(/A cickaro

Pascal 3.2
Graphics Techniques

Pascal 3.2 Graphics Techniques

HP 9000 Series 200 and 300 Computers

HEWLETT
(ﬁp] PACKARD
HP Part No. 98615-90037

Printed in USA December 1991

Third Edition
E1291

(©copyright 1980, 1984, 1986 AT&T Technologies, Inc.
UNIX is a registered trademark of Unix System Laboratories Inc. in the USA and other
countries.

(©copyright 1979, 1980, 1983, 1985-90 Regents of the University of California
This software is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only. Resale of the programs in their present form or with alterations is expressly
prohibited.

Warranty. The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government is
subject to restrictions as set forth in paragraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and
subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights
clause at FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Copyright © 1991 by Hewlett-Packard Company

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections which are incorporated at reprint
do not cause the date to change.)

November 1986
May 1988

March 1989

May 1990

December 1991

Edition 1.

Update. Updated to include information for Pascal 3.21 support of new
display interfaces (HP98548, 98549, and 98550).

Edition 2. This edition includes information for the Pascal 3.21 update
plus 3.22 additions and changes.

Update. Updated to include additions and changes for the Pascal 3.23
release.

Edition 3. This edition includes additions and changes for the Pascal 3.24
and 3.25 releases.

Table of Contents

Chapter 1: Introduction to Graphics
Welcome
Manual Objectives e
Prerequisites e
Example Programs on Discs
Why Graphics?
Using the Graphics Library
INCLUDE files e e e
The Graphics Programs i
Customizing the Programs for Your System
Drawing Lines e
Scaling
Setting the Aspect Ratio
Defining a Viewpoint
Virtual Coordinates and World Coordinates
Specifying the Viewpoint
Labelinga Plot
Setting Character Size e
Centering Labels
Setting the Label’s Direction
Bold Labels
Axesand Tick Marks.
Clipping Lines e e
A User-Defined Clipping Algorithm
Labelling Axes.o i e

Chapter 2: Miscellaneous Graphics Concepts
Setting the Display Limits
More on Defining a Viewpoint
Calculating Window Limits.
Drawing a Window Frame
Turning Displays On and Off e
Conversion Between Coordinate Systems
More on Labellinga Plot
The Character Cell
Setting Character Size i
Setting the Label’s Direction
dJustifying Labels

1-1
1-2
1-4

vi

Monochromatic CRT Drawing Modes S 2-23
Faster Drawing Procedures 2-24
Selecting Line Styles O 2-25
Isotropic Scaling e 2-27
Axesand Grids oot 2-30
Logarithmic Plotting e 2-32
Homemade Mathematical Functions 2-32
Taking a NumbertoaPower 2-32

The Logarithmto Any Base 2-33

Back to Logarithmic Axes 2-33
Storing and RetrievingImages 2-36
Data-Driven Plotting e 2-39
Many LinesinOne Step i, 2-39
Drawing Multi-Line Objects 2-40
What’sinaPolygon? 2-42
When to Use WhichPolygon 2-42

Polygon Filling. e 2-43
Shading Graphs 2-46
Highlighting Data Curves 2-47

Chapter 3: External Graphics Displays and Plotters
Selectinga Plotter 31
Dumping Raster Images 3-2
External Color Displays 0. .. 34
External Plotter Control 3-5
Controlling Pen Speed i 35
Controlling Pen Acceleration 3-6
Controlling Pen Force i 3-6
Chapter 4: Interactive Graphics

Introduction. e 4-1
A Simple Example e e 4-1

A More Elaborate Example 4-2
Characterizing Graphic Interactivity 4-3
Selecting Input Devices 4-4
Single Degree of Freedom 4-4
Non-Separable Degrees of Freedom - 47
Separable Degrees of Freedom 4-7

All Continuous i e 4-7

All Quantizable 4-8

Mixed Modes. 4-8

Echoes e 4-9
The BuiltlIn Echo. 4-9
Rubber Echoes 4-12

Chapter 5: Color Graphics

Color! . 5-1
The DGL Color System e i 5-1
Color as an Attribute e 5-1

The Color Table e 5-2
Default Colors 5-2

The Primary Colors 5-2

The Business Colors 5-2
Monochromatic Default 5-3

If You Don’t Like the Defaults 5-3
Models for Color Specification 5-4
The RBG Model (Red, Blue, Green) 54

The HSL Model Hue, Saturation, Luminosity) 55
Which Model? e 59
Color Spaceso 5-11
Primaries and Color Cubes, 5-11

The RBG Color Cube 5-12

The CMY Color Cube e 5-13

The HSL Color Cylinder 5-14
Reality Intrudes e 5-16
Plotters e 5-16
Frame Buffers 5-17
Frame Buffer Depth. 5-17
Faking More Colors From a Frame Buffer 5-19
Dithering e 5-20

Creating a Dithered Color 5-21

If You Need More Colors 5-24
Frame Buffer Contents 5-24
Series 200/300 Color Graphics System 5-25
Color Map (Model 236 Color Computer) 5-25
True User-Definable Color 5-26
Retroactive Color Changes. 5-26

If YouNeed More Colors i 5-26
Optimizing for Dithering 5-27
Resolution and Color Models 5-29
RGB Resolution 5-29

HSL Resolution e 5-29
Writing Modes and Color 5-30
Dominant Writing 5-31
NonDominant Writing i 5-31
Erasing e 5-31
Complementary Writing 5-31
Making Sure Echoes are Visible 5-32

Drawing Modes and the Frame Buffer 5-32
Special Considerations 5-35
TeXt .o 5-35

Polygons 5-35

vii

viii

Effective Useof Color, e 5-36
Seeing Color e 5-36

It’s All Subjective, Anywayt 5-36

Mixing Colors i e 5-37

Designing Displays e 5-37
Objective Color Use. i e 5-38
ColorBlindness i 5-38
Subjective Color Use ittt 5-38
Choosing Colors i 5-38
Psychological Color Temperature 5-39

Cultural Conventionst 5-39
Reproducing Color Graphics i ... 5-40
Color Gamuts e 5-40
Color Hard copyo 5-40
Photographingthe CRT 541
Plottingand the CRT 541

Color References e 542

Appendix A: Listings of Example Programs

AxesGrid e A-2
BAR_KNOB A9
BAR_KNOBZ A-12
CharCell e A-17
COLOR. . .o A-18
CsizeProg A-25
DataPoint e A-26
DrawMdPrgo e A-26
FillProgo A-29
FillGraph e A-30
GStorProg e A-31
ISOPIOG . . . oo A-40
JUSEPYOg A-46
LdirtProg e A-50
LOCATOR . . e A-51
LogPlot A-54
MarkrProg e e e A-56
PLineProg e A-57
POlyPrOg . . . A-58
SINASPECt . . . i e e e A-59
SINAXEsL . .. e e A-60
SINAXES 2 e A-64
SINCHD .. e e A-69
SinLabell A-73
SinLabel2 A-74
SinLabel3 A-75
SInLine A-76
SINVi WPt . . . A-76

SINWINAOW . . . A-77

Appendix B: Graphics Procedure Reference

Graphics Procedures Quick-Reference

Concerning HP-HIL e B-1
HP-HIL Touchscreen i e B-2
HP-HIL Relative Locator i B-3
AWAIT_LOCATOR . . . oo e e e e B-4
CLEAR _DISPLAY . .o e B-10
CONVERT_WTODMM . .. e i, B-11
CONVERT _WTOLMM. e e i B-12
DISPLAY _FINIT . .. e B-13
DISPLAY _INIT e B-17
DISPLAY_.TERM e B-23
GRAPHICSERROR o B-24
GRAPHICS _INIT e e B-26
GRAPHICS_TERM e e B-27
GTEXT . o e B-28
INPUT _ESC . ..o e e e B-30
INQ_COLOR_TABLEttt e e e ii B-34
INQ PGN_TABLE e B-36
INQ WS . e B-38
INT _LINE . .. e B-45
INT_MOVE . . . B-47
INT _POLYGON e e s e e B-49
INT_POLYGON_DDt e e B-52
INT_POLYLINE e e e e B-56
LINE . . B-58
LOCATORL_INIT e e i B-59
LOCATOR_TERM.. P B-64
MAKE_PIC_CURRENT e e i B-65
MARKER . . . e B-66
MOV . . o e e B-67
OQUTPUT _ESC . . . e s B-68
POLYGON . . o B-75
POLYGON_DEV_DEP e e B-78
POLYLINE . . . e B-82
SAMPLE _LOCATORot e e e B-84
SET _ASPECT e B-86
SET _CHAR_SIZE e B-88
SET_COLOR. e B-89
SET_COLOR_MODEL e e B-92
SET_COLOR_TABLE e e i B-94
SET _DISPLAY _LIM . . . o e B-98
SET_ECHO _POS B-102
SET _LINE _STYLE . ..o e B-104
SET_LINE_WIDTH e i B-108
SET_LOCATOR _LIM. . . . e i B-109
SET_PGN_COLOR . ..ot e e e e B-113

SET_PGN_LS . .. e B-116

ix

SET_PGN_STYLE B-120

SET_PGN_TABLE e e e e B-121
SET _TEXT _ROT e e e e e e B-124
SET_TIMING. e e e B-125
SET _VIEWPORT e B-127
SET_WINDOW e e e e B-129
Module Dependency Table B-131

Subject Index

Chapter

Introduction to Graphics

Welcome

One of the most exciting features of your Series 200/300 computer is its graphics capabilities.
It is much easier to grasp the trends, relative sizes or quantities represented by data if it is
presented in a graphical form, as opposed to tabular form.

Manual Objectives

This manual will introduce you to the set of graphics routines in the Series 200/300 Device-
independent Graphics Library (DGL) graphics package. The goals of the DGL package are:

1. As its name implies, it is a device-independent package. Thus, programs running on one
computer or implementation should transport to another computer or implementation of
DGL with a minimum of conversion effort.

2. ltis reasonably small. DGL is not meant to be an exhaustive library containing routines to do
all conceivable grapics operations, but it gives you enough capability to develop them
yourself.

Prerequisites

This manual is meant to teach you how to use the routines incorporated into DGL to produce
highly readable and visually acceptable output. The manual assumes you are familiar with
the Pascal programming language, and that you have access to a Pascal Workstation System
manual, a Pascal Procedure Library manual, and the textbook An Introduction to Programming
and Problem Solving With Pascal, and that you will look up any programming/syntactic topics
you don’t understand.

Example Programs on Discs

Most of the demonstration programs and routines in the next three chapters of this manual are
stored for your convenience on the DGLPRG: disc which was shipped with this manual. For
those systems that were shipped with double-sided 3! inch discs, the programs are on the
DOC: disc. You are encouraged to run these programs as you are reading the manual, as they
will make understanding the concepts much easier.

Note

The demonstration programs and routines on the DGLPRG: or DOC: disc
are for the purpose of instruction only. They are not part of the DGL
package, and as such, they are not covered by any warranty, expressed or
implied. Hewlett-Packard shall not be liable for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance,
or use of these routines.

1-1

1-2 Introduction to Graphics

Why Graphics?

Below is some data. As quickly as you can, determine if its overall trend is steady, rising or
falling. Are there any periodic motions to it? If so, how many cycles are represented in the one
hundred points?

Voltage Variance Voltage Variance
Time (sec) Voltage Time (sec) Voltage
1 0.1610 51 0.1669
2 0.1625 52 0.1655
3 0.1625 53 0.1665
q 0.1628 54 0.1662
5 0.1636 55 0.1667
6 0.1631 56 0.1668
7 0.1627 57 0.1681
8 0.1608 58 0.1688
9 0.1610 59 0.1687
10 0.1606 60 0.1707
11 0.1607 61 0.1716
12 0.1617 62 0.1716
13 0.1614 63 0.1694
14 0.1626 64 0.1698
15 0.1634 65 0.1683
16 0.1640 66 0.1683
17 0.1656 67 0.1671
18 0.1660 68 0.1681
19 0.1644 69 0.1683
20 0.1651 70 0.1684
21 0.1635 71 0.1681
22 0.1641 72 0.1698
23 0.1628 73 0.1705
24 0.1619 74 0.1723
25 0.1630 75 0.1730
26 0.1624 76 0.1734
27 0.1627 77 0.1714
28 0.1644 78 0.1722
29 0.1644 79 0.1716
30 0.1657 80 0.1696
31 0.1660 81 0.1702
32 0.1670 82 0.1699
33 0.1672 83 0.1684
34 0.1666 84 0.1706
35 0.1658 85 0.1696
36 0.1662 86 0.1715
37 0.1646 87 0.1730
38 0.1633 88 0.1737
39 0.1634 89 0.1739
40 0.1636 90 0.1751
41 0.1645 91 0.1732
42 0.1652 92 0.1747
43 0.1656 93 0.1729
44 0.1677 94 0.1717
45 0.1689 95 0.1710
46 0.1680 96 0.1707
47 0.1696 97 0.1706
48 0.1680 98 0.1709
49 0.1674 99 0.1713
50 0.1677 100 0.1720

Introduction to Graphics 1-3

A wise old computer programmer once said, ‘‘A graphical output is equivalent to 1K words of
text.”” He was right. Unless both hemispheres of your brain are hyperdeveloped, it probably
took a minute or two to answer each of the previous questions. Below is a graph of the data in
the table. Observe that the graphical nature of the output makes what the data is doing much
clearer. This clarity and understandability at a glance is what computer graphics is all about.

4 ™)
VOLTAGE VARIANCE
9. 1808,
8.1775F
8.1758
©e.1725f
o
o
+28.1780
o
> 8.18725F
8.165e
B.1625F
B B b b e e
Time (seconds)
_ W,

A progressive example of how this plot was created is given through the rest of this chapter.
Each installment demonstrates more of the graphics routines available. The successive plots, all
representing the same data, become clearer and clearer as we learn some of the concepts of
computer graphics and how to implement them with the routines available to us.

1-4 Introduction to Graphics

Using the Graphics Library

To run the demonstrations programs in this manual, you must use the DGL routines contained in
the GRAPHICS library file on the LIB: disc. The first step, then, is to make these libraries accessible
to the demonstration programs at the appropriate times.

There are two times when the GRAPHICS modules need to be accessible:

e When the program is compiled, and
e When the program is loaded.

The simplest way to make the GRAPHICS library accessible during compilation and loading is to
use the What command to make GRAPHICS the system library. To do this:

1. At the Main Command Level, press (W) to invoke the What command.

2. Press to indicate you want to change the system library setting, and type the complete
file specification for the GRAPHICS library file. Be sure to type a period after the file name, to
prevent the system from appending a suffix to the name. For example, if the GRAPHICS file
is still on the GRAPH.: disc, you would type:

GRAPH:GRAPHICS.,

3. Press (_Q) to exit from the What command. When you begin compiling and running the
demonstration programs, make sure the GRAPHICS library file is on-line’.

Note

If you have plenty of memory in your computer, you can speed com-
pilation by copying the GRAPHICS file into a memory (RAM:) volume
of about 400 blocks. Be sure to use the What command to change the
system library to RAM:GRAPHICS if you do this. You can also speed
program execution by permanently loading the GRAPHICS file with the
Permanent command.

1 “On-line”” means that it is accessible at that moment. This could mean either that the library is in a memory volume, or the library is on a disc
and the disc is currently in a drive.

Introduction to Graphics

INCLUDE files

In many of the following programs, there is a compiler directive called INCLUDE. This causes
the compiler to access the specified file, compile the contents as if it were in the original file, and
when the end of the file is reached, return to the original file and continue compilation.

One advantage to INCLUDE files is that many programs can use the same file, not merely
copies of the file. This makes it much easier to make modifications to the routines, because only
one copy of the routine need be changed. If the routine had been physically copied into each
program that used it, every occurrence of it would have to be individually changed.

The INCLUDE directives used in the program files assume there is a volume on-line which
contains the text files for all the necessary inclusions. Again, if you have enough memory, the
INCLUDE process could be speeded up tremendously by placing the necessary files in a
memory volume.

Here is some information to help you define how large the “enough memory,” referred to in the
previous paragraph, is. Below is a list of files at least some of which you will probably want to
permanently load (the main advantage to permanently loading is very fast access) and the amount
of memory they consume. The approximate file sizes are expressed in 256-byte blocks.

File Name Approximate File Size
EDITOR (subsystem) 236 blocks
FILER (subsystem) 228 blocks
COMPILER (subsystem) 928 blocks
LIBRARIAN (subsystem) 288 blocks
LIBRARY (library) 64 blocks
10 (library) 240 blocks
GRAPHICS (library) 876 blocks
FLTLIB (library) 968 blocks

You must also take into account any memory volumes you have defined, and the size of the
program you are dealing with, etc.

1-5

1-6

Introduction to Graphics

The Graphics Programs

All of the following plots use Cartesian (rectangular) coordinates: ‘X’ specifies the left-right
distance (with values increasing as you go to the right), and “Y”’ specifies the down-up distance
(with values increasing as you go up).

In the programs in this chapter and the next, each program name is identical to the file name
which contains it. It is not mandatory that the program name is the same as the file name, but it
helps to find the file. ‘

All the examples that follow get the Y-value from a function called Dat aPoint. This function,
given an X value, merely returns the appropriate Y value each time it is invoked. You could just
as well be reading values from a voltmeter, temperature sensor, anemometer, or any other
device that you can connect to a computer. Since this function does not change from example
to example, and since it represents any generic data-defining process, the function will not be
listed at each update of the plotting program. For reference, though, it is listed in the appendix.

Customizing the Programs for Your System

The demonstation programs on the DGLPRG: or DOC: disc send graphics to the current console
of a Series 200/300 Computer. The “current console” is the CRT where alpha is displayed
after the system is booted; i.e., the CRT where the Pascal system command lines appear.
Graphics display device selection is performed by the DISPLAY_INIT procedure. If you would
like to use a different CRT (or other graphics device) as your display device, you must change
the DISPLAY _INIT procedure call accordingly.

The first parameter in the DISPLAY_INIT procedure call is called the device selector. It specifies
which display device you would like to use for graphics output. The demonstration programs
declare the device selector as a constant with the name CrtAddr. Graphics display devices are
selected as follows:

® A device selector of 3 specifies the current console as the graphics display device (again, this is
where the command line appears). This is the value used in all of the demonstration programs.
If the current console has no graphics hardware, the system may search for another display
that does have graphics hardware and make it the graphics display device.

® A device selector of 6 specifies any other internal CRT as the graphics display device (if one
exists). Internal refers to any display whose frame buffer resides in the system’s “‘internal
space,” i.e., any CRT which does not require a select code and/or bus address to access it.

® A device selector in the range 8 through 31 specifies the select code of the interface to which
the desired graphics display device is attached.

e A device selector in the range 700 through 3199 specifies the composite HP-IB select
code/bus address of the desired HP-IB graphics display device.

Introduction to Graphics

The second parameter is the DISPLAY_INIT procedure call is called the control value. It is used to
specify device-dependent characteristics of the graphics display device. The demonstration prog-
rams declare the control value as a constant called Cont rolWord. For complete details on this value,
refer to the DISPLAY_INIT section of Appendix B. However, there are two cases that are worth
discussing:

e If you have a Model 237 (or Series 300 with bit-map display) and are using the bit-
mapped display as your current console, you may remove the type-ahead buffer echo at
the bottom of the screen (and use the entire display for graphics) by specifying a device
selector (CRTADDR) of 3 and a control value (CONTROLWORD) of 256:

CrtAddr= 33
ControlWord= 2563

The value of 0 (used in the demonstration programs) retains the type-ahead buffer.

o If you have an HP 98627A-RGB interface connected to a 60 Hz, non-interlaced color
monitor’, you can designate it as the graphics display device by specifying the interface’s select
code as the device selector (CrtAddr), and a control value (Cont rollord) of 256 (specifying US
STD, 512 x 390, 60Hz refresh). See the table in the DISPLAY_INIT section of Appendix B for
details.

The control values are not merely “magic numbers”. Bits 10, 9, and 8 in the control value allow
you to specify what kind of CRT you wish to interface to (in the case of an HP 98627A RGB
interface), or to set characteristics of the display (in the case of the bit mapped-display). The
value of 256 is not necessary if you are plotting on a U.S. Standard display (see the “External
Color Displays” section in this chapter); O defaults to the same characteristics as does 256.

The final parameter in the DISPLAY_INIT procedure call is an integer variable that will be assigned
0 if the display device was successfully initialized, or a non-zero value if initialization failed. For more
details, refer to the DISPLAY_INIT section of Appendix B.

By modifying the device address and/or the control value, images which were drawn on one device
can be drawn on another device with a minimum of effort.

There are some limitations, though. If you are doing an operation on one display device, and
attempt to send the image to another device which does not support that operation, it won’t work.

Drawing Lines

You are encouraged to compile and run the following programs on your computer as they are
presented. Turn on your machine and load the Pascal operating system (if you don’t know how
to do this, see Chapter 2 of the Pascal User’s Guide). This program, as most of the following
programs, use the compiler directive INCLUDE. Compile and run the following program,; it is
on the file “SinLine” on your DGLPRG: or DOC: disc.

Note
Examples that include files on “DGLPRG:” may require modification. If
your system was shipped on double-sided 3% inch discs, all of the example
programs are found on the “DOC:” disc. Statements such as $INCLUDE
*DGLPRG:FILE’$ should read $INCLUDE °DOC:FILE’$.

1 Depending on your choice of color monitor, there may be more specification necessary in the control value variable of the DISPLAY_INIT
procedure. See the “‘External Color Displays’’ section in Chapter 3.

1-7

1-8 Introduction to Graphics

To move the pen somewhere, you call the procedure MOVE, and to draw lines, you call the
procedure LINE. Both of these procedures have two parameters: the X and Y coordinates of
the point you want to move or draw to. The following program does just that.

(A

\. J

prodram SinLine(output)s

import d9l_lib; {get drarhics routines}’
const
CrtAddr= 33 {address of internal CRT}
Control= 03 {device controli O for CRT}
var
ErrorReturn: inteders {variabkle for initialization outcome}
K inteders
Y reali
$include ‘DGLPRG:DataPoint’s$ {function: vi=f(x) }
FPAgEs (R EERRERR R R RN R R R RR R R AR R R R RN RN AR R R R RFRRRRRRRRRRRRRRERRRH)
bedin {body of prodram "SinLine"}
dgrarhics_inits {initialize drarhics svstem)}
displav_init{(CrtAddryControlsErrorReturn); {which outrut device?}
if ErrorReturn=0 then hbedin {output device initialization OK?}
for X:=1 to 100 do bedin {100 pPoints totall}
YizDataPoint(¥)3j {d9et a point from the function}’
if X=1 then move(X/100,Y) {move to the first point.,..}
else line(X/100,Y)3 {vevand draw to all the rest}

endi {for X:=1 to 100}
endi {ErrorReturn=073
drarhics.terms {terminate the drarhics packadel}
end, {prodram "SinLine"}

Probably the first reaction you had when looking at the previous plot was that the plot doesn’t
show you anything. But as you can see, this simple program is all you need to draw a
rudimentary plot.

Introduction to Graphics

You must always execute the procedure GRAPHICS_INIT before any other graphics routine; if
you don’t, almost every graphics routine called will either.be ignored or will cause an error. As
its name implies, it initializes the graphics system; that is, it sets various graphics parameters to
their default values. These are the operations performed by the GRAPHICS_INIT routine:

® Sets the aspect ratio to 1;

@ Sets the virtual coordinates and viewport limits to range from 0.0 to 1.0 in both the X and Y
directions;

® Sets the world coordinate limits to range from —1.0 to + 1.0 in both the X and Y directions;

o Sets the starting position to 0,0 in world coordinates; and

e Sets all attributes to their default values.

In case there were any unfamiliar concepts referred to above, don’t panic. We will soon cover all
the above topics, and more.

The following lines comprise the real guts of the SinLine program:

if X=1 then move(X/100,Y)
else line(X/100:¥) 3

In a loop, the statement moves to the first point returned by the DataPoint function, and
draws to all the rest. Each successive point is determined by the loop control variable X for the X
direction and the value returned by the function DataPoint for the Y direction.

The call to the routine GRAPHICS_TERM should be the last graphics routine called. It termin-
ates the graphics package.

Scaling

Probably the first reaction you had when looking at the previous plot was ‘‘That doesn’t show me
anything...”” That's true; it doesn’t show much information. There are two reasons for this. The first
is that there is not enough variation in the curve; it’s too flat to show us anything. The second is that
it is all compressed on the right half of the screen. If we exaggerated the Y direction to the point
where we could see the variations, the lines would be close enough to vertical that it would be
somewhat difficult to interpret the curve. Therefore we must expand it toward the left.

Both of these problems can be remedied by scaling. In this context, scaling could be defined as
“defining the values the computer considers to be at the edges of the active plotting surface.”
The SET_WINDOW procedure defines the transformation used to map coordinates between
the virtual display coordinate system (the coordinate system used by the DGL to describe the
display device) and the world coordinate system (the coordinate system used by the user).
Typically, the left edge is the smaller X, the right edge is the larger X, the bottom is the smaller
Y, and the top is the larger Y'. Thus any point you plot which falls into these ranges will be
visible.

1 This is by convention only. If you specify a value for the left (or bottom) edge which is greater than the value of the right (or top) edge, it is
perfectly legal. The only restriction is that the left edge must not equal the right edge. The same goes for the bottom and top edges.

1-9

1-10

Introduction to Graphics

In our progressive example, the statement calling SET_WINDOW says that an X value of O should
be precisely on the left edge of the screen, an X value of 100 should be on the right edge, a Y value
of 0.16 is on the bottom, and a Y value of 0.18 is on the top.

The procedure SET_WINDOW typically causes anisotropic scaling to be invoked. Anisotropic
scaling means that one unit in the X direction is not forced to be the same length as one unit in the Y
direction. Conversely, isotropic scaling means that one unit in the X direction is equal to one unit in
the Y direction, as in a road map. Isotropic scaling is desirable in many cases. In many other cases,
however, it is not. In this example, we are graphing the voltage from a sensor versus time, and it
makes no sense at all to force seconds to be just as “long” as volts. Since we are dealing with data
types which are not equal, it would be better to use unequal, or anisotropic, scaling.

We said that the SET_WINDOW procedure ‘‘typically”’ causes anisotropic scaling to be invoked
because there is no procedure that guarantees that the scaling will be isotropic. You can, by doing
calculations with aspect ratios, figure what the exact values are to send to SET_WINDOW to force
isotropic scaling. This will be covered in the next chapter. Here is the next version of our progressive
example. It is in the file “SinWindow”’ on the DGLPRG disc.

()

. J
program SinWindow(output)}
import dgl_libsj {det drarhics routines}
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device controlid O for CRT}
var
ErrorReturn: inteders {variable for initialization outcomel}
X inteders
Y reali

$include ‘DGLPRG:DataPoint’$ {function: vi=f{(x) }

Introduction to Graphics

LR ERERRRERRERRRERERRREREEREEERRREERRR R R RRRERRRFRRERRRHEEEERRRRRRRRRRRRRRR)

bedin {body of prodram "SinWindow"?}
grarhics.init? {initialize the drarhics system}
display_init{(CrtAddrsControlWordsErrorReturn)i {which outrut device?}
if ErrorReturn=0 then bedin {output device imitialization OK?T}
set_window(0,100,0,18,0,18)1 {scale the window for the datal}
for X:=1 to 100 do bedin {100 Points totall}
Yi=DataPoint(¥)3 {det a point from the function}
if X=1 then move(XyY) {move to the first Point..s}
else line{XsY) {+vvand draw to all the rest?}

endi {for X:=1 to 100}
endi {ErrorReturn=07}
drarhics_termi {terminate the drarhics packade?}
end. {program "SinWindow"}

Granted, it would be nice to know what we are plotting, and what the units are, etc., but we’ll
get there in due time.

Setting the Aspect Ratio

You may have noticed on the last plot that the curve did not extend to the right and left edges of
the screen. In fact, the area of screen which was used was exactly as wide as the screen is high.
Thus, the aspect ratio—the width of the screen divided by the height—is exactly 1. This was
the second operation done by the procedure GRAPHICS_INIT, mentioned previously.

For most applications, one would not want to be restricted to using only a square area in the
middle of the screen. The procedure used to change the aspect ratio of the plotting surface is
SET_ASPECT. When calling the SET_ASPECT procedure, only the ratio of the two parameters
is used; thus, the values may be virtually anything, as long as the ratio between them is
reasonable.

To set the aspect ratio such that it will use the entire screen of a Model 236 computer, call the
SET_ASPECT procedure with parameters 511 and 389. These are the number of pixels in the X
direction minus one, followed by the number of pixels in the Y direction minus one. Distance
measures the amount of space between pixels’, not the number of pixels. To illustrate the reason
why 1 must be subtracted from both values, imagine a very low-resolution graphics display: 3 pixels
in the X direction by 2 pixels in the Y direction.

[] [] ®
(0,1) (1,1) (2,1)

1 The word ‘“‘pixel’”’ is a blend of the two words “‘picture element,” and it is the smallest addressable point on a plotting surface. A Model 236
computer has 512 x 390-pixel resolution; thus there can be no more than 512 dots drawn in any one row of the CRT, or 390 dots drawn in
any one column.

1-11

1-12

Introduction to Graphics

As you can see, the distance between the rightmost pixels and the leftmost pixels is 2, and the
distance between the uppermost pixels and the lowest pixels is 1. Thus, the ratio of width to height
of this plotting surface is 2:1, rather than 3:2, as it would be if number of pixels were used.

From the previous explanation, it follows that the correct values to pass to the SET_ASPECT
procedure would be 511 and 389 for the Models 217 and 236; 399 and 299 for the Models 216,
9220, and 226; 1023 and 751 for the Model 237 and HP 98544A, HP 98545A, HP 98547A, HP
98549A, HP 98700A (with type-ahead buffer), and HP 9000 382 Medium-Resolution display;
or 1023 and 767 for the Model 237 and HP 98544A, HP 98545A, HP 98547A, HP 98549A,
HP 98700A (with type-ahead buffer removed), and HP 9000 382 Medium-Resolution display;
511 and 399 for HP 98542A and HP 98543A (with type-ahead buffer removed); or 1279 and
999 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution (with type-ahead buffer);
or 1279 and 1023 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution (with
type-ahead buffer removed); or 639 and 463 for HP 9000 362/382 VGA (with type-ahead
buffer); or 639 and 463 for HP 9000 362/382 VGA (with type-ahead buffer removed). These
numbers are the numbers of pixels in the X and the Y directions, respectively, for those
computers. The HP 98546A display (the video compatibility interface) is to all intents

and purposes a Model 236A (monochrome) display. DGL cannot tell the difference. All
specifications and capabilities for the Model 236A display DGL apply to the HP 98546A.

In the next version of our progressive example, the only change is that the aspect ratio has been
altered so the whole screen has been used. The following statement was placed immediately
prior to the SET_WINDOW statement:

set_aspect (3511 :389)3

This program may be found on the “SinAspect” on the DGLPRG: or DOC: disc.

r)

|\ J

This plot looks better than the last one; the whole screen is being used. There is still one
problem, though. We can see relative variations in the data, but what are the units being used?
We saw at the very beginning of the chapter that we were measuring voltage, but with the plot
at its current state, we don’t know if the height of the curve is signifying differences of micro-
volts, millivolts, megavolts, dozens of volts, or what? And we probably wouldn’t want the text
(explaining units, etc.) to be written in the same area that the curve is in, as it could obstruct part
of the data curve. Therefore, we need to be able to specify a subset of the screen for plotting the
curve and put explanatory information outside this area. The next section tells you how to do
this.

Introduction to Graphics - 1-13

Defining a Viewport
A viewport is a subset of the plotting area into which the window limits are linearly mapped. It is
specified in virtual coordinates.

Virtual Coordinates and World Coordinates

Before we define a viewport, we need to know about the two different types of units which
exist. These two types of units are virtual display coordinates and world coordinates. Since a
viewport is a “‘window’ onto which the world coordinates are mapped, and in order for
viewports to be predictable, they must be specified in units which are not dependent upon the
user’s graphical model—the world coordinates. Since world coordinates are associated with the
graphical model employed by the user, and virtual coordinates are associated with the display
device, it makes much more sense to use virtual coordinates when specifying the limits of a
viewport. (Note that world coordinates are set when specifying a window—they both start with
“w”’—and virtual coordinates are set when specifying a viewport—they both start with “v’’.)
Virtual coordinates always range from 0.0 to 1.0 in one direction, and 0.0 to a number dictated
by the aspect ratio in the other direction. A viewport is associated with the display device, rather
than the graphical model used in your program.

These are the most important characteristics of virtual coordinates:

® The lower left of the plotting area is always 0,0.

e Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as
one unit in the Y direction.

e Virtual coordinates are limited to the range O through 1. The maximum coordinate on one
side is 1, and the maximum coordinate on the other side is less than or equal to 1.

The following discussion assumes that the aspect ratio is set such that the whole screen is
used: 511/389 for the Models 217 and 236; 399/299 for the Models 216, 220, and 225; or
1023/767 for the Model 237, HP 98544A, HP 98545A, HP 98547A, HP 98549A, HP 98700A,
and HP 9000 382 Medium-Resolution display; or 511/299 for the HP 98542A and HP 98543A;
or 1279/1023 for HP 98548A, HP 98550A, and HP 9000 382 High-Resolution; or 639/479 for
the HP 9000 362/382 VGA display. Since the height of the screen is less than the width of the
screen, the longer edge is in the X direction; therefore, Xmax in virtual coordinates is 1.0.

That was the easy part. Once you’ve decided which edge is longer, and thus defined the units
along that edge, you need to find out the length of the shorter sides in virtual coordinates.
Typically, these values will be known because you explicitly specify the aspect ratio yourself.
However, if you don’t know the aspect ratio (and therefore the virtual coordinates maxima),
you can interrogate the system with a call to the INQ_WS procedure!. This will be done in
the next chapter. For now, though, we’ll just observe that the virtual coordinate limits (for
the entire screen, remember) are 0.0 to 1.0 in X, and 0.0 through 299/399 = 0.749373433584
(on the Models 216, 220 and 226), or 0.0 through 389/511 = 0.761251446184 (on the

Models 217 and 236), or 0.0 through 767/1023 = 0.749755620723 (on the Model 237, HP
98544A, HP 98545A, HP 98547A, HP 98549A, HP 98700A, HP 9000 382 Medium-Resolution
display), or 0.0 through 399/511 = 0.780821918 (on HP 98542A and HP 98543A), or 0.0
through 1023/1279 = 0.799843628 (on the HP 98548A, HP 98550A, and HP 9000 382
High-Resolution), or 0.0 through 479/639 = 0.740608764 (on the HP 9000 362/382 VGA
display).

1 The INQ_WS procedure is a DGL procedure through which you can find out various parameters of the graphics system.

1-14

Introduction to Graphics

Specifying the Viewport

The SET_VIEWPORT procedure sets up a transformation which will convert points in world
coordinates into points on the plotting surface. The call to SET_VIEWPORT in the following
program specifies that the lower left-hand corner of the viewport area is at 0.10,0.12 and the
upper right-hand corner is at 0.99,0.70.

set_viewrPort(Q0,10,0,899:0,12,0,70)1

This is the area which the SET_WINDOW procedure affects. We will also draw a box around
the viewport limits by drawing the rectangle bounded by —1 and 1 in both the X and Y
directions. (The default window limits are — 1 to 1 in both directions.) It is done in this example
so you can see the area specified by the SET_VIEWPORT procedure call.

