
Pascal 3.2
Graphics Techniques

HP9000
series 200 and 800
Computers

Pascal 3.2 Graphics Techniques

HP 9000 Series 200 and 300 Computers

F/i;W HEWLETT
~~ PACKARD

HP Part No. 98615-90037
Printed in USA December 1991

Third Edition
E1291

@copyright 1980, 1984, 1986 AT&T Technologies, Inc.
UNIX is a registered trademark of Unix System Laboratories Inc. in the USA and other
countries.

@copyright 1979, 1980, 1983, 1985-90 Regents of the University of California
This software is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only. Resale of the programs in their present form or with alterations is expressly
prohibited.

Warranty. The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government is
subject to restrictions as set forth in paragraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and
subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights
clause at FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Copyright © 1991 by Hewlett-Packard Company

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections which are incorporated at reprint
do not cause the date to change.)

November 1986 Edition 1.

May 1988

March 1989

May 1990

December 1991

Update. Updated to include information for Pascal 3.21 support of new
display interfaces (HP98548, 98549, and 98550).

Edition 2. This edition includes information for the Pascal 3.21 update
plus 3.22 additions and changes.

Update. Updated to include additions and changes for the Pascal 3.23
release.

Edition 3. This edition includes additions and changes for the Pascal 3.24
and 3.25 releases.

v

Table of Contents

Chapter 1: Introduction to Graphics
Welcome .. 1-1

Manual Objectives .. 1-1
Prerequisites .. 1-1
Example Programs on Discs .. 1-1

Why Graphics? .. 1-2
Using the Graphics Library .. 1-4

INCLUDE files. .. 1-5
The Graphics Programs .. 1-6

Customizing the Programs for Your System 1-6
Drawing Lines .. 1-7
Scaling 1-9
Setting the Aspect Ratio .. 1-11
Defining a Viewpoint .. 1-13

Virtual Coordinates and World Coordinates 1-13
Specifying the Viewpoint .. 1-14

Labelling a Plot. .. 1-15
Setting Character Size .. 1-16
Centering Labels .. 1-1 7
Setting the Label's Direction .. 1-17
Bold Labels .. 1-19
Axes and Tick Marks. .. 1-20
Clipping Lines .. 1-23

A User-Defined Clipping Algorithm 1-24
Labelling Axes. .. 1-25

Chapter 2: Miscellaneous Graphics Concepts
Setting the Display Limits 2-1
More on Defining a Viewpoint .. 2-2
Calculating Window Limits. .. 2-4
Drawing a Window Frame .. 2-5
Turning Displays On and Off ... 2-7
Conversion Between Coordinate Systems .. 2-8
More on Labelling a Plot .. 2-11

The Character Cell 2 -11
Setting Character Size , . .. 2-13
Setting the Label's Direction ' 2-16
Justifying Labels .. 2-18

vi

Monochromatic CRT Drawing Modes 2-23
Faster Drawing Procedures ... 2-24
Selecting Line Styles. 2-25
Isotropic Scaling ... 2-27
Axes and Grids .. 2-30
Logarithmic Plotting .. 2-32

Homemade Mathematical Functions 2-32
Taking a Number to a Power 2-32
The Logarithm to Any Base 2-33

Back to Logarithmic Axes .. 2-33
Storing and Retrieving Images .. 2-36
Data-Driven Plotting. .. 2-39

Many Lines in One Step 2-39
Drawing Multi-Line Objects 2-40
What's in a Polygon? .. 2-42

When to Use Which Polygon .. 2-42
Polygon Filling. .. 2-43

Shading Graphs .. 2-46
Highlighting Data Curves .. 2-47

Chapter 3: External Graphics Displays and Plotters
Selecting a Plotter .. 3-1
Dumping Raster Images .. 3-2
External Color Displays .. 3-4
External Plotter Control .. 3-5

Controlling Pen Speed .. 3-5
Controlling Pen Acceleration 3-6
Controlling Pen Force .. 3-6

Chapter 4: Interactive Graphics
Introduction. .. 4-1

A Simple Example. ". 4-1
A More Elaborate Example 4-2

Characterizing Graphic Interactivity .. 4-3
Selecting Input Devices .. 4-4

Single Degree of Freedom .. 4-4
Non-Separable Degrees of Freedom .. 4-7
Separable Degrees of Freedom 4-7

All Continuous ... 4-7
All Quantizable .. 4-8
Mixed Modes. .. 4-8

Echoes ... 4-9
The Built-In Echo. .. 4-9

Rubber Echoes .. 4-12
Tablets and Aspect Ratios .. 4-13

Chapter 5: Color Graphics
Color! .. 5-1
The DGL Color System .. 5-1

Color as an Attribute .. 5-1
The Color Table .. 5-2
Default Colors .. 5-2

The Primary Colors .. 5-2
The Business Colors 5-2

Monochromatic Default 5-3
If You Don't Like the Defaults 5-3

Models for Color Specification .. 5-4
The RBG Model (Red, Blue, Green) 5-4
The HSL Model Hue, Saturation, Luminosity) 5-5
Which Model? .. 5-9

Color Spaces .. 5-11
Primaries and Color Cubes 5-11

The RBG Color Cube 5-12
The CMY Color Cube 5-13

The HSL Color Cylinder .. 5-14
Reality Intrudes .. 5-16
Plotters .. 5-16
Frame Buffers .. 5-1 7

Frame Buffer Depth. .. 5-17
Faking More Colors From a Frame Buffer 5-19

Dithering. .. 5-20
Creating a Dithered Color 5-21

If You Need More Colors 5-24
Frame Buffer Contents .. 5-24

Series 200/300 Color Graphics System 5-25
Color Map (Model 236 Color Computer) 5-25
True User-Definable Color 5-26
Retroactive Color Changes 5-26
If You Need More Colors 5-26

Optimizing for Dithering 5-27
Resolution and Color Models .. 5-29

RGB Resolution .. 5-29
HSL Resolution .. 5-29

Writing Modes and Color .. 5-30
Dominant Writing 5-31
Non-Dominant Writing .. 5-31
Erasing .. 5-31
Complementary Writing .. 5-31

Making Sure Echoes are Visible .. 5-32
Drawing Modes and the Frame Buffer 5-32
Special Considerations .. 5-35

Text .. 5-35
Polygons .. 5-35

vii

viii

Effective Use of Color .. ' 5-36
Seeing Color .. 5-36

It's All Subjective, Anyway 5-36
Mixing Colors .. 5-37

Designing Displays. .. 5-37
Objective Color Use. .. 5-38

Color Blindness .. 5-38
Subjective Color Use .. 5-38

Choosing Colors 5-38
Psychological Color Temperature .. 5-39
Cultural Conventions 5-39

Reproducing Color Graphics .. 5-40
Color Gamuts .. 5-40
Color Hard copy .. 5-40

Photographing the CRT .. 5-41
Plotting and the CRT. .. 5-41

Color References .. 5-42

Appendix A: Listings of Example Programs
AxesGrid .. A-2
BAR_KNOB ... A-9
BAR_KNOB2 ... A-12
CharCell . A-17
COLOR .. A-18
CsizeProg .. A-25
DataPoint A-26
DrawMdPrg ... A-26
FillProg .. A-29
FillGraph . A-30
GstorProg . A-31
IsoProg .. A-40
JustProg . A-46
LdirProg ... A-50
LOCATOR ... A-51
LogPlot .. A-54
MarkrProg . A-56
PLineProg .. A-57
PolyProg . A-58
SinAspect . A-59
SinAxes 1 .. A-60
SinAxes2 .. A-64
SinClip . A-69
SinLabell .. A-73
SinLabel2 . A-74
SinLabel3 . A-75
SinLine . A-76
SinViewpt .. A-76
SinWindow ... A-77

Appendix B: Graphics Procedure Reference
Graphics Procedures Quick-Reference
Concerning HP-HIL .. B-1
HP-HIL Touchscreen ... B-2
HP-HIL Relative Locator .. B-3
AWAIT _LOCATOR .. B-4
CLEAR_DISPLAY .. B-10
CONVERT _ WTODMM .. B-11
CONVERT_WTOLMM ... B-12
DISPLAY _FIN IT ... B-13
DISPLAY _INIT .. B-17
DISPLAy_TERM .. B-23
GRAPHICSERROR .. B-24
GRAPHICS_IN IT ... B-26
GRAPHICS_ TERM ... B-27
GTEXT .. 8-28
INPUT _ESC .. B-30
INQ_COLOR_ TABLE ... B-34
INQ_PGN_ TABLE .. B-36
INQ_ WS B-38
INT _LINE .. B-45
INT_MOVE ... B-47
INT_POLYGON .. B-49
INT _POL YGON_DD .. B-52
INT _POLYLINE. .. B-56
LINE .. B-58
LOCATOR_INIT ... B-59
LOCATOR_ TERM. B-64
MAKE_PIC_CURRENT .. B-65
MARKER .. B-66
MOVE ... B-67
OUTPUT _ESC .. B-68
POLYGON ... B-75
POLYGON_DEV_DEP ... B-78
POLYLINE ... 8-82
SAMPLE_LOCATOR. .. B-84
SET_ASPECT .. B-86
SET_CHAR_SIZE .. B-88
SET _COLOR. .. B-89
SET _COLOR_MODEL. .. B-92
SET_COLOR_TABLE ... B-94
SET _DISPLAY _LIM. .. B-98
SET _ECHO _POS. .. B-102
SET_LINE_STYLE .. B-104
SET _LINE_WIDTH .. B-108
SET _LOCATOR_LIM. .. B-109
SET_PGN_COLOR .. B-113
SET _PGN_LS .. B-116

ix

x

SET_PGN_STYLE ... B-120
SET _PGN_ TABLE. .. B-121
SET_TEXT_ROT .. B-124
SET_TIMING .. '. B-125
SET_VIEWPORT .. B-127
SET_WINDOW ... B-129
Module Dependency Table ... B-131

Subject Index

Introduction to Graphics
Chapter

1

Welcome
One of the most exciting features of your Series 200/300 computer is its graphics capabilities.
It is much easier to grasp the trends, relative sizes or quantities represented by data if it is
presented in a graphical form, as opposed to tabular form.

Manual Objectives
This manual will introduce you to the set of graphics routines in the Series 200/300 Device­
independent Graphics Library (DGL) graphics package. The goals of the DGL package are:

1. As its name implies, it is a device-independent package. Thus, programs running on one
computer or implementation should transport to another computer or implementation of
DGL with a minimum of conversion effort.

2. It is reasonably small. DGL is not meant to be an exhaustive library containing routines to do
all conceivable grapics operations, but it gives you enough capability to develop them
yourself.

Prerequisites
This manual is meant to teach you how to use the routines incorporated into DGL to produce
highly readable and visually acceptable output. The manual assumes you are familiar with
the Pascal programming language, and that you have access to a Pascal Workstation System
manual, a Pascal Procedure Library manual, and the textbook An Introduction to Programming
and Problem SolVing With Pascal, and that you will look up any programming/syntactic topics
you don't understand.

Example Programs on Discs
Most of the demonstration programs and routines in the next three chapters of this manual are
stored for your convenience on the DGLPRG: disc which was shipped with this manual. For
those systems that were shipped with double-sided 31f2 inch discs, the programs are on the
DOC: disc. You are encouraged to run these programs as you are reading the manual, as they
will make understanding the concepts much easier.

Note

The demonstration programs and routines on the DGLPRG: or DOC: disc
are for the purpose of instruction only. They are not part of the DGL
package, and as such, they are not covered by any warranty, expressed or
implied. Hewlett-Packard shall not be liable for incidental or consequential
damages in connection With, or arising out of, the furnishing, performance,
or use of these routines.

1-1

1-2 Introduction to Graphics

Why Graphics?
Below is some data. As qUickly as you can, determine if its overall trend is steady, rising or
falling. Are there any periodic motions to it? If so, how many cycles are represented in the one
hundred points?

Voltage Variance Voltage Variance
Time (sec) Voltage Time (sec) Voltage

1 0.1610 51 0.1669
2 0.1625 52 0.1655
3 0.1625 53 0.1665
4 0.1628 54 0.1662
5 0.1636 55 0.1667
6 0.1631 56 0.1668
7 0.1627 57 0.1681
8 0.1608 58 0.1688
9 0.1610 59 0.1687
10 0.1606 60 0.1707
11 0.1607 61 0.1716
12 0.1617 62 0.1716
13 0.1614 63 0.1694
14 0.1626 64 0.1698
15 0.1634 65 0.1683
16 0.1640 66 0.1683
17 0.1656 67 0.1671
18 0.1660 68 0.1681
19 0.1644 69 0.1683
20 0.1651 70 0.1684
21 0.1635 71 0.1681
22 0.1641 72 0.1698
23 0.1628 73 0.1705
24 0.1619 74 0.1723
25 0.1630 75 0.1730
26 0.1624 76 0.1734
27 0.1627 77 0.1714
28 0.1644 78 0.1722
29 0.1644 79 0.1716
30 0.1657 80 0.1696
31 0.1660 81 0.1702
32 0.1670 82 0.1699
33 0.1672 83 0.1684
34 0.1666 84 0.1706
35 0.1658 85 0.1696
36 0.1662 86 0.1715
37 0.1646 87 0.1730
38 0.1633 88 0.1737
39 0.1634 89 0.1739
40 0.1636 90 0.1751
41 0.1645 91 0.1732
42 0.1652 92 0.1747
43 0.1656 93 0.1729
44 0.1677 94 0.1717
45 0.1689 95 0.1710
46 0.1680 96 0.1707
47 0.1696 97 0.1706
48 0.1680 98 0.1709
49 0.1674 99 0.1713
50 0.1677 100 0.1720

Introduction to Graphics 1-3

A wise old computer programmer once said, "A graphical output is equivalent to lK words of
text." He was right. Unless both hemispheres of your brain are hyperdeveloped, it probably
took a minute or two to answer each of the previous questions. Below is a graph of the data in
the table. Observe that the graphical nature of the output makes what the data is doing much
clearer. This clarity and understandability at a glance is what computer graphics is all about.

VOLTAGE VARIANCE
8.lseer--------------------,

B.lns

8.1758

QJ 8.1725
OJ
ttl
+' 8.17ee

o
>8.1675

a.16sa

Time (seconds)

A progressive example of how this plot was created is given through the rest of this chapter.
Each installment demonstrates more of the graphics routines available. The successive plots, all
representing the same data, become clearer and clearer as we learn some of the concepts of
computer graphics and how to implement them with the routines available to us.

1-4 Introduction to Graphics

Using the Graphics Library
To run the demonstrations programs in this manual, you must use the DGL routines contained in
the GRAPHICS library file on the LIB: disc. The first step, then, is to make these libraries accessible
to the demonstration programs at the appropriate times.

There are two times when the GRAPHICS modules need to be accessible:

• When the program is compiled, and

• When the program is loaded.

The simplest way to make the GRAPHICS library accessible during compilation and loading is to
use the What command to make GRAPHICS the system library. To do this:

1. At the Main Command Level, press ~ to invoke the What command.

2. Press CIJ to indicate you want to change the system library setting, and type the complete
file specification for the GRAPHICS library file. Be sure to type a period after the file name, to
prevent the system from appending a suffix to the name. For example, if the GRAPHICS file
is still on the GRAPH: disc, you would type:

GRAPH:GRAPHICS. (Return)

3. Press o=J to exit from the What command. When you begin compiling and running the
demonstration programs, make sure the GRAPHICS library file is on-line!.

Note
If you have plenty of memory in 'your computer, you can speed com­
pilation by copying the GRAPHICS file into a memory (RAM:) volume
of about 400 blocks. Be sure to use the What command to change the
system library to RAM:GRAPHICS if you do this. You can also speed
program execution by permanently loading the GRAPHICS file with the
Permanent command.

1 "On-line" means that it is accessible at that moment. This could mean either that the library is in a memory volume, or the library is on a disc
and the disc is currently in a drive.

Introduction to Graphics 1-5

INCLUDE files
In many of the following programs, there is a compiler directive called INCLUDE. This causes
the compiler to access the specified file, compile the contents as if it were in the original file, and
when the end of the file is reached, return to the original file and continue compilation.

One advantage to INCLUDE files is that many programs can use the same file, not merely
copies of the file. This makes it much easier to make modifications to the routines, because only
one copy of the routine need be changed. If the routine had been physically copied into each
program that used it, every occurrence of it would have to be individually changed.

The INCLUDE directives used in the program files assume there is a volume on-line which
contains the text files for all the necessary inclusions. Again, if you have enough memory, the
INCLUDE process could be speeded up tremendously by placing the necessary files in a
memory volume.

Here is some information to help you define how large the "enough memory," referred to in the
previous paragraph, is. Below is a list of files at least some of which you will probably want to
permanently load (the main advantage to permanently loading is very fast access) and the amount
of memory they consume. The approximate file sizes are expressed in 256-byte blocks.

File Name

EDITOR
FILER
COMPILER
LIBRARIAN
LIBRARY
10
GRAPHICS
FLTLIB

(subsystem)
(subsystem)
(subsystem)
(subsystem)
(library)
(library)
(library)
(library)

Approximate File Size

236 blocks
228 blocks
928 blocks
288 blocks

64 blocks
240 blocks
876 blocks
968 blocks

You must also take into account any memory volumes you have defined, and the size of the
program you are dealing with, etc.

1-6 Introduction to Graphics

The Graphics Programs
All of the following plots use Cartesian (rectangular) coordinates: "X" specifies the left-right
distance (with values increasing as you go to the right), and "~V"~ specifies the down-up distance
(with values increasing as you go up).

In the programs in this chapter and the next, each program name is identical to the file name
which contains it. It is not mandatory that the program name is the same as the file name, but it
helps to find the file.

All the examples that follow get the Y -value from a function called D a taP 0 i 1"1 t. This function,
given an X value, merely returns the appropriate Y value each time it is invoked. You could just
as well be reading values from a voltmeter, temperature sensor, anemometer, or any other
device that you can connect to a computer. Since this function does not change from example
to example, and since it represents any generic data-defining process, the function will not be
listed at each update of the plotting program. For reference, though, it is listed in the appendix.

Customizing the Programs for Your System
The demonstation programs on the DGLPRG: or DOC: disc send graphics to the current console
of a Series 200/300 Computer. The "current console" is the CRT where alpha is displayed
after the system is booted; i.e., the CRT where the Pascal system command lines appear.
Graphics display device selection is performed by the DISPLAY _INIT procedure. If you would
like to use a different CRT (or other graphics device) as your display device, you must change
the DISPLAY _INIT procedure call accordingly.

The first parameter in the DISPLAY -.IN IT procedure call is called the device selector. It specifies
which display device you would like to use for graphics output. The demonstration programs
declare the device selector as a constant with the name Crt Add r. Graphics display devices are
selected as follows:

• A device selector of 3 specifies the current console as the graphics display device (again, this is
where the command line appears). This is the value used in all of the demonstration programs.
If the current console has no graphics hardware, the system may search for another display
that does have graphics hardware and make it the graphics display device.

• A device selector of 6 specifies any other internal CRT as the graphics display device (if one
exists). Internal refers to any display whose frame buffer resides in the system's "internal
space," i.e., any CRT which does not require a select code andlor bus address to access it.

• A device selector in the range 8 through 31 specifies the select code of the interface to which
the desired graphics display device is attached .

• A device selector in the range 700 through 3199 specifies the composite HP-IB select
code/bus address of the desired HP-IB graphics display device.

Introduction to Graphics 1-7

The second parameter is the DISPLAY .-INIT procedure call is called the control value. It is used to
specify device-dependent characteristics of the graphics display device. The demonstration prog­
rams declare the control value as a constant called Con t r 0 1 Wo rd. For complete details on this value,
refer to the DISPLAY .-INIT section of Appendix B. However, there are two cases that are worth
discussing:

• If you have a Model 237 (or Series 300 with bit-map display) and are using the bit­
mapped display as your current console, you may remove the type-ahead buffer echo at
the bottom of the screen (and use the entire display for graphics) by specifying a device
selector (CRTADDR) of 3 and a control value (CONTROLWORD) of 256:

CrtAddr= 3;
ControlWord= 258;

The value of 0 (used in the demonstration programs) retains the type-ahead buffer .

• If you have an HP 98627 k RGB interface connected to a 60 Hz, non-interlaced color
monitorl

, you can designate it as the graphics display device by specifying the interface's select
code as the device selector (c rtAd d r), and a control value (Con t ro lWo rd) of 256 (specifying US
STD, 512 x 390, 60Hz refresh). See the table in the DISPLAY .-INIT section of Appendix B for
details.

The control values are not merely "magic numbers". Bits 10, 9, and 8 in the control value allow
you to specify what kind of CRT you wish to interface to (in the case of an HP 98627 A RGB
interface), or to set characteristics of the display (in the case of the bit mapped-display). The
value of 256 is not necessary if you are plotting on a U.S. Standard display (see the "External
Color Displays" section in this chapter); 0 defaults to the same characteristics as does 256.

The final parameter in the DISPLAY .-INIT procedure call is an integer variable that will be assigned
o if the display device was successfully initialized, or a non-zero value if initialization failed. For more
details, refer to the DISPLAY .-IN IT section of Appendix B.

By modifying the device address and/or the control value, images which were drawn on one device
can be drawn on another device with a minimum of effort.

There are some limitations, though. If you are doing an operation on one display device, and
attempt to send the image to another device which does not support that operation, it won't work.

Drawing Lines
You are encouraged to compile and run the following programs on your computer as they are
presented. Turn on your machine and load the Pascal operating system (if you don't know how
to do this, see Chapter 2 of the Pascal User's GUide). This program, as most of the following
programs, use the compiler directive INCLUDE. Compile and run the following program; it is
on the file "SinLine" on your DGLPRG: or DOC: disc.

Note
Examples that include files on "DGLPRG:" may require modification. If
your system was shipped on double-sided 3112 inch discs, all of the example
programs are found on the "DOC:" disc. Statements such as $INCLUDE
'DGLPRG:FILE'$ should read $INCLUDE 'DOC:FILE'$.

1 Depending on your choice of color monitor, there may be more specification necessary in the control value variable of the DISPLAY _IN IT
procedure. See the "External Color Displays" section in Chapter 3.

1-8 Introduction to Graphics

To move the pen somewhere, you call the procedure MOVE, and to draw lines, you call the
procedure LINE. Both of these procedures have two parameters: the X and Y coordinates of
the point you want to move or draw to. The following program does just that.

pro~raM SinLine(outputl;
ilTIPort d~l_lit.;

const
CrtAddr= 3;
Control= 0;

I) a r
ErrorReturn: inte~er;

}{: inte~er;

Y: real;

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outcoMe}

Sinclude 'DGLPRG:DataPoint'S {function: y:=f(xl }
Spa~eS {**}
be~in {bod}' of pro~ralTI IISinLine ll

}

~raphics_init; {initialize ~raphics SysteM}
display_init(CrtAddr,Control ,ErrorReturnl; {which output device?}
if ErrorReturn=O then be~in

for X:=l to 100 do be~in

Y:=DataPointO{) ;
if X=l then Move(X/IOO,YI
else lineO(fl00,YI;

end; {for X:=I to IOO}
end; {ErrorReturn=O?}
~raphics_terITI;

end.

{output device initialization OK?}
{IOO points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics packa~e}

{pro~raM IISinLine ll
}

Probably the first reaction you had when looking at the previous plot was that the plot doesn't
show you anything. But as you can see, this simple program is all you need to draw a
rudimentary plot.

Introduction to Graphics 1-9

You must always execute the procedure GRAPHICS_INIT before any other graphics routine; if
you don't, almost every graphics routine called will either. be ignored or will cause an error. As
its name implies, it initializes the graphics system; that is, it sets various graphics parameters to
their default values. These are the operations performed by the GRAPHICS_INIT routine:

• Sets the aspect ratio to 1;

• Sets the virtual coordinates and viewport limits to range from O. a to 1. a in both the X and Y
directions;

• Sets the world coordinate limits to range from - 1. a to + 1. a in both the X and Y directions;

• Sets the starting position to 0,0 in world coordinates; and

• Sets all attributes to their default values.

In case there were any unfamiliar concepts referred to above, don't panic. We will soon cover all
the above topics, and more.

The following lines comprise the real guts of the Sin Lin e program:

if X=l then Move(X/l00tY)
else lineOU100tY);

In a loop, the statement moves to the first point returned by the D a taP 0 i n t function, and
draws to all the rest. Each successive point is determined by the loop control variable }{ for the X
direction and the value returned by the function D a taP 0 i 1"1 t for the Y direction.

The call to the routine GRAPHICS_TERM should be the last graphics routine called. It termin­
ates the graphics package.

Scaling
Probably the first reaction you had when looking at the previous plot was "That doesn't show me
anything ... " That's true; it doesn't show much information. There are two reasons for this. The first
is that there is not enough variation in the curve; it's too flat to show us anything. The second is that
it is all compressed on the right half of the screen. If we exaggerated the Y direction to the point
where we could see the variations, the lines would be close enough to vertical that it would be
somewhat difficult to interpret the curve. Therefore we must expand it toward the left.

Both of these problems can be remedied by scaling. In this context, scaling could be defined as
"defining the values the computer considers to be at the edges of the active plotting surface."
The SET_WINDOW procedure defines the transformation used to map coordinates between
the virtual display coordinate system (the coordinate system used by the DGL to describe the
display device) and the world coordinate system (the coordinate system used by the user).
Typically, the left edge is the smaller X, the right edge is the larger X, the bottom is the smaller
Y, and the top is the larger yl. Thus any point you plot which falls into these ranges will be
visible.

1 This is by convention only. If you specify a value for the left (or bottom) edge which is greater than the value of the right (or top) edge, it is
perfectly legal. The only restriction is that the left edge must not equal the right edge. The same goes for the bottom and top edges.

1-10 Introduction to Graphics

In our progressive example, the statement calling SET_WINDOW says that an X value of 0 should
be precisely on the left edge of the screen, an X value of 100 should be on the right edge, a Y value
of 0.16 is on the bottom, and a Y value of 0.18 is on the top.

The procedure SET_WINDOW typically causes anisotropic scaling to be invoked. Anisotropic
scaling means that one unit in the X direction is not forced to be the same length as one unit in the Y
direction. Conversely, isotropic scaling means that one unit in the X direction is equal to one unit in
the Y direction, as in a road map. Isotropic scaling is desirable in many cases. In many other cases,
however, it is not. In this example, we are graphing the voltage from a sensor versus time, and it
makes no sense at all to force seconds to be just as "long" as volts. Since we are dealing with data
types which are not equal, it would be better to use unequal, or anisotropic, scaling.

We said that the SET_WINDOW procedure "typically" causes anisotropic scaling to be invoked
because there is no procedure that guarantees that the scaling will be isotropic. You can, by doing
calculations with aspect ratios, figure what the exact values are to send to SET_WINDOW to force
isotropic scaling. This will be covered in the next chapter. Here is the next version of our progressive
example. It is in the file "SinWindow" on the DGLPRG disc.

pro~raM SinWindow(output);
ifllPort d~l_lit.;

const
CrtAddr= 3;
ControlWord= 0;

var
ErrorReturn: inte~er;

){: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outCOMe}

{function: y:=f(x) }

Introduction to Graphics 1-11

{**}
be~in {bod}' of prOgrafTl IISinWindol",lI}
graphics_init; {initialize the graphics SysteM}
display_init(CrtAddr,ControIWord,ErrorReturn); {which output device?}
if ErrorReturn=O then begin {output device initialization OK?}

set_window(0,100,0.16,0.18); {scale the window for the data}
for X:=l to 100 do begin {100 points total}

Y:=DataPointO{) ;
if X=l then Move(X,Y)
else line(){,Y)

end; {for X:=l to 100}
end; {ErrorReturn=O?}
graphics_terfTl;
end.

{get a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the graphics package}
{prOgrafTl IISinWindol",lI}

Granted, it would be nice to know what we are plotting, and what the units are, etc., but we'll
get there in due time.

Setting the Aspect Ratio
You may have noticed on the last plot that the curve did not extend to the right and left edges of
the screen. In fact, the area of screen which was used was exactly as wide as the screen is high.
Thus, the aspect ratio-the width of the screen divided by the height-is exactly 1. This was
the second operation done by the procedure GRAPHICS_INIT, mentioned previously.

For most applications, one would not want to be restricted to using only a square area in the
middle of the screen. The procedure used to change the aspect ratio of the plotting surface is
SET ~SPECT. When calling the SET ~SPECT procedure, only the ratio of the two parameters
is used; thus, the values may be virtually anything, as long as the ratio between them is
reasonable.

To set the aspect ratio such that it will use the entire screen of a Model 236 computer, call the
SET~SPECT procedure with parameters 511 and 389. These are the number of pixels in the X
direction minus one, followed by the number of pixels in the Y direction minus one. Distance
measures the amount of space between pixels!, not the number of pixels. To illustrate the reason
why 1 must be subtracted from both values, imagine a very low-resolution graphics display: 3 pixels
in the X direction by 2 pixels in the Y direction .

• • •
(0,1) (1,1) (2,1)

• • •
(0,0) (1,0) (2,0)

1 The word "pixel" is a blend of the two words "picture element," and it is the smallest addressable point on a plotting surface. A Model 236
computer has 512 x 390-pixel resolution; thus there can be no more than 512 dots drawn in anyone row of the CRT, or 390 dots drawn in
anyone column.

1-12 Introduction to Graphics

As you can see, the distance between the rightmost pixels and the leftmost pixels is 2, and the
distance between the uppermost pixels and the lowest pixels is 1. Thus, the ratio of width to height
of this plotting surface is 2: 1, rather than 3:2, as it would be if number of pixels were used.

From the previous explanation, it follows that the correct values to pass to the SET _ASPECT
procedure would be 511 and 389 for the Models 217 and 236; 399 and 299 for the Models 216,
220, and 226; 1023 and 751 for the Model 237 and HP 98544A, HP 98545A, HP 98547 A, HP
98549A, HP 98700A (with type-ahead buffer), and HP 9000 382 Medium-Resolution display;
or 1023 and 767 for the Model 237 and HP 98544A, HP 98545A, HP 98547 A, HP 98549A,
HP 98700A (with type-ahead buffer removed), and HP 9000 382 Medium-Resolution display;
511 and 399 for HP 98542A and HP 98543A (with type-ahead buffer removed); or 1279 and
999 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution (with type-ahead buffer);
or 1279 and 1023 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution (with
type-ahead buffer removed); or 639 and 463 for HP 9000 362/382 VGA (with type-ahead
buffer); or 639 and 463 for HP 9000 362/382 VGA (with type-ahead buffer removed). These
numbers are the numbers of pixels in the X and the Y directions, respectively, for those
computers. The HP 98546A display (the video compatibility interface) is to all intents
and purposes a Model 236A (monochrome) display. D G L cannot tell the difference. All
specifications and capabilities for the Model 236A display DGL apply to the HP 98546A.

In the next version of our progressive example, the only change is that the aspect ratio has been
altered so the whole screen has been used. The following statement was placed immediately
prior to the SET_WINDOW statement:

set_aspect(511 t389);

This program may be found on the "SinAspect" on the DGLPRG: or DOC: disc.

This plot looks better than the last one; the whole screen is being used. There is still one
problem, though. We can see reJative variations in the data, but what are the units being used?
We saw at the very beginning of the chapter that we were measuring voltage, but with the plot
at its current state, we don't know if the height of the curve is signifying differences of micro­
volts, millivolts, megavolts, dozens of volts, or what? And we probably wouldn't want the text
(explaining units, etc.) to be written in the same area that the curve is in, as it could obstruct part
of the data curve. Therefore, we need to be able to specify a subset of the screen for plotting the
curve and put explanatory information outside this area. The next section tells you how to do
this.

Introduction to Graphics 1-13

Defining a Viewport
A viewport is a subset of the plotting area into which the window limits are linearly mapped. It is
specified in virtual coordinates.

Virtual Coordinates and World Coordinates
Before we define a viewport, we need to know about the two different types of units which
exist. These two types of units are virtual display coordinates and world coordinates. Since a
viewport is a "window" onto which the world coordinates are mapped, and in order for
viewports to be predictable, they must be specified in units which are not dependent upon the
user's graphical model-the world coordinates. Since world coordinates are associated with the
graphical model employed by the user, and virtual coordinates are associated with the display
device, it makes much more sense to use virtual coordinates when specifying the limits of a
viewport. (Note that world coordinates are set when specifying a window-they both start with
"w" -and virtual coordinates are set when specifying a viewport-they both start with "v".)
Virtual coordinates always range from 0. ° to 1. ° in one direction, and 0. ° to a number dictated
by the aspect ratio in the other direction. A viewport is associated with the display device, rather
than the graphical model used in your program.

These are the most important characteristics of virtual coordinates:

• The lower left of the plotting area is always 0,0.

• Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as
one unit in the Y direction.

• Virtual coordinates are limited to the range ° through 1. The maximum coordinate on one
side is 1, and the maximum coordinate on the other side is less than or equal to 1.

The following discussion assumes that the aspect ratio is set such that the whole screen is
used: 511/389 for the Models 217 and 236; 399/299 for the Models 216,220, and 225; or
1023/767 for the Model 237, HP 98544A, HP 98545A, HP 98547 A, HP 98549A, HP 98700A,
and HP 9000 382 Medium-Resolution display; or 511/299 for the HP 98542A and HP 98543A;
or 1279/1023 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution; or 639/479 for
the HP 9000 362/382 VGA display. Since the height of the screen is less than the width of the
screen, the longer edge is in the X direction; therefore, Xmax in virtual coordinates is 1.0.

That was the easy part. Once you've decided which edge is longer, and thus defined the units
along that edge, you need to find out the length of the shorter sides in virtual coordinates.
Typically, these values will be known because you explicitly specify the aspect ratio yourself.
However, if you don't know the aspect ratio (and therefore the virtual coordinates maxima),
you can interrogate the system with a call to the INQ_ WS procedure1 . This will be done in
the next chapter. For now, though, we'll just observe that the virtual coordinate limits (for
the entire screen, remember) are 0.0 to 1.0 in X, and 0.0 through 299/399 = 0.749373433584
(on the Models 216, 220 and 226), or 0.0 through 389/511 = 0.761251446184 (on the
Models 217 and 236), or 0.0 through 767/1023 = 0.749755620723 (on the Model 237, HP
98544A, HP 98545A, HP 98547 A, HP 98549A, HP 98700A, HP 9000 382 Medium-Resolution
display), or 0.0 through 399/511 = 0.780821918 (on HP 98542A and HP 98543A), or 0.0
through 1023/1279 = 0.799843628 (on the HP 98548A, HP 98550A, and HP 9000 382
High-Resolution), or 0.0 through 479/639 = 0.740608764 (on the HP 9000 362/382 VGA
display).

1 The INQ_WS procedure is a DGL procedure through which you can find out various parameters of the graphics system.

1-14 Introduction to Graphics

Specifying the Viewport
The SET_VIEWPORT procedure sets up a transformation which will convert points in world
coordinates into points on the plotting surface. The call to SET_VIEWPORT in the following
program specifies that the lower left-hand corner of the viewport area is at 0.10,0.12 and the
upper right-hand corner is at 0.99,0.70.

set_vielAIPO rt (0.10,0.99,0.12,0.70);

This is the area which the SET_WINDOW procedure affects. We will also draw a box around
the viewport limits by drawing the rectangle bounded by - 1 and 1 in both the X and Y
directions. (The default window limits are - 1 to 1 in both directions.) It is done in this example
so you can see the area specified by the SET_VIEWPORT procedure call.

And here is the output from the next version of our progressive example (found on file "Sin­
Viewpt" on the DGLPRG: or DOC: disc). The only change is that a call to SET_VIEWPORT
has been placed immediately after the line calling SET _ASPECT.

Introduction to Graphics 1-15

Labelling a Plot
With the inclusion of the call to the SET_VIEWPORT procedure, we have enough room to
include labels on the plot. Typically, in a Y -vs-X plot like this, there is a title for the whole plot
centered at the top, a Y-axis title on the left edge, and a X-axis title at the bottom.

The DGL procedure GTEXT writes text onto the graphics screen. You can position the label by
calling MOVE to get to the point at which you want the label to be placed. It is the lower left
corner of the label which ends up at the point to which you moved. In other words, we will
move to the position on the screen at which we want the lower left corner of the text to be
placed.

Notice in the following plot that the Y-axis label on the left edge of the screen is created by
writing one letter at a time. We only need to move to the position of the first character in that
label because we terminate each one-character GTEXT call with a carriage return/linefeed. This
causes the pen to go one line down, ready for the next (one-character) line of text. (There is
another way to plot vertical labels; we'll see it shortly.)

v
o
1
t
a
9
e

pro~raM SinLabell(output);
iMPort d~l_libt d~l_inq;

const
CrtAddr=
ControlWord=

var

VOLTRGE VRRIRNCE

Ti me (seconds)

{~et ~raphics routines}

{address of internal CRT}
{device control; (I for CRT}

ErrorReturn: inte~er; {variable for initialization outcoMe}
Strn~: strin~[7]; {seven characters in 'Volta~e'}

Character: inte~er; {loop counter for labellin~}

X: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in {bodY of pro~raM "SinLabell"}
~raphics_init; {initialize ~raphics SysteM}
dis p I a y _ i nit (Crt Add r t Con t r a I 1.40 r d t Err 0 rR e turn); {w hi c h 0 u t put de vic e?}

1-16 Introduction to Graphics

if ErrorReturn=O then be~in
set_aspect (Sll t388);
ITlove(-0.lIStO.8) ;
Hext ('VOLTAGE 1.IARIANCE');
Strn~:='Volta~e';

{output device initialization OK?}
{use the whole screen}
{startin~ point for the title}
{label the plot}
{the y-axis label}

Move(-0.8StO.3); {startin~ point for the y-axis title}
for Character:=l to strlen(Strn~) do {follow every character ••• }

Hext(str(Strn~tCharactert1)+chr(13)+chr(10)); { ••• INith a CR/LF}
Move(-0.3t-0.8); {startin~ point for the x-axis label}
~text('TiMe (seconds) '); {x-axis label}
set_l.deINPort(O.l to.88tO.12tO.7); {define subset of screen}
ITlol,le(-lt-1); line(lt-1); line(1t1); line(-lt1); line(-lt-1); {fraITle}
set_window(Otl00tO.16tO.18); {scale the window for the data}
for X:=l to 100 do be~in

Y:=DataPoint(}{) ;
if X=l then Move(XtY)
else lineO~tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terITI;

end.

{100 points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~raITI IISinLabelll1}

This gets the point across, but it would be nice if we could cause some labels to be more
obvious by making them bigger; for example, on the main title. Also, you may want the Y-axis
title to be turned on its side, and not do the carriage return/line feed trick we did last time.

Setting Character Size
The DGL procedure SET _CHAR_SIZE sets two attributes! of all subsequent characters, namely
the width and height of the character cells. A character cell contains a character and some blank
space above, below, to the left of, and to the right of the character. This blank space allows
packing character cells together without making the characters illegible. The amount of blank
space depends, of course, on which character is contained in the cell. The values sent to
SET _CHAR_SIZE are expressed in world coordinates:

When a character size is selected, the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated, its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y
axis) are not the same directions as the display device's axes.

The ability to specify character sizes in world coordinates is valuable when doing graphical
output in which the labels are to remain with the objects they describe. In these cases, the
characters are scaled using the same scaling as the objects drawn.

In the following program (program Sin Lab e 12 on a file by the same name on the DGL PRG:
disc), the character width and height are defined to be something on the order of 2*0 + 04. The
reason that a 2 was used in these expressions is that the current (default) window limits were
- 1 to 1, for a distance of 2. The 0.04 comes from the fact that we wanted 4% of the window
distance in that direction.

1 An attribute, in this context, is a piece of information which helps define or describe some object.

Introduction to Graphics 1-17

Centering Labels
In that last program, the labels looked reasonably centered. This was only because the starting
point was arrived at in a hit-and-miss manner. The main characteristic of labels which makes it
difficult to center them is this: the reference point of a label is the lower-left corner of the label.
That is, the point you moved to just prior to writing the label will end up at the lower-left hand
corner of the label. If we want our labels to be centered, we must figure out how long each label
is, subtract half that length from the X position of where we want the center of the label to be
placed, and then write the label.

We know what the characters' sizes are; we can set it with the SET _CHAR_SIZE procedure. We
can also determine how long the string of text to be labelled is. This is found by using the
standard procedure STRLEN. If you give it a string, it will return the length (in characters) of
that string.

Horizontal centering of a string, then, can be accomplished by subtracting the value returned by
the following expression from the desired X position of the center of the labeP:

(strlen(Text)*CharWidth)/2

Thus, if we want a label centered horizontally about the point }-(, and at a Y value of Y, we could
say:

Move(X-(strlen(Text)*CharWidth)/2tY) ;

Setting the Label's Direction
QUite often, labels need to be at some other angle than horizontal. We saw a few pages ago that
a vertical label could be done-albeit somewhat clumsily-by labelling one horizontal character
at a time, and following each by a carriage return/line feed. What we need is a way to specify
that we want labels to be plotted at whatever angle we specify.

Through the DGL procedure SET_TEXT _ROT, you can specify the amount of rotation you
want the label to undergo. However, you must specify this in two pieces: the X displacement
and the Y displacement. For example:

set_text_rot(2t-l) ;
set_text_rot(1 to);
set_text_rot(87t87) ;
set_text_rot (0 t5) ;

set_text_rot(-l to);

Label goes down and right; a - 26.57° angle.
Label is horizontal; default direction.
Label goes up and right at a 45° angle.
Vertical label; ascending.
Upside-down label.

The SET_TEXT _ROT procedure deals only with the ratio of the run and rise parameters. Thus,
multiplying both parameters by the same number will not change the angle at which the
subsequent labels are written. The third example above, which sets both the run and the rise to
87, could have used any two numbers as parameters, as long as they equaled each other.
Going 87 units up for every 87 units to the right yields the same angle as going 19 units up for
every 19 units to the right, etc.

1 This is quite close to the truth, but is an approximation. There is an inter-character gap, which is the space caused by the fact that a character is
placed inside a character cell, and it is complicated because the amount of space on the left side of a character is different from the amount of
space on the right. See the Character Cell section in the next chapter.

1-18 Introduction to Graphics

Any particular angle you want can be passed to the SET _ TEXT _ROT procedure by operating
on the angle with the cosine and sine functions. For example, to cause labels to be written at an
angle of 11"/4 (a 45° angle), you could use the following statement. It assumes there is a constant
called Pi which has a value approximately equal to 3.1415926535897.

set_text_rot(cos(Pi/180*45) tsin(Pi/180*45»;

With these two statements, we can make a marked improvement in the quality of the output.
The next version of our progressive example uses them.

cu
01
ttl
+'

o
>

pro~raM SinLabe12(output);
ilT1Port d~l_libt d~Lin9 ;
const

CrtAddr= 3 ;
ControlWord= I) ;

var
CharWidth: re a 1 ;
CharHei~ht: re a I ;

VOLTRGE VRRIRNCE

Time (seconds)

{~et ~raphics routines}

{address of internal CRT}
(device control; I) for CRT}

Text: strin~(21)];

{width of character in world coords}
{hei~ht of character in world coords}
{teMPOrary holdin~ ~lace for text}
{variable for initialization outCOMe} ErrorReturn: inte~er;

}{: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$ (function: v:=f(x) }
$pa~e$ {**}
be~in {bod}' of pro~ralT1 ISinLabeI2"}
~raphics_init; {initialize the ~raphics SysteM}
display_init(CrtAddrtControIWordtErrorReturn); {which output device?}

if ErrorReturn=O then be~in

set_aspect(511 t388);
CharWidth:=2*O.04;
CharHei~ht:=2*O.08;

set_char_size(CharWidthtCharHei~ht) ;
Text:='VOLTAGE VARIANCE';

Introduction to Graphics 1-19

{output device initialization OK?}
{use the whole screen}
{char width: 4% of screen width}
{char height: 8% of screen hei~ht}
{install character size}
{define the text to be labelled}

Move(-(strlen(Text)*CharWidth)/2tO.8) ;{~o to start point for centered label}
~text(Text); {label the text}
set_text_rot(Otl) ;
CharWidth:=2*O.025;
CharHei~ht:=2*O.04;

set_char_size(CharWidthtCharHei~ht) ;

{vertical labels}
{char width: 2.5% of screen width}
{char height: 4% of screen hei~ht}
{install character size}

Text:='Volta~e'; {define the text to be labelled}
Move(-O.8t-(strlen(Text)*CharWidth)/2); {start point of centered label}
~text(Text); {label the text}

{horizontal labels}
Text:='TiMe (seconds) '; {define the text to be labelled}
Move(-(strlen(Text)*CharWidth)/2t-O.82); {start point of centered label}
~text(Text); {label the text}
set_vieIAiPort(O.1 to.88tO.12tO.7); {define subset of screen}
fTlove(-1t-1); line(-1t1); line(lt1); line(1t-1); line(-1t-l); {frallle}
set_windoIAl(O dOl) to.16 to.18);
for X:=1 to 100 do be~in

Y:=DataPoint(}{) ;
if X=1 then Move(XtY)
else line(}{tY);

end; {for X:=1 to 100}
end; {ErrorReturn=O?}
~raphics_terITl;

end.

Bold Labels

{scale the window for the data}
{100 points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~raM "SinLabeI2"}

Many times it's nice to have the most important titles not only in large letters, but bold letters, to
make them stand out even more. It is possible to achieve this effect by plotting the label several
times, moving the label's starting position just slightly each time. In the following version of the
program (on file "SinLabeI3" on your DGLPRG: or DOC: disc), notice the FOR loop used when
labeling the main title. The loop variable, >~, goes from -3 to 3. This is the offset in the X
direction of the label's starting position.

The only change in the program was that the statements labelling the main title:

Moue(-(strlen(Text)*CharWidth)/Z,O.S) ;
gtext(Text) ;

were replaced by the following:

for X:=-3 to 3 do begin
Moue(-(strlen(Text)*CharWidth)/Z+X*O.OOZ,O.S) ;
gtext(Text) ;

end;

This method can also be used for offsetting in the Y direction. Or, offset both X and Y. This will
give you characters which are thick in a diagonal direction, which makes them look like they are
coming out of the page at you. However, a more typical bolding is produced by offsetting only
in the X direction.

1-20 Introduction to Graphics

(I)

OJ
to
.p

a
>

VOLTAGE VARIANCE

Ti me (seconds)

Now we know what we are measuring-voltage vs. time-but we still do not know the units
being used. What we need is an X-axis and a Y-axis, to show us where to put the numbers.

Axes and Tick Marks
When drawing axes, they are typically composed of a straight line defining the axis itself, and
short lines, perpendicular to the axes, to indicate the spacing of units. These short lines are
called tick marks. Usually, the tick marks are grouped into multiples of a nice round number so
as to make it easier to understand where the multiples are. These groups are delimited by
causing the first tick mark in each group to be larger than the rest.

When writing an axis routine, it is almost always desirable to cause a major tick mark to be
coincident with the other axis. For example, if you draw an X axis and select a major tick count
of five, it would probably be undesirable to have a minor tick mark (say, two ticks to the right of
a major tick) cross the Y axis. This would mean that you would have to go three ticks to the right
of the Y axis to find a major tick, but only two ticks if you were going to the left.

Following are some sections of code that do the processing necessary for an axis; an X-axis in
this case. A Y-axis proceeds with similar steps. Assume the following variables are defined:

Spacing:
Location:
Xmin,Xmax:
Major:

Majsize:
Minsize:

The distance between tick marks on the axis.
The Y -value of the X-axis.
The left and right ends of the X-axis, respectively.
The number of tick marks to go before drawing a major tick mark. If
Major = 5, every fifth tick mark will be major.
The length, in current units, of the major tick marks.
The length, in current units, of the minor tick marks.

Introduction to Graphics 1-21

The first thing you would do is to draw the axis itself. Its length would be from){'Tli n to){ITlax, and its
Y -position would be Lo cat ion:

ITlol,le(){'Tlin tLocation);
line(){'Tlax tLocation);

If the lengths of the major and minor tick marks are M a j s i z e and Min s i z e, then half those lengths
would be on each side of the axis. Rather than dividing by two at every tick, let's do the
divisions once and put the values into their own variables:

SeMiMinsize:=Minsize*O.5;
SeMiMajsize:=Majsize*O.5;

We need to round the starting value down to the next major tick mark. The function being used
here is a user-defined rounding routine which can round down, up, or to the nearest multiple of
the specified value.

){:=RoundZ(){MintSpacinf*Major,Down) ;

If you do not need or want to force a major tick mark to be at X = 0, you could replace the
previous statement with the following, which forces a tick, not necessarily a major one, to be at
zero:

Or, you may not want to round at all; you may want to start making tick marks at the value of
){'Tl i n no matter what its value-whether it's a nice round number or not. In this case, replace the
previous statement with this:

}{:=){'Tlin;

Now we need to draw all the tick marks. The distance between consecutive ticks is defined by
Spac in f. Every Nth tick will be a major tick, where N is the current value of Maj 0 r. A counter (of
type INTEGER or some subrange) will be employed which will be incremented at every itera­
tion and will wrap around. Every time the counter's value is zero, it is time for another major tick
mark.

Counter:=O;
while){{=){Max do befin

if Counter=O then be~in

Move(){,Location-SeMiMajsize) ;
line(){,Location+SeMiMajsize) ;

end {Counter=O?}
else be fin

Move(){,Location-SeMiMinsize) ;
line(){,Location+SeMiMinsize) ;

end; {else befin}
Counter:=(Counter+l) Mod Major;
){: =){+Spac in f;

end; {1,.,Ihile}

1-22 Introduction to Graphics

Here is the next version of our progressive example. It draws both an X and a Y axis. For a
complete listing of this program, see the Appendix.

VOLTAGE VARIANCE

OJ
en
to
+'

a
>

Ti me (seconds)

pro~raM SinAxesl(output);
ilT1PO rt d~l_libt d~l_inq;

const
C rtAdd r= 3 ;
ControlWord= 0;

t}' pe
RoundT}'pe= (Up t DOI .. .In t Ne a r) ;

1.1 a r
CharWidth: re a I ;
CharHei~ht: re a I ;
Text: strin~[20];

ErrorReturn: inte~er;

}{: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$

•

•

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{used by procedure Round2}

{width of char in world coords}
{hei~ht of char in world coords}
{teMPOrary holdin~ place for text}
{variable for initialization outcoMe}

{function: y:=f(x) }

Procedures }{ a xis and Y a xis, and function R 0 un d 2 go here.
•

•
be~in {bodY of pro~ralTl ISinAxesl"}
~raphics_init; {initialize the ~raphics SysteM}
displa}'_init(CrtAddrtControIWordtErrorReturn); {INhich output device?}
if ErrorReturn=O then be~in

set_aspect(Sll t388);
CharWidth:=2*O.OQ;
CharHei~ht:=2*0.08;

set_char_size(CharWidth tCharHei~ht);
Text:='VOLTAGE VARIANCE';

{output device initialization OK?}
{use the whole screen}
{char width: QZ of screen width}
{char hei~ht: QZ of screen hei~ht}
{install character size}
{define text to be labelled}

for X:=-3 to 3 do be~in {MaKe "bold" label}
Move(-(strlen(Text)*CharWidth)/2+X*O.002tO.8); {center label}
~text(Text); {label the text}

end;

Introduction to Graphics 1-23

{vertical labels}
CharWidth:=2*0.025; {char width: 2.5% of screen width}
CharHei~ht:=2*0.04; {char hei~ht: 4% of screen hei~ht}
set_char_size(CharWidth tCharHei~ht); {install character size}
Text:='Volta~e'; {define the text to be labelled}
Move(-0.9t-(strlen(Text)*CharWidth)/2); {start point of centered label}
~text(Text); {label the text}
Text:='TiMe (seconds) ';
set_text_rot(1 to);

{define the text to be labelled}
{horizontal labels}

Move(-(strlen(Text)*CharWidth)/2t-0.92); {start point of centered label}
~text(Text); {label the text}
set_l.!iel..,Iport(O.l to.99tO.12tO.7); {define subset of screen}
fTlove(-lt-1); line(-lt1); line(ltl); line(1t-l); line(-lt-1); {frafTle}
set_window(Otl00tO.1GtO.18); {scale the window for the data}
}{axis(l to.1Gt-50t150t5tO.00l to.0005); {dral,.,l the x-axis}
Ya xis (0.001 tOt 0 • 1 to. 2 t 5 t 2 t 1) ;
for X:=l to 100 do be~in

Y:=DataPointOO;
if X=l then Move(XtY)
else lineO{tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terfTI;

end.

{draw the y-axis}
{100 points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics packa~e}

{pro~rafTI IISinAxesl l1
}

This version is better than the last; it has axes and we can see the units they're delimiting, but
obviously, there is a big problem. Not only do the axes and tick marks appear where we want
them, they are also many places where we don't want them. We want the axes to stop at the
limits of the window, and we also want the tick marks to extend only toward the interior of the
graph. What we want is clipping.

Clipping Lines
Clipping is a method of defining edges of a plotting area, and drawing things which are cut off at
those defined edges if they hang over. This is analogous to describing a large drawing on a huge
sheet of paper, and but only .drawing those parts which are inside some rectangle. What this
means is that when clipping is invoked, everything inside the rectangle should look identical to
the image (inside the same rectangle) created when clipping is not invoked. Only the things
outside the rectangle are affected. Clipping affects lines, text, markers, and polygons.

Clipping a line consists of determining how much of a line is within the clipping limits, and then
drawing only the visible part. There are four distinct cases:

• The line is contained entirely within the clip limits.
Therefore, using the original endpoints, draw the entire
line .

• One endpoint is within the clip limits, but the other one
is outside. Therefore, find the intersection between the
line to be clipped and all clip limits which intersect it
(two at the most). Draw the line from the visible end­
point to the closest edge-intersection.

Clipping Limits

\

1-24 Introduction to Graphics

• Both endpoints are outside the clip limits, but some
middle part of the line is visible. Do the same operation
as for the single invisible endpoint above, but for both
endpoints.

• The entire line is invisible. Reject it; do nothing. \

DGL clips images at the display limits-those limits set by the SET_DISPLAY_LIM routine.
Often, however, you may wish to clip at other boundaries than the logical display limits. In
addition, the parameters for SET_DISPLAY_LIM are expressed in millimeters. Millimeters are
quite adequate for setting display limits, but are usually clumsy to work with when the rest of the
graph is in world coordinates. But there is a way to do it. There is a DGL routine called
CONVERT _WTODMM, which converts world coordinates to millimeters on the display surface.
However, SET_DISPLAY_LIM may reset the view surface limits, so some redefinition of other
parameters may be necessary. Thus, you can clip using these two routines in conjunction with
each other.

A User-Defined Clipping Algorithm
In the appendix is a listing of the program "Sin Clip" , which uses a clipping routine! called
eli pD r elil·.!. Also included is a routine to which you pass the desired clip limits: eli pL i ITl it.

The clip limits may be inside, outside, or coincident with the window edges. After the clipping
limits have been defined, a line is passed to the clipping routine. Both endpoints of a line must
be known, because intersections between the line being drawn and the edges of the clipping
area must be calculated.

These two clipping-related routines allow lines to be clipped outside of any desired rectangular
area. However, the axis routines used in the last demonstration program must be modified to
call the clipping routine. In addition, there is another modification which would be very conve­
nient to have:

It would be nice if we didn't have to pass the Xmin and Xmax or Ymin and Ymax to their
respective routines so they would know where to start drawing tick marks. To do this, we'll just
use the global variables eli P){ITl i n, eli p){ITlax, eli PYITl i n, eli pYITlax. Then we'll round the
lower window limits down to the next value which would have a major tick mark. We round to a
major tick mark because (in this case) we want the value of 0 to have a major tick, regardless of
whether zero is on the plotting surface.

Installing the modified axis routines results in the following plot. The program may be found on
file "SinClip" on the DGLPRG: or DOC: disc.

1 This clipping routine was adapted from a routine on page 66 of the excellent book:

Principles of Interactive Computer Graphics, William M. Newman and Robert F. Sproull, Second Edition, 1979, McGraw-Hill.

IlJ
m
ro
+'

o
>

Introduction to Graphics 1-25

VOLTAGE VARIANCE

Time (seconds)

This is a good general-purpose clipping routine which is independent of the output device used,
and of the DGL implementation used. But as we noted earlier, only lines sent to the CLIP­
DRAW routine were clipped, and therefore text, written by a call to GTEXT, in addition to
markers and polygons, were not clipped.

These axes look much better. Now we know where the numbers should be placed on the axes.
Let's learn a little about labelling numbers.

Labelling Axes
In the process of labelling axes, we need to know how to convert numbers to strings which look just
like the numbers. The reason for this is that the labelling procedure GTEXT can only accept a string
for an input parameter.

There is a standard procedure in Series 200/300 Pascal called STRWRITE. This allows you to
use regular output formats, but, instead of sending the data to a file, the data is put into a string
variable. The same format-controlling numbers after colons that can be used for WRITELN can
be used for STRWRITE. Let's assume there are three variables defined:

• A string variable St rn 9. This variable will receive the
string version of the value converted from REAL;

• An integer I. This is merely for a value returned from
the STRWRITE routine. It indicates the location of the
next unused character in the string;

• And a REAL variable called X which we want to con­
vert to a string.

The actual conversion would be accomplished through the following statement:

The : G after the)(tells the computer that the entire field should be six characters wide. This
includes the digits to the left of the decimal point, the decimal point itself, and the characters to
the right of the decimal point.

1-26 Introduction to Graphics

The : 4 tells the computer that there are to be four digits to the right of the decimal point.

In this program also, we center the labels horizontally by subtracting half the length of the labels
from the desired position for the center of the label.

VOLTAGE VARIANCE
1.1BII,----------------------,

1.1775

1.1751

Q) 1.1725

OJ
III
+> 1.1711

o
>1.1675

1.1651

21 31 41 51 61 71 BI 98 1111

Ti me (seconds)

pro~raM SinAxesZ(output);
ilT1Port d~l_lit.; {~et ~raphics routines}
const

CrtAddr= 3 ;
0;

{address of internal CRT}
{device control; 0 for CRT} ControlWord=

t}' pe
RoundT}'pe= (Up t DOI..!n t Near); {used by function RoundZ}

1.1 a r
CharWidth:
CharHei~ht:

Text:
ErrorReturn:
I :
}{ :
Y:

re a I ;
rea I ;
strin~[ZO];

inte~er;

inte~er;

inte~er;

re a I ;
Clip}{ITlin t Clip}·(jTlax: real;
ClipYITlin t ClipYmax: real;

$include 'DGLPRG:DataPoint'$

{width of char is world coords}
{hei~ht of char is world coords}
{teMPOrarY holdin~ place for text}
{variable for initialization outCOMe}
{return variable frOM STRWRITE}

{soft clip limits in x}
{soft clip liMits in y}
{function: v:=f(x) }

Introduction to Graphics 1-27

$pa~e$ {**}
procedure ClipLilTlitO-{ITlint }-(ITlaXt YITlint YITlax: real);
{--}
{ This procedure defines the four ~lobal variables which specify where the }
{ soft clip liMits are. }
{--}
be~in

if XMin(XMax then be~in

Clip}-{ITlin:=}-(ITlin;
C 1 i p)-{ITlax: =)-{ITlax;

end
else be~in

Cl i p)-{ITli n: =}-(ITlax;
Clip)-{ITlax:=)-{ITlin;

end;
if YMin(YMax then

CI i P'{ITli n: =YITli n;
Cl i pYITlax: =YITlax ;

end
else be~in

CI i pYITli n: =YITlax;
CI i pYITlax: ='{ITli n;

end;

be~in

{bod}' of procedure IIClipLilTlit ll }
{ \ }
{ \
{

{

{

{

{ /
{ /
{ \
{ \
{

{

{

{

{ /
{ /

\
\
/

/

\
\
/

/

Force the MiniMuM soft }
clip liMit in X to be }
the sMaller of the two }
X values passed into }
the procedure. }

}

}

}

Force the MiniMuM soft }
clip liMit in Y to be }
the sMaller of the two }
Y values passed into }
the procedure. }

}

}

end; {procedure IIClipLiMitll}
$pa~e$ {**}
procedure CI ipDrawO(l t Yl t)(Z t YZ: real);
{--}
{ This procedure takes the endpoints of a linet and clips it. The soft }
{ clip liMits are the real ~lobal variables CIJpXMint ClipXMaXt ClipYMint }
{ and ClipYMax. These May be defined throu~h the procedure ClipLiMit. }
{--}
label

1 ;
t}' pe

Ed~es= (Left tRi~ht tTop tBOttOITd;
OutOfBounds= set of Ed~es;

var
Out tOutl tOutZ:OutDfBounds;
){t Y: real;

{possible ed~es to cross}
{set of ed~es crossed}

{--}
procedure Code(Xt Y: real; var Out: OutOfBounds);
be~in

Out:=[];
if x(ClipXMin then Out:=[left]
else if x)ClipXMax then Out:=[ri~ht];
if y(ClipYMin then Out:=Out+[bottOM]
else if y)ClipYMax then Out:=Out+[top];
end;

{nested procedure IICode ll }
{null set}

{off left ed~e?}
{off ri~ht ed~e?}

{off the bottOM?}
{off the top?}

{nested procedure IICode ll }

1-28 Introduction to Graphics

{--}
beg i n
Code(}{l ,Yl ,Outl);

{bod}' of procedure IClipDraIN"}
{figure status of point 1}

Code(X2,Y2,Out2); {figure status of point 2}
while (Outl()[]) or (Out2()[]) do begin {loop while either point out of range}

if (Outl*Out2)()[] then goto 1; {if intersection non-null, no line}
if Outl()[] then Out:=Outl

else Out:=Out2i
if left in Out then begin

{Out is the non-eMPty one}
{it crosses the left edge}

y:=Yl+(Y2-Yl)*(ClipXMin-Xl)/(X2-Xl) ;{adJust value of y appropriately}
x:=ClipXMin; {new x is left edge}

end {left in Out?}
else if right in Out then begin {it crosses right edge}

y:=Yl+(Y2-Yl)*(ClipXMax-Xl)/(X2-Xl) i{adJust value of y appropriately}
x:=ClipXMax; {new x is right edge}

end {right in Out?}
else if bOttOM in Out then begin {it crosses the bOttOM edge}

x:=Xl+(X2-Xl)*(ClipYMin-Yl)/(Y2-Yl) ;{adJust value of x appropriately}
y:=ClipYMin; {new y is bOttOM edge}

end {bOttOM in Out?}
else if top in Out then begin {it crosses the top edge}

x:=Xl+(X2-Xl)*(ClipYMax-Yl)/(Y2-Yl) ;{adJust value of x appropriately}
y:=ClipYMax; {new y is top edge}

end; {top in Out?}
if Out=Outl then begin

}{l:=x; Yl:=}'i Code(x,}',Outl); {redefine first end point}
end {Out=Outl?}
else begin

}{2: = x;
end; {else begin}

end; {INhile}

Code(x ,}' ,Out2); {redefine second end point}

Move(xl ,yl); {if we get to this point, the line ••• }
line(x2,y2); {",is cOMPletely visible, so draw it}
1: end; {procedure IClipDraIN"}
$page$ {**}
function Round2(N, M: real; Mode: RoundT}'pe): real;
{--}
{ This function rounds "N" to the nearest "M", according to "Mode", This }
{ function works only when the argUMent is in the range of MININT"MAXINT. }
{--}
const

epsilon=
~I a r

Rounded:
Negatil.le:

lE-l0;

re a I ;
boolean;

begin
Negative:=(N(O,O) ;
if Negative then begin

N:=abs(N) ;
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;

{roundoff error fudge factor}

{teMPOrary holding area}
{flag: lilt is negative?"}
{bod}' of IRound2"}
{is the nUMber negative?}

{work with a positive nUMber}
{if lHlfTlber is negative, tt,}

{."reverse UP and down}

case Mode of
Down: Rounded:=trunc(N/M)*M;
Up: begin

IntroduCtion to Graphics 1-29

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• right on the nUMber line?}
if abs(Rounded-round(Rounded)))epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

Rounded:=trunc(Rounded)*M;
end;

Near: Rounded:=trunc(N/M+M*O.S)*M;
end; {case}
if Ne9'ative then Rounded:=-Rounded;
RoundZ:=Rounded;

{ ••• to the nearest Multiple?}

{reinstate the si9'n}
{assi9'n to function naMe}

end;
$pa9'e$

{function IIRoundZ II
}

{**}
procedure XaxisClip(Spacin9't Location: real; Major: inte9'er;

MaJsize tMinsize: real);
{--}
{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacin9': The distance between tick Marks on the axis. }
{ Location: The V-value of the X-axis. }
{ Major: The nUMber of tick Marks to 9'e before drawin9' a Major tick }
{ Mark. If MaJor=St every fifth tick Mark will be Major. }
{ MaJsize: The len9tht in I")orld unitst of the ITlaJor tid, 1T1arf,s. }
{ Minsize: The len9'tht in world unitst of the Minor tick Marks. }
{--}
I,J a r

X: real;
SelTliMaJsize: real;
SeMiMinsize: real;
Counter: integer;

be 9' i n
SeMiMaJsize:=MaJSize*O.S;
SeMiMinsize:=MinSize*O.5;
Counter:=O;

{X position of tick Marks}
{half of Major tick size}
{half of Minor tick size}
{keeps track of when to do Major ticks}
{bod}' of procedure 1I}{axisClipll}
{calculate half of Major tick size}
{calculate half of Minor tick size}
{start with a Major tick}

ClipDral,.)(Clip}{ITlintLocationtClip}{ITlaxtLocation); {dral") the }{-axis itself}
X:=RoundZ(Clip}{ITlintSpacing*MaJortDol,.,ln); {round to next 101")er ITlaJor}
while X<=ClipXMax do be9'in {loop until 9'reater than ClipXMax}

if Counter=O then {do a Major tick Mark?}
ClipDraw(XtLocation-SeMiMaJsizetXtLocation+SeMiMaJsize)

else
ClipDraw(XtLocation-SeMiMinsizetXtLocation+SeMiMinsize); {do Minor tick}

Counter:=(Counter+l) Mod Major; {keep track of which len9'th tick to do}
}{: =}{+Spac in 9';

end; {1,.,lhile}
end;

{9'0 to next tick position}

{procedure 1I}{axisClipll}

1-30 Introduction to Graphics

$pa~e$ {**}
procedure YaxisClip(Spacin~t Location: real; Major: inte~er;

MaJsize t Minsize: real);
{--}
{ This procedure draws an Y-axis at any intersection point on the plottin~ }
{ surface. ParaMeters are as follows: }
{ Spacin~: The distance between ticK Marks on the axis. }
{ Location: The X-value of the Y-axis. }
{ Major: The nUMber of tick Marks to ~e before drawin~ a Major ticK }
{ Mark. If MaJor=St every fifth tick Mark will be Major. }
{ MaJsize: The len~tht in world unitst of the Major tick Marks. }
{ Minsize: The len~tht in world unitst of the Minor tick Marks. }
{--}
t.l a r

Y:
Se'TliMaJsize:
Se'TliMinsize:
Counter:

re al ;
re al ;
re al ;
inte~er;

be~in

SeMiMaJsize:=MaJsize*O.S;
SeMiMinsize:=Minsize*O.S;
Counter:=O;

{Y position of tick Marks}
{half of Major tick size}
{half of Minor tick size}
{keeps track of when to do Major ticKs}
{bod}' of procedure IIYaxisClipll}
{calculate half of Major tick size}
{calculate half of Minor tick size}
{start with a Major tick}

ClipDral"I(Location tClipY'Tlin tLocation tClipY'Tlax);
Y:=Round2(ClipY'TlintSpacin~*MaJortDol,.ln); {round to next lower 'TlaJor}
while Y(=ClipYMax do be~in {loop until ~reater than YMax}

if Counter=O then {should we do a Major tick?}
ClipDraw(Location-SeMiMaJsizetYtLocation+SeMiMaJsizetY)

else
ClipDral,.l(Location-Se'TdMinsize tY tLocation+Se'TliMinsize tY);

Counter:=(Counter+l) Mod Major; {keep tracK of which size ticK to do}
Y:=Y+Spacin~; {~o to next tick position}

end; {1,.Ihile}
end; {procedure IIYaxisClipll}

Introduction to Graphics 1-31

$page$ {**}
begin {bodY of prOgraM "SinAxes2"}
graphics_init; {initialize the graphics SysteM}
display_init(CrtAddrtControIWordtErrorReturn); {which output device?}
if ErrorReturn=O then begin {output device initialization OK?}

set_aspect(511 t3S9); {use the 1"lhole screen}
CharWidth:=2*0.04; {char width: 4% of screen width}
CharHeight:=2*0.OS; {char height: 4% of screen height}
set_char_size(CharWidth tCharHeight); {install character size}
Text:='VOLTAGE VARIANCE'; {define text to be labelled}
for X:=-3 to 3 do begin {Make "bold" label}

Move(-(strlen(Text)*CharWidth)/2+X*0.002tO.9); {center label}
gtext(Text); {label the text}

end;
set_text_rot (0 t1);
CharWidth:=2*0.025;
CharHeight:=2*0.04;
set_char_size(CharWidthtCharHeight) ;

{vertical labels}
{char width: 2.5% of screen width}
{char height: 4% of screen height}
{install char size}

Text:='Voltage ' ; {define text to be labelled}
Move(-0.97t-(strlen(Text)*CharWidth)/2); {start point of centered label}
gtext(Text); {label the text}
Text:='TiMe (seconds) ';
set.;..text_rot (1 to);

{define text to be labelled}
{horizontal labels}

Move(-(strlen(Text)*CharWidth)/2t-0.92); {start point of centered label}
gtext(Text); {label the text}
set_I.liel,.,lport(O.1 to.99tO.12tO.7); {define subset of the screen}
ITlove(-1 t-1); line(-1 tl); line(1 tl); line(l t-1); line(-l t-1); {fraITle}
set_I"lindol"J(O tl00 to. 16 to. IS);
ClipLilllit(Otl00tO.16tO.1S) ;
}{axisClip(1 to.16t5tO.000StO.0004);
YaxisClip(0.0005tOt5t2tl) ;
C h a rW i d t h : = 1 .3 ;
CharHeight:=O.OOOS;
set_char_size(CharWidthtCharHeight) ;
Text:=";

{scale the window for the data}
{define the soft clip liMits}
{draw the clipped X-axis}
{draw the clipped Y-axis}
{char width: 1.3 user X units wide}
{char height: .OOOS user Y units high}
{install character size}
{erase previous definitions of string}

for X:=O to 10 do begin {eleven X labels}
strl,.,lrite(Text t1 tI t}{*10:0); {convert nUITlber to string}
Move(X*10-(strlen(Text)*CharWidth)/2tO.1593); {center the label}
gtext(Text); {label the text}

end; {for x}
Y:=0.16;
repeat

s t rl,.,l r it e (T ext t1 t}{ t Y: 6: 4) ;
Move(-StY-0.0002) ;
9text(Text) ;
Y:=Y+0.0025;

until Y>O.lS;
for X:=l to 100 do begin

Y:=DataPoint(}O;
if X=l then Move(XtY)
else line(}{tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
graphics_terITI;
end.

{starting Y position for Y labels}

{convert nUMber to string}
{center the text vertically}
{label the text}
{next Y position}
{terMinating condition}
{100 points total}
{get a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the graphics package}
{prOgraM "SinAxes2"}

1-32 Introduction to Graphics

Notice that even though the clip limits were still active when the axis labels were written, the text
(whose characters are merely a series of short lines) was not clipped. This is because the
GTEXT procedure does not call the user-defined clipping routine CLIPDRAW, it calls the DGL
procedures MOVE and LINE. Thus clipping on labelled text is only done at the hard clip
limits-the edges of the plotting surface.

This is the final version of our progressive example. It is the version which created the initial
display at the beginning of the chapter.

Miscellaneous Graphics Concepts
Chapter

2

In the last chapter we discussed the more elementary graphics operations. In this chapter, we will
discuss how to use some of those concepts more fluently, along with several other graphics
operations.

As in the last chapter, the demonstration programs in this chapter are stored for your conve­
nience on the DGLPRG: or DOC: disc which was shipped with this manual. You are encouraged
to run these programs while you are reading the manual, as they will make understanding the
concepts much easier.

Setting the Display Limits
It is possible to define a subarea of the physical display surface by calling the DGL procedure
SET _DISPLAY _LIM. The area thus defined is the area in which a subarea can be specified by
the SET_ASPECT procedure.

The parameters passed to SET_DISPLAY_LIM are expressed in millimeters. An example call
would be:

This would set the logical limits of the display device to an area whose:

• left edge is 40.5 millimeters from the physical left edge of the display device;

• right edge is 100 millimeters from the physical left edge of the display device;

• bottom edge is 30 millimeters from the physical bottom edge of the display device;

• top edge is 99 millimeters from the physical bottom edge of the display device.

If the integer variable E r ro r comes back with a value of 0, no error occurred. An error occurs if
either the minimum X or Y is greater than the maximum X or Y, or if the requested ar~a is even
partially outside the physical display limits. In either case, the call is ignored and the variable
Err 0 r is returned non-zero.

2-1

2-2 Miscellaneous Graphics Concepts

More on Defining a Viewport
In the last chapter it was mentioned that the SET_VIEWPORT procedure defined a subset of the
screen in which to plot. More precisely, the SET_VIEWPORT procedure defines a rectangular area
into which the SET_ WINDOW coordinates will be mapped. That is, the left edge of the window will
be placed upon the left edge of the viewport, the right edge of the window will be placed upon the
right edge of the viewport, and the same will happen with the bottom and the top edges.

Assuming that the SET _ASPECT procedure has been invoked to make use of the entire
screen, the screen has default edge values in virtual display coordinates of 0.0 through 1.0 in
the X direction. In the Y direction, it has the coordinates of 0.0 through 299/399 ~ 0.75 (for
the Models 216, 220 and 226),0.0 through 389/511 ~ 0.76 (for the Models 217 and 236), or
0.0 through 767 /1023 ~ 0.75 (for the Model 237, HP 98544A, HP 98545A, HP 98547 A, HP
98549A, HP 98700A, HP 9000 382 Medium-Resolution display), or 0.0 through 399/511 ~
0.78 (for HP 98542A and HP 98543A), or 0.0 through 1023/1279 ~ 0.80 (for HP 98548A, HP
98550A, and HP 9000 382 High-Resolution), or 0.0 through 479/639 ~ 0.75 (on the HP 9000
362/382 VGA display). The length of a unit in virtual coordinates is defined as "the length of
one of the longer edges of the plotting area." To recap the important characteristics of virtual
coordinates:

• The lower left of the plotting area is 0,0.

• Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as one
unit in the Y direction.

• Virtual coordinates are limitc,2d to the range a through 1. The maximum coordinate on one side
is 1, and the maximum coordinate on the other side is less than or equal to 1.

As we mentioned in the last chapter, it is trivial to determine the longer edge of the screen in virtual
coordinates, but substantially more involved to calculate the length of the shorter edge in virtual
coordinates. Since the height of the screen is shorter than the width of the screen, the longer edge is
in the X direction; therefore, the maximum X in virtual coordinates is 1. O. If the screen had been
higher than it is wide, the maximum Y in virtual coordinates would have been 1. O. Now for the
interesting part.

Remember that virtual coordinates are isotropic: X and Y units are the same length. This means that
the length in virtual coordinate units of the shorter edges of the plotting surface can be determined
from the aspect ratio of the plotting surface. The aspect ratio is the ratio of width to height of the
plotting surface. Thus, if the plotting area is wider than it is high, the ratio would be greater than
one. If the plotting area is higher than it is wide, the ratio would be less than one, and if the plotting
area were perfectly square, the ratio would be 1. You can determine the aspect ratios of both the
virtual display and the logical hmits of the plotting surface by calling the INQ_WS procedure with
operation selector 254:

const
AspectRatio=

t}' pe
RatioT}'pes=
RatioT}'pe=

25£1; {MneMonic better than Mafic nUMber}

(VirtuaIDisplay,LoficalLiMits) ;
array [RatioTypes] of real;

I.! a r
Pac: pacf(ed arra}' [1 •• 1] of char; { \ These are the sundries
Iarra}': arra}' [1 •• 1] of intefer; { \ needed b }' the call to
Ratios: RatioT}'pe; { / II i nCl_I,.,IS II •

Error: intefer; { /

inCl_IAls(AspectRatiotOtOt2,PactlarraYtRatiostError); cr/if Error<>O
then cr/if IAlriteln('Error 'tError:O, 'in deterlTlininf aspect ratio.');

}

}

}

}

Miscellaneous Graphics Concepts 2-3

The user can now use Rat i 0 [l,l i r t I.l aID is pIa }'] and Rat i 0 [Log i cal L i fTl its] to determine what
values are used to set the aspect ratio. (For more information on the INQ_ WS procedure, look
up this procedure in Appendix B.)

Usually, however, the user knows the aspect ratio because he explicitly set it at the beginning of the
program, using the SET ~SPECT procedure.

Using the value for the aspect ratio, we can derive a statement which is almost indispensible when
writing a general-purpose statement for calling the SET_VIEWPORT procedure. Assuming the
aspect ratio is contained in a variable called Asp e c t Rat i 0:

if AspectRatio>1.0 then begin
Maxl,lirt}{:=1.0;
Maxl,lirtY:=l/AspectRatio

end
else begin

Maxl,lirtX:=AspectRatio;
Maxl,lirtY:=1.0

end;

These statements define the maximum X and maximum Y in virtual coordinate units. This will
work no matter what plotting device you are using. Now that we have Maxlh rt}{ and
M a x l,l i r t Y defined, we have complete control of the subset we want on the plotting surface.
Suppose we want:

• the left edge of the viewport to be 10% of the hard clip limW width from the left edge,

• the right edge of the viewport to be 1 % of the hard clip limit width from the right edge,

• the bottom edge of the viewport to be 15% of the hard clip limit height from the bottom,
and

• the top edge of the viewport to be 10% of the hard clip limit height from the top.

We would specify:

LeftEdge:=O.l*Maxl,lirtX;
RightEdge:=O.88*Maxl,lirtX;
BottofTlEdge:=O.15*Maxl,lirtY;
TopEdge:=O.8*Maxl,lirtY;
SET_l,lIEWPORT(LeftEdgetRightEdgetBottofTlEdgetTopEdge) ;

1 Hard clip limits are those limits set by the SET_DISPLAY _LIM procedure.

2-4 Miscellaneous Graphics Concepts

Calculating Window Limits
In our progressive example in the last chapter, we were using the sometimes unrealistic practice of
using constants in the SET_WINDOW procedure call. Often you don't know until the program is
running what the values to be passed to SET_WINDOW are. The X values which were used in the
SET_WINDOW procedure call (0 and 100) came from the fact that there were 100 data points. The
Y values (for this type of plot) must be determined either by you or by the computer itself. If you
want the computer to determine the X or Y minimum and maximum, you could do it in the
follOWing manner. Assuming that the X values are in a real array called }t

const
MaxReal= 1,787B831348B231E308;

XMax:=-MaxReal; {SMaller than sMallest possible value in array}
for 1:=1 to N do {N is the nUMber of eleMents in the array}

if X[1J}XMax then XMax:=X[1J;

A similar method can be used for figuring the minimum value of the X array: First, assign }-{ (Tl i 1"1

to be + M a x Rea 1. The reason this is done is to ensure that at least the first value in the array is
used. Then, check through the array of X values, and if the value of any element is smaller than
the current minimum, it becomes the new minimum.

Of course, the minimum and maximum Y values can be found in the same manner.

Miscellaneous Graphics Concepts 2-5

Drawing a Window Frame
The SET_VIEWPORT procedure specifies where in' the logical display to put the plot-the
subarea of the plotting surface in which to plot. This is the area which the SET_WINDOW
procedure affects.

~-- PHYSICAL DISPLAY SURFACE

I-----~------------~ ~~-- LOGICAL DISPLAY SURFACE (SET _DISPLAY _LIM)

~--..I.......,;;~- VIEW SURFACE (SET_ASPECT)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L _____ ~_~:---_--__I....::

WINDOW~
(SET_WINDOW)

WORLD COORDINATE SYSTEM

VIRTUAL
~-- COORDINATE

SYSTEM

~!----!!--- VIEWPORT
(SET_VIEWPORT)

Quite often, a frame is desired around the current window to set it apart from the labels outside
the window, and so forth. If the window limits are known (or it is convenient to find out), you
can just do a MOVE and four LINEs, as was done in the last chapter. The way it was done in the
last chapter was to draw the frame after the SET_VIEWPORT call, but before the
SET_WINDOW call. Since we had not yet set our own window, the default window limits were
- 1 to 1 in both directions. Therefore, we could say:

ITlove(-lt-1)j line(-lt1)j line(1t1)j line(1t-l)j line(-lt-1)j

This is not always the case, however. If you do not know the current window limits, you can
interrogate the system through the DGL procedure INQ_WS. The values returned from there
can be used to draw the frame. The following lines of code demonstrate how to do this. First,
the INQ_WS routine is accessed to determine the current window limits, and then a box is
drawn around those limits.

2-6 Miscellaneous Graphics Concepts

const
WindowliMits= 450;

type
{MneMonic better than Ma~ic nUMber}

liMitOrder=
lilllitType=

var
Pac:
Iarray:
WindolN:
Error:

•
•
•

(XITIi n, }{,Ilax, '('Tli n ,'(,Ilax) ;
array [liMitOrder] of real;

packed array [1 •• 1] of char;
array [1 •• 1] of inte~er;

limitT}'pe;
inte~er;

{\ These are the sundries }
{ \ needed by the call to }
{ I the DGl procedure }
{I lIinq_INs lI • }

inq_ws(WindoINli'Tlits ,0,0,4 ,Pac darra}' ,WindolN ,Error);
if Error=O then be~in

Illove(WindoINU{'Tlin] ,WindoIN[Y'Tlin]); {'TIO v e to 10iNer left corner}
line(WindoIN[}{'Tlin] ,WindoIN[Y'Tlax]); {draiN to I.lppe r left corner}
line(WindoINU{lTlax] ,WindoIN[Y'Tlax]); {draiN to upper ri~ht co rne r}
line(WindoIN[}{'Tlax] ,WindoIN[YlTlin]); {draiN to 10iNer ri~ht corner}
line(WindoINU{'Tlin] ,WindoIN[Y'Tlin]); {draiN to 10iNer left corner}

end {Error=O?}
else INriteln('Error ',Error:O,' occurred in IIF ralTle II') ;

Miscellaneous Graphics Concepts 2-7

Turning Displays On and Off
If you ran the last chapter's programs, and do not have a bit-mapped display, you probably noticed
that the graphics screen was turned on automatically to show you what was being plotted, but the
alpha screen was not turned offat the same time. If you do have a bit-mapped display (e.g., Model
237), both alpha and graphics occupy the same screen; the screen is either on or it isn't.

In the case of nonbit-mapped displays, as soon as the program ended, the Main Command Level
prompt appeared at the top of the screen, obstructing the view of the top portion of the graphics
image. This can be mildly annoying as it is, having to turn off the alpha raster by pressing the
(GRAPHICS) key, but it rapidly gets more annoying if your program generates printed output and
plotted output which are not intended to be viewed simultaneously.

What is needed is a way to turn either the alpha raster or the graphics raster on or off at will. There is
a way to do this, by calling the OUTPUT_ESC procedure with operation selectors 1050 or 1051.
Or, if you prefer a more readable method, the you could write a procedure to do the operations.
Assume that there has been an enumerated type declared:

t}' pe
Displcl}'States= (Off tOn);

Here is an example section of code to show you how to turn the displays on or off. The
parameter used is assumed to be of the type declared above.

