
HP 21MX COMPUTER SERIES

Microprogramming 21MX Computers

operating and reference manual

HEWLETT fl PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

MANUAt. PART NO. 02108-90008
MICROFICHE PART NO. 02108-90009

Printed: AUG 1974

Changed: OCT 1974

· Printed in U.S.A.

LIST OF EFFECTIVE PAGES

Pages Effective Date

Title August 1974
ii to vii August 1974
1-1 October 1974
1-2 August 1974
2-lto 2-2 August 1974
2-3 to 2-4 : October 1974
3-1to3-2 August 1974
3-3 October 1974
3-4 August 1974
3-5 to 3-6 October 1974
3-7 to 3-9 August 1974
3-10 to 3-12 October 1974
3-13 August 1974
3-14 to 3-15 October 1974
3-16 to 3-24 August 1974
4-1 to4-3 August 1974
4-4 October 1974
4-5 to 4-6 August 1974
4-7 October 1974
4-8to4-11 August1974
4-12 October 1974
4-13 August 197 4
4-14 October 1974
4-15to4-19 August1974
4-20 October 1974
4-21 to 4-23 August 1974
4-24 October 1974
4-25 August 1974
4-26 October 1974
5-lto5-2 August1974
5-3 October 1974
5-4 to 5-6 August 1974
5-7 to 5-8 October 1974
5-9 to 5-17 August 1974
6-1 October 1974
6-2 August 1974
6-3 October 1974
6-4 to 6-7 August 1974
A-1 to A-3 August 1974
B-1 August 1974
C-1 August 1974
C-2 October 1974
D-1 to D-4 August 1974
E-ltoE-19 August1974
I-1 to I-4 August 1974

ii OCT 1974

PREFACE I

This manual is a complete reference source for microprogramming the Hewlett­
Packard 21MX Computer Series. With the facilities of the HP 12978A Writable
Control Store the user can expand the already powerful capability of his 21MX
Series Computer by adding custom-tailored instructions to the existing set of
microprogrammed basic instructions.

The HP 12978A Writable Control Store is provided with two options. The
12978A .option 001 provides software that operates in the DOS-III operating
system. The 12978A option 002 provides software that operates in the Basic
Control System. Refer to Section VI of this manual for a complete description
of the options.

This manual is written for an individual who already has considerable
experience as an assembly language programmer. HP 21MX Computer Series
microprogramming is no more complex than normal assembly language pro­
gramming on larger computers. Thus, with little more investment that learning
a new assembly language, large computer capability can be had for small com­
puter expense.

RELATED DOCUMENTATION

It is assumed that the microprogrammer has read the HP 21MX Computer
Series Reference Manual (HP 02108-90002) and that he knows how to use his
operating system, DOS-III (HP 24307B), or the Basic Control System (HP
20855A). These operating systems are described in the following publications:

HP 24307B DOS-III Disc Operating System (HP 24307-90006)

Basic Control System (HP 02116-9017)

During the process of writing, debugging, and using a microprogram, the user
should also have access to and be familiar with the following additional
publications.

The assembler used with the DOS-III-B system is described in:

Assembler Reference Manual (HP 24307-90014)

The assembler used with the Basic Control System is described in:

HP Assembler (HP 02116-2014)

The 21MX computer is described in:

:ijP 21MX Computer Series Operator's Manual (HP 02108-90004)

HP 21MX Computer Series Installation and Service Manual (HP
02108-90006)

The HP 12909B pROM Writer, which is used in conjunction with the six mask
tapes produced by the Micro Debug Editor, and installing pROMs is described
in:

HP 12909B pROM Writer Operating and Reference Manual (HP
12909-90009)

HP 12909B Programmable ROM Writer Interface Kit Installation and
Service Manual (HP 12909-90005)

iii

Preface

HOW TO USE THIS MANUAL

This manual is intended to be used in the following way:

a. Read Section I for the introduction to user microprogramming.

b. Study Section II to learn the structure of the system that is being con­
trolled by microprogramming. Section II explains the relationship between
the Control Section and the other sections of the computer.

c. Become familiar with the reference material in Sections IV, V, and VI so
that when the time comes to use the material, it may be found easily. These
sections describe the microprogramming language, the Micro-assembler,
the Micro Debug Editor, and the 12978A Writable Control Store.

d. Study Section III to learn how to write a microprogram.

iv

Section I
INTRODUCTION TO USER
MICROPROGRAMMING

Page

Conventional Control Section 1-1
Microprogrammed Control Section 1-1
Limitations of HP 21MX Microprogramming 1-1
Summary 1-2

Section II Page
THE MICROPROGRAMMABLE COMPUTER
Relationship Between Sections 2-1
Control Section 2-1

The Control Processor 2-2
The Microprogrammer's Roadmap 2-2
Data Paths 2-3

Main Memory 2-3
I/O Section 2-3
Arithmetic And Logic Section 2-4
Front Panel 2-4

Section III Page
WRITING A MICROPROGRAM
An Example 3-1
Comparison Between Assembly and

Micro-assembly Language Programming 3-1
The Instruction 3-1
Data Source and Data Destination 3-1
Data Modification 3-1
Data Test and Branch 3-3

Micro-instruction Formats 3-3
Statement Characteristics 3-3
Fields .. 3-3
Character Set 3-4
Label Symbol 3-4
Asterisk Comment 3-4
Micro-orders: Fields 2 through 6 3-4
Operands in Field 6 3-4

Coding the Four Word Types 3-4
Coding with Word Type 1 - Common 3-4
Coding with Word Type 2 - Immediate Data 3-5
Coding with Word Type 3 - Conditional Jump 3-5
Coding with Word Type 4 - Unconditional Jump ... 3-6

From Code to Execution Summary 3-6
Access to microprograms in Control Store 3-7

User Function Code in Assembly Language 3-7
Control Store Modules Available to User 3-10
Mapping to a Module Address 3-10

Microprogramming Input and Output Functions 3-11
Synchronizing with the I/O System 3-11
I/O Signal Generation 3-11
Memory Protection in Relation to I/O

Microprogramming 3-12
I/O Control Routine 3-12
I/O Output Routine 3-12
I/O Input Routine 3-12

CONTENTS

Section III (Continued) Page
Interrupt Handling 3-12

Normal User Interrupt Handling Applications 3-13
Micro-orders Affecting Memory Protect 3-13
The Effect of the Dual Channel Port Controller

on Microprograms 3-14
Summary of Special Timing Rules 3-14
Sample Microprograms 3-15
Swap Memory Locations 3-15
Block Move Microprogram 3-16
Input, Sum, and Sum of Squares Microprogram 3-17
Read a Word from a Loader ROM 3-23

Section IV Page
MICROPROGRAMMING LANGUAGE
Word Type 1 - Common 4-1

Op Micro-orders 4-2
Special Micro-orders 4-7
ALU Micro-orders 4-10
Store Micro-orders 4-12
S-bus Micro-orders 4-14

Word Type 2 - Immediate Data 4-16
"IMM" Micro-order 4-16
Modifier Micro-orders (Bits 19 and 18 of the
Micro-instruction) 4-16

Operand Micro-order 4-18
Word Type3 - Conditional Jump 4-18

"JMP" Micro-order 4-19
"CNDX" Micro-order 4-19
Condition Micro-orders 4-19
Jump Sense Micro-order 4-21
Operand Micro-order 4-21

Word Type 4 - Unconditional Jump 4-22
"JMP" and "JSB" Micro-orders 4-22
Jump Modifier Micro-orders 4-22
The Operand Micro-order 4-24

Pseudo Instructions 4-24
EQU .. 4-25
ONES 4-25
SKP .. 4-26
ZEROES 4-26

Section V Page
MICROPROGRAMMING SOFTWARE
Microprogramming Software Summary 5-1
Micro-assembler 5-1

Hardware Environment 5-1
Micro-instruction Source Record 5-1
Micro-assembler Control Record 5-2
Micro-assembler Output
Binary Object Output 5-4
Symbol Table Listing 5-4
Micro-assembly Listing 5-5
Micro-assembler Error Message 5-5
DOS-III Operation of Micro-assembler 5-5
BCS Operation of Micro-assembler 5-7

v

CONTENTS (continued)

Section V (Continued) Page
Micro Debug Editor 5-8

Hardware Environment 5-8
Initialization Program 5-8
Using the Micro Debug Editor 5-9
Input Commands 5-10

LOAD[,X] 5-10
READ, X 5-11

Edit Commands 5-11
SHOW, xxxx[,yyyy] 5-11
MODIFY, xxxx[,yyyy] 5-11

Output Commands 5-11
DUMP[,X] 5-11
WRITE, X 5-11
PREPARE[,X] 5-11
VERIFY[,X] 5-12

Termination Command 5-13
FINISH 5-13

Debug Commands 5-13
BREAK,yyyy 5-13
CHANGE[,m] 5-14

Relocate MDE WCS-resident Microcode 5-14
MOVE,yyy 5-14

MDE Error Messages 5-14
DOS-III Operation of MDE 5-14

WCS I/O Utility Subroutine 5-16

Section VI Page
WRIT ABLE CONTROL STORE
General Information 6-1

Identification 6-1
Interface Kit Contents 6-1
Contents of Interface Kit Options 6-1
Specifications 6-1

ILLUSTRATIONS

Title Page

Four Major Computer Sections 2-1
A Microprogram Implements One Macroprogram

Instruction 2-2
Front Panel Displays and Switches 2-4
Microprogram Segment on the 21MX

Microcoding Form 3-2
Microprogram Implementation Process 3-6
Processing the Instruction Register 3-8
Allocation of Control Store by Modules 3-10

vi

Section VI (Continued) Page
Installation 6-1

Unpacking and Inspection . 6-1
Installation 6-3
Reshipment 6-4

Programming 6-5
Program Example: Loading WCS 6-5
Programming Example: Reading WCS , .. 6-5
Program Example: Loading WCS by Dual Channel
Port Controller 6-5

General Theory of Operation 6-6
WCS Module Identification 6-6
WCS Connection 6-6
WCS Addressing 6-6
WCS Loading Timing Diagram 6-7

Appendix A Page
OBJECT TAPE FORMATS A-1

Appendix B Page
MICROCODING FORM B-1

Appendix C Page
MICRO-ORDER SUMMARY C-1

AppendixD
FUNCTIONAL BLOCK DIAGRAM

AppendixE
BASIC INSTRUCTION SET MICRO-
PROGRAM LISTING

Title

Page
... D-1

Page

....... E-1

Page

Swap Microprogram 3-15
Block Move Microprogram 3-16
Input, Sum, and Sum of Squares Microprogram 3-18
Reading From A Loader ROM 3-23
Word Type 1 Micro-assembler Mnemonic format 4-1
Word Type 1 Binary Format 4-1
Word Type 2 Micro-assembler Mnemonic Format 4-16
Word Type 2 Binary Format 4-16
Word Type 3 Micro-assembler Mnemonic Format 4-18

Title Page

Word Type 3 Binary Format4-18
Word Type 4 Micro-assembler Mnemonic Format 4-22
Word Type 4 Binary Format 4-22
Micro-instruction Card source Record 5-2
Symbol Table 5-5
Micro-assembly Listing 5-5
General Format of Initialization Program 5-8
Test Program Call to Microprogram ... 5-9
Writable Control Store Interface Kit 6-2

Title Page

User Function Code Mapping 3-10
I/O Control Signal Generation Determined by

IR Bits 11-6 3-11
Micro-assembly Error Messages
Micro Debug Editor Commands
Alphabetical List of MDE Error Messages

.... 5-6
. . 5-10

. . . 5-15

ILLUSTRATIONS (continued)

Title

WCS Terminal Board for Selecting Module
Number Position .

Installation of Flat Cable Assembly

Page

. . 6-3
. .. 6-4

" "6-7 WCS Loading Timing Diagram
Format of Standard Object Tape ..
Format of $RCASE Object Tape ..
Microcoding Form ..

. A-1

Functional Block Diagram .

.A-3
. ... B-1

.D-1

TABLES

Title

Interface Kit Contents ..
Additional Material for Interface Options ..
Writable Control Store PCA Specifications.

Page

""" .6-1
. 6-1

. .. 6-3
WCS PCA Jumper Removal on Terminal Board

for Various Module Selections . .. 6-4
.C-2 Summary of User Micro-order ..

vii

INTRODUCTION IUMMt•
TO USER MICROPROGRAMMING I 1 I

The Control Section of a computer contains circuitry
which decodes each machine instruction and then executes
the required sequence of operations. Machine instructions
can be decoded and executed by either a conventional
Control Section or a microprogrammed Control Section.

1-1. CONVENTIONAL CONTROL
SECTION

In a conventional computer Control Section, specific hard­
ware is dedicated to each function performed by the
instruction set. The major advantage of this specially
designed hardware is speed for the instruction set. The
major disadvantage is the loss of flexibility for special
applications or for enhancements. Changes and additions
to hardware components are required to implement
changes and additions to existing capabilities.

This is no problem for a conventional computer if no new
machine instructions are required. The hardware has been
designed to minimize timing for the instruction set. Rarely
however, does a computer manufacturer produce an in­
struction set that fully meets the requirements of most
potential users. Hence, the manufacturer must either focus
his attention on one group of users (specialize) or widen his
scope and generalize the hardware design to meet the
needs of a number of user groups. In the latter case, the
user must modify his discipline to some extent to meet the
limitations of his hardware.

1-2. MICROPROGRAMMED CONTROL
SECTION

In the microprogrammed computer, all distinct logical
functions are separated from the sequence in which those
functions are performed. Hardware redundancy is thus
reduced. The logical functions are defined by a bit pattern
or micro-instruction held in Control Store. Each machine
instruction in Main Memory is performed by a sequence of
micro-instructions in Control Store that defines the logical
functions to be performed. This sequence of micro­
instructions is called a microprogram and is often referred
to as firmware, because it lies somewhere between
hardware and software in origin and permanence.

Software can execute much faster with the application of
microprogramming. This speed is achieved by two factors:
the ratio of Control Store speed over Main Memory and
the relative flexibility of a micro-instruction over normal
machine instructions. The HP 21MX Control Store, where
micro-instructions reside, cycles more than twice as fast as
Main Memory, where normal machine instructions reside.
Control Store words are 24 bits whereas Main Memory
words are 16 bits. In addition, micro-instructions have
access to many internal registers and logical functions
that Main Memory programs cannot use.

For example, the 21MX floating point software
subroutines were identified as being very time consuming.
They were then microcoded by a Hewlett-Packard micro­
programmer and made available in Read Only Memory to
users. Implementation of the floating point firmware
requires no change to user programs. The micro­
programmed floating point instructions run about 20
times faster than the corresponding software subroutines.

As in the floating point microprogram, the user can study
his software, determine the most time consuming
functions performed, and then microprogram those
functions, that is, execute them in Control Store using a
single Main Memory instruction instead of a sequence of
Main Memory instructions. Any software that uses those
microprogrammed functions will execute at a higher
speed.

1-3. LIMITATIONS OF HP 21MX MICRO­
PROGRAMMING

The user should be aware of the following limitations
imposed by HP 21MX microprogramming:

a. Since the origin of a microprogram is specified during
micro-assembly, HP 21MX microprograms are not
relocatable.

b. Since there is only one register available to the micro­
programmer to save subroutine return addresses, the
HP 21MX design allows for no more than one logical
microprogram subroutine level. This limitation can be
circumvented by using other registers or Main
Memory to simulate subroutine nesting.

c. The microprocessor cannot be interrupted. If the
microprogram execution time exceeds the interval
between interrupts (85 µs. is the maximum interval I

OCT 1974 1-1

Introduction To User Microprogramming

allowed by Hewlett-Packard instruction set micro­
programs), the microprogram must test for pending
interrupts or they can be lost. When a pending inter­
rupt is detected, the microprogram must yield control
to the interrupt handler. For a discussion of micro­
program interrupt handling, refer to sections 3-32 and
3-33 in this manual.

1-4. SUMMARY

The advantages of microprogrammed control are:

1-2

21MX

a. The user can use a fully-supported general purpose
computer to aid in the generation and debugging of
extensions to the computer's own instruction set.

b. The user can speed up the overall execution time of his
software by microprogramming its most time con­
suming or repetitious routines.

c. The user can implement enhancements of the
instruction set and special purpose processors
produced by the manufacturer with little impact on his
existing software.

I
1u111.111

,..___T_H E_M_1 c_R_o_P_R_oG_R_A_M_A_B_LE_co_M_P_u_T_E R----1. I 11 1

To successfully implement microprograms, the assembly
language programmer must learn more about the
computer. This section of the manual is the introduction to
the structure of the computer. A functional block diagram
of the microprogrammable machine is provided in
Appendix D. This diagram describes what paths data can
follow. Control commands or micro-instructions spell out
what paths the data does follow and what modifications
and tests are performed in the process.

Functionally, a computer consists of four major sections:

• Control

• l\/Iain·l\/Iemory

• Input and Output

• Arithmetic and Logic

2-1. RELATIONSHIP BETWEEN
SECTIONS

These four sections and the Front Panel are interconnected
by a network of signal paths. Data processing programs

and data are stored in the l\/Iain l\/Iemory. Parameters,
status, commands, and processor results (data) are
exchanged with external devices such as teleprinters,
magnetic tape units, and line printers via the Input and
Output (I/0) section. Add, subtract, and other
mathematical functions and shift, "or", "and", and other
logical functions are performed in the Arithmetic and
Logic section. The Front Panel registers and switches pro­
vide direct operator communication.

Each section executes under the direction of the Control
Section by means of a microprogram. The Control Section
reads the user's program stored in l\/Iain l\/Iemory and
directs the appropriate hardware in each of the other
sections.

Figure 2-1 shows the four major sections of the computer.

2-2. CONTROL SECTION

To write a microprogram an understanding of the Control
Section is required. The Control Section takes an instruc­
tion from l\/Iain l\/Iemory and stores it into the Instruction

THE COMPUTER

MAIN
MEMORY

CONTROL
SECTION

PROGRAMS AND DATA

1/0

EXTERNAL
DEVICES
INTERFACE

Figure 2-1. Four l\/Iajor Computer Sections

ARITHMETIC
AND LOGIC

MATHEMATICAL
AND LOGICAL
FUNCTIONS

2-1

The Microprogrammable Computer

CONTROL SECTION

INSTRUCTION REGISTER

MACROPROGRAM
INSTRUCTION

) MICROPROGRAM

MAIN MEMORY

MACROPROGRAM

MACROPROGRAM
.¥INSTRUCTION

21MX

Figure 2-2. A Microprogram Implements One
Macroprogram Instruction

Register (IR), as shown in figure 2-2. An appropriate
microprogram is executed whose Control Store entry point
address is determined by the IR. View, then, each program
instruction in Main Memory as a jump to a micro­
programmed routine, which resides in Control Store.

The storage area for these microprograms is Control Store
which may be either a Read Only Memory (ROM) or
Writable Control Store (WCS). In this manual, to dis­
tinguish programs in Main Memory from microprograms
in ROM, Main Memory programs are called macropro­
grams. We refer to a Control Section that executes
microprograms from ROM, as a Control Processor.

2-3. THE CONTROL PROCESSOR

A microprogram in the Control Processor is in command of
the computer at all times. A microprogram which is part of
the basic 21MX instruction set microprogram takes pro­
gram instructions from Main Memory and stores them
into the Instruction Register. The upper eight bits of the
Instruction Register determine the microprogram address
within one of the following instruction groups:

2-2

Basic Instruction Set

Extended Instruction Group

Floating Point Instruction Group

User Microprogram Group

Since the user is mainly interested in writing and exe­
cuting his own microprograms, he can regard the Basic
Instruction Set microprogram as a supervisor micro­
program that determines when a user microprogram is
called and then passes control to the user microprogram.

When the Instruction Register holds an octal lOlrrr or
105rrr (see table 3-1 for possible values of rrr), a branch is
made to the user microprogram area of Control Store.

When a microprogram has run to completion, it returns to
location 0 in Control Store to take the next instruction
from Main Memory and store it into the Instruction
Register.

2-4. THE MICROPROGRAMMER'S ROADMAP

Appendix D holds the fundamental diagram of the com­
puter required by the microprogrammer. This functional

\

"""
I

)

21MX

block diagram is the "roadmap" that is used to determine
possible data paths and to determine where logical
decisions can be made. This diagram can be unfolded and
referred to while reading other parts of the manual. Note
that the four sections of the computer, illustrated in
figure 2-1, are shown in more detail in the functional block
diagram.

To read the functional block diagram, begin with a lOlrrr
or 105rrr instruction in the Instruction Register. The rrr
specifies the octal Control Store entry point address
according to the description in section 3-24, Mapping to a
Module Address. This address is moved into the ROM
Address Register (RAR). With a first address specified,
the user microprogram begins execution. The contents of
the Control Store location given in the ROM Address
Register are moved into the ROM Instruction Register
(RIR). The ROM Instruction Register now holds a 24 bit
micro-instruction. The micro-instruction is decoded and
the specified control functions are executed.

Successive micro-instruction addresses are determined in
the following way. The ROM Address Register is incre­
mented at the start of execution of each micro-instruction.
When a jump is executed, the ROM Address Register is
loaded with the jump target address. When a jump to sub­
routine is executed, the ROM Address Register is stored
into the SAVE Register (save return address) and the
jump target address is stored into the ROM Address
Register. When a return from subroutine is executed
(RTN), the SAVE Register contents are transferred into
the ROM Address Register and the SA VE Register is
cleared. Thus at the completion of execution of each micro­
instruction, the ROM Address Register holds the address
of the next micro-instruction.

2-5. DATA PATHS

The central data transfer path is the S-bus. The contents
of all regesters except the following can be directed onto
the S-bus: L-register, RAR, SAVE Register, Extend
Register, and the Overflow Register. The following
registers can receive data from the S-bus:

M-register

T-register

L-register

Counter Register

Display Register

Display Indicator

Instruction Register

The T-bus receives data only from the Rotate/Shifter
(R/S) but can pass data to these registers:

A-register

B-register

Scratch Pad Registers (Sl through S12)

The Microprogrammable Computer

X-register

Y-register

P-register

S-register I

The I/0-bus serves to transfer data to and from external
devices under programmed control.

Note in Appendix D, the functional block diagram, that
the arrows are significant. For example, the B-register
contents can be sent to the S-bus and thence to the
M-register. However, the contents of the B-register cannot
be sent to S12 (Scratch Pad 12) without passing through
the ALU.

2-6. MAIN MEMORY

The M-register is a 15 bit register which holds memory
addresses for reading from or writing into Main Memory.
When storing from the M-register, bit 15 is clear (0). The
T-register or Transfer register holds the data being
transferred to or from memory. Contents of both these
registers are transferred to and from the S-bus. Four
loader ROMs, selectable by Instruction Register bits 15
and 14, each can contain a 64 word Main Memory program
which may be loaded into Main Memory and used to load
Main Memory from a peripheral device or to perform any
other function desired by the user.

Two flags are associated with memory: the A-register
Addressable Flag (AAF) and the B-register Addressable
Flag (BAF). These flags are required to allow the A- and
B-registers to be addressed as locations 0 and 1,
respeetively, of Main Memory.

2-7. 1/0 SECTION

The Central Interrupt Register (CIR) is a 6 bit register
associated with the I/O interrupt circuitry. It is loaded
with the Select Code of the interrupting device under
program control and passed to the S-bus. Whenever the
Central Interrupt Register is loaded, an Interrupt
Acknowledge (IAK) signal is issued to the I/O device.

The I/0-bus transfers data to and from external devices.

Two flags are associated with I/O: the Interrupt Pending
flag and the I/O Skip Condition Met (Main Memory
instructions SFS and SFC) flag.

The Interrupt Enable Register is used to disable or enable
the recognition of all interrupts, except Memory Protect,
Parity, and Power Fail interrupts.

OCT 1974 2-3

The Microprogrammable Computer

2-8. ARITHMETIC AND LOGIC SECTION

This section consists of the Arithmetic and Logic Unit
(ALU), the Rotate/Shifter (R/S), 22 registers and six
flags.

The ALU and R/S are the only units that execute
functional modifications on the data. The ALU receives
input from the S-bus and from the L-register (Latch
Register). Output from the ALU goes to the R/S which
places its output on the T-bus.

Output from the ALU and R/S can be stored in one of the
following registers via the T-bus:

A-register

B-register

Scratch Pad Registers (Sl through S12)

X-register

Y-register

P-register

S-register

Remember that the P-register holds the macroprogram
(Main Memory) address. The P-register must be under
control of the microprogram which must insure that it
contains the proper address after the microprogram is
complete. When the microprogram is complete, the
resulting P-register value is the address of the next macro­
instruction to be executed. Note that the Basic Instruction
Set fetch routine (at Control Store address 0)
automatically increments the P-register after the macro­
instruction is fetched. Thus for one word user
macro-instruction function codes, no further incrementing
of the P-register is necessary in the user microprogram.

The S-register is reserved for internal storage of the Front
Panel switch register. Note that all of these registers can
also be sent along the S-bus for storage into memory,
pasS'age to an external device, or input to the ALU.

21MX

The Extend Register is a one bit register used in shift
operations to link the A- and B-register or to indicate a
"carry" arithmetic result out of the A- or B-registers. The
Overflow is a one-bit register used to indicate an
arithmetic overflow from the ALU. (See 21MX Computer
Series Reference Manual, where Overflow and Extend
Register arithmetic results are fully explained.) These two
registers can also be used as flags.

The 8 bit Counter Register, which passes to and from the
S-bus, is used for repeat instructions, for Loader ROM
addressing, and other general purposes, such as looping in
a microprogram.

There are six flags dedicated to the Arithmetic and Logic
Section. The CPU Flag is a general purpose flag. Four
others signal output results from the ALU and one indi­
cates the last T-bus value. ALU Ones is set when all ones
are output from the ALU. ALU Carry Out is set when an
ALU function produces a "carry" out of bit 15. ALU Bit 0
and ALU Bit 15 flags represent the last value of the
specified bit in the ALU output. T-bus Zero flag is set if all
bits of the T-bus are zero.

2-9. FRONT PANEL

Two registers and two flags are associated with the Front
Panel Section. The Display Register holds the contents of
the register A, B, M, T, P, or S, indicated by the Display
Indicator. The Display Register and the Display Indicator
are displayed on the Front Panel, as illustrated in figure
2-3.

The Run Mode flag indicates that the computer is in a Run
or Halt condition. The Run Enable flag indicates whether
the four position key-operated switch on the front panel is
in Lock or Operate mode.

DISPLAY REGISTER

LOCK

0 0
OPERATE © A OVERFLOW EXTEND

010 0 010 0 010 0 010 0 010 0 0
15 14 13 12 11 10 9 8 6 5 4 2 1 0

--------STANDBY FOUR POSITION EJ EJ EJ EJ EJ EJ EJ EJ EJ EJ EJ BB EJ EJ EJ

2-4 OCT 1974

KEY-OPERATED
SWITCH

0 0 0 0
RUN PRESET INTERRUPT PARITY POWER FAIL/ EJ B SYSTEM BATTERY

HALT IBL

OISPLAY INDICATOR

000000
A B M T P S

-co-

Figure 2-3. Front Panel Displays and Switches

INSTR INC
STEP M

EJB
CLEAR DEC

DISPLAY M

STORE

EJ
DISPLAY

I 1
1ii'MJ1

WRITING A MICROPROGRAM! 111 I

This section introduces the basics of . writing and
debugging a microprogram in the micro-assembly
language.

An assembly language programmer who codes programs
for Main Memory may shun microprogramming because
he regards it as too complex, mysterious, and the exclusive
field of the computer designer.

However, Hewlett-Packard has especially designed the
HP 21MX series computers to enable assembly language
programmers to quickly get to the microcode level of
computer logic so that they can attack the most
time-consuming and least efficient parts of the software.
Execution times can be cut with the proper application of
microcode.

3-1. AN EXAMPLE

Figure 3-1 illustrates a segment of a microprogram. Ten
micro-instructions are shown coded on the 21MX Micro­
coding Form. The second micro-instruction shaded in
figure 3-1 consists of the following four codes:

cov PASS M p

Each of the four codes are called micro-orders:

a. P takes the 16 bits in the P-register and puts them onto
the S-bus.

b. M stores the 16 bits on the S-bus into the M-register
(bit 15 of M-register is always 0).

c. PASS passes the 16 bits on the S-bus through the ALU
without modification.

d. COV clears the Overflow Register.

Note in figure 3-1 that the various micro-orders of the
micro-instruction begin in certain columns of the
micro-coding form. These columns define the location of
fields of the micro-instruction and each field holds a
certain type of micro-order. In the case of the example
micro-instruction, field 3 holds the special operation COV,
field 4 holds the ALU operation PASS, field 5 holds the
store operation M, and field 6 holds the data source P, that·
is, the data placed on the S-bus.

Section IV of this manual gives a full explanation of micro­
instruction formats and micro-orders.

3-2. COMPARISON BETWEEN AS­
SEMBLY AND MICRO-ASSEMBLY
LANGUAGE PROGRAMMING

The assembly language programmer is already familiar
with the basic concepts of programming: the instruction,
data source, data destination, data modification, data test,
and branch. These concepts hold in microprogramming.

3-3. THE INSTRUCTION

The normal macro-instruction in Main Memory is 16 bits
long. Most macro-instructions consist of one operation
command (for example Add to A-register) and a data
source or destination (for example Memory Location
1237). Thus there. are usually two orders in a
macro-instruction [Add to A-register] [Memory location
1237]. This is coded in Assembly Language as ADA
VALU, where VALU is the label of memory location 1237.

The micro-instruction in Control Store is 24 bits long,
which allows more control and flexibility to be coded into
each instruction. A micro-instruction consists of up to five
orders called micro-orders. Section 3-1 gives an example of
four micro-orders coded into a micro-instruction.

There are four micro-instruction formats. Each format
defines a micro-instruction Word Type (Word Type 1,
Word Type 2, etc.) and determines a set of micro-orders
which may be coded into the format. Micro-instruction
Word Types and micro-orders are described in Section IV.

3-4. DATA SOURCE AND DATA DESTINATION

Both assembly and micro-assembly language instructions
specify data source and data destination. In assembly
language one of these is usually a Main Memory address
and the other is a register, as in ADA V ALU where the
A-register is the destination of the data and V ALU is the
source of the data. With microprogramming both data
source and data destination are usually registers, as more
registers are available to the microprogram than to the
assembly language program.

3-5. DATA MODIFICATION

Add, shift, set flag, and logical functions are performed
similarly in both types of programming. In micropro­
gramming, a wider range of basic operations, especially
logical functions, is available. Complex operations, such as
divide, multiply, and byte move, are performed by micro­
programmed subroutines and are available in the Basic
Instruction Set and Extended Instruction Group
microprograms.

3-1

CAch ... 5in: 12.5" x 10.5") HEWLETT-PACKARD 21MX MICROCODING FORM

PROGRAMMER 0 0 E c 0 DE. R DATE b/10/74 MICROPROGRAM Reod Loader ROM]MoouLE PAGE 1 OF 1

LABEL

LABEL

LABEL

LABEL

FIELD 1

L 001~1

OP SPECIAL ALU STORE

"IMM" SPECIAL MODIFIER STORE

"JMP"

"JMP" OR
"JSB"

"CNDX"

JUMP
MODIFIER

CONDITION JUMP SENSE

><><
OPERAND

OPERAND

OPERAND

10 FIELD 2 15 FIELD 3 20 FIELD 4 25 FIELD 5 30 FIELD 6

ICNT PASS L Sl

L4 AND S1 LDR
ICNT PASS L Sl
L4 A~D 51 LDR

ICMT PASS L 51
NMJD 51 LDR

~RTE PASS T I S 1
I

l

' I
I

J
10 15 20 25 30

COMMENTS Word Type 1

COMMENTS Word Type 2

COMMENTS Word Type 3

COMMENTS Word Type 4

40 FIELD 7
I-

C LE AR C NT R (RO~ ALQ DR REG)

PUT SA IN M:CLR OVF = ~O OPER ER[R

p A SS XXXX1Xlxlxx Al/IJAA~XX~ INTO ,51 ~ c NT[~-: x

CN1R=X01 I

FORM XXXXAAA]A'BBBBXXX~ ln1 51 ;CNTR=X~1
C NT R = X 11~

FORM Al~AIPBBBBCCCCXXX~ IN s1;CNTR~x1~

CNTR,.X11 _l
!

FORM AAAIABBBBccccloDDD i(CMPL
i i 1

l~RITE l'NTO ME~ORY 11 -

·-

40

l

i 11 'l

F ORMll

11

1

80

80

¢=ZERO 1or1 =ONE I= ALPHA I 5951-7386
0 = ALPHA 0 2 =TWO r =ALPHA r

21MX

3-6. DAT A TEST AND BRANCH

These operations are quite similar in the two languages.
Many tests occur automatically in the course of trans­
ferring data in a microprogram. A test and branch out of a
line of macro-instructions in normal assembly language,
however, requires two instructions (4.6µs): a test instruc­
tion and a skip instruction.

For example:

SLA skip if LSB of A=O

JMP OUT branch out of code sequence

A test and branch out of a line of micro-instructions
requires only two micro-instructions (.650 µs).

For example:

PASS
JMPCNDXALO

A
OUT

branch out of code se­
quence if bit 0 of A = 0

3-7. MICRO-INSTRUCTION FORMATS

Just as in normal assembly language coding, micro­
assembly language source statements are coded in
mnemonic form to define an instruction. Each source
language statement defines a micro-instruction and
consists of an optional label, five micro-order fields some of
which may be left blank, and a comment field. The label is
used when needed as a reference by other micro-instruction
statements. The micro-orders consist of one to four
mnemonic characters and specify functions to be per­
formed by the Control Section. According to the type of
micro-instruction being defined, one of the micro-orders is
sometimes interpreted as an operand. When an operand is
specified, it defines an integer or an address, depending on
the type of micro-instruction being defined.

3-8. STATEMENT CHARACTERISTICS

Micro-assembly language source statements are divided
into four formats, according to the function the
micro-instruction is to perform. Each format is called a
Word Type.

• Word Type 1 is the most commonly used micro­
instruction format and specifies data transfer and
modification. Word Type 1 source statement fields are:

Label

Op

Special

ALU

Store

S-bus

Comments

Writing A Microprogram

• Word Type 2 is used to send an 8 bit constant
(immediate data) specified in the micro-instruction to a
register. Word Type 2 source statement fields are:

Label

"IMM"

Special

Modifier

Store

Operand

Comments

• Word Type 3 is used to specify a conditional branch in
the microprogram. Word Type 3 source statements
fields are:

Label

"JMP"

"CNDX"

Condition

Jump Sense

Operand

Comments

• Word Type 4 is used to specify an unconditional branch
in the microprogram. Word Type 4 source statement
fields are:

3-9.

Label

"JMP" or "JSB"

Jump Modifier

Operand

Comments

FIELDS

As shown in figure 3-1, the fields are fixed for micro­
assembly language source statements. An entry in any
field (except comments) must begin in the first column of
that field.

• Field 1 begins in column 1 and holds a label that is no
longer than eight characters.

• Field 2 begins in column 10 and contains a micro-order
no longer than four characters. This field can also hold a
Pseudo Instruction (refer to section 4-21 for the
explanation of Pseudo Instruction mnemonic codes).

• Field 3 begins in column 15 and contains a micro-order
no longer than four characters.

• Field 4 begins in column 20 and contains a micro-order
no longer than four characters.

OCT 1974 3-3

Writing A Microprogram

• Field 5 begins in column 25 and contains a micro-order
no longer than four characters.

• Field 6 begins in column 30 and contains a micro-order
no longer than four characters (Word Type 1) or an
operand (Word Types 2, 3, and 4).

• Field 7 begins in column 40 and contains comments
only; comments may begin and be placed anywhere
from column 40 to column 80 (if column 39 contains the
last character of the field 6 operand, field 7 must begin
in column 41).

3-10. CHARACTER SET

The characters that may appear in a source statement are
as follows:

A through Z

0 through 9

. (period)

* (asterisk)

+(plus)

(minus)

(space).

Any ASCII character may appear in the comments field.

A space may only begin a field if no micro-order is
specified in that field.

3-11. LABEL SYMBOL

A label may be one to eight characters consisting of A
through Z, 0 through 9, and a period. The first character
must be a letter.

Each label must be unique within the microprogram.
Names which appear in $EXTERNALS micro-assembler
control input statements (refer to section 5-5) may not be
used as statement labels in the same microprogram.

3-12. ASTERISK COMMENT

An asterisk in column one of · the source statement
indicates that the entire micro-assembler source statement
is a comment.

3-13. MICRO-ORDERS: FIELDS 2 THROUGH 6

The micro-order fields define operations that are to be
performed by the Control Section of the computer. The
micro-orders applicable to. each field are determined by the
source statement Word Type. Section IV describes the
micro-orders that apply to each Word Type and describes
the operations that they specify.

3-4

21MX

3-14. OPERANDS IN FIELD 6

Word Types 2, 3, and 4 contain an operand in field 6.

In Word Type 2, the operand must be either a decimal or
octal number. It cannot be an expression (refer to section
4-10 for definition of a Word type 2 operand).

In Word Types 3 and 4, the operand is a decimal number,
octal number, or a number computed from an expression
which can include a label (refer to section 4-16 for the
definition of a Word Type 3 operand. Refer to section 4-20
for the definition of a Word Type 4 operand).

3-15. CODING THE FOUR WORD. TYPES

The following sections describe how to code source
statements in micro-assembly language. The reader should
be familiar with Section IV of this manual before pro­
ceeding with these descriptions. Section IV describes the
micro-orders that can be used with each Word Type. By
referring to Section IV, the reader can see the options that
are available to him as each Word Type is described. The
reader will also need to refer to the functional block
diagram in Appendix D.

3-16. CODING WITH WORD TYPE 1 - COMMON

This word type specifies data transfer and modification.
The format of Word Type 1 is shown in section 4-1. As an
example, a micro-instruction is developed that executes
the following control functions:

• Store the A-register contents into the M-register

• Perform a memory protect check on the A-register
contents

• Transfer the A-register contents to the ALU, increment
this value in the ALU, and store the result into the
P-register

a. Specify the register that is to be placed on the
S-bus; the A-register is specified in the example:

OP SPEC ALU STORE S-BUS

A

b. Specify the function of the ALU; the increment
function is specified in the example:

OP SPEC ALU STORE S-BUS

INC A

21MX

c. Specify the Op field function; no Op field function is
specified in the example. When no Op function is
required, the standard operation is specified by
either leaving the field blank or inserting NOP into
the field:

OP SPEC ALU STORE S-8US

NOP INC A

d. Specify a Special function, if required; a memory
protect check is specified in the example:

OP SPEC ALU STORE S-8US

NOP MPCK INC A

e. Finally, specify where the resulting data is to be
stored. Two store operations are required in the
example. The unmodified A-register value on the
S-bus must be stored into the M-register and the in­
cremented A-register value on the T-bus must be
stored into the P-register. The micro-order PNM
performs both of these store operations and serves
to illustrate that data stored from the S-bus is
unmodified data and data stored from the T-bus can
be modified by the ALU or R/S:

OP SPEC ALU STORE S-8US

NOP MPCK INC PNM A

PNM is a unique micro-order. No other micro-order
provides the ability to store into two registers in the
same micro-instruction.

3-17. CODING WITH WORD TYPE 2 - IMMEDI­
ATE DATA

This word type sends an 8 bit constant (immediate data)
specified in the micro-instruction to a register. The format
of Word Type 2 is shown in section 4-7. As an example, a
micro-instruction is developed that specifies the following
control function:

• Repeat the micro-instruction following this one ten
times

a. Specify IMM in the Op Code field:

"IMM" SPEC MODIF STORE OPERAND

IMM

Writing A Microprogram

b. Specify the octal or decimal data to be placed on the
S-bus; an octal-12 is specified in the example(366B): I

"IMM" SPEC MODIF STORE OPERAND

IMM 3668

This is necessary because use of the minus sign (-)
is not allowed.

c. Specify one of the four possible data modifiers (refer
to section 4-9); LOW (place the 8 bit operand in the
lower half of the S-bus and ones in the upper half) is
specified in the example:

"IMM" SPEC MODIF STORE OPERAND

IMM LOW 3668

d. Specify where the resulting data is to be stored; the
Counter Register is specified in the example:

"IMM" SPEC MODIF STORE OPERAND

IMM LOW CNTR 3668

e. Specify any special operations required; RPT
(repeat the micro-instruction following this one the
number of times specified in the Counter Register)
is specified in the example:

"IMM" SPEC MODIF STORE OPERAND

IMM RPT LOW CNTR 3668

3-18. CODING WITH WORD TYPE 3 - CONDI­
TIONAL JUMP

This word type specifies a conditional branch in the micro­
program. The format of Word Type 3 is shown in section
4-11. As an example, a micro-instruction is developed that
specifies the following control function:

• Jump to the microprogram address labeled ERR2, if
the last data on the T-bus was not zero.

a. Specify JMP and CNDX in the Op Code and Special
fields:

"JMP" "CNDX" COND JUMP SENSE OPERAND

JMP CNDX

OCT 1974 3-5

I

I

I

I

I

I

Writing A Microprogram

b. Specify the condition that must be tested for the
jump to take place; T-bus equal to 0 is specified in
the example:

"JMP" "CNDX" COND JUMP SENSE OPERAND

JMP CNDX TBZ

c. Specify, if required, RJS (Reverse Jump Sense),
which establishes whether the Condition code
"true" means jump or "false" means jump. The
TBZ used in the example means the test condition is
T-bus equal to 0. If RJS is specified, T-bus not equal
to 0 means perform the jump. If RJS is not specified
(blank in the field), then T-bus equal to 0 means
jump. RJS is specified in the example: ,

"JMP" "CNDX" COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS

d. Specify the target address of the jump. The target
address must have the same most significant three
bits as the address of this micro-instruction. The
address label ERR2 (an address label in the current
page) is specified in the example:

"JMP" "CNDX" COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS ERR2

3-19. CODING WITH WORD TYPE 4 - UNCONDI­
TIONAL JUMP

This word type specifies an unconditional branch in the
microprogram. The format of Word Type 4 is shown in
section 4-17. As an example, a micro-instruction is
developed that specifies the following control function:

• Jump to a microprogram subroutine whose address is
derived by the following: the address labeled CLSUB
supplies all bits of the subroutine address except bits
3-0; bits 3-0 are supplied by the Instruction Register.

a. Specify JSB in the Op code field:

"JMP" OR "JSB" JUMP MODIFIER - - OPERAND

JSB

b. Specify a target address (to be modified) of the
jump anywhere within the Control Store (0-7771);
CLSUB is specified in the example:

3-6 OCT 1974

21MX

"JMP" OR "JSB" JUMP MODIFIER -- - OPERAND

JSB CLSUB

c. Specify any modification to the target address; J30
(replace bits 3 to 0 of the operand with bits 3 to 0 of
the Instruction Register) is specified in the
example:

"JMP" OR "JSB" JUMP MODIFIER OPERAND

JSB J30 CLSUB

3-20. FROM CODE TO EXECUTION
SUMMARY

Figure 3-2 helps to illustrate the process of implementing a
microprogram. Writing a micro-assembly language pro­
gram is essentially the same process as writing an
assembly language program. Micro-instructions are
combined to form a microprogram. The microprogram is
punched onto cards or paper tape and this source is read
by the Micro-assembler. The Micro-assembler produces a
listing and an object tape.

