/A cackars

User’s Guide for the Graphical User Interface

MC68020/030/EC020/EC030
Emulators/Analyzer,
(HP 64748 and HP 64747)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1991, 1992, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries

UNIX (R) is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 64748-97001, April 1991
Edition 2 64748-97005, July 1991
Edition 3 64748-97007, March 1992
Edition 4 64748-97010, August 1992
Edition 5 64748-97013, December 1993
Edition 6 64748-97016, March 1994

Safety, and Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

\\

The HP 64747 and HP 64748 Emulators

HP 64700
Card Cage

HP 64748/7

Address
sunhols

Opcode or Status

time count

Pr1demo+0000000C
Prog ldemo. Loop
Dldeno,Cmd_Input
Prdemo+00000010
Pr|demo+00000012
+005 Prldemo+Q0000014
1006 Prldemo+00000016
+007 Dldemo,Cmd_Input
4008 Prldemo+00000018
+009 Prldemo+Q000001A
4010 Prldemo,Call_Int
+011 Pridemo+QQ00001E
4012 Proldemo, EndLoop

+013 ProglInt_Cmd
4014 handle_+00000002

0 ==t symbols on

EX
090019FF BTST

103919FE MOVE.B
00000000 $00--
00000000 30000
05000000 $0500
66000000 BNE.W
00060000 $0006
00060000 $00--
60000000 BRA,W
O00E0000 $000E
61000000 BSR.W
000CO000 $000C
BOE40000 BRA,B
0CO00000 CMPILB
00410000 $0041

STATUS: MBBO20--Rurning user program

pod_cmd set perfinit perfrun

mnemonic w/synbols relative
pz.mo e
Didemo.Cnd_Input,D0 160 n3
supr data byte wr 120 n3
supr prgm long rd 120 ng|
supr prem word rd 240 n3
Pridemo.Call_Int 120 ng
supr prem word rd 120 n3
supr data byte rd 120 ns|
Praldemo, EndLoop 120 |
supr prgm word rd 200 ns|
Progl Int_Cmd 120 |
supr prgm word rd 160 ns|
Progldemo, Loop 120 |
#541,00 180 3|
supr prgm long rd 120 |
Enulation trace complete______ LI
perfend —--ETC——

68020/030/EC020/EC030 Emulator

N
A\

Demo Target System

HP 9000 Series
Host System

Description

The HP 64747A emulator supports the Motorola 68EC030 up to 40 MHz. The HP
64747B emulator, when used with the HP 64748C Emulation Control Card,
supports the Motorola 68030. The HP 64748A/64748D emulator supports the
Motorola 68020 and 68EC020 microprocessors up to 33 MHz. The only difference
between the HP 64748A and HP 64748D is that the HP 64748D can accept
installation of 4-Mbyte SIMMs in its probe sockets and the HP 64748A cannot.

Emulator Control Card 64748B Control Card 64748C
64748 (68020/EC020) Complete support. Complete support.
64747A (68EC030) Complete support. Complete support.

64747B (68030/EC030) Only 6BEC030 support. Complete support.

The emulators plug in to the HP 64700 instrumentation card cage and offer 80
channels of processor bus analysis with the HP 64794 or 64704A emulation-bus
analyzer. Flexible memory configurations are offered from zero through two
megabytes of emulation memory. High performance download is achieved through
the LAN or RS-422 interface. An RS-232 port and a firmware-resident interface
allows debugging of a target system at a remote location.

For software development, the HP AXCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard
C compiler, assembiler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.

If your software development platform is a personal computer, support is available
from several third party vendors. This is provided through the HP 64700’s ability to
consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive real-time
debugging in-circuit or out-of-circuit.

Features

HP 64748A/64748D

» 33 MHz active probe emulator
» Support for MC68020 and MC68EC020 (probe adapter required for
MCG68EC020)

HP 64747A

* 40 MHz active probe emulator
e Supports MC68EC030
e Supports burst and synchronous bus modes

HP 647478

* 40 MHz active probe emulator
* Supports MC68EC030 and MC68030
e Supports burst and synchronous bus modes

Both Emulators

* Symbolic support

» Execution breakpoints

e 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package

» Optional adapter for PQFP

» Background and foreground monitors

» Simulated 1/0O with workstation interfaces

e Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex
File formats directly. (Symbols are available with IEEE-695HReEOMF
formats.)

» Multiprocessor emulation - synchronous start of 32 emulation sessions - cross
triggerable from another emulator, logic analyzer, or oscilloscope

» Coprocessor support - allows display and modification of FPU registers.

» Demo board and self test module included

Vi

Emulation-bus analyzer

80-channel emulation-bus analyzer

Post-processed dequeued trace with symbols and source lines (the PC interface
trace listing contains source line numbers)

Eight events each consisting of address, status and data comparators

Events may be sequenced eight levels deep and can be used for complex
trigger qualification and selective store

Emulation memory

Several memory configurations can be obtained (from 256 Kbyte to 8 Mbyte)
by installing optional memory modules on the emulation probe

4 Kbytes of dual-port memory available if you use the background monitor

(this 4Kbytes allows emulator accesses at full speed without wait states, except
during synchronous and burst modes in the MC68030/EC030)

Mapping resolution is 256 bytes

HP 64748 (MC68020):

No wait states out of dual-ported memory up to 33 MHz

No wait states out of target memory

No wait states out of emulation memory up to 25 MHz

1 wait state out of emulation memory above 25 MHz

HP 64747A (MC68EC030), and HP 64747B (MC68030/EC030):

No wait states for target system accesses up to 25 MHz

Three-cycle asynchronous or synchronous target accesses and two-cycle burst
accesses above 25 MHz

Dual-port/monitor memory matches target system access speeds

Three-cycle asynchronous or synchronous emulation memory accesses and
two-cycle burst accesses at all speeds.

vii

In This Book

This manual covers the HP 64748 and HP 64747 emulators. All information in the
manual applies to both emulators unless it is marked with the processor name
(MC68020, MC68EC020, MC68030, or MC68ECO030).

Part 1, “Quick Start Guide,” tells you how to start using the emulator.

1. Getting Started
2. Solving Quick Start Problems

Part 2, “User’s Guide,” describes how to use the Softkey Interface to perform a
variety of tasks.

. Using the Emulator/Analyzer Interface

. Using the Emulator

. Using the Emulation-Bus Analyzer

. Making Coordinated Measurements

. Making Software Performance Measurements

. Configuring the Emulator (to be performed before you run a program in
emulation)

9. Solving Problems

coO~NO O W

Part 3, “Reference Guide,” provides detailed information on emulator functions,
commands and environments.

10. Using MC68030 Memory Management

11. Emulator Commands

12. Emulator Messages

13. Setting X Resources

14. The SPARCsystem Interface

15. Microtec Language Tools used with the Emulator
16. Specifications and Characteristics

Part 4. "Concepts Guide," discusses X Resources and the Graphical User Interface.

Part 5, “Installation and Service Guide,” shows you how to install and maintain the
emulator.

18. Installation and Service
19. Installing/Updating Emulator Firmware

viii

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance 4

The Softkey Interface 4

Softkey Interface Conventions 5

The Graphical User Interface 6
Graphical User Interface Conventions 8

The Getting Started Tutorial 11

Step 1: Start the demo 12

Step 2: Display the program in memory 14

Step 3: Run from the transfer address 15

Step 4: Step high-level source lines 16

Step 5: Display the previous mnemonic display 17
Step 6: Run until an address 18

Step 7: Display data values 19

Step 8: Display registers 20

Step 9: Step assembly-level instructions 21

Step 10: Trace the program 22

Step 11: Display memory at an address in a register 24
Step 12: Patch assembly language code 25

Step 13: Exit the emulator/analyzer interface 28

Solving Quick Start Problems

If the desired emulator interface won't start 30

If the text-based Softkey Interface won't start under X-Windows 30
If you can't load the demo program 30

If you can't display the program 32

Contents

Part 2 User’s Guide

3 Using the emulator/analyzer interface

Maximum Number of Windows 37
Activities that Occur in the Windows 37
Using Multiple Terminals 38

Starting the Emulator/Analyzer Interface 39

To start the emulator/analyzer interface 39

To start the interface using the default configuration 40

To execute a command file at interface startup 41

To see emulator/analyzer status before interface startup 41

To see emulator/analyzer status after the interface has started 42
To unlock an interface that was left locked by another user 43

Opening Other HP 64700 Interface Windows 44

To open additional emulator/analyzer windows 44
To open the high-level debugger interface window 45
To open the software performance analyzer (SPA) interface window 45

Entering Commands 46

To turn the command line on or off in the Graphical User Interface 46
To enter commands on the command line 47

To edit the command line using the command line pushbuttons on the Graphical
User Interface 48

To edit the command line using the command line popup menu 49
To edit the command line using the keyboard 50

Torecall commands 50

To execute a completed command 51

To get online help on commands 52

To display the errorlog 53

To display the eventlog 53

Using Special Features of the Graphical User Interface 54

To choose a pulldown menu item using the mouse (method 1) 54
To choose a pulldown menu item using the mouse (method 2) 55
To choose a pulldown menu item using the keyboard 56

To choose popup menu items 57

To place values into the entry buffer using the keyboard 58

Contents

To copy-and-paste to the entry buffer 58

To recall entry buffer values 61

To use the entry buffer 61

To copy-and-paste from the entry buffer to the command line entry area 62
To use the action keys 63

To use dialog boxes 63

Using display-control features of the Softkey Interface 67
Copying information to a file or printer 68

Exiting the Emulator/Analyzer Interface 70

To end a single window in the interface 70
To end the emulation session in all windows 71

Creating and Executing Command Files 72

Passing Parameters to Command Files 72

Using &ArG_IEfT in Command Files 73

Using UNIX Commands and Scripts with Command Files 73
Using Shell Variables with Command Files 73

Restrictions on Commands 74

Status Line Updates 74

Nesting Command Files 74

Pausing Command Files 74

Placing Comments in Command Files 75

Continuing Command File Lines 75

Specifying a Search of Several Command File Directories 75
To create a command file by logging commands 76

To create a command file by using a text editor 77

To execute (or playback) a command file 78

To nest command files 79

To pause command file execution 80

To add a comment to a command file 81

To pass parameters to a command file 82

To increase flexibility of command files by using &ArG_IEfT 84
To specify the order of searching several command file
directories (HP64KPATH) 85

Xi

Contents

Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the high-level debugger 87
To forward commands to the software performance analyzer 88

Accessing the Terminal Interface 89

To display the Terminal Interface screen 90

To copy the Terminal Interface screen contents to a file 90
To enter Terminal Interface commands 91

To get help on Terminal Interface commands 93

Accessing the Operating System 94

To set environment variables 94
To enter UNIX commands 94
To display the name of the emulation module 96

Using the Emulator

The Emulator And Its Applications 98

The demo Application 99
To build programs 99
To configure the emulator 101

Loading and Storing Programs 102

To load a program 102

To load the demo program 104
To store a program 105

To edit files 106

Using Symbols 109

To load a symbol database 110

To display global symbols 111

To display local symbols 112

To display the parent symbol of a symbol 114

To copy and paste a full symbol name to the entry buffer 115

To enter a symbol 116

To display the current directory and current working symbol 117
To change the directory context 118

To change the current working symbol context 118

87

Xii

Contents

Accessing Processor Memory Resources 120

To display program data structures 120

To display only source lines 122

To display intermixed source lines 123

To display symbols without source lines 124
To display absolute addresses 125

To display memory in byte format 126

To display memory in word format 127

To display memory in long word format 128
To display memory in mnemonic format 129
To return to the previous mnemonic display 130
To display memory in real number form 131
To redisplay memory locations 132

To display memory repetitively 132

To modify memory 133

Using Processor Run Controls 135

To run a program 135

To run programs from the transfer address 137

To run programs from reset 137

To run programs until a selected address occurs 138
To break to the monitor 139

To step the processor 140

To reset the processor 143

Viewing and Modifying Registers 144

To display registers 144
To modify registers 146

Using Execution Breakpoints 148

Setting execution breakpoints in RAM 148

Using temporary and permanent breakpoints 149

To enable execution breakpoints 150

To disable an execution breakpoint 150

To set a permanent breakpoint 151

To set a temporary breakpoint 152

To clear an execution breakpoint 154

To clear all execution breakpoints 156

To display the status of all execution breakpoints 156

Xiii

Contents

Changing the Interface Settings 158

To set the source/symbol modes 158
To set the display modes 159
Source/Symbols View 160

Field Widths 160

Auto Update 160

Using the Emulator In-Circuit 161

To install the emulation probe 161
To power-on the emulator and your target system 163
To probe other types of target system sockets 163

Using The MC68030 Emulator With MMU Enabled 164

To enable the processor memory management unit (MC68030 only) 164

To view the present logical-to-physical mappings 165

To see translation details for a single logical address 167

To see details of a translation table used to map a selected logical address 169

Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer 172

Making Simple Trace Measurements 173

To start a trace measurement 174

To stop a trace measurement 175

To display the trace list 175

To display the trace status 177

To change the trace depth 178

To modify the last trace command entered 179

To define a simple trigger qualifier 180

To specify a trigger and set the trigger position 181
To define a simple storage qualifier 182

Displaying the Trace List 183

To disassemble the trace list 186

To specify trace disassembly options 187

To specify trace dequeueing options 189

To display the trace without disassembly 191
To display symbols in the trace list 193

Xiv

Contents

To display source lines in the trace list 194
To change the column width 195
To select the type of count information in the trace list 196

To offset addresses in the trace list 198

To reset the trace display defaults 199

To move through the trace list 199

To display the trace list around a specific line number 200

To change the number of states available for display 201

To display program memory associated with a trace list line 202

To open an edit window into the source file associated with a trace list line 202

Analyzing Program Execution When the MC68030 MMU is
Enabled 203

To program the deMMUer in a static memory system 203
To store a deMMUer setup file 205

To load the deMMUer from a deMMUer setup file 205

To trace program execution in physical address space 206

Making Complex Trace Measurements 207

To use address, data, and status values in trace expressions 212
To enter a range in a trace expression 213

To use the sequencer 214

To specify a restart term 215

To specify trace windowing 216

To specify both sequencing and windowing 217

To count states or time 218

To define a storage qualifier 219

To define a prestore qualifier 220

To trace activity leading up to a program halt 221

To modify the trace specification 222

To repeat the previous trace command 223

To capture a continuous stream of program execution no matter how large your
program 224

Saving and Restoring Trace Data and Specifications 228

To store a trace specification 228
To store trace data 229
To load a trace specification 230
To load trace data 231

XV

Contents

Saving and Restoring DeMMUer Setup Files 232

To store a DeMMUer setup file 232
To load a DeMMUer setup file 232

Using Basis Branch Analysis 233
To store BBA datato afile 233

Making Coordinated Measurements

The Elements of Coordinated Measurements 236
Comparison Between CMB and BNC Triggers 238

Setting Up for Coordinated Measurements 239

To connect the Coordinated Measurement Bus (CMB) 239
To connect to the rear panel BNC 241

Starting/Stopping Multiple Emulators 243

To enable synchronous measurements 243
To start synchronous measurements 244
To disable synchronous measurements 244

Using Trigger Signals 245

To drive the emulation-bus analyzer trigger signal to the CMB 247
To drive the emulation-bus analyzer trigger signal to the BNC connector
To break emulator execution on signal from CMB 249

To break emulator execution on signal from BNC 250

To arm the emulation-bus analyzer on signal from CMB 251

To arm the emulation-bus analyzer on signal from BNC 251

Making Example Measurements 252

To start a simultaneous program run on two emulators 252
To trigger one emulation-bus analyzer with another 253
To break to the monitor on an analyzer trigger signal 254

XVi

248

Contents

7 Making Software Performance Measurements

Using the Software Performance Measurement Tool 256
Use the Software Performance Analyzer (SPA) for more capability 256

Understanding activity measurements 257
Understanding duration measurements 260

To use the Software Performance Measurement Tool 261

Step 1. Setup the trace command 262

Step 2. Initialize the performance measurement 263

Step 3. Run the performance measurement 267

Step 4. End the performance measurement 268

Step 5. Generate the performance measurement report 269

8 Configuring the Emulator
Configuring the Emulator 276

Using the Configuration Interface 277

To start the configuration interface 278

To modify a configuration section 280

To apply configuration changes to the emulator 282

To store configuration changes to a file 283

To change the configuration directory context 284

To display the configuration context 284

To access help topics 285

To access help for a configuration item in a dialog box 285
To exit the configuration interface 286

To load an existing configuration file 286

Emulation Configuration Displays 287

Mapping Memory 293

XVil

Contents

Providing MMU Address Translation for the MC68030 Foreground
Monitor 296

Locating the Foreground Monitor using the MMU Address Translation
Tables 298

Solving Problems

If the emulator appears to be malfunctioning 301

If the analyzer triggers on a program address when it should not 301

If there are unexplained states in the trace list 302

If you see negative time or negative states in the trace list 302

If the analyzer won't trigger 303

If trace disassembly appears to be partially incorrect 304

If the emulator won't work in a target system 304

If you suspect that the emulator is broken 305

If you have trouble mapping memory 306

If you see multiple guarded memory accesses 307

If the demo program won't work 307

If you're having problems with DMA 308

If you're having problems with emulation reset 308

If the deMMUer runs out of resources during the loading process 309

If verbose mode shows less than eight mappings but the deMMUer is "out of
resources” 310

If you only see physical memory addresses in the analyzer measurement
results 310

If the deMMUer is loaded but you still get physical addresses for some of your
address space 311

If you can't break into the monitor after you enable the MC68030 MMU 312

Xviii

Contents

Part 3 Reference

10 Using MC68030 Memory Management

Understanding Emulation and Analysis Of The MC68030 Memory
Management Unit 316

Terms And Conditions You Need To Understand 316

Logical vs Physical 316

What are logical addresses? 317

What are physical addresses? 317

Static and dynamic system architectures 317

Static system example 317

Non-paged dynamic system example 317

Paged dynamic system example 318

Where Is The MMU? 319

Using Function Codes 320

How the MMU is enabled 320

Hardware enable 320

Software enable 321

Restrictions when using the MC68030 emulator with the MMU turned on 321
How the MMU affects the way you compose your emulation commands 322

Seeing details of the MMU Translations 323

How the emulator helps you see the details of the MMU mappings 323
Supervisor/user address mappings 325

Translation details for a single logical address 326

Address mapping details 326

Status information 327

Table details for a selected logical address 328

Using the DeMMUer 330

What part of the emulator needs a deMMUer? 330

What would happen if the analyzer didn’t get help from the deMMUer? 330
How does the deMMUer serve the analyzer? 330

Reverse translations are made in real time 331

DeMMUer options 331

Restrictions when using the deMMUer 333

Keep the deMMUer up to date 333

The target program is interrupted while the deMMUer is being loaded 333

XiX

Contents

The analyzer must be off 333

Expect strange addresses if you analyze physical memory with multiple logical
mappings 333

Resource limitations 335

Small-page/large-page modes 336

Example to show resource limitations 336

How to avoid the "out of resources" message 337

Other ways to conserve space in the deMMUer table 337

Minimize address ranges in the memory map 337

Careful use of the emulator memory map 338

What the emulator does when it loads the deMMUer 339

Dividing the deMMUer table between user and supervisor memory space 340
Using two root pointers 340

Using function codes 341

Solving Problems 342

Using the "display mmu_translations” command to overcome plug-in
problems 342

Use the analyzer with the deMMUer to find MMU mapping problems 343
Failure caused by access to guarded memory 343

Failure due to system halt 344

A "can't break into monitor" example 345

11 Emulator Commands
How Pulldown Menus Map to the Command Line 351
Emulator Configuration: Memory Map 355
How Popup Menus Map to the Command Line 356

Syntax Conventions 358

Oval-shaped Symbols 358
Rectangular-shaped Symbols 358
Circles 359

The —NORMAL— Key 359

XX

Summary of Commands 360

break 361
cmb_execute 362
copy 363

COUNT 369
display 371
DISPLAY MEMORY 377
DISPLAY MMU 381
DISPLAY TRACE 385
end 390

—EXPR— 392
FCODE 395

HELP 397

load 398
log_commands 401
modify 402

performance_measurement_end 409

performance_measurement_initialize

performance_measurement_run 412

pod command 413
QUALIFIER 415
reset 418

run 419
SEQUENCING 421
set 423

specify 429

step 431
stop_trace 434
store 435
—SYMB— 437
trace 445
TRIGGER 449
<UNIX_COMMAND> 451
wait 452
WINDOW 454

Contents

XXi

Contents

12

13

14

15

Emulator Messages

Messages In This Chapter 458
Organization of the Messages 458
Messages Recorded in Error Log 458

Unalphabetized Error and Status Messages 459

Alphabetized Error And Status Messages 462

Setting X Resources

Setting X Resources 518

To modify the Graphical User Interface resources 520
To use customized scheme files 524

To set up custom action keys 526

To set initial recall buffer values 527

To set up demos or tutorials 529

The SPARCsystem Graphical User Interface and Softkey Interface
Using your SPARCsystem keyboard 534

Keyboard template 537

Microtec Language Tools Used With MC68020 and
MC68030/EC030 Emulators

Using Microtec Language Tools 541

To use the Microtec commands 542
Assembler defaults 543

Linker defaults 543

Librarian defaults 544

The Microtec MCC68K compiler 544

XXii

Contents

16 Specifications and Characteristics
Processor Compatibility 546
Electrical 546
HP 64747 Electrical Specifications 547
HP 64748 Electrical Specifications 554
Physical (HP 64747 and HP 64748) 560
Environmental (HP 64747 and HP 64748) 561

BNC, labeled TRIGGER IN/OUT (HP 64747 and
HP 64748) 561

Communications (HP 64747 and HP 64748) 562

xXxiii

Contents

Part 4 Concept Guide

17 X Resources and the Graphical User Interface

X Resources and the Graphical User Interface 566

X Resource Specifications 567

Resource Names Follow Widget Hierarchy 567
Class Names or Instance Names Can Be Used 568
Wildcards Can Be Used 568

Specific Names Override General Names 569

How X Resource Specifications are Loaded 570

Application Default Resource Specifications 570
User-Defined Resource Specifications 570
Load Order 571

Scheme Files 572

Resources for Graphical User Interface Schemes 572
Scheme File Names 573

Load Order for Scheme Files 573

Custom Scheme Files 574

XXiV

Contents

Part 5 Installation and Service Guide

18 Installation and Service
Installation 578

Installing Hardware 580

Step 1. Install optional memory modules on Deep Analyzer card, if desired 582
Step 2. Connect the Emulator Probe Cables 584

Step 3. Install Boards into the HP 64700 Card Cage 587

Step 4. Install emulation memory modules on emulator probe 599

Step 5. Connect the emulator probe to the demo target system 603

Step 6. Apply power to the HP 64700 605

Connecting the HP 64700 to a Computer or LAN 607

Installing HP 9000 Software 608

Step 1. Install the software from the media 608

Step 2. Verify the software installation 611

Step 3a. Start the X server and the Motif Window Manager (mwm) 612
Step 3b. Start HP VUE 612

Step 4. Set the necessary environment variables 613

Installing Sun SPARCsystem Software 615

Step 1. Install the software from the media 615

Step 2. Start the X server and OpenWindows 616
Step 3. Set the necessary environment variables 616
Step 4. Verify the software installation 618

Step 5. Map your function keys 619

Step 6. Restart the window system 620

Step 7. Run the interface in a window 620

Verifying the Installation 621

Step 1. Determine the logical name of your emulator 621
Step 2. Start the interface with ta@ul700command 622
Step 3. Step through the demo with the Action Keys 625
Step 4. Exit the Graphical User Interface 625

Step 5. Verify the performance of the emulator 626
What is pv doing to the Emulator? 628

XXV

Contents

19

Troubleshooting 628

Parts List 629
What is an Exchange Part? 631

Installing/Updating Emulator Firmware

Installing/Updating Emulator Firmware 634

To update emulator firmware with "progflash” 635
To display current firmware version information 638
If there is a power failure during a firmware update 639

Glossary

Index

XXVi

Part 1

Quick Start Guide

Part 1

Quick Start Guide

In This Part

This part describes how to quickly become productive with the emulation system.

Getting Started

Chapter 1: Getting Started

Display area.

Status line.

Command line.

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action keys, and pop-up
recall buffers.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c":
address data

000FD2 4E5&0000 LINK A6, ff00000

000FDe 4EB2000015 JSR 000152E

000FDC 4EB200001A JSR 0001aA96
4E71 HOP
4EB9000015 JSR 00015D8
5289000076 ADDQR.L #1,00076F4
4879000076 PEA.L 00076F4

000FFe 4EB2000010 JSR 000102¢
000FFC 588F ADDQ.L #4,A7

000FFE 4A39000077 TST.B 0007700
001004 €708 BEQ.B 000100E
001006 4EB2000019 JSR 00019D8
00100C 4E71 NOP

00100E 4EB200001A JSR 0001ABA
001014 4E71 NOP

00101e e&0CC BRA.B 0000FE4

TATUS : cWs: main."main.e":

trace

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

Chapter 1: Getting Started

The Graphical User Interface

—'E Hewlett Packard Emulator/Analyzer: m68030 (m68030) E a EJ
Menu bar. | File Display Modify Execution Breakpoints Trace Settings Help
. ction keys: < Demo > Disp Sre Trace Run Step Source
Action keys. —— -2 ys: | [DispSre0) | 0_| | Step
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain I_R/ecall
Entry buffer. — Memory :mnemonic (file = main{modulel. "main.c":
addre label da A

31 fwoid update_systemil; /#* update system wariables #/
Entl’y buffer recall — 32 extern woid interrupt_simi{}; /* simulate an interrupt */
button 33 extern woid do_sort(}; /#* sets up ascii array and call
' 34
35 main(}
36 i
. 97 init_system(};
DISplay area. | proc_spec_initi);
33
1688 while (truel
1A
Scrollbar, ——— 1] 182 update_system(};
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if {graph?’
A 1686 graph_datal};
Status line. 187 proc_specificl);
STATUS: MBBEC@30--Running in monitor %P

Command line.

display memory main mnemonic

Command line entry~

Command: Cursor: |§.§é§<ﬁ§i%§§} |Forward |Clear to end |Clear |He|p ¥
E

Softkey

pushbuttons.
Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

Chapter 1: Getting Started

The following table shows the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

10

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The screen displays shown in this
chapter were obtained by running the MC68030/EC030 emulator/analyzer. Some
displays may differ slightly when running the MC68020 emulator/analyzer.

The tutorial examples presented in this chapter make the following assumptions:

e The HP 64747 or HP 64748 emulator and HP 64704 analyzer are installed into
the HP 64700 Card Cage.

* The HP 64700 is connected to the host computer.

» The emulator/analyzer interface software has been installed as outlined in
Chapter 18, "Installation and Service," and/or updated as outlined in Chapter
19, "Installing/Updating Emulator Firmware.".

» The emulator is operating out-of-circuit; that is, connected to the demo board,
not your target system, and switches on the demo board are set to OCE (OP).

» The emulator contains at least 60 Kbytes of emulation memory.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

11

Chapter 1: Getting Started
Step 1: Start the demo

Step 1: Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

» If using the MC68020 emulator, type:
$ cd /usr/hp64000/demo/debug_env/hp64748 <RETURN>

* If using the MC68030/EC030 emulator, type:
$ cd /usr/hp64000/demo/debug_env/hp64747 <RETURN>

Refer to the README file for more information on the demo program.

$ more README <RETURN>

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on the same computer or same
type of computer that you are using to run this "Getting Started" procedure, skip
this step and go directly to step 4 of this "Start the demo" procedure. If the
Graphical User Interface software is installed on a different type of computer than
the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on an HP 9000 computer
and be displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS". This can't be done in the demo directory specified above because the
Xdefaults.emul file is write protected. You will need to move it to a new directory
and then change its permissions. The best way to do this is to enter the command:

$ Startemul <logical_emul_name> <RETURN>

12

Chapter 1: Getting Started
Step 1: Start the demo

Where <logical_emul_name> is the logical name of your emulator, given in th
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

After you give the "Startemul" command, you will be asked if you would like to
have the demo files copied to a different directory. Answer yes, and then specify
your own demo directory. The files will be copied to your own directory where
you can change the permissions on the Xdefaults.emul file so that you can edit it.

$ chmod 664 Xdefaults.emul

Now edit the Xdefaults.emul file. For this example, you would edit as follows:

$ vi Xdefaults.emul

I* platformScheme: pc-xview
I* platformScheme: HP-UX
* platformScheme: SunOS
I* platformScheme: HPxterm

Finally, save the Xdefaults.emul file with its modifications, and then start the
emulation session again from the demo directory where you have your custom
Xdefaults.emul file.

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (fJusr/hp64000/etc/64700tab.net).
For the MC68020 emulator, it is usually m68020; for the MC68030 emulator,
m68030.

If you did not perform Step 3 of this "Start the demo" procedure, you will be asked
if you would like to have the demo files copied to a directory of your own

choosing. Itis a good idea to have these files copied to your own demo directory if
you have space available in your system because it protects the original demo files
from changes you might make during this demo procedure.

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

13

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

1 1
—'E Hewlett Packard Emulator/Analyzer: m68030 (m68030) E a EJ
File Display Modify Execution Breakpoints Trace Seftings Help

Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()

| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()

| Disp @REG || Disp Src Prev || Trace | Run [Again

() imain IRecaII

Memaory :mnemonic :file = main{modulel. "main.c":
addre label data A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
33
186 while {truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if {graph?
1686 graph_datall;
187 proc_specificll);
| STATUS: cws: main. main.c”: W]
F F

The command line can be brought on screen by placing the cursor in the display
area of the Graphical User Interface and typing the command.

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

14

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>
Memory :Bsp imnemonic :file = main{module). 'main.c”:
addre label data
91 extern void update_system(); /% update system wariables #/
3z extern void interrupt_sim(}; f* simulate an interrupt */
33 extern void do_sorti}; /* sets up ascii array and call
34
35 maint}
.
37 init_systemi);
98 proc_spec_inithl;
33
166 while Ctroel
181 i
lgz update_systemi);
183 num_checks++;
184 interrupt_sim{&num_checks);
185 if (graph’
186 graph_datall;
187 proc_specificl);

STATUS: MEBECO30--Running in monitor Software break: 000002cf28sp %1 W |

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor". When you run until an address, a
breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the content of the current
program counter.

15

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines, either by
clicking on theStep Sourceaction key, by clicking on th&gain action key which
repeats the previous command, by chooExecution— Step Source»fromPC,

or by entering thetep sourcecommand on the command line.

Memory :Bsp fmnemonic :file = init_systemimodule). "init_system.c”
addre label data
26
27 wvoid init_wal_arri);
28
23 woid

init_systemti}

38
- Fx FUMCTION init_systemi) */
32

/% Initialize the target walues for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the variables indicating the current environment #/
37 /% conditions */

a8 current_temp = B8

39 current_humid = 41;

49

41 f#* SJet starting directions for temp and humid */

42 temp_dir = up;

16

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display .

Click on theDisp Src Prevaction key, or choodeisplay - Memory - Mnemonic
Previous.

Or, using the command line, enter:

display memory mnemonic previous_display <RETURN>

This command is useful, for example, when you have stepped into a function that
you do not wish to look at—you can return the previous mnemonic display to the
screen and run your program until the source line that follows the function call is
reached. The next step will run through the function "init_system();" and stop
when "proc_spec_init();" is reached.

17

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

Hewlett Packard Emulator/Analyzer: m68030 (m68030

File Display Modify Execution Breakpoints Trace Sefttings Help

Action keys: | < Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain IReca

Memory :Bsp imnemonic :(file = mainimodulel. "main.c”:

addre label data
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */

33 extern void do_sortil; /% sets up ascii array and call

Choose Action for Highlighted Line
}g? ”Ehi le {true) Set/Clear Software Breakpoint
182 update_systd Edit Source
183 num_check s++ =
184 interrupt_si Run Until
185 if (graph} |Trace After
1686 graph_day
187 proc_specif i| Trace Before
STATUS: MBBECO30--Stepping cor 11ACE About

Trace Until

Or, using the command line, enter:

run until main."main.c": line 97 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

18

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on theDisp Var () action key, or choose
Display - Data Values- Add() - int32.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>

Oata :update
addre label tuype data
AEATE7SC |_num_check5 intds 5]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

19

Chapter 1: Getting Started
Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers— BASIC.

Or, using the command line, enter:

display registers <RETURN>

Registers

Hext FC BEBEZ0BEE=p
PC BAHEZ0AE STATUS 2764 < = =z » USF HOBOBOAE MSP DHBEOEE] ISP HEH37F30
08-07 PHEBERZE BRBEPEZE BEA7IBCE BRBAZ3Z2Z BPODEEDE DODEODED BPEHRDEDE DBEREEABEO
AE-A7 @EE7EICA FFFFFFFF BEE7E1AS DRE7SECA BRE7E858 DOESE1AS AEES7F34 DBASTFIA
CAAR HEEBABEE CACRE HAEEAEBRAE WER ABAEEEER SFC B OFC 8

20

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

To step one instruction from the current program counter, click dbtépeAsm
action key, or choodexecution- Step Instruction - from PC.

Or, using the command line, enter:

step <RETURN>

Registers

Next PC ABEAZCFCEsp
FPC BEEAZCFC STATUS 2784 < s =z > USP DBOEEEEE MSP GoHEEEE1 ISP BEABE7F 34
0a-07 BEPAEEZE PEBEAR-A BREYIAVE BEARHZ3Z2Z APAREEAE AREEARHOR HEEMAEER AREBDAR
AB-AY BEBYSIAS FFFFFFFF BREYE77E BARYIH70 QHA7E335 HOHS01AS DBASYF34 ABESYFI
CAAR BHBE@ADE CACR APHAEERE VER BAPBE@EEE SFC @ OFC @

Step_FC HEBAZCFCEsp JSR p.proc_spec_init

Next PC BBEB377Z2Bsp
FC BBBBE3772 STATUS 2784 < s =z » USFP DEOBEEOEE MSP @G0HBEE01 ISP BABE7F 30
08-07 HEEHEEDEZE DEODADZE BHE7IE7E BEDEZ3Z2Z DOEDEEDOE PODEADHDE DEDOEDED BBEODAD
AB-A7 @EB7E1AS FFFFFFFF BBE?7E77E BABYIE7H0 DOA7E838 BOE801AE BEBE7FI4 ABESTFI
CAAR Bo@oeaoE CACR @GoboE@od VER B@o@@pEoe SFC @ OFC @

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

21

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the emulator demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

22

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete™.

shows the trigger state has been found and the analyzer trace memory has b
filled.

To view the captured states, choBssplay — Trace.

Or, using the command line, enter:

display trace <RETURN>

Label: Address Opecode or Status w/ Source Lines
: ymbaol mremonic w/symbol
pr|main+BBEE0884 NOP

Hit i i inain. e - line Uthru 96 HHEHEHHSEHEHHS S g
— =rrup b i

1 i in 1t

calls combs

= prog|main.main LIMK.W AB, #$86868

+HB1 sysstac+HBBEYF 38 $EBBARZ31E supr data long wr (ds32)]
iR nain. e - line 37 ﬂﬂﬂﬂﬂmﬂimﬂiﬁﬂﬂtﬂiﬂtﬂiﬂtﬂiﬂtﬂiﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬁﬂﬂﬂﬂﬂﬂ

init_systemi);

+HBZ =pr|main+HBBEEBEE4 ISR init.init_system

+HA3 pr|maint+BHOE0AHEG $EBBEASZ1E supr prgm long rd (ds32)

+HA4 sysstactBEBETFI4 $EBAE7FFE supr data long wr (ds32) :

+BAS init_syt+PAEBABAE4 NOP V
Rttt Einit_system.c - line 1 thru ERIR:3:0x0:8:0:8: 013 sudas i dudiduas duifedibuds SR

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

23

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>
A command file dialog box appears (or a prompt appears in the command line).

Move the mouse pointer to the dialog box text entry area, type "A7", and click on
the "OK" button.

Or, if the prompt is in the command line:
A7 <RETURN>

Memory :@sp :bytes :blocked :update

addre data ihe rascii
ARAgYF7B-77 aa @7 9@ C8 @@ @@ 23 22 L Lo
ARAGTF78-7F A@ B8 @@ @@ @@ @7 81 A3 .
ARAgYFE6-57 A@ @87 3@ CB @8 @7 83 &3 e e e e e e
ARAgYFa8-5F A @3 YF 34 @@ @@ 20 IC e e e e
ARAg7FI6-57 @@ @7 87 L8 @@ @3 FF F@ e
ARAGYFI5-3F aa @ae 23 16 B8 @8 @8 @a PP
AREE7FAB-A7 A@ BR @@ BB @R @R BB 68

ABAE7FAS-AF @@ @7 88 88 @@ @@ @@ 68 e
ARAEYFEB-B7 A BB @@ 38 BR @B B8 62 ... B
ARAE7FES-BF L5 1 ¢ 15 B8 @8 @8 @1 .
ARAgYFCe-C7 L5 1 % 15 B8 @8 ©6@d @a e
ApagrrCa-CF @8 B8 B8 48 @8 @y §7 (8 L. B

ARAg7FO6-07 A BR B@ B8 B8 @B @R LA e e e e e e
ARAgYFO8-0F Aa @7 9@ C8 @@ @@ 23 22 L L
ARA7FEB-E7 aa @87 81 A3 B8 @7 98 C@ e e e e e e
ARAGYFES-EF A@ @7 B3 83 B8 @B Y6 54 T |
AREgYFFE-F7 @@ @3 YF F8 @@ @@ 28 3C P <

24

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

ThePatch () action key lets you patch code in your program.
1 With "main” still in the entry buffer, click on tHeun Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on thRisp Src & Asm action key.