And here is the output from the next version of our progressive example (found on file “Sin-

Viewpt” on the DGLPRG: or DOC: disc). The only change is that a call to SET_VIEWPORT
has been placed immediately after the line calling SET_ASPECT.

[)

Introduction to Graphics

Labelling a Plot

With the inclusion of the call to the SET_VIEWPORT procedure, we have enough room to
include labels on the plot. Typically, in a Y-vs-X plot like this, there is a title for the whole plot
centered at the top, a Y-axis title on the left edge, and a X-axis title at the bottom.

The DGL procedure GTEXT writes text onto the graphics screen. You can position the label by
calling MOVE to get to the point at which you want the label to be placed. It is the lower left
corner of the label which ends up at the point to which you moved. In other words, we will
move to the position on the screen at which we want the lower left corner of the text to be
placed.

Notice in the following plot that the Y-axis label on the left edge of the screen is created by
writing one letter at a time. We only need to move to the position of the first character in that
label because we terminate each one-character GTEXT call with a carriage return/linefeed. This
causes the pen to go one line down, ready for the next (one-character) line of text. (There is
another way to plot vertical labels; we’ll see it shortly.)

~)
VOLTAGE VARIANCE
\Y4
o
1
t
a
S|
e
L Time (seconds)
J
prodram SinlLabell(output)i
import dgl.lib, dgl_.inaj {9et drarhics routines}
const
CrtAddr= 33 {address of internal CRT?}
ControlWords= 03 {device controli O for CRT}
var
ErrorReturn: intedersi {variable for initialization outcomel
Strng: strindg[713 {seven characters in ‘Voltade’}
Character: inteders) {loopr counter for labelling}
K inteders
Y reals
$include ‘DGLPRG:DataPoint’$ {function: v:i=f(x) }
Spagded {EEEFFFEEERXEERSRRRERREREFRRRE R RER R RF AR RENEER R R RN R R RERRR])
begin {body of eprodgram "SinLabell"}
drarhics.initi {initialize drarhics svstem}

digsplay_init{CrtAddrs:ControlWordsErrorReturn)i <{which output device?}

1-15

1-16

Introduction to Graphics

if ErrorReturn=0 then bedin {output device initialization OK?2}

set.aspect(511,389); {use the whole screen?’
move(-0,45,0,9)3 {starting point for the title}
gtext(‘VOLTAGE VYARIANCE') i {label the Plot}
Strng:=‘Yoltade’} {the v-axis label}
move{-0,95,0,3)3 {starting point for the v-axis titlel}
for Character:=1 to strlen{(Strng) do {follow every character.,.}

gtext(str{StrngsCharacters1)+chr(13)+chr(10))3 {+evwith a CR/LF}
move(-0,3,-0,9)3 {starting point for the x-axis label}
dgtext(‘Time (seconds)’)i {x-axis label?
setoviewport(0.14+0,99,0,12,0.,7)3 {define subset of screen}
move(-1+-1)% line(ls-1)3% line(1,1)3 line(-14+1)5 line(-14-1)% <{framel
set.window(0,1004+0,164+0.,18) 3 {scale the window for the datal}
for X:=1 to 100 do bedin {100 Points total?}

Y:=DataPoint(X)3 {det a point from the functionl}

if X=1 then move(XsY) {move to the first Point...}

else line(XsY) i {+seand draw to all the rest}

endy {for Xi=1 to 100}
end’y {ErrorReturn=07}
drarhics_termi {termivate the drarhics pacKadel
end, {prodram "SinlLabell"}

This gets the point across, but it would be nice if we could cause some labels to be more
obvious by making them bigger; for example, on the main title. Also, you may want the Y-axis
title to be turned on its side, and not do the carriage return/line feed trick we did last time.

Setting Character Size

The DGL procedure SET_CHAR_SIZE sets two attributes’ of all subsequent characters, namely
the width and height of the character cells. A character cell contains a character and some blank
space above, below, to the left of, and to the right of the character. This blank space allows
packing character cells together without making the characters illegible. The amount of blank
space depends, of course, on which character is contained in the cell. The values sent to
SET_CHAR_SIZE are expressed in world coordinates:

set.char_size(Width, Heidht) 3

When a character size is selected, the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated, its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y
axis) are not the same directions as the display device’s axes.

The ability to specify character sizes in world coordinates is valuable when doing graphical
output in which the labels are to remain with the objects they describe. In these cases, the
characters are scaled using the same scaling as the objects drawn.

In the following program (program SinLabelZ2 on a file by the same name on the DGLPRG:
disc), the character width and height are defined to be something on the order of 2+, 04. The
reason that a 2 was used in these expressions is that the current (default) window limits were
—1to 1, for a distance of 2. The 0.04 comes from the fact that we wanted 4% of the window
distance in that direction.

1 An attribute, in this context, is a piece of information which helps define or describe some object.

Introduction to Graphics

Centering Labels

In that last program, the labels looked reasonably centered. This was only because the starting
point was arrived at in a hit-and-miss manner. The main characteristic of labels which makes it
difficult to center them is this: the reference point of a label is the lower-left corner of the label.
That is, the point you moved to just prior to writing the label will end up at the lower-left hand
corner of the label. If we want our labels to be centered, we must figure out how long each label
is, subtract half that length from the X position of where we want the center of the label to be
placed, and then write the label.

We know what the characters’ sizes are; we can set it with the SET_CHAR_SIZE procedure. We
can also determine how long the string of text to be labelled is. This is found by using the
standard procedure STRLEN. If you give it a string, it will return the length (in characters) of
that string.

Horizontal centering of a string, then, can be accomplished by subtracting the value returned by
the following expression from the desired X position of the center of the label':

(strlen(Text)*Charidth)/2

Thus, if we want a label centered horizontally about the point X, and at a Y value of ¥, we could
say:

move(X-(strlen{Text)*¥CharWidth)/2:¥) 3

Setting the Label’s Direction

Quite often, labels need to be at some other angle than horizontal. We saw a few pages ago that
a vertical label could be done—albeit somewhat clumsily—by labelling one horizontal character
at a time, and following each by a carriage return/line feed. What we need is a way to specify
that we want labels to be plotted at whatever angle we specify.

Through the DGL procedure SET_TEXT_ROT, you can specify the amount of rotation you
want the label to undergo. However, you must specify this in two pieces: the X displacement
and the Y displacement. For example:

set_text_rot{(2y-1)1 Label goes down and right; a —26.57° angle.
set.text.rot(1:0)3 Label is horizontal; default direction.
set_text_rot(87:87)3 Label goes up and right at a 45° angle.
spt_text_rot(0:5)3 Vertical label; ascending.
set.text_rot(-1,0)3 Upside-down label.

The SET_TEXT_ROT procedure deals only with the ratio of the run and rise parameters. Thus,
multiplying both parameters by the same number will not change the angle at which the
subsequent labels are written. The third example above, which sets both the run and the rise to
87, could have used any two numbers as parameters, as long as they equaled each other.
Going 87 units up for every 87 units to the right yields the same angle as going 19 units up for
every 19 units to the right, etc.

1 This is quite close to the truth, but is an approximation. There is an inter-character gap, which is the space caused by the fact that a character is
placed inside a character cell, and it is complicated because the amount of space on the left side of a character is different from the amount of
space on the right. See the Character Cell section in the next chapter.

1-17

1-18

Introduction to Graphics

Any particular angle you want can be passed to the SET_TEXT_ROT procedure by operating
on the angle with the cosine and sine functions. For example, to cause labels to be written at an
angle of w/4 (a 45° angle), you could use the following statement. It assumes there is a constant
called Pi which has a value approximately equal to 3.1415926535897.

set.text rot(cos{(Pi/1BO0*¥43) »s5in(Pi/180%43)) 3

With these two statements, we can make a marked improvement in the quality of the output.
The next version of our progressive example uses them.

-
VOLTAGE VARIANCE W
[}]
o
i)
o
©
>
L Time (seconds)
J/
prodram SinLabelZ(output)i
import ddl_liby ddl_ingj {det drarhics routines?}
const
CrtAddr= 33 {address of internal CRT}
ControlWord= O3 {device controly O for CRT}
var
CharWidth: reals {width of character in world coords}
CharHeight: reali {height of character in world coords?
Text: string[2013 {temporary holding place for text}
ErrorReturn: inteder) {variable for initialization outcomel
K intederi
Y reals
$ivclude ‘DGLPRG:DataPoint’s$ {function: wi=f(x) }
FPaged {HFEXFRRFEAENEEREERERER R R R EERRRRRRRERREE AR RRRRRRR R R R AR HRHREEH)
bedin {body of program "SinLabel2"}
drarhics_init} {initialize the drarhics svystem}

display.init(CrtAddrsControlWordsErrorReturn)i {which outrut device?}

if ErrorReturn=0 then hedin

set.aspect (511,389}
CharWidth:=2%0,04}
CharHeight:=2%0,08)
set_char_size{(CharWidthsCharHeight)i

Text:='UOLTAGE VARIANCE'}

Introduction to Graphics

{output device iwitialization OK?}
{use the whole screen’

{char width: 47 of screen width}
{char heidht: 8% of screen height}
{install character sizel

{define the text to be labelled}

move(-(strlen(Text)*CharWidth)/2+0,9)3{d0 to start point for centered labell}

dtext(Text)s

set_text.rot{(0,1)3
CharWidth:=2%0,0253
CharHeidght:=2%0,043
set_char.size(CharWidthsCharHeight)3
Text:='Voltade’s

movel(-0,9y-(strlen(Text)*Charlidth)/2)3

dtext(Text)i
set_text_rot(1,0)1
Text:='Time (seconds) '}

move(-(strlen(Text)*CharWidth)/2,4-0,92)1%

dtext(Text)
set_viewport(0,14+0,99,0,12,0,7)3
movel(-1,-1)1

line(-1+1)% line(1+1)% line(ls-1)37 line(-14-1)3

{label the text}

{vertical labels?

{char width: 2,3% of screen width?}
{char height: 4% of screen height}
{install character size}

{define the text to be labelled}

{start point of centered labell}
{labkel the text}

{horizontal labels}

{define the text to be labelled}

{start point of centered label}
{label the text}

{define subset of screen}

{framel

set_window(0,1004,0,16,0,18)1
for X:=1 to 100 do hedgin
Yi=DataPoint (X))}
if X=1 then move(¥,Y)
else line(XsY) s
endi {for XNi=1 to 100}
endi {ErrorReturn=07}
drarhics_termi
end.,

Bold Labels

Many times it’s nice to have the most important titles not only in large letters, but bold letters, to
make them stand out even more. It is possible to achieve this effect by plotting the label several
times, moving the label’s starting position just slightly each time. In the following version of the
program (on file “SinLabel3” on your DGLPRG: or DOC: disc), notice the FOR loop used when
labeling the main title. The loop variable, ¥, goes from -3 to 3. This is the offset in the X
direction of the label’s starting position. -

{scale the window for the datal
{100 Points totall

{d9et a point from the functionl}
{move to the first Point...s?
{+ivand draw to all the rest}

{terminate the drarhics Packagel}
{prodgram "SinlLabel2"}

The only change in the program was that the statements labelling the main title:

movel{-(strlen(Text)*¥CharWidth)/2:0.,8)1
dtext(Text)s

were replaced by the following:

for X:=-3 to 3 do bedin
movel(-(strlen(Text)*CharWidth)/2+X*0,002,0,9)1
drext{Text) i

ends3

This method can also be used for offsetting in the Y direction. Or, offset both X and Y. This will
give you characters which are thick in a diagonal direction, which makes them look like they are
coming out of the page at you. However, a more typical bolding is produced by offsetting only
in the X direction.

1-19

1-20

Introduction to Graphics

VOLTAGE VARIANCE

Voltage

Time (seconds) J
.

Now we know what we are measuring—voltage vs. time—but we still do not know the units
being used. What we need is an X-axis and a Y-axis, to show us where to put the numbers.

Axes and Tick Marks

When drawing axes, they are typically composed of a straight line defining the axis itself, and
short lines, perpendicular to the axes, to indicate the spacing of units. These short lines are
called tick marks. Usually, the tick marks are grouped into multiples of a nice round number so
as to make it easier to understand where the multiples are. These groups are delimited by
causing the first tick mark in each group to be larger than the rest.

When writing an axis routine, it is almost always desirable to cause a major tick mark to be
coincident with the other axis. For example, if you draw an X axis and select a major tick count
of five, it would probably be undesirable to have a minor tick mark (say, two ticks to the right of
a major tick) cross the Y axis. This would mean that you would have to go three ticks to the right
of the Y axis to find a major tick, but only two ticks if you were going to the left.

Following are some sections of code that do the processing necessary for an axis; an X-axis in
this case. A Y-axis proceeds with similar steps. Assume the following variables are defined:

Spacing: The distance between tick marks on the axis.

Location: The Y-value of the X-axis.

Xmin, Xmax: The left and right ends of the X-axis, respectively.

Major: The number of tick marks to go before drawing a major tick mark. If
Major =5, every fifth tick mark will be major.

Majsize: The length, in current units, of the major tick marks.

Minsize: The length, in current units, of the minor tick marks.

Introduction to Graphics

The first thing you would do is to draw the axis itself. Its length would be from ¥min to Xmax, and its
Y-position would be Location:

move(XminsLocation)}
line{(XmaxsLocation)i

If the lengths of the major and minor tick marks are MaJjsize and Minsize, then half those lengths
would be on each side of the axis. Rather than dividing by two at every tick, let’s do the
divisions once and put the values into their own variables:

SemiMinsize:=Minsize*0,53
SemiMadsize:=Madjsize*0,33

We need to round the starting value down to the next major tick mark. The function being used
here is a user-defined rounding routine which can round down, up, or to the nearest multiple of
the specified value.

Ri=RoundZ(Xmin,Spacing*MadorsDown) i

If you do not need or want to force a major tick mark to be at X=0, you could replace the
previous statement with the following, which forces a tick, not necessarily a major one, to be at
zero:

Ke=RoundZ2(XminsSpacindg»Down)

Or, you may not want to round at all; you may want to start making tick marks at the value of
¥min no matter what its value—whether it’s a nice round number or not. In this case, replace the
previous statement with this:

Ki=Xmins

Now we need to draw all the tick marks. The distance between consecutive ticks is defined by
Seracing. Every Nth tick will be a major tick, where N is the current value of Maior. A counter (of
type INTEGER or some subrange) will be employed which will be incremented at every itera-
tion and will wrap around. Every time the counter’s value is zero, it is time for another major tick
mark.

Counter:=03
while H<=Xmax do bedin
if Counter=0 then bedin
move(X+Location-SemiMadsize)s
line(X+Location+SemiMadsize)
end {Counter=Q7}
else bedin
move(XsLocation-SemiMinsize)s
line(X Location+SemiMinsize)s
endi {else begin}
Counter:=(Counter+l) mod MaJjori
Xi=X+5pacing}
endi {whilel

1-21

1-22 Introduction to Graphics

Here is the next version of our progressive example. It draws both an X and a Y axis. For a
complete listing of this program, see the Appendix.

(VOL TAGE VARTANCE)
[}
[3)]
m -+
L
B
>
i} PrHH b
Time (seconds)
_ _J
prodram SinAxesl{output)i
import dgl_libs dgl_inaj {det drarhics routines?}
const
CrtAddr= 33 {address of internal CRT}
ControlWord= 03 {device controli O for CRT}
tvre
RoundType= (Upy Downs Near)i {used by procedure Round2}
var
CharWidth: reali {width of char in world coords}
CharHeidght: reals {height of char in world coords?
Text: strindl[2013 {temporary holding place for text}
ErrorReturn: inteders) {variable for initialization outcomel}
K intederi
A reali
$include 'DGLPRG:DataPoint’$ {function: vai=f{x) }

L]
L]
*
Procedures ¥axis and Yaxis, and function Round2 go here.
L]
L]

bedgin {body of prodram "SinAxesi"}
dgrarhics-init} {initialize the drarhics svstem}
display.init{(CrtAddrsControlWordsErrorReturn)i {which outpPut device?}
if ErrorReturn=0 then bedin {output device initialization DK?}
set_aspect(311,388)3 {use the whole screen}’
CharWidth:=2%0,043% {char width: 4% of screen width}
CharHeight:=2%0,083) {char heidht: 4% of screen heidht)}
set.char.size(CharWidthsCharHeidght)3 <{install character size?}
Text:='VOLTAGE VARIANCE'? {define text to be labelled}
for X:=-3 to 3 do bedin {make "bold" label}
move({-(strlen{Text)*CharWidth)/2+X*0,002,0,8)3 {center labell
dtext(Text)d {labkel the text}

endi

set_text_rot{0,1);
CharWidth:=2%0,0253
CharHeight:=2%0,043
set_char.size(CharWidth:CharHeidght)}
Text:='Voltade’s

move(-0,9y-(strlen(Text)*CharWidth)/2)1

gtext(Text)s
Text:='Time (seconds)’}
set_text_rot{(1,0)3

move(-{strlen(Text)*CharWidth)/2+-0,82)3

dtext(Text)1
set_viewrort(0,14+0,99,0,12,0,7)3%

move(-1y-1)3 line(-14+1)3 line(l,1)3 line(ls-1)3% line(-14-1)1

set_window(0,100,0,16+0,18)1
Kaxis(140,16-50415045,0,001,0,0005)3

Introduction to Graphics

{vertical labels?}

{char width: 2.5% of screen width}
{char heidht: 4% of screen height?}
{install character sizel

{define the text to be lakelled?}

{start Point of centered labell}
{label the text}

{define the text to be labelled}
{horizontal labels?}

{start point of centered label}
{label the text}

{define subset of screen}

{framel}

{scale the window for the datal}

{draw the x-axis}

{draw the v-axis}

{100 Points totall

{det a point from the functionl}
{move to the first Point...}
{+eeand draw to all the rest}

Yaxis{0.,00140,0,140,2454241)3
for X:=1 to 100 do begdin
Yi=DataPoint (X)3
if X=1 then mouve{}sY)
else line(Xs¥Y)s
endy {for Xi=1l to 100}
endi {ErrorReturn=07}
dgrarhics_terms
end,

{terminate the drarhics packade}

{prodram "SinAxesl"}

This version is better than the last; it has axes and we can see the units they’re delimiting, but
obviously, there is a big problem. Not only do the axes and tick marks appear where we want
them, they are also many places where we don’t want them. We want the axes to stop at the
limits of the window, and we also want the tick marks to extend only toward the interior of the
graph. What we want is clipping.

Clipping Lines

Clipping is a method of defining edges of a plotting area, and drawing things which are cut off at
those defined edges if they hang over. This is analogous to describing a large drawing on a huge
sheet of paper, and but only drawing those parts which are inside some rectangle. What this
means is that when clipping is invoked, everything inside the rectangle should look identical to
the image (inside the same rectangle) created when clipping is not invoked. Only the things
outside the rectangle are affected. Clipping affects lines, text, markers, and polygons.

Clipping a line consists of determining how much of a line is within the clipping limits, and then
drawing only the visible part. There are four distinct cases:
' Clipping Limits

® The line is contained entirely within the clip limits.
Therefore, using the original endpoints, draw the entire
line.

N\

® One endpoint is within the clip limits, but the other one

!
is outside. Therefore, find the intersection between the . I
. o]
line to be clipped and all clip limits which intersect it
(two at the most). Draw the line from the visible end- ~J
point to the closest edge-intersection. e

1-23

1-24

Introduction to Graphics

® Both endpoints are outside the clip limits, but some > !
middle part of the line is visible. Do the same operation /
as for the single invisible endpoint above, but for both 'l
endpoints. 1

® The entire line is invisible. Reject it; do nothing. X »

DGL clips images at the display limits—those limits set by the SET_DISPLAY_LIM routine.
Often, however, you may wish to clip at other boundaries than the logical display limits. In
addition, the parameters for SET_DISPLAY_LIM are expressed in millimeters. Millimeters are
quite adequate for setting display limits, but are usually clumsy to work with when the rest of the
graph is in world coordinates. But there is a way to do it. There is a DGL routine called
CONVERT_WTODMM, which converts world coordinates to millimeters on the display surface.
However, SET_DISPLAY_LIM may reset the view surface limits, so some redefinition of other
parameters may be necessary. Thus, you can clip using these two routines in conjunction with
each other.

A User-Defined Clipping Algorithm

In the appendix is a listing of the program ““‘SinClip”’, which uses a clipping routine! called
ClirDraw. Also included is a routine to which you pass the desired clip limits: ClipLimit.
The clip limits may be inside, outside, or coincident with the window edges. After the clipping
limits have been defined, a line is passed to the clipping routine. Both endpoints of a line must
be known, because intersections between the line being drawn and the edges of the clipping
area must be calculated.

These two clipping-related routines allow lines to be clipped outside of any desired rectangular
area. However, the axis routines used in the last demonstration program must be modified to
call the clipping routine. In addition, there is another modification which would be very conve-
nient to have:

It would be nice if we didn’t have to pass the Xmin and Xmax or Ymin and Ymax to their
respective routines so they would know where to start drawing tick marks. To do this, we’ll just
use the global variables ClirXmin, ClirXmax, ClirYmin, ClirY¥Ymax. Then we’ll round the
lower window limits down to the next value which would have a major tick mark. We round to a
major tick mark because (in this case) we want the value of O to have a major tick, regardless of
whether zero is on the plotting surface.

Installing the modified axis routines results in the following plot. The program may be found on
file “SinClip” on the DGLPRG: or DOC: disc.

1 This clipping routine was adapted from a routine on page 66 of the excellent book:
Principles of Interactive Computer Graphics, William M. Newman and Robert F. Sproull, Second Edition, 1979, McGraw-Hill.

Introduction to Graphics

VOLTAGE VARIANCE

Voltage

boveddinebinedeend [T PUTUL FUUVE PRUTUTOTEY YUV FUTTN FUURL FPUI BPO | 1 Lusaal

Time (seconds)

. J

This is a good general-purpose clipping routine which is independent of the output device used,
and of the DGL implementation used. But as we noted earlier, only lines sent to the CLIP-
DRAW routine were clipped, and therefore text, written by a call to GTEXT, in addition to
markers and polygons, were not clipped.

These axes look much better. Now we know where the numbers should be placed on the axes.
Let’s learn a little about labelling numbers.

Labelling Axes

In the process of labelling axes, we need to know how to convert numbers to strings which look just
like the numbers. The reason for this is that the labelling procedure GTEXT can only accept a string
for an input parameter.

There is a standard procedure in Series 200/300 Pascal called STRWRITE. This allows you to
use regular output formats, but, instead of sending the data to a file, the data is put into a string
variable. The same format-controlling numbers after colons that can be used for WRITELN can
be used for STRWRITE. Let’s assume there are three variables defined:

® A string variable 5trrng. This variable will receive the
string version of the value converted from REAL;

® An integer 1. This is merely for a value returned from
the STRWRITE routine. It indicates the location of the
next unused character in the string;

o And a REAL variable called X which we want to con-
vert to a string.

The actual conversion would be accomplished through the following statement:
strwrite{Strngds1,1,X:6:4)1
The :6 after the X tells the computer that the entire field should be six characters wide. This

includes the digits to the left of the decimal point, the decimal point itself, and the characters to
the right of the decimal point.

1-25

1-26 Introduction to Graphics

The : 4 tells the computer that there are to be four digits to the right of the decimal point.

In this program also, we center the labels horizontally by subtracting half the length of the labels
from the desired position for the center of the label.

« 3
1 VOLTAGE VARIANCE
8.1808
8.1775
9.12501
©8.i7a5
[o)]
]
4 0.1700+
=
> 0.1675F
9.185@
8.1625
8. [] * lAO : 2‘8 : 3‘0 : QIB t 5‘0 : GIB * 7‘9 : Oll : !‘. ' 188
Time (seconds)
_ _J
program SinAxes2(outrPut)i
import dgl_libs {det draphics routines?}
const
CrtAddr= 33 {address of internal CRT}
ControlWords= 0% {device controlsy O for CRT}
type
RoundTrpe= {Ups Down Near)s {used by function Round2}
var
CharWidths: reali {width of char is world coords}
CharHeight: real? {height of char is world coords?}
Text: stringl201; {temporary holding place for text}
ErrorReturn: intederi {variable for initialization outcomel}
I: inteders {return variabkle from STRWRITE}
i intederi
Vi reall
ClirKminys ClirXmax: reals {soft clirp limits in x?
ClirYmin, ClirYmax: reali {soft clirp limits in v}

$include ‘DGLPRG:DataPoint’#$ {function: »e=f(x) }

Introduction to Graphics 1-27

FPAaged (R EEE R AR R R RN R R R RN RN R R RN R R RRER RN R R RRRR AR RN RN AR RN R RRRE N R)
procedure ClipLimit(Xmins Xmaxs Ymins Ymax: real)s

e T T ¥

{ This procedure defines the four dlobal variables which specify where the }

{ soft clir limits are. }

L T T L }

bedin {body of procedure "ClipLimit"}

if Xmin<Xmax then bedin {\ }
ClipKminz=Xmin3 { A\ Force the minimum soft }
Clirdmaxi=Xmax3 { \ glip limit in X to be }

end { the smaller of the two ¥

else hegin { X values passed into ¥
ClipXminz=Xmaxi { / the procedure, }
ClirXmax:=Xmini { 7/ }

endj {7/ }

if ¥Ymin<¥Ymax then bedin {\ }
ClirY¥min:=Ymins { A\ Force the minimum soft %
Clir¥max:=Ymaxi { \ clir limit in Y to be }

end { the smaller of the two ¥

else bedin { ¥ values passed into }
ClirYmin:=Ymax3 { / the procedure, ¥
ClirYmax:=Ymini { / ¥

ends {/ ¥

end} {procedure "ClipLimit"}

SPATES R ERE R R AR RN R R R R R AR RN R RN RN R R R R AR R AR ERE RN AR RERRERRR)
procedure ClipDraw(X1ls Y1, X2+ ¥Y2: real)i

T T e L T T T ——— }
{ This procedure takes the endrpoints of a lines and clirs it, The soft }
{ clirp limits are the real dlobal variables ClipXmins ClipXmaxs ClipYmin, }
{ and ClirYmax., These may be defined throudh the procedure ClirLimit. ¥
L e et T T T ¥
label
13
tvrPe
Eddes= {LeftsRidght+TorBottom)i {Possible eddes to cross?t
DutDfBounds= set of Eddesi {set of eddes crossed}
var
Out s Out! Dut2:0utOfBoundss
A reals
{ m e e e e e e e ¥
procedure Code(X, Y: real’ var Out: OutOfBounds)s
begin {nested procedure "Code"}
Out:=C13 {null set}

{off left edge?}
{off ridght edge?}

if x<ClipXmin then Out:=[left]

else if x>ClipXmax then Out:=[rightli
if v<ClipYmin then Out:=0ut+[bottoml {off the bottom?}

else if v>ClierYmax then Out:=0ut+Ctorl} {off the tor?}

ends {nested procedure "Code"}

1-28

Introduction to Graphics

bedin
Code(X1,¥10utl)i
Code(X2,¥240ut2) i
while (QOuti1<>L1) or (ODutZ2<>[1) do bedin
if (Outl*0ut2)<>[]1 then doto 13
if Dut1<>[] then Out:=Dutl
else Out:=0ut2;
if left in Out then bedin

{body of procedure "ClipDraw"?}

{figure status of point 1}

{fidure status of pPoint 2}

{loor while either point out of randel
{if intersection non-nully no linel

{0ut is the non-empty onel
{it crosses the left eddel

yi=Y1+(Y2-Y1)*(ClirPAmin-X1)/(X2-X1)i{addust value of v appropriatelv}

xe=ClipXmini
end {left in Out?}
else if right in Out then bedin

{new x is left edde}

{it crosses ridht eddgel

yeeY1+(Y2-Y1)*(Clir¥max-X1)/(X2-X1)3i{addust value of v apProrriately}

x:=ClirXmaxi
end {ridht in Dut??
else if bottom in Out then bedin

{new x is ridght eddel

{it crosses the bottom eddel

Ke=K1+(H2-X1)*(CliPYmin-Y1)/(¥2-Y1)i{adiust value of x apPropriatelr}

vi=ClipYmini
end <{bottom in Out?}
else if tor in Out then bedin

{new v is bottom edde’}

{it crosses the top eddgel}

Xi=R1+(H2-K1)*(ClirYmax-Y1)/(Y2-Y1)i{adiust value of x aPpProrriatelv}

yi=ClirY¥maxi
endi {torp in Out?}
if Out=0utl then bedin
Kli=x} Yi=vi Code(x sy sDutl)i
end {0ut=0uti?}
else bedin
K2i1=x3 Y2i1=vi
endi {else bedin}
ends {whilel
move(xilsv1i)3
line(x2yv2)3
1: ends
$rades$
function RoundZ(N, M:

Code(x sy s Qut)s

{ This function rounds "N" to the nearest "M", according to "Mode",

{new v is top eddel}

{redefine first end point}

{redefine second end pPoint?}

{if we det to this Point, the line...}
{vvsis completely visibles so draw it}
{procedure "ClipDraw"}

LR AR R R RRERFERRRRR R RN R RRFR AR R AR RRR R R AR RRRRRRRRRER)
reali Mode: RoundTvre):

reali

This }

{ function worKs owly when the ardument is in the rande of MININT. .MAXINT. 1}

e e e e e
const
epsilon= 1E-10%
var
Rounded: reals
Nedative: booleani
bedin

Negative:=(N{Q,0)}
if Nedative then hedin

N:=abs(N)3

if Mode=Up then Mode:=Down

else if Mode=Down then Mode:=Urj
endi

{roundoff error fudde factor}

{temporary holding areal}
{flags "It is nedative?"}
{body of "RoundZ"}

{is the number nedative?}

{work with a positive number}
{if number is nedatives 444}
{vvoreverse up and downl

Introduction to Graphics

case Mode of {should we round the number,..}
Down: Roundeds=trunc(N/M)*Mi {vevleft on the number line?}
Up: begin
Rounded:=N/M3j {vyvright on the number line?}

if abs{Rounded-round(Rounded))rersilon then
Rounded:={trunc(Rounded)+1,0)*M

else
Rounded:=trunc(Rounded) *M3
end
Near: Roundeds=trunc(N/M+M*¥0,3)*M; {++st0 the nearest multirle?}

endi {casel
if Negative then Rounded:=-Rounded} {reinstate the sign}
RoundZ2:=Rounded’ {assidn to function namel
endsi {function "Round2"}

FPATEE R A EEE R RN RN R R RN R R R R RN R E R RN R RN R RN E RN RRRRRRRRRRRER)
procedure XaxisClirp(Spacind, Location: real’ Mador: inteders)
MadsizesMinsizes real)s

{ This procedure draws an X-axis at any intersection Point on the plotting 1}
{ surface, Parameters are as follows: }
{ Spacing: The distance betweewn ticK marks on the axis. }
{ Location: The Y-value of the X-axis. }
{ Mador: The number of tick marks to de before drawingd a mador tick ¥
{ mark, If Mador=3, every fifth tick mark will be maJjor., }
{ }
{ ¥

Madsize: The lendthy in world unitss of the mador ticKk marks.

Minsize: The lendthy in world unitsy of the minor tick marks,
{ e e e e e e e e e —————— ¥
var

h] reals {X position of ticK marks}

SemiMadsize: reall {half of mador tick sizel}

SemiMinsize: realj {half of minor ticKk sizel}

Counter: intedersi {Kkeerps track of when to do mador ticKs}
begin {bodr of procedure “XaxisClir"}
SemiMadsize:=MaJSize*#0,33 {calculate half of mador tick sizel}
SemiMinsize:=MinSize*0,53 {calculate half of minor tick sizel}
Counter:s=03 {start with a mador tick}

ClieDraw(ClipXminsLocationClir¥maxsLocation)i d{draw the H-axis itself?
Ki=Round2(ClipXminsSpracing*MadorDown)i {round to next lower mador}

while X<{=ClipXmax do bedin {loor until dreater than ClirXmax}
if Counter=0 then {do a mador ticK mark?}
ClirDraw{(XslLocation-SemiMadsize»®XsLocation+SemiMadsize)
else
ClipDraw(X,Location-SemiMinsizeXsLocation+SemiMinsize)} {do minor tick}
Counter:=(Counter+l) mod Madori {keer track of which lendgth tick to do}
Ki=X+Spacing’ {90 to next tick position}

endi {while}
endi {procedure "XaxisClip"}

1-29

1-30

Introduction to Graphics

FPAdged {HRREFERFRRRERRRERFRRRRERFRR AR AR R R R ERRR R R R EE AR RRRRRRRRRRRERR)
procedure YaxisClir(Sracingd, Location: reali Mador: intederi
Madsizes Minsize: real)s

{ This procedure draws an Y-axis at any intersection point on the plotting 3
{ surface., Parameters are as follows: }
{ Spacing: The distance between ticK marks on the axis. }
{ Location: The X-value of the Y-axis. }
{ Mador: The number of tick marks to de bhefore drawind a mador tick }
{ mark, If Mador=5, every fifth ticK mark will be mador, }
{ Madsize: The lendgthy in world units, of the mador tick marKks, +
{ Minsize: The lendths in world units, of the minor ticKk marKs, ¥
e T et L L L L E E T T }
var

' reals {Y¥ position of ticK marKs}

SemiMaJsize: reals {half of mador tick size}

SemiMinsize: realld {half of minor tick size}

Counter: integers {Kkeeprs track of when to do mador ticks}
bedin {body of procedure "YaxisCliep"}

SemiMaJsize:=Madsize*0,5 {calculate half of mador tick size}
SemiMinsize:=Minsize*0,5 {calculate half of minor tick size}
Counter:=03% {start with a mador tick?}
ClirDraw(LocationsClirYminsLocationClirYmax)1
Yi=RoundZ2(ClipYmivwsSpacing*Mador+Down)i {round to next lower maJor}

while Y<=ClirYmax do bedin {loor until greater than Ymax?}
if Counter=0 then {should we do a mador tick?}
ClirDraw(lLocation-SemiMadsizesYLocation+SemiMadsize ¥)
else
ClirDraw(Location-SemiMinsizesY Location+SemiMinsize¥)i
Counter:=(Counter+l) mod Madjorj {keer track of which size tick to do}
Yi=Y+Spacingi {90 to next tick position}

endd {whilel
endj {Procedure "YaxisClir"}

$rade$
bedin
dgrarhics.initi

displav_init(CrtAddrsControlWordsErrorReturn)i

if ErrorReturn=0 then bedin
set_aspect(311,389)3
CharWidth:=2%0,043
CharHeight:=2%0,083
set_char.size(CharWidthsCharHeidght)j
Text:='UOLTAGE VARIANCE 'S
for Xi=-3 to 3 do bedin

move(-(strlen(Text)*CharWidth)/2+X*0,002,0,9)}

dtext(Text)s
endi
set_text_rot(0s+1)3§
CharWidth:=2%0,0253
CharHeight:=2%0,043%
set.char_size(CharWidth:CharHeight)3i
Text:='Vpoltade’s

move(-0,87,-(stvrlen(Text)*CharWidth)/2)i

dtext(Text)?
Text:i='Time (seconds) '}
set_text.rot{(1,0)3

move(-{strlen(Text)*Charidth)/2+-0,82)3

dtext(Text)d
set_viewPport(0,1,0,99,0,1240,7)3%
move{-1,-1)% line(-1+1)3%
set.window(0,100,0,16+0,18)3
ClipLimit(0Q,10040,16,0,18)3%
KaxisClir(1490,16+5,0,0008,0.,0004)3
YaxisClir(Q,0005,0+5,251)1
CharWidth:=1,33%
CharHeight:=0,00081
set_char.size(CharWidth CharHeight)i
Text:='"3%
for Xe=0 to 10 do bedin
strwrite{Text sl sI s X*10:0)3

move (K*10-(strlen{Text)*CharWidth)/2,0,1583)}

dtext(Text)i
ends {for x}
Ye=0,161%
repeat
strurite{Text sl s¥sY:B:4)3
move(-8,Y-0,0002)}
gtext(Text)i
1=Y+0,0025%
until Y:0,181
for X:=1 to 100 do bedin
Yi=DataPoint(X)3
if X=1 then move(XsY)
else line(X ¥
endi {for Xi=1 to 100}
endi {ErrorReturn=07}
drarhics_terms
end.,

line(1:1)3 line(l,-1)% line(-14-1)3

Introduction to Graphics

LRERERAEERERRREREREE R R REERERRERERFRRFRREERRFR AR R RRRRRERRRN)

{body of program "SinAxes2"}
{initialize the drarhics svstem’}
{which output deviceT}
{outPput device initialization OK?}
{use the whole screen}’

{char width: 4% of screen width?
{char heidht: 47 of screen height?}
{install character sizel}

{define text to be labelled}

{make "bold" label}

{center label)
{label the text}

{vertical labels?}

{char width: 2.3% of screen width}
{char height: 4% of screen height?
{install char size}

{define text to be labelled?}

{start Point of centered label}
{label the text}

{define text to be labelled}
{horizontal labels?}

{start point of centered label}
{label the text}

{define subset of the screen}

{framel

{scale the window for the data}
{define the soft clip limits}

{draw the clirped X-axis?}

{draw the clirped Y-axis}

{char width: 1.3 user X units widel}
{char heidght: 0008 user ¥ units hidh}
{install character size}

{erase previous definitions of string}
{eleven ¥ labels?