I]-
WRITE

/ a WRITABLE
CONTROL
STORE

I

l PROGRAMMABL.:E ROM
INTEGRATED CIRCUITS

USER PROGRAMS -+ ~ +--
IN MAIN MEMORY ~~¢(¢{W'

1
FJL
ltif!f)I

LISTING

6MASK
TAPES

pROM
WRITER

Figure 3-2. Microprogram Implementation Process

21MX

The object tape is loaded into Writable Control Store
(WCS), executed, and debugged interactively using the
Micro Debug Editor (MDE). When the microprogram is
debugged, the source is corrected and the microprogram is
reassembled. The microprogram can be loaded in two
ways. It can be loaded into WCS by a call to the WCS 1/0
Utility subroutine from the user's Main Memory program
or it can be burned into a programmable Read Only
Memory. In the latter case, the object tape of the
debugged microprogram is loaded into a buffer in Main
Memory, using the Micro Debug Editor, and a set of six
mask tapes are punched. These tapes are used by the HP
12909 pROM Writer to create ("burn") the programmed
Read Only Memory (pROM) chip. The pROM chip is
installed on an HP 12945A User Control Store board that
is set by jumper wires to specify the proper Control Store
module number.

3-21. ACCESS TO MICROPROGRAMS IN
CONTROL STORE

The control processor microprograms are divided into
three groups.

a. The 21MX Instruction Set microprograms including
the Basic Instruction Set, the Extended Instruction
Group, and Floating Point.

b. Hewlett-Packard supplied special microprograms (for
example, the 12977A Fast FORTRAN Processor
option) if installed.

c. User microprograms, if installed.

The control processor reads a 16 bit instruction from Main
Memory into the Instruction Register (IR), decodes it, and
then determines which microprogram is called for by the
instruction. This reading, decoding, and address determi­
nation is performed by microprograms that are an integral
part of the Basic Instruction Set. The Basic Instruction
Set microprogram is in some ways analogous to system
software in a normal Main Memory operating system,
since the Basic Instruction set performs the general
control functions and passes control to the user
microprogram area when the Instruction Register calls for
a user microprogram. This enables the user­
microprogrammer to concentrate effort on his special
application.

For the purposes of decoding and implementing
macro-instructions, the 21MX Instruction Set is divided
into groups according to the general functions they
perform. As shown in figure 3-3, there are five groups that
encompass the 21MX Instruction Set. A sixth group
called the User Instruction Group consists of the
macro-instructions that allow the user to access the micro­
programs which he writes. Most instruction set
enhancements or special microprograms will be accessed
by the general classification of "user" macro-instructions.

Writing A Microprogram

Figure 3-3 summarizes the processing of the Instruction
Register. A microprogram within the Basic Instruction
Set reads an instruction from Main Memory into -the
Instruction Register and determines to which macro­
instruction group (Alter/skip, Memory Reference, etc.)
that instruction belongs. This is accomplished by a ROM
table branch command (SPECIAL micro-order "JTAB")
that uses the upper eight bits of the Instruction Register
to jump, via the fixed ROM Main Look Up Table, to a
Control Store microprogram address, according the value
of those eight bits. Once the general instruction group is
determined, the Instruction Register is further decoded
and the logic implemented by the microprogram designed
to implement that macro-instruction.

For example, if the instruction in the Instruction Register
is in the Extended Arithmetic Unit (EAU) Group, the
EAU Group microprogram address is found in the Main
Look Up Table based on the Op Code of the instruction.
Then the EAU Group microprogram executes the EAU
instruction. Provided in the micro-instruction set are
special jump parameters, such as "JEAU", to branch
within the EAU Group microprogram according to whicl).
member of the group is being processed. Jump parameters
are explained in Section IV of this manual.

3-22. USER FUNCTION CODE IN ASSEMBLY
LANGUAGE

The assembly language program calls a microprogram
using mnemonic codes that are assigned in the assembly
language program. The pseudo op "MIC" is used to assign
the mnemonic code. Refer to the HP Assembler Reference
Manual (HP 24307-90014) for the use of the MIC pseudo
op.

Using the MIC instruction, a binary function code is
assigned to the mnemonic so that whenever the mnemonic
appears, the function code is written into that location of
the assembled program. The number of parameters is also
specified.

The octal function code that calls the user microprogram
is:

105rrr if bit 8 of the IR = 0

lOlrrr or 105rrr if bit 8 of the IR = 1

The value of rrr (bits 8-0) determines the Control Store
module address. rrr is defined in. table 3-1. Bit 11 in the
third digit (5 or 1) is used by micro-instructions which test
data in the Instruction Register, where the function code is
interpreted. For example, see the "CAB" S-bus
micro-order.

3-7

Writing A Microprogram

ANY INSTRUCTION

JTAB VIA
MAIN LOOKUP
TABLE

ALTER/SKIP
GROUP

SHIFT/ROTATE
GROUP

3 2 1 0

MEMORY REFERENCE
GROUP

1/0 GROUP

EAU JUMP
GROUP

EAU DIRECT
GROUP

TO NEXT PAGE

INSTRUCTION REGISTER

Address of first
micro-instruction
for Alter/Skip type
instructions

Address of first
micro-instruction
for Shift/Rotate type
instructions

Address of first
micro-instruction
for Memory Reference
type instructions

1/0 INSTRUCTION

EAU INSTRUCTION

JMP
JEAU

Address of first
micro-instruction for
DLD,DST, or DIV
EAU instructions

Figure 3·3. Processing the Instruction Register (Sheet 1 of 2)

3-8

21MX

INSTRUCTION REGISTER

Address of first
micro-instruction
for particular
1/0 instruction

INSTRUCTION REGISTER

Address of first
micro-instruction
for all but three
EAU instructions
(See EAU Direct Group)

21MX

USER GROUP
MODULES 3-7,14

USER TYPE INSTRUCTION

USER GROUP
MODULES 2,8-13,15

JMP J74
via JUMP
TABLE

USER TYPE INSTRUCTION

15 14 13 12 11 10 9 8 7 6 5 4 3

JMP
J30

JMP
DIRECT

JMP via
JUMP
TABLE

2

Figure 3-3. Processing the Instruction Register (Sheet 2 of 2)

0

Writing A Microprogram

Address of 21 MX
instruction set
microprogram

Address of user
microprogram

Address of 21 MX
instruction set
microprogram

Address of user
microprogram

3-9

Writing A Microprogram

3-23. CONTROL STORE MODULES AVAILABLE
TO USER

The 4096 words of ROM are divided into sixteen 256-word
modules, module 0 through module 15. Modules 0, 1, 14,
and 15 hold the 21MX Instruction Set and are not
available to the user microprogrammer. Modules 12 and 13
are reserved exclusively for user microprograms. Any
other Control Store space, not filled by a micropro­
grammed option, is available to the user micropro­
grammer. Figure 3-4 summarizes the allocation of Control
Store.

MODULE
NO.
0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ALLOCATION

INSTRUCTION SET
(NOT OPTIONAL)

HP

FIRMWARE
OPTIONS

RESERVED FOR USER
MICROPROGRAMS

INSTRUCTION SET
(NOT OPTIONAL)

NOT AVAILABLE
TO USER

•

AVAILABLE TO
USER IF OPTION
NOT INSTALLED

AVAILABLE
TO USER

NOT AVAILABLE
TO USER

Figure 3-4. Allocation of Control Store by Modules

3-24. MAPPING TO A MODULE ADDRESS

Function codes available to the user are listed in table 3-1
together with the module address to which these function
codes map. Some of these user function codes are assigned
to the microprogrammed processors and options produced
by Hewlett-Packard. The following function codes cannot
be used:

105000 through 105137

105740 through 105777

101740 through 101777

3-10 OCT 1974

21MX

If the HP 12977A Fast FORTRAN Processor is installed,
the following function codes are not available to the user:

105140 through 105277

105700 through 105737

101700 through 101737

Note: If the function code maps to a Control
Store module which is not present, the
micro-instruction

JEAU PASS S S

is executed for each non-existent Control
Store location. The ROM Address Regis­
ter is incremented after each execution of
the above micro-instruction until an
installed module is encountered. No
notification is given to the user or system
that a non-existent module is being
executed.

Table 3-1. User Function Code Mapping

Function codes 101rrr8 and 105rrr8 map to the
module address given:

RANGE OF
RANGE OF OCTAL
rrr VALUES MODULE ADDRESSES

,,
140 to 157 3 1400

160 to 177 3 1400 to 1417

200 to 217 4 2000

220 to 237 4 2000 to 2017

105rrrs 240 to 257 5 2400
only 260 to 277 5 2400 to 2417

300 to 317 6 3000

320 to 337 6 3000 to 3017

340 to 357 7 3400

> 360 to 377 7 3400 to 3417

400 to 417 8 4000

420 to 437 8 4000 to 4017

440 to 457 9 4400

460 to 477 9 4400 to 4417

500 to 517 10 5000

520 to 537 10 5000 to 5017
101 rrrs 540 to 557 11 5400

or
105rrrs 560 to 577 11 5400 to 5417

600 to 617 12 6000

620 to 637 12 6000 to 6017

640 to 657 13 6400

660 to 677 13 6400 to 6417

700 to 717 2 1000

..... 720 to 737 2 1000 to 1017

21MX

3-25. MICROPROGRAMMING INPUT
AND OUTPUT FUNCTIONS

Microprogramming Input and Output (1/0) functions
requires more care than any other type of micropro­
gramming, because there are strict timing dependencies.
The microprogram described in section 3-40 is an example
of 1/0 microprogramming.

To maintain integrity of the 1/0 system, every control
signal which goes to the 1/0 devices is generated in a
specific time period (T-period). All micro-instructions,
except those containing READ or WRTE micro-orders,
are executed in one 1/0 T-period, where T = 325 ns. READ
and WRTE each require two 1/0 T-periods. An 1/0 time
cycle consists of five T-periods labelled T2, T3, T4, T5, and
T6. Specific 1/0 activity is restricted to certain T-periods
in order to synchronize setting of data flags, latching of
data, and resolving of multiple interrupt requests.

The microprocessor must synchronize with T2 before
initiating an 1/0 cycle. Thereafter, special consideration
must be given to the order and timing of the 1/0
micro-instructions given.

3-26. SYNCHRONIZING WITH THE 1/0 SYSTEM

To initiate an 1/0 cycle, the IOG micro-order must be
specified. When this occurs, the processor "freezes"
(ceases executing micro-instructions) until time T2. The
next micro-instruction is executed during time T3, the

Writing A Microprogram

next during T4, etc. IOG may occur with any
micro-instruction which does not require some other
Special or Jump Modifier (Field 3) micro-order.

Examples:

a. READ IOG INC PNM P

b. IOG PASS IR S3

3-27. 1/0 SIGNAL GENERATION

When IOG is specified, the 1/0 system generates control
signals to the 1/0 devices starting at the next T2 time and
according to the contents of the Instruction Register (IR).

IR bits 5-0 hold a Select Code (SC) signal (SC = the 1/0
slot number on the backplane or in 1/0 extenders) that
determines which device will respond to the control signal.
IR bits 11-6 determine which 1/0 signals are sent, as
shown in table 3-2. The IR must be loaded prior to or
during occurrence of the IOG to insure that the correct
signals are generated to the proper SC. If Memory Protect I
is enabled, the IR must be loaded prior to issuing IOG (see
section 3.34).

Select Codes 0, 1, 2, 3, 4, and 5 have special functions con­
cerning, respectively, the interrupt system, the Front
Panel, the Dual Channel Port Controller (DCPC), Power
Fail, and Memory Protect/parity. The "Interrupt and
Control summary" table in the Appendix of the HP 21MX
Computer Series Reference manual (HP 02108-90002)
holds a description of the effect of these select codes (S.C.
in the table).

Table 3-2. 1/0 Control Signal Generation Determined by IR Bits 11-6

IR*
11 10 9 8 7 6 1/0 SIGNAL TIME GENERAL USE

x x x 0 0 0 none T3 Turns off the Run Flag on the CPU.

x x x 0 0 1 STF T3 Set device flag.

x x 1 x x x CLF T4 Clear device flag.

x x x 0 1 0 SFC T3-T5 SKPF condition is true if and only if the device
flag is clear.

x x x 0 1 1 SFS T3-T5 SKPF condition is true if and only if the device
flag is set.

- - - - - - IOI T4-T5 Buffer the input data latch on the device onto the
1/0-bus; this command must be stated explicitly in
micro-code during these times.

x x x 1 1 0 100 T3-T4 Store the 1/0-bus into the input data latch on the
device.

0 x x 1 1 1 STC T4 Set device control flag.

1 x x 1 1 1 CLC T4 Clear device control flag.

*Bits marked with x are not significant for the 1/0 signal specified.

OCT 1974 3-11

Writing A Microprogram

3-28. MEMORY PROTECTION IN RELATION TO
I/O MICROPROGRAMMING

When the Instruction Register is loaded, the Memory
Protect (MP) feature (12892A) records information on the
instruction (from Main Memory) being stored in the IR.
When an IOG micro-order is specified, MP checks the
select code. If it is not equal to 1 (Front Panel) and MP
control is set, MP will inhibit any I/O signals and prevent
the CPU from altering memory or the P- or S-registers,

I and will generate an interrupt request. The micropro­
grammer cannot prevent this function, so the software
operating system maintains security of I/O programming
with MP in the microprogramming environment.

3-29. I/O CONTROL ROUTINE

This type of I/O function requires no data transfer. The IR
must specify:

STF
CLF
SFS
SFC
STC
CLC

I HLT

Note that CLF can be generated in conjunction with any
other signal by merely letting bit 9 of the IR equal one. To
simulate a CLF macro-instruction, specify CLF with STF.
Once IOG has been given in an I/O control routine, there
are no limitations in using micro-instructions because I/O
signals are generated automatically.

For SFS and SFC, the state of the flag on the device may
be tested with a "JMP CNDX SKPF" instruction. SKPF
is true only when SFS is being executed and the flag is set,
or when SFC is being executed and the flag is clear. The
SKPF test should occur during T4 or T5 of a SFS or SFC
routine. Any operation desired may be implemented as a
result of this test. To cause a macroprogram skip, simply
increment the P-register contents.

3-30. I/O OUTPUT ROUTINE

This routine is characterized by generation of the IOO
micro-order. The IOO sends data from the I/0-bus into the
input data latch on the device. The microprogram must
put the proper data on the S-bus, then direct it onto the
I/0-bus. The detailed timing requirements are:

a. During T3, the S-bus must be driven by the register
containing the output data to prepare for the transfer
to the I/O bus.

b. During T4 and T5, the S-bus must be driven by the
same register and IOO must appear in the Store field.
This insures valid data on the I/O bus.

3-12 OCT 1974

21MX

For example, the sequence for a standard OT A macro·
instruction is:

(Time T2)

(Time T3)

(TimeT4)

(Time T5)

IOG

PASS

PASS

RTN PASS

3-31. I/O INPUT ROUTINE

100

IOO

CAB

CAB

CAB

This routine is characterized by use of IOI in the S-bus
field. IOI is used in the I/O cycle during T4 or T5 to input
data from the I/O device PCA onto the I/0-bus and then
onto the S-bus. Any normal Word Type 1 instruction may
be used to store the data input from the S-bus.

For example:

(Time T2) IOG

(Time T3) NOP

(Time T4) NOP

(Time T5) RTN PASS .CAB IOI

It can be seen that during some parts of some I/O
routines, there are instruction times which are unused.
Caution is required when using these times. Do not use
micro-instructions which may cause the processor to freeze
(listed in section 3-36), until all I/O related code has been
executed for that I/O cycle. In the above example, if the
T3 and T4 NOPs were replaced by READ and T (S-bus
field) micro-orders, the CPU would freeze in the middle of
T4 and IOI would not be executed until T6 - too late to
correctly handle the data transfer. On the other hand,
during a control type routine which is not performing an
SFS or SFC, many kinds of micro-instructions can be
performed after the IOG. These include READ or even
another IOG, since the I/O system requires no further
assist1mce from the microprocessor.

3-32. INTERRUPT HANDLING

The presence of a pending interrupt or halt request may be
detected by microcode in two ways:

a. Performing a test with JMP CNDX on INT, NHOI, or
RUN.

b. Attempting to JMP or RTN to location 0 in Control
Store; a pending interrupt or halt will cause Control
Store address 4 to be loaded into the RAR.

The interrupt device select code (SC) can be read onto the
S-bus (high order bits = 0) by specifying CIR in the S-bus
field. This freezes the CPU until T6 and then sends IAK to
the interrupting device. In the Basic Instruction Set
microprogram, the select code from the CIR is loaded into
the M -register and the Main Memory instruction at that
address is executed. Note that the P-register is not altered
during this process.

I

21MX

3-33. NORMAL USER INTERRUPT HANDLING
APPLICATIONS

If a long microprogram is entered, the program itself has
complete control over when it is terminated or suspended
for a detected interrupt. It is not desirable to hold off
interrupts very long. Magnetic tape, for example, might
request an interrupt every 27 microseconds, if not trans­
ferring data by way of the Dual Channel Port Controller.

It is up to the microprogrammer to decide how long to wait
before testing for an interrupt. When an interrupt is
detected, a jump should be made to a routine to save
whatever is necessary to allow the microprogram to
continue after the interrupt is serviced or to provide for
complete restart of the microprogram. The P-register must
be reset to point to the Main Memory address of the
macro-instruction interrupted. If parameters are saved, a
test must be made at the beginning of the microprogram
to determine if it was interrupted or if it executes from the
beginning.

When the interrupt servicing is started, a JMP or RTN is
made to Control Store location 4 where the Basic Set
microcode takes the trap cell address from the Central
Interrupt Register and then gives control to Main Memory
programs which service the interrupt. After the interrupt
routine is complete, the interrupted microprogram is
restarted (assuming the P-register was reset upon
interrupt detection).

3-34. MICRO-ORDERS AFFECTING
MEMORY PROTECT

To fully use the level of protection afforded by the 12892A
Memory Protect feature, some conventions must be
followed in microprogramming to assure proper communi­
cation between the processor and the Memory Protect
feature (MP).

Note that MP can only be enabled and disabled by the I/O
system. There are no microcode commands for it. Refer to
the Memory Protect Interrupt section in the HP 21MX
Reference Manual for further discussion. The micro-orders
which communicate with MP are listed below together
with a description of their rules and functions:

a. FTCH (Special field). This reads the M-register into
the MP Violation register, clears out the MP Violation
flag and resets the Indirect counter. It should be given
when the address of the current instruction from Main
Memory is being read (READ micro-order) or
immediately after. FTCH occurs in the following places
in the Basic Instruction Set Microprogram:

1. At location 0, the Fetch routine.

2. At the location MGOOD+ 1 in the Halt routine to
reset the MP Violation flag and to enable alteration
of P-register, S-register, and Main Memory from
the Front Panel.

Writing A Microprogram

3. At location SCAN+ 12 as part of the single instruc­
tion fetch routine, where it serves the same purpose
as at location 0.

b. IR (Store field). Whenever the IR is specified in the
Store field, MP records whether the instruction is a
Halt, JMP, or neither, and whether or not IR bits 5-0
equal 01 or not. The IR must be loaded prior to
initiating an I/O cycle with IOG to insure that the
signal decoding logic will take effect.

c. INCI (Special field). This micro-order should be used
whenever another level of indirect addressing is
detected by a microprogram. After 3 counts of the
Indirect Counter, an ION (enable interrupts) micro­
order is effectively performed by the Memory Protect
option. A microprogrammed IOFF micro-order will
have no effect after this occurs until after the next
FTCH is executed.

d. MPCK (Special field). There is no need to use this
memory protect check micro-order if the Memory Pro­
tect feature (HP 12892A) is not installed. This micro­
order should be used to insure that a microprogram will
not alter protected memory. When this micro-order is
used and a MP violation is detected:

1. All future READ instructions put invalid data into
the T-register.

2. No WRTE instructions are performed.

3. All attempts to alter the P- or S-registers fail.

4. All I/O signals from the processor are inhibited
until after the next FTCH or CIR is executed.

e. IOG (Special and Jump Modifier). If Memory Protect
has been enabled, this micro-order will set the Memory
Protect Violation flag if the select code (IR bits 5-0) is
not equal to one. If a MP violation is detected, the
actions 1 through 4 described in d. MPCK take place.

f. CIR (S-bus field). This micro-order causes a freeze until
T6 and then issues an IAK to acknowledge the
granting of an interrupt to the requesting device. If the
select code is 5, the Parity indicator on the Front Panel
is cleared and the Memory Protect Violation flag is
cleared. Whenever CIR occurs, special logic on the
Memory Protect PCA determines whether or not the
MP should be disabled (Clear the Control bit). This
determination is made six micro-instructions after the
last CIR:

1. MP is not disabled if an I/O instruction (IOG) is
executed that is not a halt.

2. MP is disabled if no I/O instruction (IOG) is exe­
cuted or a halt is executed.

To re-enable Memory Protect, an STC 5 is required.

3-13

Writing A Microprogram

3-35. THE EFFECT OF THE DUAL CHAN­
NEL PORT CONTROLLER ON
MICROPROGRAMS

The Dual Channel Port Controller (optional hardware)
steals full 1/0 cycles to perform direct transfers between
external devices and Main Memory. This process is
essentially transparent to the microprogram. The Dual
Channel Port Controller (DCPC) is a hardware function
that does not employ microcode. If the microprogram
interferes with a DCPC cycle, the Control Processor
freezes until DCPC completes its cycle. If DCPC takes a
sequence of consecutive 1/0 cycles for input transfers, any
attempted IOG, READ, or WRTE micro-orders will freeze
the processor until DCPC is finished. If DCPC takes a
sequence of consecutive 1/0 cycles for output transfers,
the Memory Reference Group, the Alter/skip Group, and
Shift Rotate Group macro-instructions can still proceed at
between 40% and 60% normal execution rate; IOG will
still freeze the Control Processor.

If DCPC takes as much as 50% of all I/O cycles, the
overall efficiency of the basic instruction set execution is
60% to 70% for input or output transfers. Non-main

I Memory micro-instruction execution is only frozen 20%
of each DCPC cycle. Thus arithmetic and logical micro­
instructions execute at 80% efficiency, when DCPC takes
every 1/0 cycle.

I

3-36. SUMMARY OF SPECIAL TIMING
RULES

a. Always load the M·register before specifying WRTE in
the OP micro-order field.

b. Load the M -register before or during micro-instructions
containing READ in the OP field. Do not modify
M -register until two micro-instructions after the READ.

c. Do not alter the T-register unless initiating a WRTE,
since the T-register is internal to the Main Memory
system and is used by DCPC and the CPU. The
T-register is not intended to be a general purpose
register, but to be used in referencing Main Memory.

d. Load the T-register with data to be written in the same
instruc;tion as WRTE appears, or DCPC could alter it
before WRTE is executed.

e. The T-register must be placed on the S-bus no later
than two micro-instructions after a READ is specified
or the T-register will be disabled by the Memory
system.

f. When an 1/0 cycle (using IOG) is in progress, a READ
or WRTE must not be initiated before T6 in the cycle
under either of the following conditions:

1. An input or output routine (refer to sections 3-29
and 3-30) is in progress.

2. A skip flag test of the I/O system is taking place.

3-14 OCT 1974

21MX

g. Do not specify a READ or WRTE micro-order in the
same micro-instruction that is transferring data from
the T-register (T or TAB micro-order in the S-bus
field). The reason is that if a freeze occurs as a result of
such a READ or WRTE micro-order (see i. below) the
data in the T·register will be invalid after the freeze.

For example, a sequence of micro-instructions similar I
to the following must not take place:

READ

READ

INC

PASS

INC

PNM

S4

M

p

L

TAB

h. Do not start an 1/0 cycle (using IOG) before data is
transferred from the T-register following a READ
operation. The reason is that if the IOG results in a
freeze (see i. below), the data in the T-register will be
invalid.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ INC PNM P

IOG PASS S4 TAB

i. The following conditions always cause a micro­
processor freeze:

1. The CIR micro-order is in the S-bus field and either
the 1/0 cycle time is not T6 or the Dual Channel
Port Controller is stealing a full 1/0 cycle.

2. The IOG micro-order is in the Special field and
either the 1/0 cycle time is not T2 or the Dual
Channel Port Controller is stealing a full 1/0 cycle.

3. A T or TAB micro-order is in the S-bus field and a
READ or WRTE micro-order memory cycle is still
in progress.

4. A READ or WRTE micro-order is in the Op field
and one of the following conditions is true:

(a) The semi-conductor Main Memory is being
refreshed (two micro-instruction cycles are
required every 32.5 microseconds for this
purpose).

(b) The Dual Channel Port Controller is stealing an
1/0 cycle and has not completed its memory I
reference.

(c) A READ or WRTE memory cycle is still in
progress.

j. Load the IR before issuing IOG unless there is no I
chance that Memory Protect is enabled (no Memor='
Protect on 2105).

21MX

3-37. SAMPLE MICROPROGRAMS

While reading the sample microprograms, the reader may
find it useful to refer to the fold out functional block
diagram in Appendix D. This diagram and the micro-order
definitions in Section IV are the two basic sets of
information used by the programmer in writing a
microprogram.

3-38. SWAP MEMORY LOCATIONS

The sample microprogram illustrated in figure 3-5 swaps
the contents of two Main Memory locations that are
pointed to by the A- and B-registers (no indirect
addresses).

Micro-instruction Commentary

READ INC M A

a. Put the address in the A-register onto the S-bus.

b. Store the S-bus into the M-register.

c. Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

d. Read the location in Main Memory pointed to by the
M-register (this requires 2 micro-instruction cycles).

'~'-----------------M----PC_K _____ P_A_s_s ________________ M ____________ ---1

a. Put the M-register onto the S-bus.

b. Pass the S-bus through the ALU (output not used).

c. Since READ requires two cycles, an instruction cycle
is available before data is available from memory. And
since the M-register holds the address of the location
that will eventually be written into, this cycle is used
for the memory protect check.

Op Code Special ALU Store S-bus

SORIGIH•20008
SSYNTAB

READ IHC " A
NPCK PASS " PASS St TAB

READ IHC " 8
NPCK PASS " PASS S2 TAB

llRTE PASS TAB St
IHC " A

llRTE RTN PASS TAB S2
SEND

Writing A Microprogram

PASS SI TAB

a. The read is complete and data from the memory
location is in the T-register unless the AAF or BAF
Flag is set. If AAF is set, the data is in the A-register.
If BAF is set, the data is in the B-register.

b. Put memory data on the S-bus.

c. Pass S-bus through the ALU and R/S to the T-bus.

d. Store data on T-bus into Scratch Pad Register I (SI).

READ INC M B

a. Put the address in the B-register onto the S-bus.

b. Store S-bus into the M-register.

c. Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

d. Read the Main Memory location pointed to by the
M-register.

MPCK PASS M

a. Put M-register (memory address) onto the S-bus.

b. Pass the S-bus data through the ALU.

c. Test the address for a Memory Protect violation.

PASS S2 TAB

a. Put memory data (T-, A-, or B-register contents) onto
the S-bus.

Comment

READ WORD POINTED TO BY A
CHECK ADDRESS
STORE DATA IN Sl
READ WORD POINTED TO BY B
CHECK ADDRESS
STORE DATA IN S2
BEGIH WRITE
LOAD R WITH A
WRITE AMO RETURN

Figure 3-5. Swap Microprogram

OCT 1974 3-15

Writing A Microprogram

b. Pass S-bus through the ALU and R/S to the T-bus.

c. Store data on the T-bus into Scratch Pad Register 2
(S2).

WRTE PASS TAB Sl

a. The contents of the first memory location is in Sl. Put
Sl onto the S-bus.

b. Store the S-bus into T-register (or A- or B-register if
AAF or BAF, respectively are set).

c. Pass S-bus data through the ALU.

d. Write T-register contents into Main Memory at
address pointed to by the M-register. Note that the
M-register still holds the second memory location
address. It was loaded during last read operation.

INC M A

a. The A-register holds the first memory location. Put the
A-register contents onto the S-bus.

b. Store the S-bus into the M-register.

c. Pass S-bus data through the ALU and increment data
enabling the A- or B-register addressable test.

Op Coda Spacial ALU Stora S-bus

$0RIGIN•2000
$SYMTAB
SFIL.E•FILMOV

JMP MOVE
~OVE P•SS S1 A

JMP CNOX TBZ OUT
* kf AD INC M p

PASS S2 TAB
•
LOOP l<EAD lNC M B

PA6S S3 TAB
kEA[I /INC M S2

INC S2 S2
WRTE PASS T 53

INC B B
INC 81 S1

JMP CNOX TBZ RJS LOOP
•
OUl RTN lNC p p
$f NO

21MX

WRTE RTN PASS TAB S2

a. The contents of the second memory location is in S2.
Put S2 onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register,
if AAF or BAF, respectively, are set).

c. Pass S-bus data through the ALU.

d. Write the T-register contents into Main Memory at the
address pointed to by the M-register.

e. Exit (RTN micro-order).

3-39. BLOCK MOVE MICROPROGRAM

The sample program illustrated in figure 3-6 moves a
group of words in Main Memory from one location to
another. When the microprogram receives control, it is
assumed that:

• The negative value of the number of words to be moved
is in the A-register in two's complement form.

• The FROM address is in the B-register.

• The TO address is in the Main Memory location pointed
to by the P-register and cannot be indirect.

Comment

wORD COUNT • 0 t
l,F ZERO., THEN GO TO "OUT"

GET "TO" ADDRESS
PUT IT IN S2

READ A DATA WORD
STORE THE WORD IN 8~ Rf G
GET '"TO" ADDRESS
INCREMENT "TO" ADDRESS
WRITE A DATA WORD TO MEMORY
INCREMENT "FROM" ADDRESS
lNCREMENT WORD COUNT
GO TO "LOOP" IF WORD
COUNT lS NOT ZERO
INCREMENT THE P REG AND IUT

Figtire 3-6. Block Move Microprogram

3-16

21MX

The HP assembly language calling sequence is as follows:

LDA - (number-of-words)

LDB FROM-address

OCT 105200

DEF TO-address

Note: This microprogram is a translation of the
Block Move microprogram shown in
Section VI of the HP 2100 Computer
Microprogramming Software manual (HP
02100-90133). Thus it can be used to com­
pare HP 2100 microprogramming to HP
21MX microprogramming.

Micro-instruction Commentary

MOVE
JMP

PASS Sl
CNDX TBZ

A
OUT

Store the contents of the A-register in Scratch Pad
Register 1. If the contents of the A-register are zero, then
go to OUT address and return to the calling program.

READ. INC M
PASS S2

p
TAB

Get the TO address and store it in Scratch Pad Register 2.
The TO address cannot be indirect.

LOOP READ INC M
PASS S3

B
TAB

Read a data word from the Main Memory location pointed
to by the FROM address and store the data word in
Scratch Pad Register 3. Note that a Control Processor
freeze will occur.

INC M
INC S2

WRTE PASS T

S2
S2
S3

Write the data (in Scratch Pad Register 3) into memory.
Increment TO address pointer.

JMP

INC
INC

CNDX TBZ

B B
Sl Sl
RJS LOOP

Increment the FROM address pointer. Increment the word
count. If the word cound is not zero, go to LOOP.

OUT RTN INC p p

Increment the P-register beyond the word containing the
TO address and exit.

Writing A Microprogram

3-40. INPUT, SUM, AND SUM OF
SQUARES MICROPROGRAM

The sample microprogram illustrated in figure 3-7 loads a
16 bit word from a device specified by its select code
"SC". If the word is equal to 177777 (end of transmission
word), the microprogram is finished and this is signalled
by executing the next instruction in Main Memory; other­
wise:

a. The word is stored in memory location "DATA"
indexed by the X-register.

b. The word is added to a running total kept in memory
location "SUM"

c. The word is squared and added to a running total of
squares in memory location "SQUAR".

d. Another input is initiated from the specified device
(STC SC,C).

e. The next instruction in Main Memory is skipped to
indicate that 177777 was not input from the specified
device.

Conditions:

a. All numbers are 16 bit positive integers.

b. If SUM exceeds 216 -1, the Extend Register is set.

c. If SQUAR exceeds 216-1, the Overflow Register is set.

d. H both SUM and SQUAR are less than 216 -1, the
Extend and Overflow Registers are clear.

e. Memory protect check is performed on addresses used
for a write into Main Memory.

Microprogram storage:

The microprogram resides in module 12 starting at
octal address 6017.

Microprogram initiation:

Entry into the microprogram is caused by the exe­
cution of the following 5 words in Main Memory:

105637 USER CALL TO CONTROL STORE
ADDRESS 6017

OOOOnn nn = SELECT CODE "SC"

Oaaaaa "DATA" STORAGE ADDRESS (a table
holding all input data)

Obbbbb "SUM" STORAGE ADDRESS

CCC CCC "SQUAR" STORAGE ADDRESS

(endoftransmissionreturn) SUMMING TERMI-
NATED BY EOT

(normal return) SUMMING CONTINUES

3-17

Writing A Microprogram

Op Code Special ALU Store S-bus

SORIGTN•6017B
READ
IMM

READ
IMM

L1

L4

INC PNM P
CMLO S! t 378
PASS L TAB
lOR Stl St
INC PNM P
CMLO St 3038
PASS SJ TAB
PASS IR Slt

IOG IOR St0 St

Comments

01/REAO SC, INC P, SET UP TAB LOGIC
11J2/11J00511Jl1J INTO St-USE FOR INP COM LATER
03/STORE SC INTO L
04/CREATE INPUT ~OM 0005NN IN 511
05/READ DATA ADR 1 INCR P,SET UP TAB LOGIC
06/001700 INTO 81 FOR SET CONT COM LATER
07/STORE DATA ADR INTO SJ
08/LOAD IR WITH INPUT COMMAND
091

21MX

FREEZE TILL T2,START 1/0,
PASS L S3
ADD S3 X

CREATE SET CONTROL COMMAND 0017NN IN St0
10/TJ STORE DATA ADDRESS INTO L
11/T4 ADD INDEX TO L, STR INTO 53

*
ASG PASS A IOI

JMP
READ

READ
IMM

ENVE

WRTE

WRTE
RE.AD

Rf.AD

CNPX ONES
!NC
INC
INC

LOW
PASS
ADD

MPCK PASS
PASS

COV PASS
IOG PASS
MPCK INC

PASS
INC
INC
INC

RPT PASS
MPV Rt ADO

PNM
x
M

OUT
p

x
TAB

CNTR ~B
L TAB
57 A

M
T.AB S7
IR S10
L A
M SJ
TAB A
PNM P
M TAB
p p
B TAB
B B

12/T5 GET DEV WRD FROM 110 BUS, ST INTO A
12,~/CLEAR E CIR6•1)
ll/T6 JUMP OUT TF ALL ONES IN DEV WORD
14/READ SUM ADR. INCR P1 SETUP TAB LOGIC
15/INCR INDEX
16/ STORE SUM ADR IN M, PREPARE TAB LOGIC
t6,5/ READ SUM
17/CLEAR CNTR To PREPARE FOR REPEAT
18/STORE SUM INTO L
19/ADD DEVICE WORD TO T, ENBL O&E,ST INS7
20/MEMORY PROTECT TEST ON SUM ADDRESS
21/WRITE TOTAL INTO SUM ADDRESS
22/CL OV,PUT SET CNTRLwCL FLG COM INTO IR
23/FRZ TILL T2, ST A INTO L, START I/0
24/TJ:SJCDATA AOR&X) ST INTO M,MEM PROT
25/T4:WRITE DEV WORO INTO CDATA&X
26/T5,T6:REAO AOR OF SQUAR, SETUP TAB LOG
26,5/ PREPARE TAB LOGIC
27/lNCR P•NORMAL RETURN, REAO SQUARE
28/STORE SQUAR INTO B, SETUP REPEAT
29/

•29/ CA TJMfS Ll&B,
JMP CNDX Tl3Z

STORE RESULT
NO,OVER

INTO B1 A

NO,OVER

OUT

iEND

sov
MPCK

WRTE RTN

RTN

PASS
PASS TAB
INC P
INC P

M
4
p
p

30/JMP IF MPV RESULTED IN 8•0 CMSB IN 8)
Jl/SET OV BITaRESULT GR TH ACCEPTABLE
32/MEM PROT CK ON SQUAR ADDRESS
33/WRITE RESULT INTO SQUAR LOCATION, RTN
34/TNCREMENT P
35/INCR P TO INOICATE EOT RETURN, RETURN

Figure 3-7. Input, Sum, and Sum of Squares Microprogram

The above instruction is coded in assembly language by
defining the mnemonic SSI, function code, and four
parameters:

a. Use the MIC pseudo op in the assembler to define the
five word instruction by its mnemonic and number of
parameters: MIC SSl,105637B,4

b. Code the following when calling the SSI microprogram:

3-18

SSI SC DATA SUM SQUAR
(endoftransmissionreturn) SUMMING TERMI-

NATED BY EOT

(normal return) SUMMING CONTINUES

DAT A AREA ***************

SC EQU nnB SELECT CODE OF DEVICE

DATA BSS mm BUFFER ARE TO HOLD ALL
INPUT DATA

SUM OCTO

SQUAR OCTO

"SUM" STORAGE LOCATION

"SQUAR" STORAGE LO­
CATION

21MX

Micro-instruction Commentary:

READ INC PNM p]
a. Upon entry into the microprogram, P is the address in

Main Memory that follows the instruction that calls
microprogram. Hence P is the address of the address
containing the select code.

b. Place the P-register contents on the S-bus. Store the
S-bus into the M-register. Pass the S-bus contents
through the ALU incrementing the data in the ALU
and store the result (from the T-bus) into the
P-register. The address on the T-bus is tested by the T­
or-A-or-B logic for use by the TAB micro-order.

c. Read the contents of the location in Main Memory
specified by the address in the M-register. The read
requires two cycles.

IMM Ll CMLO Sl 137B

a. While the read is still in progress; a memory cycle is
used to construct an input command to be used later.

b. Place an octal 137 in bits 7-0 of the S-bus. Bits 15-8 are
automatically filled with ones.

c. Pass the S-bus through the ALU complementing the
data. Shift the data left one bit as it passes through the
Rotate/Shifter inserting a zero into bit 0.

d. Store the T-bus result into Scratch Pad Register 1. The
result in Sl = 000500.

PASS L TAB

a. Store the result of the read from Main Memory (con­
tents of T- or A- or B-register) onto the S-bus (the
select code nn was read).

b. Store the S-bus into the L-register and pass the S-bus
contents through the ALU (the PASS is effectively a
non-operation since the T-bus data is not stored).

IOR Sll Sl

a. Place Scratch Pad Register 1 on the S-bus. Perform an
"inclusive or" of L-register and S-bus in the ALU and
store the result in Sll.

b. Sl = 00050 } IOR = 0005nn in Sll
L = nn (select code)

The result in Sll is the complete input command for
select code = nn.

Writing A Microprogram

READ INC PNM p

a. The P-register now points to the DATA address.

b. Place the P-register on the S-bus. Store the S-bus into
the M-register. Increment the S-bus contents as it
passes through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

c. Read the contents of the address in Main Memory
specified by the M-register (read the DATA address).

IMM L4 CMLO Sl 303B

a. While the read is still in progress, the memory cycle is
used to construct a set control-clear flag 1/0 command.

b. Place an octal 303 in bits 7-0 of the S-bus. Bits 15-8 are
automatically filled with ones.

c. Pass the S-bus through the ALU complementing the
data. Rotate the data left four bits as it passes through
the Rotate/Shifter.

d. Store the T-bus result into Scratch Pad Register 1. The
result in Sl = 001700.

PASS S3 TAB

a. Place the result of the read from Main Memory (con­
tents of T- or A- or B-register) onto the S-bus (the
DATA address was read).

b. Pass the S-bus data through the ALU and store it into
Scratch Pad Register 3.

PASS IR Sll

a. Place Scratch Pad Register 11 on the S-bus and store
the S-bus into the Instruction Register (IR). IR now
holds the input command 0005nn, where nn is the
device select code.

IOG IOR SlO Sl

a. IOG commands the microprocessor to freeze until time
T2. At time T2 the input command in the Instruction
Register is executed (transmitted to the device).

b. The L-register still holds the select code of device.

c. Place Scratch Pad Register 1 (holding 001700) on the
S-bus. Perform an "inclusive or" with the L-register in
the ALU. Store the result (0017nn) into Scratch Pad
Register 10.

3-19

Writing A Microprogram

d. The net result in SlO is the completed set control -
clear flag command.

PASS L S3

a. Place Scratch Pad Register 3 (holding DAT A address)
onto the S-bus and then store S-bus into the L-register.

b. The PASS is essentially a non-operation.

ADD S3 x

a. Place the X-register (index to the number of words so
far input from the device) onto the S-bus.

b. Add the S-bus to the L-register (now containing DATA
address).

c. Store the result in Scratch Pad Register 3.

ASG PASS A IOI

a. The time is T5. Take the word input from the Device
from the 1/0-bus and place it on the S-bus.

b. Pass the S-bus data through the ALU and store it into
the A-register.

c. The IR = 0005nn, where nn is the device select code.
Perform an Alter/Skip Group instruction (ASG)
according to bits 7 and 6 in the IR. Since bits 7 and
6 = 01, perform a CLE (Clear Extend register bit).

JMP CNDX ONES OUT

If the word last passed through the ALU (see previous
micro-instruction) was all ones (end of transmission), jump
to the location with the label OUT.

READ INC PNM p

a. The P-register now points to the SUM address.

b. Place the P-register onto the S-bus. Store the S-bus
into the M-register. Increment the S-bus contents as
they pass through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro·-order.

c. Read the contents of the address in Main Memory
specified by the M-register (read the SUM address).

INC x x

Increment the X-register, which is an index to the number
of words input from the device.

3-20

21MX

INC M TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
address of the SUM was read).

b. Store the data on the S-bus into the M-register.

c. Increment the data in the ALU and place it on the
T-bus so that the data is tested by the T-or-A-or-B
logic.

READ

Read the contents of the address in Main Memory
specified by the M-register (the present SUM value).

IMM LOW CNTR OB

a. While the read is still in progress, the memory cycle is
used to dear the Counter Register in preparation for
the RPT used later in the microprogram.

b. Place zero on the lower eight bits of the S-bus. All ones
are automatically stored in the upper eight bits.

c. .Store the S-bus into the Counter Register.

PASS L TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
present SUM value was read).

b. Store the S-bus into the L-register.

ENVE ADD S7 A

a. The A-register still contains the word input from the
device. Place the A-register onto the S-bus.

b. Enable the Overflow test and Extend. Register test in
this micro-instruction only.

c. Add the L-register (current SUM value) to the S-bus in
the ALU.

d. Store the result in Scratch Pad Register 7.

MPCK PASS M

a. The M-register still holds the Main Memory address of
SUM. Place the M-register onto the S-bus.

b. Pass the S-bus through the ALU.

21MX

c. Perform a memory protect check on the address since
this address will be used for a write into Main Memory.

WRTE PASS TAB S7

a. Place Scratch Pad Register 7 (holding the current
DATA total) onto the S-bus.

b. Store the S-bus into the T-register (or A~ or B-register
according to AAF or BAF flags).

c. Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the new total of data words from the device back into
the Main Memory address of SUM.

cov PASS IR SlO

a. Scratch Pad Register 10 holds the set control-clear flag
command, 0017nn, where nn = the select code. Place
Scratch Pad Register 10 onto the S-bus.

b. Store the S-bus into the Instruction Register.

c. Clear the Overflow Register.

IOG PASS L A

a. IOG commands the microprocessor to freeze until time
T2. At time T2 the set control-clear flag command in
the Instruction Register is executed (transmitted to
the device).

b. Place the A-register (which still holds the word input
from the device) onto the S-bus.

c. Store the S-bus into the L-register.

MPCK INC M S3

a. Place Scratch Pad Register 3 (which holds DATA
address + index X) onto the S-bus.

b. Store the S-bus into the M-register.

c. Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

d. Perform a memory protect check on the S-bus data.

WRTE PASS TAB A

a. Place the A-register (which still holds the word input
from the device) onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register
if the AAF or BAF flag is set).