Memory :Bsp imnemonic :file = main{module). 'main.c”:
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sorti}; /* sets up ascii array and calls
34
35 maint}
35 i
¥ pr|main.main 4ESEEEEAE LINE.W AG, #8608
ABEEZCFE 2F AR MOVE.L RZ,-(A7)
ABBEZCFE 247CAEE731 MOVEAR.L #$E8BE731AS, A2
37 init_systemi);
AHEEZCFE 14ECHEAL MOVE.E #$41, (A2}
AdEE2082 4EB3AHEA3Z ISR init.init_system
33 proc_spec_inithl);
ARBE 2085 4EBIRBBEESI ISR p.proc_spec_init
33
168a while {(truel
ABEBZ0BE 4E7 1 HOF
181 i

3 Click on thePatch () action key.

A window appears and ttv¢ editor is started. Under "ORG main", add the line:

LINK A6,#1234h

Exit out of the editor, saving your changes (using 'wq’).

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN-> to apply the patch.

25

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory :Bsp imnemonic :file = mainimodule). "main.c”

addre label data
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sort(}; /* sets up ascii array and call
34
35 maini}
35 i
- |main.main 4ES61234 LINK.H AB, #$1234
2F AR MOVE.L A2Z,-(R7)
ABEEZCFE 247CABEF31 MOVEAR.L #$EEE7E1AS, A2
37 init_systemi};
ABEEZCFE 14ECHBEA1 MOVE.BE #$41, (A2}
ABAEZ082 4EBSAEBA3Z ISR init.init_system
33 proc_spec_initil);
AREE 2085 4EB3RBBEESI ISR p.proc_spec_init
33
168 while {(truel
ABEEZ0BE 4E7 1 NP
181 i

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

Click on thePatch () action key again.
A window running thevi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
<RETURN> to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

26

Chapter 1: Getting Started
Step 12: Patch assembly language code

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru <add
before clicking on th@atch () action key, you can modify a patch template file
which allows you to insert as much or as little code as you wish.

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
7FEOH. Edit the patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s

Date : Tue Jul 31 14:06:06 MDT 1992

; Dir : /users/guest/demo/debug_env/hp64747
; Owner: guest

INCLUDE PCHSINC.s
ORG main+4
BRA patchl ;You may want to change this name!
ORG 7FEOh ;You MUST set this address!
patchl NOP
; i You may need to modify labels and operands of the 111
; il following code to match your assembler syntax i
; 1l Patching Range: main+4 thru main+15

JSR _proc_spec_init

JSR _Init_system
BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes (‘wQq’).

The file you just edited is assembled, and the patch main menu appears. Type "a"
<RETURN> to apply the patch.

You can step through the prograB8idp Sourcé to view execution of the patch.

27

Chapter 1: Getting Started
Step 13: Exit the emulator/analyzer interface

. Step 13: Exit the emulator/analyzer interface

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

28

Solving Quick Start Problems

Solutions to problems you might face during the Getting Started procedures.

29

Chapter 2: Solving Quick Start Problems
If the desired emulator interface won't start

Solving Quick Start Problems

This chapter helps you identify and resolve problems that may arise while using the
Getting Started chapter.

For more information, refer to Chapter 9, "Solving Problems."

If the desired emulator interface won't start

[J Check for correct installation of the interface software. Refer to Chapter 18,
"Installation and service," and to thi®® 64700 Series Emulators
Installation/Service Guide

L] Verify that the $PATH environment variable includes the directory containing the
interface software (/usr’/hp64000/bin). The interface files are loaded in the
"lusr/hp64000/bin" directory by the installation procedure.

If the text-based Softkey Interface won’t start
under X-Windows
L] If the Graphical User Interface is starting when you are trying to start the Softkey

Interface, include theu skemuloption to theemul700command to override the
Graphical User Interface and force the start of the Softkey Interface.

If you can’t load the demo program

[J Check to ensure that the emulator probe is plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program may
not work with target systems other than the demo board.)

30

Chapter 2: Solving Quick Start Problems
If you can't load the demo program

[J Check to ensure the switches on the demo board are set to the OCE (Out-of-Circuit
Emulation) position, away from TEST.

[J Check to ensure that you changed to the demo directory:

* /usr/hp64000/demo/debug_env/hp64748 for the MC68020.
» /usr/hp64000/demo/debug_env/hp64747 for the MC68030/EC030.

31

Chapter 2: Solving Quick Start Problems
If you can't display the program

If you can’t display the program
[Verify that the program loaded correctly.

[J Check to see that the status of the emulator is reset or is running in monitor. See
the STATUS line on the display. If the emulator is halted, it can’t use the monitor
to display program memory. In this case, reset the emulator and try to display the
program memory again.

[] Check the event log by choosibisplay — Event Log, or by using thelisplay
event_logcommand on the command line. If the event log shows that the program
loaded, try reloading the program again.

L] If you are displaying memory witsymbols on ensure that the symbol data base
has been loaded with the program. If this is the cause of the problem, you will be
able to obtain the memory display by referring to the address using its hexadecimal
value instead of its symbolic value. For example, to obtain a display of the
program in memory at symbolic address demo:main:

Move the mouse pointer to the entry buffer and type in "2CF2H"; and then select
Display - Memory — Mnemonic ().
or use the command line to enter:

display memory 2CF2H mnemonic

32

Part 2

User’'s Guide

33

Part 2

User’'s Guide

In This Part

This part describes how to use the emulator, analyzer, and other tools provided with
the HP 64747 and HP 64748 products.

34

Using the emulator/analyzer interface

How to enter commands in the Graphical User Interface and the Softkey Interface

35

Chapter 3: Using the emulator/analyzer interface

Using the interface

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer (SPA) interface (which is also a separate
product) lets you make measurements that can help you improve the performance
of your software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

This chapter shows you how to perform the basic tasks associated with each type of
emulator/analyzer interface. The information is grouped into the following sections:

e Starting the emulator/analyzer interface.

» Opening other HP 64700 interface windows.

* Entering commands

» Using special features of the Graphical User Interface.
» Using display-control features of the Softkey Interface.
» Copying information to a file or printer.

» Exiting the emulator/analyzer interface.

» Creating and executing command files.

» Forwarding commands to other HP 64700 interfaces.
» Accessing the terminal interface.

» Accessing the operating system.

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface

36

Chapter 3: Using the emulator/analyzer interface

which provides pulldown and popup menus, point and click setting of breakpoints,
cut and paste, on-line help, customizable action keys, and popup recall buffers.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface
gives you the option of entering commands in the same manner as they are e
in the Softkey Interface. If you are using the Softkey Interface, you can only e
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, there are some commands that must be entered in the
command line.

Maximum Number of Windows

Ten is the maximum number of windows you can use to view HP 64700
emulator/analyzer operation. Only one C debugger interface window and one SPA
window are allowed, but you can start multiple emulator/analyzer interface
windows.

Activities that Occur in the Windows

When using an HP 64700-Series emulator in a window environment (or with
multiple terminals), the following activities occur in the windows where the
emulator is currently operating.

Commands Complete in Sequence

When you execute commands that access the emulator (in multiple windows) the
first command you specify will complete before the second command begins
executing.

Status Line is Updated

When you perform an emulation task in one window that updates the status line,
status lines are updated in all other windows where the emulator is operating. The
event log is also updated in each window.

37

Chapter 3: Using the emulator/analyzer interface

Ending the Emulation Session

When you are using the emulator in multiple windows, you can choose to either
end the emulation session in a single window, or in all the windowserkhe
command by itself just ends the window where the command is executed.

Using Multiple Terminals

If you do not have a window environment installed on your host computer, you can
still obtain the benefits of multiple windows by logging onto the same UNIX
system from several terminals, and starting the emulator on each terminal, just as
described here for several windows.

The rest of this section describes how to start and stop interface instances and
sessions in multiple windows.

38

Chapter 3: Using the emulator/analyzer interface
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in Chapter 18, "Installation and
Service."

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.

» Execute a command file on interface startup.

» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable, you can start
the interface with themul700 <emul_name>xommand. The "emul_name" is the
logical emulator name given in the HP 64700 emulator device table
(/usr/np64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
data in fourth, results of software performance measurements in the fifth (if a
software performance analyzer is installed as part of your system), etc.

39

Chapter 3: Using the emulator/analyzer interface
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 68020 emulator:

$ emul700 em68020 <RETURN>

The "em68020" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em68020 m68020 21.17.9.143
serial: em68020 m68020 myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in Chapter 12, "Emulator Messages."

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

40

Chapter 3: Using the emulator/analyzer interface
Starting the Emulator/Analyzer Interface

Examples

To execute a command file at interface startup

Use theemul700 -c <cmd_file> <emul_namesommand.

Starting a command filed <cmd_file>) at emulator startup allows you to
automate some of the setup and configuration of the emulator. For example,
may have a command file that loads a particular configuration file, a program f
and then sets up trace display formats and specifications.

If the HP64KPATH variable is set, the interface will use the search paths specified
in this variable to locate a command file passed to it witlertigd700command.

Refer to the "Creating and Using Command Files" section later in this chapter for
information on creating command files.

To start the emulator/analyzer interface and run the "startup” command file:

$ emul700 -c startup em68020 <RETURN>

where “m68020" is thingical namefor the HP64748 MC68020 emulator.

To see emulator/analyzer status before interface
startup

Use theemul700 -lor emul700 -lvcommand.

The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.

You can also use the option with the| option for a verbose listing of the status
information.

41

Chapter 3: Using the emulator/analyzer interface
Starting the Emulator/Analyzer Interface

Examples To list, verbosely, the status of the emulator whose logical name is "em68020":

$ emul700 -lv. em68020 <RETURN>

The information may be similar to:

em68020 - m68020 running; user = guest
description: M68020 emulation, w/internal analysis, 260Kb emul mem
user interfaces: xemul, skemul
device channel: /dev/emcom23

Or, the information may be similar to:

em68020 - m68020 running; user = guest@myhost
description: M68020 emulation w/internal analysis, 260Kb emul mem
user interfaces: xemul, skemul
internet address: 21.17.9.143

To see emulator/analyzer status after the
interface has started

* ChooseDisplay - Status
or

* Use the command:
display status

The present status of the emulator is displayed on the screen, as well as detailed
trace status.

42

Chapter 3: Using the emulator/analyzer interface
Starting the Emulator/Analyzer Interface

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. You can only use this command if there i
current session in progress.

Examples To unlock the emulator whose logical name is "em68020":

$ emul700-U em68020 <RETURN>

43

Chapter 3: Using the emulator/analyzer interface
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows, if products for those windows have
been installed (for example, the software performance analyzer, SPA, interface and
the high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

» To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Windows

» To open additional Softkey Interface windows, choose
File - Emul700- Emulator/Analyzer under Terminal Windows

» Enter theemul700 <emul_name>xommand in another terminal emulation
window.

You have a choice of opening up to nine additional windows, whether they be
Graphical User Interface windows, or terminal emulation windows containing the
Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

44

Chapter 3: Using the emulator/analyzer interface
Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu may display other choices if the interface finds other
HP 64700 products on the computer.

To open the high-level debugger interface window .

ChooseFile - Emul700- High-Level Debugger ..under Graphic Windows

For information on how to use the high-level debugger interface, refer to the
debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

ChooseéFile - Emul700- Performance Analyzer ...under Graphic Windows

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

45

Chapter 3: Using the emulator/analyzer interface

Entering Commands

Entering Commands

The Graphical User Interface and Softkey Interface provide simple, effective
mechanisms for entering commands to be processed by the emulator and analyzer.
Basic descriptions of both interfaces are given in Chapter 1, "Getting Started".

This section shows you how to:

* Turn the command line on and off.

» Enter commands on the command line.

» Edit commands.

* Recall commands that were used before.
» Execute a completed command.

e Get online help on commands.

» Display the error log and the event log.

To turn the command line on or off in the
Graphical User Interface

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodglégreimouse button,
and choos€ommand Line On/Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

46

Chapter 3: Using the emulator/analyzer interface
Entering Commands

» To turn the command line on, position the mouse pointer in the main display area
and start typing.

The above selections turn display of the command line area on or off. When itis
on, the command line is displayed; you can use the softkey pushbuttons, the
command return and recall pushbuttons, and the cursor pushbuttons for
command-line editing. When it is off, the command line is not displayed; you
only the pulldown menus and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line; it will be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some command-line input that cannot be supplied any other way.

To enter commands on the command line

* In the Graphical User Interface, successively position the mouse pointer on
pushbuttons and click thmushbutton selechouse button until a complete
command is formed.

» Successively press keyboard function keys corresponding to softkey buttons until a
complete command is formed.

» Type in the command you want to use. You must type in the full command name as
shown in Chapter 11, "Emulator Commands." This may be different from the label
on the corresponding softkey.

» Type in the first few characters of a command name, andgfets. The
interface will complete the command name automatically. Repeat this process until
a complete command is formed.

47

Chapter 3: Using the emulator/analyzer interface

Entering Commands

To edit the command line using the command
line pushbuttons on the Graphical User Interface

To position the cursor at a specific character, place the mouse pointer on the
character and click treelectmouse button.

To clear the command line, click tidear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton

To move to the right one command word or token, clicktiwvard pushbutton.
To move to the left one command word or token, clickBhekup pushbutton.

To insert characters at the cursor position, presaseet key on your keyboard to
change to insertion mode, and then type the characters to be inserted.

To replace characters at the cursor position, presssbe key on your keyboard
to change to replacement mode, and then type the replacement characters.

To delete characters to the left of the cursor position, press the <BACKSPACE>
key on your keyboard.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

When moving by words to the left or right, fherward pushbutton becomes gray
and provides no function when the cursor reaches the end of the command string.
TheBackup pushbutton becomes gray and provides no function when the cursor
reaches the beginning of the command.

48

Chapter 3: Using the emulator/analyzer interface
Entering Commands

To edit the command line using the command
line popup menu

To position the cursor at a specific character, place the mouse pointer on the
character and click treelectmouse button.

To clear the command line, position the mouse pointer within the Command Li
entry area, press and hold gaectmouse button until the Command Line popup
menu appears, and then choGéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line, place the
mouse pointer where you want the clear-to-end function to start. Press and hold the
selectmouse button until the Command Line popup menu appears, and then choose
Clear to End of Line from the menu.

To insert characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold theselectmouse button to display the Command Line popup menu, and then
choosePosition Cursor, Insert Modefrom the menu. Type the characters to be
inserted.

To replace characters, position the mouse pointer where you wish to locate the text
cursor (or over a non-text area to use the current text cursor location). Press and
hold theselectmouse button to display the Command Line popup menu, and then
choosePosition Cursor, Replace Moddrom the menu. Type the characters to be
inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that point in the command.

49

Chapter 3: Using the emulator/analyzer interface
Entering Commands

To edit the command line using the keyboard

* In the Graphical User Interface, place the mouse pointer either in the display area,
on the status line, or in the command line area. Then you can use the <Left arrow>,
<Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back space>,
<Delete char>, <Clear line>, and <CTRL>u keys to select points in the command
line.

» Move to the next word on the command line by pressingTlad> key. Move to
the previous word on the command line by pressing 8teft><Tab> key
combination.

» Enter more than one command on a command line by separating the commands
with semicolons ().

» Recall previous commands by pressut@jri>r to cycle backward, ctCtrl>b to
cycle forward through the command line buffer.

» Delete the current command line by pressiGgri>u .

» Clear the command line from the cursor position to the end of the line by pressing
<Ctrl>e.

To recall commands

1 Inthe Graphical User Interface, click the pushbutton latiRészall in the
Command Line area to display the dialog box.

2 Choose a command from the dialog box. (You can also enter a command directly
into the Selection area of the dialog box.)

Because all command entry methods in the interface (pulldown menus, action keys,
and command line entries) are echoed to the command line entry area, the contents

50

Chapter 3: Using the emulator/analyzer interface
Entering Commands

of the Command Recall dialog box is not restricted to just commands entered
directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", comman
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources."

See "To use dialog boxes" in this chapter for information about using dialog boxes.

To execute a completed command

* In the Graphical User Interface, click the pushbutton laldeégdrn (near the
bottom of the command line area).

 In the Graphical User Interface, position the mouse pointer in the command line
entry area; press and hold ge&ectmouse button until the Command Line popup
menu appears; and then choosebBkecute Commandmenu item.

« Press the <RETURN> key on the keyboard.

51

Chapter 3: Using the emulator/analyzer interface

Entering Commands

To get online help on commands

To get a dialog box that lists an index of helpful information in the Graphical User
Interface, seledtlelp -~ General Topic...or Help ~ Command Line... Then
choose a topic of interest from the Help Index.

To get specific help about the operation of the command line on the Graphical User
Interface, click thédelp pushbutton located near the bottom, right-hand corner of
the Command Line area.

Get specific help about a command to be entered on the command line, type:

help <command_name>

The<command_name>parameter can be entered from the softkeys after you type
help.

You can type a question marR (n place of the keyworbelp. When you use the
help command, information about the command you selected (including syntax and
sample usage) scrolls onto the screen.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

52

Chapter 3: Using the emulator/analyzer interface
Entering Commands

To display the error log

ChooseDisplay - Error Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooSisplay Error Log from the popup menu.

Using the command line, entdisplay error_log.

The last 100 error messages that have occurred during the emulation session are
displayed.

To display the event log

ChooseDisplay - Event Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooisplay Event Logfrom the popup menu.

Using the command line, enwdisplay event_log

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, breakpoints and trace
commands).

53

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

Using Special Features of the Graphical User
Interface

The following paragraphs show you how to use pulldown and popup menus, the
entry buffer, action keys, and dialog boxes to compose commands and control
emulator and analyzer operation. These features are only available in the Graphical
User Interface.

This section shows you how to:

* Choose a pulldown menu item.

e Choose a popup menu item.

» Place values into the entry buffer.

» Copy and paste from the entry buffer to the command line.
* Use action keys.

* Use dialog boxes.

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.

Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

3 Release the mouse button to select the menu choice.

54

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.
Click thecommand seleehouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button), then repeat the
previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

55

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and hold the menu select key (for
example, the "Extend char" key on an HP 9000 keyboard), and then type the
underlined character in the menu label on the menu bar. (For example, "f"* for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressBEleapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkagdoard focus policig set to

56

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to Chapter 13,

"Setting X Resources" and the "Softkey.Input" scheme file for more information
about setting the X resources that control defining keyboard accelerators.

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:
* Mnemonic Memory Display.

» Breakpoints Display.

» Global Symbols Display.

* Local Symbols Display.

+ Status Line.

« Command Line.

57

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the <CTRL>u
key combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

58

Note

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste

action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are several displays of the entry buffer, there i
one entry buffer; it is common to all windows. That means you can copy and
a symbol or an address seen in one window and then use it in another windo

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

59

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

Example To paste the symbol (plus offset) "mmutest+0000000C" into the entry buffer from
the interface display area, position the mouse pointer over the symbol and then
click the paste mouse button.

ewlett Packard Emulator/Analyzer: hplsdyu (m6803

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: :Run Demol Makel Load Absl Display Sre ()| Run Xfer Until {)| Step Sourcel

): | rmutes+ooB0080C

More data of f screen
Opcode or Status w/ Source Lines

ymbol mrnemonic w/sumbal
5E|mmutest._main . {(Aly,0A
=mmutest+HAARBARZ . #4, 04
mmutest+EERREEAS . (A1}, A5
=mmutest+HBABEEABE . 0d, (A3}
ABABABAL log supr data byte rd (ds32)
mmutest+HEHEERET . (A2, 04
i =mmutest+EEAEEEAA 0s
A mouse CII_Ck AEBARBAH $A235540C log supr data long rd (ds32)
causes the interface AARBPEAR $A295540C log supr data long rd (ds32)
nmutest+AH i cp4Bocl?. W $OEBEZRER
to expand the AEEEAEEE $A235557E log supr data long wr (ds32)
highlight to include AAGBRANE log supr data byte rd (ds32)
mmutest+ABEABE 1A MOVE.L 02, (%06, A5, 07.W*2)
the SymbOI AAB28EAE $----FB837 cp4 condition cir word wr (ds32)
mmutest+0000000C AEEZEEE8 $FEFF--—- cp4 response cir word rd (ds32)

and paSte the Symbo ABAZEE 18 PEEBE1EAC cpd inst addr cir long wr (ds32)

into the entry buffer. H M68030--Running user program Emulation trace complete

60

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface 'locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources."

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

61

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.
Position the mouse pointer within the command line text entry area.
If necessary, reposition the cursor to the location where you want to paste the text.

If necessary, choose the insert or replace mode for the command entry area (by
pressing the <insert> key on the keyboard).

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

62

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To use the action keys

1 If the action key uses the contents of the entry buffer, place the required
information in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
Some of these perform tasks and others show you how to define and use action
keys. You'll really appreciate action keys when you define and use your own.

Action keys are defined by setting an X resource. Refer to Chapter 13, "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area of the
dialog box.

2 Edit the item in the text entry area (if desired).

3 Finally:

* Click on the "OK" pushbutton to make the selection and close the dialog box.

» Click on the "Apply" pushbutton to make the selection and leave the dialog
box open.

* Click on the "Cancel" pushbutton to cancel the selection and close the dialog
box.

63

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

The Graphical User Interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

Settings Display You can set the display mode and customize the display
Modes presentation for memory and trace list displays.
Modify Register You can view and modify values of any selected register,

as well as recalling previous values of the registers.

Symbol Selection Selects the current working symbol (cws). You can change
to a previously accessed cws, a predefined cws, or specify a
new cws.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the Graphical User Interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to Chapter 13,
"Setting X Resources."

64

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of
filter-matching files
from the current
directory.

File Flter

mulator/Analyzer: File Selectio

Ausers/guest/demobB8340,/% [3x]

A list of files

previously accessed fusersfijuestidemobd3d0ranly . x
during the emulation #\ fusersfguestidemotd3d0fcmd_rdr.x

session.
A single click on

file name from either usersiguestidemobi3d0ficmd wdr.x

list highlights the

name and copies it to} |y sprs/guest/demo6a340/spmt.x

the text area. A

Files

fusersfguestidemobd340/simio.x
fusersiguestidemobd3d40/spmt.x
«Previous Files=

fle % lusersiguest/demoBa340fanly .

double click chooses
the file and closes the;

dialog box.

Label informs you
what kind of file
selection you are
performing.

Text entry area. Text

is either copied her

Load executable (program and symhbols)

fusers/quest/demob340,/emd_rdr. x,_

from the recall list, or

entered directly.

Clicking this button Entering a new file Clicking this button
chooses the file name filter and clicking this cancels the file selection
displayed in the text ~ button causes a list of operation and closes the
entry area and closes files matching the new dialog box.
the dialog box. filter to be read from the

directory.

65

Chapter 3: Using the emulator/analyzer interface
Using Special Features of the Graphical User Interface

To use the Directory Selection dialog box:

Label informs you of
the type of list
displayed.

A list of predefined or

previously access
directories.

A single click on a

directory name from\;
the list highlights the %
name and copies it to:
the text entry area. Aj
double click chooses %

the directory and

closes the dialog box.;

Text entry area.
Directory name i
either copied here

from the recall list, or

entered directly.

mulator/Analyzer: Directory Selectio

Previous Working Directories

b
FHOME

"mb8340™dirselect3ub” in the file

¢ fusHlib<11 fapp - defaultsfHP64_Softkey
A and add your own custom definition to your JXdefaults
i [Use the File- =Edit- =Fle pulldown to edit these files.)

5 HPEA000/demofemulhpbd 7ol
usersiguestidemobd3d0

fusrhpe4000/demofemulhped7al

Selection

Afusers/guest/demob8340,

Apply

Clicking this button
chooses the directory
displayed in the text
entry area and closes
the dialog box.

Clicking this button
chooses the directory
displayed in the text
entry area, but keeps the
dialog box on the

screen instead of
closing it.

Clicking this button
cancels the directory
selection operation and
closes the dialog box.

66

Chapter 3: Using the emulator/analyzer interface
Using display-control features of the Softkey Interface

Using display-control features of the Softkey
Interface

» Use the following control-key combinations to redraw, reposition, and update the
display of the Softkey Interface:

Input Result

<Ctrl>| To redraw the current display
<Ctrl>f To roll the display left
<Ctrl>g To roll the display right
<Ctrl>s To stop screen updates
<Ctrl>q To resume screen updates

You can roll the display left and right only if there is more information than will fit
into 80 columns.

67

Chapter 3: Using the emulator/analyzer interface
Copying information to a file or printer

Copying information to a file or printer

* ChooseFile - Copy. Select the type of information from the cascade menu (see
copy options below), and use the dialog box to select the file or printer.

» Using the command line, enter a command such as:

copy <copy option> to <destination>

Where <copy option> has a name similar to those listed below (available through
softkey selection), and <destination> is a printer or the name of a file.

ASCII characters are copied to the file or printer. If you copy information to an
existing file, it will be appended to the file. Details of the copy options are
discussed in the following paragraphs.

Display ... Copies information currently in the display area. This option is useful
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with thettings— Source/Symbols Modesr
Settings- Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thie - Copy - Display ...command.

68

Chapter 3: Using the emulator/analyzer interface
Copying information to a file or printer

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been loaded,
this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named (
an enclosing symbol) in the entry buffer. If symbols have not been loaded, thi
menu item is grayed-out and unresponsive.

Pod Commands ...Copies the last 100 lines from the pod commands display.
Error Log ... Copies the last 100 lines from the error log display.
Event Log ... Copies the last 100 lines from the event log display.

See theopy command syntax in Chapter 11, "Emulator Commands" for more
information.

69

Chapter 3: Using the emulator/analyzer interface
Exiting the Emulator/Analyzer Interface

Exiting the Emulator/Analyzer Interface

The following paragraphs show you how to end single instances of the interface in
selected windows, and how to exit from the interface and end your session.

This section shows you how to:
* End a single window in the interface.

+ End the emulation session in all windows.

To end a single window in the interface

In the interface window you wish to close, sekét - Exit — Window.

If using the command line, in the interface window you wish to close, enter:

end

This ends the interface instance in the window where the command is executed.
None of the other windows are affected.

If the window is the only window into the emulation session, the above command
ends the emulation session and leaves the emulator in a locked state. Emulators
restarted from a locked state will reload the last valid configuration and absolute
file.

70

Chapter 3: Using the emulator/analyzer interface
Exiting the Emulator/Analyzer Interface

To end the emulation session in all windows

To exit all windows, save your configuration to a temporary file, and lock the
emulator so it cannot be accessed by others, $élect Exit — Locked.

If using the command line, enter:

end locked

To exit all windows and release the emulator for use by others, select
File - Exit — Released

If using the command line, enter:

end release_system

If you exit locked, the interface saves the current configuration to a temporary file
and locks the emulator to prevent other users from accessing it. When you again
start the interface with tremul700command, the temporary file is reloaded, and
you return to the configuration you were using when you quit.

Also, when you end locked, the contents of the entry buffer and command recall
buffer are saved. These recall buffer values will be present when you restart the
interface.

In contrast, if you end released, all changes you made to your configuration are lost.
You may want to save your current configuration to a configuration file before you
end released.

71

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Creating and Executing Command Files

A command file is an ASCII file containing command-line commands. The

interface can read a command file and execute the commands found there as if the
commands were entered one-by-one on the command line. Command files can, in
turn, call other command files. The interface will execute the called file like a
subroutine of the calling file.

You can create command files from within the interface by logging commands to a
command file as you execute commands. You can also create a command file
outside the interface with an ASCII text editor. Logging commands from the
command line has the advantage of making sure the commands are syntactically
correct when they reach the command file. Syntactically incorrect commands found
by the interface will cause it to halt execution of a command file.

With a single command file, you can automate a complete test procedure. For
example, you could start the interface and then execute a command file that would
perform the following steps:

Load a configuration file.

Load an absolute file.

Modify registers or memory locations.
Set up a trace specification.

Start the program running.

Capture a trace.

Save the trace listing to a file.

~NoO b wWNBRE

Command files are also useful for saving very complex trace specifications so that
they can be used again during another emulation session, or by other people.

Passing Parameters to Command Files

Command files can accept parameters. Parameters are like variables in the
command file and are usually used in place of explicit arguments to interface
commands. A command file that accepts parameters can be made more general than
a command file containing explicit argument values and can apply to a wider range
of uses.

Parameters can be passed in either of two ways. You can pass the parameters on the
command line when you execute the command file, or you can execute the

command file without the parameters and let the interface prompt you for the
parameters.

72

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Parameters must be declared at the beginning of a command file uSARRIS
keyword. Parameters are preceded by an ampersand (&) and consist of a
combination of one or more letters or underscores. Letters may be upper-case or
lower-case.

Using &ArG_IEfT in Command Files

A command file may contain a special argument nafed®_|EfT . This special
argument does not have to be declared usinBARMS keyword. It can be used
in command files containing other parameters, or in command files that do not
contain any parameters. This special argument can accept the union of zero or more
command line arguments as a single argument. See “To increase flexibility of
command files by using &ArG_IEfT” for more information.

Using UNIX Commands and Scripts with Command Files

Command files may include UNIX commands and may call shell scripts. Some
commands are recognized directly by the interfpeal(for example) while others
require a preceding exclamation point (!) to identify them as shell commands.

Using Shell Variables with Command Files

Command files may contain shell variables. Command files only support shell
variables beginning with “$”, followed by an identifier. An identifier is composed

of an underscore or a letter followed by zero or more letters, digits, or underscores.
Identifiers may follow the “$” symbol directly, or follow the “$” enclosed in braces
“{}". An identifier mustbe enclosed in braces if any letter, digit, or underscore that
is not part of the identifier immediately follows the identifier. Otherwise, the
following text will be interpreted as part of the identifier. You can examine any

shell variables defined for your environment by using the Ud&fiXcommand.
Positional shell variables, such as $1, $2, and so on, are not supported. Neither are
special shell variables, such as $@, $*, and so on.

To illustrate how shell variables work, consider the shell variable “S”, defined to be
the string “soft”. Suppose you wanted to use the shell variable to reference the
directory “/users/softkey”. The reference “/users/${S}key” would produce the
desired directory name. However, the reference “/users/$Skey” would cause the
shell variable “Skey” to be searched for.

73

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Restrictions on Commands

There are certain commands that you cannot execute from a command file. These
are commands that require a response from you. For example, you cannot place
modify configuration commands in a command file because the command file
cannot “respond” to configuration questions.

Another restriction has to do with calling a command file from an executing
command file when the called command file requires parameters. You must supply
the parameters with the call to the command file, or the calling command file will
abort. That is because the calling command file cannot respond to the called file’s
parameter prompts.

Status Line Updates

The emulator status line is not always immediately updated with new status
information when the interface executes commands from a command file. You may
have to explicitly display the emulator status after a command file has executed by
issuing aisplay statuscommand.

Nesting Command Files

You can call other command files from an executing command file. Called files
can, in turn, call other command files. This nesting of calls can continue to a
maximum of eight levels. Command files called from an executing command file
are executed like subroutines of the calling file. Control returns to the calling file
after the called file has executed.

Pausing Command Files

You can use thevait command in command files. This allows you to pause
execution of the command file between commands.

A variation of the wait command, theit measurement_completeommand,

should be used after starting a trace. Use this command so that a copy or display
command following a trace command will not execute until states from the new
trace are available for copy or display.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

74

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Placing Comments in Command Files

As with any source file, comments in command files can help to explain the
operation of the command file, and record creation and modification information.
You can place comments in a command file either by using a text editor or by
entering the comment as a “command” in the interface command line while logging
commands. A special character, the pound sign (#), causes the interface to ig
comments in command files, and also allows you to log comments to a comm
file from the command line. A comment may appear on a line by itself, or it m
follow a command on a line. Commands cannot appear on a line after the comment
character because they will be interpreted as part of the comment.

Continuing Command File Lines

You can continue command file lines across several physical text file lines. This is
done by using a continuation character.

The continuation character is the backslash (\) character. Placing a backslash at the
end of the line just before the line feed causes the following line to be concatenated
with the current line. Multiple lines can be concatenated by ending all but the last
line with a backslash. The concatenated lines will be treated as a single command
line. Note that if you end the last line of a command file with a backslash, the
command will appear in the interface command line, but will not be executed.

Specifying a Search of Several Command File Directories

HP64KPATH is a special shell variable you can set to specify alternative search
paths for command files. HP64KPATH works much like the UNIX PATH in that
you can specify several directories, separated by colons (), to be searched.

The remainder of this section lists the tasks associated with creating and using
command files.

75

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

To create a command file by logging commands

1 SelectFile - Log - Record...and use the dialog box to select a command file

name. If using the command line, enter the command:

log_commands to <filename>
Enter and execute commands to complete the desired task.

Stop logging commands by selectifite - Log - Stop. If using the command line,
enter the command:

log_commands off

The above commands provide a mechanism that logs commands, entered and
executed at the command line, to a file. Later, the command file can be executed by
the interface. Thing_commandscommand does not appear on the softkeys. Type

it on the command line, or type the first few letters of the command and then press
<TAB>.

All commands entered on the command line after youlggpeeommands to
<filename>are logged to the <filename> until either kbg commands off
command is used or the interface is exited.

<filename>is any valid UNIX file name. File names may include path
information. If <filename> already exists, commands are appended to the current
contents of the file, unless theappendoption is used. If <filename> does not
exist, a new file is created.

File creation errors can sometimes be caused by write permission violations of
either files or directories. If you are having trouble creating a command file, make
sure you have the correct permissions.

76

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Example To save a set of commands in the file STARTEMUL by logging commands while
executing them during an emulation session, enter the following commands in the
command line:

log_commands to STARTEMUL

You can add a comment to a file while logging if you
precede the comment with a pound sign.

The Softkey Interface will

ignore the rest of the line up to the line feed.

load configuration bigproject/config

load bigproject/program

trace after START

run from 2000h # Comments can follow on the same line
wait measurement_complete

The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace

log_commands off

To create a command file by using a text editor

* Use atext editor to create the command file.

A command file is a text file containing commands in the form that appear on the
command line. You can create command files with an ASCII text editor, suth as

Make sure that the commands you create in your command file are syntactically
correct. Syntactically incorrect command lines will halt command file execution.

77

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

To execute (or playback) a command file

To execute a command file at interface startup, us& theommand file name>
option with youremul700command.

To execute a command file from within the Graphical User Interface, select
File - Log - Playback and use the dialog box to select the name of the command
file you wish to execute.

To execute a command file using the command line, enter the name of the
command file and press <RETURN>.

Any name entered on the command line that is not recognized as a member of the
emulator/analyzer command set will be treated as the name of a command file.
Command file names may be preceded by directory paths.

If the command file name does not have a directory path prefixed to it, the interface
will search for it as follows:

» If the environment variabldP64KPATH is set, the interface will first search
in all directories listed in the HP64KPATH variable. If the interface does not
find the command file in those directories, it then searches the current working
directory for the command file.

* If the environment variabldP64KPATH is not set, the interface searches
only in the current working directory for the command file.

If the command file name has a path name prefixed to it, the interface will only
look in the specified path for the command file.

See “To specify the order of searching several command file directories
(HP64KPATH)” for more information about thP64KPATH variable.

To interrupt execution of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, <CTRL>c will terminate the
"wait" command, but will not terminate command file execution; in this case, you
must press <CTRL>c again.

78

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Examples Suppose you have a command file named STARTEMUL, it is located in your
current working directory, and it contains the following commands:

log_commands to STARTEMUL

load configuration bigproject/config

load bigproject/program

trace after START

run from 2000h

wait measurement_complete

The preceding wait command variation ensures that
new trace states will be available in the trace buffer
before the "display trace" command is executed.
display trace

log_commands off

If you start the emulation session and enter STARTEMUL (the command file
name) in the command line, all commands fioad configuration... to display
trace will be sequentially executed on the command line.

To nest command files

e Call a command file from an executing command file by including the command
file name in the executing command file.

The emulation/analyzer interface executes commands found in a command file just
as if they were entered into the command line. That means if the interface
encounters a command that is not part of its own command set, it will attempt to
execute it as a command file. (See “To execute a command file” in this section for
an explanation of command file execution.)

Command files called from other command files may be nested to a maximum of
eight levels. Control returns to the calling command file after the called command
file is executed. A called command file is like a subroutine of the calling command
file.

79

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Example

Command files requiring parameters must have those parameters supplied by the
calling command file as part of the call. Failure to supply the parameters causes an
error and a halt of the calling command file.