{convert number to stringl

{center the label}
{label the text}

{starting Y position for Y labels}

{convert number to stringl
{center the text verticallv}
{label the text}

{next Y Position}

{terminating condition}

{100 points totall}

{det a point from the functionl}
{move to the first point...?
{vvsand draw to all the rest}

{terminate the drarhics rpacKkadel
{Pprodram "SinAxes2"}

1-31

1-32

Introduction to Graphics

Notice that even though the clip limits were still active when the axis labels were written, the text
(whose characters are merely a series of short lines) was not clipped. This is because the
GTEXT procedure does not call the user-defined clipping routine CLIPDRAW, it calls the DGL
procedures MOVE and LINE. Thus clipping on labelled text is only done at the hard clip
limits—the edges of the plotting surface.

This is the final version of our progressive example. It is the version which created the initial
display at the beginning of the chapter.

Chapter

Miscellaneous Graphics Concepts

2

In the last chapter we discussed the more elementary graphics operations. In this chapter, we will
discuss how to use some of those concepts more fluently, along with several other graphics
oOperations.

As in the last chapter, the demonstration programs in this chapter are stored for your conve-
nience on the DGLPRG: or DOC: disc which was shipped with this manual. You are encouraged
to run these programs while you are reading the manual, as they will make understanding the
concepts much easier.

Setting the Display Limits

It is possible to define a subarea of the physical display surface by calling the DGL procedure
SET_DISPLAY _LIM. The area thus defined is the area in which a subarea can be specified by
the SET_ASPECT procedure.

The parameters passed to SET_DISPLAY_LIM are expressed in millimeters. An example call
would be:

set_display_lim(40.,5,100,30,89Error)]

This would set the logical limits of the display device to an area whose:

e left edge is 40.5 millimeters from the physical left edge of the display device;

o right edge is 100 millimeters from the physical left edge of the display device;

® bottom edge is 30 millimeters from the physical bottom edge of the display device;
e top edge is 99 millimeters from the physical bottom edge of the display device.

If the integer variable Error comes back with a value of 0, no error occurred. An error occurs if
either the minimum X or Y is greater than the maximum X or Y, or if the requested area is even
partially outside the physical display limits. In either case, the call is ignored and the variable
Error is returned non-zero.

2-1

2-2 Miscellaneous Graphics Concepts

More on Defining a Viewport

In the last chapter it was mentioned that the SET_VIEWPORT procedure defined a subset of the
screen in which to plot. More precisely, the SET_VIEWPORT procedure defines a rectangular area
into which the SET_WINDOW coordinates will be mapped. That is, the left edge of the window will
be placed upon the left edge of the viewport, the right edge of the window will be placed upon the
right edge of the viewport, and the same will happen with the bottom and the top edges.

Assuming that the SET_ASPECT procedure has been invoked to make use of the entire
screen, the screen has default edge values in virtual display coordinates of 0.0 through 1.0 in
the X direction. In the Y direction, it has the coordinates of 0.0 through 299/399 ~ 0.75 (for
the Models 216, 220 and 226), 0.0 through 389/511 ~ 0.76 (for the Models 217 and 236), or
0.0 through 767/1023 ~ 0.75 (for the Model 237, HP 98544A, HP 98545A, HP 98547A, HP
98549A, HP 98700A, HP 9000 382 Medium-Resolution display), or 0.0 through 399/511 =
0.78 (for HP 98542A and HP 98543A), or 0.0 through 1023/1279 = 0.80 (for HP 98548A, HP
98550A, and HP 9000 382 High-Resolution), or 0.0 through 479/639 ~ 0.75 (on the HP 9000
362/382 VGA display). The length of a unit in virtual coordinates is defined as “the length of
one of the longer edges of the plotting area.” To recap the important characteristics of virtual
coordinates: ’

® The lower left of the plotting area is 0,0.

e Virtual coordinates are isotropic; that is, one unit in the X direction is the same distance as one
unit in the Y direction.

e Virtual coordinates are limited to the range 0 through 1. The maximum coordinate on one side
is 1, and the maximum coordinate on the other side is less than or equal to 1.

As we mentioned in the last chapter, it is trivial to determine the longer edge of the screen in virtual
coordinates, but substantially more involved to calculate the length of the shorter edge in virtual
coordinates. Since the height of the screen is shorter than the width of the screen, the longer edge is
in the X direction; therefore, the maximum X in virtual coordinates is 1.0. If the screen had been
higher than it is wide, the maximum Y in virtual coordinates would have been 1.0. Now for the
interesting part.

Remember that virtual coordinates are isotropic: X and Y units are the same length. This means that
the length in virtual coordinate units of the shorter edges of the plotting surface can be determined
from the aspect ratio of the plotting surface. The aspect ratio is the ratio of width to height of the
plotting surface. Thus, if the plotting area is wider than it is high, the ratio would be greater than
one. If the plotting area is higher than it is wide, the ratio would be less than one, and if the plotting
area were perfectly square, the ratio would be 1. You can determine the aspect ratios of both the
virtual display and the logical limits of the plotting surface by calling the INQ_WS procedure with
operation selector 254:

const
AsrectRatio= 2543 {mnemonic better than madic number}

tyre
RatioTrres= (VirtualDisplavsLogicallimits)?
RatioTvpres= array [RatioTvres] of reall

var
Pac: packed array [1+41) of chari { A These are the sundries %
Tarrav: array [1.+11 of inteder? { \ mneeded by the call to ¥
Ratioss: RatioTrresi { /7 M“ina.uws", ¥
Error: inteders {7/ }

ina_ws{AspectRatios0s042+Pacs+larrayRatiossError)i cr/if Error<:0
then cr/if writeln{‘Error 'sError:0s+ / in determining aspect ratio.’)}

Miscellaneous Graphics Concepts

The user can now use RatiolVirtualDisplay]l and RatiolLogicallLimits] to determine what
values are used to set the aspect ratio. (For more information on the INQ_WS procedure, look
up this procedure in Appendix B.)

Usually, however, the user knows the aspect ratio because he explicitly set it at the beginning of the
program, using the SET_ASPECT procedure.

Using the value for the aspect ratio, we can derive a statement which is almost indispensible when
writing a general-purpose statement for calling the SET_VIEWPORT procedure. Assuming the
aspect ratio is contained in a variable called AsrectRatio:

if AspectRatio*1,+Q then bedin
MaxWirt{s=1,03
MaxVirtY:=1/AsprectRatio

end

else bedin
MaxVirt¥:=AspectRatio}
MaxWirtY:=1.,0

end}

These statements define the maximum X and maximum Y in virtual coordinate units. This will
work no matter what plotting device you are using. Now that we have MaxVirt¥ and
MaxVirtY defined, we have complete control of the subset we want on the plotting surface.
Suppose we want:

e the left edge of the viewport to be 10% of the hard clip limit* width from the left edge,
e the right edge of the viewport to be 1% of the hard clip limit width from the right edge,

e the bottom edge of the viewport to be 15% of the hard clip limit height from the bottom,
and

e the top edge of the viewport to be 10% of the hard clip limit height from the top.

We would specify:

LeftEdde:=0,1%MaxVirtXi

RightEdde:=0,99%*MaxVirtii

BottomEdde:=0,13%MaxVirtYi

TorEddes=0,9%MaxVirtYi

SET.VIEWPORT(LeftEdge RidghtEddeBottomEdge sTorEdge)

1 Hard clip limits are those limits set by the SET_DISPLAY_LIM procedure.

2-3

2-4 Miscellaneous Graphics Concepts

Calculating Window Limits

In our progressive example in the last chapter, we were using the sometimes unrealistic practice of
using constants in the SET_WINDOW procedure call. Often you don’t know until the program is
running what the values to be passed to SET_WINDOW are. The X values which were used in the
SET_WINDOW procedure call (0 and 100) came from the fact that there were 100 data points. The
Y values (for this type of plot) must be determined either by you or by the computer itself. If you
want the computer to determine the X or Y minimum and maximum, you could do it in the
following manner. Assuming that the X values are in a real array called x:

const
MaxReal= 1,79769313486231E3083
Kmax:=-MaxReal} {Smaller than smallest Possible value in arrav}

for I:=1 to N do {N is the number of elements in the arrav}
if KLIT>Xmax then Xmax:=X[I13

A similar method can be used for figuring the minimum value of the X array: First, assign Xmin
to be +MaxReal. The reason this is done is to ensure that at least the first value in the array is
used. Then, check through the array of X values, and if the value of any element is smaller than
the current minimum, it becomes the new minimum.

Of course, the minimum and maximum Y values can be found in the same manner.

(SET_WINDOW) e -

Miscellaneous Graphics Concepts

Drawing a Window Frame

The SET_VIEWPORT procedure specifies where in the logical display to put the plot—the
subarea of the plotting surface in which to plot. This is the area which the SET_WINDOW
procedure affects.

<1 PHYSICAL DISPLAY SURFACE
~_—<—1— LOGICAL DISPLAY SURFACE (SET_DISPLAY_LIM)
- ; VIEW SURFACE (SET_ASPECT)

VIRTUAL
~—— COORDINATE
SYSTEM

VIEWPORT
(SET_VIEWPORT)

WINDOW —> T~ T~

WORLD COORDINATE SYSTEM

Quite often, a frame is desired around the current window to set it apart from the labels outside
the window, and so forth. If the window limits are known (or it is convenient to find out), you
can just do a MOVE and four LINEs, as was done in the last chapter. The way it was done in the
last chapter was to draw the frame after the SET_VIEWPORT call, but before the
SET_WINDOW call. Since we had not yet set our own window, the default window limits were
—1 to 1 in both directions. Therefore, we could say:

move(-1y-13% line(-141)3% line{l,1)3 linef{l,s-1)5 line(-1,-1)3

This is not always the case, however. If you do not know the current window limits, you can
interrogate the system through the DGL procedure INQ_WS. The values returned from there
can be used to draw the frame. The following lines of code demonstrate how to do this. First,
the INQ_WS routine is accessed to determine the current window limits, and then a box is

drawn around those limits.

2-5

2-6 Miscellaneous Graphics Concepts

const
WindowLimits= 4503
tvre
LimitOrder= (MXmins Xmaxs Ymins¥Ymax)i
LimitType= array [LimitOrder] of realj
var
Pac: racked array [1.41] of chars
Tarrav: array [1+41] of intederi
Window: LimitTvyped
Error: intedersi

{mnemonic better than

madgic number}

\ These are the sundries
\ needed bv

{
{
{ / the DGL procedure
{

/ "ina.ws",

ina_ws{WindowlLimitssQs0+4sPacslarraysWindowsError)s

if Error=0 then begin
move(WindowlXminl WindowlYminl) 3
live(WindowlXminl WindowlYmax1)i
line(WindowlXmaxlWindowlYmax1)3
line(WindowlXmax]sWindowl¥minl)s
line(WindowlXminl Windowl¥minl)s

end A{Error=07}

else writeln(‘Error ‘sError:0s’ occurred in

{move
{draw
{draw
{draw
{draw

"Frame" ')}

to
to
to
to
to

lower
UPPET
UPPET
lower
lower

the call to

left corner’}
left corner}
right corner’}
right corner}
left cormer’}

Miscellaneous Graphics Concepts

Turning Displays On and Off

If you ran the last chapter’s programs, and do not have a bit-mapped display, you probably noticed
that the graphics screen was turned on automatically to show you what was being plotted, but the
alpha screen was not turned off at the same time. If you do have a bit-mapped display (e.g., Model
237), both alpha and graphics occupy the same screen; the screen is either on or it isn’t.

In the case of nonbit-mapped displays, as soon as the program ended, the Main Command Level
prompt appeared at the top of the screen, obstructing the view of the top portion of the graphics
image. This can be mildly annoying as it is, having to turn off the alpha raster by pressing the

key, but it rapidly gets more annoying if your program generates printed output and
plotted output which are not intended to be viewed simultaneously.

What is needed is a way to turn either the alpha raster or the graphics raster on or off at will. There is
a way to do this, by calling the OUTPUT_ESC procedure with operation selectors 1050 or 1051.
Or, if you prefer a more readable method, the you could write a procedure to do the operations.
Assume that there has been an enumerated type declared:

type
DisplavStatess= (Off+0nls
Here is an example section of code to show you how to turn the displays on or off. The
parameter used is assumed to be of the type declared above.

R R RN R RN R AR AR RN RN R R RN R RN R AR R AR R R ERRARNRR]}
procedure Alrha(State: boolean)s

L T T TP ¥
{ This procedure turns the alepha raster on or off (true=ons false=off)., +
e R e it R et }
const
AlrhaRaster= 10313 {mnemonic better than madic numberl}
var
AlrhalOn: array [1.,+1] of intedersi {\ This is all stuff that ¥
Rarrav: array [1++1] of reali { » is needed by the ¥
Error: intedersi {/ "putPut_esc" Procedure., 1}
bedin {procedure "Alrha"}
if State=0n then AlrhaOnlll:=1l {"0On" is a boolean constant: truel

else AlrhaOnl1l:=03
output.esc(AlrhaRaster:1+0sAlrhaOnsRarravsError)i

if Error<s0 then writeln(’Error ‘sError:0s+’ in procedure "Alrha".’)}
endi {procedure "Alrha"}

Similar code could be generated for turning the graphics display on and off. The references to
“Alpha’’ should be changed to ““Graphics” just to avoid confusion, and the operation selector
should be changed to 1050.

2-7

2-8 Miscellaneous Graphics Concepts

Conversion Between Coordinate Systems

Many times, you’ll probably want the ability to convert back and forth between virtual display
coordinates and world coordinates. One of the most-used areas where this is desired is where you
want to specify some parameter in units relative to the display device, not the graphical model
currently in use. For example, it is often desirable to specify character sizes as, say, 6% of the screen
height. Or, you want to draw an X axis whose tick marks are 1% of the screen height. These, and
other places, the values could be specified in world coordinates, but it is an inconvenience to have
to specify a constant-sized line or character in units which are varying all over the place. For
example, if you have a general-purpose plotting routine which gets it data from an external source,
it doesn’t know until it gets the data what the window limits are to be. It is only after the window
limits are known that the character sizes would be specified.

If we could specify these things in virtual display coordinates, we could have the computer do the
dirty work of converting from virtual coordinates to whatever the current world coordinates are.

To convert from one coordinate system to another, there are three steps involved:

1. Determine, as a fraction, how far into the old system the point of interest is. For example, if
the old system goes from 10 to 20 in X (calculations for Y proceed with identical steps), and
you want to find out how far 13 is into that range, you take:

OldFraction:={(X-01ldXmin)/ (D1ldXmax-01ldXmin)}
or, using our numbers,
OldFraction:=(13-10)/(20-10)1

This evaluates to 0.3, and, sure enough, 13 is three tenths of the way between 10 and 20.

2. Take the fraction found in the previous step, and go the same distance into the new
coordinate system. For example, say our new coordinate system goes from 300 to 400.
To go into this new range the same fraction of the way, you take:

MewDistance:=0ldFraction*(NewXmax-NewXmin)j
Again, putting our numbers into the expression,
NewDistance:=0,3%(400-300)3

This evalutes to 30, and, sure enough, we have to go thirty units into the new coordinate
system.

3. To “gointo” the new coordinate system means that we have to add the new coordinate
system’s minimum value to the distance into the new system so that the distance into the
new system is relative to the same starting point as the system itself.

NewPointi=NewDistance+NewXmini
or, in our units,
NewPoint:=30+3003

And 330 is the desired point in the new coordinate system.

Miscellaneous Graphics Concepts 2-9

The “old” coordinate system and the “new’’ coordinate system can have any maxima and minima
(you are not restricted to converting between the world coordinate system and the virtual coordin-
ate system), and the point of interest may be inside the range, one of the end points, or outside the
range; it make no difference to the mathematics.

Following are two routines which convert between virtual display coordinates and world coordin-
ates.

LR RN AR R R RN R R R AR R R R AR AR RN R RN R AR RRRRR AR R R AR R RN RRR)
procedure ConvertVirtualToWorld(WirtualX, Virtual¥: reals
var WorldX, WorldY: real)s

L T e T T e }
{ This routine converts any Point in virtual coordinatess whether on the }
{ plotting surface or nots into world coordinates, }
T T T R e T ¥
const
WindowLimits= 435014 {mnemonic better than madic number}
ViewportLimits= 4513 {+viherey too. ¥
tvpe
LimitOrders= (Kmins Xmaxs Ymins Ymax)i
LimitTvre= array [LimitOrderl of real}
var
Pac: packed array [1.++1] of chari {\ These are the sundries ¥
Tarrav: array [1,,1] of intederi { \ needed by the call to }
Window: LimitTyrei { * the DGL procedure }
Yiewport: LimitTyrei { / "ina_ws", ¥
Error: intedersi {7/ }
bedin {body of procedure "ConvertVirtualToWorld"}

ing_ws(WindowlLimits 0,04 Pacslarray sWindowsError)s
if Error<»0 then writeln(‘Error ‘sError:0;y

’ .

in determining window limits in "ConvertVirtualToWorld",’)3

inqa.ws(Viewportbimits»0,0+4sPacrlarravViewrportError)si

if Error<>0 then writeln(‘Error ‘sError:0,
‘in determining viewport limits in "ConvertVWirtualToWorld®, ')}

WorldX:i=(VirtualX-ViewrPortlXminl) { \ C[Calculate X distance from left.,.. }
/{Viewport[¥maxl-ViewportlXminl) { \ +..convert to a fraction,.. ¥
*(WindowlXmaxl-WindowlXminl) { / ++evd90 same fraction into worlds.. }
tWindowlXminls { /7 +evadd Xmin to det value, }

WorldY:=(Virtual¥Y-Viewportl¥Yminl) { \ Calculate Y distance from bottom.ss2}
/(Viewport[YmaxI-ViewportlYminl) { \ +,.convert to a fraction... }
*(WindowlYmaxl-WindowlYminl) { / ++vd0 same fraction into world... }
+Windowl¥Yminli { / +evadd Ymin to det value. }

endji {procedure "ConvertVirtualToWorld"}

2-10 Miscellaneous Graphics Concepts

IR 2 223222222232 22222 2222222 2SS TS ST TSRS TS IR ST S SIS TR L)
procedure ConvertWorldToVirtual(WorldX,

WorldYs: real

var YirtualXs VirtualY: real)s

o m o o e e e e
{ This routine converts any point inm world coordinatess whether on the
{ prlotting surface or noty into virtual coordinates.,
e e e e e e
const
WindowLimits= 4503 {mnemonic better than madic number}
ViewportlLimits= 4513 {vesherer too, ¥
type
LimitOrders= (Kminy Xmaxs Ymins Ymax)i
LimitTvre= array [LimitOrderl of reals
var
Pac: packed arrav [1+,11 of chari {\ These are the sundries
Iarrav: array [1+411 of intederi { \ mneeded by the call to
Window: LimitTvpres { * the DGL Procedure
Viewport: LimitTvpred { 7/ M"ina.ws",
Error: inteders {7/
bedgin {body of Pprocedure "ConvertWorldToVirtual"

inq.ws{Windowlimits 004 +Pacslarray sWindowsError)s
if Error<»0 then writeln(‘Error ‘sError:0,

7

in determining window limits in

"ConvertWorldToVirtual",’)s

ina.ws(ViewportlLimits»0s0s4sPacIarrayYiewrortError)s
if Error<:0 then writeln(‘Error 'sError:0,

7

in determining viewport limits

VirtualXe=(WorldX{-WindowlXminl)
/(Windowlmaxl-WindowlXminl)
*¥(Yiewport[XmaxI-Viewrport[Xminl)
+Viewport[Xminls

VirtualYs=(WorldY-WindowlY¥Yminl)
/(HindowlYmaxI-WindowlYminl)
*¥(Yiewport[Ymaxl-Viewport{Yminl)
+iewportiVYminli

endj

"ConvertWorldToVirtual", ')}

\ Calculate X distance from left...

\ +veconvert to a fraction...

/ vvvd0 same fraction into world,..

/ vevadd Kmin to det value,

\ vvsconvert to a fractions..

/ vvrd90 same fraction into world..,

/[vevadd Ymin to det value,
procedure "ConvertWorldToVirtual"}

{
{
{
{
{ \ Calculate ¥ distance from bottomes.
{
{
{
{

}
}
}
}
}
}

}
b
b
}
}
}
}
}

Miscellaneous Graphics Concepts 2-11

More on Labelling a Plot

To help you get a better grasp of the concept of labelling, there will be four small sections, each
of which demonstrates something more about the concept of labelling a graph.

The Character Cell

The first program deals with the relationship between the size of the character, per se, and the
size of the character cell—that rectangle in which the character is placed. This program is on
file “CharCell” on the DGLPRG: or DOC: disc.

()
Size of Character in Character Cell

Current/

Pen
Position
L)

prodram CharCell(outPut)s {prodram name same as file namel}
import dgl.lib,y dgl_ina} {access the necessary procedures?
const

Cri= 33 {device address of drarhics raster}

Control= 03 {device control wordi idnored for CRT}
tvpe

LordgType= 1+.93% {the valid values to pass the "Lorg"}

8tr2335= string[25513 {for the procedure "Glabel™"}
var

Error: intederi {displav.init return variablei O = ok}

Iy Ky Y inteders {loor control variables}

2-12 Miscellaneous Graphics Concepts

EPaded [RRERERFRARRFREARRRRRRRRF RN ER RN R RN RRR AR IR R R AR R RERHRR R FRRR]

bedin {bodv of Prodgram "CharCell"}
drarhics.init? {initialize draphics librarv}
display_.init(Crts:ControlsError)si {initialize CRT}
if Error=0 then bedin {if no error occurred.,,}
set.aspect(311,389); {use the whole screen’}
move(-19-1)3% line{(-1,1)% line(ls1)3 line(l,-1)3 line(-1,-1)3
set.window(-2438+-7,5422,5)3 {define arppropriate window}
set.char.size(14+2)3 {\ ¥
mowe(14+21)3% { » Do main label, }
gtext(’Size of Character in Character Cell’)s { / ¥
for X:=0 to 36 do bedgin { A\ }
for Y:=0 to 15 do bedin { A\ +
move(H-0s1v+0,1)3 { \ Draw the four 9x15 ¥
line(X+0,1,¥-0,1)3 { \ character cells, MakKe }
move (X+0,14¥+0,1) 14 { / a frame around each: b
line(X-0,1,Y-0,1)% { / and an X at every }
endy {for v} { / point. }
endi {for x} { / }
for I1:=0 to 3 do bedin {draw a frame around each char celll
moue(I*#9,0)5 line(I*9,15)F line(I*9+9,13)3% line(I*9+39,0)3 line(I*9,0)3
endi
set.char.size{9,15); {big characters?’
move(l+d)s {90 to startingd position?}
dtext('Ghyi’)} {label some characters}
end} {Error=07} {end of conditional code}
draprhics_term? {terminate drarhics librarv?
end, {prodram "CharCell"} {end of prodram?

As the diagram shows, a character is drawn inside a rectangle, with some space on all four sides.
Both the rectangle’s width and height are specified by the values passed to the DGL procedure
SET_CHAR_SIZE, and are measured in world coordinates. This rectangle is subdivided into a
grid of 9 wide by 15 high. Characters are drawn in this framework.

The current pen position—that position moved to before writing a label—is one unit to the right
and four units up from the lower left-hand corner of the character cell. For example, when
labelling a lower-case ‘‘b”’, the bottom of the longer vertical line would end up at the point
moved to before labelling. Also note that there doesn’t have to be any part of the character at
the current pen position, as in the upper-case “G” in the plot. For characters which have
descenders (lines which go below the “‘baseline’” of the character cell), the current position is
still relative to the lower left corner of the character cell, not the character.

Of course, the little X s in the plot above are not drawn when you label a string of text; they are
there solely to show the position of the characters within the character cell.

The DGL procedure SET_CHAR_SIZE specifies the height of the character cell, not the charac-
ter itself.

Miscellaneous Graphics Concepts

Setting Character Size

In a previous section, we discussed translation of points between coordinate systems. And as it
was mentioned before, often it is desirable to be able to specify character sizes in screen-
dependent units, rather than model-dependent units.

As we saw in the last chapter, there is a DGL procedure called SET_CHAR_SIZE which sets an
attribute of all subsequent characters, namely the width and height of the character cells. When
using SET_CHAR_SIZE, the characters are scaled using the same scaling as the objects drawn.

In other cases, however, the text size should be related to the display device, rather than the
user’s graphics model. For example, when a general-purpose display routine gets data from a
file, or some other source, it probably does not know until the data is actually received what the
range of the data is. Thus, the window limits are calculated in the program. To get the title of the
plot of a consistent size, you would have to convert the actual size of the label relative to the

display device to the same size expressed in world coordinates so they can be sent to
SET_CHAR_SIZE.

The following piece of code shows you how to define character cell height in virtual coordin-
ates, and the width is defined as a fraction of the height; thus, it is an aspect ratio. The reason
that the aspect ratio is desired, rather than the character cell width, is that if you want characters
with a constant shape, you would just have to take your first parameter, and multiply it by a
constant. Thus, in effect, you have just specified the aspect ratio.

The values passed into the routine are converted into character cell width and character cell
height in world coordinates, which the DGL procedure SET_CHAR_SIZE needs.
SET_CHAR_SIZE is called and the converted values are passed to it. The converted values are
retrievable by invoking the INQ_WS procedure with operation selector 250. The character cell
height and width are needed by another piece of code (which actually does the labelling)
covered shortly.

Here is how to specify character size in virtual coordinates, with an aspect ratio, and convert it
into parameters appropriate for the SET_CHAR_SIZE routine. Notice that the conversion
routine covered a few sections back is used:

var

Width: reals {temporary spot for width?}

KOy YO reali {040 (virtual) in world}

His Y1 real? {1s1 (uvirtual) in world?}
ConvertVirtualToWorld(Q,0,X0Y0) 3 {convert 00 in virtual to world}
ConvertVirtualToMWorld(ls1s¥1,¥1) 3 {convert 1+1 in wvirtual to world}
Height:=Height*#(Y1-Y0)3 {convert height in virtual to world}

Widthi=Heidht*AsrectRatio*(X1-X0)/(¥Y1-Y0)s <{convert width in virtual to world}
set_char_size(Width Heidht)} {invoke the parameters}

2-13

2-14 Miscellaneous Graphics Concepts

Here is the graphical output of a program which demonstrates the use of the procedure
CHARSIZE, and then the program itself:

— N

HE
N

() N

&
L)

prodram CsizeProd(outpPut)s

import ddgl_lib, ddl_inaj {det drarhics routines}
const
Crt= 31 {address of internal CRT}
Control= 03 {device controli O for CRT}
var
Error: intedersi {variable for initialization outcomel}
I Js intedersi {utility variables?
Strnyg: stringl1013 {temporary holding pPlace for strinds}
$include ‘DGLPRG:ConuVtoW’s {virtual-to-world conversion’}

FPATEE R EEE R RN R RN RN RR AR R R R R R RN RN R R RRRRE RN R RRRRRRRERARX)
procedure CharSize(Heidht, AspectRatio: real)i

{ This procedure defines character cell size and the Puts the Width and
{ Heidht values into dlobal variables for later use, The arduments rPassed
{ in are the height of the character cell in VIRTUAL coordinatess and the
{ aspect ratio of the character cell, The values for the window limits

{ mav be anvthindi thev are taken into account and do not affect the size
{ of the characterss since they are defined in virtual coordinates., This
{ pProcedures along with Lord and Ldirs define global variables for use by
{ Glabel.

L e

var
Widths reali
KOy YOu reals
Kl Y1 reals
bedin

ConvertVirtualToWorld(0,0X0,Y0) 3
ConvertVirtualToWorld(l,1sX1,Y1)3
Heidht:=Height*(Y1-Y0)3

Width:=Height*AsrectRatio* (X1-X0)/(YL-Y0)}

set_char.size(WidthsHeight)}
ends

Miscellaneous Graphics Concepts

{temporary spot for width}

{0+0 (uirtual) in world?

{1+1 (uvirtual) in world?

{bodv of procedure "CharSize"}

{convert 040 in virtual to world}
{convert 1+1 in virtual to world}
{convert height in virtual to world}
{convert width in virtual to world?
{invoKe the parameters?’

{procedure "CharSize"}

FPaged {EFAEXEEXEXXEREFRXEXARRRRREREERRXEERERRERERRERRRRERERREREERERERE RN]

bedin
drarhics.inits
displav_init{(CrtsControlsError)i
if Error=0 then bedin
set_aspect{(511,3898)3
set_window(1,2+100,0)3
for Ii1=1 to B do bedin
CharSize(I*I*0,01,0.6)3
move {1l ,I*I*I*0,4+1)3
strurite{Strngsl »JdsI%1:0)3
gtext(Strng+’%’)3
endy {for i}
endi A{Error=07}
dgrarhics_term?
end.

{body of prodram "CsizeProg"}
{initialize the drarhics system}
{which output device?}

{output device initialization OK7}
{use the whole screen’

{scale the window for the data}
{six different character sizes?}
{install character size}

{move to a appropriate place}
{convert number to stringl
{label the string}

{terminate the drarhics packadel
{prodram "CsizeProg"}

The FOR loop writes lines of text on the screen with different character sizes. Incidentally, notice
also the SET_WINDOW procedure. It specifies a Ymin larger than the Ymax. This causes the top of
the screen to have a lesser Y-value than the bottom. This is perfectly legal.

Again, character cell height, when using the algorithm above, is measured in virtual coordinates,
and the definition of aspect ratio for a character is identical to the definition of aspect ratio for the
hard clip limits mentioned earlier: the width divided by the height. Thus, if you want short, fat
letters, use an aspect ratio of 1.5 or larger. If you want tall, skinny letters, use an aspect ratio less

than about 0.5. If you call the above routine:

CharS8ize(0,03,0,6)1
Char8ize(0,06,0,3)13

Cell 3% virtual coordinate units high, aspect ratio 0.6.
Cell 6% virtual coordinate units high, aspect ratio 0.3 (tall

and skinny).

CharSize(0,142)3

Cell 10% virtual coordinate units high, aspect ratio 2 (short
and fat).

2-15

2-16 Miscellaneous Graphics Concepts

Setting the Label’s Direction

We saw in the last chapter that label could be rotated by using the DGL procedure
SET_TEXT_ROT, which specifies angles in a run/rise format. Many people, however, deal with
angles more easily than run/rise ratios. Again, the angular value is converted to run/rise numbers by
taking the cosine and sine of the angle, respectively:

set_text_rot{cos{Andlelssin(Andle))’

You could define a procedure for which the angle could be specified in degrees, radians, or
grades’, depending on the value of the units parameter, which, being an enumerated type, can
have the value DEG (degrees), RAD (radians), or GRAD (grades):

AndleType= (Deds Rads Grad)?

The value passed in, in the unit of measure defined by the units parameter, must be converted
to radians. Radians are the only units understood by the trigonometric functions in Pascal.
Conversion is accomplished by a simple division. (The division could be changed to a multiply
by the reciprocal. This would increase the speed with little loss of understandability.)

const
Ded_per_rad= 57,295779351315 <{1B0/pi: for converting dedrees to radians}
Grad_per.rad= B3,6619772368B% {200/pi: for converting drads to radians}

case Units of

Ded: Direction:=Direction/Ded_per_radi {dedrees to radians}
Rad: 3§ {correct units alreadv}
Grad: Direction:=Direction/Grad.prer_rad} {drads to radians}
endi {casel}
set_text_rot(cos(CharTheta)ssin(CharTheta))s {invoKe the new text directionl)

For example, assuming you call the routine LatelDirection, and that there is a constant called
“Pi”” which has a value of 3.1415926535897:

LabelDirection(0,Ded) Writes label horizontally to the right.
LabelDirection(Pi/2/RAD) Writes label vertically, ascending.
LabelDirection(14+Grad)} Writes label ascending a gentle slope, up and right.
LatelDirection(PisRad); Writes label upside down.
LabelDirection(270,DEG)] Writes label vertically, descending.

