory
entry for the file linked to. If the original file is purged then the disk blocks containing the

5An even more flexible feature known as record locking is now prevalent on UNIX systems
8See the paper Symbolic Links on RTE- A/VC PLUS by Gary Gan, 1992 INTEREX Proceedings paper
number 1010, for more information.

An HP-UX Compatible Spooler for RTE ~ 1007-12

file data are not actually reclaimed until the hard link is also purged. Therefore, if a data
file is purged before the request is printed then the operation of the spooler is not disturbed
— the file is still printed. RTE does not contain the hard link feature in its file system; we
only have symbolic links available. Symbolic links provide a much looser coupling with the
linked-to file that does not prevent the original file from being purged in iits entirety. Thus,
the RTE spooler cannot print any data file that is purged beforehand. If you wish to do
this then you must instruct the spooler to ma.ke a copy of the file, rather than a symbohc
link to it.

Network Spooling

The network spooling implementation is based on the LPDP protocol documented in In-
ternet document RFC-11797. This protocol has not been formally standardized, but has
become something of a de facto standard, and is likely to remain reasonably stable®.

The networking-specific code of the RTE implementation of LPDP clients is written in the C
language using the BSD IPC interface. This interface is handy for writing applications that
interact with UNIX, since the standard behavior of the calls is so similar to that of UNIX.
Unfortunately, the networking code of the RTE servers is written using the proprietary
NetIPC interface, since the inetd program is used to listen for connections from clients;
inetd at present cannot listen for connections that are serviced by BSD TPC programs.

UNIX Spooled File Format

As mentioned in a previous section, data files spooled from UNIX are represented as type-1
files that contain the unaltered byte stream of the UNIX file. This special format allows
the spooler to accomodate any UNIX file without truncating data. :

The reader familiar with the UNIX file system will recall that UNIX text files are stored as
a series of characters with line-feed (“newline”) characters separating lines. The LP spooler
does not attempt to collect newline-terminated lines of data files spooled from UNIX into
separate FMP records (which would require truncating lines at an arbitrary maximum buffer
size). There is no particular need to do'so, since the spooled data file will be handled solely
by the spooler; it does not need to be formatted for processing by the standard set of RTE
record-oriented utilities, such as grep, li, etc. In addition, the spooler cannot know at
the time a data file is transferred into the system whether the file should be processed as
ASCII text or as binary data. HP deemed unacceptable any file representation scheme that
would allow binary data to be lost, such as a scheme that would drop bytes that do not
fit within an FMP record assembly buffer. Accordingly, the data of UNIX files is stored
without format conversion. Type-1 files were chosen to hold these files, since no FMP record
unpackaging overhead is incurred for that file type.

The LP spooler imposes a certain structure on the type-1 files it creates and processes. The

"McLaughlin, L. IIl. RFC-1179: Line Printer Daemon Protocol. 1990.. Available from the Internet
Network Information Center at the Stanford Research Institute in Palo Alto, CA.

8RFC-1179 does not propose a standard; it is published for informational purposes only. The status of
this protocol as registered by the Internet Activities Board (IAB) is “informational”, indicating it is not
planned to be adopted as an Internet standard.

An HP-UX Compatible Spooler for RTE ~ 1007-13

first 12 characters of the first block of a type-1 file must contain an ASCII representation
of the number of valid bytes in the file. This count tells the spooler how many bytes to
actually print, since type-1 files contain no EOF position information. The rest of block
1 is unused. The remaining blocks, starting at block 2, contain the byte stream to print.
The directory entry for the file would make a much handier place to store the valid byte
count than does the first file data block. We avoided redefining any of the existing file size
fields of the directory entry to hold this count because we didn’t want to break any existing
FMP routines or utilities. We didn’t stash the byte size in some other relatively harmless
directory entry field, such as the “create time” field, because the bogus value would cause
some FMP utilities, such as dl, to report nonsense that might alarm some customers. It is
possible that an FMP-based solution to this problem will be implemented in the future, as
HP continues to focus efforts on UNIX interoperability issues.

Note that the spooler does have to convert files from FMP record format to UNIX text
format when transferring files from RTE to UNIX (and the request options do not indicate
that the files are binary data to be transferred verbatim). This conversion basically entails
adding a newline character to the end of the data of each record sent. Spooling files to
UNIX is an even higher overhead operation than you might expect, because the remote
spooling protocol dictates that an ASCII representation of the number of bytes in a file be
sent across the connection first, followed by that number of bytes of file data. The spooler
must first read through the entire file, counting data bytes and adding one byte for each
record to account for the “newline” character that will be appended. After sending the byte
count to the remote server, another pass through the file is made to send the file data. RTE
does keep file size information in the EOF position field of the directory entry, but the size
is a word, not byte, count that includes the overhead words that hold the length of each
record.

The RTE LPDP Protocol Extension

The RTE implementation of the LPDP protocol includes a minor extension that is used
when spooling requests between two RTE systems. This extension saves considerable over-
head by not performing the data format conversions that are required when spooling files
to UNIX (including the byte counting pass through the file). It is because of this difference
in spooling to RTE systems versus UNIX systems that separate interfaces are provided for
remote spooling to the two system types.

The RTE implementation adds a new command code to the standard protocol. Non-RTE
systems reject the additional command code, such that an attempt to treat a remote UNIX
host as if it were an RTE host fails. This code enables the two RTE machines to transfer
the file in “forced type-1” mode?, where the file data sent consists of the unaltered 128-word
blocks read from the disk. Thus, FMP record unpacking overhead is also avoided.

The new command also contains information that allows the destination RTE host to re-
construct the proper file type (for correct interpretation of the file’s record structure), EOF
position, and record count (for cosmetic reasons). This method of file transfer is similar to

®This name comes from the description of the “F” option of the FrhpOpen call, which specifies this mode
of file access. :

An HP-UX Compatible Spooler for RTE ~ 1007-14

the processing normally performed by the FmpCopy routine, which copies files in “forced
type-1” mode and sets the destina.tion file attributes to those of the source file.

Note that the spooler preserves the original file attributes on the destination system by
necessity arising from the “forced type-1” mode file transfer. One naturally expects any
RTE application that transfers files between RTE systems to ensure that the destination
file is identical to the source file in these respects. But the basic goal of the spooler is not
to provide a generalized file copying service, but to print files. Is the spooler required to
preserve the original file attributes on the destination system in order to generate the correct
output? Let us suppose the spooler did not implement the protocol extension discussed
here. In that case, a remote spooling transaction would simply convert any RTE record-
structured file into UNIX text format during the transfer (without knowing whether the °
destination host was an ‘RTE or UNIX system). Could the spooler have been implemented
such that the remote RTE system would reproduce the correct output from the resultant
type-1 file, regardless of the original attributes of the spooled file?!? "In most cases, the
answer is “yes”. But there is one case where the conversion from RTE to UNIX text format
is an “information losing transaction”: the case of a record-structured file that contains
a newline character (line-feed, ASCII codé 10) inside a record. Thus, while the extended
protocol effectively avoids this problem for RTE-to-RTE transfers, it remains a problem for
RTE-to-UNIX spooling. This problem perpetually causes headaches for programmers that
implement RTE-to-UNIX text file transfers. Fortunately for the spooler, newline characters
tend to be embedded only in “raw” (that is, binary) print images that are transferred to
UNIX verbatim, without conversion to text file format. The spooler may be told which
format, text or binary, to use in sending the file to the UNIX system. This is similar to the
usage of the “ASCII” versus “binary” data transfer modes of the FTP utility.

Just How Good Is This Network Spooling, Anyhow?

Let’s be up front-about the quality of the System V network spooling implementation: ‘it
isn’t very good. The LPDP protocol is reasonably well 'suited to the basic task of shipping
a request to a remote machine for printing — when no errors are encountered along the way.
Thus, the protocol does get the job done most of the time, and many users don’t have major
complaints about the network printing setup. But there is plenty of room for improvement
on this-protocol. o

The protocol contains precious little ‘support for status to be sent from spooling servers -
to clients, such as to inform the client of efrors encountered during the processing of an
operation, or even that the operation was successful. Because of this, it is often difficult for
the user to determine whether a remote operation was executed as intended, and if not, why
not. For example, the “remote cancellation of print requests” operation returns no status at
all. This is why the cancel program is somewhat taciturn while cancelling remote requests:
cancel has no idea what was accomplished on the server side. For other operations a simple
pa,ss/fa.nl” status is returned providing only tepid friendliness at best

The LPDP protocol: requires the use of 8- cha.ra,cter host names; an. a.rchalc form of host

- Note that the spooler was ot impl ited in this fashi

for remote access to RTE hosts.

; therefore, the rrte interface should be used

An HP-UX Compatible Spooler for RTE ~ 1007-15

naming kept alive by this and other antiquated UNIX network services. Part of the protocol
for transferring a request to another system involves transmitting file names that contain
the name of the originating host in the file name. These file names must be acceptable to
UNIX implementations with a maximum file name size of 14 characters. Accordingly, we
can no longer avoid the need for this host naming convention on the HP 1000. At present,
the 8-character host name is kept in a file specific to the spooler. If other future services also
need access to this host name then it may have to be moved to a more genera.lly-accessnble
location.

Some of the “clunkiness” of the networking implementation results from the grafting of the
BSD protocols onto the System V spooler, which was not originally intended to be used in
any networked fashion. One outgrowth of this situation is that the networked usage and
behavior of many of the spooler programs is not exactly obvious. Certain programs do not
function remotely at all. This presents a documentation challenge that is seldom, if ever,
met to everyone’s satisfaction.

Another element of the System V spooler that suffers from the introduction of networking
is the request ID syntax. Recall that a request ID is a unique identifier for a particular
request assigned by the spooler. For various reasons, some of which we won’t bother to go
into here, a request ID must often be modified to a new value when a request is transferred
to another system. Not only does this diminish the usefulness of the request ID in tracking
the progress of a request through the network, but in certain cases the originating user
may find it difficult to determine the new value of the request ID, comphcatmg remote
operations.

In the RTE implementation, we chose to make the name of the host on which the request
originated an integral part of the request ID. For any request transferred into an RTE
system, the request ID has the string “@hostname” tacked onto it. This is a rather significant
diversion from HP-UX functionality, which we generally sought to copy almost exactly, but
it provides these two important benefits:

¢ A unique request ID generated on one machine never “collides” with a request ID
that was generated on another machine. If the originating host name is not included
in the request ID then two requests may arrive on the same host that have the same
ID. If ambiguity in request IDs is to be avoided then one of the IDs must be modified
to preserve uniqueness, thereby complicating matters for the originating user who no
longer knows how to refer to the request.

o The originating host is always identified whenever the request is referenced in some
manner, for example, in a queue status listing or log file entry. This information is
felt to be important enough to-include in each mention of the request.

In general, the networking implementation is functional but inadequate by today’s standards
for networked services. More modern spool systems not only correct many of the deficiencies
listed here, but are implemented fully under the client-server paradigm. Fach component of
the system is intended to be used within a network; much of the spooler “state” information

An HP-UX Compatible Spooler for RTE ~ 1007-16

kept privately on the local host in the System V spooler is made available to the entire
network. This allows, for example, “classes” of similar printers to be distributed across the
network, such that a request may be printed on the first available printer on any machine
in your network (with some sort of notification to the user as to where the printed output
may be found).

To Conclude

This paper has presented HP’s long-awaited solution to the spooling woes of RTE-A. We
at HP hope that you find the LP spool system to be a solution that is powerful, flexible,
and easy to integrate into your network.

An HP-UX Compatible Spooler for RTE ~ 1007-17

The HP-RT Real-Time Operating System
Paper #1008 k
‘by Kevin D. Morgan

Hewlett-Packard Company
11000 Wolfe Road MS-42UN
Cupertino, CA 95014-9804
(408)-447-5079

© 1993 Hewlett-Packard Company, reprinted with permission.

An operating system that is compatible with the HP-UX* operating system through
compliance with the POSIX industry standards uses a multi-threaded kernel and other
mechanisms to provide guaranteed real-time response to high-priority operations.

HP-RT+ is Hewlett-Packard’s real-time operating system for PA-RISC computers. It is a
run-time-oriented product (as opposed to a program-development-oriented product)
based on industry standard software and hardware interfaces. HP-RT is intended to be
used as a real-time data acquisition and system control operating system. It is designed
around the real-time system principles of determinism (predictable behavior), responsive-
ness, user control, reliability, and fail-soft operation. These characteristics distinguish a
real-time operating system from a nonreal-time operating system. This article reviews
some of these characteristics of HP-RT and discusses the specific designs used to provide
these features. ' ‘

HP-RT runs on the HP 9000 Model 742rt VMEbus board-level computer, which is based
on HP’s PA-RISC 7100 technology . The 742rt is designed to fit into a VMEbus card
cage or an HP 9000 Model 747i industrial workstation cabinet.!

The HP-RT kernel is compatible with the HP-UX operating system through compliance
with the following industry standards:

e POSIX (Portable Operating System Interface) 1003.1, which defines a standard set of
programmatic interfaces for basic operating system facilities

e POSIX 1003.4 draft 9, which defines the standards for real-time extensions
o POSIX 1003.4a draft 4, which defines the standards for process-level threads.
HP-RT also supports C/ANSI C, C++, PA-RISC assémbly language, and manyk SVID/

BSD (System V Intertace Definition/Berkeley Software Distribution) commands and
functions. Ei I e 3 ‘

HP-RT Software

The HP-RT software is divided into two main categories: the HP-RT kernel and the
optional HP-RT services (see Fig. 1). : RS

HP-RT Services

The optional HP-RT services include the following components:

+ HP-RT is derived from a third-party operating system called LynxOS from Lynx Real-Time Systems Inc. All
kernel-level algorithms and data structures described in this paper are based on LynxOS features.

The HP-RT Real-Time Operating System 1008-1

o Network services including the Network File System (NFS), TCP/IP, Berkeley
sockets, and ARPA/Berkeley networking services

e Libraries for developing OSF/Motif graphical user interfaces and X clients
e Development tools to help users create applications to run in the HP-RT environment

e Cross debuggers hosted on an HP-UX development workstation for debugging the
HP-RT kernel or applications running on an HP-RT target system.