{**}
procedure Alpha(State: boolean);
{--}
{ This procedure turns the alpha raster on or off (true=ont false=off). }
{--}
const

AlphaRaster= 1051;
I) a r

AlphaOn:
Rarra}':
Error:

be S' i n

arra}' [1 •• 1] of
arra}' [1 •• 1] of
integer;

if State=On then AlphaOn[lJ:=l
else AlphaOn[lJ:=O;

{ITlrlelT10nic

inteS'er; {

re a I ; {

{

{procedure
{"On" is a

out put _ esc (A I ph aR a s t e r t 1 t I) t A I ph aOn t R a r r a}' t Err 0 r) ;

better than ITla S' i c nUITlber}

\ This is all stuff that
:> is needed b }' the

I "output_esc" procedure.
"Alpha"}
boolean constant: true}

if Error<>O then INriteln('Error' tError:Ot' in procedure "Alpha". ');
end; {procedure "Alpha"}

}

}

}

Similar code could be generated for turning the graphics display on and off. The references to
"Alpha" should be changed to "Graphics" just to avoid confusion, and the operation selector
should be changed to 1050.

2-8 Miscellaneous Graphics Concepts

Conversion Between Coordinate Systems
Many times, you'll probably want the ability to convert back and forth between virtual display
coordinates and world coordinates. One of the most -used areas where this is desired is where you
want to specify some parameter in units relative to the display device, not the graphical model
currently in use. For example, it is often desirable to specify character sizes as, say, 6% of the screen
height. Or, you want to draw an X axis whose tick marks are 1 % of the screen height. These, and
other places, the values could be specified in world coordinates, but it is an inconvenience to have
to specify a constant-sized line or character in units which are varying all over the place. For
example, if you have a general-purpose plotting routine which gets it data from an external source,
it doesn't know until it gets the data what the window limits are to be. It is only after the window
limits are known that the character sizes would be specified.

If we could specify these things in virtual display coordinates, we could have the computer do the
dirty work of converting from virtual coordinates to whatever the current world coordinates are.

To convert from one coordinate system to another, there are three steps involved:

1. Determine, as a fraction, how far into the old system the point of interest is. For example, if
the old system goes from 10 to 20 in X (calculations for Y proceed with identical steps), and
you want to find out how far 13 is into that range, you take:

OldFraction:=(X-OldXMin)/(OldXMax-OldXMin) ;

or, using our numbers,

OldFraction:=(13-10)/(20-10) ;

This evaluates to 0.3, and, sure enough, 13 is three tenths of the way between 10 and 20.

2. Take the fraction found in the previous step, and go the same distance into the new
coordinate system. For example, say our new coordinate system goes from 300 to 400.
To go into this new range the same fraction of the way, you take:

NewDistance:=OldFraction*(NewXMax-NewXMin) ;

Again, putting our numbers into the expression,

NewDistance:=O.3*(400-300) ;

This evalutes to 30, and, sure enough, we have to go thirty units into the new coordinate
system.

3. To "go into" the new coordinate system means that we have to add the new coordinate
system's minimum value to the distance into the new system so that the distance into the
new system is relative to the same starting point as the system itself.

NewPoint:=NewDistance+NewXMin;

or, in our units,

NewPoint:=30+300;

And 330 is the desired point in the new coordinate system.

Miscellaneous Graphics Concepts 2-9

The "old" coordinate system and the "new" coordinate system can have any maxima and minima
(you are not restricted to converting between the world coordinate system and the virtual coordin­
ate system), and the point of interest may be inside the range, one of the end points, or outside the
range; it make no difference to the mathematics.

Following are two routines which convert between virtual display coordinates and world coordin­
ates.

{**}
procedure ConvertVirtuaIToWorld(VirtuaIX, VirtualY: real;

var World)-(, WorldY: real);
{--}
{ This routine converts any point in virtual coordinates, whether on the }
{ plotting surface or not, into 1 .. lorld coordinates. }
{--}
const

Wi ndol .. ILilTIi ts=
lh el .. IPo rtL i ITIi t s =

t}' pe

aso;
aSl ;

{MneMonic better than Magic nUMber}

LilTlitOrder=
LiITlitT}'pe=

var
Pac:
larra}':
Windol .. l:
lh el .. IPo rt:

{".here, too.

()-(ITIi n,)-(ITlax, YITIi n, YITlax);
array [LiMitOrder] of real;

pacKed array [1 •• 1] of char;
array [1 •• 1] of integer;
LiITlitT}'pe;
LiITlitT}'pe;
integer;

{

{

{

{

{

\
\

>-

/

}

These are the sundries
needed b }' the call to
the DGL procedure
lIin«=l_I .. lsli.

}

}

}

}

} Error:
beg i n {bodY of procedure IIConl,lertl.1irtuaIToWorld ll

}

i n «=I _1 .. 1 S (Win d 01,.,1 L i ITI its ,0 ,0 ,a ,p a c tI a r r a}' ,W i n d 01,.,1 ,E r r 0 r) ;
if Error<>O then l,.,Iriteln('Error' ,Error:O,

, in deterlTlining 1 .. lindol .. 1 lilTlits in IIConl,lertl.1irtualToWorld". ');
i n «=I _1 .. 1 S (lh e 1 .. 1 P 0 r t L i ITIi t s ,0 ,0 ,a ,p a c , I a r r a}' ,lh e 1,.,1 P 0 r t ,E r r 0 r) ;
if Error<>O then l,.,Iriteln('Error ',Error:O,

, in deterlTlining viel .. IPort lilTlits in IIConvertl.1irtuaIToWorld li • ');
WorldX:=(VirtuaIX-Viewport[XMin]) {\ Calculate X distance froM left ••• }

/(Viewport[XMax]-Viewport[XMin])
*(Window[XMax]-Window[XMin])
+Windol,.,l[)-(ITlin] ;

WorldY:=(VirtuaIY-Viewport[YMin])
/(Viewport[YMax]-Viewport[YMin])
*(Window[YMax]-Window[YMin])
+Windol .. I[YITlin] ;

end;

{ \ ••• convert to a fraction... }
{ / ••• 90 saMe fraction into world ••• }
{/ ••• add XMin to get value. }
{\ Calculate Y distance froM bottoM ••• }
{ \ ••• convert to a fraction... }
{ / ••• 90 saMe fraction into world ••• }
{/ ••• add YMin to get value. }
{procedure IIConvertVirtualToWorld ll

}

2-10 Miscellaneous Graphics Concepts

{**}
procedure ConvertWorldToVirtual(WorldX, WorldY: real;

var lhrtual)-{, VirtualY: real);
{--}
{ This routine converts any point in world coordinates, whether on the }
{ plotting surface or not, into I.lirtual coordinates. }
{--}
const

WindolNLilTli ts=
lh elNPO rtL i ITIi t s =

£150;
£151;

{MneMonic better than Magic nUMber}
L •• here, too. }

t}' pe
LilTlitOrder=
LiITlitT}'pe=

I.! a r

(){Irlin,)-{Irlax, YITlin, YITlax);
array [LiMitOrder] of real;

Pac:
larra}':

packed array [1 •• 1] of char;
array [1 •• 1] of integer;
LilrlitT}'pe;

{ \ These are the sundries

WindolN:
lh elNPO rt:
Error:

LilrlitT}'pe;
integer;

{

{

{

{

\
>

/
/

needed b }' the c a 11 to
the DGL procedure
II i n9_IAIS II •

}

}

}

}

}

begin {bod}' of procedure IIConl.lertWorldTol.lirtual ll
}

i n 9 _IN S (Win d 0 IN L i ITI its ,0 ,0 ,£I , Pac , I a r r a}' ,W i n d 0 IN ,E r r 0 r) ;
if Error<>O then INritelrd 'Error' ,Error:O,

, in deterlTlining INindolAI lilTlits in IIConl.lertWorldToVirtual ll
.');

in 9 _IN S (lh e IN P 0 r t L i ITI its, 0 ,0 ,£I ,p a c tl a rr a}' ,lh e IAI P 0 r t ,E r r 0 r) ;
if Error':::::~O then l,nitelrd'Error ',Error:O,

, in deterMining viewport liMits in
VirtuaIX:=(WorldX-Window[XMin])

/(Window[XMax]-Window[XMin])
*(Viewport[XMax]-Viewport[XMin])
+lh elNPO rt [){ITli n] ;

VirtualY:=(WorldY-Window[YMin])
/(Window[YMax]-Window[YMin])
*(Viewport[YMax]-Viewport[YMin])
+lheIAIPort[YITlin] ;

end;

IIConl.lertWorldTol.lirtual ll
• ');

{\ Calculate X distance frOM left... }
{ \ ••• convert to a fraction... }
{ / ••• 90 saMe fraction into world ••• }
{/ ••• add XMin to get value. }
{\ Calculate Y distance frOM bottoM ••• }
{ \ ••• convert to a fraction... }
{ / ••• 90 saMe fraction into world ••• }
{/ ••• add YMin to get value. }
{procedure IIConl.lertWorldToVirtual ll

}

Miscellaneous Graphics Concepts 2-11

More on Labelling a Plot
To help you get a better grasp of the concept of labelling, there will be four small sections, each
of which demonstrates something more about the concept of labelling a graph.

The Character Cell
The first program deals with the relationship between the size of the character, per se, and the
size of the character cell-that rectangle in which the character is placed. This program is on
file "CharCell" on the DGLPRG: or DOC: disc.

SIze of Character in Character Cell

x x x III II lC X X .)1 X)I X X X)ll X X III X X X

::0:::: Cill
lCXxxxx·:lliili

X
::::::::::::::

)! ~ ~: 1) ~) 1 N!s: c""e",~ • . . . • ••• 7~ ~ ~ .
Pen

Position

.. ~
Ie X X X I(X

X III: X X" II X

1(II; lOII)II 111 X III

pro~raM CharCell(output);
iMPort d~l_lib, d~l_inq;

const
Crt=
Control=

t}' pe
Lor~T}'pe=

Str255=
~J a r

Error:

1. ,8;
string[255];

inte~er;

integer;

{pro~raM naMe saM~ as file naMe}
{access the necessary procedures}

{device address of ~raphics raster}
{device control word; i~nored for CRT}

{the l.lalid l.lalues to pass the "Lor~"}

{for the procedure "Glabel"}

{disPlaY_init return variable; 0
{loop control variables}

2-12 Miscellaneous Graphics Concepts

$paSe$
beSin

{**}
{bodY of proSraM "CharCell"}

sraphics_init; {initialize Sraphics library}
display_init(Crt tControl tError); {initialize CRT}
if Error=O then besin

set_aspect (511 t389);
ITlol.le(-lt-1); line(-lt1);

{if no error occurred ••• }
{use the whole screen}

line(1 t1); line(l t-1); line(-l t-1);
set_window(-2t38t-7.5t22.5); {define appropriate window}
set_char_size(l t2); { \ }
ITlol,Je(lt21); { :> DOITlainlabel. }
Stext('Size of Character in Character Cell'); { / }
for){:=o to 38 do beSin { \ }

for Y:=O to 15 do besin { \ }
ITlol.le(){-O.l t}'+O.l); { \ Dral,.) the four 9x15 }
line(X+O.l tY-O.l); { \ character cells. Make }
ITlol.leO{+O.ltY+O.1); { / a fralTle around eacht }
line (X-O.l tY-O.1); { / and an){ at el,Je f}' }

end; {for y} {/ point. }
end; {for x} { / }
for 1:=0 to 3 do besin {draw a fraMe around each char cell}

ITlol,Je(1*9tO); line(1*9t15); line(1*9+9t15); line(1*9+9tO); line(1*9tO);
end;
set_char_size(9t15) ;
ITIO 1.1 e (1 tll) ;
Hext('Gb}';');

end; {Erro r=O?}
Sraphics_terITl;
end. {prosralTl "CharCell"}

{bis characters}
{So to startinS position}
{label SOMe characters}
{end of conditional code}
{terMinate Sraphics library}
{end of proSralTl}

As the diagram shows, a character is drawn inside a rectangle, with some space on all four sides.
Both the rectangle's width and height are specified by the values passed to the DGL procedure
SET _CHAR_SIZE, and are measured in world coordinates. This rectangle is subdivided into a
grid of 9 wide by 15 high. Characters are drawn in this framework.

The current pen position-that position moved to before writing a label-is one unit to the right
and four units up from the lower left-hand corner of the character cell. For example, when
labelling a lower-case "b", the bottom of the longer vertical line would end up at the point
moved to before labelling. Also note that there doesn't have to be any part of the character at
the current pen position, as in the upper-case "G" in the plot. For characters which have
descenders (lines which go below the' 'baseline" of the character cell), the current position is
still relative to the lower left corner of the character cell, not the character.

Of course, the little x s in the plot above are not drawn when you label a string of text; they are
there solely to show the position of the characters within the character cell.

The DGL procedure SET _CHAR_SIZE specifies the height of the character cell, not the charac­
ter itself.

Miscellaneous Graphics Concepts 2-13

Setting Character Size
In a previous section, we discussed translation of points between coordinate systems. And as it
was mentioned before, often it is desirable to be able to specify character sizes in screen­
dependent units, rather than model-dependent units.

As we saw in the last chapter, there is a DGL procedure called SET _CHAR_SIZE which sets an
attribute of all subsequent characters, namely the width and height of the character cells. When
using SET _CHAR_SIZE, the characters are scaled using the same scaling as the objects drawn.

In other cases, however, the text size should be related to the display device, rather than the
user's graphics model. For example, when a general-purpose display routine gets data from a
file, or some other source, it probably does not know until the data is actually received what the
range of the data is. Thus, the window limits are calculated in the program. To get the title of the
plot of a consistent size, you would have to convert the actual size of the label relative to the
display device to the same size expressed in world coordinates so they can be sent to
SET _CHAR_SIZE.

The following piece of code shows you how to define character cell height in virtual coordin­
ates, and the width is defined as a fraction of the height; thus, it is an aspect ratio. The reason
that the aspect ratio is desired, rather than the character cell Width, is that if you want characters
with a constant shape, you would just have to take your first parameter, and multiply it by a
constant. Thus, in effect, you have just specified the aspect ratio.

The values passed into the routine are converted into character cell width qnd character cell
height in world coordinates, which the DGL procedure SET _CHAR_SIZE needs.
SET _CHAR_SIZE is called and the converted values are passed to it. The converted values are
retrievable by invoking the INQ_WS procedure with operation selector 2S0.The character cell
height and width are needed by another piece of code (which actually does the labelling)
covered shortly.

Here is how to specify character size in virtual coordinates, with an aspect ratio, and convert it
into parameters appropriate for the SET _CHAR_SIZE routine. Notice that the conversion
routine covered a few sections back is used:

var
Width:
}{O t YO:
}{1 t Yl:

•
•
•

re a 1 ;
re a 1 ;
re a 1 ;

{teMPOrary spot for width}
{OtO (I,Jirtual) in 1"lorld}
{itl (virtual) in I")orld}

ConvertVirtuaIToWorld(OtOtXOtYO); {convert OtO in virtual to world}
COlH!ert 1hrtuaIToWorld(1 tl t}{i tYl); {convert 1 tl in virtual to I")orld}
Hei~ht:=Hei~ht*(Yi-YO); {convert hei~ht in virtual to world}
Width:=Hei~ht*AspectRatio*(Xi-XO)/(Yl-YO); {convert width in virtual to world}
set_char_size(WidthtHei~ht); {invoke the paraMeters}

2-14 Miscellaneous Graphics Concepts

Here is the graphical output of a program which demonstrates the use of the procedure
CHARSIZE, and then the program itself:

4%

9%

16%

25%
35

pro~raM CsizePro~(output);

iMPort d~l_libt d~l_inq;

const
Crt= 3;
Control=

1,1 a r
Error:
I t J:
5 t rn ~:

(I ;

inte~er;

inte~er;

strin~[l(1];

%
{~et ~raphics routines}

{address of internal CRT}
{device control; (I for CRT}

{variable for initialization outco~e}
{utility variables}
{teMPOrary holdin~ place for strin~s}

$include 'DGLPRG:ConvVtoW'$ {virtual-to-world conversion}
$pa~e$ {**}
procedure CharSize(Hei~htt AspectRatio: real);
{--}
{ This procedure defines character cell size and the puts the Width and }
{ Hei~ht values into ~lobal variables for later use. The ar~UMents passed }
{ in are the hei~ht of the character cell in VIRTUAL coordinatest and the }
{ aspect ratio of the character cell. The values for the window liMits }
{ May be anythin~; they are taken into account and do not affect the size }
{ of the characterSt since they are defined in virtual coordinates. This }
{ proceduret alon~ with Lor~ and Ldirt define ~lobal variables for use by }
{ Glabel. }
{--}

1,1 a r
Width:
}{O t YO:
}O t '1'1:

re a I ;
re a I ;
re a I ;

Miscellaneous Graphics Concepts 2-15

{teMPOrary spot for width}
{OtO (lJirtual) in I,.lorld}
{1 tl (lJirtual) in I')orld}

be~in {bodY of procedure "CharSize"}
ConlJertVirtuaIToWorld(OtOtXOtYO); {conlJert OtO in lJirtual to world}
COIHlert 1hrtuaIToWorld(1tltXltY1); {conlJert ltl in lJirtual to 1"lorld}
Hei~ht:=Hei~ht*(Yl-YO); {conlJert hei~ht in lJirtual to world}
Width:=Hei~ht*AspectRatio*(Xl-XO)/(Yl-YO); {conlJert width in lJirtual to world}
set_char_size(WidthtHei~ht); {inlJoKe the paraMeters}
end; {procedure "CharSize"}
$pa~e$ {**}
be~in

~raphics_init;

displa}'_init(Crt tControl tError);
if Error=O then be~in

set_aspect (511 t388);
set_l,)indol,,1{ 1 t2 tlOO to);
for 1:=1 to S do be~in

CharSize(1*1HI.Ol to.S);
MOlJe(l t1*1*1*0.4+1);
strl"lrite(Strn~tl tJtI*I:O);
~text(Strn~+I%/) ;

end; {for i}
end; {Error=O?}
~raphics_terITI;

end.

{bod}' of pro~ralTI "CsizePro~"}

{initialize the ~raphics SysteM}
{which output delJice?}
{output delJice initialization OK?}
{use the whole screen}
{scale the window for the data}
{six different character sizes}
{install character size}
{MOlJe to a appropriate place}
{conlJert nUMber to strin~}

{label the strin~}

{terMinate the ~raphics pacKa~e}

{pro~raITl "CsizePro~"}

The FOR loop writes lines of text on the screen with different character sizes. Incidentally, notice
also the SET_WINDOW procedure. It specifies a Ymin largerthan the Ymax. This causes the top of
the screen to have a lesser Y -value than the bottom. This is perfectly legal.

Again, character cell height, when using the algorithm above, is measured in virtual coordinates,
and the definition of aspect ratio for a character is identical to the definition of aspect ratio for the
hard clip limits mentioned earlier: the width divided by the height. Thus, if you want short, fat
letters, use an aspect ratio of 1.5 or larger. If you want tall, skinny letters, use an aspect ratio less
than about 0.5. If you call the above routine:

CharSize(0.03tO.S) ;
CharSize(0.OStO.3) ;

CharSize(O.l t2);

Cell 3% virtual coordinate units high, aspect ratio 0.6.
Cell 6% virtual coordinate units high, aspect ratio 0.3 (tall
and skinny).
Cell 10% virtual coordinate units high, aspect ratio 2 (short
and fat).

2-16 Miscellaneous Graphics Concepts

Setting the Label's Direction
We saw in the last chapter that label could be rotated by using the DGL procedure
SET_TEXT_ROT, which specifies angles in a run/rise format. Many people, however, deal with
angles more easily than run/rise ratios. Again, the angular value is converted to run/rise numbers by
taking the cosine and sine of the angle, respectively:

You could define a procedure for which the angle could be specified in degrees, radians, or
grades1

, depending on the value of the units parameter, which, being an enumerated type, can
have the value DEG (degrees), RAD (radians), or GRAD (grades):

(De9', Rad, Grad);

The value passed in, in the unit of measure defined by the units parameter, must be converted
to radians. Radians are the only units understood by the trigonometric functions in Pascal.
Conversion is accomplished by a simple division. (The division could be changed to a multiply
by the reciprocal. This would increase the speed with little loss of understandability.)

const
De._per_rad= 57.2957795131; {180/pi: for convertin9' de9'rees to radians}
Grad_per_rad= 83.8819772388; {200/pi: for convertin9' 9'rads to radians}

•
•

case Units of
De.: Direction:=Direction/De9'_per_rad; {de9'rees to radians}

{correct units already}
{9'rads to radians}

Rad:
Grad: Direction:=Direction/Grad_per_rad;

end; {case}
set_text_rot(cos(CharTheta) ,sin(CharTheta)); {invoKe the new text direction}

For example, assuming you call the routine Lab e I D ire c t ion, and that there is a constant called
"Pi" which has a value of 3.1415926535897:

LabeIDirection(O,De~) ;
LabeIDirection(Pi/2,RAD) ;
LabeIDirection(14,Grad) ;
LabelDirectiordPi ,Rad);
LabeIDirection(270,DEG) ;

lOne revolution = 3600 = 2TI radians = 400 grades.

Writes label horizontally to the right.
Writes label vertically, ascending.
Writes label ascending a gentle slope, up and right.
Writes label upside down.
Writes label vertically, descending.

Miscellaneous Graphics Concepts 2-17

Here is a plot demonstrating the specification of a label's direction by a genuine angle:

pro~raM LdirPro~;

ifT1Port d9'l_litd
const

Crt =
Control=

t}' P e
An9'T}'pe=

l'!cl r
Error:
I tJ:
St rn 9':
CharTheta:

3 ;
0;

{pro~ram naMe saMe as file naMe}
{access the necessary procedures}

{device address of 9'raphics raster}
{device control word; i9'nored for CRT}

(De9',Rad,Grad); {used by procedure LabelDirection}

inte9'er;
inte9'er;
strin9'[50];
rea 1 ;

{disPlaY_init return variable; 0 = oK}
{loop control variable and spare}
{strin9' to label}
{9'lobal variable for label direction}

$pa9'e$ {**}
procedure LabelDirection(Direction: real; Units: An9'Type);
{--}
{ This procedure is used in conjunction with LabelOri9'in, CharSize and }
{ Glabel. It sets the labellin9' direction to be used, and places the }
{ direction into a 9'lobal variable so Glabel can use it. }
{--}
const

De9'_per_rad= 57.2857785131; {180/pi: for convertin9' de9'rees to radians}
Grad_per_rad= 63.6618772368; {200/pi: for convertin9' 9'rads to radians}

be9'in {procedure IILabelDirection ll
}

case Units of
De9': Direction:=Oirection/De9'_per_rad; {degrees to radians}
Rad: {correct units already}
Grad: Direction:=Direction/Grad_per_rad; {~rads to radians}

end; {case}
CharTheta:=Direction; {put into a 9'lobal variable}
set_text_rot(cos(CharTheta) ,sin(CharTheta)); {ilHloKe the net.! text di rection}
end; {procedure IILabelDirection ll

}

2-18 Miscellaneous Graphics Concepts

$page$ {**}
begin {bod}' of prOgrafl1 IILdirProg ll

}

graphics_init;
displa}'_init(Crt tControl tError);
if Error=O then begin

set_aspect(511 t389);
set_l..Jindol,.,l(-l tl t-l tl);
set_char_size(0.05tO.08) ;
for 1:=0 to 35 do begin

Strng:=";
strl,.,lrite(strngti tJtI*10:0);
Strng:='-------'+Strng+' deg';
LabeIDirection(I*10tDeg) ;
fllove (0 to) ;
9text(Strng) ;

end; {for I}
end; {Error=O?}
graphics_terfll;
end.

{initialize graphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{define appropriate window}
{set the size for the characters}
{every ten degrees}
{eMPty the string}
{convert the loop variable to degrees}
{attach prefix and suffix}
{specify label direction}
{Move to the center of the screen}
{label the text}

{terMinate graphics library}
{prOgrafll IILdirProg ll

}

When a character size is selected whether through the DGL routine SET _CHAR_SIZE or
through the utility routine CHARSIZE, the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated, its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y
axis) are not the same directions as the display device's axes.

In the preceding plot, you may have noticed that the hyphens do not precisely meet in the
middle. This brings up another point: when you move to a point and then write a label, which
part of the label ends up at that point? In other words, how is the label justified?

Justifying Labels
On a label written by the GTEXT procedure, the label is always justified at the lower left-hand
corner of the label. Unfortunately, this does not lend itself to centering text, which is often a
very desirable thing. It would be nice if we could programmatically select how the label should
be justified. For the progressive example we were working on in the last chapter, the main title
needed to be as far toward the top of the graph as it can be, and at the same time, centered
horizontally. The following addresses just this kind of need.

For horizontal centering, there are three possible choices: left-justified, centered, and right­
justified. For vertical centering, there are also three choices: bottom-justified, centered, and
top-justified. Thus, there are nine possible combinations of values which can be sent to the
LABELJUSTIFY routine: left, centered, and right for the X direction, and for each of these,
bottom, centered, and top for the Y direction.

Assume there are two enumerated types declared:

HJustif}'T}'pe=(Left tHCentered tRight);
VJustifyType=(BottoMtVCenteredtTop) ;

Miscellaneous Graphics Concepts 2-19

Label justification is relative to the label, not the plotting surface, and it is independent of the
current label direction. For example, if you have specified:

• upper left label justification,

• and label direction of 90°,

• a move to point (6,8),

and then write the label, it is written going straight up, not horizontally:

w
(j
(I

r­
.J
o :§ CD

Lower Left > CD E
Corner ~ ~ 8:8

:::>

Therefore, it is the upper left corner of the label which is at point 6,8 relative to the rotated label.
However, it is the lower left corner of the label which is at 6,8 relative to the plotting device
because the label has been rotated.

Note that two things are obtained by calls to the INQ_ WS procedure: the current pen position,
and the current character size (in world coordinates).

If you are going to use the label justification scheme just described, you will need to write your
own labelling routine which takes into account the current justification values. Label justifica­
tion gets a little tricky when dealing with user-definable label direction, as you can see in the
section of code below.

The following three global variables are assumed to exist:

• HJus t i f i cat i on: The currently-defined horizontal justification. This is of the previously­
mentioned type HJu s t i f }'T}' pe .

• 1.IJustification: The currently-defined vertical justification. This is of the previously­
mentioned type HJustif}'T}'pe.

• C h arT he t a: This real variable is the current label direction, expressed in radians. We need to
keep this in a global variable because there is no operation selector we can send to
INQ_ WS to determine it.

const
CharSizeCode=
CurrentPosition=

t }'pe
Positions=
PositionT}'pe=
CharAttributes=
CharAttrT}'pe=

250;
258;

(}o{ t Y) ;

{MneMonic better than Mafic nUMber}
{ditto}

array [Positions] of real;
(Width tHeifhth);
array [CharAttributes] of real;

2-20 Miscellaneous Graphics Concepts

~I a r
Chars:
Charsize:

inte9'er;
CharAttrT}'pe;

Len,Hei9'ht: real; {len9'th and hei9'ht of character strin9'}
Ox ,Oy: re a I ;
R,Theta: real; {for rectan9'ular-to-polar conversion}
Pac: pacKed array [1 •• 1] of char; {\ These are the }
Iarray: array [1 •• 1] of inte9'er; {\ sundry iteMs }
Position: PositionType; { I needed for the }
Error: inte9'er; { I call to "inq_ws"}

•
•
•

inq_IAls (CharSizeCode ,0 ,0 ,2 ,Pac darra}' ,Charsize ,Error);
if Error<>O then IAlriteln('Error' ,Error:O,' in "Glabel".');
Chars:=strlen(text);

{9'et pen position}

Len:=Charsize[WidthJ*(7*Chars+2*(Chars-l»/S;
Hei9'ht:=Charsize[Hei9'hth]*8/1S;

{len9'th Minus inter-char 9'ap}
{hei9'ht Minus inter-line 9'ap}

Ox:=Len*(-ord(HJustification)/2) ;
Oy:=Hei9'ht*(-ord(VJustification)/2) ;
R:=sqrt(Dx*Dx+Dy*Dy); { \ Convert to polar coordinates so }
Theta:=Atan(Dy,Dx); {I rotation is easy. }
Theta:=Theta+CharTheta; {add the LabelDirection an9'le}
Dx:=R*cos(Theta); { \ Convert R and the new Theta bacK}
Dy:=R*sirdTheta); {I to rectan9'ular coodinates. }
inq_IAls(CurrentPosition,0,O,2,Pac,Iarra}',Position,Error); {9'et pen position}
if Error=O then be9'in

Move(Position[X]+Dx,Position[Y]+Dy); {Move to the new startin9' point}
Hext(text) ;

end {Error=O?}
else IAlriteln('Error' ,Error:O,' in "Glabel".');

And here is a program using all the label-related algorithms mentioned above.

---- -

LEFT HCENTERED RIGHT

TOP >tEST TE>ST TEST

VCENTERED XTEST TE>5T TESTx

BOTTOM ~EST TE~T TESTx

pro~raM JustPro~(output);

ifrlPOrt d~l_libtd~l_inq;

const
CrtAddr=
ControlWord=

t }'pe

Miscellaneous Graphics Concepts 2-21

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

HJustif}'T}'pe=
I.JJust i f}'T}'pe=
An~T}'pe=

StrZ55=

(Left tHCentered tRi~ht); {horizontal justification}
(BottoMtVCenteredtTop); {vertical justification}
iDe~tRadtGrad); {used by procedure "LabeIDirection"}
strin~[Z55]; {for the procedure "Glabel"}

var
ErrorReturn:
Hjust:
In u s t :

I :

inte~er;

HJustif}'T}'pe;
VJustifyT}'pe;
inte~er;

Strn~: str255;
CharWidth tCharHei ~ht: real;
HJustification:
VJustification: VJustifyType;
CharTheta: real;

$include 'DGLPRG:ConvVtoW'$
•
•
•

{variable for initialization outcoMe}
{horizontal justification variable}
{vertical justification variable}
{for the strwrite stateMent}
{labelled text holder}
{\ These are ~lobal variables }
{ \ needed by the LabelJustifYI }
{ I LabelDirection/CharSize }
{I series of procedures. }
{needed by procedure "CharSize"}

Procedures FraMe, CharSize, LabelDi rection, LabeIJustif}',
At an, and G I ab e I go here.

•
•
•

be~in {bod}' of prO~rafTl "JustPro~"}

~raphics_init; {initialize the ~raphics SysteM}
display_init(CrtAddrtControIWordtErrorReturn); {which output device?}
if ErrorReturn=O then be~in {output device initialization OK?}

set_aspect(511 t388); {use the l,.,Ihole screen}
set_window(-l tZ.5t-0.5tZ.5); {scale the window for the data}
FraMe; {dral,.,l a frafTle around the screen}
CharSize(0.03tO.G); {width=3% screen width; asp. ratio=.G}
LabeIDirection(OtDe~); {horizontal labels}
{===== Labels at the top ==}
LabelJustify(HCentered tTop);
for Hjust:=Left to Ri~ht do be~in

Strn~:=";

strl,.,lrite(Strn~t1 tl tHjust);
frIOI,le(ord(Hjust) tZ.l!);
Glabel (St rn~);

end; {for Hjust}

{label's reference point: top Middle}
{horizontal loop}
{null the strin~ so nothin~ left over}
{convert enuMerated type to strin~}
{Move to the appropriate place}
{label the strin~}

{===== Labels on the left ed~e ==}
LabeIJustif}'(Left tl.JCentered); {label's reference point: left middle}
for Vjust:=Top downto Bottom do be~in {vertical loop}
Strn~:=";

strl,.,lrite(Strn~t1 t1 tl.Jjust);
frlOVe (-0.8 to rd (I.Jjust»;
Glabel (St rn~);

end; {for Vjust}

{null the strin~ so nothin~ left over}
{convert enumerated type to strin~}

{move to the appropriate place}
{label the strin~}

2-22 Miscellaneous Graphics Concepts

{===== Labels ("TEST") with different Justifications ======================}
CharSize(O.OGtO.G); {characters a bit bi~~er}
for HJust:=Left to Ri~ht do be~in {horizontal loop}

for VJust:=Top downto BOttOM do be~in {vertical loop}
LabeIJustify(HJusttVJust); {set label Justification}
Move(ord(HJust)+O.03tord(VJust)+O.03); {\ }
line(ord(HJust)-O.03tord(VJust)-O.03); {\ Make the "x" at }
Move(ord(HJust)-O.03tord(VJust)+O.03); {/ the appropriate }
line(ord(HJustI+O.03tord(I,IJust)-O.03); {/ place. }
lT1ol.le(ord(HJust) tord(I,IJust)); {'Tlol,Ie to label's startin~ position}
Glabel('TEST'); {label the text}

end; {for VJust}
end; {for HJust}

end; {ErrorReturn=O?}
~raphics_terITl; {terMinate the ~raphics packa~e}

end. {pro~ralll "JustPro~"}

The x s indicate where the pen was moved to before labelling the word "TEST". What this
diagram means is that, for example, if Lab e I J 1.1 S t if}' (L eft t Bot t 0 Ill) is in effect, and you move to
4,5 to write a label, the lower left of that label would be at 4,5. This automatically compensates
for the character size, label direction, and label length. It makes no difference whether there is
an odd or even number of characters in the label. If Lab e I Ju s t if}' (Cen t e r t To p) had been in
effect, and you had moved to 4,5, the center of the top edge of the label would be at 4,5. You
can readily see how useful this concept is in centering labels, both horizontally and vertically.

Miscellaneous Graphics Concepts 2-23

Monochromatic CRT Drawing Modes
On a monochromatic CRT, there are three different drawing modes available1

:

• Drawing dominant lines. This is the most obvious drawing mode; pixels are turned on. It is
the mode the graphics package is in by default. White lines are drawn on a dark back­
ground, and dark lines are drawn on a white background.

• Erasing lines. In this mode, pixels are turned off. If a line is erased on a background which
is already dark, there is no effect. This is the method for making sure a line is gone after it
mayor may not have been drawn.

• Complementing lines. When this type of line is drawn, pixels which are on are turned off,
and pixels which are off are turned on. This is for drawing something which will be visible
no matter what the background is; e. g., a graphics cursor.

The drawing modes are selected by calling the OUTPUT_ESC procedure. This DGL procedure
allows you to control device-dependencies of output devices. The operation selector which
controls drawing modes is 1052. Following is an algorithm which takes care of all the necessary
variables, declarations, and all-around "housekeeping" involved in selecting a drawing mode.
This implementation of the algorithm assumes the existence of the following type declaration:

DrawingModeTvpe= (Dominant,Erase,Complement);

Here is the section of code for selecting drawing modes on a monochromatic CRT:

const
SetDraltJingMode=

var
1052; {MneMonic better than Magic nUMber}

DraltJMode: array [1 •• 1] of integer;
array [1 •• 1] of real;

{\ This is all stuff that }
Rarran
E r ro r:

•
•
•

case Mode of
Erase:
DorTlinant:
CorT1PlerTlent:

end; {case}

integer;

DraltJMode[lJ:=2;
DraltJMode[lJ:=O;
DraltJMode[1]:=3;

{ \
{ \
{ ". ..-
{ /
{ /

{ > is needed by the }
{/ "output_esc" procedure. }

}

Conl.lert DralAdngMode enurTle rated }

t}' pe into the appropriate }

value for OUTPUT_ESC procedure. }

}

output_esc(SetDraltJingMode t1 tOtDraltJMode tRarra}' tError); {set it}
if Error<>O then ItJriteln('Error' tError:Ot' in procedure "DraIAlingMode". ');

A characteristic of drawing with drawing mode Do fTI i 1"1 a 1"1 t or drawing mode Era s e is that if a
line crosses a previously-drawn line, the intersection will be the same "color" as the lines
themselves. When drawing with drawing mode CorT1P 1 erTlent, and a line crosses a previously­
drawn line, the intersection becomes the opposite state of the lines. In other words, the pixels
being defined by the line being drawn are exclusively-ORed with the pixels already on the
screen. For example, assume a black background (like right after calling CLEAR_DISPLAy2).

1 There are actuaIly four drawing modes that you can select; however, two of them, dominant and non-dominant, are identical on
monochromatic displays. See the section called Writing Modes and Color in the Color Graphics chapter for a description of using non­
dominant mode on color displays.

2 There is a way to clear the screen to white, also. Set entry number a in the color table (use the SET_COLOR_TABLE procedure) to anything
which has a luminosity greater than 0.5.

2-24 Miscellaneous Graphics Concepts

You invoke a drawing mode Co (Tl pIe (Tl e nt, then draw a pair of intersecting lines. When the first
line is drawn, all pixels are off, so the line being drawn causes all pixels to be turned on along its
length. However, when the second line is drawn, it will turn on pixels until it intersects the first
line. At that point, the pixel is on, so it gets turned off After that, the rest of the pixels are off, so
they are again turned on.

This concept is illustrated by the program DrawMdPrg (found on file "DrawMdPrg" on the
DGLPRG: or DOC: disc). The listing is given in the appendix so you can see how it works, but
since it is a dynamic display, and constantly changing, it makes little sense to show a snapshot of
it. The first statement of the main program (0 ralNMo de: =OOITI i n an t ;) defines the type of operation
the program will exhibit. If 0 ralNMo d e equals COITIP 1 elTlen t, all lines will complement, because the
two lines· in the infinite loop (the IN h i 1 e t r I.l e loop) which select drawing modes only modify the
drawing mode if it is OOI!1inant or Erase. Otherwise, the drawing mode is not changed. When
you wish to change the program to the drawing/erasing mode, change the first statement of
the main program to say 0 r a IN Mod e : = 0 0 ITI ina n t ;. Then the two drawing-mode-selecting lines will
select drawing modes Era s e and 00 In ina nt, respectively.

In complementing mode, a pixel is on only if it has been acted upon by an odd number of line
segments.

Faster Drawing Procedures
In the previous section, CRT Drawing Modes, the routines INT ~OVE and INT _LINE were used
for moving and drawing, rather than the MOVE and LINE procedures used previously. The reason
for the existence of these routines is that they exhibit higher execution speed. This increase in speed
is obtained because the procedures do integer arithmetic, which is much faster than real arithmetic.
The only restriction on parameters is that they must be 16-bit signed integers; that is, a subrange of
INTEGER whose range is -32 768 through 32 767. There is a TYPE defined in the module
OGL_ TYPES called GSHORTINT which is this sub range of INTEGER.

Depending on the application, they may be up to three times faster than their counterparts
which deal with real numbers. However, the increase in speed will only take place if the
following three conditions are met:

• The display must be a raster device;

• The window bounds must be within the range of - 32 768 through 32 767; and

• The window must be less than 32 767 units wide and high.

There are some more I NT - routines available also. They are identical to the same routines
without the I NT _ at the beginning of their names except for the restriction mentioned above.

MOVE
LINE
POLYGON
POL YGON_DEV _DEP
POLYLINE

~ INT_MOVE
~ INT_LINE
~ INT _POL YGON
~ INT _POL YGON_DD
~ INT _POL YLINE

Miscellaneous Graphics Concepts 2-25

Selecting Line Styles
When a graph is attempting to convey several different kinds of information, colors are often
used: the red curve signifies one thing, the blue curve signifies another thing, etc. But when only
one color is available, as on a monochromatic CRT, this method cannot be used. Something
that can be used, however, is different line styles. Even on a monochrome CRT, it makes sense
to say that the solid line signifies one thing, the dotted line signifies another thing, and the
dashed line signifies still another.

The DGL procedure SET_LINE_STYLE is used to select from the available line styles. The single
argument is an integer whose value is 1 through the number of line styles supported on the device
currently being used. If using an HP-GL plotter, look under the LT (Line Type) instruction to
determine how many line styles are supported.

The CRT supports eight line styles:

1:1
CI

"7
I'

6 -"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"
5-·---·---·-·-·-·-·-·-·-----·-·-·-·
4 -'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'
3-----------------

1

As you can see, line style 1 draws a solid line. Line styles 2 through 8 are patterned sequences
of on and off. For all line styles, the computer remembers where in the pattern a line segment
ended. Therefore, when you start drawing another line segment, the line pattern will continue
from where it left off. If you want the pattern to start over, just re-execute the line style
procedure.

2-26 Miscellaneous Graphics Concepts

Plotters also have different line styles to select from. For example, the following line styles are
available on the HP 9872 and HP 7470 plotters.

7·
6 --
5---------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-'-
3--------------
2--------------
1

HP 9872 and 7470 Line Styles

As another example, the HP 7580 and HP 7585 plotters have two different ways of plotting most of
their line styles: continuous and vector-adjusted. Lines drawn with a continuous line style are drawn
such that every line segment drawn continues the pattern from where the previous segment left off.
If a line segment is short enough and the next section of the pattern is the space between marks,
there may be nothing at all drawn for a particular line segment. Vector-adjusted lines are forced to
have the middle of the main drawn section at each endpoint of the line segment. See the line
segments below.

13
1 2 --
11 ---------------------------
10 -'-'-'-'-'-'-'-'-'-'-'-'-'-

9 --------------
8--------------
7
6 -------------------------------------
5 -------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-
3-------------
2-------------
1

HP 7580 and 7585 Line Styles

~ ... ~

11··rr·~·I·1 \.. ..I .IL . .JI.
• ~'I ~.::..J~ I'. I I L.._.--.J I I
~ '--'::..J

VECTOR ADJUSTED

CONTINUOUS

Miscellaneous Graphics Concepts 2-27

Isotropic Scaling
It was mentioned in the last chapter that there were two different types of scaling: isotropic and
anisotropic. Isotropic scaling means that one unit in the X direction is equal in length to one
unit in the Y direction. Anisotropic means that one unit in the X direction does not necessarily
equal one unit in the Y direction.

We dealt with anisotropic scaling in the last chapter by calling the DGL procedure SET_
WINDOW. For the task we were working on at that time, anisotropic scaling was the best
choice. However, when drawing a picture of an object, or drawing a map, it is desirable to
have isotropic scaling, so the representation of the object is not distorted.

There is a way to cause isotropic scaling to be invoked. First, comparisons of the aspect ratios of
the viewport limits and the window limits must be made. Then some extra room is allowed in
either the X direction or the Y direction (but not both). The amount of extra room is just the
precise amount to cause the requested window to be isotropically scaled into the viewport.

Following is the listing of an algorithm to set a window isotropically.

const
IJi e I", p 0 r t L i ITIi t s =

type
{MneMonic better than Ma~ic nUMber}

LilTlitOrder=
LifTlitT}'pe=

(l.'xITlin ,l.'xITlax ,lhlTlin ,lhITlax);
array [LiMitOrder] of real;

var
Pac: pac~(ed a r ra y

arra}' [1 •• 1] I a r ra n
IJi el",po rt: LiITlitT}'pe;
Error: inte~eri

Wx ran ~e, Wy ran ~e:
IJx ran ~e, Ih ran ~e:
Wratio,lhatio:
WXITli d, WYITIi d:
Wl.'ratio,I.IWratio:
Multiplier:

•
•
•

re a I ;
re a I ;
re a I ;
rea I ;
rea I ;
re a I ;

[1 •• 1] of char; { \ ••• sundry variables }
of inte~er; {

{

{ I

\
I

needed b}' the lIinl:l_I"'SIi }
procedure, called to ~et }
window liMits. }

{X/Y ran~e in window (world) coordinates}
{X/Y ran~e in viewport (virtual) coordinates}
{aspect ratios of window and viewport}
{X/Y Midpoints of window}
{ratios of the ratios}
{the aMount to Multiply the seMiran~e by}

inl:l_l",s(IJiewportLiMits ,o,t) ,a ,Pac ,IarraY ,IJiel",port ,Error); {~et l)iel",port lilTlits}
if Error<>O then

I",riteln('Error' ,Error:O,'
Wxran~e:=WxMax-WxMin;

in procedure IIShow li
• ');

{ran~e of X in desired window}
WYran~e:=WYMaX-WYMin; {ran~e of Y in desired window}
Wratio:=Wxran~e/WYran~e; {aspect ratio of desired window}
I.Ixran~e:=l.'iewport[l.'xMax]-l.'iewport[l.IxMin]; {ran~e of X in current viewport}
I.IYran~e:=l.Iiewport[I.IYMax]-l.Iiewport[I.'YMin]; {ran~e of Y in current viewport}
I.Iratio:=l.Ixran~e/I.'Yran~e; {aspect ratio of viewport}
if abs(l.Iratio)<abs(Wratio) then be~in {need More rOOM on top and bOttOM}
WYMid:=WYMin+WYran~e*0.5;

Wl.lratio:=abs(Wratio/l.'ratio) ;
Multiplier:=WYran~e*0.5*Wl.lratio;

WYMin:=WYMid-Multiplier;
WYMax:=WYMid+Multiplier;

end

{Y Midpoint in desired window}
{ratio of aspect ratios}
{what the Y ran~e MUst be extended by}
{new MiniMUM Y for window}
{new MaxiMUM Y for window}

2-28 Miscellaneous Graphics Concepts

else begin
WXMid:=WxMin+Wxrange*O.5;
VWratio:=abs(Vratio/Wratio) ;
Multiplier:=Wxrange*O.5*VWratio;
WXMin:=WxMid-Multiplier;
WXMax:=WxMid+Multiplier;

end; {vratio<wratio?}
set_'",indo,,,,(Wxlllin tWXIIlax tWYlllin tW}'IIlax);

{need More rOOM on right and left}
{X Midpoint in desired window}
{ratio of aspect ratios}
{what the X range Must be extended by}
{new MiniMuM X for window}
{new MaxiMuM X for window}

{set window with twiddled paraMeters}

Following are two example outputs from the program "IsoProg" (found on a file of the same
name on the DGLPRG: or DOC: disc) which demonstrates the isotropic scaling routine. The
user is asked to specify Xmin, Xmax, Ymin, and Ymax for the isotropic units. The specified
area is mapped into the viewport area isotropically, adding extra space to either the X or Y
direction, whichever is needed. There is a dotted-line frame around the screen limits, and the
requested limits are shown in a solid-line grid. The space added is outside the solid-line grid.
In both cases, the whole screen was used for the viewport.

In the first example, the requested values were 0 to 6 in X, and 0 to 8 in Y. Since the aspect ratio
of this window is less than the aspect ratio of the viewport, some extra room is needed in the X
direction, as shown.

I --,

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
l I

Miscellaneous Graphics Concepts 2-29

In the next example, the requested values were 0 to 7 in X, and 0 to 4 in Y. Since the aspect
ratio of this window is greater than the aspect ratio of the viewport, some extra room is needed
in the Y direction, as shown.

I-------------------~

I

The program that produced the two preceding outputs is listed in the appendix.

2-30 Miscellaneous Graphics Concepts

Axes and Grids
For many data-display graphs, axes along the edges are sufficient to get the message across.
But if your graph needs to be read with more precision than axes afford, you can use a grid. A
grid is a logical extension to axes, with some differences. The differences are:

• The major tick marks extend all the way across the clip limits, and

• The minor tick marks intersect in small crosses over the entire surface of the soft clip limits.

There is a program called "AxesGrid" on the DGLPRG: or DOC: disc which will help you
understand how to write your own grid-drawing routine. It is similar to the axis procedures,
except for the two differences noted above: the major ticks extend across the entire soft clip
area (it calls CLIPDRAW), and the minor ticks for X and Y intersect in little crosses between
the grid lines.

The following program shows the differences between:

• a pair of axes by themselves,

• a sparse grid,

• a dense grid, and

• a sparse grid with two pair of axes.

Note that some care must be taken to ensure that the minor tick marks in a grid are smaller than
the distance between them. If they are not, the minor tick crosses drawn by the grid procedure
would have overlapped. The end result would have been a grid with even the minor ticks
extending all the way across the soft clip area.

Miscellaneous Graphics Concepts 2-31

As the lower left graph shows, there is a way to get the best of both worlds-accurate interpola­
tion and lack of clutter. If you want to be able to estimate the data values very accurately from
the finished plot, but also want to prevent the plot from appearing too "busy", or cluttered, it
can be done. The grid drawn has somewhat sparse major tick marks, but very many minor tick
marks. The point of interest is that the minor tick length parameter is reduced to virtually zero.
This causes the tick crosses (the little plus signs) to be reduced to mere dots. Using this strategy
allows easy interpolation of data points (to the same accuracy as typically used in axes), but
does not clutter the graph nearly as much as normal ticks would. In fact, had we used the
previous minor tick length, the length of the lines making up the tick crosses would have been
greater than the distance between the ticks. Thus, they would have merged together to make
solid lines, extending all the way across the graph. This would greatly clutter the graph.

Be aware when using this strategy of making huge numbers of degenerate tick crosses that the
computer still thinks of them as crosses, which means that both the horizontal and vertical
components must be drawn. This looks to you like drawing and then redrawing each dot.
Therefore, when sending this type of grid to a hard-copy plotter, do not be averse to starting
your plot, and then going on vacation.

In the lower right quarter of the plot, there is another way to reach a compromise between ease
of interpolation and lack of clutter. Axes are used on all four edges, and a sparse grid is drawn
with major tick marks every second of the axes' major tick marks.

Note that two pairs of axes were drawn. The parameters are identical save for the position of the
intersection. The first pair of axes intersect at the lower left corner of the soft clip area. The
second pair of axes intersect at the upper right corner of the soft clip area.

Also note that when a grid is drawn, the frame around the window can usually be removed
(depending on the Major Tick Count); the lines around the soft clip limits were being drawn by
grid procedure anyway.

All of the above have advantages; there is no one approach which is always best. On many
occasions, an application is defined such that there is no question as to which procedure to use.
Other times, however, it is not such a cut-and-dried situation and you want to weigh the
alternatives carefully before setting your program in concrete. To aid you in the decision, here
are some pros and cons to the approaches above.

Advantages to axes:
• Axes execute much faster than grids. This is for two reasons. First, there is much less

calculating the computer must do, and second (and more important), there is much less
actual drawing of lines the computer must do. This becomes especially evident when
sending a plot to a hard-copy plotting device where physical pen must be hauled around .

• It does not clutter the plot as much. Reference points are available at the axes, but there is
no question about where the data curve is. When using a grid, it is possible to lose the data
curve among the reference lines if it is close to being horizontal or vertical.

2-32 Miscellaneous Graphics Concepts

Advantages to grids:
• Interpolation and estimation are much more accurate due to the great number of reference

ticks and lines; one need not estimate horizontal and vertical lines to refer back to the axis
labels.

• Usually there is no need to explicitly draw a frame around the grid area to completely
enclose the soft clip limits, as is often desired, because the major tick marks from the GRID
procedure would probably redraw the lines. Of course, this is dependent upon the Major
Tick count.

Logarithmic Plotting
In many fields, there are ranges of valid values which are so large that not only is isotropic
scaling out of the question, but any kind of linear scaling-even anisotropic-is virtually use­
less. To successfully depict these kinds of data, one or both of the axes can be logarithmic
scales; that is, the data points themselves are not plotted, but the logarithm of each data point is
plotted. For example:

• In seismology, earthquake intensity is measured in the logarithmic Richter scale.

• In acoustics, both sound intensity (decibels) and frequency (octaves) are dealt with in
logarithmic scales.

• In astronomy, a Hertzsprung-Russell diagram graphs both the luminosities and surface
temperatures of stars logarithmically.

• Also in astronomy, black-body radiation curves are plotted logarithmically.

For logarithmic plots, logarithms (from here on referred to as logs) to the base 10 are most often
used l

.

Homemade Mathematical Functions
To deal with logs, we need to write two mathematical routines which are not provided in the
language.

Taking a Number to a Power
First, we need to be able to exponentiate-take an arbitrary number to an arbitrary power. We
can use an identity function of logarithms to do this:

xY = eY In (x)

This is easily done since Pascal does have functions to return the log and antilog2 in the
Napierian3 base e. The function to return the natural log is LN, and the function for returning the
natural antilog-e to a power- is E}{ P.

1 An exception to this is the frequency example in acoustics mentioned above, in which octaves deal with powers of two.

2 The 10910 1000 = 3 because lO:l = 1000. The antil0910 3 = 1000 because 103 = 1000.

3 The Napierian base e is the base of natural logarithms. Its value is 1/0! + Ill! + l/2! + 1I3! + l/4!. .. and equals approximately 2.718 281 828.

Miscellaneous Graphics Concepts 2-33

The Logarithm to Any Base .
The next function is slightly more complex. We needed a function to calculate the common
logarithm (log to the base 10). We used another identity function of logarithms which allows
one to calculate the log of any positive number to any positive base not equal to I-even
fractional ones. We used a special case of this to calculate the common logarithm, or log to the
base 10:

y = In(x)/ In(b)

Since this allows us to calculate the log of any (positive) number to any (positive) base not equal
to 1, we will define the base to be 10. Now we can deal with common logarithms.

Back to Logarithmic Axes ...
When you are doing logarithmic axes using logs to the base 10, you need to specify the minimum
and maximum in decades. For example, say you want to make logarithmic axes from 0.01 to 1000.
This is 10-2 to 103

, therefore, the will be five decades represented. To draw a logarithmic X axis:

for Decade:=-2 to 3 do be~in

if Decade<3 then UnitMax:=8
else UnitMax:=l;
for Units:=l to UnitMax do be~in

X:=Decade+Lo~10(Units) ;
1110 I.! e (}{,YIIlin) ;
draIAI(}{,YIIlax) ;

end; {for Units}
end; {for Decade}

The statement starting "if Decade<3" is there because we want the units to go from 1 to 9 1 for
every decade except the last one, for which we only want the integral power of ten.

1 Each decade goes from 1 to 9, not from 1 to 10, because 10 will be covered by the first iteration on the next decade.

2-34 Miscellaneous Graphics Concepts

Following is a short program (found on file "LogPlot" on the DGLPRG: or DOC: disc) which
draws logarithmic grid, and plots a curve on it. A logarithmic grid is merely a logarithmic axis
with long tick marks.

/

/

/

pro9'ral,1 Lo9'Plot(f,e}'board ,output);
import d9'l_litd
const

}{"li n =
}{',Iax =
YITI i n=
'(',Iax=
Crt=
Control=

t}' pe
RDataT}'pe=

const
}{values=

YI.lalues=

var
Error:
Decade:

-4;

[1,,15] of real;

{ \ }

{ \ Decade minima }
{ / and maxima. }
{ / }

{device address of 9'raphics raster}
{device control word; i9'nored for CRT}

RDataT}'pe[0.0003, 0.0008, 0.004, 0.008, 0.(11,0.07,0.22,0.5,
1.2, 2.8, 8.8, 18.8, 34, 58, 87];

RDataT}'pe[1.1, 4.5,13.38,45.8,80.33,131).7,348,880.4,
888, 833, 803, 841, 720, 505, 380];

{displav_init return variable; 0 = ok}

Units, UpperLimit:
}{, Y:

inte9'er;
inte9'er;
inte9'er;
re a 1 ;
inte9'er; I :

Miscellaneous Graphics Concepts 2-35

$page$ {**}
function Logl0(X: real): real;
{--}
{ This function returns the logarithm to the base ten of a number. }
{--}
const

Log_l0= 2.30258509299;
beg i n
Logl0:=ln(X)/Log_l0;
end;

{log to the base e of 10}
{function IILog10 1l

}

{function IILog10 1l
}

$page$
begin

{**}
{bodY of program IILogPlot ll

}

graphics_init;
displa}'_init(Crt ,Control ,Error);
if Error=O then begin

set_aspect(511 ,389);
set_I"lindol..J{}{hlin ,){hlax ,Yfrlin ,Yfrlax);

{initialize the graphics system}

{===== Draw and label logarithmic X-axis grid =============================}
for Decade:=Xmin to Xmax do begin {one decade equals one mantissa cycle}

if Decade=Xmax then UpperLimit:=1
else UpperLimit:=9;
for Units:=1 to UpperLimit do begin {do 2-9 if not last cycle}

X:=Decade+Logl0(Units) ;
frlove(){,Yfrlin) ;
line{}{,YfTlax) ;

end; {for units}
end; {for decade}
{===== Draw and label logarithmic Y-axis grid =============================}
for Decade:=Ymin to Ymax do begin {one decade equals one mantissa cycle}

if Decade=Ymax then UpperLimit:=1
else UpperLimit:=9;
for Units:=1 to UpperLimit do begin {do 2-9 if not last cycle}

Y:=Decade+Logl0(Units) ;
frlove(){frlin ,y);
line{}{frlax ,y);

end; {for units}
end; {for decade}
{===== Draw the logarithmic data curve ====================================}
for 1:=1 to 15 do begin

if 1=1 then move(Logl0(XValues[I]) ,Logl0(Yvalues[I]))
else line(Logl0(XValues[I]) ,Logl0(Yvalues[I]));

end; {for i}
end; {Error=O?}
graphics_terfrl;
end.

{end of conditional code}
{terminate graphics library}

2-36 Miscellaneous Graphics Concepts

Storing and Retrieving Images
If a picture on the screen takes a long time to draw, or the image is used often, it may be
advisable to store the image itself - not the commands used to draw the image - in memory
or on a file.

Note

Because the location of the various Series 300 frame buffers may vary,
storing and retrieving images on these models is somewhat more complex
and exceeds the scope of this manual. Therefore, application of the
GSTORE procedure to these is not discussed here.

Image transfer from the graphics memory to a user array can be done by overlaying an array
directly on top of the graphics memory, i.e., forcing the starting address of a user array to be
the same as the starting address of the graphics memory. The user array is also the same size
as the graphics memory. First, you must have an INTEGER array (32-bit integers) of sufficient
size to hold all the data in the graphics raster. This amounts to an array size of 75001 on the
Models 216, 220, and 226; 6240 on the Models 217 and 236. This array holds the picture
itself, and it doesn't care how the information got to the screen, or in what order the different.
parts of the picture were produced.

In the program called "GstorProg" (located on the DGLPRG: or DOC: disc), an image is drawn
with normal plotting commands, and then, after the fact, the image is read from the graphics
area in memory, and placed into the user array, using the procedure GSTORE. After the array
is filled by the GSTORE procedure, a curve is plotted on top of the image already there. Then,
turning the knob changes the value of a parameter, and a different curve results. But we do
not have to replot the grid, axes, and labels. We merely need to copy the data containing the
image (which has everything but the curve and the current parameter value) back into graphics
memory by calling the inverse procedure, GLOAD. This allows the curve to be changed almost
in real time. Note that only the size of the data array must be decreased if this is to work on
a Model 216, 220 or 226. If this is to work on other computers, both the array size must be
increased (because of the increased array size) and it must be accessed dynamically - the t·i E ~'l
statement and pointers.

Note that the $SYSPROG ON$ compiler directive must be in the program. The reason for
this is that we are using the compiler's ability to force an array to be in a particular area in
memory. We declare an integer array whose location in memory is exactly that of the graphics
raster memory. Thus, when we deal with the array, we are dealing with the graphics memory,
which has the current image in it.

1 The reason the lower-resolution displays require more memory for image storage than the higher-resolution displays is that the
Models 216, 220, and 226 use only the odd bytes of the words. Thus, only the least significant eight bits of each sixteen-bit word
are used; the most significant eight bits are zeroes.

Miscellaneous Graphics Concepts 2-37

To write a program such as this, which stores a graphical image and reloads it, there are several
housekeeping things which must be done. First, you must know where in the physical memory
of the machine the graphics memory resides:

The Graphics Memory Address and the Graphics Memory Size in your machine is dependent
on the model. Find them in the following table.

Model

216/220/226

217/236

Address

$530000

$530000

Size

7500

6240

The addresses are expressed in hexadecimal and the sizes are expressed in 32-bit integers.

After locating the address and size of the graphics memory, two constants must be defined.
The address:

const
GPas t et- Rddr = he>:: ("·530~~100·"::'.:

Then, how large the graphics memory is (the size of the graphics raster is expressed in 32-bit
words):

const
GPasterSize= 6240;

Now, we must declare a type of which the variable being overlaid on the graphics memory will
be:

t l::Ipe
GPas t et- T'::Ipe= array [1, ,GPasterSizeJ of integer;

Next, overlay a variable directly on top of the graphics memory. The constant in the brackets
immediately after the variable name forces the address of that variable to the specified location
in memory. This can only be done if the $SYSPROG ON$ compiler directive has been
encountered .

... ? ·:ir
GPaster[GPasterAddrJ: GPas t er T'::Ipe.:

And finally, the user's variable into which the graphics memory will be placed. Although it is
of the same type as the variable GF.:.:iS t et- above, we will let the machine figure out where to
put it:

2-38 Miscellaneous Graphics Concepts

After all these declaration have been set up, it is a trivial matter to store the graphics image into
the user array:

Gstore(Screen) ;

Loading a screen image is just as trivial:

Gload(Screen) ;

Again, this program is on file "GstorProg" on the DGLPRG: or DOC: disc, and a listing of the
program is in the appendix. It stores and reloads the graphics image to and from a user array.
Of course, it also defines the necessary support constants, types, and variables for the GLOAD
and GSTORE routines. It draws a blackbody radiation curve for the current temperature.

Note that this program puts into use many of the concepts previously discussed in this chapter:

• Conversion from virtual coordinates to world coordinates;

• Specifying character size with a size in virtual coordinates and an aspect ratio, angular
specification of label direction, and label justification;

• Turning the alpha raster off (nonbit-mapped displays)

• Logarithmic axes and grid;

• Image storage and retrieval.

B1ackbody Radiation

<t­

o 10'
>.
+'

'"

.

.
c: 10'
G)

+'
c:

/

-

,--

~II
10 '

Temperature (K)· 1111111111

I--

r----

~~

........... -
........... ,

111111
~ - 10' 10 2 10 ' 10"

Wavelength (microns)

..........

iUIH
102 10'

The first time the curve is displayed, it will look like the preceding display. Every time you hit a digit
key, a new curve will be drawn, based on the current value of T e ITI per a t u r e.

Data-Driven Plotting
Many Lines in One Step

Miscellaneous Graphics Concepts 2-39

In the cases where the data to be plotted is in arrays, it can plotted in one statement by using the
POLYLINE procedure. The X data must be in one array, and the Y data in another array. Both
arrays must be one-dimensional arrays of reals. Below is a program showing how to plot an X
data array versus a Y data array.

pro~raM PLinePro~(output);

irT1Port d~l_libtd~l_inq;

const
CrtAddr=
ControlWord=

t}' pe
RDataType=

const
array [0 •• 10] of real;

}{I)alues=
Yvalues=

var
ErrorReturn:
}{ t Y:

RDataT}'pe[O tl t2 t3 til t5 tB t7 tB t8 tlO];
RDataT}'pe[O t2 tl til t3 t3 tl t5 t3 til tB];

inte~er;

RDataT}'pe;
$pa~e$ {**}
be~in {pro~rarTl IIPLinePro~lI}

~raphics_init;

displaY_init(CrtAddrtControlWordtErrorReturn) ;
if ErrorReturn=O then be~in

set_aspect(511 t388);
set_INindol,JlO dO to dO);
Move(OtO); line(OtlO); line(10dO); line(10tO); line(OtO);
X:=Xvalues; Y:=Yvalues;
poldine(11 t}{tY);

end; {ErrorReturn=O?}
~raphics_terrTl;

end. {pro~raM IIPLinePro~lI}

2-40 Miscellaneous Graphics Concepts

Note that the X data need not be steadily increasing values so as to make a broken-line chart
like above. It could just as easily be used for drawing pictures of objects where both X and Y
vary in an unpredictable way. However, if both X and Yare going to change, you'll probably
want to be able to control the pen status-you'll want to lift the pen and drop the pen at will.

Drawing Multi-Line Objects
Often, when plotting data points, they do not form a continuous line like the broken-line charts
we've seen before. One must have the ability to control the pen's status (up or down), to allow
drawing of several different, disconnected parts of an image in one step. For this need, there is a
DGL procedure called POLYGON. The fourth parameter in the POLYGON procedure is the
operation selector, and its function is to tell the computer to draw or not draw a particular line. It
also specifies where individual polygons start.

When plotting an entire array with the polygon statement, the fourth parameter is defined in the
following manner. It must be of type INTEGER. The resultant action for the various operation
selectors are:

Polygon Operation Selectors

Operation Resultant Action
Selector

o Do not draw the edge extending from the last ver­
tex to this one.

1 Draw the edge extending from the last vertex to
this vertex.

2 This vertex is the first vertex of a member polygon.

Note
Although the POLYGON procedure heading declares the incoming
arrays to be of type GREAL~IST or GSHORTINT ~IST, you cannot
declare your own variables this way. Declare your variables as your own
data type: arrays of the appropriate size of reals and short integers
(16-bit integers; i.e., -32768 •• 32767). If you import the module
DGL-lYPES, you can use the type GSHORTINT.

Following is a program (file "PolyProg" on DGLPRG: or DOC: disc) which uses the POLYGON
procedure. It draws a LEM (Lunar Excursion Module). The first parameter specifies how many
points there are in the arrays. There are three arrays used: two one-column REAL arrays for
the X and Y data, and a one-column INTEGER array containing opcodes.

Miscellaneous Graphics Concepts 2-41

pro~raM PolyPro~(output);

ilTIPort
{pro~raM naMe saMe as file naMe}

d ~ 1 _ 1 i b ,d ~ 1_ t }' pes ,d ~ 1_ pol y ,d ~ 1_ i n q ; {access the necessary procedures}
const

MaxPoints=
Crt =
Control=

t}' pe
Reals=
Word=
Inte~ers=

const
}·{I)alues=

Yvalues=

OpCodes=

1.1 a r
Error:
I :
LeITl}{, LeITIY:
OpSelectors:
Points:

27; {nulTlbe r of points in arra}'s}
3 ; {delJice address of ~raphics raster}

° ; {del.lice control 'AI 0 rd ; i~nored for CRT}

array [1 •• MaxPoints] of re a 1 ; {to contain }{ and Y values}
-32768 •• 32767; {is-bit 'AI 0 rd}
arra}' [l •• Maxpoints] of Wo rd; {to contain

Reals[1.5,2.5,2.5,1.5,-1.5,-2.5,-2.5,-1.5,
-2.5,2.5,2.5,-2.5,-2.5,
-2.5 ,-lI.5 ,-2.5 ,-5.0 ,-lI.O,
2.5, lI.5, 2.5, 5.0, lI.O,

-0.5,-1.0, 1.0, 0.5];
Reals[1.0,2.0,3.0, lI.O, lI.O, 3.1), 2.0,1.0,

1.0, 1.0,-2.0,-2.0, 1.0,
-2.0,-lI.O, O.O,-lI.O,-lI.O,
-2.0,-lI.O, O.O,-lI.O,-lI.O,
-2.0,-3.0,-3.0,-2.0] ;

Inte~ers[2t1 t1 t1 t1 t1 t1 ,1,
2t1t1,t,t,
2,t t1 ,2t1,
2t1t1,2t1,
2t1t1t1];

OPt selectors}

{Octa~on}

{Box}
{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Ri~ht le~}

{Left le~}

{Nozzle}

inte~er;

inte~er;

Reals;
Inte~ers;

inte~er;

{display_init return variable; ° = ok}
{loop control variable}
{so 'Ale can pass it to IIpol}'~onll}

{ditto}
{ditto}

2-42 Miscellaneous Graphics Concepts

$page$ {**}
begin {bod}' of prOgrahl IIPolyProg ll

}

leMX:=Xvalues; {\ Put into variable array so }
leMY:=Yvalues; { > it can be passed by }
DpSelectors:=DpCodes; {/ reference into the DGl proc.}
Points:=MaxPoints;
graphics_init;
disPlaY_init(Crt tControl tError);
if Error=O then begin

set_aspect(Sll t389);

{put constant into an array variable}
{initialize graphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{invoke isotropic units}

polygordPointstlerTI)-{tlerTIYtDpSelectors) j {dral", the lines}
end; {Error="O?} {end of conditional code}
graphics_terrTI; {terMinate graphics library}
end. {prOgrarTI IIPol}'Prog ll

} {end of prOgrarTI}

What's in a Polygon?
That's a good question, and brings up the crucial difference between POLYGON and
POLYGON_DEV_DEP (as well as the INT versions of the same). The key to understanding the
two classes of polygon is the concept of device independence. Polygons generated by proce­
dures that lack the DEV_DEP (or DO) suffix are device independent, and will always be filled,
with as close to the fill specified by the polygon table (lines or crosshatched lines at some
specified denSity) as the device they are being drawn on is capable of producing. Thus the lines
used for a fill on a CRT may have visible jaggies, and the lines used on a 7580 plotter will not,
but both of them will produce polygons filled with lines.

So what happens with POL YGON_DEV _DEP? The "DEV _DEP" calls specify a device depen­
dent polygon. The fastest, most appropriate fill possible on the device is used to fill a polygon.
On the CRT, this is a dithered area fill (dithering is discussed in detail in the "Color" chapter).
On the plotter, the edge is drawn with the current line color attribute if edge is specifed in the
operation selector array and enabled in the polygon table. If the polygon edge attribute is false
and the operation selector edge attribute is true, the polygon edge is drawn with the current
polygon interior color attribute and polygon linestyle. It is worth noting that in this case, if the
current polygon interior color attribute is set to 0 (the background in the color table), the
polygon will not be visible.

When to Use Which Polygon?
Why are there two polygon fills? The two polygon calls address different valuable characteristics
of the system. The POLYGON call tries to give a consistent representation, regardless of what
display device is being used. The POL YGON_DEV _DEP calls are faster. You give up consisten­
cy by using the device dependent calls, as well as control of drawing mode (all device depen­
dent polygons are drawn in the dominant writing mode). The choice is yours; if you want speed
or control of drawing mode, use the device dependent calls-if you want consistant presenta­
tion of the image and/or control of the drawing mode, use the device independent call.

Miscellaneous Graphics Concepts 2-43

Polygon Filling
When drawing a polygon, whether it is filled or not is an attribute of the polygon. The filling
attribute itself has other attributes; namely, method (dithered/hatched), density (0-100%), and,
if hatched, hatching direction (- 90°-90°) and perpendiculars (true/false).

Polygons can be filled two different ways. Filling allows you to shade the polygons to various
shades of gray.

The first method of filling is to draw lines across the polygons; crosshatching. This is selected
with the SET _PGN_STYLE procedure. Various densities of shading can be achieved through
crosshatching, depending on both of the following:

• The amount of space between the crosshatching lines;
and

• Whether or not there are perpendiculars.

The other method of shading on a monochromatic CRT is called dithering. Dithering is a more
accurate way to get shades of gray on a black-and-white CRT whose electron gun is either fully
on or completely off. Dithering is accomplished through selecting small groups of pixels!, a
four-by-four square of them on the Series 200/300 computers. Various pixels in the dithering
box are turned on and off to arrive at an "average" shade of gray. There are only seventeen
possible shades because out of sixteen pixels (the 4 x 4 box); you can have none of them on,
one of them on, two of them on, and so forth, up to all sixteen of them on. And it makes no
difference which pixels are on; the pattern for each level is chosen to minimize the striped or
polka-dotted pattern inherent to a dithered image.

Crosshatching is accomplished by drawing many lines, and lines are drawn taking into account
the current drawing mode (dominant, erase, or complement). One reason that this is important
is that you can draw a complementing cursor with a call to the POLYGON procedure. Dithering
does not deal with lines, therefore, the current drawing mode is ignored when doing a dithered
fill.

Note
Polygons to be filled which extended over the edge of the plotting
surface are completely filled-including all the area off the plotting
surface. If a great deal of the polygon is invisible, then, it may appear
that the machine is hung2

, but in reality, it is merely doing a lot of
calculations which do not affect the visible image at all.

1 The word "pixel" is a blend of the two words "picture element," and it is the smallest addressable point on a plotting surface. A Model 236
computer has 512 x 390-pixel resolution; thus there can be no more than 512 dots drawn on any row of the CRT, or 390 dots drawn in any
column.

2 "Hung," in this context, is short for "hung up." It is a computerese term which means that the machine has entered a state, usually
unanticipated. in which the machine becomes unresponsive, and drastic measures are often required to correct it.

2-44 Miscellaneous Graphics Concepts

Here is another program which draws the LEM, and fills the polygons in two different ways. On
the left, it is filled by crosshatching; on the right, it is filled by dithering.

pro~raM FillPro~(output);

ilTlPO rt
{pro~raM naMe saMe as file naMe}

d~l_l ib td~l_t}'pes td~l_pol}' td~l_inq;
const

{access the necessary procedures}

MaxPoints=
Crt =
Control=

type
Reals=
Word=
Inte~ers=

const
}{I,Ialues=

Yvalues=

OpCodes=

~I a r
Error:
I :
LeITl}': t LemY:
OpSelectors:
Points:

{number of points in arrays}
{device address of ~raphics raster}
{device control word; i~nored for CRT}

array [l •• MaxPoints] of real;
-32788 •• 32787;
array [l •• Maxpoints] of Word;

{to contain X and Y values}
{18-bit liJord}

{to contain OPt selectors}

Reals[1.St 2.St 2.St 1.St-1.St-2.St-2.St-1.St
-2.S t 2.S t 2.S t-2.S t-2.S t

{Octa~on}

{Box}
-2.S t-lI.S t-2.S t-S.O t-1I.0 t
2.St 1I.St 2.St S.Ot 1I.0t

-0.St-1.0t 1.0t O.S];
Reals[1.0t 2.0t 3.0t 1I.0t 1I.0t 3.0t 2.0t 1.0t

1.0t 1.0t-2.0t-2.0t 1.0t
-2.0t-1I.0t 0.Ot-1I.0t-1I.0t
-2.0t-1I.0t 0.Ot-1I.0t-1I.0t
-2.0 t-3.0 t-3.0 t-2.0];

Inte~ers[2 t1 t1 t1 t1 tl t1 tl t
2t1t1t1tlt
2t1t1t2t1t
2t1 t1 t2t1 t
2t1t1t1];

{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Ri~ht le~}

{Left le~}

{Nozzle}

inte~er;

inte~er;

Reals;
Inte~ers;

inte~er;

{disPlaY_init return variable; 0 = ok}
{loop control variable}
{so liJe can pass it to "poly~on"}

{ditto}
{ditto}

Miscellaneous Graphics Concepts 2-45

$pafe$
be fin

{**}

leITI}-(: =}-(val ues;
leITIY:=YI.lalues;
OpSelectors:=OpCodes;
Points:=MaxPoints;

displa}'_init(Crt ,Control ,Error);
if Error=O then befin

set_aspect(511 ,388);
set _I", i n d DIAl (- 7,5 ,18,5 ,-10 ,10) ;
set_Pfn_style(la) ;

{ bod }' 0 f pro f 'r a ITI II Fill Pro f II }
{\ Put into variable array so }
{ } it can be passed by }
{/ reference into the DGl proc,}
{put constant into an array variable}
{initialize fraphics library}
{initialize CRT}
{if no error occurred",}
{use the whole screen}
{invoKe isotropic units}
{crosshatched fill}

pol }' f 0 n (Poi n t s ,l e ITI}-(,l e ITI Y ,0 p S e 1 e c tor s) ; {draw the lines}
set _IAIi n dOl'" (-18,5 ,7 ,-10 ,10) ;
set_pfn_table(la ,0,51,0 Ii);

{invoKe isotropic units}
{set the "do a filill flaf}

set_colo Ltable(1,0,125,0,125,0,125); {specih 12,5'7" fra}' scale}
set_pfn_color(l); {use specified "colorll}
POl}'fon_del.l_dep(Points,leITIX,leITIY,OpSelectors); {dralAI the lines}

end; {Error=O?} {end of conditional code}
fraphics_terM; {terMinate fraphics library}
end, {profralTI IIFillProf"} {end of profralTI}

2-46 Miscellaneous Graphics Concepts

Shading Graphs
Two previously-mentioned concepts can be combined to make broken-line charts which are
filled. That is, you can consider the curve on the graph as edges of a polygon (along with the
lower corners of the viewport), and fill the area with shading. Below is a short program which
demonstrates the combined concepts. The program is found on file "FillGraph" on the
DGLPRG: or DOC: disc.

pro~raM FiIIGraph(output);
iMPort d~l_lib, d~l_types, d~l_poly;

const
CrtAddr=
ControlWord=

t}' pe
RDataT}'pe=
WDataT}'pe=

const
}{ 1.1 a lues =
Yl,lalues=
OperationSelectors=

1.1 a r
ErrorReturn:

OpSel:

array [0 •• 12] of real;
arra}' [0 •• 12] of -32788 •• 32787;

RD a taT y p e [0 t1 ,2 ,3 ,a ,5 ,8,7 ,8,8 t1 ° t1 ° ,0] ;
RDataT}'pe [2 ,a ,3 ,8 ,5 ,5 ,3 ,7,5,8,8,0,0];
WDataT}'pe[2t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 ,1];

inte~er;

RDataT}'pe;
WDataT}'pe;

Miscellaneous Graphics Concepts 2-47

$pase$ {**}
be sin {prosrarTI IIFillGraphll}
sraphics_init;
dis pIa}' _ i nit (C rt Add r , Con t r 01 W 0 r d , Err 0 rR e turn) ;
if ErrorReturn=O then besin

set_aspect(511 ,389);
set_l",indol.~J(O ,10,0,10);
lTlol.le(O,O); line(0,10); line(10tlO); line(10,O); line(O,O);
X:=Xl.lalues; Y:=Yl.lalues; OpSel:=OperationSelectors;
set_psn_table(1 ,O.333tl7.34tl);
set_psn_style(l) ;
pol}'son(13,~{,Y,OpSel) ;

end; {ErrorReturn=O?}
sraphics_terrTI;
end. {prosrarTI IIFillGraphll}

Note that the two lower corners of the graph must be included in the definition of the polygon.
The shading is done with hatching lines, and the angle of those lines is deliberately a strange
angle to point out that you are not restricted to multiples of 45° for the hatching lines. If the plot
is to come out on a CRT, dithering may be used instead.

If the shading is going to be done with hatching lines, you may want to perform a linear
regression on the data points. Then, you can indicate the overall trend of the data by defining
the slope of the hatching lines to be the angle determined by the linear regression.

Highlighting Data Curves
You can note the location of the starting points of line segments by using the MARKER
procedure. When the procedure is called, it outputs a marker of whatever type you selected.
The valid values and what types of markers they output are listed below:

Marker
Number

<1
1
2
3
4
5
6
7
8
9

Resulting
Shape

+
*
o
X
6.

o
o
EB

Marker
Number

10
11
12
13
14
15
16
17
18
19

Resulting
Shape

o
1
2
3
4
5
6
7
8
9

Marker numbers greater than 20 are device dependent. If the specified marker is larger than the
number of marker the device supports, a dot (marker selector 1) will be used.

2-48 Miscellaneous Graphics Concepts

Below is a program and its output which shows how to use the MARKER procedure. The
program can be found on the file "MarkrProg" on the DGLPRG: or DOC: disc.

pro~raM MarKrPro~(output);

ilrlPort d~l_lib,d~l_inq;

const
CrtAddr=
ControlWord=

t}' pe

3 ;
0;

MarKe rNl.llrlT}'pe=
DataT}'pe=

const

array [o •• a] of inte~er;

array [0 •• 10] of inte~er;

Ma rKe rNulrlbe r=
Data=

I.lar
ErrorReturn:
I, J:

MarKerNuMType[2,S,8,8,13];
DataT}'pe[O ,2 tl ,a ,3 ,3 tl ,S ,3 ,a ,8];

inte~er;

inte~er;

$pa~e$ {**}
be~in {pro~ralrl IMarKrPro~"}

~raphics_init;

display_init(CrtAddr ,ControlWord ,ErrorReturn);
if ErrorReturn=O then be~in

set_aspect(Sll ,389);
set_'Alindo'AI(O tlO ,0 tlO);
IrIOl.le(O,O); line(OtlO); line(10tlO); line(10,0); line(O,O);
for 1:=0 to a do be~in

for J:=O to 10 do be~in

if J<>O then MarKer(MarKerNuMberEI]);
if J=O then MOl.le(J,Data[J]+I)
else line(J,Data[J]+I);

end; {for j}

end; {for i}
end; {ErrorReturn=O?}
~raphics_terM;

end. {pro~ralrl IMarKrPro~"}

External Graphics Displays
and Plotters

Chapter

3

In this chapter, we will be discussing the selection of external plotting devices. The
DISPLAY _INIT procedure will be more thoroughly covered, in addition to dumping graphics
images from a CRT to a printer. External CRTs (cathode-ray tubes), which may be connected to
your computer through a 98627 A interface card, and plotters, which may be connected through
the built-in HP-IB (Hewlett-Packard Interface Bus) port in the back of your computer, will also be
discussed.

Selecting a Plotter
In the previous two chapters, the program listings contained a line which said:

display_init(CrtAddr,ControlWord,ErrorReturn) ;

Because the value contained in the variable Crt Add r was 3-specifying the current console- the
computer activated the internal CRT graphics raster as the plotting deVice, and all subsequent
graphics output was directed to this display. If you want a plotter to be the output device, only the
value of the variable Crt Add r need be changed. (You may also want to change the name of the
variable. It is somewhat misleading to have the address of a plotter in variable named Crt Add r.) If
your plotter is at HP-IB interface select code 7 and address 5 (the factory settings), the modification
would be:

CrtAddr:=705;

3-1

3-2 External Graphics Displays and Plotters

Dumping Raster Images
In addition to generating a hard-copy plot with a plotter, as described above, you can dump a
CRT's raster image to a printer. This method is called a graphics dump or screen dump. It is
accomplished by copying data from the frame buffer to a printer to be printed dot for dot.

First the image must be drawn on a CRT. The internal CRT, a color monitor connected by
an HP 98627 A interface card, or an HP 98700A may be used. Since this technique dumps
a rastor-type image, it prints only dots. Thus it cannot draw a line, per se, but only the
approximation of a line from the screen, made up of dots. The dump device "takes a snapshot"
of the graphics screen at some point in time, and doesn't care how the dots came to be turned on
or off. Thus, filled areas can be dumped to the printer; indeed, most CRT graphics capabilities
(except color) are available.

If your printer is an HP 9876, HP 2631G, HP 2671G, HP 2673A or any other printer which
conforms to the HP Raster Interface Standard, dumping a graphics image is achieved with the
OUTPUT_ESC procedure. If your active graphics display device (set with the DISPLAY _INIT
procedure call) is monochromatic, a call to OUTPUT_ESC with operation selector 52 will dump the
display if:

• The active graphics display is the console (where alpha is displayed), or
• The active graphics display is bit-mapped (Le., is a bit-map display or a display connected

via the HP 98627 A RGB interface).

If you have a, color device, all planes in the frame buffer are logically ORed. If you want more
control over the output of a color image, an operation selector of 1053 will allow you to select
individual planes from the frame buffer. The 1053 operation selector will work with the Model
236C, the Model 237 bit-mapped display, or with a color display connected via the HP 98627A
RGB interface. Since the Model 237 has only one plane, the plane deSignator is ignored.

The exception to prodUcing a desirable image via this method occurs if your active CRT is
a bit-mapped display that supports more pixels than your printer has dots. In this case, the
dump starts at the upper left-hand corner of the screen and dumps as far to the right and
down as there are corresponding dots on the printer. Another option is to use opcode 54 for
the compressed dump for low resolution printers. This is only useful with HP 98542A and
HP 98543A displays.

