HEWLETT \hp; PACKARD

Mmroprogrammmg 21MX Computers
operating and reference manual

HP 21MX COMPUTER

SERIES

Microprogramming 21MX Computers
operating and reference manual

i

HEWLETT ﬁ PACKARD

LIST OF EFFECTIVE PAGES

Pages Effective Date
Title August 1974
Htovil ... August 1974
1-1 o October 1974
12 August 1974
211022 ... August 1974
236024 ... October 1974
316032 ... August 1974
B8 October 1974
B August 1974
3B5E03-6 October 1974
3-Tto3-9 ... August 1974
3-10t03-12 October 1974
318, August 1974
314t083-15 October 1974
3-16t03-24 August 1974
4-1t04-3 ... August 1974
44 October 1974
4-5t04-6 August 1974
4T October 1974
4-8t04-11 August 1974
412 . October 1974
4-13. August 1974
414 October 1974
4-15t04-19 August 1974
4-20 .. October 1974
4-21t04-23 August 1974
4-24 October 1974
4-25. August 1974
426 .. October 1974
5-1t05-2 August 1974
B8 October 1974
54t056 August 1974
5-Tt05-8 October 1974
5-9t05-17 August 1974
6-1 . October 1974
B 2. August 1974
S October 1974
6-4t06-T August 1974
A-1toA-3 August 1974
B-1 .. August 1974
C-1 . August 1974
C-2 October 1974
D-1toD-4 August 1974
E-1toE-19 August 1974
I-1toI-4.... August 1974

ii OCT 1974

PREFACE

This manual is a complete reference source for microprogramming the Hewlett-
Packard 21MX Computer Series. With the facilities of the HP 12978A Writable
Control Store the user can expand the already powerful capability of his 21MX
Series Computer by adding custom-tailored instructions to the existing set of
microprogrammed basic instructions.

The HP 12978A Writable Control Store is provided with two options. The
12978A option 001 provides software that operates in the DOS-III operating
system. The 12978A option 002 provides software that operates in the Basic
Control System. Refer to Section VI of this manual for a complete description
of the options.

This manual is written for an individual who already has considerable
experience as an assembly language programmer. HP 21MX Computer Series
microprogramming is no more complex than normal assembly language pro-
gramming on larger computers. Thus, with little more investment that learning
anew assembly language, large computer capability can be had for small com-
puter expense.

RELATED DOCUMENTATION

It is assumed that the microprogrammer has read the HP 21MX Computer
Series Reference Manual (HP 02108-90002) and that he knows how to use his
operating system, DOS-III (HP 24307B), or the Basic Control System (HP
20855A). These operating systems are described in the following publications:

HP 24307B DOS-III Disc Operating System (HP 24307-90006)
Basic Control System (HP 02116-9017)

During the process of writing, debugging, and using a microprogram, the user
should also have access to and be familiar with the following additional
publications.

The assembler used with the DOS-III-B system is described in:
Assembler Reference Manual (HP 24307-90014)

The assembler used with the Basic Control System is described in:
HP Assembler (HP 02116-2014)

The 21MX computer is described in:

HP 21MX Computer Series Operator’s Manual (HP 02108-90004)

HP 21MX Computer Series Installation and Service Manual (HP
02108-90006)

The HP 12909B pROM Writer, which is used in conjunction with the six mask
tapes produced by the Micro Debug Editor, and installing pROMs is described
in:

- HP 12909B pROM Writer Operating and Reference Manual (HP
12909-90009) '

HP 12909B Programmable ROM Writer Interface Kit Installation and
Service Manual (HP 12909-90005)

iii

Preface

HOW TO USE THIS MANUAL

This manual is intended to be used in the following way:

a.

b.

d.

Read Section I for the introduction to user microprogramming.

Study Section II to learn the structure of the system that is being con-
trolled by microprogramming. Section II explains the relationship between
the Control Section and the other sections of the computer.

Become familiar with the reference material in Sections IV, V, and VI so
that when the time comes to use the material, it may be found easily. These
sections describe the microprogramming language, the Micro-assembler,
the Micro Debug Editor, and the 12978 A Writable Control Store.

Study Section III to learn how to write a microprogram.

Siv

CONTENTS

Section I Page
INTRODUCTION TO USER
MICROPROGRAMMING
Conventional Control Section 1-1
Microprogrammed Control Section 1-1
Limitations of HP 21MX Microprogramming 1-1
SUMMArY 1-2
Section I1 Page
THE MICROPROGRAMMABLE COMPUTER
Relationship Between Sections 2-1
Control Section 2-1
The Control Processor 2-2
The Microprogrammer’s Roadmap 2-2
DataPaths............. 2-3
Main Memorycuiuiirii . 2-3
I/0Section 2-3
Arithmetic And Logic Section. 2-4
FrontPanel, 2-4
Section III Page
WRITING A MICROPROGRAM
AnExample........... 3-1
Comparison Between Assembly and
Micro-assembly Language Programming 3-1
The Instruction 3-1
Data Source and Data Destination 3-1
Data Modification................. 3-1
DataTestandBranch 3-3
Micro-instruction Formats 3-3
Statement Characteristics 3-3
Fields 3-3
CharacterSet 34
Label Symbol. 34
Asterisk Comment 3-4
Micro-orders: Fields 2 through6............... ... 3-4
OperandsinField6............................. 3-4
Coding the Four Word Types 34
Coding with Word Type1 — Common 34
Coding with Word Type 2 — Immediate Data 3-5

Coding with Word Type 3 — Conditional Jump 3-5
Coding with Word Type 4 — Unconditional Jump . . . 3-6

From Code to Execution Summary 3-6
Access to microprograms in Control Store 3-7
User Function Code in Assembly Language 3-7
Control Store Modules Available to User 3-10
Mapping toa Module Address 3-10
Microprogramming Input and Output Functions3-11
Synchronizing with the I/O System 3-11
I/0 Signal Generation 3-11
Memory Protection in Relation to I/0
Microprogramming. 3-12
I/0 Control Routine 3-12
I/0 OutputRoutine 3-12
I/OInputRoutine. 3-12

Section III (Continued) Page
Interrupt Handling 3-12
Normal User Interrupt Handling Applications. 3-13
Micro-orders Affecting Memory Protect 3-13
The Effect of the Dual Channel Port Controller
on Microprograms. ..., 3-14
Summary of Special Timing Rules 3-14
Sample Microprograms 3-15
Swap Memory Locations 3-15
Block Move Microprogram 3-16
Input, Sum, and Sum of Squares Microprogram 3-17
Read a Word froma Loader ROM 3-23
Section IV Page
MICROPROGRAMMING LANGUAGE
Word Typel —Common 4-1
Op Micro-orders 4-2
Special Micro-orders 4-7
ALU Micro-orders.coivuniinnn 4-10
Store Micro-orders 4-12
S-bus Micro-orders 4-14
Word Type 2 — Immediate Data 4-16
“IMM” Micro-order 4-16
Modifier Micro-orders (Bits 19 and 18 of the
Micro-instruction). 4-16
Operand Micro-order 4-18
Word Type 3 — ConditionalJump 4-18
“JMP” Micro-order 4-19
“CNDX” Micro-order. 4-19
Condition Micro-orders 4-19
Jump Sense Micro-order 4-21
Operand Micro-order 4-21
Word Type 4 — Unconditional Jump 4-22
“JMP” and “JSB” Micro-orders 4-22
Jump Modifier Micro-orders 4-22
The Operand Micro-order. 4-24
Pseudo Instructions 4-24
EQU 4-25
ONES 4-25
SKP ... 4-26
ZEROES 4-26
Section V Page
MICROPROGRAMMING SOFTWARE
Microprogramming Software Summary 5-1
Micro-assembler 5-1
Hardware Environment 5-1
Micro-instruction Source Record 5-1
Micro-assembler Control Record 5-2
Micro-assembler Output
Binary ObjectOutput........................... 5-4
Symbol Table Listing 5-4
Micro-assembly Listing 5-5
Micro-assembler Error Message 5-5
DOS-III Operation of Micro-assembler 5-5
BCS Operation of Micro-assembler................ 5-7

CONTENTS (continued)

vi

Section V (Continued) Page Section VI (Continued) Page
Micro Debug Editor 5-8 Installation 6-1
Hardware Environment 5-8 Unpacking and Inspection. 6-1
Initialization Program 5-8 Installation00, 6-3
Using the Micro Debug Editor e 5-9 Reshipment AP 6-4
Input Commands 5-10 Programming65
LOADLX] . oo 5-10 Program Example: Loading WCS 6-5
READ, X 5-11 Programming Example: Reading WCS P 6-5
EditCommands 5-11 Program Example: Loading WCS by Dual Channel
SHOW, xxxx[,yyyyl 5-11 PortController 6-5
MODIFY, xxxx[,yyyyl o 5-11 General Theory of Operation 6-6
Output Commands 5-11 WCS Module Identification. 6-6
DUMPLX]) . .o 5-11 WCSConnectionooviun.... 6-6
WRITE, X 5-11 WCS Addressing. i 6-6
PREPARE[X] 5-11 WCS Loading Timing Diagram 6-7
VERIFY[LX] ... 5-12
Termination Command 5-13
FINISH 5-13
DebugCommands. 5-13 Appendix A Page
BREAK,yYYYooovnvvi 513 OBJECTTAPEFORMATS Al
CHANGE[,m]o 5-14
Relocate MDE WCS-resident Microcode 5-14
MOVE,yyy 5'14 Appendix B Page
MDE Error Messages. 5-14 MICROCODING FORM B1
DOS-III Operationof MDE 5-14
~ WCS I/0 Utility Subroutine 5-16
Appendix C Page
MICRO-ORDER SUMMARY C-1
Section VI Page Appendix D Page
WRITABLE CONTROL STORE FUNCTIONAL BLOCKDIAGRAM D-1
General Information.................. 6-1
Identification................, 6-1
Interface Kit Contents 6-1 Appendix E Page
Contents of Interface Kit Options. 6-1 BASIC INSTRUCTION SET MICRO-
Specifications 6-1 PROGRAMULISTING E-1
ILLUSTRATIONS
Title Page Title Page
Four Major Computer Sections 2-1 Swap Microprogram 3-15
A Microprogram Implements One Macroprogram Block Move Microprogram 3-16
Instruction....... 2-2 Input, Sum, and Sum of Squares Microprogram 3-18
Front Panel Displays and Switches 2-4 Reading From A Loader ROM 3-23
Microprogram Segment on the 21MX Word Type 1 Micro-assembler Mnemonic format 4-1
Microcoding Form 3-2 Word Type 1 Binary Format 4-1
Microprogram Implementation Process 3-6 Word Type 2 Micro-assembler Mnemonic Format4-16
Processing the Instruction Register 3-8 Word Type 2 Binary Format 4-16
Allocation of Control Store by Modules 3-10 Word Type 3 Micro-assembler Mnemonic Format4-18

ILLUSTRATIONS (continued)

Title Page Title Page
Word Type 3 Binary Format 4-18 WCS Terminal Board for Selecting Module
Word Type 4 Micro-assembler Mnemonic Format4-22 Number Position............................... 6-3
Word Type 4 Binary Format 4-22 Installation of Flat Cable Assembly 6-4
Micro-instruction Card source Record 5-2 WCS Loading Timing Diagram 6-7
SymbolTable.................. 5-5 Format of Standard Object Tape A-1
Micro-assembly Listing 5-5 Format of BRCASE Object Tape A-3
General Format of Initialization Program 5-8 Microcoding Form B-1
Test Program Call to Microprogram 5-9 Functional Block Diagram D-1
Writable Control Store Interface Kit 6-2
TABLES

Title Page Title Page
User Function Code Mapping 3-10 Interface KitContents 6-1
1/0 Control Signal Generation Determined by Additional Material for Interface Options 6-1

IRBits11-6 -.................. 3-11 Writable Control Store PCA Specifications. 6-3
Micro-assembly Error Messages 5-6 WCS PCA Jumper Removal on Terminal Board
Micro Debug Editor Commands 5-10 for Various Module Selections 6-4
Alphabetical List of MDE Error Messages 5-15 Summary of User Micro-order C-2

vii

TO USER MICROPROGRAMMING || |

INTRODUCTION

The Control Section of a computer contains circuitry
which decodes each machine instruction and then executes
the required sequence of operations. Machine instructions
can be decoded and executed by either a conventional
Control Section or a microprogrammed Control Section.

1-1. CONVENTIONAL CONTROL
SECTION

In a conventional computer Control Section, specific hard-
ware is dedicated to each function performed by the
instruction set. The major advantage of this specially
designed hardware is speed for the instruction set. The
major disadvantage is the loss of flexibility for special
applications or for enhancements. Changes and additions
to hardware components are required to implement
changes and additions to existing capabilities.

This is no problem for a conventional computer if no new
machine instructions are required. The hardware has been
designed to minimize timing for the instruction set. Rarely
however, does a computer manufacturer produce an in-
struction set that fully meets the requirements of most
potential users. Hence, the manufacturer must either focus
his attention on one group of users (specialize) or widen his
scope and generalize the hardware design to meet the
needs of a number of user groups. In the latter case, the
user must modify his discipline to some extent to meet the
limitations of his hardware.

1-2. MICROPROGRAMMED CONTROL
SECTION

In the microprogrammed computer, all distinct logical
functions are separated from the sequence in which those
functions are performed. Hardware redundancy is thus
reduced. The logical functions are defined by a bit pattern
or micro-instruction held in Control Store. Each machine
instruction in Main Memory is performed by a sequence of
micro-instructions in Control Store that defines the logical
functions to be performed. This sequence of micro-
instructions is called a microprogram and is often referred
to as firmware, because it lies somewhere between
hardware and software in origin and permanence.

Software can execute much faster with the application of
microprogramming. This speed is achieved by two factors:
the ratio of Control Store speed over Main Memory and
the relative flexibility of a micro-instruction over normal
machine instructions. The HP 21MX Control Store, where
micro-instructions reside, cycles more than twice as fast as
Main Memory, where normal machine instructions reside.
Control Store words are 24 bits whereas Main Memory
words are 16 bits. In addition, micro-instructions have
access to many internal registers and logical functions
that Main Memory programs cannot use.

For example, the 21MX floating point software
subroutines were identified as being very time consuming.
They were then microcoded by a Hewlett-Packard micro-
programmer and made available in Read Only Memory to
users. Implementation of the floating point firmware
requires no change to user programs. The micro-
programmed floating point instructions run about 20
times faster than the corresponding software subroutines.

As in the floating point microprogram, the user can study
his software, determine the most time consuming
functions performed, and then microprogram those
functions, that is, execute them in Control Store using a
single Main Memory instruction instead of a sequence of
Main Memory instructions. Any software that uses those
microprogrammed functions will execute at a higher
speed.

1-3. LIMITATIONS OF HP 21MX MICRO-
PROGRAMMING

The user should be aware of the following limitations
imposed by HP 21MX microprogramming:

a. Since the origin of a microprogram is specified during
micro-assembly, HP 21MX microprograms are not
relocatable.

b. Since there is only one register available to the micro-
programmer to save subroutine return addresses, the
HP 21MX design allows for no more than one logical
microprogram subroutine level. This limitation can be
circumvented by using other registers or Main
Memory to simulate subroutine nesting.

c. The microprocessor cannot be interrupted. If the
microprogram execution time exceeds the interval
between interrupts (85 us. is the maximum interval

OCT 1974 11

Int

roduction To User Microprogramming

allowed by Hewlett-Packard instruction set micro-
programs), the microprogram must test for pending
interrupts or they can be lost. When a pending inter-
rupt is detected, the microprogram must yield control
to the interrupt handler. For a discussion of micro-
program interrupt handling, refer to sections 3-32 and
3-33 in this manual.

1-4. SUMMARY

The advantages of microprogrammed control are:

1-2

21MX

. The user can use a fully-supported general purpose

computer to aid in the generation and debugging of
extensions to the computer’s own instruction set.

. The user can speed up the overall execution time of his

software by microprogramming its most time con-
suming or repetitious routines.

The user can implement enhancements of the
instruction set and special purpose processors
produced by the manufacturer with little impact on his
existing software.

THE MICROPROGRAMABLE COMPUTER

To successfully implement microprograms, the assembly
language programmer must learn more about the
computer. This section of the manual is the introduction to
the structure of the computer. A functional block diagram
of the microprogrammable machine is provided in
Appendix D. This diagram describes what paths data can
follow. Control commands or micro-instructions spell out
what paths the data does follow and what modifications
and tests are performed in the process.

Functionally, a computer consists of four major sections:

e Control

e Main Memory

e Input and Output

e Arithmetic and Logic

2-1. RELATIONSHIP BETWEEN
SECTIONS

These four sections and the Front Panel are interconnected
by a network of signal paths. Data processing programs

and data are stored in the Main Memory. Parameters,
status, commands, and processor results (data) are
exchanged with external devices such as teleprinters,
magnetic tape units, and line printers via the Input and
Output (I/O) section. Add, subtract, and other
mathematical functions and shift, ‘‘or”’, “and’’, and other
logical functions are performed in the Arithmetic and
Logic section. The Front Panel registers and switches pro-
vide direct operator communication.

Each section executes under the direction of the Control
Section by means of a microprogram. The Control Section
reads the user’s program stored in Main Memory and
directs the appropriate hardware in each of the other
sections.

Figure 2-1 shows the four major sections of the computer.

2-2. CONTROL SECTION

To write a microprogram an understanding of the Control
Section is required. The Control Section takes an instruc-
tion from Main Memory and stores it into the Instruction

THE COMPUTER

MAIN
MEMORY

PROGRAMS AND DATA

I
CONTROL ARITHMETIC
AND LOGIC
CONTROL
SECTION DATA MATHEMATICAL
AND LOGICAL
FUNCTIONS
1/0
EXTERNAL
DEVICES
INTERFACE

Figure 2-1. Four Major Computer Sections

2-1

The Microprogrammable Computer 21MX
CONTROL SECTION MAIN MEMORY
INSTRUCTION REGISTER MACROPROGRAM
MACROPROGRAM |&————u__ | | MACROPROGRAM
INSTRUCTION — | .+~ INSTRUCTION

CONTROL STORE

MICROPROGRAM

Figure 2-2. A Microprogram Implements One
Macroprogram Instruction

Register (IR), as shown in figure 2-2. An appropriate
microprogram is executed whose Control Store entry point
address is determined by the IR. View, then, each program
instruction in Main Memory as a jump to a micro-
programmed routine, which resides in Control Store.

The storage area for these microprograms is Control Store
which may be either a Read Only Memory (ROM) or
Writable Control Store (WCS). In this manual, to dis-
tinguish programs in Main Memory from microprograms
in ROM, Main Memory programs are called macropro-
grams. We refer to a Control Section that executes
microprograms from ROM, as a Control Processor.

2-3. THE CONTROL PROCESSOR

A microprogram in the Control Processor is in command of
the computer at all times. A microprogram which is part of
the basic 21MX instruction set microprogram takes pro-
gram instructions from Main Memory and stores them
into the Instruction Register. The upper eight bits of the
Instruction Register determine the microprogram address
within one of the following instruction groups:

2-2

Basic Instruction Set

Extended Instruction Group
Floating Point Instruction Group
User Microprogram Group

Since the user is mainly interested in writing and exe-
cuting his own microprograms, he can regard the Basic
Instruction Set microprogram as a supervisor micro-
program that determines when a user microprogram is
called and then passes control to the user microprogram.

When the Instruction Register holds an octal 101rrr or
105rrr (see table 3-1 for possible values of rrr), a branch is
made to the user microprogram area of Control Store.

When a microprogram has run to completion, it returns to
location 0 in Control Store to take the next instruction
from Main Memory and store it into the Instruction
Register.

2-4. THE MICROPROGRAMMER’'S ROADMAP

Appendix D holds the fundamental diagram of the com-
puter required by the microprogrammer. This functional

AN

21MX

block diagram is the “roadmap” that is used to determine
possible data paths and to determine where logical
decisions can be made. This diagram can be unfolded and
referred to while reading other parts of the manual. Note
that the four sections of the computer, illustrated in
figure 2-1, are shown in more detail in the functional block
diagram.

To read the functional block diagram, begin with a 101rrr
or 105rrr instruction in the Instruction Register. The rrr
specifies the octal Control Store entry point address
according to the description in section 3-24, Mapping to a
Module Address. This address is moved into the ROM
Address Register (RAR). With a first address specified,
the user microprogram begins execution. The contents of
the Control Store location given in the ROM Address
Register are moved into the ROM Instruction Register
(RIR). The ROM Instruction Register now holds a 24 bit
micro-instruction. The micro-instruction is decoded and
the specified control functions are executed.

Successive micro-instruction addresses are determined in
the following way. The ROM Address Register is incre-
mented at the start of execution of each micro-instruction.
When a jump is executed, the ROM Address Register is
loaded with the jump target address. When a jump to sub-
routine is executed, the ROM Address Register is stored
into the SAVE Register (save return address) and the
jump target address is stored into the ROM Address
Register. When a return from subroutine is executed
(RTN), the SAVE Register contents are transferred into
the ROM Address Register and the SAVE Register is
cleared. Thus at the completion of execution of each micro-
instruction, the ROM Address Register holds the address
of the next micro-instruction.

2-5. DATA PATHS

The central data transfer path is the S-bus. The contents
of all regesters except the following can be directed onto
the S-bus: L-register, RAR, SAVE Register, Extend
Register, and the Overflow Register. The following
registers can receive data from the S-bus:

M-register
T-register
L-register

Counter Register
Display Register
Display Indicator
Instruction Register

The T-bus receives data only from the Rotate/Shifter
(R/S) but can pass data to these registers:

A-register
B-register
Scratch Pad Registers (S1 through S12)

The Microprogrammable Computer

X-register
Y-register
P-register
S-register

The 1/0-bus serves to transfer data to and from external
devices under programmed control.

Note in Appendix D, the functional block diagram, that
the arrows are significant. For example, the B-register
contents can be sent to the S-bus and thence to the
M-register. However, the contents of the B-register cannot
be sent to S12 (Scratch Pad 12) without passing through
the ALU.

2-6. MAIN MEMORY

The M-register is a 15 bit register which holds memory
addresses for reading from or writing into Main Memory.
When storing from the M-register, bit 15 is clear (0). The
T-register or Transfer register holds the data being
transferred to or from memory. Contents of both these
registers are transferred to and from the S-bus. Four
loader ROMs, selectable by Instruction Register bits 15
and 14, each can contain a 64 word Main Memory program
which may be loaded into Main Memory and used to load
Main Memory from a peripheral device or to perform any
other function desired by the user.

Two flags are associated with memory: the A-register
Addressable Flag (AAF) and the B-register Addressable
Flag (BAF). These flags are required to allow the A- and
B-registers to be addressed as locations 0 and 1,
respectively, of Main Memory.

2-7. 1/0 SECTION

The Central Interrupt Register (CIR) is a 6 bit register
associated with the I/0 interrupt circuitry. It is loaded
with the Select Code of the interrupting device under
program control and passed to the S-bus. Whenever the
Central Interrupt Register is loaded, an Interrupt
Acknowledge (IAK) signal is issued to the I/0 device.

The 1/0-bus transfers data to and from external devices.

Two flags are associated with I/0: the Interrupt Pending
flag and the I/0 Skip Condition Met (Main Memory
instructions SFS and SFC) flag.

The Interrupt Enable Register is used to disable or enable
the recognition of all interrupts, except Memory Protect,
Parity, and Power Fail interrupts.

OCT 1974 23

The Microprogrammable Computer

2-8. ARITHMETIC AND LOGIC SECTION

This section consists of the Arithmetic and Logic Unit
(ALU), the Rotate/Shifter (R/S), 22 registers and six
flags.

The ALU and R/S are the only units that execute
functional modifications on the data. The ALU receives
input from the S-bus and from the L-register (Latch
Register). Output from the ALU goes to the R/S which
places its output on the T-bus.

Output from the ALU and R/S can be stored in one of the
following registers via the T-bus:

A-register
B-register
Scratch Pad Registers (S1 through S12)
X-register
Y-register
P-register

S-register

Remember that the P-register holds the macroprogram
(Main Memory) address. The P-register must be under
control of the microprogram which must insure that it
contains the proper address after the microprogram is
complete. When the microprogram is complete, the
resulting P-register value is the address of the next macro-
instruction to be executed. Note that the Basic Instruction
Set fetch routine (at Control Store address 0)
automatically increments the P-register after the macro-
instruction is fetched. Thus for one word wuser
macro-instruction function codes, no further incrementing
of the P-register is necessary in the user microprogram.

The S-register is reserved for internal storage of the Front
Panel switch register. Note that all of these registers can
also be sent along the S-bus for storage into memory,
passhge to an external device, or input to the ALU.

21MX

The Extend Register is a one bit register used in shift
operations to link the A- and B-register or to indicate a
“carry’’ arithmetic result out of the A- or B-registers. The
Overflow is a one-bit register used to indicate an
arithmetic overflow from the ALU. (See 21IMX Computer
Series Reference Manual, where Overflow and Extend
Register arithmetic results are fully explained.) These two
registers can also be used as flags.

The 8 bit Counter Register, which passes to and from the
S-bus, is used for repeat instructions, for Loader ROM
addressing, and other general purposes, such as looping in
a microprogram.

There are six flags dedicated to the Arithmetic and Logic
Section. The CPU Flag is a general purpose flag. Four
others signal output results from the ALU and one indi-
cates the last T-bus value. ALU Ones is set when all ones
are output from the ALU. ALU Carry Out is set when an
ALU function produces a “carry’’ out of bit 15. ALU Bit 0
and ALU Bit 15 flags represent the last value of the
specified bit in the ALU output. T-bus Zero flag is set if all
bits of the T-bus are zero.

2-9. FRONT PANEL

Two registers and two flags are associated with the Front
Panel Section. The Display Register holds the contents of
the register A, B, M, T, P, or S, indicated by the Display
Indicator. The Display Register and the Display Indicator
are displayed on the Front Panel, as illustrated in figure
2-3.

The Run Mode flag indicates that the computer is in a Run
or Halt condition. The Run Enable flag indicates whether
the four position key-operated switch on the front panel is
in Lock or Operate mode.

DISPLAY REGISTER

LOCK

OPERATE A

STANDBY

O O

OVERFLOW EXTEND

FOUR POSITION

QIQ O Ol

azjals

QOOIQOOIOOOlOQO

11 10

Elalz]a{=]={={={={=[s(s

H B SYSTEM

HALT BL

KEY-OPERATED
SWITCH
DISPLAY INDICATOR
O O O 000000 umu
RUN PRESET INTERRUPT PARITY POWER FAIL/ A P S STEP ") STORE

BATTERY

CLEAR DEC
DISPLAY M

DISPLAY

Figure 2-3. Front Panel Displays and Switches

24 OCT 1974

WRITING A MICROPROGRAM

SECTION

This section introduces the basics of . writing and
debugging a microprogram in the micro-assembly

language.

An assembly language programmer who codes programs
for Main Memory may shun microprogramming because
he regards it as too complex, mysterious, and the exclusive
field of the computer designer.

However, Hewlett-Packard has especially designed the
HP 21MX series computers to enable assembly language
programmers to quickly get to the microcode level of
computer logic so that they can attack the most
time-consuming and least efficient parts of the software.
Execution times can be cut with the proper application of
microcode.

31. AN EXAMPLE

Figure 3-1 illustrates a segment of a microprogram. Ten
micro-instructions are shown coded on the 21MX Micro-
coding Form. The second micro-instruction shaded in
figure 3-1 consists of the following four codes:

COV PASSM P

Each of the four codes are called micro-orders:

a. Ptakes the 16 bits in the P-register and puts them onto
the S-bus.

b. M stores the 16 bits on the S-bus into the M-register
(bit 15 of M-register is always 0).

c. PASS passes the 16 bits on the S-bus through the ALU
without modification.

d. COV clears the Overflow Register.

Note in figure 3-1 that the various micro-orders of the
micro-instruction begin in certain columns of the
micro-coding form. These columns define the location of
fields of the micro-instruction and each field holds a
certain type of micro-order. In the case of the example
micro-instruction, field 3 holds the special operation COV,
field 4 holds the ALU operation PASS, field 5 holds the

store operation M, and field 6 holds the data source P, that-

is, the data placed on the S-bus.

Section IV of this manual gives a full explanation of micro-
instruction formats and micro-orders.

3-2. COMPARISON BETWEEN AS-
SEMBLY AND MICRO-ASSEMBLY
LANGUAGE PROGRAMMING

The assembly language programmer is already familiar
with the basic concepts of programming: the instruction,
data source, data destination, data modification, data test,
and branch. These concepts hold in microprogramming.

3-3. THE INSTRUCTION

The normal macro-instruction in Main Memory is 16 bits
long. Most macro-instructions consist of one operation
command (for example Add to A-register) and a data
source or destination (for example Memory Location
1237). Thus there are usually two orders in a
macro-instruction [Add to A-register] [Memory location
1237]. This is coded in Assembly Language as ADA
VALU, where VALU is the label of memory location 1237.

The micro-instruction in Control Store is 24 bits long,
which allows more control and flexibility to be coded into
each instruction. A micro-instruction consists of up to five
orders called micro-orders. Section 3-1 gives an example of
four micro-orders coded into a micro-instruction.

There are four micro-instruction formats. Each format
defines a micro-instruction Word Type (Word Type 1,
Word Type 2, etc.) and determines a set of micro-orders
which may be coded into the format. Micro-instruction
Word Types and micro-orders are described in Section IV.

3-4. DATA SOURCE AND DATA DESTINATION

Both assembly and micro-assembly language instructions
specify data source and data destination. In assembly
language one of these is usually a Main Memory address
and the other is a register, as in ADA VALU where the
A-register is the destination of the data and VALU is the
source of the data. With microprogramming both data
source and data destination are usually registers, as more
registers are available to the microprogram than to the
assembly language program.

3-5. DATA MODIFICATION

Add, shift, set flag, and logical functions are performed
similarly in both types of programming. In micropro-
gramming, a wider range of basic operations, especially
logical functions, is available. Complex operations, such as
divide, multiply, and byte move, are performed by micro-
programmed subroutines and are available in the Basic
Instruction Set and Extended Instruction Group
microprograms.

3-1

(43

w0 SurpodosdTN XINTZ 943 UQ juewdeg weiSoadosory ‘1-g oandig

HEWLETT-PACKARD 21MX MICROCODING FORM

(Actual size: 12.5” x 10.5")

wrexdoxdorony V Sunguam

mooamen JOE CODER oxe ©/10/ 74 [wenomosnn Read Loader ROM [uoouie [onoe 2 o t
1M L0 CINITIR 2B - CILIEIAR [CINTIR| [(|RloM |ADDR [REG)
(S5 PIUT] [SIA] [TIN| Mz |CILIRI [O)VIF| [=| INO| lO[PER [ERIR
LlojoPit Lial | | |PAISIS| |S[4] | | [LIDIR PIAISIS| IXIXIXIXXIXX X AAAAXXXX [INTI0] |SiL]3CINTR=X
I|CNT] [PAISIS] [L St CINTIR =X
L4 AIND| | |S) LIDR FIORM XXXXAAAABBBBX XXX TN IS[13/CNTR=X@1
IICNT |PASS| |L Si1 CNITRI=X 112
Ld| | | JANDL S | [[EDIR FIORM |AAAABBBBICCICICX XXX [TIN |S|1]3|CINTIR|=X 10
IICNT| |PAISS! L 5|1 CINTRI=)X1/1 ,
NAND| (S| | | lLDR FIORM AAAABBBIBICICICICDIDIDD, (|CMPIL| [FORM)
WRTE PASS| [T St WRITE INTO MEMORY |
goztno reri-owe 1-ALAl S

XIN1C

o

21MX

3-6. DATA TEST AND BRANCH

These operations are quite similar in the two languages.
Many tests occur automatically in the course of trans-
ferring data in a microprogram. A test and branch out of a
line of macro-instructions in normal assembly language,
however, requires two instructions (4.6 us): a test instruc-
tion and a skip instruction.

For example:

SLA
JMP OUT

skip if LSB of A=0

branch out of code sequence

A test and branch out of a line of micro-instructions
requires only two micro-instructions (.650 us).

For example:

PASS A
JMP CNDX ALO ouT

branch out of code se-
quence if bit 0 of A = 0

3-7. MICRO-INSTRUCTION FORMATS
Just as in normal assembly language coding, micro-
assembly language source statements are coded in
mnemonic form to define an instruction. Each source
language statement defines a micro-instruction and
consists of an optional label, five micro-order fields some of
which may be left blank, and a comment field. The label is
used when needed as a reference by other micro-instruction
statements. The micro-orders consist of one to four
mnemonic characters and specify functions to be per-
formed by the Control Section. According to the type of
micro-instruction being defined, one of the micro-orders is
sometimes interpreted as an operand. When an operand is
specified, it defines an integer or an address, depending on
the type of micro-instruction being defined.

3-8. STATEMENT CHARACTERISTICS

Micro-assembly language source statements are divided
into four formats, according to the function the
micro-instruction is to perform. Each format is called a
Word Type. .

e Word Type 1 is the most commonly used micro-
instruction format and specifies data transfer and
modification. Word Type 1 source statement fields are:

Label
Op
Special
ALU
Store
S-bus

Comments

Writing A Microprogram

e Word Type 2 is used to send an 8 bit constant
(immediate data) specified in the micro-instruction to a
register. Word Type 2 source statement fields are:

Label
“IMM”
Special
Modifier
Store
Operand

Comments

o Word Type 3 is used to specify a conditional branch in
the microprogram. Word Type 3 source statements
fields are:

Label
“JMP”’
“CNDX”
Condition
Jump Sense
Operand

Comments

o Word Type 4 is used to specify an unconditional branch
in the microprogram. Word Type 4 source statement
fields are:

Label

“JMP” or “JSB”
Jump Modifier
Operand

Comments

3-9. FIELDS

As shown in figure 3-1, the fields are fixed for micro-
assembly language source statements. An entry in any
field (except comments) must begin in the first column of
that field.

e Field 1 begins in column 1 and holds a label that is no
longer than eight characters.

e Field 2 begins in column 10 and contains a micro-order
no longer than four characters. This field can also hold a
Pseudo Instruction (refer to section 4-21 for the
explanation of Pseudo Instruction mnemonic codes).

e Field 3 begins in column 15 and contains a micro-order
no longer than four characters.

o Field 4 begins in column 20 and contains a micro-order
no longer than four characters.

OCT 1974 3-3

Writing A Microprogram

e Field 5 begins in column 25 and contains a micro-order
no longer than four characters.

¢ TField 6 begins in column 30 and contains a micro-order
no longer than four characters (Word Type 1) or an
operand (Word Types 2, 3, and 4).

o Field 7 begins in column 40 and contains comments
only; comments may begin and be placed anywhere
from column 40 to column 80 (if column 39 contains the
last character of the field 6 operand, field 7 must begin
in column 41).

3-10. CHARACTER SET

The characters that may appear in a source statement are
as follows:

A through Z
0 through 9
(period)

* (asterisk)

+ (plus)
- (minus)

(space)
Any ASCII character may appear in the comments field.

A space may only begin a field if no micro-order is
specified in that field.

3-11. LABEL SYMBOL

A label may be one to eight characters consisting of A
through Z, 0 through 9, and a period. The first character
must be a letter.

Each label must be unique within the microprogram.
Names which appear in SEXTERNALS micro-assembler
control input statements (refer to section 5-5) may not be
used as statement labels in the same microprogram.

3-12. ASTERISK COMMENT

An asterisk in column one of the source statement
indicates that the entire micro-assembler source statement
is a comment.

3-13. MICRO-ORDERS: FIELDS 2 THROUGH 6

The micro-order fields define operations that are to be
performed by the Control Section of the computer. The
micro-orders applicable to each field are determined by the
source statement Word Type. Section IV describes the
micro-orders that apply to each Word Type and describes
the operations that they specify.

3-4

21IMX

3-14. OPERANDS IN FIELD 6
Word Types 2, 3, and 4 contain an operand in field 6.

In Word Type 2, the operand must be either a decimal or
octal number. It cannot be an expression (refer to section
4-10 for definition of a Word type 2 operand).

In Word Types 3 and 4, the operand is a decimal number,
octal number, or a number computed from an expression
which can include a label (refer to section 4-16 for the
definition of a Word Type 3 operand. Refer to section 4-20
for the definition of a Word Type 4 operand).

3-15. CODING THE FOUR WORD TYPES

The following sections describe how to code source
statements in micro-assembly language. The reader should
be familiar with Section IV of this manual before pro-
ceeding with these descriptions. Section IV describes the
micro-orders that can be used with each Word Type. By
referring to Section IV, the reader can see the options that
are available to him as each Word Type is described. The
reader will also need to refer to the functional block
diagram in Appendix D.

3-16. CODING WITH WORD TYPE 1 — COMMON

This word type specifies data transfer and modification.
The format of Word Type 1 is shown in section 4-1. As an
example, a micro-instruction is developed that executes
the following control functions:

o Store the A-register contents into the M-register

o Perform a memory protect check on the A-register
contents

e Transfer the A-register contents to the ALU, increment
this value in the ALU, and store the result into the
P-register

a. Specify the register that is to be placed on the
S-bus; the A-register is specified in the example:

oP SPEC ALU STORE S-BUS

A

b. Specify the function of the ALU; the increment
function is specified in the example:

oP SPEC ALU STORE S-BUS

INC A

21MX

c. Specify the Op field function; no Op field function is
specified in the example. When no Op function is
required, the standard operation is specified by
either leaving the field blank or inserting NOP into

the field:
oP SPEC ALU STORE S-BUS
NOP INC A

d. Specify a Special function, if required; a memory
protect check is specified in the example:

opP SPEC ALU STORE S-BUS

NOP MPCK INC A

e. Finally, specify where the resulting data is to be
stored. Two store operations are required in the
example. The unmodified A-register value on the
S-bus must be stored into the M-register and the in-
cremented A-register value on the T-bus must be
stored into the P-register. The micro-order PNM
performs both of these store operations and serves
to illustrate that data stored from the S-bus is
unmodified data and data stored from the T-bus can
be modified by the ALU or R/S:

oP SPEC ALU STORE S-BUS

NOP MPCK INC PNM A

PNM is a unique micro-order. No other micro-order
provides the ability to store into two registers in the
same micro-instruction.

3-17. CODING WITH WORD TYPE 2 — IMMEDI-
ATE DATA

This word type sends an 8 bit constant (immediate data)
specified in the micro-instruction to a register. The format
of Word Type 2 is shown in section 4-7. As an example, a
micro-instruction is developed that specifies the following
control function:

o Repeat the micro-instruction following this one ten
times

Writing A Microprogram

b. Specify the octal or decimal data to be placed on the
S-bus;an octal -12 is specified in the example (366B):

“IMM” SPEC MODIF STORE OPERAND

MM 366B

This is necessary because use of the minus sign (-)
is not allowed.

c. Specify one of the four possible data modifiers (refer
to section 4-9); LOW (place the 8 bit operand in the
lower half of the S-bus and ones in the upper half) is
specified in the example:

“IMM” SPEC MODIF STORE OPERAND

MM LOwW 3668

d. Specify where the resulting data is to be stored; the
Counter Register is specified in the example:

“IMM” SPEC MODIF STORE OPERAND

IMM Low CNTR 3668

e. Specify any special operations required; RPT
(repeat the micro-instruction following this one the
number of times specified in the Counter Register)
is specified in the example:

“IMM” SPEC MODIF STORE OPERAND

MM RPT Low CNTR 366B

3-18. CODING WITH WORD TYPE 3 — CONDI-
TIONAL JUMP

This word type specifies a conditional branch in the micro-
program. The format of Word Type 3 is shown in section
4-11. As an example, a micro-instruction is developed that
specifies the following control function:

e Jump to the microprogram address labeled ERRZ2, if
the last data on the T-bus was not zero.

a. Specify JMP and CNDX in the Op Code and Special

a. Specify IMM in the Op Code field: fields:
“IMM” SPEC MODIF STORE OPERAND “JMP” “CNDX” COND JUMP SENSE OPERAND
IMM JMP CNDX

OCT 1974 35

Writing A Microprogram

b. Specify the condition that must be tested for the
jump to take place; T-bus equal to 0 is specified in
the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ

21MX

“JMP” OR “JSB”” JUMP MODIFIER -- -- OPERAND

JsB cLsuB

¢. Specify any modification to the target address; J30

(replace bits 3 to 0 of the operand with bits 3 to 0 of
the Instruction Register) is specified in the

c. Specify, if required, RJS (Reverse Jump Sense),
which establishes whether the Condition code
“true”’ means jump or ‘‘false” means jump. The
TBZ used in the example means the test condition is
T-bus equal to 0. If RJS is specified, T-bus not equal
to 0 means perform the jump. If RJS is not specified
(blank in the field), then T-bus equal to 0 means
jump. RJS is specified in the example: -

“JMP” “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS

d. Specify the target address of the jump. The target
address must have the same most significant three
bits as the address of this micro-instruction. The
address label ERR2 (an address label in the current
page) is specified in the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

Jmp CNDX TBZ RJS ERR2

3-19. CODING WITH WORD TYPE 4 — UNCONDI-
TIONAL JUMP

This word type specifies an unconditional branch in the
microprogram. The format of Word Type 4 is shown in
section 4-17. As an example, a micro-instruction is
developed that specifies the following control function:

e Jump to a microprogram subroutine whose address is
derived by the following: the address labeled CLSUB
supplies all bits of the subroutine address except bits
3-0; bits 3-0 are supplied by the Instruction Register.

a. Specify JSB in the Op code field:

“JMP” OR “JSB” JUMP MODIFIER - - OPERAND

JsSB

b. Specify a target address (to be modified) of the
jump anywhere within the Control Store (0-7777);
CLSUB is specified in the example:

36 OCT 1974

example:
“JMP” OR “JSB”” JUMP MODIFIER -- -- OPERAND
JSB J30 cLSsuB

3-20. FROM CODE TO EXECUTION
SUMMARY

Figure 3-2 helps to illustrate the process of implementing a
microprogram. Writing a micro-assembly language pro-
gram is essentially the same process as writing an
assembly language program. Micro-instructions are
combined to form a microprogram. The microprogram is
punched onto cards or paper tape and this source is read
by the Micro-assembler. The Micro-assembler produces a
listing and an object tape.

o oo
=]

STORE

=

Y

— (]

NEW /
\‘(EDITED)

=2 | WRITABLE
CONTROL

USER PROGRAMS) _g, < pROM
IN MAIN MEMORY W

PUNCH CARDS

(or TAPE) /
<
\ ezl 9%

INTERIM
PUNCHED
TAPE

(or DISC FILE)

MICRO-
DEBUG
EDITOR

LISTING

INTERIM TAPE
(or DISC FILE)

PROGRAMMABLE ROM
INTEGRATED CIRCUITS

Figure 3-2. Microprogram Implementation Process

21MX

The object tape is loaded into Writable Control Store
(WCS), executed, and debugged interactively using the
Micro Debug Editor (MDE). When the microprogram is
debugged, the source is corrected and the microprogram is
reassembled. The microprogram can be loaded in two
ways. It can be loaded into WCS by a call to the WCS 1/0
Utility subroutine from the user’s Main Memory program
or it can be burned into a programmable Read Only
Memory. In the latter case, the object tape of the
debugged microprogram is loaded into a buffer in Main
Memory, using the Micro Debug Editor, and a set of six
mask tapes are punched. These tapes are used by the HP
12909 pROM Writer to create (‘burn’’) the programmed
Read Only Memory (pROM) chip. The pROM chip is
installed on an HP 12945A User Control Store board that
is set by jumper wires to specify the proper Control Store
module number.

3-21. ACCESS TO MICROPROGRAMS IN
CONTROL STORE

The control processor microprograms are divided into
three groups.

a. The 21MX Instruction Set microprograms including
the Basic Instruction Set, the Extended Instruction
Group, and Floating Point.

b. Hewlett-Packard supplied special microprograms (for
example, the 12977A Fast FORTRAN Processor
option) if installed.

c. User microprograms, if installed.

The control processor reads a 16 bit instruction from Main
Memory into the Instruction Register (IR), decodes it, and
then determines which microprogram is called for by the
instruction. This reading, decoding, and address determi-
nation is performed by microprograms that are an integral
part of the Basic Instruction Set. The Basic Instruction
Set microprogram is in some ways analogous to system
software in a normal Main Memory operating system,
since the Basic Instruction set performs the general
control functions and passes control to the wuser
microprogram area when the Instruction Register calls for
a user microprogram. This enables the user-
microprogrammer to concentrate effort on his special
application.