The first command file (named “cmdfile1”) calls the second (named “cmdfile2”)
and then executes a single instruction after control returns.

cmdfilel:
cmdfile2
display memory
cmdfile2:

load configuration democfg
load demo

To pause command file execution

To pause execution of a command file until the SIGINT (<CTRL>c) signal is
received, use th@ait command.

To pause execution of a command file for a specific amount of time, usaithe
<time> command, wheretime> is in seconds.

To pause execution of a command file until a trace trigger has been found and the
trace buffer is filled, use thgait measurement_completeommand.

You may want to add a delay to a command file under certain conditions. For
example, you may want to execute a command file up to a certain point, have it
display a screen, and then pause while you examine the output on the screen.

Placewait measurement_completén your command file following a trace

command to ensure that the trace completes before command file execution
continues. This ensures that subsequent trace display or trace copy commands use
the new trace states, not states from a previous trace.

80

Examples

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

A wait command without parameters will cause execution to pause until the
<CTRL>c key combination is entered. If you have a command file that is hanging
on await command, check to make sure that the wait kdsree> or a
measurement_complet@rgument.

Pause a command file for 5 seconds by placing the following command in the
command file:

wait 5

Pause a command file until a trace trigger has been satified and the trace buffer has
filled by placing the following command after a trace command in a command file:

wait measurement_complete

Example

To add a comment to a command file

Use a pound sign (#) to precede the comment string.

You can use this technique either while logging commands to a file during an
emulation session, or when you are creating a command file with a text editor. Any
text that follows the comment character, up to the next new line, is ignored by the
interface. Comments may appear on lines by themselves, or commeritdlovay
commands on the same line.

Two variations of comments are shown in the following command file fragment:

The next command is the default trace command

trace

wait measurement_complete # make sure the trace buffer
has new states

display trace

81

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

To pass parameters to a command file

1 Define formal parameters on the first line of the command file following the

PARMS keyword.

Pass actual parameters to the command file when it is executed.

A formal parameteis composed of an ampersand (&) followed by one or more
letters or underscores. Formal parameters are like variables in the command file.
Formal parameters are replaced by actual parameters when the command file is
executed.

An actual parameteis an ASCII string that represents a symbol or value. Actual
parameters containing blanks must be enclosed in single or double quotes.

Actual parameters are supplied to the command file in two ways.

* As arguments to the command file entered on the command line along with the
command file name. Values gresitional Enter a value for the first parameter
that follows the PARMS keyword in the command file immediately following
the command file name on the command line. Enter a value for the second
parameter second after the command file name. And so on.

* Inresponse to prompts from the interface. If a formal parameter exists in the
command file and no actual parameter was passed to it on the command line,
the interface will prompt you for a value for the formal parameter. If you enter
a command file name without supplyiagy actual parameters, the interface
will prompt you for values foall the formal parameters.

You may use either method to supply parameters, or a combination of the two.
Being prompted for the parameters relieves you from having to remember the
parameters.

If, from another command file, you call a command file that requires parameters,
you must supply all the parameters with the call. The calling command file cannot
respond to parameter prompts; an error will occur and the calling command file will
halt.

82

Examples

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

The following command file, called “loadany,” is a general command file for
loading a configuration file and then an executable file.

PARMS &cfgname &binfile
load configuration &cfgname
load &binfile

The following command, entered on the command line, calls the command fil
“loadany” and passes the actual parameters needed by the command file:

loadany democfg demo

You could start the command file “loadany” without parameters and allow the
interface to prompt you for the actual parameters. Issue the command:

loadany

and then respond to the parameter prompts. A prompt for the “cfgname” parameter
for this command file will look like the following:

STATUS: M68020--Running in monitor------------

Define command file parameter [&cfgname]

You might also start the command file, supply just the first parameter, and have the
interface prompt you for the second parameter. Issue the command:

loadany democfg

to cause the interface to prompt you for the second parameter (&binfile).

83

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Example

To increase flexibility of command files by using
&ArG_IEfT

Use the special parame&ArG_|EfT anywhere in the command file.

Pass zero or more arguments to the command file on the command line.

You can create highly flexible command files using the special parameter
&ArG_IEfT . It must be entered with the preceding ampersand (&) and exactly in
the combination of upper and lower case letters shown here. It is not a parameter in
the sense of command file formal and actual parameters. (See “To pass parameters
to a command file” for more information.) Instead, it is a special parameter that

may be included in either a command file with formal parameters or in a command
file without formal parameters.

When the interface find&ArG_IEfT in a command file, it replaces it with the

union of all arguments remaining in the string of arguments passed to the command
file. Arguments for this special parameter must be passed on the command line and
can be zero or more in number. The interfaitenot prompt for a value for

&ArG_IEfT . If you do not pass any values, the interface removes the special
parameter and executes the command associated with the special parameter without
any arguments.

The following three commands are all variations ofdisplay memory command:

display memory
display memory 1000h
display memory 1000h, 2000h thru +20h, 3000h

The first command displays memory in the format specified by the last memory
display command. The second command displays memory at address 1000h in
blocked word format. The third command displays memory at two specific memory
locations and also from a range of locations all in a single blocked word display.

84

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

The following command file (consisting of one line), called “dm,” can be used to
implement all three commands:

display memory &ArG_IEfT
The following three command-file invocations replicate the three separate
commands:

dm
dm 1000h
dm 1000h, 2000h thru +20h, 3000h

To specify the order of searching several
command file directories (HP64KPATH)

Set the environment variallP64KPATH to one or more alternative directory
paths. Separate each path from the others with a colon (}).

You can set the environment variable HP64KPATH to specify alternative

directories for command files. If this variable is set, the interface searches each path
listed in the variable successively until the command file it is searching for is found
or no more paths exist. If the command file has not been found after this search,
then the interface looks in the current working directory for the command file. If

this variable is not set, the interface only searches the current working directory.

This variable is typically set to point to a common directory of command files that
might be used by several people. You could also use this variable so that you would
not have to store command files in the same working directory as, say, source files
for a project.

The directories listed in the HP64KPATH variable moesearched if the command
file has an explicit path name prefixed to it.

Usesetto specify or change this variable if you are using the command line. Use
export to set this variable from your HP-URrofile file.

85

Chapter 3: Using the emulator/analyzer interface
Creating and Executing Command Files

Examples

Set this variable, from within the interface, to cause the interface to search first the
“/lusers/common/cmdfiles” directory, then the “/users/myid/cmdfiles” directory, and
then the current working directory, by issuing either of the two follows@tg
commands:

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles
or

set HP64KPATH=/users/cmdfiles:/users/myid/cmdfiles:.

Force the current working directory to be the first directory searched instead of the
last directory searched by including the dot symbol as the first directory in the
HP64KPATH, as in

set HP64KPATH=.:/users/cmdfiles:/users/myid/cmdfiles

By making the current directory the first in the path, you speed up command file
access for command files in the current working directory because the interface
would otherwise search the current working directory only after searching all of the
other directories listed in HP64KPATH.

86

Chapter 3: Using the emulator/analyzer interface
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interf

This background process also allows commands to be forwarded from one inté
to another. All interfaces having software versions above 5.00 may forward
commands; only Graphical User Interfaces can receive forwarded commands.
Commands are forwarded using foevard command available in the command
line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theorward debug "<command_string>" command using the command
line.

To send the Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

87

Chapter 3: Using the emulator/analyzer interface
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

Enter theforward perf "<command_string>" command using the command line.

. Examples To send the "profile" command to the software performance analyzer:
forward perf "profile” <RETURN>

88

Chapter 3: Using the emulator/analyzer interface
Accessing the Terminal Interface

Accessing the Terminal Interface

The Terminal Interface is the name given to a primitive command set that resides in
the emulator firmware. The Terminal Interface is described in the
MC68020/MC68EC020 and MC68030/MC68EC030 Emulators Terminal Interf
User's Guide You may sometimes need to use Terminal Interface commands
during an emulation session. For example, you must use a Terminal Interface
command to run the emulator’s internal performance verificghiontést.

You can access the Terminal Interface of the emulator directly thpmehh
commandsén your high-level interface (Graphical User Interface or Softkey
Interface) The high-level interface provides a screen to display Terminal Interface
output and two ways to use the keyboard to input Terminal Interface commands.

Terminal Interface commands bypass the high-level interface and are executed
directly by the emulator firmware. For that reason, the high-level interface can
become out-of-sync with the emulator if you use certain Terminal Interface
commands. Changing configuration items, for example, will cause the actual state
of the emulator to be different from the internal record of the state of the emulator
that is kept by the high-level interface. Changing communications parameters can
prevent the high-level interface from communicating further with the emulator, and
cause abnormal termination of the interface. Be careful when using Terminal
Interface commands to avoid creating problems for the high-level interface. The
following table lists some Terminal Interface commands to avoid, and why:

Commands Reasons to Avoid

stty, po, xp Do not use. Will change the channel operation and
hang emulator.

echo, mac Usage may confuse the channel protocol.

wait Do not use, will block access to emulator.

init, pv * Will reset emulator and forand release_system

t Do not use. Will confuse trace status polling and
unload.

*Performance verification (pv} an internal self-test of the emulator hardware. If
you suspect any problems with your emulation system hardware, use the Terminal
Interface command “pv” to run the internal self-test. pv is on this list of pod
commands to avoid because running it will reset the emulator and end the
emulation session. That does not mean you should not run pv if you suspect

89

Chapter 3: Using the emulator/analyzer interface
Accessing the Terminal Interface

hardware trouble. Just be aware that it will terminate the emulation session if you
do run it.

See theV/C68020/MC68EC020 and MC68030/MC68EC030 Emulators Terminal
Interface User’s Guidér more information about the Terminal Interface.

The remainder of this section explains how to display the Terminal Interface
screen, copy the Terminal Interface screen to a file, and enter Terminal Interface
commands.

To display the Terminal Interface screen

SelectDisplay -~ Pod Commands If you are using the command line, enter:

display pod_command

The interface will accept Terminal Interface commands, but will not show the
results (output) of those commands unless the Terminal Interface (pod command)
screen is displayed. Generally, you display this screen before entering one or more
pod commands.

To copy the Terminal Interface screen contents
to a file

To append the contents of the Terminal Interface screen to the contents of a file,
selectFile - Copy - Pod Commands ...or if using the command line, enter:

copy pod_cmd to <filename>

To replace the contents of a file with the contents of the Terminal Interface screen,
on the command line enteopy pod_cmd to<filename> noappend

90

Chapter 3: Using the emulator/analyzer interface
Accessing the Terminal Interface

You can save the current contents of the Terminal Interface screen to a file by using
the copy command. Additionally, you can copy the Terminal Interface screen to a
printer or to a UNIX command by using other copy command options. Refer to
Chapter 11 “Emulator Commands” for more information about copy command
options.

<filename>is any valid UNIX file name. The file name may include path
information. If the file does not exist, the interface creates it. File creation error,
can sometimes be caused by UNIX permission violations on files or subdirect
Make sure you have write permission on the file and on the directory where yo
intend to create the file.

To enter Terminal Interface commands

To execute just one or two Terminal Interface commands, enter the Terminal
Interface command, enclosed in double quotes, as an argurpent tmmand
on the command line.

or

If you expect to enter several Terminal Interface commands, enable Terminal
Interface command pass-through and disable high-level interface command
processing by selectirgettings— Pod Command- Keyboard, or on the
command line, entgrod_command keyboard

Enter the desired Terminal Interface commands.

End Terminal Interface command pass-through and re-enable high-level interface
command processing by pressingshspendsoftkey.

Before you enter a Terminal Interface command, you should udesiay
pod_commandcommand to display the Terminal Interface screen. If you do not
display the Terminal Interface screen, you cannot see the output from the Terminal
Interface commands you enter.

If you are entering a single Terminal Interface commandydldecommand
“<command>" variation is useful. However, entering a series of pod commands is

91

Chapter 3: Using the emulator/analyzer interface
Accessing the Terminal Interface

Examples

easier if done from thieeyboard. While keyboard entry is in effect, the interface
passes all keyboard input through to the Terminal Interface. The Terminal Interface
validates and executes all commands directly and displays the results on the
Terminal Interface screen.

Access the Terminal Interface and display memory locations 0 through 20 in long
word format:

display pod_command
pod_command “m -dl 0..20"

Access the Terminal Interface from the command line, check the emulator status,
then the trace configuration, and finally return keyboard control to the command
line:

display pod_command
pod_command keyboard
es

tcf

suspend

92

Chapter 3: Using the emulator/analyzer interface
Accessing the Terminal Interface

To get help on Terminal Interface commands

1 SelectDisplay - Pod Commands If you are using the command line, enter:

display pod_command

2 On the command line, enteod_command “help <cmd_name>”

<cmd_name>is the Terminal Interface command on which you want to receive
help.

You can access the emulator’s low-level Terminal Interface using the
pod_commandkeyword. If you need help on any Terminal Interface command,
you can use iteelp command.

See theMC68020/EC020 and MC68030/EC030 Emulator Terminal Interface
User's Guidefor more information regarding the Terminal Interface.

Examples Get help on the Terminal Interfacecommand:

display pod_command
pod_command “help cf”

Get help on all Terminal Interface command groups:

display pod_command

pod_command “help *”

93

Chapter 3: Using the emulator/analyzer interface
Accessing the Operating System

Accessing the Operating System

Through the command line, you can access the operating system to use services
available there. You can set environment variables and enter UNIX commands.

This section shows you how to:
* Set environment variables.
* Enter UNIX commands.

» Display the name of the emulation module.

To set environment variables

» Typeset <ENVIRONMENT VARIABLE>=<VALUE> .

You can set UNIX environment variables with Hetcommand. The
<ENVIRONMENT VARIABLE> can be any UNIX environment identifier name.
The<VALUE> can be any string value. If the value has embedded spaces, use
double quotes around the string.

Example To set the PRINTER environment variabléges, enter:

set PRINTER ="lp -s"

To enter UNIX commands

« Type!<UNIX_COMMAND>

» Type!<UNIX_COMMAND>! <options>

94

Examples

Chapter 3: Using the emulator/analyzer interface
Accessing the Operating System

You can execute any UNIX command by preceding it on the command line with an
exclamation mark (!). The system creates a shell process and executes the
command line string following the exclamation mark.

If you enter only the exclamation mark (!), a command process is created and the
command shell is started. Exiting the command shell by tygiitgeturns you to
the emulator/analyzer interface.

You can precede and follow your UNIX command with exclamation marks. T
allows you to include options with your command, such as:

in_browser executes your UNIX command and provides results in a
scrollable window instead of a terminal window (default
display).

wait_for_exit waits for your UNIX command to finish its execution before

allowing the next command to begin. This is useful for
commands that require extra time to complete, such as "make".

no_prompt_ used to speed operation when you don't need the results

before_exit display. For example, this will complete a command without
prompting for the press of the RETURN key in commands that
would normally prompt for the RETURN key.

Show the values of the current environment variables:
Isetjmore <RETURN>

Edit a command file previously created with the command:
log_commands to <FILENAME>

lvi <FILENAME> <RETURN>

See a directory listing in a browser window:

Ils! in_browser

Make files in a directory and hold off loading the executable file until the "make"
has finished:

Imake! wait _for exit . load <file>

95

Chapter 3: Using the emulator/analyzer interface
Accessing the Operating System

Examples

To display the name of the emulation module

Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

To display the name of your emulation module:

name_of module <RETURN>

The name of the emulation module is displayed on the status line.

96

Using the Emulator

How to control the processor and examine system resources

97

Chapter 4: Using the Emulator
The Emulator And Its Applications

The Emulator And Its Applications

The HP 64748/HP 64747 emulator helps you to test and debug applications in real
time. The emulator is a functional replacement for MC68020 or MC68030/EC030
microprocessors. It provides access to processor registers and memory, as well as
complete execution run control.

The emulator provides debugging capability for:
» embedded system hardware startup and test
» hardware/software integration

The emulator may also be used out-of-circuit as a code execution environment.
However, software development and testing will probably be handled best in a host
execution environment.

The emulation system is connected to a host computer by a LAN connection, or by
a serial (RS-232C) data communication link.

The emulation interface can display data and symbolic assembly code in windows,
or can additionally show the C-language source code intermixed with the assembly
code. You can start and stop execution of application code usingtlaadstep
commands. Breakpoints can be placed at strategic locations to stop application
execution when a specific address is reached.

An application can communicate directly with the emulation interface by using the
simulated I/O library. This provides standard input and output, messaging and
access to the UNIX file system. During initial stages of development, an

application can print status and debugging messages to the emulation display using
simulated I/O. Files can be created, opened, read from, and written to on the host
system. These routines can be converted as target system hardware becomes
available.

98

Chapter 4: Using the Emulator
The Emulator And Its Applications

The demo Application

A demo program, and an associated configuration file, are provided with the
emulator. The demo application allows you to learn about the emulator without the
bother of writing and loading your own program.

The demo program was written in MC68000 assembly language. When the
emulator loads the program, it also defines a symbol table containing symbols from
the program. You can use these symbols when you're making measurements using
the program.

The demo program emulates a hypothetical environmental control system for
computer room. The name of the demo program is ecs.x.

For detailed information about the files used in the demo program, and methods
and requirements for starting the demo program, read the READMEDEMO and
README files in the directory named /usr/hp64000/demo/debug_env/hp64747.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the

emulation probe. Refer to Chapter 18 "Installation and Service" for instructions on
how to install SRAM memory modules.

To build programs

1 Create source files in “C” or MC68020/MC68030/EC030 assembly language using
a text editor.

2 Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

3 Translate the assembly source files to relocatable object files using a compatible
MC68020 or MC68030/EC030 cross assembler.

99

Chapter 4: Using the Emulator
The Emulator And Its Applications

4 Link all relocatable object files with the linker/loader to produce an absolute object

file in the IEEE-695 format. (The loaders for the HP language tools produce a file
with the extension .x for IEEE-695 format.) If you want to produce an absolute file
in the HP64000 format, specify the appropriate loader options. (The IEEE-695
format is better for emulation tasks.)

(Optional) Build an SRU symbol database before entering emulation by entering
the srubuild <absfilename>command.

If you're planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the MC68020 or MC68030/EC030
emulator. Usually, this means that you’ll want your files in IEEE-695 absolute
format. The HP language tools for the HP 9000 produce this format.

Processor C Compiler Assembler
MC68020/EC020 HP 64903 HP 64870
MC68030/EC030 HP 64907 HP 64874

You may use other language tools if they produce either IEEE-695 or HP64000
absolute file formats.

Other file formats, such as Motorola S-records and Tektronix hex format can be
converted to HP64000 format by using the HP 64888 utility software.

100

Chapter 4: Using the Emulator
The Emulator And Its Applications

To configure the emulator

Configure the emulator to meet the resource needs of your target system and
application program by following the instructions in Chapter 8, “Configuring the
Emulator.”

To configure the emulator, choddg®dify — Emulator Config Then answer
the questions that appear in the Emulator Configuration dialog box.

Using the command line, entaodify configuration. This starts a series of
guestions whose answers define the emulator configuration.

You must configure the emulator to allocate system resources such as memory, and
to set handling of interrupts, etc. You must do this before you load and execute
programs and make emulator measurements. Refer to Chapter 8, "Configuring the
Emulator."

If you want to use the examples in this manual, you must load a special
configuration file and load the demo program. See “To load the demo program” in
this chapter for more information.

101

Chapter 4: Using the Emulator
Loading and Storing Programs

Loading and Storing Programs

The emulator provides commands that allow you to move files into emulation or
target memory from a host computer through the LAN or serial ports of the

HP 64700 Card Cage. You can also save a range of memory in an absolute file for
later reuse. (You might do this if you patch a section of code and need to do further
testing.)

Many different absolute file formats are supported. The primary ones used with the
emulator interface are the IEEE-695 and HP64000 absolute formats.

Theload command has other options that allow you to control the load process.
Refer to thdoad command syntax in Chapter 11, "Emulator Commands."

To load a program

* ChooseFile - Load - Executable... In the dialog box, click on the name of the
executable file to load, and then click OK.

» Using the command line, load a program absolute file into emulation or target
memory by enterintpad [<memory_type>] <filename> [fcode <fcode>. |

<memory_type> is optionalemul_memis emulation memory and
user_memis target system memory. The default is to load all
memory.

<filename> is the name (including paths if needed) of an HP64000 or
IEEE-695 format absolute file. You do not need to specify the
extension if it isx or X.

<fcode> is an optional function code from the following list.

102

Chapter 4: Using the Emulator
Loading and Storing Programs

<fcode> Meaning

none emulator ignores function-code bits

S supervisor space (program and data)
u user space (program and data)

p program space (supervisor and user)
d data space (supervisor and user)

sp supervisor program space

sd supervisor data space

up user program space

ud user data space

cpu CPU space

The emulator can load HP64000 or IEEE-695 format absolute files into emulation
or target system memory. So, you can develop programs on your UNIX
workstation; then build the programs and load them into the emulator for
debugging.

Use the memory type parameter if you want to load only the parts of the program
that have addresses corresponding to those types of memory in the map.

The function code is an optional parameter that allows you to direct an absolute
module to memory that has the proper function code type.

Example To load the executable part of your absolute file into memory and any symbolic
information found in the absolute file, chodske - Load — Executable...

To load the executable part of your absolute file into memory but not load symbolic
information found in the absolute file, chodske - Load - Program Only...

To load only the symbolic information found in the absolute file (without loading
the executable part of your absolute file), chdeike- Load — Symbols Only...

Suppose you have two map terms, one of which is user program space from 1000
thru 1fff hex. The other is supervisor program space from 1000 thru 1fff hex. You
have absolute files called userprog.x and supprog.x. To load these programs using
the command line, enter:

load userprog fcode up
load supprog fcode sp

The programs are loaded into the correct function code spaces.

103

Chapter 4: Using the Emulator
Loading and Storing Programs

To load the demo program

1 With your emulator interfaceot on screen, enter the following commands in a
terminal window:

cd /usr’hp64000/demo/debug_env/hp64748r the MC68020
cd /usr’hp64000/demo/debug_env/hp6474ibr the MC68030/EC030
Startemul <logical name>

Where<logical name>is the name assigned to your emulator. The default logical
name for the MC68020 emulatomi®802Q and for the MC68030/EC030

emulator ism68030 For a detailed discussion of how to find a logical name, refer
to Chapter 1, "Getting Started."

2 The terminal window will ask you if you wish to copy the demo files to a different

directory. It is best to answer "y" to this question, and then supply the full path
name of your own demo directory.

The demo files will be copied and modified, as required, into the directory you
specify, and then the emulator interface will appear on screen. It will be ready for
you to run the demo procedure.

3 Press the Action keys from left to right and top to bottom to see the demo.

The demo program supplied with the MC68020 and MC68030/EC030 acts as a
hypothetical environmental control system for a computer room. You can use this
program to learn more about the emulator. Refer to the information on the demo
program in the reference part of this manual.

The examples in this manual use the demo program. To make the examples work
correctly, you must load the demo emulator configuration file and demo program as
described above.

104

Chapter 4: Using the Emulator
Loading and Storing Programs

To store a program

» Using the command line, transfer a range of memory locations from the emulator to
an HP 9000 file by entering tlséore memory [fcode <fcode>] <expression>
[thru <expression>] to <filename>command.

<fcode> is an optional function code as follows:

<fcode> Meaning

none emulator ignores function-code bits

S supervisor space (program and data)
u user space (program and data)

p program space (supervisor and user)
d data space (supervisor and user)

sp supervisor program space

sd supervisor data space

up user program space

ud user data space

cpu CPU space

<expression> specifies the starting (and endingthnu <expression>
addresses of the memory range to be stored.

<filename> is the name (including paths if needed) of a file to store the data.

If you patched a program or data structure by modifying memory, you may want to
save the memory image for comparison with other changes or for future testing.
Thestore command allows you to do this.

Thestore command creates absolute files in HP64000 format.X le&tension is
added automatically.

Example To save the memory locations of the init_system routine in an absolute file named
new, use the command line to enter:

store memory init_system thru init_system endto new

105

Chapter 4: Using the Emulator
Loading and Storing Programs

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place the address reference
(either absolute or symbolic) in the entry buffer; and then cheitese Edit - At
() Location.

To edit a file based on the current program counter, cheilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error message if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to Chapter 13, "Setting X
Resources" for more information about setting this resource.

You must load symbols before most edit commands are available because symbol
information is needed to be able to locate the files.

106

Examples

Choosing this

menu item brings
up a terminal
window with an edit
session open on the
file where the
highlighted symbol
is defined.

To edit a file that defines a symbol:

File Display Modify Execution Breakpoints Trace

Chapter 4: Using the Emulator
Loading and Storing Programs

Settings

Help

Action keys: < Demo > | Disp Sre() | Trace () | | Step Source |
<Your Key > | Make | Disp Sre Prevl Run Xfer til {)| Step Asm |
() | main Recall

Glabal symbals in fusr/hpB4B86/demo/debug_erv/hpB4747/ecs. =
Procedure symbols A
Procedure name Address range __ Segment Offset
initsimio ABEEZ456 - BEEAZ483 env ag1c
\nterrupt_sim AEBAAZ06A - ABABZERS prog a874
kN1 BEEB27Z28 - AHBAZ7S0 enw H2EB
lsea AOEEZ7A4 - BHABZEZS erv A36A

ain T 12059 prog ABEE
malloc Global Symbols Display gana4A77 libe ELET
memchr . ABAB4BFY libe Jalala]s]
memcpy Display Local Symbols | ppaparic |ihe BABE
memmoy e Dsplay Parent Symbeoly | BABB4CS3 libe julz]o]c]
memset ABEA4CT3 libe Jalala]s]
open Cut Full Symbol Name | gapa2403 eny BA4A
open_file Edit File Defining Symbol | 999623A0 erv Baeg
pos_cursor 9°y ABABZETD env A28[
printf ABBEEE7E - BHABEECY libe J5]a]e]E]
proc_spec_init BEEE3334 - BHEA3SC] prog HEEE L 4
proc_specific AHAA33CE - ABAB3SFY prog B3R

STATUS:

H680308--Running in monitor

Emulation trace complete

set Command_line

0
(=3
=
Ef
o
=
j=9
[=
13-}
-
=
=
=
s
=
=
w
(=]
b
L
b
o
E
=
3
o
=
(=9
o
1:]
-1}
=
-
[=]
(1]
=
(=9
o
1:]
-1}
[=
el
o
=

107

Chapter 4: Using the Emulator
Loading and Storing Programs

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file

where the highlighted

source line exists.

To edit afile at the location of a source line:

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: =Demo = | Disp Sre() | Trace() | Run | Step Source |
<Your Key > | Make | Disp Sre Prevl Run Xfer til {)| Break | Step Asm |
() | main Recall

Memory :Bsp :mnemonic :file = .../ usr/hpE4BBE/ demo/ debug_erv/hpB4747 /imain. c":

addre label data A
132
133 if 1 0 {#counter) X 4 1)
134 Ao cortl ald data a=cii old_data, limit ¥ NUM_OF_OLD);
135 + |Choose Action for Highlighted Line

AEERZERR . RE ($FFFF, A5}

ARARZERE Set/Clear Software Breakpoint RE ($FFFF,AS)

ABAEZERR Edit Source RE ($FFFF,RAS}

AEEAZERE RE ($FFFF, A5}
136 Run Until
137 rE3 R o o ook K K ok R R R R R R R R
138 « | Trace After
}ig * | Trace Before L

*
141 + | Trace About
142 *{ Trace Until R R e e PR R TR PR P LS PR PR S TR L
143 in L L
144 char *dest;
STATUS: H680308--Running in monitor Emulation trace complete []

display memory main mnemonic

108

Chapter 4: Using the Emulator
Using Symbols

Using Symbols

When you load a program for the first time, the emulator uses the Symbolic
Retrieval Utilities (SRU) to build a symbol database for each module. This database
associates symbol names and symbol type information (not data types) with logical
addresses. You will see a message on screen showing the module for which the
database is being built.

Once a symbol database is created for a particular module, it does not need t
rebuilt unless the module is changed. You can rebuild modules usisnytidd

utility (refer to theSymbol Retrieval Utilities, SRU, User’s GUidéyou reenter
emulation without building symbols, the emulator software automatically rebuilds
portions of the symbol database as you reference symbols in modified modules.
Usually, you should ussrubuild after you rebuild your absolute files to save time
during emulation.

Global symbol information is immediately available for the file that you loaded. To
obtain local symbol information, you need to reference the module that contains the
symbols.

You can use the symbol names instead of addresses when entering expressions as
part of an emulation command. Therefore, you don’t have to remember address
information to make a measurement. Also, the emulator can display symbols within
the results of a measurement, usingsittesymbols orcommand. This helps you

relate the measurement to your original program.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symboils display by starting the interface with more
columns (refer to Chapter 13, "Setting X Resources").

The MC68020 and MC68030 emulator interface can read absolute files in

HP-OMF or IEEE-695 format. For more information on SRU, refer t&yimabol
Retrieval Utilities, SRU, User’'s GuidAlso refer to the information on symbol
entry syntax in the—-SYMB— section of Chapter 11, "Emulator Commands."

When you load an absolute file into memory (unless you specify a load without
symbols), symbol information is also loaded. Both global symbols and symbols that
are local to a source file can be displayed.

109

Chapter 4: Using the Emulator

Using Symbols

Example

To load a symbol database

ChooseéFile - Load - Symbols Only... In the dialog box, click on the name of the
desired symbols file, and then click OK.

Using the command line, load a new symbol database by enterilogudgymbols
<filename>command.

<filename>is the name of the absolute file in HP64000 or IEEE-695 format for
which you want to load symbols.

Theload symbolscommand is useful when your system uses several different
absolute files or when the target program resides in target ROM and is not loaded
through the emulator. The symbol database for the most recently loaded absolute
file is the current symbol database. If you want to use a symbol database from a
different absolute file without reloading the file, useltied symbolscommand to

load only the symbol database for that file.

Suppose you have a system that uses two absolute files, one called system.x and
another called task.x. You load these as follows:

load system.x
load task.x
The symbol database for task.x will be available because it was loaded last. To

reference symbols from system.x, use the command:

load symbols system.x

Now the symbol database for task.x will not be available.

110

Chapter 4: Using the Emulator
Using Symbols

To display global symbols

» ChooseDisplay - Global Symbols.

» Using the command line, display global symbols by enterinditipday
global_symbolscommand.

symbols in the program modules you have loaded into emulation or target me
The symbols list includes the address range associated with a symbol, the nal
the associated segment, and the offset of the symbol within the segment.

Thedisplay global_symbolscommand displays a list of global (externally define.

You can use thgP andDOWN cursor keys and tHéEXT andPREV keys to
scroll or page through the global symbols listing.

Example Display the global symbols for the demo program:

display global_symbols

111

Chapter 4: Using the Emulator
Using Symbols

To display local symbols

» If you are using the Graphical User Interface:

» First place the name of the symbol whose local symbols should be displayed
into the entry buffer, and then in the menu bar, chBisgay - Local
Symbols().

* When displaying symbols, position the mouse pointer over a symbol on the
symbol display screen and click teelectmouse button.

* When displaying symbols, position the mouse pointer over the symbol, press
and hold theselectmouse button, and chodd&splay Local Symbolsfrom the
popup menu.

» Using the command line, display the symbols defined within a given symbol by
entering thalisplay local_symbols_in <symbol_namesommand.

This command displays address information associated with each symbol. The
symbols defined within a given symbol are local to that symbol. That is, they are
defined as children of that symbol. See “To enter a symbol” for more information
on the<symbol_name> If no local symbols are associated with your selection,
the interface displays the parent symbol.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

Example Display the local symbols for the update_sys module in the demo program:
display local_symbols_in update_sys(module)
Suppose that you had an IEEE-695 absolute file with a module named system and a

procedure within that module also named system. You could display the local
symbols for the procedure named system by entering:

display local_symbols_in system.system

To display the source reference address ranges:

display local_symbols_in system.c:

112

Chapter 4: Using the Emulator
Using Symbols

To display local symbols using the symbols display popup menu:

ewlett Packard Emulator/Analyzer: hplsdyu (m68030)
File Display Modify Execution Breakpoints Trace Settings Help

View the local Action keys: = Demo = | Disp Sre () | Trace () | Run | Step Source |
symbo|s associated < Your Key » | Make | Disp Sre Prev| Run Xfer til)| Break | Step Asm |

with the highlighted T Recall |
symbol by choosing

this menu item. edure symbols A
Address range __ Segment Offset
ABHAZEFE - BEEAZYIF erw A244
fflush ABEAGES38 - BEEAES03 libe ABEA
free ABEA4A7S - BOEA4ABO libe AZ2E4
furite ABHAGSAS - BOEAEEYD libe ABEA
ABHAZESE - BEEAZFE] prog A1Rz2

ABAE3452 - BEEAE551 prog
ABAE3IEAS - BEEAS3ED prog

get_targets
graph_data

G S A

init_system

imt_\,l_rr Global Symbols Display =
Initsimio Display Local Symbols 3 a1t
interrupt_sim pay Y ag B87 4
kill Paplay Parent Symbols - AZER

lseek v A3EA
main Cut Full Symbol Hame og AEAG
malloc Edit File Defining Symbol 1bo S
memchr i v B aaBEa
STATUS: M68030--Running in monitor Emulation trace complete

display global_symbals

i

If local symbols exist within the scope of the symbol you chose, then the display
changes to show those symbols. Otherwise, the interface issues an error.

113

Chapter 4: Using the Emulator
Using Symbols

To display the parent symbol of a symbol

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup
menu.

If a parent symbol does not exist for the highlighted symbol, this menu item will be
grayed-out and unresponsive to mouse clicks.

Examples

. File Display Modi Execution Breakpoints Trace Settings Hel
View the parent Hle Display Modly B =it - e g
symbol associated Action keys: < Demo > | Disp Sre () | Trace() | Run | Step Source |
with the highlighted < Your Key > | Make |iDisp Sre Prev| Run Xfer til () Break | Step Asm |
symbol by choosing) [main Recall |

this menu item.

bols in init_system{procedure}
rocedure special symbols A
rocedure special name Address range __ Segment Offset

BABE3IZ0C prag ABEE
HBAR3342 prog

NGE Tl [EIEIETrE]

Local Symbols Display

Display Local Symbols
Display Parent Symbols
Cut Full Symbol Hame
Edit File Defining Symbol

TATUS: cws: init_system.init_system

isplay local_symbols_in init_system{procedurel

114

Chapter 4: Using the Emulator
Using Symbols

To copy and paste a full symbol name to the
entry buffer

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you can be sure that you specified the complete
scope of the symbol, including all names of symbols that were truncated.

Display Modify Execution Breakpoints Trace Settings Help
Examples
Action keys: < Demo > | Disp Sre () | Trace () | Run | Step Source |
Copy the full name < Your Key = | Make | Disp Sre Prev| Run Xfer til {)| Break | Step Asm |
of the hlgh“ghted Jlinit_systemimodulel. init_wval_arri{procedure’ Recall

symbol to the entry

Symbals in init_systemi{modulel

buffer by ChOOSing Rrocedure symbals A
; B Prscedure name Address range __ Segment Offset
this menu item. it system BOBBIZ0C - PAREIAT prog BEEE

init_val_arr 7 prog A7 4
Local Symbols Display

Static symbols .

Symbal name Display Local Symbols . Segment Offset

_bA_array Display Parent Symbols AE data AEAR

_BA_metsys_tini\| 57 const HEAR
Cut Full Symbol Mame

Filename sumbold pgi File Defining Symbol

Filename

fusr/hpB4BAB/ dema/ debug_erv/hpB4747/init_system.c

STATUS: cws: init_system{module)

display local_symbols_in init_systemimodule)

115

Chapter 4: Using the Emulator
Using Symbols

To enter a symbol

» Enter symbols according to the syntax shown in the —SYMB— syntax pages in
Chapter 11, “Emulator Commands.”

Examples These are examples of some valid symbol entries:

Int Cmd
demo.Main(procedure)
demo.EndLoop
handle_msg.Fill_Dest
handle_msg.Cmd_A
system.c:line10

116

Chapter 4: Using the Emulator
Using Symbols

To display the current directory and current
working symbol

ChooseDisplay - Context... A dialog box will open and show the name of the
current directory and current working symbol.

Using the command line, display the name of the current directory by tywidhg
and the name of the current working symbol by typiwg.

If you're entering symbol names from several different modules, you may be

unsure which symbol is the current working symbol. Digplay — Context...or
pws commands allow you to check this.

Thepws andpwd commands aren't available on the softkeys. You must type them
at the keyboard.

The directory context, included in the dialog box seen in the Graphical User
Interface is the directory accessed by all system references for files (primary load,
store, and copy commands) if no explicit directory is mentioned. Unless you have
changed directories since beginning the emulation session, the current directory
context is that of the directory from which you started the interface.

The current working symbol context is supported by the emulator/analyzer and the
Symbol Retrieval Utilities (SRU) working together. The current working symbol
represents an enclosing scope for local symbols. If symbols have not been loaded
into the interface, you cannot display or change the symbol context.

117

Chapter 4: Using the Emulator

Using Symbols

To change the directory context

ChooseFile - Context— Directory and use the dialog box to select a new directory.