Either of these operation selectors sent to OUTPUT_ESC would take the image in the currently
active CRT graphics frame buffer (the internal CRT by default) and send it to volume PRINTER:.
By default the printer is assumed to be at select code 7, bus address 1. This can be changed
by modifying the CTABLE.TEXT program on the CONFIG: disc (ACCESS: on double sided
discs). Find the line:

local_Frinter_default_dau = dau[sc: 7. ba:l. du:-l. du:-1J;

This sets the DA V (device address vector) for the printer to be at select code (5 c) 7 and bus
address (b a) 1. By changing this line, you can alter the destination of data sent to the volume
PR INTER: 1. 701 is the default factory setting for printers.

1 For an in-depth coverage of how to modify the CTABLE. TEXT program, see the Special Configurations chapter of the Pascal 3,0 Workstation
System ManuaL

External Graphics Displays and Plotters 3-3

If a graphics dump operation is aborted with the (STOP) key, the printer mayor may not terminate
its graphics mode.

If you have a printer which does not conform to the HP Raster Interface Standard, all is not lost.
It must, however, be capable of printing raster-image bit patterns. There are two main methods
by which printers output bit sequences. The first is: when a printer receives a series of bits, it
prints them in a one-pixel-high line across the screen. The paper then advances one pixel's
distance, and the next line is printed. The other method (which lends itself to user-defined
characters more than graphics image dumping) takes a series of bits, breaks it up into 8-bit
chunks, and prints them as vertical bars 8 pixels high and one pixel wide. The next eight bits
compose the next 1 x 8-pixel bar, and so forth.

This latter method is that used by the HP82905 printer. The image (which is printed out
sideways) takes a GSTOREd image and breaks the 16-bit integers into two 8-bit bytes, and
sends them to the printer one row at a time. Writing your own routine to dump a graphics image
to a non-comforming printer should not be difficult, given the ability of taking the graphics
image and placing into your own data array (referred to in the last chapter).

Note that on a CRT, an "on" pixel is light on an otherwise dark background, and on a printer,
an "on" pixel is dark on an otherwise light background. Thus, the hard copy is a negative image
of that on the screen. To dump light images on a dark background, you can invert every bit in
the stored image. To invert the bits in a 32-bit integer, you can execute the following code
segment:

if N=ITlinint then
N:=ITlaxint

else
N:=-N-l;

The reason for the subtraction is that Series 200/300 computers use twos- complement repre­
sentation of integers. Also, you must consider MININT1 as a special case because you cannot
negate MININT in an integer; + 2 147 483 648 cannot be represented in a signed thirty-two bit
twos-complement number.

1 MININT and MAXINT are two standard constants in HP Pascal. MININT = - 2 31 = - 2 147 483 648, and
MAXINT = 231 _1 = + 2147483647.

3-4 External Graphics Displays and Plotters

External Color Displays
The HP 98627 A RGB interface allows you to connect a color monitor to your computer, whether
the computer's internal CRT supports color or not. The HP 98627 A does not, as mentioned before,
support color map operations; thus, you cannot change the color of an area on the screen without
redrawing the area. Nor can you define your own color-addition scheme as you can with a
color-mapped device (see the Color Graphics chapter). In addition to this, there are only eight pure
colors\ to get others, you must go to dithering.

There are many types of color monitors which you can connect to your computer through an HP
98627 A color monitor interface. In the Con t r 01 Wo r d variable which is passed to the DISPLAY _INIT
procedure, you must specify accordingly:

Desired
Display Format

Standard Graphics
512 by 390 pixels,
60 Hz, non-interlaced

512 by 390 pixels,
50 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels,
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels,
50 Hz, interlaced
(25 Hz refresh rate)

High-Resolution Graphics
512 by 512 pixels,
46.5 Hz, non-interlaced

HP Use Only

Bits
Description 10-8

U.S. Standard 001 (256)

European Standard 010 (512)

U.S. Television 011 (768)

European Television 100 (1024)

High Resolution 101 (1280)

Internal 110 (1536)

Out of range values are treated as if Con t ro 1 Wo rd = 256, as is Con t ro 1 Wo rd

237, where 0 keeps the type-ahead buffer, and 256 removes it).
o (except Model

1 Only eight pure colors can be created on an external color monitor. This is because there is no control over the intensity of each color gun.
Each color can be either off or on, and there are three colors: red, green, and blue. Two states, three colors: 23 = 8.

External Graphics Displays and Plotters 3-5

External Plotter Control
There are many device-dependent operations you can do through calling the OUTPUT_ESC
procedure. See Appendix B for details on all the things you can do.

Controlling Pen Speed
To improve the quality of the lines drawn by a plotter pen, you may want to make them draw more
slowly. There are other factors, too, which can affect line quality. For example, humidity can alter
the line quality of a fiber-tipped pen. To accomplish this, you can call the OUTPUT_ESC procedure
with the appropriate parameters. Or, the following procedure will do it.

{**}
procedure PenSpeed(Speed: intefer);
{--}
{ This procedure selects a pen speed for ah HPGl plotter. }
{--}
const

SetPenSpeed= Z050; {a MneMonic is better than a Mafic nUMber}
I} a r

Iarra}':
Rarra}':
Error:

array [1 •• Z] of intefer;
array [1 .. 1] of real;
intefer;

befin
Iarray[l]:=Speed;
IarraY[Z]:=O;

{\ These are variables }
{ needed by the DGl }
{/ procedure "output_esc" }

{procedure "PenSpeed"}
{use the passed paraMeter}
{affect all pens}

output_esc (SetPenSpeed ,Z ,0, I a r ra}' ,Ra r ra}' ,E r ro r) ;
if Error<>O then {error?}

1"lriteln('Error' ,Error:O,' in procedure PenSpeed".');
end; {procedure "PenSpeed"}

The first element of the integer array specifies the pen speed; the range and resolution of pen
speeds, and default maximum speed depend on the plotter. The second element of the array
specifies the pens to be affected. One through eight specifies pens one through eight, respectively.
Any value outside of this range is taken to mean, "Affect all pens."

Selecting a pen speed specifies a maximum speed rather than an only speed, because on short line
segments, the pen does not have time to accelerate to the specified speed before the midpoint of
the line segment is reached and deceleration must begin.

This procedure also provides a skeleton for making other special-purpose routines. For most
operations dealing with OUTPUT_ESC, one need only change the name of the procedure and the
parameters being passed to the OUTPUT_ESC procedure.

3-6 External Graphics Displays and Plotters

Controlling Pen Acceleration
On the HP 7580, HP 7585 and HP 7586 drafting plotters, you can specify the amount of accelera­
tion the pen is to undergo when starting or ending a line. On any particular line, positive accelera­
tion (speeding up) will occur until one of two things happens:

• The midpoint of the line is reached, and negative acceleration (slowing down, or deceleration)
must begin, to ensure that the pen will reach a speed of zero precisely at the second endpoint
of the line it's drawing; or

• The specified maximum speed is reached. In this case, that speed will be maintained until the
pen is at a particular distance from the second endpoint of the line. At that distance, which
depends on the specified maximum speed and the specified acceleration, the pen will start to
smoothly decelerate such that it will reach zero velocity at the second endpoint.

The first element of the integer array passed to OUTPUT_ESC specifies the pen acceleration; it may
range from one through four gees!. The second specifies the pens to be affected. One through eight
specifies pens one through eight, respectively. Any value outside of this range is taken to mean,
"Affect all pens."

Controlling Pen Force
On many drafting plotters (e.g., HP 7580, HP 7585, HP 7586), you can specify the amount of
force pressing the pen tip to the drawing medium. This is useful when matching a pen type
(ball-point, fiber-tip, drafting pens, etc.) to a drawing medium (paper, vellum, mylar, etc.). Again, if
a pen is partially dried out, it may help line quality to adjust the pen force.

The PenSpeed procedure mentioned above can be modified slightly to control pen force. The
operation selector should be 2051. The first element of the integer array specifies the pen force; the
second specifies the pens to be affected. One through eight specifies pens one through eight,
respectively. Any value outside of this range is taken to mean, "Affect all pens."

The force number is translated into a force in grams. If, for example, you have an HP7580A plotter,
the force number is converted to force as follows:

1 = 10 grams
2 = 18 grams
3 = 26 grams
4 = 34 grams

5 = 42 grams
6 = 50 grams
7 = 58 grams
8 = 66 grams

This is not by any means an exhaustive list of the things you can do with OUTPUT_ESC, but it
serves to acquaint you with the concept of using the procedure for controlling device-dependent
operations. A thorough understanding of its use can only be gotten by.combining information from
the DGL Language Reference with actual hands-on experience.

lOne "gee," or one [earth] "gravity," is the acceleration due to gravity at sea level. Its value is approximately 9.8 m/sec2 or 32 ft/sec2 .

Interactive Graphics
Chapter

4

Introduction
It has already been pointed out that graphics is a very powerful tool for communication. The
high speed available from Series 200/300 computers makes possible a powerful mechanism for
communicating with the computer: that tool is Interactive Graphics.

A Simple Example
Interactive graphics is demonstrated well - albeit primitively - in the following program, which
uses an HP-HIL 1 tablet2 . It is a good introduction to interactive graphics in that it shows one
of the most elementary concepts necessary for an interactive program: feedback. Feedback,
in this context, is the concept of immediately seeing, on an output device, the results of some
action done on an input device, and the seeing of those results can cause a modification to
subsequent input. This feedback takes place so qUickly that a continuous, flowing action can
take place.

The following program is very simple. It merely tracks the stylus of an absolute locator, shoWing
the immediate feedback. When any of the buttons on the stylus is pressed, the program prints
the X and Y values, as well as a number which indicates which button was pressed.

$search '*:GRAPHICS. '$
proSraM Track(output);
ifT1Port dsl_litd
var

Error:
Button:

be sin

inteSerj
inteSerj
rea I j

Sraphics_initj
displa}'_init(3tOtError) ;
if Error<>O then

besin

{Set Sraphics routines}

{error nUMber return variable}
{which button on the stylus was pressed?}
{X and Y coordinates when button pressed}

{initialize the Sraphics SysteM}
{initialize the display device: Main screen}
{if an error occurred ••• }

'Airiteln('Error' tError:Ot' on DISPLAY_INIT. ');
halt;

{ ••• sa}' so ••• }
{ ••• and quit.}

end;
locator_init(201 tError); {locator device: HP-HIL absolute locator}
if Error<>O then {if an error occurred ••• }

be Sin
writeln('Error' tError:Ot' on LOCATOR_INIT. ');
halt;

{ ••• say so ••• }
{ ••• and quit.}

end;
a'Aiait_Iocator(2tButtontXtY)j {track the stdus until button pressed}
'Airiteln('}{: 't }{:10:lit ' Y: 't Y:l0:lit' Button: 't Button:3);
end.

If you get an error initializing either the display or the locator, see the appropriate section in the
"Graphics Procedure Reference" section in Appendix B in the back of this manual for help.

1 There is a family of devices called HP-HIL devices for the Pascal Workstation. HP-HIL stands for "Hewlett-Packard Human Interface
Link."

2 3.2 Pascal also supports a new driver for the HP-HIL mouse and knob. Access these by substituting 202 in the line LOCA­
TOR_INIT(20 1 ,ERROR);

4-1

4-2 Interactive Graphics

Notice when running this program that a small, cross-hair cursor describes, on the screen, the
same movements as those you make on the tablet. This is the mechanism of feedback, men­
tioned earlier. When your hand moves up, the cursor moves up. When your hand moves to the
right, the cursor moves to the right, and so forth. And note that the feedback is so fast and
accurate that, many times, you do not even need to look at the tablet to see where the stylus is;
you can tell where the stylus is by looking at the position of the cursor on the screen.

A graphics tablet is not the only graphics input device, as the next section shows. The program
in the following example shows an interactive program which is a bit more complex.

A More Elaborate Example
Compile and execute the program "BAR_KNOB", from your "DGLPRG:" or "DOC:" disc. If
you have a knob, and you turn the knob clockwise, the bar graph displayed on the screen will
indicate a larger value. At the same time, the numeric readout underneath the bar will increase
its value. Turning the knob counterclockwise has the opposite effect. (If your computer has no
knob, the arrow keys or mouse will work, but may not feel as "naturaL") This is an effective
demonstration of all the key characteristics of an interactive graphics system. They are:

• A data structure. (The value displayed underneath the bar is the contents of a variable that we
are modifying. The internal variable containing the value is a degenerate case of a data
structure.)

• A graphic display that represents the contents of the data structure. (The bar graph and the
numeric display represent the value of the internal variable.)

• An input mechanism for interacting with the displayed image (the knob, in this case.)

This is the minimum set of requirements for an interactive graphics system. A key feature of
interactive graphics is that it is a closed loop system. This means that the operator can immediately
see the effect of his action on the system, and thus base his next action not only on the state of the
system, but also on the effect his last action had on the system. A few points are worth noting about
this system:

• The knob is used because it is functionally appropriate. While we could have entered numeric
values to control the b~.r graph, the knob "feels" right. We are used to using knobs to control
metered readouts.

• Control of the value with the knob is fairly intuitive. The normal range markings make it readily
apparent when the value is in range. Little explanation is needed, due to the immediate
feedback from the displayed image.

• A system is "modeled." The user's input has a well defined relation to the output of the
system.

Thus, interactive graphics can be as simple as representing a single value on the screen and
providing the user a method for interacting with it. It can also be as complex as a Printed Circuit
layout system. This chapter will not tell you how to build a Printed Circuit layout system, but it will
provide some hints on implementing interactive graphics systems that work.

Interactive Graphics 4-3

Characterizing Graphic Interactivity
One of the most important things in designing a good interactive graphics system is characterizing
the interaction with the system correctly. Properly characterizing the interactivity allows selection of
the most appropriate device for interaction with the system. Three things have to be considered in
characterizing the interaction:

• The number of ways the graphics system can be changed. That is, the number of degrees
of freedom in the system.

• The quality of each of the degrees of freedom. This describes how the input to a degree of
freedom can be changed.

• The separability of the degrees of freedom.

Once again, the best way to understand the characterization of interaction is to see an example
in action. Compile and execute "BAR_KNOB2" from your "DGLPRG:" or "DOC:" disc. This
program is very similar to "BAR_KNOB", but it has several bars, instead of one. This introduces
another degree of freedom to the model. The original program had a single degree of freedom,
the value indicated by the bar graph. The quality of this degree of freedom is continuous. The
new program has the same continuous input (which is still handled by the knob) but has added
a second degree of freedom, the selection of the bar graph you want to modify. This degree of
freedom is quantizable, and is handled by the numeric keys. (Softkeys would be even better,
but require digging into the operating system.) The degrees of freedom are also separable,
since you don't need to interact with both of them at once.

The degrees of freedom are not separable in freehand draWing-you want to change X and Y
simultaneously. They are only partially separable in laying out images on a screen - you can get
by with moving along one axis at a time, but it's easier if you can interact with both of them at
once.

4-4 Interactive Graphics

Selecting Input Devices
The purpose of the discussion on characterization of graphic interaction was to lay the ground­
work for discussing when various input devices are appropriate. There are several available on
HP desktop computers, and choosing the correct one is critical to the design of a highly
productive human interface for an interactive graphics program.

• Knob and/or cursor-control keys,

• Mouse,

• Tablet,
• Touchscreen.

Single Degree of Freedom
Many interactive graphics programs need deal only with a single degree of freedom. The
appropriate control device for such programs depends on whether continuous control or quan­
tized control is needed.

The program "BAR_KNOB" is a good example of a single degree of freedom that is con­
tinuous. The knob is ideal for controlling a program like this. If faster movement is needed
before "fine tuning," the shift key can be used as a multiplier to change the interpretation of the
knob. The knob is read through the KEYBOARD file. The knob generates forward and back
spaces for clockwise and counterclockwise motion, or line-feeds and "up-spaces" if the shift
key is held down while the knob is turned. The following program ("BAR_KNOB" from the
"DGLPRG:" or "DOC:" disc) shows how to interpret the knob for a continuous, single degree
of freedom, as well as how to update the display to show the results of the interaction.

$l.Icsdtdebl.l9'$
pro9'ralTl Test O~eyboard tOl.ltPl.lt) j
ilT1Port d9'l_l.Iars tdsl_t}'pes td9'l_lib td9'LinQ j
t}' pe

States=
Dral~Mode=

const
FS=
BS=
US=
LF=
CR=
Q=
Ql=
Underline=
Ind_off=
In~I_On=

MinBar't'=
MaxBar't'=
MinBar}{=
MaxBar}{=
IncDelta=

(OntOff)j
(DrawtErasetCOMPtNonDoM) j

chr(28);
c h r (8) ;
chr(31);
chr(10);
chr(13);
IQ ';

I q ';

chr(132) ;
chr(128) ;
chr(129);
0;
10(H
180;
220;

var
ErrOr_nUITl:
ItTelTlPlnt:
Level tLastLevel:
Delta:

integ'er;
integ'er;
re a I ;
re a I ;

CharWidth tCharHeig'ht: real;
Character:
Done:

char;
boolean;

keyboard: text;
TeMPString': Gstring'255;

Interactive Graphics 4-5

$pag'e$ {**}
procedure GraphicsDisplay(State:States {On/Off});
const

GraphicsDisp=
var

Error:integ'er;
SwitchArray:integ'er;
DUhIlTlY: real;

beg'in
case State of

On:SwitchArray:=l;
Off:SwitchArraY:=O;

end; {case State of}

1050;

{procedure GraphicsDisplay}

out put _ esc (G rap hi c s Dis p t 1 tOt S wit c h A r r a}' t D UltIlTl}' t Err 0 r)
if Error (> 0 then

l"Iriteln ('Error' tError:l t' encountered in GraphicsDispla}");
end; {procedure GraphicsDisplay}
$pag'e$ {**}
procedure AlphaDisplay(State:States {On/Off});
const

AlphaOisp=1051 ;
var

Error:integ'er;
SwitchArray:integ'er;
OUltlltl}': real;

beg'in
case State of

On:SwitchArray:=l;
Off:SwitchArraY:=O;

end; {case State of}

{procedure AiphaDispIay}

out put _ esc (A I ph aD i s p t 1 tOt S I", i t c h A r r a}' t D I.lItlltl}' t Err 0 r)
if Error (> 0 then

l"Iriteln ('Error 'tError:lt' encountered in AlphaDispla}");
end; {procedure AlphaDispIay}
$pag'e$ {**}
beg'in {Main PrOgraM}
Lel,leI:=O;
LastLevel:=Level;
g'raphics_init;
display_init(3 to tError_Nult});
if Error_NuM=O then beg'in

AlphaDisplay(Off) ;
GraphicsDisplay(On);
set_aspect(511 t388);
set_window(Ot400t-30t120) ;
set_color(1);

{current heig'ht of bar}
{previous heig'ht of bar}
{initialize the g'raphics SysteM}
{which output device?}
{output device initialization OK?}
{turn off alpha display}
{turn on graphics display}
{use whole screen}
{scale the window for the data}
{color nUMber 1: white}

4-6 Interactive Graphics

CharWidth:=(0.035*400) ;
CharHei~ht:=(0.05*150) ;

{char width: 3.5% of screen width}
{char hei~ht: 5% of screen hei~ht}

set_char_size(CharWidtht CharHei~ht); {install character size}
{---- Outline the Bar ---}
Move(MinBarX-0.5tMinBarY-0.5) ;
line(MinBarX-0.5tMaxBarY+0.5) ;
line(MaxBarX+0.5tMaxBarY+0.5) ;
line(MaxBarX+0.5tMinBarY-0.5) ;
line(MinBarX-0.5tMinBarY-0.5) ;
{---- Label the bar (nuMeric labels)
for 1:=0 to 10 do be~in

{Move to lower left corner ••• }
{ ••• draw to upper left corner ••• }
{' •• dra'", to upper ri~ht corner ••• }
{' •• dra'", to lo'",er left corner ••• }
{ ••• and draw to lower left corner.}

--------------------------------------}

str''''rite(TeITIPStrin~tl tTelTIPlnt tl*10:3t ' - /);
Move (179-strlen(TeMPStrin~)*CharWidthtl*10-0.24*CharHei~ht);

Hext (TeITlPString);
end; {for 1:=1 to 10 }
{---- Label the bar (textual labels) --------------------------------------}
ITlOVe (221 t 80-CharHei~ht/2);
Hext (/-Hi~h NorITlal /);
ITlOVe (221 t 60-CharHei~ht/2);
Hext (/-Lo'", NorlTlal /);
{---- How about SOMe instructions ---}
CharWidth:=(0.02*400); {char width: 2% of screen width}
CharHei~ht:=(0.035*150); {char hei~ht: 3.5% of screen height}
set_char_size(CharWidtht CharHei~ht); {install character size}
Move (Ot 5);
TeMPStrin~:=/Use the Knob to/+CR+LF;
Hext (TeITlPStrin~) i
TeMPStrin~:=/Adjust the value.'+CR+LF;
Hext (TeITIPStrin~) i
TeITIPStrin~:=' '+CR+LFi
Hext (TeITlPStrin~) i
TeMPString:=/SHIFT with the knob '+CR+LFi
Hext (TeITlPStrin~);

TeITIPStrin~:=/speeds it up.'+CR+LF;
Hext (TeITIPStrin~);

TeMPStrin~:=";

{---- Set a ~ood character size ---}
CharWidth:=(0.035*400) ;
CharHei~ht:=(0.05*150) ;

{char width: 3.5% of screen width}
{char hei~ht: 5% of screen hei~ht}

set_char_size(CharWidtht CharHei~ht); {install character size}
repeat

read(ke}'board tCharacter);
Delta:=O;
case Character of

FS: Delta:=IncDelta;
BS: Delta:=-IncDelta;
LF: Delta:=10*IncDelta;
US: Delta:=-10*IncDelta;
QtQI: Done:=TRUE;

other'",ise
end; {case ord(Character)}
if Delta>O then be~in

{~et character without echo to screen}
{start by assuMin~ no Motion}
{what/s the character?}
{right arro'",?}
{left arrow (backspace)?}
{do'",n arro'",?}
{up arrow?}
{or Quit?}
{if none of the abovet i~nore it}

set_color(1); {we want to draw lines}
while (Level<LastLevel+Delta) and (Level<MaxBarY-IncDelta) do be~in

Level:=Level+lncDelta; {ne'", top of bar}
Move(MinBarXtLevel); {Move to left ed~e ••• }
line(MaxBarXtLevel); { ••• and draw to ri~ht ed~e}

end {while (Level<LastLevel) and (Leuel<MaxBarY)}

end {if (Delta)O) and (Level<100) }
else be~in {Goin~ Down}

if (Delta<O) and (Level)~O.5*IncDelta) then be~in

set_color(O) ;
repeat

{we want to erase lines}

move(MinBarX, Level); {move to the left ed~e ••• }

Interactive Graphics 4-7

line(MaxBarX, Level); { ••• and draw to the ri~ht ed~e}

Level:=Lev~I-IncDelta; {new top of bar}
until (Level<=LastLevel+Delta) or (Level<=MinBarY)

end; {if (Delta<O) and (Level)O)}
end;
{---- How about some numbers? ---}
set_color(O); {we want to erase lines}
strl,.,lrite(TeIIIPStrin~Ii,Tel'lplnt,LastLevel:5:1); {conl.lert level to chars}
move(MinBarX+(MaxBarX-MinBarX)/2-strlen(TempStrin~)*CharWidth/2,

MinBarY-2*CharHei~ht) ;
~text(TempStrin~); {erase the old number}
set_color(1); {we want to erase lines}
s t rl.,H it e (T e III pS t r i n ~ Ii ,T e III pIn t ,L e 1.1 e I : 5: 1) ;
move (MinBarX+(MaxBarX-MinBarX)/2-strlen(TempStrin~)*CharWidth/2,

MinBarY-2*CharHei~ht) ;
9text(TeIIIPStrin~) ;
LastLevel:=Level;

until Done;
GraphicsDisplay (Off);
AlphaDisplay (On);
dis pia}' _ t e rIll;

end;
~raphics_terlll;

end.

{1,.,Irite the nel."l}
{remember the old number}
{repeat until user hits [Q]}
{turn off ~raphics display}
{turn on alpha display}
{clean UP loose ends}

{terminate the ~raphics packa~e}

{Illain pro~ralll}

Keys can be used for quantizable control of a degree of freedom. It is also possible to use keyboard
entry of numeric values for quantizable information.

Non-separable Degrees of Freedom
One characteristic of multiple, non-separable degrees of freedom is that they are generally
continuous. The most common operation of this type is free-hand drawing. This is most easily
accomplished with the 9111A graphics tablet, HP-HIL tablet, or mouse.

Separable Degrees Of Freedom
In many programs, the degrees of freedom are completely separable. In fact, for some opera­
tions, it is definitely preferable to have totally independent control of the degrees of freedom of
the model.

All Continuous
If all the degrees of freedom in a model are continuous, then the selection of the degree of
freedom to operate on becomes another degree of freedom, and is quantizable. A good choice
is using the keyboard to select the degree of freedom and then using the knob or mouse to
control the input to that degree of freedom. This is not as effective as a bank of knobs, but
adding a bank of knobs means adding hardware. The program "BAR_KNOB2", on the
"DGLPRG:" or "DOC:" disc is an example of this type of interaction. Single keystrokes are
used to select the degree of freedom you are operating on, and then the knob is used to vary
the value along that degree of freedom.

4-8 Interactive Graphics

The following key interpretation loop is used in "BAR_KNOB2" to allow the user to select the
bar to be controlled, as well as controlling the value of the selected knob.

READ (KEYBOARD,Character);
Delta := 0;
CASE Character OF

FS Delta := IncDelta;
BS Delta :=-IncDelta;
LF Delta := 10*IncDelta;
US Delta :=-10*IncDelta;
QtQl Done:= TRUE;
'1' •• '5': BEGIN

OTHERWISE

ClearInd(Bar) ;
Bar := ORD (Character)- ORD('0');
SetInd(Bar) ;

END;

END; {CASE Character}

All Quantizable
If all the degrees are quantizable, using the keyboard (or using softkeys if you have requisite system
design experience to use them) is appropriate.

Mixed Modes
In most sophisticated graphics systems, several degrees of freedom in the system interact with each
other. A good example is a graphics editor. In a graphics editor, your primary interaction is with a
visual image, and the degrees of freedom (X and Y location) for that operation are partially
separable, at best. (They are non-separable if it supports freehand drawing.) There is also a degree
of freedom involved in controlling the·program. The program control is strongly separable from the
image creation operation.

The most appropriate device for supporting mixed modes is the HP 9111A graphics tablet or
HP-HIL tablet. The tablet supports two modes of interaction by partitioning the digitizing
surface into two areas. Sixteen small squares along the top of the tablet can be used as softkeys
to provide a control menu. The large, framed area underneath the softkeys is the active
digitizing area. The active digitizing area is used for interacting with the image you are creating.
Other menu/ image area combinations are also possible.

It is possible to combine the quantized, separable control operations with continuous, non­
separable image editing. This is done by using the active digitizing area for interacting with the
image and using the menu area for controlling the operations available in the editing program. The
operator does not have to change control devices to access the different interaction modes.

Interactive Graphics 4-9

Echoes
An important part of interactive graphics is letting the operator know "where he is at." This can be
done by updating the image. In other operations, such as menu selection, object positioning, and
freehand drawing, it is important to show the operator where he is. In many cases, this can be done
with AWAIT_LOCATOR.

The Built In Echo
Many graphics applications can be handled using the built-in echo. AWAIT _LOCATOR allows
you to access one of the built-in echoes for digitizing. The following program interprets a
menu to select one of the built in echoes, and then draws an appropriate image on the CRT
after the call to AWAIT_LOCATOR completes. It is on your DGLPRG: or DOC: disc, in
the file called "LOCATOR". If you have an HP 9111 Graphics Tablet, changing the constant
LOCATOR ADDRESS from 2 to 706 will allow you to use the tablet for a locator instead of
the knob or mouse (change to 201 for HP-HIL tablet or 202 for new HP-HIL Mouse/Knob
capability).

$debug$
prOgraM Test(output);
ifTIPort dgl_vars tdgl_t}/pes tdgl_Iib tdgl_poh' tdgl_inq;
t}1 pe

COfTlfTlands=
ReaIArra}/=

o •• 8; {nine COfTlfTlands total}
array [1 •• 5] of real;

const
FS=
BS=
US=
IF=
CR=
Min){=
MinY=
Max}{=
MaxY=
}{range=
Yrange=
locatorAddress=

~J a r

chr(28) ;
c h r (8) ;

chr(31) ;
chr(lO) ;
chr(13);
0;
0;
511;
388;
Max)o{-Mi n){;
MaxY-MinY;
~ .
i.. ,

Error_nuM: integer;
I tTefTIPInt: integer;
ButtonValue: integer;
}{in tYin: real;
){last tYlast: real;
CharWidth tCharHeight: real;
Done: boolean;
Newline: boolean;
TefTIPString: Gstring255;
EchoSelect tEchoSelector: o •• 8;
MenuTop:
CellWidth:

re a I ;
re a I ;

{right arrol",}
{left arrow or bacKspace}
{up arrol",}
{dol"ln arrol",}
{carriage return}
{fTlinifTlufTI }.{ I) a I ue for screen}
{fTlinifTlufTI Y value for screen}
{fTlax i fTIUfTI v

1\ value for screen}
{fTlax i fTIUfTI Y value for screen}
{total ran ge of)0
{total ran ge of Y}
{2 for f~nob t708 for 8111}

{error return variable}
{utility variables}
{which button selected?}
{location of digitized point}
{last digitized point}
{char size in world coords}
{are we supposed to quit?}
{start new line?}
{utility variable}
{fTlenu selection}

{width of Menu spaces}
COMMand: COMMands; {which COMMand selected?}

$page$ {**}
procedure DrawMenu;
var

I :
Ylabel:
Yarray:

integer;
re a I ;
RealArra}' ;

{loop-control variable}
{Y position of entree label}

4-10 Interactive Graphics

{--}
procedure MenuCell(1:integer);
var

TelTlPPitch:
)Oabel:
){arra}':

beg i n
case I of

re a I ;
re a I ;
RealArray;

0: begin
TeMPString:=/STOP / ;
){arra}'[lJ:=O;
Xarray[2J:=2*CeIIWidth;
Xarray[3J:=2*CeIIWidth;
){arra}'[aJ:=Oi

{teMPOrary variable}
{X position of entree label}
{X positions of entree cell}
{procedure MenuCell}

{label text}
{ \
{ \
{ > X positions for box
{ I

Xarray[5J:=Oi { I
Xlabel:=MinX+CeIIWidth-strlen(TeMPString)*CharWidth/2;

end;
1 •• 10: begin

TeMPPitch:=CeIIWidth*1; {teMPOrary shorthand variable}

}

}

}

}

}

Xarray[lJ:=CeIIWidth+TeMPPitch; } { \
Xarray[2J:=2*CeIIWidth+TeMPPitchi } { \
Xarray[3J:=2*CeIIWidth+TeMPPitch; } { > }< positions for box
Xarray[aJ:=CeIIWidth+TeMPPitch; } { I
Xarray[5J:=CeIIWidth+TeMPPitch; } { I
TelrlpString:=' '; {label text}
if 1<=8 then strl"lrite(TelrlPStringt1,TelrlP1nttI:1);
Xlabel:=Xarray[lJ+CeIIWidth/2+strlen(TeMPString)*CharWidth/2;

end
end; {case I of}
poldine(5,){array,Yarra}') j

Irlol,le()Oabel ,Ylabel);
9'text(TelrlpString) ;

{draw periMeter of cell}
{Move to the right place}
{label the text}

end; {procedure MenuCell}
{--}
begin {procedure DrawMenu}
Yarrad1J:=MinY; { \ }
Yarra}'[2J:=MinY; { \ }
Yarray[3J:=MenuTopi { > Y values for box }
Yarra}'[aJ:=MenuTop; { I }
Yarrad5J:=MinY; { I }
Ylabel:=MinY+(MenuTop-MinY)/2-CharHeight/2; {Y posItIon of label}
for 1:=0 to 10 do MenuCell(1); {do all the entree cells}
end; {procedure DrawMenu}
$page$ {**~***}
flFlction Chec~(Menu(}(in : real) :Colrllrlands;
beg i n
if Xin(2*CeIIWidth then ChecKMenu:=O
else begin

{function ChecKMenu}
{X outside of Menu?}

TeMP1nt:=trunc((Xin-CeIIWidth)/CeIIWidth);
if TeMP1nt)8 then ChecKMenu:=CoMMand

{which sell chosen?}

else ChecKMenu:=TeMP1nt
end;
end; {function ChecKMenu}

Interactive Graphics 4-11

$page$ {**}
{ M a i n pro 'g r a ITl } begin

graphics_init;
displa}'_init(3,0,Error_NuITl) ;
if Error_NuM<>O then begin

{initialize the graphics SysteM}
{which output device?}
{output devic initialization OK?}

writeln('I failed to initialize the display. ');
IAlriteln('Error lHllTlber ',Error_NuITl:2,' IAlas returned.');

end {if Error_NuM<>O}
else begin

lOCATOR_init(locatorAddress ,Error-NuIT});
if Error_NuM<>O then begin

writeln('I failed to initialize the locator. ');
l..Jriteln('Error lHllTlber ',Error_NuITl:2,' IAlas returned.');

end {if Error_NuM<>O}
else begin {No errors so far}

set_aspect(511 ,389); {use I",hole screen}
set_I"'indoIAI(0,511 ,0,389);
CharWidth:=0.035*511;
CharHeight:=0.05*389;

{scale window for data}
{char width: 3.5% of screen width}
{char height: 5% of screen height}

set_char_size(CharWidth ,CharHei9'ht) j{install character size}
MenuTop:=Yrange/13; {Menu is 1/13 the total screen height}
CellWidth:=Xrange/12; {each entree cell 1/12 screen width}
DralAIMenu;
NeIAlline:=truei
EchoSelect:=4;
COfTlfTland: =4;
Done:=false;
repeat

if NelAlline then
EchoSelector:=2

else
EchoSelector:=EchoSelect;

{dralAI the ITlenu}
{Yes, we are starting a new line}
{start prOgraM with default COMMand}
{ditto}
{no, we're not done yet}

{starting a new line?}

alAI a it _10 cat 0 r (E c h 0 S e 1 e c tor, But ton I.) a 11.1 e ,)(in, Yin) ;
if Yin<MenuTop then begin {user choose Menu OPtion?}

Newline:=true; {start a new line next tiMe}
COMMand:=ChecKMenu(Xin) ;
case COITlfTland of

0: Done:=true;
1 : EchoSelect:=l ;
2 : EchoSelect:=2;
3 : EchoSelect:=3i
4: EchoSelect:=4;
5: EchoSelect:=5;
G: EchoSelect:=G;
7 : EchoSelect:=7;
8 : EchoSelect:=8;

end {case}
end {if}
else begin

if Newline then begin
NeIAlline:=false;
set_echo_posO(in ,Yin);
ITloveO(in ,Yin);
Ylast:=Yin;
){last:=){in;

end

{deterMine Menu selection}
{IAlhich cOfllMand}
{Yes, we're done with the prOgraM}
{ \ }

{ \
{ \

}

}

{ \ Select the appropriate }
{ I EchoSelector. }
{ I }
{ I
{ I

{not a Menu selection}
{start a new line}

}

}

{now we're in the Middle of a line}
{Move the graphics cursor}
{cause line-drawing to start there}
{reMeMber the last X ••• }
{ ••• and the last Y}

4-12 Interactive Graphics

else begin
set_echo_pos(Xin,Yin); {Move the graphics cursor}
if (Xin=Xlast) and (Yin=Ylast) then Newline:=true
else begin

case EchoSelect of
1. .7: lineOUn ,Yin); {dral,,1 a line}
8: begin

line ()<last ,Yin);
lineO{in ,Yin);
lineO{in ,Ylast);
line()<last ,Ylast);
Nel"lline:=true;

end
otherlAlise

end; {case EchoSelect of}
)<last:=Xin;
Ylast:=Yin;

end
end;

end;
until Done;
locator_terrIl;
dis p I a}' _ terrIl;

end; {Error trap}
end;
graphics_terrIl;
end.

Rubber Echoes

{reMeMber the last X ••• }
{ ••• and the last Y}

{are we done Yet?}
{terMinate the locator}
{terMinate the display}

{terMinate the graphics SysteM}
{Main prOgrarll}

If you have run the progam "LOCATOR," you will have seen that several of the echoes are
rubber-band echoes; in other words, they create lines that seem to stretch between various
points on the screen. Echoes 4 through 8 require two points to define them. One of these points
is the point being tracked with the AWAIT_LOCATOR statement. The other is the anchor point,
and is set using the SET_ECHO statement. After using one of the rubber-band echoes, and
drawing the figure it represents, it is necessary to get a new point to anchor the next echo to.
This is done in the program "LOCATOR" by the following block of code:

IF Newline THEN BEGIN
Newline := FALSE;
SET_ECHO_POS (Xin,Yin);
MOI,IE (){ in, Yin) ;
Ylast:= Yin;
)<last:=){in;

END

ELSE BEGIN
SET_ECHO_POS (Xin,Yin);
IF (Xin = Xlast) AND (Yin Ylast) THEN

Nel,.,1Line := TRUE
ELSE BEGIN

END
END;

CASE EchoSelect OF
1..7: LINE O{in,Yin)
8 BEGIN

END
OTHERWISE

LINE (Xlast, Yin);
LINE ()-{in, Yin);
LINE ()<in, Ylast);
LINE OOast, Ylast);
Ne,,,,Line := TRUE;

END; {CASE EchoSelect of}
)<last :=)-{ird
Ylast := Yird

Interactive Graphics 4-13

In the preceding code, the anchor is set to the last digitized point, unless the same point was
digitized twice, in which case the small cross-hair cursor can be used to select a new anchor
point. Once a new anchor point is selected, the rubber band cursor mode is returned to.

When the knob is being used as a locator, it is also possible to use SET_ECHO to establish the
initial position of the locator when AWAIT_LOCATOR is called.

Tablets and Aspect Ratios
If the knob is used as a locator for the CRT, the mapping between the locator device and the
display device is isotropic, since the two devices use the same display mechanism. This is not
true if an external digitizing device (such as the HP 9111A or HP-HIL graphics tablet) is used.
The default aspect ratio for the 9111A is 0.7234, while the CRT of the Model 236 =0.7613 (as
set up in "LOCATOR," above). This means that a square area on the graphics tablet does not
represent a square area on the CRT. This is not a tremendous problem in many interactive
graphics programs, where the tablet is merely used to point at objects. However, in some
applications, those in which the tablet is used to copy an existing document into the computer,
the distortion is not acceptable. This is easly remedied, through the SET _LOCATOR_LIM
procedure. The follOWing addition to the "LOCATOR" program will set the tablet to the same
aspect ratio as the CRT, insuring the desired isomorphic transformation.

ELSE BEGIN {No errors so far}
SET_ASPECT (511,389);
IF LocatorAddress = 70G THEN BEGIN{This is a tablet}

SET_LOCATOR_LIM(0,(511/389)*217.G,0,217.G,Error_nuM) ;
IF Error_nuM <> 0 THEN

WRITELN (ErroL1HlfTl:2,' encountered in SET_LOCATOR_LIM.');
END; {IF LocatorAddress = 70G}
SET_WINDOW (0,511,0,389);

4-14 Interactive Graphics

Color Graphics
Chapter

5

Color!
Color can be used for emphasis, for clarity, and just to present visually pleasing images. Color is
a very powerful tool, and it follows directly that it is very easy to misuse. Be careful in using
color, and it will serve as a valuable tool for communication. Misuse it, and it will garble the
communication.

The DGL Color System
In order to create a device independent programming language, it is necessary to model an
ideal system, and then create transformations to map that system onto real hardware. This is
the way the Device independent Graphics Library (DGL) works. Understanding the ideal color
system will make it much easier to understand the actual implementations that are available on
your computer.

In order to understand the color system, it is necessary to understand two concepts:

• Color as an Attribute

• Models for Color Specification

After covering these topics, we will also go into the concept of a color space, which is another way
of describing the color models that are used in DGL.

Color As An Attribute
We have already dealt with the attribute of linestyle, and the attributes which describe the fill pattern
in a polygon. Color is another primitive attribute. Two procedures in DGL allow you to specify the
attribute of color:

• SET_COLOR selects the color used by GTEXT, LINE, INT _LINE, POLYLINE and INT_
POLYLINE, as well as the edges generated by POLYGON, POL YGON_DD, INT _POL YGON
and INT _POL YGON_DD.

• SET _PGN_COLOR selects the color used for the interior of polygons generated by POLY­
GoN' POL YGON_DD, INT _POL YGON and INT _POL YGON_DD.

Notice that SET_COLOR and SET _PGN_COLOR both select a color attribute. The selection is
made from the color table.

5-1

5-2 Color Graphics

The Color Table
The color table is a repository of color definitions to be used for displaying primitives. It
is used to describe both lines and filled areas. The color table for Series 200 computers, HP
98543A displays, HP 98545A displays, and the 4-plane HP 98700A display is a list of 32
colors. This provides 32 colors for the color attribute of graphics primitives. For displays HP
98547 A and HP 98549A, the color table is a list of 80 colors. On the HP 98700 8-plane, HP
98550A, and 362/382 internal color displays, the list is 272 colors.

Default Colors
When DGL is initialized for a color display the color table is set up with the following values:

The Primary Colors

Default Color Table Values

Value

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16 through
Last Color

Color

Black
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black
Olive Green
Aqua
Royal Blue
Maroon
Brick Red
Orange
Brown
White

The lower eight pens are the colors of the default color map; the colors that can be created by
turning the guns of a color CRT on or off, in various combinations:

• Black and White (the extremes of no-color)

• Red, Green, and Blue (the additive primaries)

• Cyan, Magenta, and Yellow (the complements of the additive primaries - which happen to
be the subtractive primaries)

The Business Colors
The upper 8 colors (8 through 15) were selected by a graphic designer to produce graphs and
charts for business applications. The colors are:

• Maroon, Brick Red, Orange, and Brown (warm colors)

• Black, Olive Green, Aqua, Royal Blue (cool colors)

These colors are one designer's idea of appropriate colors for business charts and graphs. They
were chosen to avoid clashing with each other. A technique for using them is described under
"Color Hard Copy" in the "Color Spaces" section at the end of this chapter.

Color Graphics 5-3

Monochromatic Defaults
If a monochromatic display device is being used, the color table defaults to a set of dithered
gray patterns:

Default Monochromatic Color
Table Values

Value Luminosity

0 0.0000
1 1.0000
2 0.9375
3 0.8750
4 0.8125
5 0.7500
6 0.6875
7 0.6250
8 0.5625
9 0.5000
10 0.4375
11 0.3750
12 0.3125
13 0.2500
14 0.1875
15 0.1250
16 0.0625

17thru31 1.0000

If You Don't Like the Defaults
The contents of an entry in the color table can be modified with the procedure
SET_COLOR_TABLE. The actual effect of a call to SET_COLOR_TABLE depends on the
color model being used. The color model is selected using SET _COLOR_MODEL. Which
brings us to color specification~

5-4 Color Graphics

Models For Color Specification
As mentioned above, SET _COLOR_TABLE is used to control the actual value of entries in the
color table. It was also pointed out that the effect of SET _COLOR_TABLE is determined by the
current color model, which is controlled by SET _COLOR_MODEL. It follows that it is neces­
sary to understand SET _COLOR_MODEL before it is possible to understand
SET _COLOR_ TABLE.

SET _COLOR_MODEL selects (if you haven't already guessed) the color model to be used.
There are two models available in DGL; the RGB (Red, Green, Blue) and the HSL (Hue,
Saturation, Luminosity) models. We will discuss them in order of ascending complexity.

The RGB Model (Red, Green, Blue)
The RGB model can be thought of as mixing the output of three light sources (one each of Red,
Green, and Blue). The parameters in the model specify the intensity of each of the light sources.
The RGB model is selected by using a model selector of 1:

SET_COLOR_MODEL (1);

Once the RGB color model has been selected, the parameters sent to SET _COLOR_TABLE
represent the percentage of full intensity of the red, green, and blue light sources:

SET_COLOR_TABLE (TableEntn't Red t Green t Blue);

The following picture illustrates a physical model for the RGB system.

RGB Color Model

Color Graphics 5-5

Whenever the red, green, and blue parameters have the same value, the resulting color is a
gray tone (Le. it has no hue component). The RGB model is based on the additive primaries,
the colors used for describing mixing light, as opposed to mixing pigments, which are subtrac­
tive. It is a good system for interacting with color CRT displays, since it requires little conversion
to translate it to a set of signals suitable for driving a color CRT.

The HSL Model (Hue, Saturation, Luminosity)
The HSL model is closer to the intuitive model of color used by artists, and is very effective for
interactive color selection. It is similar in concept to the methods used by artists for mixing
paints, where pure hues are selected, and then white and black are mixed to dilute the color
and/or darken it. The three parameters represent hue (the pure color to be worked with),
saturation (the ratio of the pure color mixed with white), and luminosity (the brightness-per-unit
area.) To better understand the parameters, let's build a model for the HSL system.

If we start with a white light source we should be able to get any color we want by filtering it. (A
perfect white light source contains equal parts of all possible colors.)

The first step is to select the Hue to work with. This can be done with a color filter. In fact, if we
take several color filters, and arrange them to form a disk, we could rotate the disk in front of the
white light source and choose any of the colors on the filter wheel. Since the model we are
working with is a model for understanding rather than one that we actually have to build, we
can consider the wheel to consist of an arbitrarily large set of color filters, so that any rotational
movement of the wheel will select a different color filter. Now we will provide a mechanism to
drive the wheel which will position it angularly, based on a number we send to it, a number
between 0 and 1 (inclusive). We will arrange the filters as a conventional color wheel (there are
advantages to this, which are discussed under "Effective Use of Color," later in this chapter).
Since it is a wheel, it must meet itself somewhere, and Red is as good a place as any, so two
parametric values (0 and 1) describe red. Such a color wheel would look something like this:

A Color Wheel for the HSL Model

5-6 Color Graphics

This arrangement is fine for producing highly saturated colors (bright, pure, intense colors), but
there are other types of colors, and we need to be able to produce them. For a start, we can mix
some white light (remember our white light source?) with the filtered light, to desaturate the
color. Combining the filtered and unfiltered lights directly would produce 50% saturation, and
would double the luminosity of the resultant color. We want to have variable control of the
saturation, and, to keep the model simple, it would be better if the result of the saturation
control produced a unit luminosity. If, instead of mixing the two light beams directly, we mix the
outputs of two simple optical gates that are linked with a mechanical slider to control the
proportions of the colored and filtered light, we can control of the saturation while maintaining
a constant luminosity (intensity-per-unit-area). Once again, we will provide a mechanism which
takes a number between 0 (no color - pure white) and 1 (fully saturated color) and positions the
slider appropriately. The two pictures below show the model we have described, with a fully
saturated red in the first one, and a 50% saturated red in the second one.

Fully Saturated Red

Color Graphics 5-7

50% Saturated Red

Finally, we may wish to change the luminosity, or brightness of a color (for example, brown is a
dark red). This can be accomplished by putting an iris (like the one found on a 35 mm camera)
after the mixer that combines the output from the saturation slider. The same 0 through 1
numerical control interface is used to control the iris, and thus the luminosity. The following
three pictures show some combinations of the various controls:

Fully Saturated, Fully Luminous red.

5-8 Color Graphics

Fully Saturated, 50% Luminous Red.

50% Saturated, 50% Luminous Red.

Color Graphics 5-9

To recap, the Hue parameter rotates a color wheel to select a "pure" color to use. This color is then
mixed with white light. The ratio of the pure colored light to the white light is controlled by the
Saturation slider. Finally, the output passes through the luminosity iris (think of it as a hole you can
adjust the size of) that controls the brightness of the output.

The HSL model is specified by a model selector of 2 in the SET _COLOILMODEL statement:

SET_COLOR_MODEL (2);

A program called "COLOR" on the DGLPRG: or DOC: disc uses HSL model for interactive
color selection. ("COLOR" only works correctly on the following: Model 236 Color Computer,
HP 98543A, HP 98545A, HP 98547 A, HP 98549A, HP 98550A and HP 98700A.) It pro­
duces two arrays for use with the SET _COLOR_ TABLE statement, one for INTENSITY and
one for COLOR. The program is over 300 lines long, almost all of which is simply a human
interface to the following code in the update routine:

SET_COLOR_TABLE (TableEntry,
HueVal[TableEntry] ,
SatVal[TableEntry] ,
LUMVal[TableEntry]) ;

Which Model?
Two models are provided by the DGL color system. If you are working with primaries only, or want
gray scale output, the RGB model is great. If, on the other hand, you are trying to deal with pastels
and shades, you are better off with a color model that is intuitive in nature, and that is where the
HSL model shines.

It is possible to get the best of both worlds by using the HSL model for the human interaction, then
reading the color table to get the RGB color values.

The "COLOR" program mentioned above does exactly that to calculate the correct cursor and text
color to use when the user changes the background color. This is done by reading in the RGB color
table values, calculating which corner of the color cube is farthest from the background color,
setting the foreground pen and text displays to that color, and then writing the RGB values back
into the color map. Even though the primary interaction is with the HSL model, the RGB model is
used because it is more convenient to find distances between colors in it.

type
Colors=
Modes=
EntryRan~e=

FunnyArray=
•
•
•

canst
FunnyChar=

•
•

(Red ,Yellol,,! ,Green ,Cyan ,Blue ,Ma~enta ,Whi te ,Black);
(Hue ,Sat ,LuITl ,Table ,Copy! ,Copy2);
-1. .18;
array [Colors] of char; {array for alpha color}

FunnyArraY[chr(138) ,chr(137), {\ Array for }
chr(138) ,chr(140), {\ holdin~ the}
chr(142) ,chr(143), {/ alpha-color}
chr(141),chr(13B)]; {/ controllers}

5-10 Color Graphics

var
TableEntn-:
RedBacf, tGreenBacH tBlueBacf,:
LabelColor:
BacHSuMtOldBackSuM:

•
•
•

Entn-Range;
rea I ;
char;
O •• 7;

if TableEntry=O then begin {BacHground color}
set_color_Model(1); {RGB}
inC!_color_table(OtRedBacf, tGreenBack tBlueBacf,); {get RGB values}
BackSuM:=O; {\ Calculate the }
if RedBack(0.5 then BackSuM:=4; { \ background color }
if GreenBacH(O.5 then BacHSuM:=BackSuM+2; { / in order to Make }
if BlueBack(0.5 then BackSuM:=BacHSuM+1; {/ contrasting text. }
if OldBacHSuM<>BacHSuM then begin {Color change}

case Bacf,SulTl of
0: LabeIColor:=FunnyChar[BlacH];
1: LabeIColor:=FunnyChar[Blue];
2: LabeIColor:=FunnyChar[Green];
3: LabeIColor:=FunnyChar[CYan];
4: LabeIColor:=FunnyChar[Red];
5: LabeIColor:=FunnyChar[Magenta];
G: LabeIColor:=FunnYChar[Yellow];
7: LabeIColor:=FunnyChar[White];

end; {case BacksSuM of}
MenuLine;
OldBacHSuM:=BacHSuM;
set _ color _ tab I e (1 t 1 - Red B a c f,t

l-GreenBacf, t

l-BlueBacf,) ;
end; {if}
set_color_Model(2) ;

end; {if TableEntrY=O}

{ \ }

{ \ }

{ \ Translate the }

{ \ RGB bacf,ground }

{ / SUM to a }

{ / COIT1PlelTlentan' }

{ / text color. }

{ / }

{print the Menu line}
{store for future cOMParisons}
{\ MaHe pen one }
{ > COIT1PlelTlentan- t }

{/ too. }

{HSL}

One point brought out by the preceding example is that the models can be mixed freely. There
is nothing to prevent using the RGB model to set a gray background color and a black pen, and
then using the HSL model to produce the rest of the palette. Use whatever is easiest for what
you want to do.

If you are interested in pursuing the color models, the RGB model is called a Color Cube and
the HSL model is called the Color Cylinder. These models represent idealized color spaces and
are discussed next.

Color Graphics 5-11

Color Spaces
If you ask broadcast engineers what the primary colors are, they will probably tell you "Red,
green, and blue." If you ask printers what the primary colors are, they will probably tell you
"Cyan, magenta, and yellow." If you ask physicists , they will probably smile and say "That's
not the right question." Let's see if we can get enough information about color systems to ask
the right question.

Primaries and Color Cubes
The reason for the confusion is that there are two sets of color primaries. Red, green and blue
are additive primaries. Cyan, magenta, and yellow are subtractive primaries. Each of these sets
of primaries can be used to construct what is referred to as a color cube. These are called the
RGB color cube and the CMY color cube.

Each of the color cubes can be used to describe a color space. Color spaces are mathematical
abstractions which are convenient for scientific descriptions of color. This is because the color
spaces provide a coordinate system for describing colors. Once you have a coordinate system,
you can talk about and manipulate colors mathematically.

In addition to the color cubes, other color coordinate systems exist. While there are many, we
will only look at HSL Color Space, because it is one of the available color models in DGL. First,
the cubes.

5-12 Color Graphics

The RGB Color Cube
The RGB color cube describes an additive color system. In an additive color system, color is
generated by mixing various colored light sources. (Color mixing is discussed in "Effective Use
of Color," below.)

The origin (0,0,0) of the RGB color cube is black. Increasing values of each of the additive
primaries (Red, Green, and Blue) move towards white (the opposite corner of the cube.) The
maximum for all three colors is white (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally.

The RGB Color Space

NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

Color Graphics 5-13

The CMY Color Cube
The CMY color cube represents a subtractive color system. In a subtractive color system, colors
are created by subtracting colors out of a pure white (containing all colors equally) light source.
This most often occurs when light is reflected off of surfaces containing, or coated with, pig­
ments. This happens in printing and painting, among other operations.

The origin (0,0,0) for the CMY color cube is white. This represents all the colors in a perfect
white light source being reflected by a white (reflecting all colors) surface. Increasing values of
each of the subtractive primaries (Cyan, Magenta, and Yellow) move towards black (the oppo­
site corner of the cube.) The maximum for all three colors is black (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally. While the CMY color model is not
supported by the DGL, it is important to understand when you get to color hard copy.

CMY Color Space

NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

5-14 Color Graphics

The HSL Color Cylinder
The color cubes are very useful for working with physical systems that are based on color
primaries. They are not always intuitive, though.

The HSL color cylinder resides in a cylindrical coordinate system. A cylindrical coordinate
system is one in which a polar coordinate system representing the X-Y plane is combined with a
Z-axis from a rectangular coordinate· system.

• The coordinates are normalized (range from 0 through 1).

• Hue (H) is the angular coordinate.

• Saturation (S) is the radial coordinate.

• Luminosity (L) is the altitude above the polar coordinate plane.

The cylinder rests on a black plane (L = 0) and extends upward, with increasing altitude
(Luminosity) representing increasing brightness. Whenever luminosity is at 0, the values of
saturation and hue do not matter.

HSL Color Cylinder

NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

White is the center of the top of the cylinder (L = 1, S = O).The center line of the cylinder (S = 0) is
a line which connects the center of the black plane (L = 0, S = 0) with white (L = 1, S = 0) through a
series of gray steps. (L from 0 to 1, S = 0). Whenever saturation is 0, the value of hue does not
matter. The outer edge of the cylinder (S = 1) represents fully saturated color.

RED
HUE=Oo,'
SAT=,
LUM=,

CYAN
HUE =3/6
SAT=,
LUM=,

WHITE
LUMINOSITY = ,
SATURATlON=O

]

GRAY SCALE

HSL Color Specification

BLUE
HUE =4/6
SAT='
LUM='

Color Graphics 5-15

Using the above drawing (HSL Color Specification,) hue is the angular coordinate, saturation is
the radius, and luminosity is the altitude of the desired color.

5-16 Color Graphics

Reality Intrudes
It would be fantastic if that were all you needed to understand in order to use the color
capabilities in DGL. Unfortunately, "Reality rears its ugly head." HP does not make a piece of
hardware capable of supporting the system described above. HP color computers come close
to the color modeling system described above, but only approximate it.

However, now that the idealized color system has been described, we can tackle some real
hardware that DGL supports. We will start with the simplest display device (a plotter) and work
up to the most complex (the internal color-mapped frame buffer in a color computer). Along
the way, some of the hardware dependencies that make each device unique will be brought
out.

Plotters
Numerous plotters are supported by DGL. All plotters support color as an attribute of graphics
primitives to the extent it is possible with the number of pens available on the plotter. The SET_
COLOR and SET _PGN_COLOR procedures select the pen used used to draw the primitives.
Using a color selector of 0 will usually put whatever pen is in use away. CaJJs to SET_COLOFL
TABLE are ignored when a plotter is specified as the display device. Plotters do not support the
color modeling system.

Color Graphics 5-17

Frame Buffers
The internal displays on HP color computers all have bit-mapped graphics, as does the HP
98627 A. An area in memory called a frame buffer stores a binary description of each pixel
location on the display.

Frame Buffer Depth

The number of bits available for describing each pixel is called depth of the frame buffer. On all
displays except the HP 98627 A color output interface, and the color display cards, a single bit
is used to describe each pixel location. (On displays HP 98542A, HP 98544A, HP 98548A,
and computer Model 237 A, this bit is the LSB of a byte allocated to the pixel.) A single bit
allows each pixel to be on or off. This can be thought of as representing one of two colors
(black or white, since the CRT is monochromatic). A one-bit frame buffer and the display it
produces would look something like this:

One Bit
Frame Buffer System

0 0 0 0 0 0 0 0 o 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

Frame Buffer Display

One-bit Frame Buffer

5-18 Color Graphics

The 98627 A has a three-bit frame buffer, allowing each pixel to be set to one of 8 colors (Black,
Red, Green, Blue, Cyan, Magenta, Yellow, and White). Instead of storing ones and zeros (like a
one-bit frame buffer), a number between 0 and 7 can be stored.

Three Bit
Frame Buffer System

0 0 0 5 0 0 0 0 o 1
0 0 0 5 0 0 0 0 1 0
2 2 2 5 2 2 2 2 2 2
0 0 0 5 0 0 1 0 0 0
0 0 0 5 0 1 0 0 0 0
0 0 0 5 1 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0
0 0 1 5 0 0 0 0 0 0
0 1 0 5 0 0 0 0 0 0
1 0 0 5 0 0 0 0 0 0

Frame Buffer Display

Three-Bit Frame Buffer

The color computers have a four-, six-, or eight-bit frame buffer. A four-bit frame buffer allows
each pixel location to contain between 0 and 15 colors; where a six-bit frame buffer provides
for 0 to 63 colors; and an eight-bit frame buffer 0 to 255 (inclusive). Thus the color computers
can set a pixel to any of 2(n) different colors (where n is the number of planes). The presence
of a color map in a color computer complicates this somewhat, by giving you control over the
colors that each of the possible entries in a frame buffer can actually represent (this is a palette
of 2(n) colors out of a gamut of some larger number of colors - see the color map description,
below). For now, just think of color computers as having 2(n) colors that the user can define.

The following discussion addresses the frame buffers for these displays:

• HP 98542A low-resolution monochromatic display
• HP 98543A high-resolution monochromatic display
• HP 98544A low-resolution color display
• HP 98545A high-resolution color display
• HP 98547 A high-resolution color display
• HP 98548A high-resolution monochromatic display
• HP 98549A high-resolution color display
• HP 98550A high-resolution color display
• HP 98700A high-resolution color display
• HP 9000 362/382 VGA display
• HP 9000 382 medium-resolution color display
• HP 9000 382 high-resolution display

For all of the above displays, each frame buffer pixel is addressed as one byte of memory. The
monochromatic displays use only the least significant bit of each byte, and the color displays
use the least significant four, six, or eight bits of each byte.

Color Graphics 5-19

The high-resolution displays use square pixels to display the image; the Y:X aspect ratio of the
pixels is 1: 1. This results in a 1024 x 768-pixel displayable image. The low-resolution displays
use non-square pixels to display the image; the Y:X aspect ratio is 2: I-the pixels are twice as
high as they are wide. The resultant displayable resolution is 1024 x 400. For the low-resolution
displays, one pixel in the frame buffer is not the same as one DGL-accessable pixel. This is
because DGL "pairs" the frame buffer pixels to give DGL pixels.

The following diagram illustrates DGL's non-square pixels. As you can see, the "image" in the
frame buffer, which uses frame-buffer-pixel pairs, is too short, top to bottom. In the display,
though, the pixels are stretched vertically into non-square entities, yielding the desired shape of
the object drawn.

0 0 1 1

1 1 1 1

I§ indicates pixel on o indicates pixel off

In graphics, with the low-resolution displays, DGL "doubles up" the even/odd pairs of rectanglar
pixels to simulate square pixels at a displayable resolution of 512 x 400. Alpha does not double
up the display pixels; it uses all horizontal pixels. This results in an alpha resolution of 1024
x 400, or 26 lines of 80 characters, with a little extra space on the top, left, and right of the
screen. Alpha can produce pixel pairs in which one of the pixels has a different value than the
other. DGL will always produce pixel pairs in which the pixels have the same value.

Faking More Colors From a Frame Buffer
If you have a one-bit frame buffer and need more colors, you can go up to a three- or four-bit
frame buffer to solve the problem. If you already have a four-bit frame buffer and need more
colors, the problem is more difficult to solve. The same solution that allows you to add more
colors to the four-bit frame buffer also allows you to add more colors to a three-bit frame buffer,
or even to a one bit frame buffer. (0. K., it's actually shades of gray in a one-bit frame buffer.)
The technique is called dithering, and is supported on all Series 200/300 frame buffers.

5-20 Color Graphics

Dithering
In early color systems which did not provide control of the intensity of individual pixels,
dithering became a very popular method of increasing the number of shades available to the
machine. In dithering, half toning is used to create the impression of a larger palette than the
system hardware actually supports. This is done by creating patterns of dots of the available
colors which the eye will (hopefully) combine into a perceived color different from the colors
used to produce the patterns. The effectiveness of this technique depends on the distance from
the display, the patterns involved, and the eye of the beholder. For example, if you want to
produce a half intensity red, you can turn on half the dots in an area, and it will look half-bright.
The 50% pattern fools the eye quite effectively.

.. ,... , -
<xxx .. :-:;xxx> xxxxxxx.,' :'. :... •••. :::' •• . .:. .: ••••• ',' • '.' '.. • •. . .

:!";~·~!11:1(!:;!:;:"''': :::":;:; •• ,," ";::;; """. ". ". ". " "" ."" ,," " ::"."." ... "" •• "."
58% 75:~ 8 1 >~ B?%

6X

0%]

Half Tone Color Selection

Thus, by reducing the effective resolution of the system, it is possible to provide a large number
of shades of color. On color computers, this is done by imposing a grid of 4 x 4 squares on the
CRT, that is, each of the squares is 4 pixels square. With a one-bit frame buffer, it is possible
to get 17 shades of gray in the square (all pixels off, and 1 thru 16 pixels on). On a three-bit
frame buffer (the HP 98627) there are three colors available, providing 4913 (173) shades. For
a four-bit frame buffer there would be 83521 (174) shades. While for a six-bit frame buffer
there are 24137569 shades, and an eight-bit buffer has 6975757441 shades (if the colors
represented by the frame buffer were fixed). On color computers, however, it is possible to
alter the colors represented by the frame buffer value, so the number of colors representable is
variable - it could be larger or smaller than 83521 (which is more than the number of dithering
squares available on the display, anyway) depending on the contents of the color map.

Color Graphics 5-21

Creating A Dithered Color
The following discussion gets a little abstract, and it is not absolutely necessary to understand
how dithering works to use it. It is interesting information, and can be useful knowledge if
dithered areas don't do what you expect.

A color vector is a directed line connecting two points in RGB color space. The dithering
process tries to match a target vector by constructing a solution vector from colors available to
the frame buffer. The actual dithered color to be produced will be 16 times the target vector,
since 16 points in the dither area will be combined to create it.

The color matching process requires sixteen steps. First, the target vector is compared to the
vectors produced by each color in the color map. The one which is closest to the target vector is
selected as the first component of the solution vector. The distance between the points in the
RGB color space is used to determine how far apart the vectors are.

The following process is then repeated 15 times:

1. The original target vector is added to the preceding target vector to produce a new target
vector.

2. A trial solution vector is created for each color in the color map by adding the vector for
the color map entry to the previous solution vector. The trial solution vector that is closest
to the target vector is selected as the new solution vector.

At this point, the target vector is 16 times the original target vector, and the solution vector
consists of a summation of color vectors available to the frame buffer that produce, at each
iteration, the vector closest to the target vector.

If all this has left your head spinning, let's take a look at a Simplified system to see how the
process works. Our simplified system will be a two color system (to keep it a two dimensional
problem) with a 2 x 2 dither cell (which means we only have to look at four steps in the total
process).

We will use green and red (let's not get "tangled up in blues") for the two axes. There will be
three colors available to the frame buffer - a unit green, a unit red, and a combination of a unit
red and a unit green. The vectors each of these colors produce is drawn at the top of the' 'Color
Vector Matching" Diagram, shown below. At each step in the process, the target vector is
labeled "T" and the solution vector is labeled "S." In addition, the test vectors that are not
used are shown, with no labels on the endpoints.

5-22 Color Graphics

Rvai lable
Color Vectors

.-------------------~

Use
Color

Vector
3

Use
Color

Vector
1

G

R

G

11 _2 Y
Use

Color
Vector

2

Use
Color

Vector
3

/

G

G

5
T

-f---.-----.---.-----, R

Color Vector Matching

In actuality, the entire set of colors available to the frame buffer is not necessarily used for
creating a color. Before the color matching process is started, the colors available to the frame
buffer are sorted into two groups; those within the target cube, and those outside the target
cube. The target cube is the cube formed by using the origin of the RGB color space and a point
representing 16 times the target vector as diagonal corners to form a cube. Going back to our
two dimensional model, we will construct a target square for the system. For a vector near one
of the axes, the unit vector on the other axes will be excluded from the solution set, since it lies
outside the target square.

Rvai lable
Color Vectors

No
Vectors

Excluded

G
Color Vector

Rngle: 40
Magni: 1.00

~T
G

Excluded .. · .. T Color Vector
Vectors Rng 1 e: 80

Magni: 1.00

2

11 _2 Y
G

Excluded Color Vector
Vectors Rngle: 10

11

Magn i : 1. 00

3/
G

No Co lor Vector
Vectors Rngle: 45

Excluded Magn i: 0.50

.......)'1T

,

Two Dimensional Target Square

Color Graphics 5-23

Once the colors have been selected for the solution vector, the colors are sorted by luminosity
and filled into the following precedence matrix (the most luminous color is filled into the lowest
numbered pixel):

1 13 4 16

9 5 12 8

3 15 2 14

11 7 10 6

The dither precedence matrix is actually tied to pixel locations on the CRT. The matrix is
repeated across the CRT and from the top to the bottom of the CRT (just divide the number of
pixels on each axis by 4 to get the number of repeats). Areas to be filled are mapped against
the fixed dithering pattern. All dither cells completely within an outline to be filled are turned
on according to the precedence pattern. Cells which are only partially within the border are
only partially enabled. If the area fill pattern calls for a pixel outside the boundary to be set, it
will not be.

There are problems with dithering:

• The dithered colors are not necessarily accurate representations of the color specified.
Looking at the "Color Vector Matching" Diagram shown above, the solution vector does
not actually match the target vector, it just comes near it. This is highly dependent on the
colors available to the frame buffer. A 4-by-4 dither cell with one full intensity green pixel
does not look the same as the same cell filled with 1/15 green.

• The dithered color selection tends to produce textures. In some cases, the textures over­
whelm the shade produced.

• The dithered colors are not stable if the color map is altered on a color computer. (This is
discussed in more detail under' 'Color Maps," below.)

• The dithering operation produces anomalies when the area to be filled is thin. If it is less
than four pixels wide or high, it cannot contain the entire dither cell and the results can be
surprising for colors which turn on small portions of the cell.

5-24 Color Graphics

If You Need More Colors
If you have an application that requires more colors than are available to your frame buffer, the first
thing to do is see if you can redefine it to use the colors available to the frame buffer. In many cases
this is possible, and the higher quality of the frame buffer palette is worth a little checking to see if
you can use it.

If you have to use dithering, here are some hints for getting the best results:

• Check the colors to see if you are going to get objectionable texturing. Sometimes relative­
ly minor shifts in color definition can produce significant differences in the patterns used in
dithering.

• Remember - you can't draw lines with dithered colors. DGL will automatically use the
closest available color from the frame buffer.

• If you are on a color computer, make sure your color palette is correctly set up for
dithering.

On all frame buffers other than the color computers, all the color table entries are potential
dithered colors. On a color computer, however, only the upper 16 entries of the color table
are dithered colors. The lower half of the color table maps directly to the hardware color map.
The color map is one of the most powerful graphic tools yet invented. It is described below,
under "Series 200/300 Color Graphics System."

Frame Buffer Contents
Now that you understand frame buffers and dithering, it's possible to describe what is actually
found in a frame buffer. At any given time, the values written to the frame buffer fall into four
categories:

• Background Value - Whenever CLEAILDISPLAY is executed, all the pixel locations in the
frame buffer are set to the current background color. The background color is described by
entry 0 in the color table.

• Line Value - The SET_COLOR statement is used to determine the value written to the frame
buffer for all lines drawn. This includes all lines (including characters created by GTEXT) and
outlines (for polygons with the edge parameter true in the polygon style table).

• Polygon Interiors - The SET _PGN_COLOR statement is used to specify the value written to
the frame buffer for filling areas (for polygons with the fill attribute true in the polygon style
table).

• Dithered Colors - when an application uses more colors than the frame buffer can support
directly (see "Frame Buffer Depth," below), dithering is used to create as close an approxima­
tion of the color as can be done by mixing colors available to the frame buffer. Dithered colors
can only be used for the background and for polygon interiors, not for lines.

Color Graphics 5-25

Series 200/300 Color Graphics System
The biggest benefit of the color computer is that it makes experimenting with color so easy.
With a bit-mapped frame buffer and a color map, it is easy to test out ideas before you use
them. It is also possible to use the color map for simple animation effects and some just plain
impressive images.

It is possible to use the color computer with the default color map. The color used will
depend directly on the value in the frame buffer. This is fine if the work you are doing can
be accomplished using the 16 (or 64, or 256) colors supplied as the system defaults. This is
often not the case, and this overlooks one of the most powerful features of the color computer
- the color map.

Color Map (Model 236 Color Computer)
The color-mapped system uses the value in the frame buffer as an index into a color map. The
color map contains a much larger description of the color to be used and, just as importantly,
the color description used is indirect. Thus, the value in the frame buffer does not say' 'use color
12", but rather "use the color described by register number 12".

Frame Buffer

Dlsplay

Color Map

Re d G r e e n B 1 u e

: ~I---t---t-------t

:~l--:-:::l0=OI~':"":'II=OO:-+-=10"';";II---j
: ~t--~r--~r--~
~1-------11-------11-------1
7
61-------11-------11-------1

~1-------11-------11-------1

~1-------11-------11-------1

~.I---t---t-------i

Color Map

The CRT refresh circuitry reads the value from the pixel location in the frame buffer, uses it to
look up the color value in the color map, and displays that color at that pixel location on the
CRT. Thus, it is possible to draw a picture with a given set of colors in the color map (a set of
colors is called a palette) and then change palettes and produce a new picture by redefining the
colors, rather than having to redraw the picture. (The binary numbers in the color map are
created by the system. The user deals with normalized values, as described under "Color
Specification. ")

Other color display models are similar in concept, but differ in detail.

5-26 Color Graphics

True User Definable Color
The colors available are true user definable colors. The color can be changed on a pixel-by­
pixel basis, so there are no restrictions on how the colors can be used (as there are with dithered
shades, which can only be used for filling polygons). There are also no problems with texturing,
as the color is not produced by mixing dot patterns.

Retroactive Color Changes
Another advantage of the color map colors comes from the indirect nature of the color map.
Since the frame buffer contents only point to locations in the color map, it is possible to change
the contents of the color map after an image has been created in the frame buffer, allowing
"fine tuning" of the image after it has been created.

If You Need More Colors
If you have an application that requires more colors than the number that are available, the first
thing to do is see if you can redefine the application to use the available colors. In many cases
this is possible, and the higher quality of the color mapped palette is worth a little checking to
see if you can use it.

The color computer provides dithering for applications that require more shades than are
available at any single time with the color map. The upper part of the color table (last real
entry plus one, through last real entry plus sixteen) provide access to dithered colors, although
they will fill with a single pen if the color requested exists in the current color map.

If you absolutely have to get at a larger palette, then load a palette optimized for dithering (optimiz­
ing for dithering is described below) and stick with dithering. Don't try to mix color map redefini­
tion and dithering - it will probably cause you a lot of grief. Especially, do not try to do interactive
redefinition of the color map in a system that is also using dithering.

Color Graphics 5-27

Optimizing For Dithering
The actual color palette you require determines the optimum color map values. Below are
some plots of color matching on the simplified color system introduced under the discussion of
dithering. Each plot is trying to match the same target vector, but using a different palette. The
effect of various color maps on the distance between the target and solution vectors is striking.

Color Color
G

Vector G Vector Er ro r = Error =
Set 0.9314865 Set 0.4860644

11 2 1/ 2 S

~T 3/
% 5

R R

Color Color
G

Vector G Vector Er ro r = Er ro r =
Set 0.3339008 Set 0.2279536

11 21 5 11 2/

T
3 4 3 4 -
5/ 5/.7 R R

Color Map Effect on Color Vector Matching

5-28 Color Graphics

It's obvious from the drawing above that the larger the color map, the closer the match to the
target color, right? Well, it's obvious from that drawing, but let's take a look at a slightly different
color to match, and see what happens.

Color
G Vector Error =

Set 1. 1774409

Color
G Vector Error =

Set 0.2820470

11 2 T
11

S
2 T

3/
R R

Color
G Vector Er ro r =

Set 0.4826580

Color
G Vector Error =

Set 0.2820470

11 21
S T

21
S

11 T

3 4 3 4

5/
-

R 5/s7 R

Color Map Effect on Color Vector Matching - Part 2

The point is, that the quality of color matching depends on both the contents of the color map
and the color to be matched.

Color Graphics 5-29

Resolution and Color Models
The resolution available with the two color models depends on the hardware being used to
generate the color. Resolution on devices that use dithering is complicated by the variation in
quality of the colors produced by dithering. Resolution of the color map is easier to deal with, so
let's see what's available.

RGB Resolution
The resolution of the RGB model is limited by the digital to analog converters in the color
computer graphics hardware. The converters allow 2(n) states to exist for each of the CRT
electron guns, so the resolution of each of the RGB parameters is 1/2(n)-1, from 0 thru 1.
In fact, since the SET _COLOR_TABLE statement accepts real arguments, you can express the
values as fractions, and let the computer convert to decimals. The following call would set the
background to about 50% gray.

SET_COLOR_TABLE (0, 7/15, 7/15, 7/15)

HSL Resolution
The resolution of the HSL model is not specified anywhere. This is because the resolution for the
various parameters is not a fixed value. The resolution for any parameter of the HSL system is
dependent on all three of the parameters. The resolution is not only changed by the other two
parameters, but also by the magnitude of the parameter you are varying.

5-30 Color Graphics

Writing Modes and Color
Since HP color computer frame buffer devices are bit mapped, it makes sense that various
logical combinations of the bits in the frame buffer with the bits being added by a drawing
operation should be possible. Since this is a highly device dependent operation, the various
drawing modes are specified with calls to OUTPUT_ESC. Four drawing modes are available:

• Dominant

• Non-Dominant

• Erase
• Complement

Three of these drawing modes have already been introduced (all but non-dominant) in Chapter 2.
The meaning of the modes is slightly different for a color system than for monochromatic systems.
The actual meaning of each of the modes is discussed below, but first, a slightly modified version of
the DrawingMode procedure presented in Chapter 2 is listed below. The non-dominant drawing
mode has been added to it.

$page$ {**}
procedure DrawingMode(Mode: DrawingModeType);
{--}
{ This procedure selects drawing Modes for a color-Mapped CRT. }
{--}
const

SetDral,.,lingMode= 1052; {MneMonic better than Magic nUMber}
1.1 a r

DralAIMode:
Rarran
Error:

begin

a r ra}' [1..1]

a r ra}' [1 •• 1]

integer;

of integer; {

of re a I ; {

{

{procedure

\ This is all stuff that
". is needed b }' the ..-

/ lIoutput_esc li procedure.
II Dr alAI i n gM 0 dell }

case Mode of { \ }
DOMinant: DrawMode[lJ:=O; {\ Convert DrawingMode enuMerated }
NonDoMinant: DrawMode[lJ:=l; {\ type into the appropriate }
Erase: DrawMode[lJ:=2; {/ value for DUTPUT_ESC procedure. }
COfT1PlefTlent: DraIAIMode[lJ:=3; {/ }

end; {case} { / }
output_esc(SetDraIAlingMode ,1,0 ,DralAIMode ,Rarra}' ,Error); {set it}
if Error<>O then IAlriteln('Error' ,Error:O,' in procedure IIDral"lingMode ll .');
end; {procedure IIDralAlingMode ll }

The global TYPE declaration for DraIAlingModeT}'pe must also be changed:

Dral"lingModeT}'pe = (DofTlinant, Erase, COfT1PlefTlent, NonDofTlinant);

}

}

}

"Draw" has been changed to "Dominant" to make it consistent with references to the non­
dominant mode.

Color Graphics 5-31

Dominant Writing
Dominant writing is the easiest to understand. When DGL has a new value to write to a location in
the frame buffer, whatever is already in the frame buffer is overwritten, and thus lost. The system
wakes up in the dominant mode.

Non-Dominant Writing
All the techniques described up until now have dealt with dominant writing to the frame buffer. In
the dominant writing mode, the color selector is written directly to the color map, and overwrites
whatever is currently in the frame buffer. In non-dominant writing, a bit-by-bit logical-or is per­
formed on the contents of the frame buffer and the table entry selector value being written to the
frame buffer. Thus, if color selector 1 is written to a buffer location that has already been written to
with color selector 6, the buffer location will contain 7, but writing color selector 2 to a buffer
location that has already been written to with color selector 6 will not change the contents.

Erasing
Erasing is a fairly simple concept in frame buffers that are a single bit deep. You just restore the
background by setting the portion of the frame buffer you wish to erase to O. The concept is a
little more complex in frame buffers with more depth (such as a color computer.) At the simplest
level, you can simply set the contents of the frame buffer to the background color, using a call to
CLEAR_DISPLAY.

It is also valuable to erase a single line. This can be done by setting the drawing mode to erase, and
then re-drawing the line you wish to erase. In the erase mode, the erasure is done non-dominantly.
This means that the bits which have a 1 value in the current color table entry selector are cleared to
o in the frame buffer entries that are modified by the line drawn in the erase mode. For example, if a
table entry selector of 5 is used to erase the a line written with a table entry of 5, the frame buffer
entries are returned to O. If, however, the same line crosses a frame buffer entry of 7, the result is a
value of 2 (only the bits set in 5 are cleared to 0 by the operation).

The only method that insures erasing a line is to select the dominant writing mode and draw over
the line in the background color. This is done with a table entry selector of 0 (for the frame buffer
background) or a table entry selector equal to a "local background," if the line you are trying to
erase is drawn across an area filled with a color other than the background color.

Complementary Writing
The complementary drawing mode is provided for operations (such as making your own cursor)
that need to put an image on the screen that is always visible, but that can also be taken
off the screen without damaging the background. On a color computer, the concept of a
complementary pen is extended to deal with the bit values (n) in the color map. In the non­
dominant mode, the bit pattern represented by the table entry selector will be exclusively-ORed
with the contents of the frame buffer.

The complement occurs only for the bits which are one in the table entry selector. Thus an entry
selector of - 6 would complement bits 1 and 2 of the frame buffer. If a 1 exists in a frame buffer
location and a line is drawn over it with entry selector 6, a 7 will now be in the location. Writing
over the pixel with the same table entry selector will return it to a 1.

5-32 Color Graphics

Making Sure Echoes Are Visible
It is important to understand that the complementing is of the frame buffer, not the color map.
You are responsible for making sure that the complemented frame buffer values are visible
against one another. Be careful of placing the same color in two locations on the color map that
are complements of one another. If you pick one of them as an echo color and then try to use
the echo over an area filled with the other value, you will not be able to see it.

Drawing Modes and the Frame Buffer
Let's try to make things a little more concrete. We will look at a 9 x 9 section of a frame buffer,
and draw some lines in the various modes, with different table entry selectors. Starting in the
dominant mode, if we draw a cross with a table entry selector of 5, and then put a square with a
table entry selector of 7 down on top of it, the following frame buffer results:

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 7 7 7 7 7 0 0

0 0 7 0 5 0 7 0 0

5 5 7 5 5 5 7 5 5

0 0 7 0 5 0 7 0 0

0 0 7 7 7 7 7 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

Dominant Writing to the Frame Buffer

Color Graphics 5-33

If we then set the erase drawing mode and use a table entry selector of 5 to try to erase the
horizontal element of the cross, we end up with two pixels of the horizontal element not erased,
since the square had changed those locations to a 7, and the erase mode only erases the bits
that are set to one in the table entry selector. The frame buffer ends up looking like this:

0 0 0 0 5 0 121 0 0

0 0 121 0 5 121 121 0 0

0 0 ? ? ? ? ? 0 0

0 0 ? 0 5 0 ? 121 0

0 0 2 121 0 0 2 0 0

0 0 ? 0 5 0 ? 0 121

121 121 ? ? ? ? ? 121 121

121 121 121 0 5 0 121 0 0

0 121 121 121 5 0 121 0 121

Erase Writing to the Frame Buffer

If you want to set a line to the background color, do it in dominant mode, with a table entry
selector (in SET_COLOR) of O.

5-34 Color Graphics

Now, clear the frame buffer, and let's take a look at non-dominant writing. Non-dominant
writing ORs the contents of the frame buffer with the table entry selector. Let's put the cross and
the square in the frame buffer, again, but this time we will use non-dominant mode, and a pen
selector of 2 for the square. The cross will be written first, and then the square. The following
frame buffer results:

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 2 2 ? 2 2 0 0

0 0 2 0 5 0 2 0 0

5 5 ? 5 5 5 ? 5 5

0 0 2 0 5 0 2 0 0

0 0 2 2 ? 2 2 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

Non-Dominant Writing to the Frame Buffer

Now let's try some complementary writing to the frame buffer we got from the non-dominant
writing example, above. We will draw over the horizontal line, using a color table entry selector
of 7. The first time, we get the following:

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 2 2 ? 2 2 0 0

0 0 2 0 5 0 2 0 0

2 2 0 2 2 2 0 2 2

0 0 2 0 5 0 2 0 0

0 0 2 2 ? 2 2 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

Complementary Writing to the Frame Buffer

Color Graphics 5-35

If we do it again, we end up with this:

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 2 2 7 2 2 0 0

0 0 2 0 5 0 2 0 0

5 5 7 5 5 5 7 5 5

0 0 2 0 5 0 2 0 0

0 0 2 2 7 2 2 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 5 0 0 0 0

More Complementary Writing to the Frame Buffer

Notice that the first line is highly visible (assuming the color map contents do not produce the
same colors for several entries in the frame buffer), but that the frame buffer is restored to it's
original values after the second operation. This will not be true if a line is drawn through the
area before the complementary line is "undrawn." Always undraw complementary lines before
you try to add things to the frame buffer.

Special Considerations
The drawing modes mentioned above are only available on frame buffers. There are some
special interactions with various primitives in the graphics system that need to be taken into
consideration.

