
A Pocket Guide to the -
Hewlett-Packard

2100 Computer

PREFACE

This manual combines in one convenient publication comprehensive
hardware and software information for the Hewlett-Packard 2100
Computer and programmer's reference manuals for the principal
software systems. Software manuals included are FORTRAN,
BASIC, Assembler, and Basic Control System. System designers
and programmers will find this book a handy, permanent reference.
Potential users will find the technical descriptions valuable for
evaluating Hewlett-Packard computers and supporting software.
Since Hewlett-Packard hardware and software specifications are
subject to change, the information in this manual is intended to be
used strictly as a guide and does not necessarily represent current
policies and products supported by Hewlett-Packard.

Further information on Hewlett-Packard computer products is
available from your local Hewlett-Packard field office, one of more
than 172 Sales and Service Offices throughout the world.

Or write Hewlett-Packard, 1501 Page Mill Road, Palo Alto, Cali­
fornia 94304; Europe, 1217 Meyrin 2 - Geneva, Switzerland.

Here is a range of computer capabilities with the power to solve
problems for a wide range of applications-at a cost that makes
them uniquely practical.

................. .. •. , ' ' . , ..
' ' '"

• • • ••• • • • • •

The Hewlett-Packard 2100 computer combines performance and
economy with small size. Achieved by simplicity of design-in
package, in hardware, in software. A package that's easy to set up,
with peripherals interfaced through plug-in cards. All modular for
easy expansion. Straightforward machine organization and con­
soles that are easy to use. The 2100 uses a microprogrammed con­
trol section that utilizes the latest in integrated circuit design. A full
range of proven software packages permits your 2100 to go to work
right away. All designed for busy computer users who want to­
morrow's answers today.

FEATURES

· Low Cost
• Proven software
· 16-bit word size
· 980 nsec memory cycle time
· Large 1024-word page size
· Powerful instruction set of 80 basic instructions
· Peripherals interface simply with plug-in cards
· Multilevel priority interrupt for device servicing
· Two accumulators, both addressable to simplify programming
· Includes extended arithmetic instructions, power fail interrupt

with auto restart and memory parity check with interrupt
as standard features

· Core storage expandable to_ 32,768 words
· Protected loader
· Multiplexed 1/0 available
· Optional high-speed Direct Memory Access
· Floating point hardware option provides 5- to 20-fold perform­

ance increase of floating-point arithmetic functions
· Writeable control store available for adding additional

instructions
• Modular 1/0 drivers-for device independent programming
· FORTRAN II and IV, Assembly, ALGOL and HP Extended

BASIC
· Modular Debug package-for on-line program debugging

A LOW COST COMPUTER WITH HIGH-PRICED PERFORMANCE

iii

USER (PROGRAMMING TRAINING)

Hewlett-Packard provides a free user-programmer course for com­
puter customers. Training materials are provided at no charge. The
complete User Training Course assumes no knowledge of com­
puter programming or electronic systems operation. It covers in­
struction on programming languages and operating system. At least
two full days are devoted to hands-on experience.

REPAIR SERVICE

Help in maintaining your Hewlett-Packard equipment in first-rate
operating condition is as close as your telephone. Service and parts
assistance is available from over 140 HP field offices throughout
the free world. Local service facilities are backed up by Regional
Service Centers. Major parts warehouses are located in Mountain
View, California, and Rockaway, New Jersey. Board exchange pro­
grams for computers and other equipment enable systems to be
returned to normal operation with minimal downtime.
iv

CONTENTS

2100A Reference Manual I
Assembler Reference Manual I
Basic Cantral System Reference Manual I
FORTRAN Reference Manual I
BASIC Language Reference Manual I

2100A Reference Manual I

The 2120 Disc Operating System lets you combine
the 2100A Computer, the 7900A Disc and more than
a dozen peripherals to solve your particular proc­
essing problem.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1-1

1.1 Interfacing 1-5
1.2 Input/Output Devices 1-7
1.3 Software 1-7
1.4 System Expansion Features 1-8
1.5 Floating Point Hardware 1-9
1.6 Microprogramming 1-9
1.7 Physical Specifications 1-10
1.8 System Documentation 1-13

CHAPTER 2 PROGRAMMING INFORMATION 2-1

2.1 Data Formats 2-1
2.2 Memory Addressing 2-3
2.2.1 Paging 2-3
2.2.2 Indirect Addressing 2-5
2.2.3 Reserved Locations 2-5
2.2.4 Nonexistent Memory 2-6
2.3 Hardware Registers 2-7
2.4 Instruction Formats 2-9
2.5 Interrupt System 2-11
2.5.1 Power Fail Interrupt 2-13
2.5.2 Parity Error Interrupt 2-15
2.5.3 Memory Protect Interrupt 2-16
2.5.4 DLA Interrupts 2-19
2.5.5 I/0 Interrupts 2-19
2.5.6 Central Interrupt Register 2-22
2.5.7 Interrupt System Control 2-22

CHAPTER 3 INSTRUCTIONS 3-1

3.1 Instruction Timing 3-1
3.2 Memory Reference Instructions 3-3
3.3 Register Reference Instructions 3-7
3.4 Input/Output Instructions 3-20
3.5 Extended Arithmetic Memory

Reference Instructions 3-25
3.6 Extended Arithmetic Register

Reference Instructions 3-27
3.7 Floating Point Instructions 3-31

CHAPTER 4 INPUT /OUTPUT SYSTEM 4-1

4.1 I/0 Addressing 4-1
4.2 I/0 Priority 4-4

2100A REFERENCE

4.3 Interface Elements
4.3.1 Control Bit
4.3.2 Flag Bit
4.3.3 Buffer
4.4 I/0 Data Transfer
4.4.1 Input Transfer
4.4.2 Output Transfer
4.4.3 Non-Interrupt Transfers
4.5 Direct Memory Access
4.5.1 DMA Operation
4.5.2 DMA Initialization

CHAPTER 5 OPERATING CONTROLS AND INDICATORS

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2

5.4.5

Figure

1.1
1.2
1.3
1.4
2.1
2.2
2.3
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2

2100A REFERENCE

Operator Panel
16-Bit Registers
Fault Indicators
Phase Status Indicators
1-Bit Registers
Operating Controls

Controller Panel
Internal Switches
Panel Operation

Loading with Basic Binary Loader
· Loading with Disc Loader

Manual Loading
Running Programs

Operating Procedures for Controller Panel
Loading Programs
Running Programs

Running Programs

ILLUSTRATIONS

Title

HP 2100A Computer
HP 7900/7901
HP 2155
Internal Configuration
Data Formats and Octal Notation
Instruction Formats
Modules of BCS
Shift and Rotate Functions
Examples of Double word Shifts and Rotates
Input/Output System
I/0 Address Assignments
Priority Linkage
Interrupt Sequences
Input/Output Transfers (Part 1)
Input/Output Transfers (Part 2)
DMA Transfers
DMA Control Word Formats
Operator Panel Controls and Indicators
Controller Panel Controls and Indicators

4-7
4-7
4-8
4-8
4-8
4-8
4-10
4-13
4-14
4-15
4-17

5-1

5-1
5-1
5-4
5-4
5-5
5-5
5-6
5-9
5-9
5-9
5-12
5-13
5-13
5-14
5-14
5-15

5-13

Page

1-1
1-4
1-5
1-8
2-2
2-10
2-22
3-9
3-28
4-2
4-3
4-5
4-6
4-11
4-12
4-16
4-17
5-2
5-7

Table

1.1
1.2
2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
5.1

TABLES

Title

General Specifications
2100 Peripheral
Memory Pages
P- and M-Register Indications
Interrupt Assignments
Sample Power Fail Subroutine
Sample Memory Protect/Parity
Error Subroutine
Extended Arithmetic Execution Times
Shift-Rotate Combining Guide
Alter-Skip Combining Guide
Floating Point Instruction Specifications
Non-Interrupt Transfer Routines
Program to Initialize DMA
Loader Starting Address

APPENDIX

Page

1-2
1-3
2-4
2-7
2-12
2-14

2-18
3-2
3-8
3-8
3-31
4-13
4-19
5-11

Appendix A Functional Block Diagram A-1
Appendix B Processor Logic Elements B-1

2100A REFERENCE iii

INTRODUCTION 1

The Hewlett-Packard 21 OOA Computer is a compact data processor
featuring a powerful, extended instruction set, plug-in interfaces,
and modular software. Standard features include memory parity
generation and checking, memory and 1/0 protect for executive
systems, extended arithmetic capability, and power fail interrupt
with automatic restart. Optional features include two-channel di­
rect memory access, ·multiplexed input/output, a controller panel,
and the I/0 interfaces. The controller panel, which provides a mini­
mum of controls and indicators, is available for applications where
the full complement of controls and indicators provided on the
operator panel is not necessary.

The logical design and software follow conventional standards of
computer usage and notation so that the 2100A may be used as a
free-standing device or in systems such as process control, media
conversion, data reduction, communications, or time-sharing.

Figure 1.1. Hewlett-Packard 2100A Computer

210DA REFERENCE 1-1

Memory

• Magnetic core storage
• 980 nanosecond cycle time
• Parity generation and checking is standard in ·all units
• Six memory sizes available, 4,096 to 32,768 words; field-expandable

by plug-in cards
1024-word page size

• Protected 64-word block for stored loader

Processor
• 80 basic instructions, including extended arithmetic
• Up to eight instructions may be combined into one word (register

reference group)
• Two accumulators, addressable as memory locations
• Unlimited levels of indirect addressing allowed
• Six working registers, may be selected for display and instant modifi­

cation (A, B, T, P, M, S)
• Illuminated control pushbuttons allow simultaneous display and

control of internal functions
• All instructions fully executed in 1.96 microseconds, except ISZ and

extended arithmetic (2.94 to 16.7 microseconds)
• Only 980 nanoseconds added for each level of indirect addressing
• Memory and I /0 protection is standard

Software

FORTRAN, FORTRAN IV, ALGOL, and BASIC languages
• Extended Assembly language
• Editor, subroutine library, Formatter, and Debug routine
• Several operating systems, including:

Basic Control System
Magnetic Tape System
Disc Operating System
Time-Shared BASIC System

Input/Output System
• 14 internal 1/0 channels, externally expandable to 45
• Optional multiplexed 1/0 extends capabity to 56 channels; may be

plugged into any slot
• All channels buffered and bi-directional

Multilevel priority interrupt for device servicing
• Peripherals interfaced simply with plug-in cards
• Optional dual-channel direct memory access, can transfer 1,020,400

words per second
• General-purpose interface cards available

Table 1.1. 2100A General Specifications

1-2 21DOA REFERENCE

Peripherals

• Magnetic Tape
Read and write 9-track I BM-compatible magnetic tape, 800 and
1600 cpi, at speeds of 25, 37.5, or 45 inches per second; also read
and write 7-track IBM-compatible magnetic tape at speeds of 25, 37.5,
or 45 inches per second with switch-selectable densities of 200, 556,
and 800 cpi.

• Disc Memory
Fixed head-per-track design for rapid access, capacities range from
262, 144 to 1,048,576 words

• Cartridge Disc
Moving-head disc for low-cost mass storage; capacities from 2.5
million to 4.9 million bytes

• Disc File
Moving-head mass storage; 11.7 million words per drive, 8 drives
maximum

• Card Reader
Reads punched 80-column cards, 12 bits in parallel, at 1000 cards per
minute

• Mark Reader
Reads punched and pencil-marked cards at 200 cards per minute

• Line Printers
Print 120 or 132 columns per line at 300 or 600 lines per minute;
ASCII 64-character set. Also from 356 lines per minute (80 columns)
to 1110 lines per minute (20 columns); 64-character set

• Keyboard Display Terminal
CRT screen displays 25 lines, 72 characters per line; standard tele­
printer keyboard plus 10-key numerical keyboard; speeds of 10 to
200 characters per second, switch selectable

• Tape Readers
Read 5- and 8-level punched paper tape at up to 500 characters per
second; with or without automatic reroller

• Tape Punch
Punches 5- and 8-level code at 120 characters per second; also 5- and
8-level code at 75 characters per second

Table 1.2. 2100A Peripherals

21DDA REFERENCE 1-3

___ __...,.___..._

HP 7900

HP 7901

Figure 1.2. The HP 7900 and 7901 Cartridge Disc Drives allow the
2100 user to economically and efficiently add on-line mass storage
capability. The 7900 provides 4.9 million bytes of storage and an
average access time of 30 milliseconds.

1-4 210DA REFERENCE

1.1 INTERFACING

Interfacing of peripheral devices is accomplished by plug-in inter­
face cards. The computer mainframe can accommodate up to 14
interface cards, expandable to a total of 45 when the optional
2155A I/O Extender is used. Interrupt and addressing capabilities
are present for 56 channels so that, using multiplexed I/O and an
external controller, up to 56 devices can be handled. Interface cards
are available for a wide variety of peripheral devices, and virtually
all interfaces used in 2114/2115/2116-series computers may be
used with the 2100A Computer. No power supply extenders are
necessary for any combination of interfaces installed.

All I/O channels are buffered and bi-directional, and are serviced
through a multilevel priority interrupt structure. The two optional

Figure 1.3. The HP 2155A Input/Output Extender adds 31 addi­
tional I/O slots to the 2100. Full interrupt and addressing capabil­
ities are included, plus sufficient power for any combination of
interfaces.

2100A REFERENCE 1-5

direct memory access (DMA) channels are program-assignable to
any two of the 14 interface slots in the mainframe, expandable to
45 slots if DMA is also installed in the extender, and can be dynam­
ically reassigned. DMA transfers occur on a cycle-stealing basis, not
subject to the 1/0 priority structure. The total bandwidth through
both DMA channels is more than one million words per second.

A unique channel identification and service priority interrupt is
provided for every input/output channel used. Priority levels of the
peripheral equipment connected to the computer can be altered
simply by changing the positions of the interface cards in the 1/0
slots. Virtually every Hewlett-Packard measurement instrument
provides a digital data output that can be interfaced to the 2100.

a. Digital voltmeters and associated signal converters for
measuring de and ac voltages, currents, and resistances. With suit­
able transducers, physical quantities such as pressures, loads, tem­
peratures, and fluid flows can be measured with an HP computer.

b. Electronic counters for frequency or period measure-
ments from a few cycles per second into the microwave region.

c. Scaler timers for nuclear radiation measurements.

d. Digital test subsystems for measurement of integrated
circuits, p.c. cards, components or assembled equipment.

Analog input scanners are available for multiplexing signals into
these measuring instruments. Digital scanners are also available for
applications where it is desirable to multiplex the data outputs of
these instruments before entry into the computer. Complete
information on HP computer peripherals and measurement instru­
mentation are available from your local HP field sales office.

Off-the-shelf interface cards enable the customer to operate a wide
variety of devices of his own choosing with the 2100. These in­
clude 8- or 16-Bit Duplex Register cards, Microcircuit Interface
card, a Relay Output card, a D-to-A Convert~r card, and Multi­
plexed Input/Output for connection of up to 56 devices to the
2100.

1-6 21DDA REFERENCE

1.2 INPUT/OUTPUT DEVICES

Instructions or data may be entered on punched tape through a
teleprinter, keyboard-display terminal, high-speed photoelectric
tape reader or card reader. Data output devices include the tele­
printer, which provides typewritten and punched tape records; tape
punches, magnetic tape units (for IBM-compatible, 7- and 9-channel
recording) and line printers. Fixed-head disc or removable disc
storage units are available for on-line mass storage requirements.
Data can be entered on-line from Hewlett-Packard data sources
and computed in real-time, or recorded on punched tape, magnetic
tape, or disc for subsequent computer processing. Data-Set inter­
faces are also available, which enable information to be transmitted
over the telephone system, into or out of the HP computer.

1.3 SOFTWARE

Software for the 2100 Computer includes four high-level pro­
gramming languages: HP FORTRAN, HP FORTRAN IV, HP
ALGOL, and HP BASIC, plus an efficient, extended assembler
which is callable by FORTRAN and ALGOL. Utility software in­
cludes a debugging routine, a symbolic editor, and a library of
commonly used computational procedures such as Boolean, trigo­
nometric, and plotting functions, real/integer conversions, natural
log, square root, etc.

Hewlett-Packard provides several systems built around BASIC in­
terpreters. The single-terminal BASIC system allows the user to
prepare and run BASIC language programs conversationally through
a teleprinter. Programs can also be entered through a tape reader
and punched out_ on tape punches. A memory of at least SK words
is required. A similar system, Educational BASIC, allows BASIC
programs to be translated from marked cards.

Several operating systems are available, covering a wide range of
applications. The Basic Control System, which simplifies the con­
trol of input/output operations, also provides relocatable loading
and linking of user programs. The time-shared systems, using con­
versational BASIC language, permit 16 or 32 terminals to be con­
nected to the system, either directly or by telephone lines via
Dataphones. The Hewlett-Packard Real-Time Executive (RTE) sys­
tem permits several programs to run in real-time concurrently with

2100A REFERENCE 1-7

general-purpose background programs. This allows multiple data
processing capabilities where separate computers are not econom­
ically feasible. The user can write programs in HP Assembly.
FORTRAN, or ALGOL languages. A Magnetic Tape System and
a Disc Operating System are also available. These systems greatly
increase the speed and simplicity of assembling, compiling, loading,
and executing user programs.

1.4 SYSTEM EXPANSION FEATURES

Memory sizes for the 2100A Computer are available in six con­
figurations: 4K, SK, 12K, 16K, 24K and 32K. All core memory is
accommodated in the computer main-frame and is field-installable.

Figure 1.4 illustrates the configuration of the basic 2100A Com­
puter and the expansion capabilities of memory and input/output.
This figure approximately represents the top view and layout of
the computer. For 4K or SK memory, a card with the appropriate
stack configuration is installed in position A. For 12K or 16K

Cable to
Per1phe<al Cable To
Device or Peupheral

I /O Extender Device

Memory

~~D~~
B A C D

4K or 4K or BK BK
BK BK

CPU and
1/0 Logic

1/0 Interface Cards

Figure 1.4. Internal Configuration

1-11 2100A REFERENCE

memory, the appropriate combination of 4K and SK stacks is in­
stalled in positions A and B. For 24K, positions A and B have SK
stacks and an SK stack is added in position C. For 32K, a final SK
stack is added in position D.

Expansion of input/output beyond the capability of the mainframe
is accomplished by plugging an extender interface card into the
highest address 1/0 slot (represented by E in figure 1.4), in place
of an 1/0 interface card. This card is then cabled to an equivalent
card in the 2155A 1/0 Extender Unit. The address formerly as­
signed to slot E, and all higher addresses, are available in the
extender.

1.5 FLOATING POINT HARDWARE

The Floating Point Hardware option (12901A) supplies six addi­
tional arithmetic instructions in the 2100's basic instruction set.
These instructions provide a 5- to 20-fold increase in the perform­
ance of floating point arithmetic functions. Firmware coding is
stored in bipolar Read-Only-Memories (ROM's) contained in the
microprocessor of the 2100.

Floating Point Hardware may be used with the 2100 Basic Control
System, Magnetic Tape System, Disc Operating System or Real­
Time Executive System. It can be either field or factory installed
and includes an Assembler, Cross Reference Symbol Table Genera­
tor, Program Library, and a Diagnostic for the appropriate operat­
ing system and memory size.

1.6 MICROPROGRAMMING THE 2100A

Microprogramming allows the 2100's basic instruction set to be
tailored to specific applications. Control storage in the 2100 con­
sists of 1024 24-bit words organized into four modules. Micropro­
grams for the basic 2100 instruction set are contained in the first
256-word module. A total of 768 words is available for extensions
to the basic instruction set. (Firmware for the 12901A Floating
Point option is stored in the first module and is reserved for this
purpose.)

21DOA REFERENCE 1-9

The Writeable Control Store (WCS) option (1290SA) provides the
capability to microprogram the 2100 easily and conveniently. WCS
consists of a single card which plugs into a computer 1/0 slot
eliminating extensive cabling or additional power supply require­
ments. The card contains 256 24-bit words of Random-Access­
Memory, including all necessary address and read/write circuits.

WCS can be programmed and verified under computer control
using standard input/output instructions. WCS is read at full speed
via a flat cable connecting it to the control section of the com­
puter. Up to three WCS cards may be included for development
and execution of user microcode. Software supplied with WCS
includes a micro-assembler, utility and 1/0 routines, drivers and
diagnostics. The microassembler and utility routines require SK
of core (12K for use with a disc-operating system). Once devel­
oped, microprograms will operate in any core size.

The 12909A PROM Writer allows a user to convert microprograms
developed with WCS to Read-Only-Memory, which can then be
added to the control section of the computer. Programmable
ROM's provide an economical way to reproduce debugged instruc­
tion extensions once dynamic WCS is no longer required.

The PROM Writer is located on a single card which fits in a com­
puter 1/0 slot. This allows the PROM Writer to be implemented
without extensive cabling or additional power supply. A stand­
alone computer program, supplied with the PROM Writer, writes
and verifies PROM chips using a punched tape. An SK memory is
required.

1.7 PHYSICAL SPECIFICATIONS

1.7.1 POWER REQUIREMENTS

a. Line Voltage: 115 Vac (±10%), single phase 12A or
230 Vac (±10%), single phase 6A

b. Line Frequency: 47.5 to 66 Hz

c. Computer power consumption with internal supplies
loaded to capacity by plug-in options: SOO watts

1-10 21DDA REFERENCE

d. Power Cable: 10 feet, NEMA Type 5-15P (115 Vac
operation) or NEMA Type 6-15P (230 Vac operation)

1.7.2 CURRENT AVAILABLE TO 1/0

Voltage 2100A 2155A
Mainframe Mainframe

+4.85 v 16.8A 45.8A
- 2V 7.0A 19.5A
+12V 3.0A 5.0A
-12V 3.0A 5.0A

1.7.3 ENVIRONMENTAL LIMITS*

a. Operating Temperature: 0° to 55°C (+32° to +131F)

b. Relative Humidity: 50 to 95% at 25° to 40°C (+77°
to +104°F) without condensation

1.7.4 VENTILATION

a. Intake: Rear panel

b. Exhaust: Sides of front panel and cabinet

c. Air Flow: 400 cubic feet per minute

d. Heat Dissipation: 2300 BTU /hour maximum

1.7.5 ALTITUDE*

a. Operating: 15,000 feet

b. Non-operating: 25,000 feet

1.7.6 DIMENSIONS*

a. Width: 16% inches (42,5 cm) with adapters for mount-
ing in 19 inch (48.3 cm) rack

2100A REFERENCE 1-11

b. Height: 121/.i inches (31,1 cm) (rack mounted)

c. Depth:

2100A 26 inches (66 cm), 23 inches (58,4 cm)
behind rack mounting ears

2155A 231h inches (59,6 cm), 23 inches (58,4 cm)
behind rack mounting ears

*Except as noted, specifications apply to both the 2100A and the
2155A 1/0 Extender.

1.7.7 CLEARANCE REQUIRMENTS

a. Recommended Cable Clearance at Rear: 5 inches (127
mm) minimum

b. Recommended Air Exhaust at Top: 3 inches (76,2 mm)
minimum

c. Recommended Air Exhaust at Sides: 2 inches (50,8
mm) minimum

1.7 .8 WEIGHT

a. Minimum: 92 pounds (41 Kg)

b. Maximum: 115 pounds (52,2 Kg) with 32K and all
1/0 slots filled

1.7.9 SERVICE ACCESS

a. Top panel slides back and up permitting top access to
input/output connectors, test switches, plug-in circuit boards, and
wiring.

b. Bottom panel is removable for access to backplane
wiring.

1·12 2100A REFERENCE

1.8 SYSTEM DOCUMENTATION

Full hardware documentation is provided with each computer
shipped to a customer and consists of five volumes as follows:

a. 2100A Reference Manual. This manual describes the
specifications, operating instructions and programming information
for the computer. (The first section of this pocket manual includes
the information supplied in the reference manual.)

b. Installation and Maintenance Manual. The I and MM
contains instructions for installation, maintenance, troubleshooting
and repair, except as covered in the power supply manual.

c. Diagrams Manual. This manual provides interconnecting
information and schematic diagrams for all assemblies of the com­
puter except the power supply.

d. IPB Manual. Replaceable parts ordering information,
replaceable parts lists, exploded views, part location diagrams, and
numerical lists of parts for all assemblies of the computer except
the power supply are covered in the IPB manual. ·

e. Power Supply Manual. The power supply manual con-
tains information necessary to troubleshoot and repair the power
supply. This includes installation instructions, schematic diagrams,
and replaceable parts information.

Information on microprogramming the 2100 is contained in two
publications. A 2100 Microprogramming Guide (5951-3028) serves
as a complete reference on how to use the microprogramming
capability of the 2100. Microassembler documentation is also re­
quired in order to format and assemble microprograms correctly.
A software microprogramming guide (02100-90133) describes the
various aspects of microprogramming software.

All software supplied with HP computer systems is supported by
complete user documentation. General types of software manuals
include language manuals, operating system manuals, software
operating procedures, user manuals, applications manuals, and
small program manuals. A "Software Installation Record" supplied

2100A REFERENCE 1-13

with each system lists all software furnished with the original
equipment and provides an index to the software documentation.
Software manuals typically sent -with a 2100 computer system are
listed below. (This pocket manual includes the first four of the
listed reference manuals.)

1.
2.
3.
4.
5.
6.

Real-Time
7.
8.
9.

HP Assembler
Basic Control System
HP FORTRAN
HP BASIC
ALGOL
Operating System Manual (Disc Operating System,
Executive System, or Magnetic Tape System, etc.)
Symbolic Editor
Relocatable Subroutines
System Operating Procedures

In addition to the manuals shipped with each computer, a manual
titled "Preface to Programming" (5951-1354) is also available.
This manual is designed to provide a general introduction to the
types of languages, operating systems, and user aids available for
the 2100 computer line.

1-14 2100A REFERENCE

PROGRAMMING INFORMATION 2

2.1 DATA FORMATS

The basic data format for the 2100 Computer is a 16-bit word.
Bit positions are numbered from 0 through 15, in order of increas­
ing significance. Bit position 15 of the data format is used for the
sign bit; a "O" in this position indicates a positive number and a
"1" indicates a negative number. The data is assumed to be a whole
number, thus the binary point is assumed to be to the right of the
number.

The basic word, shown in figure 2.1, can also be divided into two
8-bit bytes or combined to form a 32-bit doubleword. The byte
format is used for character-oriented input/output devices. Packing
of the two bytes into one word is accomplished by the software
drivers. In 1/0 operations the higher order byte (Byte 1) is the
first to be transferred.

The integer doubleword format is used for extended precision arith­
metic in conjunction with the ten extended arithmetic instructions.
Bit 15 of the most significant word is the sign bit, and the binary
point is assumed to be to the right of the least significant word.

The floating point doubleword format is used with floating point
software. Bit 15 of the most significant word is the mantissa sign
bit and bit 0 of the least significant word is the exponent sign bit.
Bits 1 through 7 are used to express the exponent, and the remain­
ing bits (8 through 15 of the least significant word and 0 through
14 of the most significant word) are used to express the mantissa.
The mantissa is assumed to be a fractional value, thus the binary
point appears to the left of the mantissa. Software converts deci­
mal numbers to this binary form and normalizes the quantity ex­
pressed (sign and leading mantissa bit differ). If either the man­
tissa or the exponent is negative, that part is stored in two's com­
plement form. The number must be in the approximate range of
10-38 through 10+3 s.

21DDA REFERENCE 2-1

WORD FORMAT h "~ .. r "'"'"""' , ... "'
I I I I I 11 I I I I I 11 l
151413121110 9 8 7 6 5 4 3 2 1 0 LBinarypoint

PACKED BYTE FORMAT

Byte 1 Byte 0

~

I 1111111111 111111
15141312111098 76 54 32 10

INTEGER DOUBLE WORD

Binary fn "'" '" ~'"' ~
I 11111111111111111111111111111-y
15 14131211 10 9 8 7 6 5 4 3 2 1 0 15141312 1110 9 8 7 6 5 4 3 2 1 0

FLOATING POINT DOUBLE WORD

Integer
31 bits fTI -.m•= ~ «oooom '"" ~

I 1111111\llllllllllllllllllLI
15~1413121110 9 s 1 6 5 4 3 :_1 _0_1_5_14-13_1_21_1_10_9_s~ o

L Binary Mantissa Exponent
Point 23 bits 7 bits

OCTAL NOTATION

WORD FORMAT

I 1111111111 11 I 111
15141312111098 76 54 32 10

~
85 8·1 83 8 2 0 1 s0

INTEGER DOUBLE WORD

I I 11 I 11 11 I I I I 1111 111 1111 I 11 I 111 I 11
15141312111098 76 54 3210 15141312111098 76 54 32 10

0'0 89 8s 81 0" 8
4

8
3

82 0 1 0°

Figure 2.1. Data Formats and Octal Notation

2-2 210DA REFERENCE

Figure 2.1 also illustrates the octal notation of data for both single­
length and double-length words. Each group of three bits, begin­
ning at the right, is combined to form an octal digit. Each digit to
the left increases in significance. A single-length 16-bit word can
therefore be fully expressed by six octal digits and a double-length
32-bit word can be fully expressed by 11 octal digits. Octal nota­
tion is not shown for byte or floating point formats, since bytes
normally represent characters and floating point numbers are given
in decimal form.

For single-word data, the range of representable numbers is
+32,767 to -32,768 (decimal), or +77,777 to -100,000 (octal).
For doubleword integer data, the range is +2,14 7 ,483,64 7 to
-2,147,483,648 (decimal), or +17,777,777 ,777 to -20,000,000,000
(octal).

2.2 MEMORY ADDRESSING

The 2100A Computer can be equipped with any one of six mem­
ory configurations, from 4K to 32K (K = 1024 words). The avail­
able configurations, which determine the addressing range, are:
4K, SK, 12K, 16K, 24K, and 32K.

2.2.1 PAGING

The computer memory is logically divided into pages of 1024
words each. A page is defined as the largest block of memory
which can be directly addressed by the memory address bits of
a memory reference instruction (single-length). These memory ref­
erence instructions have 10 bits to specify a memory address, and
thus the page size is 1024 locations (2000 in octal notation). Octal
addresses for each page, up to the maximum memory size, are given
in table 2.1.

Provision is made to address directly one of two pages: page zero
(the base page, consisting of locations 00000 through 01777), and
the current page (the page in which the instruction itself is located.)
Memory reference instructions include a bit (bit 10) reserved to
specify one or the other of these two pages. To address locations

2100A REFERENCE 2-3

MEMORY OCTAL
SIZE PAGE ADDRESSES

0 00000 to 01777
1 02000 to 03777
2 04000 to 05777

4K + 3 06000 to 07777

4 10000 to 11777
5 12000 to 13777
6 14000 to 15777

BK + 7 16000 to 17777

8 20000 to 21777
9 22000 to 23777

12K + 10 24000 to 25777
11 26000 to 27777

12 30000 to 31777
13 32000 to 33777
14 34000 to 35777

16K t 15 36000 to 37777

16 40000 to 41777
17 42000 to 43777
18 44000 to 45777
19 46000 to 47777
20 50000 to 51777
21 52000 to 53777

24K ~
22 54000 to 55777
23 56000 to 57777

24 60000 to 61777
25 62000 to 63777
26 64000 to 65777
27 66000 to 67777
28 70000 to 71777
29 72000 to 73777
30 74000 to 75777

32K + 31 76000 to 77777

Table 2.1. Memory Pages

2-4 2100A REFERENCE

in any other page, indirect addressing is used. Page references are
specified by bit 10 as follows:

Logic 0 = Page Zero (Z)
Logic 1 = Current Page (C)

2.2.2 INDIRECT ADDRESSING

All memory reference instructions reserve a bit to specify direct
or indirect addressing. For single-length memory reference instruc­
tions, bit 15 of the instruction word is used; for extended arith­
metic memory reference instructions, bit 15 of the address word
is used. Indirect addressing uses the address part of the instruction
to access another word in memory, which is taken as a new memory
reference for the same instruction. This new address word is a full
16 bits long, 15 bits of address plus another direct-indirect bit. The
15-bit length of the address permits access to any location in mem­
ory. If bit 15 again specifies indirect addressing, still another ad­
dress is obtained; this multiple-step indirect addressing may be
done to any number of levels. The first address obtained in the
indirect phase which does not specify another indirect level be­
comes the effective address for the instruction. Direct or indirect
addressing is specified by bit 15 as follows:

Logic 0 = Direct
Logic 1 = Indirect

2.2.3 RESERVED LOCATIONS

The first 64 memory locations of the base page (octal addresses
00000 through 00077) are reserved as listed below. The first two
addresses are the A and B flip-flop register addresses and are not
considered as core storage locations. (The actual corresponding core
locations can, however, be loaded and read via the operator panel.)
Locations 4 through 77 are reserved in the sense that interrupt
wiring is present for the priority order given. As long as the loca­
tions do not have actual interrupt assignments (as determined by
the input/output devices included in the user's system), these loca­
tions may be used for program purposes.

21DDA REFERENCE 2-5

00000

00001

00002
00003

00004

00005

00006

00007

00010
thru
00077

Address of A-register

Address of B-register

For exit sequence if A and B contents are used as
executable words

Interrupt location, highest priority (reserved for
power fail interrupts)

Reserved for memory parity and memory protect
interrupts

Reserved for direct memory access

Reserved for direct memory access

Interrupt locations in decreasing order of priority

The last 64 locations of memory (any size) are reserved for the
basic binary loader. The basic binary loader is a permanently resi­
dent program to permit loading of binary information from
punched paper tape (or disc, etc.) into memory. Unless specifically
enabled by a panel switch, the loader locations are protected so
they may not be altered or used in any way.

2.2.4 NONEXISTENT MEMORY

Nonexistent memory is defined as those memory locations not
physically implemented in the machine (up to the maximum of
32K) and the last 64 locations of implemented memory when
not enabled from the front panel. Any attempt to write into non­
existent memory will be ignored (no operation). Any attempt to
read from a non-existent memory location will return an all-zero
word; no parity error occurs.