Using the command line, enter ttek <directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (Refer to Chapter 13,
"Setting X Resources").

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select a new working
symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to type it
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (Refer to Chapter 13,
"Setting X Resources").

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

118

Chapter 4: Using the Emulator
Using Symbols

Example The update_sys module of the demo program defines several symbols, including
get_targets, graph_data, and write_hdwr. You refer to these in a group of memory
display commands as follows:

display memory update_sys.get_targets blocked bytes
display memory update_sys.graph_data blocked bytes
display memory update_sys.write_hdwr blocked bytes

To save repeated typing of update_sys, enter:

cws update_sys .

Then enter the memory display commands as:

display memory get_targets blocked bytes
display memory graph_data blocked bytes
display memory write_hdwr blocked bytes

119

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Accessing Processor Memory Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check the results of a data write. Also, you may need to modify memory locations
to test different data sets for a program. The emulator has flexible memory
commands that allow you to view and modify memory as needed.

To display program data structures

Place an absolute or symbolic address or file hame containing the desired data
structures in the entry buffer. Then chobBseplay - Data Values- New ()and

select the data type from the cascade menu. This clears the data values display and
adds a new item.

Place the absolute or symbolic address of the desired data in the entry buffer. Then

chooseDisplay— Data Values- Add () and select the data type from the cascade
menu. This adds data items to the data values display.

ChooseDisplay — Data Valuesif you have a display of data values on screen and
you want to update that display.

Using the command line, display a program data structure by erdespigy data
<lower> [thru <upper>] <type> {,<lower> [thru <upper>] <type>}.

<lower> and<upper> are address expressions representing the lower and upper
boundaries of the memory range to be displayed.

120

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

<type>is a data type for display formatting as follows:

Type Description

Designator

byte Hex display of one 8-bit location

word Hex display of one 16-bit location

long Hex display of one 32-bit location

int8 Display one 8-bit location as a signed integer (two’s
complement)

intl6 Display one 16-bit location as a signed integer (two’s
complement)

int32 Display one 32-bit location as a signed integer (two’s
complement)

u_int8 Display one 8-bit location as an unsigned positive integer

u_intl6 Display one 16-bit location as an unsigned positive integer

u_int32 Display one 32-bit location as an unsigned positive integer

char ASCII characters

You can use thdisplay datacommand to display simple data types in your

program. This can make the display of simple variables easier to read because you
don't have to visually sort a display (such as a memory display) to find the
locations of interest.

You can use symbols in the address expression.

Example To clear the data values display and add the target_temp static symbol from the
demo program:

display data target_temp byte

To add display of the aver_temp array from the demo program:

display data aver_temp thru aver_temp end word

121

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display only source lines

* ChooseSettings— Source/Symbol Modes. Source Only.

* Using the command line, enter thet source only symbols onommand.

Only high-level source lines are displayed in mnemonic memory and trace displays.

Examples To turn ON source lines in displays, and display memory in mnemonic format:

set source only symbols on <RETURN>
display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Sefttings Help
Action keys: < Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xfer til {)| Break | Step Asm |
() |main Recall
Memory :Bsp imnemonic :file = .../ usr/hpB4BBA/ demo/ debug_erv/hpE4747 /main. "
addre label data F Y

31 extern void update_systemi); /#* update system wariables #*/

32 extern void interrupt_simi}; /% simulate an interrupt */

33 extern void do_sortil; /% sets up ascii array and calls

34

35 maini}

36 i

97 init_systemi);

98 proc_spec_initi};

33

186 while {truel

181 i

182 update_systemi};

183 num_checks++;

184 interrupt_sim{&num_checks)

185 if {graph?

1686 graph_datall;

187 proc_specifici};

STATUS: M68030--Running in monitor Emulation trace complete

122

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display intermixed source lines

ChooseSettings— Source/Symbol Modes. Source Mixed

Using the command line, enter thet source on symbols ocommand.

High-level source lines are intermixed with assembly language instructions in
mnemonic memory and trace displays.

To turn ON source lines in displays, and display memory in mnemonic format:

set source on symbols on <RETURN>
display memory main mnemonic <RETURN>

Display Modify Execution Breakpoints Trace Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xfer til {)| Break | Step Asm |

Recall

Memary

(Bzp imremonic :file = ... /usr/hpB4BAB/ demo/ debug_erv/hpB4747 /main. "
1

A

E pr|main.main 4ESGHHAD LINK.W RE, #$806A

ABEAZCFE 2FBA MOWVE.L A2, (A7)

ABEAZCFS 247CEEA7E1 MOVER.L #$ABE7E1AS, A2
37 init_systemi);

ABEAZCFE 14BCABDE1 MOWVE.B #$61, (AZ)

ABEAZ06Z 4EB3BHABSZ TSR init.init_system

>_1n

FEEEELE] ~ 4EE9008E39 p.proc_spec_init

HEEEZ0BE 4E71 MNOP

STATUS: MGBECO30--Running in monitor

123

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display symbols without source lines

ChooseSettings— Source/Symbol Modes, Symbols

Using the command line, enter thet source off symbols ocommand.

Symbols are included in memory mnemonic, trace, breakpoints, and register step
displays.

To turn ON symbols in displays, and display memory in mnemonic format:

set source off symbols on <RETURN>
display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Sefttings Help
Action keys: < Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xfer til {)| Break | Step Asm |
() |main Recall
Memory :Bsp imnemonic :file = .../ usr/hpB4BBA/ demo/ debug_erv/hpE4747 /main. "
dd label data A

> |ELE Al |m=in.main 4ESEG600 LINK.H AE, #EBAAA

BEBB2CFE 2FBR MOVE. L A2, -(A7)

BEBB2CFS 247CAABYE] MOVEA.L #$BBAYS1AS, A2

HEBEZCFE 14BCEAE1 MOYE.B #$81,(A2)

AERB20682 4EE3ABBASZ ISR init.init_system

BERB2063 4EE3AEBASI ISR p.proc_spec_init

BERB20BE 4E7 1 NOP

aERE201a8 157CEBA1BA MOVE.B #$61, ($8BB1, A2}

AERBE2016 4EE3ABBAS3 ISR up. update_system

AERE201C 52B388B757 ADDO.L #1, data| _num_checks

AARBEZ022 437930887587 PEA data| _num_checks

BERB2028 4EE3AEBAZ0 ISR ma.interrupt_sim

BERB20ZE S88F ADDQ. L #4,A7

AERE2038 4A3388B757 TST.B data|_graph

BERB2036 676E BEQ.B prog|main+$BA54

BERB2038 157CEBA1BA MOVE.B #$61, ($8BB2, A2}

AARBZ03E 4EBIBRRAA3E ISR updat.graph_data

STATUS: MGBECO30--Running in monitor

124

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display absolute addresses

ChooseSettings— Source/Symbol Modes, Absolute.

Using the command line, enter thet source off symbols offommand.

No symbols or source lines are included in mnemonic memory or trace display;

To turn OFF symbols and source lines in displays, and display memory in
mnemonic format:

set source off symbols off <RETURN>
display memory main mnemonic <RETURN>

ewlett Packard Emulator/Analyzer: m68030 (m6803

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: < Demo = | Disp Sre() | Trace () | Run | Step Source |
= Your Key = | Make | Disp Sre Prev| Run Xfer til {)| Break | Step Asm |
()| main Recall
Memory :Bsp tmnemonic :File = .../ usr/hpB4ABE/ demo/ debug_erv/ hpB4747 /main. "

addre data Fy

HE Al 1 ESEARRG LIMNE.H AG, tsABaR

HEEEZCFE 2FEA MOVE.L A2,-(A7)

AABA2CFE 247CEEE7S1 MOVEA.L H$BBE7S1RE, A2

AEBAZCFE 14BCEAAL MOVE. B #EA1, (A2

AABA2082 4EBIBEEAZZ TSR $BAABA320C

AABA20A5 4EBIBEEA3I ISR $BAABA 3334

ARBAZ0AE 4E71 NOP

AAEA201A 157CHEB1E8 MOVE.B HEA1, ($8BE1,A2)

AABA2016 4EBIBEEA33 ISR $BAABA3I33E

AAEA201C 52B38EB7S7 ADODGO.L #1, $8BB7875C

AABa=022 4873888787 PEA $B8BB7875C

AABA20258 4EB3BEEAZ0 ISR $AABA206H

AABAZD2E S588F ADDG. L #4, A7

AABA203A 4A338068757 TST.B $BAAB7E7E8

AABAZ036 67A8E BEQ. B $08BA2046

AAEA20358 157CHEB1E8 MOVE.B #EA1, ($8BE2,A2)

AABA203E 4EBIBEEA3S ISR $BABA3IEAS

STATUS: MGBECO30--Running in monitor

125

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in byte format

ChooseDisplay - Memory - Hex() - bytes. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in byte format by entering
display memory <lower> [thru <upper>] bytes

To format the memory listing as a single column, add the keyalmdlutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end bytes

126

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in word format

ChooseDisplay - Memory - Hex() - words. If you want to include a line range
or starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in word format by enterin
display memory <lower> [thru <upper>] words.

To format the memory listing as a single column, add the keyalmdlutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the demo program’s average temperature array:

display memory aver_temp thru aver_temp end blocked
words

127

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in long word format

ChooseDisplay - Memory - Hex() - long. If you want to include a line range or
starting point for your memory display in your command, enter it into the entry
buffer before you execute this command.

Using the command line, display a range of memory in long word format by
enteringdisplay memory <lower> [thru <upper>] long.

To format the memory listing as a single column, add the keyalmdlutebefore
the data type in theéisplay memory command. To format the memory listing as
multiple columns, add the keywobtbcked before the data type in théesplay
memory command.

Display the processor’s interrupt vector table:

display memory 0 thru 3ffth absolute long

128

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display memory in mnemonic format

ChooseDisplay - Memory —- Mmemonic() or Mnemonic at PC. If you want to
include a line range or starting point in your command, enter it into the entry buffer
before you choose thdnemonic() command.

Using the command line, display memory in mnemonic format by entispkgy
memory <lower> [thru <upper>] mnemonic.

A highlighted bar shows the location of the current program counter address.
allows you to view the program counter while stepping through user program
execution.

When youdisplay memory mnemonic the emulator disassembles the memory
locations beginning with the first address you specify. If this address is not the
starting address of an instruction, the display will be incorrect.

To offset the addresses in the memory mnemonic display, add the parameter
offset_by <expression=o the end of the display memory command line.
<expression>is an address expression that is subtracted from each address in the
memory display. If code gets relocated, and therefore makes symbolic information
obsolete, you can use thset_byoption to change the address information so

that it again agrees with the symbolic information. You can alsoffss _byto

change listed addresses so that they match addresses in compiler or assembler
listings.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on what you choose wittsténgs— Source/Symbols
Modes or Settings— Display Modespulldown menu items.

Use theset symbols orcommand to display symbol information for addresses in
the memory mnemonic display.

If symbols are loaded into the interface, the default is to display source only.

129

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To display program memory for the main part of the demo program, enter main in
the entry buffer and chooBasplay - Memory — Mmemonic(), or enter on the
command line:

display memory main mnemonic
Display the write_hdwr routine for the update_sys program in mnemonic format,
with symbols in the address column:

set symbols on
display memory update_sys.write_hdwr thru write_hdwr end
mnemonic

To return to the previous mnemonic display

ChooseDisplay - Memory - Mmemonic previous.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint the line following the function call, and run the
program from the current program counter.

130

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory in real number form

ChooseDisplay - Memory - Real()- <real type>. If you want to include a line
range or starting point in your command, enter it into the entry buffer before you
execute this commandsreal type>may be short, long, extended, or packed.

Using the command line, enter commands as follows:

1 Display memory values as 32-bit (IEEE-754 single precision) real number.

selectingdisplay memory <lower> [thru <upper>] real short

2 Display memory values as 64-bit (IEEE-754 double precision) real numbers by
selectingdisplay memory <lower> [thru <upper>] real long.

3 Display memory values as 96-bit (IEEE-754 double extended precision) real
numbers by selectindjsplay memory <lower> [thru <upper>] real
extended

4 Display memory values as 96-bit Motorola Packed real numbers by selecting
display memory <lower> [thru <upper>] real packed

Real numbers use the formats defined by Standard for Binary
Floating-Point ArithmeticThey can be short (32 bits), long (64 bits), or extended
(96 bits).

To display a set of data values in real numbers, beginning with the floating
humidity in the demo program, place the global symbol float_humid in the entry

buffer and choosBisplay - Memory - Real()- long. If using the command line,
enter:

display memory float_humid real long

131

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To redisplay memory locations

* ChooseDisplay - Memory.

» Using the command line, redisplay memory with the same address range and
format as the previous memory display by selecting:

display memory
The last range and format options are maintained in the interface. When you

display memory without specifying the location or format for the display, the
previous options are used.

To display memory repetitively
» ChoosdDisplay - Memory - Repetitively.

» Using the command line, continuously display memory with:
display memory repetitively

This command continuously updates the memory display. Use this only to monitor
memory while running your target code; it requires a lot of CPU time. To allow the
current memory display to be updated whenever the emulator detects a
modification to memory content (such as loading a file, setting a breakpoint, etc.)
use theset updatecommand, oSettings— Display Modes...

132

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To modify memory

ChooseModify -~ Memory, or enter the desired memory location and new value in
the entry buffer and click ddodify — Memory at (). The equivalent command

will be shown on the command line. Complete the command by entering
appropriate information on the command line.

Using the command line, enter commands as follows:

* To modify a single memory location to a single value, sehectify memory
<address> to <value>

» To modify a range of memory locations to a single value, seledify
memory <lower> thru <upper> to <value>

+ To modify a range of memory locations with a list of values, seledify
memory <lower> thru <upper> to <valuel>,<value2>,

» To change whether memory is modified by bytes, words, or long words, add
the<mode>parameter before the keyword.

* To modify memory as real numbers, sefacdify memory <lower> [thru
<upper>] real [short|long] to <reall>[,<real2>, ...].

» To modify a sequence of bytes to an ASCII string literal, seledify
memory <lower> thru <upper> string to “<string>" .

<string> is a character string.

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be modifiedlie>represents the

data value to which the contents of memory are to be modified.

The<mode>parameter can be eithgytes words, orlong. Otherwise, the mode
specified by the lagtisplay memory command determines how data is displayed.
If you selected "Any" when you selected "Memory Access Size" as part of the
emulation configuration, the size you specify here will be used to access memory
for the modification you specify.

133

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

Modify the byte at elf hex to 43 hex:

ChooseModify — Memory, and on the command line, type Oettft43h

modify memory 0QOelfh to 43h

The above example assumes that byte mode was in effect. If not, add the mode
parameter:

modify memory 0QOelfh bytesto 43h

Modify the command input buffer of the demo program to 43 hex:

modify memory demo.Cmd_Input byfesto 43h

Modify the range of locations from e00 through €38 to zero:

modify memory 0e00h thru 0e38h to O

Modify the range of locations from 0e00 through 0e38 to “ABC":
modify memory 0e00h thru 0e38h bytesto 41h,42h,43h

Modify the memory at e00 hex to the string “This is a string™

modify memory 0e00h string to “This is a string\n\0”

Remember that the memory modification is affected by the display mode. Suppose
that locations fO0 and fO1 each contain 01. If you enter the command:

modify memory 0f0lh bytesto 3h

Then location fOO contains 01 and location fO1 contains 03. But, if you entered:
modify memory 0f0Oh wordsto 3h
Then location fOO will contain 00, and location fO1 will contain 03. Notice that you

refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68020 and MC68030/EC030 processor architecture).

134

Chapter 4: Using the Emulator
Using Processor Run Controls

Using Processor Run Controls

When you don’t use an emulator, run control can be difficult. Usually, you're
limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or if the
program logic is faulty.

By using the emulator, you can run the processor from the current program co
or any desired address. If you want to examine the system after each progra
instruction, you can use tilstepcommand to step through the program. You can
break to the monitor program to examine on-chip resources such as RAM and
registers, and you can reset the processor from the emulator.

To run a program

ChooseExecution- Run and select the desired starting point from the submenu, or
selectuntil() to specify the ending point. Enter the starting or ending address in the
entry buffer before you choose a command that corftaing) or until() .

Using the command line, enter commands as follows:

* Torun a program from the current program counter (PC) value,ranter

e Torun a program from a specific address, entefrom <—EXPR—>
(where<—EXPR—> is a valid address expression that may include symbols).

» Torun a program from the reset vector, entarfrom reset.
» Torun a program from its transfer address, entefrom transfer_address.

When you're ready to start a program run, either to test target system operation or
make an analyzer measurement, you usastheommand.

<—EXPR—> is a 32-bit address expression. You can include function codes to
specify the memory space to which the address applies.

135

Chapter 4: Using the Emulator
Using Processor Run Controls

Examples

Therun from reset command pulses the processor reset line. The processor fetches
the values at offsets 0 and 4 from the vector table, loads these values into the
interrupt stack pointer and program counter registers, and then begins running from
the program counter address value.

A run command causes the emulator processor to begin running from the current
program counter, provided that the emulator is not in the reset state. If the emulator
is in the reset state, then command (with no parameters) is equivalentrana

from reset command, unless tlien command is preceded byeak command.

If you reset the emulator, break to the monitor, and then run the emulator, the stack
pointer and program counter values are taken from the values supplied to
configuration items instead of from the reset vector locations. Refer to Chapter 8,
“Configuring the Emulator” for more information about setting the initial stack
pointer and program counter values.

To run from the demo program’s starting location:
Enter main in the entry buffer, and cho&ecution- Run - from().

Or, on the command line, enter:

run from main

To run programs from the current program counter value:

ChooseExecution— Run - from PC, or on the command line, enter:

run

136

Chapter 4: Using the Emulator
Using Processor Run Controls

To run programs from the transfer address

ChooseExecution— Run - from Transfer Address.

Using the command line, entem from transfer_address.

Most software development tools allow you to specify a starting or entry addre
for program execution. That address is included with the absolute file’'s symb
information and is known by the interface as the "transfer address".

Before you can run from the transfer address, it must exist in the absolute file, and
you must load symbols along with the program code from the absolute file. If the
interface does not detect a transfer address, this menu item is grayed-out and
unresponsive to mouse clicks.

To run programs from reset

ChooseExecution— Run - from Reset

Using the command line, entem from reset.

This command resets the emulation processor and begins executing your target
program at either the start address for the processor, or at the address fetched from
the reset vector for the processor. It may be necessary to supply a reset signal from
your target system as well. See your processor-specific documentation for
information about the exact mechanism involved.

137

Chapter 4: Using the Emulator
Using Processor Run Controls

To run programs until a selected address occurs

* When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and holdstiectmouse button and
chooseRun Until from the popup menu.

» Place the address you want to run until in the entry buffer; then choose
Execution— Run - until() .

» Using the command line, entem until <address>.

When you run until an address, a breakpoint is set at the address and the program is
run from the current program counter until the breakpoint is hit.

This command is useful for bypassing large areas of code. For example, you may
want to run your program through the program startup code until the "main”
function begins so that you can begin testing your code at "main".

When using the command line, you can combine the various types of run-from
commands with the run-until command; for example, you can run from the transfer
address until the start of a routine you wish to test.

You may need to enable breakpoints before "run until" will work. See "To enable
or disable the breakpoint feature" later in this chapter.

138

Chapter 4: Using the Emulator
Using Processor Run Controls

To break to the monitor

ChooseExecution- Break.

Using the command line, cause the emulation processor to break from execution of
your target program and start execution in the monitor by entering:

break

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. During a run that
is restricted to real-time execution, you must break execution to the monitor before
executing any emulation commands that access registers, emulation memory that is
not dual-port, or target system memory. You also can usgeéhk command to

pause user program execution.

Inserting breakpoints in software and usiag until <address>commands can be
used to break to the monitor at selected points in your target program.

The status line changes to “Running in monitor.”

If you enter ebreak command while the processor is in a wait state (hung bus
cycle), the emulator may terminate hung target bus cycles in an attempt to
transition into the monitor. A bus cycle is considered hung when the target system
has not provided the required termination within 300 ms. The emulator never
attempts to terminate hung bus cycles in program space. The emulator will
generate a status message for each address where it forcefully terminates a bus
cycle. You can determine emulator staisglay - Status) to get information

about a hung bus cycle before initiating a break (and accept the termination side
effect) or use theesetcommand.

139

Chapter 4: Using the Emulator
Using Processor Run Controls

To step the processor

ChooseExecution- Step Sourceor Execution— Step Instruction. Select the

starting point for processor stepping from the associated submenu. If you will enter
a command that requires a starting address, enter that address in the entry buffer
before entering the command.

Using the command line, enter commands as follows:

e To step the processor one instruction from the current program counter value,
enterstep

» To step one line of high level source, erstep source

» To step the processecount>number of times from the current program
counter value, entatep <count>

» To step the processor one instruction from an address givesdoyess>
typestep from <address>

» To step the processecount>number of times from an address given by
<address> typestep <count> from <address>

» To suppress display of registers for intermediate steps of a multi-step
execution, add thellently parameter after thstep <count>command.
(<count>must be greater than one.) This is only effective when stepping is
done in the same interface displaying registers.

Thestepcommand lets you single-step the processor through progranttepe.
Sourceexecutes one line in your high-level source progftep Instruction
executes one line of your assembly language program.

When displaying memory mnemonic, a highlighted bar shows the current program
counter address. After each step, the highlighted bar moves to the new PC address.
When displaying registers, the registers are updated after every step.

You can open multiple windows to show memory mnemonic and registers at the
same time. Both are updated with each step.

If you omit the<address> the current program counter value is used. You can use
transfer_addressto step from the entry point of the program.

140

Chapter 4: Using the Emulator
Using Processor Run Controls

When stepping through instructions associated with source lines, execution may
take a long time and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation, you can abort the step command by
pressing <CTRL>c.

The emulator uses the built-in tracing capability of the MC68020/MC68030
processor to single step assembly instructions. The emulator needs the trace
exception vector (located at offset 0x24 in the vector table) to be set properly in
order to single step instructions. When a step command is given to the emulator,
the emulator reads the trace exception vector and attempts to change one or
vector table entries if the trace exception vector is not set correctly. As long a
vector table is located in emulation memory or target RAM, stepping should al
succeed. Upon completion of single stepping, the emulator restores modified
vector table entries and issues a status message the first time the vector table is
modified.

If the trace exception vector does not contain the correct value and the vector table
is located in target ROM, the emulator will issue an error message and not perform
the single step. There are two ways to deal with this situation. Either alter the
ROM-based code so the trace vector contains the correct value, or copy/relocate the
vector table into emulation memory or target RAM.

The correct value of the trace exception vector differs, depending on whether you
are using a background or foreground monitor. The foreground monitor requires
that the trace exception vector point to the TRACE_ENTRY address in the monitor
(located at offset 0x680 from the start of the monitor). If the trace exception vector
already contains the correct value, the emulator performs the single step without
modifying the vector table. Otherwise, the emulator attempts to change the trace
a-line and f-line exception vectors to the TRACE_ENTRY address in the
foreground monitor.

The background monitor only requires that the trace exception vector be an even
value and point to readable memory. This allows the processor to complete trace
exception processing, including initial prefetches from the trace exception handler,
during transition into the background monitor. After reading the trace exception
vector, the emulator attempts to read from the address it points to. If the read
succeeds, the emulator single steps without modifying the vector table. Otherwise,
the emulator attempts to write the current value of VBR into the trace exception
vector (because the vector table is readable).

There are some limitations when single stepping. A step may fail when single
stepping an instruction that changes the address of the vector table (modifies the
VBR register). With the background monitor, instructions that can be interrupted

141

Chapter 4: Using the Emulator
Using Processor Run Controls

(ie: floating-point operations) may not complete because the emulator generates an
interrupt after a finite amount of time after the single step is initiated.

Examples To step the processor one instruction from its present location, choose
Execution- Step Instruction - from PC, or on the command line, enter:

step

To step the processor three instructions from the current program counter:

step 3

To step the processor five source-level instructions from the init_system symbol in
the demo program:

step 5 source from init_system

To step once from the program entry point, choose

Execution- Step Instruction - from Transfer Address, or on the command line,
enter:

step from transfer_address

142

Chapter 4: Using the Emulator
Using Processor Run Controls

To reset the processor

ChooseExecution- Reset

Using the command line, enter commands as follows:

* To resetthe emulation processor from the emulator, enter:

reset

» To reset the emulator from the target system, assert the RESET signal in your
target system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to Chapter 8, "Configuring the Emulator" for more information.)

Sometimes you may want to reset the emulation processor prior to a program run.
Theresetcommand allows you to do this. Or, you can reset the emulation
processor from the target system.

Both the MC68020 and MC68030/EC030 emulators will respond to a target system
reset. A target system reset does not reset the entire emulator. It resets only the
emulation processor.

If the emulators are running a user program when the target system reset occurs,
they behave as ifrain from reset command were issued.

If the MC68020 emulator is in the background monitor when the target reset
occurs, it will reenter the monitor when the reset is released. The MC68030/EC030
emulator behaves this way for both the foreground and background monitors.

The reset command holds the processor in the reset state until a break, run, or step
command. A CMB command can cause the emulator to run from reset. Also, a
request to access memory or registers may cause a break into the monitor.

143

Chapter 4: Using the Emulator
Viewing and Modifying Registers

Viewing and Modifying Registers

The emulator allows you to display registers to determine the results of program
execution. You can display a single register, or you can display groups of related
registers.

Sometimes you may want to modify a register, and then run a segment of program
code to test the results.

To display registers

» ChooseDisplay - Registers» BASIC, or FPU, or ACU (if using the
MC68030/EC030) to display the desired register class.

» Using the command line, enter commands as follows:

* Todisplay an individual register, entdrsplay registers <register_name>
where<register_name>is one of the names shown in the table on the next
page.

» To display the basic processor register set, etitptay registersor display
registers BASIC.

» To display the registers in a floating-point coprocessor, atiggiay
registers FPU

If your target system does not have a floating-point coprocessor, the above
command will cause an Error message to appear.

The available registers and register classes are in the table on the following page.

144

Chapter 4: Using the Emulator
Viewing and Modifying Registers

Register Class

Register Names

BASIC PC, ST, USP, ISP, MSP, CACR, CAAR, D0..D7, A0..A7, VBR,
DFC, SFC
FPU FPCR, FPSR, FPIAR, FPO..FP7

MMU (MC68030)
or

ACU (MC68030/EC030) ACO, AC1, ACUSR

TTO, TT1, MMUSR, TC, CRP, SRP

Examples

The processor must be running to allow register displays. If it's running in the
monitor, the emulator does the display directly. If the emulator is reset, it will try
to break to the monitor. If it's running the target system program, the emulator
forces a break to the monitor, gets the register data, and then returns to the user
program. (If you restrict the emulator to real-time runs, the display registers
command isn’t allowed while you're running your target program. Refer to
Chapter 8, "Configuring the Emulator.")

Display the processor’s A0 register:

display registers AO

There was an error in the first software release for the MC68030 Graphical User
Interface. When you composed isplay - Registerscommand, the associated
submenu would offdBASIC, FPU, andACU as register sets, even when the

MMU was enabled. If you clicked dCU, you would see "syntax error". The

next release of software for the Graphical User Interface (Revision 5.01) corrected
this error. It offerdMMU instead oACU when the MMU is enabled. If you have
the software release that has this error, click oMitli&) softkey below the

command line to correct your command.

145

Chapter 4: Using the Emulator
Viewing and Modifying Registers

To modify registers

ChooseModify - Register.., and in the dialog box, type in the register name and
new value.

Using the command line, modify a register to a new value by typing:
modify register <regname> to <value>

Where<regname>is the name of a processor register, avalue>is an
expression matching the data type of the register (byte or word).

To modify an MMU register in the MC68030 emulation processor, the MMU must
be enabled. To modify an ACU register in the MC68030 emulation processor, the
MMU must be disabled. (Refer to the emulation configuration questions discussed
in Chapter 8, "Configuring the Emulator").

To modify registers in the FPU class, your target system must have a floating-point
coprocessor. You can enter values into the three FPU control registers using
numbers in the following bases: hexadecimal, decimal, octal, and binary. (You
can't use symbols for the floating-point registers.)

You can enter values into the eight floating-point registers using either
floating-point or hexadecimal notation. Special values, such as denormals, infinity,
andNaN (Not a Number) can be entered by using hexadecimal notation. The
following are examples of acceptable entries for the floating-point registers:

+12.34e+56

-1.E23

le-23

1.2

7

7654321
0000.000001
7{ffO00OffffffffffffffH

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you
might stop the processor at a certain point (set a breakpoint), and then modify a
register and run from that point to test the result.

The register is displayed after modification to confirm the change.

146

Chapter 4: Using the Emulator
Viewing and Modifying Registers

The processor must be running to allow modifying registers. See "To display
registers" above for more information.

Examples To modify a register, choo$éodify — Register.., and fill in the dialog box.

Place the mouse pointer.n Click Recall to select

the text entry area and type Modify Register register names and
in the name of the register Name | Fe [Recan values from predefined
and the new value. or previously specified
Value IRecaII .
entries.

Click this pushbutton to

read the present value of e e Click this pushbutton

. Read C t Register Val .
the selected register. L1 Read Current Reglster Value and select the desired
type from the submenu.

| Apply | Cancel

Click OK to modify Click Apply to modify Click this pushbutton to
the register to the newthe register to the value cancel the modification and
value and close the specified and leave the close the dialog box.

dialog box. dialog box open.

To use the command line to modify the PC register to an address:

modify register PC to init_system

To use the command line to modify the D3 register to 0:

modify register D3 to 0

147

Chapter 4: Using the Emulator
Using Execution Breakpoints

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular address and
transfer control to the emulation monitor. Suppose your system crashes when it
executes in a certain area of your program. You can set a breakpoint in your
program at a location just before the crash occurs. When the processor executes the
breakpoint, the emulator will force a break to the monitor. You can display registers
or memory to understand the state of the system before the crash occurs. Then you
can step through the program instructions and examine changes in the system
registers that lead up to the system crash.

Execution breakpoints are implemented using the BKPT instruction of the
MC68020/MC68030. You can enable, disable, set, or clear execution breakpoints.

Set execution breakpoints at the first word of program instructions. Otherwise,
your BKPT may be interpreted as data and no breakpoint cycle will occur. When
the BKPT instruction is executed, target program execution stops immediately
(unlike using the analyzer to cause a break into the monitor, which may allow
several additional bus cycles to execute before the break finally occurs).

Setting execution breakpoints in RAM

When you set an execution breakpoint in RAM, the emulator will place a
breakpoint instruction (BKPT) at the address you specified, and then read that
address to ensure that the BKPT instruction is there. The program instruction that
was replaced by BKPT is saved by the emulator.

When the breakpoint instruction is executed, the BKPT acknowledge cycle is
detected by the emulator, and the emulator causes a break to the monitor. At this
point, the emulator replaces the BKPT instruction with the original instruction it
saved. Italso replaces the BKPT instruction with the original instruction whenever
you disable or remove the breakpoint.

The emulator allows an unlimited number of breakpoints to be set in RAM.

148

Chapter 4: Using the Emulator
Using Execution Breakpoints

Using temporary and permanent breakpoints

When you set a temporary execution breakpoint, the emulator creates the
breakpoint as described in the preceding paragraphs. When the breakpoint
instruction is executed, the emulator breaks to the monitor and removes the
breakpoint. Now you can execute that portion of program code as often as you like
and the breakpoint will not occur again, unless you enable it again.

When you set a permanent breakpoint, the emulator will process it the same
temporary breakpoint, but when the breakpoint instruction is executed, the ori
instruction will only replace the breakpoint instruction during its next execution
This allows you to step through the original instruction one time. After your first
step, the BKPT instruction will replace the original instruction again so that the
breakpoint will occur the next time the breakpoint address is hit.

Permanent breakpoints remain in effect until you explicitly disable or remove them.

Permanent breakpoints are available when using version A.04.00 or greater of the
emulation system firmware.

149

Chapter 4: Using the Emulator
Using Execution Breakpoints

To enable execution breakpoints

» ChooseBreakpoints - Enable.

* Inside the breakpoints list display, press and holg¢lextmouse button and then
chooseEnable/Disable Software Breakpointgrom the popup menu.

» Using the command line, enable breakpoints with:

modify software_breakpoints enable

You must enable breakpoints before you can set, inactivate, or clear any
breakpoints.

Once you have enabled breakpoints, you can enter new ones into the breakpoint
table. Note that if you enable breakpoints, add several, and then disable them, they
all become inactive. If you reenable the breakpoints feature, you must choose
Breakpoints - Set All, or on the command-line, enterodify

software_breakpoints seif you want to set all the existing breakpoint entries.

To disable an execution breakpoint

» ChooseBreakpoints » Enable again. Thé3reakpoints— Enable selection is a
switch.

* Inside the breakpoints list display, press and hold¢lexrtmouse button and then
chooseEnable/Disable Software Breakpointgrom the popup menu.

» Using the command line, disable breakpoints with:

modify software_breakpoints disable

150

Chapter 4: Using the Emulator
Using Execution Breakpoints

Sometimes you will want to temporarily disable the execution breakpoints feature
without removing the existing breakpoints. Use one of the above commands to do
this.

When you disable breakpoints, the emulator replaces the BKPT instructions at all
breakpoint locations with the original instructions. It marks the breakpoint table
entries as “inactive.” The processor won't break to monitor when the instructions at
inactive locations are executed.

If you later enable breakpoints, the ones in the table are still inactive. To use t
you must set them by choosiBgeakpoints - Set All, or on the command-line,
entering thanodify software_breakpoints secommand.

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line where you wish to set the breakpoint and clickeleetmouse

button. Or, press and hold thelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent()

Using the command line, enter the command:

modify software_breakpoints set <address> permanent

The breakpoints feature must be enabled before individual breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

151

Chapter 4: Using the Emulator
Using Execution Breakpoints

To set a temporary breakpoint

» Type in the absolute or symbolic address of the breakpoint you want to set in the
entry buffer. Then choo®reakpoints - Temporary(), (or choose

Breakpoints - Set()if your version of HP 64700 system firmware is less than
A.04.00).

» ChooseBreakpoints - Set All to set all existing breakpoints in the breakpoint table.

* Inside the breakpoints list display, press and holdélexrtmouse button and then
chooseSet All Breakpoints from the popup menu.

» Using the command line, enter comands as follows:

» To set a breakpoint at a location given by <address>, enter:

modify software_breakpoints set <address>

» To set all existing breakpoints in the breakpoint table, enter:

modify software_breakpoints set

To add a new breakpoint, you can chd8seakpoints » Temporary() with the

name of the new breakpoint in the entry buffer, or usentify
software_breakpoints secommand and specify the address for the breakpoint.
You can also use this method to reenable an existing breakpoint at that address.

If you chooseBreakpoints— Set All, or use thenodify software_breakpoints set
command without an address parameter, all existing breakpoints in the breakpoints
table will be enabled. The breakpoints feature must be enabled before individual
breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

152

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples Set a new breakpoint at get_targets:

modify software_breakpoints set update_sys.get_targets

Reenable all existing breakpoints:

modify software_breakpoints set

153

Chapter 4: Using the Emulator
Using Execution Breakpoints

To clear an execution breakpoint

Type in the name of the breakpoint you want to clear in the entry buffer. Then
chooseBreakpoints - Clear ().

ChooseBreakpoints - Clear All to clear all existing breakpoints in the breakpoint
table.

Inside the breakpoints list display, press and holé¢lextmouse button and then
chooseClear (delete) Breakpointfrom the popup menu to clear the selected
breakpoint.

Using the command line, enter comands as follows:

» Toremove an existing breakpoint at a location given by <addrester:

modify software_breakpoints clear <address>

» Toremove all existing breakpoints, enter:
modify software_breakpoints clear
When you're finished using a particular breakpoint, you should clear the breakpoint

table entry. The original instruction is restored to memory, and the breakpoint table
entry is removed.

154

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples To clear a breakpoint using the breakpoints display popup menu:

Bring up the menu
and choose this ! !

. —'E Hewlett Packard Emulator/Analyzer: emulator02 (m68020) E a EJ
item to clear the File Display Modify E tion Breakpoints T Setti Hel
. . ile Display Modify Execution Breakpoints Trace Settings e
highlighted Flle Display Modlv Sreskpomnts Trace Sering felp
breakpoint. Mn keys: < Demo » | Disp Sre() | Trace() | Run | Step Source |
< You\l\lgey ES | tdake | Disp Sre Prev| Run xfer til)| Break | Step Asm |
{)l (moduleNupdate_sys.c": line 47 Recall
Sof tware breakp%mt\sl.\a renabled
addre bel taty A

ABaE2036 malwimodulel. "main.c":
BRBA 344 update sysimoduled.”
A 32 proc_specimodulel).

3 78

line 122 +temporary K

AABEEA

Set/lnactivate Breakpoint

Clear {delete) Breakpoint
1

Choose Action for All Ereakpoints

Enable/Disable Software Breakpoints

Set All Breakpoints

Clear (delete]) All Ereakpoints Wi
Y

| STATUS: M68020--Running in monitor Tl
E 13

To clear an existing breakpoint at get_targets:

modify software_breakpoints clear update_sys.get_targets

To clear all existing breakpoints:

modify software_breakpoints clear

155

Chapter 4: Using the Emulator
Using Execution Breakpoints

To clear all execution breakpoints

When displaying breakpoints, position the mouse pointer within the breakpoints
display screen, press and hold skéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

ChooseBreakpoints— Clear All.