Writing A Microprogram

c. Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the word input from the device into the Main Memory
table of DAT A values.

READ INC PNM p

a. The P-register now points to the SQUAR address.
Place the P-register onto the S-bus.

b. Store the S-bus into the M-register.

c. Increment the S-bus data as it passes through the
ALU and then store the T-bus into the P-register.

d. Read the SQUAR address pointed to by the
M-register.

INC M TAB

a. Freeze until last READ is complete, then place
SQUAR address just read from Main Memory onto the
S-bus.

b. Store the S-bus into the M-register.

c. Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

READ INC p p

a. Place the P-register onto the S-bus.

b. Increment the data as it passes through the ALU and
store it into the P-register. The P-register now contains
the normal Main Memory return address.

c. Read the SQUAR contents from Main Memory
(contains the current total of data squares).

RPT PASS B TAB

a. Place the SQUAR contents (in the T- or A- or
B-register) onto the S-bus.

b. Pass the S-bus through the ALU onto the T-bus and
then store the T-bus into the B-register. The B-register
now holds the current total of device input word
squares.

c. Repeat the following micro-instruction incrementing
the Counter Register after each repeat. When the
Counter Register is equal to 377, execute the next
micro-instruction.

MPY Rl ADD B B

3-21

Writing A Microprogram

a. Perform a multiply step where the multiplier is in the
L-register and the multiplicand is in the A-register.

b. Both the A- and L-registers hold the last word input
from the device. The B-register holds the current total
of word squares. Thus the result of 16 repeats of this
multiply step is to square the word input from the
device adding the result to the past total of squares
[(Ax L) +BJ.

c. The 32 bit result is in the B- and A-registers with the
most significant bits in the B-register.

JMP CNDX TBZ

a. Jump to the location in the microprogram with the
label NO.OVER if the last value that passed onto the
T-bus was equal to zero.

b. In a multiply step operation, the ,last data to go along
the T-bus is the data that is stored into the B-register.
Since the B-register holds the most significant bits of
the multiplication result, if the result exceeds 216 -1,
bits will be set in the B-register.

sov

Set the Overflow Register. The result of the multiplication
operation (added to the B-register) exceeds 21G.1.

NO.OVER - MPCK PASS M

a. Place the M-register (the SQUAR address) onto the
S-bus.

3-22

21MX

b. Perform a memory protect check on the address on the
S-bus. (To prepare to write the multiplication result
back into the Main Memory data location (SQUAR.)

WRTE RTN PASS TAB A

a. Place the A-register (the current total of squares) onto
the S-bus.

b. Store the S-bus into the T-register (or A- or B-register,
if AAF or BAF flag is set).

c. Write the contents of the T-register into Main Memory
at the address given in the M-register (the address of
SQUAR).

d. Return to the Control Store address held in the SA VE
Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

OUT INC p p

a. This micro-instruction (label OUT) is branched to, if
the end of transmission character (177777) has been
received from the device.

b. Increment the P-register.

RTN INC p p

a. Increment the P-register again to point to the end of
transmission return address in Main Memory.

b. Return to the Control Store address held in the SA VE
Register. In general, this means return to Oto read the
next instruction from Main Memory at the address
pointed to by the P-register.

21MX

3-41. READ A WORD FROM A LOADER
ROM

The sample program segment illustrated in figure 3-8
reads four 4-bit bytes from a Loader ROM, constructs a 16
bit word, and then stores the word into Main Memory.

Conditions:

a. The A-register holds the Main Memory address into
which the 16 bits read from the Loader ROM are to be
stored.

b. The Loader ROM is selected by bits 15 and 14 of the
Instruction Register. The particular Loader ROM
selected does not affect the example.

c. The Counter Register is set to address the first location
in the Loader ROM at the beginninng of the micro­
program segment.

Micro-instruction Commentary:

IMM LOW CNTR OB

a. Place a 0 onto the S-bus in bits 7-0; bits 15-8 are auto­
matically filled with ones.

b. Store the S-bus into the Counter Register. Since the
Counter Register is eight bits long, only bits 7-0 of the
S-bus are stored into the Counter Register.

c. The Counter Register is now zero.

PASS M A

a. The P-register holds the Main Memory Address into
which 16 bits are to be stored from the Loader ROM.

b. Place the P-register contents onto the S-bus.

c. Store the S-bus into the M-register for use later in the
write to Main Memory of the word from the Loader
ROM.

Op Code Special ALU Store S-bus

JM~ LOW CHTR 8
COi/ PASS l'I ·A

LOOP! l4 PASS 31 L DR
I C!4 T PASS L s 1
L4 AHD S1 L l>R
I CNT PASS L 31
L4 A Htl Sl L l>R
I CNT PASS L Sl

HAt.ID Sl L DR
WRTE PASS T s 1

Writing A Microprogram

LOO Pl L4 PASS Sl LDR

a. The LOOPl label is used to identify this microprogram
segment in the Basic Instruction Set microprogram.

b. Place a 4-bit-byte, addressed by the Counter Register,
onto the S-bus. The Counter Register is equal O; thus
addressing byte 0 (there are 256 bytes addressed octal
0-377 in each Loader ROM). Note that each byte is
stored on the S-bus in complemented form. Thus before
a 16 bit word is stored into Main Memory, it must be
complemented. This is taken care of by the next to last
micro-instruction in this program segment.

c. Pass the S-bus through the ALU to the Rotate/Shifter.
Left shift the data four bits.

d. Store the data on the T-bus into Scratch Pad Register 1
(Sl). Sl now holds 16 bits of the form:

xxxxxxxxAAAAxxxx

where AAAA is the 4 bit byte just read.

INCT PASS L Sl

a. Place Scratch Pad Register 1 onto the S-bus.

b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 1.

L4 AND Sl LDR

a. Place byte 1 of the Loader ROM onto the S-bus.

b. Perform a logical "and" of the S-bus and the L-register
in the ALU.

c. Left shift the data four bits in the Rotate/Shifter.

Comments

CLEAR CNTR <~OM AODR REG)
PUT SA JH M

PASS XXXXXXXXAAAAXXXX IHTO Sl;CHTR=XOO
CHTR=X01
FORM XXXXAAAABBBBXXXX IN S1;CHTR;X01
CHTR=XlO
FORM AAAABBBSCCCCXXXX IH S1JCHTR=X10
CHTR=Xll
FORM AAAABBBSCCCCDDDO <CMPL FORM)
WRITE lHTO MEMORY

Figure 3-8. Reading From a Loader ROM

3-23

Writing A Microprogram

d. Store the T-bus into Scratch Pad Register 1. Sl is now
of the form:

xxxxAAAABBBBxxxx

where BBBB is the 4-bit-byte just read.

INCT PASS L SI

a. Place the contents of Scratch Pad Register 1 onto the
S-bus.

b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 2.

L4 AND Sl LDR

a. Place byte 2 of the Loader ROM onto the S-bus.

b. Perform a logical "and" of the S-bus and the L-register
in the ALU.

c. Left shift the data four bits in the Rotate/Shifter.

d. Store the T-bus into Scratch Pad Register 1. Sl is now
of the form:

AAAABBBBCCCCxxxx

where CCCC is the 4-bit-byte just read.

I INCT PASS L Sl

3~24

21MX

a. Place Sl onto the S-bus.

b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 3.

NAND Sl LDR

a. Place byte 3 of the Loader ROM onto the S-bus.

b. Perform a logical "nand" of the L-register and the
S-bus (L "and" S, the result complemented) in the
ALU.

c. Store the T-bus in SL Sl is now of the form:

AAABBBCCCDDD

where DDD is the 4-bit-byte just read. Sl now holds
the completed 16 bit macro-instruction.

WRTE PASS T Sl

a. Place Sl onto the S-bus.

b. Store the S-bus in the T-register (the Main Memory
Data Register).

c. Initiate a write to Main Memory (address in the
M-register) of the data in the T-register.

This completes the reading of 4 bytes from the Loader
ROM, constructing a 16 bit macro-instruction, and storing
the macro-instruction in Main Memory.

l
l1lllH111

....___ __ M_IC_R_O_PR_O_G_RA_M_M_IN_G_L_A_NG_U_A_G___.E _I IV I

This section serves as a reference to micro-instruction
word definitions and formats.

There are four micro-instructions word types. Their
general uses are defined below:

• Word Type 1 executes

a. Data transfers between Main Memory, 1/0, and
arithmetic and logic sections.

b. Logical and arithmetic functions on data.

• Word Type 2 specifies octal data to be transferred to a
specific register.

• Word Type 3 executes a conditional jump based on
flags or data values.

• Word Type 4 executes an unconditional jump or sub­
routine jump.

In addition, there are five Pseudo Instructions recognized
by the micro-assembler.

Each word type has two formats. One format is the 24-bit
Binary Instruction Format. This is the machine-language
format; the format of the micro-instruction as it is stored
in the ROM. The second format is the Mnemonic Format.
This is the micro-assembler source format; the mnemonic­
character representation of the micro-instruction.

4-1. WORD TYPE 1 - COMMON

Charactor
Column:

10 15 20

Field 1 Field 2 Field 3 Field 4

*or LABEL OP SPECIAL ALU

Each micro-instruction consists of a number of
micro-orders, which define the control steps to be executed
within the system. The binary representation of the micro­
orders falls within certain bits of the 24-bit Binary
Instruction. The mnemonic representation of each
micro-order falls within seven fields of the micro­
instruction input record (e.g. a card). The binary and
mnemonic formats are defined for word types in the
following sections.

Common to all word types are the LABEL (Field 1),
COMMENTS (Field 7), and "*" (column 1).

• LABEL

This optional field is a string containing any ASCII
characters except +, -, or a space. The string of
characters can be one through eight characters long and
must always start in column one with a"." (period) or a
letter. A maximum of 256 locations address labels are
allowed in any microprogram.

• COMMENT

This optional field can be any string of up to 30
characters.

• *
The asterisk indicates that the entire input record
(card) is a comment field.

25 30 40 80
_A___.

Field 5 Field 6 Field 7
v

STORE S-BUS COMMENTS 'v---j

Figure 4-1. Word Type 1 Micro-assembler
Mnemonic Format

Bit No. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fields OP ALU S-BUS STORE SPECIAL

Figure 4-2. Word Type 1 Binary Format

4-1

Microprogramming Language

There are five micro-order classifications in Word Type I:

• OP - I2 operations

• SPECIAL - 32 special operations

• ALU - 32 ALU functions

• STORE - 32 destinations of data generated by the
micro-instruction

• S-BUS - 32 sources for data to be used by the micro­
instruction ..

Micro-orders for Word Type I are defined in the following
paragraphs. The mnemonic code is defined first, followed
by its binary equivalent, the meaning, and any special
conventions in the use of the micro-order.

21MX

4-2. OP MICRO-ORDERS

Many operation codes require specific micro-orders in
other fields of the micro-instruction. Those that do will be
defined in terms of all required and optional micro-orders
in the fields of the micro-instruction.

Required micro-instruction mnemonic fields:

OP SPECIAL ALU STORE S-BUS

ARS L 1 or R1 PASS B B

Equivalent micro-instruction binary fields:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OP ALU S-BUS

0 0 0 0

Meaning: Perform a single bit Arithmetic shift of the A­
and B-register combined, with the A-register forming the
low-order I6 bits. The direction of the shift is specified in
the SPECIAL field: LI for left, RI for right.

ARITHMETIC LEFT SHIFT: SPECIAL=L1

B-Register

0

STORE SPECIAL

0 0 0 0 L 1 or R1 Code

If LI, a 0 is shifted into bit 0 of the A-register; bit I4 of the
B-register is lost, but the sign bit remains unchanged. The
overflow register bit is set if bits I4 and I5 differ before the
shift operation.

A-Register

1151141 • • I I o H 15 I 14 I .
--,.__.,....~...._. ~~~~~~_._~,......_~ ~~

Lost

If RI, the sign is copied into bit I4 of the B-register and bit
0 of the A-register is lost.

ARITHMETIC RIGHT SHIFT: SPECIAL=R1

B-Register

4-2

•

21MX

BITNO. 23 22 21 20

CONTENT 1 0 0 0

Meaning: Let bits 6 and 7 of the Instruction Register
determine which of the following functions is to be
performed; then clear the L-register.

IA Bi t No. 7

CLE 0

CME 1

CCE 1

6

1

0

1

Clear Extend Register }

Complement Extend Register ~lter/S~ip
mstruct1on

Set the Extend Register

Microprogramming Language

Conventions: This micro-order is used by the Basic
Instruction Set microprograms which implement the
Alter/skip Macro-instruction Group.

EJ
~
Required micro-instruction mnemonic fields:

OP SPECIAL ALU STORE S-BUS

CRS L 1 or R1 PASS B B

Equivalent micro-instruction binary fields:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OP ALU S-BUS

0 0 0 0

Meaning: Perform a single bit circular Rotate Shift of the
A· and B-registers combined, with the A-register forming
the low order 16 bits. The direction of the shift is specified
in the SPECIAL field: Ll for left, Rl for right.

If Ll, bit 15 of the B-register is transferred to bit 0 of the
A-register.

CIRCULAR LEFT SHIFT: SPECIAL=L1

B-Register

• •

If Rl, bit 0 of the A-register is transferred to bit 15 of the
B-register.

CIRCULAR RIGHT SHIFT: SPECIAL=R1

B-Register

• • • •

0

STORE SPECIAL

0 0 0 0 L 1 or R1 Code

A-Register

• . -.

A-Register

• •

4-3

Microprogramming Language

Fl
~

Equivalent micro-instruction binary fields:

21MX

Required micro-instruction mnemonic fields:

OP SPECIAL ALU STORE S-BUS

DIV L1 SUB B B

23 22 21 20 19 18 17 16 15 14 13 12 11 1 0 9 8 7 6 5 4 3 2 0

OP ALU S-BUS

0 0 0 0 0 0

Meaning: Perform a divide step where the divisor is in the
L-register and the 32 bit dividend is in the A- and
B-registers (least significant bits in the A-register). This
micro-order is repeated (16 times for a full word divisor) by
specifying the Special micro-order RPT in the preceding
micro-instruction. This performs the successive sub­
tractions required in a divide algorithm.

The divide step is executed as follows:

a. Subtract the L-register from the B-register (ALU = B
-L).

b. If borrow is required to complete the subtraction, the
ALU Carry Out Flag is clear (0). This Carry Out result
means that the divisor (L-register) is too big. The ALU
result is not stored. The A-register and B-register are
left shifted one bit and the divide step is complete.

c. If a borrow is not required to complete the subtraction,
the ALU Carry Out Flag is set (1). This Carry Out
result means that the divisor is small enough. The
result of the subtraction is contained in the ALU and is
left shifted one bit and stored back into the B-register.
Bit 15 of the A-register shifts into bit 0 of the
B-register and bit 0 of the A-register is set to 1 (the
Carry Out result). The divide step is complete.

Usage: The base set divide operation is shown in the Basic
Instruction Set microprogram in Appendix E at the label
=DIV.

I

Initial Contents:

B-register

Dividend
16 Most

Significant bits

After Repeat 16
Times of Divide
Step:

Remainder
Doubled

4-4 OCT 1974

A-register

Dividend
16 Least

Significant bits

16 Bit Quotient
of (B,A)/L

L-register

I Divisor I

Divisor
(unchanged)

0 0 0

Fl
~

STORE

0

BIT NO.

CONTENT

23

1

SPECIAL

0 0 0 0 0

22 21 20

0 1 0

Meaning: Enable the overflow test for the current ALU
operation.

Usage: To detect an overflow condition (that is, set the
Overflow register bit), ENV or ENVE (see below) must be
specified as the OP Code of the micro-instruction in which
the condition is to be tested. Overflow is set if the S-bus
and L-register bits 15 are the same and bit 15 output from
the ALU is different.

Caution: Caution is advised in the use of DEC (decrement)
or INC (increment) in conjunction with ENV. The
L-register is always compared.

~
~

BIT NO.

CONTENT

23

1

22 21 20

0 1 1

Meaning: Enable the overflow test and the extend test for
the current ALU operation.

Usage: To detect an Overflow condition (that is, set the
Overflow register bit), ENV (see above) or ENVE must be
specified as the OP Code of the micro-instruction. To set
the Extend Register as a result of the ALU operation, the
ENVE micro-order must be specified as the OP code of the
micro-instruction. The Extend Register bit is set if there is
a carry generated by the ALU (ALU Carry Out = 1).

F1
~
Required micro-instruction mnemonic fields:

OP SPECIAL ALU STORE S-BUS

LGS L1 or R1 PASS B B

21MX Microprogramming Language

Required micro-instruction binary fields:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OP ALU S-BUS

0 0 0 0

Meaning: Perform a single bit Logical Shift of the A- and
B-registers combined, with the A-register forming the low
order 16 bits. The direction of the shift is specified in the
SPECIAL field: Ll for left, Rl for right.

If Ll, a 0 is shifted into bit 0 of the A-register and bit 15 of
the B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL=L1

B-Register

If Rl, a 0 is shifted into bit 15 of the B-register and bit 0 of
the A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL=R1

B-Register

STORE SPECIAL

0 0 0 0 L1 or R1 Code

A-Register

A· Register

Zero-+l 15 j 14 I • •
vv

. I \g H 15 I 14 I .
v vv

• • • • • • •

~
~

BITNO.

CONTENT

23

-0

22 21 20

1 1 0

Meaning: Perform a one bit rotational shift of a 17 bit
operand in the Rotate/Shifter where bit 17 is formed by
the CPU Flag. The rotate moves left one bit, if Ll is the
SPECIAL code, or right one bit, if Rl is the SPECIAL
code. If neither Ll or Rl are specified, LWF has no effect.

ROTATIONAL RIGHT SHIFT: SPECIAL•R1

ALU Contents

15 14 • • • • • 0

CPU Flag

ROTATIONAL LEFT SHIFT: SPECIAL•L1

ALU Contents

15 14 • • • • •

'. CPU Flag

4-5

Microprogramming Language 21MX

Required micro-instruction mnemonic fields:

OP SPECIAL ALU STORE S-BUS

MPV R1 ADD B B

Required micro-instruction binary fields:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

OP ALU S-BUS

0 0 0 0 0 0 0 0

Meaning: Perform a multiply step where the multiplier is
in the L-register and the multiplicand is in the A-register.
The multiply step is executed as follows:

a. Test bit 0 ,of the A-register.

b. If the test bit is a one, the L-register is added to the
S-bus (B-register value) in the ALU. Th~ result is
shifted right one bit and stored back into the B:!'_~jst~r
with the ALU Carry Out bit forming bit i5'.

c. If the test bit is a zero, the S-bus (B-register value) is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

d. In either case, the A-register is shifted right and ALU
bit O fills vacated bit position 15. Bit 0 of the A-register
is lost. The multiply step is complete.

Usage: This micro-instruction, repeated 16 times by
specifying the SPECIAL code RPT in the preceding
micro-instructioh,--performs the- -sliccessive additions
required in a multiply algorithm. The base set multiply
operation is shown in the Basic Instruction Set
microprogram in Appendix E at the label =MPY.

Each step of the multiply algorithm effectively multiplies
the L-register by the A-register bit that corresponds to the
step; that is, step one multiplies the L-register by bit 0 of
A-register, step two multiplies the L-register by bit 1 of
the A-register, etc. Thus to multiply the L-register by all
16 bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts
and additions as described under "Meaning", the initial
contents of the B'register are added to the final result of
the multiply algorithm. If the B-register is not zero before
the multiply steps are begun, 16 multiply steps will yield

, the 32 bit result in the B- and A-registers (where the Least
Significant Bits (LSB's) are in the A-register):

(B,A) = [(AxL) + BJ

This may be useful in some computational procedures. For
example: X(2) = X(l) + (YxZ).

4-6

STORE

0 0 0

Initial Contents:

B-register

Value to be added
to the final result

After Repeating the
Multiply Step 16 Times:

(AxL)+B
16 Most

Significant bits

EJ
~

BITNO.

CONTENT

SPECIAL

0 0 0

A-register

I Multiplicand I

(AxLl+B
16 Least

Significant bits

23 22 21

1 0 0

20

1

0 0

L-register

Multiplier

Multiplier
(unchanged)

Meaning: Read data into the T-register from the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy.

Usage: The data must be removed from the T-register two
micro-instructions after the READ instruction. Note that
the M-register must be loaded (M, PNM, or CM in the
Store field) prior to or during the Read micro-instruction.
The A- or B-register Addressable Flags (AAF or BAF,
respectively) are set, according to data present QP the
T-bus when the M-register is loaded. Specify INC in the
ALU field when the address being stored into the
M-register could be a 0 or 1 (A- or B-register addressed).
This assures that data is extracted from the proper
register when TAB micro-order is used in the S-bus field.

T -bus when M Register Referenced By
Store is specified AAF BAF TAB in S-bus or Store Field

1 1 0 A

2 0 1 B

any other value 0 0 T

21MX

~
~

BIT NO.

CONTENT

23

0

22 21 20

0 0 0

Meaning: Standard Operation. No operation is specified
for the Op Code field.

Usage: This is the default micro-order when tho OP Code
Field is left blank.

~
~

BIT NO.

CONTENT

23

0

22 21 20

1 1 1

Meaning: Write data from the T-register into the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy. Two micro­
instruction times are required to complete the write.

Usage: The T-register should be loaded during the write
instruction and must not be altered by the next sequential
micro-instruction; otherwise the Dual Channel Port Con­
troller data-transfers could destroy the data.

4-3. SPECIAL MICRO-ORDERS

SPECIAL BIT NO. 4 3 2 1 0

CLFL CONTENT 0 1 0 0 1

Meaning: Clear the CPU Flag.

SPECIAL BIT NO. 4 3 2 1 0

cov CONTENT 0 1 1 0 0

Meaning: Clear the Overflow Register bit.

SPECIAL BIT NO. 4 3 2 1 0

FTCH CONTENT 0 1 0 1 0

Meaning: Move the Main Memory address contained in
the M-register (usually the address of the next macro­
instruction to be executed) to the Memory Protect
Violation Register. Clear out the Memory Protect
Violation flag and reset the Indirect Counter.

Usage: This micro-order must be used during, or one
micro-instruction after, the initiation of a READ from the
address of the next macro-instruction to be executed. This
micro-order must be used if the Memory Protect feature is
installed on the computer.

Microprogramming Language

SPECIAL BIT NO. 4 3 2 1 0

ICNT CONTENT 1 0 0 1 1

Meaning: Increment the Counter Register by one.

SPECIAL BIT NO. 4 3 2 1 0

INCi CONTENT 1 0 1 0 1

Meaning: Increment the Indirect Counter in the Memory
Protect Option (if installed) by one.

Usage: Used by microprograms that implement indirect
addressing. If INCI is executed three times within the
same microprogram, the Interrupt Enable Flag is set to
allow the CPU to recognize interrupts. Used to prevent
multiple indirect addressing levels from holding off
recognition of I/O interrupt requests.

SPECIAL BIT NO. 4 3 2 1 0

IOFF CONTENT 0 0 0 0 0

Meaning: Turn off the Interrupt Enable flag to disable
recognition of normal interrupts (does not disable memory
protect, parity, or power fail interrupts).

Usage: After three occurrences of INCI (see INCI Usage)
in the SPECIAL Field, interrupts are again recognized
and cannot be disabled until a FTCH micro-order occurs.
The ION micro-order is normally used to re-enable
interrupt recognition.

IOFF should be used with caution, since holding off
interrupts could cause the loss of input and output data.

SPECIAL BIT NO. 4 3 2 1 0

IOG CONTENT 1 0 0 1 0

Meaning: Freeze the CPU until time period T2. Then
execute the base set I/O macro-instruction that is in the
Instruction Register.

Usage: Microprogrammed input and output require I
cooperation between the I/O Section and microprogram
control. Familiarity with the I/O system is mandatory.
See section 3-25 and the following sections for a more
detailed description of I/O microprogramming.

OCT 1974 4-7

Microprogramming Language

SPECIAL BIT NO. 4 3 2 1 0

ION CONTENT 0 0 1 0 1

Meaning: Turn the Interrupt Enable flag on to enable
recognition of interrupts. Allow the CPU to recognize
standard device interrupts until the micro-order IOFF is
executed.

Usage: After ION has been executed, the CPU can detect
an interrupt from any I/O device in two ways:

a. If a JMP or RTN to location 0 of Control Store (the
macro-instruction read and decode routine) is executed
and an interrupt is pending or the Run flag is clear,
execution is forced to location 4 in Control Store, which
is the interrupt handler routine.

b. A test for interrupt pending or Run flag clear can be
performed by the executing microprogram by
executing INT, NHOI, or RUN in the Jump Condition
field.

ION allows interrupts to be recognized. However
interrupts are not generated by the interrupt system until
a STF 0 I/O control command is executed. Refer to the
discussion of the interrupt system in the HP 21MX
Computer Series Reference Manual.

SPECIAL BIT NO. 4 3 2 1 0

JTAB CONTENT 1 1 0 1 1

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram, based on the eight most
significant bits (bits 15 through 8) of the Instruction
Register. This is accomplished via a table look-up of the
address in the main jump table for the basic instruction set
(see figure 3-2).

The Save Register is cleared to 0. JT AB overrides the
effects of JMP or JSB in the OP code field.

SPECIAL BIT NO. 4 3 2 1 0

i.1 CONTENT 0 0 0 1 0

Meaning: Left one bit command to the Rotate/Shifter.

Lost 4 1s I 14 I • • • •

vv

Usage: See MPY, DIV, CRS, LGS, ARS, LWF. Without
one of the previous Op Codes, Ll performs a one bit logical
left shift on data leaving the ALU.

4-8

21MX

SPECIAL BIT NO. 4 3 2 1 0

L4 CONTENT 0 0 0 1 1

Meaning: Four bit circular left shift command to the
Rotate/Shifter (R/S).

TO T·BUS

Usage: Used in conjunction with the shift and rotate
operations.

SPECIAL BIT NO. 4 3 2 1 0

MPCK CONTENT 1 0 0 0 1

Meaning: Check the address placed on the S-bus for a
memory protect violation.

Usage: An S-BUS micro-order must be used in con­
junction with MPCK.

This check should be performed before any write to Main
Memory (WRTE OP-code), if the memory protect feature
is installed. Refer to section 3-27 for details on use of
MPCK with the I/O system.

SPECIAL BIT NO. 4 3 2 1 0

NOP CONTENT 0 0 1 1 1

Meaning: No SPECIAL operation is performed.

Usage: This is the default operation if none is specified in
the SPECIAL field.

SPECIAL BIT NO. 4 3 2 1 0

RPT CONTENT 0 1 1 0 1

Meaning: Repeat the following micro-instruction incre­
menting the Counter Register after each time the repeat is
executed. When the lower four bits of the Counter Register
are set, execute the following micro-instruction once. The
lower four bits of the Counter Register are set at the
completion of the repeat sequence. Thus, the repeat is
executed the number of times specified in the lower four
bits of the Counter Register in two's complement form.

21MX

SPECIAL BIT NO. 4 3 2 1 0

Rl CONTENT 0 0 1 0 0

Meaning: Right one bit command to the Rotate/Shifter.

Zero+f 15 , 141 • •
\.._JI \J

Usage: Used in conjunction with the shift and rotate
instructions. See MPY, DIV, ARS, CRS, LGS, LWF.
Without one of the previous micro-orders, a single bit
logical right shift is executed;

SPECIAL BIT NO. 4 3 2 1 0

RTN CONTENT 1 1 1 1 0

Meaning: Return from subroutine. Jump to the address
held in the Save register and clear the Save register.

Usage: No more than one subroutine level is permissable.
The second RTN encountered causes a jump to ROM
address 0 (the address contained in the Save register)
where the macro-instruction pointed to by the P-register is
read. RTN overrides the effect of a JMP or JSB in the OP
code field.

SPECIAL BIT NO. 4 3 2 1 0

SHL T CONTENT 1 0 1 0 0

Meaning: Clear the Run Flag (request a CPU halt).

Usage: The Run Flag is actually cleared at the completion
of the micro-instruction following the one specifying
SHL T. This micro-order should be used with caution by
the microprogrammer. Once the Run Flag is clear, the halt
request (SHLT) is detected:

a. when a RTN or JMP to address 0 in Control Store
(fetch routine) is executed

b. when the Run Flag is tested by RUN or NHOI Jump
Condition micro-order.

SPECIAL BIT NO. 4 3 2 1 0

sov CONTENT 0 1 0 1 1

Meaning: Set the Overflow Register

SPECIAL BIT NO. 4 3 2 1 0

SRGE CONTENT 0 1 1 1 0

Meaning: If Instruction Register bit 5 is set, clear the
Extend Register bit.

Conventions: This micro-order is used by the Basic
Instruction Set that implements the Extend Register
instructions.

Microprogramming Language

SPECIAL BIT NO. 4 3 2 1 0

SRGl CONTENT 0 0 1 1 0

Meaning: Execute the Shift/Rotate function specified by
bits 6 through 9 of the Instruction Register (Shift/Rotate
instruction in the first position; see HP 21MX Computer
Series Reference Manual.) The Shift/Rotate function is
performed on the data that leaves the ALU. The function
performed in the R/S is determined by IR bits 6 through 9
as follows:

Bits
9876 Function Performed In R/S

1000 Arithmetic left shift one bit

1001

1010

1011

1100

1101

1110

1111

Oxxx

SPECIAL

Arithmetic right shift one bit

Rotational left shift one bit

Rotational right shift one bit

Arithmetic left shift one bit, clear sign
bit 15

Rotational right shift one bit with E­
register forming bit 16 (the 17th bit)

Rotational left shift one bit with E­
register forming bit 16 (the 17th bit)

Rotational left shift four bits

No shift (bits 8, 7, and 6 can have any
setting)

BIT NO. 4 3 2 1 0

SRG2 CONTENT 0 0 0 0 1

Meaning: Execute the Shift/Rotate function specified by
bits 0 1, 2 and 4 of the Instruction Register (Shift/Rotate
instruction in the second position; see HP 21MX
Computer Series Reference Manual). The Shift/Rotate
function is performed on the data that leaves the ALU.
The function performed in the R/S is determined by IR
bits 0, 1, 2 and 4.

Bits
Function Performed in R/S 4210

1000 Arithmetic left shift one bit

1001 Arithmetic right shift one bit

1010 Rotational left shift one bit

1011 Rotational right shift one bit

1100 Arithmetic left shift one bit, clear sign
bit 15

1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)

1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)

1111 Rotational left shift four bits

Ox xx No shift (bits 8, 7, and 6 can have any
setting)

4-9

Microprogramming Language

SPECIAL BIT NO. 4 3 2 1 0

SRUN CONTENT 1 0 1 1 1

Meaning: Set the Run Flag (remove the CPU halt
request).

SPECIAL BIT NO. 4 3 2 1 0

STFL CONTENT 0 1 0 0 0

Meaning: Set the CPU flag.

4-4. ALU MICRO-ORDERS

BIT NO. 19 18 17 16 15

CONTENT 0 1 0 0 1

Meaning: Add the data placed on the S-bus to the
contents of the L-register; the L-register contents are not
disturbed; pass the result to R/S.

Usage: The L-register must be loaded in a previous micro­
instruction.

BIT NO. 19 18 17 16 15

CONTENT 1 1 0 1 1

Meaning: Logical and of L-register and S-bus (L•S); the
L-register contents are not disturbed; pass the result to
R/S.

Usage: The L-register must be loaded in a previous micro­
instruction.

El
8

BIT NO.

CONTENT

19 18

1 0

17 16 15

1 0 1

Meaning: Ones complement the L-register; pass the result
to Rotate/Shifter.

El
~

BIT NO.

CONTENT

19 18

1 0

17 16 15

0 0 0

Meaning: Ones complement the data on the S-bus; pass
the result to Rotate/Shifter.

a
8

BIT NO.

CONTENT

19 18

0 1

17 16 15

1 1 1

Meaning: Decrement the data on the S-bus by one; pass
the result to the Rotate/Shifter.

4-10

a
EJ

BIT NO.

CONTENT

19 18

0 0

21MX

17 16 15

0 0 0

Meaning: Increment the data on the S-bus by one; pass
the result to the Rotate/Shifter.

8
~

BIT NO.

CONTENT

19 18

1 1

17 16 15

1 1 0

Meaning: Logical inclusive or of L-register and S-bus
(L+S); L-register contents are not disturbed; pass result
to Rotate/Shifter.

BIT NO. 19 18 17 16 15

CONTENT 1 0 1 0 0

Meaning: Logical nand of L-register and S-bus (L•S); pass
result to Rotate/Shifter.

B
8

BIT NO.

CONTENT

19 18

1 0

17 16 15

0 0 1

Meaning: Logical nor of L-register and S-bus (L+S); pass
result to Rotate/Shifter.

EJ
~

BIT NO.

CONTENT

19 18

1 0

17 16 15

0 1 0

Meaning: Logical and of the complement of the S-bus and
the L-register (S•L); pass result to Rotate/Shifter.

EJ
8

BIT NO.

CONTENT

19 18

1 1

17 16 15

0 0 0

Meaning: Logical or of the complement of the S-bus and
the L-register (S+L); pass result to Rotate/Shifter.

EJ
8

BITNO.

CONTENT

19 18

1 1

17 16 15

1 0 0

Meaning: Set all 16 bits (logical one) and pass them to the
Rotate/Shifter.

21MX

EJ
8

BITNO.

CONTENT

19 18

0 0

17 16 15

0 0 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where "+" means logical function "or".

R
EJ

BITNO.

CONTENT

19 18

0 0

17 16 15

0 1 0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where"+" means logical function "or" and L means the
ones complement of the L-register (not L).

BIT NO. 19 18 17 16 15

CONTENT 0 0 1 0 0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S•L) plus 1

where"•" means logical function "and" and L means the
ones complement of the L-register (not L).

B
8

BITNO.

CONTENT

19 18

0 0

17 16 15

1 0 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S•L) plus 1

where"•" means logical function "and", "+"means logical
function "or", and L means the ones complement of the
L-register (not L).

BITNO. 19 18 17 16 15

CONTENT 0 0 1 1 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S•L)

where"•" means the logical function "and" and L means
the ones complement of the L-register (not L).

Microprogramming Language

BITNO. 19 18 17 16 15

CONTENT 0 1 0 0 0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S•L)

where "•" means the logical function "and".

Fl
8

BITNO.

CONTENT

19 18

0 1

17 16 15

0 1 0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S•L)

where"+" means logical function "or'', "•"means logical
function "and", and L means the ones complement of the
L-register (not L).

BITNO. 19 18 17 16 15

CONTENT 0 1 0 1 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S•L) minus 1

where "•" means the logical function "and".

EJ
~

BITNO.

CONTENT

19 18

0 1

17 16 15

1 0 0

Meaning: Perform the following logical function in the
ALU with the S-bus:

S plus S

~
~

BITNO.

CONTENT

19 18

0 1

17 16 15

1 0 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where "+" means the logical function "or".

4-11

Microprogramming Language

EJ
B

BIT NO.

CONTENT

19 18

0 1

17 16 15

1 1 0

Meaning: Perform the following logical function in the
ALU with the L-register and the .S-bus:

(S+L) plus S

where "+" means the logical function "or" and L means
the complement of the L-register (not L).

EJ
~

BIT NO.

CONTENT

19 11:l

1 1

17 16 15

0 1 0

Meaning: Pass the L-register to the Rotate/Shifter.

B
~

BIT NO.

CONTENT

19 18

1 1

17 16 15

1 1 1

Meaning: Pass the S-bus data to the Rotate/Shifter.

EJ
8

BIT NO.

CONTENT

19 18

1 0

17 16 15

1 1 1

Meaning: Logical and of the S-bus and the complement of
the L-register (S•L); pass the result to the Rotate/Shifter.

EJ
~

BIT NO.

CONTENT

19 18

1 1

17 16 15

1 0 1

Meaning: LogiCal or of the S-bus and the complement of
the L-register (S+L); pass the result to the Rotate/
Shifter.

B
El

BITNO.

CONTENT

19 18

0 0

17 16 15

1 1 0

Meaning: Subtract the L-register from the S-bus and pass
the result to Rotate/Shifter.

EJ a
BIT NO.

CONTENT

19 18

1 1

17 16 15

0 0 1

Meaning: Logical exclusive nor of the L-register and the
S-bus; (LeS) and pass it to the Rotate/Shifter (<D means
"exclusive or".)

EJ
EJ

BIT NO.

CONTENT

19 18

1 0

17 16 15

1 1 0

Meaning: Logical exclusive or of the L-register and the
S-bus (L<DS); pass the result to the Rotate/Shifter (<D
means ''exclusive or''.)

4-12 OCT 1974

a a
BITNO.

CONTENT

19 18

0 0

17 16 15

0 1 1

Meaning: Pass all zeros to the Rotate/Shifter.

BITNO. 19 18 17 16 15

CONTENT 1 0 0 1 1

Meaning: Pass all zeros to the Rotate/Shifter.

4-5. STORE MICRO-ORDERS

BIT NO. 9 8 7 6 5

CONTENT 0 1 0 1 1

21MX

Meaning: Store the data on the T-bus in the A-register.

BITNO. 9 8 7 6 5

CONTENT 0 1 0 1 0

Meaning: Store the data on the T-bus in the B-register.

~
EJ

_BIT NO.

CONTENT

9 8

0 0

7 6 5

0 0 1

Meaning: Store the data on the T-bus in the A- or
B-register according to the value of IR bit 11:

IR bit 11 set means B-register

IR bit 11 clear means A-register

BITNO. 9 8 7

CONTENT 0 1 1

6 5

0 1

Meaning: Store the data on the S-bus in the M-register, if
the IR holds any Memory Reference instruction except a
direct jump (JMP). Refer to the HP 21MX Computer
Series Reference Manual, for a description of the Memory
Reference instructions.

AAF or BAF is set as described under Usage for the M
Store micro-order, whether or not the IR holds a Memory
Reference instruction.

STORE BITNO. 9 8 7 6 5

CNTR CONTENT 0 0 1 0 1

Meaning: Store the lower eight bits of the S-bus (bits 0-7)
in the Counter Register.

21MX

STORE BIT NO. 9 8 7 6 5

DSPI CONTENT 0 0 1 1 1

Meaning: Store the lower six bits of the S-bus in the
Display Indicator on the front panel.

Display Indicator Bit 5 4 3 2 1 0

Register Displayed s p T M B A

Usage: The six indicators on the front panel, labelled A, B,
M, T, P and Sare lit according to the bit(s) cleared in the
Display Indicator. At power-up all bits are set until pro­
grammatically changed.

STORE BIT NO. 9 8 7 6 5

DSPL CONTENT 0 0 1 1 0

Meaning: Store the data on the S-bus in the Display
Register on the Front Panel.

8
~

BIT NO.

CONTENT

9 8

0 0

7 6 "5

1 0 0

Meaning: Direct the S-bus onto the 1/0-bus.

Usage: This micro-order when used must be in the second
and third instructions (T3 and T4) after IOG Special
micro-order. See section 3-25 and the following sections for
a description of 1/0 microprogramming.

8
~

BIT NO.

CONTENT

9 8

0 1

7 6 5

0 0 0

Meaning: Store the data on the S-bus in the Instruction
Register. Record the type of macro-instruction stored
there in the Memory Protect hardware for use in
determining error conditions during Instruction Register
execution. See sections 3-28 and 3-34 for a description of
Interfacing With Memory Protect feature.

BIT NO. 9 8 7 6 5

CONTENT 0 0 0 1 1

Meaning: Store the data on the S-bus in the L-register
(Latch).

Microprogramming Language

BIT NO. 9 8 7 6 5

CONTENT 0 1 0 0 1

Meaning: Store the data on the S-bus in the M-register.

Usage: An ALU micro-order (for example, INC) should
also be specified in the micro-instruction. This will activate
an A- or B-register addressable test. If bits 14 through O
on the T-bus equal 1 or 2, the AAF or BAF, respectively,
will be set. The M-register may be stored into immediately
after a READ or WRTE Op micro-order.

~
~

BIT NO.

CONTENT

9 8

0 1

7 6 5

1 1 1

Meaning: No store operation is performed; this is the
default micro-order when the Store field is left blank.

BIT NO. 9 8 7 6 5

1 1 1 1 0
!~OREi

CONTENT

Meaning: Store the data on the T-bus in the P-register
(Program Add;ess Register).

BIT NO. 9 8 7 6 5

CONTENT 0 1 1 1 0

Meaning: Store the data on the T-bus in the P-register
(Program Address Register), and the data on the S-bus
into the M-register (Memory Address Register).

Usage: Useful in microprograms which perform multiword
READ operations from Main Memory, where the
P-register points to the address in Main Memory to be
read. In a single micro-instruction the microprogram can
store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an
application is the following:

READ - - INC PNM p

The A- or B-register addressable test is activated. See
Usage under M micro-order, above.

BITNO. 9 8 7 6 5

CONTENT 1 1 1 1 1

Meaning: Store the data on the T-bus in the S-register.

4-13

Microprogramming Language

I STORE I BIT NO. THRU

S12 CONTENT

9 8 7 6 5

1 n n n n

nnnn is binary representation of decimal number O + 11

Meaning: Store the data on the T-bus in the indicated
Scratch Pad Register Sl to Sl2.

~ BITNO.

LJ CONTENT

9

0

8

0

7 6 5

0 1 0

Meaning: Store the data on the S-bus in the T-register
(Memory Data Register).

Usage: This micro-order should occur concurrently when a
WRTE micro-order is used. The T-register is internal to
the Memory System. It must not be used as a working
register.

B
EJ

BIT NO.

CONTENT

9 8

0 0

7 6 5

0 0 0

Meaning: Store the data on the T-bus in the A-register if
the AAF (A addressable Flag) is set; store the data on the
T-bus in the B-register if the BAF (B addressable Flag) is
set; store the data on the S-bus into the T-register
(Memory Data Register) if neither AAF nor BAF is set.

Usage: Same as T micro-order.

BIT NO. 9 8 7 6 5

CONTENT 1 1 1 0 0

Meaning: Store the data on the T-bus in the X-register.

I :•ORE I BIT NO. 9 8 7 6 5

1 1 1 0 1 CONTENT

Meaning: Store the data on the T-bus in the Y-register.

4-6. S-BUS MICRO-ORDERS

BITNO. 14 13 12 11 10

CONTENT 0 1 0 1 1

Meaning: Direct the data in the A-register onto the S-bus.

8
8

BITNO.

CONTENT

14 13

0 1

12 11 10

0 0 0

Meaning: An address is formed on the S-bus using IR bits
0-9 and M-register bits 10-14; if IR bit 10 is clear, bits
10-14 of the address formed on the S-bus are clear. Bit 15 is
always clear. IR bit 10 is the zero page/current page flag.

4-14 OCT 1974

21MX

BITNO. 14 13 12 11 10

CONTENT 0 1 0 1 0

Meaning: Direct the contents of the B-register onto the
S-bus.

8
~

BITNO.

CONTENT

14 13

0 0

12 11 10

0 0 1

Meaning: Direct the contents of the A- or B-register onto
the S-bus according to the value of IR bit 11:

IR bit 11 set means B-register

IR bit 11 clear means A-register

8
~

BIT NO.

CONTENT

14

0

13 12 11

0 0 1

10

1

Meaning: At I/O time T6 place the contents of the Central
Interrupt Register onto the S-bus and generate an IAK
(Interrupt Acknowledge) signal to the I/O device. (See
section 3-33 for CIR description in relation to Interrupt
Handling).

Usage: This micro-order must be used after detection of an
I/O interrupt to determine the select code of the inter­
rupting device and to acknowledge that the interrupt is
being serviced.

8
~

BITNO.