1 One revolution = 360° = 27 radians = 400 grades.

Miscellaneous Graphics Concepts

Here is a plot demonstrating the specification of a label’s direction by a genuine angle:

(™
o
o o o
o o % 0 4 2,
6 % ° T3 o 4
P % SSQ ¥ o
N e ~8008g > 9o
6 ° & @aamm/\Q’@@ 2%
% 0, NN/ o0 ee?
& o7 A\ TP
Sp , \\\\\\\\\”////////’b ae9
Ve
Bsp eS{::QQNHW;9¢21ﬁQ ded
(= P NN iy
Bsp @ol-_-==S@QS==I-"8 deg
—_—— %\Q\“—g
V=~ T22INSS S~ "35ae 4
gapP @8 /’iC/WM“QC\\Qq eg
YIRS
4 ®\2@////yll\\\\\\{§39 g
11 \
69? ®®¢b¢///|\ k@db © S
° O VpynN S S <,
2 u U N
%) [m\lm@ (e fs4
o2 Oyggo (N
o R % ©
2 Q [P\ Y
e o 2 g PR
@ J 8 g e
L)
program LdirProds {prodram name same as file name’
import dgl_lib} {access the necessary pProcedures’}
const
Crt= 313 {device address of grarhics raster’
Control= 03 {device control word} idnored for CRT}
type
AndTyre= (DedsRadsGrad) i {used by procedure LabkelDirection?}
var
Error: intederi {displav_.init return variabled 0 =
I+J: inteders {loop control variable and spare}
Strnd: stringl5013 {strind to labell}
CharTheta: reali {global variable for label direction}

Fraded {REEEFAREEFNERENEXXERXERERREER R LR AR AR RERF AR RLKEEEEEEREEREREERERERRERR %)

procedure LabelDirection(Direction: reali Units: AngTyepe)i

{ This procedure is used in condunction with LabtelOridginy CharSize and
{ Glabel, It sets the labelling direction to be used, and Places the
{ direction into a global variable so Glabel can use it.

const
Ded_per_rad= 57,295779513135 A{18B0/pi: for converting dedrees to radians’
Grad.per.rad= B3.686187723683% {200/pi: for converting drads to radians}
bedin {procedure "LabelDirection"}
case Units of
Ded: Direction:=Direction/Ded_rer_rads {dedrees to radians}
Rad: 3 {correct units alreadv}
Grad: Direction:=Direction/Grad_rer_radi {drads to radians?}
endi {casel
CharTheta:=Directions’ {put into a dlobal variable}

set.text_rot{cos{(CharTheta)ssin{CharTheta))i {invoke the new text directfon}

end i {procedure "LabelDirection"}

2-17

2-18 Miscellaneous Graphics Concepts

$Padged (I RERERERXERERREREERRXRRREERRRREE RN FEERRRR RN R AR R RRRR R RRRERRRRERH)

bedin {body of Pprodram "LdirProg"}
grarhics.initi {initialize drarhics librarv}
displav_init(CrtsControlsError)i {initialize CRT}
if Error=0 then bedin {if no error occurred,.,?
set_aspect(511,3898)3 {use the whole screen’}
set.window(-1,1s-14+1)1 {define arpropriate window?
set.char_size(0,05,0,08)1 {set the size for the characters}
for I:=0 to 35 do bedin {every ten dedrees}
Strndi='"j {emPty the string}
strwrite(strngs1»J,I%10:0)3 {convert the loop variable to dedrees}
Strngs=’ceccan- ‘+8trng+’ ded’ {attach prefix and suffix}
LabelDirection(I*10,Ded}; {specify label direction}
move (0,0) 1 {move to the center of the screen}
dtext(Strng); {label the text}

endy {for I}
endi {Error=07}
drarhics_termi {terminate drarhics librarv}
end., {prodgram "LdirProg"}

When a character size is selected whether through the DGL routine SET_CHAR_SIZE or
through the utility routine CHARSIZE, the width and height associated with a character cell are
defined for an unrotated character cell. Thus, when a character is rotated, its shape does not
change, even though its width (measured along the X axis) and height (measured along the Y
axis) are not the same directions as the display device’s axes.

In the preceding plot, you may have noticed that the hyphens do not precisely meet in the
middle. This brings up another point: when you move to a point and then write a label, which
part of the label ends up at that point? In other words, how is the label justified?

Justifying Labels

On a label written by the GTEXT procedure, the label is always justified at the lower left-hand
corner of the label. Unfortunately, this does not lend itself to centering text, which is often a
very desirable thing. It would be nice if we could programmatically select how the label should
be justified. For the progressive example we were working on in the last chapter, the main title
needed to be as far toward the top of the graph as it can be, and at the same time, centered
horizontally. The following addresses just this kind of need.

For horizontal centering, there are three possible choices: left-justified, centered, and right-
justified. For vertical centering, there are also three choices: bottom-justified, centered, and
top-justified. Thus, there are nine possible combinations of values which can be sent to the
LABELJUSTIFY routine: left, centered, and right for the X direction, and for each of these,
bottom, centered, and top for the Y direction.

Assume there are two enumerated types declared:

HJustifyTyre=(LeftsHCentered sRight)}
YdustifyTryre=(BottomsYCentered Tor) 3

Miscellaneous Graphics Concepts

Label justification is relative to the label, not the plotting surface, and it is independent of the
current label direction. For example, if you have specified:

® upper left label justification,
e and label direction of 90°,
® a move to point (6,8),

and then write the label, it is written going straight up, not horizontally:

L

U

T

F

| £

L Left 0 Bac_)
ower Le > 5 £
Corner —> 2 S
e “k\\\égo

Therefore, it is the upper left corner of the label which is at point 6,8 relative to the rotated label.
However, it is the lower left corner of the label which is at 6,8 relative to the plotting device
because the label has been rotated.

Note that two things are obtained by calls to the INQ_WS procedure: the current pen position,
and the current character size (in world coordinates).

If you are going to use the label justification scheme just described, you will need to write your
own labelling routine which takes into account the current justification values. Label justifica-
tion gets a little tricky when dealing with user-definable label direction, as you can see in the
section of code below.

The following three global variables are assumed to exist:

e HJustification: The currently-defined horizontal justification. This is of the previously-
mentioned type HJustifrTrre.

e vJustification: The currently-defined vertical justification. This is of the previously-
mentioned type HustifrTvre.

® CharTheta: This real variable is the current label direction, expressed in radians. We need to

keep this in a global variable because there is no operation selector we can send to
INQ_WS to determine it.

const
CharSizeCode= 2304 {mnemonic better than madic number?
CurrentPosition= 2393 {ditto?}
tvre
Positions= (Hs¥) 3
PositionTypes= array [Positions] of reali
CharAttributes= (WidthsHeidhth) 3

CharAttrTyre= array [CharAttributesl of reals

2-19

2-20

Miscellaneous Graphics Concepts

{lendth and heidht of character string’}

{for rectandgular-to-polar conversion’}

var
Chars: intederi
Charsize: CharAttrTrres
LensHeidght: reals
DxsDv: real’
RiTheta: reals
Pac: packed array [1.,41] of char} {
Iarrav: array [1++1] of inteders {
Position: PositionTvpPes {
Error: inteders {

ina_ws(CharSizeCodes0s0s2+PacslarraysCharsizesError)i
if Error<>0 then writeln(‘Error’sError:0,y’ in

Chars:=strlen(text)’

Lens=CharsizelWidthl*(7%Chars+2%(Chars-1))/93

Heidht:=CharsizelHeighthl*B/15}
Dx:=Len#*(-ord(HJustification)/2)3
Dy:=Height*(-ord(VJustification)/2)3
Ri=sart{Dx*Dx+Dv%Dv)}
Theta:=Atan(DyDx) 3
Theta:=Theta+CharThetai
Dxs=R*¥cos(Theta)}

Dv:=R*sin{(Theta)}

if Error=0 then begin

move(Position[X1+DxsPositionCY¥I+Dyv)3

dtext{text)s
end {Error=07}

"Glabel™, ')}

These are the
sundry items
needed for the
call to "ina_ws'

{det pen pPosition}

{lendth minus inter-char dar}
{heidht minus inter-line dar}

{ \ Convert to Polar coordinates so

{ / rotation is easv.

{add the LabelDirection anglel}
{ \ Convert R and the new Theta back }
{ / to rectangular coodinates,
ina_ws(CurrentPositions0+042+PacslarraysPositionsError)s

{det pPen

{move to the new startind Point}

else writeln(’Error’sError:0y’ in "Glabel",’)3

And here is a program using all the label-related algorithms mentioned above.

((—)
LEFT HCENTERED RIGHT
ToP TEST TEST TEST
VCENTERED TEST TBET TESTK
BOTTOM JEST TEST TEST
\.

}
}
}
}

}
}

}

position}

prodram JustProd{output)i
import dgl_libsdgl_ings

const
CrtAddr= 33
ControlWord= 03.
tvpe

HdustifyTypes=
YdustifyTypes=

AndType= {DedgsRadsGrad) s

Str235= string[255133
var

ErrorReturn: inteders

Hiusts HlustifvTrprel

Viusts YdustifyTyred

I: inteder?

Strng: str2591

CharWidths:CharHeight: real?

HJustification: HdustifyTyres
Ylustification: YdustifyTyred
CharTheta: reals

$include ‘DGLPRG:Conuvltol’$

Miscellaneous Graphics Concepts

{det drarhics routines}

{address of internal CRT}
{device controls O for CRT}

(LeftsHCenteredsRight)i {horizontal Justification?}
(BottomsYCenteredsTor)i {vertical Justificationl}

“LabelDirection"}
"Glabel"}

{used by procedure
{for the procedure

{variable for initialization outcomel
{horizontal Justification variablel}
{vertical Justification variable}
{for the strwrite statement}
{labelled text holder}

{ \ These are dlobal variables

{ \ needed by the LabelJustify/

{ / LabelDirection/CharS8ize

{ / series of Procedures,

{needed by procedure "CharSize"}

o e e

Procedures Frame, CharSize, LabelDirection, LakelJustify,

Atan, and Glatel go here.

begin
drarhics_.inits

displary_init(CrtAddrsControlWord,ErrorReturn)i

if ErrorReturn=0 then bedin
set_aspect{311,388);
set.mwindow(-142:54-0,592,5)1
Framei
CharSize(0,03+0.6)1
LabelDirection(0sDeq) i

Labels at the top

Labeldustify (HCentered Tor) s

for Hiusts=Left to Ridht do bedin
Strng:='"3
strwrite(Strndsl I Hiust) s
movef{ord(Hdust)»2,4)3
Glabel(Strng);

endi {for Hiust}

lLabels on the left edde

Labeldustifr(Left YCentered);

for Viusti=Tor downto Bottom do bedin
Strngi='"3
strurite(Strng 11 Viust) s
move(-0,9s0rd(Viust))i
Glabel(Strng)3

endd {for Viust}

{body of prodram "JustProg"}
{initialize the grarhics system}
{which outrPut device?}

{output device initialization OK?}
{use the whole screen}

{scale the window for the data}

{draw a frame around the screen’
{width=3% screen widthi ase, ratio=.G6}
{horizontal labtels?
{label’s reference Point: torp middle}
{horizontal loor}

{null the strind so nothingd left over}
{convert enumerated tyrPe to string}
{move to the arPropriate rPlacel}

{label the string}

{label’s reference Point: left middle}
{vertical loor}

{null the string so nothing left over?
{convert enumerated tvpe to string}
{move to the arpropriate place}

{label the string}

221

2-22 Miscellaneous Graphics Concepts

{===== L abels ("TEST") with different Justifications ==s=ss==s=z==z=zszz====z=z==3}

CharSize(0,0B6+0.6)3 {characters a bit bigder}

for Hiust:i=Left to Right do bedin {horizontal loor}

for Yjust:=Top downto Bottom do bedin {fuertical loor}

LabelJustify(Hiust sWiust)i {set label Justification}
move(ord(Hiust)+0,03,0rd(Viust)+0,03)1 {\) }
line(ord(Hiust)-0,03s0rd(Viust)-0,03)3 { \ Make the "x" at }
move(ord (Hiust)-0,03s0rd(Viust)+0,03)3 { / the appropriate }
line(ord(Hiust)+0,03 0rd(Viust)-0.03)3 {/ rplace, b
move{ord(Hdust) rord{Viust))i {move to label’s startingd Position}
Glabel ('TEST)} {label the text}

endi {for Viust}
endi {for Hdiust?}
end’ {ErrorReturn=07}
drarhics-terms {terminate the drarhics rpackadel}
end, {program "JustProg"}

The Xxs indicate where the pen was moved to before labelling the word “TEST”. What this
diagram means is that, for example, if LabelJustify(Left Bottom) is in effect, and you move to
45 to write a label, the lower left of that label would be at 4,5. This automatically compensates
for the character size, label direction, and label length. It makes no difference whether there is
an odd or even number of characters in the label. If LatelJustify(CentersTor) had been in
effect, and you had moved to 4,5, the center of the top edge of the label would be at 4,5. You
can readily see how useful this concept is in centering labels, both horizontally and vertically.

Miscellaneous Graphics Concepts

Monochromatic CRT Drawing Modes

On a monochromatic CRT, there are three different drawing modes available®:

® Drawing dominant lines. This is the most obvious drawing mode; pixels are turned on. It is
the mode the graphics package is in by default. White lines are drawn on a dark back-
ground, and dark lines are drawn on a white background.

® Erasing lines. In this mode, pixels are turned off. If a line is erased on a background which
is already dark, there is no effect. This is the method for making sure a line is gone after it
may or may not have been drawn.

® Complementing lines. When this type of line is drawn, pixels which are on are turned off,

and pixels which are off are turned on. This is for drawing something which will be visible
no matter what the background is; e.g., a graphics cursor.

The drawing modes are selected by calling the OUTPUT_ESC procedure. This DGL procedure
allows you to control device-dependencies of output devices. The operation selector which
controls drawing modes is 1052. Following is an algorithm which takes care of all the necessary
variables, declarations, and all-around ‘‘housekeeping’’ involved in selecting a drawing mode.
This implementation of the algorithm assumes the existence of the following type declaration:

DrawingModeType= (DominantErasesComplement)s

Here is the section of code for selecting drawing modes on a monochromatic CRT:

const
SetDrawingMode= 10323 {mnemonic better than madic number}
var
DrawMode: array [1+41] of intederi {\ This is all stuff that 1}
Rarray: array [1+,+1] of reals { * is needed by the }
Error: inteders {7/ "output_esc" procedure, ¥
L]
.
case Mode of {\ ¥
Erase: DrawModel[1]:=2% { A\ Convert DrawindgMode enumerated 1}
Dominant: DrawModel[11:=03 { » tryepe into the appPropriate '
Complement: DrawMode[11:=33 { / value for QOUTPUT.ESC procedure. »
endi {casel} {7/ b
outPput_esc(SetDrawindgMode +1+0sDrawModesRarraysError); {set it}

if Error{>0 then writeln(’Error “sError:0,’ in procedure "DrawindMode",’)]

A characteristic of drawing with drawing mode Dominant or drawing mode Erase is that if a
line crosses a previously-drawn line, the intersection will be the same ‘“‘color’ as the lines
themselves. When drawing with drawing mode Conrlement, and a line crosses a previously-
drawn line, the intersection becomes the opposite state of the lines. In other words, the pixels
being defined by the line being drawn are exclusively-ORed with the pixels already on the
screen. For example, assume a black background (like right after calling CLEAR_DISPLAY?).

1 There are actually four drawing modes that you can select; however, two of them, dominant and non-dominant, are identical on
monochromatic displays. See the section called Writing Modes and Color in the Color Graphics chapter for a description of using non-
dominant mode on color displays.

2 Thereisa way to clear the screen to white, also. Set entry number 0 in the color table (use the SET_.COLOR_TABLE procedure) to anything
which has a luminosity greater than 0.5.

2-23

2-24

Miscellaneous Graphics Concepts

You invoke a drawing mode Comrlement, then draw a pair of intersecting lines. When the first
line is drawn, all pixels are off, so the line being drawn causes all pixels to be turned on along its
length. However, when the second line is drawn, it will turn on pixels until it intersects the first
line. At that point, the pixel is on, so it gets turned off. After that, the rest of the pixels are off, so
they are again turned on. :

This concept is illustrated by the program DrawMdPrg (found on file “DrawMdPrg” on the
DGLPRG: or DOC: disc). The listing is given in the appendix so you can see how it works, but
since it is a dynamic display, and constantly changing, it makes little sense to show a snapshot of
it. The first statement of the main program(DrawMode:=Dominant i) defines the type of operation
the program will exhibit. If DrawMode equals Complement, all lines will complement, because the
two lines in the infinite loop (the while true loop) which select drawing modes only modify the
drawing mode if it is Dominant or Erase. Otherwise, the drawing mode is not changed. When
you wish to change the program to the drawing/erasing mode, change the first statement of
the main program to say DrawMode:=Dominant$. Then the two drawing-mode-selecting lines will
select drawing modes Erase and Dominant, respectively.

In complementing mode, a pixel is on only if it has been acted upon by an odd number of line
segments.

Faster Drawing Procedures

In the previous section, CRT Drawing Modes, the routines INT_MOVE and INT_LINE were used
for moving and drawing, rather than the MOVE and LINE procedures used previously. The reason
for the existence of these routines is that they exhibit higher execution speed. This increase in speed
is obtained because the procedures do integer arithmetic, which is much faster than real arithmetic.
The only restriction on parameters is that they must be 16-bit signed integers; that is, a subrange of
INTEGER whose range is —32 768 through 32 767. There is a TYPE defined in the module
DGL-TYPES called GSHORTINT which is this subrange of INTEGER.

Depending on the application, they may be up to three times faster than their counterparts
which deal with real numbers. However, the increase in speed will only take place if the
following three conditions are met:

® The display must be a raster device;
® The window bounds must be within the range of —32 768 through 32 767; and
® The window must be less than 32 767 units wide and high.

There are some more INT- routines available also. They are identical to the same routines
without the INT_ at the beginning of their names except for the restriction mentioned above.

MOVE — INT_MOVE

LINE — INT_LINE
POLYGON — INT_POLYGON
POLYGON_DEV_DEP — INT_POLYGON_DD
POLYLINE — INT_POLYLINE

Miscellaneous Graphics Concepts

Selecting Line Styles

When a graph is attempting to convey several different kinds of information, colors are often
used: the red curve signifies one thing, the blue curve signifies another thing, etc. But when only
one color is available, as on a monochromatic CRT, this method cannot be used. Something
that can be used, however, is different line styles. Even on a monochrome CRT, it makes sense
to say that the solid line signifies one thing, the dotted line signifies another thing, and the
dashed line signifies still another.

The DGL procedure SET_LINE_STYLE is used to select from the available line styles. The single
argument is an integer whose value is 1 through the number of line styles supported on the device
currently being used. If using an HP-GL plotter, look under the LT (Line Type) instruction to
determine how many line styles are supported.

The CRT supports eight line styles:

As you can see, line style 1 draws a solid line. Line styles 2 through 8 are patterned sequences
of on and off. For all line styles, the computer remembers where in the pattern a line segment
ended. Therefore, when you start drawing another line segment, the line pattern will continue
from where it left off. If you want the pattern to start over, just re-execute the line style
procedure.

2-25

2-26 Miscellaneous Graphics Concepts

Plotters also have different line stylés to select from. For example, the following line styles are
available on the HP 9872 and HP 7470 plotters.

HP 9872 and 7470 Line Styles

As another example, the HP 7580 and HP 7585 plotters have two different ways of plotting most of
their line styles: continuous and vector-adjusted. Lines drawn with a continuous line style are drawn
such that every line segment drawn continues the pattern from where the previous segment left off.
If a line segment is short enough and the next section of the pattern is the space between marks,
there may be nothing at all drawn for a particular line segment. Vector-adjusted lines are forced to
have the middle of the main drawn section at each endpoint of the line segment. See the line
segments below.

g e
"
ST T T T T T T T T T VECTOR ADJUSTED
g = S —— | ' |
%rr:jrrrrrrrr: M_m
CONTINUOUS

HP 7580 and 7585 Line Styles

Miscellaneous Graphics Concepts

Isotropic Scaling

It was mentioned in the last chapter that there were two different types of scaling: isotropic and
anisotropic. Isotropic scaling means that one unit in the X direction is equal in length to one
unit in the Y direction. Anisotropic means that one unit in the X direction does not necessarily
equal one unit in the Y direction.

We dealt with anisotropic scaling in the last chapter by calling the DGL procedure SET_
WINDOW. For the task we were working on at that time, anisotropic scaling was the best
choice. However, when drawing a picture of an object, or drawing a map, it is desirable to
have isotropic scaling, so the representation of the object is not distorted.

There is a way to cause isotropic scaling to be invoked. First, comparisons of the aspect ratios of
the viewport limits and the window limits must be made. Then some extra room is allowed in
either the X direction or the Y direction (but not both). The amount of extra room is just the
precise amount to cause the requested window to be isotropically scaled into the viewport.

Following is the listing of an algorithm to set a window isotropically.

const
YiewportLimits= 4513 {mremonic better than madic number}
tvpre
LimitOrder= (UxminsVxmax VyminVrmax) i
LimitTvpe= array [LimitOrder] of reali
var
Pac: packed array [1+..1] of charj { \ +vssundry variables ¥
Tarrav: array [1,+1] of inteders { \ needed by the "ina.ws" }
YiewPort: LimitTyres { / procedures called to get 1}
Error: inteders { / window limits, }
Wxrandes Wrrande: reals {X/Y rande in window (world) coordinates}
Uxrandey Vrrande: reali {X/Y rande in viewport (virtual) coordinates?}
Wratios Vratio: reali {aspect ratios of window and viewPort}
Wxmids Wymid: reals {X/Y midroints of window}
WYratios» VMWratio: real s {ratios of the ratios?’
Multiplier: real ’ {the amount to multiply the semirande by}

*
ina.ws(ViewportLimits+0s0s4PacslarraysViewportsError)i {det viewport limits?
if Error<>0 then
writeln{(’Errar ‘+Error:0,/ in procedure "Show".’}}

Wxrandet=Wxmax-Wxmini {rande of ¥ in desired window}
Wyrandes=Wymax-Wymins {rande of ¥ in desired window}
Wratio:=Wxrange/Wyrandes’ {aspect ratio of desired window}
Uxrandes=Viewport[Vxmaxl-Viewport[Vxminl} {range of X in current viewport}
Uyrandes=UiewportiVymaxl-Viewport[Vyminlsi {range of Y in current viewPort}
Yratio:=Uxrandge/Vyrandgej {aspect ratio of viewport?}
if abs{(VYratio)<abs(Wratio) then bedin {need more room on top and bottom?}
Wymidi=Wymin+Wyrande*0,353 {Y midpoint in desired window}
WYratios=abs{Wratio/Vratio)s {ratio of aspect ratios}
Multipliers=Wyrange*Q,3%WVratio} {what the Y randge must be extended by}
Wymini=Wymid-Multirlier} {new minimum ¥ for window}
Wymaxi=Wymid+Multipliers {new maximum ¥ for window?’

end

2-27

2-28 Miscellaneous Graphics Concepts

else bedin {need more room on rigdht and left}
Wxmidi=Wxmin+tlxrande*0,33 {¥ midpoint in desired window}
Yhratio:=abs(Yratio/Wratio)s {ratio of asrpect ratios?
Multiplier:=Wxrande*Q,3%Ulratios {what the X rande must be extended by}
Wxmines=Wxmid-Multirliers {new minimum X for window}
Wxmaxs=Wxmid+Multirliersi {new maximum X for window?

endy {vratio<wratio?}

set_window{Wxmin sWxmax sWyminWymax) i {set window with twiddled Parameters}

Following are two example outputs from the program “IsoProg” (found on a file of the same
name on the DGLPRG: or DOC: disc) which demonstrates the isotropic scaling routine. The
user is asked to specify Xmin, Xmax, Ymin, and Ymax for the isotropic units. The specified
area is mapped into the viewport area isotropically, adding extra space to either the X or Y
direction, whichever is needed. There is a dotted-line frame around the screen limits, and the
requested limits are shown in a solid-line grid. The space added is outside the solid-line grid.
In both cases, the whole screen was used for the viewport.

In the first example, the requested values were 0 to 6 in X, and 0 to 8in Y. Since the aspect ratio
of this window is less than the aspect ratio of the viewport, some extra room is needed in the X
direction, as shown.

—_—_———— e — — — — —

. N

Miscellaneous Graphics Concepts 2-29

In the next example, the requested values were 0 to 7 in X, and 0 to 4 in Y. Since the aspect
ratio of this window is greater than the aspect ratio of the viewport, some extra room is needed
in the Y direction, as shown.

The program that produced the two preceding outputs is listed in the appendix.

2-30 Miscellaneous Graphics Concepts

Axes and Grids

For many data-display graphs, axes along the edges are sufficient to get the message across.
But if your graph needs to be read with more precision than axes afford, you can use a grid. A
grid is a logical extension to axes, with some differences. The differences are:

® The major tick marks extend all the way across the clip limits, and

e The minor tick marks intersect in small crosses over the entire surface of the soft clip limits.

There is a program called “AxesGrid” on the DGLPRG: or DOC: disc which will help you
understand how to write your own grid-drawing routine. It is similar to the axis procedures,
except for the two differences noted above: the major ticks extend across the entire soft clip
area (it calls CLIPDRAW), and the minor ticks for X and Y intersect in little crosses between
the grid lines.

The following program shows the differences between:

® a pair of axes by themselves,

® a sparse grid,

® a dense grid, and

® a sparse grid with two pair of axes.

L ' e

Note that some care must be taken to ensure that the minor tick marks in a grid are smaller than
the distance between them. If they are not, the minor tick crosses drawn by the grid procedure
would have overlapped. The end result would have been a grid with even the minor ticks
extending all the way across the soft clip area.

Miscellaneous Graphics Concepts

As the lower left graph shows, there is a way to get the best of both worlds—accurate interpola-
tion and lack of clutter. If you want to be able to estimate the data values very accurately from
the finished plot, but also want to prevent the plot from appearing too ‘‘busy’’, or cluttered, it
can be done. The grid drawn has somewhat sparse major tick marks, but very many minor tick
marks. The point of interest is that the minor tick length parameter is reduced to virtually zero.
This causes the tick crosses (the little plus signs) to be reduced to mere dots. Using this strategy
allows easy interpolation of data points (to the same accuracy as typically used in axes), but
does not clutter the graph nearly as much as normal ticks would. In fact, had we used the
previous minor tick length, the length of the lines making up the tick crosses would have been
greater than the distance between the ticks. Thus, they would have merged together to make
solid lines, extending all the way across the graph. This would greatly clutter the graph.

Be aware when using this strategy of making huge numbers of degenerate tick crosses that the
computer still thinks of them as crosses, which means that both the horizontal and vertical
components must be drawn. This looks to you like drawing and then redrawing each dot.
Therefore, when sending this type of grid to a hard-copy plotter, do not be averse to starting
your plot, and then going on vacation.

In the lower right quarter of the plot, there is another way to reach a compromise between ease
of interpolation and lack of clutter. Axes are used on all four edges, and a sparse grid is drawn
with major tick marks every second of the axes’ major tick marks.

Note that two pairs of axes were drawn. The parameters are identical save for the position of the
intersection. The first pair of axes intersect at the lower left corner of the soft clip area. The
second pair of axes intersect at the upper right corner of the soft clip area.

Also note that when a grid is drawn, the frame around the window can usually be removed
(depending on the Major Tick Count); the lines around the soft clip limits were being drawn by
grid procedure anyway.

All of the above have advantages; there is no one approach which is always best. On many
occasions, an application is defined such that there is no question as to which procedure to use.
Other times, however, it is not such a cut-and-dried situation and you want to weigh the
alternatives carefully before setting your program in concrete. To aid you in the decision, here
are some pros and cons to the approaches above.

Advantages to axes:
® Axes execute much faster than grids. This is for two reasons. First, there is much less
calculating the computer must do, and second (and more important), there is much less
actual drawing of lines the computer must do. This becomes especially evident when
sending a plot to a hard-copy plotting device where physical pen must be hauled around.

® |t does not clutter the plot as much. Reference points are available at the axes, but there is
no question about where the data curve is. When using a grid, it is possible to lose the data
curve among the reference lines if it is close to being horizontal or vertical.

2-31

2-32 Miscellaneous Graphics Concepts

Advantages to grids:
® Interpolation and estimation are much more accurate due to the great number of reference
ticks and lines; one need not estimate horizontal and vertical lines to refer back to the axis
labels.

® Usually there is no need to explicitly draw a frame around the grid area to completely
enclose the soft clip limits, as is often desired, because the major tick marks from the GRID
procedure would probably redraw the lines. Of course, this is dependent upon the Major
Tick count.

Logarithmic Plotting

In many fields, there are ranges of valid values which are so large that not only is isotropic
scaling out of the question, but any kind of linear scaling—even anisotropic—is virtually use-
less. To successfully depict these kinds of data, one or both of the axes can be logarithmic
scales; that is, the data points themselves are not plotted, but the logarithm of each data point is
plotted. For example:

¢ In seismology, earthquake intensity is measured in the logarithmic Richter scale.

® [n acoustics, both sound intensity (decibels) and frequency (octaves) are dealt with in
logarithmic scales.

® In astronomy, a Hertzsprung-Russell diagram graphs both the luminosities and surface
temperatures of stars logarithmically.

® Also in astronomy, black-body radiation curves are plotted logarithmically.

For logarithmic plots, logarithms (from here on referred to as logs) to the base 10 are most often
used'.

Homemade Mathematical Functions

To deal with logs, we need to write two mathematical routines which are not provided in the
language.

Taking a Number to a Power
First, we need to be able to exponentiate—take an arbitrary number to an arbitrary power. We
can use an identity function of logarithms to do this:

XY = @Y In (%)

This is easily done since Pascal does have functions to return the log and antilog® in the
Napierian® base e. The function to return the natural log is LN, and the function for returning the
natural antilog—e to a power— is EXP.

1An exception to this is the frequency example in acoustics mentioned above, in which octaves deal with powers of two.

2 The log;, 1000 = 3 because 10 = 1000. The antilog;q 3 = 1000 because 103 = 1000.
3 The Napierian base e is the base of natural logarithms. Its value is 1/0! + 1/1! +1/2! + 1/3! + 1/4!... and equals approximately 2.718 281 828.

Miscellaneous Graphics Concepts

The Logarithm to Any Base ,

The next function is slightly more complex. We needed a function to calculate the common
logarithm (log to the base 10). We used another identity function of logarithms which allows
one to calculate the log of any positive number to any positive base not equal to 1—even

fractional ones. We used a special case of this to calculate the common logarithm, or log to the
base 10:

y = In(x)/In(b)

Since this allows us to calculate the log of any (positive) number to any (positive) base not equal
to 1, we will define the base to be 10. Now we can deal with common logarithms.

Back to Logarithmic Axes...

When you are doing logarithmic axes using logs to the base 10, you need to specify the minimum
and maximum in decades. For example, say you want to make logarithmic axes from 0.01 to 1000.
This is 1072 to 10°, therefore, the will be five decades represented. To draw a logarithmic X axis:

for Decade:=-2 to 3 do bedin
if Decade<3 then UnitMax:=9
else UnitMax:=13
for Units:=1 to UnitMax do bedin
Hi=Decade+Lodgi0(Units)i
move (X ¥min) s
draw(X¥Ymax)i
endi {for Units}
endi {for Decade?}

The statement starting “‘if Decade<<3”’ is there because we want the units to go from 1 to 9' for
every decade except the last one, for which we only want the integral power of ten.

1 Each decade goes from 1 to 9, not from 1 to 10, because 10 will be covered by the first iteration on the next decade.

2-33

2-34 Miscellaneous Graphics Concepts

Following is a short program (found on file “LogPlot” on the DGLPRG: or DOC: disc) which
draws logarithmic grid, and plots a curve on it. A logarithmic grid is merely a logarithmic axis
with long tick marks.

(')

_ J

prodram LodPlot(Kevboardsoutput)s
import dgl_libk3i

const
Amin= -4% {\ }
Kmax= 21 { \ Decade minima ¥
Ymin= 03 { / and maxima, }
Ymax= 33 {7/ }
Crt= 33 {device address of drarhics raster}
Control= 03 {device control wordi ignored for CRT}
tyre
RDataTyres= array [1+,15] of reali
const
Rualues= RDataTyrel0.,0003, 0,0008, 0,004, 0,008, 0,01y 0,07y 0,22+ 0.5,
1.2+ 2.6+ B,9, 18,6+ 34, 36+ 9713
Yvalues= RDataTvpell.1+ 4.5y 13,38 45,9, 60,33+ 130.,7 346, GY0. 4,
899, 933, 903y 8414 720, 305y 39011
var
Error: inteders {displav.init return variabled 0 = ok}
Decade: inteders
Unitss UpperLimit: intedersi
Ky Y reals

I: intederi

Miscellaneous Graphics Concepts

$Paged (R FRRERRRRERRRERRRRRRR RN RN RERR RN RN AR RN R RN SRR RR AR RN ERRR)
function Log10(¥: real): reals

o m e e e e e e e e e e et e e }
{ This function returns the logdarithm to the base ten of a number, }
R LT T T L L T }
const

Log_10= 2,302585082993 {109 to the base e of 10}
bedin {function "LogiQ"}
Logl0:=In(X)/Log. 103
end}’ {function "LoglO"}
GPaged [EEEEEREEFERE R R AR RN RN R RN LR R R R AR R RN R AR AR R RN R AR RN RRRRRRRRR D
bedin {body of Pprodram "LogPlot"}
drarhics.init] {initialize the drarhics system}

displav_init(CrtsControlsError)i
if Error=0 then bedin
set.aspect(311,389)3
set_window(Xmin»¥max +¥Ymins¥max)i
{===== Draw and label lodarithmic X-axis drid ==z==z=z=z=z=zz=z=zzz=z=z=z=z=zz=zz=zzz=zzzz=z}
for Decade:=Xmin to Xmax do bedin {one decade equals one mantissa cvclel}
if Decade=Xmax then UpperLimit:=1l
else Upperlimit:=93
for Units:i=1 to UerperLimit do bedin {do 2-9 if not last cvcle}
Ki=Decade+Lodg10(Units) 3
move{X»¥min)i
line(X¥max)i
endi {for units}
ends {for decadel
{=z=z=== Draw and label logarithmic Y-axis drid ==s==z=zzzzzzzzozzmzczzzzzzzezzz)}
for Decade:=Ymin to Ymax do btedin {one decade equals one mantissa cveclel}
if Decade=Ymax then UpperLimit:=1
else UpperLimit:=814
for Units:=1 to UrperLimit do bedin {do 2-9 if not last cveclel}
Yi=Decade+Lodgl0(Units)}
move(Xmin,Y)3
line(XmaxY)3
endi {for units?}
endy {for decadel
{====22 Draw the lodarithmic data curve s=s===s==ss=sszssssszss=s=os======zcz=z===:2)}
for I:=1 to 15 do bedin
if I=1 then move(Logl0(XValues[Il)sLogi0(Yvalues[I]))
elese line(LoglO(XValueslI1)sLogl0(Yvalues[I1))i
ends {for i}
endi {Error=07} {end of conditional code?}
dgrarhics.terms {terminate drarhics librarv?}
end. {prodram "LodPlot"}

2-35

2-36 Miscellaneous Graphics Concepts

Storing and Retrieving Images

If a picture on the screen takes a long time to draw, or the image is used often, it may be
advisable to store the image itself — not the commands used to draw the image — in memory
or on a file.

Note

Because the location of the various Series 300 frame buffers may vary,
storing and retrieving images on these models is somewhat more complex
and exceeds the scope of this manual. Therefore, application of the
GSTORE procedure to these is not discussed here.

Image transfer from the graphics memory to a user array can be done by overlaying an array
directly on top of the graphics memory, i.e., forcing the starting address of a user array to be
the same as the starting address of the graphics memory. The user array is also the same size
as the graphics memory. First, you must have an INTEGER array (32-bit integers) of sufficient
size to hold all the data in the graphics raster. This amounts to an array size of 7500! on the
Models 216, 220, and 226; 6240 on the Models 217 and 236. This array holds the picture
itself, and it doesn’t care how the information got to the screen, or in what order the different
parts of the picture were produced.

In the program called “GstorProg” (located on the DGLPRG: or DOC: disc), an image is drawn
with normal plotting commands, and then, after the fact, the image is read from the graphics
area in memory, and placed into the user array, using the procedure GSTORE. After the array
is filled by the GSTORE procedure, a curve is plotted on top of the image already there. Then,
turning the knob changes the value of a parameter, and a different curve results. But we do
not have to replot the grid, axes, and labels. We merely need to copy the data containing the
image (which has everything but the curve and the current parameter value) back into graphics
memory by calling the inverse procedure, GLOAD. This allows the curve to be changed almost
in real time. Note that only the size of the data array must be decreased if this is to work on
a Model 216, 220 or 226. If this is to work on other computers, both the array size must be
increased (because of the increased array size) and it must be accessed dynamically — the HE
statement and pointers.