Text
When text is written in the complementary mode, gaps will be produced in the characters,
wherever the character intersects itself. This includes crossovers and endpoints of lines .that
overlap. Readability of the text can be heavily impacted by this. Make sure you want the result
before putting GTEXT calls while the drawing mode is complementary.

Polygons
Device independent polygons (lNT _POLYGON and POLYGON) are written to the frame
buffer using the current drawing mode. Device dependent polygons (lNT _POL YGON_DD and
POL YGON_DEV _DEP) ignore the drawing mode. Make sure you use the correct one if you
want the drawing mode to work.

5-36 Color Graphics

Effective Use of Color
At the beginning of this chapter, it was pointed out that color is a very powerful tool, and that it
is also easy to misuse. While it is beyond the scope of this book to provide an exhaustive gUide
to color use, a few comments can be made on using color effectively.

This section will deal with seeing color first, to lay the groundwork. This is followed by a
discussion on designing effective display images, since effective color use is almost impossible if
the image is fundamentally unsound.

After laying the groundwork, effective color use is discussed, from both the objective and
subjective standpoints.

Seeing Color
The human eye responds to wavelengths of electromagnetic radiation from about 400 nm to
about 700 nm (4000 to 7000 angstrom). We call this visible light. Visible light ranges from violet
(400 nm) to red (700 nm). If all the frequencies of visible light are approximately equally mixed,
the result is called white light.

The eye's ability to discriminate color is reduced as the light level is reduced. This means that
the variety of colors perceivable at low light levels is smaller than the variety at higher light
levels.

The eye is most sensitive to colors in the middle of the visible spectrum, a yellow-green color.
The eye is least sensitive to the shorter wavelengths, which are at the blue end of the spectrum.
Sensitivity to red is between that of yellow-green and blue. Two things seem to be associated
with the sensitivity of the eye to various colors:

• The eye can distingUish the widest range of colors in the yellow-green region, and the
smallest variety of colors in the blue region .

• The eye is most sensitive to detail in the yellow-green region.

Why and how any of the above works is explained by color theorists. There are a large number
of theories of color, and all of them work for explaining the specific phenomena the researchers
were studying when they developed the theory, but none of them seem to be able to explain it
all. The list of references at the end of this chapter include several on how vision works.

It's All Subjective, Anyway
One of the reasons that there are so many color theories is that no two people seem to perceive
color the same way. In fact, the same person will many times perceive color differently at
different times. In addition to the physiological and psychological variables in color perception,
many environmental factors are important. Ambient lighting and surrounding color affect the
perceived color tremendously.

At this point, it will be well worth your time to compile and execute the program "COLOR",
from the "DGLPRG:" or "DOC:" disc. Try setting the background color to each of the pen
colors, and see how different the foreground colors look against the different colors. In some
cases, the lines even look slightly different from the filled rectangles of the same color. It turns
out that the size of a color sample affects how it is interpreted, too.

Color Graphics 5-37

The subjectivity of color, and the importance of background color in interpreting colors is the
whole reason the program "COLOR" is provided. The color selector program lets you select
the background color and provides both filled areas and lines due to the effect of the back­
ground color and the size of the color sample on the perception of color. The only way to insure
a set of colors works well together is to try it and see.

Mixing Colors
If two distinct audio tones are played Simultaneously, you will hear both of them. If the same
area is illuminated by two or more different colors of light, you will not perceive the original
colors of light, but rather a single color, and it will be not be one of the original colors. What you
will perceive is called the dominan t wavelength.

The CRT uses three different colored phosphors (Red, Green, and Blue) and mixes various
intensities of the resulting lights to produce one of 4096 colors at any point on the CRT. What
you actually see is the resulting dominant wavelength. This is an additive color system.

Mixing with pigments is a little different. Pigments in inks and paints absorb light. The idea with
pigments is to subtract all but the color you want out of a white light source. This is a subtractive
color system, and the primary colors are cyan, magenta, and yellow.

The different mechanisms for mixing additive and subtractive colors make it difficult to repro­
duce images created with additive colors (like a CRT) in a subtractive medium (like a plotted or
printed page.) Photographing the CRT is the best method currently available for color hard
copy. This problem is discussed in more depth at the end of this chapter under "Color Hard
Copy."

Designing Displays
While the design of displays is not really a color topic, a few words about it are in order before
we get into the effective use of color. If the design of an image is fundamentally unsound, all the
good color usage in the world is not going to help it.

Whenever you put an image on a CRT, you have created a graphic design. The design will
either be a good one or a bad one, and if you know this, you have automatically increased your
chances of creating a good design. If you are going to be creating a lot of displays, either in a lot
of programs or in a single large program, you need a graphic designer. Many people have a
natural talent for graphics - an ability to look at an image and tell whether it is graphically sound
or not. If you don't have that talent (or feel you could use some help) there are two courses of
action that might be productive for you; you can hire a graphic designer or become one.
Renting one is expensive and becoming one is time-consuming, but if you are trying to com­
municate with users, you have to understand graphic design. While getting a degree in graphic
arts may be impractical for some programmers, a course or two in the field will prove very
useful if you do very much programming.

While this book can't turn you into a graphic designer, a few simple hints may help you on your
next program.

The most important thing in communicating with people is to keep it simple. Don't try to
communicate the total sum of human knowledge in a single image. It is much more effective to
have several screens of information that a user can call up as required, than a single screen so
complicated that the user can't find what he wants on it.

5-38 Color Graphics

Try to encode everything redundantly, in case one of the encoding methods fails. For example, if
you color code information, use positional coding (the location of the information tells something
about the nature of the information) too. Remember, the person reading the screen is probably
not the person who wrote the program, and even if you are writing the program for yourself,
you may forget how it works by the next time you try to use it.

Another important thing to remember is to be consistent. Always try to place the same type of
information in the same area of the CRT and use the same encoding methods for similar
messages. Don't using flashing to encode important information on one display and then use
inverse video for the same thing seven displays into the program.

Objective Color Use
In spite of the subjectivity of color, there are some fairly objective things that you should know
about color. Some of the things that can be done with color don't depend heavily on subjective
interpretation.

Color Blindness
A fact of life that it is dangerous to ignore is that some people are color-blind. The most
common form of color blindness is red-green color blindness (the inability to distinguish red and
green). Avoid encoding information using red-green discrimination, or these people will have
difficulty using the system.

Subjective Color Use
Choosing appropriate colors for a program to use can be tricky, and constitutes a significant
part of the job of a good graphic designer. In the final analysis, it is a largely a matter of trying
combinations until you come up with a set of colors that look good together. If your application
is complex, it will be well worth your while to consult with a graphic designer about the color
scheme and layout of information displays for your program. There are, however, a few fairly
fundamental things to remember in designing your programs.

Choosing Colors
First, and probably most important, is to use color sparingly. Color always has a communication
value and using it when it carries no specific information adds noise to the communication.

Use some method for selecting the colors - one of the best is a color wheel, similar to the one shown
in the section on the HSL color model.

• Try varying the luminosity or saturation of a color and its complement (opposite it on the
color wheel).

• Try color triplets (three equally-spaced colors) and other small sets of colors equally­
spaced around the color wheel.

• Pastels (less than fully-saturated colors) tend not to clash.

Give careful attention to your background color. Remember that a filled area can become the
background color for a portion of the image on the CRT.

• If you are using a small number of colors, use the complement of one of them for the
background.

• If you are using a large number of colors, use a gray background.

Color Graphics 5-39

If two colors are not harmonious, a thin black border between them can help.

Use subtle changes (such as varying the saturation or luminosity of a hue) for differentiating
subtly different messages and major changes (such as large changes in the hue of saturated
colors) to convey major differences.

Most of all, think and experiment. The final criteria is "Does this display communicate the
message?" .

Psychological Color Temperature
Temperatures ranging from cool to hot are associated with colors ranging from blue to red (ice
blue - fire red). This is actually the opposite of physical reality, where the higher the tempera­
ture, the shorter the wavelength (blue is a black body radiation of about 7600° K while red is
about 3200° K) but this is what people perceive as the relation between temperature and color.
This is probably because people very seldom deal with the high temperatures and associate the
blues with non-temperature related natural phenomena (oceans and ice). If you are trying to
portray temperature, electrical field strength, stress, or some other continuous physical system,
using the psychological color temperature can serve as a useful starting point for color coding
the values.

Cultural Conventions
When trying to use color for communicating, cultural conventions are useful. Red is widely
associated with danger in most western cultures, giving extra emphasis to a flashing red indica­
tor. By the same token, a flashing green indicator would be less effective for communicating an
out of range value in a system. In any specific application, it is important to understand the color
associations that are common for the group using the application.

5-40 Color Graphics

Reproducing Color Graphics
Color Gamuts
The range of colors a physical system can represent is called its color gamut. Color gamuts are
important when you want to convert between different physical systems, because the source
system may be able to produce colors the destination system cannot reproduce. An exhaustive
treatment of color gamuts is beyond the scope of this book. However, here are some rules of
thumb:

• The color gamuts for CRTs and photographic film are not the same, but are fairly close. If
you are lucky, you can photograph the CRT and catch it on film. It may take more than
one exposure, so be careful and bracket everything with several exposures.

• The color gamut for printing is significantly smaller than that of either photographic film or
of a CRT. The fact that you have a picture of a CRT does not mean you can hand it to a
printer and get a faithful reproduction of it.

• The color gamut of a plotter is much smaller than that of a CRT. You have to create images
with the limitations of a plotter in mind if you intend to reproduce them on a plotter (see
"Plotting and the CRT," below.)

The different color gamuts available are not a problem unless you forget the differences and try
to act like all physical systems have the same gamut. Think ahead if you have to reproduce
images - it will save a lot a trouble.

Color Hard Copy
Color hard copy represents a translation between color systems, and many of the problems in color
hard copy arise from the fact that the color gamuts available to the CRT and the hard copy device
are different.

There are two basic ways to get a color hard copy of what is displayed on a color computer:

• Take a picture of the CRT .
• Re-run the program that generated the image with an external plotter selected as the

display device.

The first method is the easiest and can capture (usually) whatever is on the CRT, regardless of
what colors are used (see "Color Gamuts," above.) The second requires setting up the color
map to match the pens in a plotter, and is not as likely to capture what you see on the screen.
Both methods are ciiscussed below.

Color Graphics 5-41

Photographing the CRT
Photography is an art, not a science. Capturing images off a CRT is relatively straightforward,
but sometimes unpredictable due to the different color gamuts available for film and the CRT.
The following gUidelines will provide a starting point. If your images are not' 'typical" (whatever
that means) you may have to go back and re-photograph some of them. Many of the CRT
images in this book were captured using these gUidelines.

• Use ISO 64 Color film. (Most of the color photos in this book were taken on Kodak
Ektachrome 64.)

• Set up your equipment in a room that can be darkened. It will have to be darkened for the
one-second exposure.

• Use a telephoto lens (the longer the better). This minimizes the effects of the curvature of
the CRT.

• Use a tripod.
• Darken the room and take a one-second exposure.

• Bracket the aperture around f5.6. (One stop above and below.)

Plotting and the CRT
There are two basic reasons the CRT is hard to capture on a plotter.

• The CRT is an additive color device and a plotter is a subtractive color device.

• The color gamut of the CRT is much larger than that of the plotter.

The conversion from additive to subtractive colors is not a huge problem if the plot is a simple
line drawing with few intersections and area fills. If the plot is complex, especially with lots of
intersections and overlapping filled areas, the plot is much less likely to capture the display
image accurately.

A possible technique described below purposeJy limits the color gamut of the CRT to give the
plotter some chance of capturing it.

To set up the color map and plotter to match one another:

• Set your background to white.

• Set up pens matching the color map colors in slots 1 through 8 in the same order they are
presented in the default color map listed under "Default Colors."

• Use color table entry selectors from 8 through 15 in your drawings.

• Run the program with the color mapped CRT as the display device, modifying it as
necessary to produce the image you want on the CRT.

• Re-run the program with the plotter as the display device. You will need to subtract 8 from
the color table entry selectors to properly select the pens on the plotter.

While it is possible to get some idea of the plot that will be produced on the plotter, don't be
surprised if they don't look exactly the same. Colors on a CRT are different in source and form
from colors on a plotter, as described under "Seeing Color," above.

5-42 Color Graphics

Color References
The following references deal with color and vision. Texts that serve as useful introductions to
the topic are starred.

* Cornsweet, T., Visual Perception. New York: Academic Press, 1970

Farrell, R. J. and Booth, J. M., Design Handbook for Imagery Interpretation Equipment
(AO/A-025453) Seattle: Boeing Aerospace Co., 1975

Graham, C. H., (Ed.) Vision and Visual Perception New York: J. Wiley & sons, Inc., 1965

* Hurvich, L. M., Color Vision: An introduction. Sunderland, MA: Sinauer Assoc., 1980

Judd, O. B., Contributions to Color Science (Edited by O. MacAdam; 545) NBS special
publication Washington: U. S. Government Printing Office, 1979

* Rose, A., Vision: human and electronic. New York: Plenum, 1973

Listings of Example Programs
Appendix

Note
Examples that include files on "DGLPRG:" may require modification. If
your system was shipped on double-sided 31f2 inch discs, all of the example
programs are found on the "DOC:" disc. Statements such as $INCLUDE
'DGLPRG: FILE' $ should read $INCLUDE 'DOC: FILE' $,

Directory
AxesGrid:

BAILKNOB:

BAILKNOB2:

CharCell:

COLOR:

CsizeProg:

DataPoint:

DrawMdPrg:

'FillProg:

FillGraph:

GstorProg:

IsoProg:

JustProg:

LdirProg:

LOCATOR:

LogPlot:

MarkrProg:

PLineProg:

PolyProg:

SinAspect:

SinAxesl:

SinAxes2:

SinClip:

SinLabell:

SinLabel2:

SinLabel3:

SinLine:

SinViewpt:

SinWindow:

Shows visual impact of axes and grids.

Shows interactivity with one degree of freedom.

Shows interactivity with two degrees of freedom.

Relationship between characters and characters cells.

Demonstrates the color map.

Shows how to select character size.

Supplies the data for all programs whose names start with "Sin".

How to specify drawing modes (draw, erase, complement).

Shows how to do hatched and dithered area fills.

Does a broken-line chart with the area beneath the curve shaded.

Storing and retrieving graphic images.

Isotropic scaling.

Label justification.

How to specify label direction.

Demonstrates interactive drawing with many types of graphics cursors.

Shows how to make logarithmic axes.

Uses markers to highlight data points on a curve.

Demonstrates the POLYLINE procedure.

Using POLYGON procedure.

Defining aspect ratio of plotting device.

Unclipped axes.

Labelled, clipped axes.

Clipped axes.

Single-sized, horizontal letters.

Labels with sizes and directions specified.

Bold main title.

No viewport, no window, not much information.

Data displayed inside framed viewport.

Data mapped into user window.

A

A-I

A-2 Listings of Example Programs

AxesGrid
pro~raM AxesGrid(output);
ilT1Port d~I_libtd~l_in9;

const
{~et ~raphics routines}

CrtAddr=
ControlWord=

t}' pe

{addr~~s of internal CRT}
{device control; ° for CRT}

RoundT}'pe=
I} a r

Ratio:
Vi rt}{,TlaX t ',Ii rtY'Tlax:
leftEd~et Ri~htEd9'e:

BottolT1Ed~e t TopEd9'e:

(UPt Do,,.)nt Near);

re a I ;
re a I ;
re a I ;
re a I ;

Clip}{'Tlin t Clip}{'Tlax: real;
ClipY'Tlint ClipY'Tlax: real;

{used by function Round2}

ErrorReturn: inte~er; {variable for initialization outcoMe}

$pa~e$ {**}
procedure FralTle;

{--------------------------------,--}
{ This procedure draws a fraMe around the current window liMits. }

{--}
const

WindowliMits= a50;
t}' pe

{MneMonic better than Ma~ic nUMber}

lilTlitOrder=
liITlitT}'pe=

var
Pac:
Iarra}':
Windo',.):
Error:

(}{'Tlin t }{'Tlax t YITlin tY'Tlax);
array [liMitOrder] of real;

pacf(ed arra}' [1. .1] of char;
a r ra y [1 •• 1] of inte~er;

li'TlitT}'pe;
inte~er;

{ \ These are the sundries }
{ \ needed by the call to }
{ / the DGl procedure }
{ / lIin9_'",'sll. }

be~in {bod}' of procedure IIFraiTle ll }
in9_',.)s (Windo,")liITli ts ,0 ,0 ,a tPac tIarray ,Windo',.) tError);
if Error=O then be~in

ITlol,le(Windo,,.)[}-UTlin] ,Windo''')[Y'Tlin]);
line(Windo''')[}{'Tlin] ,Windo''')[Y'Tlax]) j

line(Windo''')[}{'Tlax] ,Windo''')[Y'Tlax]);
line(Windo''')[}{'Tlax] ,Windo''')[Y'Tlin]);
line(Windo',.)[}{lTlin] ,Window[Y'Tlin]);

end {Error=O?}

{'TIO I} e
{d ra''')
{d ra''')
{d ra''')
{d ra'",'

else writeln('Error' tError:Ot' occurred in IIFraITle ll ');
end; {procedure IIFraiTle ll } {return}

to I o''')e r left corner}
to upper left corner}
to upper ri~ht corner}
to I o '",'e r ri~ht corner}
to I o''')e r left corner}

$pa~e$ {**}
procedure ClipliITlit(XITlin, }{'Tlax, YITlin, Y'Tlax: real);

{--}
{ This procedure defines the four ~lobal variables which specify where the }
{ soft clip liMits are. }

{--}

Listings of Example Programs A-3

begin
if XMin<XMax then begin

C 1 i p}{ IIIi n : =){ III in;
C 1 i p}{IIlax: =}{Illax ;

end
else begin

C 1 i P }{Ill in: = }{Ill a x ;
Clip){IIlax:=}{IIlin;

end;
if YMin<YMax then begin

C 1 i pYllli n: =Yllii n ;
C 1 i pYIIlax: =YIIlax ;

end
else begin

C 1 i P Y III in: = Y III a x ;
C 1 i pYIIlax: =Yllii n ;

end;
end;

{ \
{

{

{

{

{

{

{ /
{ \
{

{

{

{

{

{

{ /

\
\

\
/

/
/

\
\

\
/

/
/

Force the MiniMuM soft
clip liMit in X to be
the sMaller of the two
}{ values passed
the procedure.

into

Force the MiniMuM soft
clip liMit in Y to be
the sMaller of the two
Y values passed into
the procedure.

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

$page$ {**}
procedure ClipDraw(Xl, Yl, X2, Y2: real);
{--}
{ This procedure taKes the endpoints of a line, and clips it. The soft }
{ clip lilllits are the real global variables Clip}{IIlin, Clip){IIlax, ClipYlllin, }
{ and ClipYMax. These May be defined through the procedure ClipLiMit. }
{--}
label

1 ;

t >' pe
Edges= (Left ,Right ,Top,Bottollll;
DutOfBounds= set of Edges;

1,1 a r
Out ,Outl ,Out2:0utOfBounds;
)(, Y: real;

{possible edges to cross}
{set of edges crossed}

{--}
procedure Code(X, Y: real; var Out: OutOfBounds);
begin {nested procedure IICode ll

}

Out:=[]; {null set}
if x<Clip}{Min then Out:=[left] {off left edge?}
else if x)ClipXMax then Out:=[right]; {off right edge?}
if y<ClipYMin then Out:=Out+[bottoM] {off the bottoM?}
else if y)ClipYMax then Out:=Out+[top]; {off the top?}
end; {nested procedure IICode ll

}

{--}
besin
Code(){1 ,Yl ,Outl);

{bod>' of procedure IIClipDralN II }
{figure status of point I}

Code(X2,Y2,Out2); {fisure status of point 2}
while (Outl<)[]) or (Out2<)[]) do be sin {loop while either point out of ranse}

if (Outl*Out2)<)[] then goto 1; {if intersection non-null, no line}
if Outl<)[] then Out:=Outl

else Out:=Out2;
if left in Out then besin

{Out is the non-eMPty one}
{it crosses the left edse}

y:=Yl+(Y2-Yl)*(ClipXMin-}{1)/(X2-Xl) ;{adJust value of y appropriately}
x:=ClipXMin; {new x is left edse}

end {left in Out?}
else if risht in Out then besin {it crosses risht edse}

y:=Yl+(Y2-Yl)*(ClipXMax-Xl)/(X2-}{1) ;{adJust value of y appropriately}
x:=ClipXMax; {new x is risht edge}

end {risht in Out?}

A-4 Listings of Example Programs

else if bOttOM in Out then be~in {it crosses the bOttOM ed~e}

x:=X1+(X2-X1)*(ClipYMin-Y1)/(Y2-Y1) ;{adJust value of x appropriately}
y:=ClipYMin; {new y is bottOM ed~e}

end {bOttOM in Out?}
else if top in Out then be~in {it crosses the top ed~e}

x:=X1+(X2-X1)*(ClipYMax-Y1)/(Y2-Y1) ;{adJust value of x appropriately}
y:=ClipYMax; {new y is top ed~e}

end; {top in Out?}
if Out=Out1 then be~in

}O:=x;
end {Out=Out1?}
else be~in

}(2: = x; Y2: =}' ;

end; {else be~in}
end; {1 lhile}

Code(xt}'tOut1);

Code(x t}' tOut2);

{redefine first end point}

{redefine second end point}

ITlove(x1t}'!); {if 1 le ~et to this pointt the line ••• }
line(x2t}'2); {. •• is cOIT1Pletel}' l.lisiblet so dral,.l it}
1: end; {procedure IIClipDralN II } {return}
$pa~e$ {**}
function Round2(Nt M: real; Mode: RoundType): real;
{--}
{ This function rounds liN II to the nearest IIMII t accordin~ to IIMode li • This }
{ function works only when the ar~UMent is in the ran~e of MININT •• MAXINT. }
{--}
const

epsilon=
1.1 a r

Rounded:
Ne~ative:

1E-10;

re a I ;
boolean;

be~in

Ne~ative:=(N<O.O) ;
if Ne~ative then begin

N:=abs(N) ;
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;
case Mode of

Down: Rounded:=trunc(N/M)*M;
Up: be~in

{roundoff error fud~e factor}

{teMPOrary holdin~ area}
{fla~: lilt is ne~ative?lI}
{bodY of IIRound2 11

}

{is the nUMber ne~ative?}

{work with a positive nUMber}
{if nUITlber is ne~atil.)et ••• }
{ ••• reverse UP and down}

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• ri~ht on the nUMber line?}
if abs(Rounded-round(Rounded)))epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

Rounded:=trunc(Rounded)*M;
end;

Near: Rounded:=trunc(N/M+M*O.S)*M;
end; {case}
if Ne~ative then Rounded:=-Rounded;
Round2:=Rounded;
end;

{ ••• to the nearest Multiple?}

{reinstate the si~n}

{assi~n to function naMe}
{function IIRound2 11

}

Listings of Example Programs A-5

$page$ {**}
procedure XaxisClip(Spacingt Locatio~: real; Major: integer;

MaJsize tMinsize: real);
{--}
{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between tick Marks on the axis. }
{ Location: The V-value of the X-axis. }
{ Major: The nUMber of tick Marks to ge before drawing a Major tick }
{ Mark. If MaJor=5t every fifth tick Mark will be Major. }
{ MaJsize: The lenstht in INorld unitst of the ITlaJor tid(ITlarks. }
{ Minsize: The lenstht in INorld unitst of the ITlinor tid(ITlar~(s. }
{--}
var

}{: real;
SeMiMaJsize: real;
SeMiMinsize: real;
Counter: integer;

begin
SeMiMaJsize:=MaJSize*O.5;
SeMiMinsize:=MinSize*O.5;
Counter:=O;

{keeps track of when to do Major ticks}
{bod}' of procedure 1I}{axisClipll}

{start with a Major tick}
ClipDraIN(Clip}{ITlin tLocation tClip}{ITlax tLocation);
X:=Round2(ClipXMintSpacing*MaJortDown); {round to next lower Major}
while X(=ClipXMax do begin

if Counter=O then
ClipDraw(XtLocation-SeMiMaJsizetXtLocation+SeMiMaJsize)

else
ClipDraw(XtLocation-SeMiMinsizetXtLocation+SeMiMinsize) ;

Counter:=(Counter+l) Mod Major;
}{: =}{+Spac in g;

end; {INhile}
end; {procedure IIXaxisCli pll}
$page$ {**}
procedure YaxisClip(Spacingt Location: real; Major: integer;

MaJsizet Minsize: real);
{--}
{ This procedure draws an Y-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between tick Marks on the axis. }
{ Location: The X-value of the Y-axis. }
{ Major: The nUMber of tick Marks to ge before drawing a Major tick }
{ Mark. If MaJor=5t every fifth tick Mark will be Major. }
{ MaJsize: The lengtht in world unitst of the Major tick Marks. }
{ Minsize: The lengtht in world unitst of the Minor tick Marks. }
{--}
!)a r

Y:
SeMiMinsize:
SelTliMaJsize:
Counter:

re a I ;
re a I ;
re a I ;
integer;

begin
SeMiMaJsize:=MaJsize*O.5;
SeMiMinsize:=Minsize*O.5;

{keeps track of when to do Major ticks}
{bodY of procedure IIYaxisClipll}

Counter:=O; {start with a Major tick}
ClipDraw(LocationtClipYMintLocationtClipYMax);
Y:=Round2(ClipYMintSpacing*MaJortDown); {round to next lower Major}

A-6 Listings of Example Programs

while Y(=ClipYMax do be~in

if Counter=O then
ClipDraw(Location-SeMiMaJsizetYtLocation+SeMiMaJsizetY)

else
ClipDraw(Location-SeMiMinsizetYtLocation+SeMiMinsizetY) ;

Counter:=(Counter+l) Mod Major;
Y:=Y+Spacin~;

end; {I",hile}
end;
$pa~e$

{procedure "YaxisClip"}
{**}

procedure Grid(Xspacin~tYspacin~tXlocYtYlocX: real; XMaJort YMaJor: inte~er;

XMinsizet YMinsize: real);
{--}
{ This procedure draws a ~rid on the plottin~ surfacet with user-definable }
{ Minor tick size. ParaMeters are as follows: }
{ Xspacin~: The distance between tick Marks on the X axis. }
{ Yspacin~: The distance between tick Marks on the Y axis. }
{ XlocY: The X-value of the Y-axis. }
{ YlocX: The V-value of the X-axis. }
{ }{rTlint}{rTlax: The left and ri~ht ends of the }{-axist respectil)ely. }
{ XMaJort The nUMber of tick Marks to ~e before drawin~ a Major tick }
{ YMaJor: Mark. If MaJor=St every fifth tick Mark will be Major. }
{ XMinsize: The len~tht in world unitst of the X Minor tick Marks. }
{ YMinsize: The len~tht in world unitst of the Y Minor tick Marks. }
{--}
var

X t Y: re a I ;
}{start tYstart: real;
}{serTliMinsize: real;
YseMiMinsize: real;
Counter: inte~er;

b e ~ i n
XseMiMinsize:=XMinsize*O.S;
YseMiMinsize:=YMinsize*O.S;

{bod}' of procedllre "Grid"}

Xstart:=Round2(ClipXrTlin t}{spacin~*}{rTlaJortDol"'n); {round to next 101",er rTlaJor}
Ystart:=Round2(Clip'(rTlin tYspacin~*YrTlaJortDol"'rd; {round to next 101",er rTlaJor}
{===== Draw vertical Major ticks ==}
}{:=Xstart;
while X(=ClipXMax do be~in

CI i pD ral", (X tCI i pYrTli n t}{ tCI i pYrTlax) ;
X:=X+Xspacin~*XMajor;

end;
{===== Draw horizontal Major ticks ==}
Y:=Ystart;
while Y(=ClipYMax do be~in

ClipDraw(ClipXMintYtClipXMaxtY) ;
Y:=Y+Yspacin~*YMaJor;

end;

Listings of Example Programs A-7

{===== Draw vertical minor ticks ==}
}{:=}-{start;
Counter:=O;
while X(=ClipXmax do be~in

if Counter(>O then be~in

Y:=Ystart;
while Y(=ClipYmax do be~in

ClipDraw(X.Y-YSemiMinsize.X.Y+YSemiMinsize) ;
Y:=Y+Yspacin~;

end; {while Y(=ClipYmax}
end; {counter(>O?}
Counter:=(Counter+l) mod XmaJor;
}-{:=}-{+}-{spacin~;

end; {I",hile}
{===== Draw horizontal minor ticks ==}
Y:=Ystart;
Counter:=O;
while Y(=ClipYmax do be~in

if Counter(>O then be~in

}{:=}-{start;
while X(=ClipXmax do be~in

ClipDraw(X-XSemiMinsize.Y.X+XSemiMinsize.Y) ;
}-{:=}-{+}-{spacin~;

end; {while X(=ClipXmax}
end; {counter(>O?}
Counter:=(Counter+l) mod YmaJor;
Y:=Y+Yspacin~;

end; {I",hile}
end;
$pa~e$

be~in

{procedure "Grid"}
{**}

{pro~rahl IIAxesGrid"}
~raphics_initj

display_init(CrtAddr.ControIWord.ErrorReturn) ;
if ErrorReturn=O then be~in

{=== Do pro~ram setup ===}
Ratio:=511/388;
set_aspect(Ratio t1);
if Ratio>l then be~in

1.Ii rt}-{Irlax: = 1 ;
VirtYmax:=l/Ratio;

end
else be~in

1.Ii rt}-{ITlax: =R a t i 0 ;
1.Ii rt YITlax: = 1 j

end;
{=== Upper left viewport ==}
LeftEd~e:=O;

Ri~htEd~e:=0.48*VirtXmax;

BottomEd~e:=0.52*VirtYmax;

TopEd~e:=VirtYmax;

set_viewport(LeftEd~e.Ri~htEd~e.BottomEd~e.TopEd~e) ;
set_window(0.80.0.40) ;
F ralTle;
ClipLimit(0.80.0.40);
}-{axisCI ip(1 .0.5.2 t1);
YaxisCI ip(1.0.5.2 t1);

A-8 Listings of Example Programs

{=== Upper ri~ht viewport ===}
LeftEd~e:=0,52*VirtXMax;

Ri~htEd~e:=VirtXMax;

BottoMEd~e:=0,52*VirtYMax;

TopEd~e:=VirtYMax;

set_viewport(LeftEd~e,Ri~htEd~e,BottoMEd~e,TopEd~e) ;
set_window(O,80,O,GO) ;
F ralTle;
ClipLiMit(O,80,O,40) ;
Grid(5t5tOtO,GtGtl to,8);
{=== Lower left viewport ==}
LeftEd~e:=O;

Ri~htEd~e:=0,G8*VirtXMax;

BottoITlEd~e:=O;

TopEd~e:=0,G8*VirtYMax;

set_viewport(LeftEd~etRi~htEd~e,BottoMEd~etTopEd~e) ;
set_window(O,80,OtGO) ;
F ralTle;
ClipLiMit(Ot80tO,40) ;
Grid(2tl to,OtlOtlOtO,OOl to,OOl);
{=== Lower ri~ht viewport ===}
LeftEd~e:=0,52*VirtXMax;;

Ri~htEd~e:=VirtXMax;

BottoITIEd~e:=O;

TopEd~e:=0,G8*VirtYMax;;

set_vieIAiPort(LeftEd~e tRi~htEd~e ,BottolTlEd~e tTopEd~e);

set_window(Ot80tOtGO) ;
F ralTle;
ClipLiMit(O,80tO,40) ;
}{axisClip(l tOt5t2tl);
YaxisClip(l ,O,5,2tl);
}(axisClip(l ,GOt5,2tl);
YaxisClip(l t80t5t2tl);
Grid(10tlOtOtOtl ,1 ,2,2);

end; {ErrorReturn=O?}
~raphics_terlTl;

end, {pro~raM "AxesGrid"}

$ucsdtdebu9'$
pro9'raM Test (keyboardtoutput);
ilTlPort d9'l_vars td9'l_types td9'l_l ib td9'l_inQ;
type

States=
Dral",Mode=

const
FS=
BS=
US=
LF=
CR=
Q=
Ql=
Underline=
Ind_off=
InIJ_On=
MinBarY=
MaxBarY=
MinBarX=
MaxBarX=
IncDelta=

var
Error_nl.IITl:
I tTelTlPlnt:
Level tLastLevel:
Delta:

(OntOff);
(DrawtErasetCoMPtNonDoM) ;

chr(28);
ch r (8) ;

chr(31);
chr(10);
chr(13) ;
'Q' ;

'q' ;
chr(132) ;
chr(128);
chr(128);
0;
100;
180;
220;
0+1 ;

inte9'er;
inte9'er;
re a 1 ;
re a 1 ;

CharWidth tCharHei9'ht: real;
Character:
Done: boolean;
keyboard: text;
TeMPStrin9': Gstrin9'255;

Listings of Example Programs A-9

$pa9'e$ {**}
procedure GraphicsDisplay(State:States {On/Off});
const

GraphicsDisp=
var

Error:inte9'er;
SwitchArray:inte9'er;
DUITlITlY: real;

be 9'i n
case State of

On:SwitchArray:=1;
Off:SwitchArraY:=O;

end; {case State of}

105(1;

{procedure GraphicsDisplay}

output_esc(GraphicsDisPtl tOtSwitchArraYtDuMMYtError)
if Error <) 0 then

writeln ('Error' tError:1 t' encountered in GraphicsDispla}");
end; {procedure GraphicsDisplay}

A-tO Listings of Example Programs

$pa~e$ {**}
procedure AlphaDisplay(State:States {Dn/off});
const

AlphaDisp=1051;
var
Error:inte~er;

SwitchArray:inte~er;

D !.\lTIIT!>' : rea I ;
be!1in
case State of

on:SwitchArray:=l;
off:SwitchArraY:=O;

end; {case State of}

{procedure AlphaDisplay}

output_esc(AlphaDisp,l ,0,SI,JitchArra}' ,DUITlIT!>' ,Error)
if Error <> 0 then

IAiriteln ('Error' ,Error:1,' encountered in AlphaDispla}");
end; {procedure AlphaDisplay}
$pa~e$ {**}
be~in {Main Pro~raM}

Level:=O; {current hei~ht of bar}
LastLevel:=Level;
~raphics_init;

display_init(3,0,Error_NuM) ;
if Error_NuM=O then be~in

AlphaDisplay(off) ;
GraphicsDisplay(On) ;
set_aspect(511 ,388);
set_window(0,400,-30,120) ;
set_color(1);

CharWidth:=(0.035*400) ;
CharHei~ht:=(0.05*150) ;

{previous hei~ht of bar}
{initialize the ~raphics SysteM}
{which output device?}
{output device initialization OK?}
{turn off alpha display}
{turn on ~raphics display}
{use whole screen}
{scale the window for the data}
{color nUMber 1: white}
{char width: 3.5% of screen width}
{char hei~ht: 5% of screen hei~ht}

set_char_size(CharWidth, CharHei~ht); {install character size}
{---- Outline the 6ar ---}
Move(Min6arX-0.5,Min6arY-0.5) ;
line(Min6arX-0.5,Max6arY+0.5) ;
line(Max6arX+0.5,Max6arY+0.5) ;

{Move to lower left corner ••• }
{ ••• draw to upper left corner ••• }
{ ••• draw to upper ri~ht corner ••• }

line(Max6arX+0.5,Min6arY-0.5); { ••• draw to lower left corner ••• }
line(Min6arX-0.5,Min6arY-0.5); { ••• and draw to lower left corner.}
{---- Label the bar (nuMeric labels) --------------------------------------}
for 1:=0 to 10 do be~in

strIAirite(TeIT1PStrin~ t1 ,TelT1Plnt tl*10:3, '-');
Move (178-strlen(TeMPStrin~)*CharWidth,I*10-0.24*CharHei~ht);

~text (TeIT1PStrin~);

end; {for 1:=1 to 10 }
{---- Label the bar (textual labels) --------------------------------------}
ITlove (221, 80-CharHei~ht/2);
Hext ('-Hi~h Norlllal');
ITlove (221, GO-CharHei~ht/2);
Hext ('-LoIAi Normal');
{---- How about SOMe instructions ---}
CharWidth:=(0.02*400); {char width: 2% of screen width}
CharHei~ht:=(0.035*150); {char hei~ht: 3.5% of screen hei~ht}
set_char_size(CharWidth, CharHei~ht); {install character size}
III 0 ve (0, 5);
TeMPStrin!1:='Use the Knob to'+CR+LF;
Hext (TeITlPStrin~);

TeMPStrin~:='Adjust the value. '+CR+LF;
Hext (TeIT1PStrin~);

TeMPStrin~:=' '+CR+LF;
stext (TelllPString);

Listings of Example Programs A-II

TeMPStrin~:='SHIFT with the Knob '+CR+LF;
gtext (TeMPStrin~);

TelllPStrin~:='speeds it UP. '+CR+LF;
stext (TelllPStrin~);

TelllPStrin~:=";

{---- Set a ~ood character size ---}
CharWidth:=(O.035*400); {char width: 3.5% of screen width}
CharHei~ht:=(O.05*150); {char hei~ht: 5% of screen hei~ht}

set_char_size(CharWidtht CharHeight); {install character size}
repeat

readO,e}'board tCharacter);
Delta:=O;
case Character of

FS: Delta:=IncDeltai
6S: Delta:=-IncDelta;
LF: Delta:=10*IncDelta;
US: Delta:=-10*IncDelta;
QtQI: Done:=TRUE;

otherlAiise
end; {case ord(Character)}

{~et character without echo to screen}
{start by assuMin~ no Motion}
{what's the character?}
{right arroIAl?}
{left arrow (backspace)?}
{dolAin arrOIAI?}
{up arrOIAI?}
{or Quit?}
{if none of the abovet i~nore it}

if Delta>O then be~in {Goin~ Up}
set_color(l); {we want to draw lines}
while (Level<LastLevel+Delta) and (Level<MaxBarY-IncDelta) do be~in

Level:=Level+IncDelta; {nelAi top of bar}
Move(Min6arXtLevel); {Move to left edge ••• }
line(Max6arXtLevel); { ••• and draw to ri~ht ed~e}

end {while (Level<LastLevel) and (Level<MaxBarY)}
end {if (Delta>O) and (Level<100) }
else be~in {Going Down}

if (Delta<O) and (Level>=O.5*IncDelta) then be~in

set_color(O) i
repeat

{we want to erase lines}

Move(Min6arXt Level); {Move to the left ed~e ••• }
line(Max6arXt Level); { ••• and draw to the ri~ht ed~e}

Level:=Level-IncDeltai {new top of bar}
until (Level<=LastLevel+Delta) or (Level<=Min6arY)

end; {if (Delta<O) and (Level>O)}
en d;
{---- How about SOMe nUMbers? ---}
set_color(O); {we want to erase lines}
strl"lrite(TelllPStrin~tltTelllpInttLastLevel:5:1); {convert level to chars}
Move(Min6arX+(Max6arX-Min6arX)/2-strlen(TeMPStrin~)*CharWidth/2t

Min6arY-2*CharHei~ht) ;
~text(TeMPStrin~); {erase the old nUMber}
set_color(l); {we want to erase lines}
s triAl r it e (T e III pS t r i n ~ t1 t T e III pIn ttL eve I : 5: 1) ;
Move (Min6arX+(Max6arX-Min6arX)/2-strlen(TeMPStrin~)*CharWidth/2t

Min6arY-2*CharHei~ht);

stext(Tel!lPStrin~) ;
LastLevel:=Level;

until Done;
GraphicsDisplay (Off);
AlphaDisplay (On);
dis p I a}' _ t e rIll;

end;
~raphics_terlll;

end.

{1"lrite the nel"l}
{reMeMber the old nUMber}
{repeat until user hits [Q]}
{turn off ~raphics display}
{turn on alpha display}
{clean UP loose ends}

{terMinate the ~raphics package}
{Illain pro~ralll}

A-12 Listings of Example Programs

$ucsd,debug$
prOgrarll Test(l-,e}'board ,output);
i III p 0 r t d 9 1 _ 1.1 a r s ,d 9 1_ t }' pes td 9 1 _1 i b ,d 9 1_ i n q ;

t}' P e
DralAiMode=
Bar}{=
States=

const
FS=
BS=
US=
LF=
CR=
Q=
Ql=
Underline=
1nlL,off=
1nl,I_On=
MinBarY=
MaxBarY=
MinBar}{=
MaxBa r}{=
1ncDelta=

var
E r ro r_1Hlfll:
I ,TerllPlnt:
Level,LastLevel:
Ba r:
Delta:

(Draw,Erase,CoMP,NonDoM) ;
array[I •• 5] of integer;
(On,Off);

chr(2B) ;
c h r (B) ;
chr(31) ;
chr(10);
chr(13) ;
'Q ';
I q I ;

chr(132) ;
chr(12B) ;
ch r(128);
0;
100;
BarX[aO,130,220,310,aOO];
BarX[BO,170,2GO,350,aaO];
0.1;

integer;
integer;
array [1 •• 5] of real;
integer;
re a I ;

CharWidth ,CharHeight: real;
Character:
Done: boolean;
keyboard: text;
TeMPString: Gstring255;

$page$ {**}
procedure SetDrawMode(Mode: DrawMode);
const

OpSelector=
1.1 a r

IntArra}':
ReaIArra}':
Error:

begin
case Mode of

1052;

integer;
integer;
integer;

{MneMonic better than Magic nUMber}

{ \
{ :>

{ /

All this stuff is needed
by the DGL procedure
OUTPUT_ESC.

{procedure SetDrawMode}

}

}

}

DralAi: 1ntArran=O; { \ }
NonDoM: IntArray:=I; { \ Magic nUMbers for the }
Erase: 1ntArray:=2; { / four drawing Modes. }
CorllP: 1ntArran=3 { / }

end; {case Mode of}
output_esc(OpSelecto r ,1,0 ,1ntArra}' ,ReaIArra}' ,Error);

end; {procedure SetDrawMode}

Listings of Example Programs A-13

$page$ {**}
procedure GraphicsDisplay(State: States {On/Off});
const

GraphicsDisp= 1050; {MneMonic better than Magic nUMber}
var

Error:
S'",itchArra}':
DUITIITI}' :

beg i n
case State of

integer;
integer;
re a I ;

On: SwitchArray:=l;
Off: SwitchArraY:=O;

end; {case State of}

{\ All this stuff is needed
{) by the DGl procedure
{/ OUTPUT_ESC.
{procedure GraphicsDisplay}

{l=on, and ••• }
{O=off.}

out put _ esc (G rap hi c s Dis p ,1 ,0 , S'''' it c h A r r a}' , D UITlITl}' , Err 0 r) ;
if Error-::::::-O then

''''ritelr'' 'Error ',Error:l,' encountered in GraphicsDispla}");
end; {procedure GraphicsDisplay}

}

}

}

$page$ {**}
procedure AlphaDisplay(State: States {On/Off});
const

AlphaDisp= 1051 ; {MneMonic better than Magic nUMber}
var

Error:
S'",itchArra}':
D'.tITIITI}' :

beg i n
case State of

integer;
integer;
rea I ;

On: SwitchArray:=l;
Off: SwitchArraY:=O;

end; {case State of}

{\ All this stuff is needed
{ > by the DGl procedure
{/ OUTPUT_ESC.
{procedure AlphaDisplay}

{l=on, and ••• }
{O=off.}

output_esc(AlphaDisp ,1,0 ,S,,.ritchArra}' , DUITlITlY ,Error);
if Error-::::>O then

''''riteln('Error ',Error:l,' encountered in AlphaDispla}");
end; {procedure AlphaDisplay}

}

}

}

$page$ {**}
procedure ClearInd(Bar: integer);
begin

SetDrawMode(Erase) ;
{procedure ClearInd}

ITlove(MinBar){[Bar] ,MinBarY-l.3*CharHeight);
line(MaxBar){[Bar] ,MinBarY-l.3*CharHeight);

end; {procedure ClearInd}
$page$ {**}
procedure SetInd(Bar: inteser);
begin {procedure SetInd }

SetDrawMode(Draw) ;
ITlove(MinBar){[Bar] ,MinBarY-l.3*CharHeight);
line(MaxBarX[Bar] ,MinBarY-l.3*CharHeight);

end; {procedure SetInd }

A-14 Listings of Example Programs

$pa~e$ {**}
procedure UpdateValue(Bar:inte~er);
var

LastCharWidth tLastCharHei~ht: real;
b e ~ i n
LastCharWidth:=CharWidth;
LastCharHei~ht:=CharHei~ht;

{procedure UpdateValue }
{store old character width}
{store old character hei~ht}

CharWidth:=(O.025*512); {new char width: 2.5% of screen width}
CharHei~ht:=(O.045*150); {new char width: 2.5% of screen hei~ht}
set_char_size(CharWidthtCharHei~ht); {install the character size}
{---- Erase the old ---}
SetDrawMode(Erase) ; {draw with black lines}
TeMPStrin~:=I'; {null out any old value}
strl.4rite(TeIT1PStrin~t1 tTefT1PInt tLastLel.lel[Bar]:5:1); {con~lert to strin~}

Move(MinBarX[Bar]+(MaxBarX[Bar]-MinBarX[Bar])/2- {Move to ri~ht place}
strlen(TeMPStrin~)*CharWidth/2tMinBarY-2.5*CharHei~ht) ;

~text(TeMPStrin~); {label the string}
{---- Write the new ---}
SetDrawMode(Draw); {draw with white lines}
TeMPStrin~:="; {null out any old value}
s t rw r it e <T e M pS t r i n ~ t1 t T e ITI pIn ttL eve I [B a r] : 5 : 1) ; { con v e r t to s t r i n ~}
Move(MinBarX[Bar]+(MaxBarX[Bar]-MinBarX[Bar])/2- {Move to right place}

strlen(TeMPString)*CharWidth/2tMinBarY-2.5*CharHei~ht) ;
Hext<TeMPStrin~); {label the strin~}
{---- Reinstate the old character size ------------------------------------}
CharWidth:=LastCharWidth; {restore old character width}
CharHeight:=LastCharHeight; {restore old character height}
set_char_size(CharWidthtCharHei~ht); {install old character size}
end; {procedure UpdateValue }
$pa~e$ {**}
be~in {Main PrO~rafTl}

~raphics_init;

display_init(3tOtError_NuM) ;
if Error_NuM=O then be~in

AlphaDisplay(Off);
GraphicsDisplay(On) ;
set_aspect(511 t388);
set_l.4indol.4(Ot511 t-50t110);
set_colo r(1);

SetDrawMode(Draw) ;
CharWidth:=(O.020*400) ;
CharHei~ht:=(O.035*150) ;

{initialize the ~raphics SysteM}
{which output device?}
{output device initialization OK?}
{turn the alpha display off}
{turn the ~raphics display on}
{use the whole screen}
{scale the window for the data}
{draw with white}
{doMinant drawin~ Mode}
{char width: 2% of screen width}
{char hei~ht: 3.5% of screen hei~ht}

set_char_size(CharWidth tCharHeight); {install the character size}
{---- MaKe the Bars ---}

Listings of Example Programs A-1S

for Bar:=1 to 5 do be~in

{---- Initialize the levels ------------------------}
Level[Bar]:=O; {all bars at level zero}
LastLevel[Bar]:=Level[Bar]; {old valuest too}
{---- Outline the Bar ------------------------------}
ITI0ve(MinBarX[Bar]-1 tMinBarY-(IGO/388));
line(MinBarX[Bar]-1 tMaxBarY+(IGO/388));

{Move to lower left corner ••• }
{ ••• draw to upper left ••• }

line(MaxBarX[Bar]+1 tMaxBarY+(IGO/388)); { ••• dra'''! to upper ri~ht ••• }
line(MaxBarX[Bar]+l t'MinBarY-(IGO/388)); { ••• draw to lo'''!er ri~ht ••• }
line(MinBarX[Bar]-1 tMinBarY-(IGO/388)); { ••• and draw to lower left.}
{---- Label the bar --------------------------------}
TeITiPStrin~:="; {null out any old value}
str',,!rite<TeITIPStrin~t1tTeltlpIntt'Bar 'tBar:l); {convert to strin~}
Move(MinBarX[Bar]+(MaxBarX[Bar]-MinBarX[Bar])/2- {Move to ri~ht place}

strlen(TeMPStrin~)*CharWidth/2tMinBarY-l.25*CharHei~ht) ;
~text(TeMPStrin~); {label the text}
{---- Put nUMbers alon~side the bars ---------------}
for 1:=0 to 10 do be~in

TeMPStrin~:="; {null out any old value}
str'"Irite(TeltIPStrin~tltTeltlpInttI*10:3t'-'); {convert to strin~}
Move(MinBarX[Bar]-strlen(TeMPStrin~)*CharWidtht {Move to ri~ht place}

I*10-0.2a*CharHei~ht);

~text(TeMPStrin~) ;
end; {for 1:=1 to 10 }

{label the text}

UpdateValue(Bar); {Modify the bar}
end; {for}
{---- How about SOMe instructions --------------------}
CharWidth:=(0.02*511); {char width: 2% of screen width}
CharHei~ht:=(0.035*IGO); {char hei~ht: 3.5% of screen hei~ht}
set_char_size(CharWidth tCharHei~ht); {install character size}
ItlOve(O t-30);
TeITiPStrin~:='Use NUltlber Ke}'s to select a bar. '+CR+LF;
~text(TeMPStrin~);

TeltIPStrin~:="+CR+LF;

~text(TeMPStrin~) ;
TeMPStrin~:='Use the Knob to adjust the value. '+CR+LF;
~text(TeMPStrin~) ;
TeMPStrin~:='SHIFT speeds UP the Knob. '+CR+LF;
~text(TeMPStrin~) ;
{---- Start the interactivity ------------------------}
Bar:=3;
SetInd(Bar) ;
repeat

readU{eyboard tCharacter);
Oelta:=CH
case Character of

FS: Delta:=IncDelta;
BS: Delta:=-IncDelta;
LF: Delta:=10*IncDelta;
US: Delta:=-10*IncDelta;
QtQI: Done:=true;
'1' •• '5': be~in

Clearlnd(Bar) ;

{which bar active at first?}
{tell the pro~raM so}

{read character with no echo to screen}
{assuMe no Motion until told otherwise}

{ri ~ht a rro'''!?}
{left arrow (or bacKspace)?}
{do'"In arrow?}
{up arro'''!?}
{or Quit?}

{deactivate old bar}
Bar:=ord(Character)-ord('O'); {deterlTline net,,! bar's nUMber}
SetInd(Bar); {activate new bar}

end;
other'''!ise

end; {case}
{if none of the abovet do nothin~}

A-16 Listings of Example Programs

if(Delta)O)then be~in
SetDrawMode(Draw); {draw with white lines}
while (Level[Bar](LastLevel[Bar]+Delta)

and (Level[Bar](MaxBarY-IncDelta)do be~in
Level[Bar]:=Level[Bar]+IncDelta; {calculate new level}
Move(MinBar){[Bar] ,Level[Bar]); {ITlOVe to the left end ••• }
line(MaxBar){[Bar] ,Level[Bar]); {. •• and draw to the ri~ht ed~e}

end {while}
end {if}
else be~in {delta(O}

if (Delta(O) and (Level[Bar])=O.5*IncDelta) then be~in {Goin~ Down}
SetDrawModeIErase); {draw with blacK lines}
repeat

Move(MinBarX[Bar] ,Level[Bar]); {ltlOVe to left ed~e ••• }
line(MaxBarX[Bar],Level[Bar]); {. •• and draiN to ri~ht ed~e}

Level[Bar]:=Level[Bar]-IncDelta; {decreMent level}
until (Level[Bar](=LastLevel[Bar]+Delta) or (Level[Bar](=MinBarY)

end; {if}
end; {else}
{---- How about SOMe nUMbers? ----------------------}
UpdateValue(Bar); {chan~e the bar's nUMeric label}
LastLevel[BarJ:=Level[Bar];

until Done;
GraphicsDisplay(Off) ;
AlphaDisplay(On) ;
display_terltl;

end;
~raphics_terhl;

end. {Main Pro~raM}

{reMeMber the current value}
{pressed [Q] Yet?}
{turn off ~raphics display}
{turn on alpha display}
{clean UP loose ends}

{terMinate the ~raphics SysteM}

CharCell
pro~raM CharCell(output);
iMPort d~l_lib, d~l_inq;

const
Crt=
Control=

type
Lo HType=
StrZ55=

var

1. .9;
string[Z55];

Listings of Example Programs A-17

{pro~raM naMe saMe as file naMe}
{access the necessary procedures}

{device address of ~raphics raster}
{device control word; i~nored for CRT}

{the valid values to pass the "Lor~"}

{for the procedure "Glabel"}

Error: inte~er; {disPlaY_init return variable; 0 = ok}
I, X, V: inte~er; {loop control variables}

$pa~e$ {**}
be~in {bodY of pro~raM "CharCell"}
~raphics_init; {initialize fraphics library}
display_init(Crt ,Control ,Error); {initialize CRT}
if Error=O then be~in

set_aspect(511 ,389);
Move(-l,-1); line(-lt1);

{if no error occurred ••• }
{use the whole screen}

lin e (1 , 1); lin e (1 ,- 1);. lin e (- 1 ,- 1) ;
set_window(-Z,38,-7.5,ZZ.5); {define appropriate window}
set_char_size(l,Z); { \ }
Move(l,Z1); { > Do Main label. }
Hext(/Size of Character in Character Celli); { / }
for X:=O to 36 do be~in { \ }

for V:=O to 15 do be~in { \ }
MoveO{-O.l,)'+O.1); { \ DralAi the four 9x15 }
line(X+O.1 ,V-O.l); { \ character cells. Make }
fTlOve(X+O.1,V+O.l); { / a frallle around each, }
line(X-O.l,V-O.l); { / and an X at etJery }

end; {for y} {/ point. }
end; {for x} { / }
for 1:=0 to 3 do begin {draw a fraMe around each char cell}

MotJe(I*9,0); line(I*9t15); line(I*9+9t15); line(I*9+9,0); line(I*9,O);
end;
set_char_size(9,15) ;
Move(l,lI);
~text('Gby; ');

end; {Error=O?}
~raphics_terfTl;

end. {pro~rafTl "CharCell"}

{bi~ characters}
{gO to startin~ position}
{label SOMe characters}
{end of conditional code}
{terfTlinate ~raphics library}
{end of pro~rafTI}

A-IS Listings of Example Programs

COLOR
$ucsd tdebl.l9'$
prOSralTl Test(Ke}'board toutput);
ilT1Port dsl_vars tdsLtypes tdsl_lib tdsl_po!}' tdsl_inCj;
type

Colors=
Modes=
EntryRanse=
FunnyArray=

const
FS=
BS=
US=
LF=
CR=
C=
Cl=
E=
E!=
H=
Hl=
L=
Ll=
Q=
Ql=
S=
Sl=
Displa}'_Cont=
Underline=
Ind_off=
11"11,1_01"1=
Fl.lnn}'Char=

(Red t Yellow t G r e e 1"1 t C }' an t B 11.1 e t Mas e n tat W hit e t B 1 a c K) ;
(Hue tSat tLl.IlTI tTable tCopyl tCopy2);
-1. .18;
array [Colors] of char; {array for alpha color}

c h r (28) ;
ch r (8) ;

chr(31);
chr(10) ;
chr(13);
'c' ;
'c' ;
'E' ;
'e' ;
'H' ;
'h I ;

'L' ;
, 1 ' ;
'Q' ;

'Cj' ;
'S' ;
's' ;
1"(150;
chr(132);
chr(128);

{right arrow}
{left arrow or bacKspace}
{up arrol",}
{dol",n arrol",}
{carriage retl.lrn}
{ \
{ \
{ \
{ \
{ \
{ \ These are the valid
{ / user responses.
{ /
{ /
{ /
{ /
{ /

}

}

}

}

}

}

}

}

}

}

}

}

{MneMonic better than Magic nUMber}
{alpha enhanceMent: I.Inderlining}
{tl.lrn enhanceMents off}

chr(128); {alpha enhancelTlent: inverse l.!ideo}
Array for }
holding the}
alpha-color}
controllers}

FllnlHArradchr(138) tchr(137) t {\

chr(138) tchr(lll0) t {\

ch r(lll2) tch r(lll3) t {/
chr(1ll1) tchr(138)]; {/

Listings of Example Programs A-19

$page$ {**}
1.1 a r

Erro r_1HIITI: integer; {return variable}
I,TeIT1PInt: integer; {teMPOrary variables}
OpArra}': array[l •• SJ of gshortint;
}{array ,Yarra}',
Yfill_array: array[l •• SJ of real;

re a I ;

{locations of points}
{saMe points, but filled}

Delta:
HueVal:
Satl.Jal:
LUIT1Val:
Greenl.Jal:
Bluel.Jal:
Redt.Jal:
Hue_ind:
Sat_ind:
LI.IIT1_ i n d:
Tab_ind:
Character:
Done:
~,e}'board:

array[O •• lSJ of real;
array[O •• lSJ of real;
array[O •• lSJ of real;
array[O •• lSJ of real;
array[O •• lSJ of real;
array[O •• lSJ of real;
char; { \
char; { >
char; { /

{ \
{ \
{ \
{ /
{ /
{ /

For each of the
sixteen pens, we
need to ~,now the
HSL values as
'",ell as the RGB
values.

Various indicators.

char; {and another}
{utility variable}
{are we through Yet?}
{non-echoing input}

}

}

}

}

}

}

}

}

}

TelT1PString:

char;
boolean;
text;
Gstring2SS;
Modes;

{teMPOrary holding place for text}
Mode ,LastMode:
CursorColor: Entn-Range;
COpy_Source: Entn-Range;
LastTableEntn-: Entn-Range;
TableEntr}': Entn'Range;
X_Loc:
Y_Loc:

array[O •• lSJ of integer;
array[O •• lSJ of integer;

Int_a:
Real_A:

integer;
re a I ;

RedBac~, ,GreenBad, ,BlueBacK:
LabelColor: char;
BacKSuM,OldBacKSuM: 0 •• 7;

re a I ;

$page$ {**}
procedure MenuLine;
begin
writeln(LabeIColor) ;
gotOX}'(O,O) ;

{procedure MenuLine}
{write in appropriate color}
{gO to upper left corner of the screen}

'A'rite('Color Selector:' ,Underline,'H' drIlLoff,'ue,');
'",rite(Underline, 'S' ,Ind_off, 'aturation,');
write(Underline,'L' ,Ind_off,'uMinosity,');
'",ri te ('table ',Unde rl ine, 'E' dnd_off, 'nt n-,');
'''' r it e (Un d e r lin e , 'C ' ,I n d _ 0 f f , '0 P}' color,');
writeln(Underline,'Q' ,Ind_off,'uit');
end; {procedure MenuLine}

A-20 Listings of Example· Programs

$pa~e$ {**}
procedure DisplayStuff;
be!1 i n
writeln(LabeIColor) ;
case Mode of

Hue:
Sat:
LUITl:
Table:
Copd tCopy2:

end; {case}
!1otox}'(Ot3) ;

Hue_Ind: = Inv_'Dn;
Sat_hid: = Inv_Dn;
LUITl_Ind: = Inv_On;
Tab_hid: = Inv_On;
{No Indicators on};

I.Hiteln(Hue_indt' Hue 'drIlLoff);
writeln(HueVal[TableEntryl:5:2) ;
writeln(Sat_indt' Sat' tInd_off);
writeln(SatVal[TableEntryl:5:2) ;
l"IritelrdLuITl_ind t' LUITl 'dnd_off);
writeln(LuMVal[TableEntryl:5:2) ;
writelrdTab_indt' Entn' 'dnd_off);
writeln(TableEntry:3) ;
~otOXY(O t20);
Hue_ind:=chr(128) ;
Sat_ind:=chr(128) ;
LUM_ind:=chr(128) ;
Tab_ind:=chr(128) ;
end; {procedure OisplayStuff}

{procedure DisplayStuff}
{write in appropriate color}
{which value are we tweaking?}
{ \ }
{ \ Turn on the display }
{ > enhanceMent for the }
{ / appropriate indicator. }
{ / }

{fourth rOWt first coluMn}

{twenty-first rOWt
{ \

fi rst colulTln}
}

{ \
{ /
{ /

Turn all displa}'
enhancelTlents off

}

}

}

$pa~e$ {**}
procedure UpdateCursor(TableEntry:inte!1er);
{--------------------------------~---}
procedure DrawCursor(TableEntry:inte!1er);
be!1 i 1"1

Xarray[ll:=X_Loc[TableEntryl+O.l;
Xarray[2l:=X_Loc[TableEntryl+O.5;
Xarray[3l:=X_Loc[TableEntryl+O.S;
Xarray[4l:=X_Loc[TableEntryl+O.l;
Yarray[ll:=Y_Loc[TableEntryl-O.OS;
Yarray[2l:=Y_Loc[TableEntryl-O.Ol;
Yarray[3l:=Y_Loc[TableEntryl-O.OS;
Yarray[4l:=Y_Loc[TableEntryl-O.OS;
set_p!1n_style(15) ;

{procedure DrawCursor}
{ \ }
{ \ }

{ \ }

{ \ Define the trian~ular }
{ / cursor. }
{ / }

{ / }

{ / }
{entrY #15 froM the polY!1on table}

poly~on_dev_dep(4tXarraYtYarraYtOpArray); {draw the cursor}
end; {procedure DrawCursor}
{--}
be!1in {procedure UpdateCursor}
if LastTableEntry<>TableEntry then be!1in {any chan!1e?}

set_p!1n_color(O); {choose fill color of back!1round}
DrawCursor(LastTableEntry) {draw in background color (erase)}

end; {if}
set_p!1n_color(CursorColor) ;
DrawCursor(TableEntry) ;
LastTableEntry:=TableEntry
end; {procedure UpdateCursor}

{select polY!1on color}
{draw the new cursor}
{reMeMber the new cursor position}

Listings of Example Programs A-21

$pa~e$

be~in
{**}

Hue_ind:=chr(128) ;
Sat_ind:=chr(128) ;
LUITl_ind:=chr(128) ;
Tab_ind:=chr(128) ;
TableEntn:=O;
LastTableEntry:=O;
Mode:=Table;
CursorColor:=l;
LabeIColor:=FunnyChar[BlackJ;

~raphics_init;

display_init(3tOtError_NuM) ;
if Error_NulTl=O then be~in

set_char_size(0.175tO.15) ;
set_p1n_style(15) ;
set_aspect(511 t388);
set_IAlindow(-1.1 t8t-0.7t2.2);
{---- Set UP color SYsteM and set
set_color_Model(2) ;
HueVal[TableEntryJ:=O;
SatVal[TableEntryJ:=O;
LUMVal[TableEntryJ:=O.G;
set_color_table(TableEntrYt

HueVal[TableEntryJ t
SatVal[TableEntryJ t
LUMVal[TableEntryJ) ;

{Main ProHaM}
{ \
{ \ All hi~hli~hts initially
{ / off.
{ /
{currently indicated entrY}
{previously indicated entrY}
{selection Mode first}

}

}

}

}

{Make sure the cursor is visible}
{labels contrast with back~round}

{initialize the ~raphics SysteM}
{which output device?}
{successfully initialized}
{define the character size}
{select the poly~dn style}
{use the whole screen}
{scale the window for the data}

back~round color ----------------------}
{HSL}
{\ Current TableEntry: 0. }
{ > Current entrY's color: }
{/ GOI ~ray. }
{ \ }
{ \ Install the currently- }
{ / defined color. }
{ / }

{---- Read the colors froM the color Map ----------------------------------}
for 1:=0 to 15 do inq_color_table(1 tHue l,lal[IJ tSatVal[IJ tLUIT1I,lal[IJ);
{---- Initialize arrays for poly~on ---------------------------------------}
OpArra}'[lJ:=2; {2: First vertex of a poly~on}
for 1:=2 to 5 do OpArray[IJ:=l; {1: Draw froM the last vertex to this}
{---- Set UP arrays fo~ the lower row -------------------------------------}
Yarray[1J:=O.l; { \ }
Yarra}'[2J :=0.1;
Yarray[3J:=0.8;
Yarray[llJ:=0.8;
Yarra}'[5J:=0.1;
Yfill_array:=Yarray;
Yfill_array[3J:=0.5;

{ \ Define the outline of }
{ > the tall t unfilled }
{ / rectan~le. }
{ / }
{\ Define the outline of }
{ :> the shortt filled }
{/ rectan~le. }

{---- Draw the lower row --}
for 1:=0 to 7 do be~in

Xarray[1J :=1;
Xarray[2J:=I+0.8;
Xarray[3J:=I+0.8;
Xarra}'[llJ:=I;
Xarray[5J:=I;

{ \
{ \
{

{ /
{ /

Define the X positions
> for this particular

rectan~le.

}

}

}

}

}

strIAlrite<TeMPStrin~t1 tTelT1PInt tI:2); {convert to a strin~}
set_color(l); {set the color for text}
Move(I+0.5-0.075tO) ;
~text(TeMPStrin1) ;
set_p~n_color(I) ;
set_colore!) ;
polyline(5t}{arra}'tYarray) ;

{Move to Just ti~ht of bOttOM center}
{label the table entrY nUMber}
{set the color for poly~on fills}
{set the color for lines}
{draw the tall unfilled rectan~le}

poly~on_dev_dep(5tXarraytYfill_arraytOpArray); {draw and fill shortie}
X_Loc[IJ:=round(Xarray[lJ); {store X locations}
Y_Loc[IJ:=round(Yarray[lJ); {store Y locations}

end; {for 1:=0 to 15}

A-22 Listings of Example Programs

{---- Set UP the arrays for the upper row ---------------------------------}
Yarray[lJ:=l.l;
Yarray[2J:=1.1;
Yarra}'[3J:=1.8;
Yarray[4J:=1.8;
Yarra}'[5J:=1.1;
Yfill_array:=Yarray;
Yfill_array[3J:=1.5;
Yfill_array[4J:=1,5;

{ \ }
{ \ }

{ > Redefine Y values only. }
{ / }

{ / }
{ \ }

{ > Redefine Y values only. }
{ / }

{---- Draw the upper row --}
for 1:=0 to 7 do be~in

}(array[1 J: =1;
Xarray[2J:=1+0.8;
Xarray[3J:=1+0.8;
Xarra}'[4J:=I;
XarraY[5J :=1;

{

{

{

{

{

\
\

>
/

/

Define the }{ positions
for this particular
rectan~le.

strl,Hite(TeIT1PStrin~ t1 ,TelllPlnt tI+8:2); {convert to a strin~}
set_color(l); {set the color for text}

}

}

}

}

}

Move(I+0.5-0.075,1) ;
~text(TeMPStrin~) ;
set_p~n_color(I+8) ;

{Move to Just ri~ht of bOttOM center}
{label the table entrY nUMber}
{set the color for poly~on fills}

set_color(I+8); {set the color for lines}
polyline(5,Xarray,Yarray); {draw the tall unfilled rectan~le}

poly~on_dev_dep(5,}{arra}',Yfill_array'OpArray); {dralAl and fill shortie}
X_Loc[I+8J:=round(Xarray[lJ); {store X locations}
Y_Loc[I+8J:=round(YarraY[lJ); {store Y locations}

end; {for 1:=0 to 15}
{---- Start interactivity -------------~-----------------------------------}
MenuLine;
UpdateCursor(TableEntry) ;
Displa}'Stuff;
Done:=false;

{IAIrite the ITlenu}
{initial cursor}
{initial readouts}
{not done }'et}

repeat
read(Keyboard ,Character);
Delta:=CH

{this starts the actual color selector}
{~et a character,no echo}

case Character of
FS: Delta:=O.Ol;
BS: Delta:=-O.Ol;
LF: Delta:=O.l;
US: Delta:=-O.l;
H,Hl: Mode:=Hl.le;
L,Ll: Mode:=LI.lIIl;
Q,Ql: Done:=true;
S,Sl: Mode:=Sat;
E,El: Mode:=Table;
C,Cl: be~in

if Mode=Copyl then be~in

COPy_SOl.lrce:=TableEntry;

{start by assuMin~ zero}
{analyze the character}
{ \
{ \ Cursor-control
{ / characters
{ /
{Hue-chan~in~ Mode}
{LuMinosity-chan~in~ Mode}
{Quit the pro~raM}
{Saturation-chan~in~ Mode}
{Entry-chan~in~ Mode}

{Have source, IAIill COP}'.}
{Put it where?}

CursorColor:=Copy_Source;
UpdateCl.lrsor(TableEntrY); {note current entrY}
~otoxy(O,2t); {twenty-second row, first coluMn}
write('Use Knob to select location to ');
IAIrite('coP}' color to,then press');
IAIriteln(' C');
Mode:=Copy2

end
{do second section next tiMe}

}

}

}

}

Listings of Example Programs A-23

else begin
{ Cop }' c 0·1 0 r to}
{this location}

if Mode=Copy2 then begin
gotox}'(O.21) ;
'",riteln(strrpt(' '.78));
inq_color_table(Copy_Source.

{"erase" old text}
{ \ Get the }

HueVal[TableEntry] •
SatVal[TableEntry] •
LUMVal[TableEntry]) ;

{ \ HSL values }

{ / frolTl the }

{ / table. }

CursorColor:=l ; {reinitialize cursor color}
UpdateCursor(TableEntry) ;
Mode:=LastMode

{indicate new cursor position}
{third section next tiMe}

end
else begin {Initiate copy Mode}

LastMode:=Mode;
COpy_Source:=TableEntry;
gotox}'(O.2U;
write('Use Knob to select color ');
'",rite('to be copi.ed.then press');
'",riteln(' C');
Mode:=CoP}'l

end;
end;

end;
other'",ise
end; {case}
{---- use delta created above to Modify the proper value ----------------}
case Mode of {what aM I doing?}

Hue: begin
HueVal[TableEntry]:=HueVal[TableEntry]+Delta;
if HueVal[TableEntry]>l then HueVal[TableEntry]:=O;
if HueVal[TableEntry](O then HueVal[TableEntry]:=l;

end;
Sat: begin

SatVal[TableEntry]:=SatVal[TableEntry]+Delta;
if SatVal[TableEntry]>l then SatVal[TableEntry]:=l;
if SatVal[TableEntry](O then SatVal[TableEntrY]:=O;

end;
Ll.lITl: begin

LUMVal[TableEntry]:=LuMVal[TableEntry]+Delta;
if LUMVal[TableEntry]>l then LUMVal[TableEntry]:=l;
if LUMVal[TableEntry](O then LUMVal[TableEntrY]:=O;

end;
Table .Cop}'i .CoP}'2: begin

if Delta(>O then begin
if Delta>O then TableEntry:=TableEntry+l
else TableEntry:=TableEntry-l;
if TableEntn>15 then TableEntn:=15;
if TableEntr}'(O then TableEntrY:=O;

{ \
{ /
{ \
{ /

{adjust it}
{Keep it ••• }
{. •• in lilTlits}

{adjust it}
{Keep it ••• }
{. •• in lilTlits}

{adjust it}
{Keep it ••• }
{. •• in lilTlits}

Adjust }

the value }

Keep it }

in liMits }

UpdateCursor(TableEntry) ;
end;

{indicate new entrY}

end;
end; {case}

A-24 Listings of Example Programs

set_color_table(TableEntrYt
HueVal[TableEntry] t
SatVal[TableEntry] t
LUMVal[TableEntry]) ;

if TableEntrY=O then be~in {Back~round color}

{ \
{ \ Modif)' the
{ / color Map.
{ /

}

}

}

}

set_color_ITlodel(I); {RGB}
inCl_color_table(OtRedBad, tGreenBack tBlueBac~,); {Ht RGB ~Jalues}
BackSuM:=O; {\ Calculate the }
if RedBack<0.5 then BackSuM:=4; { \ back~round color }
if GreenBack<O.5 then BackSuM:=BackSuM+2; { / in order to Make }
if BlueBack<0.5 then BackSuM:=BackSuM+l; {/ contrastin~ text. }
if OldBackSuM<>BackSuM then be~in {Color chan~e}

case BackSuhl of
0: LabeIColor:=FunnyChar[Black];
1: LabeIColor:=FunnyChar[Blue];
2: LabeIColor:=FunnyChar[Green];
3: LabeIColor:=FunnyChar[CYan];
4: LabeIColor:=FunnyChar[Red];
5: LabeIColor:=FunnyChar[Ma~enta];

8: LabeIColor:=FunnyChar[Yellow];
7: LabeIColor:=FunnyChar[White];

end; {case BacksSuM of}
MenuLine;
OldBackSuM:=BackSuM;
set_color_table(~tl-RedBackt

l-GreenBac~, t
I-BlueBack) ;

end; {if}
set_color_Model(2) ;

end; {if TableEntrY=O}
Displa)'Stl.lff;

{ \ }

{ \ }

{ \ Translate the }

{ \ RGB back~round }

{ / S lliTI to a }

{ / cOhlPlelTlentan' }

{ / text color. }

{ / }

{print the hlenu line}
{store for future cOMParisons}
{\ Make pen one }
{ > cOMPleMentarYt }
{/ too. }

{HSL}

{update alpha inforMation}
until Done; {until user pushes [Q]}
l",riteln(Funl'n'Char[Green] tchr(128)); {restore text screen to norhlal}
{---- Report all this ~ood stuff --}
Int_A:=O;
output_esc(Display_Conttl tOtInt_AtReal_AtError_NuM);
set_color_Model(1); {RGB}
for 1:=0 to 15 do inCl_color_table(I tRedVal[I]t

writeln('Table');
I",rite('Index Hue Sat
writeln(' Red
for 1:=0 to 15 do be~in

l",rite(I:3t' ');
write(HueVal[I]:3:2t'
write(SatVal[I]:3:2t'
write(LuMVal[I]:3:2t'
write(RedVal[I]:3:2t'

LUITI') ;

Gr e erl~) a I [I] t

BlueVaHl]);

Green Blue');

') ;
') ;

') ;
') ;

{

{

{

{

{

{

write(GreenVal[I]:3:2t' '); {

writeln(BlueVal[I]:3:2) ; {

end; {

\
\

\

/
/

/

\

/
:>

{\ Get the RGB }
{ > definition }
{/ of the color}

}

}

W ri t e the color }

Map entries as }

both HSL and }

RGB I'HIITlbers. }

}

}

}

display_terM; {deactivate the display}
end;
~raphics_terITl;

end.
{terhlinate the
{Main Pro~rahl}

~raphics SysteM}

CsizeProg
pro~raM CsizePro~(output);

iMPort d~l_lib, d~l_inq;

const
Crt= 3;
Control=

var
Error:
I, J:
S t rn ~:

0;

inte~er;

inte~er;

strin~[10];

Listings of Example Programs A-25

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outcoMe}
{utility variables}
{teMPOrary holdin~ place for strin~s}

$include 'DGLPRG:ConvVtoW'$ {virtual-to-world conversion}
$pa~e$ {**}
procedure CharSize(Hei~ht, AspectRatio: real);
{--}
{ This procedure defines character cell size and the puts the Width and }
{ Hei~ht values into ~lobal variables for later use. The arguMents passed }
{ in are the hei~ht of the character cell in VIRTUAL coordinates, and the }
{ aspect ratio of the character cell. The values for the window liMits }
{ May be anythin~; they are taken into account and do not affect the size }
{ of the characters, since they are defined in virtual coordinates. This }
{ procedure, alon~ with Lor~ and Ldir, define ~lobal variables for use by }
{ Glabel. }
{--}
var

Width: re a I ; {teMPOrary spot for width}
XO, YO: real; {O,O (virtual) in '-"orld}
Xl, Yl: real; {1 t1 (virtual) in '-"orld}

be~in {bodY of procedure "CharSize"}
ConvertVirtuaIToWorld(O,O,XO,YO); {convert 0,0 in virtual to world}
Convert 1hrtualToWorld(1 t1 ,}{1 ,Y1); {convert ltl in l.drtual to '-"orld}
Hei~ht:=Hei~ht*(Yl-YO); {convert hei~ht in virtual to world}
Width:=Hei~ht*AspectRatio*(Xl-XO)/(Yl-YO); {convert width in virtual to world}
set_char_size(Width,Hei~ht); {invoke the paraMeters}
end; {proced'.lre "CharSize"}
$pa~e$ {**}
be~in
~raphics_init;

display_init(Crt ,Control ,Error);
if Error=O then be~in

set_aspect(511 ,388);
set_windo'-,,(1,2 tlOO ,0);
for 1:=1 to 8 do begin

CharSize(1*1*0.01,0.8);
Move(l ,1*1*1*0.4+1);
s t r'-" r it e (S t rn ~ t1 , J tI * I: (I) ;

~text(Strn~+'%') ;
end; {for i}

end; {Error=O?}
~raphics_terIT1;

end.