For the purposes of decoding and implementing
macro-instructions, the 21MX Instruction Set is divided
into groups according to the general functions they
perform. As shown in figure 3-3, there are five groups that
encompass the 21MX Instruction Set. A sixth group
called the User Instruction Group consists of the
macro-instructions that allow the user to access the micro-
programs which he writes. Most instruction set
enhancements or special microprograms will be accessed
by the general classification of ‘‘user’’ macro-instructions.

Writing A Microprogram

Figure 3-3 summarizes the processing of the Instruction
Register. A microprogram within the Basic Instruction
Set reads an instruction from Main Memory into -the
Instruction Register and determines to which macro-
instruction group (Alter/skip, Memory Reference, etc.)
that instruction belongs. This is accomplished by a ROM
table branch command (SPECIAL micro-order “JTAB”’)
that uses the upper eight bits of the Instruction Register
to jump, via the fixed ROM Main Look Up Table, to a
Control Store microprogram address, according the value
of those eight bits. Once the general instruction group is
determined, the Instruction Register is further decoded
and the logic implemented by the microprogram designed
to implement that macro-instruction.

For example, if the instruction in the Instruction Register
is in the Extended Arithmetic Unit (EAU) Group, the
EAU Group microprogram address is found in the Main
Look Up Table based on the Op Code of the instruction.
Then the EAU Group microprogram executes the EAU
instruction. Provided in the micro-instruction set are
special jump parameters, such as “JEAU”, to branch
within the EAU Group microprogram according to which
member of the group is being processed. Jump parameters
are explained in Section IV of this manual.

3-22. USER FUNCTION CODE IN ASSEMBLY
LANGUAGE

The assembly language program calls a microprogram
using mnemonic codes that are assigned in the assembly
language program. The pseudo op ‘“MIC” is used to assign
the mnemonic code. Refer to the HP Assembler Reference
Manual (HP 24307-90014) for the use of the MIC pseudo

op.

Using the MIC instruction, a binary function code is
assigned to the mnemonic so that whenever the mnemonic
appears, the function code is written into that location of

‘the assembled program. The number of parameters is also

specified.

The octal function code that calls the user microprogram
is:

105rrr if bit 8 of the IR = 0
101rrr or 105rrr if bit 8 of the IR =1

The value of rrr (bits 8-0) determines the Control Store
module address. rrr is defined in table 3-1. Bit 11 in the
third digit (5 or 1) is used by micro-instructions which test
data in the Instruction Register, where the function code is
interpreted. For example, see the “CAB” S-bus
micro-order.

3-7

Writing A Microprogram

21MX

ANY INSTRUCTION

INSTRUCTION REGISTER
1514|13[12|11|10} 9| 8| 7| 6]|5|4]| 3| 2| 1|0

JTAB VIA

TO NEXT PAGE

MAIN LOOKUP
TABLE
L Address of first
ALTER/SKIP micro-instruction
GROUP for Alter/Skip type
} instructions
L ‘ .
Address of first
SHIFT/ROTATE micro-instruction
GROUP for Shift/Rotate type
N instructions
-
Address of first
MEMORY REFERENCE micro-instruction
GROUP for Memory Reference
N type instructions
1/0 INSTRUCTION
1/0 GROUP INSTRUCTION REGISTER
15[14[13[12]11{10{9| 8| 7|6 |5|4|3|2]| 1|0
Address of first
JMP micro-instruction
10G for particular
1/0 instruction
.
EAU INSTRUCTION
gégdgw INSTRUCTION REGISTER
- 15(14[13[12{11]101 9| 8| 7|6 |54 |312] 1|0
Address of first
micro-instruction
JMP for all but three
JEAU EAU instructions
(See EAU Direct Group),
o Address of first
EAU DIRECT micro-instruction for
GROUP DLD,DST, or DIV
EAU instructions

Figure 3-3. Processing the Instruction Register (Sheet 1 of 2)

3-8

21MX Writing A Microprogram

-

USER GROUP
MODULES 3-7,14

N

USER TYPE INSTRUCTION

\
USER GROUP

WW//////// /

15[(14|13|12|11]10|{ 98| 7|6]|5]|4|3|2|1]0

JMP J74 Address of 21MX
. JMP ’ i
via JUMP DIRECT instruction set
TABLE microprogram
[
or or

Address of user
microprogram

_

USER TYPE INSTRUCTION

15[14[13|12[111019| 8| 7|6 |5]|4|3|2|1|O

Address of 21MX
instruction set
microprogram

JIMP via
Jvp JUMP
J30 TABLE or

Address of user
microprogram

AN

Figure 3-3. Processing the Instruction Register (Sheet 2 of 2)

Writing A Microprogram

3-23. CONTROL STORE MODULES AVAILABLE
TO USER

The 4096 words of ROM are divided into sixteen 256-word
modules, module 0 through module 15. Modules 0, 1, 14,
and 15 hold the 21MX Instruction Set and are not
available to the user microprogrammer. Modules 12 and 13
are reserved exclusively for user microprograms. Any
other Control Store space, not filled by a micropro-
grammed option, is available to the user micropro-
grammer. Figure 3-4 summarizes the allocation of Control
Store.

MODULE ALLOCATION

NO.

Y INSTRUCTION SET NOT AVAILABLE
1 (NOT OPTIONAL) TO USER

2 [}

3

4

5

6 HP AVAILABLE TO

FIRMWARE USER IF OPTION

7 OPTIONS NOT INSTALLED
8

9

10

1

12 RESERVED FOR USER | AVAILABLE

13 MICROPROGRAMS TO USER

14 INSTRUCTION SET NOT AVAILABLE
15 (NOT OPTIONAL) TO USER

Figure 3-4. Allocation of Control Store by Modules

3-24. MAPPING TO A MODULE ADDRESS

Function codes available to the user are listed in table 3-1
together with the module address to which these function
codes map. Some of these user function codes are assigned
to the microprogrammed processors and options produced
by Hewlett-Packard. The following function codes cannot
be used:

105000 through 105137
105740 through 105777
101740 through 101777

310 OCT 1974

21MX

If the HP 12977A Fast FORTRAN Processor is installed,
the following function codes are not available to the user:

105140 through 105277
105700 through 105737
101700 through 101737

Note: If the function code maps to a Control
Store module which is not present, the
micro-instruction

JEAU PASS S S

is executed for each non-existent Control
Store location. The ROM Address Regis-
ter is incremented after each execution of
the above micro-instruction until an
installed module is encountered. No
notification is given to the user or system
that a non-existent module is being
executed.

Table 3-1. User Function Code Mapping

Function codes 101rrrg and 105rrrg map to the
module address given:
RANGE OF
RANGE OF OCTAL
rrr VALUES | MODULE | ADDRESSES
140 to 157 3 1400
160 to 177 3 1400 to 1417
200 to 217 4 2000
220 to 237 4 2000 to 2017
105rrrg 240 to 257 5 2400
only N 26010277 5 2400 to 2417
300 to 317 6 3000
320 to 337 6 3000 to 3017
340 to 357 7 3400
L 360 to 377 7 3400 to 3417
([40010 417 8 4000
420 to 437 8 4000 to 4017
440 to 457 9 4400
460 to 477 9 4400 to 4417
500 to 517 10 5000
520 to 537 10 5000 to 5017
101rrrg 540 to 557 1 5400
10;:”8 N 5600577 11 5400 to 5417
600 to 617 12 6000
620 to 637 12 6000 to 6017
640 to 657 13 6400
660 to 677 13 6400 to 6417
700 to 717 2 1000
[7200 737 2 1000 to 1017

21MX

3-25. MICROPROGRAMMING INPUT
AND OUTPUT FUNCTIONS

Microprogramming Input and Output (I/0) functions
requires more care than any other type of micropro-
gramming, because there are strict timing dependencies.
The microprogram described in section 3-40is an example
of I/0 microprogramming.

To maintain integrity of the I/0 system, every control
signal which goes to the 1/0 devices is generated in a
specific time period (T-period). All micro-instructions,
except those containing READ or WRTE micro-orders,
are executed in one I/0 T-period, where T = 325 ns. READ
and WRTE each require two I/0 T-periods. An I1/0 time
cycle consists of five T-periods labelled T2, T3, T4, T5, and
T6. Specific I/0 activity is restricted to certain T-periods
in order to synchronize setting of data flags, latching of
data, and resolving of multiple interrupt requests.

The microprocessor must synchronize with T2 before
initiating an I/0 cycle. Thereafter, special consideration
must be given to the order and timing of the I/0
micro-instructions given.

3-26. SYNCHRONIZING WITH THE 1/0 SYSTEM

To initiate an I/O cycle, the IOG micro-order must be
specified. When this occurs, the processor ‘‘freezes’
(ceases executing micro-instructions) until time T2. The
next micro-instruction is executed during time T3, the

Writing A Microprogram

next during T4, etc. IOG may occur with any
micro-instruction which does not require some other
Special or Jump Modifier (Field 3) micro-order.

Examples:
a. READ I0G INC PNM P
b. I0G PASS IR S3

3-27. 1/0 SIGNAL GENERATION

When I0G is specified, the I/0 system generates control
signals to the I/0 devices starting at the next T2 time and
according to the contents of the Instruction Register (IR).

IR bits 5-0 hold a Select Code (SC) signal (SC = the 1/0
slot number on the backplane or in I/0 extenders) that
determines which device will respond to the control signal.
IR bits 11-6 determine which 1/0 signals are sent, as
shown in table 3-2. The IR must be loaded prior to or
during occurrence of the I0G to insure that the correct
signals are generated to the proper SC. If Memory Protect
is enabled, the IR must be loaded prior to issuing I0G (see
section 3.34).

Select Codes 0, 1, 2, 3, 4, and 5 have special functions con-
cerning, respectively, the interrupt system, the Front
Panel, the Dual Channel Port Controller (DCPC), Power
Fail, and Memory Protect/parity. The ‘Interrupt and
Control summary’’ table in the Appendix of the HP 21MX
Computer Series Reference manual (HP 02108-90002)
holds a description of the effect of these select codes (S.C.
in the table).

Table 3-2. I/O Control Signal Generation Determined by IR Bits 11-6

IR*

11 10 9 8 7 6 1/0 SIGNAL TIME GENERAL USE

X X X 0 0 0 none T3 Turns off the Run Flag on the CPU.

X X X 0 0 1 STF T3 Set device flag.

X X 1 X X CLF T4 Clear device flag.

X X X 0 1 0 SFC T3-T6 SKPF condition is true if and only if the device
flag is clear.

X X X 0 1 1 SFS T3-T6 SKPF condition is true if and only if the device
flag is set.

- - — — — — 101 T4-T5 Buffer the input data latch on the device onto the
1/0-bus; this command must be stated explicitly in
micro-code during these times.

X X X 1 1 0 100 T3-T4 Store the 1/0-bus into the input data latch on the
device.

0 x x 1 1 1 STC T4 Set device control flag.

X X 1 1 1 CLC T4 Clear device control flag.

*Bits marked with x are not significant for the 1/0 signal specified.

OCT 1974 3-11

Writing A Microprogram

3-28. MEMORY PROTECTION IN RELATION TO
I/0 MICROPROGRAMMING

When the Instruction Register is loaded, the Memory
Protect (MP) feature (12892A) records information on the
instruction (from Main Memory) being stored in the IR.
When an IOG micro-order is specified, MP checks the
select code. If it is not equal to 1 (Front Panel) and MP
control is set, MP will inhibit any I/0 signals and prevent
the CPU from altering memory or the P- or S-registers,
and will generate an interrupt request. The micropro-
grammer cannot prevent this function, so the software
operating system maintains security of 1/0 programming
with MP in the microprogramming environment.

3-29. I/0 CONTROL ROUTINE

This type of I/0 function requires no data transfer. The IR
must specify:

STF
CLF
SFS
SFC
STC
CLC
HLT

Note that CLF can be generated in conjunction with any
other signal by merely letting bit 9 of the IR equal one. To
simulate a CLF macro-instruction, specify CLF with STF.
Once I0G has been given in an I1/0 control routine, there
are no limitations in using micro-instructions because I/0
signals are generated automatically.

For SFS and SFC, the state of the flag on the device may
be tested with a “JMP CNDX SKPF”’ instruction. SKPF
is true only when SF'S is being executed and the flag is set,
or when SFC is being executed and the flag is clear. The
SKPF test should occur during T4 or T5 of a SFS or SFC
routine. Any operation desired may be implemented as a
result of this test. To cause a macroprogram skip, simply
increment the P-register contents.

3-30. I/0 OUTPUT ROUTINE

This routine is characterized by generation of the I00
micro-order. The I0O sends data from the I/0-bus into the
input data latch on the device. The microprogram must
put the proper data on the S-bus, then direct it onto the
1/0-bus. The detailed timing requirements are:

a. During T3, the S-bus must be driven by the register
containing the output data to prepare for the transfer
to the I/0 bus.

b. During T4 and T5, the S-bus must be driven by the
same register and I00 must appear in the Store field.
This insures valid data on the I/O bus.

3-12 OCT 1974

21MX

For example, the sequence for a standard OTA macro-
instruction is:

(Time T2) 10G

(Time T3) PASS CAB
(Time T4) PASS 100 CAB
(Time T5) RTN PASS 100 CAB

3-31. 1/0 INPUT ROUTINE

This routine is characterized by use of IOI in the S-bus
field. IOI is used in the I/0 cycle during T4 or T5 to input
data from the I/0 device PCA onto the I/0-bus and then
onto the S-bus. Any normal Word Type 1 instruction may
be used to store the data input from the S-bus.

For example:

(Time T2) 10G
(Time T3) NOP
(Time T4) NOP
(Time T5) RTN PASS CAB 101

It can be seen that during some parts of some I1/0
routines, there are instruction times which are unused.
Caution is required when using these times. Do not use
micro-instructions which may cause the processor to freeze
(listed in section 3-36), until all I/0 related code has been
executed for that I/0 cycle. In the above example, if the
T8 and T4 NOPs were replaced by READ and T (S-bus
field) micro-orders, the CPU would freeze in the middle of
T4 and IOI would not be executed until T6 — too late to
correctly handle the data transfer. On the other hand,
during a control type routine which is not performing an
SFS or SFC, many kinds of micro-instructions can be
performed after the IOG. These include READ or even
another I0G, since the I/0 system requires no further
assistance from the microprocessor.

3-32. INTERRUPT HANDLING

The presence of a pending interrupt or halt request may be
detected by microcode in two ways:

a. Performing a test with JMP CNDX on INT, NHOI, or
RUN.

b. Attempting to JMP or RTN to location 0 in Control
Store; a pending interrupt or halt will cause Control
Store address 4 to be loaded into the RAR.

The interrupt device select code (SC) can be read onto the
S-bus (high order bits = 0) by specifying CIR in the S-bus
field. This freezes the CPU until T6 and then sends IAK to
the interrupting device. In the Basic Instruction Set
microprogram, the select code from the CIR is loaded into
the M-register and the Main Memory instruction at that
address is executed. Note that the P-register is not altered
during this process.

21MX

3-33. NORMAL USER INTERRUPT HANDLING
APPLICATIONS

If a long microprogram is entered, the program itself has
complete control over when it is terminated or suspended
for a detected interrupt. It is not desirable to hold off
interrupts very long. Magnetic tape, for example, might
request an interrupt every 27 microseconds, if not trans-
ferring data by way of the Dual Channel Port Controller.

It is up to the microprogrammer to decide how long to wait
before testing for an interrupt. When an interrupt is
detected, a jump should be made to a routine to save
whatever is necessary to allow the microprogram to
continue after the interrupt is serviced or to provide for
complete restart of the microprogram. The P-register must
be reset to point to the Main Memory address of the
macro-instruction interrupted. If parameters are saved, a
test must be made at the beginning of the microprogram
to determine if it was interrupted or if it executes from the
beginning.

When the interrupt servicing is started, a JMP or RTN is
made to Control Store location 4 where the Basic Set
microcode takes the trap cell address from the Central
Interrupt Register and then gives control to Main Memory
programs which service the interrupt. After the interrupt
routine is complete, the interrupted microprogram is
restarted (assuming the P-register was reset upon
interrupt detection).

3-34. MICRO-ORDERS AFFECTING
MEMORY PROTECT

To fully use the level of protection afforded by the 12892A
Memory Protect feature, some conventions must be
followed in microprogramming to assure proper communi-
cation between the processor and the Memory Protect
feature (MP).

Note that MP can only be enabled and disabled by the 1/0
system. There are no microcode commands for it. Refer to
the Memory Protect Interrupt section in the HP 21MX
Reference Manual for further discussion. The micro-orders
which communicate with MP are listed below together
with a description of their rules and functions:

a. FTCH (Special field). This reads the M-register into
the MP Violation register, clears out the MP Violation
flag and resets the Indirect counter. It should be given
when the address of the current instruction from Main
Memory is being read (READ micro-order) or
immediately after. FTCH occurs in the following places
in the Basic Instruction Set Microprogram:

1. At location 0, the Fetch routine.

2. At the location MGOOD+1 in the Halt routine to
reset the MP Violation flag and to enable alteration
of P-register, S-register, and Main Memory from
the Front Panel.

Writing A Microprogram

3. Atlocation SCAN+12 as part of the single instruc-
tion fetch routine, where it serves the same purpose
as at location 0.

b. IR (Store field). Whenever the IR is specified in the
Store field, MP records whether the instruction is a
Halt, JMP, or neither, and whether or not IR bits 5-0
equal 01 or not. The IR must be loaded prior to
initiating an 1/0 cycle with IOG to insure that the
signal decoding logic will take effect.

c. INCI (Special field). This micro-order should be used
whenever another level of indirect addressing is
detected by a microprogram. After 3 counts of the
Indirect Counter, an ION (enable interrupts) micro-
order is effectively performed by the Memory Protect
option. A microprogrammed IOFF micro-order will
have no effect after this occurs until after the next
FTCH is executed.

d. MPCK (Special field). There is no need to use this
memory protect check micro-order if the Memory Pro-
tect feature (HP 12892A) is not installed. This micro-
order should be used to insure that a microprogram will
not alter protected memory. When this micro-order is
used and a MP violation is detected:

1. All future READ instructions put invalid data into
the T-register.

2. No WRTE instructions are performed.
3. All attempts to alter the P- or S-registers fail.

4. All 1/0 signals from the processor are inhibited
until after the next FTCH or CIR is executed.

e. I0G (Special and Jump Modifier). If Memory Protect
has been enabled, this micro-order will set the Memory
Protect Violation flag if the select code (IR bits 5-0) is
not equal to one. If a MP violation is detected, the
actions 1 through 4 described in d. MPCK take place.

f. CIR (S-bus field). This micro-order causes a freeze until

T6 and then issues an IAK to acknowledge the
granting of an interrupt to the requesting device. If the
select code is 5, the Parity indicator on the Front Panel
is cleared and the Memory Protect Violation flag is
cleared. Whenever CIR occurs, special logic on the
Memory Protect PCA determines whether or not the
MP should be disabled (Clear the Control bit). This
determination is made six micro-instructions after the
last CIR:

1. MP is not disabled if an I/0 instruction (I0G) is
executed that is not a halt.

2. MP is disabled if no I/0 instruction (IOG) is exe-
cuted or a halt is executed.

To re-enable Membry Protect, an STC 5 is required.

3-13

Writing A Microprogram

3-35. THE EFFECT OF THE DUAL CHAN-
NEL PORT CONTROLLER ON
MICROPROGRAMS

The Dual Channel Port Controller (optional hardware)
steals full I/0 cycles to perform direct transfers between
external devices and Main Memory. This process is
essentially transparent to the microprogram. The Dual
Channel Port Controller (DCPC) is a hardware function
that does not employ microcode. If the microprogram
interferes with a DCPC cycle, the Control Processor
freezes until DCPC completes its cycle. If DCPC takes a
sequence of consecutive I/0 cycles for input transfers, any
attempted I0G, READ, or WRTE micro-orders will freeze
the processor until DCPC is finished. If DCPC takes a
sequence of consecutive I/0 cycles for output transfers,
the Memory Reference Group, the Alter/skip Group, and
Shift Rotate Group macro-instructions can still proceed at
between 40% and 60% normal execution rate; I0G will
still freeze the Control Processor.

If DCPC takes as much as 50% of all 1/0 cycles, the
overall efficiency of the basic instruction set execution is
60% to 70% for input or output transfers. Non-main
Memory micro-instruction execution is only frozen 20%
of each DCPC cycle. Thus arithmetic and logical micro-
instructions execute at 80% efficiency, when DCPC takes
every I/0 cycle.

3-36. SUMMARY OF SPECIAL TIMING
RULES

a. Always load the M-register before specifying WRTE in
the OP micro-order field.

b. Load the M-register before or during micro-instructions
containing READ in the OP field. Do not modify
M-register until two micro-instructions after the READ.

c. Do not alter the T-register unless initiating a WRTE,
since the T-register is internal to the Main Memory
system and is used by DCPC and the CPU. The
T-register is not intended to be a general purpose
register, but to be used in referencing Main Memory.

d. Load the T-register with data to be written in the same
instruction as WRTE appears, or DCPC could alter it
before WRTE is executed.

e. The T-register must be placed on the S-bus no later
than two micro-instructions after a READ is specified
or the T-register will be disabled by the Memory
system.

f. When an I/0 cycle (using IOG) is in progress, a READ
or WRTE must not be initiated before T6 in the cycle
under either of the following conditions:

1. An input or output routine (refer to sections 3-29
and 3-30) is in progress.

2. A skip flag test of the I/0 system is taking place.
3-14 OCT 1974

21MX

g. Do not specify a READ or WRTE micro-order in the
same micro-instruction that is transferring data from
the T-register (T or TAB micro-order in the S-bus
field). The reason is that if a freeze occurs as a result of
such a READ or WRTE micro-order (see i. below) the
data in the T-register will be invalid after the freeze.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ — INC PNM P
— — PASS S4 L
READ — INC M TAB

h. Do not start an I/0 cycle (using I0G) before data is
transferred from the T-register following a READ
operation. The reason is that if the I0G results in a
freeze (see i. below), the data in the T-register will be
invalid.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ — INC PNM P
— IOG PASS S4 TAB

i. The following conditions always cause a micro-
processor freeze:

1. The CIR micro-order is in the S-bus field and either
the I/0 cycle time is not T6 or the Dual Channel
Port Controller is stealing a full I/0 cycle.

2. The IOG micro-order is in the Special field and
either the I/0 cycle time is not T2 or the Dual
Channel Port Controller is stealing a full 1/0 cycle.

3. A T or TAB micro-order is in the S-bus field and a
READ or WRTE micro-order memory cycle is still
in progress.

4. A READ or WRTE micro-order is in the Op field
and one of the following conditions is true:

(a) The semi-conductor Main Memory is being
refreshed (two micro-instruction cycles are
required every 32.5 microseconds for this
purpose).

(b) The Dual Channel Port Controller is stealing an
I/0 cycle and has not completed its memory
reference.

(c) A READ or WRTE memory cycle is still in
progress.

j. Load the IR before issuing IOG unless there is no
chance that Memory Protect is enabled (no Memory
Protect on 2105).

21MX

3-37. SAMPLE MICROPROGRAMS

While reading the sample microprograms, the reader may
find it useful to refer to the fold out functional block
diagram in Appendix D. This diagram and the micro-order
definitions in Section IV are the two basic sets of
information used by the programmer in writing a
microprogram.

3-38. SWAP MEMORY LOCATIONS

The sample microprogram illustrated in figure 3-5 swaps
the contents of two Main Memory locations that are
pointed to by the A- and B-registers (no indirect
addresses).

Micro-instruction Commentary

READ INC M A

a. Put the address in the A-register onto the S-bué.
b. Store the S-bus into the M-register.

c. Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

d. Read the location in Main Memory pointed to by the
M-register (this requires 2 micro-instruction cycles).

Writing A Microprogram

PASS S1 TAB

. The read is complete and data from the memory

location is in the T-register unless the AAF or BAF
Flag is set. If AAF is set, the data is in the A-register.
If BAF is set, the data is in the B-register.

. Put memory data on the S-bus.

Pass S-bus through the ALU and R/S to the T-bus.

. Store data on T-bus into Scratch Pad Register 1 (S1).

READ INC M B

. Put the address in the B-register onto the S-bus.

. Store S-bus into the M-register.

Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

. Read the Main Memory location pointed to by the

M-register.

MPCK PASS M

MPCK PASS M

a. Put the M-register onto the S-bus.
b. Pass the S-bus through the ALU (output not used).

c. Since READ requires two cycles, an instruction cycle
is available before data is available from memory. And
since the M-register holds the address of the location
that will eventually be written into, this cycle is used
for the memory protect check.

. Put M-register (memory address) onto the S-bus.

. Pass the S-bus data through the ALU.

Test the address for a Memory Protect violation.

PASS S2 TAB

. Put memory data (T-, A-, or B-register contents) onto

the S-bus.

Op Code Special ALU Store S-bus

Comment

INC N f
URTE RTN PASS TAB 82
$END

$ORIGIN=20008
$SYNTAB
READ INC A
NPCK PASS "
PASS S1 TRB
READ INC M B
MPCK PASS |
PASS §2 TAB
URTE PASS TAB S1

READ WORD POINTED TO BY A
CHECK RDDRESS

STORE DATA IN SIi

READ VORD POINTED TO BY B
CHECK ARDDRESS

STORE DATAR IN 82

BEGIN WRITE

LOAD M MITH A

WRITE AND RETURN

Figure 3-5. Swap Microprogram

OCT 1974 3-15

Writing A Microprogram 21MX

b. Pass S-bus through the ALU and R/S to the T-bus. WRTE RTN PASS TAB S2

c. Store data on the T-bus into Scratch Pad Register 2 :
(S2). - a. The contents of the second memory location is in S2.
Put S2 onto the S-bus.

WRTE PASS TAB S1

b. Store the S-bus into the T-register (or A- or B-register,
if AAF or BAF, respectively, are set).

a. The contents of the first memory location is in S1. Put
S1 onto the S-bus. c. Pass S-bus data through the ALU.
b. Store the S-bus into T-register (or A- or B-register if d ’

; . Write the T-register contents into Main Memory at the
AAF or BAF, respectively are set).

address pointed to by the M-register.

c. Pass S-bus data through the ALU. e. Exit (RTN micro-order).
d. Write T-register contents into Main Memory at

address pointed to by the M-register. Note that the 3-39. BLOCK MOVE MICROPROGRAM

M-register still holds the second memory location

address. It was loaded during last read operation. The sample program illustrated in figure 3-6 moves a
group of words in Main Memory from one location to
another. When the microprogram receives control, it is
assumed that:

INC M A

a. The A-register holds the first memory location. Put the e The negative value of the number of words to be moved
A-register contents onto the S-bus. is in the A-register in two’s complement form.
b. Store the S-bus into the M-register. e The FROM address is in the B-register.
c. Pass S-bus data through the ALU and increment data o The TO address is in the Main Memory location pointed
enabling the A- or B-register addressable test. to by the P-register and cannot be indirect.
Op Code Special ALU Store S-bus Comment
SORIGINR2000Q
$SYMTAB
SFILEsFILMOYV
‘ JMP MOVE
MOVE FASS S1 A WORD COUNT = 2 ?
JMP CNDX TBZ ourT IF ZERO, THEN GO YO "OuT"
*
KEAD INC M P GET "TO" ADDRESS
PASS 82 TAB PUT IT IN S2
*
LOOP READ INC M B READ A DATA WORD
/PASS S3 TAB STORE THE WORD IN 83 REG
READ INC M s2 GET "TO" ADDRESS
INC S§2 82 INCREMENT "TO" ADDRESS
WRTE PASS T s3 WRITE A DATA WORD TO MEMORY
INC B B INCREMENT "FROM" ADDRESS
INC 81 81 INCREMENT WORD COUNT
JMP CNDX TBZ RJS LOOP GO TO "LOOP"™ IF WORD
" COUNT IS NOT ZERO
oul RTN INC P P INCREMENT THE P REG AND EXIT
FEND .

Figure 3-6. Block Move Microprogram
3-16

21MX

The HP assembly language calling sequence is as follows:

LDA — (number-of-words)
LDB FROM-address

OCT 105200

DEF TO-address

Note: This microprogram is a translation of the
Block' Move microprogram shown in
Section VI of the HP 2100 Computer
Microprogramming Software manual (HP
02100-90133). Thus it can be used to com-
pare HP 2100 microprogramming to HP
21MX microprogramming.

Micro-instruction Commentary

MOVE — - PASS S1 A
JMP CNDX TBZ — ouT

Store the contents of the A-register in Scratch Pad
Register 1. If the contents of the A-register are zero, then
go to OUT address and return to the calling program.

READ — INC M P
PASS S2 TAB

Get the TO address and store it in Scratch Pad Register 2.
The TO address cannot be indirect.

LOOP READ — INC M B
PASS S3 TAB

Read a data word from the Main Memory location pointed
to by the FROM address and store the data word in
Scratch Pad Register 3. Note that a Control Processor
freeze will occur.

INC M S2
INC S2 S2
PASS T S3

WRTE —

Write the data (in Scratch Pad Register 3) into memory.
Increment TO address pointer.

- - INC B B
— - INC S1 S1
JMP CNDX TBZ RJS LOOP

Increment the FROM address pointer. Increment the word
count. If the word cound is not zero, go to LOOP.

ouT — RTN INC P P

Increment the P-register beyond the word containing the
TO address and exit.

Writing A Microprogram

3-40. INPUT, SUM, AND SUM OF
SQUARES MICROPROGRAM

The sample microprogram illustrated in figure 3-7 loads a
16 bit word from a device specified by its select code
“SC”. If the word is equal to 177777 (end of transmission
word), the microprogram is finished and this is signalled
by executing the next instruction in Main Memory; other-
wise:

a. The word is stored in memory location “DATA”
indexed by the X-register.

b. The word is added to a running total kept in memory
location “SUM”

c. The word is squared and added to a running total of
squares in memory location “SQUAR”.

d. Another input is initiated from the specified device
(STC SC,C).

e. The next instruction in Main Memory is skipped to
indicate that 177777 was not input from the specified
device.

Conditions:

a. All numbers are 16 bit positive integers.

b. If SUM exceeds 2'°-1, the Extend Register is set.

c. If SQUAR exceeds 2'¢-1, the Overflow Register is set.

d. If both SUM and SQUAR are less than 2'6-1, the
Extend and Overflow Registers are clear.

e. Memory protect check is performed on addresses used
for a write into Main Memory.

Microprogram storage:

The microprogram resides in module 12 starting at
octal address 6017.

Microprogram initiation:

Entry into the microprogram is caused by the exe-
cution of the following 5 words in Main Memory:

105637 USER CALL TO CONTROL STORE
ADDRESS 6017

0000nn nn = SELECT CODE ‘“SC”

Qaaaaa ‘“‘DATA” STORAGE ADDRESS (a table

holding all input data)
Obbbbb “SUM” STORAGE ADDRESS
cccece “SQUAR” STORAGE ADDRESS

(end of transmission return) SUMMING TERMI-
NATED BY EOT

(normal return) SUMMING CONTINUES

3-17

Writing A Microprogram 21MX
Op Code Special ALU Store S-bus Comments
$SORIGTIN=EM17B .
READ INC PNM P @1/READ SC, INC P, SET UP TAB LOGIC
MM Lt CMLO S 1378 P2/0038500 INTO 81<«USE FOR INP COM LATER
PASS L TAB @3/8STORE SC INTO L
10R 81! Si D4/CREATE INPUT COM @@@5NN IN S11
READ INC PNM P @5/READ DATA ADR,INCR P,8ET UP TAB LOGIC
IMM LA CMLO 8% 3238 P6/001798 INTO St FOR SET CONT COM LATER
PASS S3 TAB @7/3STORE DATA ADR INTO 83
PASS IR Si 28/L0OAD IR WITH INPUT COMMAND
106 I0OR S19 St no/
«09/ FREEZE TILL T2,START 1/0, CRFATE SET CONTROL COMMAND BQ17NN IN S10
PASS | s3 16/73 STORE DATA ADDRESS INTO L
ADD 83 X 11774 ADD INDEX TO L, STR INTO S3
ASG PASS A 101 12/75 GET DEV WRD FROM 1I/0 BUS, ST INTO A
* 12,5/CLEAR E (IR6m1)
JMP CNDX ONES ouT 13/76 JUMP OUT TtF ALL ONES IN DEV WORD
READ INC PNM P 14/READ SUM ADR, INCR P, SETUP TAB (0GIC
INC X X 15/INCR INDEX
INC M TAB 16/ STORE SUM ADR IN M, PREPARE TAB LOGIC
READ 16,5/ READ 8SUM
IMM LOW CNTR 0B 17/CLEAR CNTR T PREPARE FOR REPEAT
PASS L TAB 18/STORE SUM INTYO L
ENVE ADD 87 A 19/ADD DEVICE WwORD TO T, ENBL ORE,ST INS?
MPCK PASS M 28/MEMORY PROTECT TEST ON SUM ADNDRESS
WRTE PASS TAB §7 21/WRITE TOTAL INTO SUM ADDRESS
cav PASS IR Sia 22/CL OV,PUT SET CNTRLCL FLG COM INTO IR
106 PASS L A 23/FRZ TILL T2, ST A INTO L, START 1/0
MPCK INC M S3 24/T33S3(DATA ADR&X) ST INTO M,MEM PROT
WRTE PASS TAB A 25/T4sWRITE DEV WORD INTO (DATA&X
READ INC PNM P 26/7T5,T6sREAD ADR OF SQUAR, SETUP TAB LOG
INC M TAB 26,5/ PREPARE TAB LOGIC
READ INC P P 27/7INCR PsNORMAL RETURN, READ SQUARE
RPT PASS B TAB 28/STORE SQUAR INTO B, SETUP REPEAT
MPY R1{ ADD B B 29/
*29/ (A TIMES L)&B, STORE RESULT INTO B,A
JMP CNDX TRZ NO,OVER 38/JMP IF MPY RESULTED IN Ba@ (MSB IN 8)
sSov 31/8ET OV BITIRESULT GR TH ACCEPTABLE
NN ,OVER MPCK PASS M 32/MEM PROT CK ON SGUAR ADDRESS
: WRTE RTN PASS TAB A 33/WRITE RESULT INTO SQUAR LOCATION, RTN
auT INC P P 34/INCREMENT P
RTN INC P P 35/INCR P TO INDICATE EOYT RETURN, RETURN
SEND

Figure 3-7. Input, Sum, and Sum of Squares Microprogram

The above instruction is coded in assembly language by
defining the mnemonic SSI, function code, and four
parameters:

a. Use the MIC pseudo op in the assembler to define the
five word instruction by its mnemonic and number of
parameters: MIC SSI,105637B,4 ' ‘

b. Code the following when calling the SSI microprogram:
3-18

SSI SC DATA SUM SQUAR
(end of transmission return) SUMMING TERMI-
NATED BY EOT

(normal return) SUMMING CONTINUES

*DATA AREA

SC EQU nnB SELECT CODE OF DEVICE

DATA BSSmm BUFFER ARE TO HOLD ALL
INPUT DATA

SUM OCTO “SUM” STORAGE LOCATION

SQUAR OCTO0- “SQUAR” STORAGE LO-
CATION

21MX

Micro-instruction Commentary:

Writing A Microprogram

READ — INC PNM P

READ — INC PNM P

a. Upon entry into the microprogram, P is the address in
Main Memory that follows the instruction that calls
microprogram. Hence P is the address of the address
containing the select code.

b. Place the P-register contents on the S-bus. Store the
S-bus into the M-register. Pass the S-bus contents
through the ALU incrementing the data in the ALU
and store the result (from the T-bus) into the
P-register. The address on the T-bus is tested by the T-
or-A-or-B logic for use by the TAB micro-order.

c. Read the contents of the location in Main Memory
specified by the address in the M-register. The read
requires two cycles.

IMM L1 CMLO S1 137B

a. While the read is still in progress; a memory cycle is
used to construct an input command to be used later.

b. Place an octal 137 in bits 7-0 of the S-bus. Bits 15-8 are
automatically filled with ones.

c. Pass the S-bus through the ALU complementing the
data. Shift the data left one bit as it passes through the
Rotate/Shifter inserting a zero into bit 0.

d. Store the T-bus result into Scratch Pad Register 1. The
result in S1 = 000500.

- - PASS L TAB

a. Store the result of the read from Main Memory (con-
tents of T- or A- or B-register) onto the S-bus (the
select code nn was read).

b. Store the S-bus into the L-register and pass the S-bus
contents through the ALU (the PASS is effectively a
non-operation since the T-bus data is not stored).

— — IOR S11 S1

a. Place Scratch Pad Register 1 on the S-bus. Perform an
“inclusive or”’ of L-register and S-bus in the ALU and
store the result in S11.

b. S1 = 00050

L = nn (select code)} IOR = 0005nn in S11

The result in S11 is the complete input command for
select code = nn.

. The P-register now points to the DATA address.

. Place the P-register on the S-bus. Store the S-bus into

the M-register. Increment the S-bus contents as it
passes through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

Read the contents of the address in Main Memory
specified by the M-register (read the DATA address).

IMM L4 CMLO 81 303B

. While the read is still in progress, the memory cycle is

used to construct a set control-clear flag I/O command.

. Place an octal 303 in bits 7-0 of the S-bus. Bits 15-8 are

automatically filled with ones.

Pass the S-bus through the ALU complementing the
data. Rotate the data left four bits as it passes through
the Rotate/Shifter.

. Store the T-bus result into Scratch Pad Register 1. The

result in S1 = 001700.

— - PASS S3 TAB

. Place the result of the read from Main Memory (con-

tents of T- or A- or B-register) onto the S-bus (the
DATA address was read).

. Pass the S-bus data through the ALU and store it into

Scratch Pad Register 3.

- —_— PASS IR S11

. Place Scratch Pad Register 11 on the S-bus and store

the S-bus into the Instruction Register (IR). IR now
holds the input command 0005nn, where nn is the
device select code.

- I0G IOR S10 S1

. I0G commands the microprocessor to freeze until time

T2. At time T2 the input command in the Instruction
Register is executed (transmitted to the device).

. The L-register still holds the select code of device.

Place Scratch Pad Register 1 (holding 001700) on the
S-bus. Perform an ““inclusive or’’ with the L-register in
the ALU. Store the result (0017nn) into Scratch Pad
Register 10.

3-19

Writing A Microprogram

d. The net result in S10 is the completed set control —
clear flag command.

— PASS L S3

a. Place Scrétch Pad Register 3 (holding DATA address)
onto the S-bus and then store S-bus into the L-register.

b. The PASS is essentially a non-operation.

— ADD S3 X

a. Place the X-register (index to the number of words so
far input from the device) onto the S-bus.

b. Add the S-bus to the L-register (now containing DATA
address).

c. Store the result in Scratch Pad Register 3.

ASG — PASS A I0I

a. The time is T5. Take the word input from the Device
from the 1/0-bus and place it on the S-bus.

b. Pass the S-bus data through the ALU and store it into
the A-register.

c¢. The IR = 0005nn, where nn is the device select code.
Perform an Alter/Skip Group instruction (ASG)
according to bits 7 and 6 in the IR. Since bits 7 and
6 = 01, perform a CLE (Clear Extend register bit).

JMP CNDX ONES — ouT

If the word last passed through the ALU (see previous
micro-instruction) was all ones (end of transmission), jump
to the location with the label OUT.

READ — INC PNM P

a. The P-register now points to the SUM address.

b. Place the P-register onto the S-bus. Store the S-bus
into the M-register. Increment the S-bus contents as
they pass through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

c. Read the contents of the address in Main Memory
specified by the M-register (read the SUM address).

21MX

— INC M TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
address of the SUM was read).

b. Store the data on the S-bus into the M-register.

¢ Increment the data in the ALU and place it on the

T-bus so that the data is tested by the T-or-A-or-B
logic.

READ — — — -

Read the contents of the address in Main Memory
specified by the M-register (the present SUM value).

IMM — LOW CNTR 0B

a. While the read is still in progress, the memory cycle is
used to clear the Counter Register in preparation for
the RPT used later in the microprogram.

b. Place zero on the lower eight bits of the S-bus. All ones
are automatically stored in the upper eight bits.

c. .Store the S-bus into the Counter Register.

PASS L TAB

- - INC X X

Increment the X-register, which is an index to the number
of words input from the device.

3-20

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
present SUM value was read).

b. Store the S-bus into the L-register.

ENVE — ADD S7 A

a. The A-register still contains the word input from the
device. Place the A-register onto the S-bus.

b. Enable the Overflow test and Extend Register test in
this micro-instruction only.

c. Add the L-register (current SUM value) to the S-bus in
the ALU.

d. Store the result in Scratch Pad Register 7.

— MPCK PASS — M

a. The M-register still holds the Main Memory address of
SUM. Place the M-register onto the S-bus.

b. Pass the S-bus through the ALU.

21MX

c. Perform a memory protect check on the address since
this address will be used for a write into Main Memory.

WRTE — PASS TAB S7

a. Place Scratch Pad Register 7 (holding the current
DATA total) onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register
according to AAF or BAF flags).

c. Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the new total of data words from the device back into
the Main Memory address of SUM.

Writing A Microprogram

Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the word input from the device into the Main Memory
table of DATA values.

READ — INC PNM P

— cov PASS IR S10

a. Scratch Pad Register 10 holds the set control-clear flag
command, 0017nn, where nn = the select code. Place
Scratch Pad Register 10 onto the S-bus.

b. Store the S-bus into the Instruction Register.

c. Clear the Overflow Register.

. The P-register now points to the SQUAR address.

Place the P-register onto the S-bus.

. Store the S-bus into the M-register.

Increment the S-bus data as it passes through the
ALU and then store the T-bus into the P-register.

. Read the SQUAR address pointed to by the

M-register.

— — INC M TAB

- 10G PASS L A

a. I0G commands the microprocessor to freeze until time
T2. At time T2 the set control-clear flag command in
the Instruction Register is executed (transmitted to
the device).

b. Place the A-register (which still holds the word input
from the device) onto the S-bus.

c. Store the S-bus into the L-register.

— MPCK INC M S3

a. Place Scratch Pad Register 3 (which holds DATA
address + index X) onto the S-bus.

b. Store the S-bus into the M-register.

c. Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

d. Perform a memory protect check on the S-bus data.

WRTE — PASS TAB A

a. Place the A-register (which still holds the word input
from the device) onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register
if the AAF or BAF flag is set).

. Freeze until last READ is complete, then place

SQUAR address just read from Main Memory onto the
S-bus.

. Store the S-bus into the M-register.

Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

READ — INC P P

. Place the P-register onto the S-bus.

. Increment the data as it passes through the ALU and

store it into the P-register. The P-register now contains
the normal Main Memory return address.

Read the SQUAR contents from Main Memory
(contains the current total of data squares).

— RPT PASS B TAB

. Place the SQUAR contents (in the T- or A- or

B-register) onto the S-bus.

. Pass the S-bus through the ALU onto the T-bus and

then store the T-bus into the B-register. The B-register
now holds the current total of device input word
squares.

Repeat the following micro-instruction incrementing
the Counter Register after each repeat. When the
Counter Register is equal to 377, execute the next
micro-instruction.

MPY R1 ADD B B

3-21

Writing A Microprogram

. Perform a niultiply step where the multiplier is in the
L-register and the multiplicand is in the A-register.

. Both the A- and L-registers hold the last word input
from the device. The B-register holds the current total
of word squares. Thus the result of 16 repeats of this
multiply step is to square the word input from the
device adding the result to the past total of squares
[(A x L) + B].

. The 32 bit result is in the B- and A-registers with the
most significant bits in the B-register.

JMP CNDX TBZ — NO.OVER

. Jump to the location in the microprogram with the
label NO.OVER if the last value that passed onto the
T-bus was equal to zero.

. In a multiply step operation, the last data to go along
the T-bus is the data that is stored into the B-register.
Since the B-register holds the most significant bits of
the multiplication result, if the result exceeds 2!6-1,
bits will be set in the B-register.

— sov - — -

Set the Overflow Register. The result of the multiplication

operation (added to the B-register) exceeds 21¢-1.

NO.OVER — MPCK PASS -— M

a. Place the M-register (the SQUAR address) onto the

S-bus.

3-22

21MX

. Perform a memory protect check on the address on the

S-bus. (To prepare to write the multiplication result
back into the Main Memory data location (SQUAR.)

— WRTE RTN PASS TAB A

. Place the A-register (the current total of squares) onto

the S-bus.

. Store the S-bus into the T-register (or A- or B-register,

if AAF or BAF flag is set).

. Write the contents of the T-register into Main Memory

at the address given in the M-register (the address of
SQUAR).

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

ouT — — INC P P

. This micro-instruction (label OUT) is branched to, if

the end of transmission character (177777) has been
received from the device.

. Increment the P-register.