CONTENT

14 13

0 0

12 11 10

1 0 1

Meaning: Direct the contents of the Counter Register onto
the S-bus. The 8 bit Counter Register is placed onto the
low 8 bits of the S-bus; the upper 8 bits are set to ones.

8
~

BIT NO.

CONTENT

14 13

0 0

12 11 10

1 1 1

Meaning: Direct the six bits of the display Indicator from
the Front Panel to the S-bus. The upper 10 bits of the I
S-bus are set to ones.

Usage: See DSPI Store field definition for Display
Indicator bit significance.

~
~

BITNO.

CONTENT

14 13

0 0

12 11 10

1 1 0

Meaning: Direct the contents of the Front Panel Display
Register onto the .S-bus.

21MX

8
~

BIT NO.

CONTENT

14 13

0 0

12 11 10

1 0 0

Meaning: Direct the I/O bus onto the S-bus. (See section
3-25, Microprogramming Input and Output Functions.)

Usage: This is used to transfer data from an I/O device to
the S-bus. When not in use, the I/O bus is all zeros.
However, do not try to use the I/O bus for a source of zero
data, since it is used by the Dual Channel Port Controller
at indeterminate times.

8
~

BIT NO.

CONTENT

14 13

0 1

12 11 10

1 0 0

Meaning: Place one 4-bit-byte from a Loader ROM on the
S-bus. The 4-bit-byte address is contained in the Counter
Register. DeterminE1tion of which Loader ROM, of the four
Loader ROMs available, is specified by bits 15 and 14 in
the Instruction Register.

INSTRUCTION REGISTER

~Select Loader ROM nn, where nn is between binary 00 and 11

COUNTER REGISTER

76543210

LOADED ROM ADDRESS a

0

4

ROM nn

1 2

5 6

3

7

Octal addresses range
from Oto 377.
Each addressed location

10 11 12 13

~--r~~,,.
rrrr was conrents of
ROM nn, address a

S·BUS $!
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111111111111~

Usage: See sample microprogram in section 3-41 for an
illustration of the use of the LDR micro-order.

BIT NO. 14 13 12 11 10

0 1 0 0 1 1:us1 CONTENT

Meaning: Direct the 15 bit contents of the M-register onto
the S-bus. Bit 15 of the S-bus is cleared.

~
EJ

BIT NO.

CONTENT

14

0

13 12

1 1

Meaning: The S-bus holds all ones.

11 10

1 1

Usage: This is the default micro-order when the S-bus field
is left blank.

Microprogramming Language

BIT NO. 14 13 12 11 10

CONTENT 1 1 1 1 0

Meaning: Direct the contents of the P-register onto the
S-bus.

BIT NO. 14 13 12 11 10

1 1 1 1 1
I :~usl

CONTENT

Meaning: Place the contents of the S-register (Front Panel
Switch Register) onto the S-bus.

~~
~THAU~

14 13 12 11 10

1 n n n n

BITNO.

CONTENT

nnnn is binary representation of decimal numbers 0 to 11

Meaning: Place the contents of the indicated Scratch Pad
Register Sl to Sl2 onto the S-bus.

BIT NO. 14 13 12 11 10

CONTENT 0 0 0 1 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus.

Usage: Data in the T-register that resulted from a READ
operation must be removed within two micro-instructions
afer the READ or the Dual Channel Port Controller could
alter the data.

a
~

BIT NO.

CONTENT

14 13

0 0

12 11 10

0 0 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus if neither AAF (A
addressable Flag) nor the BAF (B addressable Flag) is
set; read the A-register onto the S-bus, if the AAF is set;
read the B-register onto the S-bus if the BAF is set.

Usage: See T-register Usage description.

BIT NO. 14 13 12 11 10

CONTENT 1 1 1 0 0

Meaning: Direct the contents of the X-register onto the
S-bus.

BIT NO. 14 13 12 11 10

CONTENT 1 1 1 0 1

Meaning: Direct the contents of the Y-register onto the
S-bus.

4-15

Microprogramming Language

4-7. WORD TYPE 2 - IMMEDIATE
DATA

Charactor
Column:

Field 1

10

Field 2

15 20

Field 3 Field 4

21MX

25 30 40 80

Field 5 Field 6 Field 7
'V-

* or LABEL "IMM" SPECIAL MODIFIER STORE OPERAND COMMENTS'V-

Figure 4-3. Word Type 2 Micro-assembler
Mnemonic Format

Bit No. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fields "IMM"
op CODE

MODIFIER

OPERAND STORE SPECIAL

Figure 4-4. Word Type 2 Binary Format

There are five micro-order classifications in Word Type 2:

• "IMM" - OP Code specifying Word Type 2.

• SPECIAL - Special operations and modifiers.

• MODIFIER - A special modifier for the Immediate
Operation.

• STORE - Destination of the data.

• OPERAND - Binary data that is to be placed on the
S-bus.

The STORE and SPECIAL micro-orders applicable to
Word Type 2 are exactly the same as those defined for
Word Type 1. Consequently, only the other three
micro-order groups are defined in the following sections.
The "IMM" and MODIFIER micro-order groups are
defined by the mnemonic, by its binary equivalent, and
finally, by the meaning.

4-8. "IMM" MICRO-ORDER

BITNO. 23 22 21 20

CONTENT 1 1 1 0

Meaning: Place 16 bits onto the S-bus consisting of the 8
bit binary OPERAND and another 8 bits of all ones.
Determination of which 8 bits of the S-bus receive the
OPERAND and which 8 bits receive all ones is made by
the MODIFIER.

4-16

4-9. MODIFIER MICRO-ORDERS (BITS 19 AND
18 OF THE MICRO-INSTRUCTION)

Bit 19 Set:

Bit 19 Clear:

Bit 18 Set:

Bit 18 Clear:

MODIFIER

CMHI

specifies complement the S-bus data in the
ALU.

specifies pass the S-bus data through the
ALU.

specifies OPERAND goes in bits 7-0 of the
S-bus.

specifies OPERAND goes in bits 15-8 of
the S-bus.

BITNO. ~.9 18

CONTENT~

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = OPERAND

Bits 7-0 = all ones

The S-bus is then complemented as it passes through the
ALU.

21MX

S-Bus (
BIT NO. 15 I 14 I 13 J 12 I 11 l 101 9 I a

CONTENT OPERAND

Out of ALU (
BIT NO. 15I 14I 13112J 11J 10J 9 I
CONTENT OPERAND Complemented

MODIFIER

CMLO

BITNO. ~
CONTENT~

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = all ones

Bits 7-0 = OPERAND

The S-bus is then complemented as it passes through the
ALU.

{
BIT NO. 15 14 13 12 11

S-Bus
CONTENT 1 1 1 1 1

(
BIT NO. 15 14 13 12 11

MODIFIER

HIGH

Out of ALU
CONTENT

BITNO. ~
CONTENT~

0 0 0 0

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = OPERAND

Bits 7-0 = all ones

The S-bus is then passed through the ALU without
modification.

0

10 9

1 1

10 9

0 0

S-Bus and { BIT NO. 15 l 14 J 13I 12 I 11 I 10 I 9 I
Out of ALU

CONTENT OPERAND

8

8

1

8

0

8

Microprogramming Language

7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

1JsI5J4I3J2J1l 0

OPERAND

1IsJ5I4I3J2I1Jo

OPERAND Complemented

7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1

4-17

Microprogramming Language

MODIFIER

LOW

BITNO. ~
CONTENT ~

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = all ones

Bits 7-0 = OPERAND

The S-bus is then passed through the ALU without
modification.

21MX

S-Bus and {
BIT NO. 15 14 13 12 11 10 9 8 1J6I5I4I3J2J1I 0

Out of ALU CONTENT 1 1 1 1 1 1 1

4-10. OPERAND MICRO-ORDER

OPERAND BIT NO. 19 18 17 16 15 14 13 12 11 10

Integer CONTENT Binary Integer Equivalent

The Integer can be an octal number or decimal number:

• Decimal number in range 0 to 255.

• Octal number in range 0 to 377, followed by "B".

Examples:

117B, 117, 198, 5, IOB

4-11. WORD TYPE 3 - CONDITIONAL JUMP

Charactor
Column:

1

Field 1

*or LABEL

10

Field 2

"JMP"

15 20

Field 3 Field 4

"CNDX" CONDITION

25

1 OPERAND

30

Field 5 Field 6

JUMP SENSE OPERAND

Figure 4-5. Word Type 3 Micro-assembler Mnemonic Format

40 80

Field 7 h
~

COMMENTS

Bit No. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fields
...

op CODE

4-18

CONDITION -JUMP
SENSE

OPERAND

Figure 4-6. Word Type 3 Binary Format

"CNDX"
SPECIAL CODE

21MX

There are five micro-order classifications in Word Type 3:

• "JMP" - Op Code used in conjunction with "CNDX"
specifies Word Type 3, a conditional jump.

• "CNDX" - SPECIAL Code specifying Word Type 3.

• CONDITION - Condition that must be satisfied
before jump is executed.

• JUMP SENSE - Optional code to invert the jump
condition.

• OPERAND - Target address of jump.

All micro-order groups, except the OPERAND, are
defined by the mnemonic, its binary equivalent, meaning,
and, where necessary, by conventions in their use.

4-12. "JMP" MICRO-ORDER

"JMP" BIT NO. 23 22 21 20

JMP CONTENT 1 1 0 1

Meaning: Used in conjunction with the SPECIAL Code
"CNDX", the CONDITION code specifies the condition
under which a jump to the address specified in the
OPERAND will take place. If the JUMP SENSE code
"RJS" is specified, the CONDITION code specifies the
condition under which no jump will take place.

4-13. "CNDX" MICRO-ORDER

"CNDX" BIT NO. 4 3 2 1 0

CNDX CONTENT 1 1 0 0 1

Meaning: Used in conjunction with the Op code "JMP",
this micro-order specifies a conditional jump and Word
Type 3.

4-14. CONDITION MICRO-ORDERS

The ALU and T-bus condition flags are set after each
Word Type 1 or 2 micro-instruction. They are not changed
during JMP or JSB micro-instructions (Word Types 3 and
4). Thus, several different jump tests can be made without
losing the flag results.

CONDITION BIT NO. 19 18
F

17 16 15

ALO CONTENT 0 0 0 1 1

Meaning: Bit 0 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction.

Microprogramming Language

CONDITION BIT NO. 19 18 17 16 15

AL15 CONTENT 0 0 1 0 0

Meaning: Bit 15 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction. ·

CONDITION BIT NO. 19 18 17 16 15

ASGN CONTENT 0 1 1 1 0

Meaning: Alter/skip macro-instruction condition is not
satisfied.

CONDITION BITNO. 19 18 17 16 15

CNT4 CONTENT 1 1 1 1 0

Meaning: The right (least significant) 4 bits of the Counter
Register are all ones.

\

CONDITION BIT NO. 19 18 17 16 15

CNT8 CONTENT 0 0 1 1 0

Meaning: All eight bits of the Counter Register are ones.

CONDITION BITNO. 19 18 17 16 15

COUT CONTENT 0 0 0 1 0

Meaning: The ALU Carry Out Flag bit was set by the last
ALU operation (tested before the Rotate/Shifter) of the
last Word Type 1 or 2 micro-instruction.

CONDITION BIT NO. 19 18 17 16 15
1-----·-

E CONTENT 0 1 0 0 1

Meaning: The Extend Register bit is set.

CONDITION BITNO. 19 18 17 16 15

FLAG CONTENT 0 1 0 0 0

Meaning: The CPU FLAG bit is set.

CONDITION BITNO. 19 18 17 16 15

FPSP CONTENT 0 0 1 1 1

Meaning: A special signal is present issued by certain non­
standard CPU Front Panels.

4-19

Microprogramming Language

CONDITION BIT NO. 19 18 17 16 15

INT CONTENT 1 1 0 1 0

Meaning: An Interrupt is pending.

CONDITION BIT NO. 19 18 17 16 15

IR2 CONTENT 0 1 1 1 1

Meaning: Instruction Register bit 2 is set.

CONDITION BIT NO. 19 18 17 16 15

NDEC CONTENT 1 0 0 1 1

Meaning: The "DEC M" (Decrement M-register) button
on the Front Panel was not actuated.

CONDITION BIT NO. 19 18 17 16 15

NHOI CONTENT 0 1 1 0 0

Meaning: The RUN/HALT switch on the Front Panel is
set to "Run" and there is no interrupt pending (i.e. no halt
and no interrupt).

Usage: This micro-order is recommended for use in long
I microprograms. (85 microseconds or longer is the criterion

used by Hewlett-Packard produced microprograms.) This
is necessary since microprograms cannot be interrupted. A
pending interrupt or halt condition is not detected unless a
specific test is made for them.

CONDITION BITNO. 19 18 17 16 15

NINC CONTENT 1 0 0 1 0

Meaning: The "INC M" (Increment M-register) button on
the Front Panel was not actuated.

CONDITION BITNO. 19 18 17 16 15

NLDR CONTENT 1 0 0 0 0

Meaning: The "IBL" (loader) button on the Front Panel
was not actuated.

CONDITION BIT NO. 19 18 17 16 15

NLT CONTENT 1 0 1 0 1

Meaning: The "+-" REGISTER SELECT LEFT button
on the Front Panel was not actuated.

4-20 OCT 1974

CONDITION BIT NO. 19 18 17 16 15

NMLS CONTENT 0 0 1 0 1

Meaning: Memory was not lost as a result of the last
power down or power failure.

CONDITION BIT NO. 19 18 17 16 15

NOP CONTENT 1 1 1 0 1

Meaning: No condition test is made; no jump occurs.

Usage: This is the default micro-order if none is specified
in the condition field.

CONDITION BIT NO. 19 18 17 16 15

NAST CONTENT 1 0 1 1 1

Meaning: The DISPLAY button on the Front Panel was
not actuated.

CONDITION BIT NO. 19 18 17 16 15

NRT CONTENT 1 0 1 0 0

Meaning: The"-+" REGISTER SELECT RIGHT button
on Front Panel was not selected.

CONDITION BIT NO. 19 18 17 16 15

NSFP CONTENT 1 1 0 0 1

Meaning: A standard Front Panel is not installed on the
CPU.

CONDITION BITNO. 19 18 17 16 15

NSNG CONTENT 1 0 0 0 1

Meaning: The INSTR STEP (Instruction Step) button on
the Front Panel was not actuated.

CONDITION BITNO. 19 18 17 16 15

NSTB CONTENT 1 1 0 0 0

Meaning: None of the following Front Panel buttons were
actuated:

INSTR STEP (Instruction Step)

"-~"REGISTER SELECT RIGHT

"+-" REGISTER SELECT LEFT

DISPLAY

IBL (Binary Loader)

INC M (Increment M-register)

DEC M (Decrement M-register)

STORE

RUN

PRESET

21MX

CONDITION BITNO. 19 18 17 16 15

NSTR CONTENT 1 0 1 1 0

Meaning: The STORE button on the Front Panel was not
actuated.

CONDITION BIT NO. 19 18 17 16 15

ONES CONTENT 0 0 0 0 1

Meaning: All 16 bits of the last output from the ALU were
set (tested before Rotate/Shifter) as a result of the last
Word Type 1 or 2 micro-instruction.

CONDITION BITNO. 19 18 17 16 15

OVFL CONTENT 0 1 0 1 0

Meaning: The Overflow Register bit is set.

CONDITION BIT NO. 19 18 17 16 15

RUN CONTENT 0 1 0 1 1

Meaning: The CPU is in RUN mode (the Front Panel
RUN flag is set).

CONDITION BIT NO. 19 18 17 16 15

RUNE CONTENT 1 1 1 0 0

Meaning: The four position STANDBY /OPERATE/
LOCK/R switch on the Front Panel is not in the LOCK
position.

CONDITION BITNO. 19 18 17 16 15

SKPF CONTENT 0 1 1 0 1

Meaning: The I/O signal SFS is present (I/0 time is T3 to
T5) and the addressed I/O device Flag is set or the I/O
signal SFC is present (I/0 time is T3 to T5) and the
addressed I/O device Flag is clear.

Usage: See section 3-25, Microprogramming Input and
Output Functions, for the use of the micro-order SKPF.

CONDITION BITNO. 19 18 17 16 15

SRGL CONTENT 1 1 0 1 1

Meaning: Bit 3 of the Instruction Register is s1:1t and bit 0
of the last output from the ALU was cleared as a result of
the last Word Type 1 or 2 micro-instruction.

Usage: This micro-order is used by the Basic Instruction
Set microprogram which implements the SLA and SLB
macro-instructions of the Shift/rotate Group.

CONDITION BITNO. 19 18 17 16 15

TBZ CONTENT 0 0 0 0 0

Meaning: The last output from the Rotate/Shifter onto
the T-bus was equal to zero as a result of the last Word
Type 1 or 2 micro-instruction.

Microprogramming Language

4-15. JUMP SENSE MICRO-ORDER

JUMP SENSE

RJS

BITNO. B
CONTENT G

Meaning: Perform the jump, if the jump condition is not
met. The CONDITION micro-order specifies the condition
under which a jump can take place; the RJS micro-order in
effect reverses the sense of the jump. For example, if a
conditional jump is specified if the Flag bit is set (jump if
Flag bit set), the RJS micro-order will reverse the
condition so that the jump occurs if the Flag bit is not set.

4-16. OPERAND MICRO-ORDER

OPERAND

An Address

BITNO. 13 12 11 10 9 8 7 6 6

CONTENT Bi1111ry Addr .. Equivalent

The address can be an octal, decimal or computed number:
Decimal number, d, in the range O to 511

Octal number, kB, in the range OB to 777B, where the
B signifies octal.

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB f. LABEL-kB

b. *-kB g. LABEL+d

c. *+d h. LABEL-d

d. *-d i. LABEL

e. LABEL+kB

where * means "this address" and LABEL means a
micro-instruction or pseudo-instruction label that is
defined elsewhere in the microprogram.

The target address of the jump is not relative and must be
within the current UlOO octal locations (two modules). The
complete absolute address must be specified. For example,
if a conditional jump 'micro-instruction is within Control
Store addresses 3000 and 3777, no target address may be
outside the range 3000 to 37°77. A target address of 3377B
would initiate a jump to the octal address 3377.

<Examples:

1005, 2632, 2632B, START, START-llB, END-11

4-21

Microprogramming Language 21MX

4-17. WORD TYPE 4 - UNCONDITIONAL JUMP

Character Column:

10 15 20 25 30 40 80

Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
-'\ri

Content: *or LABEL "JMP" or "JSB"
JUMP

MODIFIER lblankl lblankl OPERAND COMMENTS 'V-

Figure 4-7. Word Type 4 Micro-assembler Mnemonic Format

Bit No: 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fields: "JMP" or
"JSB" Op Code I zero) binary OPERAND JUMP

MODIFIER

Figure 4-8. Word Type 4 Binary Format

Word Type 4 consists of three micro-order classifications:

• "JMP" or "JSB" - Operation, code used in
conjunction with the JUMP MODIFIER, specifies
Word Type 4, an unconditional jump or subroutine
jump.

• JUMP MODIFIER - Specifies modification to the
OPERAND jump address.

• OPERAND - Target address of jump, prior to any
modification.

Micro-orders, except the OPERAND, are defined by the
mnemonic, binary equivalent, meaning, and, where
necessary, by conventions in their use.

4-18. "JMP" AND "JSB" MICRO-ORDERS

"JMP" or "JSB" BITNO. 23 22 21 20

JMP CONTENT 1 1 0 1

Meaning: Jump unconditionally to the address specified in
the OPERAND, modified according to the JUMP
MODIFIER micro-order.

"JMP" or "JSB" BITNO. 23 22 21 20

JSB CONTENT 1 1 0 0

Meaning: Perform a subroutine jump unconditionally to
the address specified in the OPERAND, modified
according to the JUMP MODIFIER micro-order. The
return address is stored in the Save register and recalled
by the RTN micro-order (see section 4-3, SPECIAL
Micro-orders for RTN definition).

4-22

4-19. JUMP MODIFIER MICRO-ORDERS

JUMP MODIFIER BITNO. 4 3 2 1 0

IOFF CONTENT 0 0 0 0 0

Meaning: Disable recognition of normal interrupts (does
not disable memory protect, parity, or power fail
interrupts). Perform an unconditional jump. No modifi­
cation is made to the jump OPERAND.

JUMP MODIFIER BITNO. 4 3 2 1 0

IOG CONTENT 1 0 0 1 0

Meaning: Freeze the CPU until time period T2. Execute
the I/O function according to the base set I/O macro·
instruction that is in the Instruction Register. Perform the
JMP or JSB modifying OPERAND bits 2 and 3 according
to the I/O instruction jump table (bits 6, 7, and 8 of the
I/O macro-instruction in the Instruction Register actually
determine the OPERAND address modification):

OPERAND
IR Contains IR Bits Bits 3 &2

I/O Macro-instruction 876 Replaced By:

MIAorMIB 100 11

LIA or LIB 1 0 1 10

OTA or OTB 11 0 0 1

HLT 000 00

CLO orCLF 001 00

STO or STF 001 00

SFC or SOC 010 00

SFS or SOS 0 11 00

STC or CLC 1 1 1 00

See section 3-25 and those following for a more complete
description of the use of the IOG micro-order.

21MX

JUMP MODIFIER BIT NO. 4 3 2 1 0

JEAU CONTENT 1 1 1 1 1

Meaning: Enable the EAU jump table. According to the
particular EAU macro-instruction held in the Instruction
Register, the least significant three bits (0-2) of the
OPERAND are replaced by EAU jump table bits (bits 4-9
and 11 of the Instruction Register actually determine the
OPERAND address modification):

EAU ThreeLSB's
Macro-instruction of Address

RRR 000

ASR 001

LSR 010

(not used) 011

RRL 100

ASL 101

LSL 110

MPY 111

JUMP MODIFIER BIT NO. 4 3 2 1 0

JIO CONTENT 1 1 0 1 0

Meaning: Perform the JMP or JSB modifying OPERAND
bits 2 and 3 according to the 1/0 instruction jump table
(bits 6, 7, and 8 of the 1/0 macro-instruction in the
Instruction Register actually determine the OPERAND
address modification):

OPERAND
IR Contains IR Bits Bits 3 &2

I/ 0 Macro-instruction 876 Replaced By:

MIA or MIB 100 1 1

LIA or LIB 101 1 0

OTA or OTB 110 01

HLT 000 00

CLO orCLF 001 00

STO or STF 001 00

SFC or SOC 010 00

SFS or SOS 0 11 00

STC or CLC 1 1 1 00

Microprogramming Language

JUMP MODIFIER BIT NO. 4 3 2 1 0

JTAB CONTENT 1 1 0 1 0

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram based on the eight most
significant bits of the Instruction Register. This is
accomplished via a table look up of the address in the Main
Jump Table for the basic instruction set. This micro-order
is executed independently of word types; hence JMP or
JSB need not be specified.

JUMP MODIFIER BIT NO. 4 3 2 1 0

J30 CONTENT 1 1 1 0 1

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 3 through 0 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4 3 2 1 0

J74 CONTENT 1 1 1 0 0

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 7 through 4 of the Instruction
Register.

JUMP MODIFIER BITNO. 4 3 2 1 0

RTN CONTENT 1 1 1 1 0

Meaning: Return to the address stored in the Save
Register as a result of a subroutine jump (JSB); if the
Save Register is equal to zero (no subroutine is active),
return to address 0 of Control Store to initiate the reading
of the next macro-instruction from Main Memory.

JUMP MODIFIER BIT NO. 4 3 2 1 0

STFL CONTENT 0 1 0 0 0

Meaning: Set the CPU Flag and then perform the JMP or
JSB to the OPERAND address. No modification is made
to the OPERAND address.

JUMP MODIFIER BIT NO. 4 3 2 1 0

UNCD CONTENT 1 1 0 0 0

Meaning: Perform the JMP or JSB to the OPERAND
address. No modification is made to the OPERAND
address.

Usage: This is the default micro-order if no JUMP
MODIFIER is specified.

4-23

Microprogramming Language

4-20. THE OPERAND MICRO-ORDER

OPERAND

An Address

BIT NO. 1s l 15 l • • • • • • • • •I s J 5

CONTENT Binary Address Equivalent

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range OB to 7777B where B
signifies octal

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB

b. *-kB

c. *+d

d. *-d

e. LABEL+kB

f. LABEL-kB

g. LABEL+d

h. LABEL-d

i. LABEL

where * means "this address" and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram.

Examples:

*+ 11B, *+9, HERE+5, ST ART

4-21. PSEUDO INSTRUCTIONS

There are five pseudo instructions recognized by the micro-
1 assembler: DEF, EQU, ONES, SKP, and ZEROES.

4-22. DEF

Fields:

Character
Column:

Field 1

LABEL
Content: (optional)

4-24 OCT 1974

10 15 20
j

Field 2

"DEF"

21MX

The DEF statement creates a 24 bit micro-instruction
word in ROM the contents of which is a 12 bit binary
address defined by "ADDRESS" in the micro-assembler
input record (Field 6). The binary address is associated in
the microprogram with the optional LABEL, if defined.

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range OB to 7777B, where B
signifies octal

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB

b. *-kB

c. *+d

d. *-d

e. LABEL+kB

f. LABEL-kB

g. LABEL+d

h. LABEL-d

i. LABEL

where * means "this address" and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram.

Examples of DEF statements:

Fields:

Character
Column:

Content:

25
i _J_

Fields 3-5

(blank)

10

Field 1 Field 2

DEF
AD1 DEF

DEF

30

Fleld 6

ADDRESS

30

Field 6

SRF+150
ASGNOP
416B

40 80

F;old7 ~
COMMENTS

21MX Microprogramming Language

4-23. EQU

Fields:

Character
Column:

1

Content:

10

Field 1

LABEL

15 20

Field 2 Field 3

"EQU" (blank)

The EQU statement associates the stated LABEL with a
12 bit address. This statement does not result in an
address being stored in ROM. The ADDRESS can be a
decimal, octal or computed number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range OB to 7777B, where B
signifies octal

Computed number, c, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB

b. *-kB

c. *+d

d. *-d

e. LABEL+kB

4-24. ONES

Fields:

Character
Column:

Field 1

Content: LABEL

10 15 20

Field 2 Field 3

"ONES" (blank)

The ONES statement creates a 24 bit micro-instruction
word in ROM consisting of ones in all 24 bits.

Example of a ONES statement:

Fields:

Character
Column:

Content:

10

Field 1

NEG 1

Field 2

ONES

25 30 40 80

Field 4 Field 5 Field 6 Field 7 .:r=
(blank) (blank) ADDRESS COMMENTS

f. LABEL-kB

g. LABEL+d

h. LABEL-d

i. LABEL

where *means "this address" and LABEL means a
micro-instruction label that is defined in the micro­
program before this statement.

Examples of EQU statements:

Character
Column:

Fields: Field 1

HALT
Content: RELO

START

25

Field4 Field 5

(blank) (blank)

10

Field 2

EQU
EQU
EQU

30

Field 6

(blank)

30

Field6

400B
6000B
RELO

40 80

Field 7 .,q
COMMENTS

4-25

Microprogramming Language

4-25. SKP

Character
Column:

Fields: Field 1

Content: (blank)

10 15 20

Field 2 Field 3

"SKP" (blank)

The SKP statement commands the micro-assembler to
skip to the Top of the next page (TOP OF FORM
command) during the listing of the microprogram. No
locations in ROM are used, when this statement is
specified.

Example of a SKP statement:

Character
Column:

Fields:

Content:

4-26. ZEROES

Character
Column:

Fields: Field 1

I Content: LABEL

10

Field 1

10

Field 2

"ZEROES"

Field 2

SKP

15 20

Field 3

(blank)

The ZEROES statement creates a 24 bit micro-instruction
word in ROM consisting of zeroes in all 24 bits.

Example of a ZEROES statement:

Fields:

Character
Column:

1

I Content:

Field 1

NULL

4-26 OCT 1974

10

Field 2

ZEROES
'

40

Field 7

NO BITS

21MX

25 30 40 80

Field 4 Field 5 Field 6 Field 7
t-

(blank) (blank) (blank) COMMENTS 'v-

25 30 40 80

F;old7 t Field 4 Field 5 Field 6

(blank) (blank) (blank) COMMENTS

I
111;u.1t1

MICROPROGRAMMING SOFTWARE! v I

Two sets of programs are provided to assemble, debug,
and implement microprograms. One set operates in the
BCS (Basic Control System) environment and the other
operates in the DOS-III (Disc Operating System)
environment.

5-1. MICROPROGRAMMING SOFT­
WARE SUMMARY

The following microprogramming software is provided:

• A two-pass micro-assembler, which converts the user's
source microprogram record into an object tape and
microcode listing.

• A Micro Debug Editor, which reads the object tape into
Main Memory, outputs it to Writable Control Store
(WCS), and allows the user to run the microprogram
in WCS. The user can set breakpoints, change micro­
instructions, change registers, etc. This program also
provides the ability to punch the paper tapes that are
used to create ("burn") programs into the ROM.

• A WCS 1/0 Utility subroutine, callable from FOR­
TRAN and ALGOL libraries, that allows a micropro­
gram, stored in a regular FORTRAN, ALGOL, or
Assembler program buffer (in Main Memory), to be
written into WCS.

5-2. MICRO-ASSEMBLER

The Micro-assembler accepts 80-character fixed-field card
format records from a card reader, paper tape reader, or
disc (using the DOS-III JFILE directive). Each record
contains one micro-instruction coded in mnemonic format
as described in Section IV of this manual. The
micro-assembler processes input records and produces an
object program paper tape which contains micro­
instructions in binary format. Optionally output is a
microprogram listing in both mnemonic and binary
format, a symbol table, and error messages.

5-3. HARDWARE ENVIRONMENT

The BCS version requires the following as the minimum
hardware:

a. An HP 2105 or HP 2108 Processor with 8K of Main
Memory.

b. A Teleprinter.

This minimum system means that the assembly of the
microprogram will be slow, since all input, listing, and
punching must take place on the teleprinter.

The following additional hardware is supported:

a. Paper Tape Reader for source microprogram input.

b. Paper Tape Punch for binary object tape output.

c. Card Reader for source microprogram input.

d. Line Printer for microprogram assembly listing and
symbol table listing.

e. 7970 or 3030 Magnetic Tape Unit for temporary stor­
age of source microprogram that is input to Pass 2 of
the micro-assembler.

The DOS-III version of the micro-assembler requires the
same hardware as the DOS-III system.

5-4. MICRO-INSTRUCTION SOURCE RECORD

A micro-instruction source record has the following
characteristics:

a. Length < 80 characters.

b. If not on a punched card, terminated by RETURN
and LINE FEED.

c. Seven fields with the starting column of each field as
follows:

Field Number Character Column

1 1
2 10
3 15
4 20
5 25
6 30
7 40

Figure 5-1 shows a card record.

Refer to Section IV, "Microprogramming Language," for
a description of the micro-orders appropriate to the seven
fields.

5-1

Microprogramming Software

Card
Column:

I
1
I

I

'

FIELD
1

l
I

10

J_
l
15

FIELD FIELD
2 3

21MX

l l l l
I

2~ io 46 """\
20

FIELD FIELD FIELD FIELD 4 5 6 7

./

Figure 5-L Micro-instruction Card Source Record

5-5. MICRO-ASSEMBLER CONTROL RECORD

Control statements are interspersed with micro-assembler
language statements and specify control over the
assembly process. For example, they may define the
logical unit number of an input or output device or
suppress listings.

There is one control statement per Control Record. If not
on a card, it must be terminated by RETURN and LINE
FEED.

Two control statements are required for every micropro­
gram:

a. $ORIGIN statement
b. $END statement

All control statements start with a "$" (Dollar character)
in column L No intervening spaces are allowed in any
control statement other than as specified. Details on each
statement text and meaning are given below.

I $END I
General Form: $END

Meaning:

Purpose:

Example:

End of microprogram

Required as the last statement in
every microprogram

$END

I $EXTERNALS

5-2

General Form: $EXTERNALS = namelbaddressl,
bnamebaddress2,

b . .. namen baddressn

A comma and a space (b) separate each external name and
address pair. Each "name" conforms to the Label defini­
tion in Section 4-1 and "address" means an octal address
in the range 0 - 7777.

Meaning: Define the following label names:
namel refers to address!
name2 refers to address2

namen refers to addressn

Purpose: Each $EXTERNALS control state­
ment provides for one or more branch
(JMP or JSB) target addresses out­
side of the microprogram.

Example: $EXTERNALS = OUTPUT 1012,
CHAR 736.

I $FILE I (Used by DOS-III systems only)

General Form: $FILE = filename

The filename must be in accordance
with DOS-III file name requirements.

Meaning: The object output file name for this
microprogram is "filename."

Purpose:

Example:

Provides the DOS-III micro­
assembler with the name of the disc
file into which the binary object code
is to be stored.

$FILE=MOBJ

Note: Prior to assembling a microprogram with
a $FILE control statement, the user must
have reserved a disc file using the DOS­
HI ":ST,B, ... " directive.

21MX

I $INPUT I (Used by BCS systems only)

General Form: $INPUT = lun

Meaning:

The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the device
through which all subsequent input
(to the next $END statement) is to be
read is "lun."

Purpose: When the assembly process is begun
in BCS systems, the micro-assembler
expects the first source statement to
be entered through the system con­
sole device (logical unit number 5).
The user may enter the whole source
program through the system console
device. Normally, however, the user
enters a $INPUT command speci­
fying the logical unit number of the
card reader or paper tape reader from
which the rest of the source program
is to be read.

Example: $INPUT = 12

I $LIST I
General Form: $LIST = lun

The logical unit number, lun, must be
octal and in the range 1 - 74.

Meaning: The logical unit number of the listing
device is "lun".

Purpose: To cause the assembly listing to be
printed on the device having the spec­
ified unit number. If omitted, logical
unit number is assumed to be 6
(standard list device).

Example: $LIST = 16

I $NOPUNCHI

General Form: $NOPUNCH

Meaning: Suppress punching of binary object
tape.

Purpose: To perform a micro-assembly for
listing and diagnosis only.

Example: $NO PUNCH

I $ORIGIN

General Form: $ORIGIN = nnn

Meaning:

The origin, nnn, must be octal and in
the range 0 - 7777.

Set microprogram origin at octal
address nnn in Control Store.

Purpose:

Example:

I $RCASE

Microprogramming Software

Every microprogram must have its
program address origin defined. New
origins may be specified within the
microprogram.

$ORIGIN = 427

General Form: $RCASE

Meaning: Punch a special 32-micro-instruc­
tions/record object tape.

Purpose: This special object tape is reserved for
system maintenance. Refer to Section
5-6 Micro-Assembler Output for a
description of this special object tape.

Example: $RC ASE

I $OUTPUT

General Form: $OUTPUT = lun
The logical unit number, lun, must be
octal and in the range 1 - 74. This
statement may come anywhere before
the $END statement.

Meaning: lun is the logical unit number of the
output device.

Purpose: To specify the device on which the
micro-assembler object code is to be
output. If this statement is omitted,
logical unit of 4 is assumed.

Example: $OUTPUT= 10

I $PASS 2 (Used by BCS systems only)

General Form: $PASS2 = lun
The logical unit number, lun, must be
octal and in the range 1 - 7 4. If present,
this must be the first statement in the
source deck or tape.

Meaning: lun is the logical unit number of the
magnetic tape unit onto which all sub­
sequent micro-assembler input is to be
written.

Purpose: To cause all source input to be
recorded on magnetic tape for use as
input to Pass 2 of the micro-assem­
bler. If this control statement is
omitted, the computer halts at the end
of Pass 1 to allow the operator to re­
load the microprogram source into
the "$INPUT" device.

Note: The only magnetic tape units supported
by the micro-assembler are the HP 3030
and HP 7970.

Example: $PASS2 23

OCT 1974 5-3

Microprogramming Software

$SUPPRESS

General Form: $SUPPRESS

Meaning:

Purpose:

Example:

$SYMTAB

Suppress all warning error messages.

To cut down the volume of messages
to the console device. Fatal error mes·
sages will still be printed.

$SUPPRESS

General Form: $SYMTAB

Meaning:

Purpose:

Example:

Print symbol table

To provide the user with label names
and corresponding octal addresses
used in his microprogram.

$SYMTAB

5-6. MICRO-ASSEMBLER OUTPUT

This sectio,n describes all forms of output from the micro­
assembler. They are:

• Binary Object
• Symbol Table
• Source and Binary Microprogram Listing
• Error Messages

5-7. BINARY OBJECT OUTPUT

The Standard Object Tape output by the micro-assembler
to paper tape or a disc file consists of one or more
Instruction Records, the format of which is shown in
Appendix A, Figure A-1. One Instruction Record holds up
to 27 micro-instructions and five words of header
information. Each micro-instruction requires 32 bits or two
words in the format: an eight bit address and 24 bits for the
micro-instruction. Hence the length of the record =

5 words of header

2n words for n micro-instructions (2 words for each
micro-instruction)

5+2n words for one Instruction Record

No more than 27 micro-instructions are written into an
Instruction Record. Hence the maximum length =
5+(2x27)=59 words. The last object record is a four word
End Record. When the microprogram consists of more
than 27 micro-instructions, a series of Instruction Records
are produced with the last one holding 27 or less micro·
instructions. For example, if 57 micro-instructions have
been assembled, three Instruction Records and an End
Record are required consisting of the following:

5-4

21MX

a. Instruction Record 1 holds 27 micro-instructions and
consists of

5 words of header

54 words for 27 micro-instructions

59 words

b. Instruction Record 2 holds 27 micro-instructions and
consists of

5 words of header

54 words for 27 micro-instructions

59 words

c. Instruction Record 3 holds 3 micro-instructions and
consists of

5 words of header

6 words for 3 micro-instructions

11 words

d. The End Record consists of

4 words

133 words for the entire microprogram Binary Object.

The Standard Object format is accepted by all programs
which accept standard relocatable format. Thus a
Standard Object tape can be stored in a DOS-III file using
the ";STORE,R, ... " directive. However, if the DOS-III
user wants the Binary Object stored automatically in a
disc file by the micro-assembler, the DOS-III directive
"STORE,B, ... " must have previously been used to
reserve a disc file.

The Micro-assembler can also produce a non-standard
object as the result of the inclusion of the $RCASE control
statement. This optional object is the HP ROM Simulator
Object tape. The format of this tape is shown in Appendix
A, Figure A-2.

5-8. SYMBOL TABLE LISTING

If the user has a $SYMT AB control statement in his
microprogram source input, then the micro-assembler will
print a symbol table on the device with logical unit number
6 or on the device defined by the $LIST control statement,
if present.

An example of a symbol table is shown in Figure 5-2.

On the left are the symbols or labels in the microprogram.
On the right is the value of the symbol; that is the six digit
absolute octal address of the symbol. Where X follows the
address, the symbol has been defined by a $EXTERNAL
control statement.

21MX Microprogramming Software

5-9.

SYMBOL TARLE

1"10VE
GOTO
RET
LAST
OUT
ERRl

0024l?X
003421)(
002427X
002717X
002011
002012

Figure 5-2. Symbol Table

MICROASSEMBLY LISTING

5-10. MICRO-ASSEMBLER ERROR MESSAGES

During the assembly process the micro-assembler checks
each instruction for errors. If an error is detected, an error
message of the following general form is printed in the
Micro-assembly Listing.

**ERROR eeee IN LINE nnnn

where
eeee
is an Error Code defined in Table 5-1 and

nnnn
is a line number in the Micro-assembly Listing.

Table 5-1 gives the meaning of each error code and the
recovery procedure. Note that Figure 5-2 holds examples
of two error messages in lines 9 and 11.

5-11. DOS-III OPERATION OF MICRO­
ASSEMBLER

Before using the DOS-III version of the Micro-assembler,
the following items must be available.

Unless suppressed by the$NOLISTcontrol statement, the
micro-assembler provides a listing like the one shown in
Figure 5-3. This listing is associated with the symbol table
illustrated in Figure 5-2.

a. A current DOS-III system.

b. A source microprogram, on cards, paper tape, or in a
source file on disc.

$0RIGIN=2000R FIRST ADDRESS OF MOOULE 4
$SYMTAA PRINT SYMBOL TABLE

000 l
0002
0003
I) 004

$EXTERNAL=MOVE 2412, GOTO 342lt RET 2427• LAST 2717
* P2=A&Pl

0005 2000 220 074457
0006 2001 017 126157
0007 2002 264 101557
0008 2003 324 140531

**FRROR 0008 IN LINE 0009
0009 2004 320 000030
0010 2005 000 075717

**ERROR 0003 IN LINF 0011
0011 2006 017 136757
0012 2007 000 000461
0013 2010 177 166017
0014 2011 017 136776 OUT
0015 2012 344 001757 ERRl
0016 2013 320 100470
0017 2014 340 001757 ERR2
0018 2015 320 100470
0019 $END
** 0002 ERRORS**

Line ROM Bits Bits
Number Address 23-16 15-0

Binary
Micro-instruction

Field
1

READ

F:NVE
JMP

INC M
PASS l
ADO 512

CNDX E

Jf'<P CND~ OVFL
INC P

p
A
TAR
ERRl

EHR2
p

RFAO INC M P
MPCK INC M TAR

WRTE PASS TAB Sl2
RTN

IMM LOW S 0
JMP OUT
IMM HIGH S 0
JMP OUT

Field Field Field Field Field
2 3 4 5 6

READ ADDEND P
PUT AUGEND IN L AND ENABLE E ~ 0
ADO MEMORY TO L AND STORE IN Sl2
IF E SET• GO TO ERRl

IF 0 SET, GO TO ERR2
BUMP P FOR NEXT PARAMETER

RFAD NEST PARAMETER P2 ADDRESS
PUT IN M ANO CHECK FOR M P ERR
PUT ADD RESULT INTO MEM ADD P2

THE RETURN
SET UPPER AYTE FOR E ERR
RETURN
SET LOWER BYTE FOR 0 ERR
RETURN

Field
7

Figure 5-3. Micro-Assembly Listing

5-5

Microprogramming Software 21MX

c. The Micro-assembler program named MICRO stored
in the DOS-III user library. If MICRO still is on re­
locatable object paper tape (HP 12978-160001), it can
be loaded in the same way as any other relocatable
object program.

a. If there is a $FILE control statement in the micropro­
gram source, a binary file must be reserved on the disc
before beginning the micro-assembly process to hold
the relocatable object. The name of the reserved disc
file must be the same as the one specified in the $FILE
control statement.

For the detailed description of DOS-III operatiop, see HP
24307B DOS-III Reference Manual (HP 24307-90006).

b. Place the microprogram source in the input device;
tum the device on; tum on the paper tape punch and
the list device.

Error Code

1

2

3

4

5

6

7

8

9

10

11

OR aaaa

ABORT!

5-6

Table 5-1. Micro-assembly Error Messages

Meaning/Recovery

Duplicate Label. The statement label of the micro-instruction in line nnnn is the same
as another statement in the microprogram or the same as a declared $EXTERNAL
symbol. Assign a new statement label and reassemble.

Illegal Control Statement. Correct control statement in line nnnn and reassemble.

Illegal Field 2 Micro-order. A NOP is inserted in field 2 and assembly continues. Cor­
rect line nnnn and reassemble.

Illegal Field 3 Micro-order. A NOP is inserted in field 3 and assembly continues. Cor­
rect line nnnn and reassemble.

, Illegal Field 4 Micro-order. A NOP is inserted in field 4 and assembly continues. Cor­
rect line nnnn and reassemble.

Illegal Field 5 Micro-order. A NOP is inserted in field 5 and assembly continues. Cor­
rect line nnnn and reassemble.

Illegal Field 6 Micro-order. A NOP is inserted in field 6 and assembly continues. Cor­
rect line nnnn and reassemble.