{bodY of pro~raM "CsizePro~"}

{initialize the ~raphics SysteM}
{which output device?}
{output device initialization OK?}
{use the whole screen}
{scale the wi~dow for the data}
{six different character sizes}
{install character size}
{Move to a appropriate place}
{convert nUMber to strin~}

{label the strin~}

{terMinate the ~raphics packa~e}

{pro~raM "CsizePro~"}

A-26 Listings of Example Programs

DataPoint
$page$ {**}
function DataPoint(I: integer): real; {function that returns the y-values}

{--}
{ This function returns one of the one hundred values in the structured }
{ constant III.loltages ll every tilTle it is called. This function is called b}' }
{ the IIProgressive ExalT1PIe il prOgralT1S in the graphics techniques chapters. }

{--}
t}' pe

IJoltsT}'pe= a rra)' [1 •• 100] of
const

l.loltages= VoltsType[0.1810,

begin
DataPoint:=Voltages[I];

0.1831,
0.1807,
o. 18110,
0.1835,
O. 18211,
0.1880,
0.1882,
0.1 8115 ,
0.1880,
0.1888,
0.1888,
0.1718,
0.1883,
0.1881,
0.17311,
0.1702,
0.1715,
0.1732,
0.1707,

end; {function IIDataPoint ll
}

DrawMdPrg
prOgraM DrawMdPrg(output);
ilT1Port dgl_Iitd
const

Poh'gons=
Sides=
crt =
control=

t)' pe

lOCH
3 ;

re a I ;

0.1825, 0.1825,
0.1827, 0.1808,
0.1817, O. 18 111 ,
0.1858, 0.1880,
0.1 8111 , 0.1,828,
0.1827, O. 181111 ,
0.1870, 0.1872,
o. 18118 , 0.1833,
0.1852, 0.1858,
0.1888, 0.1880,
0.1855, 0.1885,
0.1881, 0.1888,
0.1718, O. 18811 ,
0.1871, 0.1881,
0.1888, 0.1705,
0.1714, 0.1722,
0.1888, O. 18811 ,
0.1730 , 0.1737,
O. 17117 , 0.1728,
O. 1708 , 0.1708,

0.1828,
0.1810,
0.1828,
0.1 81111 ,
0.1818,
0.181111,
0.1888,
O. 18311,
0.1877,
0.1 8711 ,
0.1882,
0.1887,
0.1888,
0.1883,
0.1723,
0.1718,
0.1708,
O. 1738 ,
0.1717,
0.1713,

0.1838,
0.1808,
0.18311,
0.1851,
0.1830,
0.1857,
0.1858,
0.1838,
0.1888,
0.1877,
0.1887,
0.1707,
0.1883,
0.18811,
0.1730,
0.1888,
0.1888,
0.1751,
0.1710,
0.1720];

{bod)' of function IIDataPoint ll
}

{assign it to the function naMe}
{return}

{prOgraM naMe saMe as file naMe}
{access the necessary procedures}

{how Many polygons?}
{how Many sides apiece?}
{device address of graphics raster}
{device control word; ignored for CRT}

short_int= -32788 •• 32787; {18-bit integer}
DrawingModeT)'pe= (DolTlinant ,Erase ,CoITlPleITlent);
DisplayStates=(Off,On) ;

var
)(:
Y:
Dx, D)':
Poh', Side:
DralAiMode:
TeITIP:

arra)' [O •• Pob'gons-lt1 •• Sides] of short_inti
arra)' [O •• Pob'gons-l,l •• Sides] of short_inti
array [l •• Sides] of short_inti
short_inti {loop control variables}
DraIAiingModeT)'pe;

{teMPOrary holding area}
New,Previous: short_inti {for efficient use of arrays}

{randoM nUMber seed} seed: integer;
error: inteser; {disPlav_init return variable; 0 = oK}

Listings of Example Programs A-27

$pase$ {**}
procedure Alpha(State: DisplayStates);
{--}
{ This procedure turns the alpha raster on or off. }
{--}
const

AlphaRaster= 1051;
var

AlphaOn:
Rarra}':

{MneMonic better than Magic nUMber}

{ \
{ :>

This is all stuff that
is needed b}' the

}

}

Error:

array [1 •• 1] of integer;
array [1 •• 1] of real;
integer; {I lIoutput_esc ll procedure. }

beg i n {procedure IIAlpha ll
}

if State=On then AlphaOn[l]:=l
else AlphaOn[l]:=O;
ol.ltput_esc(AlphaRastertl ,0,AlphaOn ,Rarra}' ,Error);
if Error<>O then l,.,Iriteln('Error ',Error:O,' in procedure IIAlpha ll

.');

end; {proCedl.lre IIAlpha ll
}

$page$ {*******************************~************************************}
procedure DrawingMode(Mode: DrawingModeType);
{--}
{ This procedure selects drawing Modes for a MonochroMatic CRT. }
{--}
const

SetDral,.,lingMode= 1052; {MneMonic better than Magic nUMber}
var

Dral,.,lMode:
Rarra}':
Error:

beg i n

[1 •• 1] of integer;
array [1 •• 1] of real;
integer;

}

{ > is needed by the }
{I lIoutput_esc ll procedure. }

{procedure IIDral"lingMode ll
}

{ \ This is all stuff that

case Mode of { \
Erase: DrawMode[1]:=2; {\
DOMinant: DrawMode[l]:=O; {
COMPleMent: DrawMode[1]:=3; {I

:>

}

Convert DrawingMode enuMerated }
type into the appropriate }
value for OUTPUT_ESC procedure. }

end; {case} { I }

ol.ltput_esc(SetDral"lingMode tl ,0 ,Dral,.,lMode ,Rarra}' ,Error); {set it}
if Error<>O then l,.,Iriteln('Error' ,Error:O,' in procedure IIDral,.,lingMode ll

.');

end; {procedure IIDrawingMode ll
}

$page$ {**}
function Rand: short_inti
begin
Seed:=((Seed+13578)*38777) Mod 10000;
Rand:=Seed;

{function IIRand ll
}

{fTlaKe nel,.,l seed}
{return current value of seed}

end; {function IIRand ll
}

$page$ {**}
procedure DefineDeltas;
1.1 a r

Side:
begin {bod}' of procedure IIDefineDeltas ll

}

for Side:=l to Sides do begin {for each vertex}
Dx[Side]:=Rand Mod 5+2; {Magnitude of this dx}
if Rand>=5000 then Dx[Side]:=-Dx[Side]; {sign of this dx}
Dy[Side]:=Rand Mod 5+2; {Magnitude of this dy}
if Rand>=5000 then Dy[Side]:=-Dy[Side]; {sign of this dy}

end; {for side}
end; {bod}' of procedure IIDefineDeltas ll

}

A-28 Listings of Example Programs

$page$ {**}
beg i n
DrawMode:=DoMinant;
Seed:=1173;
graphics_init;
displa~'_init(crt tcontrol terror);
if error=O then begin

set_aspect(511 t388);
set_INindol"dOt511 tOt388);
Alpha(Off) ;
DrawingMode(DrawMode) ;
for Side:=1 to Sides do begin

X[OtSide]:=Rand Mod 511;
Y[OtSide]:=Rand Mod 388;
if Side=1 then

int_lTlove oao tSide] tY[O tSide])
else

. in t _1 in e oa 0 tS ide] t Y [0 t Sid e]) ;
end; {for side}
if Sides>2 then

int_lineOaOtl]tY[Otl]) ;
DefineDeltas;
for Poly:=1 to Polygons-l do begin

for Side:=1 to Sides do begin
TeMP:=X[Poly-l tSi~e]+Dx[Side];
if Te1TIP>511 then

Dx[Side]:=-Dx[Side]
else if TeMP(O then

Dx[Side]:=-Dx[Side];

{bod~' of prOgralTI IIDrawMdPrg ll
}

{specify drawing Mode}
{initialize randoM nUMber seed}
{initialize graphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{one user unit=one pixel}
{turn off the alpha screen}
{select specified drawing Mode}
{define the first polygon}
{define
{define
{ \
{ \
{ >
{ /

}-{ COITIPonent}
Y COITIPonent}

}

Move to the first }
pointt and draw to }
all the rest. }

{if siMPle linet don't close}
{define dx and dy for each vertex}
{draw all the polygons}
{each vertex of each polygon}
{avoid recalculation}
{ \
{ \ Is X off the
{ / sc reen?
{ /

}

}

}

}

}·apol~' tSide] :=}-{[Pob-1 tSide]+Dx[Side]; {calculate next x}
recalculation} TeITIP: =Y[Poh'-1 tSide]+DdSide]; {alJoid

if TeMP>388 then { \ }

Dy[Side]:=-Dy[Side] { \ Is Y off the }
else if TeMP(O then { / screen? }

Dy[Side]:=-Dy[Side]; { / }

Y[Poh' tSide] :=Y[Pob-l tSide]+D~'[Side]; {calculate next ~,}

if Side=1 then int_ITlove(}{[PohtSide]tY[Pol~'tSide]) {Move to first pointt}
else int_IineOaPob tSide] tY[Poh tSide]); {draiN to all the rest}

end; {for side}
if Sides>2 then {if siMPle linet don't close polygon}

int_Iine(X[Pob ti] tY[Pob' t1J);
end; {for poly}
New:=O; {start re-use at entrY O}
while true do begin {ad infinituM ••• }

if New=O then Previous:=Polygons-l {start re-using over}
else Previous:=(Previous+l) Mod Polygons; {re-use next entrY}
if DrawMode=DoMinant then DrawMode:=Erase; {\ If DOMinantt toggle state}
DrawingMode(DrawMode); {select specified drawing Mode}
for Side:=1 to Sides do begin {erase the oldest line}

if Side=1 then { \ Move to the }
int_Move(X[NewtSide] tY[NewtSide]) {\ first pointt }

else { / draw to all the }
int_IineO{[NeINtSide] tY[Nel"ltSide]); {/ rest. }

end; {for Side}
if Sides>2 then {if siMPle linet don't close polygon}

int_Iine(}-{[Nel"ltl] tY[NeINtl]);
if DrawMode=Erase then DrawMode:=DoMinant; {\ If Eraset toggle state}
DrawingMode(DrawMode); {select specified drawing Mode}

Listings of Example Programs A-29

for Side:=1 to Sides do be~in

TeMP:=X[PreuioustSide]+Dx[Side];
if TefT1P}511 then

Dx[Side]:=-Dx[Side]
else if TeMP(O then

Dx[Side]:=-Dx[Side];
X[NewtSide]:=X[PreuioustSide]+Dx[Side];
TeMP:=Y[PreuioustSide]+Dy[Side];
if TefTIP}389 then

Dy[Side]:=-Dy[Side]
else if TeMP(O then

Dy[Side]:=-Dy[Side];
Y[NewtSide]:=Y[PreuioustSide]+Dy[Side];
if Side=1 then int_Moue(X[New,Side] ,Y[NewtSide])
else int_IineO([Nel..JtSideJ ,Y[Nel..JtSideJ);

end; {for side}
if Sides}2 then

int_Iine(}-([Nel..JtlJ ,Y[Nel"ltlJ);

{\
{ \
{ \
{ \
{

{

{

{

{

{

{

{

{

\

{

{
/

/
{ /
{ /
{/

New:=(New+l) Mod Poly~ons;

end; {1..Jhile}
{next one to re-use}

\

/

\
\

\
/

/
/

Dral.~1 the
IHI..J line
the safTle
1,,1 a }' as
before.

end; {e·rror=O?}
graphics_terfTI;

{end of conditional code}
{terMinate ~raphics library}

end. {pro~rafTI IIDral..JMdPr~lI} {end of pro~rafTI}

FillProg
pro~raM FiIIPro~(output);

ifTIPO rt
{pro~raM naMe saMe as file naMe}

d~l_l ib ,d~l_t}'pes ,d9'l_pol}' ,d~l_inq; {access the necessary procedures}
const

MaxPoints=
Crt =
Control=

t}' pe
Reals=
Word=
Inte9'ers=

const
)(I.lalues=

Yvalues=

OpCodes=

var
Error:
I :
LefTI){, LefTIY:
OpSelectors:
Points:

27; {nufTlbe r
3 ; {del.!ice
0; {device

a rra}' [1 •• MaxPointsJ of re a I ;
-32768 •• 32767;
a rr a}' [1 •• MaxpointsJ of Wo rd;

-2.5,2.5,2.5,-2.5,-2.5,
-2.5 t-4.5 ,-2.5 ,-5.0 ,-4.0,
2.5,4.5, 2.5t 5.0, 4.0,

-0.5,-1.0t 1.0,0.5];

of points in arra}'s}
address of ~raphics raster}
control 1,,10 rd ;

{ to contain)(

{16-bit 1,,10 rd}
{to contain

i~nored for CRT}

and Y values}

OP. selectors}

{Octa~on}

{Box}

Reals[1.0, 2.0t 3.0, 4.0, 4.0, 3.0, 2.0,1.0,

{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box} 1.0, 1.0,-2.0,-2.0t 1.0,
-2.0,-4.0, 0.0,-4.0,-4.0t
-2.0,-4.0,0.0,-4.0t-4.0,
-2.0,-3. ° ,-3.0 t-2.0J;

Inte~ers[2 tl tl t1 ,I t1 tl t1,
2t1tlt1tl,
2t1t1,2tl,
2t1t1,2tl,
2t1tlt1J;

{Left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Ri~ht le~}

{Left le~}

{Nozzle}

inte~e r;
inte~er;

Reals;
Inte~ers;

inte~er;

{display_init return variable; ° = oK}
{loop control variable}
{so we can pass it to IIpoly~onll}

{ditto}
{ditto}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

A-30 Listings of Example Programs

$pa~e$

be~in
{**}

LeITl}{: =}{v a 1 ue s ;
LeITlY:=Yvalues;
DpSelectors:=OpCodes;
Points:=MaxPoints;
~raphics_init;

disPlaY_init(Crt ,Control ,Error);
if Error=O then be~in

set_aspect (511,388);
set_''''indo'",(-7.5 tl8.5 ,-10 tlO);
set_p~n_style(14);

{bodY of pro~raM "FillPro~"}

{\ Put into variable array so }
{ > it can be passed by }
{/ reference into the DGL proc.}
{put constant into an array variable}
{initialize ~raphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{invoke isoiropic units}
{crosshatched fill}

poly~on(Points,LeMX,LeMY,OpSelectors); {draw the lines}
set_window(-18.5,7,-10,10); {invoke isotropic units}
set_p~n_table(14,0.51 ,0,1); {set the "do a fill" fla~}

set_color_table(1,0.125,0.125,0.125); {specify 12.5% ~ray scale}
set_p~n_color(l); {use specified "color"}
poly~on_dev_dep(Points,LeMX,LeMY,OpSelectors); {draw the lines}

end; {Error=O?} {end of conditional code}
~raphics_terITl;

end. {pro~raM "FillPro~"}

FillGraph
pro~raM FillGraph(output);
iMPort d~l_lib, d~l_types, d~l_poly;

const
CrtAddr=

{terMinate ~raphics library}
{end of pro~raITl}

ControlWord=
t}' pe

RDataT}'pe=
WDataT}'pe=

array [0 •• 12] of real;

const
}<values=
Yl.lalues=
OperationSelectors=

var
ErrorReturn:

OpSel:

arra}' [0 •• 12] of -32788 •• 32787;

RDataT}'pe[O tl ,2,3,4,5,8,7,8,8 tlO tlO ,0];
RDataT}'pe[2 ,4 ,3 ,8 ,5 ,5 ,3 ,7 ,5 ,8 ,8 ,0 ,0];
WDataT}'pe[2tl t1 tl tl tl tl tl tl ,1 ,1 ,1 tl];

inte~er;

RDataT}'pe;
WDataT}'pe;

$pa~e$ {**}
be~in {pro~raITl "FillGraph"}
~raphics_init;

display_init(CrtAddr,ControlWord,ErrorReturn) ;
if ErrorReturn=O then be~in

set_aspect(511 ,388);
set_,,,,indo,,,,(OtlO,OtlO) ;
IT10I.le(0,0); line(OtlO); line(10tlO); line(10,0); line(O,O);
X:=Xvalues; Y:=Yvalues; OpSel:=OperatiohSelectors;
set_p~n_table(l ,0.333,17.34,1);
set_p~n_style(l) ;
pol}'~on(13,}<,Y,OpSel) ;

end; {ErrorReturn=O?}
~raphics_terITl;

end. {pro~raITl "FillGraph"}

GstorProg
$s}'sprog on$
prOgralTI GstorProgO{e}'board ,output);
label 1;
iMPort dgl_Iib, dgl_inq;
const

Crt=
Control=
GRasterAddr=
GRasterSize=
Ratio=

t}' pe

3 ;
0;
hex ('530000') ;
8240;
1.31382487888;

Listings of Example Programs A-31

{so we can define array addresses}
{prOgraM naMe saMe as file naMe}

{access the necessary procedures}

{device address of graphics raster}
{device control word; ignored for CRT}
{address of graphics MeMOry}
{32-bit integers in graphics raster}
{aspect ratio of the Model 38 CRT}

GRasterType= array [l •• GRasterSizel of integer;
HJustif}'T}'pe= (Left,HCentered ,Right);
VJustif}'T}'pe= (BottoITI,I,'Centered ,Top);
Displa}'States=(Off ,On);
AngT}'pe=
RoundT}'pe=
Str255=

(Deg ,Rad ,Grad);
(Up, DOIAin, Near);
string[2551;

var
Error:
Decade, Units:
}{ ,Dx:
}{ITlin ,}{ITlax ,}{range:

YITlin ,YITlax ,Yrange:
I :
S t rn g :

Character:
TelTlPerature:

integer;
integer;
re a 1 ;
integer;
re a I ;
integer;
integer;
St r255;
char;
re a I ;

Old}{, OldY: real;
GRaster[GRasterAddrl: GRasterType;
Screen: GRaste rT}'pe;
keyboard: text;
CharWidth ,CharHeight: real;
HJustification:
1,'Justification:
CharTheta:

HJust i f}'T}'pe;
1,'Just i hT}'pe;
re a I ;

Clip}{ITlin, Clip}(ITlax: real;
ClipYITlin, ClipYITlax: real;

$include 'DGLPRG:ConvVtoW'$

{used by procedure Ldir}
{used by function Round2}
{used by procedure Glabel}

{disPlaY_init return variable; 0 = ok}
{for logarithMic X-axis}
{x-axis variables}
{More x-axis variables}
{y-axis variables}
{More y-axis variables}
{utility variable}
{another utility variable}
{and Yet another}
{need a larger range than an integer}
{last point drawn to}
{actual graphics raster}
{user's screen iMage}
{allow GETs froM the keyboard}
{\ These are global variables
{ \ used by the CharSizel
{ I LabelDirection/LabelJustifyl
{I Glabel series of procedures.
{soft clip liMits in x}
{soft clip liMits in y}

}

}

}

}

$page$ {**}
procedure CharSize(Height, AspectRatio: real);
{--}
{ This procedure defines character cell size and the puts the Width and }
{ Height values into global variables for later use. The argUMents passed }
{ in are the height of the character cell in VIRTUAL coordinates, and the }
{ aspect ratio of the character cell. The values for the window liMits }
{ May be anything; they are taken into account and do not affect the size }
{ of the characters, since they are defined in virtual coordinates. This }
{ procedure, along with Lorg and Ldir, define global variables for use by }
{ Glabel. }
{--}

A-32 Listings of Example Programs

val'
Width:
}(O t YO:
}{ 1 t Y 1 :

re a I ;
re a I ;
rea I ;

be!1in
ConvertVirtuaIToWorld(OtOt}{OtYO) ;
Convert 1hrtualToWorld(1 tl t}{l tYll;
Hei!1ht:=Hei!1ht*(Yl-YO) ;

{teMPOrary spot for width}
{OtO (virtual) in IAlorld}
{1 tl (virtual) in IAlorld}
{bodY of procedure "CharSize"}
{convert OtO in virtual to world}
{convert ltl in l.lirtual to world}
{convert hei!1ht in virtual to world}

Width:=Hei!1ht*AspectRatio*(}{l-}{O)/(Yl-YO); {convert width in 0irtual to world}
set_char_size(WidthtHei!1ht); {invoKe the paraMeters}
end; {procedure "CharSize"}
$pa!1e$ {**}
procedure LabeIDirection(Direction: real; Units: An!1Type);
{--}
{ This procedure is used in conjunction with LabelDri!1int CharSize and }
{ Glabel. It sets the labellin!1 direction to be usedt and places the }
{ direction into a !1lobal variable so Glabel can use it. }
{--}
const

De!1_per_rad= 57.2857785131; {180/pi: for convertin!1 de!1rees to radians}
Grad_per_rad= 83.8818772388; {200/pi: for convertin~ !1rads to radians}

be~in {procedure "LabelDirection"}
case Units of

De!1: Direction:=Direction/De!1_per_rad; {de~rees to radians}
Rad: {correct units already}
Grad: Direction:=Dire~tion/Grad_per_rad; {!1rads to radians}

end; {case}
CharTheta:=Direction; {put into a !1lobal variable}
set_text_rot(cos(CharTheta) tsin(CharTheta)); {invoKe the new text direction}
end; {procedure "LabeIDirection"}
$pa~e$ {**}
procedure LabelJustify(HJust: HJustifyType; VJust: VJustifyType);
{--}
{ This procedure is used in conjunction with procedures CharSizet }
{ LabelDirectiont and Glabel. This Just puts a value into !1lobal }
{ variables which will be subsequently used by Glabel. }
{--}
be!1in
HJustification:=HJust;
VJustification:=VJust;

{procedure "LabeIJustify"}

end;
$pa!1e$

{procedure "LabeIJustif}'"}
{**}

function AtardY t }{: real): real;
{--}
{ This function returns the value of the arctan~ent of Y/}{t placin~ it }
{ in the correct quadrant. If Y and X are both zerOt the result is zero. }
{--}
const

Pi= 3. 111158285358 ; {pi}
be~in {function "Atan"}
if X=O.O then Atan:=(Pi/2+Pi*ord(Y(O.O)*ord(Y(>O.O)
else Atan:=arctan(Y/X)+Pi*ord(X(O.O)+2*Pi*ord((X>O.O) and (Y(O.O));
end; {function "Atan"}

Listings of Example Programs A-33

$page$ {**}
procedure Glabel(Text: StrZ55);
{--}
{ This procedure labels a string of text at the current pen position. }
{ It taKes into account the current label direction (set by procedure }
{ ILabelDirection"t the CI.lrrent character size (set by procedure }
{ ICharSize") t and the CI.lrrent label justification (set b)' procedure }
{ "LabeIJI.lstif yl). }
{--}
const

CharSizeCode=
CurrentPosition=

t)' pe

Z50;
Z59;

(){ t Y) ;

{MneMonic better than Magic nUMber}
{ditto}

Positions=
PositionT)'pe=
CharAttributes=
CharAtt rT)'pe=

array [Positions] of real;
(Width tHeighth);
array [CharAttributes] of real;

var
Chars:
Charsize:
LentHeight:
Dx tD)':
RtTheta:
Pac:
Iarran
Position:
Error:

inteser;
CharAtt rT)'pe;
re a I ;
re a I ;
re a I ;
pacKed arra)'
arra)' [1 •• 1]

PositionT)'pe;
integer;

{length and height of character string}

{for rectangular-to-polar conversion}
[1 •• 1] of char; {\ These are the }
of integer; {\ sundry iteMs }

{ / needed for the }
{ / call to linq_IAls"}

begin {procedure "Glabel"}
inq_INs(CharSizeCodetOtOtZtPactIarra)'tCharsizetError); {get pen position}
if Error<>O then writeln(/Error/tError:Ot ' in "Glabel". /);
Chars:=strlen(text) ;
Len:=Charsize[Width]*(7*Chars+Z*(Chars-1))/9;
Height:=Charsize[Heighth]*8/15;
Dx:=Len*(-ord(HJustification)/Z) ;
Dy:=Height*(-ord(VJustification)/Z) ;

{length Minus inter-char gap}
{height Minus inter-line gap}

R:=sqrt(Dx*Dx+Dy*Dy); {\ Convert to polar coordinates so }
Theta:=AtardD}' tDx); {/ rotation is eas}'. }
Theta:=Theta+CharTheta; {add the LabelDirection angle}
Dx:=R*cos(Theta); {\ Convert R and the new Theta bacK}
D)':=R*sirdTheta); {/ to rectangular coodinates. }
inq_ws(CurrentPositiontOtOtZtPactIarraYtPositiontError); {get pen position}
if Error=O then begin

Move(Position[X]+DxtPosition[Y]+Dy); {Move to the new starting point}
stext(text) ;

end {Error=O?}
else INriteln('Error ' tError:Ot ' in "Glabel". ');
end; {procedure "Glabel"}
$page$ {**}
procedure MainTitle(Xt Y: real; Title: StrZ55);
{--}
{ This procedure writes a large label for the Main title of a plot. }
{--}
begin
CharSize(O.OGtO.G) ;
LabeIDirection(OtDeg) ;
LabeIJustify(HCenteredtTop) ;
,,10veO'tY) ;
GlabeUTitle) ;
end;

{procedure IMainTitle"}

{procedure IMainTitle"}

A-34 Listings of Example Programs

$pa~e$ {**}
procedure XAxisTitle(Xt Y: real; Title: Str255);
{--}
{ This procedure writes a sMall label for the X-axis title of a plot. }
{--}
b e ~ i n
CharSize(O.04tO.S) ;
LabeIDirection(OtDe~) ;
LabelJustify(HCentered tBOttOITl);
ITlOve(XtY) ;
Glabel(Title) ;

{procedure "XaxisTitle"}

end; {procedure "XaxisTitle"}
$pa~e$ {**}
procedure YaxisTitle(XtY: real; Title: Str255);
{--}
{ This procedure writes a lar~e label for the Y-axis title of a plot. }
{--}
b e ~ i n
CharSize(O.04tO.S) ;
LabeIDirection(80tDe~) ;
LabelJustify(HCentered tTop);
Move(Xt'();
Glabel(Title) ;

{procedure "YaxisTitle"}

{procedure "YaxisTitle"}
{**}

procedure ClipLiITlit(}{ITlint XltlaXt YITlint Yltlax: real);
{--}
{ This procedure defines the four ~lobal variables which specify where the }
{ soft clip liMits are. }
{--}
be~in

if XMin(XMax then be~in

C Ii PXltl in: =}{Itli n ;
C Ii p}{ITlax: =}{ITlaX ;

end
else be~in

Clip}{ITlin:=XITlax;
C Ii p}'{lTlax: =}{Itli n ;

end;
if YMin(YMax then be~in

ClipYlTlin:=Yltlin;
C Ii pYlTlax: =YITlaX ;

end
else be~in

C Ii PYltl in: =YltlaX ;
ClipYlTlax:=YlTlin;

end;
end;

{ \
{ \
{ \
{ \
{ /
{ /
{ /
{ /
{ \
{ \
{ \
{ \
{ /
{ /
{ /
{ /

Force the MiniMuM soft
clip liMit in X to be
the sMaller of the two
X values passed into
the procedure.

Force the MiniMuM soft
clip liMit in Y to be
the sMaller of the two
Y values passed into
the procedure.

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

Listings of Example Programs A-35

$pa~e$ {**}
procedure ClipDral",O{1 t Yl t }{Zt YZ: real);
{--}
{ This procedure taKes the endpoints of a linet and clips it. The soft }
{ clip liMits are the real ~lobal variables ClipXMint ClipXMaxt ClipYMint }
{ and ClipYMax. These Mav be defined throu~h the procedure ClipLiMit. }
{--}
label

1 ;
t)' pe

Ed~es= (Left tRi ~ht tTop tBOttOM);
OutOfBounds= set of Ed~es;

var
Out tOutl tOutZ:OutOfBound,s;
}{t Y: real;

{possible ed~es to cross}
{set of ed~es crossed}

{--}
procedure Code(Xt Y: real; var Out: OutOfBounds);
be~in {nested procedllre IICode ll

}

Out:=[]; {null set}
if x<ClipXMin then Out:=[left] {off left ed~e?}
else if x)ClipXMax then Out:=[ri~ht]; {off ri~ht ed~e?}

if v<ClipYMin then Out:=Out+[bottoM] {off the bottOM?}
else if v)ClipYMax then Out:=Out+[top]; {off the top?}
end; {nested procedure IICode ll

}

{--}
be~in

Code O{1 tYI tOutl);
{bodY of procedure IIClipDraw ll

}

{fi~ure status of point I}
Code(XZtYZtOutZ); {fi~ure status of point Z}
while (Outl<)[]) or (OutZ<)[]) do be~in {loop while either point out of ran~e}

if (Outl*OutZ)<)[] then ~oto 1; {if intersection non-null t no line}
if Outl<)[] then Out:=Outl

else Out:=OutZ;
if left in Out then be~in

{Out is the non-eMPty one}
{it crosses the left ed~e}

v:=Yl+(YZ-Yl)*(ClipXMin-Xl)/(XZ-Xl) ;{adJust value of v appropriately}
x:=ClipXMin; {new x is left ed~e}

end {left in Out?}
else if ri~ht in Out then be~in {it crosses ri~ht ed~e}

v:=Yl+(YZ-Yl)*(ClipXMax-Xl)/(XZ-Xl) ;{adJust value of v appropriately}
x:=ClipXMax; {new x is ri~ht ed~e}

end {ri~ht in Out?}
else if bottOM in Out then be~in {it crosses the bottOM ed~e}

x:=Xl+(XZ-Xl)*(ClipYMin-Yl)/(YZ-Yl) ;{adJust value of x appropriately}
v:=ClipYMin; {new v is bottOM ed~e}

end {bottoM in Out?}
else if top in Out then be~in {it crosses the top ed~e}

x:=Xl+(X2-Xl)*(ClipYMax-Yl)/(YZ-Yl) ;{adJust value of x appropriately}
v:=ClipYMax; {new v is top ed~e}

end; {top in Out?}
if Out=Outl then be~in

}{1:=x; Yl:=}';
end {Out=Outl?}
else be~in

}{Z: = x; YZ: =}' ;

end; {else be~in}
end; {",Ihile}
'Ilove(xl td);
line(xZt}'Z) ;

Code(x t)' tOutl);

Code(x t}' tOutZ);

1: end; {procedure IIClipDral",lI}

{redefine first end point}

{redefine second end point}

{if we ~et to this pointt the line ••• }
{ ••• is cOMPletely visiblet so draw it}
{return}

A-36 Listings of Example Programs

$pa~e$ {**}
function Round2(Nt M: real; Mode: RoundType): real;
{--}
{ This function rounds "N" to the nearest "M" t accordin~ to "Mode". This }
{ function worKs only when the ar~UMent is in the ran~e of MININT •• MAXINT. }
{--}
const

epsilon=
var

Rounded:
Ne~atil.le:

lE-lCl;

re a I ;
boolean;

be~in

Ne~ative:=(N(O.O) ;
if Ne~ative then begin

N:=abs(N);
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;
case Mode of

Down: Rounded:=trunc(N/M)*M;
Up: be~in

{roundoff error fud~e factor}

{teMPOrary holdin~ area}
{fla~: "It is ne~ative?"}
<body of "Round2"}
{is the nUMber ne~ative?}

{worK with a positive nUMber}
{if nUlTlber is ne~atiuet ••• }
{ ••• reverse UP and down}

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• ri~ht on the nUMber line?}
if abs(Rounded-round(Rounded)))epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

end;
Rounded:=trunc(Rounded)*M; ,

Near: Rounded:=trunc(N/M+M*O.S)*M;
end; {case}
if Ne~ative then Rounded:=-Rounded;
Round2:=Rounded;

{ ••• to the nearest Multiple?}

{reinstate the si~n}

{assi~n to function naMe}
{function "Round2"}

{**}
procedure YaxisClip(Spacin~t Location: real; Major: inte~er;

MaJsizet Minsize: real);
{--}
{ This procedure draws an Y-axis at any intersection point on the plottin~ }
{ surface. ParaMeters are as follows: }
{ Spacin~: The distance between ticK MarKs on the axis. }
{ Location: The X-value of the Y-axis. }
{ Major: The nUMber of ticK MarKs to ~e before drawin~ a Major ticK }
{ Mark. If MaJor=St every fifth ticK MarK will be Major. }
{ MaJsize: The len~tht in world unitst of the Major ticK MarKs. }
{ Minsize: The lenHht in INorld unitst of the Minor tid, 1T1ar~'s. }
{--}
var

Y: real;
SefTliMinsize: real;
SeMiMaJsize: real;
Counter:

b e ~i n
SeMiMaJsize:=MaJsize*O.S;
SeMiMinsize:=Minsize*O.S;

{keeps tracK of when to do Major ticks}
{bod}' of procedl.tre "YaxisClip"}

Counter:=O; {start with a Major ticK}
ClipDraw(LocationtClipYMintLocationtClipYMax) ;
Y:=Round2(ClipYMintSpacin~*MaJortDown); {round to next lower Major}

Listings of Example Programs A-37

while Y(=ClipYmax do be~in

if Counter=O then
ClipDraw(Location-SemiMajsizetYtLocation+SemiMajsizetY)

else
ClipDraw(Location-SemiMinsizetYtLocation+SemiMinsizetY) ;

Counter:=(Counter+l) mod Major;
Y:=Y+Spacin~;

end; {J,Jhile}
end; {procedure IIYaxisClipll}
$pa~e$ {**}
procedure Alpha(State: DisplayStates);
{--}
{ This procedure turns the alpha raster on or off. }
{--}
const

AlphaRaster= 1051;
var

AlphaOn:
Rarray:
Error:

be ~ i n

array -[1 •• 1] of inte~er;

array [1 •• 1] of real;
inte~er;

if State=On then AlphaOn[l]:=l
else AlphaOn[l]:=O;

{mnemonic better than ma~ic number}

{\ This is all stuff that }
{ > is needed by the }
{/ 1I0utPut_esc ll procedure. }

{procedure IIAlpha ll }

output_esc(AlphaRasterti tOtAlphaOn tRarra)' tError);
if Error<>O then IAiriteln('Error 'tError:Ot' in procedure IIAlpha ll .');
end; {procedure IIAlpha ll }
$pa~e$ {**}
function Lo~1Cl(X: real): real;
{--}
{ This function returns the lo~arithm to the base ten of a number. }
{--}
const
Lo~_10= 2.30258509299;

be ~ i n
Lo~10:=ln(X)/Lo~_10;

{lo~ to the base e of 10}
{function ILo~10"}

end; {function ILo~10"}
$pa~e$ {**}
function }{toY(X t '1': real): real;
{--}
{ This function evaluates X to the Yth power. }
{--}
be~in {function IXtoY"}
XtoY:=exp(Y*ln(X)); {an lo~arithmic identity}
end; {function IXtoY"}
$pa~e$ {**}
procedure Gload(var Screen: GRasterType);
{--}
{ This procedure loads a user's array into ~raphics memory. }
{--}
be~in

GRaster:=Screen;
end;

{procedure "Gload"}
{COpy user array into ~raphics memory}
{procedure "Gload ll }

A-38 Listings of Example Programs

$pa~e$ {**}
procedure Gstore(var Screen: GRasterType);
{--}
{ This procedure stores ~raphics MeMOry into a user's array. }
{--}
be~in

Screen:=GRaster;
{procedure IIGstore ll }
{copy ~raphics MeMOry into user array}

end; {procedl.lre IIGstore ll }
$pa~e$ {**}
function Si~n(X: real): inte~er;

{--}
{ This function returns the si~n of a nUMbert i.e. t -1 if the nUMber is }
{ ne~ativet 0 if the nUMber is zerOt and +1 if the nUMber is positive. }
{--}
be~in

Si~n:=ord(X}O.O)-ord(X(O.O) ;
{function IISi~nll}

{(O -) -1; =0 -} 0; }O -} I}
end; {function IISign ll }
$page$ {**}
function Intensity(Wavelen~tht TeMPerature: real): real;
be~in {function IIIntensit},II}
Intensity:=37410fXtoY(Wavelen~thtS)f(exp(14.39/(Wavelen~th*TeMPerature))-I);

end;
$pa~e$

{function IIIntensityll}
{**}

be~in

~raphics_init;

displa}'_init(Crt tControl tError);
if Error=O then begin

Alpha(off) ;

{bod}' of pro~rarll IIGstorPro~lI}

{initialize ~raphics library}
{initialize CRT}
{if no error occurred ••• }

set_aspect(Ratiotl); {enable entire plottin~ surface}
{===== Label the ~raph ==}
for 1:=-3 to 3 do {seven iterations} {\ Write }

MainTitle(I*0.002tl t'Blackbody Radiation'); { \ the four}
}{axisTitle(OtO.83,'TerllPerature (K): '); {)rllain}
YaxisTitle(-1 tOt'Intensity of Radiation'); { f labels. }
XaxisTitle(Ot-0.92t'WavelenHh (rllicrons) '); {f}

set _ vie IAi p 0 r t (0 • 1 to. 98 to. 15 f Rat i 0 to. 9/ Rat i 0) ;

}{rTlin:=-4;
}{rllax:=3;
Xran~e:=XMax-XMin;

ox:=O.I;
Yrllin:=-S;
YrTlax:=2S;

{define subset of plottin~ surface}
{sMallest power for wavelen~th}
{lar~est power for wavelen~th}
{distance between X extreMes}
{i nc rerllent of }O
{sMallest power for intensity}
{lar~est power for intensity}

Yran~e:=YMax-YMin; {distance between Y extreMes}
oy:=I; {increMent of Y}
set_window(XMintXMaXtYMintYMax); {scale the window for the data}
{===== Draw and label 10~arithMic X-axis ~rid =============================}
for Decade:=XMin to XMax do be~in {one decade equals one Mantissa cycle}

for Units:=1 to 1+8*ord(Decade(XMax) do be~in {do 2-9 if not last cycle}
X:=Decade+Lo~10(Units) ;
fT10I.le(}{tYrllin) ;
line(}{tYrllax) ;

end; {for units}
end; {for decade}
X:=XfTlin;
Strn~:=";

{calculate X for screen}
{\ Draw a vertical line for }
{f Y-axis at appropriate place }

{startin~ place for X-axis labels}
{null out the strin~}

Listings of Example Programs A-39

while X{=XMax do be~in

LabelJustifdHCentered ,Top);
CharSize(0.025,0.8) ;
Move(X'YMin-Yran~e*0.015) ;
Glabel('10 I);

CharSize().015 ,0.8);
LabeIJustif)'(Left ,BottoITI);
ITIO 1.1 e (}{+}{ran~e*O.OI 'YITlin-Yran~e*0.025);
strt.Hite(Strn~t1 tI ,}(:2:0);
Glabel(strltriM(Strn~)) ;
}{:=}{+Dx*10;

end; {INhile}

{

{

{

{

{

{

{

{

{

{

{

\
\

\

/
/

/

}

}

}

}

\ Write the }

:::- labels for the }

/ }{-axis. }

}

}

}

}

{===== Draw and label 10~arithMic Y-axis ~rid =============================}
ClipLiMit(}{ITlin,}-(rTlax,YITlin,YITlax); {define soft clip lilTlits for axes}
YaxisClip(1 '}(ITlin t1 ,0.01 ,0.01); {plot left Y-axis}
YaxisClip(1 ,}(ITlax t1 ,0.01 ,0.01);
Y:=YITlin;
while Y{=YMax do be~in

{plot ri~ht Y-axis}
{startin~ value for y}

ITlove(}{ITlin ,y); {\ Draw horizontal line for }
line(}{ITlax ,y);
LabelJustifdRi~ht ,1,lCentered);
CharSize(0.025,0.8) ;
Move(XMin-Xran~e*0.03,Y) ;
Glabel('10');

{/ an }{-axis. }
{label ori~in: center of ri~ht ed~e}

CharSize (0.015,0.8);
LabeIJustif)'(Left ,BottoIT});

{

{

{

{

{

\
\

\
:::-

}

}

}

Write Y-axis }

labels in }

{ / exponential 1T10I.le(}{ITlin-}{ran~e*0.025 ,Y+Yran~e*O.OI); }
{ / f 0 rlTI. strINrite(Strn~t1 tI ,Y:2:0); }
{ / Glabel(strltrilTl(Strn~)); }
{ / Y:=Y+5*Dy; }

end; {1"lhile}
{===== Here is where the action starts ============================~=======}
Gstore(Screen) ;
CharSize(0.03 ,0.8);
LabeIJustif)'(Left ,BottoIT});
while true do be~in

readO{e)'board ,Character);

{put the iMa~e into array}
{set UP charsize for teMPerature}
{set UP label ori~in for teMPerature}

{~et character froM keyboard}
if Character='q' then Character:='Q';
if (Character>='I') and (Character{='9') then be~in

Gload(Screen); {load the iITla~e}

I:=ord(Character)-ord('0'); {translate char to nUMber}
TeMPerature:=I*XtoY(10,3); {build teMPerature}
ITlove(0,25.8) j

strINrite(Strn~t1 ,I ,TeITIPerature:15:0);
G I abe I (s t r It r i ITI (S t rn ~)) ;

{Move to where teMP is to be}
{translate to strin~}

{label the teMPerature}
Old}{:=}{ITlin; {X startin~ point}
OldY:=Intensit)'(}{toY(10,Old}O ,TeITIPerature); {Y startin~ point}
X:=OldX+Dx; {second point for X}
while X{=XMax do be~in {loop throu~h all Xs}

Y:=Intensity(XtoY(10,X) ,TeMPerature); {calculate current X}
ClipDraw(OldXILo~10(OldY) ,X,Lo~10(Y)) ;{draw line after clippin~}
OldX:=X; OldY:=Y; {save new old values}
X:=X+2*Dx; {speed UP the curve}

end; {1"lhile}
end
else if Character='Q' then ~oto 1
else INrite(#G);

end; {while true}
end; {Error=O?}
1: ~raphics_terM;

end. {pro~raM "GstorPro~"}

{beep}

{end of conditional code}
{terMinate ~raphics library}
{end of pro~raITI}

A-40 Listings of Example Programs

IsoProg
pro9'ralTl IsoPro9'(input toutput d(e}'board);
iMPort d9'I_libt d9'l_inq; {access the necessary procedures}
const

Crt= 3; {device address of 9'raphics raster}
Control=
Ratio=

0; {device control word; i9'nored for CRT}

t}' pe
RoundT}'pe=

1.31382487888; {aspect ratio of Model 238 screen}

(Up tDol"ln tNear); {used b}' function Round2}
var

Error: inte9'er; {disPlaY_init return variable; 0
{isotropic units for window}
{for continue Messa9'e}

oK}
}{ITlin t}(ITlax tYITlin tYITlax:
Character:
ClipXMint ClipXmax:
ClipYmint ClipYmax:

re a I ;
strin9'[l];
re a I ;
re a I ;

{soft clip liMits in X}
{soft clip liMits in Y}

Keyboard: text; {non-echoing' input}

$pa9'e$ {**}
procedure FralTle;

{--}
{ This procedure draws a frame around the current window limits. }

{--}
const

WindowLiMits= 450;
type

{mnemonic better than ma9'ic number}

LilTlitDrder=
LilTlitT}'pe=

var
Pac:
Iarran
Windol,.!:
Error:

be9'in

(}{ITlint }(ITlaXt YlTlintYITlax);
array [LimitOrder] of real;

pacKed arra}' [1 •• 1] of char;
arra}' [1 •• 1] of inte9'er;
LilTlitT}'pe;
inte9'er;

{ \
{ \
{ /
{ /
{b 0 d}'

inq_ws (WindolAILilTlits to to t4 tPac darra}' tWindol,.! tError);
if Error=O then beg'in

ITlove(Windol,.!U{ITlin] tWindol,.![YITlin]);
line(Windol"I[}{ITlin] tWindol,.![YITlax]);
line(WindoIAI[}{ITlax] tWindol,.![YITlax]);
line(Windol,.!U{ITlax] tWindol,.![YITlin]);
line(Windol,.!U{ITlin] tWindol,.![YlTlin]);

end {Error=O?}

{ITIO v e
{d ral,.!
{d ral,.!
{dral,,1
{d ral,.!

These are the sundries
needed b }' the call to
the DGL procedure
lIinq_I"!sll.

of procedure IIFralTle ll }

to IOI"ler left corner}
to upper left corner}
to upper ri9'ht corner}
to I o I,.! e r ri9'ht corner}
to 101"ler left corner}

else 1"lriteln('Error' tError:Ot' occurred in IIFraITle ll ');
end; {procedure IIFraMe ll } {return}

}

}

}

}

Listings of Example Programs A-41

$page$ {**}
procedure ClipLilTlit(}{lTlint }{lrlaXt Ylrlint Ylrlax: rea!);
{--}
{ This procedure defines the four global variables which specify where the }
{ soft clip liMits are. }
{--}
beg i n
if XMin(XMax then begin

Cl ip}{ITlin: =}{Irlin;
Cl i p}{lrlax: =}{Irlax;

en d
else begin

Cl i P}{lrli n: =}{ITlaX;
Cl i pXlrlax: =}{Irli n;

end;
if YMin(YMax then

ClipYITlin:=YITlin;
C 1 i pYlrlax: =Ylrlax ;

end
else begin

Cl i PYlrli n: =Ylrlax;
Cl i pYlrlax: =Ylrli n;

end;

begin

{procedure IIClipLilrlit ll
}

{ \ }
{\ Force the MiniMuM soft }
{

{

{

{

{ /
{ /
{ \
{ \
{

{

{

{

{ /
{ /

\
\
/

/

\
\
/

/

clip liMit in X to be }
the sMaller of the two }
X values passed into }
the procedure. }

}

}

}

Force the MiniMuM soft }
clip liMit in Y to be }
the sMaller of the two }
Y values passed into }
the procedure. }

}

}

end; {procedure IIClipLilrlit ll
}

$page$ {**}
procedure ClipDraw(XI t Yl t X2t Y2: real);
{--}
{ This procedure taKes the endpoints of a linet and clips it. The soft }
{ clip liMits are the real global variables ClipXMint ClipXMaXt ClipYMint }
{ and ClipYMax. These May be defined through the procedure ClipLiMit. }
{--}
label

I ;
t}' pe

Edges= (Left tRight tTop tBottOlr!);
OutOfBounds= set of Edges;

var
Out tOutl tOut2:0LltOfBounds;
}{t Y: real;

{possible edges to cross}
{set of edges crossed}

{--}
procedure CodeD{t Y: real; l)ar Out: OutOfBounds);
beg in
Out:=[];
if x(ClipXMin then Out:=[left]
else if x)ClipXMax then Out:=[right];
if y(ClipYMin then Out:=Out+[bottoM]
else if y)ClipYMax then Out:=Out+[top];

{nested procedure IICode ll
}

{null set}
{off left edge?}
{off right edge?}
{off the bottOM?}
{off the top?}

end; {nested procedure IICode ll
}

{--}

A-42 Listings of Example Programs

be~in {bodY of procedure "ClipDraw"}
Code(XI tYI tOutl); {fi~ure status of point I}
Code(XZtYZtOutZ); {fi~ure status of point Z}
while (Outl<>[]) or (OutZ<>[]) do be~in {loop while either point out of ran~e}

if (Outl*OutZ)<>[] then ~oto 1; {if intersection non-null t no line}
if Outl<>[] then Out:=Outl

else Out:=OutZ;
if left in Out then be~in

{Out is the non-eMPty one}
{it crosses the left ed~e}

y:=Yl+(YZ-Yl)*(ClipXMin-Xl)/(XZ-Xl) ;{adJust value of y appropriately}
x:=ClipXMin; {new x is left ed~e}

end {left in Out?}
else if ri~ht in Out then be~in {it crosses ri~ht ed~e}

y:=Yl+(YZ-Yl)*(ClipXMax-Xl)/(XZ-Xl) ;{adJust value of y appropriately}
x:=ClipXMax; {new x is ri~ht ed~e}

end {ri~ht in Out?}
else if bOttOM in Out then be~in {it crosses the bOttOM ed~e}

x:=Xl+(XZ-Xl)*(ClipYMin-Yl)/(YZ-Yl) ;{adJust value of x appropriately}
y:=ClipYMin; {new y is bOttOM ed~e}

end {bOttOM in Out?}
else if top in Out then be~in {it crosses the top ed~e}

x:=Xl+(XZ-Xl)*(ClipYMax-Yl)/(YZ-Yl) ;{adJust value of x appropriately}
v:=ClipYMax; {new y is top ed~e}

end; {top in Out?}
if Out=Outl then be~in

Xl:=x; Yl:=Y; Code(xtYtOutl); {redefine first end point}
end {Out=Outl?}
else be~in

XZ:=x; YZ:=v; Code(xtvtOutZ); {redefine second end point}
end; {else be~in}

end; {while}
Move(xl tvl); {if we ~et to this pointt the line ••• }
line(xZtvZ); L .. is cOITlPleteh ~dsibleJ so draiN it}
1: end; {procedure "ClipDraIN"}
$pa~e$ {**}
function RoundZ(Nt M: real; Mode: RoundT)'pe): real;
{--}
{ This fl.lnction rOI.tnds "N" to the nearest "M" t accordin~ to "Mode". This }
{ function works only when the ar~UMent is in the ran~e of MININT •• MAXINT. }
{--}
const

epsilon=
~I a r

Rounded:
Ne~ative:

1 E-l CH

rea I ;
boolean;

be~in

Ne~ative:=(N<O.O) ;
if Ne~ative then be~in

N:=abs(N);
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;

{roundoff error fud~e factor}

{teMPOrary holdin~ area}
{fla~: "It is ne~ative?"}
{bodY of "RoundZ"}
{is the nUMber ne~ative?}

{work with a positive nUMber}
{if nUMber is ne~ativet ••• }
{ ••• reverse UP and down}

Listings of Example Programs A-43

case Mode,of {should we round the nUMber ••• }
Down: Rounded:=trunc(N/M)*M; { ••• left on the nUMber line?}
Up: be9'in

Rounded:=N/M; { ••• ri9'ht on the nUMber line?}
if abs(Rounded-round(Rounded»)epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

Rounded:=trunc(Rounded)*M;
end;

Near: Rounded:=trunc(N/M+M*O.5)*M;
end; {case}
if Ne9'ative then Rounded:=-Rounded;
RoundZ:=Rounded;

{ ••• to the nearest Multiple?}

{reinstate the si9'n}
{assi9'n to function naMe}

end;
$pa9'e$

{function "RoundZ"}
{**}

procedure Grid(Xspacin9'tYspacin9'tXlocYtYlocX: real; XMaJort YMaJor: inte9'er;
XMinsizet YMinsize: real);

{--}
{ This procedure draws a 9'rid on the plottin9' surfacet with user-definable }
{ Minor tick size. ParaMeters are as follows: }
{ Xspacin9': The distance between tick Marks on the X axis. }
{ Yspacin9': The distance between tick Marks on the Y axis. }
{ XlocY: The X-value of the Y-axis. }
{ YlocX: The V-value of the X-axis. }
{ XMaJort The nUMber of tick Marks to 9'e before drawin9' a Major tick }
{ YMaJor: Mark. If MaJor=5t every fifth tick Mark will be Major. }
{ XMinsize: The len9'tht in world unitst of the X Minor tick Marks. }
{ YMinsize: The len9'tht in world unitst of the Y Minor tick Marks. }
{--~---------------------}
var

Xt Y: rea!;
Xstart tYstart: real;
XseMiMinsize: real;
YseMiMinsize: real;
Counter: inte9'er;

be9'in
XseMiMinsize:=XMinsize*O.5;
YseMiMinsize:=YMinsize*O.5;

{bodY of procedure "Grid"}

Xstart:=RoundZ(ClipXMintXspacin9'*XMaJortDown); {round to next lower Major}
Ystart:=RoundZ(ClipYMintYspacin9'*YMaJortDown); {round to next lower Major}
{===== Draw vertical Major ticks ==}
X:=}{start;
while X(=ClipXMax do be9'in

C I i pO ral", (X t C 1 i PY,,1i 1"1 t X tC lip Y ITla x) ;
X:=X+Xspacin9'*XMaJor;

end;
{===== Draw horizontal Major ticks ==}
Y:=Ystart;
while Y(=ClipYMax do be9'in

ClipDraw(ClipXMintYtClipXMaxtY) ;
Y:=Y+Yspacin9'*YMaJor;

end;

A-44 Listings of Example Programs

{===== Draw vertical Minor ticks ==}
}{:=Xstart;
COlJnter:=O;
while X<=ClipXMax do be~in

if COlJnter<>O then be~in

Y:=Ystart;
while Y<=ClipYMax do be~in

ClipDraw(XtY-YSeMiMinsizetXtY+YSeMiMinsize) ;
Y:=Y+Yspacin~;

end; {while Y(=ClipYMax}
end; {colJnter<>O?}
COlJnter:=(ColJnter+l) Mod XMaJor;
X:=X+Xspacin~;

end; {ltJhile}
{===== Draw horizontal Minor ticks ==}
Y:=Ystart;
COlJnter:=!);
while Y<=ClipYMax do be~in

if .ColJnter<>O then be~in

X:=Xstart;
while X<=ClipXMax do be~in

ClipDraw(X-XSeMiMinsizetYtX+XSeMiMinsizetY) ;
X:=X+}{spacin~;

end; {while X(=ClipXMax}
end; {colJnter<>O?}
COlJnter:=(ColJnter+l) Mod YMaJor;
Y:=Y+Yspacin~;

end; {ltJhile}
end; {procedlJre IIGrid ll

}

$pa~e$ <**}
procedlJre 1sot ropicWindow(WxlTlin tWXITlax tW}'lTlin tW}'ITlax: real);
{--}
{ This procedlJre allows the IJser to specify a window which forces the }
{ IJnits to be isotropict i.e. t X IJnits are exactly as lon~ as Y IJnits are. }
{--}
const

IheltJPortLilTlits=
type

{MneMonic better than Ma~ic nlJMber}

LilTli tD rde r=
LilTlitType=

var

(VxlTli 1"1 tl.lxlTlaX tl.lYITli 1"1 tl.lnTlax) ;
array [LiMitOrderJ of real;

Pac: packed array [l •• lJ of char; {\ tt.slJndn variables }
Iarray: array [1 •• 1] of inte~er; { \ needed by the lIinq_wsli }
I.liewport: LiMitType;
Error: inte~er;

Wxran~et W}'ran~e: real;
I.lxran~e, I.lYran~e:

Wratio, Vratio:
WXITlidt W}'ITlid:
WIJratio, IJWratio:
MlJltiplier:

re a I ;
re a 1 ;
re a I ;
re al ;
re a I ;

{ I procedlJre, called to ~et }
{I window liMits. }

{X/Y ran~e in window (world) coordinates}
{X/Y ran~e in viewport (virtlJal) coordinates}
{aspect ratios of window and viewport}
{X/Y Midpoints of window}
{ratios of the ratios}
{the aMOlJnt to MlJltiply the seMiran~e by}

Listings of Example Programs A-45

be~in {procedure "IsotropicWindow"}
in q _w s (Vie IAi p 0 r t LiM its tOt 0 t 4 t Pac tI a r r a)' t 1.11 e IAi p 0 r t t Err 0 r); {~e t vie IAi P 0 r t liM its}
if Error<>O then

IAiriteln('Error' tError:Ot' in procedure "ShoIAi". ');
Wxran~e:=WxMax-WxMin; {ran~e of X in desired window}
WYran~e:=WYMax-WYMin; {ran~e of Y in desired window}
Wratio:=Wxran~e/WYran~e; {aspect ratio of desired window}
Vxran~e:=Viewport[VxMax]-Viewport[VxMin]; {ran~e of X in current viewport}
VYran~e:=Viewport[VYMax]-Viewport[VYMin]; {ran~e of Y in current viewport}
Vratio:=Vxran~e/VYran~e;

if abs(Vratio)<abs(Wratio) then be~in

WYMid:=WYMin+WYran~e*O.5;

WVrati~:=abs(Wratio/Vratio);

Multiplier:=WYran~e*O.5*WVratio;

WYMin:=WYMid-Multiplier;
WYMax:=WYMid+Multiplier;

end
else be~in

WXMid:=WxMin+Wxran~e*O.5;

VWratio:=abs(Vratio/Wratio);
Multiplier:=Wxran~e*O.5*VWratio;

WXMin:=WxMid-Multiplier;
WXMax:=WxMid+Multiplier;

end; {vratio<wratio?}
set_window(WxMintWxMaxtWYMintWYMax) ;
end;

{aspect ratio of viewport}
{need More rOOM on top and bOttOM}
{Y Midpoint in desired window}
{ratio of aspect ratios}
{what the Y ran~e Must be extended by}
{new MiniMUM Y for window}
{new MaxiMuM Y for window}

{need More rOOM on ri~ht and left}
{X Midpoint in desired window}
{ratio of aspect ratios}
{what the X ran~e MUst be extended by}
{new MiniMUM X for window}
{new MaxiMUM X for window}

{set window with twiddled paraMeters}
{procedure "IsotropicWindow"}

$pa~e$

b e ~i n
{**}

~raphics_init;

disPlaY_init(Crt tControl tError);
if Error=O then be~in

set_aspect(Ratio tl);
while true do be~in

write(#12) ;
proITlPt('}{,Tlint }{,TlaXt YITlint YMax:
readlnO{ITlin tXMax tY'Tlin tYlTlax);
set_Iine_stYle(3) ;

{bodY of pro~raM "IsoPro~"}

{initialize ~raphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{until the cows COMe hOMe ••• }
{clear the alpha screen}

'); {~ive the user the prOMPt}
{read his/her answers}
{invoke dashed line style}
{draw dashed fraMe}

IsotropicWindolAi(XITlin t}{,TlaX ,YITlin tY,Tlax); {inl)o~{e isotropic units}
ClipLiMitO{'Tlin tX,TlaX tY,Tlin ,YlTlax); {set soft clip lilTlits to user's values}
set_Iine_stYle(l); {invoke solid lines}
Grid(l t1 tOtOtl t1 tl tl); {show isotropic ~rid of reql.lested area}
proMPt('Press the space bar to ~o on. '); {user's continuation prolTIPt}
read(ke}'board tCharacter); {IAiait until user sa)'s to ~o on}
clear_display; {clear ~raphics screen}

end; {while}
end; {Error=O?} {end of conditional code}
~raphics_terITl;

end.
{terMinate ~raphics library}
{pro~raM "IsoPro~"}

A-46 Listings of Example Programs

JustProg
pro~raM JustPro~(output);

iltlPort d~l_lib,d~l_inq;
const

{~et ~raphics routines}

CrtAddr=
ControlWord=

t}' pe
HJustifyType=
I)Justif}'T}'pe=
An~Type=

Str255=
var

ErrorReturn:
Hjust:

3 ;
(I ;

{address of internal CRT}
{device control; (I for CRT}

(L eft, HC e n t ere d ,R i ~ h t); {h 0 r i z 0 n t a I jus t i fie at ion}
(60ttoM,VCentered,Top); {vertical justification}
(De~,Rad,Grad); {used by procedure IILabeIDirection"}
strin~[255]; {for the procedure IIGlabel ll

}

inte~er;

HJustif}'T}'pe;
{variable for initialization outcoMe}
{horizontal justification variable}

Vjust: VJustifyType; {vertical justification variable}
l: inte~er; {for the strlNrite stateltlent}
Strn~: str255; {labelled text holder}
CharWidth,CharHei~ht: real; {\ These are ~lobal 1,Iariabies }
HJustification: HJustifyType; { \ needed by the LabelJustifYI }
VJustification: VJustifyType; { I LabelDirection/CharSize }
CharTheta: real; {I series of procedures. }

$include'DGLPRG:Convl.JtoW'$ {needed b}' procedure IICharSize ll
}

$pa~e$ {**}
procedure Fraltle;

{--}
{ This procedure draws a fraMe around the current window liMits. }

{--}
const

WindowLiMits= 450;
t}' p e

{MneMonic better than Ma~ic nUMber}

LiltlitOrder=
LiMitType=

var
Pac:
larra}':
WindolN:
Error:

be~in

(}{'ttin,)(ltlaX, Yltlin ,Y'tlax);
array [LiMitDrder] of real;

pad,ed arra}' [1..1) of char;
array [1..1] of inte~er;

LifrlitT}'pe;
inte~er;

{ \
{ \
{ I
{ I
{bod}'

i n q _IN S (Win d 0 IN L i It 1 its ,(I ,(I ,4 , Pac , I a r r a}' ,W i n d 0 II.I ,E r r 0 r) ;
if Error=(I then be~in

ItlO I) e (Win d 0 IN [}{,tl in] ,W i n do IN [Y It! in]) ;
line(WindoIN[Xfrlin] ,WindoIAI[Yfrlax]);
line(WindoIN[){'rlax] ,WindoIN[Yfrlax]);
line(WindoIN[){frlax] ,WindoIN[Y'rtin]);
line(WindoIN[){ltlin] ,WindoIN[Yfrtin]);

end {Error=O?}

{frlove
{ draiN
{ draiN
{dralAI
{d r a 1,.1

These are the sundries
needed b }' the call to
the DGL procedure
II i nq_IAIS II.
of procedure IIFralrle"}

to 101,.1 e r left corner}
to upper left corner}
to upper r i ~h t corner}
to 10iAIer ri~ht corner}
to 10iAIer left corner}

else INriteln('Error' ,Error:O,' occurred in IIFralrle ll
');

end; {procedl.lre IIFralTle ll
} {retl.lrn}

}

}

}

}

Listings of Example Programs A-47

$page$ {**}
procedure CharSize(Heightt AspectRatio: real);
{--}
{ This procedure defines character cell size and the puts the Width and }
{ Height values into global variables for later use. The argUMents passed }
{ in are the height of the character cell in VIRTUAL coordinatest and the }
{ aspect ratio of the character cell. The values for the window liMits }
{ May be anything; they are taKen into account and do not affect the size }
{ of the characterst since they are defined in virtual coordinates. This }
{ proceduret along with Lorg and Ldirt define global variables for use by }
{ Glabel. }
{--}
1.1 a r

Width:
){O t YO:
){1 t Yl:

re a I ;
re a I ;
re a I ;

{teMPOrary spot for width}
{OtO (l.!irtual) in iAlorld}
{ltl (virtual) in iAlorld}

begin {bod}' of procedure "CharSize ll
}

ConvertVirtuaIToWorld(OtOtXOtYO); {convert OtO in virtual to world}
Conl'!ert 1hrtuaIToWorld(1 tl t){1 tYl); {convert ltl in virtual to iAlorld}
Height:=Height*(YI-YO); {convert height in virtual to world}
Width:=Height*AspectRatio*(Xl-XO)/(Yl-YO); {convert width in virtual to world}
set_char_size(WidthtHeight); {invoKe the paraMeters}
end; {procedure ICharSize"}
$page$ {**}
procedure LabeIDirection(Direction: real; Units: AngType);
{--}
{ This procedure is used in conjunction with LabelOrigint CharSize and }
{ Glabel. It sets the labelling direction to be usedt and places the }
{ direction into a global variable so Glabel can use it. }
{--}
const

Deg_per_rad= 57.2857785131; {180/pi: for converting degrees to radians}
Grad_per_rad= 83.8818772388; {ZOO/pi: for converting grads to radians}

begin {procedure "LabeIDirection ll
}

case Units of
Deg: Direction:=Direction/Deg_per_rad; {degrees to radians}
Rad: {correct units already}
Grad: Direction:=Direction/Grad_per_rad; {grads to radians}

end; {case}
CharTheta:=Direction; {put into a global variable}
set_text_rot(cos(CharTheta) tsin(CharTheta)); {invoKe the new text direction}
end; {procedure IILabelDi rection"}
$page$ {**}
procedure LabeIJustify(HJust: HJustifyType; VJust: VJustifyType);
{--}
{ This procedure is used in conjunction with procedures CharSizet }
{ LabelDirectiont and Glabel. This Just puts a value into global }
{ variables which will be subsequently used by Glabel. }
{--}
begin
HJustification:=HJust;
VJustification:=VJust;
end;

{procedure ILabeIJustifY"}

{procedure "LabeIJustif}'I}

A-48 Listings of Example Programs

$page$ {**}
function Atan(Yt X: real): real;
{--}
{ This function returns the value of the arctangent of Y/Xt placing it }
{ in the correct quadrant. If Y and X are both zerOt the result is zero. }
{----------------------------"--}
const

Pi= 3.14158285358; {pi}
begin {function "Atan"}
if X=O.O then Atan:=(Pi/2+Pi*ord(Y(0.0))*ord(Y(>0.0)
else Atan:=arctan(Y/X)+Pi*ord(X(0.0)+2*Pi*ord((X>0.0) and (Y(O.O));
end; {function IIAtan"}
$page$ {**}
procedure Glabel(Text: Str255);
{--}
{ This procedure labels a string of text at the current pen position. }
{ It takes into account the current label direction (set bv procedure }
{ "L"abeIDirection" t the current character size (set b}' procedure }
{ IICharSize") t and the current label justification (set b}' procedure }
{ "LabeIJustif}'"). }
{--}
const

CharSizeCode=
CurrentPosition=

t}' p e
Positions=
PositionTvpe=
CharAttributes=
CharAtt rT}'pe=

var
Chars:
Charsize:
LentHeight:
Dx tD}':
RtTheta:
Pac:
Iarra}':
Position:
Error:

250;
258;

(}{ t Y) ;

{MneMonic better than Magic nUMber}
{ditto}

array [Positions] of real;
(Width tHeighth);
array [CharAttributes] of real;

integer;
CharAttrT}'pe;
real; {length and height of character string}
re a I ;
real; {for rectangular-to-polar conversion}
packed array [1 •• 1] of char; {\ These are the }
array [1 •• 1] of integer; {\ sundry iteMS }
PositionType; { / needed for the }
integer; { / call to "inq_ws"}

begin {procedure "Glabel"}
inq_IAis(CharSizeCodetOtOt2tPac tIarray tCharsize tError); {get pen position}
if Error<>O then IAiriteln('Error'tError:Ot' in "Glabel".');
Chars:=strlen(text);
Len:=Charsize[Width]*(7*Chars+2*(Chars-l))/8;
Height:=Charsize[Heighth]*8/15;
Dx:=Len*(-ord(HJustification)/2) ;
Dy:=Height*(-ord(VJustification)/2) ;

{length Minus inter-char gap}
{height Minus inter-line gap}

R:=sqrt(Dx*Dx+Dv*Dv); {\ Convert to polar coordinates so }
Theta:=AtardD}' tDx); {/ rotation is eas}'. }
Theta:=Theta+CharTheta; {add the LabelDirection angle}
Dx:=R*cos(Theta); {\ Convert R and the new Theta back}
Dy:=R*sin(Theta); {/ to rectangular coodinates. }
in9_IAis(CurrentPosition tOtOt2tPac tIarra}'tPosition tError); {get pen position}
if Error=O then begin

Move(Position[X]+DxtPosition[Y]+Dy); {Move to the new starting point}
stext (text) ;

end {Error=O?}
else IAiriteln('Error' tError:Ot' in "Glabel".');
end; {procedure "Glabel"}

Listings of Example Programs A-49

$pa~e$ {**}
be~in {bod}' of pro~rafTI "JustPro~"}

~raphics_init; {initialize the ~raphics SysteM}
display_init(CrtAddr,ControIWord,ErrorReturn); {which output device?}
if ErrorReturn=O then be~in {output device initialization OK?}

set_aspect(S11 ,388); {use the whole screen}
set _IAi i n d OIAi (-1 ,2,5 , - 0,5 ,2.5) ;
F ralTle;

{scale the window for the data}
{draw a fraMe around the screen}
{width=3% screen width; asp, ratio=,G}
{horizontal labels}

CharSize(O,03,O,G) ;
LabeIDirection(O,De~) ;
{===== Labels at the top ==}
LabeIJustif}'(HCentered ,Top);
for HJust:=Left to Ri~ht do be~in

Strn~:=";

strIAirite(Strn~t1 tI ,HJust);
fTlol)e(ord(HJust) ,2,1l);
Glabel (Strn~);

end; {for HJust}

{label's reference point: top Middle}
{horizontal loop}
{null the strin~ so nothin~ left over}
{convert enuMerated type to strin~}

{Moue to the appropriate place}
{label the strin~}

{===== Labels on the left ed~e ==}
LabeIJustif}'(Left,I,ICentered); {label's reference point: left fTliddle}
for VJust:=Top downto BottOM do be~in {vertical loop}
Strn~:=";

strIAirite(Strn~t1 tI ,VJust);
fTlove(-O.8,ord(I,IJust» ;
Glabel (Strn~);

{null the strin~ so nothin~ left over}
{convert enuMerated type to strin~}

{Move to the appropriate place}
{label the strin~}

end; {for VJust}
{===== Labels ("TEST") with different Justifications ======================}
CharSize(O,OG,O,G); {characters a bit bi~~er}
for HJust:=Left to Ri~ht do be~in {horizontal loop}

for VJust:=Top downto BottOM do be~in {vertical loop}
LabeIJustify(HJust,VJust); {set label Justification}
Move(ord(HJust)+O,03,ord(VJust)+O,03); {\ }
line(ord(HJust)-O,03,ord(VJust)-O,03); {\ MaKe the "x" at }
Move(ord(HJust)-O,03,ord(VJust)+O,03); {/ the appropriate }
line(ord(HJust)+O,03,ord(VJust)-O,03); {/ place, }
Move(ord(HJust) ,0rd(VJust»; {fTlo~le to label's startin~ position}
Glabel('TEST'); {label the text}

end; {for VJust}
end; {for HJust}

end; {ErrorReturn=O?}
~raphics_terfTI; {terMinate the ~raphics pacKa~e}

end, {pro~raM "JustPro~"}

A-50 Listings of Example Programs

LdirProg
pro~raM LdirPro~;

ilTiPort d~l_lib;

const
C rt=
Control=

type

{pro~raM naMe saMe as file naMe}
{access the necessary procedures}

{device address of ~raphics raster}
{device control word; i~nored for CRT}

An~Type= (De~,Rad,Grad); {used by procedure LabelDirection}
var

Error:
I ,J:
S t rn ~:
CharTheta:

inte~er;

inte~er;

strin~[50];

re a I ;

{disPlaY_init return variable; 0 = oK}
{loop control variable and spare}
{strin~ to label}
{~lobal variable for label direction}

$pa~e$ {**}
procedure LabeIDirection(Direction: real; Units: An~Type);

{--}
{ This procedure is used in conjunction with LabeIOri~in, CharSize and }
{ Glabel. It sets the labellin~ direction to be used, and places the }
{ direction into a ~lobal variable so Glabel can use it. }
{--}
const

De~_per_rad= 57.2957795131; {180/pi: for convertin~ de~rees to radians}
Grad_per_rad= 83.8819772388; {200/pi: for convertin~ ~rads to radians}

be~in {procedure "LabeIDirection"}
case Units of

De ~: Direction:=Direction/De~_per_rad; {de~rees to radians}
Rad: {correct units already}
Grad: Direction:=Direction/Grad_per_rad; {~rads to radians}

end; {case}
CharTheta:=Direction; {put into a ~lobal variable}
set_text_rot(cos(CharTheta) ,sin(CharTheta)); {invoKe the new text direction}

{procedl.lre "LabeIDirection"} end;
$pa~e$

be~in
{**}

~raphics_init;

display_init(Crt ,Control ,Error);
if Error=O then be~in

set_aspect(511 ,388);

set_char_size(0.05,0.08) ;
for 1:=0 to 35 do be~in

Strn~:=";

s t rJtJ r it e (s t rn ~ ,1 , J , 1* 1 0: 0) ;
Strn~:='-------'+Strn~+' de~/;

LabelDi rectiord 1*10 ,De~);
ITlOve(O,O);
Hext(Strn~) ;

end; {for I}
end; {Error=O?}
~raphics_terITl;

end.

{bodY of pro~ral!l "LdirPro~"}

{initialize ~raphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}
{define appropriate window}
{set the size for the characters}
{every ten de~rees}
{eMPty the strin~}
{convert the loop variable to de~rees}

{attach prefix and suffix}
{specify label direction}
{Move to the center of the screen}
{label the text}

{terMinate ~raphics library}
{pro~ral'l "LdirPro~"}

Listings of Example Programs A-51

LOCATOR
$debug$
prOgraM Test(output);
ifT1Port dgl_vars tdgl_t}'pes tdgl_Iib tdgl_poh tdgl_inq;
t}' pe

COITliTlands=
ReaIArra}'=

0 •• 8; {nine cOMMands total}
array [1 •• 5] of real;

const
FS=
BS=
US=
IF=
CR=
Mird-{=
MinY=
Max}-{=
MaxY=
}-{range=
'{range=
locatorAddress=

var
E r ro r_1HIIT1:
I tTelTlplnt:

c h r (28) ;
ch r (8) ;

chr(31);
chr(IO) ;
chr(13);
0;
0;
511;
388;
Max}-{-M i n}-{;
MaxY-MinY;
2 ;

integer;
integer;

ButtonValue: integer;
}-{in tYin: real;
}{1ast t'{last: real;
CharWidth tCharHeight: real;
Done: boolean;
Newline: boolean;
TeMPString: Gstring255;
EchoSelect tEchoSelector: o •• 8;
MenuTop:
CellWidth:

re a I ;
re a I ;

{right arrow}
{left arrow or backspace}
{up arrow}
{dolAin arrolAi}
{carriage retl.lrn}
{ITI i n i IT11.IITl }{ I) a lue for screen}
{ITI i n i fT1UfTl Y value for screen}
{fTlaX i IT1UfTl)-{ value for screen}
{ITlax i fTll.lIrl Y I) a lue for screen}
{total range of }O
{total ran ge of Y}
{2 for ~\nob t70G for 8111}

{error return variable}
{utility variables}
{which button selected?}
{location of digitized point}
{last digitized point}
{char size in world coords}
{are we supposed to quit?}
{start new line?}
{utility variable}
{Irlenu selection}

{width of Menu spaces}
COMMand: COMMands; {which COMMand selected?}

$page$ {**}
procedure DrawMenu;
var

I :
Ylabel:
Yarra}':

integer;
re a I ;
RealArra}' ;

{loop-control variable}
{If position of entree label}

A-52 Listings of Example Programs

{--}
procedure MenuCell(I:inte9'er);
var

TeMPPitch:
}{label:
}{arran

be9'in
case I of

0: be9'in

re a I ;
re a I ;.
RealArra}' ;

{teMPOrary variable}
{X position of entree label}
{X positions of entree cell}
{procedure MenuCell}

TeMPStrin9':='STOP'; {label text}
}{arra}'[1J:=I); { \ }
Xarra}'[ZJ:=Z*CeIIWidth; { \ }
Xarray[3J:=Z*CeIIWidth; {) X positions for box }
}{arra}'[llJ:=CH { I }
}{arra}'[SJ:=CH { I }
Xlabel:=MinX+CeIIWidth-strlen(TeMPStrin9')*CharWidth/Z;

e I~I d ;
1 •• 10: be9'in

TeMPPitch:=CelIWidth*1;
Xarray[1J:=CelIWidth+TeMPPitch;
Xarray[ZJ:=Z*CeIIWidth+TeMPPitch;
Xarray[3J:=Z*CeIIWidth+TeMPPitch;
Xarray[llJ:=CelIWidth+TeMPPitch;
Xarray[SJ:=CellWidth+TeMPPitch;

{teMPOrary shorthand variable}
{ \
{ \
{) X positions for box
{ I
{ I

TeMPStrin9':=' '; {label text}
if 1(=8 then strIAirite(TerTIPStrin9't1,TerrIP1ntd:U;
Xlabel:=Xarray[I]+CeIIWidth/Z+strlen(TeMPStrin9')*CharWidth/Z;

end
end; {case I of}
pol}'line(S,Xarra}',Yarra}') ;
Move(}{1abel,Ylabel) ;
9'text(TeMPStrin9') ;

{draw periMeter of cell}
{Move to the ri9'ht place}
{label the text}

end; {procedure MenuCell}

}

}

}

}

}

{--}
be9'in {procedure DrawMenu}
Yarra}'[1 J: =MinY; { \ }

YarraY[ZJ:=MinY; { \ }

Yarray[3J:=MenuTop; { > Y values for box }

Yarray[llJ:=MenuTop; { I }

Yarra}'[SJ:=MinY; { I }

Ylabel:=MinY+(MenuTop-MinY)/Z-CharHei9'ht/Z; {Y position of label}
for 1:=0 to 10 do MenuCell(1); {do all the entree cells}
end; {procedure DrawMenu}
$pa9'e$ {**}
function CheckMenu(Xin:real):CoMMands;
be9'in
if Xin(Z*CeIIWidth then CheckMenu:=O

{function CheckMenu}
{X outside of Menu?}

else be9'in
TeMP1nt:=trunc((Xin-CeIIWidth)/CellWidth) ;
if TeMP1nt)8 then CheckMenu:=CoMMand
else CheckMenu:=TeMP1nt

end;
end; {function CheckMenu}

{which sell chosen?}

Listings of Example Programs A-53

$pa~e$ {**}
be~in {Main pro~raM}

~raphics_init;

display_init(3tOtError_NuM) ;
if Error_NuM<)O then be~in

{initialize the ~raphics SysteM}
{which output device?}
{output devic initialization OK?}

writeln('I failed to initialize the display. ');
'.Hitelrd 'Error nUhlber 'tError_NuIT1:2t' ',.)as returned. ');

end {if Error_NuM<)O}
else be~in

lOCATOR_init(locatorAddresstError_NuM) ;
if Error_NuM<)O then be~in

''')riteln('I failed to initialize the locator. ');
,,.)ritelrd'Error nUITlber 'tError_NuIT1:2t' ',.)as returned.');

end {if Error_NuM<)O}
else be~in

set_aspect(511 t388);
set_''')indo''')(O t511 to t388);
CharWidth:=0.035*511;
CharHei~ht:=0.05*388;

{No errors so far}
{use whole screen}
{scale window for data}
{char width: 3.5% of screen width}
{char hei~ht: 5% of screen hei~ht}

set_char_size(CharWidthtCharHei~ht) ;{install character size}
MenuTop:=Yran~e/13; {Menu is 1/13 the total screen hei~ht}
CeIIWidth:=Xran~e/12; {each entree cell 1/12 screen width}
Dra,,.)Menu;
Ne,")line:=trlle;
EchoSelect:=a;
COITlITland: =a;
Done:=false;
repeat

if Ne,")line then
EchoSelector:=2

else
EchoSelector:=EchoSelect;

{dra''') the ITlenu}
{}'est ',.)e are startin~ a ne''') line}
{start pro~raM with default cOMMand}
{ditto}
{nOt we're not done yet}

{startin~ a new line?}

a''') a it _10 cat 0 r (E c h 0 S e I e c tor t But ton t.J a III e t}{i n t Yin) ;
if Yin<MenuTop then be~in

N e ,,.)l i n e : = t rue;
COMMand:=CheckMenu(Xin) ;
case COITlITland of

0: Done:=true;
1 : EchoSelect:=l;
2: EchoSelect:=2;
3: EchoSelect:=3;
a: EchoSelect:=a;
5: EchoSelect:=5;
6: EchoSelect:=6;
7: EchoSelect:=7;
8: EchoSelect:=8;

end {case}
end {if}
else be~in

if Newline then be~in

Ne,")line:=false;
set_echo_posO{in tYin);
MOI.le(}{in tYin);
Ylast:=Yin;
}{last:=}{in;

end

{user choose Menu option?}
{start a new line next tiMe}
{deterMine Menll selection}
{which COITlITland}
{}' eSt
{ \
{ \
{ \
{ \
{ 1
{ 1
{ 1
{ 1

we're done with the pro~raM}
}

}

}

Select the appropriate }
EchoSelector. }

}

}

}

{not a Menu selection}
{start a new line}
{now we're in the Middle of a line}
{Move the ~raphics cursor}
{cause line-drawin~ to start there}
{reMelTlber the last }{ ••• }
{ ••• and the last Y}

A-54 Listings of Example Programs

else begin
set_echo_pos(XintYin); {Move the graphics cursor}
if (Xin=Xlast) and (Yin=Ylast) then NewLine:=true
else begin

case EchoSelect of
1..7: lineOUntYin);
8: be~in

line(}<last tYin);
line(}{in tYin);
lineO(intYlast) ;
line(}(last tYlast);
Nel".!Line: =t rue;

end
otherl",ise

end; {case EchoSelect of}
}<last:=Xin;
Ylast:=Yin;

end
end;

end;
until Done;
locator_terrIl;
displa}'_terrll;

end; {Error trap}
end;
graphics_terrIl;
end.

LogPlot
prOgraM LogPlot(Keyboardtoutput);
illlPort dgl_litd
const

{dral. • .! a line}

{reMeMber the last X ••• }
{ ••• and the last Y}

{are we done yet?}
{terMinate the locator}
{terMinate the display}

{terMinate the graphics SysteM}
{Main prOgrarll}

Xrll i n =
}{rllax =

-a; } { \

Yrll i n =
Yrllax =
Crt =
Control=

t}' pe
RDataT}'pe=

const
}{values=

Yvalues=

I,' a r
Error:
Decade:

2; } { \ Decade rId n i rll a
0; } { / and Maxirlla.
3; } { /
3; {device address of ~raphics raster}
0; {device control word; ignored for CRT}

array [1 •• 15] of real;

RDataT}'pe[0.0003, 0.0009, o.ooa, 0.008, 0.01, 0.07, 0.22, 0.5,
1.2t 2.Gt 8.9, 18.Gt 3at 5Gt 87];

RDataT}'pe[1.1t a.5t 13.38t a5.8t GO.33t 130.7, 3aGt G90.at
888 t 833 t 803, 8a 1 t 720 t 505 t 390];

{disPlaY_init return variable; 0 = oK}

Unitst UpperLiMit:

integer;
inte~er;

inte~er;

re a I ;
integer; I :

Listings of Example Programs A-55

$page$ {**}
function Logl0(X: real): real;
{--}
{ This function returns the logarithm to the base ten of a number. }
{--}
const

Log_l0= 2.30258508288;
begin
Logl0:=ln(X)/Log_l0;

{log to the base e of 10}
{function "Logl0"}

end; {function "Logl01l}
$page$ {**}
begin
graphics_initj
displa}'_init(Crt ,Control ,Error);
if Error=O then begin

set_aspect(511 ,388) j
set_IAlindoIAI(}{fTlin ,}(fTlax ,YfTlin ,Ymax) j

{bod}' of prOgrafTl IILogPlot"}
{initialize the graphics system}

{===== Draw and label logarithmic X-axis grid =============================}
for Decade:=Xmin to Xmax do begin {one decade equals one mantissa cycle}

if Decade=Xmax then UpperLimit:=l
else UpperLimit:=8;
for Units:=l to UpperLimit do begin

X:=Decade+Logl0(Units) j
fTlove(}{,YfTlin) ;
line(}{,YfTlax) ;

end; {for units}
end; {for decade}

{do 2-8 if not last cycle}

{===== Draw and label logarithmic Y-axis grid =============================}
for Decade:=Ymin to Ymax do begin

if Decade=Ymax then UpperLimit:=l
else UpperLimit:=8;
for Units:=1 to UpperLimit do begin

Y:=Decade+Logl0(Units) ;
fT10ve(}{fTlin ,Y);
line(}{max ,Y);

end; {for units}
end; {for decade}

{one decade equals one mantissa cycle}

{do 2-8 if not last cycle}

{===== Draw the logarithmic data curve ====================================}
for 1:=1 to 15 do begin

if 1=1 then move(Logl0(XValues[I]) ,Logl0(Yvalues[I]))
else line(Logl0(XValues[I]) ,Logl0(Yvalues[I]));

end; {for i}
end; {Error=O?} {end of conditional code}
graphics_term; {terminate graphics library}
end. {prOgrafTl "LogPlot ll

}

A-56 Listings of Example Programs

MarkrProg
prO'raM MarKrPro'(output);
ifT1Port d.l_libtd.l_incd
const

CrtAddr=
ControlWord=

t }'pe
Ma rf,e rNUfT1T}'pe=
DataType=

const

array [o •• a] of inte.er;
array [0 •• 10] of inte.er;

Ma rf, e rNl.lfTlb e r=
Data=

MarKerNI.IMType[2tStGt8t13];
DataT}'pe[O t2 tl tt~' t3 t3 tl tS t3 ta tG];

var
ErrorReturn: inte.er;

inte.er; I t J:
$page$
be.in

{**}
{pro'rafTl I Marf'rPro."}

.raphics_init;
display_init(CrtAddrtControlWordtErrorReturn) ;
if ErrorReturn=O then be.in

set_aspect(SII t388);
set_IAlindoIAI(OtI0tOtI0) ;
fTlol'!e(OtO); line(OtlO); line(10tlO); line(10tO); line(OtO);
for 1:=0 to a do be.in

for J:=O to 10 do be.in
if J<>O then MarKer(MarKerNuMber[1]);
if J=O then Move(JtData[J]+1)
else line(JtData[J]+1);

end; {for j}

end; {for i}
end; {ErrorReturn=O?}
'raphics_terfTl;
end. {pro'rafTl I Marf,rPro'"}

PLineProg
prO~raM PLinePro~(output);

iIT1Port d~l_libtlhl_inct;

const
CrtAddr=
ControlWord=

type
RDataT}'pe=

const
array [0 •• 10] of real;

Listings of Example Programs A-57

}{l.Ialues=
YIJalues=

RD a taT y p e [0 ,1 ,2 ,3, 1I ,5 ,6 ,7 ,8 ,9 ,10] ;
RDataType[O ,2 ,I,ll ,3 ,3 t1 ,5,3 ,1I ,6];

I.lar
ErrorReturn: inte~er;

RDataT}'pe;

$pa~e$ {**}
be~in {pro~raITl IIPLineProg ll

}

~raphics_init;

display_init(CrtAddr,ControlWord,ErrorReturn) ;
if ErrorReturn=O then be~in

set_aspect(511 ,389);
set_I,JindoIAl(O dO ,0 dO);
IT10l.le(0,O); line(OtlO); line(10tlO); line(10,0); line(O,O);
X:=Xl.lalues; Y:=Yl.lalues;
poldine(11 ,}{,y);

end; {ErrorReturn=O?}
~raphics_terITl;

end. {pro~raM IIPLinePro~lI}

A-58 Listings of Example Programs

PolyProg
pro~raM PolyPro~(output);

ilTiPort
{pro~raM naMe saMe as file naMe}

d~l_l ib td~l_t)'pes td~l_poh td~l_inq;
const

{access the necessary procedures}

MaxPoints=
Crt =
Control=

t)' pe
Reals=
Word=
Inte~ers=

const
}{I,'alues=

Y~'alues=

OpCodes=

var
Error:
I :
leITl}{ t lefTl'!':
OpSelectors:

{nuMber of points in arrays}
{device address of ~raphics raster}
{device control word; i~nored for CRT}

arra)' Cl •• MaxPoints] of real;
-32788 •• 32787;
array [l •• Maxpoints] of Word;

{to contain X and Y values}
{18-bit '",ord}

{to contain OPt selectors}

Reals[1.5t 2.5t 2.5t 1.5t-1.5t-2.5t-2.5t-1.5t
-2.5 t 2.5 t 2.5 t-2.5 t-2.5 t

{Octa~on}

{Box}
-2.5 t-1I.5 t-2.5 t-5.0 t-1I.0 t
2.5t 1I.5t 2.5t 5.0t 1I.0t

-0.5t-1.0t LOt 0.5];
Reals[LOt 2.0t 3.0t 4.0t 1I.0t 3.0t 2.0t LOt

1.0 t 1.0 t-2.0 t-2.0 t 1.0 t
-2.0t-1I.0t 0.Ot-4.0t-1I.0t
-2.0t-1I.0t 0.Ot-4.0t-1I.0t
-2.0 t-3.0 t-3.0 t-2.0];

Inte~ers[2t1 t1 t1 t1 tl t1 t1 t
2t1t1t1t1t
2t1t1t2t1t
2t1t1t2t1t
2t1t1t1];

{left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{left le~}

{Ri~ht le~}

{Nozzle}
{Octa~on}

{Box}
{Ri~ht le~}

{left le~}

{Nozzle}

inte~er;

inte~er;

Reals;
Inte~ers;

{disPlaY_init return variable; 0 = oK}
{loop control variable}
{so we can pass it to IIpol)'~onll}

{ditto}
Points: inte~er; {ditto}

$pa~e$ {**}
b e ~ i n
leMX:=Xvalues;
lelTlY: =Yvalues;
OpSelectors:=OpCodes;
Points:=MaxPoints;
~raphics_init;

displa)'_init(Crt tControl tError);
if Error=O then be~in

set_aspect(511 t388);

{bod)' of prO~ralTi IPolyPro~"}

{\ Put into variable array so }
{ > it can be passed by }
{/ reference into the DGl proc.}
{put constant into an array variable}
{initialize ~raphics library}
{initialize CRT}
{if no error occurred ••• }
{use the whole screen}

set_window(-13t13t-l0tl0); {invoKe isotropic units}
poly~ordPoints tLefTl}{tlefTlYtOpSelectors); {dral", the lines}

end; {Error=O?} {end of conditional code}
~raphics_terITl;

end. {pro~raITl IPol)'Pro~"}

{terMinate ~raphics library}
{end of pro~rafTl}

SinAspect
prO~raM SinAspect(output);
illlPort d~l_lib;

const
CrtAddr= 3;
ControlWord= 0;

var
ErrorReturn: inte~er;

}-{: inteser;
Y: real;

Listings of Example Programs A-59

{~et ~raphics routines}

{address of internal CRT}
{device control; ° for CRT}

{variable for initialization outcoMe}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in {bodY of pro~raM "SinAspect"}
~raphics_init; {initialize the ~raphics SysteM}
displa}'_init(CrtAddr,ControIWord,ErrorReturn); {I",hich output device?}
if ErrorReturn=O then be~in {output device initialization OK?}

set_aspect(511 ,388); {use the I",hole screen}
set_window(0,100,0.lB,0.18); {scale the window for the data}
for X:=l to 100 do be~in {100 points total}

Y:=DataPoint(}O;
if X=l then Move(X,Y)
else line(}-{,Y)

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terl'll;

end.