— — RTN INC P P

. Increment the P-register again to point to the end of

transmission return address in Main Memory.

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

21MX

3-41. READ A WORD FROM A LOADER
ROM

The sample program segment illustrated in figure 3-8
reads four 4-bit bytes from a Loader ROM, constructs a 16
bit word, and then stores the word into Main Memory.

Writing A Microprogram

LOOP1 — L4 PASS S1 LDR

. The LOOP1 label is used to identify this microprogram

segment in the Basic Instruction Set microprogram.

Conditions:

. The A-register holds the Main Memory address into
which the 16 bits read from the Loader ROM are to be
stored.

. The Loader ROM is selected by bits 15 and 14 of the
Instruction Register. The particular Loader ROM
selected does not affect the example.

The Counter Register is set to address the first location
in the Loader ROM at the beginninng of the micro-
program segment.

Micro-instruction Commentary:

— IMM — LOW CNTR 0B

. Place a 0 onto the S-bus in bits 7-0; bits 15-8 are auto-
matically filled with ones.

. Store the S-bus into the Counter Register. Since the
Counter Register is eight bits long, only bits 7-0 of the
S-bus are stored into the Counter Register.

The Counter Register is now zero.

- -— — PASS M A

. The P-register holds the Main Memory Address into
which 16 bits are to be stored from the Loader ROM.

. Place the P-register contents onto the S-bus.
Store the S-bus into the M-register for use later in the

write to Main Memory of the word from the Loader
ROM.

b. Place a 4-bit-byte, addressed by the Counter Register,
onto the S-bus. The Counter Register is equal 0; thus
addressing byte 0 (there are 256 bytes addressed octal
0-377 in each Loader ROM). Note that each byte is
stored on the S-bus in complemented form. Thus before
a 16 bit word is stored into Main Memory, it must be
complemented. This is taken care of by the next to last
micro-instruction in this program segment.

c. Pass the S-bus through the ALU to the Rotate/Shifter.
Left shift the data four bits.

d. Store the data on the T-bus into Scratch Pad Register 1
(S1). S1 now holds 16 bits of the form:

XXXXXXXXAAAAXXXX

where AAAA is the 4 bit byte just read.

- — INCT PASS L S1

a. Place Scratch Pad Register 1 onto the S-bus.
b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 1.

— - L4 AND S1 LDR

a. Place byte 1 of the Loader ROM onto the S-bus.

b. Perform alogical “and” of the S-bus and the L-register
in the ALU.

c. Left shift the data four bits in the Rotate/Shifter.

Op Code Special ALU Store S-bus

Comments

Ny LO3 CHTR B
£oy PA3S ¥ R
LoOP! L4 PASS 3t LDR
ITNT PA3S L Si
L4 AND 5t LDR
ICNT PRSS L 31
L4 AND S5t LDR
ICNT PRSS L S1
NAND 31 LbR
YRTE PRSS T s1

CLEAR CNTR (ROM ADDR REG)
PUT SA IN M

PRGES XXKXXXXKARAAKXXX INTO S1;:CHNTR=X0CO
CNTR=X01

FCRM XXKXARARABBBBXXXX IN S1:CHNTR=XQ1
CKTR=X10D

FCRM AANABBRBCCCCXKXXX IN S1:CHTR=X10
CNTR=X11

FURM AARNABBRBCCCCODDD (CMPL FORM)
WRITE IRTO MEMORY

Figure 3-8. Reading From a Loader ROM

3-23

Writing A Microprogram

d. Store the T-bus into Scratch Pad Register 1. S1 is now

of the form:
xxxxAAAABBBBxxxx

where BBBB is the 4-bit-byte just read.

21MX

a. Place S1 onto the S-bus.
b. Store the S-bus into the L-register.

¢. Increment the Counter Register to address Loader
ROM byte 3.

— — INCT PASS L S1

— — - NAND S1 LDR

. Place the contents of Scratch Pad Register.1 onto the
S-bus.

. Store the S-bus into the L-register.

. Increment the Counter Register to address Loader
ROM byte 2.

— — L4 AND S1 LDR

. Place byte 2 of the Loader ROM onto the S-bus.

. Perform a logical “and” of the S-bus and the L-register
in the ALU.

.. Left shift the data four bits in the Rotate/Shifter.

. Store the T-bus into Scratch Pad Register 1. S1 is now
of the form:

AAAABBBBCCCCxxxx

where CCCC is the 4-bit-byte just read.

— - INCT PASS L S1

3-24

a. Place byte 3 of the Loader ROM onto the S-bus.

’

b. Perform a logical ‘“nand” of the L-register and the
S-bus (L “and” S, the result complemented) in the
ALU.

c. Store the T-bus in S1. S1 is now of the form:

AAABBBCCCDDD

where DDD is the 4-bit-byte just read. S1 now holds
the completed 16 bit macro-instruction.

— WRTE — PASS T S1

a. Place S1 onto the S-bus.

b. Store the S-bus in the T-register (the Main Memory
Data Register).

c. Initiate a write to Main Memory (address in the
M-register) of the data in the T-register.

This completes the reading of 4 bytes from the Loader
ROM, constructing a 16 bit macro-instruction, and storing
the macro-instruction in Main Memory.

MICROPROGRAMMING LANGUAGE

SECTION

v

This section serves as a reference to micro-instruction
word definitions and formats.

There are four micro-instructions word types. Their
general uses are defined below:

e Word Type 1 executes

a. Data transfers between Main Memory, 1/0, and
arithmetic and logic sections.

b. Logical and arithmetic functions on data.

o Word Type 2 specifies octal data to be transferred to a
specific register.

o Word Type 3 executes a conditional jump based on
flags or data values.

e Word Type 4 executes an unconditional jump or sub-
routine jump.

In addition, there are five Pseudo Instructions recognized
by the micro-assembler.

Each word type has two formats. One format is the 24-bit
Binary Instruction Format. This is the machine-language
format; the format of the micro-instruction as it is stored
in the ROM. The second format is the Mnemonic Format.
This is the micro-assembler source format; the mnemonic-
character representation of the micro-instruction.

Each micro-instruction consists of a number of
micro-orders, which define the control steps to be executed
within the system. The binary representation of the micro-
orders falls within certain bits of the 24-bit Binary
Instruction. The mnemonic representation of each
micro-order falls within seven fields of the micro-
instruction input record (e.g. a card). The binary and
mnemonic formats are defined for word types in the
following sections.

Common to all word types are the LABEL (Field 1),
COMMENTS (Field 7), and “*” (column 1).

e LABEL

This optional field is a string containing any ASCII
characters except +, -, or a space. The string of
characters can be one through eight characters long and
must always start in column one with a *“.”” (period) or a
letter. A maximum of 256 locations address labels are

allowed in any microprogram.

¢ COMMENT
This optional field can be any string of up to 30
characters.

o *

The asterisk indicates that the entire input record
(card) is a comment field.

4-1. WORD TYPE 1 — COMMON
Charactor
Column:
1 10 15 . 20 25 30 40 80
A
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL oP SPECIAL ALU STORE S-BUS COMMENTS

Figure 4-1. Word Type 1 Micro-assembler
Mnemonic Format

BitNo. | 23(22 (21| 20(19| 18| 17| 16| 15| 14 | 13

12|1M{10]9 | 8] 7|6 5|]4)3]2]|1]0

ALU

Fields opP

S-BUS

STORE SPECIAL

Figure 4-2. Word Type 1 Binary Format

4-1

Microprogramming Language 21MX

There are five micro-order classifications in Word Type 1: 4-2. OP MICRO-ORDERS

e OP — 12 operations Many operation codes require specific micro-orders in
other fields of the micro-instruction. Those that do will be
e SPECIAL — 32 special operations defined in terms of all required and optional micro-orders
in the fields of the micro-instruction.
e ALU — 32 ALU functions ‘
oP
o STORE — 32 destinations of data generated by the
micro-instruction ARS
e S-BUS — 32 sources for data to be used by the micro- Required micro-instruction mnemonic fields:
instruction.
, . oP SPECIAL ALU STORE S-BUS
Micro-orders for Word Type 1 are defined in the following
paragraphs. The mnemonic code is defined first, followed ARS LiorR1 PASS B B
by its binary equivalent, the meaning, and any special
conventions in the use of the micro-order. Equivalent micro-instruction binary fields:
23| 2221|2019 | 18| 17| 16| 15| 14| 13| 12| 11| 10] 9 8 7 6 5 4 3 211 0
. OP ALU S-BUS STORE SPECIAL
0 0 01 1 1 1 1 1 0| 1 0 1 0 0 1 0 1 0 L1 or R1 Code

Meaning: Perform a single bit Arithmetic shift of the A-
and B-register combined, with the A-register forming the
low-order 16 bits. The direction of the shift is specified in
the SPECIAL field: L1 for left, R1 for right.

ARITHMETIC LEFT SHIFT: SPECIAL=L1

If L1, a 0 is shifted into bit 0 of the A-register; bit 14 of the
B-register is lost, but the sign bit remains unchanged. The
overflow register bit is set if bits 14 and 15 differ before the
shift operation.

B-Register A-Register
151 e o o o o ofl1|loje—15]1a]e o o o o o | 1] 0 |e—2zero
J* oK AR W
Lost
If R1, the sign is copied into bit 14 of the B-register and bit
0 of the A-register is lost.
ARITHMETIC RIGHT SHIFT: SPECIAL=R1
B-Register A-Register
15014 ¢ o o o o ol 1]l 0obk—lis]1a e o o o ol 1] 0> Lost
BAA A

4-2

21MX

opP BIT NO. 23| 22 (21 |20

ASG CONTENT 1 o|lo|o

op

Meaning: Let bits 6 and 7 of the Instruction Register
determine which of the following functions is to be CRS
performed; then clear the L-register.

Microprogramming Language

Conventions: This micro-order is used by the Basic
Instruction Set microprograms which implement the
Alter/skip Macro-instruction Group.

Required micro-instruction mnemonic fields:

IR Bit No. 7|6 oP

SPECIAL

ALU STORE S-BUS

CLE| 0 | 1 Clear Extend Register CRS

L1or R1

PASS B B

CME | 1 | 0 | Complement Extend Register ; Alter/Skip
instruction

CCE | 1 1 Set the Extend Register

Equivalent micro-instruction binary fields:

A-register.

B-register.

23(22(21{20({19| 18|17 | 16| 15| 14| 13| 12|11} 10| 9 8 7 6 5 41 3 2 1 0
oP ALU S-BUS STORE SPECIAL
0 1] 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 L1 or R1 Code
Meaning: Perform a single bit circular Rotate Shift of the
A- and B-registers combined, with the A-register forming
the low order 16 bits. The direction of the shift is specified
in the SPECIAL field: L1 for left, R1 for right.
If L1, bit 15 of the B-register is transferred to bit 0 of the
CIRCULAR LEFT SHIFT: SPECIAL=L1
B-Register A-Register
151 14| o 0 1 0 |« 15114)] . . .) . 1 0
k_ R R_/R_ k_/x_ k_R_/
If R1, bit 0 of the A-register is transferred to bit 15 of the
CIRCULAR RIGHT SHIFT: SPECIAL=R1
B-Register A-Register
15| 14| . . . o 3 1 0 Pl 15| 14| 1 0
A\A \AA AA A

4-3

Microprogramming Language

oP

DIV

Equivalent micro-instruction binary fields:

21IMX

Required micro-instruction mnemonic fields:

opP SPECIAL ALU STORE S-BUS

DIv L1 suB B B

231 22| 21|120) 19| 18117 16| 15|14 | 13

1211|110 9|8 | 7|6 | 5|43 2|11]0

oP ALU S-BU

SPECIAL

00 1|1 0|1 o(fofo]|Jo0 1 o0

Meaning: Perform a divide step where the divisor is in the
L-register and the 32 bit dividend is in the A- and
B-registers (least significant bits in the A-register). This
micro-order is repeated (16 times for a full word divisor) by
specifying the Special micro-order RPT in the preceding
micro-instruction. This performs the successive sub-
tractions required in a divide algorithm.

The divide step is executed as follows:

a. Subtract the L-register from the B-register (ALU = B
-L).

b. If borrow is required to complete the subtraction, the
ALU Carry Out Flag is clear (0). This Carry Out result
means that the divisor (L-register) is too big. The ALU
result is not stored. The A-register and B-register are
left shifted one bit and the divide step is complete.

c. Ifaborrow is not required to complete the subtraction,
the ALU Carry Out Flag is set (1). This Carry Out
result means that the divisor is small enough. The
result of the subtraction is contained in the ALU and is
left shifted one bit and stored back into the B-register.
Bit 15 of the A-register shifts into bit 0 of the
B-register and bit 0 of the A-register is set to 1 (the
Carry Out result). The divide step is complete.

Usage: The base set divide operation is shown in the Basic

Instruction Set microprogram in Appendix E at the label
= DIV.

Initial Contents:

B-register A-register L -register
Dividend Dividend
16 Most 16 Least

Significant bits Significant bits |

After Repeat 16
Times of Divide
Step:

Divisor
(unchanged)

16 Bit Quotient
of (B,A)/L

Remainder
] Doubled

oP BIT NO. 231222120

ENV CONTENT 1 0 1)

Meaning: Enable the overflow test for the current ALU
operation.

Usage: To detect an overflow condition (that is, set the
Overflow register bit), ENV or ENVE (see below) must be
specified as the OP Code of the micro-instruction in which
the condition is to be tested. Overflow is set if the S-bus
and L-register bits 15 are the same and bit 15 output from
the ALU is different.

Caution: Caution is advised in the use of DEC (decrement)
or INC (increment) in conjunction with ENV. The
L-register is always compared.

oP BIT NO. 23|22 21| 20

ENVE CONTENT 1 0 1 1

Meaning: Enable the overflow test and the extend test for
the current ALU operation.

Usage: To detect an Overflow condition (that is, set the
Overflow register bit), ENV (see above) or ENVE must be
specified as the OP Code of the micro-instruction. To set
the Extend Register as a result of the ALU operation, the
ENVE micro-order must be specified as the OP code of the
micro-instruction. The Extend Register bit is set if there is
a carry generated by the ALU (ALU Carry Out = 1).

oP

LGS

Required micro-instruction mnemonic fields:

op SPECIAL ALU STORE S-BUS

LGS L1or R1 PASS B B

44 OCT 1974

21MX Microprogramming Language

Required micro-instruction binary fields:

23| 22| 21|20 (19|18 |17 |16| 15|14 |13 |12 |11 |10]| 9| 8 | 7 6|54 |3|2]1 0

op ALU S-BUS STORE SPECIAL

o001 1 1 1 1 1 1 0 1 o|1({0 (|0 1T]|oO 110 L1 or R1 Code

Meaning: Perform a single bit Logical Shift of the A- and
B-registers combined, with the A-register forming the low
order 16 bits. The direction of the shift is specified in the
SPECIAL field: L1 for left, R1 for right.

If L1, a 0 is shifted into bit 0 of the A-register and bit 15 of
the B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL=L1

B-Register A-Register

Lost 15| 14| o 1 0 |« 15| 14| » 1 0 € Zero

k_k_/ k_/R_/ K_k_/ k_R_J

If R1, a 0 is shifted into bit 15 of the B-register and bit 0 of
the A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL=R1

B-Register A-Register
Zero—p] 15| 14| o 1 0 1 15| 14| o 1 0 Lost
\ALA AA ALA A
oP BIT NO. 231 22| 21| 20

LWF CONTENT "0 | 1]1] 0

Meaning: Perform a one bit rotational shift of a 17 bit
operand in the Rotate/Shifter where bit 17 is formed by
the CPU Flag. The rotate moves left one bit, if L1 is the
SPECIAL code, or right one bit, if R1 is the SPECIAL
code. If neither L1 or R1 are specified, LWF has no effect.

ROTATIONAL RIGHT SHIFT: SPECIAL=R1 ROTATIONAL LEFT SHIFT: SPECIAL=L1
ALU Contents ALU Contents
15(18) ¢ o o o o o 0 15 18] e o o o eol11lo0
A A ' A kIR Rk
F & —»! F
CPU Flag ‘\ o CPU Flag

c. If the test bit is a zero, the S-bus (B-register value) is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

d. In either case, the A-register is shifted right and ALU
bit 0 fills vacated bit position 15. Bit 0 of the A-register
is lost. The multiply step is complete.

Usage: This micro-instruction, repeated 16 times by
spemfymg the SPECIAL code RPT in the precedmg

required in a multlply algorithm. The base set multiply
operation is shown in the Basic Instruction Set
microprogram in Appendix E at the label =MPY.

Each step of the multiply algorithm effectively multiplies
the L-register by the A-register bit that corresponds to the
step; that is, step one multiplies the L-register by bit 0 of
A-register, step two multiplies the L-register by bit 1 of
the A-register, etc. Thus to multiply the L-register by all
16 bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts
and additions as described under ‘“Meaning’’, the initial
contents of the B-register are added to the final result of
the multiply algorithm. If the B-register is not zero before
the multiply steps are begun, 16 multiply steps will yield
‘the 32 bit result in the B- and A-registers (where the Least
Significant Bits (LSB’s) are in the A-register):
(B,A) = [(AxL) + B]

This may be useful in some computational procedures. For
example: X(2) = X(1) + (YxZ).

4-6

Microprogramming Language 21MX
oP Required micro-instruction mnemonic fields:
MPY oP SPECIAL ALU STORE S-BUS
MPY R1 ADD B B
Required micro-instruction binary fields:
23| 22|(21|20 (19|18 |17| 161514 | 13| 12|11 |10 9 8| 7 6| 5] 4 3112 1 0
oP ALU S-BUS STORE SPECIAL
0 1 ofo 011 010 {1 0 1 0|1 o 0] 1 0 110 0] 0]1 o|o
Meaning: Perform a multiply step where the multiplier is Initial Contents:
in the L-register and the multiplicand is in the A-register.)))
The multiply step is executed as follows: B-register A-register L -register
Value to be added Multiplicand Multiplier
a. Test bit 0-of the A-register. to the final result
b. If the test bit is a one, the L-register is added to the After Repeating the
S-bus (B-register value) in the ALU. The result is Multiply Step 16 Times:
shifted right one bit and stored back into the Bqug;ster (AxL)*B (AXL)'B Multiptior
with the ALU Carry Out bit forming bit 15. 16 Most 16 Least (unchanged)
Significant bits Significant bits

opP BIT NO. 23|22 | 21

READ CONTENT | 1]0]| 0] 1

Meaning: Read data into the T-register from the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy.

Usage: The data must be removed from the T-register two
micro-instructions after the READ instruction. Note that
the M-register must be loaded (M, PNM, or CM in the
Store field) prior to or during the Read micro-instruction.
The A- or B-register Addressable Flags (AAF or BAF,
respectively) are set, according to data present on the
T-bus when the M-register is loaded. Specify INC in the
ALU field when the address being stored into the
M-register could be a 0 or 1 (A- or B-register addressed).
This assures that data is extracted from the proper
register when TAB micro-order is used in the S-bus field.

T-bus when M Register Referenced By
Store is specified AAF BAF TAB in S-bus or Store Field
1 1 0 A
2 0 1 B
any other value 0 0 T

21MX

op

NOP

BIT NO. 23

22

21

20

SPECIAL

CONTENT | ¢

ICNT

BIT NO.

CONTENT

Microprogramming Language

Meaning: Standard Operation. No operation is specified
for the Op Code field.

Usage: This is the default micro-order when the OP Code
Field is left blank.

oP BIT NO. 2322 21| 20

WRTE CONTENT [0 | 1 | 1 1

Meaning: Write data from the T-register into the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy. Two micro-
instruction times are required to complete the write.

Usage: The T-register should be loaded during the write
instruction and must not be altered by the next sequential
micro-instruction; otherwise the Dual Channel Port Con-
troller data-transfers could destroy.the data.

Meaning: Increment the Counter Register by one.

SPECIAL BIT NO. 4 3 2 (1 0

INCI CONTENT 1 0 1 0 1

Meaning: Increment the Indirect Counter in the Memory
Protect Option (if installed) by one.

Usage: Used by microprograms that implement indirect
addressing. If INCI is executed three times within the
same microprogram, the Interrupt Enable Flag is set to
allow the CPU to recognize interrupts. Used to prevent
multiple indirect addressing levels from holding off
recognition of I/0 interrupt requests.

4-3. SPECIAL MICRO-ORDERS

SPECIAL BIT NO. 4 3| 2

CLFL CONTENT | 0 1| 0
Meaning: Clear the CPU Flag.

SPECIAL BIT NO. 4 | 3| 2

cov CONTENT ol 111
Meaning: Clear the Overflow Register bit.
SPECIAL BIT NO. 4 3 2

FTCH CONTENT | 9| 1 | 0

SPECIAL

BIT NO.

IOFF CONTENT o | 0|0 |0 O

Meaning: Turn off the Interrupt Enable flag to disable
recognition of normal interrupts (does not disable memory
protect, parity, or power fail interrupts).

Usage: After three occurrences of INCI (see INCI Usage)
in the SPECIAL Field, interrupts are again recognized
and cannot be disabled until a FTCH micro-order occurs.
The ION micro-order is normally used to re-enable
interrupt recognition.

IOFF should be used with caution, since holding off
interrupts could cause the loss of input and output data.

SPECIAL

10G

BIT NO.

CONTENT

Meaning: Move the Main Memory address contained in
the M-register (usually the address of the next macro-
instruction to be executed) to the Memory Protect
Violation Register. Clear out the Memory Protect
Violation flag and reset the Indirect Counter.

Usage: This micro-order must be used during, or one
micro-instruction after, the initiation of a READ from the
address of the next macro-instruction to be executed. This
micro-order must be used if the Memory Protect feature is
installed on the computer.

Meaning: Freeze the CPU until time period T2. Then
execute the base set I/0 macro-instruction that is in the
Instruction Register.

Usage: Microprogrammed input and output require
cooperation between the I/0 Section and microprogram
control. Familiarity with the I/O system is mandatory.
See section 3-25 and the following sections for a more
detailed description of I/0 microprogramming.

OCT 1974 41

Microprogramming Language

SPECIAL BIT NO. 413|210

ION CONTENT | 0| o 1| o 1

Meaning: Turn the Interrupt Enable flag on to enable
recognition of interrupts. Allow the CPU to recognize
standard device interrupts until the micro-order IOFF is
executed.

Usage: After ION has been executed, the CPU can detect
an interrupt from any I/0 device in two ways:

a. If a JMP or RTN to location 0 of Control Store (the
macro-instruction read and decode routine) is executed
and an interrupt is pending or the Run flag is clear,
execution is forced to location 4 in Control Store, which
is the interrupt handler routine.

b. A test for interrupt pending or Run flag clear can be
performed by the executing microprogram by
executing INT, NHOI, or RUN in the Jump Condition
field.

ION allows interrupts to be recognized. However
interrupts are not generated by the interrupt system until
a STF 0 I/0 control command is executed. Refer to the
discussion of the interrupt system in the HP 21MX
Computer Series Reference Manual.

SPECIAL BIT NO. 4|1 3(21]0

JTAB

CONTENT 1 1 0 1 1

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram, based on the eight most
significant bits (bits 15 through 8) of the Instruction
Register. This is accomplished via a table look-up of the
address in the main jump table for the basic instruction set
(see figure 3-2).

The Save Register is cleared to 0. JTAB overrides the
effects of JMP or JSB in the OP code field.

SPECIAL BIT NO. 4 31 2]1 0

L1 CONTENT 0 0 0 1 0

Meaning: Left one bit command to the Rotate/Shifter.

21MX

SPECIAL BIT NO. 413|210

L4 CONTENT o|lo| o0 11 1

Meaning: Four bit circular left shift command to the
Rotate/Shifter (R/S).

C
{
1

1
torss [15[1a]13[2[1]r0] o8] 7]6s]al3]2]1]0]}]

YV VY VYY YV YY Y rlrvv‘}
[1s]ra]as]r2] 1] 0] o J8] 76 [5[a]3]2]1]0]

TO T-BUS

Usage: Used in conjunction with the shift and rotate
operations.

SPECIAL BIT NO. 41 3(2]1]0

Meaning: Check the address placed on the S-bus for a
memory protect violation.

Usage: An S-BUS micro-order must be used in con-
junction with MPCK.

This check should be performed before any write to Main
Memory (WRTE OP-code), if the memory protect feature
is installed. Refer to section 3-27 for details on use of
MPCK with the I/0 system.

SPECIAL BIT NO. 4 3|1 21110

NOP CONTENT 0 0 1 1 1

Meaning: No SPECIAL operation is performed.

Usage: This is the default operation if none is specified in
the SPECIAL field.

Lost 15

14

1

0

Zero

SPECIAL

RPT

BIT NO.

CONTENT

kR Rk

Usage: See MPY, DIV, CRS, LGS, ARS, LWF. Without
one of the previous Op Codes, L1 performs a one bit logical
left shift on data leaving the ALU.

4-8

Meaning: Repeat the following micro-instruction incre-
menting the Counter Register after each time the repeat is
executed. When the lower four bits of the Counter Register
are set, execute the following micro-instruction once. The
lower four bits of the Counter Register are set at the
completion of the repeat sequence. Thus, the repeat is
executed the number of times specified in the lower four
bits of the Counter Register in two’s complement form.

21MX
SPECIAL BIT NO. 413|2|1}o0
R1 CONTENT [0 |[OD |1 {0]| O

Meaning: Right one bit command to the Rotate/Shifter.

Zero 15| 14| o | 1 0 ¥ Lost
A A A

Usage: Used in conjunction with the shift and rotate
instructions. See MPY, DIV, ARS, CRS, LGS, LWF.
Without one of the previous micro-orders, a single bit
logical right shift is executed.

SPECIAL BIT NO. 41 3 2|1 0

RTN CONTENT | 1 |1 |1]|1]0

Meaning: Return from subroutine. Jump to the address
held in the Save register and clear the Save register.

Usage: No more than one subroutine level is permissable.
The second RTN encountered causes a jump to ROM
address 0 (the address contained in the Save register)
where the macro-instruction pointed to by the P-register is
read. RTN overrides the effect of a JMP or JSB in the OP
code field.

SPECIAL BIT NO. 413 2|1/(0

SHLT CONTENT 110]1]0¢{0O

Meaning: Clear the Run Flag (request a CPU halt).

Usage: The Run Flag is actually cleared at the completion
of the micro-instruction following the one specifying
SHLT. This micro-order should be used with caution by
the microprogrammer. Once the Run Flag is clear, the halt
request (SHLT) is detected:

a. when a RTN or JMP to address 0 in Control Store
(fetch routine) is executed

b. when the Run Flag is tested by RUN or NHOI Jump
Condition micro-order.

SPECIAL BIT NO. 4 (3| 2|10

sov CONTENT | 0| 1 [0 |1 {1

Meaning: Set the Overflow Register

SPECIAL BIT NO. 4 31211 0

SRGE CONTENT 011 111 0

Meaning: If Instruction Register bit 5 is set, clear the
Extend Register bit.

Conventions: This micro-order is used by the Basic
Instruction Set that implements the Extend Register
instructions.

Microprogramming Language

SPECIAL BIT NO. 4 31 2 (1 0

SRG1 CONTENT f 0ol O 1|1] O

Meaning: Execute the Shift/Rotate function specified by
bits 6 through 9 of the Instruction Register (Shift/Rotate
instruction in the first position; see HP 21MX Computer
Series Reference Manual.) The Shift/Rotate function is
performed on the data that leaves the ALU. The function
performed in the R/S is determined by IR bits 6 through 9
as follows:

91;lt7$6 Function Performed In R/S
1000 Arithmetic left shift one bit
1001 Arithmetic right shift one bit
1010 Rotational left shift one bit
1011 Rotational right shift one bit
1100 Arithmetic left shift one bit, clear sign
bit 15
1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)
1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)
1111 Rotational left shift four bits
Oxxx No shift (bits 8, 7, and 6 can have any
setting)
SPECIAL BIT NO. 4 3 2 1 0
SRG2 CONTENT 0 0 0 0 1

Meaning: Execute the Shift/Rotate function specified by
bits 0 1, 2 and 4 of the Instruction Register (Shift/Rotate
instruction in the second position; see HP 21MX
Computer Series Reference Manual). The Shift/Rotate
function is performed on the data that leaves the ALU.
The function performed in the R/S is determined by IR
bits 0, 1, 2 and 4.

4131250 Function Performed in R/S

1000 Arithmetic left shift one bit

1001 Arithmetic right shift one bit

1010 Rotational left shift one bit

1011 Rotational right shift one bit

1100 Arithmetic left shift one bit, clear sign
bit 15

1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)

1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)

1111 Rotational left shift four bits

Oxxx No shift (bits 8, 7, and 6 can have any
setting)

Microprogramming Language

SPECIAL

BIT NO.

SRUN

CONTENT

Meaning: Set the Run Flag (remove the CPU halt

request).
SPECIAL BIT NO. 4 3 2 1
STFL CONTENT (o0 (1]l 00
Meaning: Set the CPU flag.
4-4. ALU MICRO-ORDERS
ALU BIT NO. 19|18 (17|16 | 15
ADD CONTENT 0 1 0 0 1

ALU

INC

Meaning: Increment the data on the S-bus by one; pass

BIT NO.

19

18

17

16

15

CONTENT

the result to the Rotate/Shifter.

ALU

IOR

Meaning: Logical inclusive or of L-register and S-bus
(L+S); L-register contents are not disturbed; pass result

BIT NO.

19

18

17

16

15

CONTENT

to Rotate/Shifter.

ALU

NAND

BIT NO.

CONTENT

19

18

17

16

15

Meaning: Add the data placed on the S-bus to the
contents of the L-register; the L-register contents are not
disturbed; pass the result to R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

Meaning: Logical nand of L-register and S-bus (L*S); pass
result to Rotate/Shifter.

ALU

ALU

AND

BIT NO.

CONTENT

19

18

17

16

15

1

NOR

BIT NO.

CONTENT

19

18

17

16

15

11011

Meaning: Logical and of L-register and S-bus (L°S); the
L-register contents are not disturbed; pass the result to
R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

Meaning: Logical nor of L-register and S-bus (L+S); pass

result to Rotate/Shifter.

ALU

NSAL

BIT NO.

CONTENT

19

18

17

16

15

ALU

CMPL

Meaning: Ones complement the L-register; pass the result

BIT NO.

CONTENT

to Rotate/Shifter.

ALU

CMPS

BIT NO.

CONTENT

19

18

17

16

15

1

0

1

0

1

Meaning: Logical and of the complement of the S-bus and
the L-register (S'L); pass result to Rotate/Shifter.

19

18

17

16

15

ALU

NSOL

BIT NO.

CONTENT

19

18

17

16

15

1

0

0

0

o

Meaning: Ones complement the data on the S-bus; pass

Meaning: Logical or of the complement of the S-bus and
the L-register (S+L); pass result to Rotate/Shifter.

the result to Rotate/Shifter.

ALU

DEC

BIT NO .

CONTENT

19

18

17

16

15

0

1

ALU

ONE

BIT NO.

CONTENT

19

18

17

16

15

0

0

Meaning: Decrement the data on the S-bus by one; pass
the result to the Rotate/Shifter.

4-10

Meaning: Set all 16 bits (logical one) and pass them to the
Rotate/Shifter.

21MX
ALU BIT NO. 19(18 |17 |16 | 15
OP1 CONTENT | O [O] O] O] 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where ‘“+’’ means logical function ‘“‘or”’.

ALU BIT NO. 1918|1716 |15

OoP2 CONTENT (O O O 1|00

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where “+’’ means logical function “or” and L means the
ones complement of the L-register (not L).

ALU BIT NO. 19|18 |17 |16 | 15

oP3 CONTENT | O] O | 1|0} O

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S'T) plus 1

’
e

where means logical function “‘and” and L means the
ones complement of the L-register (not L).

ALU BIT NO. 19|18 17| 16| 15

OP4 CONTENT | O | O] 1| O] 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S-L) plus 1
where ‘~”’ means logical function ‘“‘and”’, *“+"’'means logical
function “‘or”’, and L. means the ones complement of the
L-register (not L).

ALU BIT NO. 191817 (16|15

OPS CONTENT | O | O | 1 111

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S'L)

(R

where means the logical function “and” and L means
the ones complement of the L-register (not L).

Microprogramming Language

ALU BIT NO. 19|18 17|16 |15

0oP6 CONTENT of1j]0|0]O

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S°L)

Cegrr

where means the logical function ‘“‘and”.

ALU BIT NO. 19181716 | 15

OoP7 CONTENT o|1]0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S-L)
where ‘“+’’ means log;ical function ‘‘or”’, ‘”’ means logical
function “and”, and L means the ones complement of the
L-register (not L).

ALU BIT NO. 19(18 (17 (16| 15

oP8 CONTENT 01 0|1 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(SeLl) minus 1

where ‘<’ means the logical function “‘and”.

ALU BIT NO. 19|18 |17 |16 |15

oP9 CONTENT | 0 | 1 1100

Meaning: Perform the following logical function in the
ALU with the S-bus:

S plus S

ALU BIT NO. 19118117 |16 | 15

OP10 CONTENT of1|1]0¢}1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where ‘“+’’ means the logical function “or’’.

4-11

Microprogramming Language

ALU BIT NO . 19|18 17|16 |15

OP11 CONTENT 0|1 1 110

—

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where “+" means the logical function “‘or’” and L means
the complement of the L-register (not L).

ALU BIT NO . 19|18 |17 (16| 15

PASL CONTENT | 1| 1] 0] 1] 0

Meaning: Pass the L-register to the Rotate/Shifter.

ALU BIT NO. 1918 |17 |16 |15

PASS CONTENT 1 1 1 1 1

Meaning: Pass the S-bus data to the Rotate/Shifter.

ALU BIT NO. 19118 |17|16 | 15

SANL CONTENT 1 o111 1

Meaning: Logical and of the S-bus and the complement of
the L-register (S+L); pass the result to the Rotate/Shifter.

ALU BIT NO. 19|18 17|16 | 15

SONL| CONTENT | 4| 1| 1] ol 1

Meaning: Logical or of the S-bus and the complement of
the L-register (S+L); pass the result to the Rotate/
Shifter.

ALU BIT NO. 19118 |17 (16 | 15

suB CONTENT 0|0 |1 1 0

Meaning: Subtract the L-register from the S-bus and pass
the result to Rotate/Shifter.

ALU BIT NO. 19|18 (17|16 |15

XNOR

CONTENT 1 11]0[(0]1

Meaning: Logical exclusive nor of the L-register and the
S-bus; (LeS) and pass it to the Rotate/Shifter (¢ means
“exclusive or”’.)

ALU BIT NO. 19|18 |17 |16] 15

XOR CONTENT 11011 1 0

Meaning: Logical exclusive or of the L-register and the
S-bus (L®S); pass the result to the Rotate/Shifter (o
means ‘‘exclusive or”.)

4-12 OCT 1974

21MX

ALU BIT NO. 1918|1716 15

ZERO CONTENT | 0| 0| 0|1 1

Meaning: Pass all zeros to the Rotate/Shifter.

ALU BIT NO. 19 (18 117 |16 | 15

OP13 CONTENT |1 |O | O |1 1

Meaning: Pass all zeros to the Rotate/Shifter.

4-5. STORE MICRO-ORDERS

STORE BIT NO. 9|8|7|6]s5

A CONTENT ol 1 ol 1 1

Meaning: Store the data on the T-bus in the A-register.

STORE BIT NO. 9|/ 8| 76|65

B CONTENT o[1(0 | 1] 0

Meaning: Store the data on the T-bus in the B-register.

STORE 8IT NO. 9| 8|76l s

CAB CONTENT | 0| ol 0l 0| 1

Meaning: Store the data on the T-bus in the A- or
B-register according to the value of IR bit 11:

IR bit 11 set means B-register
IR bit 11 clear means A-register

STORE BIT NO. o9ls|l 765

CcM CONTENT ol 1 1 0 1

Meaning: Store the data on the S-bus in the M-register, if
the IR holds any Memory Reference instruction except a
direct jump (JMP). Refer to the HP 21MX Computer
Series Reference Manual, for a description of the Memory
Reference instructions.

AAF or BAF is set as described under Usage for the M
Store micro-order, whether or not the IR holds a Memory
Reference instruction.

STORE BIT NO. 918 7| 6]|65

CNTR CONTENT | oo | 1| 0] 1

Meaning: Store the lower eight bits of the S-bus (bits 0-7)
in the Counter Register.

21MX

STORE BIT NO. 9|18 7(|6]65

DSPI CONTENT | oo | 1| 1|1

Meaning: Store the lower six bits of the S-bus in the
Display Indicator on the front panel.

Display Indicator Bit 5| 4 3 2 1 (1]

Register Displayed S P T M| B|A

Usage: The six indicators on the front panel, labelled A, B,
M, T, P and S are lit according to the bit(s) cleared in the
Display Indicator. At power-up all bits are set until pro-
grammatically changed.

STORE BIT NO. 9|18 7]|6]|65

Microprogramming Language

STORE BIT NO. 98 7]6]|5

M CONTENT ol 1 ol of 1

Meaning: Store the data on the S-bus in the M-register.

Usage: An ALU micro-order (for example, INC) should
also be specified in the micro-instruction. This will activate
an A- or B-register addressable test. If bits 14 through 0
on the T-bus equal 1 or 2, the AAF or BAF, respectively,
will be set. The M-register may be stored into immediately
after a READ or WRTE Op micro-order.

STORE BIT NO. 98| 7|65

NOP CONTENT ol 1 1 1 1

Meaning: No store operation is performed; this is the
default micro-order when the Store field is left blank.

DSPL

Meaning: Store the data on the S-bus in the Display

CONTENT

0

Register on the Front Panel.

STORE

100

BIT NO.

CONTENT

9

0

STORE

BIT NO.

CONTENT

9

8

1

1

Meaning: Store the data on the T-bus in the P-register
(Program Address Register).

STORE

BIT NO.

9

8

5

Meaning: Direct the S-bus onto the I/0-bus.

Usage: This micro-order when used must be in the second
and third instructions (T3 and T4) after IOG Special
micro-order. See section 3-25 and the following sections for
a description of I/0O microprogramming.

STORE BIT NO. 91 8|7]|6]|65

IR CONTENT |0 |1| 00| o0

Meaning: Store the data on the S-bus in the Instruction
Register. Record the type of macro-instruction stored
there in the Memory Protect hardware for use in
determining error conditions during Instruction Register
execution. See sections 3-28 and 3-34 for a description of
Interfacing With Memory Protect feature.

STORE BIT NO. 9|1 8| 7]|6|65

L CONTENT [0 | 0|0 | 11

Meaning: Store the data on the S-bus in the L-register
(Latch).

PNM CONTENT ol 1 1 110

Meaning: Store the data on the T-bus in the P-register
(Program Address Register), and the data on the S-bus
into the M-register (Memory Address Register).

Usage: Useful in microprograms which perform multiword
READ operations from Main Memory, where the
P-register points to the address in Main Memory to be
read. In a single micro-instruction the microprogram can
store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an
application is the following:

READ - - INC PNM P

The A- or B-register addressable test is activated. See
Usage under M micro-order, above.

STORE 8IT NO. 918 7|6(65

S CONTENT 1 1 1 1 1

Meaning: Store the data on the T-bus in the S-register.
4.13

Microprogramming Language 21MX
STORE STORE| giT NO. 9(8|7|6]|s SBUS| BIT NO. 14|13[12]11]10
THRU
S1 S12 CONTENT 1 n|n|nj|n B CONTENT [0| 110}l 1] 0

nnnn is binary representation of decimal number 0 + 11

Meaning: Store the data on the T-bus in the indicated
Scratch Pad Register S1 to S12.

STORE| BIT NO. 918|7]|6]|65

T CONTENT olo0] o 1 0

Meaning: Store the data on the S-bus in the T-register
(Memory Data Register).

Usage: This micro-order should occur concurrently when a
WRTE micro-order is used. The T-register is internal to
the Memory System. It must not be used as a working
register.

STORE BIT NO. 9|1 8| 7(6]5

TAB CONTENT ololololo

Meaning: Store the data on the T-bus in the A-register if
the AAF (A addressable Flag) is set; store the data on the
T-bus in the B-register if the BAF (B addressable Flag) is
set; store the data on the S-bus into the T-register
(Memory Data Register) if neither AAF nor BAF is set.

Usage: Same as T micro-order.

STORE BIT NO. 98| 76|65

X CONTENT 1 1 1 ol o

Meaning: Store the data on the T-bus in the X-register.

STORE 8IT NO. 9|1 817|665

Meaning: Store the data on the T-bus in the Y-register.

4-6. S-BUS MICRO-ORDERS

S-BUS BIT NO. 1413 |12({11]10

A CONTENT ol 1 0ol 1 1

Meaning: Direct the data in the A-register onto the S-bus.

S-BUS BIT NO. 14 (13|12 (11|10

ADR CONTENT | 0| 1|/ o] o o

Meaning: An address is formed on the S-bus using IR bits
0-9 and M-register bits 10-14; if IR bit 10 is clear, bits
10-14 of the address formed on the S-bus are clear. Bit 15 is
always clear. IR bit 10 is the zero page/current page flag.

414 OCT 1974

Meaning: Direct the contents of the B-register onto the
S-bus.

S-BUS BIT NO. 1411311211] 10

CAB CONTENT | o | 0| O | O 1

Meaning: Direct the contents of the A- or B-register onto
the S-bus according to the value of IR bit 11:

IR bit 11 set means B-register
IR bit 11 clear means A-register

S-BUS BIT NO. 14113112111 |10

CIR CONTENT [gl o] 0| 1 1

Meaning: At I/0 time T6 place the contents of the Central
Interrupt Register onto the S-bus and generate an TAK
(Interrupt Acknowledge) signal to the I/0 device. (See
section 3-33 for CIR description in relation to Interrupt
Handling).

Usage: This micro-order must be used after detection of an
I/0 interrupt to determine the select code of the inter-
rupting device and to acknowledge that the interrupt is
being serviced.

S-BUS BIT NO. 14(13]12]11]10

CNTR CONTENT ofo0f(110]1

Meaning: Direct the contents of the Counter Register onto
the S-bus. The 8 bit Counter Register is placed onto the
low 8 bits of the S-bus; the upper 8 bits are set to ones.

S-BUS BIT NO. 14 (13121110

DSPI CONTENT | o | o | 1|1] 1

Meaning: Direct the six bits of the display Indicator from
the Front Panel to the S-bus. The upper 10 bits of the
S-bus are set to ones.

Usage: See DSPI Store field definition for Display
Indicator bit significance.

S-BUS BIT NO. 14113112 (11|10

DSPL CONTENT | 0| 0 | 1 110

Meaning: Direct the contents of the Front Panel Display
Register onto the S-bus.

21MX

S-BUS BIT NO. 1411311211110

101 CONTENT | 0| O | 1 o|o0

Meaning: Direct the I/0 bus onto the S-bus. (See section
3-25, Microprogramming Input and Output Functions.)

Usage: This is used to transfer data from an I/0 device to
the S-bus. When not in use, the I/0 bus is all zeros.
However, do not try to use the I1/0 bus for a source of zero
data, since it is used by the Dual Channel Port Controller
at indeterminate times.

S-BUS BIT NO. 141131211110

LDR CONTENT 0| 1|1 |0]O0

Meaning: Place one 4-bit-byte from a Loader ROM on the
S-bus. The 4-bit-byte address is contained in the Counter
Register. Determination of which Loader ROM, of the four
Loader ROMs available, is specified by bits 15 and 14 in
the Instruction Register.

INSTRUCTION REGISTER

13[12[o] o] 8] 7]6[s5]a]3]2]1]0

15

>

nin

——

L—> Select Loader ROM nn, where nn is between binary 00 and 11

COUNTER REGISTER ROM nn
7]efs]e]sf[2][1]o 0[172]3] Octal addresses range
LOADED ROM ADDRESS a als{6|7 from 0 to 377
Each addressed location
10[11]12]13]| contains a 4-bitbyte
\\ of data
—[]
R o

rrrr was contents of
ROM nn, address a

S-BUS

Usage: See sample microprogram in section 3-41 for an
illustration of the use of the LDR micro-order.

S-BUS BIT NO. 14113121110

M CONTENT | 0 [1 0|01

Meaning: Direct the 15 bit contents of the M-register onto
the S-bus. Bit 15 of the S-bus is cleared.

S-BUS BIT NO. 1411311211 (10

NOP CONTENT 0 1 1 1 1

Meaning: The S-bus holds all ones.

Usage: This is the default micro-order when the S-bus field
is left blank.

Microprogramming Language
S-BUS BIT NO. 14{13[12]11]10
P CONTENT | 1| 1|11]o0

Meaning: Direct the contents of the P-register onto the
S-bus.