Illegal JMP or JSB Address. Address is outside permitted range, or target label
address is undefined. A value of 0 will be inserted into address field of line nnnn and
assembly continues. Redefine address and reassemble.

Microprogram Too Large. The last relative address in the program is 400 or greater. A
$ORIGIN statement must be changed or the program broken up into smaller parts
before reassembly.

Missing $ORIGIN Control Statement. At least one $ORIGIN control statement is
required. Insert $ORIGIN statement and reassemble.

Illegal Word Type 2 Operand. Operand of the IMM micro-instruction is outside the
permitted range. A value of 0 is. inserted into the operand and assembly continues.
Correct line nnnn and reassemble.

Insufficient DOS-III File Space Reserved. Reserve a binary file with more sectors for
storage of the file named in the $FILE control statement (aaaa is an address in the
micro-assembler and can be disregarded). See DOS-III manual section 15 under
Error Conditions.

An irrecoverable error has occurred; correct error and reassemble.

21MX

c. Summon the Micro-assembler with statement

:PR,MICRO,[pl,p2,p3,p4,99]

where
pl =the input device logical unit number

p2 = list device logical unit number

p3 = paper tape punch device logical unit number

p4 = maximum number of lines-per-page on the list
device.

If 99 is entered for any of the above parameters, that
parameter and all those that follow are defaulted to
"standard" values.

d. The program title

MICRO-ASSEMBLER

is printed and Pass 1 begins. If a $SYMT AB control
statement is in the source microprogram, the symbol
table is printed at the conclusion of Pass 1. Pass 2
begins immediately (from disc) and the listing and
relocatable object tape are output. Micro-assembly is
complete.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro­
assembler will cycle in a loop until the
punch is turned on.

5-12. BCS OPERATION OF MICRO-ASSEMBLER

Before proceeding, the following items must be available:

• An absolute BCS binary tape.

• A reloctable object tape of the Micro-assembler pro­
gram MICRO (HP 12978-160003).

• A source microprogram either on cards or paper tape.

For a detailed description of BCS usage, see the Basic Con­
trol System manual (HP 02116-9017).

The following procedure need be performed only once.
When an absolute binary tape of the Micro-assembler is
punched, it is used as described in the procedure
"Executing the Micro-assembler."

Making an Absolute Micro-assembler tape:

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Register
and clear all other Switch Register bits.

Microprogramming Software

c. Place the MICRO relocatable object tape in the paper
tape reader. Check that the paper tape reader and the
console device are on. Turn on the paper tape punch.
Press PRESET and RUN on the CPU front panel.
MICRO reads in and absolute binary tape is punched.

d. The message

*LOAD

is printed and the computer waits. Set Switch Register
bits 2 and 14 leaving all others clear. Load BCS
Library tape into the paper tape reader. Press RUN.

e. The BCS Library tape reads in and the rest of the abso­
lute binary tape is punched. Linkage information is
printed on the console device.

This is the absolute binary tape of MICRO, used for input
to the next step.

Executing the Micro-assembler:

a. Load the MICRO absolute binary tape using the Basic
Binary Loader.

b. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-ASSEMBLER

is printed followed by a request for the logical unit
number of the source input device.

c. Enter the logical unit number followed by carriage
return/line feed. Pass 1 now begins. If a $SYMT AB
control statement is in the microprogram source, the
symbol table is printed at the conclusion of Pass 1.
(See Section 5-5 for a description of the $SYMT AB
control statement.)

d. Turn on the paper tape punch.

e. Pass 2 begins immediately. If no $PASS2 control
statement was included in the source, the message

RELOAD SOURCE, PRESS RUN

is printed. Reload the source microprogram into the
input device and then press RUN on the front panel of
the computer.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro­
assembler will cycle in a loop until the
punch is turned on.

If a teletype is used for both listing and punching, the
computer halts (T-register = 102052) so that the oper- I
ator can press the paper tape punch ON button to
punch the microprogram object tape. The operator
then presses RUN on the computer front panel.

OCT 1974 5-7

I

Microprogramming Software

When the paper tape is punched, another halt (T -
register= 102053) occurs, so that the paper tape punch
button can be set to OFF. Press RUN on the computer
front panel.

f. Pass 2 completes micro-assembly. The microprogram
object tape is complete. To assemble another micro­
program proceed from step b.

5-13. MICRO DEBUG EDITOR

The Micro Debug Editor (MDE) makes it possible to load
the object microprograms output from the Micro­
assembler into a Writable Control Store module. It also
provides the ability to debug microcode stored in the WCS
and to "burn" microprograms into ROM chips.

Before using the Micro Debug Editor to debug micro­
programs, the Writable Control Store PCAs must be set to
the required control store module numbers. This is
accomplished by the installation of a module selection
Jumper Assembly (HP Part Number 5060-8342). Refer to
Section 6 of this manual for installation of the module
selection Jumper Assembly and the WCS PCAs.

ASMB,R,B,L,T
NAM TEXT,6
ENT TEST,MACRO

TEST NOP

MACRO OCT 105xxx

DEF Pl
DEF P2

DEF Px

JMP TEST,I

Pl (parameter 1 value)
P2 (parameter 2 value)

Px (parameter x value)

END

21MX

5-14. HARDWARE ENVIRONMENT

The BCS version requires the following minimum
hardware:

a. HP 21MX Series Computer with 8K of Main Memory

b. A console device

c. A paper tape reader

d. One or more WCS PCA's, depending on the size of the
microprogram to be debugged.

e. If a ROM program tape is to be punched, a paper tape
punch is also required.

The DOS-III version of the MDE requires the same mini­
mum hardware as the DOS-III system.

5-15. INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run for debugging
purposes (as opposed to being run merely to punch ROM
program tapes), the user must supply an initialization
program. The initialization program is an assembly lan­
guage program that prepares the necessary parameters in

Assembly parameters
Program name (DOS-III)
Entry points

Any initialization procedure re­
quired by the microprogram

(or lOlxxx) Instruction that calls
the user microprogram

Parameter addresses required by
the microprogram

Return to calling program (MDE)

Parameter values

Figure 5-4. General Format of the Initialization Program

5-8 OCT 1974

21MX

Main Memory and then executes a lOlxxx or 105xxx
macro-instruction.

The name of the initialization program must be TEST
(required in BCS systems, is a NAM TEST statement; in
DOS-III systems a NAM TEST, 6 statement). The
program must also have the symbol "MACRO" declared
as an entry point where MACRO is the symbolic address
(label) of the macro-instruction (lOlxxx or 105xxx) which
calls the microprogram under test. Note that there must
only be one such macro-instruction in the TEST
initialization program.

Figure 5-4 holds the general structure of the initialization
program.

This initialization program is called as a relocatable sub­
routine by MDE. Thus, its name is one of the references
that must be satisfied when loading MDE.

A note of caution: a microprogram cannot be debugged
using MDE unless the microprogram has:

a. An entry point which is a "JMP" micro-instruction of
Word Type 4 (described in Section 4-17).

b. The micro-instruction jumped to by the JMP at the
entry point must not contain a "READ" micro-order.

An example of a short initialization program is shown in
Figure 5-5.

Macroprogram in Main Memory

Microprogramming Software

5-16. USING THE MICRO DEBUG EDITOR

Section 5-37 describes how to execute MDE using the
DOS-III operating system. Section 5-38 describes how to
execute MDE using the BCS operating system.

Before using the Micro Debug Editor to debug a micro­
program, the Writable Control Store PCAs must have the
correct terminal board plugged in, to establish the Control
Store module number. Refer to Section VI of this manual
for a description of setting module numbers in a Writable
Control Store PCA.

When the module number has been set in the Writable
Control Store PCA and it is plugged into the correct I/O
slot, the user loads the microprogram object tape
(produced by the Micro-assembler) using the Micro Debug
Editor LOAD command. The microprogram is then output
to the Writable Control Store using the WRITE
command.

When the user is ready to execute his microprogram, the
EXECUTE command is used. For the microprogram to
execute properly, the following conditions must hold:

a. The module that the microprogram was written into
matches the range of addresses used by the micropro­
gram. For example, a microprogram whose addresses
are in the octal range 2400 to 2777 must be stored in
a Writable Control Store PCA which has been set to
module 5.

Microprogram to be executed in WCS

NAM TEST LABEL OP SPEC ALU STOR S-BUS
ENT TEST,MACRO

MACRO OCT 105200 $ORIGIN=2000B
JMP TEST,! JMP START
END $0RIGIN=2020B

START NOP CLFL INC M p

RTN A Sl2
$END

Figure 5-5. Test Program Call to Microprogram

5-9

Microprogramming Software

b. The macro-instruction in the TEST program must ini­
tiate entry into Control Store at the proper address of
the microprogram to be tested.

Micro Debug Editor results are unpredictable if either of
the above conditions are not met.

When MDE is executed, it prints the input prompt

COMMAND?

on the system teleprinter.

Respond by entering one of the input, edit, output, or
debug commands described in Table 5-2 and the following
pages. In most cases, the first letter of the command is
sufficient to specify it to MDE. The two commands,
"MOVE" and "MODIFY", require at least three letters to
identify the command. After MDE has performed the
specified operation, it again prints COMMAND? to repeat
the cycle.

Terminate an MDE run by entering the FINISH
command.

There are 13 MDE commands which are summarized in
Table 5-2. A detailed description of each command follows.
Whenever a logical unit number (lun) is called for, it must
be entered in octal.

Note that the last octal 45 words of the lowest numbered
WCS module loaded with a microprogram are used by
Micro Debug Editor for its own resident microcode. If
these locations are required by the user microprogram
under test, use the MOVE command to relocate the MDE
microcode before loading the user microprogram.

The Micro Debug Editor uses a Main Memory buffer to
hold the microprogram object code. When the micropro­
gram is loaded from an object tape, it is stored into this
buffer. Most MDE commands make modifications or
transfers to and from this buffer.

Use of the PREPARE command to punch the six ROM
microprogram mask tapes has the following restriction.
This buffer must have been loaded using an object tape
produced by the micro-assembler and the buffer must not
have been modified.

5-17. INPUT COMMANDS

5-18. LOAD[,X]

Meaning:Load the object microprogram produced by the
Micro-assembler from disc or paper tape into the MDE
buffer. The logical unit number (lun) of the input device is
x.

Usage: The Micro-assembler control statement $FILE can
be used to specify (during assembly) the name of the
DOS-III file into which the object code is to be stored. In
the DOS-III version of MDE, if the logical unit number

5-10

21MX

entered is that of the disc, MDE will respond with a
request for the name of the file in which the object code is
to be stored: ·

FILENAME?

Enter the file name given to the object code by the $FILE
control statement.

Note: When loading the object microprogram
for output to WCS (instead of punching
ROM tapes), the LOAD command must
be followed immediately . by a WRITE
command to the appropriate WCS · PCA.
No intervening commands are allowed.
This allows the Micro Debug Editor to
build a table relating microprogram
addresses to WCS logical unit numbers.

Table 5-2. Micro Debug Editor Commands

INPUT

Commands:

EDIT

LOAD[,X]
READ,X

Commands: SHOW,xxxx[,yyyy]
MODIFY,xxxx[,yyyy]

OUTPUT

Commands: DUMP[,X]

TERMINATION

Command:

DEBUG

WRITE,X

PREP ARE[,X]
VERIFY[,X]

FINISH

Commands: BREAK,yyyy
CHANG E[,mnemonic]
EXECUTE[,O or yyyy]

RELOCATE MDE WCS-RESIDENT
MICROCODE

Command: MOVE,yyyy

Note

The brackets indicate that the parameter may be
omitted.

21MX

5-19. READ,X

Meaning: Read the contents of a WCS into the Micro
Debug Editor buffer.Xis the logical unit number of the
wcs.

Usage: If ·no WCS is on the specified logical unit, the
MDE buffer is unchanged. No notification is made to the
user that the buffer is unchanged or that no WCS is on the
logical unit specified. Thus, if READ or SHOW is being
used to insure that a previous WRITE executed properly
to the same (non-WCS) logical unit, the MDE buffer will
still hold the data that was assumed to be written to that
logical unit. The user could incorrectly assume that the
non-existent WCS holds the proper data.

5-20. EDIT COMMANDS

5-21. SHOW,xxxx[,yyyy)

Meaning: Display the WCS contents on the console
device, where xxxx is the beginning address and yyyy is
the ending address. Only the contents of the address xxxx
are displayed, if yyyy is omitted.

Usage: See Usage under 5-19, READ,X.

The display format of each 24-bit word is:

aaa mmm nnnnnn

where aaa is the control store address of the location being
displayed, mmm is the octal representation of bits 23-16 of
the location, and nnnnnn is the octal representation of bits
15-0 of the location.

5-22. MODIFY,xxxx[,yyyy)

Meaning: Change the contents of the MDE buffer and the
WCS where xxxx is the beginning WCS address and yyyy
is the ending WCS address. Change WCS address xxxx if
yyyy is omitted.

Usage: See Usage under 5-25, WRITE X.

"MOD" is the minimum input required to initiate the
modify command. xxxx and yyyy must be absolute WCS
addresses in. a single WCS module. One at a time, the
contents of each location are printed on the console device
in the same format as the SHOW command above.
Following the location contents, the operator enters the
new location contents followed by a CARRIAGE
RETURN and LINE FEED.

If fewer than 3 digits are entered for mmm or fewer than 6
digits are entered for nnnnnn, the number entered is right
justified with zeros automatically filled to the left. To
specify that no change is to be made, enter an asterisk(*),
instead of mmm or nnnnnn.

Microprogramming Software

Example:

MOD,4000,4003
4000 123 456777 * ,123456

leaves bits 23-16 unchanged and sets bits 15-0 to 123456 in
WCS location 4000.

4001 123 456777 6,123

is equivalent to entering 006,000123; bits 23-16 are set to
006 and bits 15-0 are set to 000123 in location 4001.

4002 123 456777 123, *

sets bits 23-16 to 123 and leaves bits 15·0 unchanged in
location 4002.

4003 123 456777 *,*

makes no change to location 4003.

5-23. OUTPUT COMMANDS

5-24. DUMP[,X]

Meaning: Punch the entire contents of the MDE buffer on
the paper tape punch. X is the logical unit number of the
paper tape punch. If X is omitted, it is assumed to be 4.

Usage: The DUMP command must be preceded by a
READ or LOAD command to fill the MDE buffer. The
tape produced is in the same format as the object tape
produced by the Micro-assembler. If the tape is reloaded
into the MDE buffer, the buffer cannot be used to punch
(PREPARE command) a set of six pROM mask tapes.
The primary use of this tape is to enable the user to save
the results of a microprogram debug session for
resumption later.

5-25. WRITE,X

Meaning: Write the contents of the MDE buffer into the
WCS. X is the logical unit number of the WCS.

Usage: Since the Micro Debug Editor addresses the WCS
by logical unit number, it is the responsibility of the user
to insure that a WCS is installed with logical unit number
X and that it is set to the proper module for the micro­
code to be stored. If no WCS is on the specified logical
unit, no notification is given to the user that a WRITE or
MODIFY command failed to transmit data to the non­
existent WCS.

5-26. PREPARE[,X]

Meaning: Punch a set of six pROM mask tapes each
headed by three lines of l.D. and a checksum on the paper
tape punch. Xis the logical unit number of the device. If X
is omited, it is assumed to be 4.

5-11

Microprogramming Software

Usage: Following entry of the PREP ARE command, a
cycle of dialogue is initiated between the operator and the
console device. In the following procedure, the underlined
characters indicate operator input is required at the
console device. Each entry must be followed by a
CARRIAGE RETURN and LINE FEED.

a. Turn on the paper tape punch. The. message cycle
starts with:

GENERATION OF MASK BITS 23-20

where 23-20 represents the 4 bit range of bits to be
punched into the first mask tape.

ENTER 3 LINES OF l.D. INFORMATION

LINE 1 - key in first line of tape I.D.

LINE 2 - key in second line of tape l.D.

LINE 3 - key in third line of tape l.D.

Enter up to 72 characters of identification information
in each line.

b. Following entry of the third l.D. line, the mask tape is
punched for mask bits 23 to 20. This is for ROM chip
number 6. The following cycle of dialogue is repeated
for each of the remaining five mask tapes:

GENERATION OF. MASK BITS UU-LL

UU - LL is the range of bits to be punched.

ANY CHANGE OF l.D. INFO IN LINE l? key in N
(no) or Y(yes) and new line 1 l.D.

LINE 2? key in N or Y and new line 2 I.D.

LINE 3? key in N or Y and new line 3 l.D.

c. The next mask tape is punched. When all. six mask
tapes have been punched, the following message is
output:

GENERATION OF TAPES COMPLETED

The six mask tapes have the following characteristics:

For Module ROM
UU-LL Punch Sequence Chip No.

23-20 First tape 6
19-16 Second tape 5
15-12 Third tape 4
11-08 Fourth tape 3
07-04 Fifth tape 2
03-00 Sixth tape 1

Conventions: Line 11.D. holds module number, ROM chip
number, number of bits (4), ROM size, and other I.D.
information.

5-12

21MX

For example:

LINE 1-1,005, 4, 1025 REENTRY FACTOR

Line 2 I.D. holds part number or other central reference
number. For example:

LINE 2-MT 38-0226 REVISION C

Line 3 I.D. holds date and any other I.D. information. For
example:

LINE 3-04/01/75 PVT. D.M. BULMAN

5-27. VERIFY[,X]

Meaning: Compare the contents of the pROM mask tapes
to the contents of the MDE buffer. The logical unit
number of the paper tape reader is X.

Usage: Following entry of the command, the console
device requests the range of bits in the pROM mask tape
to be compared to the MDE buffer (underlined characters
indicate operator entry).

TAPE NUMBER: uull

Enter CARRIAGE RETURN and LINE FEED after the
bit range uu (upperlimit) and 11 (lowerlimit). Refer to 5-26
PREPARE[,X] for valid bit ranges.

For example, the entry "2320" specifies verification of bits
23 to 20. The paper tape then reads th.e mask tape and
compares its contents to the specified bits in the MDE
buffer. As the tape is being read, the three lines of I.D. (see
PREPARE command) and checksum are printed on the
console device.

Note: If the DOS-III operating system is being
used, and no errors were encountered, an
1/0 "error" message is printed at the con­
sole device:

1/0 ERR ET EQT #n

Where n is the EQT number of the paper
tape reader. This message notes a charac­
teristic of the mask tape that DOS-III
normally interprets as an error condition,
but the message in fact, connotes no error.

If no errors were detected, the message

TAPE VERIFIED

is printed. Enter another bit range as before. The VERIFY
command completes only after the bit range 03 ot 00 has
been entered and verified.

21MX

Errors: If errors are detected, dialogue between the
console device and the operator is initiated. Follow each
operator entry with CARRIAGE RETURN and LINE
FEED.

a. The message CHECKSUM ERROR OR BAD MASK
TAPE is printed followed by a tape repunch
request:

DO YOU WANT TO REPUNCH THIS TAPE?
enter Y or N

b. If N is entered, another bit range request with the
message

TAPE NUMBER?

Enter another bit range as before. The VERIFY com­
mand completes only after the bit range 03 to 00 has
been entered and verified.

c. If Y is entered, the following request is made:

ENTER PUNCH LOGICAL UNIT # enter octal
logical unit number of paper tape punch

The message

ENTER THREE LINES OF l.D. INFORMATION

is printed.

Enter up to 3 lines of tape l.D. information according
to the procedure given in 5-26, PREPARE[,X). The
new mask tape is punched, headed by the l.D.
information.

Special DOS-III operation: When a series of bit ranges are
being verified, specification of each successive range at the
console device (as a result of the message TAPE
NUMBER?) will bring about the prompt character "@ ".

To verify the specified bit range on paper tape:

a. Enter the following command

:UP,n

where n is the EQT number of the paper tape reader.

b. Then enter:

:GO

The next tape to be verified will read in as above.

Verify sequence: The mask tapes may be verified in any
order with exception that the last tape verified must have
the bit range 03 to 00.

Microprogramming Software

5-28. TERMINATION COMMAND

5-29. FINISH

Meaning: Terminate the current MDE run.

5-30. DEBUG COMMANDS

5-31. BREAK,yyyy

Meaning: Set a Breakpoint at location yyyy and clear the
previous one. If yyyy = 0, no breakpoint is set and the
previous one is cleared.

Usage: Microcode execution is initiated by an EXECUTE
command. When the Breakpoint address yyyy is reached,

REG'S?

is printed and microprogram execution ceases (breaks).
Enter the mnemonics of the flags or registers that are to be
displayed, separated by commas. The mnemonics are
described under the CHANGE command. The entry is of
the form

REG'S? ml,m2,m3, ... mn

where ml through mn are register and flag mnemonics.
The resulting display is of the form

ml = cl, m2 = c2, m3 = c3, , mn = en

when cl through en are octal contents of the requested
registers and flags.

Example of a display request:

REG'S A,B,1,2,3,4,14

The resulting display:

A= 00004,
2 = 00012,

14 = 034716

B = 103005,
3 = 00000,

1 = 000447,
4 = 00000,

Enter "!" to display all registers and flags. Enter "/" to
return to command entry mode.

Restrictions: Do not set a breakpoint

a. in the WCS entry point address of the microprogram

b. in a microprogram subroutine (within the JSB ... RTN
code limits)

c. in an address where the micro-instruction passes
information to or from the T-register immediately fol­
lowing a WRITE or READ micro-order.

5-13

Microprogramming Software

5-32. CHANGE[,m]

Meaning: Alter the contents of one or more registers and
flags. If the mnemonic m is specified, alter the contents of
the register or flag which it specifies. It not specified, all
registers and flags are displayed in sequence to prompt the
user to make required changes.

Mnemonics: '.I'he list of register and flag mnemonics
follows:

Mnemonic Stands For Mnemonic Stands For

A A-register 9 S9-register
B B-register 10 s 1 a-register
s S-register 11 S 11-register
p P-register 12 S 12-register
1 *S 1-register x X-register
2 S2-register y Y-register
3 S3-register 0 Overflow Register bit
4 S4-register E Extend Register bit
5 SS-register F CPU Flag bit
6 SS-register CN Counter Register
7 S7-register L L-register
8 SS-register

*Scratch Pad Register 1; similarly for S2, S3, etc.

Usage: Upon entry of the command, the message

m xxxxxx =

is printed, where m is the register or flag mnemonic and
xxxxxx is the octal representation of the contents. Enter
the new contents or an asterisk (*) if no change is to be
made.

Example of a CHANGE request:

CHANGE,6
6 173777 = 173770

This is a request for a change to SS-register (Scratch Pad
Register 6). The original contents were octal 173777. The
new contents are octal 173770.

5-33. EXECUTE[,yyyy]

Meaning: Execute microprogram.

' If yyyy = 0, the TEST initialization program is run, which
carries execution to the microcode in WCS. This is the
normal mode of initiating microcode.

Note: If the entire system goes dead after
entering an EXECUTE,0, the reason may
be that the WCS .with the correct module
number is not plugged into the correct
slot.

If yyyy = an absolute WCS address, execution of micro­
code begins at that address.

5-14

21MX

If yyyy is omitted, execution resumes from the last break­
point with registers and flags set

a. according to their setting 'when the breakpoint was
encountered, or ·

b. modified by the CHANGE command.

Usage: Execution will continue until a breakpoint is
encountered or until the microprogram is completed.
When complete, the command entry mode is repeated.

Before initiating a microprogram execute (other than
EXECUTE,O), make sure that all registers and flags are
preset using the CHANGE command, if necessary.

5-34. RELOCATE MDE WCS-RESIDENT
MICROCODE

5-35. MOVE,yyyy

Meaning: Move the octal 45 word WCS-resident
microprogram portion of MDE from the usually resident
locations to locations beginning with yyyy.

Usage: "MOV" is the minimum input required to initiate
the move operation. MDE requires a portion of WCS for
register dump and register restore microprograms. These
MDE microprograms are initially stored in relative octal
locations 333 to 377 of the first WCS loaded. If the user
requires these locations in Writable Control Store, he can
move this resident MDE microcode elsewhere.

No check is made to see if a portion of the user microcode
has been overlayed. The reason is that the user may
actually want to situate the dump and restore
microprograms on top of his own microcode as he debugs
another portion of his code.

The actual relocation of the MDE microcode does not
occur until the EXECUTE command is given.

5-36. MDE ERROR MESSAGES

During the use of MDE, commands, parameters, and
processing functions are monitored. If an error condition is
detected, an appropriate message is printed. Table 5-3
holds the list of MDE error messages plus their meaning
and the recovery procedure.

5-37. DOS-III OPERATION OF MDE

. Before using the DOS-III version of the Micro Debug
Editor (MDE), the following items must be available.

a. A current DOS-III system

b. A relocatable object tape of MDE (HP 12978-16002).

21MX Microprogramming Software

c. A relocatable object tape of the TEST initialization
program if a debug run is to be made.

c. Respond as follows:

MDE filename, TEST filename, /E
d. A microprogram object tape output by the Micro­

assembler. where MDE filename and TEST filename are the
chosen file names used with the "ST" store command
(step A), and /E specifies end of entry.

The following is an example of how the user can proceed.
For details on additional DOS-III options, see DOS-III
manual (HP 24307-90006).

a. Store the two tapes, MDE and TEST, on the disc using
the DOS-III store command

If MDE is being used only to load WCS with a micro­
program, the TEST filename may be omitted. The
loader then reads the two files into main memory.
If the TEST initialization program has been omitted,
the message

:ST,R,filename, lun UNDEFINED EXTS

where filename is any suitable label and lun is the log­
ical unit number of the paper tape reader from which
the tapes are entered.

is printed indicating TEST is an undefined external to
the MDE program.

To proceed, enter
b. Make sure the list device is on. At the console device

enter :G0,1

:PR,LOADR,2 When loading is finished, the message

DOS-III responds with LOADER COMPLETE

ENTER FILE NAMES OR /E is printed.

Table 5-3. Alphabetical List of MDE Error Messages

Message

CAN'T FILL MORE THAN
16 MODULES!

ILLEGAL COMMAND

ILLEGAL DIGIT

ILLEGAL PARAMETER

ILLEGAL REG.
MNEMONIC

ILLEGAL TAPE #

MISSING PARAMETER

NO BREAKPOINT HAS
BEEN SET!

WCS NOT LOADED

Meaning/Recovery

User has tried to write microprograms to more than the maximum of
16 WCS modules. The user can debug no more than 16 WCS modules
at a time.

Command just entered is not an MDE command; re-enter command.

An "8" or "9" was entered in the previous command that called for
an octal digit; re-issue the entire command.

An unacceptable parameter was entered in the previous command;
re-issue command.

Register or flag mnemonic just entered is not one of those listed under
the CHANGE command (section 5-32); enter correct mnemonic.

Bit range entered is not one of those listed under PREPARE command
(section 5-26).

A required parameter was omitted from the previous command;
re-issue command.

An EXECUTE-from-breakpoint command was given without having
set a breakpoint logically beyond the execute address.

T.he Writable Control Store PCA corresponding to the logical unit
specified in the command just entered, has not been loaded with a
microprogram during this MDE session; load the WCS.

5-15

Microprogramming Software

d. Save the loaded MDE program with

:ST,P

To summon MDE from now on, enter

:PR,MDE

e. The program title is then printed followed by command
request:

MICRO-DEBUG EDITOR
COMMAND?

Now enter the MDE commands required as described
beginning in Section 5-16.

5-38. BCS OPERATION OF MDE

Before proceeding, the following items must be available:

a. An absolute BCS binary tape.

b. A relocatable object tape of MDE (HP 12978-16004).

c. A relocatable object tape of the TEST initialization
program, if a debug run is to be made.

d. A microprogram object tape.

e. A BCS Library tape (HP 24145-60001), Revision B.

The following is an example of how the user can proceed.
For details on additional BCS options, see the Basic
Control System manual (HP 02116-9017).

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Reg­
ister and clear all other Switch Register bits.

c. Place MDE relocatable object tape in the paper tape
reader and insure that the paper tape reader and the
console device are on. Turn on paper tape punch. Press
PRESET and RUN on the CPU Front Panel.

The MDE tape is read and an absolute binary tape is
punched.

d. The message

*LOAD

is printed on the console device and the program halts.

If required, load the relocatable TEST Initialization
Program tape into the paper tape reader. Press RUN.

The TEST tape is read and another absolute binary
tape is punched.

5-16

21MX

e. The message

*LOAD

is printed on the teleprinter and the program halts.

Set Switch Register bits 2 and 14 leaving all others
clear. Load BCS Library tape into the paper tape
reader. Press RUN.

f. Library tape is read and more absolute binary tape is
punched.

Linkage information is printed on the Teleprinter.
Remove paper tape from punch. This is the complete
absolute binary tape of the Micro Debug Editor in­
cluding the TEST Initialization Program.

g. Load this tape using the Basic Binary Loader.

h. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-DEBUG EDITOR
COMMAND?

is printed.

i. Now enter the required MDE commands as described
beginning in Section 5-16.

5-39. WCS 1/0 UTILITY SUBROUTINE

This library subroutine provides the capability of writing a
microprogram into and reading a microprogram from a
WCS using a buffer in an Assembly Language,
FORTRAN, or ALGOL program and operating in a BCS
or DOS-III environment. This avoids the necessity of
running MDE every time it is necessary to access a WCS.
This subroutine is in the standard BCS and DOS-III
libraries for 21MX Series Computers.

Unlike a ROM chip, whenever the computer power is
turned off, the WCS contents are lost. Thus the WCS must
be loaded before access can be made to microprograms.
This WCS 1/0 utility has been provided to serve j;hat
purpose.

Besides the calling sequence, a buffer is required in the
calling program large enough to hold the number of micro­
instructions being transferred in or out.

Initially, the microprogram is stored on an object paper
tape, in an object file on disc, or as octal data stored in the
Main Memory program. In the case where the micro·
program is in the form of octal data in the Main Memory
program, the octal data area serves as the buffer when the
WCS 1/0 Utility is used to write the microprogram into
the WCS.

21MX

In the case where the microprogram resides on disc or
paper tape, the control system (BCS or DOS-III) must be
used to read the tape or disc file into a buffer in the Main
Memory program. It must be remembered that the
microprogram object contains header and end record infor­
mation that must be deleted before storing the micropro­
gram in the buffer. (Header and end record information
must not be written into the WCS.)

Refer to Section 5-7 for a description of the Binary object
output by the micro-assembler. Appendix A illustrates the
binary object format.

When the microprogram has been stored in the Main
Memory program buffer, a WCS I/O Utility WRITE
calling sequence is used to write the microprogram into the
wcs.

To read the contents of the WCS, a WCS I/O Utility
READ calling sequence is used.

The assembly language calling sequences are the
following:

Microprogramming Software

READ

JSB WREAD Branch to WCS read subroutine

DEF *+5 Return address

DEF lun Logical unit number of WCS

DEF BUFF Address of microprogram buffer

DEF LENGTH Number of words of transfer

DEF ADRS WCS relative address

WRITE

JSB WWRITE Branch to the WCS write sub­
routine

DEF *+4 Return address

DEF lun Logical unit number of WCS

DEF BUFF Address of microprogram buffer

DEF LENGTH Number of words of transfer

Where lun contains the logical unit number of the WCS
being accessed and BUFF contains the first word of a
word pair that holds a micro-instruction. LENGTH
contains the octal number of words in the transfer; if
LENGTH is positive, the number of 24 bit words is
specified; if LENGTH is negative, the number of 16 bit
words is specified. ADRS contains the WCS relative
address (between octal addresses 0 and 377) of where to
start reading.

5-17

I

I

I IUllMI•
WRITABLE CONTROL STORE _I VI I

This section covers general information, installation, pro­
gramming, and general theory of operation for the HP
12978A Writable Control Store Interface Kit. Options 001
and 002 for the interface kit are also covered in this
section.

6-1. GENERAL INFORMATION

The Hewlett-Packard 12978A Writable Control Store
Interface Kit provides the HP 21MX Computers with the
necessary logic to dynamically change the instruction set
of the computer. The printed-circuit assembly and flat
cable assembly contained in the interface kits are shown in
figure 6-1 and listed in table 6-1.

6-2. IDENTIFICATION

Hewlett-Packard uses five digits and a letter (12978A) for
standard kit designations. If the designation of your kit
does not agree with this number, there are differences
between your kit and the kit described in this manual.

6-3. INTERFACE KIT CONTENTS

' Table 6-1. Interface Kit Contents

INTERFACE
KIT CONTENTS HP PART NO.

12978A Writable Control Store 12908-60006*
PCA

Flat Cable Assembly 5060-8393
5 Connectors

Microprogramming 02108-90008
21MX Computers ·

Diagnostic Paper Tape 12908-60001

Diagnostic Manual 12908-90013

*Only PCAs with a date code of 1436 or higher are
suitable for 21MX applications.

6-4. CONTENTS OF INTERFACE KIT OPTIONS

There are two 12978A Interface Kit Options. They contain
material in addition to that contained in the basic interface
kit. Option 001 provides all the software required for use of

the writable control store in the DOS-III system. Option
002 provides all the software required for the use in the
BCS system.

Table 6-2. Additional Material for Interface Options

ADDITIONAL
OPTION MATERIAL HP PART NO.

12978A-001 DOS-III WCS Driver 24278-60001

DOS-III WCS I/O Utility 24333-60001

DOS-III Micro-assembler 12978-16001

DOS-III Micro Debug 12978-16002
Editor

DOS WCS Driver Manual 12908-90004

12978A-002 BCS WCS Driver 24277-60001

BCS WCS I/O Utility 24283-60001

BCS Micro-assembler 12978-16003

BCS Micro Debug Editor 12978-16004

BCS WCS Driver Manual 12908-90003

6-5. SPECIFICATIONS

Table 6-3 lists the characteristics and specifications of the
writable control store PCA.

6-8. INSTALLATION

6-7. UNPACKING AND INSPECTION

If the shipping carton is damaged upon receipt, request
that the carrier's agent be present when the kit is
unpacked. Inspect the kit for damage (cracked, broken
parts, etc.). If the kit is damaged and fails to meet specifi­
cations, notify the carrier and the nearest HP Sales and
Service Office immediately. (Sales and Service Offices are
listed at the back of this manual.) Retain the shipping
container and the packing material for the carrier's
inspection. The HP Sales and Service Office will arrange
for the repair or replacement of the damaged item without
waiting for any claims against the carrier to be settled.

OCT 1974 6-1

I

I

Writable Control Store

6-2

= =

--

Figure 6-1. Writable Control Store Interface Kit

21MX

21MX

Table 6-3. Writable Control Store PCA Specifications

CAPACITY -

Words Available: 256 per module

Maximum WCS Modules : one per HP 2105; two per
HP 2108

Word Size: 24 bits

MICRO-INSTRUCTION TIME

Access: 162 ns.

Full Micro-instruction Cycle: 325 ns.

INSTALLATION

One writable control store PCA requires the use of one
Input/ Output slot (slot 10). Writable control store
may be used as any module, except module 0.

DATA STORAGE

Input/ Output Group instructions or an HP 21MX
Dual Channel Port Controller are used to load the
wcs.

DATA READBACK

Input/ Output Group instructions only are used to
read data from the WCS.

INTERFACE CURRENT SUPPLIED
BY COMPUTER

0.15A (-2V supply); 4.6A (+5V supply)

PCA DIMENSIONS

Width: 7-3 / 4 inches (196.8 mm)

Height : 8-11 / 16 inches (220.7 mm)

PCA WEIGHT

Net Weight: 18 oz (511.2 gm) (card and cable only)

Shipping Weight: 4 lb (2.27 kg)

PCA INPUT LEVELS

"1 " state: 1.9 volts minimum

"O" state: 1.1 volts maximum

PCA OUTPUT LEVELS

" 1" state: 2.4 volts minimum

" O" state: 0. 7 volts maximum

Writable Control Store

6-8. INSTALLATION

Install the writable control store kit as follows:

a. Ensure that the computer operates properly prior to
installing the writable control store interface kit.

b. Turn off power at the computer.

c. Remove the bottom and back access covers from the
computer.

d. On the writable control store remove the appropriate
jumper wires from TBl to select the desired module
number (see figure 6-2 for -pin number configuration).
Refer to table 6-4 for the desired module number and
jumper removal.

e. On the writable control store PCA place the WCS
module 0 enable switch Sl in the OFF position.

f. Place the first writable control store PCA in slot
number 10 (select code 10) of the I/O section of the
computer. Any additional writable control store PCAs
should be placed in slot 11.

Note: When WCS PCAs are installed, computer
software must be reconfigured because of
the changed I/O slot usage. If adding
WCS PCA(s) will overburden the Power
Supply of the computer, it may be
necessary to move some I/O PCAs to an
I/O Extender, HP 12979A.

S1

Figure 6-2. WCS Terminal Board for Selecting
Module Number Position

OCT 1974 6-3

I

Writable Control Store

Table 6-4. WCS PCA Jumper Removal on Terminal
Board for Various Module Selections

MODULE JUMPERS TO BE REMOVED

0 None

1 Pins 6,9

2 Pins 5,10

3 Pins 6,9; 5,10

4 Pins 4,11

5 Pins 6,9; 4,11

6 Pins 5,10; 4,11
~

7 Pins 6,9; 5,10; 4,11

8 Pins 3,12

9 Pins 6,9; 3,12

10 Pins 5,10; 3,12

11 Pins 6,9; 5,10;, 3,12

12 Pins 4,11; 3,12

13 Pins 6,9; 4,11; 3,12

14 Pins 5,10; 4,11; 3,12

15 Pins 6,9; 5,10; 4,11; 3,12

g. Remove the ROM-CPU Interconnect assembly, part
no. 5060-8344. Install the connectors of the flat cable
assembly, part no. 5060-8393

1. on Jl of the ROM Control PCA 1, A 7

2. on J2 of the CPU Al

3. on Jl of each WCS PCA

as shown in sideview on figure 6-3.

J1
No connection here

Note: ff an i/O PCA is installed immediately
above the WCS (refer to figure 6-3) that
requires a cable (hood) connector on the
back, then it may be necessary to double
the flat cable assembly back or cut it to
make room for the 1/0 cable connector.

21MX

h. Replace the bottom and back access covers on the
computer.

i. Turn on power at the computer and perform the
diagnostic test as outlined in the Diagnostic Program
Procedures (part no. 12908-90009) shipped with the
12978A Interface Kit. If the diagnostic program is
completed without error, the PCA is installed and
operating properly. If the diagnostic program indicates
errors, halt the computer, turn off power, and recheck
all of the above installation procedures. Correct where
necessary, then recheck and repeat the operating
procedures of the diagnostic.

6-9. RESHIPMENT

If an item of the kit is to be shipped to Hewlett-Packard
for service or repair, attach a tag to the item identifying
the owner and indicating the service or repair to be
accomplished. Include the model number of the kit.
Package the item in the original factory packaging
material, if available. If the original material is not
available, standard factory packaging material can be
obtained from a local Hewlett-Packard Sales and Service
Office. If standard factory packaging material is not used,
wrap the item in Air Cap TH-240 Cushioning (or
equivalent) manufactured by Sealed Air Corp.,
Hawthorne, N.J. and place in a corrugated carton (200
pound test material). Seal the shipping carton securely
and mark it "FRAGILE" to ensure careful handling.

WCS #2 if installed
if one WCS is instal~ 11 Jl
(see note under g.) E:3:====================== WCS #1 PCA

J2 E:i:============= CPU A 1
J2

~i============== ROM PCA1,A7

flat cable assembly

Figure 6-3. Installation of Flat Cable Assembly

6-4

21MX

Note: In any correspondence identify the kit by
model number. Refer any questions to the
nearest Hewlett-Packard Sales and Ser­
vice Office.

6-10. PROGRAMMING

Two methods exist for writing data into (loading) a WCS
module: under program control and under control of the
Dual Channel Port Controller (DCPC). Under program
control, prior to initiating the load routine, the data to be
loaded must be stored in the computer memory. This
requires a block of up to 512 words per module. The load
routine will send two words from memory (32 bits which
are mapped into an 8 bit address and a 24 bit
micro-instruction) to the WCS module, issue a write
command to that module and cause the data to be stored
there. The load routine will repeat this process until the
desired number of words have been stored in the WCS
module.

Once loaded, the contents of the WCS module may be read
back under program control via the 1/0 bus and compared
with their counterpart in memory.

Timing sequences for flags used in the following examples
are shown in figure 6-4.

6-11. PROGRAM EXAMPLE: LOADING WCS

The following is an example of the program sequence
necessary for loading a WCS under program control. This
example does not include block pointers, counters, etc.,
which are necessary for proper control.

Note: "SC" indicates select code of the WCS
PCA.

STF SC

OTA SC

OTB SC

STC SC

Initializes the Direction FF (flip­
flop or flag)

Loads the first computer word
into first WCS buffer and toggles
the Direction FF. This word com­
prises the 8 bit address and the 8
most significant bits of the micro­
instruction.

Loads the second computer word
into the second WCS buffer and
toggles the Direction FF. This
word comprises the 16 least sig­
nificant bits of the micro­
instruction.

Provides the write pulse to load
the WCS buffers into the RAM.

The OTA, OTB, and STC instructions are normally in a
loop that is repeated until the desired number of micro-

Writable Control Store

instructions have been stored. OT A/OTB was chosen as
an example; any combination of these instructions is
allowable.

6-12. PROGRAM EXAMPLE: READING WCS

An example of reading from WCS under program control
via the 1/0 bus is shown below. This example is shown
without regard to the block pointers, counters, etc., which
are necessary for proper control.

STF SC

OTA SC

STF SC

LIA SC

LIB SC

Initializes the Direction FF.

Sends the 8 bit address to the
WCS module from the 8 most
significant bits of the A-register.
(B-register could be used, as
well).

Re-initializes the Direction FF.

Places eight zeros into the 8 most
significant bit positions of the A­
register and places the eight most
significant bits of the micro­
instruction into the eight least
significant bit positions of the A­
register.

Places the 16 least significant
bits of the micro-instruction into
the B-register.

The STF, OT A, STF, LIA, and LIB sequence is normally
in a loop that is repeated until the desired number of
micro-instructions have been read in from WCS. LIA/LIB
was chosen as an example; any combination of these
instructions is allowable.

6-13. PROGRAM EXAMPLE: LOADING WCS BY
DUAL CHANNEL PORT CONTROLLER

Under Dual Channel Port Controller (DCPC) control, the
load routine must send only the three DCPC control words
to the selected channel. When the channel is turned on,
DCPC will utilize every 1/0 cycle until the entire block of
data is sent to the WCS module (maximum of 512 cycles).
DCPC will transfer these words at a rate of 1.62 µs/word
(512 words will take 830 µs to transfer).

The following is an example of the program sequence
necessary for loading WCS via DCPC. This example does
not include block pointers, counters, etc., which are
necessary for proper control.

6-5

Writable Control Store

LDA CWl

OTA 6

CLC 2

LDA CW2

OTA 2

STC 2

LDA CW3

OTA 2

STC 6,C

STF SC

Get the first DCPC control word.

Send the first DCPC control word
to the selected DCPC channel
(DCPC channel 1 has been
selected here for demonstration
purposes only).

Prepare the selected DCPC
channel to receive the second
DCPC control word.

Get the second DCPC control
word.

Send the second DCPC control
word to the selected DCPC
channel.

Prepare the selected DCPC chan­
nel to receive the third DCPC
word.

Get the third DCPC control word.

Send the third DCPC control
word to the selected DCPC
channel.

Turn on the selected DCPC
channel.

Initialize the Direction FF.

CLF SC Start DCPC transfer.

SFS 6 Test for the completion of the
transfer.

JMP

CWl OCT

* -1 Loop until done.

12000SC

CW2 OCT (Starting address of the block to be
transferred)

CW3 OCT (Two's complement of the number of com­
puter words to be transferred.)