{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics packa~e}

{pro~ralll "SinAspect"}

A-60 Listings of Example Programs

SinAxesl
pro~raM SinAxesl(output);
iMPort d~l_libt d~l_inq;

const
CrtAddr= 3;
ControlWord= 0;

t}' pe
RoundT}'pe= (Up t DOIAin t Near);

var
CharWidth: real;
CharHeight: real;
Text: strin~[20];

ErrorReturn: inte~er;
v. '\. inte~er;

Y: real;

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{used by procedure Round2}

{width of char in world coords}
{hei~ht of char in world coords}
{teMPOrary holdin~ place for text}
{variable for initialization outcome}

$include 'DGLPRG:DataPoint'$ (function: y:=f(x) }
$pa~e$ {**}
function Round2(Nt M: real; Mode: RoundT}'pe): real;
{----~---}
{ This function rounds IINII to the nearest IIMII t accordin~ to IIMode ll

• This }
{ function works only when the ar~UMent is in the ran~e of MININT •• MAXINT. }
{--}
const

epsilon=
var

Rounded:
Ne~atil.le:

1 E-lCH

rea I ;
boolean;

b e ~ i n
Ne~ative:=(N{O.O) ;
if Ne~ative then be~in

N:=abs(N) ;
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;
case Mode of

Down: Rounded:=trunc(N/M)*M;
Up: be~in

{roundoff error fud~e factor}

{teMPOrary holdin~ area}
{flag: lilt is ne~atil.le?lI}

{bodY of IIRound2 11
}

{is the nUMber ne~ative?}

{work with a positive nUMber}
{if lHIITlber is ne~ativet ••• }
{ •• .reverse UP and down}

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• ri~ht on the nUMber line?}
if abs(Rounded-round(Rounded)))epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

Rounded:=trunc(Rounded)*M;
end;

Near: Rounded:=trunc(N/M+M*0.5)*M;
end; {case}
if Ne~ative then Rounded:=-Rounded;
Round2:=Rounded;
end;

{ ••• to the nearest Multiple?}

{reinstate the si~n}

{assign to function naMe}
{function IIRound2 11

}

Listings of Example Programs A-61

$pa~e$ {**}
procedure Xaxis(Spacin~tLocationtXfTlintXfTlax: real;

Major: inte~er;

Majsize tMinsize: real);
{--}
{ This procedure draws an X-axis at any intersection point on the plottin~ }
{ surface. ParaMeters are as follows: }
{ Spacin~: The distance between ticK MarKs on the axis. }
{ Location: The V-value of the X-axis. }
{ >((Tlin t}{fTlax: The left and ri~ht ends of the }{-axis t respectiveb. }
{ Major: The nUMber of ticK MarKs to ~e before drawin~ a Major ticK }
{ MarK. If Major=5t every fifth ticK MarK will be Major. }
{ Majsize: The len~tht in current unitst of the Major ticK MarKs. }
{ Minsize: The len~tht in current unitst of the Minor ticK MarKs. }
{--}
var

}{: real;
SelTliMinsize: real;
SefTliMajsize: real;
Counter: inte~er;

be~in

fTlOve(}{fTlin tLocation);
lineO{fTlax tLocation);
SeMiMinsize:=Minsize*O.5;
SeMiMajsize:=Majsize*O.5;
X: =Round2 (>{fTli n tSpac i n ~*Majo r tOO ',.In) ;
Counter:=O;
while X(=XMax do be~in

if Counter=O then be~in

Move(XtLocation-SeMiMajsize) ;
line(XtLocation+SeMiMajsize) ;

end {Counter=O?}
else be~in

Move(XtLocation-SeMiMinsize) ;
line(XtLocation+SeMiMinsize) ;

end; {else be~in}
Counter:=(Counter+l) Mod Major;
>{: =}{+Spac i n ~;

end; {',.Ihile}
end;

{current X of ticK Marks}
{half of Minor ticK size}
{half of Major ticK size}
{keeps tracK of when to do Major ticKs}
{bod}' of procedure 1I}{axisll}
{left end of the x-axis}
{dra',.I x-axis}
{half of every tick Mark needs to ••• }
{ ••• be on each side of the axis}
{round start point to next lower Major}
{start with a Major tick}
{loop until ~reater than XMax}
{should we do a Major ticK?}
{Move to bottOM of Major ticKt and ••• }
{ ••• draw to the top of Major ticK}

{Move to bOttOM of Minor ticKt and ••• }
{ ••• draw to the top of Minor ticK}

{Keep track of which len~th ticK to do}
{~o to next tick position}
{loop if not done}
{procedure 1I}{axisll}

A-62 Listings of Example Programs

$pa~e$ {**}
procedure Yaxis(Spacin~tLocationtYITlintYmax: real;

Major: inte~er;

MaJsize tMinsize: real);
{--}
{ This procedure draws an Y-axis at anv intersection point on the plottin~ }
{ surface. Parameters are as follows: }
{ Spacin~: The distance between tick marks on the axis. }
{ Location: The X-value of the Y-axis. }
{ YITlintYITlax: The left and ri~ht ends of the Y-axist respectivelv. }
{ Major: The number of tick marks to ~e before drawin~ a Major tick }
{ Mark. If MaJor=5t everv fifth tick Mark will be Major. }
{ MaJsize: The lenstht in current unitst of the ITlaJOr tic~\ ITlarks. }
{ Minsize: The len~tht in current unitst of the Minor tick Marks. }
{--}
I} a r

Y:
SelTliMinsize:

re a I ;
re a I ;

SeMiMaJsize: real;
Counter: inte~er;

b e ~ i n
Move(Location tYlTlin);
line(Location tYITlax);
SeMiMinsize:=Minsize*O.5;
SeMiMaJsize:=MaJsize*O.5;
Y:=RoundZ(YITlin tSpacin~*MaJortDoINn);
Counter:=O;
while Y(=YMax do be~in

if Counter=O then be~in

ITlove(Location-SeITliMaJsize tY);
line(Location+SelTliMaJsize tY);

end {Counter=O?}
else be~in

lTlove(Location-SemiMinsizetY) ;
line(Location+SeITliMinsize tY);

end; {else be~in}
Counter:=(Counter+l) lTlod Major;
Y:=Y+Spacin~;

end; {INhile}
end;

{current Y of ticK lTlarKs}
{half of lTlinor tick size}
{half of lTlaJor tick size}
{keeps track of when to do lTlaJor ticks}
{bodv of procedure IIAxes ll }
{lower end of the v-axis}
{draiN }'-axis}
{half of everv tick lTlark needs to ••• }
{ ••• be on each side of the axis}
{round start point to next lower lTlaJor}
{start with a lTlaJor ticK}
{loop until ~reater than XlTlax}
{should we do a lTlaJor tick?}
{move to left of Major tickt and ••• }
{ ••• draw to the ri~ht of lTlaJor tick}

{move to left of Major tickt and ••• }
{ ••• draw to the ri~ht of lTlaJor tick}

{keep track of which len~th tick to do}
{~o to next tick position}
{loop if not done}
{procedure IIYaxisll}

Listings of Example Programs A-63

$pa~e$ {**}
be~in {bod}' of prO~ralTl ISinAxes1"}
~raphics_init; {initialize the ~raphics svsteM}
displav_init(CrtAddrtControIWordtErrorReturn); {which output device?}
if ErrorReturn=O then be~in

set_aspect(511 t388);
CharWidth:=2*0.04;
CharHei~ht:=2*0.08;

set_chaLsize(CharWidth tCharHei~ht);
Text:='VOLTAGE VARIANCE';

{output device initialization OK?}
{use the whole screen}
{char width: 4% of screen width}
{char height: 4% of screen hei~ht}
{install character size}
{define text to be labelled}

for }-{:=-3 to 3 do be~in {ITlaKe "bold" label}
Move(-(strlen(Text)*CharWidth)/2+X*0.002tO.8); {center label}
~text(Text); {label the text}

end;
set_text_rot(Otl) ;
CharWidth:=2*0.025;
CharHei~ht:=2*0.04;

set_char_size(CharWidthtCharHei~ht) ;

{vertical labels}
{char width: 2.5% of screen width}
{char height: 4% of screen hei~ht}
{install character size}

Text:='Volta~e'; {define the text to be labelled}
Move(-0.8t-(strlen(Text)*CharWidth)/2); {start point of centered label}
~text(Text); {label the text}
Text:='TiMe (seconds)';
set_text_rot<1 to);

{define the text to be labelled}
{horizontal labels}

Move(-(strlen(Text)*CharWidth)/2t-0.82); {start point of centered label}
~text(Text); {label the text}
set_vieINPort(O.l to.88tO.12tO.7); {define subset of screen}
ITlove(-1t-l); line(-lt1); line(lt1); line(lt-l)j line(-lt-l); {fraITle}
set_window(OtlOOtO.1GtO.18); {scale the window for the data}
}{axis(1 to.1Gt-50t150t5tO.OOl to.OO(5); {draiN the x-axis}
Yaxis(O.001 tOtO.1 to.2t5t2t1);
for X:=l to 100 do be~in

Y:=DataPointOO;
if X=l then Move(XtY)
else lineO{tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terITI;

end.

{draw the v-axis}
{lOO points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~raM "SinAxes1"}

A-64 Listings of Example Programs

SinAxes2
pro~raM SinAxesZ(output);
irTIPort d~l_lit.;

const
CrtAddr= 3 ;

(I ;

{~et ~raphics routines}

{address of internal CRT}
{device control; (I for CRT} ControlWord=

t}' pe
RoundType= (Up t DOI",n t Near); {used by function RoundZ}

1.1 a r
CharWidth:
CharHei~ht:

Text:
ErrorReturn:
I :
}{ :
'1':

re a I ;
re a I ;
strin~[Z(I];

inte~er;

inte~er;

inte~er;

re a I ;

{width of char is world coords}
{hei~ht of char is world coords}
{teMPOrary holdin~ place for text}
{variable for initialization outcoMe}
{return variable frOM STRWRITE}

ClipXMint ClipXMax: real; {soft clip liMits in x}
ClipYrTlint ClipYrTlax: real; {soft clip lirTlits in }'}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
procedure ClipLirTlitO{rTlint }{rTlaXt Yrllint Yrllax: real);
{--}
{ This procedure defines the four ~lobal variables which specify where the }
{ soft clip liMits are. }
{--}
be~in

if XMin(XMax then be~in

C Ii p}{1T1i n: =}{rlli n ;
C Ii p}{rllax: =}{rllax ;

end
else be~in

C Ii p}{rlli n: =}{rllax ;
C Ii p}{rllax: =}{ITI in;

end;
if YMin(YMax then be~in

CI i pYrTli n: =Yrlli n;
CI i pYrllax: =Yrllax;

end
else be~in

CI i pYrlli n: =YIIlax ;
C Ii pYIIlax: =YIII in;

end;
end;

{bod}' of procedure IClipLilllit"}
{ \ }

{ \ Fo rc e the III i n i ITIUrll soft }

{ \ clip lilliit in }{ to be }

{ \ the sllialler of the tlAlO }

{ / }{ values passed into }

{ / the procedure. }

{ / }

{ / }

{ \ }

{ \ Force the III i n i ITIUIYI soft }

{ \ clip I i III it in Y to be }

{ \ the sllialler of the tl",O }

{ / Y values passed into }

{ / the procedure. }

{ / }

{ / }

{procedure IClipLiMit"}
$pa~e$ {**}
procedure ClipDraw(Xl t Yl t XZt YZ: real);
{--}
{ This procedure takes the endpoints of a linet and clips it. The soft }
{ clip liMits are the real ~lobal variables ClipXMint ClipXMaxt ClipYMint }
{ and ClipYMax. These May be defined throu~h the procedure ClipLiMit. }
{--}

label
1 ;

type
Ed!!'es= (LefttRi!!'httToPtBottoIT});
OutOfBounds= set of Ed!!'es;

1,1 a r
Out tOutl tOutZ:OutOfBounds;
Xt Y: real;

Listings of Example Programs A-65

{possible ed!!'es to cross}
{set of ed!!'es crossed}

{--}
procedure Code(Xt Y: real; var Out: OutOfBounds);
be!!'in
Out:=[];
if x(ClipXMin then Out:=[left]
else if x}ClipXMax then Out:=[ri!!'ht];
if y(ClipYMin then Out:=Out+[bottoM]
else if y}ClipYMax then Out:=Out+[top];

{nested procedure IICode ll }
{null set}

{off left ed!!'e?}
{off ri~ht ed!!'e?}
{off the bottoM?}
{off the top?}

end; {nested procedure IICode ll }
{--}
be!!'in
CodeO{1 tYI tOutl);

{bod}' of procedure IIClipDral..,lll}
{fi!!'ure status of point I}

Code(XZtYZtOutZ); {fi!!'ure status of point Z}
while (Outl(}[]) or (OutZ(}[]) do be!!'in {loop while either point out of ran!!'e}

if (Outl*OutZ)<)[] then ~oto 1; {if intersection non-null, no line}
if Outl<}[] then Out:=Outl

else Out:=OutZ;
if left in Out then be!!'in

{Out is the non-eMPty one}
{it crosses the left ed!!'e}

y:=Yl+(YZ-Yl)*(ClipXMin-Xll/(XZ-Xl1 ;{adJust value of y appropriately}
x:=ClipXMin; {new x is left ed!!'e}

end {left in Out?}
else if ri!!'ht in Out then be!!'in {it crosses ri!!'ht ed!!'e}

y:=Yl+(YZ-Yll*(ClipXMax-Xll/(XZ-Xl) ;{adJust value of y appropriately}
x:=ClipXMax; {new x is ri~ht edge}

end {ri!!'ht in Out?}
else if bottoM in Out then be!!'in {it crosses the bottoM ed!!'e}

x:=Xl+(XZ-Xll*(ClipYMin-Yl)/(YZ-Yl) ;{adJust value of x appropriately}
y:=ClipYMin; {new y is bottoM ed!!'e}

end {bottoM in Out?}
else if top in Out then be~in {it crosses the top ed!!'e}

x:=Xl+(XZ-Xll*(ClipYMax-Yl)/(YZ-Yl1 ;{adJust value of x appropriately}
y:=ClipYMax; {new y is top ed!!'e}

end; {top in Out?}
if Out=Outl then be!!'in

}{I:=x; Yl:=y; Code(xtYtOutl);
end {Out=Outl?}
else be!!'in

XZ:=x; YZ:=d Code(xt}'tOutZI;
end; {else be!!'in}

end; {1..,Ihile}
ITlove(xl tyl);
line(xZtYZ);
1: end;

{redefine first end point}

{redefine second end point}

{if we !!'et to this pointt the line ••• }
{ ••• is cOMPletely visible, so draw it}
{procedure IIClipDraw ll }

A-66 Listings of Example Programs

$page$ {**}
function RoundZ(N, M: real; Mode: RoundType): real;
{--}
{ This function rounds liN II to the nearest IIM II , according to IIMode li • This }
{ function worKs only when the argUMent is in the range of MININT •• MAXINT. }
{--}
const

epsilon=
var

Rounded:
Negative:

1E-HI;

re a I ;
boolean;

begin
Negative:=(N{O.O) ;
if Negative then begin

N:=abs(N) ;
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

end;
case Mode of

Down: Rounded:=trunc(N/M)*M;
Up: begin

{roundoff error fudge factor}

{teMPOrary holding area}
{flag: lilt is negative?lI}
{bod}' of IIRoundZ II }
{is the nUMber negative?}

{worK with a positive nUMber}
{if 1"ll.lITlber is negatil,le, ••• }
{ ••• reverse UP and down}

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• right on the nUMber line?}
if abs(Rounded-round(Rounded)))epsilon then

Rounded:=(trunc(Rounded)+1.0)*M
else

Rounded:=trunc(Rounded)*M;
end;

Near: Rounded:=trunc(N/M+M*O.5)*M;
end; {case}
if Negative then Rounded:=-Rounded;
RoundZ:=Rounded;

{ ••• to the nearest Multiple?}

{reinstate the sign}
{assign to function naMe}

end;
$page$

{function IIRoundZ II }
{**}

procedure XaxisClip(Spacing, Location: real; Major: integer;
MaJsize ,Minsize: real);

{--}
{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between ticK MarKs on the axis. }
{ Location: The V-value of the X-axis. }
{ Major: The nUMber of ticK MarKs to ge before drawing a Major tick }
{ MarK. If MaJor=5, every fifth ticK Mark will be Major. }
{ MaJsize: The length, in world units, of the Major tick MarKs. }
{ Minsize: The length, in world units, of the Minor ticK MarKs. }
{--}
1,1 a r

}{ : re a I ; {V 1\ position of tic ~{ ITlar~{s}

SelTliMaJsize: re a I ; {h alf of ITlaJ 0 r tic ~{ size}
SelTliMinsize: re a I ; {half of ITI i nor ti d{ size}
Counter: inteier; {f{eeps tracK of ''''h en to do ITlaJ 0 r ticKs}

begin
SeMiMaJsize:=MaJSize*O.5;
SeMiMinsize:=MinSize*O.5;
Counter:=O;

Listings of Example Programs A-67

{bod}' of procedure 1I){axisClipll}
{calculate half of Major ticK size}
{calculate half of Minor ticK size}
{start with a Major ticK}

ClipDra,,,,(Clip){ITlin tLocation tClip}(ITlax tLocation); {dra'", the){-axis itself}
X:=Round2(ClipXMintSpacing*MaJortDown); {round to next lower Major}
while X(=ClipXMax do begin {loop until greater than ClipXMax}

if Counter=O then {do a Major ticK MarK?}
ClipDraw(XtLocation-SeMiMaJsizetXtLocation+SeMiMaJsize)

else
ClipDraw(XtLocation-SeMiMinsizetXtLocation+SeMiMinsize); {do Minor ticK}

Counter:=(Counter+l) Mod Major; {Keep tracK of which length ticK to do}
)(: =){+Spac in g; {gO to next ticK position}

end;
end;
$page$

{procedure 1I){axisClipll}
{**}

procedure YaxisClip(Spacingt Location: real; Major: integer;
MaJsizet Minsize: real);

{--}
{ This procedure draws an Y-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between ticK MarKs on the axis. }
{ Location: The X-value of the Y-axis. }
{ Major: The nUMber of ticK MarKs to ge before drawing a Major ticK }
{ MarK. If MaJor=5t every fifth ticK MarK will be Major. }
{ MaJsize: The lengtht in world unitst of the Major ticK MarKs. }
{ Minsize: The lengtht in world unitst of the Minor ticK MarKs. }
{--}
var

Y: real;
SelTliMaJs i ze: real;
SeMiMinsize: real;
Counter: integer;

begin
SeMiMaJsize:=MaJsize*O.5;

{Y position of ticK MarKs}
{half of Major ticK size}
{half of Minor ticK size}
{Keeps tracK of when to do Major ticKs}
{bod}' of procedure IIYaxisClipll}
{calculate half of Major ticK size}

SeMiMinsize:=Minsize*O.5; {calculate half of Minor ticK size}
Counter:=O; {start with a Major ticK}
ClipDral..,I(Location tClipYITlin tLocation tClipYlTlax);
Y:=Round2(ClipYMintSpacing*MaJortDown); {round to next lower Major}
while Y(=ClipYMax do begin

if Counter=O then
{loop until greater than YMax}
{should we do a Major ticK?}

ClipDraw(Location-SeMiMaJsizetYtLocation+SeMiMaJsizetY)
else

ClipDraw(Location-SeMiMinsizetYtLocation+SeMiMinsizetY) ;
Counter:=(Counter+l) Mod Major; {Keep tracK of which size ticK to do}
Y:=Y+Spacing; {gO to next ticK position}

end; {,,,,hile}
end; {procedure IIYaxisClipll}

A-68 Listings of Example Programs

$page$ {**}
begin {bodY of prOgraM "SinAxesZ"}
graphics_init; {initialize the graphics SysteM}
display_initICrtAddr,ControIWord,ErrorReturn); {which output device?}
if ErrorReturn=O then begin {output device initialization OK?}

set_aspectl511 ,388); ~ {use the 'Alhole screen}
CharWidth:=Z*0.04;
CharHeight:=Z*O.OS;
set_char_sizeICharWidth,CharHeight) ;
Text:='VOLTAGE VARIANCE';

{char width: 4% of screen width}
{char height: 4% of screen height}
{install character size}
{define text to be labelled}

for X:=-3 to 3 do begin {MaKe "bold" label}
Movel-lstrlenIText)*CharWidth)/Z+X*0.00Z,0.8); {center label}
gtextIText); {label the text}

end;
set_text_rotIOtl) ;
CharWidth:=Z*0.OZ5;
CharHeight:=Z*O.Oa;
set_char_sizeICharWidth ,CharHeight);

{vertical labels}
{char width: Z.5% of screen width}
{char height: 4% of screen height}
{install char size}

Text:='Voltage'; {define text to be labelled}
Movel-0.87,-lstrlenIText)*CharWidth)/Z); {start point of centered label}
gtextIText); {label the text}
Text:='TiMe Iseconds)';
set_text_rotll ,0);

{define text to be labelled}
{horizontal labels}

Movel-lstrlenIText)*CharWidth)/Z,-0.8Z); {start point of centered label}
gtextIText); {label the text}
set_viewportI0.1 ,0.88,0.lZ,0.7); {define subset of the screen}
ITlovel-1,-1); linel-1,1); linell,!); linel1,-1); linel-1,-1); {fraITle}
set_'Alindo'AlIOtlOO,0.18,0.lS) ;
C Ii pL i ITIi t 10 tl 00 ,0. 18 ,0. 18) ;
XaxisClipll ,0.18,5,0.0008,0.0004);
YaxisClipI0.0005,0,5,Z,1) ;
CharWidth:=1.3;
CharHeight:=O.OOOS;
set_char_sizeICharWidth,CharHeight) ;
Text:=";
for X:=O to 10 do begin

{scale the window for the data}
{define the soft clip liMits}
{draw the clipped X-axis}
{draw the clipped Y-axis}
{char width: 1.3 user X units wide}
{char height: .0008 user Y units high}
{install character size}
{erase previous definitions of string}
{eleven X labels}

str'AiritelText ,1 tI ,}(*10:0);' {colHlert nUlTlber to string}
MoveIX*10-lstrlenIText)*CharWidth)/Z,0.1583); {center the label}
gtextIText); {label the text}

end; {for x}
Y:=0.18;
repeat

str'AiritelText ,1 ,}(,Y:8:4);
Movel-8,Y-O.OOOZ) ;
HextlText) ;
Y:=Y+O.OOZ5;

until Y>0.18;
for X:=l to 100 do begin

Y:=OataPointO() ;
if X=l then MoveIX,Y)
else line(}{,Y);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
graphics_terIT1;
end.

{starting Y position for Y labels}

{convert nUMber to string}
{center the text vertically}
{label the text}
{next Y position}
{terMinating condition}
{100 points total}
{get a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the graphics pacKage}
{prOgraM "SinAxesZ"}

SinClip
pro~raM SinClip(output);
i'TlPort d~l_lib;

const

Listings of Example Programs A-69

{get ~raphics routines}

{address of internal CRT}
{device control; I) for CRT}

CrtAddr=
ControlWord=

type
RoundT}'pe= (UPt DOI,Hlt Near); {used by function Round2}

var
CharWidth:
CharHei~ht:

Text:
ErrorReturn:
}.{:

Y:

re a I ;
re a I ;
strin~[21)];

integer;
integer;
re a I ;

{width of char is world coords}
{hei~ht of char is world coords}
{teMPOrary holdin~ place for text}
{variable for initialization outcoMe}

Clip}{'llirlt Clip}{lllax: real; {soft clip lirllits in x}
ClipYfllint ClipYlllax: real; {soft clip lirllits in }'}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
pro.cedure ClipLi'llit(}{'llin t }{Illax t Yfllin t Y'llax: real);
{--}
{ This procedure defines the four global variables which specify where the }
{ soft clip liMits are. }
{--}
begin
if XMin{XMax then be~in

CI i p}{'lli n: =}{'lli n;
CI i p}{fllax: =}{fllax;

end
else begin

CI i p}{'lli n: =}{fllax;
C Ii p}{'llax: =}{'ll in;

end;
if YMin{YMax then be~in

CI i pYflli n: =Yflli n;
CI ipYfllax: =Y'llax;

end
else begin

CI i pY'Tli n: =Y'Tlax;
CI i pY'llax: =Y'lli n;

end;
end;

{ \
{

{

{

{

{

{

{ /
{ \
{

{

{

{

{

{

{ /

\
\

\
/

/
/

\
\

\
/

/
/

}

Force the MiniMUM soft }
clip liMit in X to be }
the SMaller of the two }
X values passed into }
the procedure. }

}

}

}

Force the MiniMuM soft }
clip liMit in Y to be }
the SMaller of the two }
Y values passed into }
the procedure. }

}

}

$page$ {**}
procedure ClipDraw(X1 t Y1 t X2t Y2: real);
{--}
{ This procedure takes the endpoints of a line, and clips it. The soft }
{ clip liMits are the real global variables ClipXMint ClipXMaXt ClipYMin, }
{ and ClipYMax. These May be defined through the procedure ClipLiMit. }
{--}
label

1 ;
t}' pe

Ed~es= (Left tRi~ht tTop tBOttOM);
OutOfBounds= set of Ed~es;

var
Out tOut1 tOut2:0utOfBounds;
X t Y: re a I ;

{possible ed~es to cross}
{set of ed~es crossed}

A-70 Listings of Example Programs

{--}
procedure Code(}{, '1': real; I,Jar Out: outOfBounds);
be fin
out:=[];
if x<ClipXMin then Out:=[left]
else if x)ClipXMax then out:=[rifht];
if y<ClipYMin then Out:=out+[bottoM]
else if y)ClipYMax then out:=out+[top];

{nested procedure IICode ll }
{null set}

{off left edfe?}
{off rifht edfe?}
{off the bottoM?}
{off the top?}

end; {nested procedure IICode ll }
{--}
befin
Code(}{1 ,'1'1 ,outl);

{bod}' of procedure IIClipDral"lll}
{fifure status of point I}

Code(X2,Y2,out2); {fifure status of point 2}
while (outl<)[]) or (out2<)[]1 do be fin {loop while either point out of ranfe}

if (outl*out2)<)[] then foto 1; {if intersection non-null, no line}
if outl<)[] then Out:=Outl

else Out:=Out2;
if left in Out then befin

{Out is the non-eMPty one}
{it crosses the left edfe}

y:=Yl+(Y2-Yll*(ClipXMin-Xl)/(X2-Xl);{adJust value of y appropriately}
x:=ClipXMin; {new x is left edfe}

end {left in Out?}
else if rifht in Out then be fin {it crosses rifht edfe}

y:=Yl+(Y2-Yl)*(ClipXMax-Xl)/(X2-Xl) ;{adJust value of y appropriately}
x:=ClipXMax; {new x is rifht edfe}

end {rifht in Out?}
else if bottoM in Out then be fin {it crosses the bottoM edfe}

x:=Xl+(X2-Xll*(ClipYMin-Yl)/(Y2-Yl) ;{adJust value of x appropriately}
y:=ClipYMin; {new y is bottoM edfe}

end {bottoM in Out?}
else if top in Out then befin {it crosses the top edfe}

x:=Xl+(X2-Xll*(ClipYMax-YII/(Y2-Yl1 ;{adJust value of x appropriately}
y:=ClipYMax; {new y is top edfe}

end; {top in Out?}
if out=outl then befin

}{ 1: = x ;
end {out=outl?}
else be fin

}{2: = x; '1'2: =}' ;

end; {else be fin}
end; {1"Ihile}

Code(x,}',outl);

Code(x I}' ,Out21;

{redefine first end point}

{redefine second end point}

IT10I,Je(xl,},!); {if 'A'e fet to this point, the line ••• }
line(x2,}'21; L •• is cOITlpleteh visible, so dralAI it}
1: end; {procedure IIClipDralAI II } {return}
$pafe$ {**}
function Round2(N, M: real; Mode: RoundTypel: real;
{--}
{ This function rounds IINII to the nearest II Mil , accordinf to IIMode ll • This }
{ function works only when the arfUMent is in the ranfe of MININT •• MAXINT. }
{--}
const

epsilon=
var

Rounded:
Nefative:

lE-lCl;

re a 1 ;
boolean;

{roundoff error fudfe factor}

{teMPOrary holdinf area}
{flaf: lilt is nefative?lI}

begin
Negative:=(N{O.OI;
if Negative then begin

N:=abs(NI;
if Mode=Up then Mode:=Down
else if Mode=Down then Mode:=Up;

en d ;
case Mode of

Down: Rounded:=trunc(N/MI*M;
Up: begin

Listings of Example Programs A-71

{bod~' of IIRound2 11
}

{is the nUMber negative?}

{work with a positive nUMber}
{if lHIITlber is negativet ••• }
{ ••• reverse UP and down}

{should we round the nUMber ••• }
{ ••• left on the nUMber line?}

Rounded:=N/M; { ••• right on the nUMber line?}
if abs(Rounded-round(Roundedll}epsilon then

Rounded:=(trunc(Roundedl+l.01*M
else

Rounded:=trunc(Roundedl*M;
end;

Near: Rounded:=trunc(N/M+M*O.SI*M;
end; {case}
if Negative then Rounded:=-Rounded;
Round2:=Rounded;

{ ••• to the nearest Multiple?}

{reinstate the sign}
{assign to function naMe}

end;
$page$

{function IIRound2 11
}

{**}
procedure XaxisClip(Spacingt Location: real; Major: integer;

MaJsize tMinsize: real I;
{--}
{ This procedure draws an X-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between tick Marks on the axis. }
{ Location: The V-value of the X-axis. }
{ Major: The nUMber of tick Marks to ge before drawing a Major tick }
{ Mark. If MaJor=St every fifth tick Mark will be Major. }
{ MaJsize: The lengtht in world unitst of the Major ticK MarKs. }
{ Minsize: The lengtht in world unitst of the Minor ticK Marks. }
{--}

v.
1\,

SelTliMaJsize:
SelTliMinsize:
Counter:

re a I ;
re a I ;
re a I ;
integer;

begin
SeMiMaJsize:=MaJSize*O.S;
SeMiMinsize:=MinSize*O.S;
Counter:=O;

{keeps track of when to do Major ticks}
{bod~' of procedure 1I}{axisClipll}

{start with a Major tick}
ClipDral,.J{Clip){ITlin tLocation tClip){ITlax tLocationl;
X:=Round2(ClipXMintSpacing*MaJortDownl; {round to next lower Major}
while X{=ClipXMax do begin

if Counter=O then
ClipDraw(XtLocation-SeMiMaJsizetXtLocation+SeMiMaJsizeI

else
ClipDraw(XtLocation-SeMiMinsizetXtLocation+SeMiMinsizeI;

Counter:=(Counter+l1 Mod Major;
){: =){+Spac in g;

end; {1,.,Ihile}
end; {procedure IIXaxisCli pll}

A-72 Listings of Example Programs

$page$ {**}
procedure YaxisClip(Spacingt Location: real; Major: integer;

MaJsizet Minsize: real);
{----------------------------~---}
{ This procedure draws an Y-axis at any intersection point on the plotting }
{ surface. ParaMeters are as follows: }
{ Spacing: The distance between ticK MarKs on the axis. }
{ Location: The X-value of the Y-axis. }
{ Major: The nUMber of ticK MarKs to ge before drawing a Major ticK }
{ MarK. If MaJor=5t every fifth ticK MarK will be Major. }
{ MaJsize: The lengtht in world unitst of the Major ticK MarKs. }
{ Minsize: The lengtht in world unitst of the Minor ticK MarKs. }
{--}
var

Y: real;
SelTliMinsize: real;
SelTliMaJsize: real;
Counter: integer;

begin
SeMiMaJsize:=MaJsize*O.5;
SeMiMinsize:=Minsize*O.5;
Counter:=O;

{Keeps tracK of when to do Major ticKs}
{bod}' of procedure IIYaxisClipll}

{start with a Major ticK}
ClipDral,.,l(Location tClipYITlin tLocation tClipYITlax);
Y:=Round2(ClipYITlin tSpacing*MaJortDoIAlrr); {round to next 10iAIer ITlaJor}
while Y(=ClipYMax do begin

if Counter=O then
ClipDraw(Location-SeMiMaJsize,YtLocation+SeMiMaJsizetY)

else
C lip 0 r alAI (L 0 cat ion - S e ITI i Min s i z e t Y t L 0 cat ion + S e ITIi Min s i z e t Y) ;

Counter:=(Counter+l) Mod Major;
Y:=Y+Spacing;

end; {1,.,Ihile}
end;
$page$

{procedure IIYaxisClipll}
{**}

beg i n { pro 9 r alTl II Sin C lip II }
graphics_init; {initialize the graphics SysteM}
display_init(CrtAddrtControlWordtErrorReturn); {which output device?}
if ErrorReturn=O then begin {output device initialization OK?}

set_aspect(511 t388); {use the l,.,Ihole screen}
CharWidth:=2*O.04;
CharHeight:=2*O.08;
set_char_size(CharWidthtCharHeight) ;
Text:='VOLTAGE VARIANCE';

{char width: 4% of screen width}
{char height: 8% of screen height}
{install the character size}
{define the text to be labelled}

for }{:=-3 to 3 do begin {ITlaKe IIbold ll label}
Move(-(strlen(Text)*CharWidth)/2+X*O.002tO.8); {center label}
gtext(Text); {label the text}

end;
set_text_rot(Otl) ;
CharWidth:=2*O.025;
CharHeight:=2*O.04;
set_char_size(CharWidthtCharHeight) ;

{vertical labels}
{char width: 2.5% of screen width}
{char height: 4% of screen height}
{install character size}

Text:='Voltage'; {define text to be labelled}
Move(-O.8t-(strlen(Text)*CharWidth)/2); {start point of centered label}
gtext(Text); {label the text}
Text:='TiMe (seconds)';
set_text_rot(1 to);

{define text to be labelled}
{horizontal labels}

Move(-(strlen(Text)*CharWidth)/2t-O.82); {start point of centered label}
gtext(Text); {label the text}

Listings of Example Programs A-73

set_vieINPort(O,l to,99tO,12tO,7); {define subset of INindow}
rllove(-l t-1); line(-l d); line(l d); line(1 t-1); line(-l t-1); {frarlle}
set_INindoIN(O .100 to, 16 to, 18);
C Ii pL i rll i t (0 t 100 to, 16 to, 18) ;
}(axisCI ip(1 to, 16 t5 to,0008 to,00(4);
YaxisClip(O,OOl tOt5t2d);
for X:=l to 100 do begin

Y:=DataPoint(}O;
if X=l then Move(XtY)
else line(}(tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
graphics_terrIl;
end,

SinLabell
prograM SinLabell(output);
iMPort dgl_Iibt dgl_inq;
const

CrtAddr=
ControlWord=

var
ErrorReturn:
St rn g:

Character:

integer;
string[7];
integer;

X: integer;
Y: real;

{scale the window for the data}
{define the soft clip liMits}
{draw the clipped X-axis}
{draw the clipped Y-axis}
{100 points total}
{get a point frOM the function}
{Move to the first point",}
{",and draw to all the rest}

{terMinate the graphics pacKage}
{prograrll IISinClipll}

{get graphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outcoMe}
{seven characters in 'Voltage'}
{loop counter for labelling}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$page$ {**}
begin {bod}1 of prograrll IISinLabell l1

}

graphics_init; {initialize graphics SysteM}
display_init(CrtAddrtControIWordtErrorReturn); {which output device?}
if ErrorReturn=O then begin {output device initialization OK?}

set_aspect(511 t389); {use the IAlhole screen}
Move(-0,45tO,9); {starting point for the title}
gtext('1.IOLTAGE VARIANCE'); {label the plot}
Strng:= '1.loltage'; {the y-axis label}
Move(-0,95tO,3); {starting point for the y-axis title}
for Character:=l to strlen(Strng) do {follow every character",}

ftext(str(StrngtCharactertl)+chr(13)+chr(10)); {",IAlith a CR/LF}
Move(-0,3t-0,9); {starting point for the x-axis label}
gtext('TiMe (seconds) '); {x-axis label}
set_vieINPort(O,l to,99tO,12tO,7); {define subset of screen}
rllove(-l t-1); line(1 t-1); line(l .1); line(-l .1); line(-l t-1); {fraMe}
set_window(Otl00tO,16tO,18); {scale the window for the data}
for X:=l to 100 do begin {100 points total}

Y:=DataPoint(}-() ;
if X=l then Move(XtY)
else lineO-(tY);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
graphics_terrIl;
end,

{get a point froM the function}
{Move to the first point",}
{",and draw to all the rest}

{terMinate the graphics pacKage}
{prograM "SinLabell"}

A-74 Listings of Example Programs

SinLabel2
pro~raM SinLabeI2(output);
iMPort d~l_lib, d~l_inq;

const
CrtAddr= 3;
ControlWord= 0;

var
CharWidth: real;
CharHei~ht: real;
Text: st rin~[20];

{~et ~raphics routines}

{address of internal CRT}
{device control; ° for CRT}

{width of character in world coords}
{hei~ht of character in world coords}
{teMPOrarY holdin~ place for text}

ErrorReturn: inte~er; {variable for initialization outcoMe}
}{: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in {bodY of pro~raM "SinLabeI2"}
~raphics_init; {initialize the ~raphics SysteM}
dis p I a}' _ i nit (Crt Add r ,C 0 n t r 0 I Wo r d ,E r r 0 rR e turn); {IN hie h 0 u t put de vic e?}

if ErrorReturn=O then be~in {output device initialization OK?}
set_aspect(511 ,389); {use the 'Nhole screen}
CharWidth:=2*0.OO;
CharHei~ht:=2*0.08;

set_char_size(CharWidth,CharHei~ht) ;
Text:='VOLTAGE VARIANCE';

{char width: a% of screen width}
{char hei~ht: 8% of screen hei~ht}
{install character size}
{define the text to be labelled}

Move(-(strlen(Text)*CharWidth)/2,0.9) ;{~o to start point for centered label}
~text(Text); {label the text}
set_text_rot(O ,1);
CharWidth:=2*O.OZ5;
CharHei~ht:=2*O.Oa;

set_char_size(CharWidth,CharHei~ht) ;

{vertical labels}
{char width: 2.5% of screen width}
{char hei~ht: a% of screen hei~ht}
{install character size}

Text:='Volta~e'; {define the text to be labelled}
Move(-O.9,-(strlen(Text)*CharWidth)/Z); {start point of centered label}
~text(Text); {label the text}
set _ t ext _ rot (1 ,(),) ; {horizontal labels}
Text:='TiMe (seconds)'; {define the text to be labelled}
Move(-(strlen(Text)*CharWidth)/2,-0.82); {start point of centered label}
~text(Text); {label the text}
set_I,Iiewport(O.I,0.99,0.12,O.7); {define subset of screen}
rllove(-I,-l); line(-ltl); line(ltl); line(I,-l); line(-I,-l); {frarlle}
set_'NindoIN(O tlOO,0.16 ,0.18);
for X:=l to 100 do be~in

Y:=DataPointOO;
if X=l then Move(X,Y)
else line(){,YH

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terrll;

end.

{scale the window for the data}
{100 points total}
{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~rarll "SinLabeI2"}

SinLabel3
pro~raM SinLabeI3(output);
iMPort d~l_lib, d~l_in9;

const
CrtAddr= 3;
ControlWord= 0;

I) a r
CharWidth: real;
CharHei~ht: real;
Text: strin~[20];

Listings of Example Programs A-75

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{width of character in world coords}
{hei~ht of character in world coords}
{teMPOrary holdin~ place for text}

ErrorReturn: inte.er; {variable for initialization outcoMe}
X: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in

.raphics_init;
{bod}' of pro.rafTl IISinLabe13 11

}

{initialize the ~raphics SysteM}
displa}'_init(CrtAddr,ControIWord ,ErrorReturn); {IAlhich output del)ice?}
if ErrorReturn=O then be~in {output device initialization DK?}

set_aspect(511,388); {use the whole screen}
CharWidth:=2*0.04;
CharHei~ht:=2*0.08;

set_char-size(CharWidth ,CharHei~ht);
Text:='VOLTAGE VARIANCE';

{char width: 4% of screen width}
{char hei~ht: 8% of screen hei~ht}
{install character size}
{define the text to be labelled}

for }-{:=-3 to 3 do be~in {fTla~\e IIbold li label}
Move(-(strlen(Text)*CharWidth)/2+X*0.002,0.8); {center label}
~text(Text); {label the text}

end; {for}O
set_text_rot (0 t1);
CharWidth:=2*0.025;
CharHei~ht:=2*0.04;

set_char_size(CharWidth,CharHei~ht) ;

{vertical labels}
{char width: 2.5% of screen width}
{char hei~ht: 4% of screen hei~ht}
{install character size}

Text:='Volta~e'; {define the text to be labelled}
Move(-0.8,-(strlen(Text)*CharWidth)/2); {start point of centered label}
~text(Text); {label the text}

{horizontal labels}
Text:='TiMe (seconds) '; {define the text to be labelled}
Move(-(strlen(Text)*CharWidth)/2,-0.82); {start point of centered label}
~text(Text); {label the text}
set_I.liel..Jport(O.1 ,0.88,0.12,0.7); {define subset of screen}
fT10I)e(-I,-1); line(-It1); lineUt1); line(1,-1); line(-l,-U; {frafTle}
set_window(0,100,0.lG,0.18); {scale the window for the data}
for X:=l to 100 do be~in {100 points total}

Y:=DataPointOO;
if X=l then Move(X,Y)
else lineO{,Y);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terfTl;

end.

{~et a point froM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~rafTl IISinLabel3 11
}

A-76 Listings of Example Programs

SinLine
pro~raM SinLine(output);
ilTlPort d~l_lit.;

canst
CrtAddr= 3;
Control= 0;

var
ErrorReturn: inte~er;

X: inte~er;

Y: real;

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outcoMe}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in

~raphics_init;

{bod)' of pro~rafTI IISinLine ll
}

{initialize ~raphics SysteM}
displaY_init(CrtAddr,Control ,ErrorReturn); {which output device?}
if ErrorReturn=O then be~in {output device initialization OK?}

for X:=l to 100 do be~in {100 points total}
Y:=DataPointO{) ;
if X=l then Move(X/100,Y)
else line(X/100,Y);

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terfTI;

end.

SinViewpt
pro~raM SinViewpt(output);
ifTIPort d~l_lit.;

const
CrtAddr= 3;
ControlWord= 0;

var
ErrorReturn: inte~er;

X: inte~er;

Y: real;

{~et a point frOM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics packa~e}

{pro~rafTI IISinLine ll
}

{~et ~raphics routines}

{address of internal CRT}
{device control; 0 for CRT}

{variable for initialization outcoMe}

$include 'DGLPRG:DataPoint'$ {function: y:=f(x) }
$pa~e$ {**}
be~in {bod)' of pro~rafTI IISin 1hel,.lpt ll

}

~raphics_init; {initialize the ~raphics SysteM}
display_init(CrtAddr,ControIWord,ErrorReturn); {which output device?}
if ErrorReturn=O then be~in {output device initialization OK?}

set_aspect(511 ,388); {use the IAlhole screen}
set_viewport(0.10,0.88,0.12,0.70); {define subset of screen}
fTIO 1.1 e (-1 ,-1); line(l ,-1); line(1 11); line(-l 11); line(-l ,-1); {frafTle}
set_window(O,lOO,0.lG,O.18); {scale the window for the data}
for X:=l to 100 do be~in {100 points total}

Y:=DataPointOO;
if X=l then Move(X,Y)
else line(}{,Y)

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terlTl;

end.

{~et a point frOM the function}
{Move to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the .raphics packa.e}
{pro.raM IISinViewpt ll

}

SinWindow
pro~raM SinWindow(output);
ilT1Port d~l_lib;

const
CrtAddr= 3;
ControlWord= 0;

lJar
ErrorReturn: inte~er;

}{: inte~er;

Y: real;
$include 'DGLPRG:DataPoint'$

Listings of Example Programs A-77

{~et ~raphics routines}

{address of internal CRT}
{delJice control; 0 for CRT}

{lJariable for initialization outcoMe}

{function: y:=f(x) }
{**}
be~in {bod}' of pro~ralTl ISinWindol"I"}
~raphics_init; {initialize the ~raphics SysteM}
display_init(CrtAddrtControIWord ,ErrorReturn); {1"lhich output delJice?}
if ErrorReturn=O then be~in {output delJice initialization OK?}

set_window(OtlOO,0.lGtO.18); {scale the window for the data}
for X:=l to 100 do be~in {100 points total}

Y:=DataPoint()O;
if X=l then MOlJe(XtY)
else line(){tY)

end; {for X:=l to 100}
end; {ErrorReturn=O?}
~raphics_terITl;

end.

{~et a point froM the function}
{MOlJe to the first point ••• }
{ ••• and draw to all the rest}

{terMinate the ~raphics pacKa~e}

{pro~raM ISinWindow"}

A-78 Listings of Example Programs

Graphics Procedures
Graphics Control

CLEAILDISPLAY Clears the graphics display.

CONVERT_WTODMM Converts from world coordinates to mil­
Iimetres on the graphics display.

CONVERT _WTOLMM Converts from world coordinates to mil­
Iimetres on the locator surface.

DISPLAY _FINIT Enables the output of the graphics library to
be sent to a file.

DISPLAY _INIT Enables a device as the logical graphics dis­
play.

DISPLAY_TERM Disables the enabled graphics display de­
vice.

GRAPHICSERROR

GRAPHICS_INIT

GRAPHICS_TERM

INPUT_ESC

Returns an integer error code and can be
used to determine the cause of a graphics
escape.

Initializes the graphics system.

Terminates the graphics system.

Allows the user to obtain device dependent
information from the graphics system.

Inquires the color modeling parameters for
an index into the device-dependent color
capability table.

Inquires the polygon style attributes for an
entry in the polygon style table.

Allows the user to determine characteristics
of the graphics system.

MAKE_PIC_CURRENT Makes the picture current.

OUTPUT_ESC Performs a device dependent escape func­
tion on the graphics display device.

SET_TIMING Selects the timing mode for graphics output.

Graphics Output Primitives
GTEXT

INT_LINE

INT _POLYGON

INT _POL YLINE

LINE

Draws characters on the graphics display.

Draws a line from the starting position to the
world coordinate specified.

Sets the starting position to the world coor­
dinate position specified.

Displays a polygon-set starting and ending at
the specified point adhering to the specified
polygon style exactly as specified (Le., de­
vice-independent results).

Displays a polygon-set starting and ending at
the specified point adhering to the specified
polygon style in a device-dependent fashion.

Draws a connected line sequence starting at
the specified point.

Draws a line from the starting position to the
world coordinate specified.

MARKER

MOVE

POLYGON

POLYLINE

Outputs a marker symbol at the startit:lg posi­
tion.

Sets the starting position to the world coor­
dinate specified.

Displays a polygon-set starting and ending at
the specified point adhering to the specified
polygon style exactly as specified (Le., de­
vice-independent results).

Displays a polygon-set starting and ending at
the specified point adhering to the specified
polygon style in a device-dependent fashion.

Draws a connected line sequence starting at
the specified point.

Primitive Attributes
SET _CHAILSIZE Sets the character size attribute for graphical

text.

SET_COLOR Sets the color attribute for output primitives
except for polygon interior fill.

SET _COLOR_MODEL Chooses the color model for interpreting pa­
rameters in the color table.

SET _COLOR_TABLE Redefines the color description of the speci­
fied entry in the color table. This color defini­
tion is used when the color index is selected
via SET_COLOR.

SET _LINE_STYLE Sets the line style attribute.

SET_LINE_WIDTH Sets the line-width attribute. The number of
line-widths possible is device dependent.

SET _PGN_ TABLE

SET_TEXT _ROT

Selects the polygon interior color attribute
for subsequently generated polygons by pro­
viding a selector for the color table.

Selects the polygon interior line-style attri­
bute for subsequently generated polygons
by providing a selector for the device depen­
dent line-style table.

Selects an entry in the polygon style table,
thus selecting the attributes for subsequently
generated polygons.

Defines the attributes of an entry in the poly­
gon style table.

Specifies the text direction.

Viewing Transformations
SET-ASPECT

SET_DISPLAY_LIM

SET_VIEWPORT

SET_WINDOW

Redefines the aspect ratio of the virtual coor­
dinate system.

Redefines the logical display limits of the
graphics display.

Sets the boundaries of the viewport in the
virtual coordinate system.

Defines the boundaries of the window.

Graphics Input
AWAIT_LOCATOR

LOCATOILINIT

LOCATOIL TERM

SAMPLE_LOCATOR

SET _ECHO_POS

Waits until activation of the locator button
and then reads from the enabled locator de­
vice.

Enables the locator device for input.

Disables the enabled locator device.

Samples the current locator device.

Defines the locator echo position on the
graphics display.

Redefines the logical locator limits of the
graphics locator.

Graphics Procedure Reference
Appendix

B
The Pascal Programming Language was designed as a teaching language, and as such was in­
tended to be machine independent. This attribute has its good and bad points. Being machine
independent makes the language more easily transportable, but also ensures that it is difficult, if not
impossible, to access any innovative hardware features provided by a specific computer system.

To allow easy access to the graphics and I/O features of your Pascal system, a set of procedures and
functions are provided in the LIBRARY file on the SYSVOL: disc. This reference describes the
syntax and semantics for the procedures and functions provided to access graphics.

The small block of text labelled IMPORT, immediately below the title of each entry, lists the module
which must be declared in an IMPORT statement in order to access the feature. Modules which are
needed by these imported modules, if any, are shown in the Module Dependency Table at the eTld
of this reference.

Concerning HP-HIL
HP-HIL, which stands for Hewlett-Packard Human Interface Link, is a new interface for connect­
ing peripherals. DGL supports HP-HIL absolute locators (e.g., the tablet and the Touchscreen),
and relative locators (e.g., mouse and knob), through high-level procedures which already in­
terface to other locators. In the procedures library section that follows, these application-level
DGL procedures deal with HP-HIL:

.locator_init

.locator_terIT1

.saIT1ple_locator

These calls are the only support DGL interface to HP-HIL locators.

HP-HIL locators are supported by DGL only when attached to the built-in HP-HIL port - the
one attached to the mainframe keyboard controller 8042. HP-HIL locators are not supported
on pre-3.1 revisions of the Series 200/300 Pascal operating system. Mouse and knobs have
additional support in Pascal 3.2, using the driver CONFIG:REL ,(ACCESS:REL on double sided)
with LOCATOR_INIT selector 202.

From one to seven locators can be accessed on a single HP-HIL, but the supported configuration
is only one active locator (or other HP-HIL "locator device") at a time per system. HP-HIL
devices are activated and deactivated by calling OUTPUT _ESC. If more than one . locator is
installed, scaling and limiting is performed on the largest machine-unit limits found on any
tablet, or the first mouse or knob encountered.

B-1

B-2 Graphics Procedure Reference

DGL support of HP-HIL tablets requires the files HPHIL and DGL_ABS to have been executed
or put in INITLIB before accessing the tablet. Both files are found on the CONFIG: (ACCESS:
for double sided) disc of your Pascal Operating System. If either of these files have not been
executed, an appropriate error value is returned from the routine LOCATOR_INIT.

Enhanced DGL support of HP-HIL mouse and knob locators also requires the files HPHIL and
DGL_REL to have been executed or put in INITLIB before accessing the device. As stated
above, both files are found on the CONFIG: (ACCESS: for double sided) disc of your Pascal
Operating System. If either of these files have not been executed, an appropriate error value
is returned from the routine LOCATOR_INIT.

CAUTION
It is inadvisable to connect or disconnect HP-HIL devices while the
system is running, as this may hang the system. The only times where
connecting and disconnecting HP-HIL devices is safe is when the sys­
tern's power is off, or when the system's Command Interpreter prompt
is being displayed and the time/date display (from the Version com­
mand) is not being displayed.

HP-HIL Touchscreen
Touchscreens are considered to be tablets, and are supported, and included in the limit of one
"absolute locator device"; that is, a Touchscreen and an HP-HIL tablet simultaneously active on
the one system is an unsupported configuration because there are two absolute locator devices.

If you have more than one absolute locator on the HP-HIL (e.g., both a Touchscreen and a tablet),
01.1 t P 1.1 t _ esc with an opcode of 1090 gives you an opportunity to deactivate all but the desired
device, and automatically rescale to it.

The Touchscreen is supported in essentially the same way as the tablet, with a few device­
dependent differences:

AWAIT -LOCATOR
The "button press" used for the Touchscreen is the action of removing the finger from the screen,
instead of the action of touching the screen. This was chosen in order to be compatible with BASIC.

Caveats
The Touchscreen's "input pixel" size is 7.5 millimeters in both the X and the Y direction, and the
actual input resolution is 57 x 43. It is quite a low-resolution digitizer in the classic sense of graphics.
As a seJector ("let's choose an object from the screen") it is not bad, but DGL provides no direct
support for selecting or "picking" an object; you must construct a data base design and algorithms if
you wish to use the Touchscreen for this purpose.

If there are two active absolute locators of vastly different resolutions on the HP-HIL, one of them is
going to suffer. The device with less lines of resolution is only going to be able to access a small part
of the world coordinate system, no matter what the user does. This is due to the design of DGL,
which can only really have one locator active at a time.

Graphics Procedure Reference B-3

All HP-HIL absolute locator devices are initially lumped together, as HP-HIL does not provide a
really good way of specifying a particular device on the loop (e. g., specifying the Touchscreen
instead of the tablet as the locator, or vice-versa). The result of all this is that we scale the DGL
locator against the active device with the most lines of input resolution. Note that X and Yare scaled
independently, so if there were both a tall, narrow locator and a short, wide locator on the loop, X
scaling would come from the wide deVice, and Y from the tall deVice-again compatible with
BASIC. This is the essential reason more than one active absolute locator is not supported on the
HP-HIL with DGL.

Again, the 01.1 t P 1.1 t _ esc procedure allows you to selectively disable HP -HIL deVices, so you can
avoid having more than one active absolute locator on the loop at anyone time.

HP-HIL Relative Locator
The discussion of opcode 1090 also applies to selection of mouse and knob locators. A new
LOCATOR_IN IT selector (202) has been added for HP-HIL "relative locator" devices. A new
opcode (1091) supports control of termination of AWAIT_LOCATOR execution. As a default,
both mouse buttons and keyboard keypresses can terminate AWAIT _LOCATOR. OUTPUT _ESC
1091 with INTEGER Array[l]=O "turns off" the keyboard.

8-4 Graphics Procedure Reference

AWAIT_LOCATOR
IMPORT: dgLlib

This procedure waits until activation of the locator button and then reads from the enabled
locator device. Various echo methods can be selected.

Syntax

AWAITJ,OCATOR

Item

echo selector

button variable name

x coordinate name

y coordinate name

x cooridinate
variable name

button variable
name

y cooridinate
variable name

Description/Default

Expression of TYPE INTEGER

Variable of TYPE INTEGER

Variable of TYPE REAL

Variable of TYPE REAL

Procedure Heading
PROCEDURE AWAIT_LOCATOR Echo

I.JAR Button
I.JAR W){ t WY

INTEGER;
INTEGER;
REAL);

Semantics

Range
Restrictions

MININT to MAXINT

AWAIT_LOCATOR waits until the locator button is activated and then returns the value of the
selected button and the world coordinates of the locator. While the button press is awaited, the
locator position can be tracked on the graphic display device. If an invalid button is pressed, the
button value will be returned as 0; otherwise it will contain the value of the button pressed. On
locators that use a keyboard for the button device (e.g., Model 226/236) the ordinal value of
the key pressed is returned.

The echo selector selects the type of echo used. Possible values are:

o - No echo.
1 - Echo on the locator device.
2 - Small cursor
3 - Full cross hair cursor
4 - Rubber band line
5 - Horizontal rubber band line
6 - Vertical rubber band line
7 - Snap horizontal/vertical rubber band line
8 - Rubber band box
9 and above - Device dependent echo on the locator device.

Graphics Procedure Reference B-5

Locator input can be echoed on either a graphics display device or a locator device. The meaning
of the various echoes on various devices used as locators and displays is discussed below.

The button value is the INTEGER value of the button used to terminate the locator input.

The x and y position represent the world coordinate point returned from the enabled locator.

AWAIT_LOCATOR implicitly makes the picture current before sending any commands to the
locator device. The locator should be enabled (LOCATOR_INIT) before calling AWAIT _LOCA­
TOR. The locator is terminated by the procedure LOCATOR_TERM.

Range and Limit Considerations
If the echo selector is out of range, the call to AWAIT_LOCATOR is completed using an echo
selector of 1 and no error is reported. Echoes 2 through 8 require a graphics display to be
enabled. If a display is not enabled, the call will be completed with echo 1 and GRAPHICSER­
ROR will return 4.

If the point entered is outside of the current logical locator limits, the transformed point will still be
returned in world coordinates.

Starting Position Effects
The location of the starting position is device dependent after this procedure with echo 0 or echo
1. For soft-copy devices it is typically unchanged; however, for plotters the pen position (starting
position) will remain at the last position it was moved to by the operator. This is done to reduce
pen movement back to the current position after each AWAIT_LOCATOR invocation.

Echo Types
Several different types of echoing can be performed. Some echoes are performed on the locator
device while others use the graphics display device. When the echo selector is in the range 2 thru
8, the graphics display device will be used in echoing. All of the echoes on the graphics display
start at a point on the graphics display called the locator echo position (see SET _ECHO_POS).
For some of these echoes the locator echo position is also used as a fixed reference point. For
example, the fixed end of the rubber band line will be at the locator echo position. The echoes
available are:

2. Small cursor
Track the position of the locator on the graphics display device. The initial position of the
cursor is at the locator echo position. The point returned is the locator p'osition.

3. Full cross hair cursor
Designate the position of the locator on the graphics display device with two intersecting
lines. One line is horizontal with a length equal to the width of the logical display surface.
The other line is vertical with a length equal to the height of the logical display surface. The
initial point of intersection is at the current locator echo position. The point returned is the
locator position.

4. Rubber band line
Designate the endpoints of a line. One end is fixed at the locator echo position; the other is
designated by the current locator position. The locator position can be told from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator
echo position. The point returned is the locator position.

B-6 Graphics Procedure Reference

5. Horizontal rubber band line
Designate a horizontal line. One endpoint of the line is fixed at the locator echo position: the
other endpoint has the world Y -coordinate of the locator echo position and the world
X-coordinate of the current locator position. The locator position can be distinguished from
the locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator position
and the Y -coordinate of the locator echo position.

6. Vertical rubber band line
Designate a vertical line. One endpoint of the line is fixed at the locator echo position; the
other endpoint will have the world X-coordinate of the locator echo position and the world
Y -coordinate of the current locator position. The locator position can be distinguished from
the locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned will have the X-coordinate of the locator echo
position and the Y -coordinate of the locator position.

7. Snap horizontal/vertical rubber band line
Designate a horizontal/vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of equal
length, a horizontal line will be used. The locator position can be distinguished from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Designate a rectangle. The diagonal of the rectangle is the line from the locator echo position
to the current locator position. The locator position can be distinguished from the locator
echo position by the presence of a small cursor (echo 2) at end representing the locator echo
position. The point returned will be the locator position.

Echo selectors of 1 and greater than or equal to 9 produce a device dependent echo on the
locator device. Most locator devices support at least one form of echoing. Possible ones include
beeping, displaying the value entered, or blinking a light each time a point is entered. If the
specified echo is not supported on the enabled locator device, echo 1 will be used.

Echoes on Raster Displays
Raster displays support all the echoes described under "Echo Types."

Echoes on HPGL Plotters
Hard copy plotting devices (such as the 9872 or the 7580) cannot perform all the echoes listed
above. The closest approximation possible is used for simulating them. The actual echo per­
formed may also depend on whether the plotter is also being used as the locator. The echoes
available on plotters are:

2. Small cursor

Initially the plotter's pen will be moved to the locator echo position. The pen will then
reflect the current locator position (i. e., track) until the locator operation is terminated.

3. Full cross hair cursor
Simulated by ECHO #2.

4. Rubber band line

Simulated by ECHO #2.

Graphics Procedure Reference B-7

5. Horizontal rubber band line
If the plotter is not the current locator device, the plotter's pen will initially be moved to the
current locator echo position. The pen will then reflect the X coordinate of the current
locator position and the Y coordinate of the current locator echo position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the current
locator X coordinate and the locator echo position Y coordinate are returned.

6. Vertical rubber band line
If the plotter is not the current locator device, the plotter's pen position will initially be
moved to the current locator echo position. The pen will then reflect the X coordinate of the
current locator echo position and the Y coordinate of the current locator position.

If the plotter is used as the locator, this echo is simulated by echo 2 except the locator echo
position X coordinate and the current locator Y coordinate are returned.

7. Snap horizontal/vertical rubber band line
Designate a horizontal/vertical line. One endpoint of the line is fixed at the locator echo
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6)
rubber band line, depending on which one produces the longer line. If both lines are of equal
length, a horizontal line will be used. The locator position can be distinguished from the
locator echo position by the presence of a small cursor (echo 2) at end representing the
locator echo position. The point returned is the endpoint of the echoed line.

8. Rubber band box
Simulated by echo 2. The point returned will be the locator position.

Absolute Locators (Graphics Tablet or Plotter)
For graphics tablets, the operator moves the stylus to the desired position and depresses it. The
button value returned is always one. For an echo selector of 1 the tablet beeper is sounded when
the stylus is depressed. An echo selector greater than or equal to 9 uses the same echo as an echo
selector of 1. (Some HPGL plotters have the ability of using the physical pen as a locator. See the
subsequent section called "HPGL Plotters as Absolute Locators" for details.)

Relative Locators (Knob or Mouse) - LOCATOR_INIT Selector 2
When the knob is specified as the locator (LOCATO~INIT with device selector of 2) the keyboard
keys have the following meanings:

Arrow keys

Knob

Knob with shift key
pressed

Mouse

Number of keys
1~9

Move the cursor in the direction indicated.

Move the cursor right and left.

Move the cursor up and down.

Move the cursor in the direction of mouse movement (mouse left = cursor left;
mouse forward = cursor up; etc.).

Change the distance the cursor is moved per arrow keypress, knob rotation, or
mouse movement. 1 provides the least movement and 9 provides the most.

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is
returned in BUTTON.

For an echo selector of 1 the position of the locator is indicated by a small cross hair cursor on the
graphics display.

B-8 Graphics Procedure Reference

The initial position of the cursor is located at the current starting position of the graphics display.
This is the point obtained by the last invocation of await_locator, or the lower left hand corner of
the locator limits if no pOint has been received since LOCATOR_INIT was executed. For back to
back AWAIT_LOCATOR calls this would mean the second AWAIT_LOCATOR would begin
where the first AWAIT _LOCATOR left the cursor. Echo selectors greater than or equal to 9
have the same effect as an echo selector of 1.

Locator input can be echoed on either a graphics display device or a locator device. Echoes 2 thru
8 are explained above under "Echoes on Raster Displays" and "Echoes on HPGL Plotters". For
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

Relative Locators (Knob or Mouse) - LOCATO~INIT selector 202
When LOCATOR_INIT is performed with selector 202, the keyboard keys are initially enabled to
terminate subsequent AWAIT _LOCATOR calls. The arrow keys do not have any special mean­
ing, and pressing them will not move the cursor, but will instead terminate AWAIT_LOCATOR.
Also, number keys are not special. Mouse and knob devices work as for LOCATOR_INIT with
selector 2, but the cursor is much more responsive and cursor motions have a "crisp" feel.

Echo selectors are the same as for the HP-HIL tablets. The mouse or knob "remembers" where
it was from one AWAIT _LOCATOR call to another. The cursor is initially displayed in this last
position unless the device was moved in the intervening time. SAMPLE_LOCATOR makes
sense with this driver, as DGL is "watching" the device position continuously from the time
LOCATOR_INIT is executed, until LOCATOR_TERM occurs. The position can be changed
outside of AWAIT _LOCATOR calls, which is not true using LOCATOR_INIT with selector 2.

Buttons on the device are defined as:

First button 128
Second button 130
Third button 132

For keyboard keys, the button has the same value as the ordinal of the key would return when
reading a character from input.

We recommend using this new capability when you are using a mouse or knob with DGL. This
capability is available on the HP 98203C HP-HIL keyboard knob. However, it is not supported
on the HP 98203A and HP 98203B (non-HP-HIL keyboard) knobs.

HPGL Plotters as Absolute Locators
-The AWAIT_LOCATOR function enables a digitizing mode in the device. For HPGL plotters the
operator then positions the pen to the desired position with the cursor buttons or joy stick and
then presses the enter key. The pen state (0 for 'up', and 1 for 'down') is returned in the button
parameter.

Following locator input (echo on the locator device), the pen position will remain at the last
position it was moved to by the operator. This means that the starting position for the next
graphics primitive will be wherever the pen was left.

Graphics Procedure Reference 8-9

Locator input can be echoed on either a graphics display device or a locator device. Echoes 2 thru
8 are explained above under' 'Echoes on Raster Displays" and' 'Echoes on HPGL Plotters". For
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal
to 9 have the same effect as an echo selector of 1.

Error Conditions
The graphics system must be initialized and the locator device must be enabled or the call will be
ignored. If the echo selector is between 1 and 9 and the graphics display is not enabled, the call
will be completed with an echo selector of 1. If any of the preceding errors are encountered, an
ESCAPE (-27) is generated, and GRAPHICSERROR will return a non-zero value.

HP-HIL Absolute Locator Semantics
E c h 0 defines an echoing mechanism for feedback to the user. Echo has the same meaning as when
applied to a HP 9111A (HP-IB) data tablet.

B 1.1 t ton is an integer returned to indicate which key or "button" on the digitizer completed the
digitize operation. B 1.1 t ton will always be returned as 128 on HP -HIL tablets which have only a
stylus; if the tablet has buttons on the cursor, or a keypad, the value returned will be the HP-HIL
keycode for the button pressed:

First button (or stylus) 128

Second button

Third button

Fourth button

130

132

134

w x and w}' are the world coordinate real values returned by the locator when the digitizing is
completed. AI", a it _10 cat 0 r does not return to the calling program until the digitizing operation has
been completed by the user; the completion of the digitizing is considered a "button press" and is
device-dependent. For the HP-HIL tablet, the digitizing action is to close the switch or button on the
stylus or "puck," while in "proximity range" of the platen. If multiple tablets are active on the
HP-HIL, there is the potential for confusion as to whether proximity is in range or out of range;
DGL does not reliably resolve this situation, and multiple tablets presents the possibility of digitizing
spurious data. See the section on "outpl.lt_esc" for information on disabling HP-HIL absolute
locators.

B-I0 Graphics Procedure Reference

CLEAR_DISPLA Y
IMPORT: dgLlib

This procedure clears the graphics display.

Syntax

-+-(CLEAR_DISPLA~

Procedure Heading
PROCEDURE CLEAR_DISPLAY;

Semantics
The graphics system provides the capability to clear the graphics display of all output primitives at
any time in an application program. This procedure has different meaning for different graphics
display devices. CLEAR_DISPLAY makes the picture current. The starting position is not
effected by this procedure.

HPGL Plotters
Plotters with page advance will be sent a command to advance the paper. On devices such as
fixed page plotters, a call to CLEAR_DISPLAY simply makes the picture current.

Raster Displays
On CRT displays, this procedure clears the display to the background color. This means slightly
different things on different displays:

Monochrome

HP 98627A

Color bit-map

Error conditions:

If color table location 0 is 0 then the display is cleared to black. Otherwise, the
display is cleared to white.

The display is cleared to the non-dithered color closest to the color repre­
sented specified by color table location O. (e.g., If color table location 0 was
Red = .5, Green = .2, Blue = 0, the display would be cleared to red.)

The display is cleared to the color represented by color table location O.

The graphics system must be initialized and a display must be enabled or the call will be ignored,
an ESCAPE (- 27) will be generated, and the GRAPHICSERROR function will return a non-zero
value.

Graphics Procedure Reference B-ll

CONVERT_WTODMM
IMPORT: dgLlib

This procedure converts from world coordinates to millimetres on the graphics display.

Syntax

CONVERT _WTODMM

world x

world y

Item

metric x name

metric y name

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

Variable of TYPE REAL

Variable of TYPE REAL

Procedure Heading
PROCEDURE CONI.JERT _WTODMM W)-(t WY

I)AR MITI)< t MITIY

Semantics

REAL;
REAL);

Range
Restrictions

This procedure returns a coordinate pair (metric X,metric Y) representing the world X and Y
coordinates. The metric X and Y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
graphics display, converting the point (0.0,0.0) in the world coordinate system may not result in
the value (0.0,0.0) offset from the physical display device's origin.

CONVERT _WTODMM will take any world coordinate point, inside or outside the current
Window, and convert it to a point offset from the physical display device's origin.

Error conditions:
The graphics system must be initialized and the graphics display must be enabled or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-12 Graphics Procedure Reference

CONVERT_WTOLMM
IMPORT: dgLlib

This procedure converts from world coordinates to millimetres on the locator surface.

Syntax

CONVERT _WTOLMM

world x

world y

Item

metric x name

metric y name

Procedure Heading

Description/Default

expression of TYPE REAL

expression of TYPE REAL

variable of TYPE REAL

variable of TYPE REAL

PROCEDURE CONVERT_WTOLMM WXt WY
I,JAR MiTl}< t MiT1Y

Semantics

REAL;
REAL);

Range
Restrictions

This procedure returns a coordinate pair (metric x,metric y) representing the world X and Y
coordinates. The metric x and y values are the number of millimetres along the X and Y axis from
the supplied world coordinate point to the origin of the metric coordinate system on the device.
The location of this origin is device dependent.

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left
corner of pen movement.

Since the origin of the world coordinate system need not correspond to the origin of the physical
locator device, converting the point (0.0,0.0) in the world coordinate system does not necessarily
result in the value (0.0,0.0) offset from the physical locator device's origin.

CONVERT _WTOLMM will take any world coordinate point, inside or outside the current
window, and convert it to a point offset from the physical locator origin.

Error Conditions
The graphics system must be initialized, the graphics device must be enabled, and the locator
must be initialized or the call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-13

DISPLAY _FINIT
IMPORT: dgLlib

This procedure enables the output of the graphics library to be sent to a file.

Syntax

DISPLAY....FINIT

Range
Item Description/Default Restrictions

file name Expression of TYPE Gstring255; can be Must be a valid file name
a STRING of any length up to 255 char- (see "The File System")
acters.

device specifier Expression of TYPE Gstring255; can be 9872A, 9872B,
a STRING of any length up to 255 char- 9872C, 9872S,
acters. First six characters are significant. 9872T, 7440A,

7470A, 7475A,
7550A, 7570,
7570A, 7575,
7575A, 7576,
7576A, 7580,
7580A, 7580B,
7585, 7585A,
7585B, 7586,
7586B, 7595,
7595A, 7596,
and 7596A

control value Expression of TYPE INTEGER MININT thru MAXINT
error variable Variable of TYPE INTEGER
name

Procedure Heading
PROCEDURE DISPLAY_FINIT Fi 1 e_NalTle Gstrins255,

Gstrins255,
INTEGER,
INTEGER);

Semantics

De l,I i c e_NaITle:

Control
IJAR Ierr

Recommended
Range

see below

DISPLAY _FIN IT allows output from the graphics library to be sent to a file. This file can then be
sent a graphics display device by use of the operating system's file system (e.g. FILER, or SRM
spooler). The contents of the file are device dependent, and MUST be sent only to devices of the
type indicated in device name when the file was created.

The file name specifies the name of the file to send device dependent commands to.

B-14 Graphics Procedure Reference

The device specifier tells the graphics system the type of device that the file will be sent to. Only
some types of devices may be use this command. For example raster devices (Le. the internal
display) may not use this command. For the currently supported devices, see the range restric­
tions under Syntax, above.

The control value is used to control characteristics of the graphics display device and should be
set according to the display device the file is intended for. See "Control Values," below, for the
meaning of the control value.

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value Meaning

o The graphics display device was successfully initialized.

1 The graphics display device (indicated by device name) is not supported by the graphics
library.

2 Unable to open the file specified. File error is returned in ESCAPECODE and IORESUL T
(see the PascaJ Workstation System manual).

DISPLAY _FINIT enables a file as the logical graphics display. The file can be of any type, al­
though the current spooling mechanisms can only handle TEXT and ASCII files. The file need not
exist before this procedure is called. If this procedure is successful, the file will be closed with
'LOCK'when DISPLAY_TERM is executed.

This procedure initializes and enables the graphics display for graphics output. Before the device is
initialized, the device status is 0, the device address is 0, and the device name is the default name.
The default name is ' , (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled) and the internal device speCifier
used by the graphics library is set to the file name provided by the user. The device name is set to
the supplied device name. This information is available by calling INQ_WS with operation
selectors of 11050 and 12050.

Initialization includes the following operations:

• The graphics display surface is cleared (e.g., CRT erased, plotter page advanced) if Bit 7 of
CONTROL is not set.

• The starting position is set to a device dependent location.

• The logical display limits are set to the default limits for the device.

• The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

• All primitive attributes are set to the default values.

• The locator echo position is set to its default value.

Graphics Procedure Reference B-15

Only one graphics output device can be initialized at a. time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT _MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
The control value is used to control characteristics of the graphics display device. Bits should be
set according to the following bit map. All unused bits should be set to O.

Bits

o thru 6

7

8 thru 15

0 0

15 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning

Currently unused. Should be set to O.

If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of
the DISPLAY _FIN IT procedure. Some devices have the ability to not clear the
graphics display, or not to perform a page advance during device initialization.
This bit is ignored on devices that do not support the feature.

Not used by DISPLAY _FIN IT.

HPGL Plotter Initialization
When an HPGL device is initialized the following device dependent actions are performed, in
addition to the general initialization process:

• Pen velocity, force, and acceleration are set to the default for that device.

• ASCII character set is set to 'ANSI ASCII' .

• Paper cutter is enabled (HP 9872S / HP 9872T).

• Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A).

• Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A) (unless DISPLAY _INIT
CONTROL bit 7 is set).

• The automatic pen options are set (HP 7580 / HP 7585/ HP 7586B / HP 7550A).

B-16 Graphics Procedure Reference

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution
Plotter mm mm points points Aspect points/mm

7440A 272.5 191.25 10900 7650 .7018 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7475 416 259.125 16640 10365 .6229 40.0
7550A/B 411.25 254.25 16450 10170 .6182 40.0
7570A 809.5 524.25 32380 20970 .6476 40.0
7575A 809.5 524.25 32380 20970 .6476 40.0
7576A 1182.8 898.1 47312 35924 .7593 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7595A/B 1100 891.75 44000 35670 .8107 40.0
7596A/B 1182.8 898.1 47312 35924 .7593 40.0
7599A 1182.8 898.1 47312 35924 .7593 40.0
9872 400 285 16000 11400 .7125 40.0

Any device not in this list is not supported. The 7550B, 7595B, and 7599A plotters are only
supported in 7550A, 7595A, or 7596A emulation mode.

Any device not in this list is not supported.

The default logical display surface is set equal to the maximum physical limits of the device. The
view-surface is always justified in the lower left corner of the current logical display surface
(corner nearest the turret for the HP 7580 and HP 7585 plotters). The physical origin of the
graphics display is at the lower left boundary of pen movement.

Error Conditions
If the graphics system is not initialized, the call is ignored, an ESCAPE (- 27) is generated, and
GRAPHICSERROR returns a non-zero value.

Graphics Procedure Reference 8-17

DISPLA Y _INIT
IMPORT: dgLlib

This procedure enables a device as the logical graphics display.

Syntax
error variable

name

Item DescriptiQn/Default
Range Recommended

device selector Expression of lYPE INTEGER

control value Expression of lYPE INTEGER

error variable name Variable of TYPE INTEGER

Procedure Heading
PROCEDURE DISPLAY_INIT Del.l_Ad r

Control
VAR IErr

Semantics

Restrictions

MININT to
MAXI NT

MININT to
MAXINT

INTEGER,
INTEGER,
INTEGER);

Range

DISPLAY _INIT enables a device as the logical graphics display. It initializes and enables the
graphics display device for graphics output.

Before the device is initialized the device status is 0, the device address is 0, and the device name is
the default name. The default name is' , (six ASCII blanks).

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier
used by the graphics library is set equal to the device selector provided by the user. The device
name is set to the device being used. This information is available by calling INQ_WS with
operation selectors 11050 and 12050.

The device selector specifies the physical address of the graphics output device.
device selector = 3: Primary internal graphics CRT (i. e., the display deSignated as the

console-where the command line is displayed).

device selector = 6: Secondary internal graphics CRT, if present (i. e., any display other
than the console that does not require a select code and/or bus
address to access it).

8::::::;device selector::::::;31: Interface card select code (HP 98627 A default = 28).

700~device selector~3199: Composite HP-IB/device selector.

The control value is used to control device dependent characteristics of the graphics display
device.

B-18 Graphics Procedure Reference

The error variable name will contain a value indicating whether the graphics display device was
successfully initialized.

Value

o
2

Meaning

The graphics display device was successfully initialized.

Unrecognized device specified. Unable to communicate with a device at the specified
address, non-existent interface card or non-graphics system supported interface card.

If an error is encountered, the call will be ignored.

The graphics library attempts to directly identify the type of device by using its device selector in
some way. The meanings for device address are listed above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the supplied device selector. Invalid device
selectors or unresponsive devices result in that device not being initialized and an error being
returned.

Only one graphics output device maybe initialized at a time. If a graphics display device is
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will
continue.

A call to MOVE or INT _MOVE should be made after this call to update the starting position and in
so doing, place the physical pen or beam at a known location on the graphics display device.

The Control Value
Used to control characteristics of the graphics display device. Bits should be set according to the
folloWing bit map. All unused bits should be set to O.

Bits

o thru 6
7

8 thru 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning

Currently unused. Should be set to o.
If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of
the DISPLAY _INIT procedure. Some devices have the ability to not clear the graphics
display, or not to perform a page advance during device initialization. This bit is ignored
on devices that do not support the feature.
Bits 8 through 15 are used by some devices to control device dependent features of those
devices.

Graphics Procedure Reference 8-19

Device Dependent Values
Bits 8, 9, and 10 of DISPLAY JNIT's CONTROL parameter determine the type of display for
the HP 98627 A card and the default dimensions assumed by the graphics system.

Bits
CONTROL 1098 Description

256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EURO STD (512 x 390, 50 hz refresh)

768 011 US TV (512 x 474, 15.75 Khz horizontal
refresh, interlaced)

1024 100 EURO TV (512 x 512, 50 hz vertical refresh,
interlaced)

1280 101 HIRES (512 x 512, 60 hz)

1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

When using a Model 237 computer, HP 98700A display, or Series 300 display that is designated
the console, bit 8 of DISPLAY _INIT's CONTROL parameter determines if the entire screen will
be used for graphics. A value of 256 (Le., bit 8 = 1) turns off the echo of the typeahead buffer,
and allocates the entire screen for graphics. The typeahead buffer echo is re-enabled by the
DISPLAY _TERM procedure call. If bit 8 is set and the program aborts before DISPLAY _TERM
is called, you must reboot to get the typeahead buffer echo back.

General Initialization Operations
Initialization includes the following operations:

• The graphics display surface is cleared (e. g., CRT erased, plotter page advanced) unless Bit 7
of the control value is set.

• The starting position is set to a device dependent location. (This is undefined for HPGL
plotters.)

• The logical display limits are set to the default limits for the device.

• The aspect ratio of the virtual coordinate system is applied to the logical display limits to
define the limits of the virtual coordinate system.

• All primitive attributes are set to the default values.

• The locator echo position is set to its default value.

• If the display and locator are the same physical device, the logical locator limits are set to the
limits of the view surface.

B-20 Graphics Procedure Reference

Raster Display Initialization
When a raster display is initialized the following device dependent actions are performed, in
addition to the general initialization process:

• The starting position is in the lower left corner of the display.

• Graphics memory is cleared if bit 7 of the control word is O.
• Initialize the color table to default values. If the device has retroactive color defini­

tion (Model 236 color computer, HP 98543A, HP 98545A, HP 98547 A, HP 98549A,
HP 98550A, and HP 98700A) and the color table has been changed from the default
colors, the colors of an image will change even if bit 7 is set to 1.

• The graphics display is turned on.

• The view surface is centered within the logical display limits.

• The drawing mode (see OUTPUT_ESC) is set to dominate.

• The DISPLAY _INIT CONTROL parameter is used as specified above.

The following table describes the internal raster display for Series 200/300 computer:

Wide High Wide High Memory Color
Computer mm mm points points Planes Map
Model 216 160 120 400 300 1 no
Model 217 230 175 512 390 1 no
Model 220 (HP 82913A) 210 158 400 300 1 no
Model 220 (HP 82912A) 152 114 400 300 1 no
Model 226 120 88 400 300 1 no
Model 236 210 160 512 390 1 no
Model 236 Color 217 163 512 390 4 yes
Model 237 312 234 1024 768 1 no
98700 360 270 1024 768 4/8 yes
98542A 210 164 512 400 1 no
98543A 210 164 512 400 4 yes
98544A 312 234 1024 768 1 no
98545A 360 270 1024 768 4 yes
98547A 360 270 1024 768 6 yes
98548A 343 274 1280 1024 1 no
98549A 360 270 1024 768 6 yes
98550A 343 274 1280 1024 8 yes

362/382 VGA 290 210 640 480 8 yes

382 Medium Res 300 225 1024 768 8 yes

382 High Res 340 272 1280 1024 8 yes

Graphics Procedure Reference B-21

The HP 98627 A is a 3 plane non-color mapped color interface card which connects to an external
RGB monitor. Bits 8,9, and 10 of DISPLAY _IN IT' s CONTROL parameter determine the type of
display for the HP 98627 A card and the default dimensions assumed by the graphics system.

Bits
CONTROL 1098 Description

256 001 USSTD (512 x 390, 60 hz refresh)
512 010 EUROSTD (512 x 390,50 hz refresh)
768 011 US TV (512 x 474, 15.75 Khz horizontal

refresh, interlaced)
1024 100 EUROTV (512 x 512, 50 hz vertical refresh,

interlaced)
1280 101 HIRES (512 x 512, 60 hz)
1536 110 Internal (HP) use only

Out of range values are treated as if CONTROL = 256.

The physical size of the HP 98627 A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256
512
768

1280

153.3mm wide and 116. 7mm high.
153.3mm wide and 116.7mm high.
153.3mm wide and 142.2mm high.

153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface.

HPGL Plotter Initialization
When an HPGL device is initialized the follOWing device dependent actions are performed, in
addition to the general initialization process:

• Pen velocity, force, and acceleration are set to the default for that device.

• ASCII character set is set to 'ANSI ASCII' .

• Paper cutter is enabled (HP 9872S / HP 9872T).

• Advance page option is enabled (HP 7550A / HP 7586B / HP 7596A / HP 9872S /
HP 9872T).

• Paper is advanced one full page (HP 7550A / HP 7586B / HP 7596A / HP 9872S /
HP 9872T) (unless DISPLAY _INIT CONTROL bit 7 is set).

• The automatic pen options are set (HP 7570A / HP 7575A / HP 7576A / HP 7580A /
HP 7585 / HP 7595A).

B-22 Graphics Procedure Reference

The default initial dimensions for the HPGL plotters supported by the graphics library are:

Wide High Wide High Resolution
Plotter mm mm points points Aspect points/mm

7440A 272.5 191.25 10900 7650 .7018 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7475 416 259.125 16640 10365 .6229 40.0
7550A/B 411.25 254.25 16450 10170 .6182 40.0
7570A 809.5 524.25 32380· 20970 .6476 40.0
7575A 809.5 524.25 32380 20970 .6476 40.0
7576A 1182.8 898.1 47312 35924 .7593 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7595A/B 1100 891.75 44000 35670 .8107 40.0
7596A/B 1182.8 898.1 47312 35924 .7593 40.0
7599A 1182.8 898.1 47312 35924 .7593 40.0
9872 400 285 16000 11400 .7125 40.0

The 7550B, 7595B, 7596A, and 7599A plotters are only supported in 7550A, 7595A, or 7596A
emulation mode.