S-BUS BIT NO. 141312 |11 (|10

S CONTENT 1 1 1 1 1

Meaning: Place the contents of the S-register (Front Panel
Switch Register) onto the S-bus.

S-BUS S-BUS| BIT NO. 14113121110

S1 THRU| §12 CONTENT 1 n|n|n}|n

nnnn is binary representation of decimal numbers O to 11

Meaning: Place the contents of the indicated Scratch Pad
Register S1 to S12 onto the S-bus.

S-BUS BIT NO. 1413|1211)10

T CONTENT [0ol 0| O} 1 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus.

Usage: Data in the T-register that resulted from a READ
operation must be removed within two micro-instructions
afer the READ or the Dual Channel Port Controller could
alter the data.

S-BUS BIT NO. 14113112111 |10

TAB CONTENT 0| O oo 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus if neither AAF (A
addressable Flag) nor the BAF (B addressable Flag) is
set; read the A-register onto the S-bus, if the AAF is set;
read the B-register onto the S-bus if the BAF is set.

Usage: See T-register Usage description.

S-BUS BIT NO. 14113121110

X CONTENT 1 1 1/]01]0

Meaning: Direct the contents of the X-register onto the
S-bus.

S-BUS BIT NO. 1411311211 {10

Y CONTENT | 19 1 1 011

Meaning: Direct the contents of the Y-register onto the
S-bus. ‘

4-15

Microprogramming Language 21MX
4-7. WORD TYPE 2 — IMMEDIATE
DATA :
Charactor
Column:
1 10 15 20 25 30 40 80
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL “IMM SPECIAL MODIFIER STORE OPERAND COMMENTS
Figure 4-3. Word Type 2 Micro-assembler
Mnemonic Format
BitNo. | 23| 22| 21| 20|19(18|17 | 1615|1413 |12|11|{10]| 9| 8 7 6 5|4} 3 2 1 0
Fields o’,’,"é"a".é'e OPERAND STORE SPECIAL
e —
MODIFIER

Figure 4-4. Word Type 2 Binary Format

There are five micro-order classifications in Word Type 2: 4-9. MODIFIER MICRO-ORDERS (BITS 19 AND
18 OF THE MICRO-INSTRUCTION)
o “IMM” — OP Code specifying Word Type 2.
SPECIAL — Special ti d modifiers.
° POGIET OPSralions, eie Toditiers Bit 19 Set: specifies complement the S-bus data in the

e MODIFIER — A special modifier for the Immediate

Operation.
STORE — Destination of the data.

OPERAND — Binary data that is to be placed on the
S-bus.

The STORE and SPECIAL micro-orders applicable to
Word Type 2 are exactly the same as those defined for
Word Type 1. Consequently, only the other three
micro-order groups are defined in the following sections.
The “IMM” and MODIFIER micro-order groups are
defined by the mnemonic, by its binary equivalent, and
finally, by the meaning.

Bit 19 Clear:

Bit 18 Set:

Bit 18 Clear:

ALU.

specifies pass the S-bus data through the
ALU.

specifies OPERAND goes in bits 7-0 of the
S-bus.

specifies OPERAND goes in bits 15-8 of
the S-bus.

MODIFIER BITNO. |19 18
4-8. “IMM” MICRO-ORDER CMHI CONTENT |1 | O
“IMM”* BIT NO. 2322|212
Meaning: The 16 bits received by the S-bus consist of the
IMM CONTENT [1| 1] 11]o0 following:
Meaning: Place 16 bits onto the S-bus consisting of the 8 Bits 15-8 = OPERAND
bit binary OPERAND and another 8 bits of all ones. Bits 7-0 = all ones

Determination of which 8 bits of the S-bus receive the
OPERAND and which 8 bits receive all ones is made by
the MODIFIER.

4-16

The S-bus is then complemented as it passes through the

ALU.

21MX Microprogramming Language

BIT NO. 5|14 }|13|12|11|10| 9| 8| 7| 6| 5| 4 3|1 211 0
S-Bus
CONTENT OPERAND 1 1 1 1 1 1 1 1
BIT NO. 15(14{13|(12|11|{ 10| 9| 8| 7| 6 | 5] 4 3121110
Out of ALU
CONTENT OPERAND Complemented 0J]ojJ]o0ojlojJojojojoO
MODIFIER BIT NO. 19| 18
CMLO CONTENT | 1 1

Meaning: The 16 bits received by the S-bus consist of the

following:
Bits 15-8 = all ones
Bits 7-0 = OPERAND
The S-bus is then complemented as it passes through the
ALU.
BIT NO. 1514|113 |12 }|11]10]| 9 8 7 6|5 4 3 2 1 0
S-Bus
CONTENT 1 1 1 1 1 1 1 1 OPERAND
BIT NO. 15(14|13(12 11|10} 9 8 7 6|5 4 3 2 1 0
Out of ALU
CONTENT 0 0 0] 0 0 0 0 0 OPERAND Complemented
MODIFIER BITNO. |19 18
HIGH CONTENT | 0| ©

Meaning: The 16 bits received by the S-bus consist of the

following:
Bits 15-8 = OPERAND
Bits 7-0 = all ones

The S-bus is then passed through the ALU without
modification.

Out of ALU

S-Bus and BIT NO. 15(14)13}12|11)10| 9| 8| 7| 6|5]| 4 31211 0
CONTENT OPERAND 1 1 1 1 1 1 1 1

4-17

Microprogramming Language 21MX
MODIFIER BITNO. |19 |18
Low CONTENT | O | 1
Meaning: The 16 bits received by the S-bus consist of the
following:
Bits 15-8 = all ones
Bits 7-0 = OPERAND
The S-bus is then passed through the ALU without
modification.
2 1
S-Bus and BIT NO. 15|14 (13|12 |11|10]| 9 8 Gl 5 I 4 I»3 0
Outof ALU | conTent | 1 |1 | 1|1 |11 |11 OPERAND
4-10. OPERAND MICRO-ORDER
OPERAND BITNO. |19 18|17 (16|15 |14 |13 |12 11|10
Integer CONTENT Binary Integer Equivalent
The Integer can be an octal number or decimal number:
o Decimal number in range 0 to 255.
o Octal number in range 0 to 377, followed by ‘“B’’.
Examples:
117B, 117, 198, 5, 10B
4-11. WORD TYPE 3 — CONDITIONAL JUMP
Charactor
Column ;
1 10 15 20 25 30 40 80
A
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL “JMP " ‘“CNDX CONDITION JUMP SENSE OPERAND COMMENTS
Figure 4-5. Word Type 3 Micro-assembler Mnemonic Format
BitNo. | 23| 22| 21| 20{19| 18|17 |16 (15| 14|13 [12|11|10]| 9 7 6 5|14| 3 2 1 0
. Ty “CNDX"
Fields op CODE CONDITION OPERAND SPECIAL CODE
N’
JUMP
SENSE

Figure 4-6. Word Type 3 Binary Format

4-18

21MX

There are five micro-order classifications in Word Type 3:

e “JMP” — Op Code used in conjunction with “CNDX”’
specifies Word Type 3, a conditional jump.

e “CNDX” — SPECIAL Code specifying Word Type 3.

e CONDITION — Condition that must be satisfied
before jump is executed.

e JUMP SENSE — Optional code to invert the jump
condition.

e OPERAND — Target address of jump.
All micro-order groups, except the OPERAND, are

defined by the mnemonic, its binary equivalent, meaning,
and, where necessary, by conventions in their use.

4-12. “JMP” MICRO-ORDER
“JMP”’ BIT NO. 2322121 20
JMP CONTENT 1 1 ol 1

Meaning: Used in conjunction with the SPECIAL Code
“CNDX”, the CONDITION code specifies the condition
under which a jump to the address specified in the
OPERAND will take place. If the JUMP SENSE code
“RJS” is specified, the CONDITION code specifies the
condition under which no jump will take place.

4-13. “CNDX” MICRO-ORDER
"CNDX"’ BIT NO. 4 3 2 1 0
CNDX CONTENT (91 (1|00 1

Meaning: Used in conjunction with the Op code “JMP”,
this micro-order specifies a conditional jump and Word
Type 3.

4-14. CONDITION MICRO-ORDERS

The ALU and T-bus condition flags are set after each
Word Type 1 or 2 micro-instruction. They are not changed
during JMP or JSB micro-instructions (Word Types 3 and
4). Thus, several different jump tests can be made without
losing the flag results.

CONDITION BIT NO. 19|18 1716 | 15

ALO CONTENT 0 o| o0 1 1

Meaning: Bit 0 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction.

CONDITION

AL15

Meaning: Bit 15 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1

BIT NO.

CONTENT

or 2 micro-instruction.

CONDITION

ASGN

Meaning: Alter/skip macro-instruction condition is not

satisfied.

CONDITION

CNT4

Meaning: The right (least significant) 4 bits of the Counter

BIT NO.

CONTENT

BIT NO.

CONTENT

Register are all ones.

\
CONDITION

CNT8

Meaning: All eight bits of the Counter Register are ones.

CONDITION

CouT

Meaning: The ALU Carry Out Flag bit was set by the last
ALU operation (tested before the Rotate/Shifter) of the

BIT NO.

CONTENT

BIT NO.

CONTENT

Microprogramming Language

19

18

17

16

15

0

0

1

0

0

19

18

17

16

15

19

18

17

16

15

19

18

17

16

15

19

18

17

16

15

0

0

0

1

0

last Word Type 1 or 2 micro-instruction.

CONDITION

E

BIT NO.

CONTENT

Meaning: The Extend Register bit is set.

CONDITION

FLAG

BIT NO.

CONTENT

Meaning: The CPU FLAG bit is set.

CONDITION

FPSP

Meaning: A special signal is present issued by certain non-

BIT NO.

CONTENT

19 (18117 |16 | 15
oO|1({0|0]1
1918|1716 | 16
011 olo]o
19|18 [17 (16 | 15
001 111

standard CPU Front Panels.

Microprogramming Language

CONDITION| g7 noO. 19|18 17|16 | 15

INT CONTENT 1 11011 0

Meaning: An Interrupt is pending.

CONDITION BIT NO. 19(18 (17|16 15

IR2 CONTENT 0|1 1 1 1

Meaning: Instruction Register bit 2 is set.

CONDITION BIT NO. 191817 |16 | 15

NMLS CONTENT ojo0|1{0|n1

Meaning: Memory was not lost as a result of the last
power down or power failure.

CONDITION BIT NO. 1911817 (16|15

NOP CONTENT 1 1 1 0|1

Meaning: No condition test is made; no jump occurs.

Usage: This is the default micro-order if none is specified
in the condition field.

CONDITION

NDEC

BIT NO.

CONTENT

19

18

17

16

15

CONDITION

BIT NO.

19

18

17

16

15

Meaning: The “DEC M” (Decrement M-register) button
on the Front Panel was not actuated.

CONDITION BIT NO. 1918|1716 15

NHOI CONTENT V] 1 1 0] 0

Meaning: The RUN/HALT switch on the Front Panel is
set to “Run’’ and there is no interrupt pending (i.e. no halt
and no interrupt).

Usage: This micro-order is recommended for use in long
microprograms. (85 microseconds or longer is the criterion
used by Hewlett-Packard produced microprograms.) This
is necessary since microprograms cannot be interrupted. A
pending interrupt or halt condition is not detected unless a
specific test is made for them.

CONDITION| gt NO. 19|18 | 17 [16|15

NINC CONTENT 1]0]0}|1]0

Meaning: The “INC M” (Increment M-register) button on
the Front Panel was not actuated.

CONDITION| g/t noO. 19|18 17|16 |15

NLDR

CONTENT 1 oj0jo0} O

Meaning: The “IBL” (loader) button on the Front Panel
was not actuated.

CONDITION BIT NO. 19|18 | 17|16 | 15

NLT CONTENT 1 0l 1 ol 1

Meaning: The “«” REGISTER SELECT LEFT button
on the Front Panel was not actuated.

420 OCT 1974

NRST CONTENT | 1| 0| 1| 1|1

Meaning: The DISPLAY button on the Front Panel was
not actuated.

CONDITION BIT NO. 19 (1811716 | 15

NRT CONTENT [1 J0o|[1 (0] 0

Meaning: The “‘ -’ REGISTER SELECT RIGHT button
on Front Panel was not selected.

CONDITION BIT NO. 19118 (17|16 | 15

NSFP CONTENT 1 1 [I 1) 1

Meaning: A standard Front Panel is not installed on the
CPU.

CONDITION BIT NO. 19118 |17 16| 15

NSNG CONTENT | 1 0[O0 {0 {1

Meaning: The INSTR STEP (Instruction Step) button on
the Front Panel was not actuated.

CONDITION BIT NO . 19| 18(17|16 |15

NSTB CONTENT 1 1 0 ol| o0

Meaning: None of the following Front Panel buttons were
actuated:

INSTR STEP (Instruction Step)
“->” REGISTER SELECT RIGHT
“<” REGISTER SELECT LEFT
DISPLAY

IBL (Binary Loader)

INC M (Increment M-register)
DEC M (Decrement M-register)
STORE

RUN

PRESET

21MX
CONDITION BIT NO. 1918|1716 |15
NSTR CONTENT 1 0|1 |1]0

Meaning: The STORE button on the Front Panel was not
actuated.

CONDITION BIT NO. 1918|1716 | 15

ONES CONTENT {0 0|[0 |01

Meaning: All 16 bits of the last output from the ALU were
set (tested before Rotate/Shifter) as a result of the last
Word Type 1 or 2 micro-instruction.

CONDITION BIT NO. 1918|1716 | 15

OVFL CONTENT (o f 1 |o0|1]| o0

Meaning: The Overflow Register bit is set.

CONDITION BIT NO. 19|18 17|16 | 15

RUN CONTENT 0 1 0 1 1

Meaning: The CPU is in RUN mode (the Front Panel
RUN flag is set).

CONDITION BIT NO. 191817 |16 | 15

Meaning: The four position STANDBY/OPERATE/
LOCK/R switch on the Front Panel is not in the LOCK
position.

CONDITION BIT NO. 191817 [16 [156

SKPF CONTENT 0 1 1 0 1

Meaning: The I/0 signal SFS is present (I/0 time is T3 to
T5) and the addressed I/0 device Flag is set or the I/0
signal SFC is present (I/0 time is T3 to T5) and the
addressed 1/0 device Flag is clear.

Usage: See section 3-25, Microprogramming Input and
Output Functions, for the use of the micro-order SKPF.

CONDITION BIT NO. 19|18 117116 | 15

SRGL CONTENT 1 1 0] 1 1

Meaning: Bit 3 of the Instruction Register is set and bit 0
of the last output from the ALU was cleared as a result of
the last Word Type 1 or 2 micro-instruction.

Usage: This micro-order is used by the Basic Instruction
Set microprogram which implements the SLA and SLB
macro-instructions of the Shift/rotate Group.

CONDITION BIT NO. 1911817 | 16| 15

TBZ CONTENT | 0| 0] 0] 0] O

Meaning: The last output from the Rotate/Shifter onto
the T-bus was equal to zero as a result of the last Word
Type 1 or 2 micro-instruction.

Microprogramming Language

4-15. JUMP SENSE MICRO-ORDER

JUMP SENSE BIT NO. 14

RJS CONTENT (O

Meaning: Perform the jump, if the jump condition is not
met. The CONDITION micro-order specifies the condition
under which a jump can take place; the RJS micro-order in
effect reverses the sense of the jump. For example, if a
conditional jump is specified if the Flag bit is set (jump if
Flag bit set), the RJS micro-order will reverse the
condition so that the jump occurs if the Flag bit is not set.

4-16. OPERAND MICRO-ORDER

OPERAND

An Address
BIT NO. 13| 12| 11| 10| 9| 8 71| 6 5
CONTENT Binary Address Equivalent

The address can be an octal, decimal or computed number:
Decimal number, d, in the range 0 to 511

Octal number, kB, in the range 0B to 777B, where the
B signifies octal.

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB f. LABEL-kB
b. *-kB g. LABEL+d
c. *+d h. LABEL-d
d. *—d i. LABEL

e. LABEL+kB

where * means “this address” and LABEL means a
micro-instruction or pseudo-instruction label that is
defined elsewhere in the microprogram.

The target address of the jump is not relative and must be
within the current 1000 octal locations (two modules). The
complete absolute address must be specified. For example,
if a conditional jump micro-instruction is within Control
Store addresses 3000 and 3777, no target address may be
outside the range 3000 to 3777. A target address of 3377B
would initiate a jump to the octal address 3377.

-Examples:

1005, 2632, 2632B, START, START -11B, END-11
4-21

Microprogramming Language 21MX
4-17. WORD TYPE4 — UNCONDITIONAL JUMP
Character Column:
1 10 15 20 25 30 40 80
A
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: | *or LABEL | “JMP” or “JSB” Md'ngER (blank) (blank) OPERAND COMMENTS
Figure 4-7. Word Type 4 Micro-assembler Mnemonic Format
BitNo: |23(22(21|20|19 |18 (17|16 (15|14 |13 (12|11 (10| 9 8|7 |6 51| 4 3|2 1 0
" “ JMP” or . JUMP
Fields: “JSB” Op Code (zero) binary OPERAND MODIFIER
Figure 4-8. Word Type 4 Binary Format
Word Type 4 consists of three micro-order classifications: 4-19. JUMP MODIFIER MICRO-ORDERS
e “JMP” or “JSB” — Operation, code used in
) BIT NO.
conjunction with the JUMP MODIFIER, specifies JUMP MODIFIER al3fz2jr]o
Word Type 4, an unconditional jump or subroutine IOFF CONTENT [ol ol o | o] o
jump.

JUMP MODIFIER — Specifies modification to the
OPERAND jump address.

OPERAND — Target address of jump, prior to any
modification.

Micro-orders, except the OPERAND, are defined by the
mnemonic, binary equivalent, meaning, and, where
necessary, by conventions in their use.

4-18. “JMP” AND “JSB” MICRO-ORDERS
“JMP” or “JSB” BIT NO. 2322|2120
JMP CONTENT 1 1 0 1

Meaning: Jump unconditionally to the address specified in
the OPERAND, modified according to the JUMP
MODIFIER micro-order.

“JMP”* or “JSB” BIT NO. 23|22 | 21

JSB CONTENT | 1 | 1

Meaning: Perform a subroutine jump unconditionally to
the address specified in the OPERAND, modified
according to the JUMP MODIFIER micro-order. The
return address is stored in the Save register and recalled
by the RTN micro-order (see section 4-3, SPECIAL
Micro-orders for RTN definition).

4-22

Meaning: Disable recognition of normal interrupts (does
not disable memory protect, parity, or power fail
interrupts). Perform an unconditional jump. No modifi-
cation is made to the jump OPERAND.

JUMP MODIFIER BIT NO.

10G CONTENT 1

Meaning: Freeze the CPU until time period T2. Execute
the I/0 function according to the base set I/0 macro-
instruction that is in the Instruction Register. Perform the
JMP or JSB modifying OPERAND bits 2 and 3 according
to the I/0 instruction jump table (bits 6, 7, and 8 of the
I/0 macro-instruction in the Instruction Register actually
determine the OPERAND address modification):

OPERAND
IR Contains IR Bits Bits 3 & 2
1/0 Macro-instruction 876 Replaced By:
MIA or MIB 100 11
LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
CLO or CLF 001 00
STO or STF 001 00
SFC or SOC 010 00
SFS or SOS 011 00
STC or CLC 111 00

See section 3-25 and those following for a more complete
description of the use of the I0G micro-order.r

21MX
JUMP MODIFIER BIT NO. 41 32110
JEAU CONTENT 1 11111

Meaning: Enable the EAU jump table. According to the
particular EAU macro-instruction held in the Instruction
Register, the least significant three bits (0-2) of the
OPERAND are replaced by EAU jump table bits (bits 4-9
and 11 of the Instruction Register actually determine the
OPERAND address modification):

EAU Three LSB’s
Macro-instruction of Address
RRR 000
ASR 001
LSR 010
(not used) 011
RRL 100
ASL 101
LSL 110
MPY 111
JUMP MODIFIER BIT NO. 4 3 2 1 0
Jio CONTENT | 1 /1|01 |0

Meaning: Perform the JMP or JSB modifying OPERAND
bits 2 and 3 according to the I/0 instruction jump table
(bits 6, 7, and 8 of the I/O macro-instruction in the
Instruction Register actually determine the OPERAND
address modification):

OPERAND
IR Contains IR Bits Bits 3 & 2
1/0 Macro-instruction 876 Replaced By:
MIA or MIB 100 11
LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
CLO or CLF 001 00
STO or STF 001 00
SFC or SOC 010 00
SFS or SOS 011 00
STC or CLC 111 00

Microprogramming Language

JUMP MODIFIER BIT NO. 41 31211 0

JTAB CONTENT [11 1| 0| 1] 0

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram based on the eight most
significant bits of the Instruction Register. This is
accomplished via a table look up of the address in the Main
Jump Table for the basic instruction set. This micro-order
is executed independently of word types; hence JMP or
JSB need not be specified.

JUMP MODIFIER BIT NO. 4 3121 0

J30 CONTENT 1 1 1 0 1

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 3 through 0 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4 3| 2|1 0

J74 CONTENT | 1 111 0] 0

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 7 through 4 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4|1 312110

RTN CONTENT 1 1 1 1 0

Meaning: Return to the address stored in the Save
Register as a result of a subroutine jump (JSB); if the
Save Register is equal to zero (no subroutine is active),
return to address 0 of Control Store to initiate the reading
of the next macro-instruction from Main Memory.

JUMP MODIFIER BIT NO. a 3| 2 1 0

STFL CONTENT | 0 | 1 0ojo]o

Meaning: Set the CPU Flag and then perform the JMP or
JSB to the OPERAND address. No modification is made
to the OPERAND address.

JUMP MODIFIER BIT NO. a 3 2 1 0

UNCD CONTENT | 1 1 0 0|0

Meaning: Perform the JMP or JSB to the OPERAND
address. No modification is made to the OPERAND
address.

Usage: This is the default micro-order if no JUMP
MODIFIER is specified.

4-23

Microprogramming Language

4-20. THE OPERAND MICRO-ORDER

OPERAND

An Address

21IMX

The DEF statement creates a 24 bit micro-instruction
word in ROM the contents of which is a 12 bit binary
address defined by “ADDRESS” in the micro-assembler
input record (Field 6). The binary address is associated in
the microprogram with the optional LABEL, if defined.

BIT NO. 16

CONTENT

15

Binary Address Equivalent

The ADDRESS can be a decimal, octal or computed
number:

The ADDRESS can be a decimal, octal or computed

number:

Decimal number, d, in the range 0 to 4095
Octal number, kB, in the range 0B to 7777B where B

signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

*+kB

*—kB

*+d

*—d
LABEL+kB
LABEL-kB
LABEL+d
LABEL-d
LABEL

PR e oo

o

where * means ‘“‘this address”’ and LABEL means a
micro-instruction label that is defined elsewhere in the

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB
*_kB

*+d

*—d
LABEL+kB
LABEL -kB
LABEL+d
LABEL—-d
LABEL

PR ™o e o

-

where * means ‘‘this address’’ and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram.

microprogram.
Examples:
*+11B, *+9, HERE+5, START
Examples of DEF statements:
Character
4-21. PSEUDO INSTRUCTIONS Column:
There are five pseudo instructions recognized by the micro-
assembler: DEF, EQU, ONES, SKP, and ZEROES. Fields: Field 1 Field 2 Field 6
DEF SRF+150
Content: AD1 DEF ASGNOP
422. DEF DEF 4168
Character
Column:
1 10 15 20 25 40
1 ! 1
Fields: Field 1 Field 2 Fields 3-5 Fleld 6 Field 7
LABEL
Content: (optional) “DEF” (blank) ADDRESS COMMENTS
424 OCT 1974

21MX Microprogramming Language
4-23. EQU

Character

Column:

1 10 15 20 25 30 40
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “EQU"” (blank) (blank) (blank) ADDRESS COMMENTS
The EQU statement associates the stated LABEL with a f. LABEL-kB
12 bit address. This ‘ statement does not result in an g. LABEL+d
address being stored in ROM. The ADDRESS can be a
decimal, octal or computed number: h. LABEL-d
i. LABEL

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from

where * means ‘“‘this address’’ and LABEL means a
micro-instruction label that is defined in the micro-

program before this statement.

Examples of EQU statements:

octal or decimal values, of the form: Character
Column:
a. *+kB 1 10 30
b, *—
kB Fields: Field 1 Field 2 Field 6
c. *+d
HALT EQU 400B
d. *-d Content: RELO EQU 6000B
TAR RELO
e. LABEL+kB START EQu
4-24. ONES
Character
Column:
1 10 15 20 25 30 40
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL ““ONES” (blank) (blank) (blank) (blank) COMMENTS

The ONES statement creates a 24 bit micro-instruction
word in ROM consisting of ones in all 24 bits.

Example of a ONES statement:

Character
Column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES

4-25

Microprogramming Language

21MX
4-25. SKP
Character
Column:
1 10 15 20 25 30 40 80
A
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 " Field 7
Content: (blank) “SKP”’ (blank) (blank) (blank) (blank) COMMENTS
The SKP statement commands the micro-assembler to
skip to the Top of the next page (TOP OF FORM
command) during the listing of the microprogram. No
locations in ROM are used, when this statement is
specified.
Example of a SKP statement:
Character
Column:
1 10
Fields: Field 1 Field 2
Content: SKP
4-26. ZEROES
Character
Column:
1 10 15 20 25 30 40 80
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
l Content: LABEL “ZEROES” (blank) (blank) (blank) (blank) COMMENTS

The ZEROES statement creates a 24 bit micro-instruction

word in ROM consisting of zeroes in all 24 bits.

Example of a ZEROES statement:

Character
Column:
1 10 40
Fields: Field 1 Field 2 /\[Field 7
l Content: NULL ZEROES NO BITS
426 OCT 1974

MICROPROGRAMMING SOFTWARE

SECTION

V

Two sets of programs are provided to assemble, debug,
and implement microprograms. One set operates in the
BCS (Basic Control System) environment and the other
operates in the DOS-III (Disc Operating System)
environment.

5-1. MICROPROGRAMMING SOFT-
WARE SUMMARY

. The following microprogramming software is provided:

® A two-pass micro-assembler, which converts the user’s
source microprogram record into an object tape and
microcode listing.

® A Micro Debug Editor, which reads the object tape into
Main Memory, outputs it to Writable Control Store
(WCS), and allows the user to run the microprogram
in WCS. The user can set breakpoints, change micro-
instructions, change registers, etc. This program also
provides the ability to punch the paper tapes that are
used to create (‘‘burn’’) programs into the ROM.

e A WCS I/0 Utility subroutine, callable from FOR-
TRAN and ALGOL libraries, that allows a micropro-
gram, stored in a regular FORTRAN, ALGOL, or
Assembler program buffer (in Main Memory), to be
written into WCS.

5-2. MICRO-ASSEMBLER

The Micro-assembler accepts 80-character fixed-field card
format records from a card reader, paper tape reader, or
disc (using the DOS-III JFILE directive). Each record
contains one micro-instruction coded in mnemonic format
as described in Section IV of this manual. The
micro-assembler processes input records and produces an
object program paper tape which contains micro-
instructions in binary format. Optionally output is a
microprogram listing in both mnemonic and binary
format, a symbol table, and error messages.

5-3. HARDWARE ENVIRONMENT

The BCS version requires the following as the minimum
hardware:

a. An HP 2105 or HP 2108 Processor with 8K of Main
Memory.

b. A Teleprinter.
This minimum system means that the assembly of the

microprogram will be slow, since all input, listing, and
punching must take place on the teleprinter.

The following additional hardware is supported:

Paper Tape Reader for source microprogram input.

a.
b. Paper Tape Punch for binary object tape output.

o

Card Reader for source microprogram input.

o

Line Printer for microprogram assembly listing and
symbol table listing.

e. 7970 or 3030 Magnetic Tape Unit for temporary stor-
age of source microprogram that is input to Pass 2 of
the micro-assembler.

The DOS-III version of the micro-assembler requires the
same hardware as the DOS-III system.

5-4. MICRO-INSTRUCTION SOURCE RECORD

A micro-instruction source record has the following
characteristics:

a. Length <80 characters.

b. If not on a punched card, terminated by RETURN
and LINE FEED.

c. Seven fields with the starting column of each field as
follows:

Character Column

1
10
15
20
25
30
40

Field Number

OO W

Figure 5-1 shows a card record.

Refer to Section IV, “Microprogramming Language,” for
a description of the micro-orders appropriate to the seven
fields.

5-1

Microprogramming Software

21MX

Card
Column:

—_—— -
e
o
-
o
N
o
N
(8]

Figure 5-1. Micro-instruction Card Source Record

5-5. MICRO-ASSEMBLER CONTROL RECORD

Control statements are interspersed with micro-assembler
language statements and - specify control over the
assembly process. For example, they may define the
logical unit number of an input or output device or
suppress listings. ‘ '

There is one control statement per Control Record. If not
on a card, it must be terminated by RETURN and LINE
FEED.

Two control statements are required for every micropro-
gram:

a. $ORIGIN statement
b. SEND statement

All control statements start with a ““$’* (Dollar character)
in column 1. No intervening spaces are allowed in any
control statement other than as specified. Details on each
statement text and meaning are given below.

$END

General Form: $END

Meaning: End of microprogram
Purpose: Required as the last statement in
every microprogram
Example: SEND
SEXTERNALS

General Form: $EXTERNALS = namelbaddressl,
bnamebaddress2,
b. . .namenbaddressn

5-2

A comma and a space (b) separate each external name and
address pair. Each ‘‘name’’ conforms to the Label defini-
tion in Section 4-1 and ‘“‘address’” means an octal address
in the range 0 - 7777.

Define the following label names:
namel refers to addressl
name2 refers to address2

Meaning:

namen refers to addressn

Each SEXTERNALS control state-
ment provides for one or more branch
(JMP or JSB) target addresses out-
side of the microprogram.

SEXTERNALS = OUTPUT 1012,
CHAR 736.

Purpose:

Example:

SFILE

(Used by DOS-III systems only)

General Form: $FILE = filename

The filename must be in accordance
with DOS-III file name requirements.

Meaning: The object output file name for this
microprogram is ‘‘filename.”
Purpose: Provides the DOS-III micro-
assembler with the name of the disc
file into which the binary object code
is to be stored.
Example: $FILE=MOBJ
Note: Prior to assembling a microprogram with

a $FILE control statement, the user must
have reserved a disc file using the DOS-
IIT “:ST,B, ...” directive.

21MX

$INPUT

General Form:

Meaning:

Purpose:

Example:

SLIST

General Form:

Meaning:

Purpose:

Example:

$NOPUNCH

General Form:

Meaning:
Purpose:

Example:

$ORIGIN

General Form:

Meaning:

(Used by BCS systems only)

$INPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the device
through which all subsequent input
(to the next SEND statement) is to be
read is ‘“lun.”

When the assembly process is begun
in BCS systems, the micro-assembler
expects the first source statement to
be entered through the system con-
sole device (logical unit number 5).
The user may enter the whole source
program through the system console
device. Normally, however, the user
enters a $INPUT command speci-
fying the logical unit number of the
card reader or paper tape reader from
which the rest of the source program
is to be read.

$INPUT = 12

$LIST = lun
The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the listing
device is “lun”’.

To cause the assembly listing to be
printed on the device having the spec-
ified unit number. If omitted, logical
unit number is assumed to be 6
(standard list device).

SLIST = 16

$NOPUNCH

Suppress punching of binary object
tape.

To perform a micro-assembly for
listing and diagnosis only.

$NOPUNCH

$ORIGIN = nnn

The origin, nnn, must be octal and in
the range 0 - 7777.

Set microprogram origin at octal
address nnn in Control Store.

Note:

Purpose:

Example:

3RCASE

General Form:

Meaning:

Purpose:

Example:

$OUTPUT

General Form:

Meaning:

Purpose:

Example:

$PASS 2

General Form:

Meaning:

Purpose:

Microprogramming Software

Every microprogram must have its
program address origin defined. New
origins may be specified within the
microprogram.

3ORIGIN = 427

$3RCASE

Punch a special 32-micro-instruc-
tions/record object tape.

This special object tape is reserved for
system maintenance. Refer to Section
5-6 Micro-Assembler Output for a
description of this special object tape.

$RCASE

$OUTPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74. This
statement may come anywhere before
the $SEND statement.

lun is the logical unit number of the
output device.

To specify the device on which the
micro-assembler object code is to be
output. If this statement is omitted,
logical unit of 4 is assumed.

$OUTPUT = 10

(Used by BCS systems only)

$PASS2 = lun

The logical unit number, lun, must be
octal and in therange 1 - 74. If present,
this must be the first statement in the
source deck or tape.

lun is the logical unit number of the
magnetic tape unit onto which all sub-
sequent micro-assembler input is to be
written.

To cause all source input to be
recorded on magnetic tape for use as
input to Pass 2 of the micro-assem-
bler. If this control statement is
omitted, the computer halts at the end
of Pass 1 to allow the operator to re-
load the microprogram source into
the “$INPUT” device.

The only magnetic tape units supported

by the micro-assembler are the HP 3030
and HP 7970.

Example:

$PASS2 = 23
OCT 1974 5-3

Microprogramming Software

$SUPPRESS

General Form: $SUPPRESS

Meaning: Suppress all warning error messages.
Purpose: To cut down the volume of messages
to the console device. Fatal error mes-
sages will still be printed.
Example: $SUPPRESS
$SYMTAB
General Form: $SYMTAB

Meaning: Print symbol table

Purpose: To provide the user with label names
and corresponding octal addresses
used in his microprogram.

Example: $SYMTAB

5-6. MICRO-ASSEMBLER OUTPUT

This section describes all forms of output from the micro-
assembler. They are:

Binary Object

Symbol Table

Source and Binary Microprogram Listing
Error Messages

5-7. BINARY OBJECT OUTPUT

The Standard Object Tape output by the micro-assembler
to paper tape or a disc file consists of one or more
Instruction Records, the format of which is shown in
Appendix A, Figure A-1. One Instruction Record holds up
to 27 micro-instructions and five words of header
information. Each micro-instruction requires 32 bits or two
words in the format: an eight bit address and 24 bits for the
micro-instruction. Hence the length of the record =

5 words of header

2n words for n micro-instructions (2 words for each
micro-instruction)

5+2n words for one Instruction Record

No more than 27 micro-instructions are written into an
Instruction Record. Hence the maximum length =
5+(2x27)=59 words. The last object record is a four word
End Record. When the microprogram consists of more
than 27 micro-instructions, a series of Instruction Records
are produced with the last one holding 27 or less micro-
instructions. For example, if 57 micro-instructions have
been assembled, three Instruction Records and an End
Record are required consisting of the following:

5-4

21MX

a. Instruction Record 1 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

b. Instruction Record 2 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

¢. Instruction Record 3 holds 3 micro-instructions and
consists of

5 words of header
6 words for 3 micro-instructions
11 words

d. The End Record consists of

4 words
133 words for the entire microprogram Binary Object.

The Standard Object format is accepted by all programs
which accept standard relocatable format. Thus a
Standard Object tape can be stored in a DOS-III file using
the “:STORE,R,...” directive. However, if the DOS-III
user wants the Binary Object stored automatically in a
disc file by the micro-assembler, the DOS-III directive
“STORE,B,...” must have previously been used to
reserve a disc file.

The Micro-assembler can also produce a non-standard
object as the result of the inclusion of the SRCASE control
statement. This optional object is the HP ROM Simulator
Object tape. The format of this tape is shown in Appendix
A, Figure A-2.

5-8. SYMBOL TABLE LISTING

If the user has a $SYMTAB control statement in his
microprogram source input, then the micro-assembler will
print a symbol table on the device with logical unit number
6 or on the device defined by the $LIST control statement,
if present.

An example of a symbol table is shown in Figure 5-2.

On the left are the symbols or labels in the microprogram.
On the right is the value of the symbol; that is the six digit
absolute octal address of the symbol. Where X follows the
address, the symbol has been defined by a SEXTERNAL
control statement.

21MX

Microprogramming Software

SYMROL TARLE

5-10. MICRO-ASSEMBLER ERROR MESSAGES
During the assembly process the micro-assembler checks
each instruction for errors. If an error is detected, an error
message of the following general form is printed in the
Micro-assembly Listing.

MOVE 00z412X **ERROR eeee IN LINE nnnn

GOTO 003421X

RET 002427X where

LAST 002717X eeee

ouT 002011 is an Error Code defined in Table 5-1 and
ERR1 002012 nnnn

is a line number in the Micro-assembly Listing.

Table 5-1 gives the meaning of each error code and the

Figure 5-2. Symbol Table

5-9.

MICROASSEMBLY LISTING

recovery procedure. Note that Figure 5-2 holds examples
of two error messages in lines 9 and 11.

5-11. DOS-III OPERATION OF MICRO-

ASSEMBLER

Before using the DOS-III version of the Micro-assembler,
the following items must be available.

Unless suppressed by the SNOLIST control statement, the
micro-assembler provides a listing like the one shown in
Figure 5-3. This listing is associated with the symbol table

a. A current DOS-III system.

b. A source microprogram, on cards, paper tape, or in a

illustrated in Figure 5-2.

source file on disc.

0001 $ORIGIN=20008 FIRST ANDNDRESS OF MODULE 4
0002 $SYMTAR PRINT SYMBOL TABLE
0003 SEXTERNAL=MOVE 2412+ GOTO 34214 RET 2427 LAST 2717
0004 # PZ2=ALP1
0005 2000 220 074457 READ INC M P READ ADDEND P
0006 2001 017 126157 PASS L A PUT AUGEND IN L AND ENABLE E & O
0007 2002 264 101557 ENVE ADD S12 TAB ADD MEMORY TO L AND STURE IN Sl12
0008 2003 324 140531 JMP CNDX E ERR1 IF E SETey GO TO ERR1
##FRROF 0008 IN LINE 0009
0009 2004 320 000030 JMP CNDX OVFL ERR2 IF O SETs GO TO ERR2
0010 2005 000 075717 INC P P BUMP P FOR NEXT PARAMETER
##ERROK 0003 IN LINE 0011
0011 2006 017 136757 RFAD INC M P RFAD NEST PARAMETER P2 ADDRESS
00le 2007 000 000461 MPCK INC M TAR PUT IN M AND CHECK FOR M P ERR
0013 2010 177 166017 WRTE PASS TaB Sl2 PUT ADD RESULT INTO MEM ADD P2
0014 2011 017 136776 OUT RTN THE RETURN
0015 2012 344 001757 ERRI IMM LOW S 0 SET UPPER BYTE FOR E ERR
0016 2013 320 100470 JMP ouT RETURN ’
0017 2014 340 001757 ERRZ IMM HIGH S 0 SET LOWER BYTE FOR O ERR
0018 2015 320 100470 JMP ouT RETURN
0019 $END
#% 0002 ERRORS##
e e N —— e !
Line ROM Bits Bits Field Field Field Field Field Field Field
Number Address 23-16 15-0 1 2 3 4 5 6 7
—
Binary
Micro-instruction
Figure5-3. Micro-Assembly Listing

5-5

Microprogramming Software

The Micro-assembler program named MICRO stored
in the DOS-III user library. If MICRO still is on re-
locatable object paper tape (HP 12978-160001), it can
be loaded in the same way as any other relocatable
object program,

For the detailed description of DOS-III operation, see HP
24307B DOS-III Reference Manual (HP 24307-90006).

21MX

a. If there is a $FILE control statement in the micropro-

gram source, a binary file must be reserved on the disc
before beginning the micro-assembly process to hold
the relocatable object. The name of the reserved disc
file must be the same as the one specified in the $FILE
control statement.

. Place the microprogram source in the input device;

turn the device on; turn on the paper tape punch and
the list device.

Table 5-1. Micro-assembly Error Messages

Error Code Meaning/Recovery

1 Duplicate Label. The statement label of the micro-instruction in line nnnn is the same
as another statement in the microprogram or the same as a declared SEXTERNAL
symbol. Assign a new statement label and reassemble.

2 Illegal Control Statement. Correct control statement in line nnnn and reassemble.

3 Illegal Field 2 Micro-order. A NOP is inserted in field 2 and assembly continues. Cor-
rect line nnnn and reassemble.

4 Illegal Field 3 Micro-order. A NOP is inserted in field 3 and assembly continues. Cor-
rect line nnnn and reassemble. ‘

5 Illegal Field 4 Micro-order. A NOP is inserted in field 4 and assembly continues. Cor-
rect line nnnn and reassemble.

6 Illegal Field 5 Micro-order. A NOP is inserted in field 5 and assembly continues. Cor-
rect line nnnn and reassemble.

7 Illegal Field 6 Micro-order. A NOP is inserted in field 6 and assembly continues. Cor-
rect line nnnn and reassemble.

8 Illegal JMP or JSB Address. Address is outside permitted range, or target label
address is undefined. A value of 0 will be inserted into address field of line nnnn and
assembly continues. Redefine address and reassemble.

9 Microprogram Too Large. The last relative address in the program is 400 or greater. A
$ORIGIN statement must be changed or the program broken up into smaller parts
before reassembly.

10 Missing $SORIGIN Control Statement. At least one $ORIGIN control statement is
required. Insert $ORIGIN statement and reassemble.

11 Illegal Word Type 2 Operand. Operand of the IMM micro-instruction is outside the
permitted range. A value of 0 is inserted into the operand and assembly continues.
Correct line nnnn and reassemble. ‘

'OR aaaa Insufficient DOS-III File Space Reserved. Reserve a binary file with more sectors for
storage of the file named in the $FILE control statement (aaaa is an address in the
micro-assembler and can be disregarded). See DOS-III manual section 15 under
Error Conditions.

ABORT! An irrecovefable error has occurred; correct error and reassemble.

21MX

c¢. Summon the Micro-assembler with statement
:PR,MICRO,[p1,p2,p3,p4,99]

where
pl = the input device logical unit number

p2 = list device logical unit number
p3 = paper tape punch device logical unit number

p4 = maximum number of lines-per-page on the list
device.

If 99 is entered for any of the above parameters, that
parameter and all those that follow are defaulted to
“standard”’ values.

d. The program title
MICRO-ASSEMBLER

is printed and Pass 1 begins. If a $SYMTAB control
statement is in the source microprogram, the symbol
table is printed at the conclusion of Pass 1. Pass 2
begins immediately (from disc) and the listing and
relocatable object tape are output. Micro-assembly is
complete.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

5-12. BCS OPERATION OF MICRO-ASSEMBLER

Before proceeding, the following items must be available:

o An absolute BCS binary tape.

o A reloctable object tape of the Micro-assembler pro-
gram MICRO (HP 12978-160003).

e A source microprogram either on cards or paper tape.

For a detailed description of BCS usage, see the Basic Con-
trol System manual (HP 02116-9017).

The following procedure need be performed only once.
When an absolute binary tape of the Micro-assembler is
punched, it is used as described in the procedure
‘“Executing the Micro-assembler.”

Making an Absolute Micro-assembler tape:

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Register
and clear all other Switch Register bits.

Microprogramming Software

c. Place the MICRO relocatable object tape in the paper
tape reader. Check that the paper tape reader and the
console device are on. Turn on the paper tape punch.
Press PRESET and RUN on the CPU front panel.
MICRO reads in and absolute binary tape is punched.

d. The message
*LOAD

is printed and the computer waits. Set Switch Register
bits 2 and 14 leaving all others clear. Load BCS
Library tape into the paper tape reader. Press RUN.

e. The BCS Library tape reads in and the rest of the abso-
lute binary tape is punched. Linkage information is
printed on the console device.

This is the absolute binary tape of MICRO, used for input
to the next step.

Executing the Micro-assembler:

a. Load the MICRO absolute binary tape using the Basic
Binary Loader.

b. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-ASSEMBLER

is printed followed by a request for the logical unit
number of the source input device.

c. Enter the logical unit number followed by carriage
return/line feed. Pass 1 now begins. If a $SYMTAB
control statement is in the microprogram source, the
symbol table is printed at the conclusion of Pass 1.
(See Section 5-5 for a description of the $SSYMTAB
control statement.) '

d. Turn on the paper tape punch.

e. Pass 2 begins immediately. If no $PASS2 control
statement was included in the source, the message

RELOAD SOURCE, PRESS RUN

is printed. Reload the source microprogram into the
input device and then press RUN on the front panel of
the computer.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

If a teletype is used for both listing and punching, the
computer halts (T -register = 102052) so that the oper-
ator can press the paper tape punch ON button to
punch the microprogram object tape. The operator
then presses RUN on the computer front panel.