2-6 2100A REFERENCE

2.3 HARDWARE REGISTERS

The 2100A Computer has six 16-bit working registers, two one­
bit registers, and (on the operator panel) one 16-bit display regis­
ter. The functions of these registers are described as follows:

M-REGISTER. The M-register holds the address of the memory
cell currently being read from or written into.

T-REGISTER (MEMORY DATA). All data transferred into or out
of memory is routed through the memory data register. When dis­
played, the display indicates the contents of the memory location
currently pointed to by the M-register. The displayed data will go
back into that location when any other action is taken (such as dis­
playing some other register or beginning a run operation).

P-REGISTER. The P-register holds the address of the next instruc­
tion to be fetched out of memory. Since this is a "look-ahead"
register, the P-register value will frequently differ from the M­
register value. Table 2.2 lists P- and M-register contents for each of
five different computer states, assuming the computer is halted.

A-REGISTER. The A-register is an accumulator, holding the results
of arithmetic and logical operations performed by programmed
instructions. This register may be addressed by any memory refer­
ence instruction as location 00000, thus permitting inter-register
operation such as "add B to A," "compare B with A," etc., using
a single-word' instructibn.

P-REGISTER M-REGISTER
COMPUTER STATUS contains address of contains address of

FETCH Current instruction Last memory access
INDIRECT (after FETCH) Current instruction Current instruction
INDIRECT (after INDIRECT) Current instruction Last memory access
EXECUTE (after FETCH) Next instruction Current instruction
EXECUTE (after INDIRECT) Next instruction Last memory access

Table 2.2. P- and M-Register Indications

2100A REFERENCE 2-7

B-REGISTER. The B-register is a second accumulator, which can
hold the results of arithmetic operations completely independent
of the A-register. The B-register may be addressed by any memory
reference instruction as location 00001 for inter-register operation
with A.

S-REGISTER. The switch (S) register is a 16-bit utility register.
In the halt mode, it may be manually loaded via the display reg­
ister. In the run mode it may be addressed as in I/O device
(select code 01) and receive and read back data to and from the
accumulators.

EXTEND. The extend bit (E) is a one-bit register, and is used to
link the A- and B-registers by rotate instructions or to indicate
a carry from bit 15 of the A- or B-registers by an add instruction
(ADA, ADB) or increment instruction (INA or INB, but not ISZ)
which references these registers., This is of significance primarily
for multiple-precision arithmetic. If already set, the extend bit is
not complemented by a carry. It may be set, cleared, comple­
mented, or tested by program instruction. The extend bit is set
when the EXTEND light is on ("1") and clear when off ("O").

OVERFLOW. The overflow bit is a one-bit register which indicates
that an add instruction (ADA, ADB), divide instruction (DIV),
or an increment instruction (INA or INB, but not ISZ) referenc­
ing the A- and B-registers has caused (or will cause) the accumu­
lators to exceed the maximum positive or negative number which
they can contain. By program instructions, the overflow bit may
be cleared, set, or tested. The OVF light remains on until the bit
is cleared by an instruction and is not complemented if a second
overflow occurs before being cleared. It will not be set by any shift
or rotate instructions, except ASL (refer to definition in Section
III).

DISPLAY REGISTER. The display register is included on the
standard operator panel. It provides a means of displaying and
modifying the contents of any of the six 16-bit working registers
when the computer is in the halt mode. Each pushbutton is illumi­
nated to indicate a content of "l," and is non-illuminated to indi­
cate a content of "0." Each time a pushbutton is pressed, the
content changes state. When the computer is in the run mode,
the display register permanently displays the S-register contents.

2-8 2100A REFERENCE

2.4 INSTRUCTION FORMATS

Instructions for the 2100A Computer are classified according to
format. The five formats used are illustrated in figure 2.2 and are
described as follows. In all cases where a single bit is used to select
one of two cases (e.g., D/I), the choice is made by coding a logic 0
or 1 respectively (i.e., 0/1).

MEMORY REFERENCE. This class of instructions combines an
instruction code and a memory address into one word. This type
of instruction is therefore used to execute some function involving
data in a specific memory location. Examples are storing, retriev­
ing, and combining memory data to or from the accumulators,
or causing the program to jump to the specified location.

The cell referenced (i.e., the absolute address) is determined by a
combination of the ten memory address bits in the instruction
word (0 through 9) and five bits (10 through 14) assumed from
the current condition of the P-register. This means that memory
reference instructions can directly address any word in the current
page; additionally, if the instruction is given in some location other
than the base page (page zero), bit 10 of the instruction word
doubles the addressing range to 2048 words by allowing selection
of either page zero or current page. (This causes bits 10 through 14
of the address in the M-register to be reset to zero, instead of
assuming the current indication of the P-register.) This feature
provides a convenient linkage between all pages of memory, since
page zero can be reached directly from any other page.

As discussed earlier, bit 15 is used to specify direct or indirect
addressing. Also note that since the A- and B-registers can be ad­
dressed, any single-word memory reference instruction can apply
to either of these registers as well as to memory cells. For example,
ADA 0001 means add the contents of the B-register (its address
being 0001) to the A-register; specify page zero for these opera­
tions, since the A- and B-register addresses are on page zero.

REGISTER REFERENCE. These instructions, in general, manipu­
late bits in the A-, B-, and E-registers. There is no reference to
memory. This type includes 39 basic instructions, which are com­
binable to form a one-word multiple instruction that can operate
in various ways on the contents of the A-, B- or E-registers. The

2100A REFERENCE 2-9

MEMORY
REFERENCE

REGISTER
REFERENCE

J1s '14!13j12J11)10J 9 Is j 1 Is Is I 4 I 3 I 2 I 1 Io I
1 I I I

I I

I I
I I
I I Z/C

I I Instruction I Memory Address

0/11 I
I I
I I

I

A/B S/A

Class I I I Microinstructions

I

A/8

INPUT /OUTPUT ... l,_c_1a_s_s _ _.l..._ ... l __ 1n_s_tr_u_c_ti_o_n_...__c_h_a_n_n_e1_N_o_. _ _,

EXTENDED
ARITHMETIC

I
I

lnstruct~on

I Zeros)

MEMORY .--~~~~~~~~~~~~~~~---,
REFERENCE l..._-+l ______ M_e_m_o_rv_A_d_d_ress ____ _J

EXTENDED
ARITHMETIC

REGISTER
REFERENCE

011:
I

: Class Instruction

Figure 2.2 Instruction Formats

2-10 21DDA REFERENCE

No. of Shifts

39 instructions are divided into two subgroups, the shift-rotate
group (SRG) and the alter-skip group (ASG). These subgroups
are specified by bit 10. Typical operations are clear and/or com­
plement a register, conditional skips, and register increment.

INPUT/OUTPUT. The input/output class of instructions uses bits 6
through 11 for a variety of I/ 0 instructions, and bits 0 through 5
to apply the instruction to a specific I/O channel. This provides a
means of controlling all devices connected to the I/0 channels,
and for transferring data in or out. Also included in this group
are instructions to control the interrupt system, overflow bit, and
computer halt.

EXTENDED ARITHMETIC MEMORY REFERENCE. Like the
single-word memory reference instruction above, the complete in­
struction includes an instruction code and a memory address. In
this case, however, two words are required. The first word specifies
the extended arithmetic class (bits 12 through 15 and 10) and the
instruction code bits 4 through 9 and 11). Bits 0 through 3 are not
needed and are coded with zeros. The second word specifies the
memory address of the operand. Since a full 15 bits are used for
the address, this type of instruction may directly address any lo­
cation in memory. As with all memory reference instructions, bit
15 may be used to specify indirect addressing. Operations pro­
vided by this class of instructions are integer multiply and divide
(using double-length product and dividend), and double load and
double store.

EXTENDED ARITHMETIC REGISTER REFERENCE. This class
of instructions provides long shifts and rotates on the combined
A- and B-registers. Bits 12 through 15 and 10 identify the extended
arithmetic class, and bits 4 through 9 and 11 specify the direction
and type of shift. Bits 0 through 3 are used to specify the number
of shifts, which can range from 1 to 16 places.

2.5 INTERRUPT SYSTEM

The computer interrupt system has 60 distinct interrupt levels.
Each level has a unique priority assigned to it, and is associated
with a numerically corresponding interrupt location in core
memory.

2100A REFERENCE 2-11

As an example of the simplicity of this system: a service request
from I/O channel 13 will cause an interrupt to core location 00013.
The request for service will be granted on a priority basis higher
than channel 14 but lower than channel 12. Thus a transfer in
progress via channel 14 would be suspended to let channel 13
proceed, but a transfer via channel 12 could not be interrupted
by channel 13.

Under program control, any device may be selectively enabled or
disabled, thus switching the device in or out of the interrupt struc­
ture. In addition the entire interrupt system may be enabled or
disabled under program control using a single instruction (except­
ing power fail and parity error interrupts).

Of the 60 interrupt levels, the two highest priority levels are re­
served for hardware faults (power fail and parity error), the next
two are reserved for DMA completion interrupts, and the remain­
ing 56 are available for the I/O device channels. Table 2. 3 lists
interrupt levels in order of priority. Note that interrupt facilities
for I/O channels above 25 (octal) are available through use of
an I/O extender or multiplexer.

CHANNEL INTERRUPT
(Octal) LOCATION ASSIGNMENT

04 00004 Power Fail Interrupt

05 00005 Memory Parity/Protect Interrupt

06 00006 DMA Channel 1 Completion
Interrupt

07 00007 DMA Channel 2 Completion
Interrupt

10 00010 1/0 Device, highest priority

thru 25 00025 1/0 Device (Mainframe)

thru 65 . 00065 1/0 Device (Extender)

thru 77 00077 1/0 Device (Multiplexer)

Table 2.3. Interrupt Assignments

2-12 21DDA REFERENCE

Interrupt requests received while the computer is in halt mode
will be processed, in order of priority, when the computer is put
into run mode or is stepped single cycle.

2.5.1 POWER FAIL INTERRUPT

The computer is equipped with power sensing circuits. When pri­
mary power to the computer fails or drops below a safe operating
level while the computer is running, an interrupt to memory loca­
tion 00004 is automatically generated. This interrupt is given the
highest priority in the system, and cannot be turned off or disabled.
Location 00004 is intended to contain a jump-to-subroutine in­
struction referencing the entry point of a shut-down program, but
it may alternatively contain a HLT instruction. Interrupt capability
for lower-priority functions is automatically inhibited while a
power fail routine is in progress. Sufficient time is available be­
tween the detection of power failure and the loss of usable internal
power to execute about 100 instructions. The shut-down program
should be written to save the current state of the computer system
in memory, and then must halt the computer. A sample program
is given in table 2.4.

Since the restoration of power might be unattended by an opera­
tor, the user is given a switch-selectable option of what action the
computer should take. With the switch set to the halt position,
the computer will halt when power is restored, whether the com­
puter was running or halted when the failure occurred. (No panel
indication is given.) With the switch in the restart position, the
automatic restart feature is enabled. After a built-in delay of about
a second following return to normal power levels, another inter­
rupt is generated, again to location 00004. This time the shut-down
portion of the subroutine is skipped (see sample subroutine) and
the power-up portion begins. If the computer was not running
when the power failure occurred, the computer is halted. If the
computer was running, the system conditions are restored and the
computer continues operation from the point of interruption. Al­
ternatively, if location 00004 contains a HL T instead of a jump
to a subroutine, the computer will halt at this time and EXTERN AL
PRESET (or PRESET on the controller panel) will light.

To allow for the possibility of a second power failure occurring
while the power-up routine is in progress, the user should limit the
combined total of instructions (for both shut-down and power-up)

21DOA REFERENCE 2-13

LABEL OPCODE OPERAND COMMENTS

PFAR NOP Power fail/Auto Restart Subroutine
SFC 48 Skip if interrupt was caused by a power

failure
JMP UP Power is being restored, reset state of

computer system
DOWN STA SAVA Save A-register contents

CCA Set switch indicating that the com-
STA SAVA puter was running when power

failed
STB SAVB Save 8-register contents
ERA,ALS Transfer E-register content to A-

register bit 15
soc Increment A-register if Overflow
INA is set ·
STA SAVEO Save E- and 0-register contents
LOA PFAR Save contents of P-register at ti me of
STA SAVP power failure
LIA 18 Save contents of
STA SAVS S-register

Insert user-written routine to save
1/0 device states

CLC 48 Turn on restart logic so computer will
restart when power is restored
after momentary power failure

HLT Shutdown
UP LOA SAVA Was computer running when

SZA,RSS power failed?
JMP HALT No
CLA Yes, reset computer Run switch to
STA SAVA initial state
LOA FENCE Restore the memory protect
OTA 58 fence register contents

: Insert user-written routine to restore
1/0 device states

LOA SAVEO Restore the contents
CLO of the
SLA,ELA E-register and
STF 18 0-register
LOA SAVS Restore the contents of the
OTA 18 $-register
LOA SAVA Restore A-register contents
LOB SAVB Restore 8-register contents
STC 48 Reset power fail logic for next power

failure
STC 58 Turn on memory protect
JMP SAVP,I Transfer control to program in execu-

tion at time of power failure
HALT HLT Return computer to halt mode
FENCE OCT 20008 Fence address storage (must be updated

each time fence is changed)
SAVEO OCT 0 Storage for E and 0
SAVA OCT 0 Storage for A
SAVB OCT 0 Storage for 8
SAVS OCT 0 Storage for S
SAVP OCT 0 Storage for P
SAVA OCT 0 Storage for Run switch

Table 2.4. Sample Power Fail Subroutine

2-14 2100A REFERENCE

to less than 100. If the computer memory does not contain a sub­
routine to service the interrupt, location 00004 should contain a
HLT 04 instruction (octal 102004).

A set control command (STC 04) must be given at the end of any
restart routine. This command re-initializes the power fail logic
and restores interrupt capability to lower priority functions. The
EXTERNAL PRESET switch, when pressed, issues a similar
command.

2.5.2 PARITY ERROR INTERRUPT

Parity checking of memory is a standard feature of the 2100A
Computer. The parity logic continuously generates correct parity
for all words written into memory and monitors the parity of all
words read out of memory. Correct parity is defined as having
the total number of "l" bits in a 1 7 -bit memory word equal to
odd value. If a "l" bit (or any odd number of "l" bits) is either
dropped or added in the transfer process, a parity error signal is
generated when the word is read out. Unless the error logic is spe­
cifically disabled by a CLF 05 instruction, the error signal causes
an interrupt to location 00005.

Optionally (switch-selectable) the error signal may cause a halt,
rather than an interrupt. The lighting of the HALT and PARITY
indicators signals the fact that the halt was caused by a parity
error. The PARITY light stays on until INTERNAL PRESET is
pressed.

Assuming that the interrupt option is selected, the interrupt to
location 00005 directs the computer to the entry point of a parity
error subroutine. It is the user's decision as to what to do about
a parity error; for example, he may want to record the address
of the error location, or abort a critical operation. In any case, the
PARITY light is turned off as soon as the interrupt is acknowledged
and normal operation may be resumed on exit from the subroutine.
An STF 05 instruction should be given at the end of the subrou­
tine to re-initialize the logic.

In conjunction with the memory protect feature, it is possible to
determine the address of the error location. The error address will
automatically be loaded into the violation register of the memory

2100A REFERENCE 2-15

protect logic, and from there it is accessible to the programmer.
(See following discussion of memory protect interrupt.)

It is recommended on discovery of a parity error, that the entire
program or set of data containing the error location be reloaded.
However, knowing the address and contents of the error location,
the user may be able to determine what operations have taken
place as a result of reading the erroneous word. For example, if the
word was an instruction, several other locations may be affected.
By individually checking and correcting the contents of all affected
locations, the user may resume running his program without a
complete reload. If software is being generated, this may also need
to be corrected.

2.5.3 MEMORY PROTECT INTERRUPT

Memory protect for the 2100A Computer is a standard feature.
With this capability a selected block of memory of any size, from a
settable fence address downward, is protected against alteration by
memory reference instructions (excluding A- and B-register ad­
dresses, which. may be freely addressed by any memory reference
instruction except JMP). Also, when enabled, it prohibits the exe­
cution of all 1/0 instructions except those referencing I/O address
01 switch and overflow registers. This second feature limits the
control of input/output operations to interrupt control only. Then,
by programming the system to direct all I/O interrupts to an execu­
tive program in protected memory, the executive program can have
exclusive control of the I/O system.

The memory protect logic is disabled by any interrupt (except if
the interrupt location contains an input/output group instruction)
and is re-enabled by an STC 05 instruction at the end of each
interrupt subroutine. In the halt mode, memory protect is also
disabled by the INTERNAL PRESET switch.

Programming rules pertaining to the use of memory protect, assum­
ing the logic is enabled, are as follows:

a. Location 00002 is . the lower boundary of protected
memory. (Locations 00000 and 00001 are the A- and B-register
addresses.)

2-16 2100A REFERENCE

b. JMP instructions may not reference the A- or B-
registers. JSB, however, may do so.

c. The upper boundary is loaded into the fence register
from the A- or B-registers by an OTA or OTB instruction with
select code 05. Memory locations below (but not including) this
address are protected.

d. Execution will be inhibited and an interrupt to loca-
tion 00005 will occur if a JMP, JSB, ISZ, STA, STB, or DST in­
struction directly or indirectly addresses a location in protected
memory, or if any I/0 instruction is attempted (including halt,
but excluding those addressing select code 01, the S- and overflow
registers).

e. Any instruction not mentioned in "d" is legal, even
if it does reference protected memory. In addition, indirect ad­
dressing through protected memory by those memory reference
instructions listed in "d" is legal, provided the final effective ad­
dress is outside protected memory.

Following a memory protect interrupt, the address of the illegal
instruction will be present in the violation register. This address
is made accessible to the programmer by an LIA 05 or LIB 05
instruction, which loads the address into the A- or B-register.

Since parity error and memory protect share the same interrupt
locations, it is necessary to distinguish which type of error is re­
sponsible for the interrupt. If, after the LIA/B 05 instruction (pre­
ceding paragraph), bit 15 of the A-/B-register is a "l," parity error
is indicated; if bit 15 is a "O," memory protect violation is indi­
cated. In either case, the remaining bits of the register give the
address of the error location.

TaDle 2.5 illustrates a sample memory protect and parity error sub­
routine. An assumption made for this example is that the location
following the error location is an appropriate return point. This
may not always be the case; for example, it may be advisable to
abort the program in progress and return to a supervisory program.

21DDA REFERENCE 2-17

LABEL OPCODE OPERAND COMMENTS

MPPE NOP Memory Protect/Parity Error Sub-
routine

CLF 0 Turn off interrupt system to inhibit
1/0 devices

CLF 5 Turn off P.E. interrupt during sub-
routine

STA SVA Save A-register contents
STB SVB Save B~register contents
LIA 5 Get contents of violation register

in MP logic
SSA Check bit 15 to determine kind of

error
JMP PERR If a 1, go to parity error routine
JMP MPTR If a 0, go to memory protect

routine
MPTR - User's routine in case of memory

protect violation
-
-

etc.
-
-
-

LDA SVA Restore A-register
LDB SVB Restore B-register
STF 0 Enable interrupt system
STF 5 Turn on parity error interrupt
STC 5 Turn on memory protect interrupt
JMP MPPE,I Exit the subroutine

PERR - User's routine in case of parity error
-
-

etc.
-
-
-

JMP PERR-6 Restore accumulators, turn on
interrupts, exit

Table 2.5. Sample Memory Protect/Parity Error Subroutine

2-18 2100A REFERENCE

2.5.4 INTERRUPTS

The direct memory access (DMA) option provides high speed block
transfers of data between I/O devices and memory. For the most
part, DMA operates independently of the interrupt system. (Refer
to the description of DMA operation in the Input/Output Section
of this manual.)

The only time that DMA generates an interrupt is when it has com­
pleted transferring a specified block of data. Since there are two
DMA channels, two interrupt locations are reserved for this option:
location 00006 (interrupt from DMA channel 1) and location
00007 (interrupt from DMA channel 2). The channel 1 interrupt
has priority over the channel 2 interrupt. Since these interrupts
are primarily completion signals to the programmer and are there­
fore application dependent, no subroutine example is given.

2.5.5 1/0 INTERRUPTS

The remaining interrupt locations (octal 00010 through 00077)
are available to I/O devices. This represents a total of 56 (decimal)
locations, one for each of 56 I/O channels.

In typical input/output operation, the computer issues a program­
med command (e.g., set control/clear flag instruction STC,C) to
one or more external devices, causing these devices to begin their
read or write operation. Each device will put data into (input) or
take data from (output) the input/output buffer on each individual
interface card. During this time, the computer may continue run­
ning a program or may be programmed into a waiting loop to wait
for a specific device. On completion of the read or write operation,
each device returns an operation completed signal (flag) to the
computer. The flags are passed through a priority network which
allows only one device to be serviced regardless of the number of
flags simultaneously present. The flag with the highest priority
generates an interrupt signal at the end of the current machine
cycle, except under any of the following circumstances.

a. Interrupt system disabled or device interrupt disabled.

b. JMP indirect or JSB indirect not sufficiently executed.
These instructions inhibit all interrupts, except memory protect,

21DOA REFERENCE 2-19

until the instruction (plus one phase of the succeeding instruction
is completed, or until at least three indirect references have occur­
red. The memory protect interrupt for a jump violation will occur
on completion of the execute phase, but the jump itself will be
inhibited.

c. Instruction in an interrupt location not sufficiently ex-
ecuted, even if of lower priority. Any interrupt inhibits the entire
interrupt system until at least two phases have been completed.
(JMP indirect and. JSB indirect will be fully executed.)

d. Direct memory access option in process of transferring
data.

e. The current instruction is one which may affect the
priorities of input/output devices (STC, CLC, STF, CLF). The
interrupt in this case must wait until the end of the succeeding
machine cycle.

A set flag flip-flop inhibits all interrupt requests below it on the
priority string (provided that the control flip-flop is also set). Once
the flag flip-flop is cleared the next lower device can then interrupt.
A service subroutine for any device can be interrupted only by a
higher priority device; then, after the higher device is serviced, the
interrupted subroutine may continue. In this way, it is possible for
several service subroutines to be in a state of interruption at one
time; each will be permitted to continue when the higher priority
device is serviced. All service subroutines normally end with a
JMP indirect instruction to return the computer to the point of
interrupt.

For the programmer, communication with I/O devices is simplified
by the availability of standard driver routines. Hewlett-Packard
furnishes an I/O driver as an accessory to each standard peripheral
device supplied by HP. The drivers supplied by HP conform to the
design specifications of the HP Basic Control System and are sub­
sequently referred to as BCS drivers. BCS drivers can be integrated
into an existing basic control system simply by adding the addi­
tional driver to the system in a simple configuration process. BCS
drivers generally have the following characteristics:

a. I/ 0 is overlapped with processing using the computer
priority interrupt system.

2-20 2100A REFERENCE

b. Each driver may operate identical devices occupying
different 1/0 locations.

c. Provide status and error information to user and system
1/0 requests.

d. Compatible with other modules of HP software such as
the Input/Output Control (IOC) program and the FORTRAN 1/0
program called the Formatter.

e. The object code for a BCS driver is relocatable binary.

The modularity of the basic control system provides the user with
a very flexible operating system. The functions of the modules
can be illustrated by following the sequence of events through
a series of 1/0 transfers. An input transfer is used as an example.
See Figure 2.3.

The user or system 1/0 request is made to a unique entry point in
the IOC program. After checking the request for validity, IOC ob­
tains the memory address of the BCS driver for the requested de­
vice. Control is transferred to the BCS driver and the input opera­
tion is initiated. After initiation the BCS driver transfers control
back to the user or system program. The program continues pro­
cessing until the 1/0 device completes a single operation. At that
time an interrupt request is generated, which forces transfer of
control to the BCS driver once again. The data is transferred be­
tween the device and a specified memory buffer and the 1/0 device
is commanded to do another operation. This process continues
until all data has been transferred and the user or system input
request is satisfied.

The equipment table (EQT) is a memory table created at configu­
ration time to describe the hardware 1/0 channel of the device,
the name and address of the 1/0 driver to be used, a status word,
and a transmission log to be used by the 1/0 driver. Each physical
1/0 device (or, sometimes, 1/0 subsystem consisting of two or
more devices) in the system is defined by an entry in the EQT. The
EQT provides the interface between IOC and the BCS driver and
in addition provides for device independent programming.

2100A REFERENCE 2-21

Entry

INPUT/OUTPUT
CONTROL

(IOCI

1/0 DRIVER #2

1/0 DRIVER #3

Figure 2.3. Modules of BCS

2.5.6 INTERRUPT REGISTER

Each time an interrupt occurs, the address of the interrupt location
is stored in the central interrupt register. The contents of this
register is accessible at any time with an LIA 04 or LIB 04 instruc­
tion. This puts the address of the most recent interrupt into the
a- or B-register.

2.5.7 INTERRUPT SYSTEM CONTROL

1/0 address 00 is a master control address for the interrupt sys­
tem. An STF 00 instruction enables the entire interrupt system,
and a CLF 00 instruction disables the interrupt system. The two

2-22 2100A REFERENCE

exceptions are the power fail interrupt, which cannot be disabled,
and parity error interrupt, which can only be selectively enabled
or disabled by STF 05 or CLF 05, respectively.

Whenever power is turned on, a clear signal to 1/0 address 00 auto­
matically disables the interrupt system. The INTERRUPT SYSTEM
pushbutton on the operator panel may be used to switch the inter­
rupt system on or off manually. However, programs dependent on
interrupt operation should include an STF 00 instruction to ensure
that the interrupt system is enabled in the run mode.

2100A REFERENCE 2-23

INSTRUCTIONS 3

This section defines each of the 80 machine instructions of the
2100A Computer. Definitions are grouped according to instruction
type: memory reference, register reference, input/output, extended
arithmetic memory reference, and extended arithmetic register
reference.

With each definition is a diagram showing the machine coding of
the instruction. The light shaded bits code the instruction type and
the dark shaded bits code the specific instruction. Unshaded bits
are further described under the introduction to each instruction
type. The mnemonic code and instruction name are given above
each diagram.

In all cases where an additional bit is used to specify a secondary
function {D/I, Z/C, or H/C), the choice is made by coding a logic
0 or 1 respectively. That is, a logic 0 codes D, Z, and H, and a
logic 1 codes I, C, and C. These abbreviations are defined as
follows:

D Direct addressing
I Indirect addressing
Z Zero page
C Current page
H Hold flag
C Clear flag

3.1 INSTRUCTION TIMING

All instructions except ISZ and the extended arithmetic instruc­
tions are fully executed in 1.96 microseconds. ISZ is executed in
2.94 microseconds, and the extended arithmetic instructions are
executed in the times shown in table 3.1. The Divide instruction
executes faster than shown if the divisor is positive (15.68 micro­
seconds) or if overflow occurs (11. 7 6 microseconds). If indirect
addressing is used with any of the single~word memory reference
instructions, 0.98 microsecond is added for each level of indirect

210DA REFERENCE 3-1

addressing used; 1.96 microseconds are added for each level of
indirect addressing with extended arithmetic memory reference
instructions.

Instructions are executed in two or more phases. The first phase
is the fetch phase, which obtains an instruction from memory and
transfers it into the central processor's instruction register. Next,
there can be one or more indirect phases. The indirect phase, which
applies only to single-length memory reference instructions, ob­
tains a new operand address for the same (current) instruction.

TIME
INSTRUCTION (µsec)

MPY (Multiply) 10.78
DIV (Divide) Max 16.66
OLD (Double Load) 5.88
DST (Double Store) 5.88

Number of Shifts

ASR 1, 2, 3 2.94
(Arithmetic 4, 5,6, 7,8 3.92
Shift 9, 10, 11, 12, 13 4.90
Right) 14,15,16 5.88

ASL 1,2,3,4,5 4.90
(Arithmetic 6, 7,8,9, 10 5.88
Shift 11, 12, 13, 14, 15 6.86
Left) 16 7.84

LSR, RRR 1, 2 2.94
(Logical 3,4,5,6, 7 3.92
Shift Right, 8,9,10,11,12 4.90
Rotate Right) 13, 14, 15, 16 5.88

LSL, RRL 1, 2, 3, 4 4.90
(Logical 5,6, 7,8,9 5.88
Shift Left, 10, 11, 12, 13, 14 6.86
Rotate Left) 15, 16 7.84

Table 3.1. Extended Arithmetic Execution Times

3-2 21DOA REFERENCE

Lastly, there is an execute phase, which accomplishes actual exe­
cution of the instruction. For extended arithmetic memory ref er­
ence instructions, indirect addressing is also accomplished in the
execute phase. Although the duration of a phase varies considera­
bly (from 588 nanoseconds to an indeterminate time in the case
of extended arithmetic indirect addressing), synchronization with
memory or input/output operations results in overall execution
times as specified in the preceding paragraph.

3.2 MEMORY REFERENCE INSTRUCTIONS

The 14 memory reference instructions execute a function involving
data in memory. Bits 0 through 9 specify the affected memory
location on a given memory page or, if indirect addressing is used,
the next address to be referenced. Indirect addressing may be con­
tinued to any number of levels; when the D/I bit is "O" (specify­
ing direct addressing), that location will be taken as the effective
address. The A- and B-registers may be addressed as locations 00000
and 00001 (octal) respectively.

In bit 10 (Z/C) is a "O," the memory address is on page zero; if
bit 10 is a "l," the memory address is on the current page. If the
A- or B-register is addressed, bit 10 must be a "O" to specify page
zero, unless the current page is page zero.

AND "AND" TO A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
011 :,p:! !iijJjHii WI) · Z;c

Memory Address

The contents of the addressed location is logically "anded" to the
contents of the A-register. The contents of the memory is left
unaltered.

JSB JUMP TO SUBROUTINE

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D;I i'!ij!i!, 0: jj] Z;C

Memory Address

210DA REFERENCE 3-3

This instruction, executed in location P, causes computer control
to jump unconditionally to the memory location (m) specified in
the address portion of the JSB instruction word. The contents of
the P-register plus one (return address) is stored in location m, and
the next instruction to be executed will be that contained in the
next location (m + 1). A return to the main program sequence at
P + 1 may be effected by a jump indirect through location m.

XOR "EXCLUSIVE OR" TO A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D;I : Q f':j_\; \tfi:. IJ Z;C

Memory Address

The contents of the addressed location is combined with the con­
tents of the A-register as an "exclusive or" logic operation. The
contents of the memory is left unaltered.

JMP JUMP

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
011 :-Q;H U! ::9: z;c

Memory Address

The instruction transfers control to the addressed location. That
is, JMP causes the P-register to be set according to the memory
address portion of the instruction word, so that the next instruc·
tion will be read from that location.

IOR "INCLUSIVE OR" TO A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D/1 \Qo.· jf Z;C

Memory Address

The contents of the addressed location is combined with the con­
tents of the A-register as an "inclusive or" logic operation. The
contents of the memory cell is left unaltered.

3-4 2100A REFERENCE

ISZ INCREMENT AND SKIP IF ZERO

1110 g 8 7 6 5 4 3 2 1 0
Z1
'C

Memory Address

An ISZ instruction adds one to the contents of the addressed mem­
ory location. If the result of this operation is zero, the next instruc­
tion is skipped; i.e., the P-register is advanced-by two instead of
one. Otherwise, the program proceeds normally to the next instruc­
tion in sequence. The incremented value is written back into the
memory cell in either case. An ISZ instruction referencing loca­
tions zero or one (A- or B-register) cannot cause setting of the
extend or overflow bits (unlike INA and INB).

ADA ADD TO A

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

'df\:oU JJL z1c

Memory Address

The contents of the addressed memory location is added to the
contents of the A-register, and the sum remains in the A-register.
The result of the addition may set the extend or overflow bits.
The contents of the memory cell is unaltered.

ADB ADD TO B

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

D; I ax ·:Q,::::)Q\\\ Z;C

Memory Address

The contents of the addressed memory location is added to t~e
contents of the B-register, and the sum remains in the B-register.
Extend or overflow bits may be set, as for ADA. The contents of
the memory cell is unaltered.

2100A REFERENCE J..5

CPA COMPARE TO A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D;I :0: Z;C

.. __
Memory Address

The contents of the addressed location is compared with the con­
tents of the A-register. If the two 16-bit words are unequal, the
next instruction is skipped; i.e., the P-register is advanced by two
instead of one. If the words are identical, the program proceeds
normally to the next instruction in sequence. The contents of
neither the A-register nor the memory cell is altered.

o,
'I

COMPARE TO B

1110 9 8 7 6 5 4 3 2 1 0
z,
'C

Memory Address

Same as CPA, except comparison is made with the B-register.

LOA LOAD A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
011 Yf < 4 Q 0 Z;c

Memory Address

The A-register is loaded with the contents of the addressed loca­
tion. The contents of the memory cell is unaltered.

LOB LOAD B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

[
0

11 L:2:L ... : 1Z;d I I I I I 1
Memory Address

The B-register is loaded with the contents of the addressed loca­
tion. The contents of the memory cell is unaltered.

3-6 2100A REFERENCE

· STA STORE A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[01, ~TIZ; I . .>::.:: c I I I I I I

Memory Address

The .contents of the A-register is stored in the addressed location.
The previous contents of the memory cell is lost; the A-register is
unaltered.

STB STORE B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Z;C

Memory Address

The contents of the B-register is stored in the addressed location.
The previous contents of the memory cell is lost; the B-register is
unaltered.

3.3 REGISTER REFERENCE INSTRUCTIONS

The 39 register reference instructions execute various functions on
data contained in the A-, B-, and E-registers. The instructions are
divided into two groups: the shift-rotate group and the alter-skip
group. In each group, several instructions may be combined into
one word and are thus individually termed microinstructions. Since
the two groups are separate and distinct, microinstructions from
the two groups cannot be mixed. Unshaded "bits in the coding dia­
grams are available for combining other microinstructions.