Using the command line, enter:

modify software_breakpoints clear

To display the status of all execution breakpoints

ChooseBreakpoints - Display or Display - Breakpoints.

Using the command line, display the status of all breakpoints by selecting:

display software_breakpoints

The breakpoints table shows you whether the breakpoints feature is currently
enabled or disabled. Also, the status is shown for each breakpoint in memory. If
“Pending,” the BKPT instruction is in memory at that location and the breakpoint is
set. If “Inactive,” the memory location contains the original instruction, and the
breakpoint will not be executed.

Active breakpoints are indicated in the memory mnemonic display by asterisks
beside the lines with breakpoints set.

The status of a breakpoint can be:

temporary Which means the temporary breakpoint has been set but
not encountered during program execution. These
breakpoints are removed when the breakpoint is
encountered.

156

Chapter 4: Using the Emulator
Using Execution Breakpoints

permanent Which means the permanent breakpoint is active.
Permanent breakpoints remain active after they are
encountered during execution.

inactivated Which means the breakpoint has been inactivated. Pending
breakpoints are inactivated when they are encountered
during program execution. Both temporary and permanent
breakpoints can be inactivated (and restored) using the
breakpoints display popup menu.

pending Which means the temporary breakpoint has been set b
not encountered during program execution. When
encountered, these breakpoints are inactivated, but retained
in the breakpoints list. Pending breakpoints can only be set
using the softkey command line with commands like
modify software_breakpoints set 100@nd not selecting
the additional optionstemporary> or <permanent>,
The "pending" breakpoints status is retained for
compatibility with older product software versions.

In the breakpoints display, a popup menu is available, obtained by pressing the
selectmouse button. You can inactivate or restore the status of any breakpoint in
the breakpoints list, as well as enable or disable the breakpoints feature, using the
popup menu.

157

Chapter 4: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

» To display assembly language mnemonics with absolute addresses, choose
Settings— Source/Symbol Modes. Absolute.

» To display assembly language mnemonics with absolute addresses replaced by
global and local syumbols where possible, choose
Settings— Source/Symbol Modes. Symbols

» To display assembly language mnemonics intermixed with high-level source lines,
chooseSettings— Source/Symbol Modes. Source Mixed

» To display only high-level source lines, choose
Settings— Source/Symbol Modes. Source Only.
Using the command line, enter commands as follows:

¢ To display mixed source and assembly language, entsettseurce on
command.

* Todisplay only source language statements, enteetrsurce only
command.

« To display only assembly language, enterstitesource oftommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

158

Chapter 4: Using the Emulator
Changing the Interface Settings

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

To set the display modes
* ChooseSettings— Display Modes..to open the display modes dialog box.

Press and hold theelectmouse button and drag
the mouse to select "Source Only", "Source \

Mixed". or "Off* e/Symbols View
Clicking toggles whether symbolic information.is ource Only = |
displayed. Source in Trace ource Mixed = |
Move the mouse pointer to the text entry area.and Tab Expansion (2 to 15 Spaces)
type in thg desired field yvidths. @l Symbolic Addresses
Label Field sets the width of the Label:/Address
field. Field Widths
Mnemonic Field sets the width of the Opcode or Label Field
Status field. " - il =
Symbols in Mnemonic Field sets the widths of nemonte rie .
symbols shown in the Opcode or Status field. Symbols in Mnemonic Field | 15
Source Llne_s flgld sets the width of lines that Source Lines L
show source-file lines. :
L . Source: (60 to 255) All Others: (1 to 80)
Clicking toggles auto update settings:
L . Auto Update
Clicking this checkbox changes all) .
display mode settings to their defaul & Memory Displays (Except Mnemonic)
il Trace Display
Clicking:
OK saves changes and closes dialog box. 2 Default All Settings
Apply saves changes and leaves dialog box
open. Cance

Cancel closes dialog box and ignores changes.

159

Chapter 4: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Field Widths

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displays (Except Mnemonic)ltoggles whether memory displays are
automatically updated after commands that change memory contents or whether
you must enter memory display commands to update the display. You may wish to
turn off memory display updates, for example, when displaying memory mapped
I/O.

Memory Mnemonic Auto PCtoggles whether the mnemonic memory display is
automatically updated to follow the PC or remain unchanged.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

160

Caution

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

Using the Emulator In-Circuit

As your target system design progresses, you'll want to test features of your
program that will interact with your target system hardware instead of emulation
memory hardware.

You must connect the emulator probe to your target system to do in-circuit
emulation. Then you can make analyzer measurements and have the memory
display and other capabilities of the emulator to debug target system problem

When you use the emulator in-circuit, you need to carefully consider the
configuration of the emulator and its relationship to your target system design.
Refer to Chapter 8, "Configuring the Emulator," for details of the emulation
configuration.

CAUTION

CAUTION

CAUTION

To install the emulation probe

Possible damage to the emulator probe. The emulation probe contains devices that
are susceptible to damage by static discharge. Take precautions before handling the
probe to avoid damaging the internal components of the probe with static

electricity.

Possible damage to the emulator. Make sure both your target system and emulator
power are OFF before installing the emulator probe into the target system. The
emulator may be damaged if the power is on when installing the probe.

The emulator probe will be damaged if incorrectly installed. Make sure to align pin
Al of the probe connector with pin Al of the socket.

161

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

MEMORY SLOT 0

EMULATOR
PROBE

MEMORY SLOT 1

PIN A1

TARGET SYSTEM

PGA SOCKET

1 Remove the processor from your target system socket. Note the location of pin Al
on the processor and on the target system socket. Store the processor in a protected
environment (such as antistatic foam).

2 Insert the emulator probe into your target system socket. Make sure to align pin Al
of the emulator probe and the target system socket.

162

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

To power-on the emulator and your target system

CAUTION You must turn on power to the emulator before you turn on power to your target
system. Otherwise, the emulator may be damaged. Turn off power to the target
system before turning off power to the emulator.

1 Turn on power to the emulator.

2 Turn on power to your target system.

Before you turn off power to the emulator, be sure to turn off power to your target
system.

To probe other types of target system sockets

Adapters for special target system probing needs are available, as shown in the
following table.

Probe type HP part number
68020 PGA to PGA extender 64748-61604
68020 PGA to PQFP extender E2426-61601
68020 PGA to 68BEC020 PGA adapter 64748-87602
68030/EC030 PGA to PGA extender 64747-61601
68030/EC030 PGA to PQFP surface mount adapteE2406-61602
(low profile)

68030/EC030 PGA 90° CCW rotator 64700-87620
68030/EC030 PGA 90° CW rotator 64700-87619

163

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

Using The MC68030 Emulator With MMU Enabled

When you enable memory management in the MC68030 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The remaining pages in
this chapter will help you when you are using the MC68030 emulator with the
MMU enabled. Chapter 10, "Using MC68030 Memory Management", provides
detailed information to help you use the MC68030 MMU most efficiently.

Disable the MMU unless you are using it for address translation. You will still be
able to use the transparent translation registers for such tasks as defining cache
modes.

To enable the processor memory management
unit (MC68030 only)

In order to use the MC68030 MMU to provide logical-to-physical address
translation, the MMU must be enabled within the emulator configuration and the
target system must deassertMidUDIS signal (MMU Disable). If the MMU is

not enabled within the emulator configuration, the emulator asseN8MhDIS

signal and ignores tHdMUDIS signal from the target system, thus preventing the
target system from using the MMU. If you are using the background monitor, you
will need to select a foreground monitor before the MMU can be enabled within the
emulator configuration. Refer to Chapter 8, "Configuring the Emulator,” for details
of setting up the emulator configuration.

Once theMMUDIS signal is driven properly, the target system software is
responsible for setting up address translation tables in memory and initializing the
processor's MMU registers at run time. This task is typically managed by the
target system’s boot code or operating system. Refer tdMatorola 68030

User’s Manualfor information on how to use the MMU.

If the emulator is being used in an MC68ECO030 target system, or if the MMU is
not needed for translating page addresses from address translation tables in
memory, then you should disable the MMU within the emulator configuration.
This causes the emulator to assertMiMUDIS signal. However, the assertion of

164

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

this signal does not affect the operation of the transparent translation or access
control registers.

To view the present logical-to-physical mappings

range for your mappings display, cho@splay—- MMU Translations... Then in
the dialog box, click oMMU Mappings, and enter the desired logical address
range.

« ChooseDisplay - MMU Translations. If you want to specify a logical address .

» Using the command line, enter the command:

display mmu_translations

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

Examples To see the logical-to-physical mappings using the default range of logical addresses
(initially O through Offffffffh), chooseDisplay -~ MMU Translations, or on the
command line, enter:

display mmu_translations

To see all of the logical-to-physical mappings for logical addresses from 0 through
Offffh (when function codes are not enabled and only the CRP root pointer is
enabled), choosBisplay—- MMU Translations.... Then in the dialog box, click

on MMU Mappings, and enter Start Address 0 and End Address 0ffffh, and click
ok.

165

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

~Type of Query

& MMU Mappings
<> MMU Tables

~Logical Address

Start Address | Bh IRecaII

End Address | BFFFFh IRecaII

Function Code |none =

Table Loved f 1 ol

+MIU Register Values (in hex)
[Override Processor Register Values

P Vakue 039 BEY I?iﬁm%%

UHP Yalug {849 bily I Beoal

SEEP Value (84 bl I§§€f¢€§§§

Cancel

Using the command line, enter:

display mmu_translations 0 thru Offffh

To see the logical-to-physical mappings for the pages that contain logical address
40f0h, enter the command:

display mmu_translations 40f0h

To see only the mappings in supervisor space in the address range from O through
Offffh, enter the command:

display mmu_translations fcode s 0 thru Offffh

To see only the mappings in user space in the address range from 0 through Offffh,
enter the command:

display mmu_translations fcode up 0 thru Offffh

166

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

To show all of the valid mappings in the mapping tables for selected values of the
TC, CRP, and SRP registers, ignoring the present values of those registers, enter a
command, such as:

display mmu_translations use_TC_value 81ff2000h
use CRP_value 20800604bfofffe7 use_SRP_value
8000000200001020

Note that the numerical base must be specified for the TC register, but hexadecimal
values are assumed for the CRP and SRP registers. .

To see translation details for a single logical
address

* ChooseDisplay - MMU Translations... Then in the dialog box, click ddMU
Tables and enter the Logical Address whose table details you want to see in the
Address box, and click ok.

» Using the command line, enter the command:

display mmu_translations tables <address>

Examples To see how logical address 40f0Oh is mapped through the translation tables to its

corresponding physical address, chdosplay - MMU Translations... Then in
the dialog box, click oMMU Tables, enter 40f0h in the Address box, and click ok.

167

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

~Type of Query
<> MMU Mappings
& MMU Tables

~Logical Address

Address | 48f5h IRecaII

ved Adedress I?iﬁm%%

Function Code |none =

Table Level

+MIU Register Values (in hex)

[Override Processor Register Values

P Vakue 039 BEY I?iﬁm%%

UHP Yalug {849 bily I Beoal

SEEP Value (84 bl I§§€f¢€§§§

Using the command line, enter:

display mmu_translations tables 40f0h

To see how logical address 1000h in user space is mapped through the translation

tables to its corresponding physical address, chozgptay - MMU
Translations... Then in the dialog box, click ddMU Tables, enter 1000h in the
Address box, click on the pushbutton beside Function Code andwgefeain the
submenu, and click ok.

Using the command line, enter:

display mmu_translations tables fcode up 1000h

168

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

To see details of a translation table used to map
a selected logical address

* ChooseDisplay - MMU Translations... Then in the dialog box, click ddMU
Tables and enter the Logical Address whose translation table you want to see in
the Address box. Finally, besidiable Level, click on the pushbutton to identify
the table you want to see, and then click ok.

» Using the command line, enter the command: .

display mmu_translations tables <address> level
<table level>

Where <table_level> is the table level you want to see (e¢khBrC, D, orFC if
function codes are used), and <address> is the logical address that uses the table at
the point to be shown.

Note that table levelll is also offered. If you seleatl, you will see the translation
details for your logical address through the tables. This is the same as if you had
not selected thievel <table_level> option.

Table A may be accessed at several different base addresses, depending on which
logical address is to be translated. This command ensures you see Table A where
you want to see it.

Examples To see the details of Table A used to map logical address 1250h, choose
Display—- MMU Translations... Then in the dialog box, click ddMU Tables,
and enter 1250h in the Address box. Finally, beBatde Level click on the
pushbutton to select A, and then click ok.

169

Chapter 4: Using the Emulator
Using The MC68030 Emulator With MMU Enabled

Emulator/Analyzer: Display MMU Translation

Type of Query
<> MMU Mappings
& MMU Tables

Logical Address

Address ;| 1258k

IRecaII

sef Adebross

I?§ﬁ¢é§§§

Function Code |none =

Table Level

MiU Register Values (in hex)

[Override Processor Register Values

14 Valee {92 big)

[recat

CHP Value {84 bit)

|;§ewzz

SEEP Value (84 bl

[recat

Using the command line, enter:

display mmu_translations tables

Cancel

1250h level A

170

Using the Emulation-Bus Analyzer

How to record program execution in real-time

171

Chapter 5: Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer

Power of the Emulation-Bus Analyzer

Theemulation-bus analyzes a powerful tool that allows you to view the

execution of your program in real-time. Extensive triggering and sequencing
capability ensures that the analyzer captures only the information you need so you
don't spend time searching through long trace lists to find the information that is of
interest.

The Graphical User Interface has menus that let you specify some simple analyzer
measurements like tracing after, about, or before an address. You can also specify
qualifications for which states get stored and which states can be prestored; the
analyzer can prestore up to two states before each qualified store state.

The analyzer has much more capability than is available in the menus. You can
access this capability by using the command line to make your trace specifications.
Use of the command line is also covered in this chapter.

Once a trace specification command is entered, either with the menus or the
command line, it can be recalled, edited if desired, and executed again. Also, trace
specifications and trace data can be stored to files and loaded from files.

172

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Making Simple Trace Measurements

You can make simple records of the processor’s bus activity using just a few
analyzer commands. When you set up the analyzer to record processor bus activity,
you are preparing to makdrace measuremenburing the trace measurement, the
analyzer saves a record of the bus activity in trace memory. The display of the
trace memory content is called tinece list

The information captured at the occurrence of each clock is called a state. When a
captured state matches your specification for the trigger state, the analyzer
identifies it as the trigger state and stores it in trace memory.

The default specification for the trigger state is "any state." When you starta t
measurement using the default trace specification, the analyzer will identify th

state it captures as the trigger state and fill the remaining space in the trace m y
with the states that follow it. A trace is said to be complete when the trace memory
is filled with captured states, and the trigger state resides at its specified point in the
trace memory (the first state captured in memory, by default).

When a trace measurement is started, you can view the progress of the
measurement by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn't filled its trace memory, the trace measurement does not complete.
In these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keyboard keys to
position the trace list on screen. To speed up the display of traces, you can reduce
the depth of the trace list. Also, when entering trace commands, you can recall and
modify preceding trace commands to speed command entry.

173

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter:

trace

When you use thgace command without any options, the analyzer begins
recording processor bus cycles immediately, and continues until the trace buffer is
filled. In the default trace configuration, the analyzer stores all bus cycles.

If you are using the deep analyzer, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to Chapter 18, "Installation and
Service", for details. If you are using the 1K analyzer, the trace list buffer is 512 or
1024 states deep (depending on whether or not you turn on the state/time count).
See "To count states or time" in this chapter.)

Start the demo program and trace from the program start:

Startemul

reset

trace

run from transfer_address

174

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To stop a trace measurement

ChooseTrace - Stop.

Using the command line, enter:

stop_trace

You must use this command to stop a trace started wWithce - Until Stop
command (refer to "To trace activity leading up to a program halt" later in this
chapter). Several other conditions may occur that will make you want to stop
trace. The analyzer may not record any trace states because your trigger
specification isn't correct, or because you have a target system problem. At o
times, a valid trace may be capturing data slowly. You can useiherace
command to prevent the analyzer from storing additional data.

You do not have to stop a trace in order to begin viewing a partial trace because the
interface supports incremental trace uploading. After the trigger condition occurs,
the interface begins uploading and displaying trace states as they are captured.

To display the trace list
Chooselrace - Display.

ChooseDisplay - Trace.
Using the command line, enter:
display trace

When you complete a trace measurement, you will want to see the results. The
display trace command shows you the current trace list. The trace display is
updated each time you enter a neace command, until you display some other

175

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

data using theisplay command. (See treet updatecommand in “Emulator
Commands” for details.)

Whether source lines, disassembled trace states, or symbols are included in the
display depends on the modes you choose with the
Settings— Source/Symbols Modesr Settings— Display Modespulldown menu

items.
Example A simple trace list resembles:
Address Opcode or Status time count
symhols mnemonic wfsymbols relative

Frldemo+0000000C 050019FE BTST pz,po —mm—m——————
Progldemo,Loop 103819FE MOVE.B Dldemo,Cmd_Input. DO 160 nS
Dldemo, Cmd_Input 00000000 $00-- supr data byte wr 120 NS
Frldemo+00000010 00000000 $0000 supr pregm long rd 120 nS
Frldemo+00000012 05000000 0500 supr pregm word rd 240 nS
Prldemo+00000014 66000000 BNE,U Pridemo,Call_Int 120 nS
Frldemo+00000016 00060000 0006 supr pregm word rd 120 nS
Dldemo,Cmd_Input 00060000 $00-- supr data byte rd 120 nS
Frldemo+00000018 60000000 BRALW Froldemo. EndLoop 120 NS
Prldemo+0000001A 000EODOD $000E supr prgm word rd 200 nS
Pridemo,Call_Int 61000000 BSR,U FroglInt_Cmd 120 nS
Frldemo+0000001E 000CO000 F000C supr prgm word rd 160 nS
Proldemo.Endloop 60E40000 DRALB Progldemo, Loop 120 nS
FroglInt_Cmd 0OCOOCO00 CMPILE #%41,D00 180 nS
handle_+00000002 00410000 0041 supr prgm long rd 120 nS
STATUS: MEBOZ0--Running user program Emulation trace complete______..,.R....

B st sumbols on
pod_cmd set perfinit perfrun perfend -——ETC--

176

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To display the trace status

» ChooseDisplay - Status.

» Using the command line, display the trace status witdifmay statuscommand.

When you complete a trace measurement, you'll want to see the results.

The commands above show the current emulator and analyzer status. The analyzer
status shows:

» whether the trace has completed (trace memory is full)
e analyzer arm condition

» whether the trigger has been found

* number of states captured

e current sequencer state and occurrence count

Example In the following example trace status display, the screen shows that the emulation
trace has halted, an analyzer arm (activating condition) was not received or defined,
the analyzer trigger was not found, no trace states were captured (because the
trigger was not recognized), and no analyzer sequence terms or occurrences of
states were needed to satisfy the analyzer trigger.

Status

Enulator Status
M6BECA3A—Rumming in monitor

Trace Status

Enmulation trace halted
Arm not received
Trigger not in memory
Arm to trigger 7
States A (B) 7?..7
Sequence term 7
Occurrence left 7

STATUS : M6BECA3A—PRunning in monitor ...R....
display status

177

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To change the trace depth

ChooseTrace- Display Options...and in the dialog box, enter the desired trace
unload depth in the field beside Unload Depth. Then click the OK or Apply
pushbutton.

Using the command line, enter:
display trace depth <depth>

Using one of the above command forms, you specify the number of states that will
be unloaded for display, copy, or file storage. By reducing the trace unload depth,
you shorten the time it takes for the interface to unload the trace information. You
can increase the trace unload depth to view more states of the current trace.
Regardless of how much or how little unload depth you specify, the entire trace
memory will be filled with captured states during a trace.

In the deep analyzer, the maximum number of trace states depends on whether or
not you installed memory modules in the analyzer card, and the capacity of the
memory modules. Refer to Chapter 18, "Installation and Service", for details. In
the 1K analyzer, the maximum number of trace states is 1024 when counting is
turned off, and 512 otherwise. In either analyzer, the minimum trace depth is 9.

Trace data must be unloaded before it can be displayed, copied, or stored in a file.
If you wish to reduce the number of states that are unloaded for display, you must
enter the unload depth specification (in one of the two ways shown above) before
you enter the trace command. The above commands cannot be used to reduce the
number of states displayed in the current trace. You can enter a new unload depth
specification after a trace is complete to increase the amount of trace memory that
is unloaded, if desired.

178

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entrie
the dialog box by setting X resources (refer to Chapter 13, "Setting X Resourc

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

179

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

To define a simple trigger qualifier

Enter your trigger qualifier (such agjdress 1000hin the entry buffer. Thenin
the menu bar, click ofrace - After() , Trace - Before(),or Trace - About().

When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as a trigger, press and hadldoémouse

button, and choosErace After, Trace Before, or Trace Aboutfrom the popup

menu.

Using the command line, use tin@ce command to specify a trigger.

The default option for the analyzer is to begin to fill trace memory immediately
after the start of the trace. The trace completes when trace memory is full and the
trigger has been captured.

The trigger is a reference event in a trace list. You select trigger position to see
activity leading up to the trigger event, or following the trigger event, or both.

To trigger a trace measurement after the demo program executes the Init_system
procedure, place init_system in the entry buffer and chibese - After(), or on
the command line, enter:

trace after long_aligned init_system
The “long_aligned” option ensures that if the address of the trigger event is not on a
long word boundary, the analyzer will still be able to recognize it.

To capture a trace leading up to the address of gen_ascii_data, and then break to
the monitor when that trigger event occurs, place gen_ascii_data in the entry buffer
and choos@race - Until(), or on the command line, enter:

trace before long_aligned gen_ascii_data
break_on_trigger

180

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

To capture a trace of activity both preceding and following the write_hdwr symbol
in the update_sys module, place update_sys.write_hdwr in the entry buffer and

chooselrace - About(), or on the commad line, enter:

trace about long_aligned update_sys.write_hdwr

To specify a trigger and set the trigger position

Place the trigger specification desired (suchditess 1000hin the entry buffer,
and then choosErace - After() , Trace - Before(), or Trace — About().

When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as the trigger, press and hael¢ténouse

button, and choosErace After, Trace Before,or Trace About from the popup

menu.

Using the command line, selérce after, trace beforg ortrace aboutto set the
trigger position.

Normally the analyzer begins to save processor activity whenever the trace is
started. By selecting trigger position, you can specify which portion of processor
activity you will view in the trace list.

Thetrace after command causes the analyzer to fill its trace memory with
processor activity that occurred after the trigger event.

Thetrace beforecommand causes the analyzer to fill its trace memory with
processor activity that occurred before the trigger event.

Thetrace aboutcommand causes the analyzer to fill its trace memory with
processor activity that occurred before and after the trigger event. With this
command, the trigger event is positioned at the center of the trace.

The actual trigger position in the trace list is within +/-3 states of the position
specified.

181

Chapter 5: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

Example

When you enter eiace aboutcommand, the trigger state (line 0) is normally

labeled “about”. However, if there are three or fewer states before the trigger, the
trigger state is labeled “after”, and if there are three or fewer states after the trigger,
the trigger state is labeled “before”.

To trace on states before the demo program accesses the current humidity, enter:

trace before address current_humid status write
set symbols on
display trace

Example

To define a simple storage qualifier

Place your storage qualifier in the entry buffer (sucstatsis read, and then
chooseTrace - Only().

Using the command line, use thiely option in thetrace command.

All captured states are stored by default. However, you can qualify which states get
stored with thenly option to therace command.

When you are running the demo program, to store only accesses to the address
"target_temp", place target_temp in the entry buffer, and then choose
Trace - Only(), or on the command line, enter:

trace only target_temp

182

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Displaying the Trace List

Thetrace listis your view of the analyzer’s record of processor bus activity. You

can specify what is shown in the trace list to make it easier to find the information

of interest. For example, you can display symbol information where available, or
source lines from the high-level languages used to write the target system program.
You can also change the column widths and set options for disassembly of the trace
list.

This section covers many of the options available for controlling the trace display.
Display control is available through tfieace - Display Options...dialog box, the
trace list popup menu, and the command line. You can combine most options
within a single command on the command line to obtain a desired trace displa
thedisplay traceandsetcommand descriptions in Chapter 11, “Emulator
Commands,” for more information.

If you are using the MC68030 emulator with the MMU enabled, you will need to
enable and load the deMMUer before you can use source file symbols in your
commands, display source file symbols in your trace lists, or see blocks of source
code preceding related trace data. Refer to "Analyzing Program Execution when
the MC68030 MMU is Enabled" later in this chapter to see how to load and use the
deMMUer.

183

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

Click to select the desired
format of trace disassembly.

Click to select the way that
absolute status information is
shown in the trace list.

Click to select count
reference: Relative (to
preceding state), or Absolute
(to trigger).

Click to select trace list
dequeuing, if available for

—_—

To use the Trace Options dialog box:

Emulator/Analyzer: Trace Options

= Trace Di

i

lay Options

Data mat

Mnemonic =

siaius Format

Hpw

=

1 T} Dequeue Enable

Count Format @ Relative < Absolute

your emulator. W 5192 Recall

Enter the desired depth of the—: |

trace memory to be unloaded Address Offset : bh Recall

for display or storage in afile. .

ove to Lin Recall

Enter a value to be subtracted /

from addresses and

symbol/source-line

references shown in the trace | oK | Apply -

list. ; 4

Enter the desired trace Iist/ / /

line number to be placed o

screen. Click OK Click Apply Click these Click this
to specify to specify pushbuttons pushbutton
the trace the trace to select to cancel
options and options and predefined the entries
close the leave the or and close
dialog box. dialog box previously the dialog

open. specified box.
entries.

184

Examples

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To use the trace list popup menu:

13

1

Click to begin trace
disassembly from the
selected line, moving
that line to the top of
the display.

Click to open an edit — ||

window into the

source file that
contains the address of
the selected line.

Click to open a display/

window into memory
containing the address
of the selected line.
Note that the format of
the memory display

—'E Hewlett Packard Emulator/Analyzer: emulator00 (m68030)
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: < Demo > Disp Sre () Trace () I Run Step Source I
< Your Key > | Make | Disp Sre Prev| Run Xfer til)I Break | Step Asm I
Recall
Opcode or Status w/ Source Lines i
mnemonic w/symbol EY
$4E714E56 mon rsvd sp B long wr (retry)
$86062316 mon rsvd sp B long wr (retry)
$ABBAZFEE mon rsvd sp B long wr (retry)
$2FBA247C mon rsvd sp B long wr (retry)
4 {retry}
Cheose Action for Highlighted Line (Et)
susstac+HARAATFIA . {retry} i
+087 oyss 7rec ¢ Disassemble From (retry)
+868 pr|main+DEEEEEEE Edit Source (retryl
+B683 pr|maintBEEEEE 12 " (retry)
+818 pr|main+BABOEG Display hemory At (retry}
+B811 pr|maintl B1A $BB6E3384 mon rsvd sp B long wr (retry)
+812 dlwsin. _bA_array $B1B18161 mon rsvd sp B long wr (retryl
+ init.init_system $4ESEBEBE mon rsvd sp B long wr (retryl
+B14 sysstactP@BAE7FEE $BBEEZ010 mon rsvd sp B long wr (retry) W
4815 init_sy+BABAREA4 $13FCABAI mon rsvd sp B long wr (retry)
STATUS: HGBECO3O--Running user program Emulation trace started [4]»
run from transfer_address
run I trace | step | display | modify | break | end | ---ETC--I
"I Command: Cursor: éﬁ?sﬁemgﬂ Fonvard| Clear to end| 1
T i

will be mnemonic for
addresses in the code
segment and absolute
otherwise.

185

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To disassemble the trace list

ChooseTrace- Display Options...and in the dialog box, select Data Format
Mnemonic. Then click the OK or Apply pushbutton.

Use the mouse to place the cursor on a line in the trace list where you want
disassembly to begin. Then presssbkectmouse button, and click on
Disassemble Fronin the trace list popup menu.

Using the command line, enter commands as follows:

» Todisassemble instruction data in the trace list, entelisp&y trace
mnemonic command.

* To control where trace list disassembly starts, entetigptay trace
disassemble_from_line_number <LINE #>ommand.

<LINE #> is a line number corresponding to a state in the trace list.

Disassembly of instruction data means that you will see instructions as they would
appear in an assembly language program listing. That is, instruction mnemonics
and operands are shown instead of hexadecimal instruction data.

The analyzer interface normally disassembles instruction data in the trace list.
However, if you specifabsolutedata display, that mode remains in effect until
you select thennemonicoption.

When you identify a particular trace list line where disassembly is to begin, be sure
to specify a line number that corresponds to an analyzer state with an opcode fetch.
the analyzer interface disassembles and displays the trace starting with the state you

specify.

186

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples To disassemble instruction data in the trace list starting at line 40:

Place the cursor on line 40, pressghiectmouse button, and click on
Disassemble Fromin the popup menu.

Or, using the command line, enter:

display trace disassemble_from_line_number 40

To specify trace disassembly options

» Selection of disassembly options is not supported in pulldowns of the Graphical
User Interface. By default, the Graphical User Interface séligttsword and
all_cycles Use the command-line if you need to specify trace disassembly using
other options.

» Using the command line, enter commands as follows:

» To show only instruction cycles in the trace list, entedibplay trace
disassemble_from_line_number <LINE#> instructions_onlgommand.

» To show all bus cycles in the trace list, enterdisplay trace
disassemble_from_line_number <LINE#> all_cyclesommand.

e To start instruction disassembly from the upper word of the bus, enter the
display trace disassemble_from_line_number <LINE#> high_word
command.

» To start instruction disassembly from the lower word of the bus, enter the
display trace disassemble_from_line_number <LINE#> low_word
command.

Normally, the MC68020 and MC68030/EC030 presents the trace list data as it was
stored by the analyzer. That is, all bus cycles are shown, and disassembly starts
with the most significant word of the data.

If you don’t want to see operand cycles in the trace list, specify the
instructions_only option.

187

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Each analyzer bus state may have two data words. An opcode can appear in either
word. You can force disassembly to begin with the lower word of the first trace
state by using thiew_word option. If the disassembled trace list isn't what you
expected, try using this option.

The disassembly options remain in effect until you specify a new disassembly

option.
Examples Show only instruction cycles in the trace list starting at line 40:
display trace disassemble_from_line_number 40

instructions_only

Show all bus cycles in the trace list:

display trace disassemble_from_line_number 40 all_cycles

Start instruction disassembly from the upper word of the bus:

display trace disassemble_from_line_number 100 high_word

Start instruction disassembly from the lower word of the bus

display trace disassemble_from_line_number 100 /low word

188

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To specify trace dequeueing options

ChooseTrace- Display Options...and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Using the command line, enter commands as follows:

» To dequeue the trace list, enter digplay trace dequeue oncommand.
» Todisplay the trace list without dequeueing, edigplay trace dequeue off

» To tell the analyzer which data operand is aligned with the first opcode, e
thedisplay trace disassemble_from_line_number <LINE#>
align_data_from_line <STATE#>command.

<LINE #> is a line number corresponding to a state in the trace 3FATE#> is
the line number of the data operand that is associated with the instruction at
<LINE#>.

A dequeued trace list is available through the disassembly options. In the dequeued
trace list, unused instruction prefetch cycles are discarded, and operand cycles are
placed immediately following the corresponding instruction fetch. If you choose a
non-dequeued trace list, instruction and operand fetches are shown exactly as
captured by the analyzer.

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret the data.
By specifying the first instruction state for disassembly and the number of the first
operand cycle for that instruction, you can resynchronize the disassembly. (You
may also need to use tlosv_word option.)

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your
dequeued trace list. TAKEN is shown beside the branch if the dequeuer determines
that the branch was taken. NOT TAKEN is shown if the dequeuer determines that
the branch was not taken. ?TAKEN? means the dequeuer was not able to
determine whether or not the branch was taken. If you read down the trace list and
see that the branch was taken, usalitt@ssemble_from_line_numbecommand

to restart disassembly at the trace list line number of the branch destination. You
will need to include thiow word option if the destination opcode is in the low

word at the destination address. You may need to resynchronize alignment of

189

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

operand cycles with the instruction at the branch address, using the
align_data_from_line option.

Dequeue the trace list:

ChooseTrace - Display Options...and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace dequeue on

Display the trace list without dequeueing:

display trace dequeue off

Tell the analyzer which data operand should be aligned with the first opcode:

display trace disassemble_from_line_number 40
align_data_from_line 42

190

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display the trace without disassembly

ChooseTrace- Display Options...and in the dialog box, select Data Format
Absolute. You can select Hex, Binary, or Mnemonic format for display of status
information. Then click the OK or Apply pushbutton.

Using the command line, enter commands as follows:

» To display the trace list without instruction disassembly and with status
information in binary format, enter tigdésplay trace absolute status binary
command.

» To display the trace list without instruction disassembly and with status
information in hexadecimal format, enter thisplay trace absolute status
hex command.

» To display the trace list without instruction disassembly and with status
information in mnemonic format, enter ttisplay trace absolute status
mnemonic command.

For some measurements, it may be more convenient for you to view the trace data
without instruction disassembly. The Data format Absolute selection in the

Trace - Display Options...dialog box, or thélisplay trace absolutecommand

allows you to do this. Notice that once you enter this format selection, subsequent
trace lists will be displayed in this format until you select the mnemonic format

with the dialog box odisplay trace mnemoniccommand again.

You can select the display format for the status information when you choose Data
Format Absolute in the dialog box, or when you uselthglay trace absolute
command. The status information can be displayed in binary, hex, or as mnemonics
that indicate the nature of the current bus cycle (such as a read or write).

191

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

Display the trace list without instruction disassembly and with status information in
binary format:

ChooseTrace - Display Options...and in the dialog box, select Data Format
Absolute. Select Status Format Binary. Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace absolute status binary

Display the trace list without instruction disassembly and with status information in
hexadecimal format; make appropriate entries itaee - Display Options...
dialog box, or enter the following command:

display trace absolute status hex

Display the trace list without instruction disassembly and with status information in
mnemonic format; make appropriate entries inTitzee - Display Options...
dialog box, or enter the following command:

display trace absolute status mnemonic

192

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display symbols in the trace list

ChooseSettings— Source/Symbol Modes, Symbols or choose

Settings- Display Modes ...and in the dialog box, click ddymbolic Addresses

In the Field Widths area of the dialog box, you can select the widths of the Label
Field and Symbols in Mnemonic Field to control the display space allocated to the
symbols. To select symbol types, use the command line, described below.

Using the command line, enter commands as follows:

» Todisplay symbols in the trace list, entergbesymbols orcommand.
» To display only high level symbols, enter 8& symbols highcommand.
» Todisplay only low level symbols, enter thet symbols loncommand.

» Todisplay all symbols (both high and low level), entersistesymbols all
command.

If you are using the MC68030 emulator with the MMU enabled, you will need to
enable and load the deMMUer before you can display source file symbols in your
trace lists. Refer to "Analyzing Program Execution when the MC68030 MMU is
Enabled" later in this chapter to see how to load and use the deMMUer.

When you enable symbol display, addresses and operands are replaced by the
symbols that correspond to those values. The symbol information is derived from
the SRU symbol database for that command file. See Chapter 4, “Using the
Emulator” for more information on SRU and symbol handling.

High-level symbols are those that are available only from high-level languages such
as a compiler. Low-level symbols are those that are available from assembly
language modules (which may include symbols generated internally by a compiler).

The Settings— Source/Symbol Modes., Settings— Display Modes.., or

set symbolscommand remains in effect until you enter a new

Settings- Source/Symbol Modes., Settings— Display Modes.., or set symbols
command with different options.

Refer to Chapter 4, "Using the Emulator," for details of how to set up and use the
Display Modes dialog box.

193

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display source lines in the trace list

ChooseSettings— Source/Symbol Modes, Source Mixedor
Settings— Source/Symbol Modes. Source Only .

ChooseSettings— Display Modes....and in the dialog box, click dBource in
Trace and select eitheBource Mixedor Source Onlyfrom the submenu.

Using the command line, enter commands as follows:

» To display mixed source and assembly language in the trace list, ersetr the
source oncommand.

» Todisplay only source language statements in the trace list, erget the
source onlycommand.

» Todisplay only assembly language in the trace list, enteetreurce off
command.

If you are using the MC68030 emulator with the MMU enabled, you will need to
enable and load the deMMUer before you can display source code preceding
related trace data in your trace lists. Refer to "Analyzing Program Execution when
the MC68030 MMU is Enabled" later in this chapter to see how to load and use the
deMMUer.

If you developed your target programs in a high-level language such as “C,” you
can display the source code in the trace list with the corresponding assembly
language statements. Or, you can choose to display only the source listing without
the assembly language information.

The analyzer uses the line-number information in the SRU symbol database for the
absolute file to reference between source lines and assembly language information.
Refer to Chapter 4, “Using the Emulator,” for more information on SRU and

symbol handling.