OCT 1974 51

Microprogramming Software

When the paper tape is punched, another halt (T-
register = 102053) occurs, so that the paper tape punch
button can be set to OFF. Press RUN on the computer
front panel.

f. Pass 2 completes micro-assembly. The microprogram
object tape is complete. To assemble another micro-
program proceed from step b.

5-13. MICRO DEBUG EDITOR

The Micro Debug Editor (MDE) makes it possible to load
the object microprograms output from the Micro-
assembler into a Writable Control Store module. It also
provides the ability to debug microcode stored in the WCS
and to ‘“‘burn’”’ microprograms into ROM chips.

Before using the Micro Debug Editor to debug micro-
programs, the Writable Control Store PCAs must be set to
the required control store module numbers. This is
accomplished by the installation of a module selection
Jumper Assembly (HP Part Number 5060-8342). Refer to
Section 6 of this manual for installation of the module
selection Jumper Assembly and the WCS PCAs.

21MX

5-14. HARDWARE ENVIRONMENT

The BCS version requires the following minimum
hardware:

a. HP 21MX Series Computer with 8K of Main Memory
b. A console device
c. A paper tape reader

d. One or more WCS PCA’s, depending on the size of the
microprogram to be debugged.

e. If a ROM program tape is to be punched, a paper tape
punch is also required.

The DOS-III version of the MDE requires the same mini-
mum hardware as the DOS-III system.

5-15. INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run for debugging
purposes (as opposed to being run merely to punch ROM
program tapes), the user must supply an initialization
program. The initialization program is an assembly lan-
guage program that prepares the necessary parameters in

ASMB,R,B,L,T

NAM TEXT,6

ENT TEST,MACRO
TEST NOP

MACRO OCT 105xxx

DEF P1
DEF P2

DEF Px
JMP TEST,I

P1 (parameter 1 value)
P2 (parameter 2 value)

Px (parameter x value)
END

Assembly parameters
Program name (DOS-III)
Entry points

Any initialization procedure re-
quired by the microprogram

(or 10l1xxx) Instruction that calls
the user microprogram

Parameter addresses required by
the microprogram

Return to calling program (MDE)

Parameter values

Figure 5-4. General Format of the Initialization Program

5-8 OCT 1974

21MX

Main Memory and then executes a 101xxx or 105xxx
macro-instruction.

The name of the initialization program must be TEST
(required in BCS systems, is a NAM TEST statement; in
DOS-III systems a NAM TEST, 6 statement). The
program must also have the symbol “MACRO’”’ declared
as an entry point where MACRO is the symbolic address
(label) of the macro-instruction (101xxx or 105xxx) which
calls the microprogram under test. Note that there must
only be one such macro-instruction in the TEST
initialization program.

Figure 5-4 holds the general structure of the initialization
program.

This initialization program is called as a relocatable sub-
routine by MDE. Thus, its name is one of the references
that must be satisfied when loading MDE.

A note of caution: a microprogram cannot be debugged
using MDE unless the microprogram has:

a. An entry point which is a “JMP”’ micro-instruction of
Word Type 4 (described in Section 4-17).

b. The micro-instruction jumped to by the JMP at the
entry point must not contain a “READ”’ micro-order.

An example of a short initialization program is shown in
Figure 5-5.

Microprogramming Software

5-16. USING THE MICRO DEBUG EDITOR

Section 5-37 describes how to execute MDE using the
DOS-III operating system. Section 5-38 describes how to
execute MDE using the BCS operating system.

Before using the Micro Debug Editor to debug a micro-
program, the Writable Control Store PCAs must have the
correct terminal board plugged in, to establish the Control
Store module number. Refer to Section VI of this manual
for a description of setting module numbers in a Writable
Control Store PCA.

When the module number has been set in the Writable
Control Store PCA and it is plugged into the correct I/0
slot, the user loads the microprogram object tape
(produced by the Micro-assembler) using the Micro Debug
Editor LOAD command. The microprogram is then output
to the Writable Control Store using the WRITE
command.

When the user is ready to execute his microprogram, the
EXECUTE command is used. For the microprogram to
execute properly, the following conditions must hold:

a. The module that the microprogram was written into
matches the range of addresses used by the micropro-
gram. For example, a microprogram whose addresses
are in the octal range 2400 to 2777 must be stored in
a Writable Control Store PCA which has been set to
module 5.

Macroprogram in Main Memory

Microprogram to be executed in WCS

NAM TEST LABEL OP SPEC ALU STOR S-BUS
ENT TEST,MACRO
MACRO OCT 105200 $ORIGIN=2000B
JMP TEST,I —~—— - JMP START
END $ORIGIN=2020B
START NOP CLFL INC M p
RTN A S12
$END

Figure 5-5. Test Program Call to Microprogram

5-9

Microprogramming Software

b. The macro-instruction in the TEST program must ini-
tiate entry into Control Store at the proper address of
the microprogram to be tested.

Micro Debug Editor results are uhpredictable if either of
the above conditions are not met.

When MDE is executed, it prints the input prompt
COMMAND?
on the system teleprinter.

Respond by entering one of the input, edit, output, or
debug commands described in Table 5-2 and the following
pages. In most cases, the first letter of the command is
sufficient to specify it to MDE. The two commands,
“MOVE” and “MODIFY”’, require at least three letters to
identify the command. After MDE has performed the
specified operation, it again prints COMMAND? to repeat
the cycle.

Terminate an MDE run by entering the FINISH
command.

There are 13 MDE commands which are summarized in
Table 5-2. A detailed description of each command follows.
Whenever a logical unit number (lun) is called for, it must
be entered in octal.

Note that the last octal 45 words of the lowest numbered
WCS module loaded with a microprogram are used by
Micro Debug Editor for its own resident microcode. If
these locations are required by the user microprogram
under test, use the MOVE command to relocate the MDE
microcode before loading the user microprogram.

The Micro Debug Editor uses a Main Memory buffer to
hold the microprogram object code. When the micropro-
gram is loaded from an object tape, it is stored into this
buffer. Most MDE commands make modifications or
transfers to and from this buffer.

Use of the PREPARE command to punch the six ROM
microprogram mask tapes has the following restriction.
This buffer must have been loaded using an object tape
produced by the micro-assembler and the buffer must not
have been modified.

5-17. INPUT COMMANDS
5-18. LOAD[X]

Meaning:Load the object microprogram produced by the
Micro-assembler from disc or paper tape into the MDE
buffer. The logical unit number (lun) of the input device is
X.

Usage: The Micro-assembler control statement $FILE can
be used to specify (during assembly) the name of the
DOS-III file into which the object code is to be stored. In
the DOS-III version of MDE, if the logical unit number

5-10

21MX

entered is that of the disc, MDE will respond with a
request for the name of the file in which the object code is
to be stored:

FILENAME?

Enter the file name given to the object code by the $FILE
control statement. :

Note: When loading the object microprogram
for output to WCS (instead of punching
ROM tapes), the LOAD command must
be followed immediately by a WRITE
command to the appropriate WCS- PCA.
No intervening commands are -allowed.
This allows the Micro Debug Editor to
build a table relating microprogram
addresses to WCS logical unit numbers.

Table 5-2. Micro Debug Editor Commands

INPUT

Commands: LOAD[,X]
READ,X

EDIT

Commands: SHOW xxxx[,yyyy]
MODIFY,xxxx[,yyyy]

OouUTPUT

Commands: DUMP[,X]
WRITE,X
PREPARE[,X]
VERIFY[,X]

TERMINATION

Command: FINISH

DEBUG.

Commands: BREAK,yyyy
CHANGE[,mnemonic]

EXECUTE0 or yyyyl

RELOCATE MDE WCS-RESIDENT
MICROCODE

Command: MOVE YYYY

Note

The brackets indicate that the parameter may be
omitted.

21MX

5-19. READX

Meaning: Read the contents of a WCS into the Micro
Debug Editor buffer. X is the logical unit number of the
WCS.

Usage: If no WCS is on the specified logical unit, the
MDE buffer is unchanged. No notification is made to the
user that the buffer is unchanged or that no WCS is on the
logical unit specified. Thus, if READ or SHOW is being
used to insure that a previous WRITE executed properly
to the same (non-WCS) logical unit, the MDE buffer will
still hold the data that was assumed to be written to that
logical unit. The user could incorrectly assume that the
non-existent WCS holds the proper data.

5-20. EDIT COMMANDS

5-21. SHOW xxxx[,yyyy]

Meaning: Display the WCS contents on the console
device, where xxxx is the beginning address and yyyy is
the ending address. Only the contents of the address xxxx
are displayed, if yyyy is omitted.

Usage: See Usage under 5-19, READ,X.
The display format of each 24-bit word is:
aaa mmm nnnnnn

where aaa is the control store address of the location being
displayed, mmm is the octal representation of bits 23-16 of
the location, and nnnnnn is the octal representation of bits
15-0 of the location.

5-22. MODIFY, xxxx[,yyyyl]

Meaning: Change the contents of the MDE buffer and the
WCS where xxxx is the beginning WCS address and yyyy
is the ending WCS address. Change WCS address xxxx if
yyyy is omitted.

Usage: See Usage under 5-25, WRITE X.

“MOD” is the minimum input required to initiate the
modify command. xxxx and yyyy must be absolute WCS
addresses in.a single WCS module. One at a time, the
contents of each location are printed on the console device
in the same format as the SHOW command above.
Following the location contents, the operator enters the
new location contents followed by a CARRIAGE
RETURN and LINE FEED.

If fewer than 3 digits are entered for mmm or fewer than 6
digits are entered for nnnnnn, the number entered is right
justified with zeros automatically filled to the left. To
specify that no change is to be made, enter an asterisk (*),
instead of mmm or nnnnnn.

Microprogramming Software

Example:

MOD,4000,4003
4000 123 456777 *,123456

leaves bits 23-16 unchanged and sets bits 15-0 to 123456 in
WCS location 4000.

4001 123 456777 6,123

is equivalent to entering 006,000123; bits 23-16 are set to
006 and bits 15-0 are set to 000123 in location 4001.

4002 123 456777 123,*

sets bits 23-16 to 123 and leaves bits 15-0 unchanged in
location 4002.

4003 123 456777 **
makes no change to location 4003.
5-23. OUTPUT COMMANDS
5-24. DUMPLX]

Meaning: Punch the entire contents of the MDE buffer on
the paper tape punch. X is the logical unit number of the
paper tape punch. If X is omitted, it is assumed to be 4.

Usage: The DUMP command must be preceded by a
READ or LOAD command to fill the MDE buffer. The
tape produced is in the same format as the object tape
produced by the Micro-assembler. If the tape is reloaded
into the MDE buffer, the buffer cannot be used to punch
(PREPARE command) a set of six pPROM mask tapes.
The primary use of this tape is to enable the user to save
the results of a microprogram debug session for
resumption later.

5-25. WRITE,X

Meaning: Write the contents of the MDE buffer into the
WCS. X is the logical unit number of the WCS.

Usage: Since the Micro Debug Editor addresses the WCS
by logical unit number, it is the responsibility of the user
to insure that a WCS is installed with logical unit number
X and that it is set to the proper module for the micro-
code to be stored. If no WCS is on the specified logical
unit, no notification is given to the user that a WRITE or
MODIFY command failed to transmit data to the non-
existent WCS.

5-26. PREPARE[,X]

Meaning: Punch a set of six pROM mask tapes each
headed by three lines of I.D. and a checksum on the paper
tape punch. X is the logical unit number of the device. If X
is omited, it is assumed to be 4.

5-11

Microprogramming Software

Usage: Following entry of the PREPARE command, a
cycle of dialogue is initiated between the operator and the
console device. In the following procedure, the underlined
characters indicate operator input is required at the
console device. Each entry must be followed by a
CARRIAGE RETURN and LINE FEED.

a. Turn on the paper tape punch. The message cycle
. starts with:

GENERATION OF MASK BITS 23-20

where 23-20 represents the 4 bit range of bits to be
punched into the first mask tape.

ENTER 3 LINES OF I.D. INFORMATION

LINE 1 — key in first line of tape I.D.

LINE 2 — key in second line of tape 1.D.

LINE 3 — key in third line of tape I.D.

Enter up to 72 characters of identification information
in each line.

b. Following entry of the third I.D. line, the mask tape is
punched for mask bits 23 to 20. This is for ROM chip
number 6. The following cycle of dialogue is repeated
for each of the remaining five mask tapes:
GENERATION OF MASK BITS UU-LL
UU - LL is the range of bits to be punched.

ANY CHANGE OF I.D. INFO IN LINE 1? key in N
(no) or Y(yes) and new line 1 I.D.

LINE 2? key in N or Y and new line 2 I.D.
LINE 3? key in N or Y and new line 3 I.D.

c. The next mask tape is punched. When all six mask
tapes have been punched, the following message is
output:

GENERATION OF TAPES COMPLETED

The six mask tapes have the following characteristics:

For Module ROM

UU-LL Punch Sequence Chip No.
23-20 First tape 6

19-16 Second tape 5

15-12 Third tape 4

11-08 Fourth tape 3

07-04 Fifth tape 2

03-00 Sixth tape 1

Conventions: Line 1 I.D. holds module number, ROM chip
number, number of bits (4), ROM size, and other I.D.
information. :

5-12

21MX

For example:
LINE 1-1,005, 4, 1025 REENTRY FACTOR

Line 2 I.D. holds part number or other central reference
number. For example:

LINE 2-MT 38-0226 REVISION C

Line 3 I.D. holds date and any other I.D. information. For
example:

LINE 3-04/01/75 PVT. D.M. BULMAN

5-27. VERIFY[,X]

Meaning: Compare the contents of the pPROM mask tapes
to the contents of the MDE buffer. The logical unit
number of the paper tape reader is X.

Usage: Following entry of the command, the console
device requests the range of bits in the pROM mask tape
to be compared to the MDE buffer (underlined characters
indicate operator entry).

TAPE NUMBER: uull

Enter CARRIAGE RETURN and LINE FEED after the
bit range uu (upperlimit) and 11 (lowerlimit). Refer to 5-26
PREPARE[,X] for Va_lid bit ranges.

For example, the entry ‘‘2320" specifies verification of bits
23 to 20. The paper tape then reads the mask tape and
compares its contents to the specified bits in the MDE
buffer. As the tape is being read, the three lines of I.D. (see
PREPARE command) and checksum are printed on the
console device.

Note: If the DOS-III operating system is being
used, and no errors were encountered, an
1/0 “‘error’”’ message is printed at the con-

sole device:
1/0 ERR ET EQT #n

Where n is the EQT number of the paper
tape reader. This message notes a charac-
teristic of the mask tape that DOS-III
normally interprets as an error condition,
but the message in fact, connotes no error.

If no errors were detected, the message
TAPE VERIFIED

is printed. Enter another bit range as before. The VERIFY
command completes only after the bit range 03 ot 00 has
been entered and verified.

21MX

Errors: If errors are detected, dialogue between the
console device and the operator is initiated. Follow each
operator entry with CARRIAGE RETURN and LINE
FEED.

a. The message CHECKSUM ERROR OR BAD MASK
TAPE is printed followed by a tape repunch
request:

DO YOU WANT TO REPUNCH THIS TAPE?
enter Y or N

b. If N is entered, another bit range request with the
message

TAPE NUMBER?

Enter another bit range as before. The VERIFY com-
mand completes only after the bit range 03 to 00 has
been entered and verified.

c. If Y is entered, the following request is made:

ENTER PUNCH LOGICAL UNIT # enter octal
logical unit number of paper tape punch

The message
ENTER THREE LINES OF 1.D. INFORMATION
is printed.

Enter up to 3 lines of tape I.D. information according
to the procedure given in 5-26, PREPARE[,X]. The
new mask tape is punched, headed by the I.D.
information.

Special DOS-III operation: When a series of bit ranges are
being verified, specification of each successive range at the
console device (as a result of the message TAPE
NUMBER?) will bring about the prompt character “@ .
To verify the specified bit range on paper tape:

a. Enter the following command

:UP,n

where n is the EQT number of the paper tape reader.
b. Then enter:

:GO

)

The next tape to be verified will read in as above.

Verify sequence: The mask tapes may be verified in any
order with exception that the last tape verified must have
the bit range 03 to 00.

Microprogramming Software

5-28. ©~ TERMINATION COMMAND

5-29. FINISH

Meaning: Terminate the current MDE run.

5-30. DEBUG COMMANDS

5-31. BREAK,yyyy

Meaning: Set a Breakpoint at location yyyy and clear the
previous one. If yyyy = 0, no breakpoint is set and the
previous one is cleared.

Usage: Microcode execution is initiated by an EXECUTE
command. When the Breakpoint address yyyy is reached,

REG’S?
is printed and microprogram execution ceases (breaks).
Enter the mnemonics of the flags or registers that are to be
displayed, separated by commas. The mnemonics are
described under the CHANGE command. The entry is of
the form

REG’'S? m1l,m2,m3, ... mn

where ml through mn are register and flag mnemonics.
The resulting display is of the form

ml =cl, m2=c¢2, m3 =¢3,...... , mn = cn

when cl through cn are octal contents of the requested
registers and flags.

Example of a display request:
REG’S A,B,1,2,34,14

The resulting display:

A = 00004, B = 103005, 1 = 000447,
2 = 00012, 3 = 00000, 4 = 00000,
14 = 034716

Enter ““!” to display all registers and flags. Enter ““/” to
return to command entry mode.

Restrictions: Do not set a breakpoint
a. in the WCS entry point address of the microprogram

b. in a microprogram subroutine (within the JSB...RTN
code limits)

c. in an address where the micro-instruction passes
information to or from the T-register immediately fol-
lowing a WRITE or READ micro-order.

5-13

Microprogramming Software

5-32. CHANGE[,m]

Meaning: Alter the contents of one or more registers and
flags. If the mnemonic m is specified, alter the contents of
the register or flag which it specifies. It not specified, all
registers and flags are displayed in sequence to prompt the
user to make required changes.

Mnemonics: The list of register and ﬂag mnemonics
follows:

Mnemonic Stands For Mnemonic Stands For
A A-register 9 S9-register
B B-register 10 S10-register
S S-register 11 S11-register
P P-register 12 S12-register
1 *S1-register X X-register
2 S2-register Y Y -register
3 S3-register (0] Overflow Register bit
4 S4-register E Extend Register bit
5 Sb-register F CPU Flag bit
6 S6-register CN Counter Register
7 S7-register L L-register
8 S8-register

*Scratch Pad Register 1;similarly for S2, S3, etc.

Usage: Upon entry of the command, the message
m XXXXXX =

is printed, where m is the register or flag mnemonic and
xxxxxXx is the octal representation of the contents. Enter
the new contents or an asterisk (*) if no change is to be
made.

Example of a CHANGE request:

CHANGE, 6
6 173777 = 173770

This is a request for a change to S6-register (Scratch Pad
Register 6). The original contents were octal 173777. The
new contents are octal 173770.

5-33. EXECUTELyyyyl
Meaning: Execute microprogram.

If yyyy = 0, the TEST initialization program is run, which
carries execution to the microcode in WCS. This is the
normal mode of initiating microcode.

Note: If the entire system goes dead after
entering an EXECUTE,O, the reason may
be that the WCS with the correct module
number is not plugged into the correct
slot.

If yyyy = an absolute WCS address, execution of micro-
code begins at that address.

5-14

21MX

If yyyy is omitted, execution resumes from the last break-
point with registers and flags set

a. according to their setting when the breakpoint was
encountered, or

b. modified by the CHANGE command.

Usage: Execution will continue until a breakpoint is
encountered or until the microprogram is completed.
When complete, the command entry mode is repeated.

Before initiating a microprogram execute (other than
EXECUTE,0), make sure that all registers and flags are
preset using the CHANGE command, if necessary.

5-34. RELOCATE MDE WCS-RESIDENT
MICROCODE

5-35. MOVE,yyyy

Meaning: Move the octal 45 word WCS-resident
microprogram portion of MDE from the usually resident
locations to locations beginning with yyyy.

Usage: “MOV”’ is the minimum input required to initiate
the move operation. MDE requires a portion of WCS for
register dump and register restore microprograms. These
MDE microprograms are initially stored in relative octal
locations 333 to 377 of the first WCS loaded. If the user
requires these locations in Writable Control Store, he can
move this resident MDE microcode elsewhere.

No check is made to see if a portion of the user microcode
has been overlayed. The reason is that the user may
actually want to situate the dump and restore
microprograms on top of his own microcode as he debugs
another portion of his code.

The actual relocation of the MDE microcode does not
occur until the EXECUTE command is given.

5-36. MDE ERROR MESSAGES

During the use of MDE, commands, parameters, and
processing functions are monitored. If an error condition is
detected, an appropriate message is printed. Table 5-3

holds the list of MDE error messages plus their meaning
and the recovery procedure.

5-37. DOS-III OPERATION OF MDE

Before using the DOS-III version of the Micro Debug
Editor (MDE), the following items must be available.

a. A current DOS-III system

b. A relocatable object tape of MDE (HP 12978-16002).

21MX

C.

- A relocatable object tape of the TEST initialization

program if a debug run is to be made.

d. A microprogram object tape output by the Micro-

assembler.

The following is an example of how the user can proceed.
For details on additional DOS-III options, see DOS-III
manual (HP 24307-90006).

a.

Store the two tapes, MDE and TEST, on the disc using
the DOS-III store command

:ST,R,filename, lun

where filename is any suitable label and lun is the log-
ical unit number of the paper tape reader from which

Microprogramming Software

. Respond as follows:

MDE filename, TEST filename, /E

where MDE filename and TEST filename are the
chosen file names used with the “ST’’ store command
(step A), and /E specifies end of entry.

If MDE is being used only to load WCS with a micro-
program, the TEST filename may be omitted. The
loader then reads the two files into main memory.
If the TEST initialization program has been omitted,
the message

UNDEFINED EXTS

is printed indicating TEST is an undefined external to
the MDE program.

the tapes are entered.

enter
:PR,LOADR,2

DOS-III responds with

ENTER FILE NAMES OR /E

To proceed, enter

Make sure the list device is on. At the console device

:GO,1
When loading is finished, the message
LOADER COMPLETE

is printed.

Table 5-3. Alphabetical List of MDE Error Messages

Message

Meaning/Recovery

CAN'T FILL MORE THAN
16 MODULES!

ILLEGAL COMMAND

ILLEGAL DIGIT

ILLEGAL PARAMETER

ILLEGAL REG.

MNEMONIC

ILLEGAL TAPE #

MISSING PARAMETER

NO BREAKPOINT HAS

BEEN SET!

WCS NOT LOADED

User has tried to write microprograms to more than the maximum of
16 WCS modules. The user can debug no more than 16 WCS modules
at a time.

Command just entered is not an MDE command; re-enter command.

An “8” or ‘‘9” was entered in the previous command that called for
an octal digit; re-issue the entire command.

An unacceptable parameter was entered in the previous command;
re-issue command.

Register or flag mnemonic just entered is not one of those listed under
the CHANGE command (section 5-32); enter correct mmnemonic.

Bit range entered is not one of those listed under PREPARE command
(section 5-26).

A required parameter was omitted from the previous command;
re-issue command.

An EXECUTE-from-breakpoint command was given without having
set a breakpoint logically beyond the execute address.

The Writable Control Store PCA corresponding to the logical unit
specified in the command just entered, has not been loaded with a
microprogram during this MDE session; load the WCS.

5-15

Microprogramming Software

d. Save the loaded MDE program with
:ST,P
To summon MDE from now on, enter
:PR,MDE

e. The program title is then printed followed by command
request:

MICRO-DEBUG EDITOR
COMMAND?

Now enter the MDE commands required as described
beginning in Section 5-16.
5-38. BCS OPERATION OF MDE
Before proceeding, the following items must be available:
a. An absolute BCS binary tape.
b. A relocatable object tape of MDE (HP 12978-16004).

c. A relocatable object tape of the TEST initialization
program, if a debug run is to be made.

d. A microprogram object tape.

e. A BCS Library tape (HP 24145-60001), Revision B.

The following is an example of how the user can proceed.
For details on additional BCS options, see the Basic
Control System manual (HP 02116-9017).

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Reg-
ister and clear all other Switch Register bits.

c. Place MDE relocatable object tape in the paper tape
reader and insure that the paper tape reader and the
console device are on. Turn on paper tape punch. Press
PRESET and RUN on the CPU Front Panel.

The MDE tape is read and an absolute binary tape is
punched.

d. The message
*LOAD
is printed on the console device and the program halts.

If required, load the relocatable TEST Initialization
Program tape into the paper tape reader. Press RUN.

The TEST tape is read and another absolute binary
tape is punched.

5-16

21MX

e. The message
*LOAD
is printed on the teleprinter and the program halts.

Set Switch Register bits 2 and 14 leaving all others
clear. Load BCS Library tape into the paper tape
reader. Press RUN.

f. Library tape is read and more absolute binary tape is
punched.

Linkage information is printed on the Teleprinter.
Remove paper tape from punch. This is the complete
absolute binary tape of the Micro Debug Editor in-
cluding the TEST Initialization Program.

g. Load this tape using the Basic Binary Loader.

h. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-DEBUG EDITOR
COMMAND?

is printed.

i. Now enter the required MDE commands as described
beginning in Section 5-16.

5-39. WCS 1/0 UTILITY SUBROUTINE

This library subroutine provides the capability of writing a
microprogram into and reading a microprogram from a
WCS using a buffer in an Assembly Language,
FORTRAN, or ALGOL program and operating in a BCS
or DOS-III environment. This avoids the necessity of
running MDE every time it is necessary to access a WCS.
This subroutine is in the standard BCS and DOS-III
libraries for 21MX Series Computers.

Unlike a ROM chip, whenever the computer power is
turned off, the WCS contents are lost. Thus the WCS must
be loaded before access can be made to microprograms.
This WCS 1/0 utility has been provided to serve that
purpose.

Besides the calling sequence, a buffer is required in the
calling program large enough to hold the number of micro-
instructions being transferred in or out.

Initially, the microprogram is stored on an object paper
tape, in an object file on disc, or as octal data stored in the-
Main Memory program. In the case where the micro-
program is in the form of octal data in the Main Memory
program, the octal data area serves as the buffer when the
WCS 1/0 Utility is used to write the microprogram into
the WCS.

21MX

In the case where the microprogram resides on disc or
paper tape, the control system (BCS or DOS-III) must be
used to read the tape or disc file into a buffer in the Main
Memory program. It must be remembered that the
microprogram object contains header and end record infor-
mation that must be deleted before storing the micropro-
gram in the buffer. (Header and end record information
must not be written into the WCS.)

Refer to Section 5-7 for a description of the Binary object
output by the micro-assembler. Appendix A illustrates the
binary object format.

When the microprogram has been stored in the Main
Memory program buffer, a WCS I/0 Utility WRITE
calling sequence is used to write the microprogram into the
WCS.

To read the contents of the WCS, a WCS I/0 Utility
READ calling sequence is used.

The assembly language calling sequences are the
following:

Microprogramming Software

READ
JSB WREAD Branch to WCS read subroutine
DEF *+5 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer
DEF ADRS WCS relative address

WRITE
JSB WWRITE Branch to the WCS write sub-

routine

DEF *+4 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer

Where lun contains the logical unit number of the WCS
being accessed and BUFF contains the first word of a
word pair that holds a micro-instruction. LENGTH
contains the octal number of words in the transfer; if
LENGTH is positive, the number of 24 bit words is
specified; if LENGTH is negative, the number of 16 bit
words is specified. ADRS contains the WCS relative
address (between octal addresses 0 and 377) of where to
start reading.

5-17

WRITABLE

SECTION

CONTROL STORE Vi

This section covers general information, installation, pro-
gramming, and general theory of operation for the HP
12978A Writable Control Store Interface Kit. Options 001
and 002 for the interface kit are also covered in this
section.

6-1. GENERAL INFORMATION

The Hewlett-Packard 12978A Writable Control Store
Interface Kit provides the HP 21MX Computers with the
necessary logic to dynamically change the instruction set
of the computer. The printed-circuit assembly and flat
cable assembly contained in the interface kits are shown in
figure 6-1 and listed in table 6-1.

6-2. IDENTIFICATION
Hewlett-Packard uses five digits and a letter (12978A) for
standard kit designations. If the designation of your kit

does not agree with this number, there are differences
between your kit and the kit described in this manual.

6-3. INTERFACE KIT CONTENTS

Table 6-1. Interface Kit Contenté

the writable control store in the DOS-III system. Option
002 provides all the software required for the use in the

BCS system.

Table 6-2. Additional Material for Interface Options

ADDITIONAL
OPTION MATERIAL HP PART NO.
12978A-001 |DOS-III WCS Driver 24278-60001
DOS-IIIWCSI/0 Utility | 24333-60001
DOS-III Micro-assembler | 12978-16001
DOS-III Micro Debug 12978-16002
Editor
DOS WCS Driver Manual | 12908-90004
12978A-002 {BCS WCS Driver 24277-60001

BCS WCS 1/0 Utility

BCS Micro-assembler

BCS Micro Debug Editor |

BCS WCS Driver Manual

24283-60001

12978-16003

12978-16004

12908-90003

INTERFACE
KIT CONTENTS HP PART NO.

12978A Writable Control Store | 12908-60006*
PCA
Flat Cable Assembly 5060-8393
5 Connectors
Microprogramming 02108-90008
21MX Computers
Diagnostic Paper Tape | 12908-60001
Diagnostic Manual 12908-90013

*Only PCAs with a date code of 1436 or higher are
suitable for 21MX applications.

6-4. CONTENTS OF INTERFACE KIT OPTIONS

There are two 12978A Interface Kit Options. They contain
material in addition to that contained in the basic interface
kit. Option 001 provides all the software required for use of

6-5. SPECIFICATIONS

Table 6-3 lists the characteristics and specifications of the
writable control store PCA.

6-6. INSTALLATION

6-7. UNPACKING AND INSPECTION

If the shipping carton is damaged upon receipt, request
that the carrier’s agent be present when the kit is
unpacked. Inspect the kit for damage (cracked, broken
parts, etc.). If the kit is damaged and fails to meet specifi-
cations, notify the carrier and the nearest HP Sales and
Service Office immediately. (Sales and Service Offices are
listed at the back of this manual.) Retain the shipping
container and the packing material for the carrier’s
inspection. The HP Sales and Service Office will arrange
for the repair or replacement of the damaged item without
waiting for any claims against the carrier to be settled.

OCT 1974 61

Writable Control Store 21MX

EEREES e

B

A s e w
A

-

emeremmy meme - " s o 5.

cmmrrneeY

Figure 6-1. Writable Control Store Interface Kit

6-2

21MX

Table 6-3. Writable Control Store PCA Specifications

CAPACITY
Words Available: 256 per module

Maximum WCS Modules: one per HP 2105; two per
HP 2108

Word Size: 24 bits

MICRO-INSTRUCTION TIME
Access: 162 ns.

Full Micro-instruction Cycle: 325 ns.

INSTALLATION

One writable control store PCA requires the use of one
Input/Output slot (slot 10). Writable control store
may be used as any module, except module 0.

DATA STORAGE

Input/Output Group instructions or an HP 21MX
Dual Channel Port Controller are used to load the
WCS.

DATA READBACK

Input/Output Group instructions only are used to
read data from the WCS.

INTERFACE CURRENT SUPPLIED
BY COMPUTER

0.15A (—-2V supply); 4.6A (+5V supply)

PCA DIMENSIONS
Width: 7-3/4 inches (196.8 mm)
Height: 8-11/16 inches (220.7 mm)

PCA WEIGHT
Net Weight: 18 oz (511.2 gm) (card and cable only)
Shipping Weight: 4 1b (2.27 kg)

PCA INPUT LEVELS
‘1" state: 1.9 volts minimum

“0"" state: 1.1 volts maximum

PCA OUTPUT LEVELS
‘1" state: 2.4 volts minimum

“0"" state: 0.7 volts maximum

Writable Control Store

6-8. INSTALLATION
Install the writable control store kit as follows:

a. Ensure that the computer operates properly prior to
installing the writable control store interface kit.

b. Turn off power at the computer.

c¢. Remove the bottom and back access covers from the
computer.

d. On the writable control store remove the appropriate
jumper wires from TB1 to select the desired module
number (see figure 6-2 for pin number configuration).
Refer to table 6-4 for the desired module number and
jumper removal.

e. On the writable control store PCA place the WCS
module 0 enable switch S1 in the OFF position.

f. Place the first writable control store PCA in slot
number 10 (select code 10) of the I/O section of the
computer. Any additional writable control store PCAs
should be placed in slot 11.

Note: When WCS PCAs are installed, computer
software must be reconfigured because of
the changed I/0 slot usage. If adding
WCS PCA(s) will overburden the Power
Supply of the computer, it may be
necessary to move some I/0 PCAs to an
1/0 Extender, HP 12979A.

Figure 6-2. WCS Terminal Board for Selecting
Module Number Position

OCT 1974 6-3

Writable Control Store

Table 6-4. WCS PCA Jumper Removal on Terminal
Board for Various Module Selections

MODULE JUMPERS TO BE REMOVED
0 None
1 Pins 6,9
2 Pins 5,10
3 Pins 6,9; 5,10
4 Pins 4,11
5 Pins 6,9; 4,11
6) Pins 5,10; 4,11
7 Pins 6,9; 5,10; 4,11
8 Pins 3,12
9 Pins 6,9; 3,12
10 Pins 5,10; 3,12
11 Pins 6,9; 5,10;, 3,12
12 Pins 4,11; 3,12
13 Pins 6,9; 4,11; 3,12
14 Pins 5,10; 4,11; 3,12
15 Pins 6,9; 5,10; 4,11; 3,12

g. Remove the ROM-CPU Interconnect assembly, part
no. 5060-8344. Install the connectors of the flat cable
assembly, part no. 5060-8393

1. on J1 of the ROM Control PCA 1, A7
2. on J2 of the CPU Al
3. on J1 of each WCS PCA

as shown in sideview on figure 6-3.

21MX

Note: If an I/O PCA is installed immediately
above the WCS (refer to figure 6-3) that
requires a cable (hood) connector on the
back, then it may be necessary to double
the flat cable assembly back or cut it to
make room for the I/0 cable connector.

h. Replace the bottom and back access covers on the
computer.

i. Turn on power at the computer and perform the
diagnostic test as outlined in the Diagnostic Program
Procedures (part no. 12908-90009) shipped with the
12978A Interface Kit. If the diagnostic program is
completed without error, the PCA is installed and
operating properly. If the diagnostic program indicates
errors, halt the computer, turn off power, and recheck
all of the above installation procedures. Correct where
necessary, then recheck and repeat the operating
procedures of the diagnostic.

6-9. RESHIPMENT

If an item of the kit is to be shipped to Hewlett-Packard
for service or repair, attach a tag to the item identifying
the owner and indicating the service or repair to be
accomplished. Include the model number of the Kkit.
Package the item in the original factory packaging
material, if available. If the original material is not
available, standard factory packaging material can be
obtained from a local Hewlett-Packard Sales and Service
Office. If standard factory packaging material is not used,
wrap the item in Air Cap TH-240 Cushioning (or
equivalent) manufactured by Sealed Air Corp.,
Hawthorne, N.J. and place in a corrugated carton (200
pound test material). Seal the shipping carton securely
and mark it “FRAGILE” to ensure careful handling.

No connection here

WCS #2 if installed

if one WCS is installed ||

(see note under g.) —

WCS #1 PCA

I

~— (SEIETIRTTCTIRTIRETIRTIRITIRITRRTTRCNATNNNNSNS Chassis
g

CPU A1

==~

opening in chassis —

e —

én
\ :

flat cable assembly

ROM PCA1,A7

Figure 6-3. Installation of Flat Cable Assembly

6-4

21MX

Note: In any correspondence identify the kit by
model number. Refer any questions to the
nearest Hewlett-Packard Sales and Ser-

vice Office.

6-10. PROGRAMMING

Two methods exist for writing data into (loading) a WCS
module: under program control and under control of the
Dual Channel Port Controller (DCPC). Under program
control, prior to initiating the load routine, the data to be
loaded must be stored in the computer memory. This
requires a block of up to 512 words per module. The load
routine will send two words from memory (32 bits which
are mapped into an 8 bit address and a 24 bit
micro-instruction) to the WCS module, issue a write
command to that module and cause the data to be stored
there. The load routine will repeat this process until the
desired number of words have been stored in the WCS
module.

Once loaded, the contents of the WCS module may be read
back under program control via the I/0 bus and compared
with their counterpart in memory.

Timing sequences for flags used in the following examples
are shown in figure 6-4.

6-11. PROGRAM EXAMPLE: LOADING WCS

The following is an example of the program sequence
necessary for loading a WCS under program control. This
example does not include block pointers, counters, etc.,
which are necessary for proper control.

Note: “SC” indicates select code of the WCS
PCA.
STF SC Initializes the Direction FF (flip-
flop or flag)

OTA SC Loads the first computer word
into first WCS buffer and toggles
the Direction FF. This word com-
prises the 8 bit address and the 8
most significant bits of the micro-
instruction.

OTB SC Loads the second computer word
into the second WCS buffer and
toggles the Direction FF. This
word comprises the 16 least sig-
nificant bits of the micro-
instruction.

STC SC Provides the write pulse to load
the WCS buffers into the RAM.

The OTA, OTB, and STC instructions are normally in a
loop that is repeated until the desired number of micro-

Writable Control Store

instructions have been stored. OTA/OTB was chosen as
an example; any combination of these instructions is
allowable.

6-12. PROGRAM EXAMPLE: READING WCS

An example of reading from WCS under program control
via the I/0 bus is shown below. This example is shown
without regard to the block pointers, counters, etc., which
are necessary for proper control.

STF SC Initializes the Direction FF.

OTA SC Sends the 8 bit address to the
WCS module from the 8 most
significant bits of the A-register.
(B-register could be used, as
well).

STF SC Re-initializes the Direction FF.

LIA SC Places eight zeros into the 8 most
significant bit positions of the A-
register and places the eight most
significant bits of the micro-
instruction into the eight least
significant bit positions of the A-
register.

LIB SC Places the 16 least significant
bits of the micro-instruction into
the B-register.

The STF, OTA, STF, LIA, and LIB sequence is normally
in a loop that is repeated until the desired number of
micro-instructions have been read in from WCS. LIA/LIB
was chosen as an example; any combination of these
instructions is allowable.

6-13. PROGRAM EXAMPLE: LOADING WCS BY
DUAL CHANNEL PORT CONTROLLER

Under Dual Channel Port Controller (DCPC) control, the
load routine must send only the three DCPC control words
to the selected channel. When the channel is turned on,
DCPC will utilize every 1/0 cycle until the entire block of
data is sent to the WCS module (maximum of 512 cycles).
DCPC will transfer these words at a rate of 1.62 us/word
(512 words will take 830 us to transfer).

The following is an example of the program sequence
necessary for loading WCS via DCPC. This example does
not include block pointers, counters, etc., which are
necessary for proper control.

6-5

Writable Control YStore

LDA CW1 Get the first DCPC control word.

OTA 6 Send the fifst DCPC control word
to the selected DCPC channel
(DCPC channel 1 has been
selected here for demonstration
purposes only).

CLC 2 Prepare the selected DCPC
channel to receive the second
DCPC control word.

LDA CW2 Get the second DCPC control
word.

OTA 2 Send the second DCPC control
word to the selected DCPC
channel.

STC 2 Prepare the selected DCPC chan-
nel to receive the third DCPC
word. :

LDA CW3 Get the third DCPC control word.

OTA 2 Send the third DCPC control
word to the selected DCPC
channel.

STC 6,C Turn on the selected DCPC
channel.

STF SC Initialize the Direction FF.

CLF SC Start DCPC transfer.

SFS 6 Test for the completion of the
transfer.

JMP *-1 Loop until done.

CW1 OCT 12000SC

CW2 OCT (Starting address of the block to be
transferred)

CW3 OCT (Two’s complement of the number of com-

puter words to be transferred.)

6-14. GENERAL THEORY OF OPERATION

Writable Control Store (WCS) consists of a bipolar semi-
conductor Random Access Memory (RAM) containing 24
integrated circuit (IC) packages mounted on a 2100-size
printed-circuit assembly (PCA). Also included is the flat
jumper cable assembly necessary for complete mechani-
zation within the HP 21MX Computer. The WCS PCA
should be installed only in slots 10 (standard) and 11 of the
computer I/0 slots. Each IC package is configured in 256
bits and organized as one bit per word. Thus one module of
WCS is capable of storing 256 words of 24 bits each.

6-6

21IMX

For the purpose of execution of WCS instructions, WCS
can be configured to be addressed as any one of the
computer’s ROM modules except module 0. One WCS
module can be installed on an HP 2105 Computer. Two
WCS modules can be installed on an HP 2108 Computer.

6-15. WCS MODULE IDENTIFICATION

For proper addressing of WCS, an integrated circuit
comparator and terminal board (with jumpers) on the
WCS PCA is used to identify the PCA as a particular
module of Control Store. For example, if the terminal
board is configured for module 2, the PCA will be enabled
when the ROM Address Register (RAR) contains the
pattern ‘“0010” in its four most significant bits (11-8), and
disabled otherwise. When enabled, the word in WCS
addressed by RAR bits 0 through 7 will be sent to the
ROM Instruction Register (RIR) as signals ROMO
through ROM23. The computer will then execute this
word (micro-instruction) as though it came from a
standard ROM PCA. The access time of data from WCS
(162 ns.) allows the computer to operate at its normal clock
rate. If it is desired to replace any module already existing
in ROM with a WCS module, that ROM module must be
removed in order to prevent unwanted ‘“‘or’’ conditions on
the data lines.

Note: The ON position of switch S1 (figure 6-2).
is not intended for use in the 21MX
computers. All Control Store is disabled,
if S1 is set to ON.

6-16. WCS CONNECTION

WCS is connected to the computer central processor
through the I/0 structure (for loading and checking), and
also through a 50 wire flat cable connector. It is this
connector that enables WCS to be used as an extension of
the computer’s basic control store. The cable connects one
or two WCS PCAs to ROM control PCA 1,A7 and to CPU
Al. The ROM address register on the CPU sends a 12 bit
address to the WCS PCA or PCAs through this cable, and
the addressed PCA then sends its data (micro-instruction)
from that address back through this cable, where it is
merged with the outputs of ROM. From there the data is
sent to the ROM instruction register as though it was from
ROM.

6-17. 'WCS ADDRESSING

To load the WCS RAM circuits, the WCS PCA must be
addressed through the I/0 interface structure of the com-
puter. A 32 bit format is necessary and requires that a 2
word transfer be used in the loading procedure through the
computer A- and/or B-registers. Two computer words and
thus two transfer operations are required for one WCS
word. The eight most significant bits of the first computer -
word transferred is the WCS RAM circuit address. The
remaining eight bits of the first computer word and all 16
bits of the second computer word (total of 24 bits) are
stored in WCS at the address specified.

Once loaded, WCS becomes an extension of the ROM.
Thus the WCS may be used to alter the computer instruc-

21MX Writable Control Store

tion set while the computer is in an operating condition. 6-18. 'WCS Loading Timing diagram

This feature permits dynamic expansion of the computer

instruction set. Figure 6-4 illustrates the WCS timing.
1 STF 1 OTA/B 1 OTA/B 1 STC 1
sz|T3|T4|Ts|Tssz[TslT4|T5|Telrz|73|14|75|T6 T2IT3|T4|T5|T6|

e L | [L 1 |
s 1 1 1 1
*eooe
ste — 1
oirer | | I R

TA/B

ouoé) [stworp | I 20d WORD |
TRANSFER TRANSFER
TGLFF I J B— 1
sTC I I
CTLFF I I
LOAD WCS
RAM

*NOTE THAT BETWEEN EACH OF THE 1/0 CYCLES SHOWN A FULL ADDITIONAL
1/0 CYCLE IS REQUIRED TO FETCH THE INSTRUCTION FROM MAIN MEMORY.

Figure 6-4. WCS Loading Timing Diagram

6-7

OBJECT TAPE FORMATS

APPENDIX

WORD 0 WORD 1 WORD 2
Bit NO. ——— 15 8 7 015 13 6 0 15 0
® @ & o o o ¢ o o o
v Ne—— —— -

Leader Record length = Null Ident 1 Checksum = sum of contents
total no. of 16- =011 of all words in record excluding
bit words in record length and checksum
record (including itself,
this word).

Min. record
length = 5;
max. =59.
WORD 3 WORD 4 WORD 5 WORD 6
15 0 15 0 15 87 0 15 0

Microprogram origin
$ORIGIN value.

v~

Tape flag: 0 = ‘Punched by
Microassembler’; if Debug
Editor punches an object
tape, this field = 1.

Address relative High bits of first
to base address
of module.