The maximum physical limits of the graphics display for an HPGL device not listed above are
determined by the default settings of PI and P2. The default settings of PI and P2 are the values
they have after an HPGL 'IN' command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by PI and P2 at the time
DISPLAY.JNIT is invoked. The view surface is always justified in the lower-left corner of
the current logical display surface (corner nearest the turret for the HP 7570A, HP 7575A,
HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595A, and HP 7596A plotters). The physical
origin of the graphics display is at the lower-left boundary of pen movement.

Note

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A,
HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, or
HP 7599A plotter while the graphics display is initialized, it should be
the same size of paper that was in the plotter when DISPLAY _INIT was
called. If a different size of paper is required, the device should be ter­
minated (DISPLAY_TERM) and re-initialized after the new paper has been
placed in the plotter.

Error Conditions
The graphics system must be initialized or the call will be ignored, an ESCAPE (- 27) will be
generated, and GRAPHICSERROR will return a non-zero value.

IMPORT: dgLlib

This procedure disables the enabled graphics display device.

Syntax

.....(OISPLAV_TERM ~

Procedure Heading
PROCEDURE DISPLAY_TERM;

Semantics

Graphics Procedure Reference 8-23

DISPLAY_TERM

DISPLAY_TERM terminates the device enabled as the graphics display. DISPLAY_TERM
completes all remaining display operations and disables the logical graphics display. It makes the
picture current and releases all resources being used by the device. The device name is set to the
default name' , (six ASCII blanks), the device status is set to 0 (not enabled) and the device
address is set to O. DISPLAY_TERM does not clear the graphics display.

The graphics display device should be disabled before the termination of the application prog­
ram. DISPLAY_TERM is the complementary routine to DISPLAY _INIT.

Error Conditions
The graphics system should be initialized and the display should be enabled or the call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-24 Graphics Procedure Reference

GRAPHICSERROR
IMPORT: dgLlib

This function returns an integer error code and can be used to determine the cause of a
graphics escape.

Syntax

--.(GRAPHICSERROR r

Function Heading
FUNCTION GRAPHICSERROR: INTEGER;

Semantics
When an error occurs that uses the escape function, escape-code - 27 is used. After the escape is
trapped and it has been determined that the graphics library is the source of the error (the escape
code equal to - 27), GRAPHICSERROR can be used to determine the cause of the error. The
function returns the value of the last error generated and then clears the value of the return error.
A user who is trapping errors and wishes to keep the value of the error must save it in some
variable.

The following list of returned values and the error they represent can be used to interpret the
value returned by GRAPHICSERROR.

Value

o
1

2

3

4

5

6

7

8

9

10

Meaning

No errors since the last call to GRAPHICSERROR or since the last call to GRAPHICS_INIT.

The graphics system is not initialized. ACTION: CAll ignored.

The graphics display is not enabled. ACTION: Call ignored.

The locator device is not enabled. ACTION: Call ignored.

Echo value requires a graphics display to be enabled. ACTION: Call completes with echo
value = 1.

The graphics system is already initialized. ACTION: Call ignored.

Illegal aspect ratio specified. X-SIZE and Y -SIZE must be greater than O. ACTION: Call
ignored.

Illegal parameters specified. ACTION: Call ignored.

The parameters specified are outside the physical display limits. ACTION: Call ignored.

The parameters specified are outside the limits of the window. ACTION: Call ignored.

The logical locator and the logical display are the same physical device. The logical locator
limits cannot be defined explicitly, they must correspond to the logical view surface limits.
ACTION: Call ignored.

Graphics Procedure Reference 8-25

11 The parameters specified are outside the current virtual coordinate system boundary.
ACTION: Call ignored.

13 The parameters specified are outside the physical locator limits. ACTION: Call ignored.

14 Color table contents cannot be inquired or changed. ACTION: Call ignored.

18 The number of points specified for a polygon or polyline operation is less than or equal to
zero. ACTION: Call ignored.

8-26 Graphics Procedure Reference

GRAPHICS_INIT

This procedure initializes the graphics system.

Syntax

Procedure Heading
PROCEDURE GRAPHICS_INIT;

Semantics

IMPORT: dgLlib

GRAPHICS_INIT initializes the graphics system. It must be the first graphics system call made by
the application program. Any procedure call other than GRAPHICS_INIT will be ignored.
GRAPHICS_INIT performs the following operations:

• Get dynamic storage space for the graphics library.

• Sets the aspect ratio to 1.

• Sets the virtual coordinate and viewport limits to range from a to 1. a in the X and Y
directions.

• Sets the world coordinate limits to range from - 1. a to 1. a in the X and Y directions.

• Sets the starting position to (0.0,0.0) in world coordinate system units.

• Sets all attributes equal to their default values.

GRAPHICS_INIT does not enable any logical devices. The graphics system is terminated with a
call to GRAPHICS_TERM. Calling GRAPHICS_INIT while the graphics system is initialized will
result in an implicit call to GRAPHICS_TERM, before the system is reinitialized.

IMPORT: dgLlib

This procedure terminates the graphics system.

Syntax

~RAPHICS_TERr

Procedure Heading
PROCEDURE GRAPHICS_TERM;

Semantics

Graphics Procedure Reference B-27

GRAPHICS_ TERM

GRAPHICS_TERM terminates the graphics system. Termination includes terminating both the
graphics display and the locator devices. GRAPHICS_TERM does not clear the graphics display.

GRAPHICS_TERM should be called as the last graphics system call in the application program.

GRAPHICS_TERM releases dynamic memory allocated during GRAPHICS_INIT. In order that
this memory actually be returned the compiler option $HEAP _DISPOSE ON$ must be used.

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (- 27) will be
generated, and GRAPHICSERROR will return a non-zero value.

B-28 Graphics Procedure Reference

GTEXT

This procedure draws characters on the graphics display.

Syntax

Item

string

Description/Default

Expression of TYPE Gstring255. Can be a string
of any length up to 255 characters

Procedure Heading
PROCEDURE GTEXT (Strin~ Gstrin~255);

Semantics
The string contains the characters to be output.

IMPORT: dgLtypes
dgLlib

Range
Restrictions

length < = 255
characters

GTEXT produces characters on the graphics display. A series of vectors representing the
characters in the string is produced by the graphics system.

When the text string is output, the starting position will represent the lower left-hand corner of the
first character in STRING. Text is normally output from left to right and is printed vertically with
no slant.

After completion of this call, the starting position is left in a device dependent location such that
successive calls to GTEXT will produce a continuous line of text (i.e.,
GTE}-(T (I HI); GTE}{T (I I I) ; is equivalent to GTE}-{T (I H I I) n.

The attributes of color, line-style, line-width, text rotation, and character size apply to text
primitives. However, the text will appear with these attributes only if the graphics device is
capable of applying them to text.

Characters
The character sets provided by the graphics system are the same ones used by the CRT in alpha
mode, namely the standard character set plus either the Roman extension character set (for all
non-Katakana machines) or the Katakana character set (for Katakana machines).

Graphics Procedure Reference 8-29

Characters are defined within a cell that has an aspect ratio of 9/15. The character cells are
adjacent, both horizontally and vertically, as shown here.

I----Width---l I------Wldth---l

E

I

1 234567 B 9

Control Codes
The following control codes are supported by GTEXT:

Control Program Keyboard
Character Access Access

backspace CHR(8) CTRL-H

linefeed CHR(10) CTRL-J

carriage CHR(13) CTRL-M
return

Any other control characters are ignored.

Action

Move one character cell to the left along the text direction
vector (defined by SET_CHAR_SIZE).

Move down the height of one character cell.

Move back the length of the text just completed.

The current position is maintained to the resolution of the display device. A text size less-than-or­
equal-to the resolution of the display device will result in all the characters in a GTEXT call, or a
series of GTEXT calls, being written to the same point on the device.

The current position returned by an INQ_WS is not updated by calls to GTEXT. If you want to
know the current position after a GTEXT, you must do a MOVE, or some other call which updates
the current position.

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

B-30 Graphics Procedure Reference

INPUT_ESC
IMPORT: dgLlib

This procedure allows the user to obtain device dependent information from the graphics
system.

Syntax

INPUTJ:SC INTEGER

Item Description/Default

operation selector Expression of TYPE INTEGER

INTEGER array Expression of TYPE INTEGER
size

REAL array size Expression of TYPE INTEGER

INTEGER array Variable of TYPE ANYVAR
name should be array of INTEGERs

REAL array name Variable of TYPE ANYVAR
should be array of REAL

error variable name Variable of TYPE INTEGER

Procedure Heading
PROCEDURE INPUT_ESC Opcode

Isize
Rsize

ANY!.JAR IIi 5 t
ANY!.JAR R 1 is t

!.JAR Ierr

error variable
name

Range Recommended
Restrictions

MININT to
MAXINT

MININT to
MAXINT

MININT to
MAXINT

INTEGER;
INTEGER;
INTEGER;
Gint_list;
Greal_list;
INTEGER) ;

Range

>0

>0

Graphics Procedure Reference B-31

Semantics
The operation selector determines the device dependent inquiry escape function being invoked.

The INTEGER array size is the number of INTEGER parameters to be returned in the INTEGER
array by the escape function. The correct value for this can be found in the thousand's place of the
operation selector (see the table below).

The REAL array size is the number of REAL parameters to be returned in the REAL array by the
escape function. The correct value for this can be found in the hundred's place of the operation
selector (see the table below).

The INTEGER array is the array in which zero or more INTEGER parameters are returned by the
escape function.

The REAL array is the array in which zero or more REAL parameters are returned by the escape
function.

The error variable will contain a code indicating whether the input escape function was
performed.

Value Meaning

o Inquiry escape function successfully completed.

1 Inquiry operation (operation selector) not supported by the graphics display or locator
device.

2 INTEGER array size is not equal to the number of INTEGER parameters to be returned.

3 REAL array size is not equal to the number of REAL parameters to be returned.

4 Illegal parameters specified.

If the error variable contains a non-zero value, the call has been ignored.

INPUT_ESC allows application programs to access special device features on a graphics display
device. The type of information returned from the graphics display device is determined by the
value of operation selector. Possible inquiry escape functions may return the status or the options
supported by a particular graphics display device.

Inquiry escape functions only apply to the graphics display device. INPUT_ESC implicitly makes
the picture current before the escape function is performed.

B-32 Graphics Procedure Reference

HPGL Plotter Operation Selectors

The following inquiry is supported.

Operation
Selector Meaning

2050 Inquire about current turret.

INTEGER array [1] = - 1 > > Turret mounted, but its type is unknown
INTEGER array [1] = 0 > > No turret mounted
INTEGER array [1] = 1 > > Fiber tip pens
INTEGER array [1] = 2 > > Roller ball pens
INTEGER array [1] = 3 > > Capillary pens

INTEGER array [2] = 0 > > No turret mounted or turret has no pens
INTEGER array [2] = n » Sum of these values:

1: Pen in stall #1
2: Pen in stall #2
4: Pen in stall #3
8: Pen in stall #4

16: Pen in stall #5
32: Pen in stall #6
64: Pen in stall #7

128: Pen in stall #8

For example, if INTEGER array[2] = 3, pens would only be contained in stalls 1 and 2.

Operation selector 2050 is supported on the HP 7475, HP 7550, HP 7570A, HP 7575A,
HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, and HP 7599A plot­
ters. The HP 7595B, HP 7596B and HP 7599A plotters are only supported in HP 7595A or
7596A emulation mode.

The HP 7570A, HP 7575A, and HP 7576A support opcode 2050 but can

only return the values in the following table:

INTEGER array [1] = -1 Turret mounted but type unknown

INTEG ER array [1] = 0 No turret mounted

INTEGER array [2] = 0 No turret mounted

INTEGER array [2] = 255 Assumes all pens are mounted

Error Conditions
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-33

HP-HIL Locator Semantics
The i npu t _esc procedure, when called in relation to an HP-HIL device, returns information
about the device. The 1 OC-ti 1: ot" _ i nit 201 or 1 OC-ti 1: or- _ i nit 202 must have been successfully
executed as well as some d i sp 1 -ti'::i_ i nit.

• The maximum X and Y that can be returned,

• The number of buttons,

• Where it is on the HP-HIL (loop address),

• X and Y resolution.

For HP-HIL locator devices (Le., 1 oc·ti t Of" in it was called with a value of 201 or 202), the
effect of the i n p u 1: _ esc call is as follows:

If 1 ~ I ·tir- r- [1 J~7, and HP-HIL loop address I ·tif" f" [i J is not a locator, I ·tif" f" [1 J returns with the
device ID, unless there was no device there, in which case I ·tif" r- [1 J is zero. Both I ·tir- f" [2 J and
I ·ti r r [::3 J will be 0 when the device is not a locator.

If 1 ~ I ·tif" r [i J~7, and loop address I ·tin- [1 J is a locator, the following information is returned:

Iarr[1] = device ID
Iarr[Z] = Xhlax in device units (non-zero)
Iarr[3] = '(,TlaX in device units (non-zero)
Iarr[ll] = number of buttons on device

Rarr[1] X points/mm
Rarr[Z] = Ypoints/mm

If I a r r [1] is less than 1 or greater than 7, it is an error condition: Err = 4.

A call to i npl.lt_esc when dealing with HP-HIL input devices would take the following form*:

inpl.lt_esc(4Z80, 4, Z, Iarr, Rarr, Err);

If 1 oc·ti 1: or _ i nit .:: 20 i ! ef" t- > or 1 oc·ti 1: Of" _ i nit .:: 202., er- t- > is not executed prior to either of these
calls, the system would report one of three errors:

esc.tipecode=-27 and If no locator has been activated.
9 t- .tiph i cset- t" or =3

esc.tipecode=-27 and If no display has been initialized
9t"-3phicset-ror-=0

ert"=l If a locator other than 201 or 202 has been activated.

This use of i 1"1 P 1.1 t _ esc is an extension past previous implementations of DGL, which specified that
i 1"1 P I.l t _ esc should only talk to output devices (e. g., displays and plotters), not input devices, such as
locators.

* A "9" as the tens digit in the in put _ esc opcode indicates a locator opcode.

B-34 Graphics Procedure Reference

IMPORT: dgLlib
dgLinq

This procedure inquires the color modeling parameters for an index into the device-dependent
color capability table.

Syntax

Item Description/Default

entry selector

first parameter name

Expression of TYPE INTEGER

Variable of TYPE REAL

second parameter name Variable of TYPE REAL

third parameter name Variable of TYPE REAL

Procedure Heading
PROCEDURE INQ_COLOR_TABLE

Semantics

Index
t.IAR Colpi
t.JAR Co 1 p2
t.IAR Co 1 p3

INTEGER;
REAL;
REAL;
REAL) ;

Range
Restrictions

>0

This routine inquires the color modelling parameters for the specified location in a device­
dependent color capability table.

The entry selector specifies the location in the color capability table. The parameters returned
are for the specific location. The size of the color capability table is device dependent. For
raster displays in Series 200/300 computers, 32 entries are available for 1 or 4 plane displays;
80 entries are available for 6 plane displays; and 272 entries are available for 8 plane displays.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

Graphics Procedure Reference B-35

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET _COLOR_MODEL.

Note
The color table stores color specifications as RGB values. The conver­
sion from RGB to HSL is a one-to-many transformation, and the
following arbitrary assignments may be made during the conversion:

IF Luminosity = 0
THEN Hue=O

Saturation = 0

IF Saturation = 0
THEN Hue=O

Error Conditions
If the graphics system is not initialized, a display device is not enabled, the color table contents
cannot be inquired, or the color table entry selector is out of range, the call is ignored, an ESCAPE
(- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

B-36 Graphics Procedure Reference

IMPORT: dgLlib
dgLinq

This procedure inquires the polygon style attributes for an entry in the polygon style table.

Syntax

density
variable name

fill orientation
variable name

Item

entry selector

density variable
name

fill orientation
variable name

Description/Default

Expression of TYPE INTEGER

Variable of TYPE REAL

Variable of TYPE REAL

edge variable name Variable of TYPE INTEGER

Procedure Heading
PROCEDURE INQ_PGN_TABLE

Semantics

Index
I.JAR Denst}'
I.JAR Orient
I.JAR Ed se

edge variable
name

Range
Restrictions

MININT thru
MAXINT

INTEGER;
REAL;
REAL;
INTEGER);

Recommended
Range

Device
dependent

The entry selector specifies the entry in the polygon style table the inquiry is directed at.

The density variable will contain a value between -1 and 1. This magnitude of this value is the
ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One represents
a fully filled polygon interior. All non-zero values specify the density of continuous lines used to fill
the interior. Negative values are used to specify crosshatching. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style. If the interior
line-style is not continuous, the actual fill density may not match that found in the polygon style
table.

Graphics Procedure Reference B-37

The fill orientation variable will contain a value from -90 through 90. This value represents the
angle (in degrees) between the lines used for filling the polygon and the horizontal axis of the
display device. The interpretation of fill orientation is device-dependent. On devices that require
software emulation of polygon styles, the angle specified will be adhered to as closely as possible,
within the line-drawing capabilities of the device. For hardware generated polygon styles, the
angle specified will be adhered to as closely as is possible given the hardware simulation of the
requested density. If crosshatching is specified, the fill orientation specifies the angle of orienta­
tion of the first set of lines in the crosshatching, and the second set of lines is always perpendicular
to this.

The edge variable will contain a 0 if the polygon edge is not to be displayed and a 1 if the polygon
edge is to be displayed. If polygon edges are displayed, they adhere to the current line attributes
of color, line-style, and line-width, in effect at the time of polygon display.

All current devices support 16 entries in the polygon table. The polygon styles defined in the
default tables are defined to exploit the hardware capabilities of the devices they are defined for.

Error Conditions
The graphics system must be initialized, a display must be enabled, and the entry selector must be
in range or the call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

B-38 Graphics Procedure Reference

IMPORT: dgLlib
dgLinq

This procedure allows the user to determine characteristics of the graphics system.

Syntax

Item

operation selector

string size

integer array size

REAL array size

string name

INTEGER array name

REAL array name

error variable name

Procedure Heading
PROCEDURE INQ_WS

INTEGER
array size

REAL
array size

string
variable name

INTEGER
array name

REAL
array name

Description/Default

Expression of TYPE INTEGER

Expression of TYPE INTEGER

Expression of TYPE INTEGER

Expression of TYPE INTEGER

Variable of TYPE PACKED ARRAY OF CHAR

Variable of TYPE ARRAY OF INTEGER

Variable of TYPE ARRAY OF REAL

Variable of TYPE INTEGER

Opcode
Ssize
Is i z e
Rsize

ANYI.JAR Slist
ANYI.JAR IIi 5 t
ANYI.JAR R 1 is t
I.JAR Ierr

INTEGER;
INTEGER;
INTEGER;
INTEGER;
Gchar_list;
Gint_list;
Greal_list;
INTEGER) ;

error
variable name

Range
Restrictions

see below

see below

see below

see below

Graphics Procedure Reference 8-39

Semantics
The operation selector is an integer from the list of operation selectors given below. It is used to
specify the topic of the inquiry to the system.

The string size is used to specify the maximum number of characters that are to be returned in
the string array by the function specified by the operation selector. If there is a 1 in the
ten-thousand's place a string value will be returned. The number of characters in the string is
returned in the first entry in the INTEGER arrray.

The INTEGER array size is the number of integer parameters that are returned in the integer
array by the function specified by OPCODE. The thousand's digit of the operation selector is the
number of elements the INTEGER array must contain.

The REAL array size is the number of REAL parameters that are returned in the REAL array by
the function specified by OPCODE. The hundred's digit of the operation selector is the number of
elements the REAL array must contain.

The string array is a PACKED ARRAY OF CHAR which will contain a string or strings that
represents characteristics of the work station specified by the value of operation selector. The
application program must ensure that string array is dimensioned to contain all of the values
returned by the selected function.

The INTEGER array will contain integer values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the integer array is
dimensioned to contain all of the values returned by the selected function.

The REAL array will contain REAL values that represent characteristics of the work station
specified by the value of OPCODE. The application program must ensure that the REAL array is
dimensioned to contain all of the values returned by the selected function.

The error variable will return an integer indicating whether the inquiry was successfully per­
formed.

Value

o
1

2

3

4

Meaning

The inquiry was successfully performed.

The operation selector was invalid.

The INTEGER array size was not equal to the number INTEGER parameters requested
by the operation selector.

The REAL array size was not equal to the number of REAL parameters requested by
the operation selector.

The string array was not large enough to hold the string requested by the operation
selector.

B-40 Graphics Procedure Reference

The procedure INQ_WS returns current information about the graphics system to the application
program. The type of information desired is specified by a unique value of OPCODE. The
thousands digit of the operation selector specifies the number of integer values returned in the
integer array and the hundreds digit specifies the number of REAL values returned in the REAL
array. A 1 in the ten-thousand's place indicates that a value will be returned in the string.

One use of INQ_WS is device optimization: the use of inquiry is to enhance the application's
utilization of the output device. An example of this is using color to distinguish between lines when a
device supports colors, and using line-styles when color is not available. Another example is
maximizing the aspect ratio used, based on the maximum aspect ratio of the display device.

Device dependent information returned by the procedure is undefined if the device being
inquired from is not enabled (e.g., inquire number of colors supported, operation selector 1053,
only returns valid information when the display is enabled).

If the graphics system is not initialized, the call will be ignored and GRAPHICS ERROR will return
a non-zero value.

Graphics Procedure Reference B-41

Supported Operation Selectors
The operation selectors supported by the system and their meaning is listed below:

Operation
Selector Meaning

250 Current cell size used for text.
REAL Array[1] = Character cell width in world coordinates
REAL Array[2] = Character cell height in world coordinates

251 Marker size.
REAL Array [1] = Marker width in world coordinates
REAL Array[2] = Marker height in world coordinates

252 Resolution of graphics display
REAL Array[l] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

253 Maximum dimensions of the graphics display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

254 Aspectratlos
REAL Array [1] = Current aspect ratio of the virtual coordinate system.
REAL Array[2] = Aspect ratio of logical limits.

255 Resolution of locator device
REAL Array[1] = Resolution in X direction (points/mm)
REAL Array[2] = Resolution in Y direction (points/mm)

256 Maximum dimensions of the locator display.
REAL Array[1] = Maximum size in X direction (MM)
REAL Array[2] = Maximum size in Y direction (MM)

257 Current locator echo position
REAL array[1] = X world coordinate position
REAL array[2] = Y world coordinate position

258 Current virtual coordinate limits
REAL array[1] = Maximum X virtual coordinate
REAL array[2] = Maximum Y virtual coordinate

259 Starting position.
The information returned may not be valid (not updated) following a text call, an escape
function call, changes to the viewing transformation or after initialization of the graphics
display device.

REAL array[1] = X world coordinate position
REAL array[2] = Y world coordinate position

450 Current window limits
REAL array[l] = Minimum X world coordinate position
REAL array[2] = Maximum X world coordinate position
REAL array[3] = Minimum Y world coordinate position
REAL array[4] = Maximum Y world coordinate position

451 Current viewport limits
REAL array[l] = Minimum X virtual coordinate
REAL array[2] = Maximum X virtual coordinate
REAL array[3] = Minimum Y virtual coordinate
REAL array[4] = Maximum Y virtual coordinate

B-42 Graphics Procedure Reference

Operation
Selector

1050

1051

1052

1053

1054

1056

1057

1059

1060

1062

1063

1064

1065

1066

Meaning

Does graphics display device support clipping at physical limits?
INTEGER Array[1] = 0 - No
INTEGER Array [1] = 1 - Yes, to the view-surface boundaries
INTEGER Array[1] = 2 - Yes, but only to the physical limits

of the display surface.

Justification of the view surface within the logical display limits.
INTEGER Array[1] = 0 - View-surface is centered within

the logical display limits
INTEGER Array[1] = 1 - View surface is positioned in the lower

left corner of the logical display limits.

Can the graphics display draw in the background color? Drawing in the background color
can be used to 'erase' previously drawn primitives.

INTEGER Array[l] = 0 - No
INTEGER Array[l] = 1 - Yes

The total number of non-dithered colors supported on the graphics display. The number
returned does not include the background color. (Compare operation selectors 1053, 1054,
and 1075.)

INTEGER Array[1] = number of distinct colors supported.

Number of distinct non-dithered colors which can appear on the graphics display at one
time. The number returned does not include the background color.

INTEGER Array[l] = number of distinct colors which can appear
on the display device at one time.

Number of line-styles supported on the graphics display.
INTEGER Array[l] = number of hardware line-styles supported.

Number of line-widths supported on the graphics display.
INTEGER Array[l] = number of line-widths supported.

Number of markers supported on the graphics display.
INTEGER Array [1] = # of distinct markers supported.

Current value of color attribute.
INTEGER Array[1] = Current value of color attribute.

Current value of line-style attribute
INTEGER Array[1] = Current value of line-style attribute.

Current value of line-width attribute.
INTEGER Array[1] = Current value.

Current timing mode.
INTEGER Array[1] = 0 - Immediate visibility
INTEGER Array[1] = 1 - System buffering

Number of entries in the polygon style table.
INTEGER Array[1] = # styles.

Current polygon interior color index.
INTEGER Array[1] = Index

Operation
Selector

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

11050

11052

Graphics Procedure Reference 8-43

Meaning

Current polygon style index.
INTEGER Array[1] = Index

Maximum number of polygon vertices that a display device can process.
INTEGER Array[1] = 0 No hardware support.

= N (0<n<32767) Number of vertices supported.
= 32767 The graphics display device uses all

available memory to process polygons
(the maximum number of vertices
is determined by current free memory).

Does the graphics device support immediate, retroactive change of polygon style for
polygons already displayed?

INTEGER Array[1] = 0 - No.
INTEGER Array [1] = 1 - Yes.

Does the graphics device support hardware (or low-level device handler) generation of
polygons using INT _POL YGON_DD?

INTEGER Array[1] = 0 - No
INTEGER Array[l] = 1 - Yes

Does the graphics device support immediate, retroactive change for primitives already
displayed?

INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes

Can the background color of the display be changed?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes

Can entries in the color table be redefined using SET _COLOR_TABLE?
INTEGER Array[1] = 0 - No
INTEGER Array[1] = 1 - Yes

Current color model in use.
INTEGER Array [1] = 1 - RGB
INTEGER Array[1] = 2 - HSL

Number of entries in the color capability table. The number returned does not include the
background color.

INTEGER Array[1] = # entries

Current polygon interior line-style.
INTEGER Array [1] = Current interior line-style

Graphics display device association.
String = Name of device path. (Internal device specifier.)
INTEGER Array[1] = Number of characters in the device path.

Locator device association.
String = Name of device path. (Internal device speCifier.)
INTEGER Array[1] = Number of characters in the device path.

B-44 Graphics Procedure Reference

Operation
Selector Meaning

12050 Graphics display device information.
String = Name of graphics display device.
INTEGER Array [1] = Number of characters in the device name.
INTEGER Array[2] = Status

= 0 Graphics display is not enabled.
= 1 Graphics display is enabled.

13052 Graphics locator device information.
String = Name of the locator device.
INTEGER Array[1] = Number of characters in the device name.
INTEGER Array[2] = Status

= 0 Locator device is not enabled.
= 1 Locator device is enabled.

INTEGER Array[3] = Number of buttons on the locator device.

Error Conditions
If the graphics system is not initialized, the call will be ignored, an ESCAPE (- 27) will be
generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-45

IMPORT: dgLtypes
dgLlib

INT_LINE

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

-{INT~INE~

Item

x coordinate

y coordinate

x
coordinate

y
coordinate

Description/Default

Expression of TYPE Gshortint, This is subrange
of INTEGER

Expression of TYPE Gshortint, This is subrange
of INTEGER

Procedure Heading
PROCEDURE INT_LINE Gshortint);

Semantics

Range
Restrictions

-32768 to 32767

- 32 768 to 32 767

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

A line is drawn from the starting position to the world coordinate specified by the x and y
coordinates. The starting position is updated to this point at the completion of this call.

The primitive attributes of line style (see SET_LINE_STYLE), line width (see SET _LINE_
WIDTH), and color (see SET_COLOR) apply to lines drawn using INT _LINE.

This procedure is the same as the LINE procedure, with the exception that the parameters are of
type Gshortint (- 32 768 .. 32 767). When used with some displays this procedure may perform
about 3 times faster than the LINE procedure. For all other displays this procedure has about the
same performance as the LINE procedure.

TheINT _LINE procedure only has increased performance when the following conditions exist:

• The display must be a raster device.

• The window bounds within the range - 32 768 to 32 767.

• The window must be less then 32 767 units wide and high.

8-46 Graphics Procedure Reference

INT operations are provided for efficient vector generation. Although their use can be mixed with
other, non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET _LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

Graphics Procedure Reference B-47

IMPORT: dgLtypes
dgLlib

This procedure sets the starting position to the world coordinate position specified.

Syntax

---.(INTj10VE~ x
coordinate

y
coordinate

Item

x coordinate

y coordinate

Procedure Heading
PROCEDURE INT_MOVE

Semantics

Description/Default

Expression of TYPE Gshortint, This is subrange
of INTEGER

Expression of TYPE Gshortint, This is subrange
of INTEGER

INTEGER);

Range
Restrictions

-32768 to 32 767

-32768 to 32767

The x and y coordinate pair define the new starting position in world coordinates.

INT _MOVE specifies where the next graphical primitive will be output. It does this by setting the
Jalue of the starting position to the world coordinate system point specified by the x and y
coordinate values and then moving the pen (or its logical equivalent) to that point.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of an escape function. A call to MOVE
or INT _MOVE should therefore be made after anyone of the following calls to update the value
of the starting position and in so doing, place the physical pen or beam at a known
location: SET -.ASPECT, DISPLAY _IN IT, SET _DISPLAY _LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

This procedure is the same as the MOVE procedure, with the exception that the parameters are of
type Gshortint (- 32 768 .. 32 767). When used with the same display, this procedure can
perform about 3 times faster than the MOVE procedure. For all other displays this procedure has
about the same performance as the MOVE procedure.

8-48 Graphics Procedure Reference

The INT _MOVE procedure only has increased performance when the following conditions exist:

• The display must be a raster device.

• The window bounds within the range - 32 768 to 32 767.

• The window must be less than 32 767 units wide and high.

INT operations are provided for efficient vector generation. Although their use can be mixed with
non-integer operations, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions
The graphics system must be initialized and a graphics display must be enabled or the call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

IMPORT: dgLtypes
dgLlib
dgLpoly

Graphics Procedure Reference B-49

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i. e., device-independent results).

Syntax

INTYOLYGON

Item

points

x array name

y array name

operation selector array
name

Description/Default

Expression of TYPE INTEGER

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

operation selector
array name

Range
Restrictions

MININT thru MAXINT

-32768 to 32767

- 32 768 to 32 767

-32768 to 32767

Procedure Heading
PROCEDURE INT_POLVGON Npoint INTEGER;

Gshortint_list;
Gshortint_list;
Gshortint_list> ;

Semantics

ANVly'AR
ANVly'AR
ANVly'AR

}{ \,I e c
VI) e c
Opcodes

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value Meaning

o Don't display the line for the edge extending to this vertex from the previous vertex.

1 Display the line for the edge extending to this vertex from the previous vertex.

2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or
the end of the arrays is encountered.)

B .. 50 Graphics Procedure Reference

Note
The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT _POL YGON is used to output a polygon-set, specified in world coordinates, adhering exactly
to the polygon style attributes that are currently specified. A polygon-set is a set of polygons
(called "sub-polygons") that are treated graphically as one polygon. This is accomplished by
"stacking" the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each
other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons "nest" within each other. An
"even-odd" rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

Graphics Procedure Reference 8-51

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN~COLOR, SET _PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-l)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling ..

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to ° and the edge will
not be drawn.

When INT _POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array[1], y coordinate array[1]).

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the POLYGON procedure, with the exception that the parameters
are of type Gshortint (- 32 768 .. 32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYGON procedure. For all other displays this procedure
has about the same performance as the POLYGON procedure.

The INT _POL YGON procedure only has increased performance when the following conditions
exist:

• The display must be a raster device.

• The window bounds are within the range - 32 768 through 32 767.

• The window must be less than 32 767 units wide and high.

INT _POL YGON is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, POLYLINE, and POLYGON, one dot roundoff errors may result with mixed use
since different algorithms are used to implement each. .

Error Conditions "
The graphics system must be initialized, a graphics display must be enabled, all parameters must,
be within specified limits and the number of points specified must be greater than ° or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-52 Graphics Procedure Reference

IMPORT: dgLtypes
dgLlib
dgLpoly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device-dependent fashion.

Syntax

INTYOLYGON.J)O

Item

points

x array name

y array name

operation selector array
name

Procedure Heading

Description/Default

Expression of TYPE INTEGER

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

PROCEDURE INT_POLYGON_ DD Npoint

Semantics

ANYI.JAR
ANYI.JAR
ANYI.IAR

}{ l,J e c
Yl,J e c
Opcodes

Points is the number of vertices in the polygon set.

operation selector
array name

Range
Restrictions

MININT thru MAXINT

-32768 to 32767

- 32 768 to 32767

-32768 to 32767

INTEGER;
Gshortint_list;
Gshortint_list;
Gint_list);

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value

a
1

2

Graphics Procedure Reference B-53

Meaning

Don't display the line for the edge extending to this vertex from the previous vertex.

Display the line for the edge extending to this vertex from the previous vertex.

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note
The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

INT _POLYGON_DO is used to output a polygon-set, specified in world coordinates, adhering
within the capabilities of the device to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called "sub-polygons") that are treated graphically as one
polygon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons "nest" within each other. An
"even-odd" rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

B-54 Graphics Procedure Reference

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-l)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i. e., the edge will
not be drawn.

When INT _POL YGON_DD is used, the current position is updated to the end of the last
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[l], y coordinate array[1]).

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET _PGN_STYLE and the operation selector
in INT _POL YGON_DD, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary Widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. INT _POL YGON_DD tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
INT _POL YGON_DD will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, INT _POL YGON_DD sets the starting position to the
first vertex of the last member polygon specified in the call. If there is only one polygon specified,
the starting position will therefore be set to -the first vertex specified.

Graphics Procedure Reference 8-55

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

This procedure is the same as the procedure POLYGON_DEV_DEP, with the exception that the
parameters are of type Gshortint (- 32 768 .. 32 767). When used with some displays this
procedure may perform about 3 times faster than the POLYGON_DEV_DEP procedure. For all
other displays this procedure has about the same performance as the POL YGON_DEV _DEP
procedure.

The INT _POL YGON_DD procedure only has increased performance when the following condi­
tions exist:

• The display is a raster device.

• The window bounds are within the range - 32 768 through 32 767.

• The window is less then 32 767 units wide and high.

INT _POL YGON_DD is provided for efficient vector generation. Although its use can be mixed
with MOVE, LINE, POLYLINE, and POL YGON_DEV _DEP, one dot roundoff errors may result
with mixed use since different algorithms are used to implement each.

Error Conditions
The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than 0 or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-56 Graphics Procedure Reference

INT _POLYLINE
IMPO RT: dgl_types

dgl_lib

This procedure draws a connected line sequence starting at the specified point.

Syntax

Item

paints

x array name

y array name

Description/Default

Expression of TYPE INTEGER

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

Procedure Heading
PROCEDURE INT_POLYLINE Npts

ANYVAR Xvect Yvec

Semantics
Points is the number of vertices in the polygon set.

Range
Restrictions

MININT thru MAXINT

-32768 to 32767

-32 768 to 32 767

INTEGER;
Gshortint_list

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure INT _POL YLINE provides the capability to draw a series of connected lines
starting at the specified point. A complete object can be drawn by making one call to this
procedure. This call first sets the starting position to be the first elements in the x and y coordinate
arrays. The line sequence begins at this point and is drawn to the second element in each array,
then to the third and continues until points-l lines are drawn.

This procedure is equivalent to the following sequence of calls:

INT_MOVE (X_coordinate_array[11 tY_coordinate_array[11);
INT_LINE (}-(_coordinate_arra}'[21 tY_coordinate_arra}'[21);
INT_LINE (X_coordinate_array[31 tY_coordinate_array[31);

Graphics Procedure Reference 8-57

The starting position is set to (X_coordinate_array[Points], Y _coordinate_array[Points]) at the
completion of this call.

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style affects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

This procedure is the same as the POLYLINE procedure, with the exception that the parameters
are of type Gshortint (- 32 768 .. 32 767). When used with some displays this procedure may
perform about 3 times faster than the POLYLINE procedure. For all other displays this procedure
has about the same performance as the POLYLINE procedure.

The INT _POL YLINE procedure only has increased performance when the following conditions
exist:

• The display must be a raster device.

• The window bounds within the range - 32 768 to 32 767.

• The window must be less then 32 767 units wide and high.

INT _POL YLINE is provided for efficient vector generation. Although its use can be mixed with
MOVE, LINE, and POLYLINE, one dot roundoff errors may result with mixed use since different
algorithms are used to implement each.

Error Conditions
The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than 0 or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-58 Graphics Procedure Reference

LINE
IMPORT: dgLlib

This procedure draws a line from the starting position to the world coordinate specified.

Syntax

Item

x coordinate

x coordinate

x
coordinate

y
coordinate

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

Procedure Heading
PROCEDURE LINE (WXt Wy REAL);

Semantics

Range
Restrictions

A line is drawn from the starting position to the world coordinate specified by the X and Y
coordinates. The starting position is updated to this point at the completion of this call.

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system.

The primitive attributes of line style, line width, and color apply to lines drawn using LINE.
Drawing to the starting position generates the shortest line possible. Depending on the nature of
the current line-style, nothing may appear on the graphics display surface. See SET _LINE_
STYLE for a complete description of how line-style affects a particular point or vector.

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference B-59

IMPORT: dgLlib

This procedure enables the locator device for input.

Syntax

LOCATORJNIT

Item

device selector

error variable name

error. variable
name

Description/Default

Expression of TYPE INTEGER

Variable of TYPE INTEGER

Procedure Heading
PROCEDURE LOCATOR_INIT Del.!_Adr

I.JAR Ierr
INTEGERt
INTEGER);

Semantics

Range
Restrictions

MININT TO MAXINT

The device selector speCifies the physical addresses of the graphics locator device.

Device Selector

2

100 .. 3199

201

202

Locator Device Selected

Relative locator, such as knob
or mouse

HP-IB device at specified select
code and address

HP-HIL absolute locators

HP-HIL relative locators

The error variable will contain a value indicating whether the locator device was successfully
enabled.

Value

o
2

Meaning

The locator device was successfully initialized.

Unrecognized device specified. Unable to communicate with a device at the specified
address, non-existent interface card or non-graphics system supported interface card.

If the error variable contains a non-zero value, the call has been ignored.

LOCATOR_IN IT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device. The device
name is set to the name of the physical device, the device status is set to 1 (enabled) and the
internal device selector used by the graphics library is set equal to the device selector provided by
the user. This information is available by calling INQ_WS with operation selectors 11052 and
13052.

B-60 Graphics Procedure Reference

LOCATOR_IN IT implicitly makes the picture current before attempting to initialize the device.

LOCATOR_IN IT enables the logical locator device for input. Enabling the locator includes
associating the logical locator device with a physical device and initializing the device.

The graphics library attempts to directly identify the type of device by using its device address in
some way. The meanings of the device address are defined above.

At the time that the graphics library is initialized, all devices which are to be used must be
connected, powered on, ready, and accessible via the specified physical address. Invalid addres­
sed or unresponsive devices result in that device not being initialized and an error being returned.

The locator device must be enabled before it is used for input. The locator device is disabled by
calling LOCATOR_TERM.

If the graphics display and the locator are not the same physical device (e.g., Model 276 display
and HP 9111 locator), then the logical locator limits will be set to the default values for the
particular locator used. If the graphics display and locator are the same physical device (e.g.,
Model 226 display and Model 226 knob locator), then the logical locator limits are set to the
current view surface limits.

The locator echo position is set to the default value (see SET_ECHO_POS).

Only one locator device may be enabled at a time. If a locator is currently enabled, then the
enabled device will be terminated (via LOCATOR_TERM) and the call will continue. The locator
device should be disabled before the termination of the application program. LOCA TOR_INIT is
the complementary routine to LOCATOR_TERM.

Graphics Procedure Reference B-61

Absolute Locator Limits (HPGL Plotter, Graphics Tablet, or Touchscreen)
When the locator device is initialized on an HPGL plotter or graphics tablet, the graphics
display is left unaltered. HPGL and HP-HIL devices are initialized to the following defaults
when LOCATOR_INIT is executed:

Wide High Wide High Resolution
Plotter mm mm points points Aspect points/mm

7440A 272.5 191.25 10900 7650 .7018 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7475 416 259.125 16640 10365 .6229 40.0
7550 411.25 254.25 16450 10170 .6182 40.0
7570A 809.5 524.25 32380 20970 .6476 40.0
7575A 809.5 524.25 32380 20970 .6476 40.0
7576A 1182.8 898.1 47312 35924 .7593 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7595A/B 1100 891.75 44000 35670 .8107 40.0
7596A/B 1182.8 898.1 47312 35924 .7593 40.0
7599A 1182.8 898.1 47312 35924 .7593 40.0
9872 400 285 16000 11400 .7125 40.0
35723 210.0 164.0 57 43 .7500 470.0
46087A 297.6 216.5 11904 8660 .7275 40.0
46088A 432.4 297.6 17296 11904 .6883 40.0

The 7595B, 7596B and 7599A plotters are only supported in 7595A or 7596Aemulation
mode.

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of PI and P2. The default settings of PI and P2 are the values they have after
an HPGL 'IN' command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by PI and P2 at the time
LOCATOR_IN IT is invoked.

Note

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A,
HP 7580, HP 7585, HP 7595A/B, HP 7596A/B, or HP 7599A plotter
while the graphics locator is initialized, it should be the same size of paper
that was in the plotter when LOCATOR_INIT was called. If a different size
of paper is required, the device should be terminated (LOCATOR_TERM)
and re-initialized after the new paper has been placed in the plotter.

No locator points are returned while the pen control buttons are depressed on HPGL plotters.

8-62 Graphics Procedure Reference

Relative Locators (Knob or Mouse) - An Example:

The knob locator is initialized on a Model 226. The graphics display is an HP 98627 A color output
card. The resolution of the locator is 0 through 399 in the X dimension, and 0 through 299 in the Y
dimension. The resolution of the display is 0 through 511 in the X dimension, and 0 through 389 in
the Y dimension. When AWAIT_LOCATOR is used with echo 4, the locator will effectively have
the HP 98627A resolution for the duration of the AWAIT~OCATOR call. However, if echo 1 is
used with AWAIT_LOCATOR, the' cursor will appear on the Model 226 and the locator has a
resolution of 0 through 399 and 0 through 299. Note that all conversion routines and inquiries will
use the Model 226 limits.

The physical origin of the locator device is the lower left corner of the display.

Error Conditions
The graphics system must be initialized or this call will be ignored, an ESCAPE (- 27) will be
generated, and GRAPHICS ERROR will return a non-zero value.

HP-HIL Absolute Locator Semantics
The value of DEV _ADDR must be 201 to activate an HP-HIL absolute locator; the 2 is the
keyboard "address" times 100 (HP-IB convention), and the 1 is a token indicating "absolute
locator."

IERR is an error return variable, as usual in DGL. If IERR=O, the call to LOCATOR_INIT
successfully set up at least one absolute locator device, and operations can proceed. If IERR#O,
this indicates a DGL error condition, and digitizing from HP-HIL tablets does not occur.

The call to LOCATOR_INIT can be made any time after a call to GRAPHICS_INIT, and is
intended to initialize DGL so that the locator operations can be performed with the device(s)
specified by DEV _ADDR.

Note that all absolute locators on the HP-HIL are activated, "lumped" together, and scaling is
done on the greatest maximum count for each dimension. That is, if Device A has more counts
in the X direction, and Device B has more counts in the Y direction, the scaling would take
XmaX from Device A and Ymax from Device B. See OUTPUT _ESC for information on dealing
with this situation.

To get DGL support of HP-HIL tablets, you need to execute the HPHIL and DGL_ABS files
or put them in INITLIB and reboot before accessing the tablet. Both files are found on the
CONFIG: disc (or ACCESS: disc for double sided disc) of your Pascal Operating System. If
either of these files has not been executed, an appropriate error is returned from the routine
LOCATOR_INIT.

Graphics Procedure Reference 8-63

HP-HIL Relative Locator Semantics
The value of dey _addr must be 202 to activate an HP-HIL relative locator; the 2 is the keyboard
"address" times 100 (HP-IB convention), and the last 2 is a token indicating "relative locator."

IERR is an error return variable, as usual in DGL. If IERR=O, the call to LOCATOR_INIT
successfully set up at least one absolute locator device, and operations can proceed. If IERR#O,
this indicates a DGL error condition, and digitizing from HP-HIL tablets does not occur.

The call to LOCATOR_INIT can be made any time after a call to GRAPHICS_INIT, and is
intended to initialize DGL so that the locator operations can be performed with the device(s}
specified by DEV _ADDR.

Note that all relative locators on HP-HIL are activated and "lumped" together. See OUT­
PUT_ESC for information on dealing with this situation.

Note also that if Mouse were executed in INITLIB, all HP-HIL mouse and knob devices generated
arrow keys when moved. LOCATOR_INIT (202, ERR) terminates generation of arrow keys until
LOCATOR_ TERM or GRAPHICS_TERM is executed. If some kind of error prevents execution
of LOCATOR_TERM or GRAPHICS_TERM the CLR-I/O key (STOP key on 46020 keyboards)
will restore arrow key functionality.

Enhanced DGL support of HP-HIL mouse and knob locators also requires the files HPHIL and
DGL_REL to have been executed or put in INITLIB before accessing the device. As stated
above, both files are found on the CONFIG: (ACCESS: for double sided) disc of your Pascal
Operating System. If either of these files has not been executed, an appropriate error is returned
from the routine LOCATOR_INIT.

8-64 Graphics Procedure Reference

LOCATOR_ TERM

This procedure disables the enabled locator device.

Syntax

Procedure Heading
PROCEDURE LOCATOR_TERM;

Semantics

IMPORT: dgLlib

LOCATOR_TERM terminates and disables the enabled locator device. It transmits any termina­
tion sequence required by the device and releases all resources being used by the device. The
device name is set to the default device name (' '), the device status is set to 0 (not enabled) and
the device address is set to O.

LOCATOR_TERM is the complementary routine to LOCATOR_INIT.

If a locator device is used, LOCATOR_TERM should be called before the application program is
terminated.

Error Conditions
The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

HP-HIL Absolute Locator Semantics
Turns off whatever DGL locator is presently enabled by LOCATOR_INIT. "Turn off" mayor
may not do something to the hardware; it may just disconnect software linkages. HP-HIL
locators do not even know they've been "turned off" by DGL, except that HP-HIL relative
locators stop "keeping track" of their position. Note that if the module Mouse was installed in
INITLIB, arrow keys stopped being generated from knobs and the mouse when LOCATOR_INIT
(202, ERR) was successfully executed. LOCATOR_TERM would restore arrow key functionality
from knob and mouse devices in this case.

Graphics Procedure Reference 8-65

IMPORT: dgLlib

This procedure makes the picture current.

Syntax

Procedure Heading
PROCEDURE MAKE_PIC_CURRENT;

Semantics
The graphics display surface can be made current at any time with a call to MAKE_PIC_
CURRENT. This insures that all previously generated primitives have been sent to the graphics
display device. Due to operating system delays, all picture changes may not have been displayed
on the graphics display upon return to the calling program. MAKE_PIC_CURRENT is most often
used in system buffering mode (see SET_TIMING) to make sure that all output has been sent to
the graphics display device when required.

Before performing any non-graphics library input or output to an active graphics device, (e.g., a
Pascal read or write), it is essential that all of the previously generated output primitives be sent to
the device. If immediate visibility is the current timing mode, all primitives will be sent to the
device before completion of the call to generate them, but if system buffering is used, MAKE_
PIC_CURRENT should be called before performing any non-graphics system 110.

The following routines implicitly make the picture current:

AWAIT_LOCATOR
LOCATOR_INIT

DISPLAY_TERM
SAMPLE_LOCATOR

INPUT_ESC

A call to MAKE_PIC_CURRENT can be made at anytime within an application program to insure
that the image is fully displayed. MAKE_PIC_CURRENT does not modify the current timing
mode.

Error Conditions
The graphics system must be initialized and a display must be enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

B-66 Graphics Procedure Reference

MARKER

This procedure outputs a marker symbol at the starting position.

Syntax

Item Description/Default

marker selector ExpreSSion of TYPE INTEGER

Procedure Heading
PROCEDURE MARKER (Marker_nuM INTEGER);

Semantics

Range
Restrictions

MININTTO
MAXINT

IMPORT: dgLlib

Recommended
Range

1 thru 19

The marker selector determines which marker will be output. There are 19 defined invariant
marker symbols (1-19). They are defined as follows:

1 - '.'
2 -' +'
3 - ,*,

4 - '0'
5 - 'X'
6 - triangle

7 - rectangle
8 - diamond
9 - rectangle with cross
10 - '0'
11 - ' l'
12 - '2'

Marker numbers 20 and larger are device dependent.

13 - '3'
14 - '4'
15 - '5'
16 - '6'
17-'7'
18 - '8'
19 - '9'

MARKER outputs the marker designated by the marker selector, centered about the starting
position. The starting position is left unchanged at the completion of this call.

If the marker selector specified is greater than the number of distinct marker symbols that are
supported by a device, then marker number 1 ('.') will be used. INQ_WS can be used to inquire
the number of distinct marker symbols that are available on a particular graphics display device.
Depending on a particular display device's capabilities, the graphics library uses either hardware
or software to generate the marker symbols.

The size and orientation of markers is fixed and not affected by the viewing transformation. The
size of markers is device dependent and cannot be changed.

Only the primitive attributes of color and highlighting apply to markers. However, the marker will
appear with these attributes only if the device is capable of applying them to markers.

Error Conditions
The graphics system must be initialized and a display device enabled or the call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-67

MOVE
IMPORT: dgLlib

This procedure sets the starting position to the world coordinate specified.

Syntax

Item

x coordinate

y coordinate

x
coordinate

y
coordinate

Description/Default

Expression of lYPE REAL

Expression of lYPE REAL

Procedure Heading
PROCEDURE MOVE (Wx t Wy REAL);

Semantics

Range
Restrictions

MOVE specifies where the next graphical primitive will be output. It does this by setting the value
of the starting position to the world coordinate system point specified by the X, Y coordinate
values and then moving the physical beam or pen to that point.

The x and y coordinate pair is the new starting position in world coordinates.

The starting position corresponds to the location of the physical pen or beam in all but four
instances: after a change in the viewing transformation, after initialization of a graphical display
device, after the output of a text string, or after the output of a graphical escape function. A call to
MOVE or INT _MOVE should therefore be made after anyone of the following calls to update the
value of the starting position and in so doing, place the physical pen or beam at a known
location: SET-ASPECT, DISPLAY_INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_
VIEWPORT, and SET_WINDOW.

Error Conditions
The graphics system must be enabled and a display device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

B-68 Graphics Procedure Reference

OUTPUT_ESC
IMPORT: dgLlib

This procedure performs a device dependent escape function to access special features of a
graphics display device.

Syntax
INTEGER

array size
REAL

array size

INTEGER
array name

REAL
array name

Item Description/Default
Range

Restrictions

operation selector

INTEGER array
size

REAL array size

Expression of TYPE INTEGER

Expression of TYPE INTEGER

Expression of TYPE INTEGER

INTEGER array Any valid variable.
name Should be INTEGER array

REAL array name Any valid variable.
Should be REAL array

error variable name Variable of TYPE INTEGER

Procedure Heading
PROCEDUR~ OUTPUT_ESC Opcode

Semantics

Isize
Rsize

ANYI.IAR IIi 5 t
ANYI.IAR R 1 is t

I.IAR Ierr

MININT to
MAXINT

MININT to
MAXINT

MININT to
MAXINT

INTEGER;
INTEGER;
INTEGER;
Gint_list;
Greal_list;
INTEGER) ;

Recommended
Range

>0

>0

The operation selector determines the device dependent output escape function to be per­
formed. The codes supported for a given device are described in the device handlers section of
this document.

The INTEGER array size is the number of INTEGER parameters contained in the INTEGER
array. The thousand's digit of the operation selector is the number of INTEGER parameters that
the graphics system expects.

Graphics Procedure Reference 8-69

The REAL array size is the number of REAL parameters contained in the REAL array by the
escape function. The hundred's digit of the operation selector is the number of REAL parameters
that the graphics system expects.

The INTEGER array is the array in which zero or more INTEGER parameters are contained.

The REAL array is the array in which zero or more REAL parameters are contained.

The error variable will contain a value indicating whether the escape function was performed.

Value

a
1

2

3

4

Meaning

Output escape function successfully sent to the device.

Operation not supported by the graphics display device.

The INTEGER array size is not equal to the number of required INTEGER parameters.

The REAL array size is not equal to the number of required REAL parameters.

Illegal parameters specified.

If the error variable contains a non-zero value, the call has been ignored.

OUTPUT_ESC allows application programs to access special device features on a graphics
display device. The desired escape function is specified by a unique value for opcode.

The type of information passed to the graphics display device is determined by the value of
opcode. The graphics library does not check OUTPUT_ESC parameters which will be sent
directly to the display device. This can lead to device dependent results if out of range values are
sent.

Output escape functions only apply to the graphics display device.

The starting position may be altered by a call to OUTPUT_ESC.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

For HPGL plotters, it is recommended that you read the operator's or programmer's manual
for the peripheral before programming HPGL OUTPUT_ESC values.

B-70 Graphics Procedure Reference

HP-HIL Locator Semantics
The output_esc procedure, when called in relation to HP-HIL input devices, allows you to specify
which HP-HIL devices on the loop are to be active.

For HP-HIL locator devices (Le., LOCATOR_IN IT was called with a value of 201 or 202), the
effect of the OUTPUT _ESC call is as follows.

o~ I a r r [1] ~ 127

I a rr[1]<0

I a r r [1] > 127

HP-HIL addresses 1-7, corresponding to bit 0-6, are enabled (bit
value of 1) or disabled (bit value of 0) as potential locators. If the
device at address (bit)+ 1 is not a locator, the value of the bit is
irrelevant-the device is not activated.

Once active devices are selected, locator scaling is performed to
the largest active device, in the case of LOCATOR_INIT 201. For
LOCATOR_IN IT 202 this is not relevant. If no devices are active
at this point, an error is generated (escapecode=-27) because scaling
could not take place.

Error condition: Err = 4; "Illegal parameters specified."

Works with I a rr [1] 1110 d 128.

A call to output_esc when dealing with HP-HIL devices would take the following form*:

outpl.lt_esc(1080t it Ot Iarrt Rarrt Err);

For HP-HIL relative locators only, the opcode 1091 is also useful. After performing a loca­
tor_init(202, err), the keyboard is "active" for terminating the awaitJocator procedure. Arrow
keys, as well as any other keys will act as the "button", and return their values (as the ordinals
of their character values) while digitizing the current location.

If you wish keyboard keys not to terminate awaitJocator, use outpuCesc(1091 , 1, 0, Iarr, Rarr,
Err), with a value of 0 for Iarr[l]. This tells DGL to accept only mouse buttons to terminate
awaitJocator. Beware: the HP-HIL "knob" and the 98203C keyboard knob have no buttons;
there is no way to terminate awaitJocator using these devices after the above outpuCesc has
been performed.

If LOCATOR_INIT (201,ERR) or LOCATOR_INIT (202,ERR) was not executed prior to either
of these calls, the system would report one of three errors:

escapecode=-27 and If no locator has been activated.
graphicserror=3

escapecode=-27 and If no display has been initialized
graphicserror=O

err=l If a locator other than 201 or 202 has been activated.

This use of 0 u t p I.l t _ esc is an extension of functionality of previous implementations of 01.1 t P I.l t _ esc,

which specified that 01.1 t P I.l t _ esc should only talk to output devices (e. g., displays and plotters), not
input devices, such as locators.

* A "9" as the tens digit in the in put _ esc opcode indicates a locator opcode.

Graphics Procedure Reference B-71

Raster Device Escape Operations
Operation
Selector

52

Function

Dump graphics of the currently active display device if it is the console or a bit-mapped display.
Graphics will be dumped to the graphics printer (PRINTER:); if color, all planes are ORed.

For the 98542A and 98543A low-resolution bit-mapped displays, the com­
puter dumps the image on the CRT using 1024 x 800 dots on the printer, giv­
ing a large, coarse-grained representation. Each screen graphics DGL "paired"
pixel is represented by a 2 x 2 square of dots on the printer. This is the same
result as is produced by pressing the DUMP ALPHA or DUMP GRAPHICS
keys.
For the 98544A, 98545A, 98547 A, 98548A, 98549A, 98550A, 98700A high-resolution
hit-mapped displays, and the 362/382 internal bit-mapped displays, the image is dumped
bit-for-bit; the image on the printer comes out with each screen pixel represented by one
printer dot.

53 Await vertical blanking. This escape function will not exit until the CRT is performing vertical
blanking.

54

250

1051 1

1052

The following example shows how to use this function when changing the color table to
reduce flicker.

OUTPUT_ESC (53t Ot Ot dUfrllrlYt dUfrllrlYt error);
SET_COLOR_TABLE (Ot rt ~t b);
The color table is not changed until the crt is blank (during a refresh cycle).
Otherwise changing the color map in the middle of a scan would create a screen
that was half the old color, and half the new color for one frame (1/60 sec). To the
eye this would look like a flicker.

For the 98542A and 98544A low-resolution bit-mapped displays, only the even-numbered
frame-buffer pixels in a row are dumped. Graphics images are not degraded, however,
because of the paired pixels which are used for graphics but not used for alpha. Alpha
characters do not use pixel pairs but individual pixels. Thus, they lose internal detail when
dumped with this operation selector, as half the pixel columns in the character cell are not
printed. However, they are usually still readable.

For the 98544A, 98545A, 98547A, 98548A, 98549A, 98550A, 98700A high-resolution
bit-mapped displays, and the 362/382 internal bit-mapped displays, the image is dumped as
with operation selector 52.
For non-bit-mapped displays, operation selector 54 is ignored.

Specify device limits.
REAL Array [1] = Points (dots) per mm in X direction
REAL Array [2] = Points (dots) per mm in Y direction

Turn on or off the graphics display.
INTEGER array [1] = 0 ~ turn display off.
INTEGER array [1] < > 0 ~ turn display on.

Turn on or off the alpha display.
INTEGER array [1] = 0 ~ turn display off.
INTEGER array [1] < > a ~ turn display on.

Set special drawing modes. Using this escape function will redefine the meaning of
the set color attribute. For details on how a given drawing mode affects a color see
"Drawing Modes" in SET_COLOR. This drawing mode does not apply to device
dependent polygons. Out of range values default to dominate drawing mode.

INTEGER array[1] = 0 ~ Dominate drawing mode.
= 1 ~ Non-dominate drawing mode.
= 2 ~ Erase drawing mode.
= 3 ~ Complement' dr~wing mode.

1 This operation is not available for the Model 237, HP 98542, HP 98545, HP 98547, HP 98549, and HP 98700.

B-72 Graphics Procedure Reference

Operation
Selector Function

1053 Dump graphics (from the specified color planes) to the graphics printer (PRINTER:). Also dumps
graphics on a Model 237 if it is the currently active display.

1054

10050

INTEGER array [1] = Color plane selection code.
BIT 0 = 1 ~ Select plane 1.

(Blue on HP 98627 A)
BIT 1 = 1 ~ Select plane 2.

(Green on HP 98627A)
BIT 2 = 1 ~ Select plane 3.

(Red on HP 98627A)
BIT 3 = 1 ~ Select plane 4.

Clear selected graphics planes.
INTEGER Array [1] = 0 - Clear all planes
INTEGER Array [1] < > 0 - Color plane selection code.

BIT 0 = 1 Clear plane 0 (Blue on HP 98627 A)

BIT 1 = 1 Clear plane 1 (Green on HP 98627 A)

BIT 2 = 1 Clear plane 2 (Red on HP 98627 A)

BIT 3 = 1 Clear plane 3

BIT 4 = 1 Clear plane 4

BIT 5 = 1 Clear plane 5

BIT 6 = 1 Clear plane 6
BIT 7 = 1 Clear plane 7

Set all color table locations for color raster graphics displays. This escape function
allows the user to change all locations in the hardware color map with one procedure.
The software maintained color table will be updated by this call. This escape function
is the same as calling SET _ COLOR_ TABLE with indexes 0 - n.

REAL Array [1] = Parm 1
REAL Array [2] = Parm2 Index 0
REAL Array [3] = Parm3
REAL Array [4] = Parm 1
REAL Array [5] = Parm2 Index 1
REAL Array [6] = Parm3

Model Planes Colors

236C 4 0 ... 15

98543A 4 0 ... 15

98545A 4 o ... 15

98547A 6 o ... 63

98549A 6 o ... 63

98550A 8 0 ... 225

98700A 8 0 ... 225

362/382 8 0 ... 255

ParmI, Parm2, and Parm3 are defined to be the same as used with SET_COLOR_
TABLE.

The size of the INTEGER array must equal 0 and the size of the REAL array
is three times the number of colors.

Graphics Procedure Reference 8-73

The following tables show which escape codes are supported on which Series 200/300 raster
displays:

Operation 236
Selector 216 217 220 226 236 Color 237 98627A

52 yes yes yes yes yes yes yes yes
53 no no no no no yes no no

250 yes yes yes yes yes yes yes yes
1050 yes yes yes yes yes yes no yes
1051 yes yes yes yes yes yes no no
1052 yes yes yes yes yes yes yes yes
1053 no no no no no yes yes yes
1054 yes no no yes yes yes no yes

10050 no no no no no yes no no

Operation
Selector 98542A 98543A 98544A 98545A 98547A 98548A 98549A 98550A 98700A

52 yes yes yes yes yes yes yes yes yes
53 yes yes yes yes yes yes yes yes yes
54 yes yes yes yes yes yes yes yes yes

250 yes yes yes yes yes yes yes yes yes
1050 no no no no no no no no no
1051 no no no no no no no no no
1052 yes yes yes yes yes yes yes yes yes
1053 no no no no no no no no no
1054 yes yes yes yes yes yes yes yes yes

10050 no yes no yes yes no yes yes yes

Operation 362/382
Selector

52 yes

53 yes

54 yes

250 yes

1050 no

1051 no

1052 yes

1053 no

1054 yes

10050 yes

B-74 Graphics Procedure Reference

HPGL Plotter Escape Operations
Operation
Selector
1052*

Function
Enable cutter. Provides means to control the Plotter paper cutters. Paper is cut after it is
advanced.

INTEGER array [1] = 0 Cutter is disabled.
INTEGER array [1] < > 0 Cutter is enabled.

1052 Set automatic pen. This instruction provides a means for utilizing the smart pen options of
the plotter. Initially, all automatic pen options are enabled.

INTEGER array [1]: BIT 0 = 1
Lift pen if it has been down for 60 seconds.

BIT 1 = 1
Put pen away if it has been motionless for 20 seconds.

BIT 2 = 1
Do not select a pen until a command which makes a mark. This causes the pen to remain

in the turret for the longest possible time.

1053 Advance the paper either one half or a full page.

INTEGER array [1] = 0 > > Advance page half
INTEGER array [1] < > 0 > > Advance page full

2050 Select pen velocity. This instruction allows the user to modify the plotter's pen speed. Pen
speed may be set from 1 to the maximum for the given device.

~NTEGER array [1] = Pen speed (INTEGER from 1 to device max).
INTEGER array [2] = Pen number (INTEGER from 1 to 8; other integers

select all pens)

2051 Select pen force. The force may be set from 10 to 66 gram-weights.

INTEGER array [1] = Pen force (INTEGER from 1 to 8).
1: 10 gram-weights
2: 18 gram-weights
3: 26 gram-weights
4: 34 gram-weights
5: 42 gram-weights
6: 50 gram-weights
7: 58 gram-weights
8: 66 gram-weights

INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers
select all pens)

2052 Select pen acceleration. The acceleration may be set from 1 to 4 G's.

INTEGER array [1] = Pen acceleration (INTEGER from 1 to 4).
INTEGER array [2] = Pen number (INTEGER 1 to 8; other integers select all pens)

Operation •
Selector 9872 7470 7475 7550 7575A 7576A 7580 7585 7586 7440A 7570A 7595A 7596

1052 • SIT no no no no no no no no no no no no

1052 no no yes yes yes yes yes yes yes no yes yes yes

1053 SIT no no yes yes yes no no yes no no no yes

2050 yes yes yes yes yes yes yes yes yes yes yes yes yes

2051 no no yes yes no no yes yes yes no yes yes yes

2052 no no yes yes no no yes yes yes no yes yes yes

• Note that some plotters may accept these opcodes, but perform no action with them (they are NOPs). This is done for compatibility
purposes.

Graphics Procedure Reference B-74.1

Operation *
Selector 9872 7470 7475 7550 7575A 7576A 7580

1052 * SIT no no no no no no

1052 no no yes yes yes yes yes

1053 SIT no no yes yes yes no

2050 yes yes yes yes yes yes yes

2051 no no yes yes no no yes

2052 no no yes yes no no yes

Operation*
Selector 7585 7586 7440A 7570A 7595A/B 7596A/B 7599A

1052* no no no no no no no

1052 yes yes no yes yes yes yes

1053 no yes no no no yes yes

2050 yes yes yes yes yes yes yes

2051 yes yes no yes yes yes yes

2052 yes yes no yes yes yes yes

• Note that some plotters may accept these opcodes, but perform no action with them (they are NOPs). This is done for compatibility
purposes.

The 75958, 75968 and 7599A plotters are only supported in 7595A or 7596A emulation
mode.

B-74.2 Graphics Procedure Reference

IMPORT: dgLtypes
dgLlib
dgLpoly

Graphics Procedure Reference 8-75

POLYGON

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style exactly as specified (i. e., device-independent results).

Syntax

Item

points

x array name

y array name

operation selector array
name

Procedure Heading
PROCEDURE POLYGON

Semantics

operation selector
array name

Description/Default
Range

Restrictions

Expression of TYPE INTEGER

Array of TYPE REAL.

MININT thru MAXINT

Array of TYPE REAL.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

-32768 to 32767

ANYt.IAR
ANyt.lAR
ANYVAR

Npoint
)(I) e c

Opcodes

INTEGER;
Greal_list;
Greal_list;
Gshortint_list> ;

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

B-76 Graphics Procedure Reference

Value

o
1

2

Meaning

Don't display the line for the edge extending to this vertex from the previous vertex.

Display the line for the edge extending to this vertex from the previous vertex.

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new'start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note
The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly to
the polygon style attributes that are currently specified. A polygon-set is a set of polygons (called
"sub-polygons") that are treated graphically as one polygon. This is accomplished by "stacking"
the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with
a complementing line.

The filling of polygons also depends on how the sub-polygons "nest" within each other. An
"even-odd" rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

Graphics Procedure Reference 8-77

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to ° and the edge will
not be drawn.

When POLYGON is used, the current position is updated to the end of the last sub-polygon
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last)
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to
an update of the current position to the first coordinate set in the x and y point arrays (x
coordinate array [1], y coordinate array[1]).

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions
The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within speCified limits and the number of points specified must be greater than ° or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

8-78 Graphics Procedure Reference

IMPORT: dgLtypes
dgLlib
dgLpoly

This procedure displays a polygon-set starting and ending at the specified point adhering to the
specified polygon style in a device-dependent fashion.

Syntax

POLYGONJ)EVJ)EP

Item

points

x array name

y array name

operation selector array
name

Procedure Heading

Description/Default

Expression of TYPE INTEGER

Array of TYPE REAL.

Array of TYPE REAL.

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER.

operation selector
array name

Range
Restrictions

MININT thru MAXINT

-32768 to 32767

PROCEDURE POLYGON_DEV_DEP Npoint INTEGER;
Greal_list;
Greal_list;
Gshortint_list) ;

Semantics

ANyt.'AR
ANyt.'AR
ANyt.'AR

}-{ \} e c
y\} e c
Opcodes

Points is the number of vertices in the polygon set.

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The operation selector array contains a series of integer operation selectors defining which
vertices start new polygons, and defining which edges should be displayed.

Value

o

1

2

Graphics Procedure Reference 8-79

Meaning

Don't display the line for the edge extending, to this vertex from the previous vertex.

Display the line for the edge extending to this vertex from the previous vertex.

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the
end of the arrays is encountered.)

Note
The first entry in the operation selector array must be 2, since it is the
first vertex of a sub-polygon.

POL YGON_DEV _DEP is used to output a polygon-set, specified in world coordinates, adhering
(within the capabilities of the device) to the polygon style attributes that are currently specified. A
polygon-set is a set of polygons (called "sub-polygons") that are treated graphically as one poly­
gon. The subpolygons in a polygon-set may intersect or overlap each other.

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are
automatically connected.

When a polygon-set is displayed, the primitive attributes for polygons and lines define its
appearance. In particular, the interior of the polygon-set will be filled according to the attributes
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be
displayed as specified in the polygon style, the edges will adhere to the current line attributes of
color, line-style and line-width.

The filling of polygons also depends on how the sub-polygons "nest" within each other. An
"even-odd" rule is used for determining which areas will be filled. Moving across the screen,
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered
edges will turn the fill off. The picture below will help clear up how the fills work.

Polygon Filling

B-80 Graphics Procedure Reference

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more
detailed description of how attributes affect polygons.

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge fr9m the (1-1)th vertex to the Ith vertex will only be displayed if
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon
filling.

If it is within the capabilities of the device, filling of the sub-polygon will be done to the
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will
not be drawn.

When POL YGON_DEV _DEP is used, the current position is updated to the end of the last
SUb-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call
degenerates to an update of the current position to the first coordinate set in the x and y point
arrays (x coordinate array[l], y coordinate array[l]).

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a
device is not able to draw polygon edges as requested, they will be simulated in software. The
simulation will always adhere to the edge value in SET _PGN_STYLE and the operation selector
in POL YGON_DEV _DEP, but the line-style and color of the edge will depend on the capability of
the device to produce lines with those attributes.

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill
densities and at different fill line orientations. POL YGON_DEV _DEP tries to match the device
capabilities to the request. If the device cannot fill the request at all, then no simulation is done
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated.

In the case where the polygon style specifies non-display of edged, this would result in no visible
output although visible output had been specified. To provide some visible output in this case,
POL YGON_DEV _DEP will outline the polygon using the color and line-style specified for the fill
lines. However, only those edge segments specified as displayable by the operation selector array
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no
visible output.

Regardless of the capabilities of the device, POL YGON_DEV _DEP sets the starting position to
the first vertex of the last member polygon specified in the call. If there is only one polygon
specified, the starting position will therefore be set to the first vertex specified.

Graphics Procedure Reference 8-81

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results
may occur if the sub-polygon extends beyond the clipping window.

Error Conditions
The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (Points) must be greater than 0 or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-82 Graphics Procedure Reference

POLYLINE
IMPORT: dgLlib

This procedure draws a connected line sequence starting at the specified point.

Syntax

Item

pOints

x array name

y array name

Procedure Heading
PROCEDURE POL YL I NE

Semantics

Description/Default

Expression of TYPE INTEGER

Array of TYPE REAL.

Array of TYPE REAL.

Npts
ANYVAR Xvect Yvec

Points is the number of vertices in the polygon set.

INTEGER;
Greal_list

Range
Restrictions

MININT thru MAXINT

The x and y coordinate arrays contain the world coordinate values for each vertex of the
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the
coordinate arrays must contain a total number of vertices that equals points.

The procedure POLYLINE provides the capability to draw a series of connected lines starting at
the specified point. A complete object can be drawn by making one call to this procedure. This
call first sets the starting position to be the first elements in the x and y coordinate arrays. The line
sequence begins at this point and is drawn to the second element in each array, then to the third
and continues until pOints-l lines are drawn.

This procedure is equivalent to the following sequence of calls:

MOVE (X_coordinate_array[l)tY_coordinate_array[l);
LINE (}{_coordinate_arra}'[2) tY_coordinate_arra}'[2);
LINE (X_coordinate_array[3) tY_coordinate_array[3);

LINE (X_coordinate_array[Pointsl tY_coordinate_array[Points);

The starting position is set to (X_coordinate_array[Points], Y _coordinate_array [Points]) at the
completion of this call.

Graphics Procedure Reference 8-83

Specifying only one element, or Points equal to 1, causes a move to be made to the world
coordinate point specified by the first entries in the two coordinate arrays.

It is the application program's responsibility to ensure that the arrays are all dimensioned to at
least the number of elements specified by points and that at least that many values are contained
in each array.

Depending on the nature of the' current line-style nothing may appear on the graphics display.
See SET_LINE_STYLE for a complete description of how line-style effects a particular point or
vector.

The primitive attributes of color, line-style, and line-width apply to polylines.

Error Conditions
The graphics system must be initialized, a graphics display must be enabled, all parameters must
be within specified limits and the number of points (points) must be greater than 0 or the call will
be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

B-84 Graphics Procedure Reference

SAMPLE_LOCATOR

This procedure samples the current locator device

Syntax

SAMPLE.J..OCATOR x coordinate
name

Item Description/Default

echo selector

x coordinate name

y coordinate name

Expression of TYPE INTEGER

Variable of TYPE REAL

Variable of TYPE REAL

Procedure Heading
PROCEDURE SAMPLE_LOCATOR INTEGER;

IMPORT: dgLlib

y coordinate
name

Range
Restrictions

MININT to MAXINT

Echo
t.JAR Wx t W}' REAL) ;

Semantics
The echo selector determines the level of input echoing. Possible values are:

o -No echo.
~ 1 - Echo on the locator device.

The x and y coordinates are the values of the coordinates, expressed in world coordinate units,
returned from the enabled locator device.

SAMPLE_LOCATOR returns the current world coordinate value of the locator without waiting
for any user intervention. Typically, the locator is sampled in applications involving the con­
tinuous input of data points that are very close together.

If the point sampled is outside of the current logical locator limits, the transformed point will still
be returned .

The number of echoes supported by a locator device and the correlation between the echo value
and the type of echoing performed is device dependent. Most locator devices support at least one
form of echoing. Possible echoes are beeping, displaying the point sampled, etc. See the locator
descriptions below to find the locators supported by the various devices. If the echo value is larger
than the number of echoes supported by the enabled locator device, then echo 1 will be used.

Locator echoing can only be performed on the locator device. The locator echo position is not
used in conjunction with any echoes performed while sampling a locator.

Graphics Procedure Reference 8-85

SAMPLE_LOCATOR implicitly makes the picture current before sampling the locator.

Relative Locators (Knob or Mouse) - LOCATOR_INIT Selector 2
The keyboard beeper is sounded when the locator is sampled if an echo is selected (echo
selector;::;: I). The sample locator function returns the last AWAIT_LOCATOR result or 0.0,0.0 if
AWAIT_LOCATOR has not been invoked since LOCATOR_INIT.

Absolute Locators (HPGL Plotter or Graphics Tablet)
The SAMPLE_LOCATOR function returns the current locator position, without waiting for an
operator response (pen position on plotters). On a 9111A Graphics Tablet, the beeper is
sounded when the stylus is depressed. For echo selectors greater than or equal to 9, the same
echo as echo selector 1 is used.

Error Conditions
The graphics system must be initialized and a locator device enabled or this call will be ignored, an
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

HP-HIL Absolute Locator Semantics
The value of ECHO defines an echoing mechanism for feedback to the user. Echo has the
same meaning as when applied to a HP 9111A (HP-IB) Graphics Tablet.

Wx and Wy are the world coordinate real values returned by the locator when
SAMPLE_LOCATOR is called. SAMPLE_LOCATOR does not wait for a button to be pressed
before returning to the calling program; it merely gets the XY coordinate pair as fast as it can,
and returns.

HP-HIL Relative Locator Semantics - LOCATOR_INIT Selector 202
The value of ECHO defines an echOing mechanism for feedback to the user. Echo has the
same meaning as when applied to an HP-HIL absolute locator.

Wx and Wy are the world coordinate real values returned by the locator when
SAMPLE_LOCATOR is called. SAMPLE_LOCATOR does not wait for a button to be pressed
before returning to the calling program; it merely gets the XY coordinate pair as fast as it can.

Unlike the situation encountered when using LOCATOR_INIT with a selector of 2, DGL returns
a useful value for SAMPLE_LOCATOR in this case. This is because DGL is "looking at" the
locator continuously from execution of LOCATOR_INIT, and "sees" motions of the locator
device any time after that.

B-86 Graphics Procedure Reference

SET_ASPECT

This procedure redefines the aspect ratio of the virtual coordinate system.

Syntax

SET...ASPECT

Item

x size

y size

Procedure Heading

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

PROCEDURE SET_ASPECT (X_sizet V_size REAL);

Semantics

IMPORT: dgLlib

Range
Restrictions

>0

>0

The x size is the width of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

The y size is the height of the virtual coordinate system in dimensionless units. The size must be
greater than zero.

SET ..ASPECT sets the aspect ratio of the virtual coordinate system, and hence the view surface,
to be y size divided by x size. A ratio of 1 defines a square virtual coordinate system, a ratio greater
than 1 specifies it to be higher than it is wide; and a ratio less than 1 specifies it to be wider than it is
high. Since x size and y size are used to form a ratio, they may be expressed in any units as long as
they are the same units.

The range of coordinates for the virtual coordinate system is calculated based on the value of the
aspect ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0 and those
of the shorter axis from 0 to a value that achieves the specified aspect ratio. SET ..ASPECT
defines the limits of the virtual coordinate system.

ASPECT RATIO (AR)

AR < 1
AR = 1
AR> 1

X LIMITS

0.0, 1.0
0.0, 1.0
0.0, 1.0/ AR

Y LIMITS

0.0,1.0 * AR
0.0, 1.0
0.0, 1.0

Graphics Procedure Reference 8-87

When a call to SET ~SPECT is made, the graphics system sets the viewport equal to the limits of
the virtual coordinate system. This routine can therefore be used to access the entire logical
display surface. A program could display an image on the entire Model 226 graphics display,
which has an aspect ratio of 399/299, in the following manner:

SET~SPECT (399,299);

To set the aspect ratio to the entire display in a device independent manor, INQ_WS may be used
as follows:

CONST Get_aspect=Z54;

VAR DUMMY INTEGER;
Error INTEGER;
Ratio_list: ARRAY[l •• Z] OF REAL;

BEGIN {PROCEDURE Set_Max_aspect}
INQ_WS (Get_aspect to to tZ tDUITHTl}' tDUITHT1}' t Rat i 0_1 i st t E r ro r) ;
IF Error=O THEN

SET_ASPECT(1.0tRatio_list[Z]) ;
END; {PROCEDURE Set_Max_aspect}

The initial value of the aspect ratio is 1, setting the virtual coordinate system to be a square. This
square is mapped to the largest inscribed square on any display surface, so that the viewable area
is maximized. As a result, the initial virtual coordinate system limits range from 0.0 to 1.0 in both
the X and Y directions. A program can access the largest inscribed rectangle on any display
surface by modifying the value of the aspect ratio. The exact placement of the rectangle on the
display surface is device dependent, but it is centered on CRT's and justified in the lower left hand
corner of plotters.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent the last world coordinate position. A call to MOVE
or INT _MOVE should therefore be made after this call to update the starting position.

If the logical locator is associated with the same physical device as the graphics display, then a call
to SET ~SPECT will set the logical locator limits equal to the new limits of the virtual coordinate
system.

Since the window is not affected by the SET ~SPECT procedure, distortion may result in the
window to viewport mapping if the window does not have the same aspect ratio as the virtual
coordinate system (see SET_WINDOW).

The locator echo position is set to the default value by this procedure.

Error Conditions
The graphics system must be initialized and both X and Y size must be greater than zero or this call
will be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a
non-zero value.

B-88 Graphics Procedure Reference

This procedure sets the character size attribute for graphical text.

Syntax

-..(SELCHAR_SIZ~ width ~ height ~

width

height

Item

Procedure Heading

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

PROCEDURE SET_CHAR_SIZE (Widtht HeiSht

Semantics

REAL);

IMPORT: dgl_lib

Range
Restrictions

The width is the requested graphics character cell width in world coordinate units. (width <>
0.0)

The height is the requested graphics character cell height in world coordinate units. (height < >
0.0)

SET _CHAR_SIZE sets the character size for subsequently output graphics text. The absolute
value of width and height are used to specify the world coordinate size of a character cell.
Therefore, the actual physical size of a character output is determined by applying the current
viewing transformations to the world coordinate units specification.

The default character size (set by GRAPHICS_INIT and DISPLAY _INIT) is dependent upon the
physical device associated with the graphical display device. The size is determined as follows:

• Height : = .05 x (height of the world coordinate system)

• Width : = .035 x (width of the world coordinate system)

If a change is made to the viewing transformation (by SET_WINDOW, SET_VIEWPORT,
SET_DISPLAY_LIM, or SET -.ASPECT), the value of the character size attribute will not be
changed, but the actual size of the characters generated may be modified.

Error Conditions
The graphics system must be initialized, a display must be enabled, and width and height must
both be non-zero or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-89

IMPORT: dgLlib

This procedure sets the color attribute for output primitives except for polygon interior fill.

Syntax

Item Description/Default

color selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_COLOR (Color

Semantics

INTEGER);

SET_COLOR sets the color attribute for the following primitives:

Lines
Markers
Polylines
Polygon Edges
Text

Range
Restrictions

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the color map machines, the entries in the
color table can be modified with SET _COLOR_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

B-90 Graphics Procedure Reference

If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. On some devices, this may depend on the
primitive being displayed. For example, the HP98627 A color output interface card is capable of a
large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon.

Default Raster Color Map
The following table shows the default (initial) color table for the black and white displays
(computer models 216, 220, 226, 236, 237, HP 98542A, HP 98544A, and HP 98548A):

Index # Hue Saturation Luminosity

a a a a
1 a a 1.0000
2 a a 0.9375
3 a a 0.8750
4 a a 0.8125
5 a a 0.7500
6 a a 0.6875
7 a a 0.6250
8 a a 0.5625
9 a 0 0.5000

10 a a 0.4375
11 a a 0.3750
12 a a 0.3125
13 a a 0.2500
14 a a 0.1875
15 a a 0.1250
16 a a 0.0625

Colors 1 7 though 31 are set to white.

The following table shows the default (initial) color table for the color displays (computer
model 236C, HP 98627, HP 98543A, HP 98545A, HP 98547 A, HP 98549A, HP 98550A, HP
98700A, and 362/382 internal bitmapped displays).

Index # Color name Red Green Blue

a Black 0.000000 0.000000 0.000000
1 White 1.000000 1.000000 1.000000
2 Red 1.000000 0.000000 0.000000
3 Yellow 1.000000 1.000000 0.000000
4 Green 0.000000 1.000000 0.000000
5 Cyan 0.000000 1.000000 1.000000
6 Blue 0.000000 0.000000 1.000000
7 Magenta 1.000000 0.000000 1.000000
8 Black 0.000000 0.000000 0.000000
9 Olive green 0.800000 0.733333 0.200000

10 Aqua 0.200000 0.400000 0.466667
11 Royal blue 0.533333 0.400000 0.666667
12 Violet 0.800000 0.266667 0.400000
13 Brick red 1.000000 0.400000 0.200000
14 Burnt orange 1.000000 0.466667 0.000000
15 Grey brown 0.866667 0.533333 0.266667

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table
entries not shown above are set to white.