6-14. GENERAL THEORY OF OPERATION

Writable Control Store (WCS) consists of a bipolar semi­
conductor Random Access Memory (RAM) containing 24
integrated circuit (IC) packages mounted on a 2100-size
printed-circuit assembly (PCA). Also included is the flat
jumper cable assembly necessary for complete mechani­
zation within the HP 21MX Computer. The WCS PCA
should be installed only in slots 10 (standard) and 11 of the
computer I/O slots. Each IC package is configured in 256
bits and organized as one bit per word. Thus one module of
WCS is capable of storing 256 words of 24 bits each.

6-6

21MX

For the purpose of execution of WCS instructions, WCS
can be configured to be addressed as any one of the
computer's ROM modules except module 0. One WCS
module can be installed on an HP 2105 Computer. Two
WCS modules can be installed on an HP 2108 Computer.

6-15. WCS MODULE IDENTIFICATION

For proper addressing of WCS, an integrated circuit
comparator and terminal board (with jumpers) on the
WCS PCA is used to identify the PCA as a particular
module of Control Store. For example, if the terminal
board is configured for module 2, the PCA will be enabled
when the ROM Address Register (RAR) contains the
pattern "0010" in its four most significant bits (11-8), and
disabled otherwise. When enabled, the word in WCS
addressed by RAR bits 0 through 7 will be sent to the
ROM Instruction Register (RIR) as signals ROMO
through ROM23. The computer will then execute this
word (micro-instruction) as though it came from a
standard ROM PCA. The access time of data from WCS
(162 ns.) allows the computer to operate at its normal clock
rate. If it is desired to replace any module already existing
in ROM with a WCS module, that ROM module must be
removed in order to prevent unwanted "or" conditions on
the data lines.

Note: The ON position of switch Sl (figure 6-2).
is not intended for use in the 21MX
computers. All Control Store is disabled,
if Sl is set to ON.

6-16. WCS CONNECTION

WCS is connected to the computer central processor
through the I/O structure (for loading.and checking), and
also through a 50 wire flat cable connector. It is this
connector that enables WCS to be used as an extension of
the computer's basic control store. The cable connects one
or two WCS PC As to ROM control PCA l,A 7 and to CPU
Al. The ROM address register on the CPU sends a 12 bit
address to the WCS PCA or PCAs through this cable, and
the addressed PCA then sends its data (micro-instruction)
from that address back through this cable, where it is
merged with the outputs of ROM. From there the data is
sent to the ROM instruction register as though it was from
ROM.

6-17. WCS ADDRESSING

To load the WCS RAM circuits, the WCS PCA must be
addressed through the I/O interface structure of the com­
puter. A 32 bit format is necessary and requires that a 2
word transfer be used in the loading procedure through the
computer A· and/or B-registers. Two computer words and
thus two transfer operations are required for one WCS
word. The eight most significant bits of the first computer
word transferred is the WCS RAM circuit address. The
remaining eight bits of the first computer word and all 16
bits of the second computer word (total of 24 bits) are
stored in WCS at the address specified.

Once loaded, WCS becomes an extension of the ROM.
Thus the WCS may be used to alter the computer instruc·

21MX Writable Control Store

tion set while the computer is in an operating condition.
This feature permits dynamic expansion of the computer
instruction set.

6-18. WCS Loading Timing diagram

SELECT
CODE

STF

DIR FF

OTA/B

T2 T3

STF

T4 T5 T6 T2 T3

OTA/B

T4 T5 T6

Figure 6-4 illustrates the WCS timing.

T2 T3

OTA/B

T4 TS T6 T2 T3

STC

T4

(100) --------------
1st WORD

TRANSFER
2nd WORD

TRANSFER

LOADWCS

RAM ---_,

*NOTE THAT BETWEEN EACH OF THE 1/0 CYCLES SHOWN A FULL ADDITIONAL
1/0 CYCLE IS REQUIRED TO FETCH THE INSTRUCTION FROM MAIN MEMORY.

Figure 6-4. WCS Loading Timing Diagram

T5 T6

6-7

15

WORDO

BitNo. - 15 8 7 0 15 13

l _____,.. ____ ..,__._,,_. -
Leader

WORD3

Record length = Null ldent
total no. of 16- =011
bit words in
record (including
this wordl.

Min. record
length = 5;
max. =59.

WORD4

0 15 0 15

WORD1

6

WORD5

8 7

WORD2

0 15 0

Checksum - sum of contents
of all words in record excluding
record length and checksum
itself.

WORD6

0 15 0

------_,.-----------~------~~------~------

15

Microprogram origin
$ORIGIN value.

etc ..•

0

Tape flag: 0 = 'Punched by Address relative High bits of first
Microassemblcr'; if Debug to base address microinstruction.
Editor punches an object of module.
tape, this field = 1.

15 0 15 8

Low bits of last micro­
instruction in record.

Record length of
next record; same
format as previous.

Figure A-1. Format of Standard Object Tape (Sheet 1 of 2)

Low bits of first
microinstruction.

0

etc •.•

A-1

Appendix A

15 0 15 8 7 0 15 13 12 0 15 0

__________ ,_, _____ -.- -------- ----------

15

A-2

Low bits of last micro- Record length of
instruction on. End record,

always= 4.

0

Null

.

Null Trailer

\

)

j

I dent
=101

Null End record checksum
120000.

Figure A-1. Format of Standard Object Tape (Sheet 2 of 2)

21MX

21MX Appendix A

Bit No. - 15 8 7 0 15 8 7 0 15 8 7 0 15 8 7 0

.

Leader

15

etc

15

Null

#of 16-bit
words in record,
including this
word. Is always

649 = 5210.

I l -..-
Null

-.- -.-
Bits 23-16 of Bits 15-8 of
1st micro- 1st micro-
instruction instruction.
in 1st reCord.

-.- -.- -..-
Bits 7-0 of Bits 23-16 of Bits 15-8 of
1st micro- 2nd micro- 2nd micro-
instruction. instruction instruction.

in 1st record.

0 15 0 15 0 15 0 15

Bits 15-8 of 32nd
micro-instruction.

0 15 8

#of 16-bit
words in record

= 648.

Bits 7-0 of 32nd
micro-instruction.

etc ...

Checksum: computed in
following way:
a. sum of all bytes in

record excluding
this checksum.

b. the sum is ones comple­
mented and then rotated
8 bits.

NOTE: If last record contains less than
32 micro-instructions, then remainder of
micro-instruct1on space on tape is filled
with all bits set (-1 's).

Figure A-2. Format of the $RCASE Object Tape

Null

-..-
Bits 7-0 of
2nd micro-
instruction.

0

.
-.­

Trailer

A-3

(Actual size: 12.5" x 10.5") HEWLETT-PACKARD 21MX MICROCODING FORM

PROGRAMMER

LABEL

LABEL

LABEL

LABEL

FIELD 1

OP

"IMM"

"JMP"

"JMP" OR
"JSB"

DATE

SPECIAL ALU STORE

SPECIAL MODIFIER STORE

"CNDX" CONDITION JUMP SENSE

JUMP
MODIFIER ><><

10 FIELD 2 15 FIELD 3 20 FIELD 4 25 FIELD 5 30

MICROPROGRAM

S·BUS COMMENTS

OPERAND COMMENTS

OPERAND COMMENTS

OPERAND COMMENTS

FIELD 6 40

lMODULE

FIELD 7

JT1

l T 1 1 T. 1

I I l' ! I

I I !

l
I
l

I PAGE OF

Word Type 1

Word Type 2

1 Tl
J I

I
l

j I
I I I

J_

I

Word Type 3

Word Type 4

I I

I i l i l I : l
11

I
T i I IT I !1 l [I I
I I l l l l 1 I 11 I i

I I l I ' I l ' I ' :
I l I j_ l I I

80

1·1 1.. 1 ... 1.1.Tl 1TTmT1111 I i·, !
>-+--+-+--+-+-+-+-+-1---+-+-+--+->--+-+-+-+-+-+-+--+-+--+-+-+-+-+-+-1-+-' +-+--+-+_,__,-+-+-+-+-+--+-+-+-+-+-+-+--+-+--+-+-+l-+-+-+-+--,+-+-+-+-1 -+-l I :-t +-t-' -+-_l_ -+!-+ii: -+J-+,-+--+-t-+-1

I TI ' I' i I! I I I I
1 '!' I j 1 JllJli _ilJi l

¢ ZERO
0 ALPHA 0

10

lor1 =ONE

2 =TWO

15

I= ALPHA I

~=ALPHA '2-

I
l

l J
i

I

l
20 25

i

l
30 40

Figure B-1. Microcoding Form

I • I I I lil 1 1
11 i I : TI

I I : I
i i

80

5951-7386

-n
:a
Q
n
C)
c -z
Ci)

Bl

1111111.11 MICRO-ORDER SUMMARY J c I

C-1

Appendix C 21MX

Table C-1. Summary of User Micro-orders

MICRO-ASSEMBLER i_ JMP IMMEDIATE

SOURCE (CARD) OP SPECIAL ALU COND MODIFIER STORE RJS S-BUS
COLUMN NO. - 10 15 20 20 20 25 25 30
BITS(ROM) 23-20 4-0 19-15 19-15 19-18 9-5 14 14-10

Corresponding
Bit Pattern

00000 *NOP IOFF INC TBZ HIGH TAB tRJS TAB

00001 ARS SRG2 OPl ONES LOW CAB CAB

00010 CRS Ll OP2 COUT CMHI T T

00011 LGS L4 ZERO ALO CMLO L CIR

00100 MPY Rl OP3 AL15 IOO IOI

00101 DIV ION OP4 - CNTR CNTR

00110 LWF 8RG1 SUB CNT8 DSPL D8PL

00111 WRTE - OP5 - D8PI DSPI

01000 A8G STFL OP6 FLAG IR ADR

01001 READ CLFL ADD E M M

01010 ENV FTCH OP7 OVFL B B

01011 ENVE sov OPS RUN A A

01100 JSB cov OP9 NHOI - LDR

01101 JMP RPT OPlO SKPF CM

01110 IMM 8RGE OPll A8GN PNM

01111 *NOP DEC 1112 *NOP *NOP

10000 CMPS NLDR 81 Sl

10001 MPCK NOR N8NG S2 82

10010 IOG N8AL NINC 83 83

10011 ICNT OP13 NDEC S4 84

10100 8HLT NAND NRT S5 85

10101 INCi CMPL NLT S6 S6

10110 - XOR NSTR S7 S7

10111 SRUN SANL NRST SS SS

11000 **UNCD NSOL NSTB S9 S9

11001 CNDX XNOR NSFP SlO SlO

11010 JIO PASL INT Sll Sll

11011 JTAB AND SRGL S12 S12

11100 J74 ONE RUNE x x
11101 J30 SONL *NOP y y

11110 RTN IOR CNT4 p p

11111 JEAU *PASS s s

*default micro-order

**JMP default

tlf no 'RJS', then bit 14 = 1

means not normally used by user microprogrammer .

• means included here for completeness only; reserved for exclusive use of system microprogrammers.

C-2 OCT 1974

FUNCTIONAL BLOCK DIAGRAM lf":"'1

D-1/D-2

CONTROL SECTION

IR
..._ !!'!st

r------------1~-RT_N_sp-l{ ___ SA~V-E __]~

Increment
Add res

•
RAR ~o

j Maps Addrea to
Control Store

Micro­
instruction
Clock
Cycle

Add res

!M.Mo

ROM

RIR

Decode
Instruction
Execute
Control

Immediate Data CMHI;

NOTES:

======:>::: = Data path

------+- =Control path

Underlined characters = Micro-order

Subscripts:

s • S-bus field

st • Store field

c ~Jump Condition field

sp • Special field

o.+ Op field

; + Immediate Modifier field

Example:

CNTR~ st "" Micro-order "CNTR"
' in S-bus or Store fields.

HIGH;
LOW;

£MbQ;

MAIN MEMORY SECTION

Four
Loeder
ROMS

MminMemory --
Data Address

I----'" - - -------,. WRTE0

T
Register

TABs,st

Ts,st

Memory
Address
Selection

M
Register

AD Rs

Ms,st
PNM st

.!<Mot

Inhibit
WRTE
or
READ

!!'!st
FTCHsp

llif.!sp

Memory
Protect
Option

······· .. .

Display
Register DSPLs,st

Display
Indicator DSPls,st

RUNc ~ .!iliQ! c Run
SRUN Mode
--IP
SHLTsp

FRONT PANEL. SECTION

[
.Interrupt IAK }=
Acknowledge

S-bus

100 LI ~.,-st
-illlllllill!!!l!!!ll!E1111-= 1/0-bus I ~1- ~11' ·~lo

------.
[Teleprinter]

Line Printer

Central
Interrupt Cl Rs
Register

Other
Peripherlls

1/0 SECTION

S-bus

Appendix D

ARITHMETIC AND LOGIC SECTION

Scratch
Pad
Register

Counter

ICNT5p

~c
~NTBc

.._ ___ .. CNTRs,st ,

ASG0

A
Register

ALU

T-bus

Rotate/Shifter

T-bus

t-=~---t>I L ~VE- 1 i R Extend Register r
____ t-

L-Register

[Overflow Register~
covsp
sovsp
OVF!:.,

ALU
Output

Tests

ENV0

ENVE0 +>

Figure D-1. Functional Block Diagram

D-3/D-4

0001
0002
0003
0004
0005
0006
0007
oooa
000,
0010
0011
0012
0013
0014
0015
00 I 6
0017
0018
00 IS'
00 20
00 21
0022
0023
0024
0025
0026
0027
0028
002'
0030
0031
0032
0033
0034
0035
0036
0037
003{1
0039
0040

) 0041
00 42
0043
0044

OOOD
00(1 l
0002
0003

0004

o :1 05
OD C&
0!)07
OOiO
OD I l
00 ! 2

0013
0014
co 15
(li) 1 (,
co 17
ooze,
CD<l
CD 22
()0 2 3

22(1 0 7 4 7 I 2
() l 7 1J6745
0 I 7 I 004 l I
22 0 (1206 {" 3

:125 I 2003 l

237 I 0645 I
:,2 0 0004?1
237 106457
32 0 040031
(! 1 7 10400
2 2 (I 020673

220 022457
326 00 l 03 l
017 I 00465
32 2 04()571
22 (I 02247~
('.' ~
'' lC0465

330 1c:17 3 1
(!() 7 !(5717
32 0 00()230

BASIC INSTRUCTION SET £9df"ifii
MICROPROGRAM LISTING I E I

This appendix holds a full micro-assembly listing of the 21MX Computer Basic
Instruction Set microprogram. Due to the size of this microprogram, a special micro­
assembler was used. Minor differences can be seen between this micro-assembly listing
and a listing produced by the micro-assembler described in this manual. The major
difference to be noted is that octal numbers are preceded by a "% " symbol in this
listing. Other differences are self explanatory.

$0RICI!l=O
**
"' * 21MX HICRO-COOE
* MODULE D

*
*****~•*********•****•****•****~****•*********•********•*****~****•****•
HALT E QU H•HIO
FADD E QtJ %7125
FSUB E QLI %7126
HIP Y EQU %7221
F\11 V EQLI %7H2
IF iii E QLI %7000
FL OAT EQU %7025
*********************•****a*******************~************************•
* FETCH ROUTINE
*~***~··••******4~**=~·:~*~*~****•****•****~***~~*~*~~··*******~****•~**;~~
FETCH READ FTCH lNC PN~ P MC=P1 PC•Ptll READ HEW IHSTR

ION ENABLE llllERRUPT RECOGMITIOH
CLFL PASS IR TAB !RC= TIA/Bl tLR FLAG FF

READ dTAB INC CM ADR JUHP TH~U TABLE; LOAD M IF ~RG INSTR
~~·~•**•********~~****~*********~*********~***~~*********•***~•**~*~
HORI JMP CH~X RUN RJS H~LT RUH MODE IMPLIES AH INfERUPT
~~····~****•****•****~*~**•****~**************•****~*•*******~****~****~
* IkTERRUPT RESPDMSE ~OUTlllE

*•****~****~****•***=~••***•*********•****~****~****•*********~****•****~
ntTE!'<UPT HAD Ct.FL PASS M CIR M \=CIR I READ TRAP CHL! CLR FLAG FF

,I MP CNll X TBZ R\I S lliTOK CHECK I~ Cnt IS l/AL!t>
READ ?ASS ~I CIR M<•CIRI REA!> TRAP CELL
J MP CHDX T i:ll' FETCH IF HO l llT BY HOlJ.. I GHOi<E

I !l 1 Ol< I OFF PA3S IR T I RC= TRAP CHL, l>I SABLE INT RE COG.
RE'l!'l ,!TAB I NC CM ADl"< J L;j1P TH~U TA3Lf:; I. OAt> ~ JF !1RG I !lS TR.

···~··~*~*******•****•*~**4********•~·*··~****~*$**•*•**~**************•
* JN[IJRECT ROUT!!J,E
·~****~***********~**~****~*~************•**•*~****•*********•****•****•
I!lr.>L::va RE At> 1 HG M "' READ HEK1 LE\IEL

JMP C:Nl"IX 1rnn 1 RJS IND2 HALT OR IHlcRRllPi?
I!l!J J:HCT P.IC l PAHS i'I l 4S M<=T/A/BI I HCR llH>IRECf COUNT

,I MP CNl">K ALIS INt>LEVEL CHECK FOR AHttTHER. LEVEL OF I ND l '<iE CT
READ flTN l HC !'I " Rr:"AD EFFECT !YE ADDRESS, RETUllH

I '·H! 2 IHCI PASS ti T 48 l'!<=T/A/B; I HCR lNt>IRECT COll'IT
JMP Cl-i!"lX 14 S!J,G G?\l s I!H> J RE"CT +I JUMP BACK FOR SJ NGLE PISTRl''.:l J Oli

E>E C ? ? !HS ET ?
,I MP HORI HALT' OR l IHERUPT

E-1

Appendix E

0045
0046
0047

****************•*•**•****~****•****•*********~****•*********•****~****•
* ALTER-S~!P GRDUP
******•*********····~·*~··~****~****••···~···*~****•*********~****~****•

0048 0024 017 10275?
004, 0025 327 042431
0050 0026 200 075717
0051 0027 327 100031
0052 ODJD 260 002076
0053
0054 0031 OOl I '36057
0055 OOJ2 J27 042431
0056 OD33 200 075717
0057 0034 327 100031
0058 0035 260 002076
0053
0060 0036 010 OC2057
0061 0037 327 042431
0062 OD4D 200 075717
(1063 0041 3'27 I 00Clc1 i
0064 0042 260 002076
0065
0066 0043 01(, 036057
0067 0044 327 042431
0068 DD45 200 075717
0063 0046 327 100031
0070 DD17 26D 002076

ASGNOP

*
ASGCL>t<

0071 *
0072 OD5D 217 136757 ASG~S~~

0073 0051 327 100031
0074 0052 260 002076

?ASS
JMP CHvX ASGM
ASG INC P
JMP CNDX IR2 RJS
ENYE RT~ INC CA3

2'ERO CAB

CA<.<
ASGMSKP
p

!=ET CH
CAB

JM? CNDX ASGN ASGHSKP
ASG INC P ?
JMP CNDX IR2 ~JS FETCH
EHVE RTN INC CAB CAB

Ci'li'S CAS CAB
JM? CHvX ASGN ASGHSKP
ASG INC P P
JMP CNDX IR2 RJS FETCH
ENVE RTN INC CA3 C~B

Oil<
JtlP CIDX ASGI~

ASG I NC
,IM? CNt>X lll2
EN'./c '1T'l I NC

ASG
JM? CIDX Ill;'
EN'./E RTN INC

CA3

p

~JS

CflB

A&r;l!SKP
p

:-ETCH
CAB

FET C:H
CAB

SEl UP SK IP TEST
JUMP IF ASG SKIP HOT MET
P<=P•IJ ENABLE ASG HARDWARE
DOME IF HOT JHA/B
AIB <= AIB PLUS 1

CLEAR 1\/8 REGISTER
JUMP IF ASG SKIP HOT MET
P<=P•1J ENABLE ASG HARDWARE
DOME IF HOT lHA/B
AiB <= l\/B ?LUS

A/B <= NOT ll/B
JUMP IF ASG SKIP MOT MET
P<=PtlJ ENABLE ASG HARDWARE
DOME IF HOT IHA/B
AIB <= AIB PLUS l

CLR t COMP A/B REGISTE~

JUMP JF ASG SKIP HOT MET
P<•Ptl; ENABLE ASG HARDWARE
DOME IF HOT JHA/B
A/B <= A/B PLUS I

HO SKIP; ENABLE ABG HARDWARE
DONE IF HOT JHA/B
A/B <= A/B PLUS 1

0075
0076
0077

*****~•*********••~·=~·~***~****•****~•************~~*********~***~~··*·~
* SHIFT/ROTATE GROUP
****************~****•****~****•****~*********~*=~~***********•****~*•*••

0078 0053 017 102046
007' 0054 017 102056
0080 ons5 335 103031
0031 005b 017 102041
0082 DD57 DOD 075736
0033 0060 017 ID2041
0034 0061 DI 7 1 J6776

SRG SRGl PASS CA3 CAB FlRST SHJFT
SRGE PASS CAB CAB CHECK FDR CLEAR El SET SLA TEST

JMP CNDX SRGL AJS ••3 SRGL IS SLA TEST
SRG2 PABS CAB CAB SECOND SHIFT
RT!l IHC ? ? P<=P+J .• WHEJl LSB 0
3RG2 PASS CAB CAB SECOND SHIFT

RETURH RTN

0035
0086
0037
0083 0062 017 !J67S7 IDCHTRL
0083 OD63 326 100031
003b 0064 coo 075736
0091 CQ(,~1 017 136757
0092 *
0093 OD66 017 1C2757 ID.OT•
OOH 0061' 017 102217
OD'S OD7D 017 1D22J&
0096 0071 017 13675?
00,7 *
OD,8 OD72 017 136757 ID.LI*
009' CD73 017 136757
0100 0074 017 11D076
0101 0075 017 136757
0102 *
0103 OD76 017 136757 ID.Ml*
0104 con 017 1c21s1
0105 GlCICI 017 01001€>

*

NO?
JM? CHDX 3K?F ~J3 FETCH

:<HI JHC ,, ?

NO?

!'ASS CAB
!'ASS I 0[1 c~a

RTN PASS JOO CAB
NO?

RTM PASS CAB 101

NOP
?ASS CAE<

RTM !DR CAB !DJ

ALLOW Til!E TD GfT SKIP FLAG
(:HECK S<JP HAG
? <;:: ? .. 1

SE:l UP S ·BUS
liO-BllS <= l\IB
HOLD !ID-BUS VALID

SYNCHRONIZE IOI PULSE

A/B <= l/0-BUS

SYNCHROl!I~E IOJ PULSE
L <= A/B FOR ALU OPERATION
A/BC• <~18> + <IIO BUS)

0106
0107
0108
0109

*****~~***~*****••**$•****·~****•**************~*~~**$********~*********~

011(! 0101 320 003122
0111 0102 :.;20 015437
0112 0103 320 016034
0113 0104 320 017034

E-2

• IC GROUP/ EAU GROUP/ MAC GRDUP JUMPS
****************~****•:~***~=~********~****~****~~~**•*********~••**•****~
IOG JMP IDG IOCNTRL
EAU JMP JEAU EAUTABLE
MACO JM? J74 MACTABLD
MAC! JMP J74 ~~CTABL!

21MX

21MX Appendix E

0114 ****************~****•****·~**•*•****•****~********~•*********•****•***~~
(l l 1 5 * MEl'IORY R?:nREHCE GIHIUP
0 l 16 ******•*********•*•*=~•****~****•*********•****~****•*********•*-**•*****
(l l 1 7 0 I 05 30 (l 0('06?0 AND, 1 \• sa INi:>lr<ECT
0118 ()106 017 12615 7 AND ?ASS A (r A
011 ~ c 1 07 0 I 5 1C05H RTN AH\) A TAB A < = T/A/B l\HD L
0120 * 0 I 21 c 1 1 [) 300 OC06?0 C? *, 1 \IS B IHD IRE CT
0122 0 I 11 (! 1 7 I C2 15 7 C? * PASS L CAB L <= A/B
0123 0 I 12 c 1:; 000757 XOR TAB T-·!3 US < ' TIA/!3 XOR L
0124 (i 1 13 32 fl 0 4[103 ! JM? ClH>X TB? FETCH J l.lMP T (I FETCH IF EQUAL
012'3 01 14 (!00 0757:H- RTN Jt.!::; ? ? P<r P•l l F "f(I T EQUAL
0126 * 0127 01 15 300 (1(![)670 XOR .. I \t so INDIRECT
012" 0116 017 126157 XOR ?ASS L A L (= A
012'.'I 01 17 c 1 3 000576 RH! XO~ A TAB A (= TIA/Et XOR L
0 l 3(1 ,.
0131 01 20 300 000670 ![IR .. 1 ,I SB INDIRECT
Cl! 32 01 21 01 7 12615 7 !OR ?AS O:..; A
013:-: CI 22 017 00[1576 RH! IO~ A TAB f.l <= T/AIB I 0 R L
0134 *
0135 01 23 300 0006"?0 ST*, 1 \l sa JNt'>IRCCT
0136 c 124 017 122761 ST* !1PCK PASS !'I HEH PROHCl (:HECK OF A)fJRE33
0137 c 1 2~i !"'"' ' ' i0203(, WRH :n?-1 PASS TA3 c .:;8 liA/B (·' Al !I; loiR l 1 E
0138 *
0133 * 0140 0 l 26 300 000670 AD*, I J sa llH>IRECT
0 I 41 c 1 27 0 ! 7 1D215 7 AD* PAS~; CAB L (, = A /!i
0142 0 I 3Ct 264 1cCt(f7 (, ENl/E RT'l AD fl CAB TAB AIB <= TIA/ :;i PLL!S L
0143 "' 0144 () l 31 300 OC064l1 ,IS B, l J S3 l OFF J !ii> I RECT DISABLE llH:.=~RUPT RECOGHITJOH
(I 14:\ 0132 017 122761 JSB !'IPCK PASB !'I MU! PROHCT CHECKS TH IS ADDR
0146 0133 177 174 0 I 7 WRTE PASS T A3 p T/A/B < ' RElURti ADDRES3; WRJTE
014? 0134 coo 023736 R T'l I HC: ? M ? < = M + 1
014B * 014!' 0135 30 (I 0()()6 70 I sz I 1 ,I S9 lHDIRECT
0150 0136 017 122761 ISZ MPCK ?ASS !'I l'IE H PROT HT C:HEOS TH 13 ADDR
0151 Cl 37 000 oc l 0 l 7 JHC 31 TP. 3 SI <= l/A/B + !
0152 c 140 177 1400 I 7 WRTE PASS TA!:< s l T (r s 1 .: WR 11 E
0153 0 l 41 320 OC0031 Jl'I? ci.::ix TBZ t(',1 s FETCH 2'fR(I? NO, DONE.
0154 0142 000 075736 l<nl IH:: ? p YES, p (= pq

0155 *
0156 0143 300 000670 LD*, I J S8 INDIRECT
0157 Cl 44 017 100076 LD* ~ T'l PASS CAB Tll9 A i!l <= T iP.IB

0158 0145 017 136765 J!IP, 1 INCI COUNT ONE lNDlRECT LEVEL
015, 0146 017 101000 IOFF PASS Sl TAB DJ SABLE INT RECOGNITJOllJSl<=TIAl8
0160 OIH 322 046531 J!IP CNi>X All 5 JlNl>L J l!P IF ANOTHER LEVEL O~ IND! RECT
0161 0150 017 1407"1 llPCK PASS Sl 11El1 PROT CHECKS DESTJHATIOH ADDR
0162 0151 017 141736 IHH PASS p Sl p (.. DESTINATION ADDR
0163 * 0164 0152 220 040457 JI NOL l!HIO l NC " Sl l!EAO NEXT L EYEL
0165 0153 J26 007031 J!!P CIH>X NHOI l!J s HORI CK J l!P IF HALT OR JHT
0166 0154 017 101025 I HC I PASS SI TAB Sl <= TIA/BJ COUHT INDIRECT LEYH
0167 0155 322 046531 J !IP CNi>M All 5 J l MOL J l!P IF ANOTHER LEVEL OF INDIRECT
0160 0156 017 140761 llPCK PASS Sl !!E!I PROT CHECKS DESTINATION ADDR
0169 0157 017 141736 RTN PASS p SI P <= DESTINATIOH ADDI!
0170 * 0171 0160 017 101025 HORI CK J NC I PASS Sl TAB SI <• TIA/Bl COUNT INDIRECT LEY EL
0172 0161 330 I 06671 J!!P CNDX NSllG RJS JIHDLtJ JUMP BACK FOR SINGLE IHSTRllCTIOH
0173 0162 007 175717 DEC p p RESET P
0174 0163 320 000230 Jl!P HOIU HALT 011 INTEl!UPT
0175 0164 017 121021 J!!P llPCK PASS SI Al>R Sl<=DESTINATIOH ADDRJ CHECK WITH 1!.P.
0176 0165 017 141736 IHI! PASS ? SI P <= DESTINATION ADDl!ESS

E-3

Appendix E 21MX

0177 ••
0178 • EAU HICROPROGRAHS
OJ 7' ••
OJ80 OJ 66 Oto 02t0t7 RRR CHPS Sl ADR
OJ 81 0167 000 041017 IHC SJ S 1 St <= TWO'S r.OHP OF SHIFTS
0182 0170 017 140255 RPl PASS CHTR S 1 SET UP r.OUHTER FOR RE PE AT
OJ 83 0171 057 12450 4 CRS Ri PASS 8 8 DOUBLE-WORD SHIFT REPEAT
0184 0172 017 1J6776 RTN
0185 •
0186 0173 Oto 02t0t7 ASR CHPS St ADR
0187 0174 000 041014 CO\/ IHC Si Si SJ <= TWO'S r.OHP OF SHIFTS
0188 0175 017 140255 RPT PASS CHTR SI SET UP COUNTER FOR REPEAT
OJ89 OJ 76 037 J24504 ARS Rt PASS 8 a DOUBLE-WORD SHIFT REPEAT
OJ90 OJ77 Ot7 13677 6 nH
0191 * 0192 0200 010 02J017 LSR CMPS Sl ADR
0193 020J 000 04J017 I HC SJ SI SJ <= TWO'S COHP OF SHIFTS
0194 0202 OJ7 J402S5 RPT PASS CHTR SJ SET l•P COUNTER FOR REPEAT
0195 0203 077 J 24 504 LGS Rt PASS 8 8 DOUBLE-WORD SHIFT REPEAT
0196 0204 OJ7 136776 RTH
OJ97 •
0198 0205 010 021017 RU CMPS SI ADR
0199 0206 coo 041017 IHC SJ SJ Sl <= TWO'S COMP OF SHIFTS
0200 0207 OJ7 J 40 25 5 RPT PASS CHT R SJ SH UP COUNTER FOR REPEAT
020J 021 !) 057 J24502 CRS ti !>ASS a 8 DOUBLE-WORD SHIFT REPEAT
0202 021 t 017 136776 UN
0203 •
0204 0212 OJO 021017 ASL CMPS Sl ADR
0205 0213 000 041014 CO\/ JHC Sl SI Sl <= TWO'S COMP OF SHIFTS
0206 0214 017 140255 RPT PASS CHTR Sl SET UP COUNTER FOR RE PE AT
0207 0215 037 124502 ARS t1 PASS 8 8 DOUBLE-WORD SHIFT REPEAT
0208 0216 017 i36776 RTN
0209 •
0210 02i7 010 02t017 LSL CHPS Sl ADR
021 i 0220 000 041017 IHC st s 1 Sl < .. TWO'S r.OHP OF SHIFTS
0212 02 21 017 t40255 RPT PASS CHTR st SET UP COUNTER FOR REPEAT
0213 0222 077 t24502 LGS L1 PASS a 8 DOUBLE-WORD SHIFT REPEAT
0214 0223 017 13677 6 llTN
0215 •
0216 02 24 220 074457 OLD l!El'ID J HC H p l!EAD ME"ORV ADDRESS
0217 0225 JOO 000640 J sa I OFF INDIRECT JSB TO !aET H<=ADDR OF FIRST WOl!D
0218 0226 000 023017 I HC Sl H Sl (r: ADDRESS OF SECOND WOl!D
0219 0227 017 100557 PASS A TAB A <= FJ~ST DATA WORD
0220 0230 220 040457 IH"AD I HC " Sl H<,.ADOR OF SECOND .WORD; READ
0221 0231 000 075717 I HC p p p <" p + 1
0222 023&> 017 100536 llT!I PASS 8 TU 8 <= SECOHO DATA WORD
0223 •
0224 0233 220 074457 DST l!EAD I HC H p l!EAD HE"ORV ADDRESS
0225 0234 '300 000640 J sa !OFF JHi>IRECT JS8 TO SET II <= AODR OF FI l!S T WOllD
0226 0235 000 023021 l!PCK I HC Sl " HP CHECK FIRST ADDRI St<=SECOHD ADDR
0227 0236 177 126017 WRTE PASS TA9 A STORE A JHTO FIRST LOCATION
0228 0237 000 040461 l!PCK I HC " Si HP CHECK SI : H<=Sl
022, 0240 177 124017 WRTE !"ASS TA9 8 STORE B J HT 0 SECOHD LOCATION
0230 02 41 000 075736 llT!I I HC p p UPDATE P

0231 0242 220 074457 HPV ltEO I HC " p H <. p J READ
0232 0243 300 000640 JSB J OFF JHDIRECT JU TO GET M (a ADDR OF OPERAND
0233 0244 000 0757t7 IHC p p UPDATE !>
0234 0245 017 101057 PASS 32 TAB S2 <• llULlIPLJER
0235 0246 017 127114 HPV>! CO\/ PASS S3 A SJ(•A<HULTJPllCANO)J CLEAR OYFL
0236 0247 001 13651 7 ZERO B CLEAR S FOR MULTJPLV
0237 0250 017 142157 PASS L 82 L <• S2 <MULTIPLIER>
0238 0251 017 124255 RPT PASS CHTR B CLEAR COUHTERJ SET REPEAT FF
0239 0252 104 124504 llPV 111 ADD B 8 HPV STEP (>!16)1 <S.A><=A Tl"ES L PLUS B

0240 0253 017 144757 PASS SJ TEST MULTJPLlCAHD
0241 0254 322 012731 J.MP CHO>! Al15 l!JS •+2 JUl!P IF POSJTJYE
0242 02n 003 024517 SUB 8 8 UHOO LAST HPV STEP IF HEGATI YE
0243 0256 017 142757 PASS S2 TEST HULT JPLJ ER
0244 0257 322 003 07 J JMP CHDX All 5 RJS RETURN JUllP IF POSITJYE
0245 0260 017 144157 PASS L SJ l ~· MULTIPLJCAHD
0246 0261 003 024536 IHH SUB 8 8 BC•t ftJHUS L <CORRECTS FOR HEG. "ULT>
0247 •
024B •
E-4

21MX Appendix E

024; 02"2 220 074457 DIY READ IMC It p It <= Pl READ
02SO 0263 '300 000640 JSB I OFF IHI> IRE CT JSB TO GET M (11 ADDR OF OPERAHD
0251 0264 000 075717 IMC p p UPDATE P
0252 0265 010 001157 C!f PS S4 TAB S4 (c DYSR<CM)11SAYE Ol!IG SIGH
02:13 026' 010 047017 CMPS Sl S4 Sl (s DYSR
02S4 0267 322 013471 J!tP CND>C AL15 RJS • t2 Jl!P IF i'IYSR NEGATI YE
0255 0270 ·OOO 047017 l NC Sl S4 Sl <• DYSR< 2CM >
OU6 0271 017 140157 PASS l 81 L <• ABS YALUE<DYSR>
02:57 0272 010 0 2511 7 C!tPS S3 B SJ <= DYNDHI<2C!t>
025B 0273 322 054071 JMP CMillC All 5 tll YS J!tP IF DYNO POSITIVE
025, 0274 017 144517 PASS B SJ IF DYHD IS NEGATIVE ...
0260 0275 010 027057 CMPS S2 A FOR!t l>YHD<2C!f)
02'1 0276 000 042557 INC A S2 lH B,A-REGJSTER
0262 0277 321 014071 """ CMDlC COUT RJS DJYS •
0263 0300 000 044517 I HC a SJ •
0264 0301 003 024753 DIVS SOY SUB B CHECK FOR OYSR TOO SMALL
0265 0302 322 000031 J!tP CHDlC All 5 l!JS FETCH <=DYHO TOO LARGE>
026' 0303 077 124502 LCS Ll PASS a B SHIFT OUT SIGN BIT OF FULL WORD
0267 0304 001 137054 COY ZEl!O S2 CLEAR OYFL,S2,, CNTR
0268 0305 017 142255 l!PT PASS CHTR S2 AHD SET RPTFF
026' 0306 123 024502 DI¥ l1 SUB B B DIY< 16lDl A<=llUO<POS>; B<=llEM•2
0270 0307 157 144142 LWF L1 PASS L SJ L <• FLG <• OYHO SIGH<C!t>
0271 0310 010 027017 CMPS Sl A Sl <• QUO<C!t>
0272 0311 320 155071 J!tP CNl>lC ONES llZERO IF llUOsO,THEH HO FURTHER TESTING
0273 0312 013 047057 lCOI! S2 S4 S2<15> <=EXPECTED SIGN OF QUO
0274 0313 322 014671 JMI' CNDX All 5 RJS ••2 J!tP IF POSITIVE WAS EXPECTED
0275 0314 000 040557 I NC A Sl ELSE A <= llU0<2C!t>
0276 0315 017 1421:57 PASS L S:l L(15) <= EXPECTED SIGH OF llUO
0277 0316 013 026757 XOI! A CO!tPARE TO FINAL SIGN OF QUO
0278 0317 322 015071 J!tP CHl>lC AL15 RJS ••2 J !tP IF OK
0279 0320 017 136753 SOY ELSE INDICATE OVERFLOW
0280 0321 017 124504 QZERO Ill PASS B 8 8 (& (J!E!f•2>12
0281 0322 324 040031 JMP CMDlC Fl'IG FETCH CHECK SGH OF DYHD
0282 0323 010 024517 C"PS B B IF NEG.THEN FORH 2-CO!tP OF
02B3 0324 000 024536 l!TN INC 8 8 REH ' STORE lH 8

0284 $0RIGIN"330B
0285 ••
0286 • EAU TABLE
0287 ••
0288 0330 l20 007330 EAUTULE .IMP RRR
028' 0331 320 007570 JHP ASR
0290 0332 '320 010030 JH? LSR
0291 0333 l20 000030 JHP FETCH ILLEGAL IR CODE FOR EAU GROUP
0292 0334 320 010270 J !tP RRL
0293 0335 320 010530 .IHP ASL
0294 0336 320 010770 JHP LSL
0295 0337 320 012130 JHP MPV
0296 ••
0297 • !tAC TABLE
02,8 ••
029' 0340 321 145 27 0 !tACTA8LO JM? FADD I FLOATING POIHT
0300 0341 321 145330 .IMP FSU9 I FLOATING POINT
0301 0342 '321 151070 J!tP F!tPV I FLOATING POIHT
0302 0343 '321 153130 JHP FDIY I FLOATING POINT
0303 0344 '321 140030 J !f P IFI X I FLOATING POIHT
0304 0345 '321 141270 JHP FLOAT I FLOATING POINT
0305 0346 320 060030 J!tP Y.1400 ••• PROBABLE FUTURE HP USE
0306 0347 320 060035 JHP J30 >:1400 ••• PROBABLE. FUTURE llP USE
0307 0350 320 100030 J!tP >:2000 ••• PROBABLE FUTURE HP USE
0308 0351 320 100035 J!tP J3!) >:2000 ••• PROBABLE FUTURE llP Ust:
0309 0352 320 120030 .IHP >:2400 ••• PROBABLE FUTURE HP USE
0310 0353 320 120035 JHP J30 >:2400 ••• PROBABLE FUTURE llP USE
0311 0354 :;20 140030 JHP >:3000 ••• PROBABLE FUTURE HP USE
0312 0355 320 140035 JHP JJO >:3000 ••• PROBABLE FUTURE HP USE
0313 0356 320 160030 JMP >:3400 ••• PROBABLE FUTURE HP USE
0314 0357 320 160035 JMP JJO >:3400 ••• PROBABLE FUTURE HP USE
0315 ••

E-5

Appendix E 21MX

0316 0360 321 000030 "ACTABL 1 ""p >:4000 ••• PROBABLE FUTURE HP USE
0317 0361 321 000035 ""p J30 l:4000 ••• PROBABLE FUTURE HP USE
0318 0362 321 020030 ""p l:HOO ••• PROBABLE FUTURE HP USE
031' 0363 321 020035 ""p JJO >:4400 ••• PROBABLE FUTURE HP USE
0320 0364 321 040030 ""p >:5000 ••• PROBABLE FUTURE HP USE
0321 0365 321 040035 JMP J30 >:5000 ••• PROBABLE FUTURE HP USE
0322 0366 321 060030 JM? l:5400 ••• PROBABLE FUTURE HP USE
0323 0367 321 060035 JMP J 30 >:5400 ••• PROBABLE FUTURE HP USE
0324 0370 321 100030 J MP 1'6000 +++RESE~YED FOR CUSTOMER OHLY
0325 0371 321 100035 """ J30 1'6000 +++RESE~YED FOR CUSTOMER OHLY
0326 0372 321 120030 J"P >:6400 +t+RESE~YED FOR CUSTOMER OHLY
0327 0373 321 120035 JMP J 30 >:6400 +++RESE~YED FOR CUSTOMER OHLY
oua 0374 320 040030 JMP uooo I RESERVED FOR HP USE
032, 0375 320 040035 JMP J 30 UOCIO I RESERVED FOR HP USE
0330 0376 321 160035 JMP J30 >:7400 I BASE SET EXTENSION
0331 0377 321 16103 5 ""p J30)17420 I BASE SET EXTENSIO~
0332 ··························~··· 0333 SEND
•• NO ERRORS••

0001 $0Rl&lN•4008
0002 ••
0003 •
0004 • 21lt11 ltlCRO•CODE
ooos • NODULE I
0006 •
0007 ••
0008 DISPLAYA ECIU U76
ooot DJ SPLAVT ECIU U67
0010 DISPLAYS EQU U37
0011 INTE!tUPT EQU 1'0005
0012 ••
0013 • MEltORY INITIALIZATION ROUTINE
OOH ••
OOlS 0400 322 161171 HALT J llP CNl>X MMLS llGDOD JUltP IF ltEltORY MOT LOST
0016 0401 341 004617 I ltlt HIGH NEU l102 ENABLE SYSTElt ltAP
0017 0402 347 101017 I ltlt LOii SI U40 SI <• 2'8 COllP OF 32
0018 0403 001 1J70S7 ZERO S2 CLR 82 <ltAP ADDR)
001' 0404 017 142557 PASS A S2 CLR A-RU
0020 0405 017 142S17 PASS 8 S2 CLR 8-RU
0021 0406 017 14211 7 PASS T 12 CLR T REG
0022 0407 353 077117 I"" Cllltl S3 U37 S3 <• •LOAD ADDR R£G• COltllAHD
0023 0410 347 076264 LOSTLOOP 111!1 BHLT LOU CNTR U37 CNTR<•COllP OF 321 CLUlt RUN FF

0024 0411 017 144617 PASS NEU SJ LOAD 0 INTO ADDR REG ON ltEU
0025 0412 017 142620 NAP LOOP !!ESP PASS NEU S2 LOAD llAP IN NEU
0026 0413 000 043063 ICNT INC 82 S2 I MC MAP ADl>R
0027 0414 l23 020531 .lllP CNl>X CMT8 RJS llAPLOOP LOOP<*32>
0028 0415 001 137717 zuo p CLR P RU
002' 0416 160 074717 URTE INC PHii p lf(•PI P<•PHI llRITE ZUO DATA
0030 0417 J22 020731 JltP CNDIC ALIS RJS •-1 LOOP UNTIL N•077777
0031 0420 ODO 041017 INC S1 SI INC MAP CHTR
0032 0421 320 020431

J ""
CNl>X TBZ RJS LOSTLOOP LOOP <•32>

0033 0422 341 000617 11111 HIGH NEU UDO DISABLE ALL llAPS MOii ...
0034 ••
003S • FRONT PANEL STANDARD SCAN ROUTINES
0036 ••
0037 0423 334 USSJI MltOOI> JNP CHU NSFP COHTFP JU"P IF NOH-STANDARD FRONT PANEL
0038 0424 017 1157:52 FTCH PASS s DSPL S<•DJSPLAYllNITJALJZE !IEN. PROTECT
0039 0425 330 121 371 J llP CNDX NS!IC RJS WAIT JUMP IF •JMSTR STEP• PRESSEi>
0040 0426 J47 1 S63S7 INN LOU DSl>J OJSPLAYT ACTJ YATE •T• INDICATOR IH DSPI
0041 0427 JOO 024270 llAIT olSB UPDATE UPDATE DISPLAY llJTH PROPER DATA
0042 0430 334 021431 JNP CNDX NSTB ltJS • WAIT FOR BUTTON RELEASES
0043 0431 32S 164231 ""p CNDX RUii RUH
0044 0432 334 061471 JltP CNDX NSTB •-1
0045 0433 017 136757 SCAN NOP SCAM FOR IVJTCH PRESSED
0046 • HOP ONE CYCLE TO SET SWITCH CONDIT IONS
0047 0434 332 122S71 JllP CNDX NLT It.IS LEFT
0048 0435 331 023431

J ""
CNDX M lift RJS INC.It

0049 0436 331 123531 JltP CNDX NDEC RJS DEC.M
ooso 0437 333 025471 JltP CNl>X NSTR RJB STDREX
DOSI 0440 333 121371 JltP CNDX HRST RJS WAIT
0052 0441 332 OJ22JI SCAHRT JltP CNl>X NRT RJS IUGHTR JUMP IF •RIGHT• TO TEST FOlt ENTRY
OOS3 • INTO SPECIAL DISPLAY ROUTINE.