Low bits of first

microinstruction. microinstruction,

15 0 15 015 8 0
etc ... = etc. ..
Low bits of last micro- Record length of
instruction in record. next record; same
format as previous.
Figure A-1. Format of Standard Object Tape (Sheet 1 of 2)

Appendix A’) ' 21MX

15 0 15 8 7 015 13 12 0 15 0
v~ = A g
Low bits of last micro- Record length of Null Ident Null End record checksum =
instruction on. : End record, - =101 120000.
always = 4.
15 0

Null R Trailer

Figure A-1. Format of Standard Object Tape (Sheet 2 of 2)

21MX Appendix A

BitNo. — 15 8 7 0 15 8 7 0 15 8 7 0 15 8 7 0

N —— — “— — “——“~——“~—— ——p— ———~————m——

Leader # of 16-bit Null Bits 23-16 of Bits 15-8 of Bits 7-0 of Bits 23-16 of Bits 15-8 of Bits 7-0 of
words in record, 1st micro- 1st micro- 1st micro- 2nd micro- 2nd micro- 2nd micro-
including this instruction instruction. instruction. instruction instruction. instruction.
word. s always in 1st record. in 1st record.
64g = 524

15 0 15 0 15 0 15 0 15 0
AN
etc. ... ~
Bits 15-8 of 32nd Bits 7-0 of 32nd Checksum: computed in Null
micro-instruction. micro-instruction. following way:

a. sum of all bytes in
record excluding
this checksum.

b. the sum is ones comple-
mented and then rotated
8 bits.

15 0 15 8
NOTE: If last record contains less than
32 micro-instructions, then remainder of
micro-instruction space on tape is filled
etc. . . . with all bits set (—1's).
~—— N — —
Null # of 16-bit Trailer

words in record
= 64g.

Figure A-2. Format of the SRCASE Object Tape
A-3

T4

(Actual size: 12.5" x 10.5")

HEWLETT-PACKARD 21MX MICROCODING FORM

3

INd04 INIdOJ0HIIN

PROGRAMMER DATE MICROPROGRAM JLVIODULE PAGE OF
LABEL oP SPECIAL ALU STORE S-BUS COMMENTS Word Type 1
LABEL “IMm” SPECIAL MODIFIER STORE OPEéAND COMMENTS Word Type 2
LABEL “IMP ““CNDX" CONDITION | JUMP SENSE OPERAND COMMENTS Word Type 3
LABEL JMTSBQR ME')%’}A; IER OPERAND COMMENTS Word Type 4

N FIELD 1 10 FIELD2 .. FIELD3 |, FIELD4 |, FIELD5 |, FIELD 6 a0 FIELD 7 80
|
ot
:
}
|
| 4 |
[! j
i !
1
e :
i ; . i i
i ! } H 4[
i
! !
i ! i
| L -
| i o !
4 | |
; \ T :
| ' i
b P
{ —
i i
1 10 15 20 25 30 40 80
= ZERO lort=0ONE I=ALPHA 5951-7386
O =ALPHAO 2=TWO Z=ALPHA Z

Figure B-1. Microcoding Form

XIAN3ddV

APPENDIX

C

MICRO-ORDER SUMMARY

C-1

Appendix C

Table C-1. Summary of User Micro-orders

21MX

*default micro-order

**JMP default

FIf no ‘RJS’, then bit 14 = 1

means not normally used by user microprogrammer.

-means included here for completeness only; reserved for exclusive use of system microprogrammers.

RO ASSOMBLER 1. op SPECIAL ALU COND MODIFIER STORE RIS SBUS
SOURCE (CARD) -
COLUMNNO. — 10 15 20 20 20 25 25 30
BITS (ROM) —— 23-20 4-0 1915 19-15 19-18 9.5 14 1410
Corresponding
Bit Pattern
00000 *NOP IOFF INC TBZ HIGH TAB TRIS TaAB
00001 ARS SRG2 OP1 ONES LOW CAB CAB
00010 CRS L1 OP2 COUT CMHI T T
00011 LGS L4 ZERO ALO CMLO L CIR
00100 MPY R1 OP3 AL15 100 101
00101 DIV ION OP4 CNTR CNTR
00110 LWF SRG1 SUB CONTS DSPL DSPL
00111 WRTE ors [iEEE DSPI DSPI
01000 ASG STFL OP6 FLAG IR ADR
01001 READ CLFL ADD E M M
01010 ENV FTCH OP7 OVFL B B
01011 ENVE sov OP8 RUN A
01100 JSB cov OP9 NHOI
01101 IMP RPT OP10 SKPF
01110 IMM SRGE OP11 ASGN PNM
01111 *NOP DEC IR2 *NOP *NOP
10000 B cves NLDR s1 s1
10001 MPCK NOR NSNG s2 s2
10010 10G NSAL NINC s3 s3
10011 ICNT OP13 NDEC s4 s4
10100 SHLT ~ NAND NRT S5 S5
10101 INCI CMPL NLT S6 S6
10110 BB xor nNsTR s7 s7
10111 SRUN SANL NRST s8 S8
11000 *¥UNCD NSOL NSTB s9 s9
11001 CNDX XNOR NSFP S10 S10
11010 JIo PASL INT s11 s11
11011 JTAB AND SRGL s12 S12
11100 J74 ONE RUNE X X
11101 J30 SONL *NOP Y Y
11110 RTN IOR CNT4 P P
11111 JEAU *PASS S S

C-2

OCT 1974

APPENDIX

FUNCTIONAL BLOCK DIAGRAM|

D-1/D-2

Appendix D

T-bus .

ALU

Rotate/Shifter

L1

Ll, ARS

(o}

CRS,
LGS,

'R'ISP
Lay,

MPY

DIV,
LWE

Output

E
ENVE

ALU

<D

Tests

Extend Register

ENV,
ENVE,

. a ‘_Bst . . : .
. R [<F = IR, . : st ke
: : . L : :
. FTCHw : : el 52 fo 'S’ca;atch
: JTAB, : : IN(:Isp . . e 53 ko Register
. RTNg . K : :
: > SAVE il : : [s4 |5
: 'y b - : <= S5 |
. . . Memory .
\ 4 : : Protect : . (<= S6 |
\ . . Option : : '
: ;ddress > RAR JSB . : Main Memory : : <t i
: ° o Inhibit : : <= s8 [<
: oo WRTE : :
Y Maps Address to . : ?{EAD : : o BEL ‘Qﬂ
j Control Store : : Data Address : . 3=t S10 |t
o —
: : A : :
. . . WRTE . .
: Micro- . : TAB st ° . N <H st CRS,
. instruction ROM : : ’ Memory : : Fo
: Clock - Address : : <t 512 [ARS, N
. Cycle : . AAF Selection 4 : : gd x| Register < Register
: 3 1 B 3 : E < v Jon
: Address an B Four n " : S || P-Register [ftd P |<tl PNM,
Y . . Loader T v : : Sui —
: 458, . : TAB Register Register : . witch &=
TS 1 I I N o oo : : Fogir LS
: ! B BAF 7 MeCK, : : Tas, TAB,
: ADR | LDR : : CAB, CAB,
: Decode : : TAB ADR; : B Ag
: - Ln:;;:::on : : st L : .
: e i f : :
. Control . . Is,st PNMg . .
: Y CM, : :
Y S-bus R S-bus v
4 Py AN 101 \ ASG,
Y :
Immediate Data CMHI; O PN TP e B : Lt
:.-—‘(I)G—Hi . N oSl L
LOW; : : : A4
CMLO; : : : : L-Register
. . “Interrupt IAK : : 'CNTsp
. . . Acknowledge . .
: Display DSPL, . : : Counter CNT4,
Register ——s,st . . . ENTS8,
. N mst . . Cl
: : A : : CONTR, .
: - - W,y N 1/0-bus : :
NOTES: : | . ‘F“ : :
. 7 oo . .
=b = Data path : : : :
. . Teleprinter . : Overflow Register
~—————————— = Control path : Display DSPI, ., . INT, : . eg
. ¢ s, : : :
Underlined characters = Micro-order : Indicator . N : COVgy
Subscripts: g%'/:sf
s = S-bus field Line Printer : : ¢
st => Store field : £ : .
¢ => Jump Condition field . RUN, RUNE, . . :
sp => Special field : NHO! ¢ : : :
o = Op field : SRUN¢, : . :
i = Immediate Modifier field : SHLT,, : Central : :
: : Interrupt | CIRg : :
Example: . . Register . .
(2NTF(s st => Micro-order “CNTR"’ : : :
! in S-bus or Store fields :
: : 1055 s : :
: : < P vl : :
. . Interrupt . .
: . Enable v | . .
: : Other . .
: : Peripherals . .

T-bus :

p———eeae M
o .

182

T-Bus .
Zero .

LWF, .

STFL,
CLFL

FLAG,

sp

Figure D-1. Functional Block Diagram

D-3/D-4

BASIC INSTRUCTION SET |Risall

MICROPROGRAM LISTING|| ¢

[B]
ooz
[l
0004
apos
0006
auo?
anos
apa?
[(RBRT
0011
o012
agiad
0014
QO3
(R
oUtLy
[R
ap1?
ap20
ap21
aoa2z2
ap23
au24
002s
ag26
ap2y
(i
au2s
0030
003t
o3z
Q33
0034
Qo33
0036
o037
0038
0039
004
¢o41
a4z
ap43
0044

0g0a
0ae)
qone
0aca

Qutae

aus
0ace
cac?
(BRI
[
outLe

eut3
cotld
(S
Clis
Uty
Gues
Cozi
cnae

0073

!
o =

-1

Pl

LSRR XN
LS PN

-0 PRI e PR
SR N S~

o)
RO |

DF Y G} Y N L D) LN

P33

<

ar4vie
136745
100411
(PR o

1200314

[RHE S
aeoavi
106457
040031
164400
0z0673

022457
001031
100465
04057

a2z47e

This appendix holds a full micro-assembly listing of the 21MX Computer Basic
Instruction Set microprogram. Due to the size of this microprogram, a special micro-
assembler was used. Minor differences can be seen between this micro-assembly listing
and a listing produced by the micro-assembler described in this manual. The major
difference to be noted is that octal numbers are preceded by a “%” symbol in this

listing. Other differences are self explanatory.

$URISIN=C
Atk ok AR A R A e R OR o Tk ok o e R TR e o A T ek ok ok R ke e ok o ok ek ok
*

* 21M¥ MICRU-COUDE
* MODULE O
*
A AT R AR R KA KO AR T KR R R AR R A o o o o o R ok o R R R K R ok B Rk kK
HALT EQu 20400
FADD EQY %7128
FSUR cau PEREA
FMPY Equ “tzal
FOo1w EQU wrze2
IFIX EQu %7000
FLORT EQy %702s
L R L R R R Y
* FETCH ROUTINE
L R R R N R R R R L Y
FETCH READ #TCH IND PHR # M{=P; P¢=Ptl: RERD NEW INGTR
104 EKABLE IHTERRUPY RECOGNMITION
CLFL PASE 1K ThE IRS= T/8/B; ULR FLRG FF

READ (TAB IND CM AbR JUMP THRU TRELE: LOAD M IF MRC INSTR
A A A A AR KK R RO ST A A A TR oK K K o ok o o e o o SR B SR oK A K K R e ok ke
HURY JMP O ONDX RUN RUZ HALT RUN MODE IMPLIES AN INTERUPT
R R Y R ey
* IKTERRUPT REGPONSE NOUTIME
oA R X R A oA A K R OB R TR HOR A R R R K R R R ok Rk ok R Rk Rk ki koK &
INTERUPT REARD JULFL PASS N C1R M{=CIR; READ TRAP CELL! CLR FLAG FF

dMe o CNDX TBZ RUE INTOK CHECK 17 CI® IS vALID

READ PRES M TIR M(=CIR; READ TRAP CELL

JHP ONDX TRYZ FETCH 1F HO JHT BY NOW. IGHORE
INT 0K I0FF PASS IR T IRC= TRAP CELL, DISABLE INT RECOG.

READ JTAB INT CHM AbR JUMP THRU TAILE: LOAD ® JF MRCG INSTR.
L R O R R T e R R
* INDIRECT ROUTINE
L R R R R O N Y R R
INDLZVEL READ IND N L] RERD NEXT LEVEL

JMP O ONDN NHOD R4F THD2 HELT QR INTERRUPT?
INDIRECT INDY PREGE 0 143 M{=T/RAB: INCR INDIRECT COUNT

MR CNDR ALLE INDLEVEL CKECK FOR ANUTHER LEYEL OF INDIRECT

READ RTN IND N L] READ EFFECTIVE ADDRESS, RETURN
IMD2 INDY PR3S M THE MC=T/7A/8: TINCR INDIRECT COUNT

JMP DNDX NGNG RIS INDIRECT«1JUNP BACK FOR SINGLE INSTRUDTION

DELP » RESET P
IME HOR1 HALT OR INTERUPT

Appendix E

0045
0046
ag47
0048
0049
Qo050
00351
aosSe
a0sS3
0054
00355
00356
Qos7y
0058
aus9e
0060
Q1]
0ue62
0063
064
0065
ao6e
0067
agéa
0063
0070
a7
o7z
0073
ag?74
gavs
Qo?7¢
0?7
Uorgd
0079
[d]
008!
ao8z
ap8s
00384

003s

0086

00837

0psa

QQRs

0020

Q091

agez
0Q93
6094
Q9%
0096
[JE:-H
0p9R
o0u3e
0100
€101

0102
0103
0104
Q108
0106
g107
0108
0109
0110
01114
011z
0113

E-2

an24
ozs
0026
eaz?
co3n

DO OO
[R ol & B4]
[N N RN
W S L P e

i3
0037
QU4
Gd41
Q42

0043
0344
(SRR
0046
eo47

Qund
0051
a435¢

Qgsa
0354
[
Gi5e
€us?
ao&n
aael

I3

Lw e
L)
=
o

h B el PO

. g g

S oo
—- oo oy
-

AR]

=y

0101
Q1ae
0103
0104

333

[
[
e17
ety

17
217

ey

AR BUM A
LS BN
0o oo

LXK

102757
042431
73717
100021
agzove

136057
042431
a7SvLy
103031
agzave

ageosy
042431
arsvLs
1eo03s
002078

036087
442431
Q75717
103031
Qceove

136757
100031
aceave

tezade
102a56
103031
162041
07573%
102041
136776

102757
teeziv
1ez2ie
136787

o

P NS

-1 =]

- n b b
Cod b 0] Cal
ooy
£ =4 A en

- o

o

136757
162157
Q1aa7e

ae3te
015432
16024
017034

2
7

LR E L R R R L R s N E R R e L s A E R R R R
* ALTER-SKI? €GROUP
LR R R R R R R R L R R L A L R R R R R A

RSGNOP FASE che SET UP SBKIP TEST
JH? CROX AGEH ASSHSKP JUMP IF ASG SKIP HOT MET
A8s ING 7 4 P(=P¢t]: ENABLE ASG HRROUWARE
JMP CNDX IR2 RJI3 FETCH DONE IF HOT 1NR/EB
ENYE RTH IND CR3 CHR@ A/ (= A/B FLUS 1
*
ASGCL# ZERQ CAR CLEAR A/B REGISTER
JMP CNDK ASEN ASGNSKP JUMP IF ARSG SKIP NOT MET
Ass IND 7 4 P(=Ptli ENARBLE ASG HRRDUARE
JMP ONDX IRZ RJ43 FEICH DONE IF HOT 1NA/B
ENYE RTN IND (Caz €43 A/B (= a/B PLUS 1!
*
RSGCH=* CNPS CAag CAR ASR (= NOT 4/R
JMP CNDX AGSN AEGNSKP JUMP 1F RSG SKIP HOT MET
Ass ING 7 14 P{=Ptli ENARLE ASE HARDUWARE
JMP CNDX IR2Z RJ43 FETCH DONE 1F HOGT 1NR/E
ENYE RTN IND €Aa3 ChB AR <= A/BR PLUS |
*
AIGCL* ONE CA3- CLK & COMP &/B REGISTER
R 14 CNDX AGEN ASGNSKP JUMP 1F ASE SXIP HOT HeT
RES IND P 14 P{=Ptl; ENABLE ASG HARDUARE
dMP CNDX IRZ O RJI3 FETCH DOME 1F HOT INA/B
ENYE RTMN IND CAR3 CHB AR <= A/B PLUS 1
*
A3GNSX® ASG HC SKIP; ENABLE ASG HARDUARE
JMP ONDX IRZ RJIF FETCH DONE IF HOT INA/B
ENYE ®TN IND CR3 CHB AAR (= 4/B PLUS |
LR R R R N R R R R EE R R E R R E N EE R N
* SHIFT/RAOTATE GROUP
LR R N R R N R R R R R L R T
§REG FREL PASS £€Aax ChE FIRST SHIFT
SREE PASE LAl Cal CHECK FOR CLERR E; SET &GLa TEST
JMP CNDX GREL RJIS #+3 SREL 13 SLA TEST
3RE2 PRES CAX Che GECOND SHIFT
RTN INT 14 1 #{(=P+}. WHEN LSB = ¢
' 3R&2 PASS CA3 CAB SECOND SHIFT
RETURHN RTHN

e e ok sk A ok ok kR ko N btk o Ktk e ek oK o sk ok i ok e ok ok ook ok e sk ok ket ot o sk sk sk ko ok ok sk k ek ko ok ok

#* 140 GROUP
#:«*m#**m#*#***#*#*-‘kﬂ:h:«*st:k******#**:k#*#****:kk#:&*:ﬁ%***:k*****#***:&****:k*
13CNTRL NO¥ ALLOW TIME TG €ET SKIP FLAG
JMF CNDX GKPF RJF FETCH CHECK 3<1P FLAGC
XTN O IND P u » (= P ov
NOF
*
19.0T* PRES] 5E1 UP 5-BRUS
YRES 100 COB 1/0-BUG <= A/8
®TN PARS 100 CHE HOLD 1/0-BUS VALID
NO®
#*
19. L1 NQF SYNCHRONIZE 101 PULSE
NOF
RTN PASS CAB 101 R/B (= 1/0-BUS
NoF
*
10. Ml NP SYNCHRONIZE 101 PULSE
PRES L ok L (= A/B FOR ALU OPERATION
RTN 16% ceg 101 RiB{= (A/B)Y + (1/0 BUS)
*
[EREEEEEEEEEE R EREREEEFEEEE] foote o ol e At o o O o ok oo ok R K K e ok i e d sl ol oo R ok o ok ok ok ok ke ok ek e e ok R A
* 1¢ GROUP/ ERU GSROUP/ MAC GROUP JUMPS
FZEEEEEEEEEEE RS EREREEER EESE E KA R A REE AR E R R R E R Rk B A ERR KRR
196 dHF 105 T10CNTRL
EAU JHP O dEaU , EAUTAKLE
Kaco aME A7 HACTARLD
¥aC 1 aMP a7 4 MRCTARBLL

21MX

21MX

0114
G115
0116
0117
0118
0119
a120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
01358
0136
0137
0138
0139
0140
0141}
014z
0143
0144
0145
0146
0147
0143
0149
0150
0151
0152
0153
0154
0155
0156
0157

0138
0159
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
01?71
0172
0173
0174
0175
0176

0103
0106
e107

G11a
e111
e
G113
[BBY]

a118
alle
0117

[eR]
0121
c122

ciz3
G124
ciad

¢1ze
¢127
4130

G131
Cl3¢
G133
€134

0135
G136
e137
0143
G141
G142

G143
€144

0143
0146
0147
0150
0151

0152
0153
0154
0155
0136
0157

0160
0161
0162
0163
0164
0165

300

[d gy

300
(g
Qoo
1v?
3z0

oo

017
¢17
322
017
017

220
326
017
322
017
17

017
330
o7
320
017
017

aCgeve
126157
1005876

QCoéeva
162157
aeevys?
040031
76738

o
h =)

o r MmN
ooy
U1 - O
A I B]

o .
o

0coera
126157
0Cas7e

0C2670
122761
102036

aepevo
162157
100076

00640
12276
174017
02373¢

geoeva
122761
0g1017
1402017
06eoo3t
075726

ocnevo
100076

136765
101000
046531
140761
141736

040457
007031
1010253
0463531
140761
141736

101025
106671
175717
000230
1210214
141736

Appendix E

otk s e ok ok R i RO ok A sk o et AR R ok kR i ol o ok Aok koo sk Aok ok ol ko sk ookl e sk stk ko R ok TR ke ok ol e Aok sk ok Ak ok ok R

A A Ol K Ak o o AR ok ko e ke i A ke o e Ttk ko Ak R kA e ok ol e ke sk Tk K e ek ke etk ke ok ok ko ko R ek ok A

* MENORY REFERENCE GROUP
AND, 1 43 INDIRECT
AND ARG L f
RTN AND A THB
*
Cox,] 488 INDIRECT
Crx PRSS L CAB
%o TRR
JMP ONDX TBZ FETCH
XTN IND P v
*
XOR. 1 4583 INDIRECT
XOK PASE L 8
XTH XOR A ThE
*
10R. 1 488 INDIRECT
10R PRSE L 8
RTH 108 A TRE
*
ST*,1 488 INDIRECT
ST NPCK PARSS N
YRTE RTN PASS TAZ Cuk
*
*
AD*, 1 JEE INDIRECT
AD* PR3E L cas
ENYE RTN ADD CAE THE
*
ISR, 1 J83 10FF INDIRECT
J5R NPCK FASS Bl
WRTE PASS TA3 P
TN INC 7 ¥
152,1 483 INDIRECT
152 MPLK PASS N
INC 51 TA3
WRTE PRASS TAX 31
JMP LNDYX TBZ RJ3 FETCH
XTN IND R ¥
*
Lo, 1 458 INDIRECT
Lo* RTN PASS ChE T4B
JNP,1 INE1
I0FF PASS S1 TAS8
JNP CHNODX AL1LS JINDL
MPCK PR3S st
RTN PASS 7P 51
*
JINDL READ INC N St
JNP CNDX HHDI RJS HORICK
INCI PASS 51 TA8
JMP CNDX ALIS JINDL
MPCK PASS st
XTH PASS ? 51
»
HOR1ICK INC1 PASS 51 TRB
JHP CNDX HSNG RJIS JINDL+S
DEC P P
INP HOR1
JNP MPCK PASS S1 ADR
RTN PASS ? 51

L <= A

A (= T/0/B AND L

L (= A/B

T-BUS <= T/A'B XOR L
JUMP TOU FETCH IF EQUAL
P{= P+1 IF NOT EQUAL

L <=8
A <= T/a/8B XOR L

f (= 1/4/B I0GR L

MEM PROTZECT CHECK OF ADDREGS
T/8/B (= A/Y; WRITE

L (= A/%
AFB (= T/A/8 PLUS L

DISABLE 1NTERRUPT RECOGSHNITION
MEM PROTECT CHECKS THIZ ADDR
T/f/B <: RETURN RODRESS; WRITE
P (=M ¢ 1

NEM PROTECY CHECKXS THIZ ADDR
S1 <= T/7A/B + 1

T ¢= G1i WRITE

ZERU? MNOU, DUNE.

YES, P (= P+l

AR (= T/p/B

CCURT ONE INDIRECT LEVEL

DISARBLE INT RECOGNITION:S1<{=T/A/3
J¥P IF ANOTHER LEYEL OF INDIRECT

MEN PROT CHECLKS DESTINARTION ADDK

P (= DESTINATION ADDR

READ NEXT LEVEL

JEP IF HARLT OR INT

St (= T/A/B; COUNT INDIRECT LEVEL
JEP IF ANOTHER LEVEL OF INDIRECT
MEM PROT CHECKS DESTINATION ADDR
P <= DESTINATION ADDR

§1 <= T/A/B; COUNT INDIRECT LEVEL
JUMP BACK FOR SINGLE INSTRUITION
RESET P

HALT OR INTERUPT

S1<(=DESTINARTION ADDR; CHECK WITH N.P.
P &= DESTINATION ADDRESS

E-3

21MX

Appendix E
0177 BEBFEIERXRBRBRRBABARZAEFREIXABBABRAERIRERE SRS BRI XBARRRERRIBLXRKFLRRR XL
0178 * EAU MICROPROGRANS
01?9 BERXBBESEBRRSRRBARRERARNRBERABRER RN IR RRBBEBAB AR ATRABRBRAB RN DA RNR K &
0180 0166 Q10 021017 RRR CHPS S1 ADR
0181 0167 QOO0 041017 INC 51 st §1 <= TWO’S CONP OF SHIFIS
0182 0170 017 140255 RPT PARSS CNTR 51 §ET UP COUNTER FOR REPERT
0183 0171 057 124504 CRS Rl PRSS 8 B DOUBLE-BORD SHIFT REPERT
0184 0172 €17 136776 RTN
01835 *
0186 0173 010 021017 ASR cCHPS S1I ADR
0187 0174 €00 041014 0¥ INT Si 3t §1 <= TWO’S COMP OF SHIFTS
0188 0175 017 140255 RPT PASS CNTR St SET UP COUNTER FOR REPERT
0189 0176 037 124504 ARR3 R1I PASS B 8 DOUBLE-WORD SHIFT REPERT
0190 0177 017 136776 RTN
0191 *
0192 0205 €10 021017 LSR CMPS S1 ADR
0193 0201 000 041017 INC 81 31 §1 (= TWO’S COMP QF SHIFTS
0194 0202 017 140255 RPT PRBS CNTR 51! SET UP COUNTER FOR REPEAT
0195 0203 077 124504 L63 R} PRSS & B DOUBLE -WORD SHIFT REPEAT
0196 0204 €17 136776 RTN
0197 *
0198 0205 010 021017 RRL CNPS S1 ADR
0199 0206 €00 041017 INE 81 s1 81 (= TWO’S CONMP OF SHIFTS
0200 0207 017 140255 RPFT PASS CHTR 81 SET UP COUNTER FOR REPERT
020! 0218 057 124532 CRS L1 PR5S 8 8 DOUBLE -WORD SHIFT REPEART
0202 0211 017 136776 RTN
0203 »
0204 0212 010 021017 ARSL CHPS S1 ADR
0208 0213 000 041014 coy INZ 51 §1 §1 (= TWO’S COMNP OF SHIFTS
0206 0214 €17 140285 RPT PASS CHTR St SET UP COUNTER FOR REPEART
0207 0215 €037 124532 ARS L1 PASS 8 B DOUBLE-WORD SHIFT REPEAT
0208 0216 Q17 136776 RTN
0209 *
0210 0217 010 021017 LSL cCH?S S1 ADR
0211 0220 000 041017 INE 51 St §1 (= TUO’3 CONMP OF SHIFTS
0212 0221 €17 140255 RPT PASS CNTR 51 SET UP COUNTER FOR REPEAT
0213 0222 077 124502 LGS L1} PR5S B8 8 DOUBLE-WORD SHIFTY REPERT
0214 0223 017 136776 RTN
0213 *
0216 0224 220 074457 DLD READ INC M P READ MEMORY ADDRESS
0217 0225 300 000640 4883 I0OFF INDIRECT J&B TO GET NM<=ARDDR OF FIRST WORD
0218 0226 000 023017 INC 81t N §1 <= ADDRESS OF SECOND WORD
0219 0227 017 100557 PASS A TAS R (= FIRST DATA WORD
0220 0230 220 040457 READ INC N 51 M{=ADDR OF SECOND WORD: READ
0221 0231 €00 075717 INC 7 2 P (=P + 1
0222 0232 €17 100536 RTN PASS B TRE B <= SECOND DATA WORD
0223 *
0224 0233 220 074457 D37 READ INC M P READ MEMORY ADDRESS
0225 0234 300 000640 J&§8 10OFF INDIRECT JSB TO SET M (= ADDR OF FIR3T WORD
0226 0235 000 023021 MPTK INS S1 N MP CHECX FIRST RDDR: S1<(=SECOND ADDR
0227 0236 177 126017 WRTE PRSS TAR A STORE A INTQ FIRST LOCATION
0228 0237 000 040461 MPCK INC M st MP CHECX S1: M(=S51
0229% 0240 177V 124017 WRTE PASS TAB B STORE B INTO SECOND LOCATION
0230 0241 000 075738 RTN INC 7 P UPDRTE *®
0231 0242 220 074457 MPY READ INC M P N (= P; READ
0232 0243 300 000640 488 I0FF INDIRECT J8B T0 GET N (= RDDR OF OPERAND
0233 0244 000 075717 INC P P UPDATE P
0234 0245 017 101057 PABS 32 TAS 82 (= MULTIPLIER
0235 0246 017 127114 MPYX oY PR3S 83 A SIC=A(NULTIPLICAND); CLEAR OVFL
0236 0247 001 136517 ZERQ B CLEAR B FOR MULTIPLY
0237 0250 017 142157 PASS L 52 L <= §2 (NULTIPLIER)
0238 0251 017 124255 RPT PASS CNTR B CLEAR COUNTER: SET REPEAT FF
0239 0252 104 124304 NPY RI ADDd B B NPY STEP (X16); (B.,AX(=A TIMES L PLUS B
0240 0253 017 144757 PASS 83 TEST MULTIPLICAND
0241 0254 322 012731 JHP CNDX ALIS RJUS =¢2 JUNP 1F POSITIVE
0242 0255 003 024317 sus B] UKDO LAST MPY STEP IF NEGATIVE
0243 0256 017 142757 PRSS §2 TEST MULTIPLIER
0244 0257 322 003071 JMP CNDX ALIS RJS RETURN JUNP IF POSITIVE
0245 0260 017 144157 PASS L 3 L (= NULTIPLICAND
0246 0OZ61 003 024336 RTN 5u8 & B B¢=B MINUS L (CORRECTS FOR NEG. NULT)
0247 *
0248 »

E-4

21MX

0249
0230
0251
0252
0233
0254
023S
0256
0257
0238
0239
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283

0284
0285
0286
0287
o288
0289
0290
0291
0292
0293
0294
0293
0296
0297
0298
029%9
0300
0301
0302
0303
0304
030%
0306
0307
0308
0309
0310
03114
0312
0313
0314
0315

0262
0263
0264
0265
0266
0267
0270
0271
0272
0273
0274
0273
0276
0277
0300
0301
0302
0303
0304
0305
0306
0307
0310
0311
0312
0313
0314
0315
0316
0317
0320
0321
0322
0323
0324

0330
0331
0332
0333
0334
03335
0336
0337

0343
0341
0342
0343
0344
0345
0346
0347
0350
0351
0352
0353
0354
0355
0356
0357

220
300
000
010
010
322

‘000

017
010
322
017
010
o0
321
000
003
322
07?7
001
017
123
157
010
320
013
322
000
017
013
322
017
017
324
Q10
000

320
320
320
320
320
320
320
320

321
321
321
321
321
321
320
320
320
320
320
320
320
320
320
320

074457
000640
075717
001157
047017
013471
047017
140157
025117
054071
144517
027057
042357
014071
044317
024753
000031
124502
137054
142253
0243502
144142
027017
155071
047057
014671
040357
142157
026757
015071
136753
124504
040031
024517
024536

007330
007370
010030
000030
010270
010530
010770
012130

145270
145330
151070
133130
140030
141270
060030
060035
100030
100035
120030
126035
140030
140035
160030
1€003S

D1V READ
J§8

JNP

NP

JNP
DIVS

JNP
LGS

D1y
LWF
J NP

JNP

JNP

QZERD
JNP

$ORIGIN=3308

10FF

CNOX

CNDX

CNDX

sovy
CNDX
coy
RPT

Lt
L

CNDX

CNDX

ENDX
soy
1
CNDX

RTN

INC

INC
cHes
CHPS
ALLS
INC
PASS
CHPS
AL1S
PRSS
cHes
INC
couy
INC
SuB
ALLS
PASS
ZERO
PASS
Sus
PASS
CHPs
ONES
X0R
ALLS
INC
PASS
Xo0R
ALLS

PRSS
FLAG
CHPS

P
5S4
s1
RJS

P
INDIRECT
P

TAB

sS4

»e2

4

St

8

D1IvVs

33

f

§2

DIvVS

83

8

FETCH

8

8¢

Appendix E

N (= P; READ
J§8 TO SEY M (= ADDR OF OPERAND
UPDARTE °
S4 (= DYSR(CH)::SAVE ORIG SIGH
§1 <= DYSR
JMP 1F DVYSR NEGATIVE
§1 (= DYSR(2CHM)
L <= AB3 YALUE(DVYSR)
83 (= DVNDHI(2CHM)
JMP IF DVYND POSITIVE
IF DYHD 1S NEGATIVE...
FORM DVNDC(2CN)
IN B,A-REGISTER
»
*
CHECK FOR DV3R Y00 SMALL
<=DYND TOO0 LARGE)
SHIFT OUT SIGN BIT OF FULL WORD
CLEAR OVFL,32,& CNTR
AND SET RPTFF
DIV(16X);: A(=QUO(POS); B(=REM=»2
L <= FLG <= DVND SIGN(CNM)
§1 <= Quoccm)
IF QUO=0,THEN NO FURTHER TESTING
§2(1%) (= EXPECTED SIGN OF QUO
JMP 1F POSITIVE WAS EXPECTED
ELSE A (= QuocacM)
L¢15) <= EXPECTED SIGN OF QUO
COMPARE TO FINAL SIGN OF QuO
JNP IF 0K
ELSE INDICATE OVERFLOW
B (= (REN®2)/2
CHECK SGN OF DVYND
1F NEG,THEN FORM 2-CONP OF
REM & STORE 1IN B

BEXFEBENRNBRERRERSRRIBARRERER AR RE R REREB XL REBEERERERBERRRREBEBREREBRR DL
» EARU TABLE
EXXEBREERRRENXBRER AR SEPRERER AR ERRERE R RN XIS AR BSSRE XS RABRERRERELSREILARERE

EAUTABLE JNP
NP
JN?
NP
JNP
JNP
IJN?
JN?

RRR
ASR
LSR
FETCH
RRL
ASL
LSL
NPY

TLLEGAL IR CODE FOR EAU GROUP

BEBAEBERRERXRNRARERBSBERRNBALXRBBERBEBELARRIXRBFEARSBARRNERXERAERSASBBL N2 S
* NAC TABLE
BEEBBIREAERENRERESAEBERAEBERRBREBBBRERRERSARRSEBAREBARARBEREARREBASBEBN XD E

MACTABLO JINP
JNP
JNP
JNP
JNP
NP
JNP
NP
NP
NP
L1 14
JNP
JN?
JNP
JNP
NP

433
439
430
439

439

FADD
FSuR
FNPY
Fbly
1FIX
FLOAT
%1400
%1400
%2000
%2000
%2400
%2400
%3000
%3000
%3400
%3400

/ FLORTINE POINT
/ FLOATING POINT
/ FLORTING POINT
/ FLOATING POINT
/ FLORTING PUINT
FLOATING POINT
*%+ PROBABLE FUTURE HP USE
**% PROBABLE FUTURE HP USE
#*» PROBABLE FUTURE HP USE
s»+ PROBABLE FUTURE HP USE
#ss PROBABLE FUTURE HP USE
**¢+ PROBABLE FUTURE HP USE
#ss PROBABLE FUTURE HP USE
**% PROBABLE FUTURE HP USE
#s% PROBABLE FUTURE HP USE
#»% PROSABLE FUTURE HP USE

~

EEXXXRIERASREARRBEEREFLRNARERAEBAREBREBXEBEXREBEIRBBEXRSRLRAERERRE LB R RS K

Appendix E

0316
0317
0318
0319
0320
0321

0322
0323
0324
0328
0326
0327
0328
0329
0330
0331

0332

0333
L1

0001
0002
0003
0004
0003
0006
0007
0008
0009
0010
0011
0012
0013
0014
0013
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

E-6

NO

0360
0361
0362
0363
0364
0365
0366
0367
0370
0371
0372
0373
0374
0375
0376
0377

0400
0401
0402
0403
0404
0403
0406
0407
0410
0411
0412
0413
0414
0413
0416

0417

0420
0421
0422

0423
042¢
0425
0426
0e27
0430
0431
0432
0433

0434
0435
0436
0437
0440
0441

321
321
321
321
321
321
321
321
321
321
321
321
320
320
321
321

322
341
347
001
017
017
017
353
347
017
e17
000
323
001
160
322
000
320
341

334
017
330
347
300
334
323
334
017

332
331
331
333
333
332

000030
000035
020030
020035
040030
040035
060030
060035
100030
100035
120030
120035
040030
040035
160035
161035

ERRORS#*=

161171
004617
101017
137057
1423557
1423517
142117
077117
076264
144617
142620
043063
020331
137717
074717
020731
041017
020431
000617

165331
115752
121371
156357
024270
021431
164231
061471
136757

122371
023431
123331
025471
121371
032231

MACTABLL JNP %4000 #+% PROBABLE FUTURE HP USE
JNP 433 %4000 s++ PROBABLE FUTURE HP USE
L %4400 sx¢ PROBABLE FUTURE HP USE
NP 43D %4400 #*% PROSABLE FUTURE HP USE
InN? %5000 s»+ PROSABLE FUTURE HP USE
JNP 432 %5000 a»s PROSABLE FUTURE HP USE
NP %5600 #%s PROBABLE FUTURE HP USE
JNP 438 %5400 s#s PROSABLE FUTURE HP USE
T X6000 +++RESERVED FOR CUSTOMER ONLY
JNP 43D %6000 ¢ «+RESERVED FOR CUSTOMER ONLY
T %6400 +++RESERVED FOR CUSTONER ONLY
JNP 43D %6400 +++RESERVED FOR CUSTOMEZR ONLY
T %1000 / RESERYVED FOR HP USE
JNP 43D %1000 / RESERVED FGR HP USE
INP 430 %7400 ¢ BASE SET EXTENSION
JNP 43D %7420 / BASE 3ET EXTENSION
RERBRPEEREREBBRR LSRRI E RN BRI XN B EB R A AR R RSB RAE R R AR AR R BR R LR R &
SEND
SORIGIN=4008
“““#‘*..“““#Q““““‘0“"..‘.‘."“."#0“““.“‘*‘.0“.'0###30
*
» 21M% NICRD-CODE
. MODULE 1
*
SEXBELERNRRRERREREBNBRERSEERERVEERLERER PSR RSRESASREERERER BRI RBL2383 4
PISPLAYA EQU %376
PISPLAYT EQU %367
DISPLAYS EQU x337
INTERUPT EQU X0005
“Qﬂ‘.‘#‘..‘"‘i.‘*.“l..‘#.*‘#“#"."“l‘t“"““.t“‘.“#0#8“‘**0“
» NENORY INITIALIZATION ROUTINE
SEEVEBERBILEARENELRERERNERIRBS LRSS RER RS EB BB ESRELER SR ARABEBERERRLR RSN E
HALT NP CNDX HNLS NGOOD JUNP IF MEMORY NOT LOST
1 HICH NEU X102 ENABLE SYSTEN NAP
1M LO¥ 51 X340 81 <= 2°8 COMP OF 32
ZERO §2 CLR 52 (NAP ADDR)
PASS A 82 CLR A-REG
PASS B 82 CLR B-REC
PASS T 82 CLR T REG
Lt CHHI §3 %337 83 <= *LOAD ADDR REG® COMNMAND
LOSTLOOP INN SHLT LO¥ CNTR X337 CNTR(=CONP OF 325 CLEAR RUN FF
PASS MEU. 83 LOAD O INTO ADDR REC ON NEU
NAPLOOP NESP PASS NEU §2 LeAD NAP IN MEU
ICNT INC 82 82 INC MAP ADDR
JNP CNDX CHT8 RJS NAPLOOP LOOP(#32)
2ERO P CLR P REG
URTE INC PNN P N¢=P; P(=P+1; WRITE ZERO DATA
JMP CNDX ALIS RJS -1 LCOP UNTIL N=077777
INC S1 81 INC MAP CNTR
JKP CNDX TBZ RJS LOSTLOOP LOOP (#32)
1N HIGH MEU X100 DISRBLE ALL NAPS NOW..
BSREEBRBERLBEBANERENRERESREBEE AR RSB ASRRBENSRRBEBEBBPSRRERBEELLBEEBS LB RERE
* FRONT PANEL STANDARD SCAN ROUTINES ,
CREREDENRNSREB RSB ERSINESRNRRERRERERRERERBRNBRNERESRERERNEDERERRENRERSR RS2 4
NG0OD NP CNDX NSFP CONTFP JUNP IF NON-STANDARD FRONT PANEL
FTCH PASS § DSPL 8¢*DISPLAY; INITIALIZE MEN. PROTECT
JNP CNDX NSNG RUS WAIT JUNP IF "INSTR STEP® PRESSED
L] LOY DSPI DISPLAYT ACTIVATE *T* INDICATOR IN DSPI
valIT JsB UPDATE UPDATE DISPLAY WITH PROPER DATA
JNP CNDX NSTB RJS & VAIT FOR BUTTON RELEASES
JNP CNDX RUM RUN
NP CNDX HSTB -1
scaN T SCAN FOR SWITCH PRESSED
E d

21MX

NOP OHE CYCLE TO SET SWITCH CONDITIONS

JHP CNDX MLT RJS LEFY

JMP CNDX NINC RJS INC.M

JHP CNDX HDEC RJ3 DEC.M

JHP CNDX NSTR RJS STOREX

JNP CNDX HRET RJS WAIT
SCANRT NP CNDX NRT RJS RIGHIR “JUNP IF "RIGHT® TO TEST FOR ENTRY
.) INTO SPECIAL DISPLAY ROUTINE.

21MX

0034
0033
0036
0035?
0038
0039
0060
0061
0062

0063
0064
00635
0066
0067
0068
0069
0070
0071
0072
0073
0074
0073
0076
00?7
0078
0079
0060
0081
0082
0083
0084
0083
0086
0087
0088
0089
0090
0091
0092
0093
0094

0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
010S
0106
0107
0108
0109
0110
o111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0123

0442
0443
0444
0445
0446
0447
0450
0451
0452

0433
043¢
0433
0436
0457
0460
0461
0462
0463
0464
04635
0466
0467

0470
0471
0472
0473
0474

04738
0476
0477
0500
03501

0502
0303
03504

0505
0506

0507
0310
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522

330
323
330
333
017
220
017
017
220

017
321
017
320
347
320
347
017
320
15?
320
347
320

000
320
007
017
320

017
327
347
017
320

017
320
347

017
320

177
000
000
320
000
017
017
017
347
017
320
017

026171
164231
161431
040271
176317
074712
136745
100411
020673

117004
122771
140337
021370
076357
021370
076157
0167350
123331
117002
022670
174357
021370

023017
023370
123017
140457
021370

116417
122371
166357
142317
033130

116417
024035
076357

116417
025033

114017
023017
040457
021430
014476
115776
114536
114576
1361357
016737
164631
115736

Appendix E

JNP CNDX NLDR RJS LOADER

JHP CNDX RUN RUN
JHP CNDX NSNG WRIT¢1 JHP 1F “INSTR STEP® NOT PRESSED
JHP CNROX INT INTERUPT SERVICE ARY PENDING INTERRUPT
PRSS DSPL § DISPLAY (= §
READ FTCH INC PNN P DC STANDARD FETCH ROUTINE
108

CLFL PASS IR TAB
READ JTAB INC CH ADR

CHPBELEBAIERESALESRERELRNSRISHEPESUERERAENEENESHILRENELRRRRERERLNNEREERSNE

. DISPLAY INDICATOR SHIFT ROUTINES
SEBNLBEIVSANBOCREABSREBRININSEPEINENEREERIRNNNEREEEIB RIS ERENERIOSENIRE
LEFT Rt PASS 81 DSP1 §1<¢=DSPI SHIFTED RIGHT ONE

JHP CNDX ALD RJB LEFTA JUNP IF DSPI WRAP-AROUND REQUIRED
LEFTS PABS DSPI S1i DSP1 <= DSPI SHIFTED RIGHT ONE

JNP UALT JUNP TO STANDARD SCAN ROUTINES
LEFTA NN LOV DSPI DIBPLAYS DE&P1 URAP-AROUND A TO 8

JNP VALY JUNP TO STANDARD SCAN ROUTINES
RICHT Inn Lov L DISPLAYS

STFL 10% osP1 SET FLAG: TEST DSPI

JHP CNDX ONES RJS RIGHTA JUNP 1IF URAP-AROUND OF DSPI REQD

LUF L1} PRBS 81 o8P1 Si<=DSPI SHIFTED LEFT ONE

011 LEFTB
RIGHATA Inn LOV DSPI DISPLAYA DSP1 URAP-AROUND S TO 4

NP WALIT JUNP TO STANDARD SCAN ROUTINES
BIRSINENNOSISAC90FNNSRLENERISRISENINNAR BRSSP REREENEVERRERINNO0L
. INC W, DEC M ROUTINES
S9N RE0RIRIRALNIERORINEENIINERSRORABIEREENVEINRIRERREASEEBERREBLANERE
INC. N INC 81 L] §1 <= N ¢

Inp DEC.N¢1
DEC .M DEC 81 N 81 <= N - 1

PASS N 81 N (= 5%

JHP UNCD UAIT JUNP TO STANDARD SCAN ROUTINE
BEARESISRAIRIBERNERLBISRIN N HENIBERNENSERISNLLRNISNIIRERAANEISARRR4
. SPECIAL TEST TO EXIT SPECIAL DISPLAY LOOP
SRS AINERBAINEASSREARENIRREFRLFIRERBENIRNEIIRRSASRARRERRERARRISERNERR
LEFTR PABS IR OSP1 CHECK FOR "M" DSPI

JHP CNDX IR2 RJS LEFT JUNP IF ®"R® 70 LEAVE SPECIAL CODE.