SHIFT-ROTATE GROUP. The 20 instructions of the shift-rotate
group are defined first. A comparison of shift and rotate functions
is given in figure 3.1. Rules for combining microinstructions are as
follows. (Refer to table 3.2.)

a. Only one microinstruction can be chosen from the
multiple-choice columns.

2100A REFERENCE 3-7

b. References to A- and B-registers cannot be mixed.

c. The sequence of execution is left to right.

d. In machine code, use zeros to exclude unwanted micro-
instruction bits.

e. Use a "l" bit in bit 9 to enable shifts or rotates in the
first position, and a "1" bit in bit 4 to enable shifts or rotates in
the second position.

f. The extend bit is not affected unless specifically stated.
However, if a rotate-with-E instruction (ERA/B, ELA/B) is coded
but disabled by a "O" in bit 9 or 4, the E-register will be updated
even though the A- or B-register is not affected; code a NOP (three
zeros) to avoid this situation.

~
ALS~' ARS
RAL
RAR

:~.: \ [.CLE]

ELA J

~~~! ~· [.CLE] 
BLR \ BLF 
ERB 
ELB / 

Table 3.2. Shift-Rotate Combining Guide 

NOP NO OPERATION 

8 7 6 5 4 3 2 1 0 
>o: Qr 0 Al :tr an ]l rn: CL 

An all-zero instruction word causes a no-operation cycle. 

3-8 21DDA REFERENCE 



:=~ §W111111111fflof 

::~ CTff I I I I I I I I I I ffiITT 

::: @ff I I I I I I I I I I i??q} 

:~: 
0

i1 if I I I I I I I I I faJ 
0 

i:: ffi??1 I I I w.1 I 11 1JJ;D 

it: [r~fl I I I I ~Q I I I I 1 ?lffi 
~~~ 

:~~ H,++++ol 9 Is I 1IsIsI4 I 3 I 2 I 1 Io I
' ~

Figure 3.1. Shift and Rotate Functions

2100A REFERENCE 3-9

CLE CLEARE

Eil••f1. 9 I 0 1
7

1

6 1; 14

1312 I 1 I
0 I

Clear E-register (extend bit).

SLA SKIP IF LSB OF A IS ZERO

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\\II \\\I\\\ \\\l\\\l \l\Qj\j I) \\lt#l

The next instruction is skipped if the least significant bit of the
A-register is "O."

SLB SKIP IF LSB OF BIS ZERO

876543210

The next instruction is skipped if the least significant bit of the
B-register is "O."

ALS A LEFT SHIFT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

11~ ~i•~ 1j~flll\ Ui\i -o \ji.\jll q 1r 1r o o> o> o

LJ LJ
1st Position 2nd Position

The A-register is arithmetically shifted left one place, 15 magnitude
bits only. Bit 15 (sign bit) is not affected; bit shifted out of bit 14
is lost. A "O" replaces vacated bit 0.

3-10 21DDA REFERENCE

BLS 8 LEFT SHIFT

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

l1ll~ 1l1i1l1l 1~il1l 1l1llI n · ~l1lll1l~ M< :,:Qi:: · o : P: : : om ::o:: . o·

LJ LJ
1st Position 2nd Position

The B-register is arithmetically shifted left one place, 15 magnitude
bits only. Bit 15 (sign bit) is not affected; bit shifted out of bit 14
is lost. A "O" replaces vacated bit 0.

ARS ARIGHT SHI FT

5 4 3 2 1 0

1st Position 2nd Position

The A-register is arithmetically shifted right one place, 15 magni­
tude bits only. Bit 15 (sign bit) is not affected; copy of sign bit
is shifted into bit 14. Bit shifted out of bit 0 is lost.

BRS BRIGHT SHIFT

15 14 13 12 1110 g 8 7 6 5

ll1i1l1 lllll1l~ l1lll l1m1l1i !j : l1llI

1st Position 2nd Position

The B-register is arithmetically shifted right one place, 15 magni­
tude bits only. Bit 15 (sign bit) is not affected; copy of sign bit is
shifted into bit 14. Bit shifted out of bit 0 is lost.

21DOA REFERENCE J-11

RAL ROTATE A LEFT

15 1413 12 1110 9 8 7 6 5 4 3 2 1 0

~li~ll l\~l\\l ~Il\I Hf j\'. ::•ij• •: j\\jjjj\ "1. ···~···· @ · 1n J1% ::1-::: Ye::•

LJ LT
1st Position 2nd Position

Rotate A-register left one place, all 16 bits. Bit 15 is rotated around
to bit 0.

RBL ROTATE B LEFT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~ll~ll Ji~ all l~ii .•.• ,:.:: lM.~j • Q:. •···'-? ::IJ •• :-o::: ..::1:::: 'io·•'

1st Position 2nd Position

Rotate B-register left one place, all 16 bits. Bit 15 is rotated around
to bit 0.

RAR ROTATE A RIGHT

7 6 5

1st Position 2nd Position

Rotate A-register right one place, all 16 bits. Bit 0 is rotated around
to bit 15.

3-12 2100A REFERENCE

RBR ROTATE BRIGHT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~~-~1 ~1~11~1 ~1~11~1 ~1~11~1~ :@::: ~~~-~~~ @I]l. : 4< ::J> :::Q.:::: .@I tt:::

1st Position 2nd Position

Rotate B-register right one place, all 16 bits. Bit 0 is rotated around
to bit 15.

ALR A LEFT SHIFT, CLEAR SIGN

15 14 13 12 11 10 9 8 7 6 5

1st Position 2nd Position

Shift A-register left one place, same as ALS, but clear sign bit after
shift.

1st Position 2nd Position

Shift B-register left one place, same as BLS, but clear sign bit after
shift.

2100A REFERENCE 3-13

ERA ROTATE E RIGHT WITH A

15 1413 12 1110 9 8 7 6 5 4 3 2 1 0

~11~1~ ~1~-~~~ -1~11~~~ ~~11~1~ P: nn ,

1st Position 2nd Position

Rotate E-register right with A-register, one place (17 bits). Bit 0 is
rotated into extend register; extend contents is rotated into bit 15.

ERB ROTATE E RIGHT WITH B

4 3 2 1 0

1st Position 2nd Position

Rotate E-register right with B-register, one place (17 bits). Bit 0 is
rotated into extend register; extend contents is rotated into bit 15.

ELA ROTATE E LEFT WITH A

15 1413 12 1110 9 8 7 6 5 4 3 2 1 0

1st Position 2nd Position

Rotate E-register left with A-register, one place (17 bits). Bit 15 is
rotated into extend register; extend contents is rotated into bit 0.

3-14 2100A REFERENCE

ELB ROTATE E LEFT WITH B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
r1lll atl Iillll llllll :@:.: ~llilll rn

LJ LY
1st Position 2nd Position

Rotate E-register left with B-register, one place (17 bits). Bit 15 is
rotated into extend register; extend contents is rotated into bit 0.

ALF ROTATE A LEFT FOUR

15 1413 12 1110 9 8 7 6 5 4 3 2 1 0

~r:::} r :::;~~~ jlji.~ lia\~l~ rnrnm~ @.:.:

1st Position 2nd Position

Rotate A-register left four places, all 16 bits. Bits 15, 14, 13, 12 are
rotated around to bits 3, 2, 1, 0 respectively. Equivalent to four
successive RAL instructions.

ROTATE B LEFT FOUR

8 7 6 5 4 3 2 1 0

1st Position 2nd Position

Rotate B-register left four places, all 16 bits. Bits 15, 14, 13, 12 are
rotated around to bits 3, 2, 1, 0 respectively. Equivalent to four
successive RBL instructions.

ALTER-SKIP GROUP. The 19 instructions of the alter-skip group
are defined next. This group is specified by a "1" bit in bit 10.

21DDA REFERENCE 3-15

Rules for combining microinstructions are as follows. (Refer to
table 3.3).

a. Only one microinstruction can be chosen from the
multi-choice columns.

b. References to A- and B-registers cannot be mixed.

c. The sequence of execution is left to right.

d. If two or more skip functions are combined, the skip
will occur if either or both conditions are met. One exception
exists: refer to RSS instruction.

e. In machine code, use zeros to exclude unwanted micro
instruction bits.

rn~:} J l.SE2] [rn~n J (.SSA] (.SLA] (.I NA I I.SZAi I.ASS!

[rn~:} }SE2] [rn~m (.SSBI l.SLB][,INB] (.S2B) (.ASS)

Table 3.3. Alter-Skip Combining Guide

CLA CLEAR A

876543210

Clear the A-register

3-16 21DOA REFERENCE

CLB CLEAR B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\111 \1\11\1 \1\i1\1 :1\i.1\\\ ij: \l\\11\\\ : Q. .

Clear the B-register

CMA COMPLEMENT A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\1\j\\ 1\11\1\ 1\11\1\ 1l1i.\1\~ }Q •:\\1i\1\1\ j\ ::lh

Complement the A-register (One's complement.)

CMB COMPLEMENT B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\l«\ 1\111l1l 1l1il1\ =\11\1\1 jY H1\1\ JL

Complement the B-register (One's complement.)

CCA CLEAR AND COMPLEMENT A

876543210

Clear, then complement the A-register. Puts 16 one's in the A­
register; this is the two's complement form of -1.

CCB CLEAR AND COMPLEMENT B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

1\11~1 \1\l\1\~ \1\l\1\1 l11\1\1 :11:-:: \Hli\i~ · . .:,.:.:.:

Clear, then complement the B-register. Puts 16 one's in the B­
register; this is the two's complement form of -1.

2100A REFERENCE 3-17

CLE CLEARE

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~1•~~~ ~au ~l~iM 1~11~1l H1\l\~

Clear the E-register (extend bit).

CME COMPLEMENT E

876543210

Complement the E-register (extend bit).

CCE CLEAR AND COMPLEMENT E

876543210

Clear, then complement the E-register (extend bit). Sets the extend
bit to "l."

SEZ SKIP IF EIS ZERO

=rm 9 1 B 1

1

I 61 .. ~/ 13 I 2 1
1

1° 1

Skip the next instruction if the E-register (extend bit) is zero.

SSA SKIP IF SIGN OF A IS ZERO

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

11~1~ ~1~til~l l1~1illl~ llli.~j~ : Q : ~lllj~1~1

Skip next instruction if the sign bit (bit 15) of the A-register is
zero; i.e., skip if the contents of A is positive.

3-18 2100A REFERENCE

SSB SKIP IF SIGN OF B IS ZERO

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

1~1~1!1 !iii~!~ Iii!! !1!1.!1!1 a i!i!li1!11

Skip next instruction if the sign bit (bit 15) of the B-register is
zero; i.e., skip if the contents of B is positive.

SLA SKIP IF LSB OF A IS ZERO

876543210

Skip next instruction if the least significant bit of the A-register is
zero; i.e., skip if an even number is in A.

SLB SKIP IF LSB OF BIS ZERO

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

~!Iii! ~~!li!i !i1ii!i~ i1ii!1~1 J .11~11!1~1!

Skip next instruction if the least significant bit of the B-register is
zero; i.e, skip if an even number is in B.

INA INCREMENT A

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

=!!it !i!II au !lU :: q!, III!

Increment the A-register by one. Can cause setting of extend or
overflow bits.

INB INCREMENT B

876543210

Increment the B-register by one. Can cause setting of extend or
overflow bits.

2100A REFERENCE 3-19

SZA SKIP IF A IS ZERO

876543210

Skip next instruction if the A-register is zero (16 zeros).

SZB SKIP IF B IS ZERO

876543210

Skip next instruction if B-register is zero (16 zeros).

RSS REVERSE SKIP SENSE

=11 ~ 918 17 161514 1312 11 1~:1
:·.· .. ···:.................. :·:-:-.•.·.· :-:-. .:·:

Skip occurs for any of the preceding skip instructions, if present,
when the non-zero condition is met. RSS without a skip instruction
in the word causes an unconditional skip. If a word with RSS also
includes both SSA/Band SLA/B bits 15 and 0 must both be one
for skip to occur. In all other cases the skip occurs if one or more
skip condition is met.

3.4 INPUT/OUTPUT INSTRUCTIONS

The 17 input/output instructions provide the capability to set or
clear the I/O flag and control bits and the overflow bit, to test the
state of the overflow and I/O flag bits, and to transfer data between
an I/O channel and the A- and B-registers. In addition, specific
instructions in this group control the interrupt system and can
cause a programmed halt.

Bit 11, where relevant, specifies the A- or B-register or distinguishes
between set control and clear control; otherwise it may be "l" or
"O" without affecting the instruction (although the assembler will
assign zeros, as shown). Bit 9, where not specified, offers the choice

3-20 21DOA REFERENCE

of holding (0) or clearing (1) the device flag after execution of the
instruction. (Exception: the H/C bit associated with the last two
instructions in this list holds or clears the overflow bit instead of a
flag bit.) Bits 8, 7, and 6 identify the instruction. Bits 5 through 0
(unshaded) form select codes to make the instruction apply to one
of up to 64 input/output devices or functions.

HLT HALT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

lllllll l!lllj~ ~lll~ll ~llllll !j!1i!I1· H;c • Q • 'fF ,Q:

Select Code

Halts the computer and holds or clears the flag (according to bit 9)
of any desired input/output device (bits 5 through 0). The HLT
instruction has the same effect as the HALT pushbutton: the HALT
switch lights, and the front-panel control switches are enabled.
the HLT instruction will be displayed (MEMORY DATA is auto­
matically selected when computer halts), and the P-register will
normally indicate the halt location plus one.

STF SET FLAG

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~1!ll1! Il1!1 l1l11~1! jl!i!!~ !lll!1!1 \o ,:• m :o

Select Code

Sets the flag of the selected 1/0 channel or function. An STF 00
instruction enables the interrupt system for all select codes (ex­
cept power fail and parity error, which are always enabled).

CLF CLEAR FLAG

15 14 13 12 1110 9 6 5 4 3 2 1 0

Select Code

Clears the flag of the selected 1/0 channel or function. A CLF 00

2100A REFERENCE 3-21

instruction disables the interrupt system for all select codes (ex­
cept power fail and parity error, which are always enabled); this
does not affect the status of the individual channel flags.

SFC SKIP IF FLAG CLEAR

8 7 6 5 4 3 2 1 0

Select Code

Skip next instruction if the flag of the selected channel is clear
(device busy).

SFS SK IP IF F LAG SET

6 5 4 3 2 1 0

Select Code

Skip next instruction if the flag of the selected channel is set
(device ready).

MIA MERGE INTO A

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~ijj\: \~I~ ~~~-~~~ ~Ilj~1 q \1~~1l en
~-...................

Select Code

The contents of the input/output buffer associated with the selec­
ted device is merged ("inclusive or") into the A-register.

3-22 21DDA REFERENCE

MIB MERGE INTO B

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\\\~\j\j \j\iU \\\IU \jJU\ au \\j\it nr

Select Code

The contents of the input/output buffer associated with the selec­
ted device is merged ("inclusive or") into the B-register.

LIA LOAD INTO A

15 14 13 12 11 10 9 8 7 6 5 4 3- 2 1 0

\\l\\\ \\\\I\\\ \\\jj\j\ j\jjj\ji ::o: j\jWl\j

Select Code

The contents of the input/output buffer associated with the selec­
ted device is loaded into the A-register.

LIB LOAD INTO B

6 5 4 3 2 1 0

Select Code

The contents of the input/output buffer associated with the selec­
ted device is loaded into the B-register.

OTA OUTPUT A

15141312 1110 9 8 7 5 4 3 2 1 0

:{ iiiiij\j\ j~jij~~~ o ~ai
Select Code

The contents of the A-register is loaded into the input/output
buffer associated with the selected device. If the buffer is less than
16 bits in length, the least significant bits of the A-register normally

2100A REFERENCE 3-23

are loaded. (Some exceptions exist, depending on the type of out­
put device.) A-register contents is not altered.

OTB OUTPUT B

8 7 6 5 4 3 2 1 0

Select Code

The contents of the B-register is loaded into the input/output
buffer associated with the selected device.

STC SET CONTROL

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

i~~jj~~l l~1llll l~ll JjU OU lll~lllll

Select Code

Sets the control bit of the selected 1/0 channel or function.

CLC CLEAR CONTROL

8 7 6 5 4 3 2 1 0

Select Code

Clears the control bit of the selected 1/0 channel or function. This
turns off a device channel and prevents it from interrupting. A CLC
00 instruction clears all control bits from select code 06 and up,
effectively turning off all 1/0 devices.

STO SET OVERFLOW

876543210

Sets the overflow bit.

J-24 21DOA REFERENCE

CLO CLEAR OVERFLOW

76543210

Clears the overflow bit.

sos SKIP IF OVERFLOW SET

4 3 2 1 0

If the overflow register is set, the next instruction of the program
is skipped. Use of the H/C bit will hold or clear the overflow bit
following execution of this instruction (whether the skip is taken
or not).

soc SKIP IF OVERFLOW CLEAR

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0

-~~-~-~~-~~~~~~~
If the overflow register is clear, the next instruction of the program
is skipped. Use of the H/C bit will hold or clear the overflow bit
following execution of this instruction (whether the skip is taken
or not).

3.5 EXTENDED ARITHMETIC MEMORY REFERENCE
INSTRUCTIONS

The four extended arithmetic memory reference instructions pro­
vide for integer multiply and divide, and for loading and storing
double-length words to and from the accumulators. The complete
instruction requires two words: one for the instruction code, and
one for the address. When stored in memory the instruction word
is the first to be fetched; the address word is in the next higher
location.

2100A REFERENCE 3-25

Since 15 bits are available for the address, these instructions may
directly address any location in memory. As for all memory refer­
ence instructions, indirect addressing to any number of levels may
also be used. A "O" in the D/I bit specifies direct addressing; a "l"
specifies indirect addressing.

MPV MULTIPLY

15 14 13 12 1110 9 8 7 6 4 3 2 1 0
q: 0 0 0 0

Memory Address

Multiplies a 16-bit integer in the A-register by a 16-bit integer in
the addressed memory location. The resulting double-length integer
product resides in the B- and A-registers, with the B-register con­
taining the sign bit and most significant 15 bits of the quantity.
The A-register may be used as an operand (i.e., memory address 0),
resulting in an arithmetic square. Overflow cannot occur; the in­
struction clears the overflow bit.

DIVIDE

7 6 5 4 3 2 1 0
0 .0 :o :<o> 0 0 0 0

Memory Address

Divides a doubleword integer in the combined B- and A-registers
by a 16-bit integer in the addressed memory location. The result
is a 16-bit integer quotient in the A-register and a 16-bit integer
remainder in the B-register. Overflow can result from an attempt
to divide by zero, or from an attempt to divide by a number too
small for the dividend. In the former case (divide by zero) execu­
tion will be attempted with unpredictable results left in the B- and
A-registers. In the latter case {divisor too small) the division will
not be attempted and the B- and A-register contents will be un­
changed, except that a negative quantity wiil be made positive. If
there is no divide error, the overflow bit is cleared.

3-26 21DOA REFERENCE

OLD DOUBLE LOAD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111111111111111111111111111111j@i1111111 g: .qjl µ: :o. ij/ 0 0 0 0
D;I

v
Memory Address

Loads the contents of addressed memory location m (and m+l)
into the A- and B-registers, respectively.

DST DOUBLE STORE

8 7 6 5 4 3 2 1 0

Memory Address

Stores the doubleword quantity in the A- and B-registers into ad­
dressed memory locations m (and m+l), respectively.

3.6 EXTENDED ARITHMETIC REGISTER REFERENCE
INSTRUCTIONS

The six extended arithmetic register reference instructions provide
various types of shifting operations on the combined contents of
the B- and A-registers. The B-register is considered to be on the
left (most significant word) and the A-register is considered to be
on the right (least significant word). An example of each type of
shift operation is illustrated in figure 3.2.

The complete instruction is given in one word and includes four
bits (unshaded) to specify the number of shifts, from 1 to 16. By
viewing the four bits as a binary-coded number, the number of
shifts is easily expressed; e.g., binary-coded 1 for one shift, binary­
coded 2 for two shifts, etc. The maximum of 16 shifts is coded
with four zeros; this essentially exchanges the B- and A-register
contents.

The extend bit is not affected by any of the following instructions.
Except for the arithmetic shifts, overflow also is not affected.

21DOA REFERENCE 3-27

B-REGISTER A-REGISTER

~Bitslost

ASR 5
(Arithmetic Shift Right
5 places!

~~~~~~~--'-~~~~~~--. 

1 011 000 101 000 101 : 0 101 101 011 100 111 

+ 
1 111 110 110 011 010 : 0 010 101 011 010 111 _____ ,.. 

Extended sign 

Bits lost~ 

ASL 5 
(Arithmetic Shift Left 
5 placesl 

~~~~~~~-L-~~~~~~--. 

0000000111101000; 11011010001101~1

0 011 110 100 011 011 : 0 100 011 011 100 000 Zeros Filled

~Bitslost

LSR 5
(Logical Shift Right
5 placesl

1 011000101000101 : 0 101101011100 111

Zeros filled--+ O 000 010 110 001 010 : 0 010 101 011010111

Bits lost~

LSL 5
(Logical Shift Left
5 place5l

RRR 8
!Rotate Right
8 plac.,,;I

RRL 7
(Rotate Left
7 plac.,,;l

~~~~~~~--'-~~~~~~--. 

0 101000 111101000: 1101101000110111 

0 011 110 100011 011 : 0 100 011 011 100 000 

"" no m ooo "' ! "'"" ·~ 

Zeros filled 

Figure 3.2. Examples of Doubleword Shifts and Rotates 

3-28 21DDA REFERENCE 



ASR ARITHMETIC SHIFT RIGHT 

876543 210 

'-v-' 
Number of Shifts 

Arithmetically shifts the combined contents of the B- and A­
registers right, n places. The value of n may be any number from 1 
through 16. The sign bit is unchanged and is extended into bit 
positions vacated by the right shift. Data bits shifted out of the 
least significant end of the A-register are lost. Overflow cannot 
occur; the instruction clears the overflow bit. 

ASL ARITHMETIC SHIFT LEFT 

15 14 13 12 11 to 9 a 1 s 5 a J 2 1 o 
~~~E ~~-~~ a1~1~ ~~11~1~ :: P::-' ~1~11~1 :::#::: : ::ij_::Y:P:::: .:·P::.: :.Jt:: A> 

'-v-'
Number of Shifts

Arithmetically shifts the combined contents of the B- and A­
registers left, n places. The value of n may be any number from 1
through 16. Zeros are filled into vacated low order positions of the
A-register. The sign bit is unchanged, and data bits are lost out of
bit 14 of the B-register. If one of the bits lost is a significant data
bit ("1" for positive numbers, "O" for negative numbers), over­
flow will be set; otherwise, overflow will be cleared during execu­
tion. See ASL example in figure 3.2. (Note that two additional
shifts in this example would cause an error by losing a significant
"l."

'-v-'
Number of Shifts

Logically shifts the combined contents of the B- and A-registers
right, n places. The value of n may be any number (rom 1 through

21DDA REFERENCE 3-29

16. Zeros are filled into vacated high order bit positions of the B­
register, and data bits are lost out of the low order bit positions of
the B-register.

LSL LOGICAL SHI FT LEFT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\\I\\\\ ~Ill\\ \\\I\\\\ II\\\\ Cf \\\\I\\; JJ o o

Number of Shifts

Logically shifts the combined contents of the B- and A-registers
left, n places. The value of n may be any number from 1 through
16. Zeros are filled into vacated low order bit positions of the A­
register, and data bits are lost out of the high order bit positions of
the B-register.

RRR ROTATE RIGHT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\\\U. 11\I\\\\ I11~ ~\\\II P ~1~i[1 .·a o t · u o
'-v-"
Number of Shifts

Rotates the combined contents of the B- and A-registers right,
n places. The value of n may be any number from 1 through 16.
No bits are lost or filled in. Data bits shifted out of the low order
end of the A-register are rotated around to enter the high order end
of the B-register.

RRL ROTATE LEFT

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

~\J\~~\ 1~\I~\~ \\~~il\~ ~]t1 0: ~~\~I\~ .0 CF o 1 o o

Number of Shifts

Rotates the combined contents of the B- and A-registers left,
n places. The value of n may be any number from 1 through 16.
No bits are lost or filled in. Data bits shifted out of the high order
end of the B-register are rotated around to enter the low order end
of the A-register.

3-30 2100A REFERENCE

3.7 FLOATING POINT INSTRUCTIONS (Optional)

Each of the six floating point instructions has a unique machine
code associated with it. When a floating point instruction is assem­
bled, the assembler places the appropriate machine code in the
program. FORTRAN and ALGOL Compilers generate a subroutine
call to the Program Library. The Library replaces the subroutine
call with the appropriate machine code. Thus the Library is used
only once. Execution of floating point machine code calls the ap­
propriate firmware routine which allows the micro processor to
execute the instruction. A complete summary of 2100 floating
point instructions is given in table 3.4.

DATA FORMAT

15 14 15 14 15 8 7 1 0

Fixed Point Floating Point

Sign Integer mag
sign

magnitude Exponent Exp
Sign

INSTRUCTION:

PURPOSE:

MACHINE CODE

CALLING
SEQUENCE:

ASSEMBLY
LANGUAGE:

RETURN:

MINIMUM EXE­
CUTION TIME:
(including Fetch)

MAXIMUM EXE­
CUTION TIME:
(including Fetch)

EXECUTION

ADD

to add two
floating point
numbers, x
and y

1050008

FAD
DEF Y(,1 I

FAD Y

23.5:!'µsec

59.78 µsec

SUBTRACT

to subtract the
floating point
number y from
the floating
point number x

1050208

FSB
DEF Y(,lj

MULTIPLY

to multiply two
floating point
numbers, x
and y

1050408

FMP
DEF Y(,1 j

DIVIDE

to divide the
floating point
number x by the
floating point
number y

1050608

FDV
DEF Yi,lj

(X 1s assumed to be in the A, B registers)

FSB Y FMP Y FDV Y

(Xis assumed to be in the A, B registers)

Floating point result is left in the A, B registers

24.50 µsec 33.32 µsec 51.94 µsec

60.76 µsec · 41.16µsec 55.86 µsec

Tl ME FOR EACH .98 µsec .98,usec .98µsec .98µsec
LEVEL OF
INDIRECT:

ERROR
CONDITION:

If the result is outside the range of representable floating point numbers,
1-2 1 n, 2127 (1-2-2 3) I, the overflow flag is set and the result
2 126 (1-2-23) is returned.

If an underflow occurs, (result within the range 1-2-129 (1+2-22),2- 129 j),
the overflow flag is set and the result 0 is returned.

FIX

to convert the
floating point
number x to
integer format

1051008

FIX

FIX

Integer result is
left in A register
Any fractional
part is truncated.
B register con·
tent1s
meaningless.

5.88µsec

8.82µsec

FLOAT

to convert the
integer i to
floating point
format

1051208

FLT
(i is assumed
to be in the
A register)

FLT
(i is assumed
to be in the
A register)

Floating point
result is left in
the A, B reg-

9.80µsec

24.SOµsec

tf the magrn None
tude of the

~1~:~~~ ~oi nt

~2 1 ', the
integer 32767
(0777778) is
returned and
ovflo flag is set

If the magni­
tude of the
floating point
number is
~1. the
integer 0 is
returned

Table 3.4. Floating Point Instruction Specifications

21DOA REFERENCE 3-31

INPUT/OUTPUT SYSTEM 4

The purpose of the input/output system is to transfer data between
the computer and external devices.

Normally, data is transferred through the A- or B-register. Refer to
figure 4.1. This type of transfer occurs in three distinct steps:

a. between external device and its interface card in the
computer;

b. between the interface card and the A- or B-register; and

c. between the A- or B-register and memory.

This three-step process applies to both the "in" direction (as above)
and the "out" direction (reverse order). This type of transfer,
which is executed under program control, allows the computer
logic to manipulate the data during the transfer process.

Data may also be transferred automatically under control of the
direct memory access (DMA) option. Once the DMA optiori has
been initialized, no programming is involved, and the transfer is
reduced to a two-step process: the transfer between the device and
its interface, and the transfer between the interface and memory.
Two DMA channels are provided and are assignable to operate with
any two device interfaces.

Since the DMA transfer eliminates programmed loading and storing
via the accumulators, the time involved is very short. Thus DMA is
used with high-speed devices capable of transferring data at rates
up to 1,020,400 sixteen-bit words per second. Further information
on the direct memory access option is given later in this section.

4.1 1/0 ADDRESSING

As shown in figure 4.2, an external device is connected by a cable
directly to an interface card located inside the computer. The

2100A REFERENCE 4-1

CORE
MEMORY

LOGIC

r - --,
I I

I o~:i~N I
I I
L __ _j

Figure 4.1. Input/Output System

interface card, in turn, plugs into one of the 14 input/output slots.
Each slot is assigned a fixed address, called the select code. The
computer can then communicate with a specific device on the basis
of its select code.

Figure 4.2 shows an interface card being inserted into the 1/0 slot
having the highest priority. This slot is assigned select code 10
(octal). If it is decided that the associated device should have lower

4-2 21DOA REFERENCE

priority, its interface and cable may be exchanged with those oc­
cupying some other 1/0 slot. This will change both the priority
and the 1/0 address. However, due to priority chaining (explained
later), there can be no vacant slots from select code 10 to the
highest used select code (if the interrupt mode is to be used).
Only select codes 10 through 77 (octal) are available for input/
output devices. The lower select codes (00 through 07) are re­
served for other features discussed elsewhere in this manual. As
figure 4.2 shows, select codes 10 through 25 are available in the
mainframe of the computer. If an 1/0 extender is used, slot 25 is
used for interconnection of the extender, and select codes 25
through 65 will then be available in the extender. This is a total of
45 (decimal) select codes. The full range of 56 select codes may
be plugged into any slot, but the rule that there can be no vacant
slots (select codes) from 10 upward must be maintained.

Interface
Card

Figure 4.2. 1/0 Address Assignments

21DOA REFERENCE 4-3

In some cases, certain devices may require two I/ 0 slots and two
select codes. This requirement is fully explained in documentation
supplied with the applicable interface.

4.2 1/0 PRIORITY

When a device is ready to be serviced (refer to "I/0 Data Transfer"),
it causes its interface to request an interrupt so that the computer
will interrupt the current program and service the device. Since
many device interfaces will be requesting service at random times,
it is necessary to establish an orderly sequence for granting inter­
rupts. Secondly, it is desirable that high-speed devices should not
have to wait for low-speed device transfers.

Both of these requirements are met by a series-linked priority
structure, illustrated in simplified form in figure 4.3. The bold
line, representing a priority enabling signal, is routed in series
through each card which is capable of causing an interrupt. The
card may not interrupt unless this enabling signal is present at its
input.

Each device (or other interrupt function) can break the enabling
line when it requests an interrupt. If two devices simultaneously
request an interrupt, obviously the device with the lowest select
code number will be the first one which can interrupt, since it
has broken the enable line for the higher select codes. The other
device cannot begin its service routine until the first device is
finished; however, a still higher priority device (lower select code)
may interrupt the service routine of the first device.

Figure 4.4 illustrates a hypothetical case in which several devices
require servicing by interrupting a CPU program. Both simultane­
ous and time-separate interrupt requests are considered.

Assume that the computer is running a CPU program when an in­
terrupt from I/O channel 12 occurs (at reference time tl). A JSB
instruction in the interrupt location for select code 12 causes a
program jump to the service routine for the channel 12 device.
The JSB instruction automatically saves the return address (in a
location which the programmer must reserve in his routine) for
a later return to the CPU program.

4-4 2100A REFERENCE

PRIORITY
Power Fail ENABLE
Signal SELECT

CODE

Power 04
Fail

Error
Signal

Parity
Computer Error/and 05 Logic Memory

Protect
Completion
Signal

OMA
06 Chan 1

Completion
Signal

OMA 07
Chan 2

1/0
10 Device

Interface
Card

1/0
11 Device

Interface
Card

1/0
12 Device

Interlace
Card

1/0
13 Device

Interlace
Card

Figure 4.3. Priority Linkage

21DOA REFERENCE 4-5

INTERRUPTING
SELECT CODE COMPUTER SERVICING

TIME
shaded channel

l
CPU

Program 10 11 12 13 14 15 16

.....

tl 12

t2
13

} Together 14

t3 10

\4 11

©End of service subroutine

Figure 4.4. Interrupt Sequences

4-6 21DOA REFERENCE

The routine for channel 12 is not completed when several other
devices request service (set flag). First, channels 13 and 14 request
simultaneously at t2; however, neither has priority over channel 12,
so their flags are ignored and channel 12 continues its transfer. But
at t3, a higher priority device on channel 10 requests service. This
request interrupts the channel 12 transfer and causes the channel 10
transfer to begin. The JSB instruction saves the return address for
return to the channel 12 routine.

During the channel 10 transfer, device 11 sets the channel 11
flag (t4). Since it has lower priority than channel 10, device 11
must wait until the end of the channel 10 routine. And since
channellO, when it ends, contains a return address to the channel
12 routine, program control temporarily returns to channel 12
(even though the waiting channel 11 has higher priority). The
JMP ,1 instruction used for the return inhibits all interrupts until
fully executed (plus one phase of the next instruction). At the end
of this short interval, the channel 11 interrupt request is granted.

When channel 11 has finished its routine, it returns control to
channel 12, which at last has sufficient priority to complete its
routine. Since channel 12 has been saving a return address in the
main CPU program, it returns control to this point.

The two waiting interrupt requests from channels 13 and 14 are
now enabled. Since channel 13 has higher priority, it goes first. At
the end of its routine, it temporarily returns control to the CPU
program. Then the lowest priority channel, 14, interrupts and com­
pletes its transfer. Finally, control is returned to the CPU pro­
gram, which continues processing.