Kernel Software SRS

The HP-RT kernel is designed so that it can be scaled to balance memory and perfor-

mance requirements. It is small to reduce overhead. The kernel components include:

® A counting semaphore mechanism for process synchronization and to help ensure
atomicity around critical sections of code.

HP-RT Services
* Development Tools
* Cross Debuggers Application Program

¢ Graphical User Interface
(GUI) Tools

* TCP/IP, NFS

HP-RT Kernel

* File System

* 1/O Drivers

* Semaphores

* Memory Management

* System Clock and Timers

¢ Scheduling, Multitasking, Multithreading
¢ Interrupt Handling

¢ Character I/O

¢ Interprocess Communication

HP 9000 Model 742rt Hardware

Fig. 1. The HP-RT kernel and services.

® A system clock that generates time interrupts every 10 milliseconds. Thus, time
events using standard software interfaces have a 10-millisecond resolution. For higher
timing accuracies, drivers and user processes can access the hardware timers on the
Model 742rt. These timers have 1-ps resolutions and are 16 and 32 bits wide.

® 1/O drivers for Ethernet, SCSI II, RS-232-C, and parallel I/O for the Model 742rt
computer, and guidelines for writing VMEbus drivers

Standard operating system services such as:
Scheduling, multitasking, and multithreading
Memory management

Interrupt handling

Character I/O

The HP-RT Real-Time Operating System - 1008-2

e Interprocess communication
e POSIX 1003.1, .4, and .4a kernel services.

Many of these components are described i in more detail later m this article.
HP-RT Development Environment

The development environment for HP-RT is shown in Fig. 2. Programs created to run on
the Model 742rt in the HP-RT environment are developed (using PA-RISC compilers and
linkers) on an HP 9000 Series 700 or 800 HP-UX system. The executable programs can
be downloaded via LAN to a local disk on the target system (Model 742rt), or implicitly
downloaded when the program is executed via NFS mounting between the HP-RT and
HP-UX systems. The user can debug the downloaded program from the host system via
the RS-232-C and LAN connections between the two systems. Users can customize the
SoftBench software development environment? on the development host to launch pro-
grams to a remote HP-RT system and to launch the correct program debugger for HP-RT
program debugging.

The items that come with the HP-RT development toolkit mclude
e Libraries for building HP-RT kernels and user programs

HP 9000 Series 700/800
(HP-UX Operating
System)

X Display

—®

Parallel
HP 9000 Model T42rt | B

(HP-RT Operating .
System)) Printer
. : ScsI

RS-232-C
(for Kernel Debugging) I

)

Serial Terminal Disk DAT

Fig. 2. The HP-RT development environment.

The HP-RT Real-Time Operating System . 1008-3

o Include files for compiling user programs and I/O drlvers for executmg in an HP-RT
operating environment

© Installation and user program compilation scripts

® A pair of source-level debuggers: one for user program debugging and one for I/O
driver and kernel-level debugging.

The two remote debuggers included with the HP-RT development kit are derived from
the standard xdb debugger product provided with the HP-UX operating system. The de-
buggcr used for user program debugging is capable of ‘debugging multithreaded user pro-
cesses and communicating with the target HP-RT system using a TCP (Transmlsswn
Control Protocol) virtual circuit socket. The kernel debugger is for kerel-level and I/O
driver debugging and communicates with the target HP-RT system via a dedicated
RS-232-C serial communication link. Using a dedicated communication link allows the
kernel debugger to operate w1thout mterfermg with the normal operation of the target
operating system. ‘

A set of user commands, a bootable kernel, and miscellaneous files are included with the
HP-RT system. These items can be installed via LAN on a disk connected to the target
system. The HP-RT kernel can also be booted across a LAN and commands and user
programs can either reside in RAM memory (via a RAM disk facility) or be accessed
across the network via NFS mount points. The command set on the HP-RT target system
is oriented around run-time operations and system administration. Commands related to
program development (such as cc and the rcs and sccs tools) are not supported and can
only be used on the host.

HP-RT Hardware

The hardware that supports execution of the HP-RT operating system is the HP 9000

Model 742rt VMEDbus board computer. This system consumes consumes two slots of a

VMEDbus backplane. The system processing unit and onboard I/O features of the Model

742rt include:

® PA-RISC 7100 processor, which has a clock frequency of 50 MHz and is capable of
executing 61 MIPS

e 3M bytes of ECC (error correction code) RAM for main memory, which can be
upgraded to 64M bytes of ECC RAM (The ECC RAM comes in a pair of SIMMs and
provides single-bit error correction and multiple-bit error detection.)

e 64K-byte external instruction cache and 64K-byte external data cache

® Onboard I/O ports for one SCSI II interface (up to seven devices), two serial
RS-232-C interfaces, one parallel interface, and one Ethernet LAN interface

e VMEbus D64 interface, which provides an asynchronous, 32-bit data bus that is
capable of transfer rates of up to 40 Mbytes/s.

The Real-Time Kernel

The HP-RT kernel and I/O drivers are designed for real-time response and determinism at
a level never before accomplished in a Hewlett-Packard operating system product. The
HP-RT kernel ensures that the highest-priority operations are serviced within 50 to 110

The HP-RT Real-Time Operating System 1008-4

microseconds in the worst case and typically much faster depending on the specific op-
eration. To accomplish this, the HP-RT kernel uses a fully reentrant and interruptable
design and makes extensive use of full kernel support for threads for user and kernel pro-
cesses.

Multithreaded Kernel

The fundamental unit of an executing task in HP-RT is the ooncept and structure of a
thread. A thread contains a program counter (next instruction pointer) and a stack for re-
cording local subroutine variables and calling sequence parameters. Threads do not own
a specific address space or a specific set of code. Threads typically share address space
(data-area) and code with other threads. The concept of a process is simply a combination
of a single thread, a code segment, and a data area (see Fig. 3a). HP-RT extends this con-
cept by allowing a single process to create multiple threads (see Fig. 3b). These addition-
al threads execute code in the same process code area and have identical access rights to
all data areas in the process. See “An Overview of Threads,” on page 1008-8 for a brief
tutorial on threads.

HP-RT also implements the concept of a kernel thread. A kernel thread is a thread of
execution that only executes kernel code at a kernel privilege level. Kernel threads are
used in HP-RT to provide kernel services asynchronously for any specific user process or
thread with each service executing at a user-specified priority.

Reentrancy and Interruptability

The HP-RT kernel’s general model is to execute on behalf of a thread of execution with
interrupts enabled and context switching allowed. The specific thread executing may be a
thread associated with a user process or a kernel thread. All threads, regardiess of type,
have their own user-specified priority, schedulmg policy (time-sliced versus nm-to-
completion), and system level.

The system level is a specification of the mode in which a thread is executing. At system
level zero, a thread runs in user mode, with user-level privileges. Kernel threads by defi-
nition never use this system level. At system level one, a thread executes kernel code
with kernel-level privileges and with all interrupts enabled and context switching al-
lowed. At system level two, a thread executes kernel code with context switching dis-
abled, but interrupts enabled. Finally, at system level three, a thread executes kernel-level
code with both context switching and interrupts dlsablcd Table I summarizes these sys-
tem levels and execution modes. :

Context switching and interrupt handling in HP-RT are described in more detail in paper
1010. .

The HP-RT system supports one nonthread mode of execution, which is based on execu-
tion using a single interrupt stack. However, unlike timesharing systems and many real-
time systems, HP-RT makes very limited use of interrupt-stack-based execution because
this mode of execution is always at a higher priority than thread execution. Execution
using an interrupt stack means that a full thread context is not established, which means
that a context switch to a thread cannot be allowed until the interrupt-stack-based execu-
tion is complete. Most interrupt service routines, such as the handlers for the SCSI bus
and LAN interrupts, are instead handled by a specific kernel thread. These threads are

The HP-RT Real-Time Operating System _ 1008-5

scheduled when their corresponding interrupt occurs at their specific priority and are not
executed until all higher-priority thread execution is complete.

Table 1. System Levels and Execution Modes

System Execution Context Interrupts
Level Mode Switching
Zero User Allowed’ - Enabled
One Kernel Allowed Enabled
Two Kemel Disallowéd Enabled

Three Kernel Disallowed Disabled

Stacks

PC=Program Counter

(a)

Fig. 3. Thread configurations. (a) A typical single-thread process. (b) A multiple-thread process.

Because of the general reentrancy of HP-RT, explicit calls are used in kernel code and
1/0 drivers for managing reentrancy.} The macros sdisable(), srestore(), disable(), and
restore() are used to move a process to system levels two (context switch disabled) or
three (both context switching and interrupts disabled) and back to the premove system
level. Turning context switching off guarantees atomicity with respect to the execution of
other threads. Turning off interrupts guarantees atomicity with respect to execution of
both threads and interrupt-stack-based handlers.

Data structures used by the kernel are generally global to the entire kernel and nonreen-
trant operations must be properly protected. A simple example of this is the use_count
field of the in-core inodet+ data structure. The use_count field indicates the number of
instances of a particular file that are active (e.g., open). When a new process accesses an
inode, the equivalent of the code statement inode_ptr->in_use++ (increment use_count)
must be executed. On PA-RISC (and most RISC processors), this code translates to a
sequence of instructions that loads the use_ count value, increments it, and then stores the
value to the memory location it came from. Interleaving such operations, which can easi-
ly happen because of a context switch from one thread to another, will cause the
use_count to miss an increment, producing devastating long-term results.

+ A reentrant process consists of logically separate code and data segments and‘a private stack. Multiple instances
of a reentrant process can share the same code segment but each instance has its own data segment and stack.

‘+tAn-inode is the internal representation of a file in a UNIX*-system-based operating system. An in-core inode
is one that resides in main memory.

The HP-RT Real-Time Operating System 1008-6

For example, Fig. 4 shows what can happen when a thread is interrupted before finishing
incrementing the use_count field for a particular inode. The use_count field is repre-
sented

by the variable X, which is mmally equal to one (l €., some other thread or process is
accessing the same file). At ® Thread 1 begins executing the instructions to increment X,
but just before storing the result in X, Thread 2 interrupts at ® and the scheduler hands
control over to Thread 2. Thread 2 increments the same use_count field. When Thread 2
is finished, X = 2 and the scheduler returns oontrol back to Thread 1 at ©. At @ Thread 1
finishes its work on the use_count field by storing the value it computed before being
interrupted into X. At this point X should be equal to three, but because Thread 1. was
interrupted before it finished its critical section, X = 2.

The need for atomic increment and decrement operations is so pervasive in the HP-RT
kernel that specnal macros called ATOMIC_INC() and ATOMIC_DEC() are used. These
macros generate inline assembly code that disables interrupts, performs the increment or
decrement operation, and reenables interrupts.

@x=1
Load r10 from X @ Load r11 from X
in-use++ | | Increment r10 Increment r11
Store rl0 to X@ < Store r1l to X
: , .
Thread 1 Thread 2

X = use_count Field in inode Data Structure r10, ril = Registers

Fig. 4. What can happen when a thread is context switched in the middle of a critical operation.
Thread 1 is interrupted and context switched just before it is-about to increment the use_count
value. As a result, when Thread 1 is finally able to finish its operation, the wrong value is
stored in use_count.

Use of an interrupt disable versus a context switch disable is a key design decision for
every critical section of HP-RT kernel code. The main question asked in arriving at a de-
cision is whether the operation is critical relative to execution of code that can run on the
interrupt stack. Since very little code in HP-RT executes on the interrupt stack, a context
switch disable usually suffices for protection. However, a context switch disable is a
more expensive operation than an interrupt disable operation. A context switch requires
memory access and an interrupt disable only requires execution of an inline assembly
statement which turns off the interrupt enable bit in the PA-RISC processor status word.
Thus, very short operations are better protected with interrupt disables.

This raises the question of how HP-RT solves the problem of long critical sections for
which a context switch or an interrupt disable last too long. In the analysis of customer
requirements and competitive systems, it was determined that context switch off times
should be held to as close to 100 microseconds as possible, and ideally less, and interrupt
disables should be held as close to 50 microseconds as possible, and ideally less. Longer
critical sections are managed using kernel-level semaphores.

The HP-RT Real-Time Operating System -~ 1008-7

An Overview of Threads

When a process is running it executes 2 sequence of instructions stored in its address
space in memory. This execution of a sequence of instructions is called a thread of execu-
tion, or simply a thread. The execution of a thread requires that it have its own program
counter to point to the next instruction in the sequence, some registers to hold variables,
and a stack to keep track of local variables and procedure call information. Although
threads have some of the same characteristics as a regular process, they are sometimes
called a “lightweight” process because they don’t carry around the overhead (or extra
weight) of regular processes. Table 2 lists some typxcal items associated with each thread
and each process.

Fig. 5 models processes and threads running in a computer. The processes in Fig. 5a have
one thread of execution each. They also have their own address spaces making them
independent of each other. To communicate with each other (for example, to share
resources) they must do so through the system’s interprocess communication primitives,
such as semaphores, monitors, or messages. In Fig. Sb the three threads are in one
process. Thus they share the same address space and have access to all the per-process
items listed in Table 2.

One of the reasons threads were invented was to provide a degree of quasiparallel execu-
tion to be combined with sequential execution and blocking system calls. For example,
consider a file server that must block occasionally to wait for the disk. In a single-process

(b)

Fig. 5. Models of processes and threads running in a computer. (a) Multiple processes.
(b) Multiple threads in one process.

The HP-RT Real-Time Operating System 1008-8

situation the server would get a request and service it to completion before moving on to
the next request. Thus, no other requests would be serviced while the server is waiting on
the disk. If the machine is a dedicated file server, the CPU is also idle while the server
process is waiting on the disk.