Graphics Procedure Reference 8-91

Raster Drawing Modes

For raster devices (e.g. Model 236 display) the effect of the color selectors depends on the
current drawing mode (drawing mode is set using the OUTPUT _ESC function). The color
selectors and their effects are listed below:

Plotters

Mode

DOMINATE
(Default mode)

NON-DOMINATE

ERASE

COMPLEMENT

Color Selector = 0

Background
(erase, set
bits to 0)

Background
(erase, set
bits to 0)

Background
(erase, set
bits to 0)

Background
(erase, set
bits to 0)

Color Selector >= 1

Draw
(set bits to 1,
overwrite current pattern)

Draw
(set bits to 1
inclusive OR with
current pattern)

Background
(erase, set
bits to 0)

Complement
(invert bits in
selected planes)

A Color Selector of 0 selects no pens (the current pen is put away). The supported range of
Color Selectors for each supported plotter is:

• 9872A - 0 through 4

• 9872B - 0 through 4

• 9872C/S/T - 0 through 8

• 7550A&B/7570A/7575A/7576A/7580A/7585A/7586A/7595A&B/7596A&B/
7599A - 0 through 8

• 7470A - 0 through 2

• 7475A - 0 through 6

Error Conditions

The graphics system must be initialized and a display must be enabled. Otherwise, this call
will be ignored, an ESCAPE (-27) will be generated, and GRAPHICSERROR will return a
non-zero value.

8-92 Graphics Procedure Reference

IMPORT: dgLlib

This procedure chooses the color model for interpreting parameters in the color table.

Syntax

Item Description/Default

model selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_COL OR_MODEL (MODEL:inte~er);

Semantics

Range
Restrictions

MININT thru
MAXINT

Recommended
Range

1 or 2

The model selector determines the color model which will be used to interpret the values passed
to the color table with SET_COLOR_TABLE or read from it with INQ_COLOR_TABLE.

Value

1
2

Meaning

RGB (Red-Green-Blue) color cube.
HSL (Hue-Saturation-Luminosity) color cylinder.

The RGB physical model is a color cube with the primary additive colors (red, green, and blue) as
its axes. With this model, a call to SET _COLOR_TABLE specifies a point within the color cube
that has a red intensity value (X-coordinate), a green intensity value (Y-coordinate) and a blue
intensity value (Z-coordinate). Each value ranges from zero (no intensity) to one.

Effects of RGB color parameters

Parm 1 (RED) Parm 2 (GREEN) Parm 3 (BLUE) Resultant color

1.0 1.0 1.0 White
1.0 0.0 0.0 Red
1.0 1.0 0.0 Yellow
0.0 1.0 0.0 Green
0.0 1.0 1.0 Cyan
0.0 0.0 1.0 Blue
1.0 0.0 1.0 Magenta
0.0 0.0 0.0 Black

Graphics Procedure Reference 8-93

The HSL perceptual model is a color cylinder in which:

• The angle about the axis of the cylinder, in fractions of a circle is the hue (red is at 0, green is
at 1/3 and blue is at 2/3).

• The radius is the saturation. Along the center axis of the cylinder, (saturation equal zero) the
colors range from white through grey to black. Along the outside of the cylinder (saturation
equal one) the colors are saturated with no apparent whiteness.

• The height along the center axis is the luminosity (the intensity or brightness per unit area).
Black is at the bottom of the cylinder (luminosity equal zero) and the brightest colors are at
the top of the cylinder (luminosity equal one) with white at the center top.

Hue (angle), saturation (radius), and luminosity (height) all range from zero to one. Using this
model, a call to SET _COLOR_ TABLE specifies a point within the color cylinder that has a hue
value, a saturation value, and a luminosity value.

Effects of HSL color parameters

Parm 1 (Hue) Parm 2 (Sat) Parm 3 (Lum) Resultant color

Don't Care 0.0 1.0 White
0.0 or 1 1.0 1.0 Red
116 1.0 1.0 Yellow
2/6 1.0 1.0 Green
3/6 1.0 1.0 Cyan
4/6 1.0 1.0 Blue
5/6 1.0 1.0 Magenta

Don't Care Don't Care 0.0 Black

When a call to SET _COLOR_MODEL switches color models, parameter values in subsequent
calls to SET _COLOR_TABLE then refer to the new model. Switching models does not affect
color definitions that were previously made using another model. Note that when the value of a
color table entry is inquired (lNQ_COLOR_TABLE), it is returned in the current model, which
may not be the model in which it was originally specified.

Not all color specifications can be displayed on every graphics device, since the devices which the
graphics library supports differ in their capabilities. If color specification is not available on a
device, the graphics system will request the closest available color.

Error Conditions
The graphics system must be initialized and the color selector must evaluate to ° or 1 or this call
will be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a
non-zero value.

B-94 Graphics Procedure Reference

SET_COLOR_TABLE
IMPORT: dgLlib

This procedure redefines the color description of the specified entry in the color table. This color
definition is used when the color index is selected via SET_COLOR.

Syntax

Item Description/Default

entry selector Expression of TYPE INTEGER

first parameter Expression of TYPE REAL

second parameter Expression of TYPE REAL

third parameter Expression of TYPE REAL

Procedure Heading
PROCEDURE SET_COLOR_TABLE Index

Calp1
Calp2
Calp3

Semantics

INTEGER;
REAL;
REAL;
REAL

Range
Restrictions

MININT to
MAXINT

o thru 1

o thru 1

o thru 1

) ;

Recommended
Range

device
dependent (see

below)

SET_CaLOR_TABLE is ignored by some devices (such as pen plotters) which do not allow their
color table to be changed. The procedure INQ_WS (opcode 1073) tells whether the color table
can be changed.

The entry selector specified the location in the color capability table that is to be redefined.
For raster displays in Series 200/300 computers, and HP 98542A, HP 98543A, HP 98544A,
HP 98545A, HP 98548A, and HP 98700A (4-plane) displays, 32 entries are available. For HP
98547 A and HP 98549A displays, 80 entries are available. For HP 98700A 8-plane displays,
HP 98550A displays, and 362/382 internal bit-mapped displays, 272 entries are available.

The first parameter represents red intensity if the RGB model has been selected with the SET
COLOR statement, or hue if the HSL model has been selected.

The second parameter represents green intensity if the RGB model has been selected with the
SET COLOR statement, or saturation if the HSL model has been selected.

The third parameter represents blue intensity if the RGB model has been selected, or luminosity
if the HSL model has been selected.

Graphics Procedure Reference 8-95

A more detailed description of the color models and the meaning of their parameters can be
found under the procedure definition of SET _COLOR_MODEL.

The effect of redefinition of the color table on previously output primitives is device dependent.
On most devices, changing the color table will only affect future primitives. However, on
the Model 236C, HP 98543A., HP 98545A, HP 98547A, HP 98549A, HP 98550A, and
HP 98700A, changing a color table entry with a color selector not in the last 16 entries will
immediately change the color of primitives previously drawn with that entry. The procedure
INQ_ WS (opcode 1071) tells whether retroactive color change is supported.

Monochromatic Displays
Changing an entry in the table will not affect the current display. However, future changes to
the display will use the new contents of the table. Device-dependent polygons use the color
table entry when performing dithering.

The color that lines are drawn with (black or white) is determined from the perceived intensity of
the color table entry. This is calculated as follows:

if (red *0.3 + green * 0.59 + blue*O.ll) >0.1
then

color: = white
else

color: = black;

The HP 98627 A Display
Changing an entry in the table will not affect the current display; however, future changes to the
display will use the new contents of the table. Device dependent polygons use the color table
entry when performing dithering.

The color that lines are drawn with (one of the 8 non-dithered colors) is determined from the
closest HSL value to the requested value.

Model 236C, HP 98543A, HP 98545A, 4-Plane HP 98700A
The first 16 locations (0 .. 15) of the color table map directly to the hardware color map.
Changing one of these color table locations will immediately change the display (assuming the
color has been used).

The next 16 locations (16 .. 31) will not affect the current display; however, future changes to
the display will use the new contents of the color table.

Device-dependent polygons drawn with color table locations O .. 15 will be drawn in a solid
color without using dithering. When drawn with color table location above 15 dithering will be
used.

HP 98547 A and HP 98549A
The first 64 locations (0 ... 63) of the color table map directly to the hardware color map.
Changing one of these color table locations will immediately change the display (assuming the
color has been used).

The next 16 locations (64 ... 79) will not affect the current display. However, future changes to
the display will use the new contents of the color table.

98615-90037, rev: 5/88

8-96 Graphics Procedure Reference

Device-dependent polygons drawn with color table locations 0 ... 63 will be drawn in a solid
color without using dithering. When drawn with color table locations above 63, dithering will
be used.

8-Plane HP 98700A, HP 98550A and 362/382 Internal Bitmapped Displays

The first 256 locations (0 ... 255) of the color table map directly to the hardware color map.
Changing one of these color table locations will immediately change the display (assuming the
color has been used).

The next 16 locations (256 ... 271) will not affect the current display. However, future changes
to the display will use the new contents of the color table.

Device dependent polygons drawn with color tabl~ locations O ... 255 will be drawn in a solid
color without using dithering. When drawn with color table locations above 255, dithering will
be used.

Note
Since dithering on color mapped displays use the current color map values
(Le., first area of color table) changing the first color table locations will
effect the dithering pattern used. This leads to two major effects. First,
changing the first locations after a polygon was generated using dithering
will change the dither pattern such that its average color no longer matches
the color that was generated with. Second, since the dither pattern is
based on the first colors, the first colors can be set to produce a dither
pattern with minimum color changes between pixels within the pattern.
The following example produces a continuous shaded polygon across the
crt:

$RANGE OFF$
PROGRAM T;

C

BEGIN
GRAPHICS_INIT;

INTEGER;
ARRAY [1 •• Z] OF REAL;
ARRAY [1 •• Z] OF Gshortint;
REAL;

DISPLAY_INIT(3,0,i) ;
SET_ASPECT (511 ,388) ;
SET_WINDOW(0,511 ,0,388);

FOR I := ° to 15 DO
SET_COLOR_TABLE(ItI/15tI/15tI/15); {set UP color (flap}

SET_PGN_COLOR (16);
SET_PGN_STYLE (16);

Yuec[1] := 100; Yuec[Z] := 150; Ouec[l] := Z; Ouec[Z] := 0;
FOR I : = ° to 511 DO
BEGIN

Xuec[l] := I; Xuec[Z] := 1;
C : 1-1/511;
SET_COLOR_TABLE(16,C,C,C); { set polygon color}
POLYGON_DEV_DEP(Z,Xuec,Yuec,Ouec) ;

END;
END.

Graphics Procedure Reference 8-97

The color that lines are drawn with (one of the non-dithered colors) is determined from the
closest HSL value to the requested value.

Dithered Polygon Fills
All the raster displays use a technique called dithering for filling device dependent polygons. The
polygon is divided into 4 pixel by 4 pixel' dither cells'. The colors that are placed in each pixel
location inside the dither cells average to the current polygon color. The eye will average the
pixels, and see the intended color.

The 98627 A has 3 memory planes thus, providing 8 non-dithered colors (white, red, green, blue,
cyan, magenta, and black). Using dithering 4913 polygon colors may be generated. To obtain a
polygon color of half-tone yellow (R = 0.5 G = 0.5 B = 0.0) the dither cell would contain 8 black
pixels and 8 yellow pixels.

On black and white displays, the largest r,g,b value of the current_polygon color is used to
determine the dither pattern.

On the color mapped displays, the current values of the color map are used to determine the
dither cell pixel colors. This leads to a very very large number of colors that these can produce
when performing device dependent polygon fill.

The Background Color
Color index 0 represents the background color. The ability to redefine this index is device­
dependent. Many devices do not allow the redefinition of their background color. Whether a
display device has the ability to redefine the background color can be inquired via a call to
INQ_WS with opcode = 1072. All raster displays in the Series 200/300 computers are capable
of redefining the background color.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

8-98 Graphics Procedure Reference

SET_DISPLAY_LIM

This procedure redefines the logical display limits of the graphics display.

Syntax

SET.J)ISPLAY.J,.IM

Item

minimum x value

maximum x value

minimum y value

maximum y value

error variable name

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

Expression of TYPE REAL

Expression of TYPE REAL

Variable of TYPE INTEGER

Procedure Heading
PROCEDURE SET_DISPLAY_LIM ><rTl i n t }{rTlax t

YMint YMax REALt
VAR Ierr : INTEGER);

Semantics

IMPORT: dgLlib

Range
Restrictions

The minimum x value is the distance in millimetres that the left side of the logical display limits is
offset from the left side of the physical display limits.

The maximum x value is the distance in millimetres that the right side of the logical display limits
is offset from the left side of the physical display limits.

The minimum y value is the distance in millimetres that the bottom of the logical display limits is
offset from the bottom of the physical display limits.

The maximum y value is the distance in millimetres that the top of the logical display limits is
offset from the bottom of the physical display limits.

The error variable will contain an integer indicating whether the limits were successfully set.

Value

o
1

2

Graphics Procedure Reference B-99

Meaning

The display limits were successfully set.

The minimum x value was greater than or equal to the maximum x value and/or the
minimum y value was greater than the maximum y value.

The parameters specified were outside the physical display limits.

If the error variable is non-zero, the call was ignored.

SET_DISPLAY_LIM allows an application program to specify the region of the display surface
where the image will be displayed. The limits of this region are defined as the logical display limits.
Upon initialization, the graphics system sets these limits equal to some portion of the specified
physical device. This routine allows a programmer to set the plotting surface of a very large plotter
equal to the size of an 8 1/2 x 11 inch paper, for example.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical display limits in terms of millimetres offset from the
origin of the physical display. The exact position of the physical display origin is device depen­
dent. The specifics of various devices are covered later in this entry.

This procedure causes a new virtual coordinate system to be defined. SET_DISPLAY_LIM
calculates the new limits of the virtual coordinate system as a function of the current aspect ratio
and the new limits of the logical display. This does not affect the limits of the viewport. Since it
changes the size of the area onto which the viewport is mapped, it may scale the size of the image
displayed. It will not distort the image; it can only make it smaller or larger.

SET_DISPLAY_LIM should only be called while the graphics display is enabled.

Neither the value of the starting position nor the location of the physical pen or beam is altered by
this routine. Since this routine may redefine the viewing transformation, the starting position may
be mapped to a different coordinate on the display surface. A call to MOVE or INT _MOVE should
therefore be made after this call to update the value of the starting position and in so dOing, place
the physical pen or beam at a known location.

If the logical display and logical locator are associated with the same physical device, a call to
SET_DISPLAY_LIM will set the logical locator limits equal to the new limits of the virtual
coordinate system. A call to SET_DISPLAY_LIM also sets the locator echo position to its default
value, the center of the world coordinate system.

B-I00 Graphics Procedure Reference

Display Limits of Raster Devices

The CRT's for Series 200/300 computers have the following limits:

Computer Wide High Wide High Aspect Resolution
mm mm points points points/mm

Model 216 160 120 400 300 .75 2.5

Model 217 230 175 512 390 .7617 2.226

Model 220 (HP 82913A) 210 158 400 300 .75 2.632

Model 220 (HP 82912A) 152 114 400 300 .75 2.632

Model 226 120 88 400 300 .75 3.333

Model 236 210 160 512 390 .7617 2.438

Model 236 Color 217 163 512 390 .7617 2.39

Model 237 312 234 1024 768 .75 3.282

HP 98542A 210 164 512 400 .7813 2.433

HP 98543A 210 164 512 400 .7813 2.433

HP 98544A 312 234 1024 768 .75 3.282

HP 98545A 360 270 1024 768 .75 2.844

HP 98547A 360 270 1024 768 .75 2.844

HP 98548A 343 274 1280 1024 .7988 3.729

HP 98549A 360 270 1024 768 .75 2.844

HP 98550A 343 274 1280 1024 .7988 3.729

HP 98700A 360 270 1024 768 .75 2.844

362/382 VGA 290 210 640 480 .75 2.207

382 Medium Res 300 225 1024 768 .75 3.413

382 High Res 340 272 1280 1024 .7988 3.765

The physical size of the HP 98627 A display (needed by the SET_DISPLAY_LIM procedure) may
be given to the graphics system by an escape function (OPCODE = 250). The physical limits
assumed until the escape function is given are:

CONTROL = 256
512
768

1024
1280

153.3mm wide and 116.7mm high.
153.3mm wide and 116.7mm high.
153.3mm wide and 142.2mm high.
153.3mm wide and 153.3mm high.
153.3mm wide and 153.3mm high.

The default logical display surface of the graphics display device is the maximum physical limits of
the screen. The physical origin is the lower left corner of the display.

The view surface is always centered within the current logical display surface. The origin of a
raster display is the lower-left dot.

Graphics Procedure Reference B-I0l

HPGL Plotter Display Limits

Wide High Wide High Resolution
Plotter mm mm points points Aspect points/mm

7440A 272.5 191.25 10900 7650 .7018 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7475 416 259.125 16640 10365 .6229 40.0
7550A/B 411.25 254.25 16450 10170 .6182 40.0
7570A 809.5 524.25 32380. 20970 .6476 40.0
7575A 809.5 524.25 32380 20970 .6476 40.0
7576A 1182.8 898.1 47312 35924 .7593 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7595A/B 1100 891. 75 44000 35670 .8107 40.0
7596A/B 1182.8 898.1 47312 35924 .7593 40.0
7599A 1182.8 898.1 47312 35924 .7593 40.0
9872 400 285 16000 11400 .7125 40.0
35723 210.0 164.0 57 43 .7500 470.0
46087A 297.6 216.5 11904 8660 .7275 40.0
46088A 432.4 297.6 17296 11904 .6883 40.0

The 7550B, 7595B, 7596A, and 7599A plotters are only supported in 7550A, 7595A, or 7596A
emulation mode.

The maximum physical limits of the graphics display for a HPGL device not listed above are
determined by the default settings of PI and P2. The default settings of PI and P2 are the values
they have after an HPGL 'IN' command. Refer to the specific device manual for additional
details.

The default logical display surface is set equal to the area defined by PI and P2 at the time
DISPLAY _INIT is invoked. The view-surface is always justified in the lower left corner of the
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters).
The physical origin of the graphics display is at the lower left boundary of pen movement.

Note

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A,
HP 7580, HP 7585, HP 7595A/B, HP 7596A/B, or HP 7599A plotter
while the graphics locator is initialized, it should be the same size of paper
that was in the plotter when DISPLAY _INIT was called. If a different size
of paper is required, the device should be terminated (DISPLAY_TERM)
and re-initialized after the new paper has been placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value.

B-I02 Graphics Procedure Reference

This procedure defines the locator echo position on the graphics display.

Syntax

SET..J:CHOYOS

Item

x coordinate

y coordinate

Procedure Heading

x
coordinate

y
coordinate

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

PROCEDURE SET_ECHO_POS (WXt Wy REAL);

Semantics
The x and y coordinate pair is the new echo position in world coordinates.

IMPORT: dgLlib

Range
Restrictions

When echoing on the display device, SET _ECHO_POS allows a programmer to define the
position of the locator echo position. This is a point in the world coordinate system that represents
the initial position of the locator. It is used with certain locator echoes on the graphics display. For
example, it is used as the anchor point when a rubber band echo is performed. With this echo, the
graphics cursor is initially turned on at the locator echo position. From that time on, the cursor
reflects the position of the locator and a line extends from the locator echo position to the locator
as it moves around the graphics display. To be used in echOing, the point must be displayable.
Therefore, if the point specified is outside of the limits of the window the call is ignored.

The locator echo position will only be used when AWAIT_LOCATOR is called with echo types 2
through 8, e. g., type 4 is a rubber band line echo. The locator echo position is only used when the
locator echo is being sent to the graphics display device, and is not used when sampling the
locator.

SET _ECHO,-POS should only be called while the graphics display and locator are initialized. If
the point passed to SET _ECHO_POS is outside the current window limits, then the call to
SET _ECHO_POS is ignored and no error is given.

The default locator echo position is the center of the limits of the window. When the locator is
initialized, the locator echo position is set to the default value. When a call is made which affects
the viewing transformations for the graphics display surface or the logical locator limits, the
locator echo position is set to the default yalue. The calls which cause this are SET ~SPECT,
DISPLAY_INIT, SET_DISPLAY_LIM, LOCATOR_IN IT, SET_LOCATOR_LIM, SET_WIN­
DOW, and SET_VIEWPORT.

Graphics Procedure Reference 8-103

Once the locator echo position is set, it retains this value until the next call to SET _ECHO_POS or
until a call is made which resets it to the default value.

Error Conditions
The graphics system must be initialized, and a display device and a locator device must be
enabled, or this call will be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSER­
ROR will return a non-zero value.

B-104 Graphics Procedure Reference

This procedure sets the line style attribute.

Syntax

~SET~INE~TYLE~

Item

line style
selector

Description/Default

line style selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_LINE_STYLE (Line_Style

Semantics

Range
Restrictions

MININT thru
MAXINT

INTEGER) ;

IMPORT: dgLlib

Recommended
Range

Device
Dependent

The line style selector is the line style to be used for lines, polylines, polygon edges, and text.

Markers are not affected by line-style. Polygon interior line-style is selected with SET _PGN_LS.

SET_LINE_STYLE sets the line style attribute for lines and text. The mapping between the value
of the line style attribute and the line style selected is device dependent. If a line style attribute is
requested that the device cannot perform exactly as requested, line style 1 will be performed.

There are three types of line-styles: start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily deSignate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

Graphics Procedure Reference B-I05

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The following figure illustrates how one pattern would be displayed using each one of the
different line-style types:

II rrrJTIl I
.-_._- !rfr ... ~ Jr[[Jlll /I" !roilo'l Ilili~1

/.. ../ . ~.::!J . till 0 00 olJ . ~ . ~.
~.-.~ . __ .

START ADJUSTED CONTINUOUS VECTOR ADJUSTED

LINESTYLE USED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing modes
(available on some raster displays e.g., Model 226) may not completely re­
move lines previously drawn. This happens since the line style pattern may
not be in sync with the first line when the second line is drawn. By setting
the line-style to solid when using complement and erase drawing modes
the application program can insure that the line is completely removed.

8-106 Graphics Procedure Reference

Raster Line Styles
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being "continuous":

I~
I..J

"7
..

6 -"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"
5----------------------------------
4 _._._._._._._._._._._._._._._._._ .
. -.
~-----------------

.~ -
L

1
Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Device
Number of continuous

line-styles
Number of vector adjusted

line-styles

7·

9872
7470
7475
7550
7570
7575
7576
7580
7585
7586
7595
7596
7599
Other

7
7
7
7
7
7
7
7
7
7
7
7
7
7

o
o
o
6
6
6
6
6
6
6
6
6
6
o

6 --
5---------------------------
4 _._._._._._._._._.-._._._.-

3--------------
2--------------
1

HP 9872 and 7470 Line Styles
(all are continuous)

CONTINUOUS

13
1 2 --
11 ---------------------------
10 _._._._._._._._._._.-._._.-

9 --------------
8--------------
7
6 -------------------------------------
5 -------------------------
4 _._.-._._._._._._._.-._.-

3-------------
2-------------
1

Graphics Procedure Reference B-I07

CONTINUOUS

VECTOR ADJUSTED

HP 7570, HP 7575A, HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595, HP 7596, HP 7599

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported.

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

Error Conditions

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value.

B-I08 Graphics Procedure Reference

SET_LINE_WIDTH
IMPORT: dgl_lib

This procedure sets the line-width attribute. The number of line-widths possible is device
dependent.

Syntax

~SET~INE~IDTH~ line width
selector

Item Description/Default

line-width selector Expression of TYPE INTEGER

Procedure Headings
PROCEDURE SET_LINE_WIDTH (Linewidth INTEGER);

Semantics

Range
Restrictions

MININT thru MAXINT

SET_LINE_WIDTH sets the line-width attribute for lines, polylines and text. The line-width
attribute does not affect markers which are defined to be always output with the thinnest
line-width supported on the device. All devices support at least one line-width. The range of
line-widths is device dependent but line-width 1 is always the thinnest line-width supported. For
devices that support multiple line-widths, the line-width increases as line-width does until the
device supported maximum is reached. For example, line-width = 1 specifies the thinnest,
line-width = 2 specifies the next wider line-width, etc.

If line-width is greater than the number of line-widths supported by the graphics display or
line-width is less than 1, then the line-width will be set to the thinnest available width (line-width
= 1). All subsequent lines and text will then be drawn with the thinnest available line-width. A call
to INQ_WS with OPCODE equal to 1063 to inquire the value of the line-width will then return a
1.

The initial line-width is the thinnest width supported by the device (line-width = 1).

Note

All current devices support a single line-width.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call is
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Graphics Procedure Reference 8-109

IMPORT: dgLlib

This procedure redefines the logical locator limits of the graphics locator.

Syntax

SET.J..OCATOR.J..IM

Item

minimum x value

maximum x value

maximum y value

minimum y value

error variable name

Description/Default

Expression of TYPE REAL

Expression of TYPE REAL

Expression of TYPE REAL

Expression of TYPE REAL

Variable of lYPE INTEGER

Procedure Heading
PROCEDURE SET_LOCATOR_LIM }-{rrli n t }(rrlax t

YMint YMax REALt
t,JAR Ie rr INTEGER);

Semantics

Range
Restrictions

The minimum x value is the distance in millimetres that the left side of the logical locator limits is
offset from the left side of the physical locator limits.

The maximum x value is the distance in millimetres that the right side of the logical locator limits
is offset from the left side of the physical locator limits.

The minimum y value is the distance in millimetres that the bottom of the logical locator limits is
offset from the bottom of the physical locator limits.

The maximum y value is the distance in millimetres that the top of the logical locator limits is
offset from the bottom of the physical locator limits.

The error variable will contain an integer indicating whether the limits were successfully set.

8-110 Graphics Procedure Reference

Value

o
1

2

3

Meaning

The display limits were successfully set.

The minimum x value was greater than or equal to the maximum x value and/or the
minimum y value was greater than the maximum y value.

The parameters specified were outside the physical display limits.

Attempt to explicitly define locator limits on a device which is both the logical locator
and the logical display. The logical display limits are used when a device is shared for
both purposes, and they cannot be redefined with this call.

If the error variable is non-zero, the call was ignored.

SET _LOCATOR_LIM allows an application program to specify the portion of the physical
locator device that should be used to perform locator functions. When the logical locator device is
enabled (via LOCATOR_INIT) the logical device limits are set to a device dependent portion of
the physical locator device. With a call to this routine the user can set the logical locator limits by
specifying a new area within the physical locator limits.

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value)
define the corner points of the new logical locator limits in terms of millimetres offset from the
origin of the physical locator. The exact position of the physical locator origin is device depen­
dent. Specific origins are covered later in this entry.

If a logical locator and a logical display are associated with the same physical device, then the
logical locator limits must be the same as the logical view surface limits. Specifically, the effects of
the association with the same physical device are as follows:

• The logical locator limits are initialized to the same values as the virtual coordinate system.

• Any call which redefines the virtual coordinate system limits will also redefine the logical
locator limits.

• The logical locator limits can not be defined by a call to SET _LOCATOR_LIM.

By changing the logical locator limits any portion of the graphics locator can be addressed, with
the restrictions stated above.

The logical locator limits always map directly to the view surface, therefore, distortion may result
in the mapping between the logical locator and the display when the logical locator limits and the
view surface have different aspect ratios. If the distortion is not desired it can be avoided by
assuring that the logical locator limits maintain the same aspect ratio as that of the view surface.

SET _LOCATOR_LIM should only be called while the graphics locator is enabled. SET _LOCA­
TOR_LIM sets the locator echo position to the default value (see SET _ECHO_POS).

Graphics Procedure Reference B-lll

Relative Locator Limits (Knob or Mouse)
The knob may be used as a locator on Series 200/300 computers. The default characteristics
of the knob on various Series 200/300 computers is listed in the table below.

Computer Wide High Wide High Aspect Resolution
mm mm points points points/mm

Model 216 160 120 400 300 .75 2.5
Model 217 230 175 512 390 .7617 2.226
Model 220 (HP 82913A) 210 158 400 300 .75 2.632

Model 220 (HP 82912A) 152 114 400 300 .75 2.632

Model 226 120 88 400 300 .75 3.333
Model 236 210 160 512 390 .7617 2.438
Model 236 Color 217 163 512 390 .7617 2.39
Model 237 312 234 1024 768 .75 3.282
HP 98542A 210 164 512 400 .7813 2.433
HP 98543A 210 164 512 400 .7813 2.433
HP 98544A 312 234 1024 768 .75 3.282
HP 98545A 360 270 1024 768 .75 2.844
HP 98547A 360 270 1024 768 .75 2.844
HP 98548A 343 274 1280 1024 .7988 3.729
HP 98549A 360 270 1024 768 .75 2.844

HP 98550A 343 274 1280 1024 .7988 3.729

HP 98700A 360 270 1024 768 .75 2.844

362/382 VGA 290 210 640 480 .75 2.207

382 Medium Res 300 225 1024 768 .75 3.413

382 High Res 340 272 1280 1024 .7988 3.765

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all
other echoes the above limits are used. An example of when the two limits may differ follows:

The knob locator is initialized on a Model 226. The graphics display is an HP 98627 A color
output card. The resolution of the locator is 0 through 399 in x dimension, and 0 through 299
in y dimension. The resolution of the display is 0 through 511 in x dimension, and 0 through
389 in y dimension. When awaitJocator is used with echo 4, the locator will effectively have
the HP 98627 A resolution for the duration of the awaitJocator call. However, if echo 1 is used
with awaitJocator, the cursor will appear on the Model 226 and the locator has a resolution
of 0 x 399 and 0 x 299. Note that all conversion routines and inquiries will use the Model
226 limits.

The physical origin of the locator device is the lower left corner of the display.

B-112 Graphics Procedure Reference

Absolute Locator Limits (HPGL Plotter or Graphics Tablet)
HPGL plotter and graphics tablets can be used as locators. The default characteristics of some
HPGL devices are listed below.

Wide High Wide High Resolution
Plotter mm mm points points Aspect points/mm

7440A 272.5 191.25 10900 7650 .7018 40.0
7470 257.5 191.25 10300 7650 .7427 40.0
7475 416 259.125 16640 10365 .6229 40.0
7550A/B 411.25 254.25 16450 10170 .6182 40.0
7570A 809.5 524.25 32380 20970 .6476 40.0
7575A 809.5 524.25 32380 ·20970 .6476 40.0
7576A 1182.8 898.1 47312 35924 .7593 40.0
7580 809.5 524.25 32380 20970 .6476 40.0
7585 1100 891.75 44000 35670 .8107 40.0
7586 1182.8 898.1 47312 35924 .7593 40.0
7595A/B 1100 891.75 44000 35670 .8107 40.0
7596A/B 1182.8 898.1 47312 35924 .7593 40.0
7599A 1182.8 898.1 47312 35924 .7593 40.0
9872 400 285 16000 11400 .7125 40.0
35723 210.0 164.0 57 43 .7500 470.0
46087A 297.6 216.5 11904 8660 .7275 40.0
46088A 432.4 297.6 17296 11904 .6883 40.0

The 7550B, 7595B, 7596A, and 7599A plotters are only supported in 7550A, 7595A, or 7596A
emulation mode.

The maximum physical limits of the locator for a HPGL device not listed above are determined by
the default settings of PI and P2. The default settings of PI and P2 are the values they have after
an HPGL 'IN' command. Refer to the specific device manual for additional details.

The default logical display surface is set equal to the area defined by PI and P2 at the time
LOCA TOR_INIT is invoked.

Note

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A,
HP 7580, HP 7585, HP 7595A/B, HP 7596A/B, or HP 7599A plotter
while the graphics locator is initialized, it should be the same size of paper
that was in the plotter when DISPLAY _INIT was called. If a different size
of paper is required, the device should be terminated (DISPLAY_TERM)
and re-initialized after the new paper has been placed in the plotter.

Error Conditions
The graphics system must be initialized and a display device enabled or this call will be ignored,
an ESCAPE (- 27) will be generated, and GRAPHICS ERROR will return a non-zero value.

HP-HIL Absolute Locator Semantics
Ie r r is an error return variable. If i err = 0, the call to set _10 cat 0 r _1 i ITI successfully set the locator
limits according to the other parameters. If i err =f::. ° then the value indicates a DGL error condition,
and set _1 0 cat 0 r _1 i ITI has no effect. I err values used are standard wherever possible, with some
new values being added to DGL for special HP-HIL conditions.

IMPORT: dgLlib
dgLpoly

Graphics Procedure Reference 8-113

This procedure selects the polygon interior color attribute for subsequently generated polygons
by providing a selector for the color table.

Syntax

Item Description/Default

color selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_PGN_COLOR (Cindex INTEGER);

Semantics

Range
Restrictions

MININT thru
MAXINT

Recommended
Range

Device
dependent.

The color selector is an index into the color table. The contents of the color table are then used to
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector
maps directly to a pen number for the device. On the color-mapped displays, the entries in
the color table can be modified with SET _COLOR_TABLE. The color actually used depends
on the value in a deVice-dependent color table.

At device initialization a default color table is created by the graphics system. The size and
contents of the table are device dependent. At least one entry exists for all devices. A call to
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given
graphics device. Some devices allow the color table to be modified with SET_TABLE.

The default value of the color attribute is 1. If the value of the color selector is not supported on
the graphics display, the color attribute will be set to 1.

A color selector of 0 has special effects depending on the graphics display used. For raster
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the
pen away.

Dithering
If the device is not capable of reproducing a color in the color table, the closest color which the
device is capable of reproducing is used instead. For polygon fill (in a device dependent mode)
this may involve dithering. For example, the HP 98627 A color output interface card is capable of
a large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the
selected color much more closely than the line color used to outline the polygon. See SET_
COLOR_TABLE for details on how colors are matched to the devices.

8-114 Graphics Procedure Reference

Default Raster Color Map

The following table shows the default (initial) color table for the black and white displays
(computer models 216, 220, 226, 236, 237, HP 98542A, HP 98544A, and HP 98548A):

Index # Hue Saturation Luminosity

a a a a
1 a a 1.0000
2 a a 0.9375
3 a a 0.8750
4 a a 0.8125
5 a a 0.7500
6 a a 0.6875
7 a a 0.6250
8 a a 0.5625
9 a a 0.5000

10 a a 0.4375
11 a a 0.3750
12 a a 0.3125
13 a a 0.2500
14 a a 0.1875
15 a a 0.1250
16 a a 0.0625

Colors 1 7 though 31 are set to white.

The following table shows the default (initial) color table for the color displays (computer
model 236C, HP 98627, HP 98543A, HP 98545A, HP 98547 A, HP 98549A, HP 98550A
and HP 98700A):

Index # Color name Red Green Blue

a Black 0.000000 0.000000 0.000000
1 White 1.000000 1.000000 1.000000
2 Red 1.000000 0.000000 0.000000
3 Yellow 1.000000 1.000000 0.000000
4 Green 0.000000 1.000000 0.000000
5 Cyan 0.000000 1.000000 1.000000
6 Blue 0.000000 0.000000 1.000000
7 Magenta 1.000000 0.000000 1.000000
8 Black 0.000000 0.000000 0.000000
9 Olive green 0.800000 0.733333 0.200000

10 Aqua 0.200000 0.400000 0.466667
11 Royal blue 0.533333 0.400000 0.666667
12 Violet 0.800000 0.266667 0.400000
13 Brick red 1.000000 0.400000 0.200000
14 Burnt orange 1.000000 0.466667 0.000000
15 Grey brown 0.866667 0.533333 0.266667

Colors 9 through 15 are a graphic designer's idea of colors for business graphics. Color table
entries not shown above are set to white.

Graphics Procedure Reference 8-115

Raster Drawing Modes

Raster drawing modes have no effect on polygon fill color.

Plotters

A Color Selector of 0 selects no pens (the current pen is put away). The supported range of
Color Selectors for each supported plotter is:

• 9872A - 0 through 4

• 9872B - 0 through 4

• 9872C/S/T - 0 through 8

• 7550A&B /7570A/7575A/7576A/7580A/7585A/7586A/7595A&B /7596A&B /
7599A - 0 through 8

• 7470A - 0 through 2

• 7475A - 0 through 6

Error Conditions

The graphics system must be initialized and a display must be enabled. Otherwise, this call
will be ignored, an ESCAPE (-27) will be generated, and GRAPHICSERROR will return a
non-zero value.

B-116 Graphics Procedure Reference

IMPORT: dgLlib
dgLpoly

This procedure selects the polygon interior line-style attribute for subsequently generated
polygons by providing a selector for the device dependent line-style table.

Syntax

----(SET ""pGN.J..S ~ line style
selector

Item Description/Default

line-style selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_PGN_LS (Lindex INTEGER);

Semantics

Range
Restrictions

MININT thru
MAXI NT

The line style selector is the line style to be used for polygon interiors.

Line-styles for other primitives are selected using SET_LINE_STYLE.

Recommended
Range

Device
dependent

The mapping between the value of the line style attribute and the line style selected is device
dependent. If a line style attribute is requested that the device cannot perform exactly as
requested, line style 1 will be performed.

There are three types of line-styles - start adjusted, continuous, and vector adjusted:

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the
current line-style starts with a space and then a dot, each vector will be drawn starting with a space
and then a dot. In this case if the vectors are short, they might not appear at all.

Continuous line styles are generated such that the pattern will be started with the first vector
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves,
but does not necessarily deSignate either endpoint of a vector. A side effect of this type of
line-style is if a vector is small enough it might be composed only of the space between points or
dashes in the line-style. In that case, the vector may not appear on the graphics display at all.

Graphics Procedure Reference 8-117

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a
solid component of the dash pattern will be generated at both ends of the vector. Thus, the
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some
component of the dash pattern must appear at both ends of the vector, the entire vector for a
short vector will often be drawn as solid.

The follOWing figure illustrates how one pattern would be displayed using each one of the
different line-style types:

II FoTIl I
'--'--

~ ... ~ ir[[Jlll II" 1r'=jl'11 I·· ··1
Ilill~1 . L!::.::!J . lllli, "')J . ~ . ~.

~.-.~ . __ .
START ADJUSTED CONTINUOUS VECTOR ADJUSTED

It should be apparent from the above discussion that drawing to the starting position will generate
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The
device handlers section of this document details the line-styles available for each device.

Note

When using continuous line styles, complement and erase drawing modes
(available on some raster displays e.g., Model 226) may not completely
remove lines previously drawn. This happens since the line style pattern
may not be in sync with the first line when the second line is drawn. By
setting the line style to solid when using complement and erase drawing
modes, the application program can insure that the line is completely
removed.

B-118 Graphics Procedure Reference

Raster Line Styles
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be
classified as being "continuous":

8
7································· .

6 -"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"-"
5----------------------------------
4 _._._._._._._._._._._._.-._._._._.
3-----------------
'::, -
L

1
Raster Line Styles

Plotter Line Styles
The following table describes the line styles available on the supported plotters.

Device
Number of continuous

line-styles
Number of vector adjusted

line-styles

7·

9872
7470
7475
7550
7570
7575
7576
7580
7585
7586
7595
7596
7599
Other

7
7
7
7
7
7
7
7
7
7
7
7
7
7

o
o
o
6
6
6
6
6
6
6
6
6
6
o

5 --
5---------------------------
4 _.-._._._._.-._._._._.-._.-

3--------------
2--------------
1

HP 7440, 7470, 7475, and 9872 Line Styles

CONTINUOUS

13
1 2 --
11 ---------------------------
10 _._.-._._._._.-._._._._._.-

9 --------------
8--------------
7
6 -------------------------------------
5 -------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-
3-------------
2-------------
1

Graphics Procedure Reference B-119

~ ... ~

I"

. Ir'::;l ·,'1 I.. ..,

.IL . .J I.
, 'l!::1 t...=.:::::..l::.J I' , I I L.._.-.-J II
t...='-':::::.J

VECTOR ADJUSTED

CONTINUOUS

HP 7550A/B, 7570A, 7575A, 7576A, 7580, 7585,7586, 7595A/B, 7596A/B,
and 7599A Line Styles

If the line style specified is not supported by the graphics display, the call is completed with
LINE_STYLE = 1 and no error is reported,

The graphics system must be enabled and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return a non-zero value,

Error conditions:
The graphics system must be initialized and a display device must be enabled or this call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return an non-zero
value,

8-120 Graphics Procedure Reference

IMPORT: dgl_lib
dgl_poly

This procedure selects the polygon style attribute for subsequently generated polygons by
providing a selector for the polygon style table.

Syntax

Item

polygon style
selector

Procedure Heading

polygon style
selector

Description/Default

Expression of TYPE INTEGER

PROCEDURE SET_PGN_STYLE (Pindex INTEGER);

Semantics

Range
Restrictions

MININT thru
MAXINT

Recommended
Range

Device
dependent

Polygon styles can vary in polygon interior density, polygon interior orientation and polygon
edge display. See SET_PGN_TABLE for details on default styles, and how the polygon style
table may be changed.

Error Conditions
The graphics system must be initialized and a display device must be enabled or this call will be
ignored and GRAPHICSERROR will return an non-zero value.

IMPORT: dgLlib
dgLpoly

Graphics Procedure Reference B-121

This procedure defines a polygon style attribute, i. e. an entry in a polygon style table.

Syntax

Item Description/Default

entry selector Expression of TYPE INTEGER

fill density Expression of TYPE REAL

fill orientation Expression of TYPE REAL

edge selector ExpreSSion of TYPE INTEGER

Procedure Heading
PROCEDURE SET_PGN_TABLE Index

Denst}'
Orient
Edge

Semantics

INTEGER;
REAL;
REAL;
INTEGER);

Range Recommended
Restrictions Range

MININT thru Device
MAXINT dependent

MININT thru -1 thru 1
MAXINT

MININT thru -90 thru 90
MAXI NT

MININT thru
MAXINT

This routine defines the attribute of polygon style, i. e. it specifies an entry in a polygon style table.
This entry contains information that specifies polygon interior density, polygon interior orienta­
tion, polygon edge display, and device-independence of polygon display.

The entry selector specifies the entry in the polygon style table that is to be redefined.

The fill density determines the density of the polygon interior fill. The magnitude of this value is
the ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One
represents a fully filled polygon interior. All non-zero values specify the density of continuous
lines used to fill the interior.

B-122 Graphics Procedure Reference

Positive density values request parallel fill lines in one direction only. Negative values are used to
specify crosshatching. For a given density, the distance between two adjacent parallel lines is
greater with cross hatching than in the case of pure parallel filling. Calculations for fill density are
based on the thinnest line possible on the device and on continuous line-style.

The distance between fill lines - hence density - does not change with a change of scale caused
by a viewing transformation. If the interior line-style is not continuous, the actual fill density may
not match that found in the polygon style table.

The fill orientation represents the angle (in degrees) between the lines used for filling the
polygon and the horizontal axis of the display device. The interpretation of fill orientation is
device-dependent. On devices that require software emulation of polygon styles, the angle
specified will be adhered to as closely as possible, within the line-drawing capabilities of the
device. For hardware generated polygon styles, the angle specified will be adhered to as closely
as is possible given the hardware simulation of the requested density. If crosshatching is specified,
the fill orientation specifies the angle of orientation of the first set of lines in the crosshatching, and
the second set of lines is always perpendicular to this.

The value of the edge selector determines whether the edge of the polygon is displayed. If the
edge selector is 0, the edges will not be displayed. If the edge selector is 1, display of individual
edge segments depends on the operation selector in the call that draws the polygon set,
POLYGON, INT_POLYGON, POLYGON_DEV_DEP, or INT_POLYGON_DD.

If polygon edges are displayed, they adhere to the current line attributes of color, line-style, and
line-width, in effect at the time of polygon display.

A device-dependent number of polygon styles are available. All devices support at least 16
entries in the polygon table. The polygon styles defined in the default tables are defined to exploit
the hardware capabilities of the devices they are defined for.

Polygon interiors can be generated in either a device-dependent or device-independent fashion,
by calling POL YGON_DEV _DEP or POLYGON respectively.

Polygons generated in a device-dependent fashion will utilize the available hardware polygon
generation capabilities of the device to increase the speed and efficiency of polygon generation.
The output may vary depending on the device. Devices that have no hardware polygon genera­
tion capabilities will only do a minimal representation of the polygon if a device-dependent
representation of the polygon is requested. If an edge is not requested, an outline of the
non-clipped boundaries of the polygon interior will be drawn in the current polygon interior color
and polygon interior line-style if the density of the polygon interior was not zero.

Polygons generated in a device-independent fashion will adhere strictly to the polygon style
specification. The polygon interior generated would look similar when generated on different
devices for a given polygon style specification. However, on raster devices rasterization of the fill
lines may leave empty pixels when solid fill is requested with an orientation that is not 0 or 90
degrees. Available hardware would only be used where the polygon style could be generated
exactly as specified.

Graphics Procedure Reference B-123

The number of entries in the polygon style table and the default contents of the table are device
dependent. However, all devices support the following polygon style table:

Entry Density Angle Edge

1 0.0 0.0 1
2 0.125 90.0 1
3 0.125 0.0 1
4 -0.125 0.0 1
5 0.125 45.0 1
6 0.125 -45.0 1
7 -0.125 45.0 1
8 0.25 90.0 1
9 0.25 0.0 1

10 -0.25 0.0 1
11 0.25 45.0 1
12 0.25 -45.0 1
13 -0.25 45.0 1
14 -0.5 0.0 1
15 1.0 0.0 0
16 1.0 0.0 1

Error Conditions
The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

B-124 Graphics Procedure Reference

SET_TEXT_ROT

This procedure specifies the text direction.

Syntax

Item Description/Default

x-axis offset

y-axis offset

Procedure Heading

Expression of TYPE REAL

Expression of TYPE REAL

PROCEDURE SET_TEXT_ROT (DXt Dy REAL);

Semantics

IMPORT: dgLlib

Range
Restrictions

The x axis offset and the y axis offset specify the world coordinate components of the text
direction vector relative to the world coordinate origin. These components cannot both be zero.

This procedure specifies the direction in which graphics text characters are output. The default
value (X-axis offset = 1.0; Y-axis offset = 0.0) for the text direction vector is such that characters
are drawn in a horizontal direction left to right. The default value is set during GRAPHICS_INIT
and DISPLAY _IN IT. With X-axis offset = - 1. 0 and Y-axis offset = 1. 0 a 135 degree rotation
from the horizontal (in a counter clockwise direction) may be obtained.

Error Conditions

y

X Axis Offset
1.0

Y Axis Offset
0.5

--~------------------------x

Text Rotation Angle

The graphics system must be initialized, a display must be enabled, and the parameters must be
within the specified limits or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

IMPORT: dgLlib

This procedure selects the timing mode for graphics output.

Syntax

Item Description/Default

timing mode selector Expression of TYPE INTEGER

Procedure Heading
PROCEDURE SET_TIMING (Opcode INTEGER);

Semantics
The timing mode selector determines the timing mode used.

Value

o
1

Meaning

Immediate visibility mode

System buffering mode

Graphics Procedure Reference 8-125

Range
Restrictions

Oar 1

Graphics library timing modes are prOVided to control graphics throughput and picture update
timing. Picture update timing refers to the immediacy of visual changes to the graphics display
surface. Regardless of the timing mode used, the same final picture is sent to the graphics display.
SET_TIMING only controls when a picture appears on the graphics display, not what appears.

The graphics system supports two timing modes:

• Immediate visibility Requested picture changes will be sent to the graphics display device
before control is returned to the calling program. Due to operating system delays there may
be a delay before the picture changes are visible on the graphics display device .

• System buffering Requested picture changes will be buffered by the graphics system. This
means that the graphics output will not be immediately sent to the display device. This allows
the graphics library to send several graphics comma"nds to the graphics display device in one
data transfer, therefore, reducing the number of transfers. System buffering is the initial
timing mode.

The follOWing routines implicitly make the picture current:

AWAIT_LOCATOR
LOCATOR_INIT

DISPLAY _TERM
SAMPLE_LOCATOR

INPUT_ESC

B-126 Graphics Procedure Reference

The immediate visibility mode is less efficient than the system buffering mode. It should only be
used in those applications that require picture changes to take place as soon as they are defined,
even if the finished picture takes longer to create. When changing the timing mode to immediate
visibility the picture is made current.

An alternative to immediate visibility that will solve many application needs is the use of system
buffering together with the MAKE_PIC_CURRENT procedure. With this method, an application
program places graphics commands into the output buffer and flushes the buffer (see MAKE_
PIC_CURRENT) only at times when the picture must be fully displayed.

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure
that the image is fully defined. MAKE_PIC_CURRENT flushes the output buffer but does not
modify the timing mode.

Before performing any non-graphics system input or output (to a graphics system device) such as a
Pascal read or write, the output buffer must be empty. If the buffer is not flushed (via immediate
visibility of MAKEYIC_CURRENT) prior to non-graphics system liD, the resulting image may
contain some' garbage' such as escape functions or invalid graphics data.

Note
Although SET_TIMING can be used with all display devices, only
HPGL plotters buffer commands.

Error Conditions
The graphics system must be initialized and all parameters must be in range or this call will be
ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero
value.

Graphics Procedure Reference B-127

IMPORT: dgLlib

This procedure sets the boundaries of the viewport in the virtual coordinate system.

Syntax

SET _v I EWPORT

Item Description/Default

minimum x value Expression of TYPE REAL

maximum x value Expression of TYPE REAL

minimum y value Expression of TYPE REAL

maximum y value Expression of TYPE REAL

Procedure Heading
PROCEDURE SET_VIEWPORT !.1 x ITli n t !.JXITlax t

!.I}'ITlin t !.J}'ITlaX

Semantics

Range
Restrictions

0.0-1.0

0.0-1.0

0.0-1.0

0.0-1.0

REAL);

The minimum x value is the minimum boundary in the X-direction expressed in virtual coordin­
ates.

The maximum x value is the maximum boundary in the X-direction expressed in virtual
coordinates.

The minimum y value is the minimum boundary in the Y -direction expressed in virtual coordin­
ates.

The maximum y value is the maximum boundary in the Y -direction expressed in virtual
coordinates.

SET_VIEWPORT sets the limits of the viewport in the virtual coordinate system. The viewport
must be within the limits of the virtual coordinate system; otherwise the call will be ignored.

The initial viewport is set up with the minimum x and y values set to 0.0 and the maximum X and
Y values set to 1.0.

8-128 Graphics Procedure Reference

The initial viewport is set by GRAPHICS_INIT and SET -.ASPECT. This initial viewport is
mapped onto the maximum visible square within the logical display limits. This area is called the
view surface. The placement of the view surface within the logical display limits is dependent
upon the device being used. It is generally centered on CRT displays and is placed in the lower
left-hand corner of plotters.

By changing the limits of the viewport, an application program can display an image in several
different positions on the same graphics display device. A program can make a call to SET_
VIEWPORT anytime while the graphics system is initialized.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT _MOVE should be made after this call to update the starting position.

Error Conditions
The graphics system must be initialized, all parameters must be within the specified range, the
minimum X value must be less than the maximum X value and the minimum Y value must be less
than the maximum Y value and all parameters must be within the current virtual coordinate
system boundary, or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value ..

IMPORT: dgLlib

This procedure defines the boundaries of the window.

Syntax

SETjlINDOW

Item Description/Default

left Expression of TYPE REAL

right Expression of TYPE REAL

bottom Expression of TYPE REAL

top Expression of TYPE REAL

Procedure Heading
PROCEDURE SET_WINDOW WXfTl in t WXfTlax t

WVMint WVMax : REAL);

Semantics

Graphics Procedure Reference 8-129

Range
Restrictions

See below

See below

See below

See below

The left is the minimum boundary in the X-direction expressed in world coordinates. (Le., the left
window border). Must not equal maximum x value.

The right is the maximum boundary in the X-direction expressed in world coordinates. (Le. the
right window border). Must not equal minimum x value.

The bottom is the minimum boundary in the Y -direction expressed in world coordinates. (L e. the
bottom window border). Must not equal maximum y value.

The top is the maximum boundary in the Y -direction expressed in world coordinates. (i. e. the top
window border). Must not equal minimum y value.

SET_WINDOW defines the limits of the window. All positional information sent to and received
from the graphics system is specified in world coordinate units. This allows the application
program to specify coordinates in units related to the application.

If the top value is less than the bottom value, the Y-axis will be inverted. If the right value is less
than the left boundary, the X-axis will be inverted.

B-130 Graphics Procedure Reference

The window is linearly mapped onto the viewport specified by SET_VIEWPORT. This is done by
mapping the left boundary to the minimum X-viewport boundary, the right boundary to the
maximum X-viewport boundary, the bottom boundary to the minimum V-viewport boundary,
and the top boundary to the maximum Y -viewport boundary. If distortion of the graphics image is
not desired, the aspect ratio of the window boundaries should be equal to the aspect ratio of the
viewport.

The default window limits range from -1.0 to 1.0 on both the X and Y axis. GRAPHICS_INIT is
the only procedure which sets the window to its default limits.

The starting position is not altered by this call. Since this call redefines the viewing transformation,
the starting position may no longer represent a known world coordinate position. A call to MOVE
or INT _MOVE should therefore be made after this call to update the starting position.

SET_WINDOW can be called at anytime while the graphics system is initialized.

Error Conditions
The graphics system must be initialized, the minimum value for either axis must not equal the
maximum value for that axis or this call will be ignored, an ESCAPE (- 27) will be generated, and
GRAPHICSERROR will return a non-zero value.

Graphics Procedure Reference 8-131

Module Dependency Table
The Module Dependency Table shows which modules are imported by the standard LIBRARY, 10,
GRAPHICS, and SEGMENTER modules.

Module to
Be Imported
LIBRARY Modules:

RND
HPM
UIO
LOCKMODULE

10 Modules:
IODECLARA TIONS
IOCOMASM
GENERAL_O
GENERAL_l
GENERAL-2
GENERAL_3
GENERAL_4
HPIB_O
HPIB_l
HPIB-2
HPIB_3
SERIALO
SERIAL3

Module(s) Upon
Which It Depends

SYSGLOBALS

SYSGLOBALS

SYSGLOBALS
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS, GENERALl, HPIB_l
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS, HPIB_l
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS, HPIB_O, HPIB_l
SYSGLOBALS,IODECLARATIONS, GENERALl, HPIB_O, HPIB_l
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, IODECLARA TIONS

GRAPHICS (and FGRAPHICS) Modules:
DGLLIB ASM, IODECLARA TIONS, SYSGLOBALS, MINI, ISR, MISC, FS,

SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGLPOLY

DGLPOLY SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except
DGLINQ

DGLINQ ASM, SYSGLOBALS, A804XDVR, DGL_TYPES, DGL_VARS,
DGLGEN,GLE-TYPES,GLE_GEN

SEGMENTER Modules:
SEGMENTER LOADER, LDR, SYSGLOBALS, MISC

B-132 Graphics Procedure Reference

I/O System Errors
These are the values found in the system variable 10RESULT and
the corresponding error message which the system prints out auto­

matically for you.
o No I/O error reported.
1 Parity (CRC) wrong. I/O driver will do several retries.
2 Illegal unit number - valid range is 1 .. 50.
3 Illegal I/O request (e.g .. read from printer).
4 Device timeout.
5 Volume went off-line.
6 File lost in directory.
7 Bad file name.
8 No room on volume.
9 Volume not found.

10 File not found
11 Duplicate directory entry.
12 File already open
13 File not open.
14 Bad input format
15 Disc block out of range.
16 Device absent or inaccessible.
17 Media initialization failed.
18 Media is write-protected
19 Unexpected interrupt.
20 Hardware/media failure.
21 Unrecognized error state.
22 DMA absent or unavailable
23 File size not compatible with type.
24 File not opened for reading.
25 File not opened for writing.
26 File not opened for direct access.
27 No room in directory.
28 String subscript out of range.
29 Bad string parameter on close of file
30 Attempt to read past end-of-file mark.
31 Media not initialized.
32 Block not found
33 Device not ready or media absent.
34 Media absent.
35 No directory on volume.
36 File type illegal or does not match request
37 Parameter illegal or out of range.
38 File cannot be extended
39 Undefined operation for file.
40 File not lockable.
41 File already locked.
42 File not locked.
43 Directory not empty.
44 Too many files open on device.
45 Access to file not allowed.
46 Invalid password.
47 File is not a directory.
48 Operation not allowed on a directory
49 Cannot create /WORKSTATIONS/TEMP _FILES.
50 Unrecognized SRM error.
51 Medium may have been changed.
52 File system corrupt.
53 File or file system too big.
54 No permission for requested action.
55 Driver cache full.
56 Driver configuration failed.
57 10RESULT was 57.

Graphics System Errors
When writing graphics programs, it will be helpful to enclose the main
body of the program in a TRY block. In the RECOVER block, test the
value of ESCAPECODE. If ESCAPECODE=-27, invoke a graphics
function called GRAPHICSERROR. This will return a number which
can be cross-referenced with the following list of error messages.

o No errors since last call to GRAPHICSERROR or INIT GRAPHICS.
1 Graphics system not initialized. -
2 Graphics display is not enabled.
3 Locator device not enabled.
4 ECHO value requires a graphic display to be enabled.
5 Graphics system is already enabled.
6 Illegal aspect ratio specified.
7 Illegal parameters specified.
8 Parameters specified are outside physical display limits.
9 Parameters specified are outside limits of window.

10 Logical locator and logical display use same device.
11 Parameters specified are outside virtual coordinate system boundary.
12 Escape function requested not supported by display device.
13 Parameters specified are outside physical locator limits.

Loader/SEGMENTER Errors
Here is a list of errors that can be generated by the loader or by a
program that uses the SEGMENTER module.

100.105
110
111
112
116
117
118

-119/119
120
121
122

Field overflow trying to link or relocate something
Circular or too deeply nested symbol definitions.
Improper link information format.
Not enough memory.
File was not a code file.
Not enough space in the explicit global area.
Incorrect version number.
Unresolved external references.
Generated by the dummy procedure returned by FIND_PROC.
UNLOAD_SEGMENT called when there are no more segments to unload.
Not enough space in the explicit code area.

I/O Library Errors
These are the values and corresponding error messages that may
develop when using the I/O library. A call to 10ERROR_MESSAGE
will generate the appropriate message.

o No error
1 No card at select code.
2 Interface should be HP-IB.
3 Not active controller/commands not supported.
4 Should be device address, not select code.
5 No space left in buffer.
6 No data left in buffer.
7 Improper transfer attempted.
8 The select code is busy.
9 The buffer is busy.

10 Improper transfer count.
11 Bad timeout value/timeout not supported.
12 No driver for this card
13 No DMA.
14 Word operations not allowed.
15 Not addressed as talker/write not allowed.
16 Not addressed as listener/read not allowed.
17 A timeout has occurred/no device.
18 Not system controller
19 Bad status or control.
20 Bad set/clear/test operation.
21 Interface card is dead.
22 End/eod has occurred.
23 Miscellaneous-value of parameter error.

306 Datacomm interface failure.
313 USART receive buffer overflow.
314 Receive buffer overflow.
315 Missing clock.
316 CTS false too long.
317 Lost carrier disconnect
318 No activity disconnect.
319 Connection not established.
325 Bad data bits/parity combination
326 Bad status/control register.
327 Control value out of range.

Operating System Runtime Error Messages
Errors detected by the operating system during the execution of a
program generate one of the following error messages. The numbers
correspond to the value of ESCAPECODE.

o Normal termination.
-1 Abnormal termination.
-2 Not enough memory.
-3 Reference to NIL pointer.
-4 Integer overflow.
-5 Divide by zero.
-6 Real math overflow. The number was too large
-7 Real math underflow. The number was too small.
-8 Value range error.
-9 Case value range error.

-10 Non-zero 10RESULT. (See "I/O System Errors
-11 CPU word access to odd address.
-12 CPU bus error.
-13 Illegal CPU instruction.
-14 CPU privilege violation.
-15 Bad argument - SIN/COS.
-16 Bad argument - LN (natural log).
-17 Bad argument - SQRT (square root).
-18 Bad argument - real/BCD conversion.
-19 Bad argument - BCD/real conversion.
-20 Stopped by user.
-21 Unassigned CPU trap.
-22 Reserved.
-23 Reserved.
-24 Macro parameter not 0 .. 9 or a .. z.
-25 Undefined macro parameter.
-26 Non-zero 10E-RESULT. (See "I/O Library Errors".)
-27 Non-zero GRAPHICSERROR. (See "Graphics System Errors
-28 Parity error in memory.
-29 Miscellaneous hardware floating-point error.

-30 Bad argument - arcsine/arccosine. Argument> 1.
-31 Illegal real number.

VMELIBRARY Errors
When a VME error occurs while using the VME_DRIVER module
procedures, you can determine which has occurred by using a
TRY ... RECOVER construct and calling the ESCAPECODE function
in the RECOVER block.

800 Range error: select code <7 or >31.
801 Tried to access the HP VMEbus Interface using an odd Select Code
802 Timeout error, the VMEbus System Controller does not grant the bus to

the HP VMEbus Interface within the amount of seconds specified in the
last 'SET TIMEOUT' call.

803 NumOfCh-;'r <0 or > declared size of 'Data' in VME StrRead
NumOfBytes <0 VME_BlockRead or VME_BlockWrii'e.

805 Odd NumOfBytes when using Transfer mode Wordlnc or WordFxd.
806 The VMEbus Interface Card is not an HP 98646A VMEbus Interface Card.

o

o

o

o

o

o

1
2
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
50
51
52
53
54
55
56
58
59
98
99

100
101
102
103
104
105
106
107
108
110
111
113
115
117
121
123
125
126
127
129
130

131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
147
149
150
152
154
156
158
160
163
164
165
166
167
168
169
171
177
181
182
183
184
185
190
300
301
302
303
304
400
401

403-409

Pascal Compiler Syntax Errors
ANSI/ISO Pascal Errors

Erroneous declaration of simple type.
Expected an identifier.
Expected a right parenthesis ")".
Expected a colon ,,:.,
Symbol is not valid in this context.
Error in parameter list.
Expected the keyword OF.
Expected a left parenthesis "(".
Erroneous type declaration.
Expected a left bracket "[".
Expected a right bracket "]".
Expected the keyword END.
Expected a semicolon ";".
Expected an integer.
Expected an equal sign "=".

Expected the keyword BEGIN.
Expected a digit following , ,
Error in field list of a record declaration.
Expected a comma ",".
Expected a period ".".
Expected a range specification symbol"
Expected an end-of-comment delimiter
Expected a dollar sign "$".
Error in constant specification.
Expected an assignment operator "._"
Expected the keyword THEN.
Expected the keyword UNTIL.
Expected the keyword DO.
Expected the keyword TO or DOWNTO.
Variable expected
Erroneous factor in expression.
Erroneous symbol following a variable
Illegal character in source text.
End of source text reached before end of program
End of program reached before end of source text
Identifier was already declared.
Low bound greater than high bound in range of constants.
Identifier is not of the appropriate class.
Identifier was not declared
Non-numeric expressions cannot be signed
Expected a numeric constant here.
Endpoint values of range must be compatible and ordinal.
NIL may not be redeclared.
Tagfield type in a variant record is not ordinal.
Variant case label is not compatible with tag field
Array dimension type is not ordinal.
Set base type is not ordinal.
An unsatisfied forward reference remains.
Pass by value parameter cannot be type FILE.
Type of function result is missing from declaration
Erroneous type of argument for built-in routine
Number of arguments different from number of formal parameters.
Argument is not compatible with corresponding parameter.
Operands in expression are not compatible.
Second operand of IN is not a set.

Only equality tests (= and < » allowed on this type.

Tests for strict inclusion « or » not allowed on sets
Relational comparison not allowed on this type
Operand(s) are not proper type for this operation.
Expression does not evaluate to a boolean result
Set elements are not of ordinal type.
Set elements are not compatible with set base type.
Variable is not an ARRAY structure
Array index is not compatible with declared subscript.
Variable is not a RECORD structure.
Variable is not a pointer or FILE structure.
Packing allowed only on last dimension of conformant array.
FOR loop control variable is not of ordinal type.
CASE selector is not of ordinal type.
Limit values not compatible with loop control variable
Case label is not compatible with selector.
Array dimension is not bounded.
Illegal to assign value to built-in function identifier.
No field of that name in the pertinent record.
Illegal argument to match pass-by-reference parameter.
Case label has already been used
Structure is not a variant record
Previous declaration was not FORWARD.
Statement label not in range 0 .. 9999.
Target of non local GOTO not in outermost compound statement.
Statement label has already been used.
Statement label was already declared
Statement label was not declared.
Undefined statement label
Set base type is not bounded.
Parameter list conflicts with forward declaration.
Cannot assign value to function outside its body.
Function must contain assignment to function result.
Set element is not in range of set base type.
File has illegal element type.
File parameter must be of type TEXT.
Undeclared external file or no file parameter.
Attempt to use type identifier in its own declaration.
Division by zero.
Overflow in constant expression
Index expression out of bounds.
Value out of range.
Element expression out of range.
Unable to open list file.
File or volume not found.
Compiler errors.

600
601
602
604
605
606
607
608
609
610
611
612
613
614
620
621
646
647
648
649

651
652
653
655
657
658
659
660
661
662
663
665
667
668
671
672
673
674
676
677
678
679
680
681
682
683
684
685
686
687
688
689
696
697
698
699

701
702
704
705
706
707
708
709
710
711
712
714
715
716
717
718
719
720
730
731
732
733
750
751
900
901
902
903
904
905
906
907
908

Compiler Options
Directive is not at beginning of the program.
Indentation too large for PAGEWIDTH.
Directive not valid in executable code
Too many parameters to SEARCH.
Conditional compilation directives out of order.
Feature not in standard Pascal flagged by ANSI ON.
Feature only allowed when UCSD enabled.
INCLUDE exceeds maximum allowed depth of files.
Cannot access this INCLUDE file.
INCLUDE or IMPORT nesting too deep.
Error in accessing library file
Language extension not enabled.
Imported module does not have interface text.
LlNENUM must be in the range 0 .. 65535.
Only first instance of routine may have ALIAS
ALIAS not in procedure or function header
Directive not allowed in EXPORT section.
Illegal file name.
Illegal operand in compiler directive.
Unrecognized compiler directive

Implementation Restrictions
Reference to a standard routine that is not implemented
Illegal assignment or CALL involving a standard procedure.
CONST, TYPE, VAR, or MODULE cannot follow routine.
Record or array constructor not allowed in executable statement.
Loop control variable must be local variable.
Sets are restricted to the ordinal range 0 .. 8175 (default) or 0.261999 (max).
Cannot blank pad literal to more than 255 characters.
String constant cannot extend past text line.
Integer constant exceeds the range implemented.
Nesting level of identifier scopes exceeds maximum (20)
Nesting level of declared routines exceeds maximum (15).
CASE statement must have non-OTHERWISE clause.
Routine was already declared FORWARD.
FORWARD routine may not be EXTERNAL.
Procedure too long.
Structure is too large to be allocated.
File component size must be in range 1 .. 32766.
Field in record constructor improper or missing.
Structured constant has been discarded (ct. SAVE_ CONST)
Constant overflow.
Allowable string length is 1 .. 255 characters.
Range of case labels too large
Real constant has too many digits
Real number not allowed.
Error in structured constant.
More than 32 767 bytes of data.
Expression too complex.
Variable in READ or WRITE list exceeds 32767 bytes.
Field width parameter must be in range 0 .. 255.
Cannot IMPORT module name in its EXPORT section.
Structured constant not allowed in FORWARD module.
Module name may not exceed 15 characters
Array elements are not packed.
Array lower bound is too large.
File parameter required.
32-bit arithmetic overflow.

Non-ISO Language Features
Cannot dereference variable of type ANYPTR.
Cannot make an assignment to this type of variable.
Illegal use of module name.
Too many concrete modules.
Concrete or external instance required
Variable is of type not allowed in variant records
Integer following "#" is greater than 255.
Illegal character in a "#" string.
Illegal item in EXPORT section.
Expected the keyword IMPLEMENT.
Expected the keyword RECOVER.
Expected the keyword EXPORT.
Expected the keyword MODULE.
Structured constant has erroneous type.
Illegal item in IMPORT section
CALL to other than a procedural variable.
Module already implemented (duplicate module).
Concrete module not allowed here.
Structured constant component incompatible with corresponding type.
Array constant has incorrect number of elements.
Length specification required.
Type identifier required.
Error in constant expression.
Function result type must be aSSignable.
Insufficient space to open code file
Insufficient space to open REF file.
Insufficient space to open DEF file
Error in opening code file.
Error in opening REF file.
Error in opening DEF file.
Code file full.
REF file full.
DEF file full.

Subject Index 1

Subject Index

a
Absolute locator B1, B3, B30, B62, B64, B68, B84, B109
Acceleration, pen .. 3-6
Anisotropic scaling '. 1-10
Aspect ratio ... 2-2, 4-13
Aspect Ratio, setting .. 1-11
Attributes, color ... 5-1
AWAIT_LOCATOR procedure 4-9, B1, B3
Axes ... 1-20,2-30
Axes, labelling ... 1-25
Axes, logarithmic ... 2-32
AxesGrid program ... 2-30, A2

b
Background value ... 5-24
BAR_KNOB program .. 4-1, A9
BAR_KNOB2 program .. A12
Bold labels .. 1-19
Booting the Pascal system ... 1-7

c
Cartesian coordinates ... 1-6
Cell, character ... 2-11
Centering labels .. 1-1 7
Character cell .. .' 2 -11
Character size, setting ;......................... 1-16, 2-13
CharCell program .. 2-11, A 17
CHARSIZE procedure .. 2-14, 2-18
Choosing the graphics display device 1-6
CLEAR_DISPLAY procedure 2-23, B10
CLIPDRAW procedure .. 1-25, 2-30
Clipping lines .. 1-23
Closed loop system .. 4-1
Color displays, external ... 3-4
COLOR program .. 5-9, A18
Color:

Additional colors 5-20, 5-24, 5-25
Business .. 5-2
CMY Color Cube ... 5-13
Dithered colors .. 5-21, 5-24
Effective use of .. 5-36

2 Subject Index

Gamuts .. 5-40
Graphics .. 5-1
Hardcopy ... 5-40
HSL Color Cylinder ... 5-14
HSL model .. 5-5, 5-9
Hue .. 5-5
Luminosity ... 5-5
Map ... 5-25
Mixing ... 5-37
Model resolution .. 5-29
Models. .. 5-4,5-9
Objective use of .. 5-38
Primary ... 5-2
References .. 5-42
RGB Color Cube ... 5-12
RGB model .. 5-4,5-9
Saturation ... 5-5
Seeing ... 5-36
Spaces .. 5-11
Subjective use of ... 5-38
Table ... 5-2
Vector ... 5-21

Compiling demonstration programs 1-4
Complementing lines ... 2-23, 5-31
Continuous degrees of freedom ... 4-7
Control value (DISPLAY _INIT) '. 1-7
Control Word variable ... 1-7
Conversion between coordinate systems 2-8
ConvertVirtualToWorld program ... 2-9
ConvertWorldToVirtual program .. 2-10
CONVERT_WTODMM procedure 1-24, B11
CONVERT_WTOLMM procedure .. B12
Coordinate systems, conversion between 2-8
Coordinates:

Cartesian .. 1-6
Rectangular .. 1-6
Virtual ... 1-13
World ... 1-13, B11, B12

CRT drawing modes. .. 2-23,5-30
CRT, graphics .. 1-6
CrtAddr variable .. 1-7, 3-1
CsizeProg program ... A25
Cube, Color ... 5-12
Cursor tracking ... 4-1
Customizing demo programs for your system 1-6
Cylinder, Color .. 5-14

Subject Index 3

d
Data-driven plotting ... 2-39
Datapoint function ... 1-6
DataPoint program ... A26
Defining a viewport ... 1-13
Degrees of freedom:

Continuous .. 4-7
Non-separable .. 4-7
Number of ... 4-3
Quality of .. 4-3
Quantizable .. 4-8
Separability of .. 4-7

Demonstration programs. .. 1-4, 1-6
Device selector (DISPLAY _INIT) ... 1-6
DGLPRG disc .. 1-1
Direction, label ... 2-16
Direction of labels, setting .. 1-1 7
Display design ... 5-37
Display limits, setting ... 2-1
DISPLAY _FINIT procedure B 13
DISPLAY _INIT procedure. .. 1-6,3-1, B17
Displays, external color .. 3-4
Displays, turning on and off .. 2-7
DISPLAY _TERM procedure .. B23
Dithered colors .. 5-24
Dithering ... 2-43, 5-20, 5-26
Dominant lines, drawing ... 2-23, 5-31
Drawing lines ... 1-7
Drawing modes, CRT ... 2-23, 5-30
DrawMdPrg program .. 2-24, A26
Dumping raster images .. 3-2

e
Echoes ... B5
Echoes:

Built-in .. 4-9
Rubber .. 4-12

Erasing lines 2-23, 5-31
External color displays .. 3-4
External plotter control 3-5

4 Subject Index

f
Fast drawing procedures .. 2-24
Feedback .. 4-1
FillGraph program .. 2-46, A30
Filling, polygon .. 2-43
FillProg program ... 2-44, A29
Force, pen ... 3-6
Frame buffer .. 5-17, 5-24, 5-32
Frame, window ... 2-5
Freedom, degrees of ... 4-4

9
Gamuts, color ... 5-40
GLOAD procedure .. 2-36
Graphics display device, selecting .. 1-6
Graphics dump 3-2
Graphics, interactive 4-1
GRAPHICS key ... 2-7
GRAPHICS Library, using ... 1-4
Graphics memory address. .. 2-37
Graphics memory size ... 2-37
Graphics procedure qUick reference B 1
Graphics tablet ... 4-13
GRAPHICSERROR procedure .. 824
GRAPHICS_INIT procedure .. 1-9, B26
GRAPHICS_ TERM procedure· .. 1-9, 827
GRID procedure .. 2-32
Grids .. 2-30
GSTORE procedure ... 2-36, 3-3
GstorProg program .. '. .. A31
GTEXT procedure ... 1-15,2-18, B28

h
Half toning .. 5-20
Hardcopy, color .. 5-40
Highlighting data curves .. 2-47
HP 98627 A RGB interface .. 3-4
HP-HIL .. B1
HP-HIL absolute locator B3, B30, B62, B64, B68, B84, B109
HP-HIL digitizing .. 4-1
HP-HIL port .. B1
HP-HIL relative locator 82, B7, B33, B6~, B70, B85, BIll
HP9000 362/382 display .. 5-18
HP98542 display ... 5-18
HP98543 display ... 5-18
HP98544 display ... 5-18
HP98545 display ... 5-18

Subject Index 5

HP98546A ... 1-12
HP9854 7 A display .. 5-18
HP98548A display. .. 5-18
HP98549A display .. 5-18
HP98550A display. .. 5-18
HP98700 display ... 5-18
HSL color model ... 5-5,5-9,5-29
Hue .. 5-5

•
1

Images, dumping .. 3-2
Images, storing and retrieving .. 2-36
INCLUDE files .. 1-5, 1-7
Input device selection ... 4-4
Input pixel .. B2
INPUT _ESC procedure ... B 1, B30
INQ_COLOR_ TABLE procedure ... B34
INQ_PGN_ TABLE procedure ... B36
INQ_WS procedure ... 1-13,2-2, B38
Interactive graphics .. 4-1
INT_LINE procedure .. 2-24, B45
INT _MOVE procedure ... 2-24, B47
INT _POLYGON procedure ... B49
INT _POLYGON_DO procedure .. B52
INT _POLYLINE procedure ... B56
IsoProg program ... 2-28, A40
Isotropic scaling ... 1-10, 2-27

j
Justifying labels .. 2-18
JustProg program .. 2-21, A46

k
KEYBOARD file 4-4

I
Label direction, setting ... 2-16
LABELJUSTIFY procedure ... 2-18
Labelling a plot .. 2-11
Labelling Axes ... 1-25
Labels, justifying ... 2-18
Labels:

Bold. .. 1-19
Centering ... 1-1 7
Direction of ... 1-1 7

LdirProg program .. 2-17, A50

6 Subject Index

LEM programs .. 2-44, 2-41
Limits, display .. 2-1
LINE ... B58
Line drawing ... 1-7
LINE procedure .. 1-8, 1-32
Line Styles, selecting .. 2-25
Line value .. 5-24
Lines, clipping ... 1-23
Loading Pascal system .. 1-7
Locator .. Bl
LOCATOR program .. 4-9, A51
LOCATOR_INIT procedure .. Bl, B59
Locators .. B3, B7
LOCATOR_TERM procedure .. Bl, B64
Logarithmic plotting ... 2-32
LogPlot program ... 2-34, A54
LT instruction. .. 2-25
Luminosity ... 5-5

m
MAKE_PIC_ CURRENT procedure .. B65
Map, color .. 5-25
MARKER procedure ... 2-47, B66
MarkrProg program ... 2-48, A56
Memory address, graphics .. 2-37
Memory size, graphics ... 2-37
Models, color ... 5-4, 5-9
Modes, drawing .. 2-23
Module Dependency Table .. B131
Monochromatic defaults in color table 5-3
MOVE procedure .. 1-8, B67
Multi-line objects ... 2-40

n
Non-separable degrees of freedom 4-7
Non-square pixels ... 5-19

o
OUTPUT _ESC procedure 2-7, 3-2, Bl, B68

p
Pascal system, loading .. 1-7
Pen acceleration, controlling .. 3-6
Pen force, controlling ... 3-6
Pen speed, controlling .. 3-5
Permanent command ... 1-4
Photographing the CRT .. 5-41

Subject Index 7

Pixel ... 1-11, 2-43
Pixel pairs .. 5-19
PLineProg program ... 2-39, A57
Plot Labelling .. 2-11
Plotter control .. 3-5
Plotter, selecting a ... 3-1
Plotters .. 5-16
Plotting and the CRT .. 5-41
Polygon filling .. 2-43
Polygon interiors ... 5-24
POLYGON procedure .. 2-40, B75
POLYGON_DEV_DEP procedure 2-42, B78
Polygons ... 5-35
POLYLINE procedure .. 2-39,882
PolyProg program .. 2-41, A58

q
Quantizable degrees of freedom ... 4-8
Quick reference for graphics procedures B1

r
Raster images, dumping ... 3-2
Ratio, aspect .. 2-2, 4-13
Rectangular coordinates ... 1-6
References, color ... 5-42
Relative locator 83, B7, B33, B63, B70, 885, BIll
Resolution of color models .. 5-29
Retrieving and storing images .. 2-36
RGB color model ... 5-4, 5-9, 5-29
RGB interface .. 3-4
Rotation, label ... 2-16
Rotation of labels ... 1-1 7
Rubber echoes ... 4-12
Running demonstration programs .. 1-4

S
SAMPLE_LOCATOR procedure B1, B84
Saturation ... 5-5
Scaling 1-9
Scaling, isotropic .. 2-27
Screen dump ... 3-2
Selecting graphics display device .. 1-6
Separability (degrees of freedom) .. 4-7
Separable degrees of freedom .. 4-7
SET_ASPECT procedure 1-11, 2-1, B86
SET_CHAR_SIZE procedure 1-16,2-12, B88
SET _COLOR procedure ... 5-1, B89

8 Subject Index

SET_COLOR_MODEL procedure 5-3, B92
SET _COLOR_TABLE procedure .. 2-23, 5-3, B94
SET_DISPLAY_LIM procedure 1-24, 2-1, B98
SET_ECHO procedure ... 4-13
SET _ECHO_POS procedure ... B102
SET_LINE_STYLE procedure 2-25, B104
SET_LINE_WIDTH procedure ... B108
SET_LOCATOR_LIM procedure 4;....13, B1, B109
SET_PGN_COLOR procedure .. " 5-1, Bl13
SET _PGN_LS procedure ... Bl16
SET _PGN_STYLE procedure 2-43, B120
SET _PGN_ TABLE procedure .. B121
SET_TEXT_ROT procedure 1-17,2-16, B124
SET _TIMING procedure .. B125
SET_VIEWPORT procedure 1-14,2-2, B127
SET_WINDOW procedure 1-9,2-2, B129
Shading graphs ... 2-46
SinAspect program .. 1-12, A59
SinAxes1 program .. 1-22, A60
SinAxes2 program .. 1-26, A64
SinClip program .. 1-24, A69
SinLabell program .. 1-15, A73
SinLabel2 program .. 1-16, A74
SinLabel3 program .. 1-19, A75
SinLine program .. 1-8, A 7 6
Sin Viewpt program .. A 76
SinWindow program ... 1-10, A77
Solution vector 5-21
Speed, pen ... 3-6
Storing and retrieving images .. 2-36
STRLEN procedure ... 1-17
STRWRITE procedure ... 1-25
System Library .. 1-4

t
Tablets B1
Target vector .. 5-21
Test program ... 4-4,4-9
Text. .. 5-35
Text, writing on graphics screen .. 1-15
Tick marks .. 1-20, 2-30
Touchscreen .. B1, B2
Tracking the stylus ... 4-1

Subject Index 9

V
Vector, color .. 5-21
Viewport, Defining .. 1-13
Viewport, defining :........................ 2-2
Virtual coordinates .. 1-13
Vision, color .. 5-36

W
What command ... 1-4
Window frame, drawing ... 2-5
Window limits, calculating .. 2-3
World coordinates .. 1-13, B11, B12
WRITELN procedure .. 1-25
Writing modes ... 5-30
Writing text on graphics screen .. 1-15

10 Subject Index

READER COMMENT CARD
Pascal 3.2 Graphics Techniques

Manual Part Number 98615-90037 December 1991

Please use this Reader Comment Card to evaluate this document and tell us of problems or
suggest improvements. SERIOUS ERRORS rendering a product or device inoperative should
be entered in STARS (Software Tracking and Reporting System) by the HP Response Center
or your Support Engineer.

Please rate the quality of each item below in terms of your expectations:

Far Below Below Meets Exceeds Far Exceeds
Expectations Expectations Expectations Expectations Expectations

Retrievability: 1 2 3 4 5
Manual Title: 1 2 3 4 5
Table of Contents: 1 2 3 4 5
Tabs: 1 2 3 4 5
Headings in Chapters: 1 2 3 4 5
Cross-References: 1 2 3 4 5
Task References: 1 2 3 4 5
Index: 1 2 3 4 5

Organization: 1 2 3 4 5
Completeness: 1 2 3 4 5
Accuracy: 1 2 3 4 5
Readability: 1 2 3 4 5

Language Usage: 1 2 3 4 5
Layout: 1 2 3 4 5

Recommended improvements (attach additional information if needed):

Name: Company: ____________________________ __

Job Title: ___________________________ _ Address:

Phone:

Please enter the series number of your HP 9000 system, e.g. 700 or 800:

Hewlett-Packard has the right to use submitted suggestions without obligation, with all such
ideas becoming property of Hewlett- Packard.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Learning Products Center
3404 East Harmony Road
Fort Collins, Colorado 80525-9988

11111.11'11.1.111.1.1.1.1.1.1111.1 •• 1111.1 •• 1 •• 11111

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Manual Part N
98615-90037 o.

~opyright © 1991
~wle tt -Packard

Pnnted in USA 1i;~rpany