4.3 INTERFACE ELEMENTS

The interface card provides a communication link between the
computer and an external device. There are three basic elements
on the interface card which either the computer or device can
control in order to effect the necessary communication. These
elements are as follows:

4.3.1 CONTROL BIT

This is a one-bit flip-flop register used by the computer to turn on
the device channel. When set, the control bit generates a start

21DDA REFERENCE 4-7

command to the device, telling it to begin one operation cycle
(e.g., read or write one character or word). The interface cannot
interrupt unless the control bit is set. The control bit is set by an
STC (set control) instruction and cleared by a CLS (clear control)
instruction, with a specific select code (e.g., STC 12 or CLC 12).
The device cannot affect the control bit.

4.3.2 FLAG BIT

This is a one-bit flip-flop register primarily used by the device to
indicate, when set, that transmission between the device and the
interface buffer has been completed. Computer instructions can
also set the flag (STF), clear the flag (CLF), test if it is set (SFS),
and test if it is clear (SFC). The device cannot clear the flag bit.
If the corresponding control bit is set, priority is high, and the
interrupt system is enabled. Setting the flag bit will cause an inter­
rupt to the location corresponding to the device's select code.

4.3.3 BUFFER

This is a flip-flop register for intermediate storage of data. Typically
the data capacity is 8 or 16 bits, but this is entirely dependent on
the type of device.

4.4 1/0 DATA TRANSFER

The preceding paragraphs of this section have discussed the individ­
ual features of the 1/0 system. The following paragraphs show
how data is actually transferred under interrupt control. The se­
quences are highly simplified in order to present an overall view,
without the involvement of software operating systems and device
drivers. For more detailed information refer to the documentation
supplied with the appropriate software system or interface kit.

4.4.1 INPUT TRANSFER

The upper part of figure 4.5 illustrates the sequence of operations
for an input transfer. Note that some of the operations are under
controi of the computer program (programmer's responsibility)

4-8 2100A REFERENCE

and some of the operations are automatic. The sequence is as
follows:

The operation begins with a programmed instruction to set control
and clear flag on the addressed interface card (1). In this example
it is assumed that the interface card is installed in the slot for
select code 12; thus the instruction is STC 12,C. Since the next
few operations are under automatic control of the hardware, the
computer program may continue executing other instructions.

Setting the control bit causes the interface card to issue a start
command (2) to the external device. The device then proceeds with
its electromechanical process of reading a character. When it has
done so, it sends a signal (done) back to the interface card, along
with the data character (3).

At the interface card the "done" signals sets the flag bit. The flag,
in turn, generates an interrupt (4)-provided the interrupt condi­
tions previously mentioned are met. That is, the interrupt system
must be on (STF 00 previously given), no higher priority interrupt
may be requesting, and the control bit must be set (done in step 1).

The interrupt causes the current computer program to be sus­
pended, and control is transferred to a service subroutine (5). It is
the programmer's responsibility to provide the linkage between the
interrupt location (00012 in this case) and the service subroutine.
Also, it is the programmer's responsibility to include in his service
subroutine the instructions for processing of the data (loading into
an accumulator, manipulating if necessary, and storing into
memory).

The subroutine may then issue further STC 12,C commands to
transfer additional characters. One of the final instructions in the
service subroutine must be a clear control (CLC 12 in this case).
This step (6) allows lower priority devices to interrupt (equivalent
to re-enabling a gate in figure 4.3) and restores the channel to its
static "ready" condition-control cleared and flag set. This condi­
tion is initially established by the computer at turn-on, and it is
the programmer's responsibility to return the channel to the same
condition on the completion of each transfer.

2100A REFERENCE 4-9

At the end of the subroutine, control is returned to the interrupt
program via previously established linkages.

4.4.2 OUTPUT TRANSFER

The lower part of figure 4.5 illustrates the sequence of operations
for an output transfer. Again note the distinction between pro­
grammed and automatic operations.

It is assumed that the data to be transferred has been loaded into
A-register and is in a form suitable for output. The interface card
is assumed to be installed in the slot for select code 13.

The operation begins with a programmed instruction to transfer
the data from the A-register to the interface buffer (1). The in­
struction in this example is OTA 13. This is followed (2) by an
instruction to set control and clear flag; i.e., STC 13,C. Since
the next few operations are under automatic control of the hard­
ware, the computer program may continue executing other
instructions.

Setting the control bit causes the interface card to read out the
buffer data to the device and to issue a start command (3). The de­
vice proceeds to write the data, and when it has finished the de­
vice sends a signal (done) back to the interface card (4).

At the interface card the "done" signal sets the flag bit. The flag,
in turn, generates an interrupt (5)-provided the interrupt system
is on, priority is high, and the control bit is still set (from step 2).

The interrupt causes the current computer program to be suspended,
and control is transferred to a service subroutine (6). It is the pro­
grammer's responsibility to provide the linkage between the inter­
rupt location (00013 in this case) and the service subroutine. The
detailed contents of the subroutine is also the programmer's re­
sponsibility, and will vary with the type of device.

The subroutine may then output further data to the interface card
and re-issue the STC 13,C command for additional character trans­
fers. One of the final instructions in the service subroutine must
be a clear control (CLC 13). This step (7) allows lower priority

4-10 21DDA REFERENCE

INPUT TRANSFER

~
i::
l"1 COMPUTER <!)

~
PROGRAM

?1
STC 12,C - • ::s • 't:i

i:: • c-t-

0 •
c::

~lrlterrupt
c-t-
't:i
i::
c-t-

t-3 s 0 ::s
Ul

~ ~ ,
N

~

= ~ = ;i.. Service

s l"1 Subroutine c-t-

~ ~
z
n
m

!:

0
INTERFACE CARD

Select Code 12

Set Control
Clear Flag

INPUT
DEVICE

Start

Set Flag

i

~~:::=:=:::::::::::::::::::::::::::::::::
~;;re
:;:;:

Done

Clear Control

BUFFER '.•::;;:;:;:;:;:;}~;~ Data

-+- Programmer's responsibility

;~;~;~;~~:;:;· Automatic Operations

~

~ OUTPUT TRANSFER
Cl
>
:a

~ ~
m C1Q
:a ~ COMPUTER m
z (t> PROGRAM M
m ~

?i OTA 13

~
STC 13,C

~ • 't:I • = ...+- • 0 • = C"I"
't:I ... Interrupt = C"I"

~ s e ~
tll ;- , ~
....,
tll

~ Service
Subroutine

~

0 ..
INTERFACE CARD

Select Code 13

BUFFER

Set Control
Clear Flag

Set Flag

Clear Control

!:!:!:!:!:!:!:!::::1 Data

ii e
::::::::::::::~~;~;;:::::::::::::::::*··

·.:;:;:;:;:;:;:;:;:;::::::::::::::::::::::·

0

OUTPUT
DEVICE

Start

Done

~ Programmer's responsibility

•:•:•:•:•:!::;• Automatic Operations

devices to interrupt, and restores the channel to its static Hready"
condition-control cleared and flag set. At the end of the subrou­
tine, control is returned to the interrupted program via previously
established linkages.

4.4.3 NON-INTERRUPT TRANSFERS

It is also possible to transfer data without using the interrupt sys­
tem. This involves a "wait-for-flag" method, in which the computer
commands the device to operate and then waits for the completion
response. It is therefore assumed that computer time is relatively
unimportant. The programming is very simple, consisting of only
four words of in-line coding, as shown in table 4.1. Each of these
routines will transfer one word or character of data. It is assumed
that the interrupt system is turned off (STF 00 not previously
given).

INPUT

INSTRUCTIONS COMMENTS

STC 12,C Start device
SFS 12 Is input ready?
JMP *-1 No, repeat previous instruction
LIA 12 Yes, load input into A-register

OUTPUT

INSTRUCTIONS COMMENTS

OTA13 Output A-register to buffer
STC 13,C Start device
SFS 13 Has device accepted the data?
JMP *-1 No, repeat previous instruction
NOP Yes, proceed

Table 4.1. Non-Interrupt Transfer Routines

2100A REFERENCE 4-13

INPUT. As before, an STC 12,C instruction begins the operation
by commanding the device to read one word or character. The
computer then goes into a waiting loop, repeatedly checking the
status of the flag bit. If the flag is not set, the JMP *-1 instruction
causes a jump back to the SFS instruction. (The *-1 operand is
assembler notation for "this location minus one.") When the flag
is set, the skip condition for SFS is met and the JMP instruction
is skipped. The computer thus exits from the waiting loop, and
the LIA 12 instruction loads the device's input data into the A­
register.

OUTPUT. The first step of output is to transfer the data to the
interface buffer; the OT A 13 instruction does this. Then STC 13,C
commands the device to operate and accept the data. The computer
then goes into its waiting loop, the same as described in the pre­
ceding paragraph. When the flag is received, indicating that the
device has accepted the output data, the computer exits from the
loop. (The final NOP is for illustration purposes only.)

4.5 DIRECT MEMORY ACCESS

As indicated earlier in figure 4.1, the purpose of the direct memory
access (DMA) option is to provide a direct data path, software
assignable, between memory and a high-speed peripheral device.

DMA accomplishes this purpose by stealing a memory cycle instead
of interrupting to a service subroutine. The DMA option for the
2100A Computer is capable of stealing every consecutive memory
cycle, and thus can transfer data at rates up to 1,020,400 words
per second.

There are two DMA channels, each of which may be separately
assigned to operate with any I/O interface, including those in an
HP 2155A I/O Extender. When both DMA channels are in simul­
taneous operation, channel 1 has priority over channel 2. The
combined maximum transfer rate for both channels operating to­
gether is 1,020,400 words per second; the rate available to channel
2 is then the rate difference between 1,020,400 and channel l's
actual rate.

When DMA is accessing memory, it has priority over CPU access
of memory. Thus the rate available to the CPU when DMA is

4-14 21DDA REFERENCE ·

operating is the difference between 1,020,400 words per second
and the actual transfer rate of DMA channels 1 and 2 combined.

DMA transfers are on a full-word basis; hardware packing and un­
packing of characters is not provided. The word count register is a
full 16 bits in length.

DMA transfers are accomplished in blocks. The transfer is initiated
by an initialization routine, and from then on operation is under
automatic control of the hardware. The initialization routine tells
DMA which direction to transfer the data (in or out), where in
memory to put or take data, which I/0 channel to use, and how
much data to transfer. Completion of the block transfer is signalled
by an interrupt to location 00006 (for channel 1) or location 00007
(for channel 2) if the interrupt system is enabled. It is also possible
to check for completion by testing the status of the flag for select
code (for channel 1) or select code 03 (for channel 2). A block
transfer can be aborted with an STF 06 or 07 instruction.

4.5.1 DMA OPERATION

Figure 4.6 illustrates the sequence of operations for a DMA trans­
fer. Comparison with conventional transfers (figure 4.5) shows
that much more of the operation is automatic. Remember that the
procedures in figure 4.5 must be repeated for each word or char­
acter. In figure 4.6 the automatic DMA operations will transfer
a block of data of any size, limited only by the availability of
memory space.

The sequence of events is as follows. (Input transfer is illustrated;
the minor differences for output are explained in text.)

The initialization routine sets up the control registers on the DMA
card (1) and issues the first start command (STC 12,C) directly
to the interface card. (If the operation is output, the buffer is
also loaded at this time.) The DMA option is then turned on and
the computer program continues with other instructions.

Setting control and clearing flag on the interface card (2) causes
a start command (3) to the external device (with data if output).
The device goes through its read or write cycle and returns a
"done" signal (4), with data if input. The set flag, regardless of

21DDA REFERENCE 4-15

COMPUTER
PROGRAM

Initialization
Routine

0
OMA

LOGIC

INTERFACE CARD
Select Code 12

Set Control
Clear Flag

Clear Control

Set Flag

BUFFER

Programmer's responsibility

Automatic Operations

INPUT
DEVICE

Start

Done

priority, immediately requests DMA to steal a memory cycle (5)
and a word is transferred into (or out of) memory (6). The pro­
cess now repeats back to the beginning of this paragraph to trans­
fer the next word.

After the specified number of words has been transferred, the
control bit is cleared (7). Then DMA generates an interrupt (8),
and program control is forced to a completion routine (9), the
contents of which is the programmer's responsibility.

4.5.2 DMA INITIALIZATION

The information required to initialize DMA (direction, memory
allocation, 1/0 channel assingment, and block length) are given by
three control words. These three words must be addressed specifi­
cally to the DMA card. Figure 4. 7 shows the format of the three
control words.

CONTROL WORD 1

15 14 13 12 11 10 9

1 STC

0 STc
CLC

CLC
(Not usedl

CONTROL WORD 2

15 14 13 12 11 10 9 8

(Device ControU

6 5 4 3 0

Device Select Code

(Memory Control)

6 5 4 3 2 0

1 IN

0 OUT
Memory Address

CONTROL WORD 3 !Block length Control)

15 14 13 12 11 10 9 8 6 5 4 3 0

Word Count

Figure 4.7. DMA Control Word Formats

21DOA REFERENCE 4-17

Control Word 1 (CWl) identifies the 1/0 channel to be used, and
provides for two options, selectable by the programmer as follows:

Bit 15
1:

0:

Bit 13
1:
0:

give STC (in addition to CLF) to 1/0 channel at
end of each DMA cycle (except o~ last cycle, if
input)
no STC

give CLC to 1/0 channel at end of block transfer
noCLC

Control Word 2 (CW2) gives the starting memory address for the
block transfer and Bit 15 determines whether data is to go into
memory (1) or out of memory (0).

Control Word 3 (CW3) is the 2's complement of the number of
words to be transferred into or out of memory; i.e., the length of
block. This number can be from -1 to -32,768, although it is
limited in the practical case by available memory.

Table 4.2 gives the basic program sequence for outputting the
control words to DMA. As shown in this table, CLC 2 and STC 2
perform switching functions to prepare the logic for either CW2
or CW3. The device is assumed to be in 1/0 channel 10, and it is
also assumed that its start command is STC lOB,C. The sample
values of CWl, CW2, CW3 will read a block of 50 words and
store these in locations 200 through 261 (octal). STC 6,C starts
the DMA operation. A flag-status method for detecting end-of­
transfer is used in this example; an interrupt to location 00006
could be substituted for this test.

The program in table 4.2 could easily be changed to operate on
channel 2 by changing select codes 2 to 3, and 6 to 7.

One important difference should be noted when doing a DMA
input operation from a disc or drum. Due to the asynchronous
nature of disc or drum memories and the design of the interface,
the order of starting must be reversed from the order given; i.e.,
start DMA first, then the disc.

4-18 2100A REFERENCE

LABEL OPCODE OPERAND COMMENTS

ASGN1 LDA CW1 Fetches control word 1 (CW1) from
memory and loads it in A-register.

OTA 6 Outputs CW1 to DMA Channel 1.

MAR1 CLC 2 Prepares Memory Address Register
to receive control word 2 (CW2).

LDA CW2 Fetches CW2 from memory and
loads it in A-register.

OTA 2 Outputs CW2 to DMA Channel 1.

WCR1 STC 2 Prepares Word Count Register to
receive control word 3 (CW3).

LDA CW3 Fetches CW3 from memory and
loads it in A-register.

OTA 2 Outputs CW3 to DMA Channel 1.

STRT1 STC 108,C Start input device.

STC 6B,C Activate OMA Channel 1.

SFS 6 Wait while data transfer takes
JMP *-1 place or, if interrupt processing

is used, continue program.

HLT Halt

CW1 OCT 120010 Assignment for DMA Channel 1
(ASG N 1); specifies I /0 Channel
select code address (108), STC
after each word is transferred, and
CLC after final word is transferred.

CW2 OCT 100200 Memory Address Register control.
OMA Channel 1 (MAR1); specifies
memory input operation and
starting memory address (2008).

CW3 DEC -50 Word Count Register control.
OMA Channel 1 (WC R 1); specifies
the 2's complement of the number
of character words in the block of
data to be transferred (50 10).

Table 4.2. Program to Initialize DMA

2100A REFERENCE 4-19

The front panel of the 2100A Computer is available in two con­
figurations: an operator panel (standard) and a controller panel
(optional).

The operator panel provides display and control of the working
registers, phase status and fault indicators, and operating controls.

The controller panel may be used in applications where an operator
panel is seldom required. The panels are easily interchangeable so
that, if desired, installations having more than one 2100A Com­
puter may share an operator panel among several units.

This section describes the functions of the controls and indicators
on both versions of the panel, plus basic operating procedures.

4-20 21DOA REFERENCE

OPERATING CONTROLS AND
INDICATORS

S.1 OPERATOR PANEL

5

Figure 5.1 illustrates the operator panel and briefly describes the
function of each control and indicator. The following paragraphs
provide additional explanatory information. Functions are grouped
according to the type of operation.

S.1.1 16-BIT REGISTERS

The DISPLAY REGISTER displays the contents of any one of the
six 16-bit working registers when in the half mode. (Only the
S~register is displayed in the run mode.) An illuminated bit push­
button is a "1"; a non-illuminated bit pushbutton is a "O." The bit
content changes state each time the pushbutton is pressed, and
the entire display may be cleared by pressing CLEAR DISPLAY.

When power is initially turned on, the S-register is automatically
selected. Thereafter, while in half mode, any of the six registers
may be selected by pressing the appropriate select switch: A, B,
P, M, S, or MEMORY DATA. The register currently selected for
display is indicated by lighting of the pushbutton.

After a programmed or manual halt, MEMORY DATA is auto­
matically selected. This causes the contents of the last accessed
memory cell to be displayed-which will be the halt instruction
code in the case of programmed halts.

As long as a register is being displayed, the original contents of
that register may be redisplayed, if altered by pressing DISPLAY
REGISTER pushbuttons, simply by pressing the same select push­
button again (A, B, P, M. S. or MEMORY DATA). However, when
any other select pushbutton is pressed (or if the computer is run
or stepped) the last indicated display becomes the new contents
for that register, and the old contents is lost.

21DDA REFERENCE 5-1

,....__
U"I
,.:.,

~
N dQ'
= i:::
= '"I
):> ('!)

:ti CJ1 !:g
~ m

~

@.ill ~t~0~LCE~~pp~TcE:ARO

z 0
~ "O

('!)
'"I
~

""'" 0
'"I

15 14 13 12

D DOD
~ ::s
~
0
0
::s
""'" '"I
g.
C/l

~ ::s

LOA.Of.fl

~/~'
(~ABLE

D
•u• CYCLl SlfP

D D D
0..
~

::s
0..

~f
""'" 0
'"I
C/l

J_]

z 7
~
~
'"I

""'"
~

7_]
7_]

7 7
FAULT OPERATING

INDICATOR CONTROLS

OISl"LAYAHilST£lil

., 10 g 8 7 6 5 4 J 2 1 0

DOD DOD DOD DOD
f'lfCH 1NO fK(CUTE A 8 M

M£MOlllV

~
DATA

DOD D D D D

ooo\ s p M
INCREMENT

D D D D D
\

~· "'\ :-...:

\ \ ~ rn~
\ "'\ ~ -\ \ ~

\ \ \
1-BIT

REGISTERS
Display and Control

PHASE STATUS FAULT 16-BIT REGISTERS
INDICATORS INDICATOR Display and Control

16-BIT REGISTERS
DISPLAY REGISTER. Bit light on = 1, off = 0. Press switch to com­
plement any bit.
MEMORY DAT A. Press to display contents of location referenced by
M. Lit when selected. Can press again to redisplay unmodified contents.
selected when computer is halted.

INCREMENT M. Press to increment M. If memory data selected, display
is updated.

M. Press to display M-register. Can press again to redisplay unmodified
contents.
P. Press to display P-register and set Fetch phase. Can press again to redis­
play unmodified contents.

B. Press to display 8-register. Can press again to redisplay unmodified
contents.

A. Press to display A-register. Can press again to redisplay unmodified
contents.

S. Press to display S-register. Can press again to redisplay unmodified con­
tents. Automatically selected in run mode.

CLEAR DISPLAY. Press to clear display register.

1-BIT REGISTERS
OVF. Overflow register. Light on = 1, off = 0. Press to complement.

EXTEND. Extend register. Light on = 1, off = 0. Press to complement.

OPERATING CONTROLS
INTERRUPT SYSTEM. Light on indicates interrupt system enabled. Press
to complement.
INSTR STEP. Press to execute single instruction.
EXTERNAL PRESET. Press to clear 1/0 channels.
INTERNAL PRESET. Set Fetch phase, clear parity error indication and
overflow, disable interrupt system and memory protect.
HALT/CYCLE. Halt computer or perform one instruction phase.
LOADER ENABLE. Press to enable/disable loader.
RUN. Start execution, disable panel.
POWER OFF/POWER ON/LOCK ON. Key-operated power switch. Panel
disabled in LOCK ON position.

PHASE STATUS INDICATORS
FETCH. Indicates Fetch phase is next.
I ND. Indicates Indirect phase is next.
EXECUTE. Indicates Execute phase is next.

FAULT INDICATORS
PARITY. Light on indicates that a memory parity error has occurred
{if P.E. HALT mode selected).
EXTERNAL PRESET. Light on indicates a power failure occurred (if lo­
cation 04 contains H LT).

2100A REFERENCE 5.3

Note that pressing the M pushbutton displays the address of a
memory location, and pressing MEMORY DATA displays the con­
tents of that location. Depending on which of these is selected,
consecutive addresses or consecutive contents for adjacent memory
cells (either higher or lower) may be displayed by repetitively
pressing INCREMENT M or DECREMENT M. These two push­
buttons are only momentarily illuminated when pressed. Pressing
the P pushbutton also sets the fetch phase, so that execution may
begin (at the location indicated by the P-register) simply by press­
ing RUN.

5.1.2 FAULT INDICATORS

Provision is made to indicate two possible hardware faults. One is
a parity error as a result of reading from memory. If the PARITY
light is on, a parity error has occurred. In the halt mode, the light
may be turned off by pressing INTERNAL PRESET. In the run
mode, the light is turned off by a parity error interrupt, and thus
is not ordinarily on long enough to be visible.

The other indicated hardware fault is power failure. If the ARS/
ARS switch is set to ARS (auto-restart) and location 04 contains
a HLT instruction, the EXTERNAL PRE-SET pushbutton will light
on restoration of power, and the machine will halt. The light is
turned off by pressing the EXTERNAL PRESET pushbutton. (In
a restart routine the light would be turned off by the CLC 04
instruction.)

5.1.3 PHASE STATUS INDICATORS

There are three indicators which signal the state of the computer:
FETCH, IND (for indirect), and EXECUTE. The next phase to
occur if the computer is run or stepped is the phase indicated by
the lighted status indicator. Thus if the FETCH light is on, the
computer will fetch an instruction from the address currently
pointed to by the P-register when the computer is run or stepped.
(It should be noted that indirect references for the extended arith­
metic instructions are obtained in an Execute phase, not an Indirect
phase.) The indicators are also operative in the run mode.

5-4 2100A REFERENCE

5.1.4 1-BIT REGISTERS

The contents of the Extend and Overflow registers are continu­
ously displayed by the EXTEND and OVF pushbutton lights (in
both halt and run modes). If the pushbutton light is on, the regis­
ter contents is a "l "; if not on, the register contents is a "O." In
the halt mode, the content changes state each time the pushbutton
is pressed.

5.1.5 OPERATING CONTROLS

The eight pushbuttons grouped together as operating controls gen­
erally control start/stop and other related functions. Since the
effects of each pushbutton differ one from another, they are dis­
cussed separately below.

INTERRUPT SYSTEM. This pushbutton indicates and controls
the state of the interrupt system. When the pushbutton light is on,
the interrupt system is enabled (flag set). When the light is off, the
interrupt system is disabled (flag clear). Each time the pushbutton
is pressed, while the computer is halted, the flag changes state.

INSTR STEP. This pushbutton is used to advance program execu­
tion by instruction. The program advances one instruction each
time the pushbutton is pressed. If the RUN light stays on, an in­
finite indirect loop is indicated; press HALT to terminate the loop.

EXTERNAL PRESET. This pushbutton disables the input/output
channels. From I/O address 06 and up, all Control flip-flops are
cleared and flag flip-flops are set. If the EXTERNAL PRESET
pushbutton lights, a power failure has occurred (see description
under Fault indicators).

INTERNAL PRESET. This pushbutton presets the computer to
the fetch phase, clears the PARITY indicator, clears overflow, and
disables both the interrupt system and the memory protect logic.

HALT/CYCLE. In the run mode, this pushbutton is used to halt
the computer at the end of the current phase. The pushbutton

2100A REFERENCE 5-5

lights when the computer halts, and all other panel controls be­
come enabled. In the halt mode, the pushbutton may be used
to advance program execution by phase. One phase occurs (and
the light goes off momentarily) each time the pushbutton is
pressed.

LOADER ENABLE. This pushbutton enables access to the basic
binary loader (last 64 locations of memory) for the purpose of
loading binary programs. When the push button is pressed the
light goes on, and stays on as long as the loader is enabled.
After a programmed or manual halt, the light goes off and the
loader is again disabled. (The loader can also be disabled by press­
ing the pushbutton again.)

RUN. Pressing RUN starts the computer in the current state. The
RUN pushbutton light is on while the computer is in the run
mode, and all panel controls are disabled except HALT/CYCLE,
DISPLAY REGISTER, and CLEAR DISPLAY. Pressing RUN
automatically causes the S-register contents to be displayed, and
no other register may be selected while the computer is in the run
mode. Thus, to the operator, the DISPLAY REGISTER effectively
becomes the S-register. This register may be addressed as select
code 01 by programmed instructions, and may be manually altered
by the operator.

POWER OFF/POWER ON/LOCK ON. This is a three-position, key­
operated switch controlling primary power to the computer. The
key is removable only in the horizontal POWER OFF and LOCK
ON positions. In the LOCK ON position the panel controls are
enabled and the key may not be removed.

If it is desired to inhibit the operation of the automatic restart
logic when turning power on, the EXTERNAL PRESET pushbut­
ton may be held depressed while turning the power switch.

5.2 CONTROLLER PANEL

Figure 5.2 illustrates the optional controller panel and briefly des­
cribes the function of each control and indicator. The following
paragraphs provide additional explanatory information.

5-6 21DDA REFERENCE

OPERATING CONTROLS

1. LOAD. After preset, press to load program. Light on during load.
2. PRESET. Press to set Fetch phase, turn off 1/0 channels, interrupt sys­

tem, memory protect, and indications for parity error and power fail.
Also clears A-, B-, and P-registers.

3. RUN. Press to start program execution. Light on in run mode.
4. HALT. Press to halt execution at end of current phase. Light on when

halted. ·

5. POWER OFF/POWER ON/LOCK ON. Key-operated power switch. Panel
disabled in LOCK ON position.

FAULT INDICATORS

2. PRESET. Light on indicates power failure occurred. (Refer to text.)
6. PARITY. Light on indicates a memory parity error has occurred, with

P.E. I NT/HALT switch set to HALT.

Figure 5.2. Controller Panel Controls and Indicators

210DA REFERENCE 5.7

PARITY. If the PARITY light is on, a parity error has occurred
as a result of reading from memory. In the halt mode, the light
may be turned off by pressing the PRESET pushbutton. In the run
mode, the light is turned off by a parity error interrupt.

RUN. Pressing RUN starts the computer in the current st.ate. The
RUN pushbutton light is on while the computer is in the run mode,
and the PRESET pushbutton is disabled.

HALT. This pushbutton is used to halt the computer at the end
of the current phase. The pushbutton lights when the computer
halts, and the PRESET pushbutton becomes enabled.

PRESET. This pushbutton disables the input/output channels
clears Control flip-flops and sets flag flip-flops from I/O address
06 and up) turns off the interrupt system, clears the Overflow,
A-, B-, and P-registers, clears the PARITY indicator, disables the
memory protect logic, and presets the computer to the fetch phase.
Pressing the PRESET pushbutton also clears a power failure indi­
cation (PRESET pushbutton light on) if power has failed and is
restored. Note that PRESET will light only if the internal ARS/
ARS switch is set to ARS and location 04 contains a HLT
instruction.

If the RUN pushbutton is pressed after PRESE~, the computer
will begin program execution from location 0 (P-register = 0). The
first two instructions executed will be NOP's (A- and B-registers =

0), and the computer will then begin executing at location 00002.
This provides a convenient cold-st.art linkage in the absence of an
operator panel.

LOAD. This pushbutton is used to load a program from a tape
reader or disc. In the half mode, pressing the LOAD pushbutton
causes the loader starting address to be loaded into the P-register,
enables the loader locations, and starts the run mode. The push­
button light remains on until a programmed or manual halt occurs.
The halt disables the loader and turns off the light.

POWER OFF/POWER ON/LOCK ON. The power control switch
is not replaced when panels are interchanged. Refer to the des­
cription given previously.

5-8 2100A REFERENCE

5.3 INTERNAL SWITCHES

Although most of the internal switches are intended for checkout
or maintenance purposes, two of these are of interest to the user.
The following paragraphs describe· the functions of these switches.
Access to the switches is obtained by removing the computer top
cover; each switch is mounted near the top edge of a printed-circuit
card, the location of which is specified in the following text.

ARS/ARS

The ARS/ARS switch is used to specify the action wl_lich the
computer should take on recovery from a power failure. With
the switch in the ARS position, the computer will interrupt to
location 00004 when power returns to normal operating levels;
this permits entry to a restart program. With the switch in the
ARS position, the computer will halt on recovery of power. The
ARS/ARS switch is located on the I/O control card in slot 7.

INT/HALT

The P.E. INT/HALT switch is used to specify the action which the
computer should take on detection of a memory parity error.
With the switch in the INT position, the computer will interrupt
to location 00005 for entry to a parity error subroutine. With
the switch in the HALT position, the computer will halt. The
P.E. INT/HALT switch is located on the I/O buffer card in slot 8.

5.4 PANEL OPERATION

The following procedures describe, in general, the basic load and
run operations for the 2100A Computer. Depending on whether
or not a disc is present in the system, loading is accomplished
by means of the basic binary loader (BBL) or basic binary disc
loader (BBDL). All procedures require that the power-switch key
be in the vertical POWER ON position (panel enabled).

5.4.1 LOADING WITH BASIC BINARY LOADER

It is assumed that the basic binary loader program is present in
memory, and is properly configured for the channel number of

21DDA REFERENCE 5-9

the input device and for the size of memory. Refer to the soft­
ware operating . .manual for the procedure required to configure
the loader. Loading is accomplished as follows:

a. Turn on the input device and prepare for reading
(e.g, load tape in tape reader). The input program must be in
binary form, containing absolute addresses.

b. Press S to select the S-register. This will cause the S-
register contents to be displayed in the DISPLAY REGISTER.

c. Clear bits 0 and 15 of the display. (These bits are to
be set only for certain nonloading check operations; ref er to soft­
ware operating manual.) The status of the remaining bits is not
significant.

d. Press P to select the P-register. This will cause the P-
register contents to be displayed in the DISPLAY REGISTER.

e. Set the display to the starting address of the basic
binary loader, according to table 5-1.

f. Press EXTERNAL PRESET and INTERNAL PRESET.
This initializes the external hardware (I/O channels) and the inter­
nal hardware (central processor).

g. Press LOADER ENABLE, and then press RUN. The
lights for both switches will remain on while the input operation
is in progress.

h. When the input device stops, the HALT light will go
on, RUN and LOADER ENABLE lights will go off, and the DIS­
PLAY REGISTER should indicate 102077 (octal), with MEMORY
DATA automatically selected. The load is complete.

If the halt code is not 102077 when the device stops, there has
been an error in the loading process. Two possible error condi­
tions are indicated by the loader, which changes the halt code to
identify the type of error. A halt code of 102055 indicates an
address error; check if the proper tape is being read, or if it is in

5-10 21DDA REFERENCE

backwards. A halt code of 102011 indicates a checksum error;
check for possible bad tape, or dirty tape reader or tape.

MEMORY STARTING ADDRESS OF LOADER

SIZE For Paper Tape For Disc

4K 07700
8K 17700 17760

12K 27700 27760
16K 37700 37760
24K 57700 57760
32K 77700 77760

Table 5.1. Loader Starting Addresses

21DDA REFERENCE 5-11

5.4.2 LOADING WITH DISC LOADER

If a disc is present in the system, the basic binary disc loader
(rather than the basic binary loader) occupies the protected loader
locations. This loader allows loading from either disc or paper
tape. The choice is made by selecting one of two possible starting
addresses, as indicated in table 5.1. For paper tai}es the procedure
is the same as described above for the basic binary loader; steps
"b" and "c" can be omitted.

The folloWing procedures for disc loading assume that the basic
binary disc loader is present in memory, and is properly configured
for the I/O channel numbers being used and for the size of memory.
The input program on disc must be in binary form, containing
absolute addresses.

a. Press P to select the P-register. This will cause the P-
register contents to be displayed in the DISPLAY REGISTER.

b. Set the display to the starting address in the loader
which is appropriate to the input source (disc) and memory size,
as indicated in table 5.1.

c. Press EXTERNAL PRESET and INTERNAL PRESET.
This initializes the external hardware (I/O channels) and the in­
ternal hardware (central processor).

d. Press LOADER ENABLE, and then press RUN ..

In the case of disc loading, the load may occur too quickly to
detect visually from the panel lights. However, a correct load is
indicated (for either tape or disc) by a display of 102077 (octal),
with MEMORY DATA automatically selected. (The P-register con­
tents could also be checked. With tape loading, the address should
have changed from the first to the last address, plus one, of the
loader. With disc loading, the P-register should contain octal 10.)

If the displayed halt code is not 102077 when the load is complete,
there has been an error. For disc loading, the error indications are
undefinable. For paper tape loading, the loader wili alter the halt
code to identify the type of error, as described above for basic
binary loader operation.

5-12 2100A REFERENCE

5.4.3 MANUAL LOADING

Short programs may also be loaded manually from the front panel.

a. Press M to select the M-register. This will cause the M-
register contents to be displayed in the DISPLAY REGISTER.

b. Set· the display to indicate the desired starting address
for the program.

c. Press MEMORY DATA. This will cause the current
contents of the memory location to be displayed in the DISPLAY
REGISTER.

d. Change the displayed contents to the binary instruc-
tion code for the first instruction of the program to be loaded.
(It may be faster to press CLEAR DISPLAY and begin coding
from an all-zero display.)

e. Press INCREMENT M. The contents of the next mem-
ory location will be displayed, and the M-register, although not
displayed, will be incremented.

f. Enter the next instruction into the DISPLAY
REGISTER.

g. Repeat steps "e" and "f' until the entire program
has been loaded. To check which location is being displayed, M
can be pressed at any time in the procedure to display the current
address.