Table 2. Items Associated with Threads and Processes

Per-Thread Items* * Per-Process Items
Program counter ’ Address space
Stack Global variables
Registers Files
Child processes
Signals
Semaphores

* All per-thread items are also per-process items. - -

If the server is a multithreaded process, one thread could be responsible for reading and
examining incoming requests and then passing the request to a thread that will do the
work. When a thread must block waiting on the disk, the scheduling thread can get
another request and invoke another thread to run. The result of using threads in this case
would be higher throughput because the CPU would not sit idle, and better performance
because it is much faster to switch threads than to switch processes. ‘

In a real-time system where a quick response to interrupts and other events is critical,
threads offer some definite advantages, especially if one considers context switching
between processes versus switching between threads. Table 3 summarizes some of the
main differences between threads and processes. :

Table 3. Differences between Threads and Processes

Processes : Threads

Program-sized Function-sized

Context switch may be slower ~ Context switch may
be faster

Difficult to share data Easy to share data

Owns resources such as files Owns stack space and

and memory registers only

The HP-RT Real-Time Operating System 1008-9

Bibliography

1. T. Anderson, et al, “The Performance of Thread Management Alternative for
Shared-Memory Multiprocessors,” IEEE Transactions on Computers, Vol. 38 no. 12,
December 1989, pp. 1631-1644.

2. A.S. Tanenbaum, Modern OperatingSystems, Prentice-Hall, 1992, pp. 507-523.

3. P. Dasgupta, et al, “The Clouds Distributed Operating System * IEEE Computer, Vol.
24, no. 11, November 1991, pp. 34-44

4. R. Lafore and P. Norton, Peter Norton’s Inside OS/2, Simon & Schuster, Inc., 1988,
pp. 134-174. :

Kernel Semaphores and Priority Inheritance

An example of an extended critical section is the manipulation of an in-core inode. Criti-
cal inode operations such as the addition of a file to the dircctory data of a directory in-
ode must be performed atomically. Each inode holds a semaphore which is locked and
unlocked around these critical operations.

The HP-RT kernel uses the simple semaphore primitives swait() and ssignal() (corre-
sponding to Dijkstra’s P and V operations)3 for process synchronization, mutual exclu-
sion, and atomic resource management. A single 32-bit integer is used as a kernel
semaphore data structure. This data structure supports two semaphore types: counting
semaphores and priority-inheritance semaphores. With an additional level of lock and
unlock code and using a separate integer as a counter, priority-inheritance semaphores
can also be used as the basis for counting semaphores. Priority-inheritance semaphores
are described later in this paper.

The semaphore primitives ssignal and swait have the code to interpret the contents of the
kernel semaphore data structure and are able to differentiate between counting and prior-
ity-inheritance semaphores.

A counting semaphore in HP-RT holds a positive count value when the semaphore is un-
locked and a resource is available. An swait() operation on a positive-valued semaphore
causes the semaphore to be atomically decremented, and the calling thread continues
execution. An swait() on a zero or negative-valued semaphore (the resource is not avail-
able) causes the thread to block (suspend) on the semaphore.

‘When one or more threads are blocked on a counting semaphore, the threads are placed
into a priority-ordered linked list with the semaphore heading the list. To identify a sema-
phore that is locked and has one or more waiting threads, the semaphore is set to the neg-
ative address of the first waiting thread (see Fig. 6). The sem and owner fields shown in
Fig. 6 are described below.

An ssignal() on an unlocked or locked-with-no-waiters counting semaphore merely
causes the nonnegative value of the semaphore to be atomically incremented. An ssig-
nal() on a locked semaphore with one or more waiters (one that holds a negative thread
structure address) causes the first (highest-priority) waiting process to be unlinked and
scheduled. Table 4 summarizes the different states of HP-RT counting semaphores.

The HP-RT Real-Time Operating System ~1008-10

~Address '— Locked Semaphore

Linked List of
Waiting Threads
in Priority Order

N

Fig. 6. A locked counting semaphore and waiting threads.

Table 4. Different States of Counting Semaphores

State Meaning :
0 Locked with no waiters

-Address Locked with waiters (The address
points to the first thread in the list of
waiting threads.)

=1 Unlocked:

One drawback of this semaphore methodology is that there is no clear ownership of a
locked semaphore. The second drawback is the risk of priority inversion.

Priority Inversion .

In most real-time operating systems a prlonty-dnven preemptive schedullng approach is
used. This scheduling method works well when a higher-priority process (or thread) can

preempt a lower-priority process with no delays. One important problem that sometimes

hampers the effectiveness of this scheduling algorithm is the problem of blocking caused
by the synchronization of processes that share physical or logical resources.

The HP-RT Real-Time Operating System - 1008-11

P1 Blocked

» Brecuting ® l— © P1 Is Blocked r—_—-

Idle or

1 Blocked
P1 Done
®|__
» .
2
P2 Done
v | ® |® [®
3 Lock X
P1 Preempts P2 Preempts P3 Done

Priority (P1) > Priority (P2) > Priority (P3)

Fig. 7. A time line illustrating priority inversion.

The most common situation occurs when two processes attempt to access shared data. In
a normal situation, if the higher-priority process gains access to the resource first, then
good priority order is maintained. However, if a higher-priority process tries to gain ac-
cess to a shared resource after a lower-priority process has already gained access to the
resource, then a priority inversion condition takes place because the higher-priority pro-
cess is required to wait for a lower-priority process to complete.

The following example, which is loosely based on an example first described by Lamp-
son and Redell,* shows how a priority inversion can occur. Although the term process is -
used in the following example, the executing entity could just as well be a thread.

Let P1, P2, and P3 be three processes arranged in descending order of priority. Let pro-
cesses P1 and P3 share a common data structure which is guarded by the binary sema-

phore X. Fig. 7 and the following sequence shows the events that can lead to a priority

inversion: '

1. P3locks X and enters its critical section.

. P1 arrives, preempts P3 and begins its processing.

. P1 tries to lock X, but because X belongs to P3, P1 is blocked.
. P3 again attempts to finish its critical section.

. P2 arrives and preempts P3 before it finishes its critical section.

AN W WL N

. Assuming there are no more preemptions at some point P2 finishes, then P3 finishes,
and P1 finally is unblocked on resource X and allowed to finish its critical section.

In this scenario the duration of P1’s blocking is unpredictable because other prooess$
can show up before P3 finishes its critical section and is able to release X.

The HP-RT Real-Time Operating System 1008-12

Priority Inheritance

The methodology used in HP-RT to avoid the priority inversion problem employs prior-
ity-inheritance semaphores. The basic concept of priority-inheritance semaphores is that
when process P blocks a higher-priority process, it executes its critical section at the
highest priority level of all of the blocked jobs. Process P returns to its original priority
level when it completes its critical section, which then allows the highest-priority
blocked process to execute.

From the example above if P1 is blocked by P3 then according to the priority-inheritance
concept, P3 inherits the same priority as P1 while it executes in its critical section. When
process P2 arrives (while P3 is in its critical section) it would not be able to preempt pro-
cess P3 because P3 would be running at a higher priority than P2. Thus, process P2 will
not begin execution. When P3 finishes its critical section, process P1 can preempt P3 and
run to completion. Then process P2 can begin execution.

Priority-inheritance semaphores can become quite complex when nested semaphore locks
are allowed as they are in the HP-RT kernel. Not only must the current owner and all
waiters for a semaphore be known, but given the owner of a particular semaphore, the
highest-priority waiters of all semaphores currently owned by that owner must be known.
This allows the system to manipulate priority properly as semaphores are released. The
priority must revert to the priority of the current highest-priority waiter of all still-owned
semaphores. '

To manage this complexity and yet retain a single interface and data structure for sema-
phore operations, HP-RT uses the semaphore value -1 to indicate unlocked for a priority-
inheritance semaphore. A value of one is not a possible thread structure address, so this
value cannot be confused with the negative address of the first waiter of a counting sema-
phore.

Two fields in the thread structure are used to differentiate between the various states of
priority-inheritance and counting semaphores when they are locked. A counting sema-
phore that is locked and has waiters will have the sem field in the first waiter thread hold-
ing the address of the semaphore and an owner field containing zero (see Fig. 6). A
priority- inheritance semaphore that is locked and has no waiters will hold the negative
address of the owner thread, which has a sem field with a value of zero (see Fig. 8a).
Lastly, a locked priority-inheritance semaphore that has waiters will hold the negative
address of the highest-priority waiting thread. This thread structure has a sem field hold-
ing the address of the semaphore and an owner field holding the address of the owning
thread (see Fig. 8b).

To keep track of the highest-priority waiters for all owned priority-inheritance sema-
phores, a doubly linked list containing the highest-priority waiters for each owned sema-
phore is attached to the thread structure of each semaphore owner.

The different states of priority-inheritance semaphores are summarized in Table 5.

" The HP-RT Real-Time Operating System 1008-13 -

Owner

Semaphore Thread
~Address 1
[] sem
(a)
List of Highest-Priority
List of Waiting ‘Waiters for All Sema-
Semaphore Threads phores Owned by Owner
Address — Semaph . —>
Waiter coe
sem
owner Owner
Semaphore r
Owner
Waiter
Semaphore
Waiter
o
. v
(b) ®
Fig. 8. Data structures associated with priority-inheri phores. (a) A locked semaphore

with no waiting threads. (b) A locked semaphore with waiting threads.

Table 5. Different States of Priority-Inheritance Semaphores

State Meaning

-1 Unlocked

-Address of thread owner Locked without waiters
(sem field in thread
owner = 0)

~Address of highest-priority Locked with waiters
waiting thread (sem field in

highest-priority waiting thread

= semaphore address and

owner field = thread owner

address)

The HP-RT Real-Time Operating System ~ 1008-14 -

Executable
Threads at

Priority 1023 ~——32 Bits ——
Head 0 e
Tail 3 32
102

[% 32 Words

/\/ 992 —» i [o

R N 1023 992
Two-Level Ready Mask

(32 Groups of 32 Priorities)

Run-Queue Table

Fig. 9. Data structures for process scheduling in HP-RT.

Process Scheduling : :

HP-RT currently uses 64 distinct priority levels with the ability to extend support to 1024
distinct priority levels. Half of all HP-RT priorities are reserved for use by kernel man-
agement software. There is no explicit user program interface provided for placing a
priority at these reserved levels. The reserved priorities are interleaved with the user prio-
rities and are considered a “priority boost” on a user priority. Thus, between any two user
priorities N and N + 1 lies a priority N + boost, which is more important than priority N
and less important than priority N + 1. Boosted priorities are used by kernel service
threads to provide service just above the priority of the highest-priority requesting pro-
cess, but not at the next highest user priority which may be in use by the system user.
Priority boosting is also used for temporary elevation of the priority of processes block-
ing on I/O operations to maximize throughput. This type of algorithm is only used in a
user-specified portion of the overall priority range.

The HP-RT kernel internally manages priorities by converting from the user priority plus
a possible boost value to a run queue table index by using the formula:

Internal Priority = (user priority) x 2 + boost,

where boost is either zero or one. Hence, if user priorities range from zero to 127, the
internal priorities range from zero to 255.

HP-RT maintains a run-queue table with one entry per internal priority. Each entry holds
a ready thread list head and a list tail pointer (see Fig. 9). To determine quickly the high-
est priority for which there is a runnable thread, HP-RT uses a two-level bit mask called
a ready mask in which a set bit indicates a runnable thread. The top level of the ready
mask is one 32-bit word. Each bit in this word indicates that within a set of 32 priorities,
at least one thread is executable. Thus, if as shown in Fig. 9 the high-order bit of the first

The HP-RT Real-Time Operating System 1008-15

word of the ready mask is set, then there is at least one thread in the internal priority
range of 1023 to 992 that is executable. The second level of the ready mask holds up to
32 32-bit entries each of which indicates which of these 32 priorities holds executable
threads. .

By using high-speed assembly language code to find the first set bit in the ready mask,
the highest-priority thread in the nonempty run queue can be quickly determined.

References

1. B. Clements, “Mechanical Considerations for an Industrial Workstatxon,
Hewlett-Packard Journal, August 1993.

2. Hewlett-Packard Journal, Vol. 41, no. 3, pp. 36-58.
3. E. W. Dijkstra, “Co-operating Sequential Processes,” Programming Languages, F.
Genuys, Editor, London: Academic Press, 1965.

4. B. W. Lampson and D. D. Redell, “Experiences with Processes and Monitors in
Mesa,” Communications of the ACM, Vol. 23, no. 2, February 1980, pp. 104-117.

HP-UX is based on and is compatible with UNIX System Laboratories’ UNIX* operat-
ing system. It also complies with X/Open’s* XPG3, POSIX 1003.1 and SVID2 interface
specifications.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

The HP-RT Real-Time Operating System 1008-16

Managing PA-RISC Machines for Real-Time Systems

Paper # 1010
by George A. Anzinger

Hewlett-Packard Company
11000 Wolfe Road MS-42UN
Cupertino, CA 95014-9804
(408)-447-5079

© 1993 Hewlett-Packard Company. Reprinted with permission.

In the HP-RT operating system, the interrupt-handling architecture is especially
constructed to manage the high-performance timing requirements of real-time systems.

The task of an operating system is to manage the computer system’s resources. This
management should be done so as to give the best possible performance to user tasks or
jobs presented to the system. How this performance is measured and valued differs
depending on the task or mission of the system. The three major classes of tasks or mis-
sions presented to an operating system are timeshare, batch, and real time. The important
aspects of performance of these three classifications differ, and, because they differ,
require the operating system to use different algorithms to manage system resources.

Timeshare

Timeshare systems are usually designed to share system resources with all contending
processes. The major resource to be shared is CPU time, which is usually sliced into
small units (called time slices) and allocated to all runnable processes in a “fair” way.
Various notions of fair exist and have been used, but in general, runnable processes con-
tend at the same level or priority for CPU time. Some (or-even most) systems modify
this notion of fair to give more time to a process that blocks often and less to a process
that is compute bound. Some systems may also have preferred priorities for processes
that run on behalf of the system. Such processes may be handling printers, communica-
tion lines, or other things that are shared with several processes.