IHN LO¥ 0SPI %373 D8P1 (= ®N® (SHIFT FROM "T*")

PASS DSPL 82 SHOW POINTER ON DISPLAY
JHP UNCD YALITR WAIT FOR BUTTOM RELEASE IN SPECIAL CODE

SENNBRESASRRARERE AR RABRIRNAREBRERARRABERBEBLS BB BXRRRFRRRENENRERE 0088

. STORE AND UPDATE ROUTINES
SEBAVELNENENRNEBEBANSERRERIAREREREEREIAR RSN RIRBEAEAREREFNSRNERRNBINENR NS
b THE REGISTER INDICRTED IN DSP1 IS THE BIT POSITION WHICH IS

. LO¥. ALL OTHER BITS ARE 1. THE ORDER (MNSB T0 LSB) IS
. 8 P T N B 4

* THE INDICATED REGCISTER 16 DETERMIMNED BY LOADING DSP1 INTO
* THE IR, AND JUMPING USING J30 TO GET TO THE APPROPRIATE

* STORE OR UPDATE ROUTINE. OTHER CODE 1S INTERSPERSED

. FOR MAXINUMN CONTROL STORE EFFICIENCY

S

TORE PABS IR d8P1
JHP 43D %0500 JHP TO STORE SELECTED REGISTER
RUN NN LO¥ DSPI DISPLAYS DEP1 (= "§". THE SAVE REGISTER 18
* ZERO AT THIS POINT SO THE NEXT RTN
* VILL INITIATE THE FETCH ROUTINE
SEARALAANNAAARSREBASRERRERERNSSERSERSAR SR ARAIRRESS SRR AR NRRARRSRLARN N4
UPDATE PASS IR DSP1
JNP J30 X520 JNP TO DISPLAY SELECTED REGISTER
SEXNRRERSBAEBANREBRERERAEAIRARREBENREREENISHERESRIREBERRXRBEREINR DL ER204
WRTE PASS TAB DSPL STORE 7
INC 81 L}
INC W 81 IRCRENENT N, SET TAB LOGIC
JNP UNCD VAIT+L
RTN INC M DSPL STORE N
STORES RTN PASS § DSPL STORE S
RTN PABS B DSPL STORE B
RTN PASS A DSPL STORE A
1NN Lo t %357 P OR 8 10 BE DISPLAYED
10R DSP1 HASK OUT *"S§*
JNP CNDX ONMES S8TORES JUNP IF "8° INDICATED
RTN PARBS P DSPL STORE P

E-7

Appendix E

0126
0127
0128
0129
0130
0131
0132
0133
0134
0133
0136
0137
0138
0139
0140
0141

0142
0143
0144

0145
0146

0147
0148
0149
0130
0131
0132
01383
01354
0133
0136
0187
0158
01359
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
0171
0172
0173
0174
01735
0176
017?
0178
0179
0180
0181
0182
0183
0184
0183
0186
0187
0188
0169
0190
0191

E-8

0523
0524
0523
0526

0827
0530

0531
0332

0533
0334
0535
0536
0537
0340
0541
0542

0343
0544

0545
0546
05427
0530
03531
0552
0533
0334
0553
0536
0557
0360

03561
0562
0563
0364
035635
03566
0567
0570
0371

0572
0373

0574
0573
0576
57?77
0600
0601
0602
0603
0604
0603
0606
0607
0610

017
321
017
017

220
017

300
320

017
17
017
017
347
017
320
017

341
353

347
013
010
000
01?7
320
177
017
223
017
013
320

347
347
017
017
017
013
347
004
322

344
017

017
017
015
017
013
017
012
177
000
017
344
017
320

115013
163331
136734
136776

022437
100336

024130
021370

122336
176336
124336
126336
136157
016757
165631
174336

177053
137017

000157
143717
075217
0%1217
142457
161371
150117
140157
043057
130157
004757
026271

000157
164257
176417
1771383
147144
147157
160137
147133
061371

000237
174434

131003
140863
131003
140163
131003
140163
031017
140117
023063
142457
000157
022757
1276314

LA A A Al A A Al R T Ly Y Y R Y T YR STt ST
sssses QVFL REG. STORE--PART OF SPECIAL DISPLAY ROUTINES sesessssssnnsns

8TORDO 80V PASS 81 D§PL CHECK DISPLAY
JHP CNDX ALOD +2
coy CLEAR OVERFLOW
RIN
BESSSBEANENEARERESPIRABNSILENRSEI RS NNORE SRR RI RSB E N AR RRSNE LSRR NS
READ INC N L] UPDARTE T, READ M, S8ET TRB LOGIC
RTN PABS DSPL TRB DEPL (= MEN DATA

SERBELSSBERERRRBENNBABERBENIRARREEREREBREREBRRRERSRNIR AR HERANNERAIRRNS

STOREX J88 STORE STORE ROUTINES END WITH RTN
CONTFP C1, 14 WAlTY JUNP 70 STANDARD SCAN ROUTINES
BARNBREBIVREIRERABNSREARRBISRERENAEREBRRRENBERESARSARNRREARBN AR NN B LR RD R L
. RTH PABS DSPL N UPDATE N
UPDATES RTN PASS DSPL 8 UPDATE 8
RTN PA3S DSPL B UPDATE B
RTN PABS DSPL A UPDATE R
3L} Loy 3578 P OR 8 THDICATED
108 DSP1 NASK OUT *s*
JNP CNDX ONES UPDATES
RTN PR3S DSPL P UPDRTE P

SERBBASNINAAIRRRENRABARNERIAREREABRBIRNRAEN R IIRSRERRRNRSERRENNRRSN N4
* 218X ROM BOOTSTRAP MNEMORY LORDER ROUTINE
BERIBBISNRNARSSRSRNERASNERIAREISRNPRE SN RIIRISREPIRRERRRRIBEINSRENINSS

LOADER INN B0V HIGH 82 X177 FORM O111113123181131311218 (MNAX ADDR)

NN CHH] S1 X357 FORN 0003000000000000 ¢10K)> IN Si
ssenss DETERMINE NEMORY SIZE., STARTING ADDR FOR LORDER #ssnssssnssssnnas
S12E 1NN LoY L X300 FORM 1111111111000000 IN L

AND P 82 FORN STARTING ADDR IN P

CHPs 83 P FORM TWO’S CONMP

INC 85 89S OF SR IN 85

PASS N 82 PUT LAST ADDR INTO M
JMP CNDX ONES YAIT TEST FOR NO REARD/URTE CRPABILITY
URTE PASS T §9% PASS INTO T

PASS L 81 UPDATE LAST ADDR WMILE WAITING
READ sSuU8 82 §2 TC RETRIEVE DATA

PRSS L 8% COMPARE WHAT UARS READ FROM MEN.

XOR T T0 DATA WRITTEN (83)

JNP CNDX TBZ RJS SI12E IF 17T CHECKS, WE HAVE CORRECT STRT ADODR
sswesn CHECK SELECT CODE IN 8 REG. SAENNRAESNELIEREEERIIRINNSREINES S

1NN Low L X300 FORM 1111131111000000 IN L

1NN LOW CNTR X372 CNTR GEI18 -6

PABS IR S SET UP LOARDER SELECT BIT

RPT PASS 84 8 SET UP S-REC FOR SHIFT

R1 PASS §4 sS4 SHIFT SELECT CODE INTO BITS(D-5)
3ANL 354 sS4 MASK OFF SEL. CODE

1NN Loy L X370 FORM $11121131311131000 <=-108) IN L

850Y ADD 84 54 SUB 10B FROM SEL CODE; SAVE IN 8

JHP CNDX ALLS WALT IF REG RESULT., SCB < 10B;5 RTN W/ OVF ON
sses PREPARE FOR LOADER TRANSFER $432358 00885808850 %8830 000438080488 804

1NN LO¥ CNTR X0 CLEAR CNTR (ROM ADDR REG)

coy PA3SS N 4 PUT SA IN MICLR OVF = NO OPER ERR
ssesss TRANSFER CONTENTS OF LOADER ROM TO NENORY s#ssssssssssisssssisnsas
LOOP! Le PABS 31 LDR PASS XXXKXXXXXARAAXXXX INTO S1;CNTR=X00
ICNT PRSS L 81 CNTR=X01
L4 AND 81 LDR FORM XXUXXAARABBBBXXXX IN S1:CNTR=X01
ICNT PARSS L 81 CNTR=X10
Le AND 81 LDR FORN ARAABBBBCCCCXXXX IN S1:CNTR=X10
ICNT PASS L s1 CNTR=X11
NAND 81 LDR FORM ARARABBRBCCCCDDDD (CMPL FORM)
WRTE PRSS T 81 WRITE INTO MEMORY
ICNT INC 82 L] UPDRTE MEN ADDRICNTR=X00
PASS M 82 PASS NEWU ADDR INTO M
NN Loy L X0 FORM 1311111100000000 IN L
10R N MASK M TO SEE IF LAST WORD OF LDR
JNP CNDX ONES RJ3 LOOPS 1IF N<0-8)=11311111, DON’TLOOP

21MX

0192
0193
0194
0193
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
02134
o212
0213
021¢
0213
0216
0217
0218
0219
0220
0221
0222

0223
0224
0225
0226
0227
o228
0229
0230
023t
0232
0233
0234
0233
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0230
0231
0232
0233
0254
0233S
0236
0237
02358
0239
0260
0261
0262
0263
0264
0265
0266

0611
0612
0613
0614

0613
0616
0617
0620
0621
0622
0623

0624
0625
0626
0627
0630
0631

0632
0633
0634
0635
0636
0637
0640
0641
0642
0643

0644
0645
0646
0647
0650

0651
0652
0633
0654
0655
0656
0657
0660
0661

0662
0663
0664

0665
0666
0667
0673
0671
0672
0673
0674
0675
0676
0677
0700
0701
0702
0703
0704
07035
0706
0707
07198
0711

347
344
157
017

237
340
017
013
341
013
320

000
323
017
004
177
320

017
014
320
347
013
320
017
004
177
320

e17
327
017
322
347

006
322
350
15
017
333
300
320
300

334
325
334

17
332
331
oo
320
331
340
013
320
o0
007
017
327
017
320
333
333
a7
327
320
320

000257
077110
145102
175017

1404357
026157
105057
143047
166157
040757
171331

023023
030671
146154
143051
142117
021370

1441357
042757
171231
016157
142757
071231
146157
143057
142147
031230

116417
163071
115057
023071
156357

042157
074671
007033
141057
142417
073071
0370353
033130
036035

033131
164231
0731714

136757
123671
073531
043057
034030
174231
0001357
142757
033771
143057
143057
116417
172471
142317
033130
134031
074471
116417
125471
032470
022070

Appendix E

BEERERBNRERERBPRERARRER RSN REREERERE AR RE RSB SRR RSV AR S SR ERL AR SERNER S

NN LOW CNTR %300 SET UP COUNT TO FIND LAST WORD
1NN STFL LOW 83 X037
LWF L1 PASS 53 83 FORM 1111118000133111 1IN §3
PASS 81 L4 PRSS SA INTO St
ssvses CHECK INSTRUCTION IN MENORY FOR I/0 TYPE #88520888023048008520304
NUVRD READ PASS N 8t PASS SA INTO M & READ FIRST INSTR
n HICH L X013 FORN CONP OF 1111020000000000 IN L
PASS S§2 T SAVE WORD IN 82
SANL 81 82 MASK UPPER B1TS FOR 1/0 TYPE
1 8.1] HIGH L X173 FORN 0111101312318311211 IN L
XO0R st NOW CHECK FOR 1/0 TYPE
JHP CNDX OMES HTST IF NATCH OCCURS. JUNWP OUT OF LOOP

BREEBBBEERERERABBERREBLERRREERETERNESESHRBS NSRRI RREENBENE RN RERNEREENRSE

uPDTY IENT INC 81] OTHERVISE UPDATE ¥ IN S1
JNP CNDX CNT8 RJUS NUURD LOOP BACK
COY PASS L 84 PASS (SCB-10B) INTO L
CLFL ADD 82 s2 CHNG 8C OF DCPC CHTRL WORD
WRTE PASS T 82 SAVE IN MEM
P11 WALT RETURN T0 SCAN ROUTINE
sswuss UPDATE SELECT CODE IN 170 INSTRUCTION $52888000800885040888803004
HTST PRSS L 83 PASS 1111113000113118 INTO L
NSOL §$2 BLEND TO CHECK FOR...000...0F HLT
JHP CNDX ONES UPODT IF FOUND GET NEXT INSTR
NN LOY L X307 FORM 1111111111000811 IN L
SANL 32 HASK BITS YO CHECK FOR SC ¢ 3108
JHP CNDX TBZ uUrPdT IF 80, RTN TO LOOP
PASS L sS4 PRSS (SCB-10B) INTO L
ADD 82 82 ADD TO SC FROM INSTR
WRTE PASS T 82 PASS INTO T AND WRITE INTO MEMORY
JHP UPdT RTN TO LOOP

BEEBEFERBRAEERRRERNERARRERA AR ENBER BN R L ERBRLEREREN B AR BN BN LA RN &

* SPECIAL DISPLAY ROUTINES
BERBRABRNEREARAR RN EBEF AR R ERERARRR AR RR AR IR RABRRRR AN AR SRR BN BERE NGRS

RIGHTR PASS 1R O8P1 "RIGHT" PRESSED: IR (= DSPI
JNP CNDX 1R2 RIGHT JUNP IF M NOT SELECTED BY D3PI
PASS §2 DSPL §2 <= D3PL (POINTER)
JHP CNDX ALIS RIS RIGHT JMP IF DSPL BIT 15 WASNT SET
1L LO3 DSP] %367 DEP1 (= *T*
BERRRKARAEEAEARRBARNSERARARRIBR BRI ARRR A RRRAEREIAAREBKARRRI ARSI REIANREARED S
UPDATR oP3 L 82 CHECK DSPL BIT 14, STORE 82 IN L
JHP CNDX ALLS NEUNAPS JUMP 1F 82 BIT 14 = 1 TO UPDATE MEU
INy t4d CMHI S1i %003 St (= MASK FOUR REGISTERS = 140017B
AND §2 81 §2 (= 82 MASX OUT UNUSED BITS
PASS IR s2 SET REGISTER SELECTION
JMP CNDX NSTR READREG JUNP IF STORE BUTTON NOT PRESSED
488 430 STOUREG SELECTED REGISTER (= DISPLAY
JMP UNCD WAITR WAIT FOR NEXT BUTTON
READREG JS3 43D DSPLREG DISPLAY (= SELECTED REGISTER
BAREERAARBEENARALRRBDEEBRAIARREE RS RA A SA AR BRI R AR AR RRE R R IR RNE DA AN S
WALTR JMP CNDX NSTB RJS = WA1T FOR BUTTON RELEASE
JHP TNDX RUN RUN JUNP IF RUN INDICATOR LIT
JN? ENDX NSTB »-1 JUNP BACK IF NO BUTTON PRESSED
»
NOP WAIT ONE CYCLE FOR SETTING SWITCH CONDIT
JMP CTNDX NLT RJS LEFTR JUNP 1F "LEFT" PRESSED
JHP CNDX NINC NOTINC JUMP 1F "INCM" NOT PRESSED
INC 82 §2 INCREMENT POINTER
JHP UNTD DECNR+1Y
NOTINC JHP CNDX NDEC NOTDEC
(L1] HIGH L %000 CHECK FOR
AND 82 DECREMENT OF
JMP CNDX TBZ RJ3 DEUNR ZERO COUNHT
OPL 32 s2 §2 OR L PLUS 1 (WRAP RROUND COUNT + 1)
DECHR DEC S2 82 DECREMEHT POINTER
PABS IR 0§P1 1R <= D3PI
JHP CNOX 1R2 UPDARTR JUNP IF M NOT INDICATED
PASS DSPL 52 UPDATE DISPLAY
JHP UNCD YA1TR WITH NEW POINTER VYALUE AND JUNP
NOTDEC JM? CNDX NRST RJI3 DECMR+! JUNP 1F "DISPLAY" PRESSED
JMP CNDX NSTR *t4 JUNP 1F STORE NOT PRESSED
PASS IR DSP1
JNP CNDX IR2 RJI3 STUREX JUMP IF M SELECTED. LEAVE SPECIAL NODE
JNP UNCD UPDRTIR M NOT SELECTED
JMP UNCD SCANRT JUNP T0 STD ROUTINES

E9

Appendix E

0267
0268
0269
0270
0271
0272
0273
0274
0273
0276
0277
0278
0279
0280
0281
0282
0283
0284
0283
0286
0287
0288
0289

0290
0291
0292
0293
0294
0293
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0313
0316
0317
0318
0319
0320
0321
0322
0323
0324
0323
0326
0327
0328
0329

»s NO

E-10

0712
0713
0714

0713
0716
0717
0720
0721
0722
0723
0724
0723
0726
0727
0730

0731
0732
0733
0734

0740
0741
0742
0743
0744
0743
0746
0747
0730
0751
07352
0753
0754
0733
0756
0757

0760
0761
0762
0763
0764
0763
0766
0767
0770
0771
0772
0773
0774
8773

0776
0777

347
017
017

346
013
340
016
343
016
012
333
017
320
017
320

344
017
017
017

017
017
017
017
017
017
017
017
017
017
017
017
017
320
343
343

01?7
017
017
017
017
017
017
017
017
017
017
017
017
017

320
320

172417
114741
136776

000157
143017
176137
141057
076157
141037
140617
073371
114620
033130
134320
033130

010417
136762
136737
110336

170336
172336
112336
144336
146336
150336
152336
154336
156336
160336
162336
164336
166336
035470
176336
176336

115636
115676
114276
115136
115176
115236
115276
115336
115376
115436
115476
115336
113376
106336

025170
034330

ERRORS*»

SEREBETRSARERR RIS RERSIREBARATRRSRERSNNRSINBEREIRENTINERESNRRA RN 4
STOREE NN Low IR %373 SET UP 3RG TYPE ERe SHIFT

8RG2 PASS DSPL SEY E ACCORDING TO DSPL BIT O

RTN
SEEVBAERBEAEIRNBEBAERSNNERI NSRS RESRENABREINERLSNANER RN EBERNERERRRRE
ssunss NEU NAP MANIPULATIONS 2253502820 2800 4308503888020 0380000 008088384

NEUNAPS 1NN Loy L X200 §1 <= NASK OF LOW ? BITS
SANL 81 82
nn HIGH L %027 L (= 03?7778
SONL 82 81 §2 <= NASK OUT BITS 13 10 8
Inn HIGH L X337 OR IN BIT 13
SONL 81t 81
PASS MEU 81 SEND NAP NO. TO MEU
JHP CNDX HSTR READNAP JUNP IF STORE NOT PRESSED
NESP PABS NEU DSPL MEU NAP (= D1SPLAY
JNP UNCD WAITR
READNAP NESP PABS DSPL MEU DISPLAY <= NEU MWAP
JHP UNCD WAITR
sssess SINULATED LIA ¢4 I/0 INSTRUCTION YO READ CIR sssssssssssnnssrnnsns
DSPLCIR INN LO¥ IR %004 SE1 UP SEL CODE 4 IN IR
106 INITIATE 1/0 CYCLE AT TINE T2
NOP WRIT FOR TINE T4
RTH PASS DSPL 101 CIR TO DISPLAY. DONT ISSUE 1AK
SORIGIN=7408
SEERERENNBELNAIRNERREREBREREAISLSRERINRERRNERIESENESRERERNRIRENHESLER000
. - SHORT SUBROUTINES TO STORE/DISPLAY SELECTED RECISTERS

SEERFBLAARSRRANBERASREINRBINRNBBERAERENDERLSRNRRISSRERESRENSRIABSB4 20232
DSPLREG RTN PARSS DSPL X PASS REG TO FRONT PAMEL AND RETURN
RTN PABS DSPL Y
RTN PASS DSPL CHTR
RTN PASS DSPL 83
RTN PABS DSPL S4¢
RTN PASS DSPL 85
RTN PASS DSPL 86
RTN PABS DSPL 87
RTN PABS DSPL 88
RTN PABS DSPL 89
RTN PASS DSPL 810
RTHN PABS DSPL 811
RTH PASS DSPL 812
“JBP UNCD DSPLCIR
INN RTN HIGCH DSPL 377B
INN RTN HIGH DSPL 377B
BRABBAEVRBBENRNBIRIBLEBIRRIBASSEN B RN AN IIERAEBIESEIBERSSISRERNE94
STOREG RTN PRES X DSPL STORE INTO REG FROM FRONT PANEL
RTN PABS ¥ DSPL
RTN PASS CNTR DSPL
RTN PABS 83 DSPL
RTN PABS 34 OSPL
RTN PASS 85 DSPL
RTN PASS 86 DSPL
RTN PASS §7 DSPL
RTN PABS S8 DSPL
RTN PASS §9 DSPL
RTH PABS 810 DSPL
RTH PASS §11 DSPL
RTN PASS 512 DSPL

RTN PASS DSPL CIR LOAD CIR FROM INT. REQUEST LINES
L] AND ISSUE INTERRUPT ACKNOWLEDGE
JHP UNCD STOROO
JNP UNCD STOREE

SERARAIRIRBEARERAERIBAIRSLSRRRBASRERINASSIBNEBENBSORB BRI IARIRBERENRERS
$END

21MX

21MX

0001
0002
0003
0004
0003
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
o018
0019
0020
0021
0022
0023
0024
0023
0026
0027
0028
0029
0030
0031
0032
0033

0034
0033
0036
0037
0038
0039
0040
0041
0042
0043
0044
0043
0046
0047
0048
0049
0030
0031
0032
0033
0034
0033
0036
0037
0038
0039

0060
0061
0062
0063
0064
0063
0066
0067
0068
0069
0070
0071
0072
0073
0074
0073
0076
0077
0078
0079
0080

7000
7001
7002
7003

7004,

7005
7006
7007
7010
7011

7012
7013
7014
70135
7016
7017
7020
7021

7022
7023
7024

7025
7026
7027
7030

70314
7032
7033
7034
7033
7036
7037
7040
70418
7042
7043
7044
7043
7046
7047
7030
70351

7032
7033
7054
70353
7056
7057
7060
7061
7062
7063
7064
70635
7066
7067
7070
7071
7072
7073
7074
707

017
321
001
017
344
015
015
013

347

004
320
322
000
017
037
017
017
322
017
320
000

017
001
387
321

017
000
340
220
013
017
013
013
013
321
346
004
017
321
346
004
01?7

017
001
017
320
346
037
323
077
000
321
322
007
017
003
321
340
240
32%
017
000

123414
100171
136376
126317
000157
160357
161457
161404
140157
161413
140721
005231
061417
160255
124304
126157
124354
017631
0627357
0576314
024376

126317
136357
141417
142330

101317
023017
000137
040457
123417
101217
125437
181237
151204
102271
000137
151217
161404
102421
000137
161417
127336

126154
137457
024757
037631
0033517
124742
043231
124502
063457
142770
043331
165517
164154
026357
004171
000157
0243517
003771
1243504
061414

Appendix E

$ORIGIN=70008
BEXREBERRERLERERLRAPRERBERILRNICESUERABRESESNERLERESERNLERER RO RESRESS
.
» 21M% NICRO-CODE
» NODULE 14t FLOATING POINT INSTRUCTIONS
*
BEBNEBERSIREBBEREAREFARAESEBRESR SRS AVRERERNELERNELAR SRS BESLOBEN NSRS
INDIRECT EQU %0015
RPYX EQu X0246
BEBREBEBREBEERR LR AR EESRERERBEPESRBRABBERIBRNEBERBEEERRRREERNELADEBNEBES RN
»
IFIX OV PASS S9 B CLEARR TNE OVFL AND PUT EXP IN S9
JHP CNDX ALD RJUS e+2 TEST FOR NEG EXP
RTN ZERO A IF EXP<O VE CAN’T FIX
PASS B A PUT HIBITS IN B-REG
1NN LoV L X000 PUT ’UP-8° MASK IN L
AND A 89 NASK LEAST S1C. 8 BITS INTO A
AND S10 89 SAVE BITS FOR ROUND-OFF
R1 SANL 89 89 WASK EXP INTO 89 WITNOUT SIGN
L) Loy L %360 PUT -20¢B8) INTO L
80V ADD §9 89 CMECK TD SEE IF EXP TOD LARGE
JNP CNDX OMES NOSHIFT OR IF NO SHIFT REQUIRED
JNP CNDX ALIS RJS OVER IF 80 THEN VE CAN’T FIX
INC 59 89 START LOOP TO SHIFT DIGITS
RPT PASS CNTR 59 PASS # OF SHIFTS INTO CHIR
ARS R1 PASS B 8 32-BIT SHIFT
NOSHIFT PASS L f HOLD LEFTOVER BITS IN L
Cov PASS A) PUT INTESGER INTO A-REGC
JNP CNDX AL1S RJS RTNFP TEST FOR NEG INTEGER
108 $10 IF NEC THEN CHECK FOR TRUNC. BITS
JNP CNDX TBZ RTHFP IF ALL ZEROS ME ARE DONE

RTH INC A 8 OTHERVISE INC THE INTECER & RTN
BERVABASSARARIENRIBISNONSNNISIEVEASSREEEORIRINNORLLEERIENONISSS RTINS SE

SASB0SB0A0ABAINSIA4VIISRESEASISIBRRIBRECIIREI RN NIERISIERISNESL
FLOAT PABS B [} PUT INTEGER IN B-REC

ZERO 0 CLEAR A-REG
P L) CHLO §9 X360 STORE +¢15<(B10) IN EXP REG
£, 14 PACK
.
FEPVEBLGHCHINBBAIBASBIBHISIERSCENNELIVESESNRRINNRNERSRRIRIRRISRSBESRNRY
.
FLD PA8S 87 TAB STORE HIBITS IN 87
INC 81 L] INC ADDRS FOR NEXT REARD
(4, L] HIGH L X000 STORE *L0-8° NASK IN L
READ INC N 81 READ SECOMD HALF OF URD

AND 89 8 MEANVHILE,MASK EXP OF URD1 INTO 89
PABS 89 TAB STORE WRD2 LOBITS/EXP IN S5
SANL 510 B HASK LOBITS OF WRD1 INTO S10
SANL 8¢ 83 MASK LOBITS OF WRD2 INTO S§6
R1 AND 83 8% MASK EXP OF WRD2 INTO S11 WITHOUT SCN
JHP CNDX ALD RJS #+¢3 IF SIGN WAS POS, JNP
NN Low L %200 OTHERVISE PUT -200(B8) INTO L
ADD 8% 8% ADD TO EXP OF WRD2
R1 PASS 59 s$9 MRSK EXP OF WRD1 INTO 89 WITHOUT SIGN
JHP CNDX ALD RIS #+3 IF SIGH WAS POS, JMP
MM Loy L %200 OTHERWIGE PUT -200(B8) INTO L
ADd 59 39 ADD TO EXP OF WRDI

RTN PABS 511 4 PUT HIBITS OF WRD1 INTD S3 & RTN
LA T AL R R Y P T YT YTy Y

BEBRRBIRRRRR RS EREBSEBEIRNEBERBEB XN R BR AR RLEBRBEIREBEABR ARV BARNESS2BE08

PACK CoY PASS L A CLR OVFL AND PUT WRD1 LOBIT3 INTD L
ZERO S10 CLERR COUNTER REG
108 B PRASS THRU ALU WITH HIBITS
JHP CNDX TBZ RTNFP 1F A/B 18 ZERO,.RTH
NN LO¥ S11 %201 STORE -177(B8)> 1IN 811
NRMLZ AR L1} PASS 8 TEST IF HUNBER 15 NORMALIZED
JHP CNDX OVFL RND 1F 80, JMP TO ROUNDING ROUTINE
Ltes 1 PRSS B B 1¥ NOT, DO 32-BIT LEFT-SHIFT
INC 810 S§10 INC THE EXP CNIR
JNP NRNLZ 60 BACX TO CHECK FOR NORNMAL NUMBER
RND JHP CNDX ALLS *+2 SINCE B WAS JUST PASSED THRU ALY
DEE §11 381l CHECK 3GH & ADJUST ROUND OFF
covY PASS L S11 PUT *ROUND® INTO L
sus 14 f ACTUALLY: ADD 200<(B8) TO LOBITS
JNP CNDX COUT RJS XPNTY IF NO COUT FROM LOBITS., 0K, JNP
Iny HIGH L %0 CLR LC13) FOR OVERFLOW
ENY INC 8 8 1F COUT, INC HIBITS AND CHECK FOR OVFL
JHP CNDX OVFL RJU3 #+d¢ IF NO OVFL, OK,- JMP
R1 PR8S B B O¥FL INPLIES B/A= 1000...

coy INC 89 89 S0 WE SHIFT B TO FORM 0100...%&

E-11

Appendix E

0081
0082
0083
0084
0085
0086
0087
(J:1:1
0089
0090
0091
0092
0093
0034
0093
0096
0097
0098
0099
0100
0101

0102
0103
0104

01035

0106
0107
0108
0109
0110
0111
0112
0113
014
0113
0116
0117
0118
0119
0120
0121
0122
0123
0124
01235
0126
0127
0328
0129
0130
0131
0132
0133
0134
0133
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0130

E-12

7076
7077
7100
7101
2102
7103
7104
7103
7106
7107
7110
7111

7112
7113
7114
7115
716
7417
7120
7121

7122
7123

7124

7125

7126
7127
7130
71314
7132
7133
7134
7133
7136
7137
7140
7144
7142
7143
7144
7143
7146
7147
71350
7151
7192
7153
7154
7155
7156
7157
7160
7161
7162
7163
7164
71635
7166
7167
7170
7171
7172
7173
7174
7175

321
037
323
07?
000
017
003
346
003
322
004
322
137
137
340
013
013
017
017
017
ot

a0l

341

017

220
300
301
017
320
346
017
320
346
324
010
010
000
321
000
322
017
320
017
000
017
017
003
320
322
010
000
321
017
017
017
015
017
017
347
003
322
037
000
320

144170
1247242
044171
124502
063457
1621353
061417
000157
060737
045131
160?57
017671
160742
161402
000157
161457
127417
124357
160154
0623836
136557
136536

176576

136750

074457
000670
141470
154517
005631
001217
164757
005771
001417
046531
024517
053257
053257
006531
024517
006531
124742
006531
124504
051217
152357
150157
061351
047731
047131
057357
057357
147430
124157
164517
162557
037517
153457
151417
120187
056757
050671
124304
057357
007571

one
ARS
JMNP
LGS

XPNT
InN
01,14
NP
LWF

LWF
INN

UNFLOD

»*

OVER 1NN

[
CNDX
L

soY

CNDX
CNDX

i1
Ll

coy
RTN

RTN

RTN

PASS
OVFL
PASS
INC
PASS
sSus
LOY
Sus
ALLS
ADD
AL1S
PRSS
PRSS
HIGH
AND
SANL
PRSS
PASS
10%
ZERO
ZERO

HIGH

RJ3
89

$10
39

AW wWr >

f

%177

21MX
BUNP EX®, THEN JNP
IF B NER 100..,CHECK IF B=111..
IF NOT, JHpP

RE-NORNALIZE

CLR OVFL AND
SUB CALC EXP
PUT -200(BR)
TEST FOR EXP
IF S0, JNP
TEST FOR EXP OVERFLOV

1F 80, JNP (70 7379%)

PRSS EXP SIGCN INTO FLAG-REG

SHIFT EXP WITH SIGN

STORE °*L0-8" MASK IN L

MASK EXP INTO 510

MASK LOBITS INTO S9

PUT HIBITS INTO A-REG

PUT LOBITS INTO L

COMBINE WITH EXP AND STORE IN B-REG
CLEAR R-REG: OVFL=1

NOW CLR B-REG AND RTN

PUT EXP INTO L
FROM ORIG EXP
INTO L
UNDERFLO

SET UP ERROR CONDITION IN 17

BEEBEIRNEBARSRRRLBARIEEBERLENREER AR R AR R REABRDIXIIRERENB IR B RAINEIR IR S 4

BEABRBEREBNEREAREARESERRIBIIAB RS NNRPRRAAIRRNRIIRERENNE I RN IE R DRSS SRR

FADD

.
FSuB READ

488
J§8

JNP
NN

NP

NN
JNP

JNP
NP

JNP
DIFR

J NP
NP

JNP
RYRS

SWANPCHK INM
JNrP
SHIFT ARS
JNP
*»

STFL

CNDX

CNDX
CNDX

ENDX

CNOX
L1
CNDX
R\

CLFL
CNDX
CNDX

CNDX
1

CNDX

sswns CONTINUED ON

INC

PASS
TBZ
LOW
PASS
182
LOW
FLAG
CHPS
CNPS
INE
cout
INC
ALLS
PA8S
782
PASS
INC
PRSS
PASS
sus
782
ALLS
CHPS
INC

PASS
PASS
PRSS
PASL
PASS
PASS
Low
3uB
ALLS
PASS
INC
182

HEXY

8
R43
8%

RY3
89

8
§6
86
R4S
8
RIS

RJS

S8
RJS

PASE

P
INDIRECT
FLD
37
.2
X200
st
$+2
%200
DIFR
8

86
86
DIFR
B
DIFR
B
DIFR
B8

8%
86
3%
89
ADD2
RYRS
38
38
SYANPCHK
8
811
sio

36

85
%350
88
ouT

8

88
SH1FT

PASS P INTO M TO READ ADDR OF WRD2
CHECK FOR INDIRECTS

UNPACK WRDS INTO SCRATCH RESS
CHECX FOR WRD2=0

IF NOT,CONTINUE

1F S0,MAKE EXP MOST NES ¢(-200,83)
CHECK FOR WRD1=0

IF NOT,CONTINUE

IF 80.MNAKE EXP MOST NEC (-200.B8)
IF DOING ADD,SKIP AHEAD

FORN 2-CONP OF HIBITS IN B

FORN 2-CONP OF

LCBITS OF WRD2

IF COUT OCCURS

BUNP HIBITS

CHECK SGN3 IF POS,JNP

IF NEG,CHECK FOR MOST

NEG #<100...)

1F S0,SHIFT BACK (010...)

&BUNP EXP

FIND DIFF IN EXPS

&STORE IN 883 FLG=0

IF DIFF=0,dMP TO ADD STEP
IF NEG.WRD2>URD!

FORM -DIFF

& STORE -DIFF IN 88

HOLD B IN L
WRDICWRD2: FILL B.A
WITH S11,810

ALSO FILL 811,810,889
WITH B,86,85

FORN -30¢(B8) IN L

IF -DIFF>-31,RTN WITH LARGER #
JMP TO RESTORE A.B

NCU START SHIFT LOOP

INC COUNTER

LCOP UNTIL DONE

(AX AL R RIS IR RS L RSS2 222222222 2 2 X 2

21MX

01351

0132
01353
01354
0133
01356
01357
01358
0159
0160
0161

0162
0163
0164
0165
0166
0167
0168
0169
0170
0171

03172
0173
0174
0173
0176
0177
0178
0179
0180
0181
0182
0183
0184
0183
0186
0187
0188
0189
0190
0191
0192
0193
0194
0193
0196
03197
0198
0199
0200
0201
0202
0203
0204
02035
0206

0207
0208
0209
0210
0211
0212
0213
0214
0213
0216
0217
0218
0219
0220
0221
o222
0223
0224
02235
0226

7176
177
7200
7201
7202
7203
7204
7209
7206
7207
7210
21l
7212
7213
7214
7215
7216
7217
7220

7224
r222
7223
7224
7228
7226
r227
7230
7231
7232
7233
7234
7238
7236
7237
7240
7241
7242
7243
7244
7245
7246
7247
7230
7231
7252
7233
72354
72338
72586
7257
7260
7261

7262
7263
7264
7265
7266
7267
7270
7271
7272
7273
7274
7275
7276
7277
7300
7301
7302
7303
7304

017
004
3214
340
240
017
244
325
322
017
157
157
000
301
000
017
017
301
000

220
300
301
000
017
004
017
017
300
017
017
017
017
300
017
004
321

000

017
004
017
300
017
017
244
322
32%
ao?7
301
000
000
301
600

220
300
301
010
320
322
000
017
003
0060
017
017
037
3014
017
017
321
007
@01

162154
126357
010171
000157
024317
164151
124317
010371
050431
1367350
124504
126344
061417
142330
075736
164517
162557
142330
075736

074457
000670
141470
061417
130157
161417
162344
135037
052330
125217
165057
127517
1523544
012330
126157
164557
012171
024317
1241357
151817
1543857
012330
126344
126154
1643542
012671
052771
1243517
142330
075736
024517
142530
075736

074457
000670
141470
054354
156131
053471

027313

150157
061417
061417
162557
164517
124304
156370
127217
124757
114231
124517
136337

»
AdDD2

JNP
1NN
ENY
ENY
JHP
JNP

LUF
LWF

PKSUB 488
ouT

J88

coy

CNDX

CLFL

CNDX
CNDX
STFL
Rl
R1

RTN

RTN

PASS
ADd
cout
HI1GH
INC
PASS
ADD
ovVFL
ALLS

PASS
PASS
INC

INE
PRSS
PAR3S

INC

RS

P

S10

.3
%0

311

PKSUB
*+2

8

f

89
PACK
p
s11
$10
PRCK
P

Appendix E

PASS LOBITS INTO L

ADD & CHECK FOR COUT

IF NOY.,JNP

CLR LC15)> FOR OVFL

IF S0,INC HIBITS & ENABLE OVFL
FLG=0

ADD HIBITS AND ENABLE OVFL

IF NO OYFL,RETURN

OVFL INPLIES SGN CHNG

80 FLG=U IF ALUI3=0

D¢ FULLURD SHIFT

USING FLG REC TO INJECT SGN
BUNP EXP

REPACK fA,B REGS

IKC P ANRD RETURN

PASS MUCH LARGER WRD INTO B.A

BEEBRESRBEREBRPREINAERERBSREERB LSS RARNS SRR RN ERIRAERAR RSV AEBESRESS

SEEBISIIVINLRERINBLIREIRELIEREVE SRR LEBANREBIFIRERESABARENSRES8B2 2208

FHPY READ
J88
483

488

488

NP

488

ENY
NP
JNP

488

4S8

R1

Re

CNDX

]l
coy
Lt
CNDX
CNDX

RTN

RTN

INC

INC
PASS
ADD
PASS
PASS

PASS
PASS
PASS
PRSS

PRSS
ADD
coul
INC
PASS
Abd
PASS

PASS
PASS
ADd
ALLS
OVFL
DEC

INC
INC

INC

89
L
89
L]
82

§3%

P

P
INDIRECT
FLD
89
$S
89
$10
87
NPYX
8
311
f

86
NPYX
fh
sit
2
8

8

8%
37
NPYX
L]

f
81t
¢3
s¢d
8
PACK
P

8
PRCK
-]

PASS P INTO N TO READ ADDR OF WRD2
CHECK FOR INDIRECTS
STORE ARGS IN SCRATCH REGS

FORM EXP1 ¢EXP2¢1

ARD SAVE IN 89

FORM (URD! LOBITS)/2 IN A
PASS WRD2 HIBITS INTO 82
JHP TO NPY 3UB & RTN VITH
HIBITS IN B; SAVE IN S5
PASS WRD! HIBITS INTO 82
LOBITS INTO A3 SAVE IN S11
FORM (WRD2 LOBITS)/2 IN A
JNP TO MPY 3UB & RTN VITH
LOBITS IN A; PASS INTO L
ADD BOTH LOBITS & CHK FOR COUT
CELSE TRUNCATE DIGITS)

1F COUT,BUNP HIBITS

ADD HIBITS AND SAVE IN S11

PASS WRD2 HIBITS INTO &

JMP 70 MPY 3UB & RTN WITH
LOBITS IN A; SAVE LOB1TS/2
ADD LOBITS/2 7O HIBITS SUM &
SHFT LI TO0 REORIENT

CHECK FOR CARRY INTO OR
BORROU FRON HIBITS &

ADJUST ACCORDINGLY

CAN’T OVFL FROM HIBITS

SERREBESNRRERBERIRBRRERRNERERBIRIRBEBINBERIREBE BRI RERIRNERER AN REND

BERREBERRERBAREBANBEBLABEREIARRENBERERBERERESREIARRFEBARERAEREBLARNSBEBRERS

FOIV READ
Js8
J88

JHP
JHP

AR3
488

NP

coy
CNDX
CNDX
soy

R1

CNDX

INC

CNFS
ONES
ALLS
INT

PASS
sus

INC

PASS
PRSS
PA3S

PRSS
PASS
ALD
DEC
ZERO

L]

7
L
89
s9
f
B
8

85
R4S

8
f

P
INDIRECT
FLD
37
DBYZR
42

f

85

39

3%
810
st

B8
DIVX
f

]

*e2

8

PASS P INTO M TO READ ADDR OF URD2
CHECK FOR INDIRECTS

PASS WRD2 HIBITS & CHECK

FGR DIV BY ZERO

SINCE WS USE SANE DYSR, NAKE POS
NCW & SAVE SGN IN OVFL

FORN EXP1-EXP2+1

& SAVE IN 39

FILL B,A WITH WRD! AS DVND
& PRESHIFT TO AVOID OVFL

JNP T0 SPECIAL DIV SUB

SAYE QUOI IN S5

PASS QUO & CHECK FOR ODD/EVEN
10 SINULATE FIRST

LEFT SHIFT IR DIV ROUTINE

CLR DVND LOBITS: DVSR SANE

E-13

Appendix E 21IMX

0227 7305 303 196370 J88 DIVYX JNP 10 SPEC DIV SUB

0228 7306 017 127%17 PASS 811 A ~SAYVE QUO2 IN S1it

0229 7307 017 152304 Ri PRSS B 86 FORN C(MRD2 LOBITS)/Z4 IN

0230 ?310 017 124304 R1 PASS B 3 B(=DYND HIB1TS)

0231 7311 001 136357 2ERO & CLR DVND LOBITS: DYSR 3ANE

0232 7312 301 156370 J88 DIVX JNP TO SPEC D1V SUB

0233 7313 010 026557 CHPS 4 f FORN 2-CONP OF QUO3

0234 7314 000 0263557 INC & . 18) AS NPLR

0233 7315 017 151087) PABS 52 8% PASS QUOI AS MCND

0236 7316 300 012330 J88 NPYX JNP TO MPY SUB

0237 7317 017 125317 PRSS 387 B SAYE PROD HIBITS IN 55

0238 7320 001 136317 ZERO 8 PRE-CLR B

0239 7321 017 164737 PRSS st CHECK SGN OF QuD2

0240 7322 322 015231 JHP CNDX ALLIS RJS #+2 & EXTEND AS ALL 3°8(POS)

0241 7323 016 036317 ; ONE B8 OR ALL 1°*S(NEG)

0242 7324 017 154757 PASS 87 CHECK 3GN OF -QUOisQUO3

0243 7325 322 015371 JMP CNDX ALIS RIS s¢2 IF NEG,SUB 1| FROM B

0244 7326 007 124517 DEC 8 8

0243 7327 017 195302 t1 PABS 87 87 REORIENT PROD CADJUST EXP,REALLY)
0246 7330 017 154542 Ll PASS A 87

0247 7331 017 126157 PASS L R

0248 7332 004 164357 ADD 8 sit ADD TO QUO2

0249 7333 321 013671 JHP CNDX COUT RJUS e+2 IF COUY OCCURRED

0250 7334 000 024317 INC B B BUNP HIBITS OF RESULT

0231 7335 077 124302 LGS bl PASS B 8 SHIFT FULLWRD TO ORIENT RESULT
0252 7336 017 1%0157 PASS L 85 ADD QUOI TO HIBITS

0233 7337 004 1243517 ADd 38 8

0254 7340 3038 1423530 Jss PRCK

0235 7341 000 075736 RTN INC P P

0236 7342 001 136557 DBYZR 2ERO A CLR LOBITS

0237 7343 352 000317 1NN CHYI B %200 FORM 0111111100000000 IN HIBITS
0258 7344 017 125417 PRSS S9 B ALSO PARS INTO EXP

0239 7345 301 142530 4838 PACK

0260 7346 000 075736 RTN INC P P

0261 RERREARBRRRARNRASAB SRS AR IEABSASRIRANRIRI SRR IR ABIRS SRR AR BRABEABEIHIRN DS
0262 SEARRNESVEIRNBLEENRNERIRRIRIFAERIIRNERERRESRIRERIRESINRERIRRENEIRRSRERRIL
0263 »