5.4.4 RUNNING PROGRAMS

To run a program after it has been loaded:

a. Press P to select the P-register.

b. Set the display to the starting address of the program.

2100A REFERENCE 5-13

c. Press EXTERNAL PRESET and INTERNAL PRESET.

d. Press RUN.

The RUN light will be on as long as the program is running. All
panel controls except HALT /CYCLE, DISPLAY REGISTER, and
CLEAR DISPLAY are disabled. The S-register is automatically
selected, and may be manually changed via the DISPLAY
REGISTER.

Additionally, if desired, the display and halt controls may also be
disabled by turning the power-switch key to the horizontal LOCK
ON position. The key may be removed in this position, and thus
protect the state of the computer from accid~ntal tampering.

5.5 OPERATION

5.5.1 LOADING PROGRAMS

It is assumed that the loader program is present in memory, and
that the loader and the panel are properly configured from the
type of loader (paper tape or disc), the channel number of the
input device, and the applicable memory size. Refer to the 2100A
Installation and Maintenance manual for the procedure required
to configure the panel, and to the software operating manual for
procedure required to configure the loader. Loading is accomplished
as follows:

a. Turn on the input device and prepare for reading (e.g.,
load tape in tape reader). The input program must be in binary
form, containing absolute addresses.

b. Press PRESET. This initializes both the external hard·
ware (I/O channels) and the internal hardware (central processor).

c. Press LOAD. The LOAD light will be on and will re-
main on during the load (or until the pushbutton is released in the
case of disc loading). No error checking is provided.

5-14 2100A REFERENCE

5.5.2 RUNNING PROGRAMS

To run the loaded program, press PRESET and then press RUN.

The PRESET switch causes the A-, B-, and P-registers to be cleared,
thus causing execution to begin at location 00000 (A-register).
The computer executes the NOP instruction contained in the A­
register (all-zero word), and also the NOP in the B-register. Then,
in location 00002, a JMP instruction causes a jump to the starting
instruction of the program.

The RUN light will be on as long as the program is running. Only
the HALT switch is enabled. However, even this switch may be
disabled by turning the power-switch key to the horizontal LOCK
ON position. The key may be removed in this position, and thus
protect the state of the computer from accidental tampering.

2100A REFERENCE 5-15

FUNCTIONAL BLOCK DIAGRAM A

FUNCTIONAL BLOCK DIAGRAM

MEMORY SECTION ARITHMETIC LOGIC SECTION

CONTROL SECTION

INPUT/OUTPUT SECTION

21111A REFERENCE A -1

PROCESSOR LOGIC ELEMENTS

MEMO RY SECTION

M-Register. Contains binary address of memory cell being
accessed. Contents gated to or from S-bus by Sand STOR
fields (respectively) of ROM instruction word.

X-Y Drivers. Current drivers which strobe all 17 cores.in a
given memory location, one direction for reading, the
opposite direction for writing.

Core Memory. Array of magnetic cores for data storage.
Magnetization direction of each core indicates "1" bit or
"O" bit. (17 bits per location.)

Sense Amplifiers. Pulse amplifiers to detect which of the 17
cores change state when reading the contents of one loca­
tion. Resulting signals cause duplication of the bit pattern
into the T-register. (17th bit goes to parity checking logic,
not shown.)

Inhibit Drivers. Current drivers which prevent certain cores
from changing state (according to the bit pattern in the T­
register) when writing into memory. Causes duplication of
T-register contents into the memory location.

T-register. 16-bit register to receive data from memory, and
hold data for storage into memory. Contents can be gated
to or from S-bus by ROMS or STOR fields.

CONTROL SECTION

Instruction Register. 16-bit register to receive instruction
word from T-register in fetch phase. Loaded from S-bus by
ROM STOR field.

B

210DA REFERENCE B-1

SRG/ASG Decoder. Register reference instructions are par­
tially decoded separate from ROM. Resulting control
signals directly affect A-, B-, or P-registers.

Phase Control Logic. Causes ROM address mapper to set up
a ROM address corresponding to the current instruction
phase.

ROM Address Mapper. Uses the instruction register code to
find the ROM starting address for an instruction, and the
address for each phase of that instruction.

ROM Address Register. Contains the binary address of the
ROM location being read out.

ROM. (Read-only memory.) A matrix of permanently
stored instruction codes, addressable to read out any stored
code on command. (24 bits per location.)

ROM Instruction Register. 24-bit register to receive ROM
instruction words.

ROM Decoder. Decodes ROM instruction codes into con­
trol signals, to select which register to read onto the R- and
S-buses, as well as where to store S-bus data; also numerous
other functions.

ARITHMETIC LOGIC SECTION

A-register. 16-bit accumulator. Loaded from T-bus by ROM
STOR field, read to R-bus by R field.

8-register. Second accumulator, same as A-register.

Extend. One-bit register used to extend the A- or B- register
to 17 bits. Can also be used independently.

OVF. (Overflow.) One-bit register used to signify an arith­
metic overflow due to arithmetic operations with the A- or
B-registers. Can also be used independently.

B-2 2100A REFERENCE

0-register. 16-bit left-shifting register, used to accumulate
quotient in arithmetic division. Not externally accessible.

f-register. Same as Q-register, except accumulates division
remainder.

R-bus. 16-bit data bus, one of two data inputs to the func­
tion generator. ROM R field reads 1of4 registers onto this
bus. Can be gated to S-bus by S field.

Function Generator. Performs a specified function (FN) on
one or both of the R- and S-bus inputs, and puts the result
onto the T-bus. Functions include: addition, subtraction,
boolean operations, increment, decrement, etc.

T-Bus. 16-bit data bus to transfer data modified by the
function generator to any of nine registers.

P-register. 16-bit register used to hold the address of the
current program instruction.

SP{1-4) Registers. 16-bit temporary storage registers used
by ROM only.

INPUT/OUTPUT SECTION

1/0 Instruction Decoder. Input/output instructions are par­
tially decoded separate from ROM. Resulting signals pro­
vide addressing and control functions to the 1/0 system.

S-register. 16-bit data register. Can be loaded via display
register in halt mode. In run mode, S-register is locked to
display register; is addressable by select code 01.

Display Register. In halt mode, provides manual loading
facility for other registers. In run mode, may be gated via
1/0 bus to or from S-bus~ using select code 01 with S and
STO R fields.

2100A REFERENCE B-3

Central Interrupt Register. Six-bit register, holds the ad­
dress of the most recently interrupting function or device.

1/0 Bus. 16-bit data bus accessible to all I/O interface cards.
Can be gated to or from the S-bus by ROM S and STOR
fields.

Interface Cards. One card per I/0 channel, allows direct
cable connection of peripheral devices to the input/output
section of the computer.

B-4 2100A REFERENCE

Assembler Reference Manual

Writeable Control Store (left) is used to develop
microprograms that extend the 2100A Computer's
instruction set. Microprograms are then committed
to read-only memories and installed on the micro­
processor board (right) .

I

CONTENTS

INTRODUCTION vi

CHAPTER 1 GENERAL DESCRIPTION 1-1

1.1 Assembly Processing 1-1
1.2 Symbolic Addressing 1-1
1.3 Program Relocation 1-3
1.4 Program Location Counters 1-3
1.5 Assembly Options 1-4

CHAPTER 2 INSTRUCTION FORMAT 2-1

2.1 Statement Characteristics 2-1
Field Delimiters 2-1
Character Set 2-1
Statement Length 2-3

2.2 Label Field 2-3
Label Symbol 2-3
Asterisk 2-5

2.3 Upcode Field 2-5
2.4 Operand Field 2-5

Symbolic Terms 2-6
Numeric Terms 2-7
Asterisk 2-5
Expression Operators 2-7
Evaluation of Expressions 2-8
Expression Terms 2-9
Absolute and Relocatable

Expressions 2-9
Literals 2-11
Indirect Addressing 2-12
Base Page Addressing 2-13
Clear Flag Indicator 2-13

2.5 Comments Field 2-13

CHAPTER 3 MACHINE INSTRUCTIONS 3-1

3.1 Memory Reference 3-1
Jump and Increment-Skip 3-2
Add, Load, and Store 3-2
Logical Operations 3-3

3.2 Register Reference 3-4
Shift-Rotate Group 3-4
No-Operation Instructions 3-5
Alter-Skip Group 3-6

Assembler i

3.3 Input/Output, Overflow and Halt 3-7
Input/Output 3-8
Overflow 3-9
Halt 3-10

3.4 Extended Arithmetic Unit 3-11
3.5 Floating-Point Instructions 3-13

CHAPTER 4 PSEUDO INSTRUCTIONS 4-1

4.1 Assembler Control 4-1
NAM ORG 4-1
ORR 4-2
ORB 4-3
IFN IFZ 4-4
REP 4-6
END 4-7

4.2 Object Program Linkage 4-8
COM 4-8
ENT EXT 4-10

4.3 Address and Symbol Definition 4-11
DEF 4-12
ABS EQU 4-15

4.4 Constant Definition 4-17
ASC 4-17
DEC 4-18
DEX 4-20
OCT 4-22

4.5 Storage Allocation 4-23
BSS 4-23

4.6 Assembly Listing Control 4-23
UNL 4-23
LST SUP UNS 4-24
SKP SPC HED 4-25

4.7 Arithmetic Subroutine Calls 4-26
MPY DIV FMP FDV 4-26
FAD FSB DLD DST 4-27

CHAPTER 5 ASSEMBLER INPUT AND OUTPUT 5-1

5.1 Control Statement 5-1
A R B L 5-1
T H z F 5-2

5.2 Source Program 5-3
5.3 Binary Output 5.3
5.4 List Output 5-3

ii Assembler

APPENDIX A HP CHARACTER SET A-1

BINARY CODED DECIMAL FORMAT A-2

Kennedy 1406/1506 ASCII-
BCD Conversion A-2

HP 2020A/B ASCII -
BCD Conversion A-3

APPENDIX B ASSEMBLER INSTRUCTIONS B-1

MACHINE INSTRUCTIONS B-2

Memory Reference B-2
Register Reference B-2
Input/Output, Overflow, and Halt B-4
Extended Arithmetic Unit B-5

PSEUDO INSTRUCTIONS B-6
Assembler Control B-6
Object Program Linkage B-6
Address and Symbol Definition B-6
Constant Definition B-7
Storage Allocation B-7
Arithmetic Subroutine Calls Requests B-7
Assembly Listing Control ·B-8

APPENDIX C ALPHABETIC LIST OF INSTRUCTIONS C-1

APPENDIX D SAMPLE PROGRAMS D-1

File Parts Update D-1
Sample Assembler Symbol

Table Output D-3
Sample Assembler List Output D-4

Calculating Distance D-9

APPENDIX E SYSTEM INPUT/OUTPUT SUBROUTINES E-1

Memory Allocation E-1
Operation and Calling Sequence:

Paper Tape Devices E-2
Register Contents E-2

Assembler iii

Operation and Calling Sequence:
Magnetic Tape Driver E-3

Register Contents E-3
Linkage Address E-4

Magnetic Tape Operations E-4
Read E-4
Write E-5
Write End-of-File E-6
Rewind E-6
Position E-6
Rewind/Standby E-7
Gap E-7
Status E-7
Additional Linkage Addresses E-10

Buff er Storage Area E-10
Record Formats E-10

2020 7-Level Tape E-12
3030 9-Level Tape E-12
Operating and Calling Sequence:

Mark Sense Card Reader E-13
Register Contents E-13

APPENDIX F FORMATTER F-0
Calling Sequences F-0
Format Specifications F-2
Example F-3

APPENDIX G ASSEMBLY ERROR MESSAGES G-1

APPENDIX H CONSOLIDATED CODING SHEET H-1

iv Assembler

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic
source language instructions into an object program for execution
on the computer. The source language provides mnemonic machine
operation codes, assembler directing pseudo codes, and symbolic
addressing. The assembled program may be absolute or relo­
catable.

The source program may be assembled as a complete entity or it
may be subdivided into several subprograms (or a main program
and severalsubrou.tines), eachofwhichmay be assembled separ­
ately. The relocating loader loads the wogram and Links the
subprograms as required. The Basic Biru\ry Loader or Basic
Binary Disc Loader loads absolute programs.

Input for the Assembler is prepared on paper tape or cards; the Assem­
bler punches the binary program on paper tape in a format acceptable
to the loader.

Assembler v

GENERAL DESCRIPTION 1

1.1 ASSEMBLY PROCESSING

The Assembler is a two pass system, or, if both punch and
list output are requested, a three pass system on a minimum
configuration. A pass is defined as a processing cycle of the
source program input.

fu the first pass, the Assembler creates a symbol table from
the names used in the source statements. It also checks for
certain possible error conditions and generates diagnostic
messages if necessary.

During pass two, the Assembler again examines each state­
ment in the source program along with the symbol table and
produces the binary program and a program listing. Additional
diagnostic messages may also be produced.

If only one output device is available and if both the binary
output and the list output are requested, the listing function is
deferred and performed as pass three.

When using the Assembler with a mass storage device the source
program is written on the device during the first pass; the second pass
of the source is read from the mass storage.

1.2 SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions,
data, constants, and certain other pseudo operations. A sym­
bol represents the address for a computer word in memory.
A symbol is defined when it is used as a label for a location in
the program, a name of a common storage segment, the label
of a data storage area or constant, the label of an absolute or
relocatable value, or a location external to the program.

Through use of simple arithmetic operators, symbols may be
combined with other symbols or numbers to form an expres­
sion whiGh may identify a location other than that specifically
named by a symbol. Symbols appearing in operand expres­
sions, but not specifically defined, and symbols that are
defined more than once are considered to be in error by the
Assembler.

Assembler 1-1

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOlR:E PROGRAM

1·2 Assembler

ASSEMBLER

PASS 1

ASSEMBLER
PASS 2

ASSEMBLER

PASS 3

I
I
I
I
L.._

HP ASSEMBLER PROCESSING

SYMBOL
TABLE

LISTING

RELOCATABLE
OR ABSOLUTE

OBJECT PROGRAM

PROGRAM
LISTING

1.3 PROGRAM RELOCATION

Relocatable programs may be relocated in core by the relocating
loader; the location of the program origin and all subsequent
instructions is determined at the time the program is loaded.

A relocatable program is assembled assuming a starting
location of zero. All other instructions and data areas are
assembled relative to this zero base. When the program is
loaded, the relocatable operands are adjusted to correspond
with the actual locations assigned by the loader.

The starting locations of the common storage area and the
base page portion of the program are always established by
the loader. References to the common area are common re­
locatable. References to the base page portion of the program
are base page relocatable. If a program refers to the common
area or makes use of the base page via the ORB pseudo in­
struction, the program must also be relocatable.

If a program is to be relocatable, all subprograms comprising
the program must be relocatable; all memory reference
operands must be relocatable expressions or literals, or have
an absolute value of less than lOOa.

1.4 PROGRAM LOCATION iCOUNTERS

The Assembler maintains a counter, called the program loca­
tion counter, that assigns consecutive memory addresses to
source statements.

The initial value of the program location counter is estab­
lished according to the use of either the NAM or ORG pseudo
operation at the start of the program. The NAM operation
causes the program location counter to be set to zero for .a
relocatable program; the ORG operation specifies the absolute
starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable pro­
gram may specify that certain operations or data areas be
allocated to the base page. If so, a separate counter, called
the base page location counter, is used in assigning these
locations.

Assembler 1 ·3

1.5 ASSEMBLY OPTIONS

Parameters specified with the first statement, the control
statement, define the output to be produced by the Assembler: t

Absolute - The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity; external symbols,
common storage references, and entry points are not
permitted.

Relocatable - The program may be located anywhere in
memory. All operands which refer to memory locations
are adjusted as the program is loaded. Operands, other
than those referring to the first 64 locations, must be re­
locatable expressions. Subprograms may contain external
symbols and entry points, and may refer to common
storage.

Binary output - An absolute or relocatable program is
to be punched on paper tape.

List output - A program listing is produced either during
pass two or pass three.

Table print - List the symbol table at the end of the first
pass.

Selective assembly - Sections of the program may be
included or excluded at assembly time depending on the
option used.

t See Chapter 5 for complete details.

1-4 Assembler

INSTRUCTION FORMAT 2

A source language statement consists of a label, an operation
code, an operand, andcomments. The label is used when needed
as a reference by other statements. The operation code may
be a mnemonic machine operation or an assembly directing
pseudo code. An operand may be an expression consisting of
an alphanumeric symbol, a number, a special character, or
any of these combined by arithmetic operations. (For the
Extended Assembler, an operand may also be a literal.)
Indicators may be appended to the operand to specify certain
functions such as indirect addressing. The comments portion
of the statement is optional.

2.1 STATEMENT CHARACTERISTICS

The fields of the source statement appear in the following
order:

Label

Opcode

Operand

Comments

Field Delimiters

One or more spaces separate the fields of a statement. An
end- of- statement mark terminates the entire statement. On
paper tape this mark is a return, @, and line feed, @ . t
A single space following the end-of-statement mark from the
previous source statement is the null field indicator of the
label field.

Character Set

The characters that may appear in a statement are as follows:

A through Z

0 through 9

(period)

* (asterisk)

t A circled symbol (e.g. , @)represents an ASCII code or
Teleprinter key.

Assembler 2-1

HEWLETT-PACKARD ASSEMBLER CODING FORM

F-~-f·oc·~---------~°==1

llNITlWINATlDIYtlll,llN llNllHDrtUI

llNt l~OlUllOlfTlVIOtJI •fOll ._,U

+ (plus)

(minus)

(comma)

{equals)

() (parentheses)

(space)

Any other ASCII characters may appear in the Remarks field
(See Appendix A).

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres­
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used only
in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used
to establish the format of the output list. Within a field they
may be used freely when following +, -, , , or (.

Statement Length

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
characters 73 - 80 are not processed by the Assembler.

2.2 LABEL FIELD

The Label field identifies the statement and may be used as a
reference point by other statements in the program.

The field starts in position one of the statement; the first
position following an end-of-statement mark for the preceding
statement. It is terminated by a space. A space in position
one is the null field indicator for the label field; the statement
is unlabeled.

Label Symbol

A label must be symbolic. It may have one to five characters
consisting of A through Z, 0 through 9, and the period. The

Assembler 2-3

first character must be alphabetic or a period. A label of
more than five characters could be entered on the source lan­
guage tape, but the Assembler flags this condition as an error
and truncates the label from the right to five characters.

Examples:

1,.4.'"(i LOA T 1T II NI01 ftlA 8~ L i I l : '11 11 I l l :
l ! l ll vjA'LJUo ILABE LI i 1 1 ill ! ill l: • ABJC D

. 1 2j34 1
1 T n I r v1ATLT o u a E l,i_ 1 , , I I I r , ' r : A. 112 3
I I :I= i VIA1LIID LABEL' i 1 I I I }1 I 1 I : i I

1 .IABI I

• 1 NU'M~R re. l 1 l 1 1 l 1 ' l _;_l :
' : l · 1

: l _,_ IiLLEiG A'L L ABE'L - TIRUNClM'E o 1ro1 : A BlC!1i23 I

' ! L i j_ i Ai BC 1 2 • ' I I I l
II n L E G AlU LA a EL - 1A s1TE RIS K N10 r I

'
J_ : ALLO~EID1 IN LAIBEU.1 I _;_ : _l ' l

~A:BJCJ!j I I

: I
' I l i T T I c OJDjE1 • 1 : ! _;_ _;_ .l l :

! ;

1 'I I 1 I I I

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an ·EXT or COM pseudo
instruction may not also be used as statement labels in the
same subprogram.

Examples:

Labii: O!X'rc•"or. O;w•"f"Ci ,,,...,.,.,,.,..,

' lO 15 20 i~ "' " "
., 50

COM ATcJo~(2Jom,Js cJl 13'01l ;1 TT TJ T: 11 HF J:
L 8 . _;_ EQ!U 1 i610Jl } : ! I !Yl_AiL:IlD IL}AiB E L . I I Ll _l:

I E1X1T X:L1 :1 1X L.2 I IT; 11 ! I 'l i :
S TAHl_T LOA L:Bl ! I ! ! ! VA!UI_lD 'LJAJB EL i

I l i~i ! l
'

I
I

N215 J I I! I i:' V'A:UIID LJAiB EU ii Tl
..,.

1
! I I
I I

XLJ2
' l l ! i i '! I I I'ULEIG ALI rL A BlEJL - UJSE D J_INi E X,Ti.I I :

BC_l :lL i II ILHTG All tjA BiE1LJ_ - UlSED JiiN[C O_iM.! 1 I
I

N2/5/ l I : I I Lll ILJ_LqG ~,LJ_ LA B:Ejlj - iPREV IlOU)SL Y' . I : tj_' I

I I 1 i lj I IlI i DElF:IJN EiD!.T JI r 11 I :
l 1 _U I 111 I \ 11 i TI TT

'l :
l i .iUl ll il 1.Li: lL j_ I ' l I

I

l l llll I 111 _llll l I i _l iJ I
I

I I I I I I I I I I I I I· I I ! I
'

I I I !

t The caret symbol, A, indicates the presence of a space.

2-4 Assem bier

Asterisk

An asterisk in position one indicates that the entire statement
is a comment. Positions 2 through 80 are available; however,
positions 1 through 68 only are printed as part of the assembly
listing on the 2752A Teleprinter. An asterisk within the Label
field is illegal in any position other than one.

2.3 OPCODE FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows the
Label field and is separated from it by at least one space. If
there is no label, the operation code may begin anywhere after
position one. The Opcode field is terminated by a space im­
mediately following an operation code. Operation codes are
organized in the following categories:

Machine operation codes

Memory Reference

Register Reference

Input/ Output, Overflow, and Halt

Extended Arithmetic Unit

Pseudo operation codes

Assembler control

Object program linkage

Address and symbol definition

Constant definition

Storage allocation

Arithmetic subroutine calls

Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Chapters 3 and 4.

2.4 OPERAND FIELD

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The field
follows the Opcode field and is separated from it by at least
one space. It is terminated by a space except when the space
follows , + - (or, if there are no comments, by an end-of­
statement mark.

Assembler 2-5

The Operand field may contain an expression consisting of one
of the following:

Single symbolic term

Single numeric term

Asterisk

Combination of symbolic terms, numeric terms, and the
asterisk joined by the arithmetic operators + and -.

An expression may be followed by a comma and an
indicator.

Programs being assembled by the Extended Assembler
may also contain a literal value in the Operand field.

Symbolic Terms

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

Examples:

, ... , o.,....011on °"".....d C.,.,,....n,.,

' 1D 15 lO 25)(I J5 ..0 •5 '.>(I

l LlQA
: Al!JA

Al1i2J3 14 1 1j! [YAUijD 11lF DE1F1I!NIED l I :j J '! _;_:

i I: JMP
ll STA
1j
ij STlB A BjrjQiE Fi i I I IL L EIG AL !op E RfAJN D ~ 0 RE jrniA'N njvE :
Ji

I

j J ' : i j ' C HiA!~A C:U'R S . J J j I -1 :
i Ii I' i I i; 1 I I I I !

A symbol used in the Operand field must be a symbol that is
defined elsewhere in the program in one of the following ways:

As a label in the Label field of a machine operation

As a label in the Label field of a BSS, ASC, DEC, OCT,
DEF, ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo
operation

As a label in the Label field of an arithmetic subroutine
pseudo operation

2-6 Assembler

The value of a symbol is absolute or relocatable depending on
the assembly option selected by the user. The Assembler as­
signs a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute
form, the values assigned by the assembler remain fixed. If
the program is to be relocated, the actual value of a symbol is
established on loading. A symbol may also be made absolute
through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its associ­
ated value. If preceded by a minus sign, the symbol refers to
the two's complement of its associated value. A single nega­
tive symbolic operand may be used only with the ABS pseudo
operation.

Numeric Terms

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B; (0 to 177777B}.

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre­
ceded by a minus sign, the two's complement of the binary
equivalent is used. A negative numeric operand may be used
only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric
operand depends on the type of machine or pseudo instruction.
In a relocatable program, the value of a numeric operand may
not exceed 77B. Numeric operands are absolute. Their value
is not altered by the assembler or the loader.

Asterisk

An asterisk in the Operand field refers to the value in the
program location counter (or base page location counter) at the
time the source program statement is encountered. The
asterisk is considered a relocatable term in a relocatable
program.

Expression Operators

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and - to form arithmetic address ex­
pressions. The Assembler evaluates an expression and pro­
duces an absolute or relocatable value in the object code.

Assembler 2-7

Examples:

, ... , Operati°" o,. c-nl'I

' JO " 20 " ~ ~ a ~ ~

1 LOA SYM+6 ~DD 6 TO TtfE' MALUE ~FllSJYM I 111 I
I

ADA SY M-3 SU BfilR ACT 3 J.F RI~ THEj Vl~LlUE :ojF: IS YIM:
! I !J ! I I I i' I , I 1 I I I

'I

l I i

i
i 1J l ! I I

j-+
I

H, I l rJ : i: I
I

JMf> *+;5[l ADD 1 5 TO! THE }C,O NH NTS! 10f ILH:g_ I :

1 :J PR10:GR ~,M LO CjA Tjl'ON COiU NjTJE!R. :1' :
·i I I I: I 11 l I i I jl I J_:

I .. i ! ! I I i
I I I 1 l: i I I

I
I

r ST!B -iA +C1- 4 j i I A'D:OI J- V:ALU E !Of A ti TH Ej VIAL l![E iOF c:
J l j I ' ! AN 101 S U'BTlR'A CT 4. :' ' : ' -1:
i ·l 1 1 r : : I _J_: I I I

I

Ji i ·I I I i Ii I j ! l
I
I

j: STA X:T Aj-1* : i S1U 1BIT!R ACT V AL,Uif ~F PR OGRAM . ' : I
I

I 'lj_ : LO C~H r:oNi C OU N!TE R' FROM VAL U:E lO'F I
I

I I-,- I' '...:. l X!T Ai. I l I

-'- _j_ I

I_;_ . ~ :
I ! i

i

11 I
I

J_ I I : I
l ! J1 l :

l I I : I ! i I ! l i l' ! :
I I , I I! I I .it ·I I :

Evaluation of Expressions

An expression consisting of a single operand has the value of that
operand. An expression consisting of more than one operand is
reduced to a single value. In expressions containing more than one
operator, evaluation of the expression proceeds from left to right.
The algebraic expression A-(B-C+5) must be represented in the
Operand field as A-B+C-5. Parentheses are not permitted in
operand expressions for the grouping of operands.

The range of values that may result from an operand expression
depends on the type of operatiOn. The Assembler evaluates ex­
pressions as follows:t

Pseudo Operations
Memory Reference
Input/ Output

modulo 21 5-1
modulo 210_1
26 - 1 (maximum value)

t The evaluation of expressions by the Assembler is compatible
with the addressing capability of the hardware instructions {e.g.,
up to 32K words through Indirect Addressing). The user must
take care not to create addresses which exceed the memory size
of the particular configuration.

2-8 Assembler

Expression Terms

The terms of an expression are the numbers and the symbols
appearing in it. Decimal and octal integers, and symbols de­
fined as being absolute in an EQU pseudo operation are abso­
lute terms. The asterisk and all symbols that are defined in
the program are relocatable or absolute depending on the type
of assembly. Symbols that are defined as external may appear
only as single term expressions.

Within a relocatable program, terms may be program relo­
catable, base page relocatable, or common relocatable. A
symbol that names an area of common storage is a common
relocatable term. A symbol that is allocated to the base page
is a base page relocatable term. A symbol that is defined in
any other statement is a program relocatable term. Within
one expression all relocatable terms must be base page re­
locatable, program relocatable, or common relocatable; the
three types may not be mixed.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program
relocation. An expression is relocatable if its value changes
according to the location into which the program is loaded. In
an absolute program, all expressions are absolute. In a relo­
catable program, an expression may be base page relocatable,
program relocatable, common relocatable, or absolute (if less
thanlOOs)dependingon the definition of the terms composing it.

Absolute Expressions

An absolute expression may be any arithmetic combination of
absolute terms. It may also contain relocatable terms alone,
or in combination with absolute terms. If relocatable terms
do appear, there must be an even number of them; they must
be of the same type; and they must be paired by sign (a nega­
tive term for each positive term). The paired terms do .not
have to be contiguous in the expression. The pairing of terms
by type cancels the effect of relocation; the value represented
by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multiterm expression may be nega­
tive only for ABS pseudo operations. A single numeric term
also may be negative in an OCT, DEX, or DEC pseudo
instruction. In a relocatable program the value of an
absolute expression must be less than 1008 for instruc­
tions that reference memory locations {Memory Ref er­
e nce, DEF, Arithmetic subroutine calls).

Assembler 2-9

Examples:

H P, and P 2 are program relocatable terms; B 1 and B 2, base
page relocatable; C 1 and C2 , common relocatable; and A, an
absolute term; then the following are absolute terms:

A-C1+C2 A-P1+P2 C1-C2+A

A+A P1-P2 B1-B2

*-P, B 1-B2-A -C1+C2+A

B,-* -P1 +P2 -A-P1+P2

The asterisk is. base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Expressions

A relocatable expression is one whose value is changed by the
loader. All relocatable expressions must have a positive
value.

A relocatable expression may contain any odd number of relo­
catable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable expression reduces to a single positive relo­
catable term, adjusted by the values represented by the abso­
lute terms and paired relocatable terms associated with it.

Examples:

H P 1, P 2, and P 3 are program relocatable terms; Bt, B2, and
B3, base page relocatable; C 1, C2 and C3, common relocatable;
and A, an absolute term; then the following are relocatable
terms:

P1-A C1-A B1+A

P1-P2+P3 C1 -C2+C3 C1+A

*+A *-P1+P2 *-A

A+B1 A+C1 :-A-P1 +P2+P3

B1-B2+B3-A C1 -C2+C3-A A+*

+P1- P1-P2+* -C1+C2+C3

2-10 Assembler

Literals

Actual literal values may be specified as operands in re­
locatable programs to be assembled by the Extended Assembler.
The Extended Assembler converts the literal to its binary
value, assigns an address to it, and substitutes this address
as the operand. Locations assigned to literals are those
immediately following the last location used by the program.

A literal is specified by using an equal sign and a one­
character identifier defining the type of literal. The actual
literal value is specified immediately following this identifier;
no spaces may intervene.

The identifiers are:

=D

=F

=B

=A

=L

a decimal integer, in the range -32767 to 32767,
including zero. t

a floating-point number; any _positive or negative
real number in the range 10-38 to 1038, including
zero. t

an octal integer, one to six digits, bib2b3b4b5b5,
where bl may be 0 or 1, and b2-b7 may be 0 to 7. t

two ASCII characters. t

an expression which, when evaluated, will result
in an absolute value. All symbols appearing in the
expression must be previously defined.

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Literals may be specified only in the following memory
reference instructions and pseudo instructions:

ADA ADB AND MPYI LDA LDB XOR DIV may use =D, =B, =A, =L
CPA CPB IOR

DLD FAD! FMP FSB may use =F
FDV

t See CONSTANT DEFINITION, Section 4.4.

Assembler 2-11

Examples:

LDA =D798.0 A-Register is loaded with the binary equiv­
alent of 79B.01w

!OR =B777 Inclusive "or" is performed with contents of
A-Register and 777 8.

LDA =ANO A-Register is loaded with binary representa­
tion of ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the
value resulting from the absolute expression.

FMP =F39. 75 Contents of A- and B-Registers multiplied
by floating-point constant 39. 75.

Indirect Addressing

The HP computers provide an indirect addressing capability
for Memory Reference instructions. The operand portion of
an indirect instruction contains an address of another location
rather than an actual operand. The secondary location may be
the operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location is
encountered that does not contain an indirect address. Indirect
addressing provides a simplified method of address modifi­
cations as well as allowing access to any location in core.

The Assembler allows specification of indirect addressing by
appending a comma and the letter I to any Memory Reference
operand other than one referring to an external symbol. The
actual operand of the instruction maybe given in a DEF pseudo
operation; this pseudo operation may also be used to indicate
further levels of indirect addressing.

Examples:

lA a T LOIA s1AIMJ,J1 n EJAJC:H "f[I MEI TJH1EIJI s z rJs mx E c U1T1EJDT, 1 :
AC ADlA

s:A:MlI j_ 1 I 4[cilc H A1N G E1 A1c1c10R or N G}L Y.. 11 j_ :
i l I1 j_ I I lll I I p _l i l II :

AD

: i i i I I l ll i I 'I i I :

SAM D~
i li! 1 j 111:1 i _[Jlj 1 il :

1111111111111 i: I l ! i l 111 i 11 I i Iii i I 1111 I 11: I; t+l
2-12 Assembler

A relocatable assembly language program, however, may be
designed without concern for the pages in which it will be
stored; indirect addressing is not required in the source lan­
guage. When the program is being loaded, the loader provides
indirect addressing whenever :it detects an operand which does
not fall in the current page or the base page. The loader sub­
stitutes a reference to the base page and then stores an indirect
address in this referenced location. References to the same
operandfrom other pages will be linked through the same loca­
tion in the base page.

Base Page Addressing

The computer provides a capability which allows the Memory
Reference instructions to address either the current page or
the base page. The Assembler or the loader adjusts all instruc­
tions in which the operands refer to the base page; specific nota­
tion defining an operand as a base page reference is not required
in the source program.

Clear Flag Indicator
The majority of the input/output instructions can alter the
status of the input/ output interrupt flag after execution or
after the particular test is performed. In source language,
this function is selected by appending a comma and a letter C
to the Operand field.