Batch

Batch systems are usually designed to maximize the throughput of the system. That is to
say, they attempt to get the most work done in a given period of time. Such systems will
not usually use a timeshare scheduling algorithm-because it introduces overhead that
does not add to the desired result—throughput. To help achieve maximum throughput,
one popular batch scheduling algorithm is to run the job that has the least amount of time
left to run. The point is that batch systems typically do not need to make any attempt to
share CPU time.

Real Time X

Real-time systems, unlike timeshare or batch systems, are usually designed to run the
most important process that is ready. Importance is assigned by the user or designer of
the system, and the operating system has little or nothing to say about it. The system
designer (i.e., the user who sets up the system) decides the order of process importance
and assigns priorities for all processes on the system. The operating system’s job then is

Managing PA-RISC Machines for Real-Time Systems ~ 1010-1

very simple: give the CPU to the highest-priority process that is ready. The performance
of a real-time system is usually measured by how fast it can respond to events that
change the identity of the highest-priority ready process. Such events are usually external
and come to the system in the form of interrupts, but can also be internal in the form of
processes that promote other processes to higher priorities (or demote themselves to
lower priorities). Another major event that real-time systems must respond to is the pas-
sage of time. The indication of the passage of time also comes to the system in the form
of an external interrupt.

From this discussion, it is apparent that one major measure of a real-time system is how
quickly it can respond to an interrupt. A résponse consists of:

e Recognizing that the interrupt is pending ,
® Processing the interrupt (i.c., deciding what to do about it)
e Taking the indicated action.

Usually the indicated action will be to switch context to the process that is to handle the
interrupt. Context switching encompasses the actions taken when control or execution
moves from one process to another as a result of an interrupt or some other event (see
“Context Switching in HP-RT” on page 1010-3 for more about context switching).

From a system’s point of view the response (or response time) is the time it takes the
whole system? to do something that changes the environment it is monitoring or control-
ling. From an operating system vendor’s point of view the response stops when the user
code gets control and the operating system’s responsiveness is no longer key to system
performance.

While the system is dealing with one interrupt and preparing a response, it may need to
contend with other interrupts that are less urgent. The system must take the time to deter-
mine this.

It is also possible that, at the time an interrupt arrives, the system is in a state in which
the interrupt system or context switching is off. The system needs to go into these states
to protect shared data from corruption by contending processes (see “Protecting Shared
Data Structures,” on page 1010-6). Some systems protect themselves and their shared
data by turning off context switching whenever they are in system code.

This is not reasonable for a high-performance real-time system that is trying to switch
contexts in less than 50 ps. For these systems it is necessary to recognize and process
interrupts in the 25-ps range. This implies that the interrupt off time plus the interrupt
processing time must be kept below 25 ps.

This paper will explore the problems a PA-RISC architecture presents to real-time pro-
cessing. These problems revolve around the need for fast context switching, interrupt
handling, and repeatability. Next, possible solutions to these problems will be discussed,
detailing the solutions used in the HP-RT (real-time) operating system, which runs on the
HP 9000 Model 742rt VMEbus board computer. The hardware and software components
of the Model 742rt are described in paper 1008.

1This includes the operating system, the user application, and the external devices.

Managing PA-RISC Machines for Real-Time Systems 1010-2

Context Switching in HP-RT

Context switching can be defined as moving abruptly from one area of code to another as
the direct result of some influence outside of the program or programs being switched to
or from. Usually the context switch is the direct result of an interrupt or trap (a trap is an
internal interrupt caused by some program activity such as divide by zero or illegal
memory access). A context switch can also occur as a result of a program or thread
blocking. In this case the operating system will context switch to a program or thread
that is not blocked. These two different ways of generating a context switch have differ-
ent overhead costs as will be explained below. One of the measures of a real-time system
is how fast it context switches. When used in this way the reference is to how fast one
user process can be suspended and another user process restarted.

To context switch, the operating system must save the from process’s state. The state
consists of all the machine registers that the program may depend on. After saving the
from process state, the fo process’s state must be restored. As a result of this save and
restore, both the fo and from processes have their view of the world preserved and
restored respectively even if they are suspended for a very long time.

For example, consider the case of a user program that has asked for some device input.
The program will be suspended or blocked on the device driver waiting for the device to
respond with the desired data. While waiting, the operating system will find some other
program that is ready to run and switch to it. When the desired data arrives, the processor
will be interrupted and the operating system will switch control of the processor to the
waiting program.

As an example of a context switch that is strictly the result of an external interrupt, con-
sider the case in which a time slice is exhausted. In this case, both the program being
switched from and the one being switched to are interrupted as opposed to having to
block and wait for a resource.

From a system overhead point of view there are four different types of context switch:

® Both the from and the to processes enter the blocked state programmatically

® The from process blocks programmatically and the to process is interrupted

® The from process is interrupted and the fo process is blocked programmatically
e Both processes are interrupted.

Because of calling sequence conventions, processes that are interrupted incur additional
overhead to save and restore caller registers.

To take advantage of the savings possible when processes block programmatically,
HP-RT uses a context switch routine based on this type of block. The extra work required
when processes are interrupted is performed by code in the system mterrupt handler.

Managing PA-RISC Machines for Real-Time Systems 1010-3

PA-RISC Architecture

The RISC architecture is used to speed up CPUs by designing them so that each instruc-
tion is simple and can be executed quickly. The goal is usually to have each instruction
take the same amount of time to execute and to design the machine so that several
instructions can be pipelined. To get all instructions to execute in the same time requires
that no one instruction can be complex. Operations that are complex and require more
than one instruction time are either handled by subroutines or by coprocessors. Coproces-
sors are designed to run independently allowing the main processor to do other useful
work while the coprocessor does its work. For example, HP’s PA-RISC machines use
coprocessors to do floating-point math.

In HP’s PA-RISC processors, the following characteristics are important for real-time
applications: '

e Memory reference instructions either load or store and do nothing else. This means
that there is no read-modify-write instruction. :

® Memory reference instructions may stall if the data is not available. To help in this
regard, a cache memory is used to speed up the average access to memory.

e Since memory accesses are potential roadblocks, 32 general-purpose registers are
available as well as 27 control registers and 32 64-bit-wide floating-point registers.
This allows the processor to keep most of the variables of interest in registers,
avoiding slow memory access operations.

e All interrupt context is kept in control registers.

Real Time and HP’s PA-RISC

From a real-time perspective, the characteristics of HP’s PA-RISC that are of concern are
those that limit performance in the real-time sense. As discussed above, a real-time sys-
tem must be able to change its mind (context switch) quickly. This implies that the large
context associated with a process can be a problem. Also, while changing context, as
well as doing other things, the system needs to be even more responsive to interrupts.
This means we must not turn the interrupt system off for long times. In particular, we
must not turn it off for the duration of a context switch.

HP-RT is the result of porting a third-party operating system+ to the HP 9000 Model
742rt board level real-time computer.

As such, the porting team was constrained to work with the conventions existing in the
system being ported. Likewise, the porting team was not empowered to change any of
the language or hardware conventions that exist in HP’s PA-RISC machines and the HP-
UX* host operating system. :

To take advantage of the best of HP’s PA-RISC processors, the port team decided to
restrict the system to PA-RISC 1.1 architectures. The 1.1 architecture provides shadow
registers that allow system interrupt code to be run without saving any context (see “The
Shadow Register Environment,” on page 1010-8).

On examining the way the system we were porting recommends that drivers be written
we found the following:

1LynxOS from Lynx Real-Time Systems Inc.

Managing PA-RISC Machines for Real-Time Systems 1010-4

® After an interrupt, the system enters the interrupt service routine. The routine should
be written in C and should make a call to the operating system function ssignal and
then return.

® The function ssignal increments a counting semaphore, and if the result is 0, the
interrupt service thread is put in the ready list (execution threads and counting
semaphores used in the HP-RT operating system are described in paper 1008).

® If the new entry in the ready list has a higher priority than the current process, a flag
is set indicating that a context switch is needed. (Context cannot be switched while in
an interrupt handler.)

® When the driver’s interrupt service routine returns, the system notices whether a
context switch is pending and if so takes the required action. If not, the system just
returns to the point of the interrupt.

The problem with this picture is that to call the interrupt service routine the system has to
save most of the system state. This is a lot of overhead for only one function call and
return.

The team decided that a better way to handle interrupt servicing would be to code a com-
panion ssignal function. The new ssignal runs using only the shadow registers and still
does everything the original ssignal did. This scheme allows the whole ssignal call to be
made without establishing a C context, which involves saving and restoring the C envi-
ronment (see “C Environment,” on page 1010-11). However, some restrictions are placed
on I/O drivers in that they have to make their semaphores known to the operating system.

In some cases, calling the ssignal function is almost all that an interrupt service routine
will do. It is also possible that a few lines of assembly code might be required to com-
plete the interrupt service routine. Such code might move a byte of incoming data from
the I/0 device to an internal buffer. For applications that have these kinds of interrupts,
the system provides the ability to call an assembly language interrupt service routine. To
keep overhead low, the assembly language interrupt routine is restricted to using the -
shadow registers and no system resources. The system interrupt dispatcher calls the ssig-
nal function if the assembly language routine returns a nonzero semaphore.

Some I/O devices and drivers require full C-code interrupt handlers. For these interrupts,
the system establishes a C context on an interrupt control stack. In this context interrupts
of higher priority are turned on while the interrupt is processed. These routines can also
call a limited number of system functions. For example, the system time base interrupt is
handled by a C interrupt handler.

With three different possible interrupt handling situations, the operating system needs to
have the ability to decide quickly which interrupt service routine to use. Usually this is
done by either a table index, in which the system determines the method to use via a
number that is an index into a table of routines to call, or a case statement, in which the
indicated method, again expressed as a number, is used to indicate which code to
execute. A much quicker method than these two is to put the address of the interrupt ser-
vice routine in the driver’s table structure. This also allows the system to be expanded
easily to handle other interrupt handler environments.

Managing PA-RISC Machines for Real-Time Systems - 1010-5

Protecting Shared Data Structures

Shared data structures are needed in any operating system to keep track of the resources
that the system is sharing among several processes. For example, each process will need
memory for its code and data. This memory is a shared resource and the management
structures must be accessed in a way that will not allow the system to lose parts of the
resource. One method of keeping track of a resource like memory is to keep free pages of
memory in a free list. When a page of memory is needed, the page at the head of the free
list is removed from the list and given to the requesting process. This removal (and its
subsequent return) must be done in an atomic operation with respect to the contending
processes. By this we mean that, as far as any process cares, the removal of a page from
the free list happens as one indivisible operation. Otherwise, a contending process could
get control and possibly get the same page.

The importance of maintaining atomicity in dealing with a shared resource such as
memory on a free list is illustrated in the following example. The process of removing
page A from the free list involves:

1. Picking up the pointer to page A from the list head

2. Using the resulting pointer to get the pointer to page B, which is in the first word of
page A

3. Storing the pointer to page B in the list head.

If the removal is interrupted after step 1 but before step 3, and the interrupting process
also tries to remove a page from the free list, both processes will get the same page and
most likely the system will fail. Similar problems on returning of pages to the free list
can result in lost pages or even circular free lists.

The solution to these problems is to make a sensitive operation atomic with respect to
contenders. If only processes can contend, it is sufficient to prevent context switches for
these periods of time. If one or more of the contenders runs on an interrupt, then inter-
rupts must be disabled to achieve the required atomic operation.

The HP-RT system supports three levels of contention protection:

o Interrupts disabled
o Context switch disabled
e Semaphore locking.

From an overhead point of view, the cost is lowest for the interrupt disable and highest
for the semaphore lock. From an impact on performance point of view, interrupts should
be disabled only for short periods of time, context switch disabled only for sllghtly
longer times, and semaphores held as long as needed.

For short operatlons, such as the list removal operation described above, the interrupt
disable method is the best to.use (even if the atomic test does not require this level of
protection) because the disable time is short and the overhead of interrupt disable protec-
tion is the lowest of the three methods.

Managing PA-RISC Machines for Real-Time Systems. -1010-6

A New Interrupt Environment

The need to deal with the three interrupt handling situations described above and the
requirement to handle interrupts from the VMEbus meant that we had to design and
implement a new interrupt handling environment. Fig. 1 shows a simplified view of the

logical 1/O architecture that the HP-RT interrupt handling subsystem is designed to ser- -
vice. : ‘

The nature of the VMEDbus requires a second level of interrupt dispatch. This is necessary
because VMEDbus interrupts come into the PA-RISC processor via one of seven lines or
PA-RISC interrupt levels. As shown in Fig. 1, each of these lines can handle several
independent devices, which implies several interrupts.

Upto
g 3210
Groups

First-
Level {| SCSI | |Rs-232C| | LAN DAT
Devices

VMEbus

Upto 7

- |' T ¢ T" re]
: Device
Groups
: Second-
Level
Devices

VMEbus
Devices

Fig. 1. A logical view of the I/O architecture the HP-RT operating
system is designed to work with.

The VMEDbus standard specifies that a device requesting an interrupt must assert its
request on the interrupt line it is using. The interrupt responder sees the request and
sends back an interrupt acknowledgment for that interrupt line. Each device using the
same line blocks the acknowledgment signal from being seen by devices farther away
from slot 0F while it has an interrupt request pending. When a device with an interrupt
pending sees an interrupt acknowledge it responds by sending back an interrupt vector.
The interrupt vector is a data element (byte or word) that identifies the interrupting
device and is used by the interrupt responder to dispatch the interrupt.

1Slot 0 in a VMEbus cardcage typically houses the card or cards that contain the VMEbus system
controller and other resources.

Managing PA-RISC Machines for Real-Time Systems -~ 1010-7

The Shadow Register Environment

The PA-RISC 1.1 implementation added shadow registers to the basic machine architec-
ture. Shadow registers are seven registers into which the contents of GRs (general regis-
ters) 1, 8,9, 16, 17, 24, and 25 are copied upon interruption. The contents of these gen-
eral registers are restored from their shadow registers when an RFIR (return from
interruption and restore) instruction is executed.