Note that the $SYSPROG ON$ compiler directive must be in the program. The reason for
this is that we are using the compiler’s ability to force an array to be in a particular area in
memory. We declare an integer array whose location in memory is exactly that of the graphics
raster memory. Thus, when we deal with the array, we are dealing with the graphics memory,
which has the current image in it.

The reason the lower-resolution displays require more memory for image storage than the higher-resolution displays is that the
Models 216, 220, and 226 use only the odd bytes of the words. Thus, only the least significant eight bits of each sixteen-bit word
are used; the most significant eight bits are zeroes.

Miscellaneous Graphics Concepts

To write a program such as this, which stores a graphical image and reloads it, there are several
housekeeping things which must be done. First, you must know where in the physical memory
of the machine the graphics memory resides:

The Graphics Memory Address and the Graphics Memory Size in your machine is dependent
on the model. Find them in the following table.

Model | Address I Size
216/220/226 $530000 7500
217/236 $530000 6240

The addresses are expressed in hexadecimal and the sizes are expressed in 32-bit integers.

After locating the address and size of the graphics memory, two constants must be defined.
The address:

const

GRasterHddr= bt TDIHEEE 1

Then, how large the graphics memory is (the size of the graphics raster is expressed in 32-bit
words):

ConEt

GEasterSizes B24H;

Now, we must declare a type of which the variable being overlaid on the graphics memory will
be:

Type

GRazter Tupe= array [1..GRasterSizel of integer;

Next, overlay a variable directly on top of the graphics memory. The constant in the brackets
immediately after the variable name forces the address of that variable to the specified location
in memory. This can only be done if the $SYSPROG ON$ compiler directive has been
encountered. :

War

GRaster[GRaster Addr It GRaster Tups;

And finally, the user’s variable into which the graphics memory will be placed. Although it is
of the same type as the variable GFz=zt=r above, we will let the machine figure out where to
put it:

Scresn: GRas

ter Tupe;

2-37

2-38 Miscellaneous Graphics Concepts

After all these declaration have been set up, it is a trivial matter to store the graphics image into
the user array:

Gstore{Screen)’

Loading a screen image is just as trivial:

Gload(Screen) i

Again, this program is on file “GstorProg” on the DGLPRG: or DOC: disc, and a listing of the
program is in the appendix. It stores and reloads the graphics image to and from a user array.
Of course, it also defines the necessary support constants, types, and variables for the GLOAD
and GSTORE routines. It draws a blackbody radiation curve for the current temperature.

Note that this program puts into use many of the concepts previously discussed in this chapter:

e Conversion from virtual coordinates to world coordinates;

e Specifying character size with a size in virtual coordinates and an aspect ratio, angular
specification of label direction, and label justification;

e Turning the alpha raster off (nonbit-mapped displays)
® Logarithmic axes and grid;
® Image storage and retrieval.

()
Blackbody Radiation
12® Temperature (K): 1000
c
o 182
-
[
'g 18" L
x N
[N
o 18"
>
2 m
¢ 10°
[
S
12° N
1878 ™
187 187 1072 107! 10° 10! 102 18°
Wavelength (microns)
\ : J

The first time the curve is displayed, it will look like the preceding display. Every time you hit a digit
key, a new curve will be drawn, based on the current value of Temrerature.

Miscellaneous Graphics Concepts

Data-Driven Plotting
Many Lines in One Step

In the cases where the data to be plotted is in arrays, it can plotted in one statement by using the
POLYLINE procedure. The X data must be in one array, and the Y data in another array. Both
arrays must be one-dimensional arrays of reals. Below is a program showing how to plot an X
data array versus a Y data array.

')

_ _J

prodgram PLineProg(output)i
import ddl_libsddl_ing3

const
CrtAddr= 33
ControlWords= 03
tyre
RDataTvpre= array [0,,10] of reals
const
Hvaluesgs= RDataTvrel04+1+2+3+44546+7+8:9,1013%
Yvalues= RDataTyrel 02414434341 1+54+3,:44B13%
var
ErrorReturn: intederi
Ky Y1 RDataTrpresd
FPaged {HEEERERREERRRERERRRR R R R RN R ER AR R RN ER R RN R R RRRRRRRRRRRRR)
bedin {prodgram "PLineProg"}

drarhics.init}
displav_init(CrtAddrsControllWordsErrorReturn)i
if ErrorReturn=0 then bedin
set_aspect(511,:389)3
set_window(0,10,0410)1
move(04+0)3 line(Q,10)3 line(l0+10)3 line(10,0)3 line(040)3
Ki=Xvalues’ Yi=Yvalues)
Polvline(11sXs¥)3
endi {ErrorReturn=07%}
drarhics.term?

end, {program "PLineProg"}

2-39

2-40 Miscellaneous Graphics Concepts

Note that the X data need not be steadily increasing values so as to make a broken-line chart
like above. It could just as easily be used for drawing pictures of objects where both X and Y
vary in an unpredictable way. However, if both X and Y are going to change, you’ll probably
want to be able to control the pen status—you’ll want to lift the pen and drop the pen at will.

Drawing Multi-Line Objects

Often, when plotting data points, they do not form a continuous line like the broken-line charts
we’ve seen before. One must have the ability to control the pen’s status (up or down), to allow
drawing of several different, disconnected parts of an image in one step. For this need, there is a
DGL procedure called POLYGON. The fourth parameter in the POLYGON procedure is the
operation selector, and its function is to tell the computer to draw or not draw a particular line. It
also specifies where individual polygons start.

When plotting an entire array with the polygon statement, the fourth parameter is defined in the
following manner. It must be of type INTEGER. The resultant action for the various operation

selectors are:

Polygon Operation Selectors

Operation Resultant Action
Selector

0 Do not draw the edge extending from the last ver-
tex to this one. '

1 Draw the edge extending from the last vertex to
this vertex.

2 This vertex is the first vertex of a member polygon.

Note

Although the POLYGON procedure heading declares the incoming
arrays to be of type GREAL_LIST or GSHORTINT_LIST, you cannot
declare your own variables this way. Declare your variables as your own
data type: arrays of the appropriate size of reals and short integers
(16-bit integers; i.e., -32768,.,32767). If you import the module
DGL-TYPES, you can use the type GSHORTINT.

Following is a program (file “PolyProg” on DGLPRG: or DOC: disc) which uses the POLYGON
procedure. It draws a LEM (Lunar Excursion Module). The first parameter specifies how many
points there are in the arrays. There are three arrays used: two one-column REAL arrays for
the X and Y data, and a one-column INTEGER array containing opcodes.

Miscellaneous Graphics Concepts

L

J

prodgram PolyProg{output)i

import
dgl_libsddl_tvpessddl_pPolyddl_ingj

const

{Prodram name same as file namel

{access the necessary procedures’)

MaxPoints= 273 {number of epoints in arravs}
Crt= 33 {device address of drarhics raster}
Control= 03 {device control wordi ignored for CRT}
tvre
Reals= array [l..MaxPoints] of reali {to contain X and Y values}
Word= -32768,,327673 {16-bit word}
Intederss= array [1.,Maxrpoints] of Wordi {to contain or, selectors}
const
Kvalues= Realsl 1.5y 2,5y 2.5 1,439-145+-2,54-2:59-1,5+ A{Octadon}
~24¢33 2454 245 1 D1-245 {Box?
-205'-“05,-205! 0=-4,0, {Left leg}
2499 445y 2459 3.0 4,0, {Ridght leg}
~04e39-140y 1,0 0,514 {Nozzle}
Yualues= Realsl 1.0y 2,0 3.0 440y 4404 3404y 240y 1,0y {Octadon}
100 1,04-2,0:-2:0 1,0, {Box}
~2404-4,0y 0,0+-4,04-4,0, {lLeft ledg}
“2009-8.0 0.,0-4,04-4,0), {Right leg}
“2004=3,03-3,0,-2,013 {Nozzle?}
OrCodes= IntedersiZsislslslalslaly {Octadon}
291914141 {Box}
21919201 {Ridght ledg}
291414201 {Left leg}
2914191133 {Nozzle}
var
Error: inteders {display_init return variablei 0 = ok}
I: inteders {loor control variable}
LemX, LemYs: Reals) {s0 we can pass it to "Polvgon"}
OrSelectors: Intedersi {ditto}
Points: intederi {ditto?}

241

2-42 Miscellaneous Graphics Concepts

SPagded L REERERFERRRRERE RN RRRRRRFRRR R RN RRREEREERERRRRRRREXRERFFRRERRRERRER}

bedin {body of Program "PolyProg"}

LemX:=Xvalues} { \ Put into variable arrav so }

LemYi=Yvaluesi { * it can be rassed by }

OpSelectors:=0rCodes? { / reference into the DGL Proc.}

Points:=MaxPointssi {Put constant into an array variable?}

drarhics_init} {initialize 9drarhics library}

display_init(CrtsControlsError)} {initialize CRT}

if Error=0 then bedin {if no error occurred...}
set-aspect(511,389)3 {use the whole screen
set_window(-13+13+-104+10)1 {invoke isotroric units?t
polydon(Points:LemX+Lem¥Y 0rBelectors)i {draw the lines}

endi {Error=07} {end of conditional code}

drarhics_terms {terminate drarhics librarv?}

end, {prodram "PolvProg"} {end of prodgram}

What’s in a Polygon?

That's a good question, and brings up the crucial difference between POLYGON and
POLYGON_DEV_DEP (as well as the INT versions of the same). The key to understanding the
two classes of polygon is the concept of device independence. Polygons generated by proce-
dures that lack the DEV_DEP (or DD) suffix are device independent, and will always be filled,
with as close to the fill specified by the polygon table (lines or crosshatched lines at some
specified density) as the device they are being drawn on is capable of producing. Thus the lines
used for a fill on a CRT may have visible jaggies, and the lines used on a 7580 plotter will not,
but both of them will produce polygons filled with lines.

So what happens with POLYGON_DEV_DEP? The “DEV_DEP” calls specify a device depen-
dent polygon. The fastest, most appropriate fill possible on the device is used to fill a polygon.
On the CRT, this is a dithered area fill (dithering is discussed in detail in the “‘Color” chapter).
On the plotter, the edge is drawn with the current line color attribute if edge is specifed in the
operation selector array and enabled in the polygon table. If the polygon edge attribute is false
and the operation selector edge attribute is true, the polygon edge is drawn with the current
polygon interior color attribute and polygon linestyle. It is worth noting that in this case, if the
current polygon interior color attribute is set to O (the background in the color table), the
polygon will not be visible.

When to Use Which Polygon?

Why are there two polygon fills? The two polygon calls address different valuable characteristics
of the system. The POLYGON call tries to give a consistent representation, regardless of what
display device is being used. The POLYGON_DEV_DEDP calls are faster. You give up consisten-
cy by using the device dependent calls, as well as control of drawing mode (all device depen-
dent polygons are drawn in the dominant writing mode). The choice is yours; if you want speed
or control of drawing mode, use the device dependent calls—if you want consistant presenta-
tion of the image and/or control of the drawing mode, use the device independent call.

Miscellaneous Graphics Concepts

Polygon Filling

When drawing a polygon, whether it is filled or not is an attribute of the polygon. The filling
attribute itself has other attributes; namely, method (dithered/hatched), density (0-100%), and,
if hatched, hatching direction (—90°-90°) and perpendiculars (true/false).

Polygons can be filled two different ways. Filling allows you to shade the polygons to various
shades of gray.

The first method of filling is to draw lines across the polygons; crosshatching. This is selected
with the SET_PGN_STYLE procedure. Various densities of shading can be achieved through
crosshatching, depending on both of the following:

® The amount of space between the crosshatching lines;
and

e Whether or not there are perpendiculars.

The other method of shading on a monochromatic CRT is called dithering. Dithering is a more
accurate way to get shades of gray on a black-and-white CRT whose electron gun is either fully
on or completely off. Dithering is accomplished through selecting small groups of pixels!, a
four-by-four square of them on the Series 200/300 computers. Various pixels in the dithering
box are turned on and off to arrive at an “average” shade of gray. There are only seventeen
possible shades because out of sixteen pixels (the 4 x4 box); you can have none of them on,
one of them on, two of them on, and so forth, up to all sixteen of them on. And it makes no
difference which pixels are on; the pattern for each level is chosen to minimize the striped or
polka-dotted pattern inherent to a dithered image.

Crosshatching is accomplished by drawing many lines, and lines are drawn taking into account
the current drawing mode (dominant, erase, or complement). One reason that this is important
is that you can draw a complementing cursor with a call to the POLYGON procedure. Dithering

does not deal with lines, therefore, the current drawing mode is ignored when doing a dithered
fill.

Note
Polygons to be filled which extended over the edge of the plotting
surface are completely filled-including all the area off the plotting
surface. If a great deal of the polygon is invisible, then, it may appear
that the machine is hung? but in reality, it is merely doing a lot of
calculations which do not affect the visible image at all.

1 The word “pixel” is a blend of the two words “‘picture element,” and it is the smallest addressable point on a plotting surface. A Model 236
computer has 512 x 390-pixel resolution; thus there can be no more than 512 dots drawn on any row of the CRT, or 390 dots drawn in any
column.

2 “Hung,” in this context, is short for “‘hung up.” It is a computerese term which means that the machine has entered a state, usually
unanticipated, in which the machine becomes unresponsive, and drastic measures are often required to correct it.

2-43

2-44 Miscellaneous Graphics Concepts

Here is another program which draws the LEM, and fills the polygons in two different ways. On
the left, it is filled by crosshatching; on the right, it is filled by dithering.

(N

\ J
prodram FillProg(output)i {Prodram name same as file mamel}
import ,
dgl.libsddl_tvressdgl_prolysddl_inai {access the necessary procedures}
const
MaxPoints= 273 {number of pPoints in arravs}
Crt= 33 {device address of drarhics raster?}
Control= 03 {device control wordi idgnored for CRT}
type
Reals= array [1..MaxPointsl of realj {to contain X and Y values}
Word= -32768B..327671 {1B8-bit word}
Inteders= array [1,.MaxPoints] of Word; {to contain opP. selectors?’
const
Xvaluess= Realsl 145+ 2459 2451 1459-1,43+-24543-2.5+-1.5+ A{Octadonl}
-2451 245y 2459-2,54-2.5 {Box}
“2454-4454-21539-3404-4,0, {Left leg}
2499 445y 2450 340 440 {Ridht leg}
-0459-140 140, 0,513 {Nozzle}
Yvalues= Reals[1.0 240y 340 4,0y 440y 3,0y 240y 140y {Octadon}
100y 14009-2,04-2:09 1,0 {Box}
~2.Q’—ll;0, 000'-4007*“00' {Left led}
S2000-440y 0,04-4,04-4,0 {Ridht leg}
~2e04=3404-3,04-2,013 {Nozzle}
OpCodes= IntegersC2+1 912141210141, {Octadon}
2ela141 41, {Box}
291319241 {Right leg}
211914241 {Left ledg}
211914115 {Nozzle}
var
Error: inteders {displav.init return variablei 0 = oK}
I: inteders {loop control variable?
LemXs LemY: Realsi {s0 we can Pass it to "polvdon"}
OrSelectors: Intedersi {ditto}

Points: intederi {ditto}

Miscellaneous Graphics Concepts 2-45

$Paged {EFREEEFREREERREERRRERRRRRRRRE RN R RREE R R R RERRRRREREERRRERERRRRE RN RR)

bedin {body of prodram "FillProg"}
LemHXi=Xvaluesi { \ Put into variable arrav so }
LemYi=Yvaluessi { » it can be rPassed by ¥
OrSelectors:=0rCodes? { / reference into the DGL Proc.}
Points:=MaxPointssi {Put constant into an array variable}
drarhics_inits {initialize dgrarhics librarv}
displav_init(CrtsControlsError)i {initialize CRT}
if Error=0 then bedin {if no error occurred,. .}
set.aspect{511,389)3 {use the whole screen}
set_window(-7,54+18,5,-10,10)3 {invoKke isotroric units}
set_pdn_style(ld); {crosshatched fill}
polvdon{PointssLemX+Lem¥ 0rBelectors)i {draw the lines}
set_window(-18,54+7+-10,10)3 {invoKe isotroPic units?
set_pdn_table(1d4,0,51,0,+1)3 {set the "do a fill" flag}
set_color_table(1+0,12540,125,0,125)% {specify 12,57 drav scale}
set_pdn.color(i)} {use specified "color"}
polvydon_dev_der(PointssLemXsLem¥0rSelectors)i {draw the lines}
endi {Error=07} {end of conditional codel
drarhics_termi {terminate drarhics librarv}

ends, {prodram "FillProg"} {end of Prodram}

2-46 Miscellaneous Graphics Concepts

Shading Graphs

Two previously-mentioned concepts can be combined to make broken-line charts which are
filled. That is, you can consider the curve on the graph as edges of a polygon (along with the
lower corners of the viewport), and fill the area with shading. Below is a short program which
demonstrates the combined concepts. The program is found on file “FillGraph” on the
DGLPRG: or DOC: disc.

L =

prodram FillGrarh(outpPut)s
import dgl_libs dgl_tyres, ddl.polvi

const
CrtAddr= 33
ControlWord= 03
tvre
kRDataType= array [0.,12] of reali
WDataTvype= array [0.,12]1 of -3276B,.,327673
const
Kvalues= RDataTvrel0+1+2+3+4353B+7 4899410410403
Yuyalues= RDataTvrel24+4+33B8:+5+5:13174+5:+6:8,0,013
OperationSelectors= WDataTvrel2+l sl sl sl sl slsl sl sl 1419115
var
ErrorReturn: inteders
Ky Y1 RDataTvres

OrSel: WDataTvres

Miscellaneous Graphics Concepts

FPaget L EREREERRER RN R ER R RRFRRR R RE R RN RRRR AR EER R RN RRRRRRRRRFRRRRRRRNRRR]
bedin {prodgram "FillGrarh"}
drarhics_inits
displav.init(CrtAddrsControlWordsErrorReturn)i
if ErrorReturn=0 then hbedgin
set.aspect(511,389)3
set. window(0,10,:0,10)3
move(Qy0)3 line(0, 1003 line(l0,10)3% line(l040)3 line(0s0)3
Ki=Xvaluess Yi=Yvaluessi OrSel:=0rerationSelectorss
set_Pdn.table(1,0,333,17,34:1)1
set_Pdn_style(l)i
rolygon(13+X,¥0rSel);
ends {ErrorReturn=07}%
drarhics_termi
end, {prodram "FillGrarh"}

Note that the two lower corners of the graph must be included in the definition of the polygon.
The shading is done with hatching lines, and the angle of those lines is deliberately a strange
angle to point out that you are not restricted to multiples of 45° for the hatching lines. If the plot
is to come out on a CRT, dithering may be used instead.

If the shading is going to be done with hatching lines, you may want to perform a linear
regression on the data points. Then, you can indicate the overall trend of the data by defining
the slope of the hatching lines to be the angle determined by the linear regression.

Highlighting Data Curves

You can note the location of the starting points of line segments by using the MARKER
procedure. When the procedure is called, it outputs a marker of whatever type you selected.
The valid values and what types of markers they output are listed below:

Marker Resulting ' Marker | Resulting
Number Shape Number Shape

<1 . 10 0
11
12
13
14
15
16
17
18
19

OOV WN -
BODXO *+ -
VOO0 UTE WK -

Marker numbers greater than 20 are device dependent. If the specified marker is larger than the
number of marker the device supports, a dot (marker selector 1) will be used.

2-47

2-48 Miscellaneous Graphics Concepts

Below is a program and its output which shows how to use the MARKER procedure. The
program can be found on the file “MarkrProg” on the DGLPRG: or DOC: disc.

_ Y,

prodram MarKrProd(output)s
import ddgl_lib,dgl_ina;i

const
CrtAddr= 314
ControlWords= 03
tvpe
MarKerNumTypre= array [0+,4] of inteder)
DataTvpe= array [0.,,10] of inteders
const
MarKkerNumbers= MarkerNumTyrel2,5,6+84+1313
Data= DataTvrel012+1+4+93:+391+5:3,:44613%
var
ErrorReturn: inteders
Iy J: inteders
FPaged L EREREERRFRRFERR R RRRR R RN RRR RN AR R RRE R RERERRRRRRRRFRRRRRN RN R R X R)
bedin {program "MarkrProg"}

drarhics.inity
displav_init{CrtAddrsControlWordsErrorReturn)s
if ErrorReturn=0 then bedin
set_aspect(511,389)3
set_window(0y,10,0,10)3
mouve(0,0)3 line(0,10)% line(10,10)5 line(104+0)3% line(0,0)3
for I:=0 to 4 do bedin
for J:i=0 to 10 do bedin
if J<>0 then marKer(MarKerNumber[IJ)3
if J=0 then move(J DatalJl+I)
else line(JsDatalJl+I);
endsy A{for J}
endi {for i}
endi {ErrorReturn=07}
drarhics_termi

end, {prodgram "MarkrProg"}

External Graphics Displays Chapter
and Plotters 3

In this chapter, we will be discussing the selection of external plotting devices. The
DISPLAY_INIT procedure will be more thoroughly covered, in addition to dumping graphics
images from a CRT to a printer. External CRTs (cathode-ray tubes), which may be connected to
your computer through a 98627A interface card, and plotters, which may be connected through
the built-in HP-IB (Hewlett-Packard Interface Bus) port in the back of your computer, will also be
discussed.

Selecting a Plotter

In the previous two chapters, the program listings contained a line which said:

displav.init{(CrtAddrsControlWordsErrorReturn)i

Because the value contained in the variable CrtAddr was 3—specifying the current console— the
computer activated the internal CRT graphics raster as the plotting device, and all subsequent
graphics output was directed to this display. If you want a plotter to be the output device, only the
value of the variable CrtAddr need be changed. (You may also want to change the name of the
variable. It is somewhat misleading to have the address of a plotter in variable named Crtaddr.) If
your plotter is at HP-IB interface select code 7 and address 5 (the factory settings), the modification
would be:

CrtAddr:=7033%

3-1

3-2 External Graphics Displays and Plotters

Dumping Raster Images

In addition to generating a hard-copy plot with a plotter, as described above, you can dump a
CRT’s raster image to a printer. This method is called a graphics dump or screen dump. lt is
accomplished by copying data from the frame buffer to a printer to be printed dot for dot.

First the image must be drawn on a CRT. The internal CRT, a color monitor connected by
an HP 98627A interface card, or an HP 98700A may be used. Since this technique dumps
a rastor-type image, it prints only dots. Thus it cannot draw a line, per se, but only the
approximation of a line from the screen, made up of dots. The dump device “takes a snapshot”
of the graphics screen at some point in time, and doesn’t care how the dots came to be turned on
or off. Thus, filled areas can be dumped to the printer; indeed, most CRT graphics capabilities
(except color) are available.

If your printer is an HP 9876, HP 2631G, HP 2671G, HP 2673A or any other printer which
conforms to the HP Raster Interface Standard, dumping a graphics image is achieved with the
OUTPUT_ESC procedure. If your active graphics display device (set with the DISPLAY_INIT
procedure call) is monochromatic, a call to OUTPUT_ESC with operation selector 52 will dump the
display if:

® The active graphics display is the console (where alpha is displayed), or

e The active graphics display is bit-mapped (i.e., is a bit-map display or a display connected
via the HP 98627A RGB interface).

If you have a color device, all planes in the frame buffer are logically ORed. If you want more
control over the output of a color image, an operation selector of 1053 will allow you to select
individual planes from the frame buffer. The 1053 operation selector will work with the Model
236C, the Model 237 bit-mapped display, or with a color display connected via the HP 98627A
RGB interface. Since the Model 237 has only one plane, the plane designator is ignored.

The exception to producing a desirable image via this method occurs if your active CRT is
a bit-mapped display that supports more pixels than your printer has dots. In this case, the
dump starts at the upper left-hand corner of the screen and dumps as far to the right and
down as there are corresponding dots on the printer. Another option is to use opcode 54 for
the compressed dump for low resolution printers. This is only useful with HP 98542A and
HP 98543A displays.

Either of these operation selectors sent to OUTPUT_ESC would take the image in the currently
active CRT graphics frame buffer (the internal CRT by default) and send it to volume PRINTER:.
By default the printer is assumed to be at select code 7, bus address 1. This can be changed
by modifying the CTABLE.TEXT program on the CONFIG: disc (ACCESS: on double sided
discs). Find the line:

local_printer_default_dav = davlsc: 7 basl, dus-1, du:-113

This sets the DAV (device address vector) for the printer to be at select code (s¢) 7 and bus
address (ba) 1. By changing this line, you can alter the destination of data sent to the volume
PRINTER:'. 701 is the default factory setting for printers.

1 For an in-depth coverage of how to modify the CTABLE ., TEXT program, see the Special Configurations chapter of the Pascal 3.0 Workstation
System Manual.

External Graphics Displays and Plotters

If a graphics dump operation is aborted with the key, the printer may or may not terminate
its graphics mode.

If you have a printer which does not conform to the HP Raster Interface Standard, all is not lost.
It must, however, be capable of printing raster-image bit patterns. There are two main methods
by which printers output bit sequences. The first is: when a printer receives a series of bits, it
prints them in a one-pixel-high line across the screen. The paper then advances one pixel’s
distance, and the next line is printed. The other method (which lends itself to user-defined
characters more than graphics image dumping) takes a series of bits, breaks it up into 8-bit
chunks, and prints them as vertical bars 8 pixels high and one pixel wide. The next eight bits
compose the next 1 X 8-pixel bar, and so forth.

This latter method is that used by the HP82905 printer. The image (which is printed out
sideways) takes a GSTOREd image and breaks the 16-bit integers into two 8-bit bytes, and
sends them to the printer one row at a time. Writing your own routine to dump a graphics image
to a non-comforming printer should not be difficult, given the ability of taking the graphics
image and placing into your own data array (referred to in the last chapter).

Note that on a CRT, an ‘“‘on’ pixel is light on an otherwise dark background, and on a printer,
an ‘“‘on’’ pixel is dark on an otherwise light background. Thus, the hard copy is a negative image
of that on the screen. To dump light images on a dark background, you can invert every bit in
the stored image. To invert the bits in a 32-bit integer, you can execute the following code
segment:

if N=minint then

Ni=maxint
else
Ni=-N-13

The reason for the subtraction is that Series 200/300 computers use twos- complement repre-
sentation of integers. Also, you must consider MININT! as a special case because you cannot
negate MININT in an integer; + 2 147 483 648 cannot be represented in a signed thirty-two bit
twos-complement number.

IMININT and MAXINT are two standard constants in HP Pascal. MININT= -231= —2 147 483 648, and
MAXINT=231-1= +2 147 483 647.

3-3

3-4 External Graphics Displays and Plotters

External Color Displays

The HP 98627A RGB interface allows you to connect a color monitor to your computer, whether
the computer’s internal CRT supports color or not. The HP 98627A does not, as mentioned before,
support color map operations; thus, you cannot change the color of an area on the screen without
redrawing the area. Nor can you define your own color-addition scheme as you can with a
color-mapped device (see the Color Graphics chapter). In addition to this, there are only eight pure
colors’; to get others, you must go to dithering.

There are many types of color monitors which you can connect to your computer through an HP
98627A color monitor interface. In the Cont roliord variable which is passed to the DISPLAY_INIT

procedure, you must specify accordingly:

Desired
Display Format

Description

Bits
10-8

Standard Graphics
512 by 390 pixels,
60 Hz, non-interlaced

512 by 390 pixels,
50 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels,
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels,
50 Hz, interlaced
(25 Hz refresh rate)

High-Resolution Graphics
512 by 512 pixels,
46.5 Hz, non-interlaced

HP Use Only

U.S. Standard

European Standard

U.S. Television

European Television

High Resolution

Internal

001 (256)

010 (512)

011 (768)

100 (1024)

101 (1280)

110 (1536)

Out of range values are treated as if ControlWord = 256, as is ControlWord = O (except Model

237, where 0O keeps the type-ahead buffer, and 256 removes it).

1 Only eight pure colors can be created on an external color monitor. This is because there is no control over the intensity of each color gun.
Each color can be either off or on, and there are three colors: red, green, and blue. Two states, three colors: 23=8.

External Graphics Displays and Plotters

External Plotter Control

There are many device-dependent operations you can do through calling the OUTPUT_ESC
procedure. See Appendix B for details on all the things you can do.

Controlling Pen Speed

To improve the quality of the lines drawn by a plotter pen, you may want to make them draw more
slowly. There are other factors, too, which can affect line quality. For example, humidity can alter
the line quality of a fiber-tipped pen. To accomplish this, you can call the OUTPUT_ESC procedure
with the appropriate parameters. Or, the following procedure will do it.

IR Y R T R Ry T R R Y T TR R
Pprocedure PenSpeed(Spreed: inteder)]

R e e e R R ¥
{ This procedure selects a rPen speed for ah HPGL Plotter. *
L T T e e ¥
const
SetPenSpeed= 20503 {a mnemonic is better than a madic number?
var
Iarrav: array [1..,2] of inteders { \ These are variables 3
Rarray: array [1,4,11 of reals { » needed by the DGL ¥
Error: inteders { / rprocedure "output-esc" 2
hedin {procedure "PenSreed”"?}
Tarrav[1l:=Spreed; {use the Passed Parameter?
Iarray[21:=03 {affect all pPens?
outPut.esc(SetPenSpPeedsZ2s0slarravsRarravsError)i
if Error<*0 then {error?}
writeln(‘Error “sError:0+’ in procedure PenSpeed"., ')}
endsi {procedure "PenSreed"?}

The first element of the integer array specifies the pen speed; the range and resolution of pen
speeds, and default maximum speed depend on the plotter. The second element of the array
specifies the pens to be affected. One through eight specifies pens one through eight, respectively.
Any value outside of this range is taken to mean, “‘Affect all pens.”

Selecting a pen speed specifies a maximum speed rather than an only speed, because on short line
segments, the pen does not have time to accelerate to the specified speed before the midpoint of
the line segment is reached and deceleration must begin.

This procedure also provides a skeleton for making other special-purpose routines. For most
operations dealing with OUTPUT_ESC, one need only change the name of the procedure and the
parameters being passed to the OUTPUT_ESC procedure.

3-5

3-6 External Graphics Displays and Plotters

Controlling Pen Acceleration

On the HP 7580, HP 7585 and HP 7586 drafting plotters, you can specify the amount of accelera-
tion the pen is to undergo when starting or ending a line. On any particular line, positive accelera-
tion (speeding up) will occur until one of two things happens:

e The midpoint of the line is reached, and negative acceleration (slowing down, or deceleration)
must begin, to ensure that the pen will reach a speed of zero precisely at the second endpoint
of the line it’s drawing; or

® The specified maximum speed is reached. In this case, that speed will be maintained until the
pen is at a particular distance from the second endpoint of the line. At that distance, which
depends on the specified maximum speed and the specified acceleration, the pen will start to
smoothly decelerate such that it will reach zero velocity at the second endpoint.

The first element of the integer array passed to OUTPUT_ESC specifies the pen acceleration; it may
range from one through four gees'. The second specifies the pens to be affected. One through eight
specifies pens one through eight, respectively. Any value outside of this range is taken to mean,
“Affect all pens.”

Controlling Pen Force

On many drafting plotters (e.g., HP 7580, HP 7585, HP 7586), you can specify the amount of
force pressing the pen tip to the drawing medium. This is useful when matching a pen type
(ball-point, fiber-tip, drafting pens, etc.) to a drawing medium (paper, vellum, mylar, etc.). Again, if
a pen is partially dried out, it may help line quality to adjust the pen force.

The PenSpeed procedure mentioned above can be modified slightly to control pen force. The
operation selector should be 2051. The first element of the integer array specifies the pen force; the
second specifies the pens to be affected. One through eight specifies pens one through eight,
respectively. Any value outside of this range is taken to mean, “Affect all pens.”

The force number is translated into a force in grams. If, for example, you have an HP7580A plotter,
the force number is converted to force as follows:

1 = 10 grams 5 = 42 grams
2 = 18 grams 6 = 50 grams
3 = 26 grams 7 = 58 grams
4 = 34 grams 8 = 66 grams

This is not by any means an exhaustive list of the things you can do with OUTPUT_ESC, but it
serves to acquaint you with the concept of using the procedure for controlling device-dependent
operations. A thorough understanding of its use can only be gotten by combining information from
the DGL Language Reference with actual hands-on experience.

1 One ‘‘gee,”” or one [earth] ‘“‘gravity,”” is the acceleration due to gravity at sea level. lts value is approximately 9.8 m/sec? or 32 ft/sec?.

Chapter

Interactive Graphics

Introduction

It has already been pointed out that graphics is a very powerful tool for communication. The
high speed available from Series 200/300 computers makes possible a powerful mechanism for
communicating with the computer: that tool is Interactive Graphics.

A Simple Example

Interactive graphics is demonstrated well — albeit primitively — in the following program, which
uses an HP-HIL! tablet?. It is a good introduction to interactive graphics in that it shows one
of the most elementary concepts necessary for an interactive program: feedback. Feedback,
in this context, is the concept of immediately seeing, on an output device, the results of some
action done on an input device, and the seeing of those results can cause a modification to

subsequent input. This feedback takes place so quickly that a continuous, flowing action can
take place.

The following program is very simple. It merely tracks the stylus of an absolute locator, showing
the immediate feedback. When any of the buttons on the stylus is pressed, the program prints
the X and Y values, as well as a number which indicates which button was pressed.

$search ‘*¥:GRAPHICS.'%$
prodram TracKk({outpPut)i

import dgl_libs {det drarhics routines}
var
Error: inteders {error number return variable?}
Button: inteders {which button on the stvlus was pressed?}
Ky ¥ reali X and Y coordinates when button pressed}
bedin

dgrarhics.initi
displav_init(3,04Error)?

{initialize the drarhics svstem?

{initialize the display device: main screen’

if Error<»0 then {if an error occurred,,.}
begin
writeln{(’Error ‘sError:0s’ on DISPLAY_INIT,)i {eve5ay 044}
halts {+vvand auit,}
ends

locator_init(201,Errar)s
if Error<:0 then

{locator device: HP-HIL absolute locator}
{if an error occurred...}

bedin

writeln(‘Error ‘sError:0s’ on LOCATOR.INIT.)3 {eev8aY S04’
halti {eveand quit}
ends

await_locator{(Z,ButtonsX,s¥)}
writeln(/X: /y XelOzd, © Y:
end,

{track the stvlus until button Pressed}
Ty Yi1i0:d4y ' Button: ‘» Button:3)s

If you get an error initializing either the display or the locator, see the appropriate section in the
“Graphics Procedure Reference’” section in Appendix B in the back of this manual for help.

1 There is a family of devices called HP-HIL devices for the Pascal Workstation. HP-HIL stands for “Hewlett-Packard Human Interface
Link.”

2 3.2 Pascal also supports a new driver for the HP-HIL mouse and knob. Access these by substituting 202 in the line LOCA-
TOR_INIT(201,ERROR);

4-2

Interactive Graphics

Notice when running this program that a small, cross-hair cursor describes, on the screen, the
same movements as those you make on the tablet. This is the mechanism of feedback, men-
tioned earlier. When your hand moves up, the cursor moves up. When your hand moves to the
right, the cursor moves to the right, and so forth. And note that the feedback is so fast and
accurate that, many times, you do not even need to look at the tablet to see where the stylus is;
you can tell where the stylus is by looking at the position of the cursor on the screen.