Examples:

"""' Op.orion o,. Commeni..
21) ' IO " .,

r o 11" A}F r EJR c oIN r R}o Lll., S[C IOl7 Lt_c CLEAR ffLAG
I BITI~SET J I 1 I 1 JI

Ol]B rol5 LLC CLEAR f LAG I 0 51 AJF TElR]M'OlVE I Jl
I I I I

I I I . I!
1 1 n i I I T I I r I i: I TT

2.5 COMMENTS FIELD

The Comments field allows the use:r to transcribe notes on the
program that will be listed with source language coding on the
output produced by the Assembler. The field follows the
Operand field and is separated from it by at least one space.
The end-of-statement mark, @ @,or the 80th character
in the entire statement terminates the field. If the listing is to
be produced on the 2752A Teleprinter, the total statement
length, excluding the end-of-statement mark, should not ex-

Assembler 2-13

ceed 52 characters, the width of the source language portion
of the listing. Statements consisting solely of comments may
contain up to 68 characters including the asterisk in the first
position. On the list output, statements consisting entirely
of comments begin in position 5 rather than 21 as with other
source statements.

If there is no operand present, the Comments field should be
omitted in the NAM and END pseudo operations and in the input/
output statements, SOC, SOS, and HLT instruction. If a com­
ment is used, the Assembler attempts to interpret it as an operand.

2-14 Assembler

MACHINE INSTRUCTIONS 3

The HP Assembler language machine instruction codes take the
form of three-letter mnemonics. Each source statement cor­
responds to a machine operation in the object program pro­
duced by the Assembler.

Notation used in representing source language instruction is
as follows:

label

m

I

SC

c
comments

[]

{}
lit

Optional statement label

Memory location -- an expression

Indirect addressing indicator

Select code -- an expression

Clear interrupt flag indicator

Optional comments

Brackets defining a field or portion of a
field that is optional

Brackets indicating that one of the set
may be selected.

literal

3.1 MEMORY 1 REFERENCE

Memory Reference instructions perform arithmetic, logical
and jump operations on the contents of the locations in core
and the registers. An instruction may directly address the
2048 words of the current and base pages. If required, in­
direct addressing may be utilized to refer to all 32, 768 words
of memory. Expressions in the operand field are evaluated
modulo 210 •

If the program is to be assembled in relocatable form, the
operand field may contain relocatable expressions or absolute
expressions which are less than 1008 in value. If the program
is to be absolute, the operands may be any expressions con­
sistent with the location of the program. Literals may not be
used in an absolute program. Absolute programs must be
complete entities; they may not refer to external subroutines
or common storage.

Assembler 3-1

Jump and Increment-Skip
Jump and Increment-Skip instructions may alter the normal
sequence of program execution.

label I JMP I m [, I] I comments

Jump to m. Jump indirect inhibits interrupt until the transfer
of control is complete.

label I JSB I m [, I] I comments

Jump to subroutine. The address for label+! is placed into
the location represented by m and control transfers to m+l.
On completion of the subroutine, control may be returned to
the normal sequence by performing a JMP m, I.

label I ISZ m [, I] I comments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is by­
passed.

Add, Load, and Store

Add, Load, and Store instructions transmit and alter the con­
tents of memory and of the A- and B-Registers. A literal,
indicated by ''lit", may be either =D, =B, =A, or =I type.

label I ADA I ~ m [, I~ I comments
1lit -~

Add the contents of m to A.

label I ADB I ~ m [, IJl I
}lit ~

Add the contents of m to B.

label I LDA I ~ m [, I]l I
/lit ~

Load A from m.

label I LDB I }m [, IJl I
/lit ~

Load B from m.

3·2 Assembler

comments

comments

comments

label I STA I m [,I] I comments

Store contents of A in m.

label I STB I ~ [, I] I comments

Store contents of Bin m.

In each instruction, the contents of the sending location is un­
changed after execution.

Logical Operations

The Logical instructions allow bit manipulation and the com­
parison of two computer words.

label I AND I j m [, I] l I comments
pit I

The logical product of the contents of m and the contents of A
are placed in A.

label I XOR I j m [, I] l I comments
(lit I

The modulo-two sum (exclusive "or") of the bits in m and the
bits in A is placed in A.

label I IOR comments

The logical sum (inclusive "or") of the bits in m and the bits
in A is placed in A.

label I CPA I Jlft [, I]! I comments

Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

label I CPB I ~m [, I]l I comments
/m I

Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

Assembler 3-3

3.2 REGISTER REFERENCE

The Register Reference instructions include a Shift-Rotate
group, an Alter-Skip group, and NOP (no-operation). With
the exception of NOP, they have the capability of causing
several actions to take place during one memory cycle. Mul­
tiple operations within a statement are separated by a comma.

Shih-Rotate Group

This group contains 19 basic instructions that can be combined
to produce more than 500 different single cycle operations.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign; sign unaltered.

BRS Shift B right one bit, extend sign; sign unaltered.

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA Skip next instruction if least significant bit in A
is zero

SLB Skip next instruction if least significant bit in B
is zero

3-4 Assembler

These instructions may be combined as follows:

ALS ALS
ARS ARS
RAL RAL

label
RAR

[,CLE] [,SLA]
RAR

comments ALR ' ALR
ALF ALF
ERA ERA
ELA ELA

BLS BLS
BRS BRS
RBL RBL

label
RBR

[,CLE] [, SLB]
RBR

comments BLR ' BLR
BLF BLF
ERB ERB
ELB ELB

CLE, SLA, or SLB appearing alone or in any valid combination
with each other are assumed to be a Shift-Rotate machine
instruction.

The Shift-Rotate instructions must be given in the order
shown. At least one and up to four are included in one state­
ment. Instructions referring to the A- register may not be
combined in the same statement with those referring to the
B-register.

No-Operation Instruction

When a no- operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A
full memorycycle is used in executing a no-operation instruc­
tion.

label I NOP I comments

A subroutine to be entered by a JSB instruction should have a

Assembler 3-5

NOP as the first statement. The return address can be stored
in the location occupied by the NOP during execution of the
program. A NOP statement causes the Assembler to generate
a word of zeros.

Alter-Skip Group

The Alter-Skip group contains 19 basic instructions that can
be combined to produce more than 700 different single cycle
operations.

CLA

CLB

CMA
CMB

CCA

CCB

CLE

CME

CCE

SEZ

SSA

SSB

INA

INB

SZA

SZB

SLA

SLB

RSS

3-6 Assembler

Clear the A-Register

Clear the B-Register

Complement the A-Register

Complement the B-Register

Clear, then complement the A-Register (set to
ones)

Clear, then complement the B-Register (set to
ones)

Clear the E-Register

Complement the E-Register

Clear, then complement the E-Register

Skip next instruction if E is zero

Skip if sign of A is positive (0).

Skip if sign of B is positive (0).

Increment A by one.

Increment B by one.

Skip if contents of A equals zero

Skip if contents of B equals zero

Skip if least significant bit of A is zero

Skip if least significant bit of B is zero

Reverse the sense of the skip instructions. If
no skip instructions precede in the statement,
skip the next instruction.

These instructions may be combined as follows:

label [rn*l] [, SEZ] [rn~ l] [, SSA] [, SLA] [, INA] [, SZA] [, RSS] c=ment•

labcl [rn~ l] [,SEZ] {rn~ l] [, SSB] [, SLB] [,!NB] [, SZBJ [,RBS] comments

The Alter-Skip instructions must be given in the order shown.
At least one and up to eight are included in one statement. In­
structions referring to the A-register may not be combined in
the same statement with those referring to the B-register.
When two or more skip functions are combined in a single
operation, a skip occurs if any one of the conditions exists.
If a word with RSS also includes both SSA and SLA (or SSB and
SLB) a skip occurs only when sign and least significant bit are
both set (1).

3.3 INPUT /OUTPUT, OVERFLOW, AND HALT

The input/ output instructions allow the user to transfer data
to and from an external device via a buffer, to enable or dis­
able external interrupt, or to check the status of I/O devices
and operations. A subset of these instructions permits check­
ing for an arithmetic overflow condition.

Input/ Output instructions require the designation of a select
code, sc, which indicates one of 64 input/ output channels or
functions. Each channel consists of a connect/disconnect con­
trol bit, a flag bit, and a buffer of up to 16 bits. The setting
of the control bit indicates that a device associated with the
channel is operable. The flag bit is set automatically when
transmission between the device and the buffer is completed.
Instructions are also available to test or clear the flag bit for
the particular channel. If the interrupt system is enabled,
setting of the flag causes program interrupt to occur; control
transfers to the interrupt location related to the channel.

Assembler 3-7

Expressions used to represent select coctes {channel numoersJ
must have a .value of less than 2s. The value specifies the de­
vice or operation referenced. Instructions which transfer data
between the A or B register and a buffer, access the Switch
register when sc = 1. The character C appended to such an
instruction clears the overflow bit after the transfer from the
Switch register is complete.

Input/Output
Prior to any input/ output data transmission, the control bit is
set. The instruction which enables the device may also trans­
fer data between the device and the buffer.

label I STC sc [, C] I comments

Set I/0 control bit for channel specified by sc. STC transfers
or enables transfer of an element of data from an input device
to the buffer or to an output device from the buffer. The exact
function of the STC depends on the device; for the 2752A Tele­
printer, an STC enables transfer of a series of bits. If sc = 1,
this statement is treated as NOP. The C option clears the flag
bit for the channel.

label I CLC \ SC [' C] I comments

Clear I/O control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc = 0,
control bits for all channels are cleared to zero; all devices
are disconnected. If sc = 1, this statement is treated as NOP.

label l LIA I sc [, C] I comments

Load into A the contents of the 1/0 buffer indicated by sc.

label I LIB sc [, C] I comments

Load into B the contents of the 1/0 buffer indicated by sc.

label I MIA I sc [, C] I comments

Merge (inclusive "or") the contents of the 1/0 buffer indicated
by sc into A.

3-8 Assembler

label I MIB I sc [, C] I comments

Merge (inclusive "or") the contents of the I/O buffer indicated
by SC into B.

label I OTA I sc [,CJ I comments

Output the contents of A to the I/O buffer indicated by sc.

label I OTB I sc [, C] I comments

Output the contents of B to the I/O buffer indicated by sc.

label I STF I SC I comments

Sets the flag bit of the channel indicated by sc. If sc = O, STF
enables the interrupt system. A sc code of 1 causes the over­
flow bit to be set.

label I CLF I SC I comments

Clear the flag bit to zero for the channel indicated by sc. If
sc = 0, CLF disables the interrupt system. If sc = 1, the
overflow bit is cleared to zero.

label I SFC I sc I comments

Skip the next instruction if the flag bit for channel sc is clear.
If sc = 1, the overflow bit is tested.

label I SFS SC I comments

Skip the next instruction if the flag bit for channel sc is set.
If sc = 1, the overflow is tested.

Overflow
In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

Assembler 3-9

label I CLO I comments

Clear the overflow bit.

label I STO I comments

Set overflow bit.

label I SOC I [CJ I comments

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

label I SOS [C] I comments

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is P·::!rformed.

The C option is identified by the sequence 'space C space' follow­
ing either 'SOC' or 'SOS'. Anything else is treated as a comment.

Halt

label I HLT I ~[sc [, C]]l I comments
I [cJ I

Halt the computer. The machine instruction word is displayed
in the T-Register. If the C option is used, the flag bit associ­
ated with channel sc is cleared.

If neither the select code nor the C option is used, the com­
ments portion must be omitted.

3-10 Assembler

3.4 EXTENDED ARITHMETIC INSTRUCTIONS

Ten instructions are used with the extended arithmetic version of the
Assembler or Extended Assembler to increase the computer's overall
efficiency. They provide for integer multiply and divide and for loading
and storing double-length words to and from the accumulators.

label MPY ~m(, I] l
I m ~

comments

The MPY instruction multiplies the contents of the A-Register
by the contents of m. The product is stored in registers B
and A. B contains the sign of the product and the 15 most
significant bits; A contains the least significant bits.

label DIV ~ m[, I]l
l lit ~

comments

The DIV instruction divides the contents of registers B and A
by the contents of m. The quotient is stored in A and the
remainder in B. Initially B contains the sign and the 15 most
significant bits of the dividend; A contains the least significant
bits.

label DLD ~m[, I)t
I lit ~

comments

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

label DST m(, IJ comments

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word
for the instruction code and one for the operand.

Assembler 3-11

The above four instructions are available without the extended arithmetic
instructions as software subroutines.t However, by using the extended
arithmetic group, they require less core storage and can be executed in
less time.

The following shift-rotate instructions provide the capability to shift or
rotate the B- and A-Registers n number of bit positions, where
1 ~ n ~ 16.

label ASR n comments

The ASR instruction arithmetically shifts the B- and A­
Registers right n bits. The sign bit (bit 15 of B) is extended.

label ASL n comments

The ASL instruction arithmetically shifts the B- and A­
Register left n bits. Zeroes are placed in the least significant
bits. The sign bit (bit 15 of B) is unaltered. The overflow bit
is set if bit 14 differs from bit15 before each shift, otherwise,
exit with Overflow bit cleared.

label RRR n comments

The RRR instruction rotates the B- and A-Registers right n
bits.

label RRL n comments

The RRL instruction rotates the B- and A-Registers left n
bits.

label LSR n comments

The LSR instruction logically shifts the B- and A-Registers
right n bits. Zeroes are placed in the most significant bits.

label LSL n comments

The LSL instruction logically shifts the B- and A-Registers
left n bits. Place zeroes into the least significant bits.

t See ARITHMETIC SUBROUTINE CALLS, Section 4. 7.

3-12 Assembler

3.5 FLOATING- POINT INSTRUCTIONS

Flo~ting-point instructions provide a means of performing calcu­
lations on floating-point values. Computers with the hardware
floating-point option should use assemblers and libraries with
floating-point capabilities. The floating-point assembler gener­
ates calls to the appropriate hardware function instead of the
library subroutines. If the computer does not have the hardware
floating-point option, then non-floating-point assemblers and
libraries should be used.

FAD
{

m .. [l,]}
lit

comments

FADperformsanadditionbetween a floating-point number stored
in the A- and B-Registers and a floating-point number stored in
memory locations m and m + 1. The result is returned in the
A- and B-Registers.

FSB
{

m [l,]}
lit

comments

The FSB instruction subtracts a floating-point value in memory
locations m and m + 1 from a floating-point value in the A- and
B-Registers. The result is returned in the A- and B-Registers.

FMP
{

mil,]}
lit

comments

The FMP instruction multiplies a floating-point value in memory
locations m and m + 1 with a floating-point value in the A- and
B-Registers. The result is returned in the A- and B-Registers.

FDV
{

m fl,]}
lit

comments

The FDV instruction divides the floating-point value in memory
locations m and m + 1 into the value stored in the A- and B­
Registers. The result is returned in the A- and B-Registers.

Assembler 3-13

FIX comments

The FIX instruction converts a floating-point number contained
in theA-and B-Registers to a fixed point number. The result is
returned in the A-Register. The contents of the B-Register are
meaningless.

FLT comments

The FLT instruction converts a fixed-point value contained in the
A-Register to a floating-point value. The result is returned in
the A- and B-Registers.

3-14 Assembler

PSEUDO INSTRUCTIONS 4

The pseudo instructions control the Assembler, establish pro­
gram relocatablility, and define program linkage as well as
specify various types of constants, blocks of memory, and
labels used in the program. With the Extended Assembler,
pseudo instructions also control listing output.

4.1 ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and alter
the contents of the base page and program location counters,
and terminate assembly processing. Labels may be used but
they are ignored by the Assembler. NAM records produced
by the Assemblers are accepted by the DOS, DOS-Mand BCS
Loaders.

I NAM I [name] I comments

NAM defines the name of a relocatable program. A relocatable
program must begin with a NAM statement. t A relocat­
able program is assembled ai:;suming a starting location of
zero (i.e., zero relative). The name may be a symbol of one
to five alphanumeric characters the first of which must be
alphabetic or a period. The program name is printed on the
list output. The name is optional and if omitted, the comments
must be omitted also.

joRG I m I comments

The ORG statement defines the origin of an absolute program,
or the origin of subsequent sections of absolute or relocatable
programs.

An absolute program must begin with an ORG statement. t
The operand m, must be a decimal or octal integer specifying
the initial setting of the program location counter.

tThe Control Statement, the HED instruction, and comments
may appear prior to the NAM or ORG statements. If the
Control Statement (ASMB, ...) does not appear on tape pre­
ceding the program it must be entered from the Teleprinter.

Assembler 4-1

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code. For
absolute programs the Operand field, m, may be any expres­
sion. For relocatable programs, m, must be a program
relocatable expression; it may not be base page or common
relocatable or absolute. An expression is evaluated modulo
2 15

• Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

I ORR I comments

ORR resets the program location counter to the value existing
when an ORG or ORB instruction w~s encountered.

Example:

· 1 NAM RiS!E T 11 J · S EjT 1 PUC JT 0 jV:AILIU E OF Zfjaj_O·, A!SfilI GLN:
r 1lR's1r ADA , 1 _I] RS]EJT @Is [NA~E 1 '01F P'R1~GR~M.1 1 1 J:

ORR I . 1 RtE'SIE!T :PLC T!01 JJJB~!T1+2280'. ! } 1

t! 1 1 1
'

1 1] 1 !I: ! 1 i ~ ii 1 1
:~ : l_; '.j J: : : I t ' : ! ! ' I I

JJ J 1 : 1 , JJ I : , J i I 1 : : , 1 r J1
f-+-i-J-i--~--1-+-+-l-f-+~]+-t-+-+--+]-]+-]t-+-]] 1 1 i 1 l -+--- l I

More than one ORG or ORB statement may occur before an
ORR is used. If so, when the ORR is encountered, the pro­
gram location counter is reset to the value it contained when
the first ORG or ORB of the string occurred.

4-2 Assembler

Exam~le:

Opero1ion JO Ope•..,..; c0,,,,,,,,.,,1 SO

NAM RslET" ,. simT LTc 1Tio !ZlEIR~ n 1 ., : T T' IT I :
FIRST ADA I I': T : I ':

7 11T I' T :1
I Ii !_j_ I 11 J 11 I l'
l l ri : ll T1 l1 1 ! I

1 ORG F:11Rsr+:21so10 SET PL,c To :Fil RS!T'+2so101 l'. T

TI I l 1' i ' I T ! : T I

H, 11 I ! L ; ! I I : [
!

LOB EiR 1A 1 ASSUME: PLC AT Fr:RS:T+2750 _,_ ·
ORG F•I!RST+2900 S•ET P!L'C TO FiLRST+2900 :

T I I ' I ' : j_
ASSUME PLC ATI f!1R~ST+j29Z:O i T : I
RESET PLC TO FIR'ST+2250

: -'-: i:
n

I I

! i : :
•

If a second ORR appears before an intervening ORG or ORB,
the second ORR is ignored.

ORR cannot be used to reset the location counter for locations
in the base page that are governed by the ORB statement.

I ORB I comments

ORB defines the portion of a relocatable program that must be
assigned to the base page by the Assembler. The Label field
(if given) is ignored, and the statement requires no operand. All
statements that follow the ORB statement are assigned con­
tiguous locations in the base page. Assignment to the base
page terminates when the Assembler detects an ORG, ORR, or
END statement.

When more than one ORB is used in a program, each ORB
causes the Assembler to resume assigning base page locations
at the address following the last assigned base page location.

An ORB statement in an absolute program has no significance
and is flagged as an error.

Assembler 4-3

Example:
Opero=nd

N!A~ P!ROjG

l I ,j
1 I

' A)S!SiIIG N !Z EIR 0 A'S RIElLIAT IN;E! :STA RTI NiG:

I :: J 1·1 I! . I I :

•,
! l

oR:a

=
]

i 1 T 0 BIA SE: PiA G E . 1 I '

I A;R:E 1A B1SIS 1i00j
1·! I l

l !

OftlR I

!

l'' I I
J i·i l ~

I OR1B ll I

,1 ! i
Ii

I,

l] !!

i
! ! ';

PAGE.:

1 1 I '~
c:o NHN u;E MA IN P R:OGRAM ·

j 1 I 1 J
, ~ESlU!ME ASSIG~MENT AT NEXT
I ~V'AitLABLE LOC!ATIO'N IN B:ASE

i 1.: I
.! 1 I

I ! : ' l !

lll O~R ir' -'-
r r coN!TiI NiulE MAr N1 iPRoGHAM. 1

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an "N" or "Z",
respectively, is specified as a parameter for the ASMB control
statement. t The IFN or IFZ instruction precedes the set of
statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a
terminator to both the set of statements and the assembly. IFN
and IFZ may be used only when the source program is trans­
lated by the Extended Assembler which is provided for BK or
larger machines.

I IFN comments

XIF

All source language statements appearing between the IFN and
the XIF pseudo instructions are included in the program if the
character "N" is specified on the ASMB control statement.

All source language statements appearing between the IFZ and
the XIF pseudo instructions are included in the program if the
character "Z" is specified on the ASMB control statement.

IFZ comments

XIF

t See CONTROL STATEMENT, Section 5. 1.

4-4 Assembler

When the particular letter is not included on the control state­
ment, the related set of statements appears on the Assembler
output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may beused in
the program; however, only one type will be selected in a single
assembly. Therefore, if both characters "N" and "Z" appear
in the control statement, the character which is listed last will
determine the setofcodingthatistobe included in the program.

Example:
Lobel Ope-rot;on Ope-rond

5 10 15

j ijj jj IJ Jl J J l

1

JJ I]]
] ! I

l l: NAIM TRAV]L
I:
I: i 1:

_j

I : '_;_ J
I I IF z Ii

LD:A CAR j_ I :
I

I I

1 CMA SZ Al
'

I ! :

I JlMP NO. :GiO I

LDA M[ILE S l : I

J __[:
I :

I i :

'! _''
XIF J 1

1
-'-

J· i 1 : I

I --' ;

·' TI I l
I!FN J_l, i 1

C!MA SZ~A 1 T i

I • L!DIA T I M ET i 1 i I

i

il
l

I j
J NO:. G 0 H LT 7 7 i 1

'df'JA c 0 s TI I i

XIF !

ill, J I '

l: 1
[-, _j_ j_ I i

! I

I I

1
I'

I END · I i '
I ,II,

Program TRAVL will perform computations involving either
or neither CAR or PLANE considerations depending on the pres­
ence or absence of Z or N parameters in the Control Statement.

Assembler ~5

, ... , Opt.-,.rion o...- C..-nenr,

' IO " "' " JO " ... " "' NAM ViA GE 'ii f I 1 l l
+ I

'.

l I l
l I l !l l I

l I l i : i I i l
JSB HO UR I I i I,! ll
MPY TI ME1 I 1 I

I : I l !

I FZ I I l
JSB ov TI~ .~.

i l l
MPY TI ME2 i 1 l

j l i I

I
I 1 IJ I I

I l j -'- l l
l I I

I

± TI IME 1 DEC 140 l I :
I I

TI jME 2 BSS 1 l I i : j
END l I

I
'I i

"

:

Program WAGES computes a weekly wage value. Overtime
consideration will be includedintheprogramif"Z" is included
in the parameters of the Control Statement.

The REP pseudo instruction, available in the ExtendedAssem­
bler only, causes the repetition of the statement immediately
following it a specified number of times.

label REP n comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asterisk in character position 1)
are not repeated by REP. If a comment follows aREP instruc­
tion, the comment is ignored and the instruction following the
comment is repeated.

A label specified in the REP pseudo instruction is assigned to
the first repetition of the statement. A label cannot be part of
the instruction to be repeated; it would result in a doubly defined
symbol error.

4-6 Assembler

I
I

j:
I I

l'
l:
[:

I
I

I
I

I l
I I

I

: I
I

I:
:
I
I

I
I

:
ll

Example:

TRlPL
CLA
REP
ADA

3
DATA

The above source code would generate the following:

TRlPL

Example:

FILL

CLA
ADA
ADA
ADA

REP
NOP

DATA
DATA
DATA

lOOB

Clear the A-Register;
the contents of DATA
is tripled and stored in
the A-Register.

The example above loads 100
8

memory locations with the NOP
instruction. The first location is labeled FILL.

Example:

REP 2

MPY DATA

The above source code would generate the following:

MPY
MPY

I END I [m]

DATA
DATA

comments

This statement terminates the program; it marks the physical
end of the source language statements. The Operand field, m,
may contain a name appearing as a statement label in the cur­
rent program or it may be blank. If a name is entered, it
identifies the location to which the loader transfers control after
a relocatable program is loaded. A NOP should be stored at
that location; the loader transfers control via a JSB.

Assembler 4-7

also, otherwise, the Assembler attempts to interpret the first
five characters of the comments as the transfer address
symbol.

The Label field of the END statement is ignored.

4.2 OBJECT PROGRAM LINKAGE

Linking pseudo instructions provide a means for communica­
tion between a main program and its subroutines or among
several subprograms that are to be run as a single program.
These instructions maybe used only in a relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, separated
by commas. The first space not preceded by a comma or a
left parenthesis terminates the entire field.

lcoM I name, [(size
1
)] [,name 2 [(size2)],. .. ,name.[(size.)JJ jcomments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allottad
to the related segments. The size is specified as an octal or
decimal integer. If the size is omitted, it is assumed to be
one.

Any number of COM statements may appear in a subprogram.
Storage locations are assigned contiguously; the length of the
block is equal to the sum of the lengths of all segments named
in all COM statements in the subprogram.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes may
be the same or they may differ. Regardless of the names and
sizes specified in the separate subprograms, there is only one
common block for the combined set. It has the same relative
origin; the content of the nth word of common storage is the
same for all subprograms.

4·8 Assembler

Example:

Lob.I Ope ... tion o,."""'
' IO 15 20 25 JO 35

PR OG1 CIO!M A DlD R 1 (5) , A DD R 2 (1Io) 1 ADD ~3}(1 0) I

I I IT
I l I i
I LOA DDR21+1 PICK UjP SECON:O ~ORD I

: AD:D R2 +1
i

! I I

END I I
I i

r:

I IT! ;

': I I

. I I
PRO!G 2 COM A.AAi(2) , AAB (!2.), A AC1 AA D (20)

1 i i

...L ! I --'-I !

':' LOIA AA1D+1 PIC 1K UP SE COND WORD

l !

• '

-;. AAD+1.
~

Organization of common block:

PROGl
name

ADDRl

ADDR2

ADDR3

PROG2
name

AAA

AAB

AAC
AAD

Common
Block

(location 1)
(location 2)
(location 3)
(location 4)
(location 5)
(location 6)
(location 7)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
(location 16)
(location 17)
(location 18)
(location 19) ·
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

c-nti.
'° " ,.

H
I
I

I
I

lI I
I

OF SEG~E}NIT I
I

I
I

I ii I
I

11 !

I
I

i ! • :
.

! :
I
I TI I
I

-'- l I
I

I I • i I
I

OF 1S.E GiME!NT I
I

I
I I

' '

Assembler 4-9

The LDA instructions in the two subprograms each refer to
tne same iocauon in common ::;1.urct.g~, lU\;CLuuu 1.

The segment names that appear in the COM statements can be
used in the Operand fields of DEF, ABS, EQU, or any Memory
Reference statement; they may not be used as labels elsewhere
in the program.

The loader establishes the or1gm of the common block; the
origin cannot be set by the ORG or ORB pseudo instruction.
All references to the common area are relocatable.

Two or more subprograms may declare common blocks which
differ in size. The subprogram that defines the largest block
must be the first submitted for loading.

I ENT I name 1 [, name2' ... , namen] J comments

ENT defines entry points to the program or subprogram. Each
name is a symbol that is assigned as a label for some machine
operation in the program. Entry points allow another sub­
program to refer to this subprogram. All entry points must be
defined in the program.

Symbols appearing in an ENT statement may not also appear
in EXT or COM statements in the same subprogram.

I EXT I name 1 [, namea, ... , name0] I comments

This instruction designates labels in other subprograms which
are referenced in this subprogram. The symbols must be de­
fined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in Mem­
ory Reference statements, the EQU or DEF pseudo instructions.
An external symbol must appear alone; it may not be in a mul­
tiple term expression or be specified as indirect. References
to external locations are processed by the BCS loader as indirect
addresses linked through the base page.

4-10 Assembler

Symbols appearing in EXT statements may not also appear in
ENT or COM statements in the same subprogram. The label
field is ignored.

Example:

Ope•ond

15

LOA SAMO

JMP SAND!

I

SAMO AND S~ND AR~ REFERENCED
PROGA, BUT AREi ACTtmLL Y !

LOCATIONS IN PROGB.
r

j_ i l.

E X T SAM 0:, SA!N DI I : I I I
I!, l

END
l i I+ .

: ! : I 1

.. •

l : [I I I: I: r j

i:

! I I I

IIN

PROGB NOP ! I: I '!

l +
I Ii

ST~
SA~D OCT 71671 I

l; j ! I '...i SA!ND: : : '

I I I ...;_I
I

l I \

j I ii
-+ii

ii

j

E1NT SAMO, s:~ND .

! l 'i !

! ! i i l ! l
. I.
1j I 1 ': : l j J:
! I i ! I i J_i f ! I. JSB PROGA I I J.

: ! j I

' ! : :l I !

I j

E~T PRO G~ l i

·! I l

_j

Ji! I !j
i ! I! j: ! i I!

.I I I ! I I I l
E~D I l ll i

l l l ii

I I I !J l : !

l
! I

4.3 ADDRESS AND SYMBOL DEFINITION

The pseudo operations in this group assign a value or a word
location to a symbol which is used as an operand elsewhere in
the program.

Assembler 4-11

label I DEF l m l, I J I comments

The address definition statement generates one word of mem­
ory as a 15-bit address which may be used as the object of an
indirect address found elsewhere in the source program. The
symbol appearing in the label is that which is referenced; it
appears in the Operand field of a Memory Reference instruc­
tion.

The operand field of the DEF statement may be any positive ex­
pression in an absolute program; in a relocatable program it
may be a relocatable expression or an absolute expression with
a value of less than lOOa. Symbols that do appear in the Oper­
and field, may appear as operands of EXT or COM statements,
in the same subprogram and as entry points in other sub­
programs.

The expression in the Operand field may itself be indirect and
make reference to another DEF statement elsewhere in the
source program.

Example:

, ... , O~rar;ooi o,..,..; ,_ .
' IO 15 " " lO

35 " • , '°
'1 N~ PR:01GlN Ii f ! ifElR 0- R!E'L AT ffV;E ST AlRT QrF PJR oIG}R[AIM .T :
I E~T s111ajE1' S!O~T: _l_ ! ! j_ j_ i J 1 i l _j_:

j ! COIM SJClMlA{ g_o l!t s ~~iB (T5 ()} i : I I 11 }:
I ., I I T lI 1 I

!

I I
I I 1: 1:

: l ·I l l i l II I I 1 _;_ I I I
I

+ l JSB SllNIEl l : EXiE'c:u n, s:r NIE! R;Q uu NE 'I ! :

I i i l T l:} I J_ I !J i ! J_ I
I

I I ll ! !H i I l I I ' :
1 i LOTA x1c:M1A:, Ii TT: P'IiCK U'P1 co M~O,N ~01R:D IN D'I 1R E'CJ L'Y. :
l I ! : Ji I l _j_ 11 1 JI I lj_: _;_ I :

! 11 : I j_ :1 I ! 11 1 j_ T' ' I
j_ ' :

X ClMAi D E.F SC MlAI j ! L : S1CM~I IS A 1151 -jBiIT !AIDD REs:s. : I i
I I Ji l i ! : ,-t •

I
I

l l 1 i I '1 il 1 1T1~ ' I
!1 n I

I _j_ I

I JSB X1S O!d I GE!T :SIQl_U1ARE ;R,Q OT USI1NG T'WO -LE VE L :
X SiQi i DEJF XiS O!RI, I l l I N'D IR ECT 1 ,A D[DR EIS SliNG. .u :

l 1 i T 11 j_ ! J_ I J_ ! : j_: i:: I
I

•: I I 1 I! l! I I : 'i :
XSjOR D E:F so f{IT SiO RiTj IS! :A 1 i5-!BII T ADO RES!Sj_. :

ElNTD PR OJGN ! 11 : I l 1 , T I :
I 1 j_ I 1 i

T l J_ TT :
l l i l l T

:1 l I
I

T -1 II I I I I I I I! I I

4-12 Assembler

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs should
not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different
pages, the BCS Loader processes TBL as an indirect address
linked through the base page. The ISZ erroneously increments
the loader provided reference to the base page rather than the
value of TBL.

Example:

Label Operorion Ope,ond (OCM1ent>
I 5 10 15 20

1 ! :f r(" 1" L D}TBL LOA TIB1L 1 n 1 1 nn I n 1 1 1]
l I t Il i t 1 •

n 1 T T p t t TT :

! _j_:
I I 1 I I I T I

I , T
I '1 ' I

l I SIZ LDT BjL l i '
! I

! I I
'

1 ·1
' I

T BL j BISS 100
! ...:. I

l
T ,+ -;--;- -;-

Assuming the loader might assign absolute locations compara­
ble to the following octal values:

Page

(0)

(1)

(1)

(2)

Loe

(700)

(200)

(300)

(0)

Opcode

DEF

LDA

ISZ

Reference

4000

(0) 700(1)

(1) 200

(TBL)

Assembler 4-13

It can be seen that the ISZ instruction would increment the
quantity 700 rather than the address of the table (40008).

The following assures correct address modification during
program execution.

Example:

..... - -I 5 .. " JO " ..
~TBL DIEF !B l
DT~L LID~I II BL I I

I~~ IT BL I

IJ BL iSS 1~0

.

This sequence might be stored by the loader as:

~
(1)

(1)

(1)

(2)

4-14 Assembler

Loe

(200)

(201)

(300)

(0)

Opcode

DEF

LDA

ISZ

Reference

4000

200(1)

(1) (200)

(TBL)

c- .. ,.

''

The value of 4000 is incremented; each execution of LDA will
access successive locations in the table.

label I ABS I m I comments

ABS defines a 16-bit absolute value to be stored at the location
represented by the label. The Operand field, m, may be any
absolute expression; a single symbol must be defined as abso­
lute elsewhere in the program.