The shadow register environment includes code that executes between a processor inter-
rupt and the following RFIR instruction. This code is executed in HP-RT using only the
shadow registers. It is important to note that the nature of this environment is further
defined by the nature of the processor’s behavior on interrupt. When an interrupt occurs
the processor transfers control to the interrupt code with the following state:

e Interrupt system off

e Interrupt state collection disabled

e Virtual memory system (both code and data) off
® All access protection off.

Since the virtual memory system is off, all memory for both code and data must reside in
and be accessed by physical addresses. Usually an operating system will put the interrupt
handling code in an area of memory that is “equivalently mapped.” This means that the
physical and virtual addresses are the same. This also means that code running in the
shadow register environment cannot access memory with virtual addresses that are not
equivalent since to do so would require the hardware to map the address using its TLB
(translation lookaside buffer).t The hazard here is that the required entry may not be in
the TLB, which would cause a trap to the TLB miss handler. Since traps are a form of
interrupt, the miss handler would not be provided with the interrupt state (because the
interrupt state collection is disabled) and thus would not know how to return to the point
of the trap.

On the plus side, if the whole interrupt can be processed in the shadow register environ-
ment, the RFIR instruction is all that is needed to return to the point of interruption.

1The translation lookaside buffer or TLB is a hardware address translation table. The TLB speeds up
virtual-to-real address translations by acting as a cache for recent translations.

Managing PA-RISC Machines for Real-Time Systems 1010-8

The original plan for the Model 742rt hardware was to interrupt the PA-RISC processor
when a VMEDbus interrupt request was asserted and to do the interrupt acknowledgment
when the processor attempted to read the interrupt vector. This plan required the operat-
ing system to stall in the interrupt handler with the interrupt system off for an unspecified
length of time because VMEDbus devices are not required to yield the bus to a requester,
making the actual time required to do an operation on the bus open-ended. To solve this
problem, the HP-RT team decided that the interrupt vector should be prefetched by the
hardware before interrupting the PA-RISC processor. In this way a VMEbus interrupt can
be dispatched without the PA-RISC processor having to wait for the VMEbus processor
to fetch the interrupt vector. The current hardware always does the interrupt acknowledge
as soon as possible but has the option of asserting the processor interrupt either immedi-
ately or on completion of the interrupt acknowledgment.

Fig. 2 shows the steps involved in handling a VMEDbus interrupt and Fig. 3 shows a por-
tion of the system interrupt table which is used for handling second-level VMEDbus inter-
rupts and non-VMEDbus interrupts. Note the correspondence between the interrupt table
structure and logical I/O architecture shown in Fig. 1. The three different interrupt han-
dling situations mentioned above are taken care of by allowing one of the three types of
interrupt routines to be specified in the table (see the interrupt action entry in Fig. 3).

Interrupting VMEbus /O Card
r—— 1. Send interrupt to VMEbus processor.

3. Acknowledge the IAK and send an inter-
rupt vector to the VMEbus processor.

VMEbus Processor
H» 2. Send IAK (interrupt acknowledge) mes-
sage to the interrupting device.

» 4. Store interrupt vector at the arbiter
address.

5. Interrupt HP-RT.

HP-RT Operating System Running on a PA-RISC Processor
6. Decode interrupt to determine which one of 32 10.The code mentioned in step 9 performs the

interrupt lines caused the interrupt. following:
7. Use the result from step 6 to index into the ¢ Retrieves the interrupt vector that had been
HP-RT interrupt table (@ in Fig. 3). plaqed at the arbiter address in step 4 (@
8. Since this interrupt is associated with a VME- in Fig. 3).
bus * Creates an index to the interrupt action
device, the second-level interrupt table is pointer by anping the value in the mask entry
accessed (® in Fig. 3) with the interrupt vector.
(® in Fig. 3). ¢ Uses the index to find the handler that will
9. The second-level code (© in Fig. 3) is process the interrupt from the interrupting
responsible for interpreting the entries in the device (® in Fig. 3).

second-level interupt table. « Transfers control to the handler.

Fig. 2. An example of the VMEbus interrupt handling process.

Managing PA-RISC Machines for Real-Time Systems 1010-9 '

. . Types of Interrupt
Single-Level Inter- . 4116 Called
rupt Table (For All
1/0 Except VMEbus
Interrupts)

Interrupt Action
Return Value
"' HP-RT Interrupt
Table Indexed by the Semaphore Address
Bit Position in the .
Interrupt Word Dnvenf-l)eﬁned Data
IndexX ™ fneerrupt - T~
Action Pointer . 1/—_/]
Interrupt Bit Second-Level Interrupt
. Table for VMEbus Interrupts
Driver Address (There can be up to seven of
Not Used ; these structures.) ©
(3|, Action Potter © ™ e > Second-Level Code
Interrupt Bit Not Used
Driver Address Arbiter Address | ()

Not Used Mask ®
/"_/ /‘_/
r\—ﬂ /\/

Interrupt |
This group of entries Action Pointer
is repeated 32 times Not Used

(one group for each .

bit in the PA-RISC Driver Address

interrupt word).

Repeat for Mask| @
+1 Entries
— Assembly
'/_\-/I Driver
At t,his point the Interrupt Action C Driver
entries for first and .
second levels are
Return Val
the same. e
Semaphore Address
Driver-Defined Data
S

. ——]

Fig. 3. The HP-RT interrupt table structure.

Managing PA-RISC Machines for Real-Time Systems 1010-10

Second-level VMEDbus interrupts are handled by reading the returned interrupt vector,
masking it, and using the result to index to the interrupt action that will handle the inter-
rupt (® in Fig. 3). The masking is done to prevent indexing to a location outside of the
table and to allow the interrupting device to pass back status information in the high part
of the word. The mask is computed at system configuration time from the user’s specifi-
cation of the high number to be returned on a given interrupt line. This number is
rounded up to the nearest power of two (2"). For example, if the highest number to be
returned on a pariicular interrupt line is 12 then n is four because 24 provides the nearest
power of two greater than 12.1 This results in a table that is larger than needed but elimi-
nates the need to check if the masked number is too large. Unused entries in both the
first-level and second-level interrupt tables are filled with entries that result in system
illegal interrupt messages should such an interrupt ever happen.

Initially, the HP-RT team wanted the interrupt handler and the interrupt off times to be
“blind” to interrupts for a maximum of 100 instruction times, including any stall states
minus cache misses. The notion of blind to interrupts was introduced to cover the case in
which the system keeps the interrupt system off, but still processes the interrupt in a
timely fashion. This occurs in the interrupt handler, for example, when after it processes
an interrupt it looks at the pending interrupts and if it finds one, processes it without
turning on the interrupt system. The operating system interrupt dispatching code met the
100-instruction time limit.

C Environment

C environment refers to the implied machine state when executing in a C language pro-
gram. This machine state is really a set of register use conventions that are defined in the
software architecture for the PA-RISC processors (see Fig. 4). Some of the basic assump-
tions made in C about these registers include:

o Register 30 is the stack pointer and points at the first available double word on the
stack. The stack grows with increasing addresses.

o Just below the current stack pointer is a standard stack frame with room for the return
address to be saved (if the callee needs to save it) and room for each of the call
parameters to be saved.

® Registers 26, 25, 24, and 23 (as needed) contain the call arguments If more than four
arguments are passed, those above the first four arguments are stored in the stack -~
frame.

. Reglster 27 is the global data l’CngICI' and is used to address any global data needed
by the procedure.)

® Register 2 contains the address to return to when the prooedure is done.

® Registers 28 and if needed 29 are to contain the function result when the function
returns.

. Reglsters 3 through 18 (the callee—saves reglsters) can be used only lf thcy are savcd
and restored before returning to the caller.

® Registers 19 through 22 (the caller-saves registers) and reglsters 1 and 31 are
available to use as scratch registers.

Managing PA-RISC Machines for-Real-Time Systems - 1010-11

There are other conventions for floating-point and space registers which are usually not
important in operating system code.

The shadow register environment, which consists of registers 1, 8, 9, 16, 17, 24, and 25,
is not compatible with the C environment.

GRO | Zero (by Hardware Convention)
GR1 Scratch
GR2| = RP(Return Pointer)
x>
. Callee-Saves Registers
GRI8
GR19
. Caller-Saves Registers
GR22
GR23
. Arguments
GR26
GR27 DP (Global Data Pointer)
GR28 Return Values
GR29
GR30 SP (Stack Pointer)
GR31| MRP (Millicode Return Pointer)

Fig. 4. Register use conventions in the C environment.

Handling Large Contexts

The PA-RISC architecture divides a program’s context into two register sets: caller-saves
and callee-saves registers. The caller-saves registers consist of registers that are expected
to contain values that do not need to be preserved across a procedure call, that is, values
the calling function does not care about. Therefore, these registers are available for use as
scratch registers or for parameter passing by the called routine. The callee-saves registers
are used for values that must be preserved across a procedure call. Thus, if the called rou-
tine wants to use a callee-saves register, it must first save it and then restore it before it
returns. The PA-RISC architecture also specifies where these registers must be saved on
the call stack (see Fig. 5). This caller-saves and callee-saves convention is used by the
PA-RISC compilers so that the system can depend on it.

HP-RT depends on the caller-saves and callee-saves division to keep context manage-
ment code toa minimum. In particular, on system calls the system saves only the user’s
(caller’s) return address, global register, and stack pointer. The system call handler then
calls the requested system call function depending on that function to save and restore

any callee-saves registers it may want to use. Likewise, on interrupts or traps where con-
trol must be transferred to the kernel stack, only the caller-saves registers need to be
saved because HP-RT depends on callee-saves registers to be saved by any function
called. Therefore, since the context switch code is called as a function, all it has to save
are the callee-saves registers. By saving only what needs to be saved at each step, the
system keeps the overhead low for register saves and restores.

Managing PA-RISC Machines for Real-Time Systems 1010-12

Function f1 (Caller) ’ Stack

Entry i 2 i
. Caller-Saves Registers
L]
—— call 2 PRSS Values that Do Not /_\/
—1p 0 Need to B Saved ~—___
] . Across Function Calls
Exit
llee-Saves Registers
. Values that Must Stack
Function f2 (Callee) Be Saved Across Saves Area Ar:a
—» Entry for f1
.
— cailps
Y
.
o Caller- and Callee-
Exit Saves Registers for £2
. Stack
. Saves Area Area
v . for 2

/\—/

C ~—

Fig. 5. The relationships between function (or procedure) calls, the caller- and callee-saves registers,
and the stack area. The caller puts data it wants to preserve in the callee-saves registers before
making a call. If the called routine (callee) needs to use any of the callee-saves registers, it
saves the value contained in the register and restores the value back into the register before
returning to the caller.

HP-RT also takes advantage of the fact that the floating-point coprocessor is enabled by
setting bits in a control register. If the coprocessor is not enabled, the system will gener-
ate an emulation trap when a process attempts to use any floating-point instructions. Pro-
cesses start with the floating-point coprocessor disabled. When a process attempts to use
floating-point instructions, the code in the emulation trap handler saves the old process’s
floating-point registers and loads the current process’s floating-point registers. In this
way, the overhead of floating-point context switching is limited to only the times when it
is needed. o

In deference to maintaining a low interrupt-off time, the system checks for pending inter-
rupts once it has stored the old process’s floating-point registers. If any external inter-
rupts are pending at this time, the system will set the floating-point ownership flags to
show that the coprocessor is not owned and then handle the interrupt. The current process
will be redispatched still not owning the floating-point coprocessor, but will immediately
end up in the emulation trap which will finish the context switch. Of course the interrupt
could cause the current process to lose the CPU, possibly even to the process whose state
the system just saved. For this reason, a flag is kept to show that the registers were not
changed so the process may proceed with only a quick pass through the emulation code
to get the coprocessor bits set again.

Managing PA-RISC Machines for Real-Time Systems 1010-13

Setjmp and Longjmp Solutions

On rare occasions the operating system is required to abort a system call. This occurs
when the user sets up a signal handler and the signal handler is specified as requiring the
termination of any system call that is pending when the signal is delivered. As mentioned
above, the system takes advantage of the fact that functions called on a system call will
restore the callee-saves registers. These registers are saved on the stack by each function
in the call chain, starting from the system call handler to the code that delivers the signal
to the user. The problem then is how to recover these registers so the user code will have
the correct register set when control is returned to it. The normal way to handle this kind
of situation is to do a setjmp call to save the callee-saves registers in a local buffer and
then do a longjmp call (which restores the saved registers) from the signal delivering
code. The porting team decided that the overhead of a setjmp on every system call was
too high.

One solution that was considered was to identify all possible places in the kernel where
such a signal could be delivered. Code could then be put in place to do a setjmp only
when the signal delivery was possible. This approach was abandoned when it was found
that these calls could come from user-written drivers. The solution used is to unwind the
stack, picking up each of the saved registers until the stack is back to the system call han-
dler. This solution takes more time in the rare case of a call being aborted, but does not
put overhead in the path of all system calls.

Hardware Help

It was mentioned above that the VMEbus hardware holds off interrupts until the informa-
tion needed to process the interrupt is available. The HP-RT team also requested and
received a real-time mode in the interrupt convention for onboard I/O device interrupts.
The normal convention was that all onboard device interrupts were collected into one bit
(each bit corresponds to one interrupt line). Under this convention the software interrupt
handler would first decode the interrupt source to this bit and then read an 1/O space reg-
ister that contained a bit map of all the onboard devices requesting interrupt service. The
hardware convention used was to clear this register when it was read. This required the
software to keep track of all the bits that were set and to call the handler for each bit. The
software management task for this convention would have been fairly high because the
real-time system wants the interrupt system on most of the time, which means that it is
possible for another interrupt to be received from another onboard device before the cur-
rent interrupt is completely processed. At the same time, the rest of the main processor’s
interrupt register would not be in use.

The HP-RT team asked for an interrupt mode in which each onboard device has its own
interrupt bit on which it can interrupt the main processor. This convention not only elimi-
nates the need to remember which bits were set, but also eliminates a level of decoding
in the interrupt path. .