E-6

21MX

0054
00'5
00'56
0057
00'58
00'59
0060
0061
0062
0063
0064
0065
006'
0067
0068
006'
0070
0071
0072
0073
0074
0075
0076
0077
0078
007'
0080
0081
0082
0083
0084
0085
OOH
0087
0088
008'
0090
0091
00'2
0093
00'4

00'5
00'6
0097
0098
0099
0100
0101
0102
0103
0104

0442
0443
0444
0445
0446
0447
0450
0451
0452

0453
0454
0455
0456
0457
04'0
04'1
04'2
0463
0464
0465
046'
0467

0470
0471
0472
0473
0474

0475
0476
0477
0500
0501

330 02"171
32'5 164231
330 161431
33'5 040271
017 176317
220 074712
017 136745
017 100411
220 020673

017 117004
321 122771
017 140357
320 021370
347 076357
320 021270
347 076157
017 ouno
320 123331
157 117002
320 022670
347 174357
320 021370

000 023017
320 023570
007 123017
017 140457
320 021370

017 l U417
327 122571
347 166357
017 142317
320 03.3130

0105 0502 017 116417
0106 0503 320 024035
0107 0504 347 076357
0108
0109
0110
0111 0505 017 116417
0112 0506 320 025035
0113
0114 0507 177 114017
0115 0510 000 023017
0116 0511 000 040457
0117 0512 320 021430
0118 0513 000 014476
0119 0514 017 115776
0120 0515 017 114536
0121 0516 017 114576
0122 0517 347 136157
0123 0520 017 016757
0124 0521 320 164631
0125 0522 017 115736

Appendix E

aP CN!>X Mll>R RJS LOllDER
""p CNDX RUN RUN
JltP CMl>IC MSl4C II Al T+l J"P IF •JMSTR STEP• NOT PRESSED

""p CNOX INT I Nl ERUPT SERVICE AMY PENDING INTERRUPl
PASS OSPL s OJSPLAV <• S

READ FTCM J MC PMN p 00 STANDARD FETCH ROUTINE
JON
CLFL PASS JR TAB

RUD JTU IMC c" ADlt

•• • DISPLAY INDICATOR SHIFT ltOUTIMES
••
LEFT lt1 PASS 81 l>BP J Sl<•DSPJ SHJFTEO RICHT OHE

""' CMDX ALO It.I I LEFTA JU"P IF DSPJ llRAP-AROUND REIUJltED
LEFTB PAIS DSP I SI DSPI <• DSPI SHIFTED RJCHT ONE

""' HIT .IU"P TO STANDARD SCAM ltOUTIMES
LEFTA 1"11 LOii l>SPJ Dl9'LAY9 DSPJ llRAP-AROUHD A TO S

""p llAlT .IU"P TO STANDARD SCAM ROUTINES
RIGHT Ull LOii L l>ISPLAVS

STFL I Olt DSPI SET FLACJ TEST DSPI

""' Clll>ll ONES ltJS RICHTA .IU"P IF llRAP-AROUMD OF DSPI ltEIO
LVF Ll PASS S1 OSPJ Sl<•DSPI SHIFTED LEFT DllE
""p LEFTB

RJGHTA 1"11 LOii DSPJ DJBPLAVA DSPJ llltAP-AROUMD S TO A
.IKP UfllT .IU"P TO STANDARD SCAM ROUTINES

•• • IMC t. DEC M ROUTINES
••
IMC." IMC S1 " S1 <• " t I

.JMP DEC."+I
DIC.II l>EC SI " St (• " - 1

PASS " St " (• st ""p UNCD llAlT .IU"P TO STANDARD SCAM UUT J NE
••
• SPECIAL TEST TO EXIT SPECIAL DISPLAY LOOP
••
LEFTlt PASS IR OSPJ CHECK FOR •"• DSPI

.IMP CMOX 1R2 RJS LEFT .IUNP IF •"• TO LEAYE SPECIAL CODE.
I"" LOii DSPI "373 D9PJ <• •"• (SHIFT FRO" •T • >

PASS DSPL S2 SHOii POINTER OH DISPLAY
""p UHCD llAlTR llAJT FOR BUTTON RELEASE IN SPECIAL COOE

••
• STORE AND UPDATE ROUTINES
••
• THE REGISTER INDICATED IH DSPl JS THE BIT POSITION llHJCH JS
"' LOii. ALL OTHER 8JTS ARE l. THE ORDER <"SB TO LU> JS
• S P T " 8 A
• THE INDICATED REGISTER JS DETER"INED BV LOADING DSPI IHTO

TO THE APPROPRIATE
JS INTERSPERSED

• THE JR, AHO JU"PING USIHC JJO TO GET
• STORE OR UPDATE ROUTINE. OTHER CODE
• FOR "AXl"U" CONTROL STORE EFFICIEHCV
STORE PASS JR OSPl

J"P J3D ~0500 J"P TO STORE SELECTED REGISTER
RUN I"" LOii DSPI DISPLAYS

"'
OSPJ <• •s•. THE SAYE REGISTER IS
lERO AT THIS POINT SD THE NEXT RTM
lllLL lHITIATE THE FETCH ROUT1HE "' ••

UPDATE PASS IR OSPI
J"P J30 ~520 J"P TO nISPLAV SELECTED REGISTER

••

STORES

llRTE PASS TAB OSPL STORE T

UMCD
RTN
RTN
RTtl
UM

CHl>X
ltTN

INC St "
I NC " 91

IMC "
PASS S
PASS B
PASS A
LOii L
I OR
ONES
PASS P

UlT+l
OSPL
OSPL
DSPL
DSPL
"357
OSPl
STORES
DSPL

JHCRE"ENT "' SET TAB LOGIC

STORE "
STORE S
STORE B
STORE A
P OR S TO BE DISPLAYED
USK OUT •s•
JU"P IF •s• INDICATED
STORE P

E-7

AppendixE

0126
0127
0128 0523 017 115013
out 0524 321 165331
0130 0525 017 136754
0131 0526 017 136776
0132
0133 0527 220 022457
0134 053£'1 017 l 00336
0135
0136 0531 300 024130
0137 0532 320 021370
0138
013t 0533 017 122336
0140 0534 017 176336
0141 0535 017 124336
0142 0536 017 126336
0143 0531 347 136157
0144 0540 017 016757
0145 0541 320 165631
0146 0542 017 174336

0147
0148
014'
OISO 0543 341 177053
OISl 0544 353 137017
OIS2
OlS3 0545 347 000157
0114 0546 015 143717
OIS5 0547 010 075217
0196 OSSO 000 OSI 217
0197 0551 017 142457
OISB 0552 320 161371
OISt 0553 117 1:10117
0160 0554 017 140157
0161 0555 223 043057
0162 0556 017 150157
0163 0557 013 004757
0164 0560. 320 026271
0165
0166 0561 347 000157
0167 0562 347 164257
0168 0563 017 176417
016' 0564 017 177155
0170 0565 017 147144
0171 0566 013 147157
0172 0567 347 160157
0173 0570 004 147153
0174 0571 322 061371
0175
0176 0572 344 000257
0177 0573 017 174454
0178
017' 0574 017 131003
0180 0575 017 140163
0181 0576 OIS 131003
0182 0577 017 140163
0183 0600 015 131003
0184 0601 017 140163
0185 0602 012 031017
0186 0603 177 146117
0117 0604 000 023063
0188 0605 017 142457
018' 0606 344 000157
ouo 0607 017 022757
OUI OUD 320 127631

E-8

21MX

••
•••••• OYFL REC. STORE--PAtT OF SPECIAL DISPLAY ROUTINES ••••••••••~••••
STOROO BOY PASS SI DSPL CHECK DISPLAY

JHP CNDX ALO •+2
COY CLEAR OYERFLOll
UH

••
READ JNC H H UPDATE T1 READ H, SET TAB LOCJC

llTN PAIS DSPL TAB DSPL <• HEN DATA
••
STOREX JS8 STORE STORE ROUTINES END WITH RTN
CONTFP JHP WAIT JUMP TO STANDARD SCAN ROUTINES
••

llTN PASS DSPL II UPDATE II
UPDATES llTN PASS DSPL S UPDATE S

llTN PASS DSPL B UPDATE B
llTN PASS DSPL A UPDATE A

IHll LOii L 357B P OR S INDICATED
1011 l>SP I MASK OUl "S •

JHP CNDX ONES UPDATES
RTN PASS DSPL P UPDATE P

•• • 21HX ROii 808TSTRAP llEHORY LOADER ROUTINE
••
LOADH UH SOY NIU S2 U77 FORM 0111111111111111 <NAX ADDR>

UN CHiii SI U57 FORM OOOJOOOOOOOOOOOO <IOK> IN St
•••••• DETERNINE HENDRY SIZE, STARTING ADDR FO• LOADER •••••••••••••••••
SlZE UH LOii L noo FORM 1111111111000000 IN L

ANO p S2 FORM STARTING ADDR JN P
CHPS SS p FORM no•s COMP
INC BS BS OF SA IN H
PASS II 82 PUT LAST ADDR INTO H

.IMP CNDX ONES UIT TEST FOR NO READ/VRTE CAPABJLITY
llRTE PASS T SS PASS INTO T

PASS L SI UPDATE LAST ADDR VHILE llAITINC
READ SUB S2 82 TO RETRJEYE DATA

PASS L SS COMPARE WHAT llAS READ FRON llEH.
XOR T TO DATA WRITTEN <83>

UP CHDX TBZ llJS SUE IF JT CHECKS, VE HAYE CORRECT STiil ADDR
•••••• . CHECK SELECT CODE IN S REC . •••••••••••••••••••••••••••••••••

UN LOii L noo FORM 1111111111000000 IN L
Ull LOii CHTR U72 CNTR Gil 8 -6

PASS JR s BET UP LOADER SELECT BIT
llPT PASS 84 11 SET UP S•REC FOR SHIFT
IU PASS S4 S4 SHIFT SELECT CODE INTO BITS<O-S>

SAllL S4 S4 MASK OFF SEL. CODE
JHll LOii L U70 FORN 1111111111111000 <•-108> IN L

BOY ADD 84 84 SUB IOB FRON SEL CODEJ SAYE IN SJ
JHP CHl>X AL15 UIT IF NEC RESULT, SCB < IOBJ RTH Ill OYF ON

•••••• PREPARE FOR LOADER TRANSFER •••••••••••••••••••••••••••••••••••••
Ull LOii CNTR lCO CLEAR CllTR CRON AODR REG)

COY PASS H p PUT SA JN HJCLR OYF • NO OPER ERR
•••••• TRANSFER COHTEllTS OF LOADER ROH TO llE"OtY •••••••••••••••••••••••
LOOPS 1.4 PASS SI L l>lt PASS XXXXXXXXAAAAXXXX INTO SllCNTR•XDO

ICNT PASS L SI CNTR•XOl
L4 AMI> 81 LOR FORM XXXXAAAABBBBXXXX JN SIJ CNTR•XOI
I CllT PASS L 81 CHTR•XIO
L4 AND 81 LDR FORM AAAAB888CCCCXXXX IN SIJCNTR•XID
ICNT PASS L SI CNTR•X 11

NAllD SI LU FORM AAAA888BCCCCDDDD < CHPL FORM>
VRTE PASS T SI WRITE INTO MENORY

ICllT INC 92 " UPDATE llEN ADDRJCNTR•XOO
PASS II S2 PASS NEii ADDR INTO H

UH LOii L lCO FORM 1111111100000000 IN L
1011 II MASK H TO SEE IF LAST VORD OF LDll

JllP CNDX ONES RJ3 LOOPI IF HC0-8>m11111111. DON'TLOOP

21MX Appendix E

0192 ••
01'3 0611 '347 000257 1"11 LOY CNTR UDO SET UP COUNT TO FIND LAST WORD
0194 0612 '344 077110 1"11 STFL LOY S3 le037
0195 0613 157 145102 LVF ll PASS S3 83 FORll 1111111000111111 JN SJ
0196 0614 017 175017 PASS S1 p PASS SA INTO St
0197 •••••• CHECK INSTRUCTION Ill llEllORY FOR 110 TYPE ••••••••••••••••••••••••
0198 0615 237 140457 NUllRD ltEAI> PASS 11 Sl PASS SA INTO II ' READ FIRST lHSTR
OlH 0616 340 026157 11111 NIU L :C013 FORll COllP OF 1111010000000000 IN L
0200 0617 017 105057 PASS S2 T SAVE HllD IM 92
0201 0620 013 143017 SAllL S1 S2 llASK UPPER 81TS FOR 110 TYPE
0202 0621 341 166157 11111 HIGH L U73 FORll 0111101111111111 IN L
0203 0622 013 040757 xo• Sl NOV CHECK FOR 110 TYPE
0204 0623 320 171531 .lllP CNDX ONES HTST IF llATCH OCCURS. JUllP OUT OF LOOP
0205 ••
0206 0624 000 023023 UPDT IClfT INC Bl II OTHERWISE UPDATE II IM SI
0207 0625 323 030671 JllP CHDX CNT8 RJS HUllRD LOOP BACK
0208 0626 017 146154 CO\I PASS L S4 PASS <SCl-108> INTO L
0209 0627 004 143051 CLFL ADD S2 S2 CHHG SC OF DCPC CHTRL WORD
0210 0630 177 14211 7 llRTE PASS T S2 SAYE I H llEll
0211 0631 320 021370 JllP WAIT RETURN TO SCAM ROUTINE
0212 •••••• UPDATE SELECT CODE IN 110 INSTRUCTION •••••••••••••••••••••••••••
0213 0632 017 144157 HTST PASS L 93 PASS 1111111000111111 INTO L
0214 0633 014 042757 NSOL S2 BLEND TO CHECK FOR ... ODO ... OF HLT
0215 0634 320 171231 JllP CHDX ONES UPDT IF FOUND GET NEXT INSTR
0216 0635 347 016157 11111 LOii L U07 FORll 1111111111000111 IN L
0217 0636 013 142757 SAlfL S2 llASK BITS TO CHECK FOR SC < 108
0218 0637 320 071231 JllP CMDX TIZ UPDT IF SO. UH TO LOOP
021t 0640 017 146157 PASS L S4 PASS <SCB-108> INTO L
0220 0641 004 143057 ADD S2 S2 ADD TO SC FROll INSTR
0221 0642 177 142117 llRTE PASS T S2 PASS INTO T AND llRITE INTO UllORY
0222 0643 320 031230 JllP UPDT RTH TO LOOP

0223 ••
0224 • SPECIAL DISPLAY ROUTINES
0225 ••
0226 0644 017 116417 RI GHTR PASS l R DSPI "RIGHT" PRESSED: IR <• DSPI
0227 0645 327 163071 JllP CNDX I R2 ltlGHT JUllP JF II HOT SELECTED BY OSPI
0228 0646 017 115057 PASS S2 DSPL S2 <• D3PL <POINTER)
0229 0647 322 023071 JllP CNDX ALIS RJS RIGHT JllP IF DSPL BIT 15 WASNT SET
0230 0650 347 156357 I ll!t LOii OS!'I "367 OSP I <"' "l"
0231 ••
0232 0651 006 042157 UPDATR OP' L S2 CHECK DSPL BIT 14. STOriE S2 lH L
0233 0652 322 074671 J"P CHOX ALlS "EU MAPS JUllP IF S2 BIT 14 • I TO UPDATE NEU
0234 06'3 350 007003 I 11!1 L 4 Cllll I S1 "003 SI <• "ASK FOR REGISTERS • 140017B
0235 0654 015 141057 ANO S2 Sl S2 <• S2 MASK OUT UHUSED BITS
0236 0655 017 142417 PASS IR S2 SET REGISTER SELECTION
0237 0656 333 073071 JllP CNDX MSTR REAl>REG JUNP IF STORE BUTTON NOT PRESSED
0238 0657 300 037035 JSB J30 ST OREG SELECTED REGISTER <• DISPLAY
0239 0660 320 033130 JMP UMCD WAlTR WAIT FOR HEXT BUTTON
0240 0661 300 036035 REA DREG JSB JJO OSPLREG OI$PLAY <• SELECTED REGISTER
0241 ••
0242 066:-t 334 033131 WA I TR JllP CNDX NSTB RJS • WRIT FOR BUTTON RELEASE
0243 0663 325 164231 JllP CNDX RU!f RU!f JUllP IF RUH INDICATOR LIT
0244 0664 334 073171 JMP CHDX MSTB •-1 JUNP BACK IF HO BUTTON PRESSED
0245 •
0246 0665 017 136757 NOP WRIT ONE CYCLE FOR SETTJHG SVITCH CONDIT
0247 0666 332 123671 J"P CNDX NLT RJS LEFTR JUNP IF •LEFT" PRESSED
0248 0667 331 073531 JllP CNOX NIMC HO TI NC JUllP IF "INCll" HOT PRESSED
0249 0670 000 043.057 I NC S2 S2 IHCREllENT POINTER
0250 0671 320 034030 JllP UHCD OECMR+ 1
0251 0672 331 174231 HOT IMC JllP CNDX NDEC HOTDEC
0252 0673 340 000157 Ill!! HIGH L :tOOO CHECK FDR
0253 0674 015 142757 AND S2 DECREllENT OF
0254 0675 '320 033771 JllP CMDX TBZ llJS DEC KR ZERO COUNT
0255 0676 000 143057 OPl 82 S2 S2 OR L PLUS 1 <WRAP AROUND COUNT + I>
0256 0677 007 143057 DECllll DEC S2 S2 DECREllENT POINTER
0257 0700 017 116417 PASS IR OSP I 1R <• DSPI
0258 0701 327 172471 JllP CNl>X 1R2 UPDATR JUllP IF II HOT INDICATED
0259 0702 017 142317 PASS DSPL S2 UPDATE l)J SPLAY
0260 07o:I 320 033130 J!IP UNCD llRl TR llITH NEW POINTER VALUE AND JUMP
0261 0704 333 134 031 HOT DEC JKP CNDX MRST RJS DECllR+l JUMP IF "DISPLAY• PRESSED
0262 0705 333 074471 JllP CHDX NSTR •+4 JUllP IF STORE HOT PRESSED
0263 0706 017 116417 PASS 1R DSPI
0264 0.707 327 125471 JKP CMDX I R2 RJS Sl i'JR EX JUllP IF II SELECTED. LEAYE SPECIAL MODE
0265 0710 320 032470 JllP UNCD UPDATR M NOT SELECTED
0266 0711 320 022070 JKP UNCD SCURT JUllP TO STD ROUTINES

E-9

Appendix E

0267
0268 0712 347 172417
out 0713 017 114741
0270 0714 017 136776
0271
0272
0273 0715 346 000157
0274 0716 013 143017
0275 0717 340 176157
0276 0720 016 141057
0277 0721 343 076157
0278 0722 016 141017
027t 0723 017 140617
0280 0724 313 075371
0281 0725 017 114620
0282 0726 320 033130
0283 0727 017 134320
0284 0730 320 033130
0285
0286 0731 344 010417
0287 0732 017 1367'2
0288 0733 017 136757
028' 0734 017 110336

02'0
02'1
02'2
02'3
02'4 0740 017 170336
02'5 0741 017 172336
02'6 0742 017 112336
02'7 0743 017 144336
02'8 0744 017 146336
029' 0745 017 U0336
0300 0746 017 U2336
0301 0747 017 154336
0302 0750 017 156336
0303 0751 017 160336
0304 0752 017 162336
0305 0753 017 164336
0306 0754 017 166336
0307 0755 320 035470
0308 0756 343 176336
030t 0757 343 176336
0310
0311 07'0 017 115636
0312 0761 017 115676
0313 07'2 017 114276
0314 0763 017 115136
0315 0764 017 115176
0316 0765 017 115 236
0317 0766 017 115276
0318 0767 017 115336
031' 0770 017 115376
0320 0771 017 115436
0321 0772 017 115476
0322 0773 017 115536
0323 0774 017 115576
0324 0775 017 106336
0325
0326 0776 320 025170
0327 0777 320 034530
0328
032t
•• HO ERRORS*•

E-10

••
ST OREE 11111 LOii IR 1'375 SET UP 3RG TYPE ER• SHIFT

Hf02 PASS OSPL SET E ACCORDING TO DSPL BIT D
llTN

••
•••••• llEU llAP llANIPULATIOHS •••
llEUMAPS 11111 LOii L uoo Sl <• llASK OF LOii 7 BITS

SAHL Sl S2
Illll HIGH L l&D17 L <• 0377778

SOHL S2 Sl S2 <• llASK OUT BITS 13 T 0 8
11111 HIGH L 1'337 DR IN BIT 13

SOHL Sl S1
PASS HU S1 SEND HAP NO. TO HEU

JllP CNOX NSTR REA UAP JUllP IF STORE NOT PRESSED
llESP PASS llEU OSPL llEU llAP <• DISPLAY

J !IP UNCD llAITR
READllAP IH!SP PASS DSPL llEU DISPLAY <• llEU llAP

JllP UNCI> llAITR
•••••• SillULATED LIA 4 IIO INSTRUCTION TO READ CIR •••••••••••••••••••••
DSPLC JR 11111 LOii IR l&004 SET UP SEL CODE 4 111 IR

1 OG INITIATE 110 CYCLE AT TJllE T2
NOP llR IT FDR Tl !IE T4

RTN PASS DSPL I 01 CU TO DISPLAY. DOHT ISSUE IAK

$0Rlla11•7408
••
• SHORT SUBROUTINES TO STORE/DISPLAY. SELECTED REGISTERS
••
DSPLREG RTll PASS DSPL X PASS REG TO FRONT PANEL AND RETURN

RTll PASS DSPL Y
RTll PASS DSPL CNTR
RTll PASS OSPL S3
RTll PASS DSPL 84
RTN PASS DSPL SS
RTll PASS l>SPL S6
RTN PASS OSPL 87
RTll PASS DSPL S8
RTN PASS OSPL St
RTN PASS DSPL SlD
RTll PASS OSPL Sll
RTN PASS OSPL S12

JNP UHCD DSPLClR
Illll RTN NIGH OSPL 3778
11111 RTN HIGH DSPL 3778

••
STOREG RTll PASS X OSPL STORE IllTO REG FRON FRONT P-NEL

RTN PASS Y OSPL
RTN PASS CNTR DSPL
RTN PASS S3 OSPL
RTN PASS S4 DSPL
RTN PASS SS DSPL
RTll PASS 86 OSPL
RTll PASS S7 l>SPL
RTll PASS S8 OSPL
RTN PASS St OSPL
RTN PASS SlO DSPL
RTll PASS Sll OSPL
RTll PASS 812 OSPL
RTll PASS DSPL CIR LOAD CIR FRON INT. REQUEST LINES

• AHO ISSUE INTERRUPT AC~NOllLEDGE
JllP UMCD
JllP UMCD

STOROO
STOREE

••
tEHD

21MX

21MX

0001
0002
0003
0004
0005
0006
0007
0008
ooot
0010
GOil
0012 7000 017 125414
0013 7001 321 100171
0014 7002 001 136576
0015 7003 017 126517
0016 7004. 344 000157
0017 7005 015 160557
0018 7006 015 161457
001, 7007 013 161404
0020 7010 347 140157
0021 70ll 004 161413
0022 7012 320 140771
0023 7013 322 005231
0024 7014 000 061417
0025 7015 017 160255
0026 7016 037 124504
0027 7017 017 126157
0028 7020 017 124554
002t 7021 322 017631
0030 7022 017 062757
0031 7023 320 057631
0032 7024 000 024576
0033
0034
011S 7025 017 126117
0016 7016 001 136157
0017 7017 1S7 141417
0031 7910 121 142530
Ollt
0040
0041
0041 7031 017 101317
Oi43 7032 000 023017.
0044 7033 340 OOOIS7
004S 7034 220 04i4S7
0046 703S 01~ llS417
0047 7036 017 101217
0048 7037 013 llS4S7
004t 7040 013 lS12S7
0050 7041 OIS 151204
0051 7042 321 102271
0052 7043 346 OOOIS7
0053 7044 004 151217
0054 7045 017 161404
0051 7046 321 102471
0056 7047 346 000157
ODS? 7050 004 161417
0058 7DSI 017 127S36
DOH

0060
0061 7052 017 126154
0062 7053 001 137457
0063 7054 017 024757
0064 7055 320 057631
0065 7056 346 003517
0066 7057 037 124742
0067 7060 325 043231
0068 7061 077 124502
006t 7062 ODO 063457
0070 7063 321 142770
0071 7064 322 043331
0072 7065 007 165517
0073 7066 017 164154
0074 7067 003 026557
0075 7070 321 004171
0076 7071 340 000157
0077 7072 240 024517
0078 7073 325 003771
007, 7074 017 124504
0080 7075 000 061414

Appendix E

fORllOJ II• 70008
•• •
• 211X NlCRO-CODE
• IODULE 141 FLOATlllC POINT lllSTRUCTIOllS
• ••
INDIRECT EtU •ODIS
IPVX EtU •0246
••
•
IFIX

MOSHI FT

1111

us

COY PASS 9'
CNl>X ALO RJI
lltll ZUO A

PAIS 8
LOii L
ANO A
ANO SID

ltl SAllL 9'
LOii L

SOY ADD S9
CMDX ONES
CMDX ALIS RJS

INC S9
RPT PASS CHTR
RI PASS 8

PASS L
COY PASS A
CHl>X ALU It.II

lOlt
CMl>X TBZ
ltTll IMC A

A
UDO
S9

" S9
U60

" NOSH I FT
OYER
S9
S9
8
A
8
ltTMFP
SlO
UMFP
8

CLEAR THE OYFL AND PUT EXP JM S9
TEST F Dlt NEG EXP
IF EXP<O llE CAN'T FJX
PUT HIIJTI Ill I-REC
PUT 'UP-8' IAIK Ill L
MASK LEAST SIC. 8 IITS INTO A
SAYE llTI FOR ROUND-OFF
MASK EXP INTO I' lllTllOUT SlCM
PUT ·20<88> INTO L
CHECK TO IEE IF EXP TOD LARQE
OR IF HO SHIFT REQUIRED
IF SO THEN llE CAN'T FIK
START LOOP TD SHIFT DlClTS
PASS I OF SHIFTS INTO CMTR
32-BIT SHIFT
HOLD LEFTOYilt BITS Ill L
PUT INTECER INTO A-REC
TEST FOlt NEC IMTECER
IF NEC THEM CHECK FOR TIUllC. BITS
IF ALL ZEROS llE ARE DONE
OTIERlllSE INC TllE IMTECER & RTH

••
••
FLOAT PASS 8 A PUT IMTECER IN B-REG

ZEltO A CLEAR A•REC
Ill CHLO St •360 STORE +l5<BlD> JN EXP REC
'IP PACK

• ••• • FLD

IH
REO

PHI S7
IMC Bl
MllllH L
IMC M
HD 8'
PASS SS
SAllL SID
SAllL 86

TH
M
UDO
11
8
TAI
8

STORE HillTS IM S7
INC ADDIS FOR NEXT READ
STORE 'LD-8' MASK IM L
READ SECOND HALF OF llRO
MEAMllHILE1IASK EXP OF llRDI INTO S9
STORE UltD2 L081T9/EXP JN SS
MASK LOBJTS OF UROl INTO SID
MASK LOBITS OF URD2 JHTO 96

.IMP
IMll

u
CHOX

AND SS
ALO ltJS
LOii L
ADD SS
PASS 9'
ALO ltJS
LOii L
ADD S9
PASS S1 J

n
S5
••3
UDO
SS
9'
••3
UDO
S9

MASX EXP OF 11102 INTO Sll WITHOUT SCll
IF SICH llAS POS, ~IP

.IMP
I NII

R1
CHOX

ltTll A

OTHERll13E PUT -200(88> INTO L
ADD TO EXP OF llRD2
MASK EXP OF llRDI INTO 8' lllTHOUT SICM
IF SICK WAS POS, ~MP
OTHERlllSE PUT -200<88> INTO L
ADD TO EXP OF llltDI
PUT HIBJTS OF llRDl INTO S3 ' RTN

••
••
PACK

NRMLZ

RllD

.IMP
1"11
ARS
.IMP
LGS

UP
JMP

.IMP
1"11
EMY
.IMP

COY PASS L
ZUO SID
lOlt

CltOX TBl
LOii Sll

ll PASS
CNDX OYFL
Ll PASS 8

IMC SID

CHf>X ALJ5
DEC Sll

COY PASS L
sua fl

Clll>X COUT UI
Hl;H L
INC 8

CMDX OYFL It.IS
Rl PASS 8
COY 1.MC 9'

8
RTllFP
"201

• ltND
8
SID
llRllLZ
••2
Sll
Sll
A
XPMT
•O
8
••4
8
9'

CLR OYFL AMP P•T URDI LOBIT3 INTO L
CLEAR COUNTER REG
PASS THqu ALU lllTH HJllTS
IF A/B JS ZERO.RTH
STORE -177<88> IH Sil
TEST IF HUMBER IS NORMALIZED
IF SO, •MP TO ROUNDING ROUTINE
IF NOT, DO 32-BIT LEFT-SHIFT
I NC THE EXP CNTR
CO BACK TO CHECK FOR NORMAL NUMBER
SINCE B llAS ~UST PASSED THRU ALU
CHECK SCll ' AD.IUST ROUND OFF
PUT 'ROUND' INTO L
ACTUALLYi ADD 200(18> TO LOBlTS
IF HO COUT FROI LOIJTS, OK, JNP
CLR L<l5> FOR OYERFLOll
IF COUT. IMC HlBITS AMO CHECK FOil OYFL
IF HO OYFL, OK,·.llP
OYFL IMPLIES 8/A• 1000 ...
so WE SHIFT B TO FORM oroo ...•

E-11

Appendix E 21MX

0081 7076 321 144170 ""p XPlfT BUNP EXP, THEN J"P
0082 7077 037 124742 ARS L1 PASS B IF B NED 100 .. ,CHECK IF B• 111 ..
0083 7100 325 044171 JNP CHDX OYFL XPNT IF NOT, JNP
0084 7101 077 124502 LliS 1.1 PASS B B U-NOUALIZE
0085 7102 000 063457 I NC S10 S10
0086 7103 017 162153 XPNT SOY PASS I. SID CLR OYFL AND PUT EXP INTO I.
0087 7104 003 061417 SUB S9 S9 SUB CALC EXP FRON ORlfi EICP
0088 7105 346 OOD157 1"11 LOY I. uoo PUT -200(B8 > INTO L
008' 7106 003 060757 SUB S9 TEST FOii EXP UNDERFLO
0090 7107 322 045131 ""p CNDX ALIS UNFLO IF SO, JNP
0091 7110 004 160757 ADD 8' JEST FOii EXP OVERFLOW
00'2 7111 322 017671 ""p CNDX AL15 llJ3 OYFLO IF SO, d"P <TO 7375>
00'3 7112 157 160742 LYF L1 PASS S9 PASS EXP SIGH INTO FLAG-REG
0094 7113 157 161402 LWF 1.1 PASS S9 8' SHIFT EXP WITH SICN
0095 7114 340 000157 1"" HIGH L llOOO STORE 'L0-8' "ASK IN L
0096 7115 015 161457 AND S10 S9 MASK EXP INTO S10
0097 711' 013 127417 SANL S9 A MASK I.OBITS INTO S'
0098 7117 017 124557 PASS A B PUT HJBJTS INTO A-REG
00,, 7120 017 160154 COY PASS L 3' PUT LOBJTS INTO L
0100 7121 017 062536 ffTN I Gr! 8 SID COMBINE WITH EXP AND STORE IN B-llEG
0101 7122 00 l 136557 UN FLO zuo A CLEAR A-llEGJ OYFL•I
0102 712J 00 I 136536 llTN ZEllO 8 NOW CLll 8-llEG AND RTN
0103 • OJ04 7124 341 l 76576 OYER 1"!1 ln!f HIGH A "177 SET UP ERROR CONDITION IN A
0105 ••

0106 ••
0107 7125 017 136750 FADD STFL
0108 •
0109 7126 220 074457 FSUB READ INC " p PASS P INTO M TO READ ADDR OF WRl>2
0110 7127 300 000670 JSB IHDJRECT CHECK FOR INDIRECTS
0111 7130 301 141470 JSB FLO UNPACK WRDS JHTO SCRATCH REGS
0112 7131 017 154517 PASS 8 37 CHECK FOR WRD2•0
0113 7132 320 005631 ""p CNDX TBZ RJ3 •+2 JF HO.T .CONTINUE
0114 7133 346 001217 1"11 LOY S5 UDO IF so."AKE EXP MOST NEG <-200.88>
0115 7134 017 164757 PASS Sil CHECK FOR WROl•O
0116 7135 320 005771 ""p CNDX TBZ RJS •+2 IF NOT ,CONTINUE
0117 7136 346 001417 1"11 LOY S9 uoo JF sO,"AKE EXP MOST NEC <-200.88>
OJ 18 7137 324 046SU JMP CllDX FLAG DJFR IF DOING ADD.SKIP AHEAD
011' 7140 010 024517 CMPS 8 8 FORM 2-COMP OF HIBITS JN 8
0120 7141 010 053257 CMPS S6 S6 FORM 2-COMP OF
0121 7142 000 053257 I NC $6 S6 I.OBITS OF llR02
0122 7143 321 006531 JMP CNDX COUT RJS DIFR IF COUT OCCURS
0123 7144 000 024517 I NC 8 B BUMP HJBJTS
0124 7145 322 006531 ""p CHDX ALIS II.IS DJFR CHECK SGNJ IF POS, .IMP
0125 7146 017 124742 L1 PASS 8 J, NEG.CHECK FOR MOST
0126 7147 320 006531 J"P CHDX TBZ RJS D lFR NEG I< 100 ... >
0127 7150 017 124504 RI PASS 8 8 lF SO. S!llFT BACK < 010 ... >
012B 7151 000 051217 JNC S5 S5 UUMP EXP
012t 7152 017 152557 DJFR PASS A S6
0130 7153 017 150157 PASS L SS FIND DIFF IN EXPS
0131 7154 003 061351 CLFL SUB S8 S9 •STORE JN S81 FLG•O
0132 7155 320 047731 J"P CNDX TBZ ADD2 JF DIFF•O,JftP TO ADD STEP
0133 71.:56 322 047131 JMP CNDX Al.15 RYRS JF NEG.llR02>URDI
0134 7157 010 057357 CMPS S8 38 FORM -DIFF
0135 7160 000 057.357 J NC S8 S8 • STORE -OIFF IN 18
013' 7161 321 147430 JMP SUAMPCHK
0137 7162 017 124157 RYRS PASS I. 8 HOLD B JN L
0138 7163 017 164517 PASS B Sii WR01<11RD21 FILL B,A
013' 7164 017 162557 PASS A SID WITH su.110
0140 7165 Olli 037517 PASL Sil ALSO FJl.L s11.s10.s'
0141 7166 017 153457 PASS SID 36 WITH 8,$6,$5
0142 7167 017 151417 PASS 89 S5
0143 7170 347 120157 SYAMPCltK Ufl LOY L 1'350 FORM -30(88 > IN L
0144 7171 003 056757 SUB S8 JF -DIFF>-31.RTN WITH L ARGEll I
0145 7172 322 050671 J"P CHDX ALU OUT J"P TO RESTORE A18
014' 7173 037 124504 SHIFT ARB RI PASS 8 8 NOii START SHIFT LOOP
0147 7174 000 057357 INC 18 S8 INC COUNTER
0148 7175 320 007571 .IMP CHDX TBZ RJS SHIFT LOOP UNTIL DONE
010 •
OISO ••••• CONTINUED ON NEICT PAGE •••
E-12

21MX Appendix E

OUl1 •
0152 7176 017 162154 Al>D2 CO\/ PASS L SlO PASS LOBJTS JNTO L
0153 7177 004 126S57 ADD A A ADI> ' CHECK FOR COUT
0154 7200 321 010171 J"P CHDX COUT RJS •+3 IF HOT,JMP
0155 7201 340 000157 l"lt HIGH L lCO CLR L<15> FOR OYFL
0156 7202 240 024517 EH\/ IHC B B IF SO,JNC HIBJTS' ENABLE O\IFL
0157 7203 017 164151 CLFL PASS L Sll FLG•O
0158 7204 244 124517 EMY ADD 8 8 ADD HIBJTS AND ENABLE OYFL
01'9 7205 325 010571 J "p C HDX OYH RJS PK SUB JF MO O\IFL,RETURM
0160 7206 322 050431 J"P CHDX All 5 •+2 OYFL J"PLJES SGM CHHG
0161 7207 017 136750 STFL 80 FLG•U JF ALUIS•O
0162 7210 I S7 124504 LWF 111 PASS 8 8 DO FULLURD SHIFT
0163 7211 157 126544 Liff 1U PASS A A U91 H~ FLG REG TD INJECT SGM
0164 7212 000 061417 JHC S9 89 BU"P EXP
0165 7213 301 142530 PICSUB J SB PACK REPACK A,8 REGS
0166 7214 000 07573(, llTll J NC p p l NC P AND RETURN
0167 7215 017 164517 OUT PASS 8 Sll PASS "UCH LARGER URD INTO &, A
0168 7216 017 162557 PASS A SID
016!!1 7217 301 142530 JSB PACK
0170 7220 000 07:5736 llTll l NC p p

0171 ••
0172 ••
0173 7221 220 074457 F"PY REflD INC " p PASS P INTO " TO READ ADDR OF WRD2
0174 7222 300 000670 .188 INDIRECT CHECK FDR JHDIRECTS
0175 7223 301 141470 .188 FLO STORE ARCS IN SCRATCH REGS
0176 7224 ODO 061417 IMC 89 89
0177 7225 017 IS0157 PASS L n FOR" EXPl+EXP2+1
0178 7226 004 161417 ADD 89 S9 AllD SAYE JH S9
017' 7227 017 162544 ltl PASS A SlD FOR" <WRDI LOBITS)/2 IN A
0180 7230 017 I 550S7 PASS 82 87 PASS URD2 HJBITS INTO S2
0181 7231 300 012330 J88 "PYX J"P TO ltPY SUB ' RTN WITH
0182 72U 017 125217 PHS SS B HIBJTS JN BJ SAYE JN S5
0113 7233 017 165057 PASS 32 311 PASS URDI HJBJTS INTO S2
0184 7234 017 127517 PASS s 11 A LOBJTS INTO Al SAYE JN Sil
0185 7235 017 I 52S4 4 IH PASS A S6 FOR" <WllD2 LDBITS>l2 JN A
0186 7236 300 012330 JSB "PYX JNP TO MPV SUB ' RTH WITH
0187 7237 017 126157 PASS L A LOBITS IH Al PASS INTO L
0188 7240 004 1645S7 ADD A Sll ADD BOTH LOBITS ' CHIC FOR COUT
018' 7241 321 012171 ""p CNDX COUT RJ8 •+2 <ELSE TRUNCATE DIGITS>
01'0 7242 ooo- 024517 INC 8 8 IF COUT,8U"P HIBITS
0191 7243 017 124157 PASS L B ADI> HIBITS AND SAYE IN Sll
0192 7244 004 lSl 517 ADD Sll 85
0193 7245 017 154557 PASS A S7 PASS WRD2 Hl81TS INTO A
0194 7246 300 012330 JS8 MPYX JNP TO MPV SUB ' RTH WITH
0195 7247 017 126544 u PASS A A LQBITS JH Al SAYE LOBJTS/2
01 '6 7250 017 126154 COY PASS l A ADD LOBITS/2 TO HIBITS SU" ' 0197 7251 244 l64S42 EHY LI ADD A Sil SHFT Ll TO REORIENT
01'8 72S2 322 012671 """ CNDX ALIS RJS •+3 CHECK FDR CARRY INTO OR
01,, 7253 32S 052771 """ CNl>X OYFL BORROW ~RO" HIBITS '
0200 7254 007 124S17 DEC 8 8 ADJUST ACCORDINGLY
0201 72S5 301 142530 JSB PACK
0202 72S6 000 07573' IHN INC I' p
0203 72S7 ODO 024S17 INC B B CAN'T OYFL FRO" HJBITS
0204 7260 301 142S30 JSB PACK
0205 7261 000 075736 RTN INC p I'
0206 ••

0207 ••
0208 7262 220 074457 FDIY RUD I NC " p PASS P INTO M TO READ ADDR OF WRl>2
020' 72"3 300 000670 J SB IHDJRECT CHECK FOR IHDJRECTS
0210 7264 301 141470 JSB FLD
0211 7265 010 054554 CO\/ CltPS A S7 PASS WRD2 HIBITS ' CHECK
0212 72'6 320 156131 J"P CHl>X OHEB DBYZR FOR DIV BY ZERO
0213 72'7 322 053471 JMP CNDX AUS • +2 SlHCE UE USE SAME DYSR, MAKE POS
0214 7270 000 027313 SOY JHC 87 A HOU ' SAYE SCH IH OYFL
0215 7271 017 150157 PASS L 85 FOR" EltJS'l-EXP2+1
0216 7272 003 061417 SUB 89 59 ' SAYE JN S9
0217 7273 ODO 061417 INC S9 S9
0218 7274 017 162SS7 PASS A 810 FILL B,A WITH WRDl AB DYHO
021' 7275 017 1'4Sl7 PASS 8 Sll ' PRESHIFT TO AVOID OYFL
0220 7276 037 124S04 ARS :u PASS 8 8
0221 7277 301 156370 JS8 !'I J y)(J"P TO SPECIAL DIY SUB
0222 7300 017 127217 PASS 85 A SAVE QUO l J H SS
0223 7301 017 124757 PASS B PASS QUO ' CHECK FOR ODD/EVEN
0224 7302 321 114231 J"I' CHl>X ALO RJS •+2 lO Bl"ULATE FIRST
0225 7303 007 l 24S1 7 DEC 8 8 LEFT SHIFT IH DIY ROUTINE
0226 7304 001 136S57 ZERO A CLR DYMD LOBJTSJ DYBR SA"E

E-13

Appendix E 21MX

0227 7305 301 15U70 .188 D1¥X .lftP TO 3PEC DJY SUB
0228 7306 017 127517 PASS Sll A .SAYE QU02 JN Sil
0229 7307 017 l 52504 u PASS B S6 FORft <llRD2 LOBJTS>I~ IN
0230 7310 017 124504 u PASS 8 8 B<•OYHD HJBITS>
0231 7311 001 136557 ZERO A CLR DYHD LOBJTSJ DYSR SUE
0232 7312 301 156370 JS8 DJYX .lftP TO 3PEC DIY SUB
0233 7313 010 026557 CftPS A A FORM 2-COftP OF QU03
0234 7314 000 026557 INC A A AS ftPLR
0235 7315 017 151057 PASS S2 SS PASS QUOl AS ftCHD
0236 730 300 OU330 JS8 ftP'fX .lftP TO ltPY SUB
0237 7317 017 125317 PASS 37 8 SAYE PROD HIBJTS IN n
0238 7320 001 136517 zno B PRE-CLR B
0239 7321 017 164757 PASS 811 CHECK SGH OF IU02
0240 73U 322 015231 ""' CHDX llLlS RJS ••2 ' EXTEND AS ALL 3'S<POS>
0241 7323 OU 036517 ONE 8 OR ALL J'S< HEG >
0242 7324 017 154757 PASS S7 CHECK SGM OF -IUOl•IU03
0243 7325 322 015371 JIP CHDX ALIS RJS ••2 IF MEG.SUB l FROft B
0244 7326 007 12451 7 DEC 8 8
0245 7327 017 155302 LI PASS 37 37 REORIENT PltOD <AD.IUST EXP.REALLY>
0246 7330 017 154542 LI PASS A S7
0247 7331 017 126157 PASS L A
0248 7332 004 164557 ADD A SU ADD TO llU02
024' 7333 321 015671 JIP CNDX COUT ltJS •+2 JF COUT OCCURRED
0250 7334 000 02451 7 INC 8 8 BVIP HJBITS OF RESULT
0251 7335 077 124502 LG3 LI PASS 8 8 SHIFT FULLllRD TO ORIENT RESULT
0252 7336 017 150157 PASS L SS ADD QUO! TO HJBJTS
0253 7337 004 124517 ADD 8 8
0254 734D 301 142530 JS8 PACK
0255 7341 000 075736 Ult INC p p
0256 7342 001 136557 DBVZlt zno A CLR LOBJTS
0257 7343 352 000517 Jiit Cftlil 8 uoo FORI 0111111100000000 JN HIBJTS
0258 7344 017 125417 PASS S9 8 ALSO PASS INTO EXP
025' 7345 301 142530' JS8 PACK
0260 7346 000 075736 UN I NC p p

0261 ••

0262 ••
OH3 ..
0264 • THIS JS A SPECIAL SUB FOR F.P. DIY
0265 * JT ASSUltES THAT DYSR IS ALWAYS POS
0266 • THAT ORIG DYSR SGH JS JM OYFL REC
0267 • THAT YOU HAYE PREVIOUSLY DOME FIRST LEFT SHIFT
0268 • AND THAT HO ERROR COHO NEED BE CHECKED
02'9 * CBUT IT JS FAST>
0270 •
027-1 ••
0272 7347 344 000257 DJYX 1"11 LOii CHTR llO CLR CNTlt
0273 7350 157 124742 LllF Ll PAB8 8 CHECK FOR MEG DYND ' SAYE SGN JN FLG
0274 7351 322 016771 ""' CHDX ALU ltJS ltEADY IF POS. llE ARE READY
0275 7352 010 0241117 CftPS 8 8 COllP HJBITS
0276 7353 010 026557 CIPS A A C OllP L 081 TS
0277 7354 000 026557 INC A A FOU 2•COIP OF LOBITS
0278 7355 321 016771 ""' CHDX COUT R.111 READY IF HO COUT.OIC
027' 735' 000 024517 JHC 8 8 ELSE BHP HIBITS
0280 7357 017 154155 READY RPT PHS L S7 PASS OYSR INTO LJ SET ltPTFF
0281 7360 123 024502 01¥ LI SUB 8 8 PERFORft DlY STEP<16X>
0282 -7361 017 124504 Rl PASS 8 8 FORM REii JN 8
0283 7362 324 017271 ""' CHDX FLAC RJS •+3 JF REii SGM JS TO IE NEC
0284 7363 010 024517 CftPS 8 8 <DETERftJHED BY DYHD>.THEN
OHS 7364 000 024517 INC 8 8 FORM 2-COIP JN 8
0286 7365 325 057471 ""' CHDX OYFL ••4 CHECK ORJC DYSR SCNJ JF POS.
0287 7366 324 017631 ""' CHDX FLU us RTHFP LOOK FOlt MEG OYHD
0288 7367 010 026557 CftPS A A llHJCH ftEAHS FORft
0289 7370 000 026576 RTH INC A A NEC GUO JN A ' RTH
OHO 7371 324 057631 ""' CHDX FLAG RTHFP ELSE IF NEC.LOOK FOR POS DYND
0291 7372 010 026557 CftPS A A VHI CH ftEANS FORft
0292 7373 000 026576 RTll INC A A NEC QUO JM A ' RTN
0293 ••
0294 •
OHS 7374 017 136776 RTHFP RTN
0296 •
0297 7375 016 036544 OYFLO Rl ONE A PUT llOST POS I AHO llOST POS EXP
0298 7376 347 174536 1"11 RTll LOii 8 U76 INTO A.8-RESSJ OYFLO•l
029' ••
0300 fEHD
•• MO ERRORh•

E-14.