194

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To change the column width

» ChooseSettings— Display Modes.., and select desired widths for information in
the trace list by using the dialog box. Refer to the "Examples" page under "To
display symbols in the trace list", earlier in this chapter for details of how to use the
dialog box.

* To set the column width for the address column in the trace list, ensat thilth
label <WIDTH> command.

» To set the column width for the mnemonic column in the trace list, enteetthe
width mnemonic <WIDTH> command.

» To set the column width for source lines in the trace list, entsetheidth source
<WIDTH> command.

» To set the column width for the symbols column in the trace list, entesethe
width symbols <WIDTH> command.

<WIDTH> is an integer specifying the width of the column in characters.
(KWIDTH> is restricted to certain values which are shown if you press the
<WIDTH> softkey.)

You can display more information by widening a column or ignore the information
by narrowing the column. For example, you might want to widen the label column
so that you can see the complete names of the symbols in that column.

You can combine multiple options on the command line to set the width for several
columns at once.

Example Set the width of the address label column to 30 characters and the width of the
mnemonic column to 50 characters:

set width label 30 mnemonic 50

195

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To select the type of count information in the
trace list

ChooseTrace- Display Options...and in the dialog box, select Count Format
Relative or Absolute, as desired. Then click the OK or Apply pushbutton.

To display count information in the trace list relative to the trigger state, enter the
display trace count absoluteeommand.

To display count information in the trace list relative to the previous trace list state,
enter thalisplay trace count relativecommand.

The count information in the trace list is always displayed if it is turned on. To turn
on the trace counting function, enter a command beginningnaé countingon
the command line. Refer to "To count states or time" later in this manual for details.

When using the 1K analyzer, the trace memory is 512 states deep if counting states
or time is turned on; 1024 states deep if counting is turned off. To disable counting,
in the 1K analyzer, use the commarate counting off. When using the deep
analyzer, full memory depth is always available; the depth of the deep analyzer is
not affected by the counting selected. See “To count states or time.”

196

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples Count time and store only each iteration of the update_sys symbol in the demo
program (if using the 1K analyzer, make sure the clock speed is set to "slow" in the
configuration):

Specify the trace for the MC68020 emulator:

trace only update_sys counting time

Specify the trace for the MC68030/EC030 emulator:

trace only long_aligned update_sys counting time

(Thelong_alignedparameter is needed because the MC68030/EC030 fetches
opcodes as 32-hit values and update_sys may not be the first part of that valu

Now, start the program run, then display the trace:

run from transfer_address

display trace count relative

Count absolute entries into the get_targets routine of the demo program:

trace only address range update_sys thru update_sys end
counting state get_targets

run from transfer_address

display trace count absolute

197

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Example

To offset addresses in the trace list

ChooseTrace- Display Options...and in the dialog box, enter the desired offset
value in the field beside Address Offset. Then click the OK or Apply pushbutton.

Use theoffset_byoption to thedisplay trace command.

The Address Offset affset_bytrace display options allow you to cause the
address information in the trace display to be offset by the amount specified. The
offset value is subtracted from the instruction’s physical address to yield the
address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use the Address Offset offset_byoption to change the address information so
that it again agrees with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

Trace execution from entry of the demo program (the main label) then offset by the
value of main so that the addresses appear the same as the location counter in the
assembler listing:

reset

trace

run from transfer_address

display trace offset_by main

198

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To reset the trace display defaults

ChooseSettings— Display Modes... Then in the dialog box, click on Default All
Settings, and click the OK button. This leaves the trace display in the "source
intermixed and symbols on" mode.

Using the command line, enter thet defaultcommand.

This turns off all symbolics and source references in the interface.

To move through the trace list

Use the scroll bar at the right of the display to scroll up and down. Use the arrows
at the bottom of the display (if any) to scroll left and right.

Using the command line, enter commands as follows:

» Toroll the trace display to the left, pregstri>f simultaneously.

» Toroll the trace display to the right, pres3tri>g simultaneously.

» Toroll the display down one line, press the down arrow key.

» Toroll the display up one line, press the up arrow key.

» To move to the previous page in the trace list, presBghdp or Prev key.
» To move to the next page in the trace list, presB¢hBn or Next key.

Though the trace display is set to 256 or more states, only 15 lines may be
displayed in the interface window, depending on your terminal type. You can move
through the trace list display using various key combinations.

You can roll the display left and right only if the trace list is wider than 80 columns.
This may occur if you increased the width of the columns.

199

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

To display the trace list around a specific line
number

ChooseTrace- Display Options...and in the dialog box, enter the desired trace
list line number in the field beside Move to Line. Then click the OK or Apply
pushbutton.

Center the trace display about a particular state giveth INE #> by entering the
display trace <LINE #>command.

If you need to move to a particular state quickly, you can use this command. The
command places the specified state in the center of the current trace display.

Display the trace about line number 20:

ChooseTrace - Display Options...and in the dialog box, enter 20 in the field
beside Move to Line. Then click the OK or Apply pushbutton.

Enbter the following command on the command line to display the trace about line
number 256:

display trace 256

200

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

Examples

To change the number of states available for
display

ChooseTrace- Display Options...and in the dialog box, enter the desired number
of states to be made available for display in the field beside Unload Depth. Then
click the OK or Apply pushbutton.

Using the command line, set the depth of the trace list with:

display trace depth <DEPTH#>
<DEPTH#> is the number of states to be available in the trace list for displayin.

copying, or storing to a file. If you are using the deep analyzer, the depth of the
trace list buffer depends on whether or not you installed memory modules on the
analyzer card, and the capacity of the memory modules installed. Refer to Chapter
18, "Installation and Service", for details. If you are using the 1K analyzer, the
trace list buffer is 512 or 1024 states deep (depending on whether or not you turn
on the state/time count). See "To count states or time" in this chapter.)

When you display the trace list, the interface requests the number of states specified
by the trace depth from the emulator. If you want faster trace display, you can
decrease the trace depth. To display more states, you can increase the trace depth.
Notice that the trace depth setting only regulates the number of states sent from the
emulation-bus analyzer to the interface. You still need to udegthép andPg Dn

keys to page through the trace list.

Set the depth of the trace memory to 256 states:

ChooseTrace- Display Options...and in the dialog box, enter 256 in the field
beside Unload Depth. Then click the OK or Apply pushbutton.

Set the depth of the trace to 1024 states:
display trace depth 1024

201

Chapter 5: Using the Emulation-Bus Analyzer
Displaying the Trace List

To display program memory associated with a
trace list line

Using the mouse, place the cursor on the line in the trace list where you want to see
the associated content of program memory. Then pressldwmouse button,
and click orDisplay Memory At in the trace list popup menu.

You will see a display of memory at the location of the program that emitted the
selected trace list line. This is the same as placing the program address of the
selected trace list line in the entry buffer and choo&implay - Memory - At()

in the pulldown menus.

To open an edit window into the source file
associated with a trace list line

Using the mouse, place the cursor on the line in the trace list whose source file you
wish to edit. Then press tkelectmouse button, and click &dit Source in the
trace list popup menu.

A new window will open. It will show the source file that emitted the line you
selected in the trace list. An edit session will be in progress on the source file in the
new window. When you complete the desired edit, save the file and close the
window.

202

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When the MC68030 MMU is Enabled

Analyzing Program Execution When the MC68030
MMU is Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68030 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

» accept commands expressed in source file symbols.
» display trace lists with addresses expressed in source file symbols.
» display appropriate portions of source code preceding lists of trace data.

Refer to Chapter 10, "Using MC68030 Memory Management," for detailed
information to help you use the deMMUer more efficiently.

To program the deMMUer in a static memory
system

Run your program to the point where you are sure the MMU is set up.

Break to the monitor program by chooskexgcution— Break.

Using the command line, enter:

break

ChooseSettings— DeMMUer - Load from Memory.

If you want the emulator to override one or more of the MMU register values with
values you specify during the load process, ch8estngs— DeMMUer - Load
from Memory..., and specify the desired values in the dialog box.

203

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When the MC68030 MMU is Enabled

To see a listing of the addresses that will be reverse translated by the DeMMUer
during the loading process, cho@stings— DeMMUer - Verbosebefore you
enter youDeMMUer Load command.

Note thaDeMMUer Load commands automatically enable the deMMUer.

Using the command line, enter the following command:

load demmuer [verbose]

Note that théoad command automatically enables the deMMUer.

Continue execution of your target program by chooExgrution— Run - from
PC or Execution— Run - from Reset or using the command line to enten, or
restart the program with the commangh from reset.

To pick the place to load the deMMUer, you might set an execution breakpoint in
your code at a point where you are sure your MMU will be set up to translate the
address space you want to analyze. When the breakpoint has executed (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will have the
ability to reverse translate the physical addresses according to the MMU setup at
the time you issued thead demmuercommand. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by the
setup of the MMU that existed when you issueddhd demmuercommand. If
context switches cause the MMU to access logical memory that was not
represented in the MMU tables when you loaded the deMMUer, incorrect logical
addresses will be provided by the deMMUer.

204

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When the MC68030 MMU is Enabled

To store a deMMUer setup file

ChooséFile - Store DeMMUer (From MMU Tables) and enter the name to be
used for the deMMUer file in the File Selection dialog box.

Using the command line, enter:
store demmuer <file>

The deMMUer setup file is created by the emulator as it reads the present con
of the MMU tables and creates a file of reverse translations appropriate for th
deMMUer.

To load the deMMUer from a deMMUer setup file

ChooseSettings— DeMMUer — Load from File, and enter the name of the
deMMUer file in the File Selection dialog box.

ChooseFile - Load - DeMMUer, and enter the name of the deMMUer file in the
File Selection dialog box.

Using the command line, enter:
load demmuer <file>

Files that store setup information for the deMMUer have filenames that end in
".ED".

205

Chapter 5: Using the Emulation-Bus Analyzer
Analyzing Program Execution When the MC68030 MMU is Enabled

To trace program execution in physical address
Space

* ChooseSettings— Demmuer— Enable to disable the deMMUer.

» Using the command line, disable the deMMUer with the command:

set demmuer off

The Settings— Demmuer— Enable command in the Graphical User Interface is a
switch that enables and disables the deMMUer.

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

206

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Making Complex Trace Measurements

You can have the analyzer record bus activity by simply using the trace command
without any options. But this doesn’t use the analyzer effectively for two reasons:

» the trace memory may fill before the program reaches the states of interest.

» you may have to search through a long trace list to find a few states pertinent to
your measurement problem.

The HP 64700 analyzer has trigger and sequence capabilities that help solve these
problems. These tools act as a filter for processor bus activity that allows the
analyzer to capture only the states you want to see in the measurement.

A trigger tells the analyzer to identify a certain bus state as a point of referenc
the trace of states. gequencés a more complex specification that specifies a
series of bus states that must be found to satisfy the trigger.

This section tells you how to get the most out of the HP 64700 analyzer by using
trigger and sequence specifications. It also describes additional measurement tools
to help you get more information from the trace.

Many of the options in this section can be combined one or more times. See the
trace syntax in Chapter 11, “Emulator Commands,” for more information.

Expressions are an important part of trace specifications because they specify the
numeric or logical values that the analyzer matches for trigger and storage.
Expressions are represented by the <expression> symbol in this chapter. Refer to
Chapter 11, “Emulator Commands,” for specifics on expression syntax.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions that consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 377Q).
D d (default) Decimal (example: 2048d or 2048).

207

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an “X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

208

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&0fffO0h
However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation-Bus Analyzer Trace Signals

The emulation-bus analyzer has 80 channels available for capturing information: 64
of those channels are used for the instruction bus and data bus, and the remaining
16 channels monitor other processor signals or synthesized signals, and are
collectively called the status lines. You can use status values as trigger or stor
qualifiers. For example, you may want to capture processor reads to a certain
address, but not processor writes. You can use a status value to qualify only
processor read cycles to the memory location.

A number of status values have already been defined for you. They are collectively
known as the status equates and cover most common processor operations. Status
equates appear on softkeys at the appropriate time so you can include the status you
want in your command line.

209

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

The following two tables list the predefined status equates. The descriptions
identify the emulator status represented by the equates

68020 Equates

Name Description

3byte three byte memory request
buserror bus error cycle

byte byte memory request

cpu function code cpu space

data function code data space

fod foreground memory cycle

long longword memory request
memread memory read cycle

memwrite memory write cycle

mon emulation monitor cycle

prog function code program space
rerun retrying a previous bus cycle
super function code supervisor space
supdata function code supervisor data space
supprog function code supervisor program space
toyte byte memory return

tlong long memory return

tword word memory return

user function code user space
userdata function code user data space
userprog function code user program space
word word memory request

210

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

68030/EC030 Equates

Name Description

3_byte three byte transfer request (S1Z0/SI1Z1)
asyncl6 asynchronous word transfer

async32 asynchronous long word transfer
async8 asynchronous byte transfer

buserror bus error cycle

byte byte transfer request (SI1Z0/SIZ1)

cpu function code cpu space

data function code data space

logical logical memory address

long longword transfer request (SI1Z0/SIZ1)
physical physical memory address

prog function code program space

read read cycle

retry retrying a previous bus cycle

super function code supervisor space
supdata function code supervisor data space
supprog function code supervisor program space
sync synchronous long-word transfer
tblwalk searching through translation tables
user function code user space

userdata function code user data space
userprog function code user program space
word word transfer request (SIZ0/SI1Z1)
write write cycle

211

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To use address, data, and status values in trace
expressions

Enter the value(s) desired in the entry buffer (sudddsess 1000h Then
Chooselrace - After(), Trace — Before(), or Trace— About(), as desired.

Using the command line, enter commands as follows:

* To specify an address expression, exgxpression>or address
<expression=>

» To specify a data expression, ermtata <expression>

* To specify a status expression, estatus <expression>

Many trace commands require that you enter address, data and status expressions to
specify the bus state. You can combine multiple expressions on the same command
line to build a complete bus state qualifier. You can also use logical operators to

build more complex states. Refer to Chapter 11, “Emulator Commands,” for details.

The default expression type is address, therefore you don't need to specify the
addresskeyword when you enter an address expression.

Start a trace and store only writes of 0 hex to the graph address in the demo
program:

trace only graph data O status write

212

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To enter a range in a trace expression

Use the command-line rules (described below) to create your expression in the

entry buffer. Then Choosgace - After(), Trace — Before(),or Trace- About(),
as desired.

Using the command line, enter commands as follows:

» To specify an address range erigdress range <expression> thru
<expression>

* To specify a data range entiata range <expression> thru <expression>
* To specify a status range ergéatus range <expression> thru <expression>

» To take the logical not of a range, useribekeyword before theange
keyword.

Ranges allow you to qualify analyzer actions on a contiguous set of values. Mostly,
you'll use address ranges to trigger or store on access to a data block such as a
lookup table. But, you can also use data ranges to qualify a trigger or storage on a
range of data values.

There is only one range term available in the trace specification. Once it has been
used, it cannot be reused. That is, if you specify a range in a trigger specification,
you can't duplicate it in the storage specification. (The Terminal Interface does
allow this type of measurement, though there is still only one range term. See the
MC68020 and MC68030/EC030 Terminal Interface User's Gide

Since address is the default range type, you can onattiresskeyword. You
can't omit thedata or statuskeywords if those are the bus parts you want to
qualify.

You can use the logical operator to combine the range term with several state
gualifiers. See the examples.

213

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

Store only the accesses to the demo program’s current_humid location:

trace only range current_humid thru +1h

Store only bus cycles where data is in the range 6h..26h or is 29h:

trace only data range 6h thru 26h ordata 29h

Example

To use the sequencer

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace - Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, specify a trace sequence by enteritigdbe
find_sequence <bus_state> occurs <#times> [then <bus_state> occurs
<#times>] trigger <bus_states>command.

<bus_state>represents a combination of address, data and status expressions that

must be matched to satisfy the trigger or sequence quatifigimes=>is the
number of times that bus state must occur to satisfy the qualifier.

The trace sequencer allows you to specify up to seven sequence terms (including
the trigger) that must be satisfied to trigger the analyzer. If you use the windowing
specification, the sequence specification is limited to four sequence terms.

Use the analyzer sequencer to trigger after finding a series of events:

trace find_sequence main then update_sys.get targets
trigger after proc_spec

214

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To specify a restart term

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, restart the search for the trace sequence terms by
including the restart parameter in thece find_sequence <bus_state> occurs
<#times> [then <bus_state> occurs <#times>] restart <bus_state> trigger
<bus_state>trace command.

<bus_state>represents a combination of address, data and status expression
must be matched to satisfy the trigger or sequence quatifigmes>is the
number of times the selected bus state must occur to satisfy the qualifier.

The restart qualifier allows you to restart the trace sequence whenever a certain
instruction or data access occurs. For example, you might have a complicated trace
sequence that searches for an intermittent failure condition. You could set the
restart term to restart the sequence whenever a bus cycle occurred that ensures that
the code segment would perform correctly. Thus, the trace will be satisfied only
when that restart term never occurs and the code segment fails.

Use the analyzer sequencer to trace a series of events and then restart the sequencer
if the restart term is found while searching for the events:

trace find_sequence update_sys.get_targets then
update_sys.write_hdwr restart update_sys.set_outputs
trigger after current_humid

215

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

To specify trace windowing

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:
» To trace only the states occurring after a particular bus cycle trecier

enable <bus_state>

» To trace only the states occurring between two particular bus cycles, enter
trace enable <bus_state> disable <bus_state>

<bus_state>represents a combination of address, data and status expressions that
must be matched to satisfy the windowing qualifier.

The trace window specification makes it easy to trace only the occurrences of a
particular routine. This is especially useful in high-level languages, where storing
only the accesses to a particular address range may miss several function calls
within the routine.

Trace states occurring after the start of the example program:

trace enable main

Trace states occurring between the start of the example program and the call to the
message interpreter:

trace enable main disable proc_spec

216

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To specify both sequencing and windowing

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:

Specify a trace sequence that starts with a window and ends with a trigger by
entering:

trace enable<bus_statexlisable<bus_state>
find_sequence<bus_state®ccurs<#times>[then
<bus_statemccurs<#times} trigger <bus_state>

<bus_state>represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence quatifigmes>is the
number of times that bus state must occur to satisfy the qualifier.

You can use the sequencing and windowing specifications together to make
specification of complex qualifiers easier. If you use the windowing specification,
the sequence specification is limited to four sequence terms. Also, note that when
you use a windowing specification, you cannot use a restart term with your
sequence specirfication.

Use the analyzer sequencer to trace states occurring between the start of the
example program and the call to the message interpreter, then trigger after access to
the variable that stores the value of current humidity, but only if it is accessed after

a specific series of events:

trace enable main disable proc_spec find_sequence
update_sys.get_targets then long_aligned
update_sys.write_hdwr trigger after current_humid

217

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To count states or time

Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosingrace- Trace Spec...You can click on your specification in the
dialog box, edit it if desired, and click OK.

Using the command line, enter commands as follows:

» To count occurrences of a particular bus state in the trace, erieicthe
counting <bus_statescommand.

<bus_state>represents a combination of address, data and status expressions
that must be matched to satisfy the trigger qualifier.

» To count all states in the trace, entertthee counting anystatecommand.
» To count time in the trace, enter th&ce counting time command.
» To disable counting in the trace, entertflage counting off command.

You can use the analyzer’s state/time counter to count time or bus states. If using
the deep analyzer, counting imposes no restrictions on memory depth. If using the
1K analyzer, use of the counter restricts the trace memory to a maximum depth of
512 states. If you disable the counter in the 1K analyzer, usitigadeecounting

off command, the maximum trace depth is 1024 states.

When using the 1K analyzer, the MC68020 emulator defauttsuioting time,

and the MC68030/EC030 emulator, because of its higher bus cycle rates, defaults
to counting off. To count states or time in the MC68030/EC030 emulator, you
must configure the analyzer clocks correctly. See the help screen for the Analyzer
Speed item in the Trace Options configuration display for more information (refer
to Chapter 8, "Configuring the emulator").

Use thdlisplay trace countcommand to determine how the count is displayed in
the trace list. See “To display count information in the trace” for more information.

218

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples To count occurrences of a particular bus state in the trace (this requires the 1K
analyzer speed to be set to "Slow" in configuration):

trace counting address 10h

Count all states in the trace:

trace counting anystate

Count time in the trace:

trace counting time

Disable counting in the trace:

trace counting off

To define a storage qualifier

» Enter the storage qualifier (suchsistus read in the entry buffer. Then
choosdrace - Only().

» Using the command line, store only certain states in the trace list by entering the
trace only <bus_state>command.

<bus_state>represents a combination of address, data and status expressions that
must be matched to satisfy the storage qualifier.

Storage qualifiers can help filter unwanted information from program execution
and improve your trace measurement. The analyzer stores only the information
specified in the storage qualifier. Note that if you have a sequencer or trigger
specification, any states given there are shown in the trace list even if they don’t
meet the storage qualifier.

219

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Examples

Trace only address 10h:

trace only address 10h

Trace only data value Offh:

trace only data 0Offh

Trace only write operations

trace only status write

To define a prestore qualifier

Place your prestore qualification into the entry buffer. Then choose
Trace- Only() Prestore.

Using the command line, enter commands as follows:

» Specify a prestore qualifier by entering trece prestore <bus_state>
command.

<bus_state>represents a combination of address, data and status expressions
that must be matched to satisfy the prestore qualifier.

» Disable prestore qualification by entering tteee prestore anything
command.

You use the prestore qualifier to save states that are related to other routines that
you're tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You can specify calls be prestored and that entries to the
subprogram be stored. The easiest way to do this is to prestore program reads that
are outside the address range of the subprogram being called.

You may have several program modules that write to a variable, and sometime
during execution of your program, that variable gets bad data writen to it. Using a
prestore measurement, you can find out which module is writing the bad data.

220

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Store-qualify writes to the variable, and use prestore to capture the instructions that
caused those writes to occur (perhaps by prestoring program reads).

Examples Specify a prestore qualifier:
trace prestore address not range gen_ascii_data thru
gen_ascii_data end status prog and read only

long_aligned gen_ascii_data

Disable prestore qualification:

trace prestore anything

To trace activity leading up to a program halt

» Choosé€lrace - Until Stop.

» Using the command line, trace on a program halt by entiesiog on_halt.

The above commands cause the analyzer to continuously fill the trace buffer until
you issue drace - Stop or stop_tracecommand.

Sometimes you may have a program failure that can’'t be attributed to a specific
trigger condition. For example, the emulator may access guarded memory and
break to the monitor. You want to trace the events leading up to the guarded
memory access but you don’t know what to specify for a trigger. Use the above
command. The analyzer will capture and record states until the break occurs. The
trace list will display the last processor states leading up to the break condition.

Note that the "trace until stop" command may not capture the desired information
when you are using a foreground monitor (unless the code that causes the break
also causes the processor to halt) because the analyzer will continue to capture
foreground monitor states after the break. When using a foreground monitor, you
can use the command line to enter a trace command that stores only states outside
the range of the foreground monitor program (for exanyalee on_halt only not

range <mon_start_addr> thru <mon_end_addr> on_ha}t

221

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

Example

To modify the trace specification

Chooselrace- Trace Spec... You can recall, modify, and enter your trace
specification in the dialog box.

Using the command line, enter tinace modify_command Then use the
command line editing features to change the trace command specifications.

If you made an error in a trace command or want to change the measurement results
slightly, it's often easier to recall the previous trace command and edit it than it is

to enter a new trace command. The Trace Specification Selection dialog box lets
you recall, edit, and enter trace commands that have been executed during the
emulation session or trace commands that have been predefined.

Predefine entries for the Trace Specification Selection dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 13, "Setting X
Resources").

See the "To use dialog boxes" description in Chapter 3, "Using the
emulator/analyzer interface," for information about using selection dialog boxes.

Recall the last trace command wittace - Trace Spec...or by entering:

trace modify_command

Then edit the trace command as you desire.

222

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To repeat the previous trace command

Chooselrace - Again.
To continually repeat the last trace, chobs®ce - Repetitively.

Using the command line, repeat the previous trace command (including its
complete trace specification) by entertrece again

Thetrace againcommand is most useful when you want to repeat a measure
with the same trace specification. It saves you the trouble of reentering the
complete trace command specification.

The "repetitively" choice continually repeats the last trace command. Successive
traces begin as soon as the results from the just-completed trace are displayed.

Also, this command is useful when you load a trace specification from a file. (See
“To load a trace specification” in this chapter.)

223

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

To capture a continuous stream of program
execution no matter how large your program

The following example can be performed in emulation systems using the deep
analyzer (it cannot be done with the 1K analyzer). It shows you how to capture all
of the execution of your target program. You may wish to capture target program
execution for storage, for future reference, and/or for comparison with execution
after making program modifications. The execution of a typical target program will
require more memory space than is available in the trace memory of an analyzer.
This example shows you how to capture all of your target program execution while
excluding unwanted execution of the emulation monitor.

ChooseTrace - Display Options .., and in the dialog box, enter 0 or the total
depth of your deep analyzer trace memory in the entry field beside Unload Depth.
Then click OK or Apply. This sets unload depth to maximum.

For this measurement, the analyzer will drive trigl and the emulator will receive
trigl from the trigger bus inside the card cage. The trigl signal is used to cause the
emulator to break to its monitor program shortly before the trace memory is filled.
This use of trigl is not supported in workstation interface commands. Therefore,
terminal interface commands (accessible through the pod command feature) must
be used. Enter the following commands:

Settings— Pod Command Keyboard

tgout trigl -c <states before end of memory¥trigger output trigl before trace
complete)

bc -e trigl (break conditions enabled on trig1)

Click thesuspendsoftkey

Note that "tgout trigl -c <states...>" means generate trigl as an output when the
state that is <states...> before the end of the trace memory is captured in the trace
memory; "bc -e trigl" means enable the emulator to break to its monitor program
when it receives trigl.

Select a value forstates before end of memorythat allows enough time and/or
memory space for the emulator to break to its monitor program before the trace
memory is filled. Otherwise, some of your program execution will not be captured

in the trace. Many states may be executed before the emulation break occurs,
depending on the state of the processor when the trigl signal arrives. Also, if your
program executes critical routines in which interrupts are masked, the occurrence of

224

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

trigl may be ignored until the critical routine is completed (when using a
foreground monitor).

If you are using a foreground monitor, enter the following additional pod
commands to prevent the trace memory from capturing monitor execution. The
following example commands will obtain this result in some emulators:

Settings— Pod Command Keyboard
trng addr=<address range occupied by your monitorXtrigger on range address
= <address range>)
where <address range> is expressed as <first addr>..<last addr>
tsto Ir (trace store not range)
Click thesuspendsoftkey

Note that "trng addr=<addr>..<addr>" means define an address range for the
analyzer; "tsto Ir'" means store all trace activity except activity occurring in the
defined address range.

Start the analyzer trace with the commandce - Again

Start your program running usiigxecution— Run - from(), from Transfer
Address orfrom Reset as appropriate.

TheTrace- Again (or trace agair) command starts the analyzer trace with the

most recent trace specifications (including the pod_command specifications you
entered). Thé&race command cannot be used by itself because it defaults the "bc -e
trigl", "trng addr=...", and "tsto Ir" specifications, returning them to their default
values before the trace begins.

You can see the progress of your trace with the comrasplay - Status A
line in the Trace Status listing will show how many states have been captured.

The notation "trigl break" usually followed by "Emulation trace complete" will
appear on the status line. If "trigl break" remains on the status line without
"Emulation trace complete”, manually stop the trace with the command:

Trace - Stop

225

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

10

You must wait for the notation "trigl break" and/or "Emulation trace complete” to
appear on the status line; this ensures the trace memory is filled during the trace
(except for the unfilled space you specified in Step 2 above).

Note that when you set a delay specification usiogt -c or tgout -t (trigger

output delay before trace complete/after trigger), the trace will indicate complete as
soon as the analyzer has captured the state specified, even though the entire trace
memory has not been filled.

If the notation "trigl break" remains on the status line without being replaced by
"Emulation trace complete", it indicates the trace memory is not completely filled,
and no more states are being captured.

Store the entire trace memory content in a file with a command like:

wait measurement_complete ; copy trace to <directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that the
unload of trace data is complete before you try to store it. Without "wait", you will
get an ERROR message warning that the unload is still in process. The
<filename>is an ASCII filename for a binary file that can be viewed using the
load trace command.

Start a new trace with the commatrdce again

Resume the program run from the point where it was interrupted when the emulator
broke to the monitor with the commamdn

Wait until the notation "trigl break" and/or "Emulation trace complete" appears on
the status line. Then store the new trace memory content in a new file with
commands like:

stop_trace
wait measurement_complete ; copy trace to <directory/filename+1>

Note that "filename+1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAMEL, FILENAMEZ2, etc.

Repeat steps 8 through 10 above until all program execution has been captured.
Your destination directory will have a set of files that, taken together, contain all of
your program execution. Note that if you did not prevent capture of foreground

226

Chapter 5: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

monitor cycles in step 3 above, the last few trace lines in each file may contain
monitor cycles.

227

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Saving and Restoring Trace Data and
Specifications

The emulator/analyzer can save your trace data and trace specifications in a file for
later use. This can help you record measurement results that you can use for
comparison with other tests, and it is useful to automate measurements.

Suppose you're using the emulator in a manufacturing test application. The target
system is your product board. You might build a command file that recalls a trace
specification, makes the trace on the target board, and then recalls a previous
measurement result (from a working product) and compares it to the new
measurement (using the UNB{f command).

To store a trace specification

ChooseFile - Store— Trace Spec...In the dialog box, select an existing filename
or specify a new filename to contain the present trace specification. Then click OK.

Using the command line, store the current trace specification by enterstgrthe
trace_spec <filename>xommand.

<filename>is any UNIX file name including paths. The extensib@is
automatically added to the file name.

The trace specification file is a binary file.

Thestore trace_specommand allows you to save a trace specification (effectively
the current trace command with all trigger, storage and sequence options) in afile
for later use. For example, you might have sevesak commands that you want

to make every time your target system program is modified. You can store each
trace command in a separate file and recall it later usirigalddrace_spec

command.

228

Example

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Store a trace specification to a file:

Store trace_spec tspec. TS

Example

To store trace data

ChooseéFile - Store— Trace Data... In the dialog box, select an existing filename
or specify a new filename to contain the present trace memory content. Then
OK.

Using the command line, store the current trace data by enterisigptbérace
<filename>command.

<filename>is any UNIX file name including paths. The trace data file is a binary
file. The extensionTR is automatically added to the file name. A trace data file
can be reloaded into the interface and displayed like any other trace listing.

You can store the trace data resulting from a measurement. This can be useful if
you want to compare the results of later measurements with a reference result
obtained in an earlier measurement.

Store a trace to a file:

store trace tracel. TR

229

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

Example

To load a trace specification

ChooseFile - Load - Trace Spec...In the dialog box, click on the name of the
trace specification you want to load (placing it in the Load Trace Specification
box). Then click OK.

Using the command line, load an existing trace specification from a file by entering
theload trace_spec <filenamexommand.

<filename>is any UNIX file name including paths. The extensib@ is assumed.

Once you save a trace specification in a file usindrilee- Store— Trace Spec...
or store trace_specommand, you can load it using the appropriate command
above. To start a trace with the trace specification that you loaded, use the

Trace - Again or trace againcommand.

Load a trace specification from a file and start the trace:

load trace_spec tspec

trace again

230

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

To load trace data

* ChooseFile - Load - Trace Data... In the dialog box, click on the name of the
trace data file (file of trace memory content) you want to load (placing it in the
Load Trace Data box). Then click OK.

» Using the command line, load trace data from a file by enterirlgaterace
<filename>command.

<filename>is any UNIX file name including paths. The extensibR is assumed.
Loads a previously saved trace from a binary trace data file (with a ".TR" suffi

Once you save trace data in a file usingrifee— Store— Trace Data...or store

trace command, you can reload it. To view the data you loaded, use the
Display - Trace, Trace- Display, ordisplay trace command. Remember that a

new trace measurement will overwrite this trace data (but not the file from which it
was loaded).

The interface will try to display the trace listing in the display format active when
the trace data was stored. If the interface needs symbols to replace absolute
addresses or to find high-level source lines, and symbols are not loaded, an error
occurs.

For example, suppose "source-mixed" was the display mode when the trace was
captured and the executable file "testl" was the file being executed in the
emulator/target system. To reload and display a trace listing saved from that
emulation session requires reloading the symbols for "test1".

Example Load a trace from a file:

load trace tracel

231

Chapter 5: Using the Emulation-Bus Analyzer
Saving and Restoring DeMMUer Setup Files

Saving and Restoring DeMMUer Setup Files

To store a DeMMUer setup file

ChooseéFile - Store— DeMMUer (From MMU Tables)... In the dialog box, click
on the name of the file you want to store your deMMUer setup (placing it in the
Store Demmuer File box). Then click OK.

Using the command line, store a deMMUer setup file by entering:
store demmuer <filename>

<filename> is any UNIX file name including paths. The extendfhis assumed.

Stores a deMMUer setup file (with a ".ED" suffix) by reading the present content of
the MMU registers and the MMU tables.

To load a DeMMUer setup file

ChooseéFile » Load - DeMMUer... In the dialog box, click the name of the file
you want to load (placing it in the Load Demmuer File box). Then click OK.

Using the command line, load a deMMUer setup file by entering:

load demmuer <filename>
<filename> is any UNIX file name including paths that was created by an
appropriate store demmuer command. The exterBDris assumed.

The deMMUer setup file is loaded into the deMMUer. The present content of the
MMU registers and the MMU tables are ignored.

232

Chapter 5: Using the Emulation-Bus Analyzer
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statememts that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

233

234

Making Coordinated Measurements

Using the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

235

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

The Elements of Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and allows
you to make synchronous measurements between those emulators.

For example, you might have a target system that contains a 68020 or

68030/EC030 processor and another processor. You use HP 64700 Series
emulators to replace both target system processors, and connect the emulators using
the CMB. You can run a program simultaneously on both emulators. Or, you can
start a trace on one emulation-bus analyzer when the other emulator reaches a
certain program address. These measurements are possible with the CMB.

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700's BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

Tasks that you perform to make coordinated measurements include:
e Setting up for coordinated measurements.

e Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

e Stopping program execution on trigger signals.

e Arming analyzers on trigger signals.

236

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

o8 ey @

CMB Connector — g 0 "= B]UUBUU
ool

-) h
i © UUU %@g?

U UL Awarns Ul H
o -
i WARNING
~

Wl & -

115W23W hutor

BNC Connector

64700E20

There are three bidirectional signal lines on the CMB connector on the rear panel of
the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven
or received by any HP 64700 connected to the CMB. This
signal can be used to trigger an analyzer. It can be used as a
break source for the emulator.

READY The CMB READY line is high true. It is an open collector
circuit and performs an ANDing of the ready state of enabled
emulators on the CMB. Each emulator on the CMB releases this
line when it is ready to run. This line goes true when all enabled
emulators are ready to run, providing for a synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for
CMB READY to go true before returning to the run state.
When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume
running. When an emulator is reset, it also drives CMB
READY false.

237

Chapter 6: Making Coordinated Measurements
The Elements of Coordinated Measurements

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is
processed by both the emulator and the analyzer. This signal
causes an emulator to run from a specified address when CMB
READY returns true.

Comparison Between CMB and BNC Triggers

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

The CMB trigger and BNC trigger lines have the same logical purpose: to provide a
means for connecting the internal trigger signals (trigl and trig2) to external
instruments. The CMB and BNC trigger lines are bidirectional. Either signal may

be used directly as a break condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is ignored internally.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

238

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how:
* To connect the Coordinated Measurement Bus.
» To connect the rear panel BNC.

For more information, refer to théP 64700 Series Installation/Service Guide

To connect the Coordinated Measurement Bus
(CMB)

CAUTION Be careful not to confuse the 9-pin connector used for the CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connectors
and 26 AWG wire.

Note that Hewlett-Packard does not guarantee proper CMB operation if you are using a self-built|cable!

239

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO

64700E14

240

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

panel pullups connected. *

rear

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have

* A modification must be performed by your HP Customer Engineer.
Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

CAUTION

The BNC line on the HP 64700 accepts input and output of TTL levels only. (TTL

levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

241

Chapter 6: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50-ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

t
' /0"
e
fr\gg
ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK
t
' /0"
e
1idd

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

242

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command on the command line.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction while stepping the processor. (See “To
disable synchronous measurements” following.)

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message “CMB execute; emulation trace started”.

243

Chapter 6: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements from the transfer address:
specify run from transfer_address

To trace from an address when synchronous execution begins:

specify trace after address 10h

To start synchronous measurements

Enter thecmb_executecommand on the command line.

Thecmb_executecommand will cause the emulator to emit a pulse on the
EXECUTE line, thereby initiating a synchronous measurement. You do not have to
enable CMB interaction to use tbeab_executecommand because by enabling

CMB interaction, you are only specifying how the emulator will react to the CMB
EXECUTE signal.