A graphics tablet is not the only graphics input device, as the next section shows. The program
in the following example shows an interactive program which is a bit more complex.

A More Elaborate Example

Compile and execute the program “BAR_KNOB”, from your “DGLPRG:” or “DOC:” disc. If
you have a knob, and you turn the knob clockwise, the bar graph displayed on the screen will
indicate a larger value. At the same time, the numeric readout underneath the bar will increase
its value. Turning the knob counterclockwise has the opposite effect. (If your computer has no
knob, the arrow keys or mouse will work, but may not feel as “natural.”) This is an effective
demonstration of all the key characteristics of an interactive graphics system. They are:

® A data structure. (The value displayed underneath the bar is the contents of a variable that we
are modifying. The internal variable containing the value is a degenerate case of a data
structure.)

e A graphic display that represents the contents of the data structure. (The bar graph and the
numeric display represent the value of the internal variable.)

® An input mechanism for interacting with the displayed image (the knob, in this case.)

This is the minimum set of requirements for an interactive graphics system. A key feature of
interactive graphics is that it is a closed loop system. This means that the operator can immediately
see the effect of his action on the system, and thus base his next action not only on the state of the
system, but also on the effect his last action had on the system. A few points are worth noting about
this system:

® The knob is used because it is functionally appropriate. While we could have entered numeric
values to control the bar graph, the knob “feels” right. We are used to using knobs to control
metered readouts.

® Control of the value with the knob is fairly intuitive. The normal range markings make it readily
apparent when the value is in range. Little explanation is needed, due to the immediate
feedback from the displayed image.

® A system is “‘modeled.” The user’s input has a well defined relation to the output of the
system.

Thus, interactive graphics can be as simple as representing a single value on the screen and
providing the user a method for interacting with it. It can also be as complex as a Printed Circuit
layout system. This chapter will not tell you how to build a Printed Circuit layout system, but it will
provide some hints on implementing interactive graphics systems that work.

Interactive Graphics

Characterizing Graphic Interactivity

One of the most important things in designing a good interactive graphics system is characterizing
the interaction with the system correctly. Properly characterizing the interactivity allows selection of
the most appropriate device for interaction with the system. Three things have to be considered in
characterizing the interaction:

® The number of ways the graphics system can be changed. That is, the number of degrees
of freedom in the system.

® The quality of each of the degrees of freedom. This describes how the input to a degree of
freedom can be changed.

e The separability of the degrees of freedom.

Once again, the best way to understand the characterization of interaction is to see an example
in action. Compile and execute “BAR_KNOB2” from your “DGLPRG:” or “DOC:” disc. This
program is very similar to “BAR_KNOB?”, but it has several bars, instead of one. This introduces
another degree of freedom to the model. The original program had a single degree of freedom,
the value indicated by the bar graph. The quality of this degree of freedom is continuous. The
new program has the same continuous input (which is still handled by the knob) but has added
a second degree of freedom, the selection of the bar graph you want to modify. This degree of
freedom is quantizable, and is handled by the numeric keys. (Softkeys would be even better,
but require digging into the operating system.) The degrees of freedom are also separable,
since you don’t need to interact with both of them at once.

The degrees of freedom are not separable in freehand drawing—you want to change X and Y
simultaneously. They are only partially separable in laying out images on a screen — you can get
by with moving along one axis at a time, but it’s easier if you can interact with both of them at
once.

4-3

4-4 Interactive Graphics

Selecting Input Devices

The purpose of the discussion on characterization of graphic interaction was to lay the ground-
work for discussing when various input devices are appropriate. There are several available on
HP desktop computers, and choosing the correct one is critical to the design of a highly
productive human interface for an interactive graphics program.

e Knob and/or cursor-control keys,

® Mouse,
e Tablet,
® Touchscreen.

Single Degree of Freedom

Many interactive graphics programs need deal only with a single degree of freedom. The
appropriate control device for such programs depends on whether continuous control or quan-
tized control is needed.

The program “BAR_KNOB” is a good example of a single degree of freedom that is con-
tinuous. The knob is ideal for controlling a program like this. If faster movement is needed
before ““fine tuning,’’ the shift key can be used as a multiplier to change the interpretation of the
knob. The knob is read through the KEYBOARD file. The knob generates forward and back
spaces for clockwise and counterclockwise motion, or line-feeds and ‘‘up-spaces’ if the shift
key is held down while the knob is turned. The following program (“BAR_KNOB” from the
“DGLPRG:” or “DOC:” disc) shows how to interpret the knob for a continuous, single degree
of freedom, as well as how to update the display to show the results of the interaction.

$ucsdrdebuds
prodram Test (Kevboardioutput)s
import dgl_varssddl_ tvressddl.libsdgl_inas

tvee
Statess= (Ons0ff) 3
DrawMode= (DrawsErasesCompsNonDom) 3§

const
FS= chr(28)3
BS= chr(B)}
ug= chr(31)3
LF= chr(10)3
CR= chr(13)3
Q= R
Ql= ‘9'j
Underlines= chr(132)3
Ind_off= chr(128)3
Inv.On= chr(129)3
MinBar¥Y= 0%
MaxBarY= 1003
MinBar¥= 1803
MaxBarX= 220%

IncDeltas= 0.13

Interactive Graphics

var

Error_num: inteders
IsTempInt: intedersj
LevelsLastlevel: reals
Delta: reals
CharWidthsCharHeight: real?
Character: chari

Dove: booleans
Kevboard: texti
TempString: Gstring2351

SPaget {EEEEERERERERERRER AR R AR RE RN RN RN RR R RRRR RN R R R ERRERR RN ERRRRR)
procedure GraphicsDisplavy(State:States {0On/0ff})3
const

GrarhicsDisp= 10503
var

Error:inteders

SwitchArrav:intederi

Dummy :real’
bedin {procedure GrarhicsDisprlar}
case State of

On:SwitchArrav:=1j

Off:SwitchArray:=03
endi {case State of}
putrut_esc(GrarhicsDisp+1+0+SwitchArray »DummysError) 3
if Error <> O then

writeln (‘Error ‘sError:ls’ encountered in GrarhicsDisrlav’)i
endi {procedure GrarhicsDisplav}
FPaded {REREEEREEXRRRERREERRERRRN IR AR R R RR RN ERRE R RN ERRRRR R RRRRRRRR)
procedure AlphaDisplav(State:States {On/0ff})3
const

AlrhaDisp=10511
var

Errortinteder;

SwitchArrav:inteders

Dummy:reals
bedin {procedure AlrhaDisrlav}
case State of

On:SwitchArrav:=13

Off:SwitchArrars=043
ends {case State of}
outrput_esc(Alrphalispsl+0sSwitchArray +DummysError) 3§
if Error <> 0 then

writeln (‘Error ‘sError:ls’ encountered in AlrhaDisrlav’)s

endj {procedure AlrPhaDisplar}

FPATEd [EEEEREREEEREREER R R RRRNERERE R R R R AR FRIRFRFRRARRREERFRRERRRFERRRRR)

bedin {Main Prodram}

Level:=03 {current heidght of bar}

LastlLevel:=Levels {previous height of bar}

dgrarhics_initi {initialize the drarhics svstem}

display.init(3s0+Error_Num)3 {which output device?}

if Error_Num=0 then bedin {output device initialization OK?}
AlrhaDisprlav(Off)3 {turn off alrha disrlav?}
GrarhicsDisplav(On)j {turn on drarhics diseplav}
set_aspect(311,389)3 {use whole screen}
set_window(0,400,-304120)1 {scale the window for the datal}

set_color(l)s {color number 1: whitel}

4-6 Interactive Graphics

CharWidth:=(0,035%400)3 {char width: 3,37 of screen width?}
CharHeight:=(0.,05%130)3 {char height: 5% of screen heidht}
set.char_size(CharWidths CharHeight)} {install character size}

{--== Outline the Bar ==-recro oo e e }
move(MinBarX-0,3,)MinBarY-0,5)3 {move to lower left corner..s}
line(MinBarX-0,5MaxBar¥+0,3)3 {+vsdraw to upper left cornersss}
line(MaxBarX+0,5MaxBarY+0.,5) 1 {+ssdraw to upper ridht corner...}
line(MaxBarX+0.,5sMinBar¥-0.,3)% {+vvdraw to lower left corners.,}
line(MinBarX-0,5sMinBar¥-0,3)3 {vveand draw to lower left corner.?}
{---- Label the bar (numeric labelsg) =--ccmcmcmmme oo ¥

for I:=0 to 10 do bedin
strwrite(TemprStringds1yTempInt +»I%10:34/-7)3
move (179-strlen{TempString)*CharWidth,I*#10-0,24%CharHeight)}
dgtext (TempString)s
endi {for I:=1 to 10 }
{---- Label the bar (textual labels) -—cemmcmmmmm e - }
move (221 BO-CharHeight/2)3
dtext (/-Hidgh Normal’)i
move (221, B0-CharHeidght/2)3
dtext (‘-Low Normal’)}i

{---- How about some inNStIUCELIONG ---cmmmmm e e e e }
CharWidth:=(0,02%400)3 {char width: 2% of screen width?}
CharHeidht:=(0,035%150)3 {char height: 3.5% of screen height}

set.char.size(CharWidth, CharHeight)§ {install character size}
move (0, 3)3

TempString:=‘Use the Knob to’+CR+LF3
dtext (TempString)s

TempStrind:=‘Addust the value, '+CR+LF}
dtext (TempString))

TempString:=' ‘+CR+LFJ

dgtext (TempString)j

TempString:='SHIFT with the Knob ‘+CR+LF3
dgtext (TempString)j

TempString:='sreeds it up, '+CR+LF}

dgtext (TempString)y

TempString:='"'3}

{---- 5Bet a 900d character SiZe --wemmccmcc e }
CharWidths=(0,035%400)3 {char width: 3,5% of screen width}
CharHeight:=(0,05%150)3 {char heidht: 5% of screen heidht}
set_char_size(CharWidths CharHeight)} {install character size}
rereat
read(KkevboardsCharacter)s {det character without echo to screenl
Delta:=03 {start by assumind no motion}
case Character of {what’s the character?}
FS: Delta:=IncDeltas {ridght arrow?}
BS: Delta:=-IncDeltai {left arrow (bacKsrace)?}
LF: Delta:=10%#IncDeltai {down arrow?}
us: Delta:=-10%IncDeltas {up arrow?}
Q,01: Done:=TRUE}S {or Quit?}
otherwise ‘ {if none of the above, idnore it}
endi {case ord(Character)?}
if Deltar0 then bedin {Going Ur}
set_color(1)} {we want to draw lines}
while (Level<{LastlLevel+Delta) and (Level<MaxBarY-IncDelta) do bedin
Leveli=Level+IncDeltas {new tor of bar}
move{(MinBarX,Level)i {move to left eddge,. .}
line(MaxBar¥XiLevel)s {+vsvand draw to right edgel}

end {while {(Level<{lLastlLevel) and (Level<MaxBarY)}

Interactive Graphics

end {if (Deltar0) and (Level<100) }

else bedin {Goind Down}
if (Delta<0) and (Level»=0,5%IncDelta) then bedin
set_colorf(Q)} {we want to erase lines?}
rereat
move(MinBarXs Level)} {move td the left edde,..}
line(MaxBarXs+ Level)i {+ivand draw to the right eddel}
Level:=Level-IncDeltai {new top of bar}

until (Level<=LastLevel+Delta) or (Level<=MinBar¥)
ends {if (Delta<0) and (Level0)}

end} _
{---- How about some nuUMbBErs? - mm o e e }
set_color{Q)i {we want to erase lines}

struwrite(TempStringslsTempIntsLastlevel :5:1)i {convert level to chars?

move (MinBarX+(MaxBarX-MinBarX)/2-strlen(TempString)*CharWidth/2,
MinBarY-2%#CharHeight)j

gtext(TempString) {erase the old number}

set.color(l)} {we want to erase lines}

strwrite(TempStrings1sTempIntLevel:S:l)s

move (MinBarX+(MaxBarX-MinBarX)/Z2-strlen(TemrString)*Charidth/2,
MinBarY-Z2#CharHeidht) i

gtext(TempString) i {write the new}
LastLevel:=level} {remember the old number}
until Dones {rereat until user hits [QI}
GrarhicsDisplay (Off)3 {turn off drarhics displav}
AlrhaDisplay (On)i {turn on alrpha displav}
displav_termi {clean up loose ends}
ends
dgrarhics_terms {terminate the drarhics pPacKadel
end, {main Prodram}

Keys can be used for quantizable control of a degree of freedom. It is also possible to use keyboard
entry of numeric values for quantizable information.

Non-separable Degrees of Freedom

One characteristic of multiple, non-separable degrees of freedom is that they are generally
continuous. The most common operation of this type is free-hand drawing. This is most easily
accomplished with the 9111A graphics tablet, HP-HIL tablet, or mouse.

Separable Degrees Of Freedom

In many programs, the degrees of freedom are completely separable. In fact, for some opera-
tions, it is definitely preferable to have totally independent control of the degrees of freedom of
the model.

All Continuous

If all the degrees of freedom in a model are continuous, then the selection of the degree of
freedom to operate on becomes another degree of freedom, and is quantizable. A good choice
is using the keyboard to select the degree of freedom and then using the knob or mouse to
control the input to that degree of freedom. This is not as effective as a bank of knobs, but
adding a bank of knobs means adding hardware. The program ‘“BAR_KNOB2”, on the
“DGLPRG:” or “DOC:” disc is an example of this type of interaction. Single keystrokes are
used to select the degree of freedom you are operating on, and then the knob is used to vary
the value along that degree of freedom.

4-7

4-8

Interactive Graphics

The following key interpretation loop is used in “‘BAR_KNOB2”’ to allow the user to select the
bar to be controlled, as well as controlling the value of the selected knob.

READ (KEYBOARD:Character)i

Delta := 034

CASE Character OF
FS : Delta := IncDeltai
BS : Delta :=-IncDeltaj
LF : Delta 1= 10%IncDeltat
us Delta :1=-10%#IncDeltasd
0,01 : Done = TRUES

‘17+4'3: BEGIN
ClearInd(Bar)s
Bar := ORD (Character)- ORDC'0O7)3
SetInd(Bar)i
END 3
OTHERWISE
END3 {CASE Character}

All Quantizable
If all the degrees are quantizable, using the keyboard (or using softkeys if you have requisite system
design experience to use them) is appropriate.

Mixed Modes

In most sophisticated graphics systems, several degrees of freedom in the system interact with each
other. A good example is a graphics editor. In a graphics editor, your primary interaction is with a
visual image, and the degrees of freedom (X and Y location) for that operation are partially
separable, at best. (They are non-separable if it supports freehand drawing.) There is also a degree
of freedom involved in controlling the program. The program control is strongly separable from the
image creation operation.

The most appropriate device for supporting mixed modes is the HP 9111A graphics tablet or
HP-HIL tablet. The tablet supports two modes of interaction by partitioning the digitizing
surface into two areas. Sixteen small squares along the top of the tablet can be used as softkeys
to provide a control menu. The large, framed area underneath the softkeys is the active
digitizing area. The active digitizing area is used for interacting with the image you are creating.
Other menu/ image area combinations are also possible.

It is possible to combine the quantized, separable control operations with continuous, non-
separable image editing. This is done by using the active digitizing area for interacting with the
image and using the menu area for controlling the operations available in the editing program. The
operator does not have to change control devices to access the different interaction modes.

Interactive Graphics

Echoes

An important part of interactive graphics is letting the operator know “where he is at.”” This can be
done by updating the image. In other operations, such as menu selection, object positioning, and
freehand drawing, it is important to show the operator where he is. In many cases, this can be done
with AWAIT_LOCATOR.

The Built In Echo

Many graphics applications can be handled using the built-in echo. AWAIT_LOCATOR allows
you to access one of the built-in echoes for digitizing. The following program interprets a
menu to select one of the built in echoes, and then draws an appropriate image on the CRT
after the call to AWAIT_LOCATOR completes. It is on your DGLPRG: or DOC: disc, in
the file called “LOCATOR?”. If you have an HP 9111 Graphics Tablet, changing the constant
LOCATORADDRESS from 2 to 706 will allow you to use the tablet for a locator instead of
the knob or mouse (change to 201 for HP-HIL tablet or 202 for new HP-HIL Mouse/Knob
capability).

$debudé

prodram Test(output)i
import ddl_vars,ddl_tyressddgl_libsdgl_prolvsdgl_ingi

tyre
Commands= 0..B3 {nine commands total}
RealArrav= array [1,,3] of reali

const
FS= chr(28): {ridht arrow?}
BS= chr(B)3 {left arrow or backspacel}
us= chr(31)3% {up arrow}
LF= chr(i0)} {down arrow}
CR= chr(13)3 {carriade return’}
MinX= 03 {minimum X value for screen}
MinY= 03 {minimum ¥ value for screenl
Max¥= 3113 {maximum X value for screen}
MaxY= 3893 {maximum ¥ value for screen}’
Krande= MaxX-MinXi {total rande of X}
¥Yrande= MaxY-MinY3 {total rande of Y}
LocatorAddresss= 23 {2 for Knob 706 for 9111}

var
Error_num: inteders {error return variable}
I+TempInt: intederi {utility variables?
Buttonlalues: intedersj {which button selected?}
KinsY¥in: reals {location of diditized Point}
KlastsYlast: reals {last diditized Point}
CharWidths:CharHeidght: reals {char size in world coords?}
Done: booleans {are we supposed to quit?}
NewlLine: booleans {start new line?}
TempString: Gstringd2533 {utility variablel

EchoSelectsEchoSelector: 0ve93 {menu selection}

MenuTopr: reals

CellWidths: reali {width of menu spaces}

Command: Commands i {which command selected?}
FPATEE RN ER RN R RN R R AR R ERERRERR RN R RN RERRRR RN R R RN R RRERRRRR T
procedure DrawMenui
var

I: intedersi {loop-control variable}

Ylabel: reals {Y position of entree labell}

Yarrav: RealArrav}

4-9

4-10 Interactive Graphics

procedure MenuCell(Izinteder)i

var
TempPitch:
Xlabel:
Xarrav:

reals
reall
RealArravi

{temporary variable}
{X position of entree label}
{¥ positions of entree cell?}

bedin {procedure MenuCell}
case I of
0O: bedin
TempStrind:='STOR’S {label text}
{arrar[11:1=0} {\ +
Karray[21:=2%Cellldidthi { A\ +
Karray[31:=2#CellWidthi { » X positions for box +
Karrav[41:=03 { / H
warrav[S]:=03 { / +
Xlabel:=MinX+CellWidth-strlen(TemprString)*CharWidth/214
ends
1.10: bedin
TempPitch:=CellWidth*I3 {temporary shorthand variable?}
Harrav[1l:=CellWidth+TempPPitchji {\ +
Karrav[21:=2%CellWidth+TesrPitchi { \ ¥
Xarray[31l:=2+CellWidth+TemprPitchi » X Positions for box ¥
Karrav[4l:=CellWidth+TemrPitchs { / }
Harrav[Sli=CellWidth+TemprPitchs {7/ ¥
TempStringds=' ‘3 {label text?
if 14=8 then strwrite(TempStringsl sTempInt Isl)}
Hlabel:=Xarrav[1J+CellWidth/2+strien(TemprString)*CharWidth/2}
end
endi {case I of}
polvline(SsXarravy¥array)i {draw perimeter of cell}
move(Xlabels¥label)s {move to the right place?}
dgtext{TempPString)} {label the text}
endi {procedure MenuCell}
{ m e e e e e e e e e e }
bedin {procedure DrawMenu}
Yarrav[1l:=MinYi £\ }
Yarrav[21:=MinY3 { \ }
Yarray[3T:=MenuTop} { * ¥ values for box }
Yarrav[4l:=MenuTor} { / ¥
Yarrav[S1:=MinY3 {/ ¥
Ylabel:=Min¥+(MenuTor-MinY)/2-CharHeight/23 {¥ position of labell}
for I:=0 to 10 do MernuCell(I)3 {do all the entree cells}
endi A{procedure DrawMenul}
SPaded L HEEERE R RN RN R RR RN RN RN RN R RN RN NN AR R RN R RN RN RNNNER)

function CheckMenu(Xinireal):Commandss
bedin {function CheckMenul}
if Hin<2%CellWidth then CheckMenu:=0 {¥ outside of menu?}
else bedin
TempInti=trunc((Xin-CellWidth)/CellWidth)i
if TempInt»B then CheckMenu:=Command
else CheckMenus=TempInt
endi
ends

{which sell chosen?}

{function ChecKMenu %

Interactive Graphics

$Paged (R EEEEREEFRRRRERAEREEERE R R R R R RRAEREE R R RREREERERER R R RRRRRRRRRRR*)

begin {Main Prodram}

grarhics.inits {initialize the drarhics svstem?}
display_init{(3:0sError_Num)i {which outrPut device?}

if Error_Num<:0 then bedin {outeut devic initialization OK?)

writeln(’]l failed to initialize the displav.’)}
writeln(‘Error number ‘sError_Num:2+’ was returned,’)i
end {if Error_Num<>0}
else bedin
LOCATOR_-init(LocatorAddressError_Num)ji
if Error.Num<>0 then bedin
writeln(‘I failed to initialize the locator,’)s
writeln(’Error number ‘+Error_Num:2+’ was returned,)i
end {if Error.Num<:>0}

else bedin {No errors so far}

set_aspect(511,+389)3 {use whole screen}
set _window(0,511,0,389)% {scale window for datal
CharWidth:=0,035%5113 {char width: 3.5% of screen width?
CharHeight:=0,03%3893 {char heidght: 5% of screen height}
set_char_size(CharWidth:CharHeight)i{install character size’}
MenuTopi=Yrande/133 {menu is 1/13 the total screen height}
CellWidth:=Xrange/12} {each entree cell 1/12 screen width}
DrawMenusi {draw the menu}
NewlLine:=trues {resy we are starting a new linel}
EchoSelect:=43 {start prodram with default command}
Command:=43 {ditto}
Dones=falses {nos we're not done vet}
repeat

if NewlLine then {startind a new line?}

EchoSelector:=2
else

EchoSelector:=EchoSelects
await.locator{EchoSelectorsButtonValue yXin¥in)i

if Yin<MenuTor then bedin {user choose menu ortion?}
NewLinei=truei {start a new line next timel
Command:=ChecKkMenu(Xin) i {determine menu selection}
case Command of {which command}?
O: Doner=trues {vess we're done with the Program’
1: EchoSelects=13 {\ }
2: EchoSelect:=21 { A\ }
3: EchoSelect:=314 { \ }
4: EchoBSelect:=41 { \ Select the appropriate 1}
S: EchoSelect:=33 { / EchoSelector. }
B: EchoSelect:=61 { / }
7: EchoSelect:=71i { 7/ }
B: EchoSelect:=81 { / ¥
end {casel}
end {if}
else bedin {not a meny selection}
if NewlLine then bedin {start a new line}
NewLine:=falses {now we're in the middle of a line}
set.echo_rpos{Xins¥in)i {move the drarhics cursor?
move (Kin y¥in)i {cause line-drawing to start therel}
Ylast:i=Yinj {remember the last X..:2
Klasti=Xini {+vevand the last Y}

and

4-11

4-12 Interactive Graphics

else begin

set_echo_prpos(Xins¥in)i {move the drarhics cursor}
if (Xin=Xlast) and (Yin=Ylast) then NewlLine:=true
else hedin
case EchoSelect of
1+471 line(Xins¥Yin)i {draw a line}
B: bedin

line(Xlast+¥in)i
Tine(Xins¥in)i
line(Xins¥Ylast)i
line(Xlasts¥last)s
NewLines=trues

end
otherwise
endi {case EchoSelect of)}
Xlast:=Xini {remember the last X.,.+}
Ylasti=Yins {+veand the last Y3}
end
ends
endsi
until Dones {are we done vet?}
locator_terms {terminate the locator}
displav._terms {terminate the displav}
endi {Error trar}
endi
drarhics_term?’ {terminate the drarhics svstem}
end, {Main Program}
Rubber Echoes

If you have run the progam “LOCATOR,” you will have seen that several of the echoes are
rubber-band echoes; in other words, they create lines that seem to stretch between various
points on the screen. Echoes 4 through 8 require two points to define them. One of these points
is the point being tracked with the AWAIT_LOCATOR statement. The other is the anchor point,
and is set using the SET_ECHO statement. After using one of the rubber-band echoes, and
drawing the figure it represents, it is necessary to get a new point to anchor the next echo to.
This is done in the program “LOCATOR’” by the following block of code:

IF Newline THEN BEGIN
NewlLine := FALSES
SET_ECHO_POS (¥ins¥in)sj
MOWVE {(Xins¥Yinl)i
Ylasti= Ying
Klasti= Xinj

END

Interactive Graphics

ELSE BEGIN
SET.ECHO.PDS (Xins¥in)i
IF (Xin = Xlast) AND (Yin = Ylast) THEN
NewbLine := TRUE
ELSE BEGIN
CASE EchoSelect OF
14473 LINE (Xins¥in) 3
8 : BEGIN
LINE (Xlasts Yin)s
LINE (Xings Yin)3
LINE (Xins Ylast)s
LINE (Xlasty Ylast)i
NewLine := TRUE}

END
OTHERWISE
END3 {CASE EchoSelect of?}
Klast 1= Xinj
Ylast := Yini
END
END3

In the preceding code, the anchor is set to the last digitized point, unless the same point was
digitized twice, in which case the small cross-hair cursor can be used to select a new anchor
point. Once a new anchor point is selected, the rubber band cursor mode is returned to.

When the knob is being used as a locator, it is also possible to use SET_ECHO to establish the
initial position of the locator when AWAIT_LOCATOR is called.

Tablets and Aspect Ratios

If the knob is used as a locator for the CRT, the mapping between the locator device and the
display device is isotropic, since the two devices use the same display mechanism. This is not
true if an external digitizing device (such as the HP 9111A or HP-HIL graphics tablet) is used.
The default aspect ratio for the 9111A is 0.7234, while the CRT of the Model 236 =0.7613 (as
set up in “LOCATOR,” above). This means that a square area on the graphics tablet does not
represent a square area on the CRT. This is not a tremendous problem in many interactive
graphics programs, where the tablet is merely used to point at objects. However, in some
applications, those in which the tablet is used to copy an existing document into the computer,
the distortion is not acceptable. This is easly remedied, through the SET_LOCATOR_LIM
procedure. The following addition to the “LOCATOR” program will set the tablet to the same
aspect ratio as the CRT, insuring the desired isomorphic transformation.

ELSE BEGIN {No errors so far}
SET_ASPECT (3511,389):
IF LocatorAddress = 706 THEN BEGIN{This is a tablet}
SET.LOCATOR.LIM(C,(311/389)%217.8+0,+217.6+Error_num)?
IF Erroronium <> O THEN
WRITELN (Error_nmum:24’ encountered in SET_LOCATOR_LIM.’):
END3 {IF LocatorAddress = 706}
SET.WINDOW (0,s511,0,3B9)3

4-13

4-14 Interactive Graphics

Chapter

4]

Color Graphics

Color!

Color can be used for emphasis, for clarity, and just to present visually pleasing images. Color is
a very powerful tool, and it follows directly that it is very easy to misuse. Be careful in using
color, and it will serve as a valuable tool for communication. Misuse it, and it will garble the
communication.

The DGL Color System

In order to create a device independent programming language, it is necessary to model an
ideal system, and then create transformations to map that system onto real hardware. This is
the way the Device independent Graphics Library (DGL) works. Understanding the ideal color
system will make it much easier to understand the actual implementations that are available on
your computer.

In order to understand the color system, it is necessary to understand two concepts:

e Color as an Attribute
® Models for Color Specification

After covering these topics, we will also go into the concept of a color space, which is another way
of describing the color models that are used in DGL.

Color As An Attribute

We have already dealt with the attribute of linestyle, and the attributes which describe the fill pattern
in a polygon. Color is another primitive attribute. Two procedures in DGL allow you to specify the
attribute of color:

o SET_COLOR selects the color used by GTEXT, LINE, INT_LINE, POLYLINE and INT_
POLYLINE, as well as the edges generated by POLYGON, POLYGON_DD, INT_POLYGON
and INT_POLYGON_DD.

o SET_PGN_COLOR selects the color used for the interior of polygons generated by POLY-
GON, POLYGON_DD, INT_POLYGON and INT_POLYGON_DD.

Notice that SET_COLOR and SET_PGN_COLOR both select a color attribute. The selection is
made from the color table.

5-2 Color Graphics

The Color Table

The color table is a repository of color definitions to be used for displaying primitives. It

is used to describe both lines and filled areas. The color table for Series 200 computers, HP
98543A displays, HP 98545A displays, and the 4-plane HP 98700A display is a list of 32
colors. This provides 32 colors for the color attribute of graphics primitives. For displays HP
98547A and HP 98549A, the color table is a list of 80 colors. On the HP 98700 8-plane, HP
98550A, and 362/382 internal color displays, the list is 272 colors.

Default Colors

When DGL is initialized for a color display the color table is set up with the following values:

Default Color Table Values

Value Color
0 Black
1 White
2 Red
3 Yellow
4 Green
5 Cyan
6 Blue
7 Magenta
8 Black
9 Olive Green
10 Aqua
11 Royal Blue
12 Maroon
13 Brick Red
14 Orange
15 Brown
16 through | White
Last Color

The Primary Colors
The lower eight pens are the colors of the default color map; the colors that can be created by

turning the guns of a color CRT on or off, in various combinations :
o Black and White (the extremes of no-color)
® Red, Green, and Blue (the additive primaries)

e Cyan, Magenta, and Yellow (the complements of the additive primaries - which happen to
be the subtractive primaries)

The Business Colors
The upper 8 colors (8 through 15) were selected by a graphic designer to produce graphs and

charts for business applications. The colors are:
® Maroon, Brick Red, Orange, and Brown (warm colors)
e Black, Olive Green, Aqua, Royal Blue (cool colors)
These colors are one designer’s idea of appropriate colors for business charts and graphs. They

were chosen to avoid clashing with each other. A technique for using them is described under
“Color Hard Copy”’ in the ‘‘Color Spaces’ section at the end of this chapter.

Color Graphics 5-3

Monochromatic Defaults
If a monochromatic display device is being used, the color table defaults to a set of dithered
gray patterns:

Default Monochromatic Color

Table Values
Value Luminosity
0 0.0000
1 1.0000
2 0.9375
3 0.8750
4 0.8125
5 0.7500
6 0.6875
7 0.6250
8 0.5625
9 0.5000
10 0.4375
11 0.3750
12 0.3125
13 0.2500
14 0.1875
15 0.1250
16 0.0625
17 thru 31 1.0000

If You Don’t Like the Defaults

The contents of an entry in the color table can be modified with the procedure
SET_COLOR_TABLE. The actual effect of a call to SET_COLOR_TABLE depends on the
color model being used. The color model is selected using SET_COLOR_MODEL. Which

brings us to color specification.

5-4 Color Graphics

Models For Color Specification

As mentioned above, SET_COLOR_TABLE is used to control the actual value of entries in the
color table. It was also pointed out that the effect of SET_COLOR_TABLE is determined by the
current color model, which is controlled by SET_COLOR_MODEL. It follows that it is neces-
sary to understand SET_COLOR_MODEL before it is possible to understand
SET_COLOR_TABLE.

SET_COLOR_MODEL selects (if you haven’t already guessed) the color model to be used.
There are two models available in DGL; the RGB (Red, Green, Blue) and the HSL (Hue,
Saturation, Luminosity) models. We will discuss them in order of ascending complexity.

The RGB Model (Red, Green, Blue)

The RGB model can be thought of as mixing the output of three light sources (one each of Red,
Green, and Blue). The parameters in the model specify the intensity of each of the light sources.
The RGB model is selected by using a model selector of 1:

SET_COLOR_MODEL (1)3

Once the RGB color model has been selected, the parameters sent to SET_COLOR_TABLE
represent the percentage of full intensity of the red, green, and blue light sources:

SET_.COLOR_TABLE (TableEntrvs Reds Greens Blue)s

The following picture illustrates a physical model for the RGB system.

Optical

Minwr

RGB Color Model

Color Graphics

Whenever the red, green, and blue parameters have the same value, the resulting color is a
gray tone (i.e. it has no hue component). The RGB model is based on the additive primaries,
the colors used for describing mixing light, as opposed to mixing pigments, which are subtrac-
tive. It is a good system for interacting with color CRT displays, since it requires little conversion
to translate it to a set of signals suitable for driving a color CRT.

The HSL Model (Hue, Saturation, Luminosity)

The HSL model is closer to the intuitive model of color used by artists, and is very effective for
interactive color selection. It is similar in concept to the methods used by artists for mixing
paints, where pure hues are selected, and then white and black are mixed to dilute the color
and/or darken it. The three parameters represent hue (the pure color to be worked with),
saturation (the ratio of the pure color mixed with white), and luminosity (the brightness-per-unit
area.) To better understand the parameters, let’s build a model for the HSL system.

If we start with a white light source we should be able to get any color we want by filtering it. (A
perfect white light source contains equal parts of all possible colors.)

The first step is to select the Hue to work with. This can be done with a color filter. In fact, if we
take several color filters, and arrange them to form a disk, we could rotate the disk in front of the
white light source and choose any of the colors on the filter wheel. Since the model we are
working with is a model for understanding rather than one that we actually have to build, we
can consider the wheel to consist of an arbitrarily large set of color filters, so that any rotational
movement of the wheel will select a different color filter. Now we will provide a mechanism to
drive the wheel which will position it angularly, based on a number we send to it, a number
between 0 and 1 (inclusive). We will arrange the filters as a conventional color wheel (there are
advantages to this, which are discussed under ‘‘Effective Use of Color,” later in this chapter).
Since it is a wheael, it must meet itself somewhere, and Red is as good a place as any, so two
parametric values (0 and 1) describe red. Such a color wheel would look something like this:

A Color Wheel for the HSL Model

5-5

5-6 Color Graphics

This arrangement is fine for producing highly saturated colors (bright, pure, intense colors), but
there are other types of colors, and we need to be able to produce them. For a start, we can mix
some white light (remember our white light source?) with the filtered light, to desaturate the
color. Combining the filtered and unfiltered lights directly would produce 50% saturation, and
would double the luminosity of the resultant color. We want to have variable control of the
saturation, and, to keep the model simple, it would be better if the result of the saturation
control produced a unit luminosity. If, instead of mixing the two light beams directly, we mix the
outputs of two simple optical gates that are linked with a mechanical slider to control the
proportions of the colored and filtered light, we can control of the saturation while maintaining
a constant luminosity (intensity-per-unit-area). Once again, we will provide a mechanism which
takes a number between 0 (no color - pure white) and 1 (fully saturated color) and positions the
slider appropriately. The two pictures below show the model we have described, with a fully
saturated red in the first one, and a 50% saturated red in the second one.

Fully Saturated Red

Color Graphics 5-7

50% Saturated Red

Finally, we may wish to change the luminosity, or brightness of a color (for example, brown is a
dark red). This can be accomplished by putting an iris (like the one found on a 35 mm camera)
after the mixer that combines the output from the saturation slider. The same O through 1
numerical control interface is used to control the iris, and thus the luminosity. The following

three pictures show some combinations of the various controls:

Fully Saturated, Fully Luminous red.

5-8 Color Graphics

Fully Saturated, 50% Luminous Red.