Example:

'"""' 01)1!'•a•ion Operand Comments

' lO " "' " 30 " " ., so

ll BJ EQU 315111 I A]_s aj_rJG l'{s TH Ej VjA[L U E OIF 35 l 1
l 1 H i TjO jTj_H Ej S YM B]O L! A s: I 1 1 I I I I I i

1,

IM3'!51 ~BS -TA1B' _;_ M315T iC OjNT A:I ~s -3 5 •I l 1
~BT l ! p 315: A81S I P315i iC 01N1T Ail Nls 315 I I I l

P7jo: J. A'B,S A1Bj+JA1B \I P.7 O~ .C 01N1TA 1 l NjS1 17J.Q. I

j i 1 I t !

P3Jo A~S Ais:- 151
j I

PI3ol :c ONT Ar I N!S 13]0.
', I 11 r ! I l I l l T ! I

' I II l :T l r . I,
I I I I I I I I I I l I 1 I •I I: . ,t I i I I

label I EQU I m I comments

The EQU pseudo operation assigns to a symbol a value other
than the one normally assigned by the program location coun­
ter. The symbol in the Label field is assigned the value
represented by the Operand field. The Operand field may
contain any expression. The value of the operand may be
common, base page or program relocatable as well as abso­
lute, but it may not be negative. Symbols appearing in the
operand must be previously defined in the source program.

:
I

The EQU instruction may be used to symbolically equate two
locations in memory; or it may be used to give a value to a
symbol. The EQU statement does not result in a machine
instruction.

Assembler 4-15

Examples:
o,. c-n11

" " "
NAM FlAM

T i

L j TTJ ! . l:
:

r I
i I ! : \ i 1 I

J 3 DEF

j, .T

I I 't1 I l I :

I l i l T' I I : :

: I i l. : : I I
1 L[DA

_g_N E I
Jl3+1

:j[ADA
I l STA

IDE:NT IF YT T[t{E TSA[~E L.QClAT1I10 .1 THE :

l l I

Ti AND OPERAT ro/Ni Is PrnFToR:Mrn ToN
J F:OTUiR ElQ U TTH I S L OCJA'TI OTN . , l i J T

T I : T
J3+'1

T
JTFOUIR J.tfifH AND
l 1 1, T

I i : T I
I

T I

I ,. _l l l i j__i_ l l j:

' l
l ! ! J_ I l :

-'-
I ;

! J 1 l I ! : l l
Examples: --5 lS 10 Jll .. s SC

l l NiAM STjgjTB 1 l ll 'l J ll ll J J :
I I I : TT1 TI ! l ! ! I I ! l I ! i i !

I : I : I I l I ! _! 1 l Ill l _j_ I I I T ! i i :

-L J_I ! i i_j_ : I 1l: 1
1

11 i \ ! : I I:
l-; cor~ [fA1B'LfA(l1i'6lL DJEFjINEiSJj_AI 1~~RD] TTABLTEI, TAIBLiA .1:

l l i . 'j_ l T I i i T] I I I i ' I ' I l T I :
: : T i 'Ti : i ! ' I ! : ' : ll l i J_ i l 1 •

_ll , I _i_l I i 1 111 Ii l ' ' i T: l:
TAIBLB EOU TiAB1liA+51 l NIAIMiEIS ~01R1os1 isl :THRiou:GH 11~ w11 ! :

i : I I ' I J I -, TJAJB lJA JA SJ .T AiBiLB . l i l l : l i :

I l l' i 111 T _j_ 1; i I j I I : J_ I : I i T : :
l I T i FI J 1 J T T I I j_ l i

'T1

l 1 L DA TlAB_ll!Bl-+1111 I L!OiADjS ic:o:NT EINTS O!FJ 7TH WORD I :

T- I I I I I i CiOTM}!Olfil iliNT 0 •A. I TH!E s TATEM E!NTT L DA:

T j l"J l' ll i 01P ER'A TI O}N j_ ! _;_ i j_ TT :
I n I I I TIAiBU +161 ~oulo p ERIF!QRM· THE SiAME T:

J j Ji J jl Jl!T -1.'_li j! i jl 1

/

REG I I I I I' L I I :

TT T1 IT I T T ' IT i i J_

l 1 l Ii ! l J_' l I J_ ' 1 l i j_ . :
·!

EOU l0) A
JI 1 J' I I J l , i · ! l
l I DEFINES ISYMBTOL Al 1AS1 0 (iLOCjA:T]IO

B l W' A - R EiGII :s T qR } i :A:No: s YIMJB!O L 'B: .A

I 1 1
·' 1: 1TT : •'

LOIA B ll L[Ql_ADS CIO!NiTEN.TS OiF B- RE:GiliST
1
EiR1

I l 1 I N T 0 A - R_lEiG I SITER ·l i : l ! i L i

4-16 Assembler

4.4 CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or
more constant values into consecutive words of the objectpro­
gram. The statements may be named by labels so that other
program statements can refer to the fields generated by them.

label I ASC I n, <2n characters> I comments

ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words. t One character is right
justified in each eight bits; the most significant bit is zero.
n may be any expression resulting in an unsigned decimal
value in the range 1 through 28. Symbols used in an expres­
sion must be previously defined. Anything in the Operand field
following 2n characters is treated as comments. If less than 2n
characters are detected before the end-of-statement mark,
the remaining characters are assumed to be spaces, and are
stored as such. The label represents the address of the first
two characters.

Example:

causes the following:

ALPHABETIC

15 14 8 7 6 0

TTYP~ A

~
B

I
c D

E /\

EQUIVALENT IN OCTAL NOTATION
6 0

TTYP 0 1 1 0 2
1 0 3 1 0 4

0 5 0 4 0

t To enter the code for the ASCII symbols which perform some
action (e.g., @ and @),the OCT pseudo instruction
must be used.

Assembler 4-17

label DEC I comments

DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified, posi­
tive is assumed. The decimal number is converted to its
binary equivalent by the Assembler. The label, if given,
serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of 0 to 215 -1; it may
assume positive, negative, or zero values. It is converted
into one binary word and appears as follows:

15 14 0

s1GN~ s I number

Example:

causes the following {octal representation)

15 14 0

INT 0 0 0 0 6 2

0 0 0 5 1 0

1 7 7 3 2 4

A floating-point number has two components, a fraction and an
exponent. The fraction is a signed or unsigned number which
may be written with or without a decimal point. The exponent is
indicated by the letter E and follows a signed or unsigned decimal
integer. The floating-point number may have any of the follow­
ing formats:

±n. n ±n. ±n. nE±e ±. nE±e ±n. E±e ±nE±e

4-18 Assembler

The number is converted to binary, normalized (leading bits
differ), and stored in two computer words. If either the frac­
tion or the exponent is negative, that part is stored in two's
complement form.

15 14 0

Word 1 fraction (most significant bits)

---binary point
sign of fraction

15 8 7 1 0

Word 2 I fraction I exponent ~I
si~ of exponent

The floating-point number is made up of a 7-bit exponent with
sign and a 23-bit fraction with sign. The number must be in
the approximate range of 1 o-38 and zero.

Examples:

Lobo I 0pe .. ,, Ope•ond (omm1!<1!<

' IC 15 ,. 25 "' " " "
,.

DEC .45 E1 :
DEC 45 .o OE - 1 I

I

DEC 45 00 E-3 I
I

DEC 4.5 l
I
I

I ! I

+
I
I

I I I :
I I ,T I

are all equivalent to

• 45X1Q1

and are stored in normalized form as:

15 14 0

o o o o o o o o o o ol

15 8 7 1 0

lo o o o o o o olo o o o o 1 1 lol

Assembler 4-19

Lobo I

'
Oi-ction Ope•oncl

IO " "
.,

"
DEC - . 695 l400E-41J 1:

]] JI
lj n I I

are stored as:

l 1 lo 1 o o 1 1 1 o o o o 1 o 1 ol

lo o 1 1 1 o 1 1 lo o o o o o olol

lol 1 o 1 o o o 1 1 1 1 o 1 o 1 1 I

110000101!1111100!11

label l DEX I di(,d2. , ... , dn J !comments

<-•
" ., "

i
1

I

DEX, for the Extended Assembler, records a string of
extended precision decimal constants into consecutive words
within a program. Each such extended precision constant
occupies three words as shown below:

Word 1 H Mantissa ~

15 14 0

Word 2

I
15 0

Word 3 ~

I
Exponent H

15 8 7 1 0

4-20 Assembler

Legend: S = Sign of the mantissa (fraction)
rn

Se = Sign of the E xponent

NOTE: a value is entered only if normalizing of the
Mantissa is needed.

An extended precision floating-point number is made up
of a 39-bit Mantissa (fraction) and sign and a 7-bit ex­
ponent and sign. The exponent and sign will be zero if
the Mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether
they be floating -point, integer, fraction, or integer and
fraction, will be stored in three words as just described.
This storage format is basically an extension of that used
for DEC, as previously described.

Examples:

DEX 12,-.45

are stored as:

WORD 1 WORD 2 WORD3

0110000000000000 0000000000000000 0000000000001000

WORD 1 WORD 2 WORD 3

1000110011001100 1100110011001100 1001101111111111

Asembler 4-21

label OCT I 01 [, 02' ••• , on] I comments

OCT stores one or more octal constants in consecutive words
of the object program. Each constant consists of one to six
octal digits (O to 177777). If no sign is given, the sign is
assumed to be positive. If the sign is negative, the two's com­
plement of the binary equivalent is stored. The constants are
separated by commas; the last constant is terminated by a
space. If less than six digits are indicated for a constant, the
data is right justified in the word. A label, if used, acts as
the address of the first constant in the string. The letter B
must not be used after the constant in the Operand field; it is
significant only when defining an octal term in an instruction
other than OCT.

Examples:
""-' Qpeor,.rion Opr•....d

, __
, 10 20 "

.,
" " .,

OCT t~ I 1: 1 HT T
OCT -2 l

11 : l I"
NUM OCT 17 11.1_ 204 015 1..1_- 36 i1 I 1i: (

OCT 51 Li. 7 7 717 71_ - , 1..1_ 1 ~1 ~1 }1 1 '+h I

OCT t0 76 42Li_ 1!7 70 77 iJ +
.

ogT 19 76 \I 1, [UL E:G AL~ '1CO!NilA I N'S
OCT -1 77 7717 T 01IiG IT 9 T TTT T

l OCT 17i7B ll i IiLiL ETG AL: !C O!NfTIA. I NSl
I t CIHIA RTA CTERT BJJ.j_ I I

I T T n
+ nr

I T I i ! ! I

..,-
'T

The previous statements are stored as follows:

1514

0 0 0

1 7 7

NUM 0 0 0

0 2 0

1 7 7

0 0 0

0 7 7

1 7 7

0 1 0

1 0 7
1 7 7

x x x
0 0 0

x x x

4-22 Assembler

0 0

7 7

1 7

4 0

7 4

0 5

7 7

7 7

1 0

6 4

0 7

x x
0 0

x x

0

6

7

5

2

1

7

7

1

2
7

x
1

x

0

~
THE RESULT OF
ATTEMPTING TO
DEFINE AN ILLEGAL
CONSTANT IS UN­
PREDICTABLE

"'
I

T
T

:

. ':
I
I

I
I

:
I
I

:
I
I

I
I

I
I

I
I

4.5 STORAGE ALLOCATION

The storage allocation statement reserves a block of memory
for data or for a work area.

label BSS m comments

The BSS pseudo operation advances the program or base page
location counter according to the value of the operand. The
Operand field may contain any expression that results in a
positive integer. Symbols, if used, must be previously de­
fined in the program. The label, if given, is the name as­
signed to the storage area and represents the address of the
first word. The initial content of the area set aside by the
statement is unaltered by the loader.

4.6 ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the user to
control the assembly listing output during pass 2 or 3 of the
assembly process. These pseudo instructions may be used only
when the source program is translated by the Extended Assem­
bler provided for 8K or larger machines (8, 192-word memory
or larger).

UNL comments

Output is suppressed from the assembly listing, beginning with
the UNL pseudo instruction and continuing for all instructions
and comments until either an LST or END pseudo instruction is
encountered. Diagnostic messages for errors encountered by
the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source
program listing) are incremented for the instructions skipped.

Assembler 4-23

LST comments

The LST pseudo instruction causes the source program listing,
terminated by a UNL, to be resumed.

A UNL following a UNL, a LST following a LST, and a LST not
preceded by a UNL are not considered errors by the Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of additional
code lines from the source program listing. Certain pseudo
instructions, because they result in using subroutines, generate
more than one line of coding. These additional code lines are
suppressed by a SUP instruction until a UNS or the END pseudo
instruction is encountered. SUP will suppress additional code
lines in the following pseudo instructions:

ASC
OCT
DEC

DIV
DLD
DST

FAD
FDV
FMP

FSB
MPY

The SUP pseudo instruction may also be used to suppress the
listing of literals at the end of the source program listing.

UNS comments

The UNS pseudo instruction causes the printing of additional
coding lines, terminated by a SUP, to be resumed.

4-24 Assembler

A SUP preceded by another SUP, UNS preceded by UNS, or
UNS not preceded by a SUP are not considered errors by the
Assembler.

SKP comments

The SKP pseudo instruction causes the source program listing
to be skipped to the top of the next page. The SKP instruction
is not listed, but the ·source statement sequence number is
incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program listing
to be skipped a specified number of lines. The list output is
skipped n lines, or to the bottom of the page, whichever occurs
first. The n may be any absolute expression. The SPC
instruction is not listed but the source statement sequence
number is incremented for the SPC.

RED m(heading)

The RED pseudo instruction allows the programmer to specify
a heading to be printed at the top of each page of the source
program listing.

The heading, m, a string of up to 56 ASCII characters, is printed
at the top of each page of the source program listing following
the occurrence of the RED pseudo instruction. If RED is
encountered before the NAM or ORG at the beginning of a
program, the heading will be used on the first page of the
source program listing. A RED instruction placed elsewhere
in the program causes a skip to the top of the next page.

The heading specified in the RED pseudo instruction will be
used on every page until it is changed by a suceeding RED
instruction.

The source statement containing the HED willnotbe listed, but
source statement sequence number will be incremented.

Assembler 4-25

4. 7 ARITHMETIC SUBROUTINE CALLS

The members of this group of pseudo instructions request
the Assember to generate calls to arithmetic subroutines t
external to the source program. These pseudo instructions
may be used in relocatable programs only. The Operand
field may contain any relocatable expression or an absolute
expression resulting in a value of less than 1008.

label MPY I{ m f.r l }I comments

=Dn or =Bn .

Multiply the contents of the A-register by the contents of m
or the quantity defined by the literal and store the product in
registers B and A. B contains the sign of the product and the
15 most significant bits; A contains the least significant bits.

label DIV I{ =i;;E~r =Bn } I comments

Divide the contents of registers B and A by the contents of m
or the quantity defined by the literal. Store the quotient in A
and the remainder in B. InitiallyBcontains the sign and the 15
most significant bits of the dividend; A contains the least
significant bits.

label FMP comments

Multiply the two-word floating-point quantity in registers A
and B by the two-word floating-point quantity in locations m
and m+l or the quantity defined by the literal. Store the two­
word floating-point product in registers A and B.

label FDV comments

Divide the two-word floating-point quantity in registers A and
B by the two-word floating-point quantity in locations m and
m+l or the quantity defined by the literal. Store the two­
word floating-point quotient in A and B.

· t Not intended for usewithDEX formatted numbers. For
suck numbers JSB 's to double precision subroutines must
be used. See Relocatable Subroutines Manual (02116-
91780).

4-26 Assembler

label FAD comments

Add the two-word floating point quantity in registers A and B
to the two-word floating point quantity in locations m and m+l
or the quantity defined by the literal. Store the two-word
floating point sum in A and B.

label FSB comments

Subtract the two-word floating point quantity in m and m+l
or the quantity defined by the literal from the two-word
floating point quantity in registers A and B and store the
difference in A and B.

label DLD I i:iF~ I]! I comments

Load the contents of locations m and m+l or the quantity
defined by the literal into registers A and B respectively.

label DST m (,I) I comments

Store the contents of registers A and B in locations m and m+l
respectively.

Each use of a statement from this group generates two words
of instructions. Symbolically, they could be represented as
follows:

JSB <. arithmetic pseudo operation>
DEF m (,I)

An EXT<. arithmetic pseudo operation> is implied preceding
the JSB operation.

In the above operations, the Overflow bit is set when one of
the following conditions occurs:

Integer overflow
Floating-point overflow or underflow
Division by zero.

Execution of any of the subroutines alters the contents
of the E-Register.

Assembler 4-27 /4-28

ASSEMBLER INPUT AND OUTPUT 5

The Assembler accepts as input a paper tape containing a
control statement and a source language program. A relocat­
able source language program may be divided into several
subroutines; the designation of these elements is optional.
The output produced by the Assembler may include a punched
paper tape containing the object program, an object program
listing, and diagnostic messages.

5.1 CONTROL STATEMENT

The control statement specifies the output to be produced:

ASMB, Pp p2, ••• , Pn

"ASMB," is entered in positions 1-5. Following the comma
are one or more parameters, in any order, which define the
output to be produced. The control statement must be termi­
nated by an end-of-statement mark, @ @.

The parameters may be any legal combination of the follow­
ing starting in position 6:

A Absolute: The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity. It may not include
NAM, ORB, COM, ENT, EXT, arithmetic pseudo
operation statements or literals. The binary output
format is that specified for the Basic Binary loader.

R Relocatable: The program may be located anywhere in
memory. Instruction operands are adjusted as neces­
sary. The binary output format is that specified for
the BCS Relocating loader.

B Binary output: A program is to be punched according
to one of the above parameters.

L List output: A program listing is to be produced either
during pass two or pass three (if binary output se­
lected) according to one of the above parameters.

Assembler 5·1

T Table print: Li.st the symbol table at the end of the
first pass. For the Extended Assembler: List
the symbol table in alphabetic order in three sections:
section 1 for one- character symbols, section 2 for
two- and three- character symbols, and section 3
for four- and five- character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

Z Include sets of instructions following the IFZ pseudo
instruction.

F Accepted by the Assembler to provide compatibility with
DOS or DOS-M Assembler programs. F causes no action
in any other assemblers.

(F = Extended Arithmetic Unit/Floating Point;
X = Nonextended Arithmetic Unit;
No parameter= Extended Arithmetic Unit)

Either A or R must be specified in addition to any combination of
B, L, or T.

If a programmer wishes to assemble pass 1 of a source program to check
for errors, he can specify only an A or R to be the sole parameter of
the Assembler control statement, executing only pass 1. (This produces
pass 1 ettor messages without listing the program or providing an object
tape). Extended Assembler only.

The Assembler control statement must specifically request pass 2
operations (list or punch) in order for pass 2 to be executed. Lack of
pass 2 option information causes processing only of pass 1 errors. If a
C option is also provided, an automatic cro~ref erence symbol table is
done after pass 1 when operating in the MTS environment.

The control statement may be on the same tape as the source
program, or on a separate tape; or it may be entered via the
Teleprinter keyboard.

5-2 Assembler

5.2 SOURCE PROGRAM
The first statement of the program (other than remarks or
a HED statement) must be a NAM statement for a relocatable
program or an ORG statement for indicating the origin of an
absolute program. The last statement must be an END state­
ment and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an
end-of-statement mark.

5.3 BINARY OUTPUT

The punch output is defined by the ASMB control statement.
The punch output includes the instructions translated from the
source program. It does not include system subroutines re­
ferenced within the source program (arithmetic subroutine
calls, .IOC., .DIO., .ENTR, etc.)

5.4 LIST OUTPUT

Fields of the object program are listed in the following print
columns.

Columns Content

1-4 Source statement sequence number gener-
ated by the Assembler

5-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol ·indicator

20 Blank

21-72 First 52 characters of source statement.

Assembler 5-3

Lines consisting entirely of comments (i.e., * in column 1) are
printed as follows:

Columns

1-4

5-72

Content

Source statement sequence number

Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns

1-5

6

7

8

9-14

Symbol

Blank

Content

Relocation of external symbol indicator

Blank

Value of the symbol

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as follows:

Character

Blank

R

B

c
x

Relocation Base

Absolute

Program relocatable

Base page relocatable

Common relocatable

External symbol

At the end of each pass, the following is printed:

** NO ERRORS*
or

** nnnn ERRORS*

The value nnnn, indicates the number of errors.

NOTE: For complete operating instructions for the HP Assem -
bler or extended Assembler, consult Software Operat­
ing Procedures, SIO Subsystems module (5931-1390) .

.. • ~ssembler

HP CHARACTER SET A

ASCII CHARACTER FORMAT

lo o Jo

1 0 ;]"

bJ 1]

l r.i bl3 b2 f---+-: ----+------+--, --+-----+---+---+~
I L ~,1f--+----.---__.___-+--=---+-----+--.---I--.,.......<

o [o o · o ! NULL DCo ~J ti o @ P ___ i-
o I 0 0 I SOM DC I I I I A Q I I
oll o 1 Io EOA I DC2 ! " 2 I s R 1 =- ==u=

I 0 ' 0 I '. ' I I EOM ; ~: !'. 43 I CD s : I N
IOI'

1
010 EOT ,lSTOPl $ T : --1--A-

! 0 ; I i 0 i I ' WRU I ERR i % 5 I E u I - ~ -1--;-

i 0: I: I 0. RU ISYNCI a I 6 FG WV I -~~s=_r_-=_N~---
i 0 ' I i I I I I BELL I LEM I (APOSI i 7 -

Standard 7-bit set code positional order and notation are shown below with b7 the high-order

and b, the low-order, bit position.

EXAMPLE: The code for "R" is:
b,
l

LEGEND

NULL Null/Idle DC,-DC3

SOM Start of message DC4(Stop)

EOA End of address ERR

EOM End of message SYNC

EOT End of transmission LEM

WRU "Who are you.?" So-Sr

RU "Are you ... ?"

BELL Audible signal

FEo Format effector <
HT Horizontal tabulation >
SK Skip (punched card) +
LF Line feed
VTAB Vertical tabulation \

FF Form feed ACK

CR Carriage return CD
so Shift out ESC

SI Shift in DEL

DCo Device control reserved for
data I ink escape

Device Control
Device control (stop)
Error
Synchronous idle
Logical end of media
Separator (information)

b,
0

Word separator (space, normal I y
norr-printing)·

Less than
Greater than
Up arrow (Exponentiation)
Left arrow (lmpl ies/Replaced by)
Reverse slant
Acknowledge
Unassigned control
Escape
Delete/Idle

Assembler A-1

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCII-BCD Conversion

Symbol BCD ASCII Equivalent Symbol BCD ASCII Equivalent
(octal code) (octal code) (octal code) (octal code)

(Space) 2~ ~~ A 61 1~1
! 52 ~l B 62 1,0'2
13 ,043 c 63 1~3
$ 53 ,044 D 64 l~
% 34 ~5 E 65 1~5
& 6,0' ,04<> F 66 1,0'6
I 14 ~7 G 67 1~
(34 ff 50 H 7,0' 11,0'
) 74 fj51 I 71 111
* 54 %52 J 41 112
+ 6,0' %53 K 42 113
I 33 f154 L 43 114
- 4,0' %55 M 44 115

73 fj56 N 45 116
I 21 ,0'57 0 46 117

p 47 12,0'
ft1 12 ,0'(#1 Q 50 121
1 9'I fj61 R 51 122
2 92 ,0'62 s 22 123
3 !13 fj63 T 23 124
4 ~ f164 u 24 125
5 !15 1165 v 25 126
6 ft16 f166 w 26 127
7 "7 f167 x 27 13,0'
8 1,0' P.0' y 30 13)
9 11 ~1 z 31 132

: 15 ~2 [75 133
; 56 ~3 \ 36 134
< 76 ~4] 55 135
= 13 ~5
> 16 JV6
? 72 ftT7

@ 14 1~

Other symbols which may be represented in ASCII are converted to spaces in BCD (20)

A-2 Assembler

HP 2020A/B ASCII - BCD Conversion

Symbol ASCII BCD Symbol ASCII
(Octal code) (Octal code) (Octal code)

(Space) 4,0 2,0 A 1,01
! 41 52 B 1,02
II 42 37 c 1,03
43 13 D 1,04
$ 44 53 E 1,05
% 45 34 F 1,06
& 46 60t G 1,07
' 47 36 H 11,0
(5,0 75 I 111
) 51 55 J 112

* 52 54 K 113
+ 53 6,0 L 114

'
54 33 M 115

- 55 4,0 N 116
56 73 0 117

I 57 21 p 12,0
Q 121

.0 6,0 12 R 122

1 61 ,01 s 123

2 62 ,02 T 124

3 63 ,03 u 125

4 64 ,04 v 126

5 65 ,05 w 127

6 66 ,06 x 13,0

7 67 ,07
y 131

8 7,0 1,0 z 132

9 71 11
[133

: 72 15 J 135

; 73 56 T 136

< 74 76 - 137

= 75 35
> 76 16
? 77 72
@ 1,0,0 14

t BCD code of 60 always converted to ASCII code 53 (+).

t BCD code of 75 always converted to ASCII code 50 (()and

BCD code of 55 always converted to ASCII code 51 ()).

BCD
(Octal code)

61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31

75 t
55 t
77
32

Assembler A-3/ A-4

ASSEMBLER INSTRUCTIONS B

Symbols

label

m

I

c
(m,m+l)

comments

[l
{ }
p

()

" ¥

v
A

B

E

An

Bn

b

(A/B)

(AB)

SC

d

0

r

n

lit

Symbolic label, 1-5 alphanumeric characters and periods

Memory location represented by an expression

Indirect addressing indicator

Clear flag indicator

Two-word floating-point value in m and m+ 1

Optional comments

Optional portion of field

One of set may be selected

Program Counter

Contents of location

Logical product

Exclusive "or"

Inclusive "or"

A- register

B- register

E- register

Bit n of A-register

Bit n of B-register

Bit positions in B- and A-register

Complement of contents of register A or B

Two-word floating-point value in registers A and B

Channel select code represented by an expression

Decimal constant

Octal constant

Repeat count

Integer constant

Literal value

Assembler B-1

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

ISZ m [,I]

JMP m [,I]

JSB m [,I]

Add, Load and Store

ADA { m [,I] }
lit

ADB {m[,IJ}
lit

LDA {m[,Il}
lit

LDB { m [,I] }
lit

STA m [,I]

STB m [,I]

Logical

AND { m [,I]}
lit

XOR { m [,Il}
lit

IOR { m [,I] }
lit

CPA { m [,Il}
lit

CPB { m [,I]}
lit

REGISTER REFERENCE

Shift-Rotate

CLE

ALS

BLS

ARS

BRS

RAL

RBL

8-2 Assembler

(m) + 1- m: then if (m) = O, execute P + 2
otherwise execute P + 1

Jump tom; m -P

Jump subroutine to m: P + 1 - m; m + 1 - P

(m) + (A) - A

(m) + {B) - B

{m) -A

(m) - B

(A)-m

(B) - m

(m) f\ {A) - A

(m) i.;- (A)-A

(m) V (A) - A

If (m) "I (A), execute P + 2, otherwise
execute P + 1

If (m) "I (B), execute P + 2, otherwise
execute P + 1

0 - E

Shift (A) left one bit, 0 - A0 , A 15 unaltered

Shift (B) left one bit, 0 - Bo, B15 unaltered

Shift (A) right one bit, (A 15) - A14

Shift (B) right one bit, (B 15) - B14

Rotate (A) left one bit

Rotate (B) left one bit

Shift-Rotate (Continued)

RAR

RBR

ALR

BLR

ERA

ERB

ELA

ELB

ALF

BLF

SLA

SLB

Rotate (A) right one bit

Rotate (B) right one bit

Shift (A) left one bit, 0 - A15

Shift (B) left one bit, 0 - B15

Rotate E and A right one bit

Rotate E and B right one bit

Rotate E and A left one bit

Rotate E and B left one bit

Rotate A left four bits

Rotate B left four bits

If (A0) = 0, execute P + 2, otherwise execute P + 1

If (B0) = 0, execute P + 2, otherwise execute P + 1

Shift-Rotate instructions can be combined as follows:

ALS

ALS! ARS ARS
RAL RAL
RAR [,CLE] [,SLA] RAR
ALR 'ALR
ALF ALF
ERA ERA
ELA ELA

~ill [,CLE] [,SLB] [lill
No-operation

NOP Execute P + 1

Alter-Skip

CLA O's-A

CLB O's- B

CMA (A)-A

CMB (B) - B

CCA l's -A

CCB l's - B

CLE 0 -E

CME (E) - E

Assembler 8-3

Alter-Skip (Continued)

CCE

SEZ

SSA

SSB

INA

INB

SZA

SZB

SLA

SLB

RSS

1- E

If {E) = 0, execute P + 2, otherwise execute P + 1

If (A 15) = 0, execute P + 2, otherwise execute P + 1

If (B 15) = 0, execute P + 2, otherwise execute P + 1

(A)+ 1 - A

{B) + 1 - B

If (A) = 0, execute P + 2, otherwise execute P + 1

If (B) = O, execute P + 2, otherwise execute P + 1

If {A 0) = 0, execute P + 2, otherwise execute P + 1

If (B 0) = 0, execute P + 2, otherwise execute P + 1

Reverse sense of skip instructions. If no skip
instructions precede, execute P + 2

Alter-Skip instructions can be combined as follows:

r1cg~LE:}] [,SEZ] L1 [,SSA] [,SLA] [,INA] [,SZA] (,RRS]

(,SEZ] ~rn~;}] (,SSB] (,SLB] [,INB] [,SZB] (,RSSJ

INPUT/OUTPUT, OVERFWW, and HALT

Input/Output

STC SC [, C] Set control bitsc, enable transfer of one eleme.1t of data be-
tween devicesc and buffersc

CLC SC [,CJ Clear control bitsc. If sc = 0 clear all control bits

LIA SC [,C] {buffersc) - A

LIB SC [,C] (buffer sc) - B

MIA SC [, C] (buffersc) V (A) - A

MIB SC [, C] (buffersc) V (B) - B

OTA SC [, C] {A) - buffersc

OTB SC [,C] (B) - buffer SC

STF SC Set flag bitsc . If sc = 0, enable interrupt systeni. sc = 1 sets
overflow bit.

CLF SC Clear flag bitsc· If sc = 0, disable interrupt system. If sc =1,
clear overflow bit.

SFC SC If (flag bitsc) = 0, execute P + 2, otherwise execute P + 1.
If sc = 1, test overflow bit.

SFS SC If (flag bitsc) = 1, execute P + 2, otherwise execute P + 1.
If sc = 1, test overflow bit.

B-4 Assembler

Overflow

CLO 0 - overflow bit

STO 1 - overflow bit

soc [CJ If (overflow bit) = 0, execute P + 2,
otherwise execute P + 1

sos (CJ If (overflow bit) = 0, execute P + 2,
otherwise execute P + 1

Halt

HLT [sc [,C]] Halt computer

EXTENDED ARITHMETIC UNIT (requires EAU version of Assembler or

MPY)m[,IJ}
t lit

Extender Assembler)
(A) x (m) - (B ±msb and A lsb)

DIV {m[,IJ}
lit (B±msb and Alsb)/(m) - A, remainder - B

DLD {
m[, I)l

lit l (m) and (m + 1) - A and B

DST {m[,IJ} (A) and (B) - m and m + 1
lit

ASR b Arithmetically shift (BA) right b bits, B 15 extended

ASL b Arithmetically shift (BA) left b bits, B15 unaltered,

O's-to Alsb

RRR b Rotate (BA) right b bits

RRL b Rotate (BA) left b bits

LSR b Logically shift (BA) right b bits, O's to Bmsb

LSL b Logically shift (BA) left b bits, O's to Alsb

Assembler 8-5

PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NAM (name]

ORG m

ORR

ORB

END [m]

REP r
< statement>

IFN
<statements>

XIF

IFZ
<statements>

XIF

OBJECT PROGRAM LJNKAGE

Specifies relocatable program and its name.

Gives absolute program origin or origin for a segment of
relocatable or absolute program.

Reset main program location counter at value existing
when first ORG or ORB of a string was encountered.

Defines base page portion of relocatable program.

Terminates source language program. Produces trans­
fer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control statement con­
tains N.

Include statements in program if control statement con­
tains Z.

COM namei((size 1)](, name 2 ((size 2)], ••• , name 0 [(size.)j)

Reserves a block of common storage locations. name 1
identifies segments of block, each of length size.

ENT name 1 (,name 2 , ••• ,name0 J

EXT name 1 [, name2 , • •

ADDRESS AND SYMBOL DEFJNITION

label DEF m(,IJ

label ABS m

label EQU m

B-6 Assembler

Defines entry points, name 1 , that may be referred to by
other programs

,name.]

Defines external locations, name 1 , which are labels of
other programs, referenced by this program.

Generates a 15-bit address which may be referenced in-
directly through the label.

Defines a 16-bit absolute value to be referenced by the label.

Equates the value, m, to the label.

CONST ANT DEFINITION

ASC n, < 2n characters> Generates a string of 2n ASCII characters.

DEC d 1 [, d 2 , ••. , d 0 J Records a string of decimal constants of the form:

Integer: ±n

Floating-point: ±n. n, ±n. , ±. n, ±nE±e, ±n. nE±e,
±n. E±e, ±. nE±e

Records a string of extended precision
decimal constants of the form

Floating point: ±n, ±n. n,
±n., ±.n,
±nE-1€, ±n.nE±e,
±n. E-1€, ±. nE±e

OCT o 1 [, o2 , . . . , 00 J Records a string of octal constants of the form: ±000000

STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

ARITHMimc SUBROUTINE CALLS REQUESTStt

MPYt {m[,I] f
lit

(A)x (m)- (B±msb and Alsb)

DIVt {m[,I]}
lit (B±msband Alsb)/(m) - A, remainder -

FMP {m[,IJ}
lit

(AB) x (m, m + 1) - AB

FDV {m(,I]} (AB)/(m, m + 1) - AB
lit

FAD {m(,IJ} (m, m + 1) + (AB) - AB
lit

FSB {m[,I]} (AB)-(m, m + 1) - AB
lit

DLDt {m[,IJ}
lit

(m) and (m + 1) - A and B

DSTt m(,I] (A) and (B) - m and m + 1

B

t For configurations including Extended Arithmetic Unit, these mnemonics generate
hardware instructions when the EAU version of the Assembler or Extended Assembler
is used.

ttNot intended for use with DEX formatted numbers. For such numbers, JSB Machine
Instructions must be used.