Conclusion . ‘

One of the main goals of the HP-RT project was to minimize the time to handle inter-
rupts. Table I, which shows the results of these efforts, is a task response time line that
shows the time consumed by each activity in the path from an interrupt to the task (e.g.,

Managing PA-RISC Machines for Real-Time Systems 1010-14

user code) that does something to respond to the interrupt. For cases in which an inter-
rupt is handled by an interrupt service routine in the operating system and not user code,
the interrupts disabled and dispatch interrupts times shown in Table I are the only times
involved in determining the total task response time. Their worst-case times in this situa-
tion are 80 ps and 6 ps respectively, giving a total task response time of 86 ps. The 80 ps
time is rare and work is continuing to reduce this time.

Table 1. Time Line for HP-RT Running on the
HP 9000 Model 742rt

Tasks Performed Task Response
After an External Event Best Case Worst Case

Interrupts disabled 0 0
Dispatch interrupts 3ps 6 ps
Other interrupts 0 9 st
Context switch off 0 166 pstt
Scheduling and switching 27 us 45 ps
Return from system call 1.2 ps 4.6 ps
Total time 312ps 230.6 ps

t Three interrupts

++ This time is rare and is in code other than the interrupt and context switch code. Work is continuing to
reduce this time.
HP-UX is based on and is compatible with UNIX System Laboratories’ UNIX* operating system. It also
complies with X/Open’s* XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

Managing PA-RISC Machines for Real-Time Systems =~ 1010-15

Paper # 1011

RTE to UNIX Migration Tools & Techniques

Bob Combs
Combs International, Inc.
886 Belmont Avenue, Suite 3
North Haledon, NJ 07508

-(201) 427-9292
Abstract

Most programmers who have moved applications from the 16-bit RTE environment to the
32-bit HP-UX (or other UNIX) environment have experienced significant surprises hidden
in their applications, or at least in the differences in the operating systems. This paper will
describe currently existing tools and techniques to minimize both the surpnses and the
time migration actually takes.

It will review the migration tools already in the HP-UX CSL, including RTE file routines,
the RTE library, and the Migration Analysis Utility (VIAU). -

Discussion of some typical migration situations will show the size of typical conversion
projects. Strategies will include bringing up applications fast. Some discussion will reflect
on moving to a graphical user interface (GUI) and its implications.

1. Overview

In the 1980's Hewlett Packard introduced the 9000 800 Series computer. It sported a new
operating system called HP-UX; HP's flavor of UNIX. RTE Users were told that this was
the replacement machine for the HP1000's, and that the HP-UX machines would support
real-time applications. Keep in mind that the folks making these claims did not come from
the real-time portion of HP, and probably thought real-time meant the opposite of batch
job submission.

Consequently, an RTE look-alike environment was offered by HP called PORT/RX. In
many respects it did a fair rendition of an RTE. But because it was mostly an emulator
with shadow files and other run-time atrocities, users found it actually ran slower than the
slowest HP1000. Worse yet, real-time applications couldn't run with any deterministic
assurances. HP's claims of real-time functionality in HP-UX became a nasty joke to the
RTE Users. And to this.day, most real-time aficionados consider UNIX just that; a nasty
joke. :

RTE to UNIX Migration Tools & Techniques . 1011-1

In fairness, there was a very useful side to poor PORT/RX. It had a Migration Analysis
Utility (MAU), and a native mode library of many of the common RTE Library routines.
HP, mostly due to the bad press, decided to deep six the PORT/RX product. But
fortunately some saw its usefulness and got HP to contribute the workable portions to the
INTEREX HP-UX CSL.

Some years have passed since the introduction of HP-UX, and most RTE Users now "
accept UNIX; either of their own free will, or by their management's "free will". True PA-
RISC machines have gotten faster, but HP-UX still isn't real-time. While for many
applications it may not matter, for some it is a critical issue holding them to the 16-bit
architecture of the HP1000. Enter HP-RT.

HP-RT is a real-time UNIX which has come from the same lab folks in HP who brought
us RTE. It operates on PA-RISC archltecture and boasts real-time response beyond that
achievable by RTE systems.

So, there is life after RTE, and now we have choices.

The biggest software headache is still "How do I migrate my code to UNIX with the least
amount of effort?". Its this least amount of effort which we'll focus on below.

2. Planning the Migration

Planning a migration starts with a fundamental question about the need for real-time. This
will define whether to migrate to HP-UX or HP-RT. If hard real-time is required
(response times below tenths of a second), then you will need to migrate to HP-RT.
Otherwise HP-UX will probably suffice.

Most RTE users have written their applications in FORTRAN. We'll be focusing on how
to migrate FORTRAN, but C and PASCAL can also be migrated with the same level of
ease. Obviously any code written in MACRO will have to be rewritten from scratch.

Since many have known they were eventually going to migrate, they have been writing
their applications in such a way as to localize the RTE connections to a few central
routines. This reduces the amount of migration recoding needed. Centralized modules are
generally used for input/output, program scheduling, and program-to-program
communication. ,

2.1.Step 1
Determine the statistics of your package. How many programs? How many modules?
How many lines of code?

Use MAU to determine the changes and how many will need to be made. With these
numbers, you can estimate how much time is required to modify code.

RTE to UNIX Migration Tools & Techniques 1011-2

Before you make your estimates, scan through the MAU output, ignoring any flagged
code that you can use library routines from the libraries listed below. The estimate
should be made on the MAU numbers less the count of what can be recovered from
the libraries.

2.2. Step 2 ,

Set your code conversion standards. The first part of this is to set a list of the
language syntax that needs to be changed. For example, use UNIX's sed (streams
editor) to delete, add, or modify certain FORTRAN statements which are different
from RTE to UNIX.

The second part is to examine the MAU outputs and begin developing routines or
code sequences that can be used to replace those calls which cannot be obtained from
the migration libraries. This should include program scheduling calls, program-to-
program communication, etc.

23. Step 3
Determine the implementation sequence. Your specific apphcat:on will dictate what
has to be implemented in what order.

For example, if the application is mostly screen I/O, you'll need to get your screen /O
routines debugged first to be able to debug the applxcatxon processing.

24. Step 4
Do it.

I

3. RTE versus UNIX
There are many glaring differences between RTE and UNIX. For example let's look at
the scheduling of programs.

3.1. Real-time Scheduling

RTE allows programs to schedule in a time-sliced manner for background, or as a
foreground high pnonty We'll define foreground as the high priority (low number)
area where a process is below both the time slice fence and the background fence.
Real-time programs use. the foreground since it allows them to schedule based upon
some event. When that event occurs, all other programs are pre-emptied until the
real-time program has completed it processing.

HP-UX has a background and "real-time" processing capability, but while its
background scheduling operates similar to RTE's, its real-time scheduling is not able to
truly pre-empt upon an event. The HP-UX system still waits until the next time-slice
clock interrupt to check if a "real-time" process is requesting control. Another flaw in
HP-UX's real-time capabilities is that multiple "real-time" processes at the same
priority are time sliced. The duration of the time slice period for each "real-time"
priority is configurable.

RTE to UNIX Migration Tools & Techniques ¢ . 1011-3

3.2. Address Space
Since RTE is a 16-bit machine and UNIX is a 32-bit machine, it comes as no surprise
that overlays are not needed when moving programs to UNIX.

Also, sharing memory under RTE requires either system COMMON or Shared EMA.
UNIX uses shared memory which is part of the address space of a program.
Therefore, UNIX's shared memory is quicker to access than RTE's SHEMA, but
coding changes are required.

Most of programs use 16-bit integers (Integer*2). The easiest migration will be to not
attempt to convert to 32-bit but to retain the 16-bit structure.

3.3. EXEC Calls
The most obvious difference is the EXEC calls, which under RTE are used for most
system level control or low-level I/O requests. The EXEC call under HP-UX will call
for another program to be loaded over your current program. The two types of calls
are not compatible.

Here are some suggestions to examine as replacement routines for the RTE EXEC
calls.

RTE function RTE EXEC # HP-UX routine suggestion

read EXEC1 fread or fgets

write EXEC2 fwrite or puts

i/o control EXEC 3 ioctl

terminate EXEC 6 exit

schedule EXEC9 fork & exec & wait

schedule w/o wait EXEC 10 fork & exec

get time EXEC 11 time

read/write msg EXEC 20 msgsnd, msgrcv

setup msg queue EXEC 21 msgget, msgctl
3.4. Character Packing

The HP1000 packs characters into the left (upper) byte first and then the right (lower)
byte. Most other machines, including PA-RISC pack from right to left. Fortunately,
the compilers will correct most of this by simply recompiling on the HP-UX machine.
It is something that should be watched for if programs are masking certain bytes. For
example,

C=IAND (ISHFT (WD, -8) ,0'377"')
will generate a bug since the first character is in the right byte, not the left.

4. FORTRAN Code
There are several differences in FORTRAN under RTE versus FORTRAN under HP-UX.

4.1. Control Line
The control line is not used under UX. Delete the line "FTN77" etc.

RTE to UNIX Migration Tools & Techniques 1011-4

4.2. Options
Since UX is already code and data separated, the option "$CDS ON" is not needed,
and will not be recognized by the UX compiler.

In fact, most of the $ options are different.

There are two options which should be added to the top of the source modules,
$SHORT
$HP1000 ARRAYS

The "$SHORT" option tells the compller that the default value size will be 16-bit (just
like RTE). The $SHP1000 ARRAYS" option tells the compiler to handle arrays as they
are under RTE.

By default, the UX compiler will accept up to 19 continuations of a line. Programs
that have more than 19 continuation lines will need to add the optnon to set the number

of lines higher. For example,
$CONTINUATIONS 99

4.3. EMA

The RTE compiler option for EMA,
$EMA /label/

can be converted to UX shared memory by changing to the UX option
$SHARED COMMON KEY="1bll" /label/

Note that the key value "Ibl1" is the actual shared memory key.

4.4. PROGRAM
RTE can have a program type and priority, plus a relocatable comment field with the

program statement, i.e.
PROGRAM MYPRG(3,99) , my prog <930624.1426>
Since UX does not support these, they must be stripped off;
PROGRAM MYPRG
Also, the comment field is not allowed under UX for functions or subroutines.

4.5. Octal Constants

Octal constants have a different format under UX (standard FORTRAN77) than the
typical RTE use.: Under RTE, a value followed by the letter B denotes an octal value.
UX does not support this, so value must be converted to the standard form. The
standard uses the letter O followed by a string of digits in (single) quotes.

The RTE octal constant
I=20040B

must be changed under UX to
I=0'20040"

RTE to UNIX Migration Tools & Techniques : 1011-5

Don't overlook the usefulness of the UNIX streams editor, sed. A simple script file for
sed can be used to perform bulk modifications on the ported FORTRAN source files.

For example, the following sed script file can be used to edit FORTRAN sources.

groom.sed
/FTN/a\
$SHORT \
$HP1000 ARRAYS
/FTN/d
/$CcDs ON/d
/PROGRAM/ s/\ (PROGRAM .*\) (.*/\1/
/10-71[0-71*B/ 8/\([0-7]1[0-71*\)B/O'\1'/

This file will perform the following:
o insert the $SSHORT and $HP1000 ARRAYS lines
o delete the FTN77 line
« delete the $CDS ON line
o strip the program type, priority and comment off the PROGRAM statement
 convert octal constants from the B format to the O format
To execute the file run
sed -f groom.sed myprog.ftn > myprog.f
This will edit myprog.fin using the groom.sed script and save the edited results in
myprog.f.

5. HP-UX CSL Tools
All of these tools can be found on the INTEREX HP-UX Contributed Software Library
(CSL) tape, rev. 3321.

5.1. Migration Analysis Utility (MAU)

The Migration Analysis Utility (MAU) is a piece of the PORT/RX product which
scans an RTE FORTRAN program and flags each of the calls which are RTE specific.
That is, those portions of the RTE program which must be changed to compile and
execute under HP-UX.

The number of each type of non-HP-UX call is counted and both the raw counts and
the percent of code needmg to be changed is reported. These numbers can then be
used in estimating the size of the job.

Since many of the RTE routines are supplied in the libraries described below, you
should look closely at the MAU results before blindly accepting all the lines of code as
needing change. For the most part, the EXEC calls are what will need to be changed.
As you'll note below, the generic RTE library routines and most of the FMP routines
are available for HP-UX.

RTE to UNIX Migration Tools & Techniques S 1011-6

5.2. RTE Library (libnat)

Libnat is the RTE library in native HP-UX form. These routines are not emulated,
they are implemented using UNIX calls and are therefore very efficient. Most of these
routines are documented in the RTE Library manual. Here's a brief sampling of some
of the routines contained in this library.

abreg casefold charsmatch
clcuc clearbuffer cnumd/cnumo
daytime decimaltoint s elapsedtime
jscom kevt Igbuf

limem movewords numerictime
opsys : parse putincommas
resettimer sfill sget

smove splitstring sput

timenow trimlen

As can be seen, most of the more common routines are available.

5.3. File Management Routines (libfmp)
Most of the more common FMP routines are already available in the FMP Library.
The library contains the following routines.

FmpBuildName FmpBuildPath FmpClose
FmpOpen FmpParseName FmpParsePath
FmpPosition FmpPost FmpRead
FmpReadString FmpRewind FmpRunProgram
FmpSetPosition FmpSetWorkingDir FmpSize
FmpWrite FmpWriteString

5.4. EDIT/1000

There was a version of the EDIT/1000 editor whlch was supplied with PORT/RX, but
it is not in the CSL. That editor, called "ed1000", was really a bunch of macros which
sat on top of UNIX's "vi" editor. While the editor was functional, it still had a look
and feel more like "vi"

There is an actual version of EDIT/1000 available form a third party for HP-UX called
"ed1k". It is Paul W. Miller, Inc.'s PC/EDIT-1000 ported onto HP-UX. This editor
has the full look and feel of EDIT/1000, including regular expressions.