50% Saturated, 50% Luminous Red.

Color Graphics 5-9

To recap, the Hue parameter rotates a color wheel to select a ‘‘pure’ color to use. This color is then
mixed with white light. The ratio of the pure colored light to the white light is controlled by the
Saturation slider. Finally, the output passes through the luminosity iris (think of it as a hole you can
adjust the size of) that controls the brightness of the output.

The HSL model is specified by a model selector of 2 in the SET_COLOR_MODEL statement:
SET_.COLOR_MODEL (2)3

A program called “COLOR” on the DGLPRG: or DOC: disc uses HSL model for interactive
color selection. (“COLOR” only works correctly on the following: Model 236 Color Computer,
HP 98543A, HP 98545A, HP 98547A, HP 98549A, HP 98550A and HP 98700A.) It pro-
duces two arrays for use with the SET_COLOR_TABLE statement, one for INTENSITY and
one for COLOR. The program is over 300 lines long, almost all of which is simply a human
interface to the following code in the update routine:

SET_COLOR_TABLE (TableEntrv:
HueVallTableEntryl:
SatVallTableEntryl:
LumVallTableEntry1)s

Which Model?

Two models are provided by the DGL color system. If you are working with primaries only, or want
gray scale output, the RGB model is great. If, on the other hand, you are trying to deal with pastels
and shades, you are better off with a color model that is intuitive in nature, and that is where the
HSL model shines.

It is possible to get the best of both worlds by using the HSL model for the human interaction, then
reading the color table to get the RGB color values.

The “COLOR” program mentioned above does exactly that to calculate the correct cursor and text
color to use when the user changes the background color. This is done by reading in the RGB color
table values, calculating which corner of the color cube is farthest from the background color,
setting the foreground pen and text displays to that color, and then writing the RGB values back
into the color map. Even though the primary interaction is with the HSL. model, the RGB model is
used because it is more convenient to find distances between colors in it.

tvpe
Colors= (Reds¥YellowsGreensCvansBlue /MadentasWhite Black)s
Modes= (Hue sSatsLumsTablesCopryl:CoprPv2) i
EntryRande= -1,.161%
FunnyArravs= array [Colors] of chari {arrav for alpha color?
L]
const
FunnyChar= FurnyArravlchr(139),chr(137) {\ Arrar for }
chr(136)schr(140) { \ holding the ¥
chr(1d42)chr(143) { / alpha-color ?

chr(1d41)+chr(138)1% {/ controllers }

5-10 Color Graphics

var
TableEntry: EntryRandel
RedBackGreenBack,BlueBack: reall
LabelColor: chars
BackSum,0ldBacKkSum: 04,77

if TableEntry=0 then bedin {Backdround color}

set_color_model (1)} {RGBY
ing.color_tabkle(0sRedBack GreenBack BlueBack)} {det RGB values}
BackSumi=03 i { \ Calculate the ¥
if RedBack«<0.,5 then BackSum:=43 { \ backdround color ¥
if GreenBack<0.,5 then BacKSum:=BackBum+2i { / in order to make }
if BlueBack<0.,5 then BackSum:=BackSum+l}i { / contrasting text, }
if OldBackSum<>BackSum then bedin {Color chandel
case BackSum of
0: LabelColors=FunnvCharfBlackli {\ }
1: LabelColori=FunnyChar({Bluels { A\ }
2y LabelColor:=FunnyChar[Greenls { \ Translate the }
3: LabelColor:=FunnvChar[Cvranls { \ RGB bacKdround }
d4: LabelColor:=FunnyCharlRedl} { / sum to a ¥
o: LabelColor:=FunnyChar[Madentali { / complementary }
B¢ LabelColor:=FunnvCharlY¥ellowli { /7 text color, ¥
7: LabelColor:=FunnyCharlWhitels {/ }
endi {case BacKsSum of}
MenulLines {Print the menu linel}
0ldBacKkSum:=BacKkSums {store for future comparisons’}
set.color.table(ls1-RedBack: { \ MaKke pen one }
1-GreenBack, { * complementary: }
1-BlueBack) i { / too. }
ends {if)
set_color_model(2)4 {HSL}

endi {if TableEntry=03%

One point brought out by the preceding example is that the models can be mixed freely. There
is nothing to prevent using the RGB model to set a gray background color and a black pen, and
then using the HSL model to produce the rest of the palette. Use whatever is easiest for what
you want to do.

If you are interested in pursuing the color models, the RGB model is called a Color Cube and
the HSL model is called the Color Cylinder. These models represent idealized color spaces and
are discussed next.

Color Graphics

Color Spaces

If you ask broadcast engineers what the primary colors are, they will probably tell you “Red,
green, and blue.” If you ask printers what the primary colors are, they will probably tell you
“Cyan, magenta, and yellow.” If you ask physicists , they will probably smile and say “That’s
not the right question.” Let’s see if we can get enough information about color systems to ask
the right question.

Primaries and Color Cubes

The reason for the confusion is that there are two sets of color primaries. Red, green and blue
are additive primaries. Cyan, magenta, and yellow are subtractive primaries. Each of these sets

of primaries can be used to construct what is referred to as a color cube. These are called the
RGB color cube and the CMY color cube.

Each of the color cubes can be used to describe a color space. Color spaces are mathematical
abstractions which are convenient for scientific descriptions of color. This is because the color
spaces provide a coordinate system for describing colors. Once you have a coordinate system,
you can talk about and manipulate colors mathematically.

In addition to the color cubes, other color coordinate systems exist. While there are many, we
will only look at HSL Color Space, because it is one of the available color models in DGL. First,
the cubes. ‘

5-11

5-12 Color Graphics

The RGB Color Cube

The RGB color cube describes an additive color system. In an additive color system, color is
generated by mixing various colored light sources. (Color mixing is discussed in ‘‘Effective Use
of Color,” below.)

The origin (0,0,0) of the RGB color cube is black. Increasing values of each of the additive
primaries (Red, Green, and Blue) move towards white (the opposite corner of the cube.) The
maximum for all three colors is white (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally.

The RGB Color Space
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

Color Graphics

The CMY Color Cube

The CMY color cube represents a subtractive color system. In a subtractive color system, colors
are created by subtracting colors out of a pure white (containing all colors equally) light source.
This most often occurs when light is reflected off of surfaces containing, or coated with, pig-
ments. This happens in printing and painting, among other operations.

The origin (0,0,0) for the CMY color cube is white. This represents all the colors in a perfect
white light source being reflected by a white (reflecting all colors) surface. Increasing values of
each of the subtractive primaries (Cyan, Magenta, and Yellow) move towards black (the oppo-
site corner of the cube.) The maximum for all three colors is black (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally. While the CMY color model is not
supported by the DGL, it is important to understand when you get to color hard copy.

CMY Color Space
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

5-13

5-14 Color Graphics

The HSL Color Cylinder

The color cubes are very useful for working with physical systems that are based on color
primaries. They are not always intuitive, though.

The HSL color cylinder resides in a cylindrical coordinate system. A cylindrical coordinate
system is one in which a polar coordinate system representing the X-Y plane is combined with a
Z-axis from a rectangular coordinate system.

® The coordinates are normalized (range from O through 1).

® Hue (H) is the angular coordinate.

e Saturation (S) is the radial coordinate.

® Luminosity (L) is the altitude above the polar coordinate plane.

The cylinder rests on a black plane (L = 0) and extends upward, with increasing altitude

(Luminosity) representing increasing brightness. Whenever luminosity is at 0, the values of
saturation and hue do not matter.

atucakion

Luminosily

HSL Color Cylinder
NOTE: This photo is a multiple exposure of Model 236 Color Computer CRT.

White is the center of the top of the cylinder (L.=1, S=0).The center line of the cylinder (S = 0) is
a line which connects the center of the black plane (L =0, S = 0) with white (L=1, S=0) through a
series of gray steps. (L from O to 1, S=0). Whenever saturation is O, the value of hue does not
matter. The outer edge of the cylinder (S =1) represents fully saturated color.

Color Graphics 5-15

WHITE
LUMINOSITY =1 SAT=1
SATURATION=0

LUM=1

GRAY SCALE

L SATURATION

/_

SLUMINOSITY
~

SATURATION=1
LUMINOSITY =0

BLACK
LUMINOSITY =0

HSL Color Specification

Using the above drawing (HSL Color Specification,) hue is the angular coordinate, saturation is
the radius, and luminosity is the altitude of the desired color.

5-16 Color Graphics

Reality Intrudes

It would be fantastic if that were all you needed to understand in order to use the color
capabilities in DGL. Unfortunately, ‘‘Reality rears its ugly head.”” HP does not make a piece of
hardware capable of supporting the system described above. HP color computers come close
to the color modeling system described above, but only approximate it.

However, now that the idealized color system has been described, we can tackle some real
hardware that DGL supports. We will start with the simplest display device (a plotter) and work
up to the most complex (the internal color-mapped frame buffer in a color computer). Along
the way, some of the hardware dependencies that make each device unique will be brought
out.

Plotters

Numerous plotters are supported by DGL. All plotters support color as an attribute of graphics
primitives to the extent it is possible with the number of pens available on the plotter. The SET_
COLOR and SET_PGN_COLOR procedures select the pen used used to draw the primitives.
Using a color selector of O will usually put whatever pen is in use away. Calls to SET_COLOR_
TABLE are ignored when a plotter is specified as the display device. Plotters do not support the
color modeling system.

Color Graphics

Frame Buffers

The internal displays on HP color computers all have bit-mapped graphics, as does the HP
98627A. An area in memory called a frame buffer stores a binary description of each pixel
location on the display.

Frame Buffer Depth

The number of bits available for describing each pixel is called depth of the frame buffer. On all
displays except the HP 98627 A color output interface, and the color display cards, a single bit
is used to describe each pixel location. (On displays HP 98542A, HP 98544A, HP 98548A,
and computer Model 237A, this bit is the LSB of a byte allocated to the pixel.) A single bit
allows each pixel to be on or off. This can be thought of as representing one of two colors
(black or white, since the CRT is monochromatic). A one-bit frame buffer and the display it
produces would look something like this:

One Bit
Frame Buffer System

2@ =@ === =R
2= == =] (= =D B (%)
BYBvRIBRYL1BL
BBRAVABEB118(8|8
QrErrv|1vLaLL
QR vRrALE
¥Br|118|v8Ravv
091888 RBRY YL
8|188[AEALYAILBIA
11918181918|8|0|9|9
Frame Buffer Display

One-bit Frame Buffer

5-17

5-18 Color Graphics

The 98627A has a three-bit frame buffer, allowing each pixel to be set to one of 8 colors (Black,
Red, Green, Blue, Cyan, Magenta, Yellow, and White). Instead of storing ones and zeros (like a
one-bit frame buffer), a number between 0 and 7 can be stored.

Three Bit
Frame Buffer System

PRB|IS(B|BIBIv|A]1

FAEFEEEEE G I
2l2f2]5]2(2]|2]2]2(2

RR(BIS|AB|1[BB|B I
BBB|ISB|1|v|P|B|B

FAEEEAEEEERE |
Z]1Z1121 5114411717 (%] (%]]
Qa[(115(8|B|V|B(A|B

018|508 |B|B|B

1[0{B|5|0(B|B|B[0|AB

Frame Buffer Display

Three-Bit Frame Buffer

The color computers have a four-, six-, or eight-bit frame buffer. A four-bit frame buffer allows
each pixel location to contain between 0 and 15 colors; where a six-bit frame buffer provides
for 0 to 63 colors; and an eight-bit frame buffer 0 to 255 (inclusive). Thus the color computers
can set a pixel to any of 2(") different colors (where n is the number of planes). The presence
of a color map in a color computer complicates this somewhat, by giving you control over the
colors that each of the possible entries in a frame buffer can actually represent (this is a palette
of 2" colors out of a gamut of some larger number of colors — see the color map description,
below). For now, just think of color computers as having 2(" colors that the user can define.

The following discussion addresses the frame buffers for these displays:

m HP 98542A low-resolution monochromatic display
m HP 98543A high-resolution monochromatic display
m HP 98544A low-resolution color display

m HP 98545A high-resolution color display

m HP 98547A high-resolution color display

m HP 98548A high-resolution monochromatic display
m HP 98549A high-resolution color display

m HP 98550A high-resolution color display

m HP 98700A high-resolution color display

m HP 9000 362/382 VGA display

m HP 9000 382 medium-resolution color display

m HP 9000 382 high-resolution display

For all of the above displays, each frame buffer pixel is addressed as one byte of memory. The
monochromatic displays use only the least significant bit of each byte, and the color displays
use the least significant four, six, or eight bits of each byte.

Color Graphics

The high-resolution displays use square pixels to display the image; the Y:X aspect ratio of the
pixels is 1:1. This results in a 1024 x 768-pixel displayable image. The low-resolution displays
use non-square pixels to display the image; the Y:X aspect ratio is 2:1-the pixels are twice as
high as they are wide. The resultant displayable resolution is 1024 x 400. For the low-resolution
displays, one pixel in the frame buffer is not the same as one DGL-accessable pixel. This is
because DGL “‘pairs’’ the frame buffer pixels to give DGL pixels.

The following diagram illustrates DGL’s non-square pixels. As you can see, the ‘‘image’’ in the
frame buffer, which uses frame-buffer-pixel pairs, is too short, top to bottom. In the display,
though, the pixels are stretched vertically into non-square entities, yielding the desired shape of

the object drawn.
olol1]1 p
1111111 |:>

Eindicctes pixel on D indicates pixel off

In graphics, with the low-resolution displays, DGL “doubles up” the even/odd pairs of rectanglar
pixels to simulate square pixels at a displayable resolution of 512 x 400. Alpha does not double
up the display pixels; it uses all horizontal pixels. This results in an alpha resolution of 1024
x 400, or 26 lines of 80 characters, with a little extra space on the top, left, and right of the
screen. Alpha can produce pixel pairs in which one of the pixels has a different value than the
other. DGL will always produce pixel pairs in which the pixels have the same value.

Faking More Colors From a Frame Buffer

If you have a one-bit frame buffer and need more colors, you can go up to a three- or four-bit
frame buffer to solve the problem. If you already have a four-bit frame buffer and need more
colors, the problem is more difficult to solve. The same solution that allows you to add more
colors to the four-bit frame buffer also allows you to add more colors to a three-bit frame buffer,
or even to a one bit frame buffer. (O.K,, it's actually shades of gray in a one-bit frame buffer.)
The technique is called dithering, and is supported on all Series 200/300 frame buffers.

5-19

5-20 Color Graphics

Dithering

In early color systems which did not provide control of the intensity of individual pixels,
dithering became a very popular method of increasing the number of shades available to the
machine. In dithering, halftoning is used to create the impression of a larger palette than the
system hardware actuaily supports. This is done by creating patterns of dots of the available
colors which the eye will (hopefully) combine into a perceived color different from the colors
used to produce the patterns. The effectiveness of this technique depends on the distance from
the display, the patterns involved, and the eye of the beholder. For example, if you want to
produce a half intensity red, you can turn on half the dots in an area, and it will look half-bright.
The 50% pattern fools the eye quite effectively.

3?% 43% oB% D

o]
R

Half Tone Color Selection

Thus, by reducing the effective resolution of the system, it is possible to provide a large number
of shades of color. On color computers, this is done by imposing a grid of 4x4 squares on the
CRT, that is, each of the squares is 4 pixels square. With a one-bit frame buffer, it is possible
to get 17 shades of gray in the square (all pixels off, and 1 thru 16 pixels on). On a three-bit
frame buffer (the HP 98627) there are three colors available, providing 4913 (173) shades. For
a four-bit frame buffer there would be 83521 (17%) shades. While for a six-bit frame buffer
there are 24137569 shades, and an eight-bit buffer has 6975757441 shades (if the colors
represented by the frame buffer were fixed). On color computers, however, it is possible to
alter the colors represented by the frame buffer value, so the number of colors representable is
variable — it could be larger or smaller than 83521 (which is more than the number of dlthermg
squares available on the display, anyway) depending on the contents of the color map.

Color Graphics

Creating A Dithered Color

The following discussion gets a little abstract, and it is not absolutely necessary to understand
how dithering works to use it. It is interesting information, and can be useful knowledge if
dithered areas don’t do what you expect.

A color vector is a directed line connecting two points in RGB color space. The dithering
process tries to match a target vector by constructing a solution vector from colors available to
the frame buffer. The actual dithered color to be produced will be 16 times the target vector,
since 16 points in the dither area will be combined to create it.

The color matching process requires sixteen steps. First, the target vector is compared to the
vectors produced by each color in the color map. The one which is closest to the target vector is
selected as the first component of the solution vector. The distance between the points in the
RGB color space is used to determine how far apart the vectors are.

The following process is then repeated 15 times:

1. The original target vector is added to the preceding target vector to produce a new target
vector.

2. A trial solution vector is created for each color in the color map by adding the vector for
the color map entry to the previous solution vector. The trial solution vector that is closest
to the target vector is selected as the new solution vector.

At this point, the target vector is 16 times the original target vector, and the solution vector
consists of a summation of color vectors available to the frame buffer that produce, at each
iteration, the vector closest to the target vector.

If all this has left your head spinning, let’s take a look at a simplified system to see how the
process works. Our simplified system will be a two color system (to keep it a two dimensional
problem) with a 2 x 2 dither cell (which means we only have to look at four steps in the total
process).

We will use green and red (let’s not get ‘“‘tangled up in blues’’) for the two axes. There will be
three colors available to the frame buffer - a unit green, a unit red, and a combination of a unit
red and a unit green. The vectors each of these colors produce is drawn at the top of the ‘‘Color
Vector Matching”’ Diagram, shown below. At each step in the process, the target vector is
labeled ““T”’ and the solution vector is labeled ‘‘S.” In addition, the test vectors that are not
used are shown, with no labels on the endpoints.

5-21

5-22 Color Graphics

In actuality, the entire set of colors available to the frame buffer is not necessarily used for
creating a color. Before the color matching process is started, the colors available to the frame
buffer are sorted into two groups; those within the target cube, and those outside the target
cube. The target cube is the cube formed by using the origin of the RGB color space and a point
representing 16 times the target vector as diagonal corners to form a cube. Going back to our
two dimensional model, we will construct a target square for the system. For a vector near one
of the axes, the unit vector on the other axes will be excluded from the solution set, since it lies

Available
Color Vectors

|12V

G G
e z

Use Use
Color Color
Vector Vector

3 2

v -

v R 1R
G G
1 7]

Use Use S
Color Color T
Vector T Vector ——4

1 3
—R / . R
Color Vector Matching

outside the target square.

Available
Color Vectors

1 2 V

Color Vector . Color Vector
No Excluded
Vectors Angle: 4@ Vectors Angle: 10
Excluded Magni: 1.00 Magni: 1.08
T
: 1
—_—
G
Excluded] " T Color Vector No] Color Vector
Vectors : Angle: 88 Vectors Angle: 45
Magni: 1.88 | [Excluded)] Magni: 0.58
P— 4
3/

[

-

Two Dimensional Target Square

Color Graphics 5-23

Once the colors have been selected for the solution vector, the colors are sorted by luminosity
and filled into the following precedence matrix (the most luminous color is filled into the lowest
numbered pixel):

131 4| 16
9] 5112 8
151 2] 14

111 7110} 6

The dither precedence matrix is actually tied to pixel locations on the CRT. The matrix is
repeated across the CRT and from the top to the bottom of the CRT (just divide the number of
pixels on each axis by 4 to get the number of repeats). Areas to be filled are mapped against
the fixed dithering pattern. All dither cells completely within an outline to be filled are turned
on according to the precedence pattern. Cells which are only partially within the border are
only partially enabled. If the area fill pattern calls for a pixel outside the boundary to be set, it
will not be.

There are problems with dithering:

® The dithered colors are not necessarily accurate representations of the color specified.
Looking at the ““Color Vector Matching’’ Diagram shown above, the solution vector does
not actually match the target vector, it just comes near it. This is highly dependent on the
colors available to the frame buffer. A 4-by-4 dither cell with one full intensity green pixel
does not look the same as the same cell filled with 1/15 green.

® The dithered color selection tends to produce textures. In some cases, the textures over-
whelm the shade produced.

® The dithered colors are not stable if the color map is altered on a color computer. (This is
discussed in more detail under ‘“‘Color Maps,”’ below.)

® The dithering operation produces anomalies when the area to be filled is thin. If it is less
than four pixels wide or high, it cannot contain the entire dither cell and the results can be
surprising for colors which turn on small portions of the cell.

5-24 Color Graphics

If You Need More Colors

If you have an application that requires more colors than are available to your frame buffer, the first
thing to do is see if you can redefine it to use the colors available to the frame buffer. In many cases
this is possible, and the higher quality of the frame buffer palette is worth a little checking to see if
you can use it.

If you have to use dithering, here are some hints for getting the best results:

e Check the colors to see if you are going to get objectionable texturing. Sometimes relative-
ly minor shifts in color definition can produce significant differences in the patterns used in
dithering.

® Remember — you can’t draw lines with dithered colors. DGL will automatically use the
closest available color from the frame buffer.

e If you are on a color computer, make sure your color palette is correctly set up for
dithering.

On all frame buffers other than the color computers, all the color table entries are potential
dithered colors. On a color computer, however, only the upper 16 entries of the color table
are dithered colors. The lower half of the color table maps directly to the hardware color map.
The color map is one of the most powerful graphic tools yet invented. It is described below,
under “Series 200/300 Color Graphics System.”

Frame Buffer Contents

Now that you understand frame buffers and dithering, it’s possible to describe what is actually
found in a frame buffer. At any given time, the values written to the frame buffer fall into four
categories:

® Background Value - Whenever CLEAR_DISPLAY is executed, all the pixel locations in the
frame buffer are set to the current background color. The background color is described by
entry 0 in the color table.

e Line Value - The SET_COLOR statement is used to determine the value written to the frame
buffer for all lines drawn. This includes all lines (including characters created by GTEXT) and
outlines (for polygons with the edge parameter true in the polygon style table).

® Polygon Interiors - The SET_PGN_COLOR statement is used to specify the value written to
the frame bulffer for filling areas (for polygons with the fill attribute true in the polygon style
table).

® Dithered Colors - when an application uses more colors than the frame buffer can support
directly (see “‘Frame Buffer Depth,”” below), dithering is used to create as close an approxima-
tion of the color as can be done by mixing colors available to the frame buffer. Dithered colors
can only be used for the background and for polygon interiors, not for lines.

Color Graphics

Series 200/300 Color Graphics System

The biggest benefit of the color computer is that it makes experimenting with color so easy.
With a bit-mapped frame buffer and a color map, it is easy to test out ideas before you use

them. It is also possible to use the color map for simple animation effects and some just plain
impressive images.

It is possible to use the color computer with the default color map. The color used will
depend directly on the value in the frame buffer. This is fine if the work you are doing can
be accomplished using the 16 (or 64, or 256) colors supplied as the system defaults. This is

often not the case, and this overlooks one of the most powerful features of the color computer
— the color map.

Color Map (Model 236 Color Computer)

The color-mapped system uses the value in the frame buffer as an index into a color map. The
color map contains a much larger description of the color to be used and, just as importantly,
the color description used is indirect. Thus, the value in the frame buffer does not say ‘‘use color
127, but rather “‘use the color described by register number 12",

Frame Buffer Red Green Blue

1001 1100 1011

10|

L

’g--ruwautm\lmw

Color Map

T
Red [0
D/A ?

Jc{een

D/A

Display

Blue
D/A

EECEECCEE

Color Map

The CRT refresh circuitry reads the value from the pixel location in the frame buffer, uses it to
look up the color value in the color map, and displays that color at that pixel location on the
CRT. Thus, it is possible to draw a picture with a given set of colors in the color map (a set of
colors is called a palette) and then change palettes and produce a new picture by redefining the
colors, rather than having to redraw the picture. (The binary numbers in the color map are

created by the system. The user deals with normalized values, as described under ‘‘Color
Specification.””)

Other color display models are similar in concept, but differ in detail.

5-25

5-26 Color Graphics

True User Definable Color

The colors available are true user definable colors. The color can be changed on a pixel-by-
pixel basis, so there are no restrictions on how the colors can be used (as there are with dithered
shades, which can only be used for filling polygons). There are also no problems with texturing,
as the color is not produced by mixing dot patterns.

Retroactive Color Changes

Another advantage of the color map colors comes from the indirect nature of the color map.
Since the frame buffer contents only point to locations in the color map, it is possible to change
the contents of the color map after an image has been created in the frame buffer, allowing
“fine tuning’’ of the image after it has been created.

If You Need More Colors

If you have an application that requires more colors than the number that are available, the first
thing to do is see if you can redefine the application to use the available colors. In many cases
this is possible, and the higher quality of the color mapped palette is worth a little checking to
see if you can use it.

The color computer provides dithering for applications that require more shades than are
available at any single time with the color map. The upper part of the color table (last real
entry plus one, through last real entry plus sixteen) provide access to dithered colors, although
they will fill with a single pen if the color requested exists in the current color map.

If you absolutely have to get at a larger palette, then load a palette optimized for dithering (optimiz-
ing for dithering is described below) and stick with dithering. Don’t try to mix color map redefini-
tion and dithering - it will probably cause you a lot of grief. Especially, do not try to do interactive
redefinition of the color map in a system that is also using dithering.

Color Graphics

Optimizing For Dithering

The actual color palette you require determines the optimum color map values. Below are
some plots of color matching on the simplified color system introduced under the discussion of
dithering. Each plot is trying to match the same target vector, but using a different palette. The
effect of various color maps on the distance between the target and solution vectors is striking.

Color c Color
Vector Error = Vector Error =
Set @.9314865 Set 0.4860644

Color G Color a
Vector Error = Vector Error =
Set ©.3339008 Set ©.2279536

Color Map Effect on Color Vector Matching

5-27

5-28 Color Graphics

It's obvious from the drawing above that the larger the color map, the closer the match to the
target color, right? Well, it’s obvious from that drawing, but let’s take a look at a slightly different

color to match, and see what happens.

Color Color

Vector Error = Vector Error =

Set 1.1774409 Set P.2820470
| 2 S T

R

Color G Color c

Vector Error = Vector Error =

Set 0.4826580 Set @.2820479
1| 2 ST

Color Map Effect on Color Vector Matching - Part 2

The point is, that the quality of color matching depends on both the contents of the color map
and the color to be matched.

Color Graphics

Resolution and Color Models

The resolution available with the two color models depends on the hardware being used to
generate the color. Resolution on devices that use dithering is complicated by the variation in
quality of the colors produced by dithering. Resolution of the color map is easier to deal with, so
let’s see what'’s available.

RGB Resolution

The resolution of the RGB model is limited by the digital to analog converters in the color
computer graphics hardware. The converters allow 2(® states to exist for each of the CRT
electron guns, so the resolution of each of the RGB parameters is 1/2("—1, from O thru 1.
In fact, since the SET_COLOR_TABLE statement accepts real arguments, you can express the
values as fractions, and let the computer convert to decimals. The following call would set the
background to about 50% gray.

SET_COLOR_TABLE (0, 7/13y 7/15+ 7/13)

HSL Resolution

The resolution of the HSL model is not specified anywhere. This is because the resolution for the
various parameters is not a fixed value. The resolution for any parameter of the HSL system is
dependent on all three of the parameters. The resolution is not only changed by the other two
parameters, but also by the magnitude of the parameter you are varying.

5-29

5-30 Color Graphics

Writing Modes and Color

Since HP color computer frame buffer devices are bit mapped, it makes sense that various
logical combinations of the bits in the frame buffer with the bits being added by a drawing
operation should be possible. Since this is a highly device dependent operation, the various
drawing modes are specified with calls to OUTPUT_ESC. Four drawing modes are available:

¢ Dominant

e Non-Dominant
® Erase

e Complement

Three of these drawing modes have already been introduced (all but non-dominant) in Chapter 2.
The meaning of the modes is slightly different for a color system than for monochromatic systems.
The actual meaning of each of the modes is discussed below, but first, a slightly modified version of
the DrawingMode procedure presented in Chapter 2 is listed below. The non-dominant drawing
mode has been added to it.

SPagded {REERREREERREERRERRRRRREERRRRRRE R R R ER RN RN R R R AR ERRER R RN}
procedure DrawindMode(Mode: DrawingModeTvre)s

R L T T e T R }
{ This procedure selects drawing modes for a color-mapped CRT. }
L T T T e TR T }
const
SetDrawingMode= 10523 {mnemonic better than madic number}
var
DrawMode: array [1,+1] of inteders { A\ This is all stuff that 1}
Rarrav: array [1,411 of realj { * 1is needed by the ¥
Error: intedersd {7/ "putput.esc" procedure, }
bedgin {procedure "DrawingMode"?
case Mode of {\ ¥
Dominant: DrawModel1l:=01% { N\ Convert DrawingMode enumerated ¥
NonDominant: DrawModeli1l:=11} { \ tvpe into the appropriate ¥
Erase: DrawModel[11:=23 { / wvalue for DUTPUT.ESC procedure., ¥
Complement: DrawModel1]:=33 { / }
endi {casel} {7/ }
putput_esc{SetDrawindModesl +»0sDrawMode sRarrav+Error}y {set it}
if Error<»0 then writeln(’Error ‘+Errorz0+’ in procedure "DrawindgMode", ')}
ends {procedure "DrawindgMode"}

The global TYPE declaration for DrawingModeTyre must also be changed:
DrawindgModeTvre = (Dominants Erases Complements NonDominant)s

“Draw’’ has been changed to ‘“‘Dominant”’” to make it consistent with references to the non-
dominant mode.

Color Graphics

Dominant Writing

Dominant writing is the easiest to understand. When DGL has a new value to write to a location in
the frame buffer, whatever is already in the frame buffer is overwritten, and thus lost. The system
wakes up in the dominant mode.

Non-Dominant Writing

All the techniques described up until now have dealt with dominant writing to the frame buffer. In
the dominant writing mode, the color selector is written directly to the color map, and overwrites
whatever is currently in the frame buffer. In non-dominant writing, a bit-by-bit logical-or is per-
formed on the contents of the frame buffer and the table entry selector value being written to the
frame buffer. Thus, if color selector 1 is written to a buffer location that has already been written to
with color selector 6, the buffer location will contain 7, but writing color selector 2 to a buffer
location that has already been written to with color selector 6 will not change the contents.

Erasing

Erasing is a fairly simple concept in frame buffers that are a single bit deep. You just restore the
background by setting the portion of the frame buffer you wish to erase to 0. The concept is a
little more complex in frame buffers with more depth (such as a color computer.) At the simplest
level, you can simply set the contents of the frame buffer to the background color, using a call to
CLEAR_DISPLAY.

It is also valuable to erase a single line. This can be done by setting the drawing mode to erase, and
then re-drawing the line you wish to erase. In the erase mode, the erasure is done non-dominantly.
This means that the bits which have a 1 value in the current color table entry selector are cleared to
0 in the frame buffer entries that are modified by the line drawn in the erase mode. For example, if a
table entry selector of 5 is used to erase the a line written with a table entry of 5, the frame buffer
entries are returned to 0. If, however, the same line crosses a frame buffer entry of 7, the result is a
value of 2 (only the bits set in 5 are cleared to O by the operation).

The only method that insures erasing a line is to select the dominant writing mode and draw over
the line in the background color. This is done with a table entry selector of O (for the frame buffer
background) or a table entry selector equal to a ‘‘local background,” if the line you are trying to
erase is drawn across an area filled with a color other than the background color.

Complementary Writing

The complementary drawing mode is provided for operations (such as making your own cursor)
that need to put an image on the screen that is always visible, but that can also be taken
off the screen without damaging the background. On a color computer, the concept of a
complementary pen is extended to deal with the bit values (n) in the color map. In the non-
dominant mode, the bit pattern represented by the table entry selector will be exclusively-ORed
with the contents of the frame buffer.

The complement occurs only for the bits which are one in the table entry selector. Thus an entry
selector of —6 would complement bits 1 and 2 of the frame buffer. If a 1 exists in a frame buffer
location and a line is drawn over it with entry selector 6, a 7 will now be in the location. Writing
over the pixel with the same table entry selector will return it to a 1.

5-31

5-32 Color Graphics

Making Sure Echoes Are Visible

It is important to understand that the complementing is of the frame buffer, not the color map.
You are responsible for making sure that the complemented frame buffer values are visible
against one another. Be careful of placing the same color in two locations on the color map that
are complements of one another. If you pick one of them as an echo color and then try to use
the echo over an area filled with the other value, you will not be able to see it.

Drawing Modes and the Frame Buffer

Let’s try to make things a little more concrete. We will look at a 9 X 9 section of a frame buffer,
and draw some lines in the various modes, with different table entry selectors. Starting in the
dominant mode, if we draw a cross with a table entry selector of 5, and then put a square with a
table entry selector of 7 down on top of it, the following frame buffer results:

| ®|B|B|S5S|B|B|B|O

Y
A\
\\
Q
[€)]
\
\N}
\Y)
[\N]

Dominant Writing to the Frame Buffer

Color Graphics 5-33

If we then set the erase drawing mode and use a table entry selector of 5 to try to erase the
horizontal element of the cross, we end up with two pixels of the horizontal element not erased,
since the square had changed those locations to a 7, and the erase mode only erases the bits
that are set to one in the table entry selector. The frame buffer ends up looking like this:

|| |5 |80 |06 |06

0 0 \N] (A BN
S \N] \N] (AN BN

~N

)

Ul

\]

N

\)
S 0 8 \N] 0

| (B |00 |5|0|0|0 |0

Erase Writing to the Frame Buffer

If you want to set a line to the background color, do it in dominant mode, with a table entry
selector (in SET_COLOR) of 0.

5-34 Color Graphics

Now, clear the frame buffer, and let’s take a look at non-dominant writing. Non-dominant
writing ORs the contents of the frame buffer with the table entry selector. Let’s put the cross and
the square in the frame buffer, again, but this time we will use non-dominant mode, and a pen
selector of 2 for the square. The cross will be written first, and then the square. The following
frame buffer results: '

\N]
\\}
A\
[\
ul
(\N}
(\
\N}
[\N]

B | B|2 (86|56 |2 0|06

SIS |75 |5 |5}|72]|5]°5

%
|2 |2]|7 |2 |2 |08]|86
%
@

Q| B|B|5 |0 |0 |08 |0

Non-Dominant Writing to the Frame Buffer

Now let’s try some complementary writing to the frame buffer we got from the non-dominant
writing example, above. We will draw over the horizontal line, using a color table entry selector
of 7. The first time, we get the following:

| |8 |B|5|0 |0 |0

B |@8|2|B|5|0 |2 |06 |6

22|82 |22 |82 |2

B | B2 |B]|5|0 |2 |0 |06
v||(2|2 |7 |2 |2 |00
Bl |B|B |5 |0 |0 |0 |0
| B|lB|B|5|0|8 |0 |0

Complementary Writing to the Frame Buffer

Color Graphics

If we do it again, we end up with this:

||V |B |5 |0 8|9
V|| |B |5 |8 |0 |8 |06
g ||2|12|7|2|2]|06 |0
BivBl2|6|5|0|2|0]|0

a
ul
~N
an
(4)]
[@)]
~N
an
an

B|B|2|06|5|1686|2 0|06
8| l2a|2]|72]|2|2]86
v |0 |0O S |8 |80 |06
Q| 8| | B[S | B |O|B |0

More Complementary Writing to the Frame Buffer

Notice that the first line is highly visible (assuming the color map contents do not produce the
same colors for several entries in the frame buffer), but that the frame buffer is restored to it’s
original values after the second operation. This will not be true if a line is drawn through the
area before the complementary line is “undrawn.” Always undraw complementary lines before
you try to add things to the frame buffer.