0264 * THIS 18 A SPECIAL SUB FOR F.P. DIV

0263 L] IT ASBUMES THAT DVSR 1§ ALUAYS POS

0266 L] THAT ORIC DVYSR SGN IS IN OVFL REG

0267 L] THAT YOU HAVE PREVIOUSLY DONE FIRSY LEFT SHIFT
0268 - AND THAT ND ERROR COND NEED BE CHECKED

0269 L4 ¢BUT IT 18 FAST)

0270 -

0274 SARRABAENERESREAEBASHRARRRLRRISIBRERERNRESEREILANABINRERERBEREANERARRE2S
0272 7347 344 000257 DIVX Ins LO8 CNTR X0 CLR CNTR

0273 7330 137 124742 LWF L1 PASS B CHECK FOR NEG DVYND & SAVE SGN IN FLG
0274 7351 322 0167712 JNP CNDX ALLIS RJS READY IF POS, WE ARE READY

02?8 7352 010 024317 CHPS B8 8 CONP HIBITS

0276 7353 010 026557 CHPS A f CONP LOBITS

0277 7354 000 026557 INC & (] FORM 2-COMP OF LOBITS

0278 73%5 321 016771 JNP CNDX COUT RJS READY IF NO COUT,OK

0279 7356 000 024317 INC B8 B ELSE BUNP HIBITS

0280 ?357 017 154153 READY RPT PASS L 87 PASS DYSR INTO L SET RPTFF
0281 7360 123 024302 DIV L1 3us 8 8 PERFORM DIV STEP(16X)

0282 7361 017 124504 R1 PASS 8 B FORN REN IN B

0283 7362 324 017271 JHP CNDX FLAG RJU3 #+3 IF REM SGN I8 TO BE WEG

0284 7363 010 0249517 CNPS B B CDETERMINED BY DVND), THEN

0285 7364 000 024317 ‘ INC 8 8 FORN 2-CONP IN B

0286 7365 325 057471 JHP CNDX OVFL (XY} CHECK ORIG DVSR SGN: IF POS.
0287 7366 324 017631 JNP CNDX FLAG RJS RTNFP LOOK FOR NEG DVND

0288 7367 010 026557 CHPS @ f WHICH MEANS FORM

0289 7370 000 026576 RTN INC 4] HEC QUO IN R & RTN

0290 7371 324 057631 JNP CNDX FLAG RTNFP ELSE IF NEG.,LOOK FOR POS DVYND
0291 7372 010 026337 CHPS f VHICRH NEANS FORM

029%2 7373 000 026576 RTN INC 8 f NEG QUO IN R & RTN

0293 SEERERIASRAXLANSENRRREBNABEAREISISSAANNASEIRSBISREREIRNBUIBNERESALBIR RIS
0294 .

0298 7374 017 136776 RTNFP RTN

0296 L]

0297 7375 016 036544 OVFLD R ONE # PUT MOST POS & AND MOST POS EX?
0298 7376 347 174536 INN RTN LOV B X376 INTO A,B-REGSs OVFLO=1

0299 i SEENEBLENEBLIBRILRNEBISHEPIRISINESIS2S004RSRIRERIANIRIINIBESRSILARI2L
0300 $END

% NO ERRORS»s

E-14

21MX Appendix E

0001 $ORIGIN=7400

0002 FEARRBABIRAASARAERRABES ARSI S NESHR LI N AECRNNERIRAREARBRRAEIRIE BN SA RS04
0003 *

0004 . 21IMX NICRO-CODE

000S * MODULE 13: EXTENDED INSTRUCTION GROUP

0006 *

0007 SAXBERASBBRBLRBRERBRSSRNELIRAANIR SR NI ORIV IRIBBERERSERIBIRRIRRERE RN AD S
0008 FETCH EQY %0000

0009 SERBSBERVEAEAREBEANATARABSIENSSEREBUINRENIIBEESSARERNIREERSRIBINBESNERS
0010 . JUMP TABLES - ENTERED FROM BASE SBET

0011 SEABRAAERENEABEBER RS SRR ARSI BREBR RSB ALEEVRAREEISRACAERRRLERNIRABINSRENE 4
0012 7400 321 163170 JuP ERDRX SAX/8BX

0013 7401 017 103636 RTN PASS X CaB cax/CBX

0014 7402 321 163170 JupP EADRY LAX/LBY

0015 7403 321 163030 JNP EADR §TK

0016 7404 017 170076 RTN PASS ChAB X CXA/CXB

0017 7405 321 163030 JHP EADR LDXK

0018 7406 321 163030 JHP EADR ADX

0019 7407 321 164070 JHP XABX XAR/XBX

0020 7410 321 163630 JHP ERDRY SRY/8BY

0021 7411 017 103676 RTN PASS Y CAB CRY/ZCBY

0022 7412 321 163630 JNP . ERDRY LAY/LBY

0023 7413 321 163030 JHP EADR 8TY

0024 7414 017 172076 RTN PASS CAB ¥ CYR/CYB

0023 7413 321 163030 JHpP ERDR LDY

0026 7416 321 163030 (). 14 ERDR ADY

0027 7417 321 164230 01,14 XABY XAY/XBY

0028 7420 321 164370 JHP 18%

0029 7421 321 164670 J NP DSk

0030 7422 321 177070 JNP JLY

0031 7423 321 172330 JNP LBT

0032 7424 321 171630 NP SBY

0033 7425 321 1?3230 NP MBT

0034 7426 321 175130 JNP CBT

0033 7427 321 174030 JNP SFB

0036 7430 321 164330 JMHP 18y

0037 7431 321 1635030 JHup bS8y

0038 7432 321 177370 JHP JPY

0039 7433 321 167330 JHP SBSCBS 8BS

0040 7434 321 167330 JHP SBSCBS cBs

0041 7435 321 166630 JnpP T8S

0042 7436 321 170230 JNP cHe

0043 7437 321 171030 J NP 3]]

0044 BEEBRIAABERSABRASBAEBLA RS IARBBALBL A AAEBEENESSARERINBERSBEBBEBRSRSIRABEBBEEE B RS
0043 * INDEX REGISTER INSTRUCTIONS

0046 BEERRXARBESSERRBRERNIBERRENINBABEINSERIRAI RSN SRLABEFEABERIARER AL BNESEABEEENES
0047 » DISPLACEMENT FROM FINISH CORREPONDS TO

0048 * DISPLACEMENT FROM 7400B FOR INSTRS. LISTED
0049 » IN COMMENT FIELD 3ELOW.

0030 7440 000 022461 FINISH NPEK INC N N SRX/8BX

0051 7441 177 102036 WRTE RTN PASS TAB CKRE

00352 7442 017 100076 RTH PASS CAB THB LAR/LBX

0033 7443 000 022461 NPCK INC N L] STX

0034 7444 177 170036 YRTE RTN PASS TR X

00355 7445 017 101636 RTN PASS X TRB LpX

00356 7446 017 100157 PASS L TRB ADX

0057 7447 264 171636 ENYE RTN ADD X X

0058 7450 000 022461 MPCK INC M L} SRY/SBY

0059 7451 177 102036 WRTE RTN PASS TAB CaB

0060 7452 017 100076 RTN PABS CAB TAB LRY/LBY

0061 7453 000 022461 MPCK INC M L} STY

0062 7454 177 172036 WRTE RTN PASS TAB Y

0063 7455 017 101676 RTN PASS ¥ ThB Loy

0064 7456 017 100157 PASS L TRE AbY

0065 7457 264 173676 ENVE RTN ADD ¥ Y

0066 BABIABEAABAAAAR LRSI ALBARNEARRSARRBAANILR SRR LIS IR NN IRNSREARNSE RN NE RSN NS
0067 * ERDR 1S CONMON 7O LD#*,57»,ADe
0068 7460 220 074717 EADR READ INC PHRY P READ WURD 2 P<(=ADDR OF NEXT INSTR.
0069 7461 301 165630 488 INDBIT CHECK FOR INDIRECT,.GET OPERAND
0070 7462 321 162035 JNP U330 FINISH JUMP TG COMPLETE INSTRUCTION

0071 AAEXEBASERREARRRABFERIRARERERARBENRRREARA IR EIL R BRI R SE NSRRI RS R NSRS
0072 * ERDRX DDES EFFECTIVE ADDR FOR
0073 * SAK, 8BX, LAX,LBX INSTRS.

0074 7463 220 074717 EADRX READ INC PHN P READ ADDRESS OF WORD 2

0075 7464 017 170157 PASS L X

0076 7465 017 100457 PR3S N TAB M<{=CONTENTS OF WORD 2.

0077 7466 322 023471 JNP CNDX ALLIS RJS DIRECY - JUNP I1F NO INDIRECT.

E-15

Appendix E

ao78
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0030
0091
0092
0093
0094

00935
0096
0097
0098
0099
0100
0101
0102
0103
0104
0103
0106
0107
0108
0109
0110
0111
0312
0113
0114
0113
0116
0117
o:18

0119
0120
0121

6122
0123
0124

0123
0126
o127
0128
0129
0130
0131

0132
0133
0134
0133
0136
0137
0138
0139
0140
01413
0142
0143
0144
0143
0146
0147
0148
0149
0130
0131

E-16

7467
7470

7471
7472
7473

7474
7475
7476
7477
7500

7501
7502
7503

7304
7503
7306

7507
7510
7311

?512
7513
7514

7315
?316
7517

7520
7321
7322

7523
7524
7325
7526
2527
7530
7331
7532
7533

7534
7538
7536
7537
7340
S41
7542
7543
7544
7345
73546

7547
7350
7551
7332
7333

220
301

004
220
321

220
017
017
322
321

017
017
017

017
017
017

000
320
017

000
320
017

007
320
017

007
320
017

000
220
000
017
320
000
001
220
001

a1?
322
220
326
017
330
007
007
320
324
220

220
017
320
301
017

022457
165630

123017
040457
162035

074717
172157
100457
023471
163370

103017
170057
141636

103017
172057
141676

071617
067271
136776

073637
067271
136776

171617
067271
136776

1736357
067271
136776

075217
0350457
0311357
101117
063331
075717
135336
074710
135317

100457
026271
0224653
065631
1004357
123671
175717
175717
000030
066371
022476

022451
101257
026571
176730
133136

#**‘##*‘*Qlt‘#####'t&t**‘***‘Qt#.#‘##“##***"#*‘t‘#***’t‘*#‘."#***“*t

* IKDIRECT ROUTINE FOR INDEXED INST
EADRI READ IND ¥ L] READ INDIRECT ADDRESS

488 INDBIT JEB TO INDIRECT ROUTINE
!**‘*#tt#‘##*w#*t***tttﬁl'***t“*#*‘**‘#'*#‘ti&tt‘#t‘ttt*tt‘tt#Q‘##‘*‘.C
* . COMPUTE INDEXED ADDRESS THEN JUNP
DIRECT AbDd 51 N S§1¢=TARSET RODR. ¢ X OR VY.

READ INC N 51 READ INDEXED ADDRESS.

JH2 439 FINISH JUNP 1O COMPLETE THE INSTRUCTION
#*t*t##tt‘##t'#*#*tt*‘t**‘#**#t‘.‘ttt“t#tti‘#t*‘t‘*#*t#tt*"#*‘*t“‘#“
* EADRY CONPUTES EFFECTIVE ADDRESS
* FOR SAY,S5BY,LAY,LBY INSTRS.

EADRY READ INC PNM P ’
PASS L ¥
PR35S M TAB M<= CONTENTS OF WORD 2.

JNP CNDX ALIS RIS DIRECT JUNP IF NO INDIRECTS.

INpP _ ERDRI JUNP TO DO INDIRECT ROUTINE
SERBBBESRRBRRASRLBAERERRRBEXRRSEBHEBERBERIXRSRLIRERSRNERRBAERLIRNERERNRRE
XABX PASS 81 CAB EXCHANGE A/B WITH X

PASS CAB X

RTN PASS X S1
SEBANBERAVSSIRRRERREBINASRIRREISNRBBE RIS BNNRIININEASRASIIEREI2RBEN2SE
XABY PRSS 81 CAB - EXCHANGE A/B VITH Y

PASS CAB Y

RTN PASS Y 8t
SESBLBARRNERIRAABIRNBSIBRER LR RRNEBARNBRINSRRISRIREARBRERNRRASNRBER NS4
18X ING X X INCREMENT X, SKIP IF 2ERO

JMP CNDX TBZ 8SK1p
RETURN RTN
SEBAEBIBNIBEABERSSASRIRRAEERBERIRABRRIESNEN BRI EAB SNSRI NSREIRENSSRSR4
I8Y INC ¥ Y INCREMENT Y, SKIP IF 2ERO.
JNP CNDX TBZ SK1P
RTN
BEXBASAARERIABIRIANISIRRSREISARERAEBERRERIIARILIRARENARSSSNIRIINABERRNE
[333 DEC X X DECREMENT X, SKIP IF 2ERO.
JMP CNDX TBZ 8K1P
RTN
BERREBERRERIRRSBERNINIS AR ISNIA SIS L RN IRRNRIIRASER RSN ERI NS SERRNRA
b8y DEC ¥ 4 DECRENENT ¥, SKIP IF ZERO.
JNP CNDX TBZ SK1P
RTN

21MX

SELBEBEERERRR AL RERERRERERRENEBNEREBRERRB AL IBRERISHERERBEREERRBLEBEIEBH RN D

. GENERAL INDIRECT ROUTINE FOR INDEX BIT INSTR

* COMMON ROUTINES FOR UORD/BYTE INSTRUCTIONS
SESRELLIRERRNSSREABEREFNSRIRNARASRBNABREAIAASAIIRSRIANSASERIRAABEINEIBRAARRINAS
* IRITIALIZATION FOR WORD,.BYTE
INITCH INC 85 .4 8%¢= ADDRESS OF WORD 3.
READ ING M §3 READ ADDRESS OF WORD 3.
INC 84 §s S4<¢= ADDRESS OF NEXT INSTRUCTION.
PASS 83 TAB 8§3¢= CONTENTS OF WORD 3.
JNP. CNDX TBZ 43 JUNP IF WORD 3 = 0 (NO INTERRUPT)
INC P P P{(=ADDRESS OF WORD 3 (FOR EXIT)

RTN 2ERO 37 87
READ STFL INC PHM P

87(=0 AND RETURN TO CALLER.
READ ADDRESS OF WORD 2. P(=Pe¢l.

ZERO 87 87 87 <= 0.
SEBRERIENABENBESLBNERISACREARBAESNERRASEIREIIRAEEEBARIREEISARNRHENNESS
. COMNON IMDIRECT IMBEDDED IN INITCM
INDBIT PASS N TAB M (= CONTENTS OF LAST READ ADDRESS

JMP CNDX ALLIS RJS CONTBIT JUNP 1F NO INDIRECT.
INDLBIT READ INCI INC M L] READ ADDRESS IN N

JMP CNDR WHOI INDBIT JUNP IF NO HALT OR INTERRUPT PENDING
IND2BIT PASS N TR8 N{= COWTENTS OF LAST READ ADDRESS
JHP CNDX HSNG RJB INDBIT+1 JUMP I1F SINGLE-INSTRUCT. MODE
DEC2 DEC P P
DEEC P P P (= ADDRESS OF WORD 1.
J NP FETCH ATTEMPT JUMP TO FETCH ROUTINE.
CONTBIT JNP CNDX FLAC *+2 FLAG IDENTIFIES CALLER TO INDBIT

READ RTN INC M L} READ ADDRESS AND RETURN.
BERRESEFNRAEARRNASREREARABIRANNISNEREARESIRNNRILNBSERANBINNEILESS RS SARR4

READ CLFL INC M N

PRSS S6 Th8 86 <= COUNT FOR THIS INSTRUCTION
JNP CNDX TBZ RJS RTHCNT JUNP 1F COUNT NOT ZERO.
488 EXIT END THE INSTRUCTION.
RTNCNT RTH PABS 83 86 §3 <= COUMT, RETURN TO CALLER.

CALLER=IHITCN-~-RESET FLAG,READ COUNT

21MX

0132
0153
0154
01353
01356
0137
0138
0159
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
0171
0172
0173
0174
0173
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0193
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207

0208
0209
0210
021!
0212
0213
0214
0z13
0216
0217
0218
0219
0220
6221
0222
g223
0224

75354
7558
7356
7557
7560
7361
7562
7563
7564
7565

7566
7567
7370
7371
7572
7573
7574
73795
7576
577
7600
7601
7602
7603

7604
7603
7606
7607
7610
7611
7612
7613
7614
7615
7616
7617

7620
7621
7622
7623
7624
7625
7626
7627
7639
7631
7632
7633

7634
7635
7636
7637
7640
7641
7642
7643
7644
7645
7646
7647
7650
7651

220
301
017
220
301
013
013
320
000
000

220
3018
017
220
301
327
017
000
177
000
013
000
177
000

301
220
017
220
000
003
320
000
007
320
335
321

3018
220
000
017
000
017
177
eoo
007
320
33%
321

340
015
157
220
324
013
321
e1s5
Q17
017
«17
017
000
177

074717
165630
100157
074457
165630
101017
041017
067271
073717
075736

074717
165630
100157
074457
165630
170031
001017
022461
140017
075736
101017
022461
140017
073736

165170
026457
100157
0244357
024317
001017
036431
026557
145417
076731
030271
176130

165170
026457
026357
101017
024437
122761
140017
024517
145117
076731
031071
176130

000157
127017
125244
052461
032171
101417
172330
1601417
141033
141033
160157
041017
024517
140036

Appendix E

EERREBER AR ERLNAEBLARABIBRLLLBAERANAEBEBAEBIABBEXAREBERREBEARRISRNALZLRNANRS0%S

* BIT INSTRUCTIONS
BEEBESEERERINBERLNBERILNEBERRLRE2XCBASIRREXARRILFPREBBEBERIRRESREREABERENRERL N RS
88 READ INC PNN P

488 INDBIT GET HASX

PASS L TAB L <= NASK.
READ INC M P
Js8 INDBIT GET WORD T0 BE TESTED
AND S1 TRB LCGICAL AND OF MASX, WORD UNDER TEST.
X0R 81 s1 §1 (= 0 IF ALL MASK BITS SET IN WORD
JHP CNDX TBZ SK1P SKIP IF ALL MASK BITS SET IN WORD.
INC P .4 SKIP NEXT NACHINE INSTRUCTION.
SKIP RTN INC P 14 ADJUST P, JUNP TO FETCH ROUTINE.
SRS REARERANARRERREBERRRIBNERARSSREARRAERABRIBNSSEN RN REBEBRESLRRBBEASER RS R
§BSCBS READ INC PHN P
488 INDBIT OBTAIN 81T NASK
PASS L TAB L <= BIT NASK

READ INC N 4

488 INDBIT OBTAIN WORD TO BE OPERATED ON.

JHP CNDX 1IR2 CBS JUNP 1F INSTRUCTION IS CBS.

10R 81 TAB SET BITS IN WORD,PUT IN S!t

MPCK INC N L} NENMORY PROTECT CHECK.

WRTE PASS TAB 81 REURITE WORD TO MEMORY. RETURN TO FETCH.

RTN INC P P
c8s SANL §1 TAB §1 (= MZNORY WORD WITH BITS CLEARED

MPCK INC N N

WRTE PRSS TAB St REVRITE WORD TO MEMORY.

RTN INC ? P RETURN 10 FETCH ROUTINE.
BEXBEBEBILBEABERNEAABBERANERERSERLBRL LR REXASRELRBA2BHERLRASSELBEILRREBERBERRENDR
* WORD INSTRUCTIONS
BAXREREERERALASBEBAERERRNIRIBASBERNERASAEBEESBSIRRENIRAEREEREBLERAXILBARIEXNERA RS
(4.1 488 INITCHN INITIALIZE

READ INC M f READ FROM ARRAY A.

PASS L TAB L ¢(= WORD FROM ARRRY A

READ INC N© B READ ADDRESS IN ARRAY 8.

INC B8 B INCREMENT ARRAY B POINTER.
suU8 St TRE SUBTRACT ARRAY WORDS B - 4.

JNP CNDX TBZ RJS CHALIS JUNP 1F UNEQUAL.

INC a f INCREMENT ARRAY R POINTER.
DEC 83 83 DECREMENT COUNT.

JNP CNDX TBZ EX1T JUNP 7O EXIT IF COUNT IS ZEROQ.

JHP CHNDX INT RJS CNU+1 JUMP 1F HOT INTERRUPTED.

JNP INTPEND
FEANSBANBERSANIRARREIARARRIAREIENNVRERNEBIRNERERARIINRBAIAREBEARNALAIXILANSNINNS
NYW 488 INITCHN INITIALIZE.

READ INC N f READ FROM ARRARY A

INC 18 f INCREMENT ARRAY A POINTER.
PASS §1 TAB §1 <= CONTENTS OF WORD OF ARRAY
INC o -] N <= ADDRESS FROM ARRAY B

NPCK PASS N MEMORY PROTECT CHECK-- BIT 15 LOW.

WRTE PASS TAB 51 WRITE WORD INTO ARRAY B.

INC 8 B ADVANCE ARRAY B POINTER.
DEC 83 83 DECREMENT COUNT.

JHP CNDX TBZ €X1T EXIT 1F COUNT 1S5 ZEROD.

JHP CNDX INT RJIZ NVU+1Q JUNP IF HOT INTERRUPTED.

JNP INTPEND

t‘#‘*#t#t**tt3#*#4&***##*#*4"“‘**#“*“4k#*4‘#**###t*#‘k##*?#“##k#‘#****t

* BYTE INSTRUCTIONS
SHRAEIERBRNE ARSI RERREFAARAR E R AR SA RN A ARBI ARSI EI SRS A SR RS R RIBLRRIIAAXS LR RRSEANS
8§87 1MM HISH L p4didd L (= 0003778.
STBYTE AND 81 f §1 <= RIGHT BYTE OF A REC.
LWF RI PRA3S 56 -] S¢ <= WaRD ADDRESS. FLAG SET IF BYTE 0DD
READ MPZK INC N Sé READ W0ORD ADDRESS,CHECK FOR MP YIOLATION
JM? CNDX FLRG RJI3 STEVEN JUMP IF STORE T0O EVEN BYTE.
SANL 39 TRE MASK OUT EVEN BYTE OF MEMORY WORD.
JN? HERGE
STEVEHN AND 59 TRB MASK OUT ODD BYTE OF MEMORY WORD.
L4 PASS 351 51 EXCHANGE BYTES IN REGISTER CONTAINING
L4 PR3S 51 s1 BYTE 70 BE STORED.
MEREGE PASS L 39 L <= MEMORY WORD WITH TARGET BYTE CLEARED
10 81 31 §1 (= WORD WITH BYYTES MERGED.
INZ 8 B INCREMENY BYTE ADDRESS.
WRTE RTN PR35S TAg 31 WKITE NEW WORD BACK INTO WORD ADDRESS.

E-17

Appendix E

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0z43
0244
0243
0246
0247
0248

0249
0230
0231
0232
0233
0234
0233
0236
02357
0258
0239
0260
0261
0262
0263
0264
0263
0266
0267
0268
0269
0270
0271
0272
0273
0274
027s
0276
0277
0278
0279
0280
0281
0282
0283
0284

E-18

7652

76353
76354
7635
7656
7657
7660
7661
7662
7663

7664
76635
7666
7667
7670
7671
7672
7673
7674
7673
7676
7677

7700
7701
7702
?703
7704
7705
7706
?707
7710
711
7712
7713
7714
7715
7716
7717
7720
721

7722
7723
7724
7725
7726
rear
?730
7731
7732
7733
7734
7735
7736
7737
7740
7741

a1s

301
1 g
301
Qoo
301
Qo7
320
017
321
333
017
321

340
013
013
017
017
30%
017
013
320
017
007
013
320
017
000
3338
017
007

301
017
017
301
017
000
3018
017
eo3
320
007
320
017
321
338
017

123057
024517
000151
143244
052457
073171
100543
126543
136776
100776

165170
127057
172630
043051
171670
1454117
033671
142557
176730
033331
142557
176130

000157
127117
127143
147143
12737
172530
126157
043257
034571
1563357
124336
047017
034771
156557
075736
034271
1363387
175736

165170
127357
157087
172630
127417
043337
1723530
160157
027017
036331
145117
036031
156337
176730
0332318
1363357

21MX

BEAABRABRRRAA AR K EEBEFLERI RIS BARE RSB A SRR LR RS ERIRERRIIE R ARSI LSRRI A NS BLE RN A RN

§2 (= BYTE RDDRESS.

IRCRENENT BYTE ADORESS FOR NEXT INSTRUC
L <= 0003778. CLERR C?U FLAG.

Sé (= WURD ALDRESS OF BYTE. SET FLAG IF
0DD BYTE. READ WORD ADDRESS

JUNP IF BYTE IS 00D.

MASK GUT EVEN BYTE AND MOVE ODD BYTE

TC EVEN BYTE OF A REG.

RETURN TO CALLER OR FETCH.

NASK OUT EVEN BYTE,LOAD INTO A. RETURN.

ARSI ERABRERERRLRREBLBSERLXIARRASRRREBESAIRRBILRAIRERABXRARIBANIESERALIASASRES

LBT PR3S 52 B
INC B B
LDBYTE INY CLFL HISH L %000
LWF 21 PASS 3586 §2
READ ING M Se
JM? CTNDX FLAG LEdD
L4 3ANL A TAB
L4 PARES A f
RTN
LODD RTN AND A TR
87 458 INITCHN
PR3S 52 A
Js8 LDBYTE
CLFL INT 82 32
488 STBYTE
DEC 83 83
NP CNDX TBZ RJ43 NOTDAN
PASS A sz
JNP EXIT
NOTDAN JNP TNDR INT RJI3 NET+2
PASS @ 32
JNP INTPEND

INITIALIZE.

§2 <= ADDRESS START OF ARRAY A.

LCAD BYTE FRUM ARRRAY A.

RESET FLACG, §2 (= NEXT BYTE QDDR IN ARR(
STORE BYTE INTO BYTE ADDRES3 IN B8 REG.
DECREMENTY COUNT

JUNP 1F COUNT NOT ZERO.

A <=1 ¢+ LAST ARRAY A BYTE ADDRESS MOVEI

JUNP IF HOT INTERRUPTED.
A (=1 + LAST ARRAY R ADDRESS MOVED

BE2NSRERRSRIXXBAEBRBRLRBERLIX2RERREBEABEBERFLREEBESSBIXXERAEBLXIRILLREBL2BERENS

L <= 0003778B.

83 <= TEST BYTE IN LOW-ORDER BYTE

S4 <= TERMINATION BYTE IN :

LOW-ORDER BYTE

§8 (= SAVE ORIGINAL CONTENTS OF # RESG.
LCGRD BYTE INTO R REG FRON ADDRES3S IN 8.
L <= BYTE TO TESTED IN LOV BYTE.
CONPARE BYTE TO TEST BYTE.

JUNP IF UNEQUAL.

RESTORE ORIGINAL CONTENTS OF A REG

B <= BYTE ADDRESS OF MATCH. GO T0 FETCH
CONPARE BYTE TO TERMINATION BYTE.

JUNP IF UNEQUAL.

RESTORE ORIGINAL CONTENTIS OF A REG.
SKIP NEXT MACHINE INSTRUCTION AND FETCH.
JUNP IF HOT INTERRUPTED.

RESTORE ORIGINAL CONTENTS OF A REG.

P <= INSTRUCTION ADDRESS, GO TO FETCH.

SRS FERNERINBERLRBLBERRIBIF AL EBALVE ARSI RISSRERESBEREEVRIERAIREIERE2SS

SFB Inn HIGH L %000
AND 83 f
L4 SANL 84 f
L4 PASS S4¢ sS4
PASS S8 A
CONTSF3 JS8 LBT
PASS L f
X0R 86 83
JHEP CNDX TBZ RJS NONATCH
PABS A S8
RTN DEC B 8
NOMATCH XO0R 81 84
JHP CNDX TBZ RJ5S INTTST
PABS A 88
RTH INC P P
INTTST - JNP CNDX INT RJ3 CONTSFE
PASS A 88
RTN DEC P P
(43 J88 INITCN
: PASS 88 f
PASS 82 88
488 LDBYTE
PASS §9 f
INC §8 82
458 LBT
PASS L 89
sus St A
JHP CNDX TBZ RJS CHALISE
DEC 83 33
JHP CNDX TBZ RJS CONTCBT
PASS A S8
J NP EXIT
CONTCBY JMP CNDX INT RJS CBT+2
PASS & 58

IRITIALIZE.

88 (= POINTER FOR ARRAY A.

§2 (= NEXT BYTE ADDRESS IN ARRAY A.

LOAD ARRAY A BYTE INTO A REG.

§9 <= ARRAY A BYTE.

INCREMENT ARRAY A POINTER.

R (= BYTE FROM ARRAY B (RDDRESS IH B REC

L ¢(= BYTE FROM ARRAY A

SUBTRACT BYTE FROM ARRAY B - 4.

JUNP IF BYTES NOT EQUAL.

DECREMENT THE COUNT.

JUNP 1F COUNT 1S NOT ZERO.

EQUAL EXIT... A <= 1+LAST NOVED BYTE ADD
|

JUNP IF NOT INTERRUPTED.

R (= NEXT BYTE ADDRESS OF ARRAY A TO0 TES

21MX

0283
0286
0287
0288
0z89
0290
0291
0292
0293
0294
0298
0296
0297
0298
0299
a3a0
0301
0302
0303
0304
030S
0306
0307
0303
0309
0310
0311
0312
03123
0314
0313
0316
0317
0318
0319
0320
0321
0322
0323
0324
0323%
0326
0327
0328
% N

7742
7743
7744
7743

7746
7747
v7R0
7751
7752
7753
7754
7785

77356
7757
7768

7761
7ree
7763
7764
7765
7766

7767
7778
7771
7772
773
7774

e

7776
777

[d
177
ao7
Qo7

o7
17
322
(G Q]
¢oo
007
017
004

ago
177
017

220
301
340
o017
o7
017

220
e17
ao4
340
017
017
017

377
377

050457
144017
175717
175736

156337
141017
036531
047157
047157
143117
144157
124517

050457
154017
147736

074717
165630
120417
122461
175657
123736

074717
172157
101017
120417
140457
122761
123736

1?7777
177777

0 ERRORS*»

Appendix E

LR R E R AR R R L R R A R R R A R L E P R L R R EE R R E LT)

» COMMON ROUTINES TO MOVE, COMPARE INSTRUCTIGNS
L R N PR T
* INTERRUPT EXIT
INTPEND INC M 3% M (= ADDRESS OF WORD 3
YRTE PASS TAB 33 WRITE RIMPRINING COUNT INTO WORD 3.
DEC * P

RTN DEC 2 ? P (= ADDRESS OF WORD 1., GO TC FETCH.
EE R R L L E T Y
* EXIT TESTS FOR CBT,CHW
CHAL1SB DEC 4 38 A <= BYTE ADORESS OF MISNATCH.

PASS 351 31 CHECK RESULT OF COMPARE
CHALLS JMF CNDX ALLIS R43 3K1PH JUMP 1F SIGN BIT 18 ZEROD.

1IN 354 34 SKIP UNE MACHINE INSTRUCTION.
SX1P1 ING 54 sS4 SKIP ONE MACHINE INSTRUCTION.

DEL 83 33 DECREMENT THE COUHT.

PAss L 33 L (= COUHT REMAINING

Abd 3 g B (= FIRST ADDR. IN ARRAY B + COUNT.
P P E TP L F)
* COMPLETION EXIT
EXIT IND M 3% M (= ADDRESS OF MWORD 3

WRTE PA3S TR3 57 WCRD 3 (= ZEXO.

*TN PRBS ? KX P (= NEXT MACHINE INSTR. TO EXECUTE.FETCH
e e]
* JUNP INSTRUCTIONS
L e e
JLy READ ING PHN P READ ADDRESS OF WORD 2.

J&3 INDBITY CHECK FOR INDIRECT.M(= DESTINATION ADDR.
INM HISH 1R %050 MECHINE JMP INTO IR TO SET LOW MNP BOUNDS
¥PCK PASS M N DO MP CHECKX ON JUNMP TARGET ADDRESS.

PARSG Y P Y (= ADOKESS OF FOLLOVWING MACHINE INSTR.

RTN PASE 7 L] P <= DESTINATION ADDRESS, JUMP 10 FETCH.
ARRARBERARRAABABRARETAR RN A AR KRS RS ARIBE RS S KIS IE BRI AT F AR AR B LA R T LA KN AR
Jry READ INT PN ® READ ADDRESS OF WORD 2.

PA3S L Y L <= INDEX REG. Y.
AbD §1 TAB 81 <= INDEXED JUMP ADDRESS.)

L] HIGH IR %e50 MACHINE JNP INTO IR 7O SET LOW M® BOUNDS
PRASS N 51 M¢= INDEXED ADDRESS, WITH BIT 15 LoOW

MPCK PASS b} MP CHECX ON 15-BIT DESTINATION ADDRESS.

RTN PASS 7P L] ? (= DEZTINATION ADDRESS. &0 TO FETCH.
R T Y e T R T Y]

ONES
ORES

$END

E-19

INDEX

A micro-order
as S-Bus micro-order, 4-14
as STORE micro-order, 4-12
AAF (A-register Addressable Flag)
What it does (in brief), 2-3
ADD micro-order, 4-10
ADR micro-order, 4-14
Advantages
of microprogramming, see ‘‘Microprogramming’’
ALO micro-order, 4-19
AL15 micro-order, 4-19
ALU (Arithmetic and Logic Unit)
What it does, 2-4
ALU micro-orders, 4-10
AND micro-order, 4-10
A-register Addressable Flag, see “AAF”
Arithmetic and Logic Unit, see “ALU”
ARS micro-order, 4-2
ASG micro-order 4-3
ASGN micro-order, 4-19

B micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
BAF (B-register Addressable Flag)
What it does (in brief), 2-3

Binary object tape output by Microassembler, 5-4, A-1

BREAK command, 5-13
B-register Addressable Flag, see “BAF”’

CAB micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Central Interrupt Register, see “CIR”
CHANGE command, 5-14
Character Set for source statements, 3-4
CIR micro-order, 4-14
CLFL micro-order, 4-7
CM micro-order, 4-12
CMHI micro-order, 4-16
CMLO micro-order, 4-17
CMPL micro-order, 4-10
CMPS micro-order, 4-10
CNDX micro-order, 4-19
CNT4 micro-order, 4-19
CNT8 micro-order, 4-19
CNTR micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Comments, in source statements, 3-4, 4-1

Conditional jump micro-instruction (Word Type 3), 4-18

CONDITION micro-orders discussion of,
in Word Type 3, 4-19

Control Processor, 2-2

Control records (for Microassembler), 5-2

Control Section of a Computer
Conventional 1-1
Microprogrammed, 1-1, 2-1

Control store, 1-1
How microprograms are accessed, 3-7
Modules available to user, 3-10

COUT micro-order, 4-19

COV micro-order, 4-7

CRS micro-order, 4-3

Data paths, brief description of, 2-3
DEC micro-order, 4-10
DEF pseudo instruction explanation of, 4-24
DIV micro-order, 4-4
DSPI micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
DSPL micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
Dual Channel Port Controller Effect
on microprograms, 3-14
DUMP command, 5-11

E micro-order, 4-19
E register, 2-4
$END control record, 5-2
ENV micro-order, 4-4
ENVE micro-order, 4-4
EQU pseudo instruction explanation of, 4-25
Error messages

Microassembler, 5-5

Micro Debug Editor, 5-15
Examples of microprograms, 3-15
EXECUTE command, 5-14
Extend register, see “E register”’
$EXTERNALS control record, 5-2

Fields, in source statements
Where each begins and no. of characters, 3-3, 5-1
$FILE control record, 5-2
FINISH command, 5-13
FLAG micro-order, 4-19
Flags, 2-4
FPSP micro-order, 4-19
Front panel
Registers and flags associated with, 2-4
FTCH micro-order, 4-7

Index ' 21MX

HIGH micro-order, 4-17 L micro-order, 4-13

L1 micro-order, 4-8

L4 micro-order, 4-8

Label, in source statements, 3-4, 4-1
LDR micro-order, 4-15

LGS micro-order, 4-4

$LIST control record, 5-3

Listing optionally output by Microassembler, 5-5
LOAD command, 5-10

LOW micro-order, 4-18

L-register, relation to S-bus, 2-3
LWF micro-order, 4-5

ICNT micro-order, 4-7

INCI micro-order, 4-7

IMM micro-order, 4-16

“Immediate”’ data, see “Word Type 2”

INC micro-order, 4-10

Initialization program for use with Micro Debug
Editor, 5-8

S$INPUT control record, 5-3

Input/Output, see “I1/0”

INT micro-order, 4-20

Instruction Register, see “IR”

Interrupt Enable Register M micro-order
What it does, 2-3 as S-BUS micro-order, 4-15
Interrupt handling, 3-12, 3-13 as STORE micro-order, 4-13
1/0, How to code I/0 functions, 3-11 Macro instructions (Assembly language) Mappings to
1/0 bus, what it does, 2-3 ROM and/or WCS addresses, 3-10
1/0 Utility Subroutine for WCS, 5-16 MACRO (label in TEST program used with Micro
IOFF micro-order Debug Editor), 5-9
as SPECIAL micro-order, 4-7 MDE (see “Micro Debug Editor”’)
as JMP modifier in Word Type 4, 4-22 Memory protection
I0G micro-order in relation to I/0 microprogramming, 3-12
as SPECIAL micro-order, 4-7 micro-orders, 3-13
as JMP modifier in Word Type 4, 4-22 MICRO (see ‘“Microassembler’’)
I0I micro-order, 4-15 Microassembler, what it does, 5-1
ION micro-order, 4-8 BCS version:
I00 micro-order, 4-13 ‘ Hardware required, 5-1
IOR micro-order, 4-10 Software required, 5-7
IR2 micro-order, 4-20 How to use, 5-7
IR (Instruction Register) DOS-III version:
How processed, 3-8 Hardware and software required, 5-5
What it does, 2-1 How to use, 5-5
IR micro-order, 4-13 Micro Debug Editor

BCS version:
Hardware required, 5-8
Software required, 5-16
How to use, 5-16
DOS-III version:
Hardware required, 5-8
‘ Software required, 5-14
J30 micro-order, 4-23 How to use, 5-14

J74 micro-order, 4-23 Micro-order, meaning of, 3-1
JEAU micro-order, 4-23 Microprogramming, Advantages, 1-2
JIO micro-order, 4-23 MODIFIER micro-orders
JMP micro-order, discussion of, for JMP in Word Type 4, 4-22
in Word Type 3, 4-19 , for IMM in Word Type 2, 4-16
in Word Type 4, 4-22 MODIFY command, 5-11
JSB micor-order, discussion of, in Word Type 4, 4-22 Modules available to user, 3-10
JTAB micro-order M-register, what it does, 2-3
as SPECIAL micro-order in Word Type 1, 4-8 MOVE command, 5-14
as JMP modifier in Word Type 4, 4-23 MPCK micro-order, 4-8
Jump-Sense micro-order (RJS), 4-21 MPY micro-order, 4-6

I-2

21MX

NAND micro-order, 4-10

NDEC micro-order, 4-20

NHOI micro-order, 4-20

NINC micro-order, 4-20

NLDR micro-order, 4-20

NLT micro-order, 4-20

NMLS micro-order, 4-20

NOP micro-order (in CONDITION set of
micro-orders), 4-20

NOP micro-order (in OP micro-order set), 4-7

NOP micro-order (in SPECIAL micro-order set), 4-8

NOP micro-order (in STORE set of micro-orders), 4-15

NOR micro-order, 4-10

NRST micro-order, 4-20

NRT micro-order, 4-20

NSAL micro-order, 4-10

NSFP micro-order, 4-20

NSNG micro-order, 4-20

NSOL micro-order, 4-10

NSTB micro-order, 4-20

NSTR micro-order, 4-21

O register, 2-4

ONES micro-order, 4-21

ONE micro-order, 4-10

ONES pseudo instruction explanation of 4-25
OP1 micro-order, 4-11

OP2 micro-order, 4-11

OP3 micro-order, 4-11

OP4 micro-order, 4-11

OP5 micro-order, 4-11

OP6 micro-order, 4-11

OP7 micro-order, 4-11

OP8 micro-order, 4-11

OP9 micro-order, 4-11

OP10 micro-order, 4-11

OP11 micro-order, 4-12

OP micro-orders, 4-2

$ORIGIN control record, 5-3
$OUTPUT control record, 5-3
Overflow register, see ‘“‘O register”
OVFL micro-order, 4-21

P micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
P register, 2-4
PASL micro-order, 4-12
PASS micro-order, 4-12
$PASS2 control record, 5-3
PCA jumper on WCS how module no.’s are set, 6-3
PNM micro-order, 4-13
PREPARE command, 5-11
Pseudo instructions, 4-24

Index

R1 micro-order, 4-9
RAR (ROM address register), 2-3
$RCASE control record, 5-3
READ command, 5-11
READ micro-order, 4-6
RJS micro-order, 4-21
“Roadmap’’, D-1
ROM, see ‘‘Control store”
RPT micro-order, 4-8
RTN micro-order
as SPECIAL micro-order, 4-9
as JMP modifier in Word Type 4, 4-23
RUN micro-order, 4-21
RUNE micro-order, 4-21

S micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
S register, 2-4
S1 thru S12 micro-orders
as S-BUS micro-orders, 4-15
as STORE micro-orders, 4-14
Sample microprograms, 3-15
SANL micro-order, 4-12
SAVE register, relation to S-bus, 2-3
S-bus, 2-3
S-BUS micro-orders, 4-14
SHLT micro-order, 4-9
SHOW command, 5-11
SKP pseudo instruction, explanation of, 4-26
SKPF micro-order, 4-21
SONL micro-order, 4-12
Source records, Microassembler format, 5-1
SOV micro-order, 4-9
SPECIAL micro-orders, 4-7
SRG1 micro-order, 4-9
SRG2 micro-order, 4-9
SRGE micro-order, 4-9
SRGL micro-order, 4-21
SRUN micro-order, 4-10
STFL micro-order
as SPECIAL micro-order in Word Type 1, 4-10
as JMP modifier in Word Type 4, 4-23
STORE micro-orders, 4-12
SUB micro-order, 4-12
Subroutine microinstruction (Word Type 4), 4-22
“Suitcase’” ROM simulator, Microassembler control
record to generate object tape for, 5-3
Symbol table optionally output by Microassembler, 5-4
$SYMTAB control record, 5-4
$SUPPRESS control record, 5-4

Index

T micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-periods, 3-11
T-register, 2-3
TAB micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-bus, 2-3
TBZ micro-order, 4-21
TEST program for use with Micro Debug Editor, 5-8
Timing, Summary of timing rules, 3-14

UNCD micro-order, 4-23
Unconditional jump micro-instruction (Word Type 4), 4-22

VERIFY command, 5-12

WCS (Writable Control Store)

Hardware information, 6-1
Theory of operation, 6-6
Installation, 6-3

How to load microprogram in WCS, 5-9, 5-10, 5-11

1/0 Utility Subroutine, 5-16

No. of words in special microprogram which MDE auto-
matically loads in WCS, 5-10, 5-14

Modules and
equivalent absolute WCS address, 3-10
equivalent PCA jumper requirements, 6-4
mappings from Assembly language macro

instructions, 3-10

Word Type 1
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-4
Uses (in brief), 4-1

Word Type 2
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 3
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 4
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-6
Uses (in brief), 4-1

Writable Control Store, see “WCS”

WRITE command, in Micro Debug Editor, 5-11

WRTE micro-order, 4-7

X micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
X register, 2-3
XNOR micro-order, 4-12
XOR micro-order, 4-12

Y micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
Y register, 2-3

ZERO micro-order, 4-12
ZEROES pseudo instruction, 4-26

21MX

READER COMMENT SHEET

02108-90008 Aug 1974
Microprogramming 21MX Computers
Operating and Reference Manual

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

B e
HEWLETT lﬁ__—ﬂ', PACKARD

-

%

% 2

Printed: AUG 1974
Printed in U.S.A.

MANUAL PART NO. 02108-90008
MICROFICHE PART NO. 02108-90009

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