5.5. What's Missing?

The items missing are perhaps some of the less frequently used routines. These
include the mathematical routines, double integer routines, the VIS routines, and the
HpCrt library.

Of course, there isn't any command shell which looks like CI. Perhaps someone will
consider implementing "ksh" macros to provide a CI like environment in the future.

RTE to UNIX Migration Tools & Techniques ‘ S 1011-7

6. Possible Future Tools

The Real-Time Advisory Council (RTAC) has been lobbying with HP for several years to
provide more help in the migration from RTE to HP-UX or HP-RT. HP has been very
interested in finding ways to support the RTE users and their migration to UNIX.
Currently several proposals are being considered.

One proposal which the RTAC favors is for HP to provide many of the tools previously
mentioned, and a FORTRAN translator. This FORTRAN translator would sanitize the
code into acceptable UNIX FORTRAN and replace some of the RTE Calls into an
equivalent UNIX code. Perhaps the prime example would be to convert EXEC calls to a
UNIX equivalent. An extension to this is to have the FORTRAN converted to C code as
well.

References:
Murray W. Hertz, Jr, “Strategy for Migrating and Supporting A Product on Both HP9000/800 and the HP1000", INTEREX
Orlando Proceedings, August 1988

Richard M. Pfeiffer & J. Robert Ryan, "Porting A Real-Time Package to HP-UX", INTEREX HP Technical Conference San
Jose Proceedings, October 1987

RTE to UNIX Migration Tools & Techniques . . 1011-8

PAPER NUMBER: 1014

TITLE: MEF Users - Should I Consider an
Upgrade?

PRESENTER: Esther Heller
Hewlett-Packard Co.
c/o Ella Washington
19091 Pruneridge Ave.
M/S 46LG
Cupertino, CA 95014
408-447-1053

HANDOUTS WILL BE AVAILABLE AT TIME OF PRESENTATION.

, Paper 2000
Remote Network Monitoring and Fault Isolation using OpenView
Jeff Hodges
Hewlett-Packard Company
100 Mayfield Avenue M/S 36U0
~ Mountain View, CA 94043
(415) 691-5525

ABSTRACT

Remote network monitoring and fault isolation for large networks is often a labor-
intensive, time-consuming process. Monitoring, problem resolution and reporting
tools are required to perform the process. These tools often require considerable
operator effort to recognize problems, document the resolution, and generate sum-
mary reports. In this paper we will demonstrate how the integration of these tools,
using the OpenView platform, can significantly reduce the amount of operator
intervention. We will also explore how to enhance the system to provide remote
system management.

Introduction

Over the past several years the computer industry has seen a dramatic migration
of computer systems, from the "glass house" to the desktop. The power that once
resided in the largest of mainframes can now be obtained in a machine the size of
a pizza box. With this new, relatively low cost source of compute power has come
an increasing dependence on local (LAN) and wide (WAN) area networks. The
applications and data that once resided on the company mainframe, in a central
location are now distributed throughout several remote sites and are accessed re-
motely via the network. As companies distribute the applications and data across
the geographical topology of the company, the size and complexity of the network
grows accordingly. - The network that could once be monitored with a pad of yel-
low post notes and a walk around the computer room now requires a team of
network and system engineers located throughout the company and a suite of so-
phisticated network management applications.

This distribution, and the dramatic increase in size and complexity, pose several
new problems to the network engineers responsible for maintaining the company
network.

Remote Network Monitoring and Fault Isolation 2000-1

1. With the increase in network size, sophisticated network devices, such as routers,
bridges, gateways, hubs and probes, become essential. In addition to the normal
system monitoring, these devices require constant monitoring and maintenance, to
ensure that the network does not become overloaded. Since these devices are often
located remotely, and require special expertise to operate, it would not be cost-
effective to have a network engineer at each device location.

2. Since the network is no longer contained at a central site, the network engineers
are distributed at key sites throughout it. Problem resolution tools and procedures
must be implemented to ensure that the responsible parties work in unison to re-
store service when an outage occurs. Known problems and resolutions must be
electronically accessible to ensure that a network engineer is not spending time
working on a problem with a known solution.

3. Due to the sheer number of the devices located on the network, historical data
must be collected and trend analysis performed to ensure that the network traffic is
appropriately distributed across the network devices. Heavily loaded devices and
links must be identified and corrected before failure occurs.

These issues have prompted a large number of software companies to develop
software tools to monitor and identify problems with network devices. HP Open
View Network Node Manager, SunNet Manager, and IBM NetView are all
examples. These tools typically provide mechanisms to collect statistics and gen-
erate reports on individual network devices.

Software companies have also targeted the need for problem resolution (trouble
ticketing) systems, with products such as, Remedy Action Request System, Net-
worx Paradigm, Quintus SMS, and Peregrine PNMS. These tools all provide
mechanisms to allow users to open, assign, document, and close trouble tickets.
They provide a way for multiple engineers to work on and solve a given problem
each using their special expertise.

Even with these sophisticated tools, network engineers are often consumed by fire-
fighting exercises and cannot accurately document and resolve network events.
Consider the following example:

A network engineer notices a workstation down when the monitor-
ing tool he is using turns an icon representing the device red. The engineer
starts to open a trouble ticket, when another workstation icon turns red.
The engineer notices the outage but must continue opening the ticket. Be-
fore he can finish, a critical router turns red and his attention is automati-
cally taken from the two workstations and applied to the router. He

Remote Network Monitoring and Fault Isolation 2000 - 2

successfully restarts the router and documents the solution. By this time the
two workstations have come back up and no action is required.

All seems to be okay: both of the workstations are up, and network traffic is re-
stored through the router. The problem occurs when trying to determine the
availability of the workstations. Both of the workstations would not have any ex-
planation as to why they were down during the router outage. This can really be a
problem if the workstations have actual defects, and are constantly overlooked due
to fire-fighting. In this case, the workstations could fail completely, and there
would be no preliminary notification. Worse yet, if a network service provider
were responsible for monitoring the network, they would have no explanation as to
why the workstations were down and would have a hard time justifying their cost.

In the pages that follow we will construct an environment, using HP OpenView as
the base, that will simplify the network engineer’s job. When we are through with
our construction, we will automatically generate trouble tickets based on qualified
network events. We will be able to automatically reconcile the trouble tickets to
explain why a given device was down at any time. We will also be able to exclude
any outages that may be related to scheduled maintenance. The data collected by
the monitoring system and the trouble ticketing system can also be correlated and
used to anticipate problems. We will then take our monitoring to the system level
and show how a system management tool easily fits into the environment.

Model
For the purposes of our discussion we will use the following system model.

Remote Network Monitoring Model

Remote Network Monitoring and Fault Isolation 2000 -3

=

We will assume that we are monitoring a large (>1000 node) TCP/IP based inter-
net, from a remote site located somewhere in the internet. We will assume the
network has a number of bridges, routers, hubs, and probes, in addition to the com-
puters and printers.

HP Open View Network Node Manager will be used as the monitoring tool on the
monitoring station. In practice, any network management tool with a graphical
representation of the network and the ability to create an event log file would
suffice. -

We will assume that network engineers or service providers are dispersed through-
out the network, and are coordinated by the network engineer at the monitoring
station. Based on these assumptions, we will now construct our environment.

Monitoring Faults

The first item to consider is the network faults (events) you want to monitor for.
The most obvious is the status (up/down) of the device. On TCP/IP based networks
this can be determined by sending an ICMP echo request (ping) to each device
monitored. If the device does not reply within a given time period then the device
is considered down. Network Node Manager performs this function via the "net-
mon" daemon. If "netmon" determines a device is down, it will change the color
of the graphical icon representing the device, then generate an SNMP (Simple
Network Management Protocol) trap with an event ID specifying it as a "Node
Down" event.

It is not required that all of the devices on the network support the SNMP protocol.
Open View utilizes it to channel all network events through a single point of access,
namely the "trap" daemon. SNMP does make application generation and statistical
data collection much easier, given that the protocol is independent of platforms,
thus allowing network engineers to access information in the same method on an
HP machine as on a Sun system. We do not need to discuss the SNMP protocol in
any greater detail for our discussion. Recognizing that each network event can
have a unique identifier associated with it, and the fact that it provides a platform
independent mechanism to collect and store information, will be enough.

Remote Network Monitoring and Fault Isolation 2000 -4

The fault detection diagram lllustrates how the Network Node Manager handles
network events.

. Fault Detection

Netmon sends an ICMP echo request
1o a device and the device does not respond

Traps generated by
\ nodes supporting SNMA
Netmon .

SNMP \, Node Down Trap

Y

Change status color
on icon map ; Trapd
. Trapd.conf| o
D
Trapd.log

Graphical User Interface

We may also wish to monitor network devices for heavy utilization. We could
establish thresholds for a performance characteristic and then periodically check
the characteristic on the network devices from the management station or from a
process running on the device. If the statistic exceeds the threshold, we would
generate an SNMP trap with an event ID for threshold exceeded.

It’s clear that we could extend this principle to monitor non-network information
such as critical applications, disk space, and processes.

We now have a tool that will notify the network engineer of the events we wish to
monitor. In the next sections we will examine the process that needs to occur when
a network engineer is notified of a network event.

Problem Resolution

Due to the size of our network (>1000 nodes), we can expect to have a team of
network engineers whose sole function is to keep the network and its devices
working. To ensure that the network events detected are resolved without any un-
necessary engineering effort, we will use a problem resolution (trouble ticketing)
tool. This tool will provide the engineers a way to document the problem resolution
process.

Remote Network Monitoring and Fault Isolation 2000 -5

Each time a qualified network event is detected, an engineer will open a trouble
ticket. The trouble ticket will document the effort performed by the engineering
teamn to solve the problem. The trouble ticket will remain open until the problem is
solved. The difficulty with this type of tool lies in the amount of time it takes just
to document the device, time, customer, problem description, and the other admin-
istrative information necessary to track the resolution.

We could make the engineer’s job much easier if we could automatically open the
trouble ticket and then fill in the administrative information. The engineer would
then only need to start documenting the resolution.

To perform this function, we could monitor the log file created by the monitoring
software, in our example trapd.log. If a change is detected in the file we could filter
the new entries for logs with the event ID we are monitoring for. If a log met the
criteria we would create a new trouble ticket with the device information, a textual
description which matches the event ID, the time, and any other relevant
information. Since we may want to monitor for different events on two of the same
type of devices, we will also want to filter each network event for specific devices.
For example:

Suppose we would like to monitor 3 workstations. Obviously, we
would want to monitor them all for up/down status. In addition, one of the
workstations is utilized as a gateway and thus we would like to monitor the
LAN traffic through it.

If we only filtered on the event ID we would have trouble tickets generated each
time any of the devices went down. However, since we are only filtering on the
event ID we would also get a trouble ticket each time any of the devices had a high
level of LAN throughput—To overcome this problem, we could filter the log entries
a second time for specific devices.

Remote Network Monitoring and Fault Isolation 2000 - 6

The following diagram illustrates this principle.

Network Automatic Ticket
Everts Generation

: N 1.2.3.4.5.6 6 58016865
“a HPS000_700 € 5891686]
Trapd.log e Event Filter

Create Trouble <
Ticket Ticket
oB

As can be seen from the illustration, only the logs matching the event ID and device
name will cause the generation of a trouble ticket.

A more sophisticated model would search the trouble ticket database for similar
solutions and then invoke a process which would correct the problem. If a match
could not be found then the system could search a database of engineer profiles and
then assign the trouble ticket to an engineer with the expertise required.

In any of the models we implement, we will have to accommodate scheduled
maintenance.

Scheduled Maintenance

In a "ideal world" computers would never need maintenance. Unfortunately, for
network and system engineers, the real world is far from ideal. Network devices
are routinely being removed from service for upgrades, patches, and repairs.
These outages are normally scheduled such that they have the least amount of im-
pact on the users dependent on the devices. These "scheduled outages" are often
cause for false alarm. If the outage is not documented in a manner easily accessible
by the network engineers performing the monitoring, a new trouble ticket will be
opened and valuable engineering time will be wasted. To prevent this from occur-
Remote Network Monitoring and Fault Isolation 2000 -7

ring, we will create a database of scheduled outages. Each time a trouble ticket is
created, we will search the scheduled outage database to determine if the device is
scheduled to be down. If a match is discovered, we will indicate so in the trouble
ticket and the engineer can close the ticket. We will avoid closing tickets auto-
matically to prevent network events unrelated to the scheduled outages from being
dismissed. The following diagram integrates this principle into our environment.

Scheduled Outage
Verification Euemt Contiauration

1.2.3.4.5.6 658016865
'HPS000_700 6 5801686

Event Filter
~—— —

Device Filter 15.3.33.201
hpecot..

[Check Sched. S033
Outages Sy

From: 11:00 To: 1:00
c—— —

Create Trouble
Ticket Jrouble Ticket DB

Problem: Node Down
Diary: Check SO33 for
Scheduled Outage

—

One could further simplify the process by automatically loading the scheduled out-
ages periodically, using e-mail or some other electronic mechanism.

We now have a management station which monitors network events, collects de-
vice statistics, and automatically creates trouble tickets. We now need a mecha-
nism that will correlate and report the information.

Report Generation

Our environment is now configured to collect and log all network events we are
monitoring. Each time a qualified event is detected a trouble ticket is generated. If
a scheduled outage is associated with a trouble ticket it is duly noted on the ticket.
Using this information,we can generate a number of useful reports.

To simplify the report generation process we will load all of the event logs, statis-
tics, and trouble tickets into a database. This step can be avoided if the trouble
ticketing, and monitoring systems all utilized the same data store.

Remote Network Monitoring and Fault Isolation 2000 - 8

The first and probably most important report we can generate is the device avail-
ability report. This report will tell us the percentage of time that a device was
reachable via the network during a given time period. We determine availability by
computing the total amount of time in the specified time period, then subtract the
amount of time spent in outages. An outage can be determined by subtracting the
time of a "Node Down" event for a given device, from the next occurring "Node
Up"event.