Special Considerations

The drawing modes mentioned above are only available on frame buffers. There are some
special interactions with various primitives in the graphics system that need to be taken into
consideration.

Text

When text is written in the complementary mode, gaps will be produced in the characters,
wherever the character intersects itself. This includes crossovers and endpoints of lines that
overlap. Readability of the text can be heavily impacted by this. Make sure you want the result
before putting GTEXT calls while the drawing mode is complementary.

Polygons

Device independent polygons (INT_POLYGON and POLYGON) are written to the frame
buffer using the current drawing mode. Device dependent polygons (INT_POLYGON_DD and
POLYGON_DEV_DEP) ignore the drawing mode. Make sure you use the correct one if you
want the drawing mode to work.

5-35

5-36 Color Graphics

Effective Use of Color

At the beginning of this chapter, it was pointed out that color is a very powerful tool, and that it
is also easy to misuse. While it is beyond the scope of this book to provide an exhaustive guide
to color use, a few comments can be made on using color effectively.

This section will deal with seeing color first, to lay the groundwork. This is followed by a
discussion on designing effective display images, since effective color use is almost impossible if
the image is fundamentally unsound.

After laying the groundwork, effective color use is discussed, from both the objective and
subjective standpoints.

Seeing Color

The human eye responds to wavelengths of electromagnetic radiation from about 400 nm to
about 700 nm (4000 to 7000 angstrom). We call this visible light. Visible light ranges from violet
(400 nm) to red (700 nm). If all the frequencies of visible light are approximately equally mixed,
the result is called white light.

The eye’s ability to discriminate color is reduced as the light level is reduced. This means that
the variety of colors perceivable at low light levels is smaller than the variety at higher light
levels.

The eye is most sensitive to colors in the middle of the visible spectrum, a yellow-green color.
The eye is least sensitive to the shorter wavelengths, which are at the blue end of the spectrum.
Sensitivity to red is between that of yellow-green and blue. Two things seem to be associated
with the sensitivity of the eye to various colors:

® The eye can distinguish the widest range of colors in the yellow-green region, and the
smallest variety of colors in the blue region.

® The eye is most sensitive to detail in the yellow-green region.

Why and how any of the above works is explained by color theorists. There are a large number
of theories of color, and all of them work for explaining the specific phenomena the researchers
were studying when they developed the theory, but none of them seem to be able to explain it
all. The list of references at the end of this chapter include several on how vision works.

It’s All Subjective, Anyway

One of the reasons that there are so many color theories is that no two people seem to perceive
color the same way. In fact, the same person will many times perceive color differently at
different times. In addition to the physiological and psychological variables in color perception,
many environmental factors are important. Ambient lighting and surrounding color affect the
perceived color tremendously.

At this point, it will be well worth your time to compile and execute the program “COLOR”,
from the “DGLPRG:” or “DOC:” disc. Try setting the background color to each of the pen
colors, and see how different the foreground colors look against the different colors. In some
cases, the lines even look slightly different from the filled rectangles of the same color. It turns
out that the size of a color sample affects how it is interpreted, too.

Color Graphics

The subjectivity of color, and the importance of background color in interpreting colors is the
whole reason the program “COLOR” is provided. The color selector program lets you select
the background color and provides both filled areas and lines due to the effect of the back-
ground color and the size of the color sample on the perception of color. The only way to insure
a set of colors works well together is to try it and see.

Mixing Colors

If two distinct audio tones are played simultaneously, you will hear both of them. If the same
area is illuminated by two or more different colors of light, you will not perceive the original
colors of light, but rather a single color, and it will be not be one of the original colors. What you
will perceive is called the dominant wavelength.

The CRT uses three different colored phosphors (Red, Green, and Blue) and mixes various
intensities of the resulting lights to produce one of 4096 colors at any point on the CRT. What
you actually see is the resulting dominant wavelength. This is an additive color system.

Mixing with pigments is a little different. Pigments in inks and paints absorb light. The idea with
pigments is to subtract all but the color you want out of a white light source. This is a subtractive
color system, and the primary colors are cyan, magenta, and yellow.

The different mechanisms for mixing additive and subtractive colors make it difficult to repro-
duce images created with additive colors (like a CRT) in a subtractive medium (like a plotted or
printed page.) Photographing the CRT is the best method currently available for color hard
copy. This problem is discussed in more depth at the end of this chapter under ““‘Color Hard
Copy.”

Designing Displays

While the design of displays is not really a color topic, a few words about it are in order before
we get into the effective use of color. If the design of an image is fundamentally unsound, all the
good color usage in the world is not going to help it.

Whenever you put an image on a CRT, you have created a graphic design. The design will
either be a good one or a bad one, and if you know this, you have automatically increased your
chances of creating a good design. If you are going to be creating a lot of displays, either in a lot
of programs or in a single large program, you need a graphic designer. Many people have a
natural talent for graphics - an ability to look at an image and tell whether it is graphically sound
or not. If you don’t have that talent (or feel you could use some help) there are two courses of
action that might be productive for you; you can hire a graphic designer or become one.
Renting one is expensive and becoming one is time-consuming, but if you are trying to com-
municate with users, you have to understand graphic design. While getting a degree in graphic
arts may be impractical for some programmers, a course or two in the field will prove very
useful if you do very much programming.

While this book can’t turn you into a graphic designer, a few simple hints may help you on your
next program.

The most important thing in communicating with people is to keep it simple. Don’t try to
communicate the total sum of human knowledge in a single image. It is much more effective to
have several screens of information that a user can call up as required, than a single screen so
complicated that the user can’t find what he wants on it.

5-37

5-38 Color Graphics

Try to encode everything redundantly, in case one of the encoding methods fails. For example, if
you color code information, use positional coding (the location of the information tells something
about the nature of the information) too. Remember, the person reading the screen is probably
not the person who wrote the program, and even if you are writing the program for yourself,
you may forget how it works by the next time you try to use it.

Another important thing to remember is to be consistent. Always try to place the same type of
information in the same area of the CRT and use the same encoding methods for similar
messages. Don’t using flashing to encode important information on one display and then use
inverse video for the same thing seven displays into the program.

Objective Color Use

In spite of the subjectivity of color, there are some fairly objective things that you should know
about color. Some of the things that can be done with color don’t depend heavily on subjective
interpretation.

Color Blindness

A fact of life that it is dangerous to ignore is that some people are color-blind. The most
common form of color blindness is red-green color blindness (the inability to distinguish red and
green). Avoid encoding information using red-green discrimination, or these people will have
difficulty using the system.

Subjective Color Use

Choosing appropriate colors for a program to use can be tricky, and constitutes a significant
part of the job of a good graphic designer. In the final analysis, it is a largely a matter of trying
combinations until you come up with a set of colors that look good together. If your application
is complex, it will be well worth your while to consult with a graphic designer about the color
scheme and layout of information displays for your program. There are, however, a few fairly
fundamental things to remember in designing your programs.

Choosing Colors
First, and probably most important, is to use color sparingly. Color always has a communication
value and using it when it carries no specific information adds noise to the communication.

Use some method for selecting the colors - one of the best is a color wheel, similar to the one shown
in the section on the HSL color model.

e Try varying the luminosity or saturation of a color and its complement (opposite it on the
color wheel).

e Try color triplets (three equally-spaced colors) and other small sets of colors equally-
spaced around the color wheel.

e Pastels (less than fully-saturated colors) tend not to clash.

Give careful attention to your background color. Remember that a filled area can become the
background color for a portion of the image on the CRT.

e [f you are using a small number of colors, use the complement of one of them for the
background.

e [f you are using a large number of colors, use a gray background.

Color Graphics

If two colors are not harmonious, a thin black border between them can help.

Use subtle changes (such as varying the saturation or luminosity of a hue) for differentiating
subtly different messages and major changes (such as large changes in the hue of saturated
colors) to convey major differences.

Most of all, think and experiment. The final criteria is ‘‘Does this display communicate the
message?’’.

Psychological Color Temperature

Temperatures ranging from cool to hot are associated with colors ranging from blue to red (ice
blue - fire red). This is actually the opposite of physical reality, where the higher the tempera-
ture, the shorter the wavelength (blue is a black body radiation of about 7600° K while red is
about 3200° K) but this is what people perceive as the relation between temperature and color.
This is probably because people very seldom deal with the high temperatures and associate the
blues with non-temperature related natural phenomena (oceans and ice). If you are trying to
portray temperature, electrical field strength, stress, or some other continuous physical system,
using the psychological color temperature can serve as a useful starting point for color coding
the values.

Cultural Conventions

When trying to use color for communicating, cultural conventions are useful. Red is widely
associated with danger in most western cultures, giving extra emphasis to a flashing red indica-
tor. By the same token, a flashing green indicator would be less effective for communicating an
out of range value in a system. In any specific application, itis important to understand the color
associations that are common for the group using the application.

5-39

5-40 Color Graphics

Reproducing Color Graphics
Color Gamuts

The range of colors a physical system can represent is called its color gamut. Color gamuts are
important when you want to convert between different physical systems, because the source
system may be able to produce colors the destination system cannot reproduce. An exhaustive
treatment of color gamuts is beyond the scope of this book. However, here are some rules of
thumb:

® The color gamuts for CRTs and photographic film are not the same, but are fairly close. If
you are lucky, you can photograph the CRT and catch it on film. It may take more than
one exposure, so be careful and bracket everything with several exposures.

® The color gamut for printing is significantly smaller than that of either photographic film or
of a CRT. The fact that you have a picture of a CRT does not mean you can hand it to a
printer and get a faithful reproduction of it.

® The color gamut of a plotter is much smaller than that of a CRT. You have to create images

with the limitations of a plotter in mind if you intend to reproduce them on a plotter (see
“Plotting and the CRT,” below.)

The different color gamuts available are not a problem unless you forget the differences and try
to act like all physical systems have the same gamut. Think ahead if you have to reproduce
images - it will save a lot a trouble.

Color Hard Copy

Color hard copy represents a translation between color systems, and many of the problems in color
hard copy arise from the fact that the color gamuts available to the CRT and the hard copy device
are different.

There are two basic ways to get a color hard copy of what is displayed on a color computer:

e Take a picture of the CRT.

e Re-run the program that generated the image with an external plotter selected as the
display device.

The first method is the easiest and can capture (usually) whatever is on the CRT, regardless of
what colors are used (see ‘“‘Color Gamuts,”” above.) The second requires setting up the color
map to match the pens in a plotter, and is not as likely to capture what you see on the screen.
Both methods are discussed below.

Color Graphics

Photographing the CRT

Photography is an art, not a science. Capturing images off a CRT is relatively straightforward,
but sometimes unpredictable due to the different color gamuts available for film and the CRT.
The following guidelines will provide a starting point. If your images are not “‘typical’”’ (whatever
that means) you may have to go back and re-photograph some of them. Many of the CRT
images in this book were captured using these guidelines.

e Use ISO 64 Color film. (Most of the color photos in this book were taken on Kodak

Ektachrome 64.)

® Set up your equipment in a room that can be darkened. It will have to be darkened for the
one-second exposure.

e Use a telephoto lens (the longer the better). This minimizes the effects of the curvature of
the CRT.

e Use a tripod.
® Darken the room and take a one-second exposure.
® Bracket the aperture around f5.6. (One stop above and below.)

Plotting and the CRT

There are two basic reasons the CRT is hard to capture on a plotter.
e The CRT is an additive color device and a plotter is a subtractive color device.
® The color gamut of the CRT is much larger than that of the plotter.

The conversion from additive to subtractive colors is not a huge problem if the plot is a simple
line drawing with few intersections and area fills. If the plot is complex, especially with lots of
intersections and overlapping filled areas, the plot is much less likely to capture the display
image accurately.

A possible technique described below purposely limits the color gamut of the CRT to give the
plotter some chance of capturing it.

To set up the color map and plotter to match one another:

® Set your background to white.

® Set up pens matching the color map colors in slots 1 through 8 in the same order they are
presented in the default color map listed under ‘‘Default Colors.”

® Use color table entry selectors from 8 through 15 in your drawings.

® Run the program with the color mapped CRT as the display device, modifying it as
necessary to produce the image you want on the CRT.

® Re-run the program with the plotter as the display device. You will need to subtract 8 from
the color table entry selectors to properly select the pens on the plotter.

While it is possible to get some idea of the plot that will be produced on the plotter, don’t be
surprised if they don’t look exactly the same. Colors on a CRT are different in source and form
from colors on a plotter, as described under ‘‘Seeing Color,”” above.

5-41

5-42

Color Graphics

Color References

The following references deal with color and vision. Texts that serve as useful introductions to
the topic are starred.

* Cornsweet, T., Visual Perception. New York: Academic Press, 1970

Farrell, R. J. and Booth, J. M., Design Handbook for Imagery Interpretation Equipment
(AD/A-025453) Seattle: Boeing Aerospace Co., 1975

Graham, C. H., (Ed.) Vision and Visual Perception New York: J. Wiley & sons, Inc., 1965
* Hurvich, L. M., Color Vision: An introduction. Sunderland, MA: Sinauer Assoc., 1980

Judd, D. B., Contributions to Color Science (Edited by D. MacAdam; 545) NBS special
publication Washington: U. S. Government Printing Office, 1979

* Rose, A., Vision: human and electronic. New York: Plenum, 1973

Listings of Example Programs

Appendix

Note

Examples that include files on “DGLPRG:” may require modification. If
your system was shipped on double-sided 3% inch discs, all of the example
programs are found on the “DOC:” disc. Statements such as $INCLUDE
*DGLPRG:FILE’$ should read $INCLUDE ’DOC:FILE’$,

Directory
AxesGrid:

BAR_KNOB:
BAR_KNOB?2:
CharCell:
COLOR:
CsizeProg:
DataPoint:
DrawMdPrg:
FillProg:
FillGraph:
GstorProg:
IsoProg:
JustProg:
LdirProg:
LOCATOR:
LogPlot:
MarkrProg:
PLineProg:
PolyProg:
SinAspect:
SinAxesl:
SinAxes2:
SinClip:
SinLabell:
SinLabel2:
SinLabel3:
SinLine:
SinViewpt:
SinWindow:

Shows visual impact of axes and grids.

Shows interactivity with one degree of freedom.

Shows interactivity with two degrees of freedom.

Relationship between characters and characters cells.
Demonstrates the color map.

Shows how to select character size.

Supplies the data for all programs whose names start with ““‘Sin”’.
How to specify drawing modes (draw, erase, complement).
Shows how to do hatched and dithered area fills.

Does a broken-line chart with the area beneath the curve shaded.
Storing and retrieving graphic images.

Isotropic scaling.

Label justification.

How to specify label direction.

Demonstrates interactive drawing with many types of graphics cursors.
Shows how to make logarithmic axes.

Uses markers to highlight data points on a curve.

Demonstrates the POLYLINE procedure.

Using POLYGON procedure.

Defining aspect ratio of plotting device.

Unclipped axes.

Labelled, clipped axes.

Clipped axes.

Single-sized, horizontal letters.

Labels with sizes and directions specified.

Bold main title.

No viewport, no window, not much information.

Data displayed inside framed viewport.

Data mapped into user window.

A-1

A-2 Listings of Example Programs

AxesGrid

prodram AxesGrid(outrPut)i

import ddgl_libsdgl_inai {det drarhics routines}
const
CrtAddr= 33 {address of internal CRT}
ControlWords= 03 {device controli O for CRT}
tvre
RoundType= (Upy Downy Near)s {used by function RoundZ2}
var
Ratio: reals
VirtXmaxs WirtYmaxs: reali

LeftEddes RidhtEdde: reali
BottomEdges» TorEdge: reali

ClipXminy ClipXmax: reals
ClirYminy Clir¥Ymax: reals
ErrorReturn: inteder) {variable for initialization outcomel}

SPATES (R EEAENER RN RN R RN RN RR RN IR RRRR RN R RN AR AR AR RRRRRRRRRRRARRRRRRR]}
procedure Framei

L L L L T T e —————————— }
{ This procedure draws a frame around the current window limits, ¥
e e e e m e ————— }
const
Windowlimits= 4301 {mnemonic better than magic numberl
tyre
LimitOrder= (Kminy Kmaxs Ymins¥max)i
LimitTvpe= array [LimitOrder] of realj
var
Pac: packed array [1+41] of chari { \ These are the sundries }
Tarrav: array [1,+11 of inteders { \ needed by the call to ¥
Window: LimitTyrel { / the DGL procedure }
Error: intedersi { /7 "ina.ws", ¥
bedin {bkody of procedure "Frame"}

ing.ws{WindowLimits+04+0Qs4+PacslarravWindowsError)s

if Error=0 then bedin
move (WindowlKminl iWindowlYminl) i {move to lower left corner}
line(WindowlXminl Windowl¥max1)3i {draw to upper left corner?’
line(WindowlXmax]WindowlYmaxd)3 {draw to upper ridght corner}
line(WindowlXmax]Windowl¥minl) i {draw to lower ridht corner}
line(WindowlXminl sWindowl¥Ymind) {draw to lower left corner}

end {Error=07}

else writeln(‘Error '+Error:Q,’ occurred in "Frame"’)}

endi {eprocedure "Frame"} {return}’

FPAdRd (R EERERRERR R R R RE R R RN R R R R R R RRRRRR RN R R R AR ERRRRERRRR R R RN RN}

procedure ClirLimit(Xmin,y Xmaxs Ymin» Ymax: real)i

e e e }
{ This procedure defines the four dlokal variables which specify where the }
{ soft clir limits are, }

bedin

Listings of Example Programs

if HKmin<Xmax then bedin {\ ¥
ClirXmin:=Xmin3 { A\ Force the minimum soft }
ClirXmax:=Xmaxi { \ clip limit in X to be ¥

end { \ the smaller of the two 1}

elee bedin { /X values passed into }
ClirXmins=Xmax i { / the procedure, }
ClipXmax:=Xmin3 { / b

ends§ { / H

if Ymin{Ymax then bedin {\ }
ClirYmin:=Ymini { A\ Force the minimum soft }
ClirYmax:=Ymax3i { \ clir limit in Y to be b

end { \ the smaller of the two ¥

else bedin { / Y values rassed into }
ClipYmin:s=Ymax3} { / the procedure, }
ClirYmax:=Ymini { 7/ }

end s’ {7/ }

endi

$Paget L EEEEEREEEERE RN R R R R R RE RN RN R R RR R RN R RN R R R RN RN FRRFRRRANH T

procedure ClipDraw(Xl,s Y1y X2 Y231 real)s

e e L L E T T T T T pupupu }

{ This procedure takes the endpoints of a liney» and clieps it. The soft }

{ c¢lip limits are the real dlobal variables Clipmin, ClipXmaxs ClieYmin, }

{ and ClirYmax, These may be defined throudh the procedure ClipLimit, }

e T L e T T T p———— }

label
13

tvre
Eddges= (LeftsRidghtsTorsBottom)i {rPossible eddes to cross}
OutOfBounds= set of Eddesi {set of eddes crossed’}

var
Outs0utls0ut2:00t0fBounds’
K Yo reals

T T L T T S P S }

procedure Code(X, Y: reali var Out: OutOfBounds)i

bedin {nested procedure "Code"}

Dut:=C13 {null set}

if x<ClipXmin then
else if x:ClirpXmax
if y<ClirYmin then

Out:=[left]
then Out:i=[ridht]s
Out:=0ut+lbottom]

{off left edde?}

{off right eddge?}
{off the bottom?}

else if v>ClirYmax then Dut:=0ut+ltorli {off the torP?}

end} {nested procedure "Code"}

R e L TR e T T ¥
bedin {body of procedure "CliepDraw"}

Code(X1,¥14+0utl)s
Code(X2Y24+0utl) s

while (Outl<>[1) or (Dut2{:[1)
if (Outi*Dut2)<>[] then

if Outi<>L] then

else Out:=0utZi
in Qut then bedin

if left

x:=ClipXmini
end {left in
else if right in

x:=ClipXmaxi
end

doto 13
Dut:=0uti

Dut?}

Dut then bedin

{right in Out?}

do bedin

{figure status of pPoint 1}
{fidure status of pPoint 2}

{loor while either

roint out of randel}

{if intersection non-nully no line}

{0ut is the non-empty

onel

{it crosses the left edgel
vaEY i+ (Y2-Y1) ¥ (ClipXmin-XN1)/(X2-K1)i{addust value of v arpropriatelv}
{new x is left eddel

{it crosses ridht eddel}
yisYVi+(Y2-Y1)*#(ClirXmax-X1)/(X2-X1)i{adiust value of v
{new % is right edge}

appropriately’

A-3

A-4 Listings of Example Programs

else if bottom in QOut then bedin

X =K1+ (KZ2-X1)*(CliPYmin-Y1)/(Y¥2-Y1)i{addust value of x arpropriatelv}

vi=ClirYmins
end {bottom in Out?}
else if top in Out then bedin

xe=X1+(X2-X1)*(ClirYmax-Y1)/(¥2-Y1)i{adiust value of x approrriatelv}

yi=CliPr¥Ymaxi
ends {tor in Qut?}
if Out=0utl then bedin
Kli=xi Y=y} Code(xs»ysBDutl}i
end {0ut=0uti?}
else bedin
HZi=x1 Y2e=v1i
endi d{else bedin}
endi {while?}
move(x1lsyl)s
line(x2:v2)3

Code{x sy Dut2) s

1: endi {procedure "ClipDraw"}
$rpades

function Round2(Ns M: real’ Mode:

{ e e e e o ————————————————————

{ This furmction rounds “N"

{ function

U
const

epsilon= 1E-103
var

Rounded: reali

Negdatives booleani

bedin
Nedative:=(N{0,0)}
if Nedative then bedin
Ni=abs(N)3
if Mode=Ur then Mode:=Down
else if Mode=Down then Mode:=Upi

RoundTvee)s

to the nearest This

works only when the ardument is in the rande of MININT. .MAXINT.

{it crosses the bottom eddel}
{new v is bottom eddel}

{it crosses the tor eddel

{new v is top edgel

{redefine first end Point}

{redefine second end Point}

{if we det to this Points the line...2
visiblesy so draw it}

{+v+is compPletely
{return}

{REEREREEERFRRRRR R RREE RN REERERERRERRRERRREEERFFRRERRRRRERRRRRRRR)

reali

“M"y according to “"Mode",

{roundoff error fudde factor}

{temporary holding area}l
{flag: "It is nedative?"}
{body of "Round2"}

{is the number negative?}

{work with a positive number}
{if number is nedatives ++4}

{+vesreverse up and downl

{should we round the numbers,}
{+eoleft on the number line?}

{+vvoridht on the number line?}

{vesto the nearest multirle?)

endi
case Mode of
Down: Rounded:i=trunc(N/M)*M;
Ups bedin
Roundeds=N/Mj
if abs{Rounded-round{Rounded)) ersilon then
Rounded:=(trunc{Rounded)+1.,0)*M
else
Rounded:=trunc{(Rounded)*M3j
end i
Near: Rounded:=trunc({N/M+M*0,5) %M}
endy d{casel

if Nedative then Rounded:=-Rounded}
RoundZ2:=Rounded’
end}

{reinstate the sign}
{assidgn to function namel
{function "Round2"}

Listings of Example Programs

$Paded {EFEREEFEREERRRER RN R R R RN AR RN R AR RN RR RN AR AR RN AR RN AR RN AR RN R T
procedure XaxisClip(Spacind: Location: real’ Mador: inteders
MadsizesMinsize: real)}

{ This procedure draws an X-axis at anvy intersection Point on the plotting 1}
{ surface. Parameters are as follows: ¥
{ Spacing: The distance between ticKk marks on the axis. ¥
{ Location: The Y-value of the X-axis. }
{ Madors: The number of tick marks to de before drawind a mador tick }
{ mark, If Mador=5, every fifth ticKk mark will be mador. }
{ Madsize: The lendths in world units: of the mador ticKk marks. }
{ Minsize: The lendthy in world unitsy of the minor tick marks. }
el e it ¥
var

Wi reals

SemiMaJdsizes realj

SemiMinsize: realj

Counters: inteder? {Keerps track of when to do mador ticks?}
bedin {body of procedure "XaxisClip"}

SemiMadsize:=MaJjSize*0.,53
SemiMinsize:=MinSize*0.,51
Counter:=03 {start with a mador tick}
ClirDraw(CliPXminsLocationsClirXmaxsLocation)s
Ke=Round2(CliPXmins+Spacing*Mador+Down)i {round to next lower mador}
while X<=ClipXmax do bedin
if Counter=0 then ,
ClipDraw(X:Location-SemiMadsizesXsLocation+SemiMadsize)
else
ClirDraw(XsLocation-SemiMinsizesXsLocation+SemiMinsize)s
Counter:=(Counter+i) mod Madori
Ki=X+SpPacingsi
endi {while?
ends {procedure "XaxisCliep"}
FPaded {HEREEEAERERRRRERRRERRERRR AR AR R RN RA R AR RERRRR R AR RRRFRRRER}
procedure YaxisClir(Spacings Location: reali Mador: inteders
Madsizes Minsize: real)s

{ This procedure draws an Y-axis at anv intersection point on the eplotting 1}
{ surface, Parameters are as follows: }
{ Spacingd: The distance between ticK marks on the axis. }
{ Location: The X-value of the Y-axis, }
{ Mador: The number of tick marks to de before drawind a mador tick H
{ mark, If Mador=5, every fifth tick mark will be mador, ¥
{ Madsize: The lendthy in world unitss of the mador tick marKks, ¥
{ Minsize: The lendgths in world unitss of the minor tick marKs. H
e e e ¥
var

Y reals

SemiMinsize:s reals’

SemiMadsize: reals

Counter: intederi {keers track of when to do mador ticKs}
bedin {body of Procedure "YaxisClip"}

SemiMadsize:=Madsize*0,51
SemiMinsize:=Minsize*0,5}

Counter:=03 {start with a mador tick}
ClierDraw(LocationsClirYminsLocationsClirYmax)i
Yi=Round2(ClipYminsSpacing*MadorDown)i {round to next lower mador}

A-5

A-6 Listings of Example Programs

while Y4=ClipYmax do bedin
if Counter=0 then
ClipDraw(lLocation-SemiMadsizesYsLocation+SemiMadsize Y)
else
ClirDraw(Location-SemiMinsize Y Location+SemiMinsize YY)
Counter:=(Counter+l) mod Madjori
Yi=Y+5pacing}
endi d{while}
endi {procedure "YaxisClip"}
SPaded [EEEEERRERERER RN R RN R AR R RN R R AR RN R RRRRRRR R R RRRRRRERRRRRRRNER)
procedure Grid{(Xspacings¥spacingsXlocYYlocKX: real? Xmador, ¥Ymador: inteder?
Kminsizes Yminsize: real)s

{ This procedure draws a drid on the plotting surfaces with user-definable 3
{ minor tick size, Parameters are as follows: }
{ Xspacing: The distance between tick marKs on the X axis. }
{ Yspacing: The distance between tick marks on the Y axis, ¥
{ XlocY: The X-value of the Y-axis, ¥
{ Y1ocK: The Y-value of the X-axis, +
{ XminsAmax: The left and ridght ends of the X-axis» respectively, H
{ Kmador, The number of tick marks to de before drawing a mador tick +
{ YmadJors: mark, If Mador=D, every fifth ticK marKk will be mador. ¥
{ Kminsize: The lendths in world unitsy of the X minor tick marKs, +
{ Yminsize: The lendths in world units, of the Y minor tick marks., }
{ m m e e e e e e e e }
var
K Y reali

Kstarts¥start:reals

KsemiMinsize: reals

YsemiMinsize: reals

Counter: inteders
begin {body of procedure "Grid"}
HsemiMinsizes=Xminsize*0Q,5}
YsemiMinsize:=Yminsize*(Q,5}
Hetart:=Round2(CliPXminAspacing*¥madorsDown)i {round to next lower mador}
Ystart:=Round2(ClipYmins¥spacing*YmadorsDown)i {round to next lower mador}
{===== Draw vertical mador ticks SZ=ZSZCT=ZZSSCZSSSCEICSEEZSESSISZSSSSSSIsmsssssssss=d
Ki=Xstarti
while X<=ClirXmax do bedin

ClipDraw(X »ClirYmin»XsClirYmax)i

Ki=X+Xspacind*Xmador}

{===== Draw horizontal mador ticKks ===ssssssssssssscscc==czzsszsssszzs==zzzzax}
Yi=Ystart}
while Y<=ClirYmax do hedin
ClirDraw(ClirXmins¥sClirXmax YY) i
Yi=Y+Ysrpacing*Ymador}
ends

Listings of Example Programs

{=z==== Draw vertical minor ticKks ==========zz=z==zzz=zz=sS==S=-=sszsssz=c=ss==s==z=3=}
Ki=Kstarti
Counter:=03
while X<=ClirXmax do begin
if Counter<>0 then bedin
Yi=Ystart)
while Y<=ClipYmax do bedin
ClirDraw(X¥¥Y-YB8emiMinsize {s¥+¥SemiMinsize)s
Yi=¥+Yspacingi
endi {while ¥Y<=ClirYmax}
endi {counters{:07}
Counter:=(Counter+l) mod Xmadorj
Ki=X+Xspacings
endi {whilel}
{=z==z==z Draw horizontal minor ticKs s====ss=sssccocsos-oSS=S=SSSSsSSZsZ2=S=SSSSS=zss)
Yi=¥starti
Counter:=03
while ¥Y<=ClirYmax do bedin
if Counter<{>0 then bedin
Hi=Xstarti
while X{=ClipXmax do bedin
ClirDraw(X-XSemiMinsize Y 1 X+XSemiMinsizeY)i
Ki=K+Xspacingi
endi {while K<=ClieXmax}
endi {counters< 07}
Counter:=(Counter+l) mod Ymadori
Yi=Y+YspPacingi
endi {while}

endsi {procedure "Grid"}
$PATRY (R ERREREE R RRER N R RN R RE RN R RR R R R R R RRRRRE R RN RRR AR RSN RR)
bedin {Pprodram "AxesGrid"}

drarhics.init}
display.init{(CrtAddrsControlWordsErrorReturn)i
if ErrorReturn=0 then begin
{::: DO Program Setup :::::::::::::::::::::::==============:=:========::===}
Ratio:=511/3893
set_aspect{Ratios1)}
if Ratio>1 then bedin
YirtXmax:i=11
YirtYmax:=1/Ratioi
end
else bedin
VirtXmax:=Ratio}
VirtYmax:=13
end?
{=== Upper left viewrort SEZZZZCZZSESESSTISSISECISISSSSISSSSSISIZSSISSSISSIs=IssZzzz=s)
LeftEdde:=03
RightEdge:=0,4B*Virtxmaxi
BottomEdde:=0,52#%VirtYmax}
TorEddes=VirtYmaxs
set.viewrPort{lLeftEddeRightEdde BottomEdde TorEdde)
set.window(0,80,0,40)1
Frames
ClipLimit(080,0,40)3
KaxisClip(1:0,5:241)3
YaxisClir(14+0454241)3

A-7

A-8 Listings of Example Programs

{=== Ueper right viewpprt =SS SS=S =SS SSSSSSSSCSCSCSSZSSSSCSSSTECSSCINITTEISSTITRD
LeftEdge:=0,32*%VirtXmax}
RidghtEddes=Virt¥maxi
BottomEdde:=0,32%VirtYmaxsi
TorEdde:=VirtYmaxi
set_viewport({LeftEdde RightEdgesBottomEdde TorEdde)
set.window(Q B0 ,0,40)3
Framej
ClirLimit (0 +80,0,40)%
Grid(S5+5+0404+44441,0.8) 7
{::: Lowe]‘ left Uiewport s T L NN N AR TR RS CSCSCEC oSS EZTEI==ZE==Z=Z=Z=====
LeftEdde:=03
RightEdge:=0,48%VirtXmax?
BottomEdde:=03
TorEdde:=0.,48*VirtVYmaxi
set_viewport(LeftEddesRightEddeBottomEdde »TorEdde)
set_window(080,0,40)3%
Framej
ClirLimit (080 4+0,40)3
Grid(2+140,0,10,104+0,001,0,001)3
{=== Lower right viewpprt =sssssS=-S=S=S=-=-=-=C=z=2CCC T CCSTNSSRESISISISSSSSTESD
LeftEdge:=0,32*%VirtXmaxi3i
RightEdde:=VirtXmaxi
BottomEdde:=03
TorEdde:=0.,48%VirtYmaxii
set.viewport(LeftEddeRightEdde:BottomEdge TorEdge)
set.window(0,80,0,40)1
Framesj
ClirLimit(0Q+80,0,40)3
KaxisClir(140,+3,2+1)1%
YaxisClir(140:3:2+1)3
KaxisClir(1+40+39241)3%
YaxisClir(14+80+5:291)1%
Grid(10,1040,0,141924+2)3%
endi {ErrorReturn=07}
drarhics_termi
end. {prodgram "AxesGrid"}

Listings of Example Programs A-9

BAR_KNOB

$ucsdsdebugs
prodram Test (KevboardsoutPut)i
import ddl_varssddl_types,dgl_libsddl_inqaj

tvee
States= (On +0FF) 3
DrawMode= (Draw+ErasesCompyNonDom) 3

const
FS= chr(28)}
BS= chr(B)3
us= chr(31)3
LF= chr(10)}
CR= chr(13)}
Q= "R
Q1= ‘q'3
Underline= chr{132)3
Ind_off= chr(128)3
Inu_0On= chr(129)3
MinBarY= 01
MaxBarY= 1003
MinBarX= 1801
MaxBarX= 220%
IncDelta= 0,134

var
Error_num: inteders
IsTempInt: intederi
Level sLastlLevel: reali
Delta: reali
CharWidthsCharHeidht: reali
Character: charj
Dones booleans
kevboards texts
TempString: Gstring2553

FPaged {HEEREERERERRRR R AR RN RN RN RN R R R R RN RRRRRERE RN RR R R RRRE R
rrocedure GrarhicsDisplavy(State:States {On/0ff})3
const

GrarhicsDise= 10303
var

Errorsinteders

SwitchArrav:iinteder)

Dummysreals
bedin {procedure GrarhicsDisrlav}
case State of

On:SwitchArravi=13

Off:SwitchArravi=03
endy {case State of}
outrut_esc(GrarhicsDisps1+0+8witchArray sDummy+Error) 3
if Error <> 0 then

writeln (‘Error ‘sError:ls’ encountered in GraphicsDisplav’)}
endi {procedure GrarhicsDisrlav}

A-10 Listings of Example Programs

FPaded {REEEEREEERRERERRERREEREERRRR R R R RRR RN RRR RN RR AR R RN RRERRRR)
procedure AlrhaDisplav(State:States {0On/0ff})3
const
AlrhaDisp=10313
var
Errorsinteders
SwitchArraviinteder)
Dummy:reals
bedin {procedure AlrhaDisplav}
case State of
On:SwitchArrav:=1i
Off:SwitchArray:=03
endi {case State of}
outPut_esc(AlrhaDisp+14+04SwitchArray »DummysError) J
if Error <> 0 then
writeln (‘Error ‘sError:ils’ encountered in AlrhaDisplav)i

end i {procedure AlrhaDisplar}

FPAded LR EERREREE AR R R RN R R RN AR AR RN R