All emulators whose CMB interaction is enabled will break into the monitor when
any one of the emulators participating in the synchronous measurement breaks to
its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand on the command line.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

244

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal linegy1l andtrig2, that can carry trigger
signals from the emulator or analyzer to other HP 64700s on the Coordinated
Measurement Bus (CMB) or other instruments connected to the BNC connector.

You can configure the internal lines to make connections between the emulator,
analyzer, CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

To configure the internatigl andtrig2 lines, you must access the emulation
configuration, either by choosimdodify — Emulator Config... in the graphical
user interface and then selecting Interactive Measurement Specification, or by
entering thanodify configuration command in the softkey interface, and then
answer “yes” to the “Modify interactive measurement specification?” question.
In the softkey interface, the following display appears.

Interactive Measurement Specification

BNC <<-?2?->> ---\ BNC <<-?2?->> ---\
| I
CMBT <<-2?2->> | CMBT <<-2?2->> -—|
| Trigl | Trig2
Emulator <<------ --- | Emulator <<-?2?--- --- |
|
Analyzer ------ >> -/ Analyzer <<-?2?->> ---/
NOTES:

1. The connections marked "??" are set up here in configuration.
2. drive = ---->> receive = <<---- (The display won't change, however.)

STATUS: Interactive Measurement Specification
Should BNC drive or receive Trigl? neither

_drive__ receive_ neither_ __both___ _RECALL_

This display illustrates the possible connections between the internatrigies (
andtrig2) and the emulator, analyzer, and external devices.

245

Chapter 6: Making Coordinated Measurements

Using Trigger Signals

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak _on_trigger syntax of thérace command.

You can disable connections made by the internal trigl and trig2 lines by
answering “neither” or “no” to the appropriate interactive measurement
configuration question.

These are some ways that you can use the internal trigger signals:

You can use the trigl or trig2 line to make a connection between the analyzer
and the CMB connector or BNC connector so that, when the analyzer finds its
trigger condition, a trigger signal is driven on the HP 64700’s Coordinated
Measurement Bus (CMB) or BNC connector.

You can use the trigl or trig2 line to make a connection between the emulator
break input and the CMB connector, BNC connector, or analyzer so that
program execution can break when a trigger signal is received from the CMB,
BNC, or analyzer.

You can use the trig2 line to make a connection between the analyzer and the
CMB connector or BNC connector so that the analyzer can be armed (that is,
enabled) when a trigger signal is received from the CMB or BNC connector.

You can use the trigl and trig2 lines to make several types of connections at
the same time. For example, when the analyzer finds its trigger condition, a
signal is driven on the trigl line. This signal may be used to stop user program
execution, but the trigger signal may also be driven on the CMB and BNC
connectors.

It is possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven
on the CMB and BNC connectors, signals can also be received from the CMB
and BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

The following tasks show you how to set up the emulator and analyzer to:

Drive the emulation trigger to the CMB and BNC.
Break emulator execution on CMB and BNC signals.

Arm the emulation-bus analyzer on CMB, BNC, and analyzer signals.

246

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation-bus analyzer trigger
signal to the CMB

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Choose “receive” beside the "CMBT on Trigl" item.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” quesy

2 Answer “receive” to the “Should CMBT drive or receive Trigl?” question.

You could also drive the emulation-bus analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation-bus analyzer should drive trig2.

247

Chapter 6: Making Coordinated Measurements

Using Trigger Signals

To drive the emulation-bus analyzer trigger
signal to the BNC connector

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Answer “receive” beside the "BNC on Trigl" item.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “receive” to the “Should BNC drive or receive Trigl?” question.

You could also drive the emulation-bus analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the
emulation-bus analyzer should drive trig2.

248

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To break emulator execution on signal from CMB

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select “drive” for the “CMBT on Trigl” item.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should CMBT drive or receive Trigl?” question.

The trigl signal is always supplied to the emulator. By entering the command,
trace break_on_trigger, emulation will break to the monitor when the CMB signal
occurs.

You could also break emulator execution on a trigger signal from the CMB over the
trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

249

Chapter 6: Making Coordinated Measurements

Using Trigger Signals

To break emulator execution on signal from BNC

ChooseMadify — Emulator Config ...

1 Inthe top-level emulator configuration dialog box, click on Interactive
Measurement Specification under Analyzer Configuration Sections.

2 Select “drive” for the “BNC on Trigl” item.

Using the command line, entaodify configuration.

1 Answer “yes” to the “Modify interactive measurement specification?” question.

2 Answer “drive” to the “Should BNC drive or receive Trigl?” question.

The trigl signal is always supplied to the emulator. By entering the command,
trace break _on_trigger, emulation will break to the monitor when the BNC signal
occurs.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

250

Chapter 6: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation-bus analyzer on signal
from CMB

Using the command line, ent@odify configuration.

1

2

Answer “yes” to the “Modify interactive measurement specification?” question.

Answer “drive” to the “Should CMBT drive or receive Trig2?” question.

Answer “receive” to the “Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the emulation-bus analyzer on signal
from BNC

Using the command line, ent@odify configuration.

1

2

Answer “yes” to the “Modify interactive measurement specification?” question.

Answer “drive” to the “Should BNC drive or receive Trig2?” question.

Answer “receive” to the “Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

251

Chapter 6: Making Coordinated Measurements
Making Example Measurements

Making Example Measurements

The following tasks show you how to:
e Start a simultaneous program run on two emulators.
» Trigger one emulation-bus analyzer with another.

» Break to the monitor on an analyzer trigger signal.

To start a simultaneous program run on two
emulators

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see “To connect the coordinated measurement bus (CMB)” at
the beginning of this chapter.

1 Enable the CMB on each emulator.

2 Reset each emulator.

3 Set the run address for the first emulator.

4 Set the run address for the second emulator.

5 Start program execution on both emulators.

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then start the analysis trace to enable trace on execute for each emulator. When the
EXECUTE signal is received, both emulators will begin running and will start a

trace according to the given trigger specification.

252

Chapter 6: Making Coordinated Measurements
Making Example Measurements

To trigger one emulation-bus analyzer with
another

Before performing these steps, both emulators must be connected to the CMB. To
connect the CMB, see “To connect the coordinated measurement bus (CMB)” at
the beginning of this chapter.

Enable the CMB on each emulator.

Reset each emulator.

Set up the first emulator to drive the CMB trigger.

Set up the second emulator to receive the CMB trigger.
Start a trace on each emulator.

Start a run on each emulator.

In the above steps, you set one emulation-bus analyzer to drive the CMB trigger,
and set another to trigger on receipt of a CMB trigger. You can use the same
concepts to trigger external instruments using the BNC connector on the rear panel
of the HP 64700 Series Card Cage.

253

Chapter 6: Making Coordinated Measurements
Making Example Measurements

To break to the monitor on an analyzer trigger
signal

Enter the emulation configuration.

Set the emulator to receive trigl.

Set the emulation-bus analyzer to drive trigl.
Specify the trigger conditions for the trace.
Start the trace.

Start the program run.

The trigger signals and the analyzer trigger capabilities allow you to specify
breakpoints. You can use the trigger specification to specify complex sequences of
address, data and status, then break the program to the monitor when the sequence
is found. This is useful when you want to examine memory locations and registers
after the trigger condition but before further program execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received.

254

Making Software Performance
Measurements

How to make software performance measurements on your programs

255

Chapter 7: Making Software Performance Measurements
Using the Software Performance Measurement Tool

Using the Software Performance Measurement
Tool

The Software Performance Measurement Tool (SPMT) is a feature included in the
emulator/analyzer that allows you to make software performance measurements on
your programs. Two types of software performance measurements can be made
with the SPMT: activity measurements, and duration measurements.

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Use the Software Performance Analyzer (SPA) for
more capability

For more capability in making measurements of the performance of your software,
you can order the Software Performance Analyzer (SPA). SPA helps designers
understand the execution of software modules in an absolute file.

SPA provides answers to questions such as:

* Why does it take so long to execute a program?
* Which modules are taking extra long time to execute?

While SPA performs a measurement, it shows the current measurement results.
There is no need for you to transfer files; all you do is indicate the type of display
desired (histogram or table listing). If you are interested in purchasing SPA,
contact your HP Sales Representative.

256

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Understanding activity measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (like reads and writes to memory, and stack pushes).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement wil
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address rang

you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown in the next figure.

257

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77

Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84
data

Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16
stack

Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00

Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.510% *rrrsidkkkkssnkk
stack 11.72% *xxx

Memory and Program Activity

258

Chapter 7: Making Software Performance Measurements
Understanding activity measurements

Graph of Memory Activity relative time percents >= 1

prog 60.97%
data 28.090 *Fxkxkkdkskkkk
stack 10.94% *rxxxx

Graph of Program Activity relative state percents >= 1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals
Absolute count - state 5120
Absolute count - time - Us 2221.20

Memory and Program Activity (Cont'd)

259

Chapter 7: Making Software Performance Measurements
Understanding duration measurements

Understanding duration measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. Th&ce command is set up to store only the entry and exit
states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

Before you perform duration measurements, you should be aware of the prefetch
and recursion considerations associated with these measurements.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Prefetches or recursion can place several entry addresses before the first exit
address, and/or several exit addresses before the first entry address. Duration
measurements are made between the last entry address in a series of entry
addresses, and the last exit address in a series of exit addresses as shown in the
prefetch correction listing. All of the entry and exit addresses which precede these
last addresses are assumed to be unused prefetches, and are ignored during time
measurements.

START - unused prefetch

START - unused prefetch

START - unused prefetch

START - START actually taken -

END - unused prefetch

END - unused prefetch Measure duration
END - unused prefetch

END - END actually taken -

START - unused prefetch

START - unused prefetch Measure duration
START - unused prefetch

START - START actually taken -

END - unused prefetch

END - unused prefetch

260

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

The SPMT makes its duration measurements from the last start address in the series
of start addresses, to the last end address in the series of end addresses. The other
start and end addresses are unused prefetches and are ignored by the software of the
SPMT. Recursive procedures will still affect the accuracy of your measurements.

The prefetch correction has the following consequences:

» Prefetches are ignored. They do not affect the accuracy of the measurement in
process.

* When measuring a recursive function, module duration will be measured
between the last recursive call and the true end of the recursive execution. This
will affect the accuracy of the measurement.

» Ifamodule is entered at the normal point, and then exited by a point other than
the defined exit point, the entry point will be ignored. It will be judged the
same as any other unused prefetch, and no time-duration measurement will be
made. lIts time will be included in the measure of time spent outside the
procedure or function.

» Ifamodule is exited from the normal point, and then reentered from some
other point, the exit will also be assumed to be an unused prefetch of the
state.

If you are making duration measurements on a function that is recursive, or one that
has multiple entry and/or exit points, the result may be invalid information.

To use the Software Performance Measurement
Tool

Activity and duration measurements are made with the SPMT in a five-step
process, summarized as follows:

1 Set up the trace command.
2 Initialize the performance measurement.

3 Run the performance measurement.

261

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

4 End the performance measurement.

5 Generate the performance measurement report.

Step 1. Set up the trace command

Before you initialize and run performance measurements, the current trace
command (the last trace command entered) must be properly set up.

1 Increase the trace depth to the maximum number by entering:

display trace depth 512

In general, you want to give the SPMT as many trace states as possible to
post-process to increase statistical accuracy. Also it is important that "time" be
counted by the analyzer; otherwise, the SPMT measurements will not be
correct.

2 Choose to make either activity measurements or duration measurements.

» To make activity measurements (which measures activity as a percentage of all
activity, the current trace command should be the default), enter:

trace counting time

The default trace command triggers on any state, and all captured states are
stored. Also, since states are stored "after" the trigger state, the maximum
number of captured states appears in each trace list.

You can use trace commands other than the default. You can qualify trace
commands any way you like to obtain specific information. However, when
you qualify the states that get stored in the trace memory, your SPMT results
will be biased by your qualifications; the percentages shown will be of only
those states stored in the trace list.

262

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To make duration measurements, set up the trace command to store only the entry
and exit points of the module of interest. For example:

trace after <symbol_entry> or <symbol_exit> only
symbol_entry or symbol_exit counting time

or

trace after <module_name> start or module_name end only

module_name start or module_name end counting time

Since the trigger state is always stored, you should trigger on the entry or exit
points.

<symbol_entry> and <symbol_exit> are symbols from the user program.

<module_name> is the name of a C function or Pascal procedure (and is listed
as a procedure symbol in the global symbol display).

Step 2. Initialize the performance measurement

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements or the time ranges to be used in the
duration measurement. This is done by initializing the performance measurement,
which can be accomplished in various ways.

» To use the default configuration, enter the following command with no options:

performance_measurement _initialize

This specifies an activity measurement. If a valid symbolic database has been
loaded, the addresses of all global procedures and static symbols will be used.
Otherwise, a default set of ranges that cover the entire processor address range
will be used.

263

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To initialize with user-defined files (activity or duration measurement), specify the
SPMT address or time ranges to use by placing the information in a file and
entering the file name in theerformance_measurement_initializecommand.

The formats for the address range file (activity measurements) and time range
file (duration measurements) are described in this chapter.

» To include program symbols (procedure name or static), user defined address
ranges, and comments in address range files, refer to this example file:

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.

dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

* To include comments and units for time ranges in time range files, refer to this
example file:

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds

ms milliseconds

s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

Time units can be in microseconds (us), milliseconds (ms), or seconds (S).

264

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

* To select duration measurements, enter:

performance_measurement_initialize duration

or

performance_measurement _initialize <FILE> duration

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

» To initialize with global symbols, enter:

performance_measurement _initialize

or

performance_measurement_initialize global_symbols

Global symbols in the symbols database becomes the address ranges for which
activity is measured. If the symbols database is not loaded, a default set of
ranges that cover the entire processor address range will be used. The global
symbols database contains procedure symbols, which are associated with the
address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

265

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

» To initialize with local symbols, enter:

performance_measurement_initialize local_symbols_in
<source file name>

The symbols associated with the source file become the address ranges for
which activity is measured. If the symbols database is not loaded, an error
message will occur telling you that the source filename symbol was not found.

You can also use the "local_symbols_in" option with procedure symbols. This
allows you to measure activity related to the symbols defined in a single
function or procedure.

These are example commands showing performance measurement initialization
with local symbols.

performance_measurement_initialize local_symbols_in
spmt_demo.C:

performance_measurement_initialize local_symbols_in
spmt_demo.C:math_library

performance_measurement_initialize local_symbols_in
math_library

« To restore the current measurement, enter:

performance_measurement_initialize restore

This allows you to restore old performance measurement data from the
perf.out file in the current directory.

If you have not exited and reentered emulation, you can add traces to a
measurement simply by entering anotberformance_measurement_run
command. However, if you exit and reenter the emulation system, you must
enter theperformance_measurement_initialize restoreommand before you
can add traces to a measurement. When you restore a performance
measurement, make sure your current trace command is identical to the
command used with the restored measurement.

266

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

When restoring old performance measurement data, the "restore"” option determines
if the current emulator software version matches the version used when the
performance measurement data was stored (ipetisut files). If the versions

match, the restore will be performed. If you ran tests using a former software
version and savegerf.out files, then updated your software to a new version

number, you will not be able to restore pktf.out measurement files.

Step 3. Run the performance measurement

Theperformance_measurement_rurcommand processes analyzer trace data.

When you end the performance measurement, this processed data is dumped to the
binary "perf.out” file in the current directory. Tperf32 report generator utility is

used to read the binary information in the "perf.out" file.

To process the current trace data, enter:

performance_measurement_run

To execute the current trace command consecutively, a certain number of times,
enter:

performance_measurement_run <COUNT>

The data that results from each trace command is processed and combined with
the existing processed data. The STATUS line will say "Processing trace
<NO.>" during the run so you will know how your measurement is

progressing. The only way to stop this series of traces is by @FiRg ¢

(sig INT).

The more traces you include in your sample, the more accurate your results
will be. At least four consecutive traces are required to obtain statistical
interpretation of activity measurement results.

267

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Step 4. End the performance measurement

» To end the performance measurement, enter:

performance_measurement_end

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothgerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

The "perf.out" file is a binary file. Do not try to read it with the UNixire or cat
commands. Thperf32 report generator utility (described in the following section)
must be used to read the contents of the "perf.out" file.

268

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Step 5. Generate the performance measurement
report

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

To save the current performance measurement information in a file called
"perfl.out", and produce a histogram showing only the program activity occupied
by the functions and variables.

mv perf.out perfl.out
perf32 -hpf perfl.out

A default report, containing all performance measurement information, is gene
when theperf32 command is used without any options. The options available
perf32 allow you to limit the information in the generated report. These option
are:

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.

-f<file> Produce a report based on the information contained in <file>

instead of the information contained in perf.out.

-C Print only program and memory activity information
consuming time.

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

269

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

The reports generated for activity measurements show you the percentage of
analyzer trace states that are in the specified address range, as well as the
percentage of time taken by those states. The performance measurement must
include four traces before statistics (mean and standard deviation) appear in the
activity report.

» To interpret reports of activity measurements, understand the information described
here. You will see this information in activity measurement reports.

Memory activity All activity found within the address range.

Program activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the
cycles that result from the execution of those instructions
(like reads and writes to memory and stack pushes).

Relative A count or time value associated with activity in address
ranges in the performance measurement.

Absolute A count or time value associated with all trace state
activity, not just activity in the address ranges defined for
the performance measurement.

Mean Average number of analyzer trace states in the range
specified. The following equation is used to calculate the
mean:

states in_range
mean =
toral states

Standard deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

N
std dev = /\/Nl—_f X 3 Ssumq — N (mean)?
i=1

270

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols within range Names of other symbols that identify addresses or ranges
of addresses within the range of this symbol.

Additional symbols Names of other symbols that also identify this address.

for address Some compilers emit more than one symbol for certain
addresses. For example, a compiler may emit
"math_library" and "_math_library" for the first address in
a routine named math_library. The analyzer will show the
first symbol it finds to represent a range of addresses, or a
single address point, and it will show the other symbols
under either "Symbols within range" or "Additional
symbols for address", as applicable. In the "math_librar
example, it may show either "math_library" or
" _math_library" to represent the range, depending on
which symbol it finds first. The other symbol will be
shown below "Symbols within range" in the report. These
conditions appear particularly in default measurements that
include all global and local symbols.

Relative and absoluteRelative count is the total number of states associated with

counts the address ranges in the performance measurement.
Relative time is the total amount of time associated with
the address ranges in the performance measurement. The
absolute counts are the number of states or amount of time
associated with all the states in all the traces.

271

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Error tolerance and An approximate error may exist in displayed information.

confidence level

Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct.
Where:
Om
t
N
Pm

Om Xt
~ N X Pn

x 100

Mean of the standard deviations.

Table entry in Student’s "T" table for a given confidence
level.

Number of traces in the measurement.

Mean of the means (the mean sample).

272

Chapter 7: Making Software Performance Measurements

To use the Software Performance Measurement Tool

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges.

» To interpret reports of duration measurements, understand the information
described here. You will see this information in duration measurement reports.

Number of intervals

Maximum time

Minimum time

Average time

mean =

Number of "from address" and "to address" pairs (after
prefetch correction).

The greatest amount of time between the "from address" to
the "to address".

The shortest amount of time between the "from address" to
the "to address".

Average time between the "from address" and the "to
address". The following equation is used to calculate th
average time:

amount of time for all intervals

number of intervals

Standard deviation

Deviation from the mean of time. The following equation
is used to calculate standard deviation:

1 N
std dev = /\/NTI Xiélssumq -

Where:
N
mean

Ssumgq

N (mean)2

Number of intervals.
Average time.

Sum of squares of time in the intervals.

273

Chapter 7: Making Software Performance Measurements
To use the Software Performance Measurement Tool

Error tolerance and An approximate error may exist in displayed information.

confidence level

Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability
of the information. For example, if the error is 5% for a
confidence level of 95%, then you can be 95% confident
that the information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations
because it improves the accuracy for small samples. As the
size of the sample increases, the Student’s "T" distribution
approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct.

Where:

Om

Pm

Om Xt

=NTPm-X1OO

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

Mean of the means (for example, mean of the average
times in each time range).

274

Configuring the Emulator

275

Chapter 8: Configuring the Emulator
Configuring the Emulator

Configuring the Emulator

This chapter describes how to configure the emulator. By default, the emulator
assumes all memory addresses are in RAM space in your target system. If you
wish to load some of your target program in emulation memory hardware, or
identify some of your memory addresses as ROM hardware or Guarded address
space, enter those specifications in the emulation memory map. When you plug the
emulator into a target system, you must configure the emulator so that it operates
correctly in the target system. The configuration tasks are grouped into the
following sections:

» Using the configuration interface.

» Emulation configuration displays.

* Mapping memory.

» Providing MMU address translation for the MC68030 Foreground Monitor.

The simulated I/O feature and configuration questions are further described in the
Simulated 1/0O User’s Guide

The interactive measurement configuration options are further described in
Chapter 6, "Making Coordinated Measurements".

276

Chapter 8: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

» Start the configuration interface.

* Modify a configuration section.

» Apply configuration changes to the emulator.

» Store configuration changes to a file.

» Change the configuration directory context.

» Display the configuration context.

» Access help topics.

» Access help for a configuration item in a dialog box.

» Exit the configuration interface.

» Load an existing configuration file.

277

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface top-level dialog box (see the following example) is
displayed.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you are using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration sections;
however, you have access to the same configuration options through a series of
configuration questions.

278

Chapter 8: Configuring the Emulator
Using the Configuration Interface

Examples The emulator configuration interface top-level dialog box is shown below.
= Emulator Configuration: emulator00 (m68030) E a |7
The menu bar. — | File Display Help

- Emulator Configuration Sections

1] Monitor Setup
Clicking on one of

_ 1 Memory Map
these lines selects
particular] General ltems
conf_|gurat|on 1 Trace Options
section.

£ Simulated 10

Ealyxer Configuration Sections

Interactive Measurement Specification

Clicking this button__
loads any | iApply to Emulator “

configuration
changes into the
emulator.

This portion of the dialog box displays
configuration status information.

279

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

If you are using the Graphical User Interface:

1 Start the emulator configuration interface.
2 Click on a section name in the configuration interface top-level dialog box.

3 Use the section dialog box to make changes to the configuration.

If you are using the Softkey Interface:

The configuration questions in the "Monitor Setup" section are the first to be
asked.

To access the memory map and define, modify, or delete map entries in the
"Memory Map" section, answer "yes" to the "Modify memory configuration?"
question.

To access the questions in the "General Items" section, answer "yes" to the
"Modify emulator pod configuration?" question.

To access the questions in the "Trace Options" section, answer "yes" to the
"Modify debug/trace options?" question.

To access the questions in the "Simulated 10" section, answer "yes" to the
"Modify simulated I/O configuration?" question.

To access the questions in the "Interactive Measurement Specification" under
"Analyzer Configuration Sections", answer "yes" to the "Modify interactive
measurement specification?" question.

280

Chapter 8: Configuring the Emulator
Using the Configuration Interface

Examples Most configuration sections provide dialog boxes similar to the following.
E E
—'E Emulator Configuration: emulator00 {m68030) E @ E_]
File Display Help

~ Emulator Configuration Sections

M Monitor Setup
1 Memory Map
'l General ltems

The dialog for 1 Trace Options

this section has {1 Simulated 10
been opened

- Analyzer Configuration Sections

{1 Interactive Measurement Specification

Apply to Emulatorl
E E
. ¥ ¥
Appllles . —'E Emulator Configuration: Monitor Setup
configuration -
/ ~hMonitor Setup
changes to the
emulator tMonitor Type Background |
Monitor Flenang | fmBE4747. %
Monttor Address
. . gerrupt Priorily %‘»f%zzs%q
Configuration
options in this Targe: Compleies Monitor Bus Oyeley # Yoz O No
section Enable Keep Alive Function < Yes # No
Feep Allve Address
Keep Adive Funclioen Code Buperviser Program 23 |

4 ok] Cancel -
E E
Closes the Cancels all changes since Presents emulator
dialog box last "OK", "Apply to configuration help

Emulator", or store to file. topic browser.

281

Chapter 8: Configuring the Emulator
Using the Configuration Interface

As soon as you change a configuration option, the change is recorded, but not
loaded (as seen by the "Changes Not Loaded" message in the top level dialog).

To apply configuration changes to the emulator

* Click the "Apply to Emulator" button in the top-level dialog box.

This loads the configuration changes into the emulator. Status text to the right
shows whether the load was successful.

You can apply configuration changes to the emulator at any time (even while
section dialog boxes are open). This lets you verify changes without closing
section dialog boxes.

The "Apply to Emulator" button does not store configuration changes to a file.

When you exit the configuration interface and there are configuration changes that
have not been stored to a file, you are asked whether you want to store the changes,
exit without storing, or cancel the exit.

282

Chapter 8: Configuring the Emulator
Using the Configuration Interface

CAUTION

To store configuration changes to a file

ChooseFile - Store...from the pulldown menu in the top-level configuration
interface window, and use the file selection dialog box to name the configuration
file.

If you are using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

When modifying a configuration using the Graphical User Interface, you can store
your answers at any time.

Configuration information is saved in a file with the extension ".EA". This file is
the "source", ASCII format copy of the file. (The interface will create a temporary
file with the extension ".EB" which is the "binary" or loadable copy of the file.)

Do not modify configurations by editing the ".EA" files. Use the configuration
interface to modify and save configurations.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
Chapter 3, "Using the emulator/analyzer interface".

283

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To change the configuration directory context

ChooseéFile - Directory... from the pulldown menu in the top-level configuration
interface window, and use the directory selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "Entering
Commands", and "Using Special Features of the Graphical User Interface" sections
in Chapter 3, "Using the emulator/analyzer interface".

To display the configuration context

ChooseDisplay - Context...from the pulldown menu in the top-level
configuration interface window.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

= Emulator Configuration: Current Context

= Directory: fusrfhpd4000/libfx11/HP&4_schemesiHP-UX
k Configuration File: fusrfhp84000/libfx11/HP&4_schemesHP-UxX/config

284

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To access help topics

ChooseHelp - General Topic...from the pulldown menu in the top-level
configuration interface window, click on a topic in the selection dialog box, and
click the "OK" button.

To access help for a configuration item in a
dialog box

Place the mouse pointer on the line of interest and press the f1 key.

ChooseHelp - On Item... in the top-level configuration interface window or the
memory map window. The mouse pointer changes from an arrow to a question

mark. Place the question mark over a selection button or in the entry field on the
line of interest, and click thgushbutton selechouse button.

Depending on the platform you are using, you may find that the f1 key is the b.
way to obtain help on a field, or that tHelp — On Item... selection is a better way

to obtain help on a field.

If you are using thélelp - On Item... pulldown and its associated question mark,

you may find that in some dialog boxes, the question mark may not obtain a help
screen when you place it on a command name, but the help screen may be obtained
when you place the question mark over an input field or button associated with the
command name.

The configuration interface provides individual help for each item in the top level
dialog box and throughout the configuration section dialog boxes.

285

Chapter 8: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

ChooseéFile - Exit... from the pulldown menu in the top-level configuration
interface window (or type <CTRL>X).

If configuration changes have not been stored to a file, a confirmation dialog box
appears, giving you the options of: storing, exiting without storing, or canceling the
exit.

To load an existing configuration file

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the file selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files. You cannot
load a configuration while the configuration interface is running.

286

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

Emulation Configuration Displays

The displays of the emulation configuration are shown in this section. They give
you access to all of the options that must be defined to configure the emulator.

Help for making selections in these displays can be obtained as discussed earlier in
this chapter. The emulation configuration displays are as follows:

Monitor Setup.

Memory Map.

General ltems.

Trace Options.

Simulated 10.

Interactive Measurement Specification.

The displays in this section were obtained from an MC68030 emulator. The
displays of an MC68020 emulator are the same, except as noted below each
illustration. Use the online help screens (as discussed earlier in this chapter) to
obtain information for making selections in the configuration displays. Additio
information not available in the help screens is given below some of the emul
configuration displays in this chapter.

The memory mapping displays are discussed separately in the next section of this
chapter.

287

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

—'E Emulator Configuration: Monitor Setup

- honitor Setup
tMonitor Type Background pasa
Monllor Fllongmne | fmB4747. %
Monitor Address 18BEH

errupt Priorily Mask

Targe: Compleies Monitor Bus Oyeley # Yoz O No

Enable Keep Alive Function <> Yes 4 Mo

Feep Allve Address

Keep Adive Funclioen Code Buperviser Program 23 |

| ok] Chep | |

E E

In the Monitor Setup for the MC68020, you will not see support for a Keep Alive
Function because the background monitor bus cycles are visible to the MC68020
target system, making the Keep Alive function unnecessary.

When using the background monitor, interrupts are disabled (including level 7
interrupts). Some target systems will not to operate properly under this condition.
With these target systems, you will need to use a foreground monitor.

When using the MC68030 memory manager, make sure the foreground monitor of
the MC68030 is mapped to memory address space that has a 1:1 translation. You
can define a 1:1 translation for the monitor address space by modifying the content
of the translation tables in the emulation processor MMU. Refer to "Providing
MMU Address Translation for the MC68030 Foreground Monitor" at the end of

this chapter for instructions on how to modify the transparent translation registers
or the translation tables in the MC68030 MMU.

288

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

—'E Emulator Configuration: Memory Map

File Map Settings Help

Map terms remaining:

range

STATUS: Happing emulation memory, default blocks: target/ram

Refer to Mapping Memory later in this chapter for details of how to use the
Memory Map configuration screen.

289

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

—'E Emulator Configuration: General Items

-Processor Settings

Enable Target System Interrupts 4 Yes <> No
Enable Instruction/Data Caches 4 Yes <{» No

Frnable Mewmory Manageinent Unit O Yes @ No

~Emulator Settings
Clock Speed > 25MHz 4 Yes < No
Restrict to Real Time <> Yes 4 Mo
Break on Write to ROM # Yes {» Mo
Memory Access Size
Software Breakpoint Vector 7
Initial Stack Pointer Value H

Initial Program Counter Value | AFFFFFFFFH

| [oc] [Heip | |

The MC68020 General Items configuration screen does not offer control over a
Data Cache. It also does not offer the ability to enable a Memory Management
Unit because memory management is not supported in the MC68020 emulator.

If your target system may be damaged by not running target system code
continuously, answer Yes to the Restrict to Real Time question. The operation of
the emulator breakpoints function is not affected by your choice to restrict the
emulator to real time operation.

Even if you answer Yes to Break on Write to ROM, RAM memory that has been
mapped as ROM in the emulation or target system will be changed by processor
write transactions.

Enter 32-bit hexadecimal addresses for the Initial Stack Pointer Value and Initial
Program Counter Value. These values usually correspond to the values loaded at
offsets 0 and 4 of your vector table. The default values in the General Items
configuration screen are invalid, requiring you to enter valid values.

290

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

= Emulator Configuration: Trace Options

Trace Options

Trace Mode (Type of Cycles) .
Analyzer Speed

3
If you are using the deep analyzer with the MC68030 emulator, the Analyzer Speed
guestion does not appear. The deep analyzer can do state and time counting
regardless of Analyzer Speed. The Analyzer Speed question is also not asked in the
MC68020 Trace Options window because emulation-bus analyzers can make
measurements without tradeoffs in the MC68020 emulator.

; f
—'E Emulator Configuration: Simulated 10

-~ Simulated 10

Enable Polling for Simulated /0 <> Yes 4 Mo

Simio Control Address 1 | _systemio_buf

Simio Control Address 2| SIMIO_CA_OME

Simio Control Address 3| SIMIO_CA_THO

Simio Control Address 4| SIMIO_CA_THREE

Simio Control Address 5| SIMIO_CA_FOUR

Simio Control Address 6| SIMID_CA_FIVE

File for Standard Input | fdev/simio/keyboard

File for Standard Outputl /devisimio/display

File for Standard Error |/.-:dev.-"'simina"'displag

Enable Simio Status Messages < Yes 4 No

| o] e] |
] E

291

Chapter 8: Configuring the Emulator
Emulation Configuration Displays

; ¥
—-E Interactive Measurement Specification

- Interactive Measurement Specification
BNC on Trig1 Meither =

CMBT on Trigl | Neither = |

BNC onTrigz | Meither = |

CMBT on Trig2 | Neither = |

Emulator Break Receive Trig2 < Yes 4 No

Analyzer on Trig? | Neither i '

i Cancel i
3

Refer to the Simulated 1/0 User’s Guide for details on configuring and using
simulated I/O.

To give proper answers to these questions, refer to Chapter 6, "Making coordinated
measurements."

292

Chapter 8: Configuring the Emulator
Mapping Memaory

Mapping Memory

This section of the chapter discusses the details of how to map memory for the
emulator, its emulation monitor, and the target system. The Memory Map shown
on this page is for an emulator using the background monitor. If you decide to use
a foreground monitor, the first entry you will see in the Memory Map will be the
4-Kbyte address range reserved for the monitor.

By default, the emulator assumes all memory addresses are in RAM space in your
target system. If you wish to load some of your target program in emulation
memory, or identify some of your memory addresses as ROM or Guarded, enter
those specifications in the memory map. The resolution of mapped ranges is 256
bytes; memory ranges begin at addresses ending in 00h; memory ranges end on
addresses ending in FFh.

The Memory Map display on this page chooses

Map - Default Memory Type- Target RAM - Cache Inhibit OFF. The

emulator will treat all address space that is not specified within the Memory Map as
memory hardware of the Default Memory Type you specify here. If memory
characterized as Guarded is accessed, the emulator will break to its monitor.

To create a new map entry or modify an existing entry, choose
Map - Add New Entry, orMap - Modify Entry - <NO.>. The appropriate
Memory Map dialog box will open.

_-E Emulator Configuration: Memory Map
File Map|§ettings Hel
ﬁdd Mew Entry Emulation memor remaining: 1535
'ﬁhdodi Ent function code attribute
EeI(J.tE.’,Entr:,nr!'Ir 2] HEEH
Delete Al /RAM

Default Memory Type > Target RAM I» :Cache Inhibit OFF
Target ROM P Cache Inhibit OM

Guarded |

STATUS: Happing emulation memory, default blocks: target/ram

293

Chapter 8: Configuring the Emulator
Mapping Memory

To create a new map entry or modify an existing entry from the Memory Map
popup menu, press and hold gegectmouse button and choosdd New Entry,
or Modify Entry . The appropriate Memory Map dialog box will open.

The memory map of the MC68020 emulator does not support cache inhibit within
selected address ranges.

—'E Emulator Configuration: Memory Map

Map Settings Help

Emulation memory remaining:
function code attribute

k bytes

Memory Map Display
Modify Entry

Add New Entry
Delete Entry

STATUS: Happing emulation memory, default blocks: target/ram

_.E Configuration: Memory Map
- fAdd Mew Map Entry

Start Address B
End Address B
Address Increment B

Function Code Mone fa |

Cache Inhibit {r Yes # No
Target Completes Bus Cycles < Yes 4 No

Dual Port Memory $r Yes # Mo

E E

294

Chapter 8: Configuring the Emulator
Mapping Memaory

Examples Mapping Example 1: Suppose you are using the emulator in-circuit, and there is a
12-byte I/O port at 1c000 hex in your target system. You have ROM in your target
system from 0 through ffff hex. Also, you want to use the dual-port emulation
memory at 20000 hex. You could use the Memory Map dialog box to create the
following three map entries:

Start Addres4c000h End Addresd.cOffth, Memory TypeTarget RAM

Start Addres®h, End Addres$§ffffh, Memory TypeTarget ROM

Start Addres0000h End Addres20fffh, Memory TypeEmul RAM, Dual Port
Memory =Yes

The background monitor is used; that is the only way to make the dual-port
emulation memory available for your target program. When a foreground monitor
is in use, it occupies the dual-port emulation memory, by default.

Mapping Example 2: This example shows the relationship between memory ranges
and memory block sizes. Suppose you have installed 256-Kbyte SRAM memory
modules in Memory slots 0 and 1 (called BANK 0 and BANK 1) on the emulation
probe. This makes four 64-Kbyte blocks and two 128-Kbyte blocks available to the
memory mapper. Then you enter the following map commands:

Start Addres®h, End Addres#fffh, Memory TypeEmul RAM

Start Addres20000h End Addres8f000h, Memory TypeEmul RAM
Start Addresg0000h End Addresdfffth, Memory TypeEmul RAM

Start Addres$0000h End Addres&00ffth, Memory TypeEmul RAM
Map - Default Memory Type - Target RAM - Cache Inhibit ON

If you have not used the dual-port emulation RAM, the first map term that is small
enough to fit is assigned to that memory. In this example, that is the last term you
defined (the range from 50000..500ff). The entire 4-Kbyte block is reserved though
you specified only a 256-byte range. Two 64-Kbyte blocks and one 128-Kbyte
block are used from the SRAM emulation memory on the probe, leaving two
64-Kbyte blocks and one 128-Kbyte block. One of the 64-Kbyte blocks is used for
the first map term, but 32 Kbytes of that block are unused and unavailable. The
third term uses the other 64-Kbyte block. The second term uses part of the
128-Kbyte block, leaving the rest unavailable.

Mapper resolution is independent of block allocation. In the above example, if you
haddefault guarded and your program accessed 8000h, the emulator would do a
guarded memory break.