We can enhance this report by indicating which percentage of the outages were
scheduled maintenance. For those outages which were not scheduled, we could
print the problem description field from the trouble ticket, to indicate why the
availability percentage was low. The following is a sample report.

Avalilability Report
hpnst.mayfield.hp.com

Day of Month
Scheduled Outage

- Avallable

Using the trouble ticket information we can also generate reports on the types of
problems certain devices have been experiencing. From this data we can determine
the need for hardware, software and training. For example:

Suppose we noticed that we were getting a large number of trouble
tickets for a particular device, with the problem description: "disk space
threshold exceeded”. Using this data we could determine the need for a
new disk, or justify the purchase of data compression software.

Since we are now generating the trouble tickets as the events occur, we will have
accurate statistics as to the amount of time expired between problem detection and
problem resolution From this information we can accurately determine staffing
levels and measure the impact of process improvement tools.

Now that we have established a solid management environment, we will examine
how we can successfully integrate other tools. In the next section, we will discuss
Remote Network Monitoring and Fault Isolation 2000-9

how we can add remote system management capabilities to our environment.
Adding New Tools

As companies migrate to a distributed computing environment, there is a growing
concern as to how to manage these distributed computers. A number of companies
have developed system management tools to meet this need.

The true test of our environment will be the ability to add new tools and have those
tools generate trouble tickets. To achieve this goal we will integrate new tools at
the source of our trouble tickets, the event stream. If the new tool generates SNMP
events when problems occur, then we could use our existing process without
modification. It would be a matter of configuring our trouble ticketing daemon to
generate tickets on the new events. If the tool does not generate SNMP events we
have the following options:

1.) Encapsulate the output of the tool and generate our own SNMP events.

2.) Start another trouble ticketing daemon to monitor the output of the tool and then
generate trouble tickets.

Either of the choices requires that the new tool provide, the device identifier, the
time the event occurred and a unique description of the event. All of the monitoring
tools, which run on the OpenView platform provide this information. In fact, most
of them provide the ability to generate SNMP events and could therefore be inte-
grated with only configuration changes. The following scenario will demonstrate
this principle using a system management tool.

Suppose we wanted to integrate a system management tool into our
model environment. The tool will have a controlling process at the man-
agement station which allows operators to send commands to the remote
systems. The controlling process will also have a mechanism to receive
events from the remote systems when problems develop. On the remote
system would be an agent process, responsible for executing the commands
sent to it by the controlling process and notifying the controlling process of
any problems.

If a remote system was having problems the agent process running
on it would notify the controlling process, using any communication
protocol. The controlling process could then use the same model as the
"netmon” daemon. The controlling process would generate an SNMP trap
with a unique event id and send it to the "trapd"” daemon. The trapd daemon

Remote Network Monitoring and Fault Isolation 2000 - 10

would log it to the file trapd.log. Our trouble ticketing process would detect
this new entry and then filter it. If the entry met the criteria established by
the event and device filters then a new trouble ticket would be created.

If the tool did not generate SNMP traps then we could have our
trouble ticketing daemon monitor the log file it creates. The device filter
would remain the same; the event filter would need to use the same identi-
fiers as the system management tool. ~

It is clear that our environment can accommodate any network or system manage-
ment tool that generates a log entries with the device, time, and a unique event ID.

Conclusion

In this paper we have examined how to integrate network monitoring, problem
resolution and reporting tools. We have demonstrated how the successful inte-
gration of these tools can simplify the network engineer’s job. We have also
examined how new tools can be added to the environment without significant
effort.

Although we used HP OpenView in our model, the architecture discussed could be
applied to any network management environment.

Trademarks

HP OpenView is a registered trademark of Hewlett-Packard Company.

NetView is aregistered trademark of International Business Machines Corporation.
Action Request System is a trademark of Remedy Corporation.

SunNet Manager is a trademark of Sun Microsystems, Inc.

Paradigm is a trademark of Networx, Inc.

References

Leinwand Allen, Fang Karen, "Network Management A Practical Perspective”,
Addison-Wesley, 1993

Rose, Marshall T., "The Simple Book" ,Prentice Hall, 1991
Remote Network Monitoring and Fault Isolation 2000 - 11

PAPER #2001
EVALUATING SYSTEM CAPABILITY:IBM TO HPUX BENCHMARK CASE
STUDY
RAYMOND W. RIEDEL
HEWLETT-PACKARD COMPANY
250 N. PATRICK DRIVE SUITE 100
BROOKFIELD, WISCONSIN 53045
(414) 792-8800

Benchmarks are useful for predicting performance with new hardware configurations
or soﬁwm releases. However, no benchmark can exactly duplicate the system being
studied. Alterngte]y, performance measurements from the live system are used with
analytical modeling to quantify system performance, yet this technique sometimes results
ina largef margin for error.This paper will provide HPUX bench marl;ing information as it
relates to moving customer specific applications and databases from an IBM environment

to a HPUX environment.

A benchmark can be constructed which is representative of the workload on the
system. For this, a subset of the configuration's workload is chosen . This may be all the
programs if feasible, or just a few that do most of the work (or use most of the resources.)
Hopefully , the programs that use most of the resources are doing most of the work. This
particular benchmark used a complete Oracle database fully loaded with "live" customer

data. The Oracle application topology consisted of the following versions of Oracle:

2001-1

2001 -2

RDBMS = 6.0.36
FORMS30 =.3.0.15
MENUS = 5.0.11
REPORT WRITER = 1.1

The application and directory structure was provided by the customer to insure
continuity across all the vendor platforms in which they were bench marking. The
customer provided scripts necessary to properly build the Oracle system table spaces and
the proper term/type files necessary to run their particular application. An Oracle export
of the customer’s data was provided to HEWLETT-PACKARD to use in rebuilding the
application at the Capacity Planning Center. The customer export consumed
approximately 2 gigabytes of disk storage plus the storage required to load the necessary

modules of Oracle and database log files.

Several tasks should be completed before the benchmark begins. Defining the
benchmark with the customer is very important. Developing a methodology for
conducting the test is also just as important. In some cases, such as in this one, other
systems were used to drive the work flows in conjunction with workload scripts. An
actual transaction log from the system could be replayed, or actual users could be called in
to perform scripts. The method chosen will depend on many factors, including the
availability of testing software(i.e. Empower, etc.), and the amount of resources available
for the benchmark and its setup. Fortunately, HP has the available resources to perform
such benchmarks if the need arises. Next, assemble a hardwafe configuration for the
benchmark. In some cases use a subset of the full configuration. The goal is to get

IBM->HPUX Bnchmrk Case Study
2001-2

2001-3

accurate enough results, without expending too many resources in the process. If only the
CPU is being benchmarked, configure the I/O, memory to support this functionality.

What is important is that the final configuration of software and hardware will provide the
results that you are seeking. k

The customer's benchmark consisted of a mix of tests consisting of retirement related
transactions. Postings(deposits, transfers, etc.), inquiries/updates to plans and
participants. - The customer had informed HEWLETT-PACKARD of the following

response time standards for these various tests:

ADP Tests - Each of the people Will do one ADP test. The test will be monitored in three
pieces. The first will be the §etup where the data is entered in to the form. The customer
expected sub-second response time in this test. The second would be the calculation of
the test (from the point where you press F10 until you are prompted with the "Continue
producing report ... (Y/N)". They expected that the response time to be no worse than 1

- minute and a maximum of 5 minutes for any of the ADP tests. The third would be the
commit. Again, the commit should take no longer than a median of 30 seconds and a

maximum of 2 minutes.

Employer Allocations - Each of the people will do one employer allocation. Again, we
monitored this in three pieces. The set-up average response time should be less than 1
second, the calculation (from the time you press F7 until the database posting is
complete). The customer expected the average response time to be 1 minutes or less and
no more than 5 minutes for any of the employer allocations. -

IBM->HPUX Bnchmrk Case Study

2001-3

2001 -4

The final test consisted of all the "scripted” users doing a combination of the previous tests
in random order. The customer expected the response times to be no worse than
described in the above tests.

The current application resides on an IBM RS6000 which the customer decided has
resulted in less than acceptable response times and currently having little or no upgra&e
paths. Benchmarks were also done by Sequent using a Symmetry 200/70 processor (10
CPU system at 208MB Ram), and Amdahl using a 5990-700A with 128MB Ram. A NCR
benchmark will be arranged after the presentation of the HEWLETT-PACKARD results.
The HEWLETT-PACKARD benchmark consisted of a Series 890/400 Corporate
Business System consisting of 1 Gbyte of main memory and 6 2.0 GB SCSI disk
drives(disk arrays using "striping"). This system was the SUT system(system under test).
The system which was used to drive the benchmark scripts on the SUT was a Series 877
with 256 Mbytes of memory and 2 1.3GB SCSI disk drives (See Chart 1).

Chart 1
SUT 2.0GB Array 2.0GBArray
Series 890/400---------—---=-=e=o= 2.0GB Array 2.0GB Array
1GB Main Memory
(DISK STRIPING) 2.0GB Array 2.0GB Array

Both machines were communicating via a Lan

IBM->HPUX Bnchmrk Case Study

2001-4

2001 -5

Benchmark Script System

Series 877 —-remmrmrenmmemeceee 13GBDisk 13GB Disk

The customer used a bench marking script development tool called Empower by
Performix. This tool allows the user to capture the keystroke sequences of a particular
application and replay these scripts to emulate users performing these tasks on a given
system in order to determine whether or not the SUT will perform within the given
guidelines. Because the customer scripts were generated using this product we were
obligated to use the same product to replay the scripts on the HEWLETT-PACKARD
hardware. The customer captured the application keystrokes with the Empower product
using a HEWLETT-PACKARD Series 700/44 terminal. Therefore, we were able to
simply compile the scripts on the Series 877 and replay these script loads on the SUT.
The Series 700/44 terminal enabled HEWLETT-PACKARD to perform a couple of key
functions during the benchmark. This device allowed HP to insure that access to the
Oracle database could be accomplished and that a user could access all the data entry
screens of the custbmerfs application. And second, the terminal allowed us to replay the
logs from the scripts on the terminal and observe any errors which might have occurred

during the execution of any of the benchmark scripts. ’

__IBM->HPUX Bnchmrk Case Study

2001-5

2001-6

The success of'this benchmark was dependent on several key factors, some of which
were in HP's control and some in the control of the customer. The customer was
responsible for capturing the appropriate scripts from their application using the Empower
product. They were also responsible for thoroughly defining how they wanted the Oracle
database to be configured and how the appropriate data table spaces were to be evenly
distributed across the configured disk drives. HP was responsible for understanding the
application and scripts to the extent in which they would function properly according to
the customer's specifications. Tuning the Oracle application, if necessary, was the
responsibility of HP. HP was responsible fof compiling the results and presenting them to
the customer at the completion of the benchmark.

The representative benchmark is then run, with the important flows being executed.
This could involve running them one at a time, as requested by this benchmark, or slowly
increasing the workload until the maximum acceptable response time is reached. What
this does is allow the person performing the benchmark to determine which resource is
being over utilized and at what load level.

The actual preparation and execution of the HP-UX benchmark took place over a
course of two weeks. Week one consisted of working with the customer to test load the
Oracle database and subsequent scripts on a smaller HP-UX system to insure that the
Oracle database could be installed as prescribed by the customer and that the test scripts
could be successfully run to completion on a HP system. Without this dry run and
preparation, this and many other benchmarks are prone to failure. After a successful dry
run, all the data, script files, and appropriate third pafty application documentation was
taken to the HP capacity planning center in Cupertino, California. Upon arrival at the

capacity center, one day was spent insuring the proper configuration of the HP-UX
IBM->HPUX Bnchmrk Case Study

2001-6

2001 -7

operating system and peripherals, and installing the appropriate version of Oracle and
applicable products. Oracle 6.0.36 required a few changes to the HP-UX kernel
parameters(shared memory parms). The system disks were installed and partitioned using
logical volume manager on the Series 890/400. This allowed for one large logical volume
to be "striped" for optimum disk performance(spreading the I/O's across several physical
disks). Day two was spent completing the Oracle installation and importing the
customer's data. As stated earlier, the operation of the customer's application depended
upon certain account and directory structures to be in place. These specifications were

provided to HP by the customer (See chart 2).

‘Chart 2
Oracle | ’ ~ Iwicapps/oracle
Oracle_Home /wicapps/oracle
Application Iwicapps/wgora
Forms30Path ‘ /wicmstr/wgora
MenuSPatﬁ /wicmstr/wgora
Database : Iwicshare/wgora
Redo Logs Iwicshare/oralogs
Archive Logs Iwicshare/arclogs
IBM->HPUX Bnchmrk Case Study

2001-7

To insure that the application was properly installed along with Oracle, the customer
was contacted to walk through several of the application screens proving without a doubt
that the application and the database was accessible. The 700/44 terminal provided this
functionality. These tasks were completed on day three. On day four, the Empower
scripts and software were installed on the Series 877 "driver" system. Proper installation
of the software in the appropriate account was imperative to the correct compiling and

execution of the customer scripts.

HP was provided with 19 separate scripts which were requested to be executed on the
SUT(890/400). Each script had to be compiled using the Empower software which in
turn generated an executable script. After pre-testing a compile and a run of one of the
provided scripts, the full benchmark scenario was started. The request was to have each
of the 19 scripts, which were described earlier in the paper, one at a time and collect the
results. At the conclusion of those tests, all 19 scripts were to be executed at the same
time. Because each of the scripts executed at different rates of speed, a suspend statement
was added at the same point in every script, allowing each script to suspend itself at the
same point. Using the Empower product, the scripts could all be resumed at the same
time providing for continuity in the test. After each completion of a script, an output file
is generated. Each output file must then have the data extracted in order to generate a
standard report. The customer was interested in the standard report which provides
average and maximum response times for each individual script. Observing for any
abnormalities during the execution of these scripts is a very important function of this
benchmark or any benchmark. For instance, during the execution of a few of these scripts,
there appeared to be errors logged to the log file generate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>