21MX Appendix E

0001 fORIGJN•7400
0002 ••
0003 •
0004 • 21U NICRO-CODE
0005 • NODULE 151 EXTENDED INSTRUCTION ~ROUP
0006 •
0007 ••
0008 FETCH EQU llOOOO
0009 ••
0010 • JUNP TABLES - ENTERED FRON BASE SET
0011 ••
0012 7400 321 163170 JNP EADRX SAIC/SIX
0013 7401 017 103636 llTN PASS I(CAB CAX/C'tlC
0014 7402 '321 163170 JMP EAORX LAX/LBX
0015 7403 321 163030 JNP EROR STX
0016 7404 017 170076 RTN PASS CAB K CXR/CXB
0017 7405 321 163030 JNP EROR LOX
0018 7406 321 163030 JNP EAOR ADX
oou 7407 321 164 07 0 JMP XAIX XRX/XBX
0020 7410 321 163630 JNP EAORV SAYISBY
0021 7411 017 103676 RTN PASS y CAB CAYlCBY
0022 7412 321 163630 JNP EAORY LAYILBY
0023 7413 321 163030 JNP EAOR STY
0024 7414 017 172076 RTN PASS CAB y CYR/CYB
0025 7415 321 163030 JMP EAOR LOY
0026 7416 321 163030 JMP EAOR ADY
0027 7417 321 164230 JMP XA8Y KAYIXBY
002B 7420 '321 164370 JMP J SK
002' 7421 321 164670 JNP osx
0030 7422 321 177070 JNP JLY
0031 7423 321 172530 .INP LBT
0032 7424 321 171630 JNP SIT
0033 7425 321 173230 JNP NBT
0034 7426 321 1 75130 JNP CBT
0035 7427 321 174030 JNP SFB
0036 7430 321 164530 JNP lSY
0037 7431 321 165030 JNP DSY
0038 7432 321 177370 JNP JPY
003' 7433 321 167330 JNP SBSCBS 988
0040 7434 321 167330 JNP SBSCBS CBS
0041 7435 321 166630 JNP TBS
0042 7436 321 17D230 JNP CNll
0043 7437 321 171030 JMP NYll

0044 ••
0045 • INDEX REGISTElt INSTRUCTl OHS
0046 ••
0047 • DISPLACENENT FRON FINISH CORREPOHDS TO
0048 • DISPLACEMENT FRON 7400B FOR JHSTRS. LISTED
004' • IH CONMEHT FJELD SELOll .
0050 7440 000 022461 FINISH l'IPCK INC " " SAX/SIX
0051 7441 177 102036 URTE lHN PASS TAB CAB
0052 7442 017 100076 llTN PASS CAB TAB LAX/LBX
0053 7443 000 022461 !f PCK INC !I " STX
0054 7444 177 170036 llRTE RTN PASS TAB)(

0055 7445 017 101636 llTN PASS IC TAB LDX
0056 7446 017 100157 PASS L TAB ADX
0057 7447 264 171636 ENVE RTN ADD l()(

0058 7450 000 022461 !f PCK I NC " " SAY/SBY
005, 7451 177 102036 llRTE RTN PASS TAB CAB
0060 7452 017 100076 RTN PASS CAB TAB LAY/LBY
0061 7453 000 022461 !f PCK INC " " STY
0062 7454 177 172036 llRTE llT!f PASS TAB y
0063 7455 017 101676 RT!f PASS y TAB LOY
0064 7456 017 100157 PASS l TAB ADY
0065 7457 264 173676 EHYE RT!f ADO y y
0066 ... ,.,.,•........................
0067 • EAOR JS COMNON TO LO•.ST•.AD•
0068 74'0 220 074717 EAOR l!EAI> INC PHI! p READ 1101!0 2 P<=ADDR DF NEICT J NSTR.
0069 7461 301 165630 J SB JHOBIT CHECK FDR JNOIRECT,GET OPERAND
0070 7462 321 162035 JllP JJO FI H ISH JUMP TO CO!IPLETE INSTRUCTION
0071 ••
0072 • EAl>RX DOES EFFECTIVE AODR FOR
0073 • SAl(,98)(, LAX,LBX INSTRS .
0074 7463 220 074717 EADRX READ INC PN!f p l!EAD ADDRESS OF llORO 2
0075 7464 017 170157 PASS L I(

0076 7465 017 100457 PASS !I TAB !l<sCONTENTS OF llORO 2.
0077 7466 322 023471 J!IP CNl>X All 5 l!J s OlRECT JUMP JF NO JHDIRECT.

E-15

Appendix E

0078
0079
0080 7467 220 022457
0981 7470 301 165630
0082
0083
0084 7471 004 123017
0085 7472 220 040457
0086 7473 321 162035
0087
0088
008'
0090 7474 220 074717
0091 7475 017 172157
0092 7476 017 100457
0093 7477 322 023471
0094 7500 321 163370
0095
0096 7501 017 103017
0097 7502 017 170057
0098 7503 017 141636
oon
0100 7504 017 103017
0101 7505 017 172057
0102 7506 017 141676
0103
0104 7507 000 071617
0105 7510 320 067271
0106 7511 017 136776
0107
0108 7512 000 073657
0109 7513 320 067271
0110 7514 017 136776
0111
0112 7515 007 171617
0113 7516 320 067271
0114 7517 017 136776
OJ15
0116 7520 007 173657
0117 7521 320 067271
0118 7S22 017 136776

011'
0120
0121
0122
0123
0124 7523 000 075217
0125 7524 220 050 .. 57
0126 7S25 000 051157
0127 7526 017 .101117
0128 7527 320 0'5531
Ol2t 7530 000 075717
0130 7531 001 ISS336
0131 7532 220 074710
0132 7533 001 I 55317
0133
0134
0135 7534 017 100 .. 57
013' 7535 322 026271
0137 7536 220 022465
0138 7537 326 065631
out 7540 017 100457
0140 75 .. 1 330 125671
0141 7542 007 175717
0142 7543 007 175717
0143 7544 320 000030
0144 7545 324 066371
0145 7546 220 022476
0146
0147 7547 220 022451
0148 7550 017 101257
0149 7551 320 026571
OHIO 7SS2 301 176730
0151 75S3 017 1113136

E-16

••
• INDIRECT ROUTIHE FOR IHDEXED INST
EADRI READ INC " " READ INDIRECT ADDRESS

JS8 IHD8IT JS9 TO INDIRECT ROUTINE
•• * CO"PUTE IHOEXED ADDRESS THEN JU"P
DIRECT ADD Sl " Sl<=TARSET ADDR. + X OR Y.

READ INC " Sl READ INDEXED ADDRESS.
J"P JJO FINISH JUHP TD CONPLETE THE INSTRUCTION

••
• EADRY CDNPUTES EFFECTIVE ADDRESS
* FOR SAY,SBY.LAY,LBY INSTRS.
EADRY READ JNC PH" P

PASS L Y
PASS " TAB

JNP CHDX AL15 RJS DIRECT
JNP EADRJ

"<~ CONTENTS OF WORD 2.
JUHP JF HO INDIRECTS.
JUHP TO DO INDIRECT ROUTINE

••
XABX PASS Sl CAB EXCHANGE AIB WITH X

PASS CAB X
RTN PASS X SI

•••
XABY PASS SI CAB EXCHANGE AIB WITH Y

PASS CAB Y
RTN PASS Y SI

••
ISX INC X X JHCREHENT x, SKIP JF ZERO

J"P CNDX TBZ SKIP
RETURN RTN
••
ISY IMC Y Y IHCRE"ENT y, SKIP IF ZERO.

J"P CNOX TB2 SKIP
ltTN

••
DSX DEC X X DECREHENT X, SKIP IF ZERO.

J"P CNDX TBZ SKIP
llTN

••
DSY DEC Y Y DECRE"ENT y, SKIP IF ZERO.

J"P CNDX TBZ SKIP
IUN

21MX

•• • CENERAL INDIRECT ROUTINE FOR INDEX BIT INSTR
• co""ON ROUTINES FOR WORD/BYTE IHSTRUCTIOHS
•• • INITIALIZATION FDR WORD.BYTE
INJTC" J NC SS p SS<• ADDRESS OF WORD 3.

READ J NC " SS READ ADDRESS OF WORD 3.
I NC 84 SS S .. <• ADDRESS OF NEXT INSTRUCTION.
PASS S3 TAB SJ<• CONTENTS OF WORD 3.

J"P CNOX TBZ •+3 JUMP JF WORD 3 • 0 <NO INTERRUPT>
1 NC p p P<•ADDRESS OF WORD 3 <FOR EXIT>

RTll ZEllO S7 S7 87<•0 AND RETURN TO CALLER.
REAO STFL J NC PNll p READ ADDRESS OF WORD 2. P(,.P+I.

ZERO S7 S7 S7 <• 0.
••
• COllNON INDIRECT IMBEDDED JM INJTCll
INDBIT PASS M TAB " <• CONTENTS OF LAST READ ADDRESS.

""p CNOX ALU RJS CON TB IT JU"P IF NO INDIRECT.
INDLBIT READ I ff CI INC " II READ ADDRESS IH II

J"P CNDX MHDJ I NOB IT JUMP IF NO HALT OR INTERRUPT PENDING
IND28JT PASS II TAB II<• CONTENTS OF LAST READ ADDRESS

J"P CNOX MSNlll RJS IHDBIT+I JUMP IF SJNGLE·IHSTRUCT. "ODE
DEC2 DEC p p

DEC p p P <• ADDRESS OF WORD l.
J"P FETCH ATTE"PT JU"P TO FETCH ROUTINE.

COHTBIT J"P CNDX FLAG •+2 FLAG IDENTIFIES CALLER TO INOBJT
READ RTll I NC " II READ ADDRESS AND RETURN.

••
READ CLFL J HC " " CALLER•INITC"·-RESET FLAG,READ CDUHT

PASS S6 TAB S6 <• COUNT FOR THIS INSTRUCTION
JllP CNDX TBZ RJS IHNCHT JU"P IF COUNT NOT ZERO.
JSB EXIT EHD THE INSTRUCTION.

RTNCMl RTN PASS S3 S6 S3 <• COUNT, RETURN TD CALLER.

21MX Appendix E

0152 ••
OIS3 • BIT I HST RUCTIONS
0154 ••
0155 7554 220 074717 ns READ INC PNlt p
0156 7555 301 165630 J SB I Hl>B IT GET "ASIC
01'7 7556 017 l 00157 PASS L TAB L <• USK.
015B 7557 220 074457 READ I NC " p
015, 7560 301 165630 JSB I Nl>B IT GET llORI> TO BE TESTED
0160 7561 015 101017 AND SI TAB LOGICAL AND OF "ASK, llORD UNDER TEST.
0161 7562 013 041017 KOR Sl Sl s l <• 0 IF ALL "ASK BITS SET IN llORD
0162 7563 320 067271 J"P CNDX lBZ SKIP SKIP IF ALL ltASK BITS SET JM llORD.
0163 7564 000 075717 I NC p p SKIP NE>CT "ACHINE IHSTRUCTIOH.
0164 7565 000 075736 Sl<l P UH I NC p p ADJUST P, JU"P TO FETCH ROUTINE.
0165 ••
0166 75'6 220 074717 SBSCBS UAD I NC PNlt p
0167 7567 JOI 165630 JSB I Hl>B IT OBTAIN 9JT t!ASK
0168 7570 017 100157 PASS L TAB L <• BIT "ASIC
016' 7571 220 074457 READ INC " p
0170 7572 301 165630 JSB JHDBIT OBTAIN llDRD TO BE OPERATED OH.
0171 7573 327 170031 """ CHDX 1 R2 CBS JUltP IF INSTRUCTION IS CBS.
0172 7574 017 001017 1 Olt S1 TAB SET Bl TS IN llORD,PUT IH SI
0173 7575 000 022461 llPCK I MC " " ltEltORY PROTECT CHECK.
0174 7576 177 140017 llRTE PASS TAB S1 REWRITE llORD TO ltE"ORY. RETURN TO FElCH.
017!1 7577 000 075736 RTH INC p p
0176 7600 013 101017 CBS SAHL 81 TAB Sl <• "EltORY llORD llITH BITS CLEARED
0177 7601 000 022461 ltPCK INC " " 0178 7602 177 140017 llRTE PASS TAB SI REWRITE llORD TO ltE"ORY.
017, 7603 000 075736 UN J NC p p RETURN 10 FETCH ROUTINE.
0180 ••
0181 • llORD INSTRUCTIONS
0182 ••
0183 7604 J01 165170 Cltll JSB JNITClt llllTIALlZE
0184 7605 220 026457 READ J NC " A READ FRO" ARRAY A.
0185 7606 017 100157 PASS L TAB L <= llORD FRO" ARRAY A
0186 7607 220 024457 READ INC " 8 READ ADDRESS lH ARRAY 9.
0187 7610 000 024517 l NC B 8 lllCRE"ENT ARRAY B POINTER.
018B 7611 OOJ 001017 SUB Sl TAB SUBTRACT ARRAY llORDS 8 - A.
018' 7612 320 036431 JltP CllOX TBZ RJS CHU15 JU"P IF UNEQUAL.
0190 7613 DOD 026557 INC A A lllCREltENT ARRAY A POINTER.
0191 7614 007 145117 DEC SJ SJ OECRE"EHT COUNT.
0192 7615 320 076731 JltP CllDX TBZ EXIT JUltP TO EXIT IF COUNT IS ZERO.
0193 7616 335 030271 JltP CHDX JHT RJS Cltll+ 1 JUltP IF MDT J MTERRUPTED.
0194 7617 321 176130 JltP INT PEND
0195 ••
0196 7620 301 165170 "VII J SB lHITClt JHITlAllZE.
0197 7621 220 026457 READ INC " A READ FRDlt ARRAY A
0198 7622 000 026557 INC A A lHCREltENT ARRAY A POINTER.
019' 7623 017 101017 PASS SI TAB SI <• CONTENTS OF llORO OF ARRAY A
0200 7624 000 024457 INC " B It <= ADDRESS FRO!t ARRAY 8
0201 7625 017 122761 !1PCK PASS " ltEltORY PROTECT CHECK-- BIT 15 LOY.
0202 7626 177 140017 llRTE PASS TAB S1 YRJTE YORD INTO ARRAY 9.
0203 7627 000 024517 J NC B B ADVANCE ARRAY B POINTER.
0204 763(1 007 14511 7 DEC SJ SJ DECRE!tENT COUNT.
0205 7631 320 076731 J ltP CHOX TBZ EXIT EXIT IF COUNT IS ZERO.
0206 7632 335 OJ 1 071 J"P CHDX INT RJS HYY+ I JU"P IF MOT INTERRUPTED.
0207 7633 321 176130 J ltP INTPEHD

0208 ••
020, • BYTE IHSTRUCTlONS
0210 ··························~··· 0211 7634 HO 000157 SB T I Hll HIGH L >:Oil (I L <= 0003778.
0212 7635 015 I 2701 7 ST BYTE AHr> Sl A SI (.. RIGHT BYTE OF A REG.
0213 76J6 157 I 25 2 4 4 L \II' ii I PASS S6 B Sf> <= WORD At> DRESS. FLAG SH IF BYTE ODD

0214 7637 220 052461 READ llPCK INC " S6 READ 110~1) ADt>RESS,CHECI: FOR l!P l/IOLATIDH

0215 76 40 324 031!171 HIP CNr>X FlllG ~\13 STEVEN ,1 l!"p IF STORE TO EYEH BYTE.
0216 76 41 013 101417 SA!H S'J TAB MASK OUT EVEN BYTE OF KE"Ofl'r' WOR:>.

0217 7642 321 172330 J KP KE!!GE
021£1 7643 015 101417 STEYEH llHD S'J TAB ltASK OUT ODD BYTE OF llEltORY llORD.
021' 7644 017 141003 l4 ?ASS SI s l E>CCHAHGE BYTES IN REGISTEfl COHTAI N INC

0220 7645 017 141003 l4 PASS SI SI BYTE TO BE STORED.
0221 7646 01 7 160157 ltERGE PASS \. S'J l <= KEllORY llORO WITH TARGET B VT E CLEARED

0222 7647 017 041017 J OR SI SI SI < = YORI> \IJTH BYTES llERGEt>.
0223 7650 000 024517 IMC a 8 lliCREltENT BYTE ADDRESS.
0224 7651 177 14(1036 llRTE RH PASS TAfl SI WRITE HEii WOS(D BACK INTO llORO ADDRESS.

E-17

Appendix E 21MX

0225 •• 0226 7652 017 125057 LBT PASS S2 B S2 < = BYTE ADDRESS.
0227 7653 000 024517 1 MC 8 B lHCRE"EHT BYTE Al>l>RESS FOR NEXT IMSTRUC
022B 7654 340 000151 U>BYTE I"" Cl FL HIGH L :CODO L <= 0003778. CLEAR CPU FLAG.
022' 7655 157 143'144 LWF 1!1 PASS S6 92 S6 < = WORD P.l>DRESS OF BYTE. SET HAG IF
0230 7656 22(1 05H57 READ IMC " 9'i ODD BYTE. READ WORD ADDRESS.
0231 7657 324 073171 J "p CHDX F l.ll G L ODD Jll"P IF BYTE IS 01>1>.
0232 7660 013 100543 L4 SAHL A T A!'S !!ASK OUT EYEM BYTE AMI> "OYE 001> BY TE
0233 7661 017 126543 L4 PASS A A TO EYEH BYTE OF A REG.
0234 7662 017 1J67i'6 UH RETURN TCI CALLER OR FETCH.
0235 7663 015 100776 LDDD !!TH AHO A TAB "l!lSK OUT EYEH BYTE.LOAD IHTD A. RETURN.
0236 .. ,
0237 7664 301 I 65 170 "BT J SB IHITC!! IHllIALIZE.
0238 7665 017 I 27 05 7 PASS S2 A S2 <= ADDRESS START OF ARRAY A.
023, 7666 301 172630 JSB LDBYlE LCAD BYTE FRO" ARRAY A.
0240 7667 000 043051 CLFL INC S2 S2 RESET FLAG, S2 <= NEXT BYTE ADDR IH ARRI
0241 7670 301 171670 J SB STBYH STORE BYTE INTO BYTE ADDRESS IH 8 REC.
0242 7671 007 145117 DEC SJ SJ DECRE"EHT COUNT
0243 7672 320 033671 J "p CHDX TBZ l!J5 HOTDAH J ll"P IF COLI NT HOT ZEltO.
0244 7673 017 142557 PASS A 52 A <= l + LAST ARRAY A BYTE ADDRESS "OYEI
0243 7674 321 176730 J "p EXIT
0246 7675 335 033331 HOTDAH J!!P CH.DX I HT R,IS I'll« T + 2 JUMP IF HOT IHTERRUPTEll.
0247 7676 017 142557 PASS A 52 A <= I + LAST ARRAY A ADDRESS HOY ED
0248 7677 321 176130 J"P JHTPEHD

020 •••
0250 7700 340 000157 SFB 1"" HIGH L >:OOO L <• 000377B.
0251 7701 OU 127117 AND SJ A SJ (s TEST BYTE JN LOW-ORDER BYTE
0232 7702 013 127143 1.4 SA!fl B4 A S4 <• TER"INATION BYTE JN
0233 7703 017 147143 L4 PASS S4 S4 LOii-ORDER BYTE
0254 7704 017 127357 PASS SB A se <• SAYE ORIGINAL CONTENTS OF A REG.
0235 7705 301 172530 CONTSFB JSB LBT LOAD BYTE JHTO A REG FRO" ADDRESS IN 8.
0256 7706 017 1261s7 PASS L Cl L <• BYTE TO TESTED IH LOW BYTE.
0257 7707 013 043257 XOR S6 S3 CO"PARE BYTE TO TEST BYTE.
0258 7710 320 034571 J"P CHOX TBZ RJS NOUTCH Jll"P JF UNEQUAL.
02:n 7711 017 156:157 PASS A S8 RESTORE ORIGINAL CONTENTS OF A REG
0260 7712 007 124536 RTN DEC 8 B 8 <• BYTE ADDRESS OF "ATCH. GO TO FETCH
0261 7713 013 047017 NOUTCll XOR S1 S4 CO"PARE BYTE TO TER"IHATJOH BYTE.
0262 7714 320 034771 ""p CHDX TBZ RJS INTTST JU"P JF UNEQUAL.
0263 7715 017 156557 PASS A SB RESTORE ORIGINAL CONTENTS OF A REG.
0264 7716 000 075736 UN J HC p p SKIP HEXT MACHINE INSTRUCTION AND FETCH.
0263 7717 335 034271 INTTST .IMP CNOX JHT RJS CONTSF8 JU"P IF NOT INTERRUPTED.
0266 7720 017 156537 PASS A SB RESTORE ORIGINAL CONTENTS OF A REG.
0267 7721 007 175736 RTN DEC p p P <• JNSTRUClJON ADDRESS, GO TO HTCH.
0268 •••
026' 7722 301 165170 CBT JSB JNITCM JNJTJALJZE.
0270 7723 017 127357 PASS SB A SB <• POINTER FOR ARRAY A.
0271 7724 017 157057 PASS 82 SB S2 <• NEXT BYTE ADDRESS JN ARRAY A.
0272 7725 301 172630 JSB l.DBYTE LOAD ARRAY A BYTE INTO A REG.
0273 7726 017 127417 PASS S9 A S9 <• ARRAY A BYTE.
0274 7727 ODO 043337 INC SB S2 IHCRE"EHT ARRAY A POINTER.
0275 7730 301 172530 .ISB LBJ A (• BYTE FROM ARRAY B <ADDRESS IH B llEG
0276 77Jl 017 160157 PASS L S9 L <= BYTE FROM ARRAY A
0277 7732 003 027017 SUB SI A SUBTRACT BYTE FRO" ARRAY B - A.
0278 77JJ 320 036331 ""' CNDX TBZ RJS CHAL158 JUMP IF BYTES HOT EQUAL.
0279 7734 007 145117 DEC SJ 33 DECRE"ENT THE COUNT.
0280 7735 320 036031 JMP CNOX TBZ RJS CONTCBT JUMP JF COUNT IS HOT ZERO.
02Bl 7736 017 156537 PASS A SB EQUAL EXIT ... A (s l HAST "DYED BYTE ADD
02B2 7737 321 176730 JMP EXIT I
0283 7740 335 033231 COHTCBT J"P CNDX INT RJS C8T+2 JU"P IF NOT JHTERRUPTED.
02B4 7741 017 136557 PASS A S8 A <• NEXT BYTE ADDRESS OF ARRAY A TO TES

E-18

21MX

0285
0286
0287
0288
028'
02,Ct
02,1
02,2
02,3
02'4
02'5
02'6
(12,7
02'8
029'
0300
0301
0302
0303
0304
0305
0306
0307
0303
030,
0310

77H
7743
7744
7745

000
177
007
007

050457
144017
175717
175736

7746 007 156557
7747 017 141017
775(1 322 036531
7751 (•(10 047157
7752 (100 047157
7753 007 145117
7754 017 144157
7755 004 124517

7756 (100 050457
7757 177 154017
7760 017 14773(,

O:tll 7761 220
0312 7762 301
031J 7763 340
0314 7764 017
0315 7765 017
0316 7766 017

074717
165630
120417
122461
175657
123736

0317
0318
031'
0320
0321
0322
0323
0324
0325

7767 220
7770 017
7771 004
7772 340
7773 017
7774 017
7775 017

074717
172157
101017
120417
140457
I 22 76 I
123736

0326 7776 377 177777
0327 7777 377 177777
0328
u HO ERRORS••

Appendix E

********••••••••••••*•****~*···~········•*****•*********•****~*********•********
* COff"O~ •OUTINES TO "DYE. COMPARE IHST1UCTIOHS
••
* JHTER~U?T EXIT
IHTPEHD INC M 35 " <= AD\IRESS OF WORD 3

WRTE PASS TAa SJ WRITE RE"Al~IHG COUNT INTO WORD J.
DEC ? P

:n~ DEC :> ? P <= AD\IRESS OF WORD I, GO 10 FElCH.
••••*••···················~····~···•**********~**************•****•$***• * EXIT TESTS FOR CBT.CHW
CHALl58 DEC A 38 A<= BYTE ADDRESS OF "ISHATCH.

PASS SI SI CHECK RESULT OF CCl"PARE
CHAL15 J"P CHbX AL15 RJS SKIP! JUMP IF SIGH BIT IS ZERO.

INC S4 34 SKIP ONE HACHIHE INSTRUCTION.
SKIP1 INC S4 S4 SKIP ONE "ACHIHE INSTRUCTION.

* El< IT

DEC SJ 33 DECRE"EHT THE COUNT.
PASS L SJ L <= COUHT RE"AINIHG
ADD a B B <=FIRST ADDR. IN ARRAY B + COUHT.

I NC " S5
WRTE PASS TA3 S7

RTH PASS ? S4

C(IHPLETIOH EXIT
H <= AD~RESS OF WORD 3
liCRD 3 <= ZERO.
P <= NEXT MACHINE lHSTR. TO EXECUTE.FETCH

···~····~·******•****•*•*•·•****••••******~******•***•********•****•****~********
* JUMP INSTRUCTIONS
****************~***$•*••••****•****•*****~***•**************~****•****•********
JLY

J?Y

READ INC PHH
J sa
l"M HIGH JR

!tPCK PASS 11
PASS ~·

RHI PASS ?

READ INC PH~

PASS L
Al>!) S 1

IM" HIGH IR
PASS M

11PCK PASS
RTN ?ASS P

p

IN1>BIT
%050

" p

H

p
y

TAB
%050
SI
M

"

READ AD)RESS OF WORD 2.
CHECK FDR INDIRECT,H<= DESTINATIDN ADDR.
MACHINE JHP lHTD IR TO SET LOW MP BOUNDS
DO HP CHECK OH JUMP TARGET ADDRESS.
Y <= AD~RESS OF FOLLOWING MACHINE INSTR.
P <= DESTINATION ADDRESS, JUMP TO FETCH.

READ AO~RESS OF WORD 2.
L <• IH~EX REG. Y.
SI <= INDEXED JUMP ADD~ESS.

"~CHINE JMP INTO IR TO SET LOW MP BOUNDS
"<= INDEXED ADDRESS, WI TH SlT 15 LOW
'IP CHEC~ OH 15-BIT DESTIHATIOH A~DRESS.

? <= DESTIHATIO~ ADDRESS. GO TO ~ETCH.

****************~•••*•****~***••••••••••••••**~*•************~*********~********
ONES
OHES

$EHD

E-19

A micro-order
as S-Bus micro-order, 4-14
as STORE micro-order, 4-12

AAF (A-register Addressable Flag)
What it does (in brief), 2-3

ADD micro-order, 4-10
ADR micro-order, 4-14
Advantages

of microprogramming, see "Microprogramming"
ALO micro-order, 4-19
AL15 micro-order, 4-19
ALU (Arithmetic and Logic Unit)

What it does, 2-4
ALU micro-orders, 4-10
AND micro-order, 4-10
A-register Addressable Flag, see "AAF"
Arithmetic and Logic Unit, see "ALU"
ARS micro-order, 4-2
ASG micro-order 4-3
ASGN micro-order, 4-19

B micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12

BAF (B-register Addressable Flag)
What it does (in brief), 2-3

Binary object tape output by Microassembler, 5-4, A-1
BREAK command, 5-13
B-register Addressable Flag, see "BAF"

CAB micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12

Central Interrupt Register, see "CIR"
CHANGE command, 5-14
Character Set for source statements, 3-4
CIR micro-order, 4-14
CLFL micro-order, 4-7
CM micro-order, 4-12
CMHI micro-order, 4-16
CMLO micro-order, 4-17
CMPL micro-order, 4-10
CMPS micro-order, 4-10
CNDX micro-order, 4-19
CNT4 micro-order, 4-19
CNT8 micro-order, 4-19
CNTR micro-order

as S-BUS micro-order, 4-14
as STORE micro-order, 4-12

Comments, in source statements, 3-4, 4-1
Conditional jump micro-instruction (Word Type 3), 4-18

INDEX

CONDITION micro-orders discussion of,
in Word Type 3, 4-19

Control Processor, 2-2
Control records (for Microassembler), 5-2
Control Section of a Computer

Conventional 1-1
Microprogrammed, 1-1, 2-1

Control store, 1-1
How microprograms are accessed, 3-7
Modules available to user, 3-10

COUT micro-order, 4-19
COV micro-order, 4-7
CRS micro-order, 4-3

Data paths, brief description of, 2-3
DEC micro-order, 4-10
DEF pseudo instruction explanation of, 4-24
DIV micro-order, 4-4
DSPI micro-order

as S-BUS micro-order, 4-14
as STORE micro-order, 4-13

DSPL micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13

Dual Channel Port Controller Effect
on microprograms, 3-14

DUMP command, 5-11

E micro-order, 4-19
E register, 2-4
$END control record, 5-2
ENV micro-order, 4-4
ENVE micro-order, 4-4
EQU pseudo instruction explanation of, 4-25
Error messages

Microassembler, 5-5
Micro Debug Editor, 5-15

Examples of microprograms, 3-15
EXECUTE command, 5-14
Extend register, see "E register"
$EXTERNALS control record, 5-2

Fields, in source statements
Where each begins and no. of characters, 3-3, 5-1

$FILE control record, 5-2
FINISH command, 5-13
FLAG micro-order, 4-19
Flags, 2-4
FPSP micro-order, 4-19
Front panel

Registers and flags associated with, 2-4
FTCH micro-order, 4-7

I-1

Index

HIGH micro-order, 4-17

ICNT micro-order, 4-7
INCi micro-order, 4-7
IMM micro-order, 4-16
"Immediate" data, see "Word Type 2"
INC micro-order, 4-10
Initialization program for use with Micro Debug

Editor, 5-8
$INPUT control record, 5-3
Input/Output, see "1/0"
INT micro-order, 4-20
Instruction Register, see "IR"
Interrupt Enable Register

What it does, 2-3
Interrupt handling, 3-12, 3-13
1/0, How to code 1/0 functions, 3-11
1/0 bus, what it does, 2-3
1/0 Utility Subroutine for WCS, 5-16
IOFF micro-order

as SPECIAL micro-order, 4-7
as JMP modifier in Word Type 4, 4-22

IOG micro-order
as SPECIAL micro-order, 4-7
as JMP modifier in Word Type 4, 4-22

IOI micro-order, 4-15
ION micro-order, 4-8
IOO micro-order, 4-13
IOR micro-order, 4-10
IR2 micro-order, 4-20
IR (Instruction Register)

How processed, 3-8
What it does, 2-1

IR micro-order, 4-13

J30 micro-order, 4-23
J74 micro-order, 4~23
JEAU micro-order, 4-23
JIO micro-order, 4-23
JMP micro-order, discussion of,

in Word Type 3, 4-19
in Word Type 4, 4-22

JSB micor-order, discussion of, in Word Type 4, 4-22
JT AB micro-order

as SPECIAL micro-order in Word Type 1, 4-8.
as JMP modifier in Word. Type 4, 4-23

Jump-Sense micro-order (RJS), 4-21

1-2

L micro-order, 4-13
L 1 micro-order, 4-8
L4 micro-order, 4-8
Label, in source statements, 3-4, 4-1
LDR micro-order, 4-15
LGS micro-order, 4-4
$LIST control record, 5-3
Listing optionally output by Microassembler, 5-5
LOAD command, 5-10
LOW micro-order, 4-18
L-register, relation to S-bus, 2-3
LWF micro-order, 4-5

M micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13

21MX

Macro instructions (Assembly language) Mappings to
ROM and/or WCS addresses, 3-10

MACRO (label in TEST program used with Micro
Debug Editor), 5-9

MDE (see "Micro Debug Editor")
Memory protection

in relation to 1/0 microprogramming, 3-12
micro-orders, 3· 13

MICRO (see "Microassembler")
Microassembler, what it does, 5-1

BCS version:
Hardware required, 5-1
Software required, 5-7
How to use, 5-7

DOS-III version:
Hardware and software required, 5-5

How to use, 5-5
Micro Debug Editor

BCS version:
Hardware required, 5-8
Software required, 5-16
How to use, 5-16

DOS-III version:
Hardware required, 5-8
Software required, 5-14
How to use, 5-14

Micro-order, meaning of, 3-1
Microprogramming, Advantages, 1-2
MODIFIER micro-orders

for JMP in Word Type 4, 4-22
for IMM in Word Type 2, 4-16

MODIFY command, 5-11
Modules available to user, 3-10
M-register, what it does, 2-3
MOVE command, 5-14
MPCK micro-order, 4-8
MPY micro-order, 4-6

21MX

NAND micro-order, 4-10
NDEC micro-order, 4-20
NHOI micro-order, 4-20
NINC micro-order, 4-20
NLDR micro-order, 4-20
NLT micro-order, 4-20
NMLS micro-order, 4-20
NOP micro-order (in CONDITION set of

micro-orders), 4-20
NOP micro-order (in OP micro-order set), 4-7
NOP micro-order (in SPECIAL micro-order set), 4-8
NOP micro-order (in STORE set of micro-orders), 4-15
NOR micro-order, 4-10
NRST micro-order, 4-20
NRT micro-order, 4-20
NSAL micro-order, 4-10
NSFP micro-order, 4-20
NSNG micro-order, 4-20
NSOL micro-order, 4-10
NSTB micro-order, 4-20
NSTR micro-order, 4-21

0 register, 2-4
ONES micro-order, 4-21
ONE micro-order, 4-10
ONES pseudo instruction explanation of 4-25
OPl micro-order, 4-11
OP2 micro-order, 4-11
OP3 micro-order, 4-11
OP4 micro-order, 4-11
OP5 micro-order, 4-11
OP6 micro-order, 4-11
OP7 micro-order, 4-11
OPS micro-order, 4-11
OP9 micro-order, 4-11
OPlO micro-order, 4-11
OPll micro-order, 4-12
OP micro-orders, 4-2
$ORIGIN control record, 5-3
$OUTPUT control record, 5-3
Overflow register, see "O register"
OVFL micro-order, 4-21

P micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13

P register, 2-4
PASL micro-order, 4-12
PASS micro-order, 4-12
$P ASS2 control record, 5-3
PCA jumper on WCS how module no.'s are set, 6-3
PNM micro-order, 4-13
PREPARE command, 5-11
Pseudo instructions, 4-24

Index

Rl micro-order, 4-9
RAR (ROM address register), 2-3
$RCASE control record, 5-3
READ command, 5-11
READ micro-order, 4-6
RJS micro-order, 4-21
"Roadmap'', D-1
ROM, see "Control store"
RPT micro-order, 4-8
RTN micro-order

as SPECIAL micro-order, 4-9
as JMP modifier in Word Type 4, 4-23

RUN micro-order, 4-21
RUNE micro-order, 4-21

S micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13

S register, 2-4
Sl thru S12 micro-orders

as S-BUS micro-orders, 4-15
as STORE micro-orders, 4-14

Sample microprograms, 3-15
SANL micro-order, 4-12
SAVE register, relation to S-bus, 2-3
S-bus, 2-3
S-BUS micro-orders, 4-14
SHLT micro-order, 4-9
SHOW command, 5-11
SKP pseudo instruction, explanation of, 4-26
SKPF micro-order, 4-21
SONL micro-order, 4-12
Source records, Microassembler format, 5-1
SOV micro-order, 4-9
SPECIAL micro-orders, 4-7
SRG 1 micro-order, 4-9
SRG2 micro-order, 4-9
SRGE micro-order, 4-9
SRGL micro-order, 4-21
SRUN micro-order, 4-10
STFL micro-order

as SPECIAL micro-order in Word Type 1, 4-10
as JMP modifier in Word Type 4, 4-23

STORE micro-orders, 4-12
SUB micro-order, 4-12
Subroutine microinstruction (Word Type 4), 4-22
"Suitcase" ROM simulator, Microassembler control

record to generate object tape for, 5-3
Symbol table optionally output by Microassembler, 5-4
$SYMT AB control record, 5-4
$SUPPRESS control record, 5-4

1-3

Index

T micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14

T-periods, 3-11
T-register, 2-3
TAB micro-order

as S-BUS micro-order, 4-15
as STORE micro-order, 4-14

T-bus, 2-3
TBZ micro-order, 4-21
TEST program for use with Micro Debug Editor, 5-8
Timing, Summary of timing rules, 3-14

UNCD micro-order, 4-23
Unconditional jump micro-instruction (Word Type 4), 4-22

VERIFY command, 5-12

WCS (Writable Control Store)
Hardware information, 6-1

Theory of operation, 6-6
Installation, 6-3

How to load microprogram in WCS, 5-9, 5-10, 5-11
1/0 Utility Subroutine, 5-16
No. of words in special microprogram which MDE auto­

matically loads in WCS, 5-10, 5-14
Modules and

1-4

equivalent absolute WCS address, 3-10
e.quivalent PCA jumper requirements, 6-4
mappings from Assembly language macro

instructions, 3-10

Word Type 1
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-4
Uses (in brief), 4-1

Word Type 2
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 3
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 4
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-6
Uses (in brief), 4-1

Writable Control Store, see "WCS"
WRITE command, in Micro Debug Editor, 5-11
WRTE micro-order, 4-7

X micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14

X register, 2-3
XNOR micro-order, 4-12
XOR micro-order, 4-12

Y micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14

Y register, 2-3

ZERO micro-order, 4-12
ZEROES pseudo instruction, 4-26

21MX

READER COMMENT SHEET

02108-90008 Aug 1974

Microprogramming 21 MX Computers

Operating and Reference Manual

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL
No Postage Necessary if Mailed In the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

MANUAL PART NO. 02108-90008
MICROFICHE PART NO. 02108-90009

Printed: AUG 1974
Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