295

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the MC68030 Foreground Monitor

Providing MMU Address Translation for the
MC68030 Foreground Monitor

When using the memory management unit (MMU) of the MC68030, the target
system must provide the proper address translation for the foreground monitor. To
be able to do this, you will need to understand your target system’s physical
memory map and MMU address translation structure. You may need to modify
your mapping scheme or some of its mapping protections.

In order for the monitor to operate after the MMU is turned on, the target system
must provide 1:1 address translation (logical address = physical address) for the
block of memory occupied by the monitor. The foreground monitor will reside in a
4-Kbyte block of emulation memory corresponding to a single page or series of
consecutive pages in the MMU. This memory can be mapped to begin on any
4-Kbyte address boundary. Simply specify an address ending in 000h when you
answer the monitor address question when you set up the emulation configuration.

For example, if the monitor is located at logical address 0ffff1000h, then the MMU
must translate that address to physical address Offff1000h, logical address
0ffff1004h to physical address 0ffff1004h, etc.

Do not write-protect the address range occupied by the foreground monitor.

There are two ways to provide proper address translation for the memory space
occupied by the foreground monitor:

e Locate the foreground monitor in a block of memory that is transparently
translated via TTO or TT1, the transparent translation registers (TTRs). When
the MMU processes translations, it first compares the logical address with the
parameters of the TTRs. If it finds a match, the MMU uses the logical address
as the physical address for the access (obtaining the needed 1:1 translation).

The minimum block size that can be transparently translated by a TTR is

16 Mbytes. If your target system already sets one or both TTRs for supervisor,
or both supervisor and user, access and no write-protection, you may be able to
find an unused 4-Kbyte block within this 16-Mbyte range where the monitor

can reside.

If your target system does not use the TTRs, you may want to modify your
MMU boot code to configure a TTR specifically for the monitor.

296

Example

Chapter 8: Configuring the Emulator

Providing MMU Address Translation for the MC68030 Foreground Monitor

This example shows how to modify boot code to use a TTR. Assume your
target system does not access any physical addresses in the 16-Mbyte range
02000000..02ffffffh, and TTO is unused. By locating the monitor at address
02000000 and adding the following code fragment to your boot code, you
should be able to break into the monitor while the MMU is turned on:

* configure TTO for emulation monitor
MOVE.L #$0200C000,DO
MOVEC DO,TTO

Without these transparent translations for the monitor, the MMU will probably
generate an access fault when you attempt to break into the monitor. The
access fault would occur because addresses in the 02000000 range would have
no valid translations (they would be on a non-resident page).

If you cannot modify your boot code, you may be able to use an execution
breakpoint to break into the monitor before the MMU is enabled and use the
monitor to configure the TTR. Do this only as a last resort because the
MC68030 processor automatically disables both TTRs whenever an emulation
or target reset occurs (and the TTRs must be reinitialized each time).

The second way to provide proper address translation for the foreground
monitor is to locate the monitor within a page that is controlled by the MM
address translation tables; one that is always resident, writeable, supervis
accessible, and translated 1:1. The monitor occupies one 4-Kbyte page (or
series of consecutive smaller pages totaling 4 Kbytes) of emulation memory.
It will be stored in the 4-Kbyte range of the dual-port memory.

297

Chapter 8: Configuring the Emulator
Providing MMU Address Translation for the MC68030 Foreground Monitor

Locating the Foreground Monitor using the MMU
Address Translation Tables

Locate the foreground monitor at a specific page address (or series of consecutive
pages totaling 4 Kbytes and beginning on a 4-Kbyte address boundary) and add the
proper address translation for this page in your supervisor address translation
tables. The page (or pages) that contains the foreground monitor must always be
resident, translated 1:1 (logical address = physical address), and never
write-protected.

The most direct way to do this is to modify the address translation tables in your
source code, rebuild your executable file, and download the executable into RAM,
or reprogram the executable into ROM. For systems that use an operating system
to manage dynamic translation tables in RAM, the page (or series of pages)
allocated to the monitor must not be allowed to be swapped out by the operating
system. This may require that the page (or pages) selected for the monitor reside in
unused space within the operating system (assuming the operating system is
translated 1:1). The easiest way to create unused space is to globally define an
8-Kbyte array of data that is never referenced by your software. After rebuilding
your operating system software, refer to the linker symbol map file to determine the
address range of this array. Use the lowest address that resides on a 4-Kbyte
boundary within this range as the starting address for the monitor.

As a last resort, if your target system software cannot be rebuilt, you can use the
emulator to modify your translation tables directly.

The emulator provides a command to display individual address translations in
detail, including address, value, and mnemonic information about each descriptor
from the translation tables. You may be able to provide the proper address
translation for the monitor by simply modifying a single descriptor (long word) to
convert an invalid page into a resident page.

If the translation tables are located in ROM, you will need to copy them into
emulation memory before you attempt to modify them. This is done by storing all
or part of your ROM to a file, and then mapping emulation memory over the ROM
address range and reloading the file.

298

Solving Problems

What to do when the emulator doesn’t behave as expected

299

Chapter 9: Solving Problems

Sometime during your use of the emulator, you'll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these more complex problems.

Consider the following sources of information in addition to the specific problems
discussed in this chapter:

Look at the error log. Sometimes a problem will cause several error messages to be
generated. Only the last error message will be shown on the status line. You can
see the last 100 error messages by viewing the error log. Refer to Chapter 3,
"Using the emulator/analyzer interface," for details of how to display the error log.

Look at the event log. Changes in status of the emulator/analyzer may cause
unexpected results. To see a list of the last 100 events that affected the status of the
emulator/analyzer, view the event log. Refer to Chapter 3, "Using the
emulator/analyzer interface," for details of how to display the event log.

Look at the present status of the emulator/analyzer to see if it will suggest the cause
of your problems. Refer to Chapter 3, "Using the emulator/analyzer interface," for
details of how to display emulator/analyzer status.

300

Chapter 9: Solving Problems
If the emulator appears to be malfunctioning

If the emulator appears to be malfunctioning

[J Check to make sure that the cables connecting the Emulation Control Board to the
Emulation Probe are connected correctly. Refer to Chapter 18, "Installation and
Service," for details.

[J Run the performance verification procedure as described in Chapter 18,
"Installation and Service." If the emulator fails this test, contact your
Hewlett-Packard representative.

L] If the emulator passes the performance verification procedure, look for other
reasons for the problem. Performance Verification is a thorough test, but it cannot
find every hardware failure in the emulator. Itis a good indication that the
emulator is functioning correctly, but if you are still convinced that the emulator is
malfunctioning, contact your local Hewlett-Packard representative.

If the analyzer triggers on a program address
when it should not

[J Check to see if the analyzer is triggering on an instruction prefetch. The analy|
cannot distinguish between prefetch and execution because the processor do
provide that information. Usually your actual trigger address is within 16 words of
the address where trigger is occurring.

[J Try to pad the program code with NOP instructions to move the trigger address
away from the other code so that it won't be prefetched until it is time to trigger.

[J You may be able to insert a write instruction to a meaningless variable in your code
immediately before the trigger address. Then you can trigger on a write to the
address of the meaningless variable. Write transactions never appear in instruction
prefetches.

301

Chapter 9: Solving Problems
If there are unexplained states in the trace list

If there are unexplained states in the trace list

[J Check that the sequence, storage and trigger specifications are set up to exclude the
states you don’'t need.

L] Try using thadisassemble_from_line_number <LINE#> align_data_from_line
<STATE#> option to thalisplay trace command to inform the dequeuer which
operand state belongs with the first instruction state.

L] Try usingdisplay trace dequeueing on

L] Try using thadisassemble_from_line_number <LINE#> low_wordption to the
display trace command to begin disassembly from the low word of the starting
state, instead of the high word.

[J Check to see if instruction or operand accesses in the range covered by the trace
could be filled from cache memory. If so, these cycles won't appear in the trace list,
which will confuse the disassembler. Either disable the cache memory entirely or
disable caching for those address ranges by addimg @teche inhibit) attribute to
those ranges in the memory map. (Refer to Chapter 8, “Configuring the Emulator.”)

If you see negative time or negative states in the
trace list

L] If counter overflow occurs during a deep analyzer trace measurement, you may see
a count of negative time or negative states in the trace list. This is a normal
condition. It indicates that the counter value stored with the reference state was
greater than the counter value stored with the present state. In absolute time counts,
negative times will continue to be seen until a state is captured whose counter value
is greater than the trigger state counter value. In relative time counts, negative time
should only be seen beside the first state captured after the counter overflows.

302

Chapter 9: Solving Problems
If the analyzer won't trigger

If the analyzer won't trigger

L] Instruction fetches from cache memory aren't visible to the analyzer. You can
disable the cache while using the analyzer by answeang the configuration
guestion “Enable the 68020 instruction cache?” (MC68020) or “Enable the 68030
instruction and data cache?” (MC68030/EC030). (Usenthdify configuration
command to access this configuration question.) Reenable the cache to improve
performance when you're finished using the analyzer.

[J The analyzer can be configured to trace background monitor execution, foreground
monitor and target program execution, or both background and foreground
operations. If you trace only background monitor execution, the analyzer will not
see any foreground cycles and will not trigger the trace. (Usedtdy
configuration command to access this configuration question.)

[J The MC68030/EC030 emulator only fetches instructions on long word boundaries
(least significant hex digit of address is 0, 4, 8, or C). However, program labels can
be aligned or word boundaries between long word boundaries. If you try to trace on
a label located on a non-long-word boundary, the bus analyzer will never trigger
because the address never appears on the address bus. To mask an address so that it
is on a long word boundary, use tbeg_alignedkeyword with trace
specifications.

303

Chapter 9: Solving Problems
If trace disassembly appears to be partially incorrect

If trace disassembly appears to be partially
incorrect

[] Check to see if the analyzer began disassembly of the trace on a long-word
boundary but the instruction started on the low word within the long word. This
will make disassembly incorrect. You can start disassembly on the low word
within the long word by use dfisplay trace disassemble_from_line_number
<trace list line number> low_word

L] If the trace list seems correct for a few states after disassembly starts, and then it
seems incorrect, restart disassembly of the trace at the low word where disassembly
first becomes incorredisplay trace disassemble_from_line_number <trace list
line number> low_word.

L] If an instruction seems to have incorrect data associated with it, you can read down
the trace list to see if you can find correct data for the instruction on another line.
You can cause the disassembler to realign the instruction with the correct data by
entering a command lildisplay trace disassemble_fro m_line_number <trace
list line number> align_data_from_line <trace list line containing data>

If the emulator won’t work in a target system

[J Ensure that the probe is inserted into the target system in the correct manner—the
pins should be lined up correctly.

L] If you are using spacers to connect the emulator probe to the target system, make
sure that the spacers are correctly connected.

[J The emulator uses the clock from the target system. Unsupported or improperly
configured clock speeds will affect emulator performance. (Usmdiokfy
configuration command to access this configuration question.)

[J The emulator must recognize the target system’s clock signal to function correctly.
Power up the emulator and then apply power to the target system.

304

Chapter 9: Solving Problems
If you suspect that the emulator is broken

[J Check to see that the signal timing specifications of your target system match the
specifications inChapter 16, "Specifications and Characteristics."

If you suspect that the emulator is broken

1 Shut off power to the target system, then the Card Cage.
2 Disconnect the emulator from your target system.

3 Connect the emulator to the demo board. Also connect the power cable from the
emulator to the demo board. (Refer to Chapter 18, "Installation and Service.")

4 Set all the demo board configuration switches to the TEST position (all switches
closed—refer to Chapter 18, "Installation and Service).

5 Apply power to the Card Cage.

6 Run performance verification by entering the commands:

display pod_command
pod_command "pv 1"

Note that the emulator/analyzer interface will report an I/O error singa/the
command initializes the emulator. You will need to enteettterelease_system
command to exit the emulator/analyzer interface.

If either the emulator or analyzer fail the performance verification, check the
installation of those modules. Refer to Chapter 18, "Installation and Service," for
information on installation and an explanation of the performance verification
software. If the installation is correct, contact your local HP Sales and Service
office for assistance.

305

Chapter 9: Solving Problems
If you have trouble mapping memory

If you have trouble mapping memory

[J The emulator uses a best fit algorithm to assign memory blocks to map requests.

Because the memory block sizes available depend on the emulation memory
module installations and the use of the dual-port memory, it's possible that a
256-byte map request may use 512 Kbytes. (The map term will be only 256 bytes.)
Most systems won't have such differences between memory block size
requirements and available memory. However, certain emulation memory module
installations will aggravate the problem.

[Also, use of the dual-port memory is controlled first by monitor selection and next

by explicit selection of a dual-port term in the map. If you choose a foreground
monitor, the dual-port memory block is reserved for that purpose. If you choose a
background monitor, and don’t explicitly map a term withdpettribute, the
dual-port memory may be used to satisfy any map request. For example, if you
request a 256-byte map term and this memory block is available, it will be used to
satisfy the request since it is closest to the needed size. Or, if you request a term
that is slightly larger than another available block, the dual-port memory will be
used with another map term to satisfy the request. (For example, a 260 Kbyte
request may use one 256-Kbyte block and the 4-Kbyte dual-port memory.)

If dual-port memory is used with the emulation memory module to satisfy a map
request, you may see unusual behavior in the trace list. The processor executes
correctly, but you will notice a status change from 32 bit accesses (ds32) to 16 bit
accesses (ds16) as the execution crosses the boundary from the emulation memory
module to the dual-port memory. (You won't have this problem with the
MC68030/EC030 emulator because the dual-port memory is 32 bits wide, but you
may see a speed difference when accessing the dual-port memory.) To fix this, map
the dual-port memory explicitly to another unused range (use the dp attribute).

Then the request for a 260-Kbyte block will use memory from the emulation
memory modules only.

See the section “Memory Mapping” in Chapter 8, "Configuring the Emulator," for
more information on memory allocation.

306

Chapter 9: Solving Problems
If you see multiple guarded memory accesses

If you see multiple guarded memory accesses

[J Check the stack pointer value. If it points to guarded memory, you will see multiple
guarded memory accesses each time that you press the <Enter> key (to get a new
prompt). Reset the emulator and set the stack pointer to a correct value.

If the demo program won'’t work

[J Do you have the emulator plugged into the demo board, with power connected to
the demo board from the emulator? (The demo program will not work with other
target systems.)

[] Are the switches on the demo board set to the OCE position (Out-of-Circuit
Emulation, away from TEST)?

[J Did you change to the demo directory?

(/usr/hp64000/demo/debug_env/hp64748 for the MC68020;
/usr/hp64000/demo/debug_env/hp64747 for the MC68030/EC030) .

(] Did you start the demo program with the proper command?

Startemul <logical name>
Startall <logical name>

307

Chapter 9: Solving Problems
If you're having problems with DMA

If you're having problems with DMA

[J Check to make sure that your DMA process doesn’t access memory ranges mapped

to emulation ram or emulation rom. DMA to emulation memory is not supported.

If you're having problems with emulation reset

[J Check to make sure that your system uses an open-collector driver to drive the

processoRESET line (this also appliesALT on the MC68020 processor). This
line is bidirectional; the processor must be able to pull the line low.

Check to make sure that all critical components in your system are reset by the
RESET signal to the processor. System startup problems can arise when this rule is
violated. Suppose that your target system reset circuit drives several critical system
components directly, but drives the processor through an open-collector buffer.
Suppose also that the critical components are memory-mapping circuits that locate
ROM containing the vector table at address zero for startup, then move it to a high
address range after system initialization. An emulator reset system can't drive this
separate target reset line. Therefore, a run after emulation reset will fail, because the
vector table is not located in the correct place. Use the target reset to reinitialize
memory or use un command instead ofran from reset command.

308

Chapter 9: Solving Problems
If the deMMUer runs out of resources during the loading process

If the deMMUer runs out of resources during the
loading process

[J Check the physical address ranges that will be reverse translated by the present
setup of the deMMUer. Entlyad demmuer verbosedo see a list of those
physical address ranges. If all of the physical spaces where you have code under
development are listed, ignore the "out of resources" message.

[J Check to ensure that you have placed sufficient restrictions in the MMU mapping
paths to prevent reverse translating physical address space where you have no
memory.

[J Check your emulation memory map to make sure you have entries to support each
of the address spaces where you have code under development. Make sure those
spaces are no larger than they need to be to accommodate your program code.

[J Check if you are using both root pointers in your memory mapping scheme. The
deMMUer may have run out of resources for only one of the root pointers.

[J Check if you are using function-code mapping. The deMMUer may have run out
of resources for only one of the function-code memory spaces.

[J Read "Using the deMMUer" in Chapter 10, "Using 68030 Memory Manageme-
for ways to make more efficient use of deMMUer resources.

309

Chapter 9: Solving Problems
If verbose mode shows less than eight mappings but the deMMUer is "out of resources”

If verbose mode shows less than eight mappings
but the deMMUer is "out of resources”

[J Check if you are using both root pointers in your memory mapping scheme? The
deMMUer may have run out of resources for only one of the root pointers.

[J Check if you are using function-code mapping. The deMMUer may have run out
of resources for only one of the function-code memory spaces.

[J Read "Using the deMMUer" in Chapter 10, "Using 68030 Memory Management"
to understand how deMMUer resources are allocated when using different root
pointers or when using function-code mappings.

If you only see physical memory addresses in the
analyzer measurement results

[J Check to see if you enabled the deMMUer with the comneeidiemmuer on

[J Check to see if you loaded the deMMUer with the information needed to reverse
translations made by the MMU with the commaodd demmuer verbose

[J Read "Using the deMMUer" in Chapter 10, "Using 68030 Memory Management"
to understand how the deMMUer selects physical address ranges to reverse
translate for the analyzer.

310

Chapter 9: Solving Problems
If the deMMUer is loaded but you still get physical addresses for some of your address space

If the deMMUer is loaded but you still get
physical addresses for some of your address
space

[J Some physical accesses are normal, especially accesses to the MMU tables and cpu
space.

[J Check to see which physical memory spaces are being reverse translated by the
deMMUer. Enter thébad demmuer verbosecommand to see a list of the physical
address spaces that will be deMMUed.

[J Check the setup of the MMU mapping tables. Make sure that unused address
spaces are marked with invalid descriptors in the mapping tables.

[J Check the emulation memory map. Make sure you have allocated only the memory
spaces needed to accommodate code you are developing in your map. Make sure
you have mapped the smallest spaces that you can for the code you are developing.

[J Check that the MMU had the setup you wanted to analyze when you loaded the
deMMUer. [f it was managing memory for some other MMU setup, break to the
monitor and issue tHead demmuercommand again.

[J Check to see if there was a context change in the MMU during execution of y
program. If there was, the content of the root pointer may have changed for
execution of the new context. The deMMUer tables were set up to reverse translate
the MMU tables under the root pointer values that existed when you entered the
load demuercommand. If those root pointer values change (pointing to other
translation tables), there is no way to automatically update the deMMUer. It will
continue to provide reverse translations for the setup that existed at the time you
issued théoad demmuercommand. Issue thead demmuercommand again.

Read "Using the deMMUer" in Chapter 10, "Using 68030 Memory Management"
to understand how the deMMUer selects the physical addresses it will translate.

311

Chapter 9: Solving Problems
If you can’t break into the monitor after you enable the MC68030 MMU

If you can’t break into the monitor after you
enable the MC68030 MMU

L] Enter the commandeeset and therbreak. If your MC68030 is now running in
the monitor, look at your MMU Tables or the transparent translation register that
maintains 1:1 mapping for your foreground monitor. The mapping has failed.
Modify your MMU tables or the transparent translation register to obtain the 1:1
mapping for the address space occupied by the foreground monitor.

L] If you are mapping a page size that is smaller than 4 Kbytes, make sure that you
have provided 1:1 address mappings for all of the pages that contain monitor code.

[J Refer to the end of Chapter 10, "Using 68030 Memory Management" for a detailed
example that discusses how to solve a "can't break into monitor" problem.

312

Part 3

Reference

313

Part 3

Reference

In This Part

This part provides detailed information on aspects of using the Graphical User
Interface and the Softkey Interface for the HP 64747 and 64748 products.

314

10

Using MC68030 Memory Management

Understanding logical and physical emulation and analysis

315

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

Understanding Emulation and Analysis Of The
MC68030 Memory Management Unit

You only need to read this chapter if you are using the on-chip MMU (Memory
Management Unit) of the MC68030 microprocessor. If you are using an MC68020
or MC68ECO030, or if you are using an MC68030 with its MMU disabled, you

won't need the information in this chapter.

This chapter begins with a discussion of terms and conditions you need to
understand when you are using the MC68030 emulator/analyzer with the MMU
enabled. Under these conditions, many capabilities and features become available
that are not otherwise offered. Also, some of the features you have been using
behave differently. These are discussed in this chapter.

Terms And Conditions You Need To Understand

The following paragraphs explain the differences between logical and physical
memory, and between static and dynamic virtual memory systems.

Logical vs Physical

When you develop a program, compile it or assemble it, and link it, addresses are
assigned to contain each of the bytes of the program. These addresses are logical
addresses. When the program is loaded into hardware memory so that it can be
executed by the microprocessor, it is loaded into physical address space. When you
are not using an MMU, the program is loaded into physical memory hardware at

the logical addresses assigned in the linker load map. Under these conditions, there
is no need to differentiate between logical addresses and physical addresses because
they are the same (simply addresses). When you use the MMU, it becomes
necessary to understand the difference between logical addresses and physical
addresses.

Most emulation and analysis commands that require an address as part of the
command use logical addresses. Some emulation and analysis commands will
accept either logical or physical addresses.

316

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

What are logical addresses?

Logical addresses are the addresses that are assigned to your program code when
you develop your program. They are the addresses represented by symbols in your
symbols data base (the symbol "Main" represents a logical address).

What are physical addresses?

Physical addresses are the addresses assigned by the MMU to contain your

program. Physical addresses identify locations where you actually have memory
hardware in your target system. Physical addresses appear on the processor address
bus instead of logical addresses.

Static and dynamic system architectures

There are several design strategies where memory management can help in
developing a system or product. Three of these are described in the following
paragraphs. One shows memory management used in a static memory system. The
other two show memory management used in different dynamic memory systems.
The MC68030 emulator is designed to work in any of these system types; however,
the deMMUer which provides reverse translations to the analyzer is primarily
intended for use in static systems.

Static system example

A static system design may use the MMU simply to protect supervisor code a
space against accesses from a user program. Once a static system is initialized, it
never changes. Your HP emulator and analyzer can give you complete support for
a static memory management system. After the MMU has been set up to manage
memory in a static system, the deMMUer can be loaded with information to reverse
the MMU translations over the entire range managed by the MMU.

Non-paged dynamic system example

Assume three programmers are developing separate programs to run in a real-time
operating system environment. The programmers each write their programs to
begin at address Oh. The operating system accepts the responsibility to know where

317

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

in physical memory space each of these programs will be located. The
programmers don’t have to worry that some additional code they write in their
programs might overwrite some of the code that was written by another
programmer. The operating system will place all of the code in available memory
space and place appropriate translation mappings in the MMU to ensure that when
the logical address for one of the programs (tasks) is present in the program
counter, the appropriate physical address will appear on the bus to access the
desired physical memory location.

Your HP emulator/analyzer can give you partial support for a non-paged, dynamic
system. When the MMU has been set up to manage memory during execution of
one of the above tasks, you can update the deMMUer to translate addresses for that
task. When that task is executing, the analyzer will be able to make trace
measurements and provide correct results. When any of the other tasks are
executing, trace measurement results will be invalid because the other tasks will
depend on different translation tables in the MMU and there is no way to
automatically update the deMMUer when execution switches from one task to
another.

Paged dynamic system example

Assume you have developed a program that occupies 10 megabytes of logical
address space. Perhaps you have only 2 megabytes of physical address space in
your system. Sitill, you want to be able to run the entire program. You set up a
specification in the MMU translation control register to divide the address space

into pages (the 68030 lets you divide the memory space into one of several page
sizes. You can choose to divide the memory into pages as small as 256 bytes or as
large as 32 Kbytes). Assume you set up the MMU to divide the memory into
1-Kbyte pages. Your program will occupy 10,000 pages of code, and 2,000 of these
pages can be contained within your physical memory space at any given time.

As your program executes, the operating system moves pages of your program code
into address space in physical memory. When execution goes beyond the addresses
contained on the presently active page, the MMU checks to see if the next logical
address is on a page that has already been placed in physical memory. Ifitis, the
MMU performs the appropriate translation for the next logical address, placing the
appropriate physical address on the bus, and execution continues. Ifitis not, the
operating system moves the page that has the next address to be executed up from
an external storage device to physical memory space, overwriting one of the pages
that had occupied physical space before. The operating system updates the
translation tables to identify the new logical address space that now occupies that 1
Kbyte of physical memory, and program execution continues.

318

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

As pages are swapped back and forth between an external storage device and the
physical memory, the relationship between any one logical address and its
corresponding physical address may change many times.

Your HP emulator will let you run a paged, dynamic system, but the analyzer will

not be able to provide support for such features as symbolic addresses, or display of
corresponding source files. The deMMUer cannot detect changes in the MMU
mappings. The longer the system runs, the further out of date the deMMUer will
become. Of course, the analyzer will still be able to show activity captured at
physical addresses. By experimenting with several starting points for the inverse
assembler, you can obtain a trace list with activity inverse assembled into an
equivalent assembly language listidigsplay trace

disassemble_from_line_number <NO.> [low_word]

Where Is The MMU?

The MMU is located between the CPU core and the external address bus. The
program counter always contains logical address values. When the MMU is turned
off, the program counter value is placed directly on the address bus to access an
address in physical memory. When the MMU is turned on, the MMU accepts the
logical address value and translates it (by using its translation tables) to a physical
address. The physical address from the MMU is placed on the processor address
bus.

319

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

Using Function Codes

The MMU lets you use function codes as the first level within the translation tables
that map memory. It also allows separate tables to be set up for supervisor and user
access. For example, you can create one set of tables to translate addresses in
supervisor space and another set of mapping tables to translate addresses in user
space. The supervisor space can use the SRP (supervisor root pointer) or the CRP
(CPU root pointer), as you choose. The user space must use the CRP. The
supervisor memory can begin at supervisor address 0 and the user memory can
begin at user address 0. The MMU must ensure that these addresses are placed in
different physical spaces.

You can use the MMU to protect your program space from unauthorized accesses.
If you map a portion of your program through the MMU and identify it as
supervisor space, the MMU will not allow any access to that program space unless
the function code is supervisor at the time the access is attempted. Take care to
ensure that function codes are specified with addresses if the MMU will be making
the distinction (examplesaddress> supervisor emulation rom

How the MMU is enabled

The MMU depends on a hardware enable and a software enable. Both of these
enables must agree to enable the MMU before it can translate logical addresses to
physical addresses. If either one (or both) of these enables fail to enable the MMU,
it will remain disabled.

Hardware enable

The hardware enable is performed byMMUDIS signal. WherMMUDIS is
asserted, the MMU is disabled. WHdMUDIS is negated, the MMU is enabled
to translate addresses. The emulator controlIMEDIS line according to the
way you set the "Enable Memory Management Unit" configuration item.

If you entemo, theMMUDIS line is held asserted. If you enters theMMUDIS
line is directly controlled by the target system. In this condition, your target system
can hold the line high or low to enable or disable the MMU.

320

Chapter 10: Using MC68030 Memory Management

Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

Software enable

The software enable is performed when the operating system loads a value into the
translation control register (TC). If the enable bit of the TC register value is "e=1"
and the value in the TC register is valid, the MMU will be enabled. If the enable

bit in the TC register is "e=0", or if the value loaded into the TC register is invalid,
the MMU will be disabled.

Caution

Restrictions when using the MC68030 emulator
with the MMU turned on

There are only three restrictions: you must use a foreground monitor, it must not be
write protected, and you must map it to address space that the MMU translates 1:1
(logical=physical).

You must use a foreground monitor. The background monitor does not have the
capabilities to support the MMU functions. The foreground monitor can operate
with the MMU turned on.

You must map the monitor code to address space that the MMU translates 1:1. The
emulator executes monitor code to implement many of its emulation features. The
emulator must be able to find the monitor code whether the MMU is turned on or

off. By mapping the monitor into address space that has a 1:1 translation, the
monitor stays within known address space at all times, and the emulator can
find it when it needs to use it. This mapping is described at the end of Chapte
"Configuring the Emulator."

Be sure that no write protection exists in the MMU mapping for the monitor.

Make sure your translation tables are valid. Turning on the MMU can cause your
program or emulator to fail if the MMU tables are not set up correctly. The address
space where the program is executing can change when the MMU is turned on or
turned off. Stack space or other data spaces can move. Breakpoints that have been
set can be lost.

321

Chapter 10: Using MC68030 Memory Management
Understanding Emulation and Analysis Of The MC68030 Memory Management Unit

How the MMU affects the way you compose your
emulation commands

When you display registers, the address registers, stack pointers, and program
counter always contain logical addresses, even when the MMU is turned on.

If you place an address in the entry buffer and chBaseution— Run - from(),

or enter aun from <address>command, the address you enter must be a logical
address. The program counter will accept it and supply it to the MMU for
translation before it places the address on the processor bus.

Breakpoint addresses are always logical addresses. When you set a breakpoint at
an address, that address is translated by the MMU and the BKPT #7 replaces the
instruction at the appropriate physical address. When the breakpoint is executed,
the emulator restores the original instruction to the physical address, by first
translating the logical address through the MMU.

Consider what happens if you set a breakpoint at a particular address, and before
the breakpoint is hit, you update the translation tables in the MMU, changing the
mapping to the location where the breakpoint is set? This is discussed in detail
under "Solving Problems" at the end of this chapter.

If you enter a command to display memory or modify memory, your command is
directed to logical address space. If you want to display memory at a physical
address, you have to change your command. For example, the command to display
memory at address 100Biéplay - Memory — Hex(), or display memory 1005

will show you the memory content at logical address 100H (which might be some
other physical address). If you want to see the content at physical memory address
100H, you will have to enter the commatigplay memory physical 100h

Addresses expressed using symbols are always logical addresses. In the case of
symbols, the emulator looks in the symbol data base and finds the logical address
that corresponds to the symbol you used in your command, and it loads that logical
address into the program counter.

If you attempt to modify a memory location that is write protected by the MMU,
the access will fail. To avoid this, modify the MMU tables to remove write
protection from the memory you want to modify.

322

Chapter 10: Using MC68030 Memory Management
Seeing details of the MMU Translations

Seeing details of the MMU Translations

The following paragraphs discuss emulator displays that help you understand
translations made by your MMU. There are three displays, each giving a different
level of detail of the MMU translations.

* The present address mappings in your MMU tables.
* The translation table entries for a single logical address.

» The contents of a single level of the translation tables pointed to by a selected
logical address.

How the emulator helps you see the details of the
MMU mappings

To see all of the logical-to-physical translations presently mapped, choose
Display - MMU Translations from the pulldown menu, or enter the command
display mmu_translations The emulator will read the present state of the
translation tables and show all of the valid mappings in those tables. The display
will be similar to the following:

MMU Mappings

FUNCTION LOGICAL ADDRESS PHYSICAL ADDRESS
CODE Lower Upper Lower Upper
user data 0 7FFF 00000000 00007FFF
8000 1FFFF 00028000 OO003FFFF
7FFF8000 7FFFFFFF 00008000 OOOOFFFF
FFFE8000 FFFFFFFF 00010000 00027FFF

user prog 0 7FFF 00000000 OO0007FFF

8000 1FFFF 00028000 OOO3FFFF
7FFF8000 7FFFFFFF 00008000 OOOOFFFF
FFFE8000 FFFFFFFF 00010000 00027FFF

supr data 0 7FFF 00000000 00007FFF

8000 1FFFF 00028000 OOO3FFFF
7FFF8000 7FFFFFFF 00008000 OOQOFFFF
FFFE8000 FFFFFFFF 00010000 00027FFF

supr prog 0 7FFF 00000000 OO0007FFF

8000 1FFFF 00028000 OOO3FFFF
7FFF8000 7FFFFFFF 00008000 OOOQOFFFF
FFFE8000 FFFFFFFF 00010000 00027FFF

323

Chapter 10: Using MC68030 Memory Management
Seeing details of the MMU Translations

The above listing shows function codes were included in the mapping scheme. If
function codes had not been included, the function code headings would not be
present, and only a single list of logical-to-physical address mappings would be
shown.

Note that the emulator enters the monitor to obtain the information it shows in the
MMU displays. Execution of your target program is suspended while the emulator
gathers information for an MMU display. If there are portions of your target
program that should not be interrupted during execution, insert an execution
breakpoint in some safe area of your program code and run until the breakpoint is
executed. Then you can safely view the MMU mappings.

The display you get with tH@isplay - MMU Translations or display

mmu_translations command can show as little as one line per page (or group of
adjacent pages) of mapped logical address space. Contiguous entries are shown on
one line to make the display more readable. Early terminations (which result in
contiguous translation of multiple pages) will also be shown on a single display line.

The display of MMU mappings will only show pages for which the system has
valid mappings. No information is given in the defauthu_translations display
for paths designated invalid, or for paths containing illegal entries.

If your system uses a small page size and has a large physical memory, the
Display - MMU Translations command may cause your display to scroll through
a long list of mappings. To avoid a list of mappings that scrolls for a long time,
include an address or address range in your command. By choosing

Display - MMU Translations... and entering a limited address range in the dialog
box, or using the commantisplay mmu_translations 0 thru Offffh, for example,
the emulator will show the valid mappings for only the logical addresses in the
range you specify, instead of all possible mappings.

Another way to limit the number of address ranges shown in an MMU mappings
display is to include a function code in your command (if function-code mapping is
in use). By choosinBisplay -~ MMU Translations..., entering Start Address 0

and End Address Offffh, and clicking on the desired function code in the dialog
box, or using the commantisplay mmu_translations fcode u 0 thru Offffh the
display will show all only the mappings for addresses 0 through Offff in user
address space.

Note: For conveniencéjsplay mmu_translationswill use the logical address

range from the most recatisplay mmu_translations <ADDRESS> thru
<ADDRESS>command, if possible. To change the default logical address range
back to the full address space, use the comnaligsiglay mmu_translations 0

324

Chapter 10: Using MC68030 Memory Management
Seeing details of the MMU Translations

thru Offffffffh , or obtain théisplay-MMU Translations... dialog box and enter
the desired address.

The display does not take into account overrides caused by the transparent
translation registers. A status message will indicate that a transparent translation
overlapped a mapping. Chod3isplay - Registersor use thelisplay registers
command to determine the transparent translation.

Supervisor/user address mappings

If you are using separate supervisor and user mappings, the emulator will support
this choice and show appropriate information. The MMU has two ways of doing
this:

(1). Using SRP and CRP root pointers. When using the SRP and CPU root
pointers to provide separate user and supervisor translation mappings, no
distinction is made between program and data space.

* To see only the mappings under the SRP, chbaggay — MMU
Translations... and in the dialog box obtain function code s and enter the
desired address range, or use the comnaisplay mmu_translations fcode
s [<address>[thru <address>]] This tells the emulator to show the
supervisor mapping for the associated logical address or address range.

» To see only the mappings under the CRP, chDisgay - MMU
Translations...and in the dialog box obtain function code u and enter the
desired address range, or use the comnaisplay mmu_translations fcode
u [<address>[thru <address>]]

» If you specify no function code, then mappings will be shown for both root
pointers.

(2). Use function code lookup table level. The emulator supports four separate sets
of translation tables, each under a different function code value, as follows: user
data, user program, supervisor data, and supervisor program).

e To see only the mappings under a selected function code, choose
Display—»MMU Translations... and in the dialog box click on the Function
Code button to obtain the desired function code, or use a command like:
display mmu_translations fcode ud [<address> [thru <address>]]

325

Chapter 10: Using MC68030 Memory Management
Seeing details of the MMU Translations

where:ud displays mappings under user data.
up displays mappings under user program.
sddisplays mappings under supervisor data.
spdisplays mappings under supervisor program.

» The default suffix isp (supervisor program) when an address is specified in
Display— MMU Translations... or yourdisplay mmu_translations
command.

Translation details for a single logical address

To see translation details for a logical address, cHosgtay - MMU
Translations...and click on MMU Tables in the dialog box, or enter a command
such asdisplay mmu_translations tables <address>Thetablesoption tells the
emulator to show the translation details for the specified address. The display will
show the way the logical address is mapped through the tables to reach its
corresponding physical address.

MMU Tables

Logical Address (hex) suprprog O 0 0 O 4 0 F 8
Logical Address (bin) 110 0000 0000 0000 0000 0100 0000 1111 1000

Table Level FCODE 1l 11 Il IABB CDDD PPPP PPPP PPPP
LEVEL INDEX LOCATION CONTENTS TBL/PAGE L/U LIMIT S CI M U WP DT
SRP 80000003 00001050 00001050 LONG

FC 0006 00001080 8000000b 000010a0 000010a0 L 0000 0 10 LONG
A 0000 000010a0 8000000a 000010b0 000010b0 L 0000 0 10 SHORT

B 0000 000010b0 00001