Assembler B-7

ASSEMBLY LISTING CONTROL

UNL Suppress assembly listing output.

LST Resume assembly listing output.

SKP Skip listing to top of next page.

SPC n Skip n lines on listing

SUP Suppress listing of extended code lines (e.g. , as produced
by subroutine calls).

UNS Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page, where <heading>
is up to 56 ASCII characters.

B-8 Assembler

ALPHABOIC LIST OF INSTRUCTIONS C

ABS

ADA

ADB

ALF

ALR

ALS

AND

ARS

ASC

ASL

ASR

BLF

BLR

BLS

BRS

BSS

CCA

CCB

CCE

CLA

CLB

CLC

CLE

CLF

CLO

CMA

CMB

Define absolute value

Add to A

Add to B

Rotate A left 4

Shift A left 1, clear sign

Shift A left 1

"And" to A

Shift A right 1, sign carry

Generate ASCII characters

Arithmetic long shift left

Arithmetic long shift right

Rotate B left 4

Shift B left 1, clear sign

Shift B left 1

Shift B right 1, carry sign

Reserve block of storage starting at symbol

Clear and complement A (l's)

Clear and complement B (l's)

Clear and complement E (set E = 1)

Clear A

Clear B

Clear I/ 0 control bit

Clear E

Clear I/ 0 flag

Clear overflow bit

Complement A

Complement B

Assembler C-1

CME

COM

CPA

CPB

DEC
DEF
DEX
DIV

DLD

DST

ELA

ELB

END

ENT

ERA

ERB

EQU

EXT

FAD

FDV

FMP

FSB

HED

HLT

IFN

IFZ

INA

INB

!OR

ISZ

JMP

C-2 Assembler

Complement E

Reserve block of common storage

Compare to A, skip if unequal

Compare to B, skip if unequal

Defines decimal constants
Defines address
Defines extended precision constants
Divide

Double load

Double store

Rotate E and A left 1

Rotate E and B left 1

Terminate program

Entry point

Rotate E and A right 1

Rotate E and B right 1

Equate symbol

External reference

Floating add

Floating divide

Floating multiply

Floating subtract

Print heading at top of each page

Halt

When N appears in Control Statement, assemble
ensuing instructions

When Z appears in Control Statement, assemble
ensuing instructions

Increment A by 1

Increment B by 1

Inclusive "or" to A

Increment, then skip if zero

Jump

JSB Jump to subroutine

LDA Load into A

LDB Load into B

LIA Load into A from I/ 0 channel

LIB Load into B from I/ 0 channel

LSL Logical long shift left

LSR Logical long shift right

LST Resume list output (follows a UNL)

MIA Merge "or" into A from I/O channel

MIB Merge "or" into B from I/O channel

MPY Multiply

NAM Names relocatable program

NOP No operation

OCT Defines octal constant

ORB Establish origin in base page

ORG Establish program origin

ORR Reset program location counter

OTA Output from A to I/ 0 channel

OTB Output from B to I/O channel

RAL Rotate A left 1

RAR Rotate A right 1

RBL Rotate B left 1

RBR Rotate B right 1

REP Repeat next statement

RRL Rotate A and B left

RRR Rotate A and B right

RSS Reverse skip sense

SEZ Skip if E = 0

SFC Skip if I/ 0 flag = 0 (clear)

SFS Skip if I/ 0 flag = 1 (set)

SKP Skip to top of next page

Assembler C-3

SLA

SLB

soc
sos
SPC

SSA

SSB

STA

STB

STC

STF

STO

SUP

SWP

SZA

SZB

UNL

UNS

XIF

XOR

C-4 Assembler

Skip if LSB of A = 0

Skip if LSB of B = 0

Skip if overflow bit= 0 (clear)

Skip if overflow bit = 1 (set)

Space n lines

Skip if sign A = 0

Skip if sign B = 0

Store A

Store B

Set I/ 0 control bit

Set I/O flag

Set overflow bit

Suppress list output of additional code lines

Switch the (A) and (B)

Skip if A= 0

Skip if B = 0

Suppress list output

Resume list output of additional code lines

Terminate an IFN or IFZ group of instructions

Exclusive "or" to A

SAMPLE PROGRAMS D

Following are two sample programs, the second of which implements several options
of the Extended Assembler.

PAR TS FILE UPDATE

A master file of parts is updated by a parts usage list to produce a new master
parts file. A report, consisting of the parts used and their cost, is also produced.

The master file and the parts usage file contain four word records. Each re­
cord of the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

Identification Quantity 1f::f
Identification field of the Parts Master Files exists in ASCII althrough the
entire record is read and written in binary.

Parts Usage File (PRTSU)

I identification Quantity

The parts usage file has been recorded in ASCII.

Parts Cqst Report (PRTSC)

Identification Cost
for Quantity

The Parts Cost Report is recorded in ASCII with spacing and editing for
printing.

The sample program reads and writes the files, adjusts the new stock levels,
and calculates the cost. External subprograms perform the binary-to-decimal
and decimal-to-binary conversions and handle unrecoverable input/output
errors, invalid data conditions, and normal program termination. Input/output
operations are performed using the Basic Control System input/output sub­
routine, .IOC.

Assembler D-1

START

WRITE NEW PARTS; _____ ,..

MASTER

D-2 Assembler

SUBTRACT
USAGE QUANTITY

FROM
MASTER QUANTITY

CALCULATE
COST OF PARTS

USED

SAMPLE PROGRAM
GENERAL FLOW CHART

END

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT

0001 ASMB1R181L1T
START R 001<1000
PRTSM B 0000210
?RTSU B 000004
?RTSC 8 000010
EOTSI 8 000023
EOTS2 a 000024
MTEM? 8 000025
UTEMP 8 000026
SWT"IP B 000027
SPA CS 8 000031
DLRSG 8 003033
A 000000
a 00a001
.IQC. x 0a00a1
aCONV x 000002
OCON\/ x 000003
ABORT x 000004
HALT x 000005
oroar c 000000
iHOBO c <1002102
BTODI c 000003
BTODO c 00000 5
OPEN R 000002
SPCFL R 000003
OLD x 000006
DST x 000'107
READU R 000013
CKSTU R 000020
RJCTU R 000035
EOTiJ R 000040
:-!SGiJ R 000051
REAIJM R 030063
CKSnl R 000070
RJCTM R 000105
EOTM R 000110
MSGM R 000117
HL TSW R 000137
C0'1PR R 0001 40
PROC."! R 000157
PRO CC R 000165
MPY x 000010
CONVM R 000213
CONiJI R 000224
CONU2 R 000235
CON\/C R 000246
WR ITC R 000261
CKSTC R 000266
RJCTC R 000276
WR! TN R 000301
CKSTN R 000306
R.JCTN R 003316

NO El<RORS*

Assembler 0-3

SAMPLE ASSEMBLER LIST OUTPUT

PAGE 0002

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013

0014
0015
0016
0017
0018•
0019
0020*
0021
0022•
0023•
0024
0025•
0026*
0027
0028
0029•
0030•
0031•
0032
0033•
0034
0035

0036

0037

0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053•

00000
00000 000000
00001 026002R
00000
00000 000000
00004 000000
00010 000000
00023 026063R
0002 4 026301 R
0002 5 000000
00026 000000
00027 000000
00031 020040
00032 020040
00033 020044
00000
00001

00002

00002 000000
00003 016006X
00004 0000318
00005 016007X
00006 000012B
00007 016007X
00010 0000!6B
00011 060033B
00012 070020B
00013 016001X
00014 010001
0001 5 026035R
00016 000004B
00017 000004
00020 016001X
00021 040001
00022 002020
00023 026020R
00024 001200
00025 002020
00026 026030R
0002 7 02 60 63R

D-4 Assembler

NAM UPDTE
START NOP

JMP OPEN
ORB

PRISM BSS 4
PRTSU BSS 4
PRTSC BSS II
EOTSI JMP READM
EOTS2 JMP WRI TN
MTEMP BSS 1
UTEMP BSS 1
SWTMP BSS 2
SPACS ASC 2,

OLRSG ASC I, $

A EQU 0
B EQU 1

EXT .roe.

EXT BCONV

EXT DCONV

EXT ABORT

ASSIGN STORAGE & CONSTANTS TO BP
MASTER PARTS FILE - BINARY·
PARTS USAGE LIST - ASCII•
PARTS COST REPORT - ASCII•

PERFORM I/O 0PERATIONS USING BCS
I/O CONTROL ROUTINE·
ENTRY POINT FOR DECIMALCASCIIl
TO BINARY CONVERSION SUBPROGRAM.
ENTRY POINT FOR BINARY TO
OECIMALCASCIIl CONVERSION SUB­
PROGRAM.
ENTRY POINT FOR SUBPROGRAM WHICH
HANDLES UNRECOVERABLE I/0 ERRORS
OR INVALID DATA.

EXT
COM

HALT ENO OF PROGRAM SUBROUTINE.
OTOBIC2>,0TOBO.BTOOIC2l,BTOOOC2l

ORR

OPEN NOP
SPCFL OLD SPACS

DST PRTSC+2

OST PRTSC+6

LOA DLRSG
STA PRTSC+8

REAOU JSB • roe.
OCT 10001
JMP RJCTU
DEF PRTSU
DEC 4

CKSTU JSB • roe.
OCT 4000 I
SSA
JMP CKSTU
RAL
SSA
JMP *+2
JMP READM

COMMON STORAGE LOCATIONS USED TO
PASS OATA BETWEEN MAIN PROGRAM
ANO CONVERSION SUBPROGRAMS.
RESETS PLC AFTER USE OF ORB AT
BEGINNING OF PROGRAM·

STORES EDITING CHARACTERS IN

OUTPUT AREA FOR PARTS COST

REPORT,

READ ONE RECORD FROM USAGE LIST
LOCATED ON STANDARD UNIT I
CTELEPRINTER INPUT>. PRTSU IS
ADDRESS OF STORAGE AREAJ AREA IS
4 WORDS LONG.
CHECK STATUS OF UNIT I·

IF BUSY, LOOP UNTIL FREE.

IF COMPLETE, TRANSFER TO SECTION
WHICH READS MASTER FILE RECORD.

PAGE 0003

0054 00030 001727 ALF.ALF TEST END OF TAPE STATUS BIT
0055 00031 001200 RAL CORIGINAL BIT 05>.
0056 00032 002020 SSA
0057 00033 026040R JMP EOTU ff SET, GO TO EQT PROCEDURE.
0058 00034 026004X JMP ABORT IF NOT SET, SOME ERROR CONDITION
0059* C UNRECOVERABLE> EXISTS.
0060 00035 006020 RJCTU SSS CHECK CAUSE OF REJECT. ff UNIT
0061 00036 026013R JMP REA DU BUSY LOOP UNTIL FREE. ANY OTHER
0062 00037 026004X JMP ABORT CAUSE IS UNRECOVERABLE ERROR.
0063 00040 060023B EOTU LDA EOTSl IF END OF USAGE FILE, ALTER
0064 00041 072002R STA OPEN PROGRAM SEQUENCE TO BYPASS
0065 00042 060024B LDA EOTS2 SECTIONS THAT READ AND PROCESS
0066 00043 072140R STA COM PR USAGE FILE· PRINT MESSAGE ON
0067 00044 0!6001X JSB • IOC. TELEPRINTER INDICATING EOT.
0068 00045 020002 OCT 20002
0069 00046 026044R JMP EOTU+4
0070 00047 000051R UEF MSGU
0071 00050 000011 DEC 9
0072 00051 042516 MSGU ASC 9,END OF USAGE FILE

00052 042040
00053 047506
00054 020125
00055 051501
00056 043505
00057 020106
00060 044514
00061 042440

0073 00062 026063R JMP READM
0074 00063 016001X READM JSB .roe. READ A RECORD FROM MASTER PARTS
0075 00064 010105 OCT 10105 FILE ON STANDARD UNIT 05CPUNCHED
0076 00065 026105R JMP RJCTM TAPE READER>. PRTSM IS ADDRESS
0077 00066 000000B DEF PRTSM OF STORAGE AREAJ AREA IS 4 WORDS
0078 00067 000004 DEC 4 LONG. RECORD IS IN BINARY FORMAT
0079 00070 016001X CKSTM JSB .Ioc. CHECK STATUS OF UNIT 5·
0080 00071 040005 OCT 40005
0081 00072 002020 SSA
0082 00073 026070R JMP CKSTM IF BUSY• LOOP UNTIL FREE·
0083 00074 001200 RAL
0084 00075 002020 SSA
0085 00076 026100R JMP *+2
0086 00077 026140R JMP COMPR IF COMPLETE, TRANSFER TO EITHER
0087 00100 001727 ALF.ALF PROCESSING OR WRITE OUTPUT
0088 00101 001200 RAL DEPENDING ON SETTING OF COMPRo
0089 00102 002020 SSA TEST FOR END OF TAPE.
0090 00103 026110R JMP EOTM IF END, GO TO EOT PROCEDURE.
0091 00104 026004X JMP ABORT IF NOT, AN UNRECOVERABLE ERROR
0092* EXISTS•
0093 00105 006020 RJCTM SSB CHECK CONTENTS OF B F-OR CAUSE OF
0094 00106 026063R JMP READM REJECT· IF UNIT BUSY, LOOP UNTIL
0095 00107 026004X JMP ABORT FREE, OTHERWISE I/O ERROR EXISTS
0096 00110 062137R EOTM LOA HLTSW ALTER PROGRAM SEQUENCE TO HALT
0097 00111 072315R STA CKSTN+7 EXECUTION AFTER LAST RECORD IS
0098 00112 016001X JSB .Ioc. WRITTEN PRINT MESSAGE
0099 00113 020002 OCT 20002 INDICATING END OF MASTER INPUT·
0100 00114 026112R JMP EOTM+2
0101 00115 000117R DEF MSGM
0102 00116 000017 DEC 15
0103 00117 042 516 MSGM ASC 15> END OF MASTER PARTS FILE INPUT

Assembler D-5

PAGE 0004

0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127

0128

0129

0130

0131
0132

0133
0134
0135
0136

0137

0138
0139
0140

00120 042040
00121 047506
00122 020115
00123 040523
00124 052105
00125 051040
00126 050101
00127 051124
00 1 30 0 51 440
00131 043111
00132 046105
00133 020111
00 1 341 0 47 1 20
00135 052 524
00136 026140R
00137 026005X HLTSW
00140 000000 GOMPR
001 41 016224R
001 42 0 I 62 l 3R
00143 0600268
001 44 06402 SB
00145 050001
00146 026157R
00147 007004
00150 040001
00151 002020
00152 026004X
00153 062156R
001 54 07231 SR
00155 026301R
001 56 02 6063R
00157 016235R PROGM
00160 0600028
00161 0640278
00162 007004
00163 040001
00164 0700028
00165 016006X PROGG
00166 00000-48
00167 016007X
00170 0000108
00171 016006X
00172 000006B
00173 016007X
00174 000014B
00175 0600038
00176 016010X
00177 000027B
00200 070030B
00201 0741027B
00202 016246R
00203 016006X
00204 000027B
00205 016007X
00206 000021B
00207 062212R
00210 072315R
00211 026261R

D-6 Assembler

JMP COMPR
JMP HALT
NOP
JSB CONUI
JSB CONVM
LOA UTEMP
LOB MTEMP
GPA B
JMP PROCM
CMB.INB
ADA B
SSA
JMP ABORT
LOA •+3
STA CKSTN+7
JMP WRITN
JMP READM
JSB CONU2
LOA PRTSM+2
LOB UTEMP+I
CMB,INB
ADA B
STA PRTSM+2
OLD PRTSU

DST PRTSC

OLD PRTSU+2

DST PRTSC+4

LOA PRTSM+3
MPY UTEMP+I

STA SWTMP+I
SIB SWTMP
JSB CONVC
DLD SWTMP

DST PRTSC+9

LOA •+3
STA CKSTN+7
JMP WRI TC

END OF PROGRAM SUBROUTINE.

CONVERT IO NUMBER FIELDS OF
MASTER AND USAGE FILES TO BIN.
LOAD THESE FIELDS FROM TEMPORARY
STORAGE.
COMPARE
IF EQUAL• JUMP TO PROCESSING
IF IO NUMBER OF MASTER GREATER
THAN IO NUMBER OF USAGE, DATA IN
USAGE FILE ERRONEOUS. TERMINATE
RUN.
IF ID MASTER LESS THAN JD USAGE,
ALTER SEQUENCE! READ NEXT MASTER
RECORD IMMEDIATELY AFTER WRITING
CURRENT MASTER RECORD.
CONVERT QUANTITY FIELD OF USAGE
FILE TO BINARY ANO SUBTRACT FROM
QUANTITY FIELD OF MASTER ANO
STORE RESULT.

STORE ID OF PARTS USED IN REPORT

FILE STORAGE AREA·

STORE QUANTITY Or PARTS USED IN

REPORT rILE STORAGE AREA.

COMPUTE COST Or PARTS USED.

CONVERT RESULT TO DECIMAL

STORE IN REPORT FILE AREA·

ALTER SEQUENCE: READ NEXT USAGE
RECORD AFTER WRITING CURRENT
MASTER RECORD.

PAGE 0005

01..-1 00212 026013R JMP READU
0142 00213 000000 CONVM NOP
0143 00214 016006X OLD PRTSM STORE ID f"I ELDS IN COMMON

00215 000000B
0144 00216 016007X DST DTOBI LOCATIONS TO BE PROCESSED BY

00217 000000C
0145 00220 016002X JSB BCONV CONVERSION SUBPROGRAM. ON
0146 00221 062002C LOA DTOBO COMPLETION, STORE RESULTS IN
0147 00222 070025B STA MTEMP LOCATIONS USED BY PROCESSING
0148 00223 126213R JMP CONVM•l SECTIONS. CONVM APPLIES TO ID Or
0149 00224 000000 CONUl NOP MASTER PARTS rILEJ CONUl • TO ID
0150 00225 016006X OLD PR TSU Or USAGEJ CONU2. TO QUANTITY Or

00226 000004B
0151 00227 016007X DST DTOBI USAGEJ AND CONVC, TO COST Or

00230 000000C
0152 00231 016002X JSB BCONV PARTSCTHIS IS A BINARY TO
0153 00232 062002C LOA DTOBO DECIMAL CONVERSION>•
0154 00233 0700268 STA UTEMP
0155 00234 126224R JMP CONUl.I
0156 00235 000.000 CONU2 NOP
0157 00236 016006X DLD PRTSU+2

00237 0000068
0158 00240 016007X DST DTOBI

00241 000000C
01 59 00242 016002X JSB BCONV
0160 00243 062002C LOA DTOBO
0161 00244 070027B STA UTEMP+l
0162 00245 126235R JMP CONU2, I
0163 00246 000000 CONVC NOP
0164 00247 016006X OLD SWTMP

00250 000027B
0165 00251 016007X DST BTODI

00252 000003C
0166 00253 016003X JSB DCONV
0167 00254 016006X OLD BTOOO

00255 000005C
0168 00256 0!6007X OST SWTMP

00257 000027B
0169 00260 126246R JMP CONVC.I
0170 00261 016001X WR ITC JSB .roe. WRITE ONE RECORD OF PARTS COST
0171 00262 020102 OCT 20102 REPORT ON STANDARD UNIT 2
0172 00263 026276R JMP RJCTC CTELEPRINTER OUTPUT>• PRTSC IS
0173 00264 0000108 DEF PRTSC ADDRESS IN STORAGE AREAJ AREA IS
0174 00265 000013 DEC II II WORDS LONG. RECORD IS IN ASCI
0175 00266 01600!X CKSTC JSB .roe. CHECK STATUS OF UNIT 2.
0176 00267 040002 OCT 40002
0177 00270 002020 SSA
0178 00271 026266R JMP CKSTC Ir BUSY, LOOP UNTIL FREE·
0179 00272 001200 RAL
0180 00273 002020 SSA
0181 00274 026004X JMP ABORT TERMINATE IF ANY I/0 ERROR.
0182 00275 026301R JMP WRITN ff COMPLETE, TRANSFER TO WRITN•
0183 00276 006020 RJCTC SSB Ir BUSY, LOOP UNTIL FREE·
0184 00277 026~61R JMP WR ITC TERMINATE ON ANY OTHER REJECT
0185 00300 026004X JMP ABORT CONDITION•
0186 00301 016001X WRITN JSB .roe. WRITE ONE RECORD CBINARY> OF
0187 00302 020104 OCT 20104 NEW MASTER PARTS LIST ON UNIT 4
0188 00303 026316R JMP RJCTN CTAPE PUNCH>• PRTSM CINPUT AREA>

Assembler D-7

PAGE 0006

0189 00304 0000008 DEF" PRTSM IS ALSO USED AS OUTPUT AREA•
0190 00305 000004 DEC 4
0191 00306 016001X CKSTN JSB • Ioc. CHECK STATUS Of UNIT 4•
0192 00307 040004 OCT 40004
0193 00310 002020 SSA
0194 00311 026306R JMP CKSTN If BUSY• LOOP UNTIL FREE.
0195 00312 001230 RAL
0196 00313 002020 SSA
0197 00314 026004X JMP ABORT
0198 00315 026013R JMP REA DU
0199 00316 006020 RJCTN SSB If BUSY• LOOP UNTIL FREE, OTHER-
0200 00317 026301R JMP WR I TN WISE TERMINATE.
0201 00320 026034X JMP ABORT
0202 END START

NO ERRORS*

D-8 Assembler

CALCULATING DISTANCE

Program "Line" will either calculate the distance between two points or find the
slope of the line connecting the points; then the point equidistant from each point (the
mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers at a
time. The first quantity is the X coordinate of the first point; the second quantity is
the Y coordinate of the first point; the third and fourth quantities are the X and Y co­
ordinates of the second point.

The result is output to the teleprinter by the formatter library routine; each quan­
tity cannot be more than an eight digit real number.

IFN IFZ

L---,--~

MIDPOINT=

X1-X2 Y1-Y2
-2- --2-

HALT

GENERAL FLOW CHART

0

Assembler D-9

Below is the source program as it is typed up on the teleprinter. After it are the
assembler listings. The first listing results from including the Z option in the control
statement. In the second listing the N option has been included in the control statement.

NOTE: When the complete data tape has been read and the tape reader en­
counters ':10 blank feed frames, anEQT message is typed on the teleprinter
and the computer halts. Thus no halt instruction is needed in the program.)

HED LINE rORMULI: DISTANCE, SLOPE. MID-POINT
PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE Or THE LINE CONNECTING
THE POINTS; THEN THE POINT EQUIDISTANT FROM EACH

* POINT CTHE MID-POINT> IS CALCULATED.
DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE

FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE Or THE FIRST POINTJTHE
SECOND QUANTITY IS THE Y COORDINATE Or THE FIRST POINTJ
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES

* Or THE SECOND POINT.
THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE

FORMATTER LIBRARY ROUTINEJ EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

NAM LINE
START NOP

.DATA

.PRIN
DATA
f"MT
f"MT2
f"MT3

JMP INPUT
EXT .Ioc •• rLOAT.IrIX.SQRT
EXT .010 ••• 101.,.DTA ••• RAR.
EXT .IOR ••• IAR.
DEF DATA
DEF PRINT
BSS 4
ASC 31Cr8.3l
ASC s.crs.3,","•rs.31>
ASC 31C4I2>
SKP

INPUT THE FIRST TWO POINTSJ FOUR DATA WORDS
INPUT NOP

LOA =BS
CLB, INB
JSB • DIO·
DEF f"MT3
DEr *+4
LOA =B..11
LOB .DATA
JSB •JAR·
SPC 3

THE DISTANCE BETWEEN THE TWO POINTS:
If"Z
LOA DATA+2
CHA.INA
ADA DATA
SPC I
JMP *+5

PRINT REP .II
NOP
SPC I
STA PRINT
SUP

D-10 Assembler

MPY PRINT
STA PRINT
SPC I
LOA DATA+3
CMA.INA
ADA DATA+!
STA PRINT+ I
MPY PRINT+ I
ADA PRINT
SPC I
JSB FLOAT
JSB SQRT
DST PRINT
XIF
SPC 3

FIND THE SLOPE

PRINT

IFN
LOA DATA+2
CMA,INA
ADA DATA
JMP *+5
REP 4
NOP
STA PRINT
SPC I
LOA OATA+3
CMA.INA
ADA DATA+!
CLB
DIV PRINT
OST PRINT
XIF
SPC 3

OF THE LINE

* OUTPUT THE RESULT
LOA =B2
CLB
JSB .010.
DEF FMT
DEF *+4
DLD PRINT
JSB • IOR.
JSB .OTA.
SPC 3

* FIND THE MIO-POINT OF THE LINE SEGMENT:
LOA DATA
ADA DATA+2
CLB
JSB FLOAT
FMP =F.5
OST PRINT
SPC I
LOA OATA+I
ADA DATA+3
CLB
JSB FLOAT
FMP =F.S
DST PRINT+2
SPC I
UNL

Assembler D· 11

LDA =82
CLB
JSB .DJO.
DEF FMT2
DEF *+5
LDA =82
LDB .PRIN
JSB .RAR.
JSB .OTA.
L.:ST
SPC 3
UNS
JMP INPUT
END START

D-12 Assembler

PAGE 0001

0001 ASMB.R.L.T.z
START R 000000
.roe. x 000001
FLOAT x 000002
!FIX x 000003
SQRT x 000004
.010. x 000005
.IOI. x 000006
.OTA. x 000007
.RAR. x 000010
.IOR. x 000011
.IAR. x 000012
.DATA R 000002
.PRIN R 000003
DATA R 000004
FMT R 000010
FMT2 R 000013
FMT3 R 000023
INPUT R 000026
PRINT R 000043
.MPY x 000013
.OST x 000014
.OLD x 000015
.FMP x 000016

NO ERRORS•

Assembler D-13

PAGE 0002 #01 LINE FORMULI: DISTANCE. SLOPE. MID-POINT

0002•
0003*
0004•
0005•
0006•
0007*
0008*
0009•
0010*
0011*
0012*
0013•
0014*
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025

0026

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTSJ THEN THE POINT EQUIDISTANT FROM EACH
POINT CTHE HID-POINTl IS CALClLATEDo

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DlGIT REAL NUMBERS AT A TIME· THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINTJTHE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINTJ
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINEJ EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00000 NAM LINE
00000 000000 START NOP
00001 026026R JMP INPUT

00002
00003
00004
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025

000004R
000043R
000000
024106
034056
031451
024106
034056
031454
021054
021054
043070
027063
027451
024064
044462
024440

EXT .1oc •• FLOAT.IFIX.SQRT
EXT .DIO ••• IOI ••• DTA ••• RAR·
EXT .JOR.,.IAR.

oDATA DEF DATA
.PRIN DEF PRINT
DATA BSS 4
FHT ASC 3.<FB.3>

FMT2

FHT3 ASC 3•<412>

D-14 Assembler

PAGE 0003 #01 LINE FORMUJ...I: DISTANCE. SLOPE. MID-POINT

0028*
0029
0030
0031
0032
0033
0034
0035
0036
0037

0039*
0040
0041
0042
0043

0045
0046
0047
0047
0047
0047

0049
0050
0051
0052

0054
0055
0056
0057
0058
0059

0061
0062
0063
0064

0066*
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

INPUT THE FIRST TWO POINTSJ FOUR DATA WORDS
00026 000000 INPUT NOP
00027 062131R LOA =BS
00030 006404 CLB.INB
00031 016005X JSB .DJO.
00032 000023R DEF FHT3
00033 000037R DEF *+4
00034 062132R LOA =B4
00035 066002R LOB .DATA
00036 016012X JSB .JAR·

THE DISTANCE BETWEEN THE TWO POINTS:
IFZ

00037 062006R LOA DATA+2
00040 003004 CHA. INA
00041 042004R ADA DATA

00042 026047R JMP *+S
PRINT REP 4

00043 000000 NOP
00044 000000 NOP
00045 000000 NOP
00046 000000 NOP

00047 072043R STA PRINT
SUP

00050 016013X MPY PRINT
00052 072043R STA PRINT

00053 062007R LDA DATA+3
00054 003004 CHA.INA
00055 04200SR ADA DATA+l
00056 072044R STA PRINT+ I
00057 016013X HPY PRINT+ I
00061 042043R ADA PRINT

00062 016002X JSB FLOAT
00063 016004X JSB SQRT
00064 016014X DST PRINT

XIF

FIND THE SLOPE OF THE LINE
IFN
LOA DATA+2
CHA.INA
ADA DATA
JMP *+S

PRINT REP 4
NOP
STA PRINT
SPC 1
LDA DATA+3
CHA.INA
ADA DATA+l

Assembler D-15

PAGE 0004 #01 LINE FORMULI: DI STANCE. SLOPE. MID-POINT

0079 CLB
0080 DIV PRINT
0081 DST PRINT
0082 XIF

0084* OUTPUT THE RESULT
0085 00066 062133R LOA =82
0086 00067 006400 CLB
0087 00070 016005X JSB .oio.
0088 00071 000010R DEF FMT
0089 00072 000076R DEF *+4
0090 00073 016015X OLD PRINT
0091 00075 016011X JSB .IOR.
0092 00076 016007X JSB .OTA.

0094* FIND THE MID-POINT OF THE LINE SEGMENT:
0095 00077 062004R LOA DATA
0096 00100 042006R ADA DATA+2
0097 00101 006400 CLB
0098 00102 016002X JSB FLOAT
0099 00103 016016X FMP =F.5
0100 00105 016014X DST PRINT

0102 00107 062005R LOA DATA+ I
0103 00110 042007R ADA DATA+3
0104 00111 006400 CLB
0105 00112 016002X JSB FLOAT
0106 00113 016016X FMP =F.5
0107 00115 016014X DST PRINT+2

0119 LST

0121 UNS
0122 00130 026026R JMP INPUT

00131 000005
00132 000004
00133 000002
00134 040000
00135 000000

0123 END START
NO ERRORS*

D-16 Assembler

PAGE 0001

0001 ASMB.R.L.T,N
START R 000000
.1oc. x 000001
FLOAT x 000002
IfIX, x 000003
SQRT x 000004
.DIO. x 000005
.101. x 000006
.DTA. x 000007
.RAR. x 000010
.JOR. x 000011
.JAR. x 000012
.DATA R 000002
.PRIN R 000003
DATA R 000004
fMT R 000010
fMT2 R 000013
fMT3 R 000023
INPUT R 000026
PRINT R 000043
.DIV x 000013
.DST x 000014
.DLD x 000015
.fMP x 000016
** NO ERRORS*

Assembler D-17

PAGE 0002 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

0002*
0003*
0004*
0005*
0006*
0007*
0008*
0009*
0010*
0011*
0012*
0013*
0014*
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025

0026

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTSJ THEN THE POINT EQUIDISTANT FROM EACH
POINT <THE MID-POINT> IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINTJTHE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT;
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00000 NAM LINE
00000 000000 START NOP
00001 026026R JMP INPUT

00002
00003
00004
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025

000004R
000043R
000000
024106
034056
031451
024106
034056
031454
021054
021054
043070
027063
027451
024064
044462
024440

EXT .IOC •• FLOAT.IFIX.SQRT
EXT .DI0.,.101 ••• DTA ••• RAR.
EXT .IOR. •. IAR·

.DATA DEF DATA

.PRIN DEF PRINT
DATA BSS 4
FMT ASC 3.<F8.3>

FMT2 ASC 8. <F8. 3•"•"• F8. 31 >

FMT3 ASC 3.<412>

D· 18 Assembler

PAGE

0028*
0029
0030
0031
0032
0033
0034
0035
0036
0037

0039*
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

0066*
0067
0068
0069
0070
0071
0072
0073
0073
0073
0073
0074

0076
0077
0078

0003 #01 LINE F"ORMULI: DISTANCE, SLOPE, MID-POINT

INPUT THE F"IRST TWO POINTSJ F"OUR DATA WORDS
00026 000000 INPUT NOP
00027 062123R LOA =BS
00030 006404 CLB,INB
00031 0!6005X JSB .010.
00032 000023R DEF" F"MT3
00033 000037R DEF" *+4
00034 062124R LOA =B4
00035 066002R LOB .DATA
00036 016012X JSB .JAR·

THE DISTANCE BETWEEN THE TWO POINTS:

F"IND

00037
00040
00041
00042

00.043
00044
00045
00046
00047

00050
00051
00052

IF"Z
LOA DATA+2
CMA,INA
ADA DATA
SPC I
JMP *+5

PRINT REP 4
NOP
SPC I
STA PRINT
SUP
MPY PRINT
STA PRINT
SPC I
LOA DATA+3
CMA,INA
ADA DATA+!
STA PRINT+!
MPY PRINT+!
ADA PRINT
SPC I
JSB F"LOAT
JSB SQRT
DST PRINT
XIF"

THE SLOPE OF" THE LINE
IF"N

062006R LDA DATA+2
003004 CMA, INA
042004R ADA DATA
026047R JMP *+5

PRINT REP 4
000000 NOP
000000 NOP
000000 NOP
000000 NOP
072043R STA PRINT

062007R LDA DATA+3
003004 CMA,INA
042005R ADA DATA+!

Assembler D-19

PAGE 0003 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

0028* INPUT THE FIRST TWO POINTSJ FOUR DATA WORDS
0029 00026 000000 INPUT NOP
0030 00027 062I23R LOA =BS
0031 00030 006404 CLB,INB
0032 00031 016005X JSB .010.
0033 00032 000023R DEF FMT3
0034 00033 000037R DEF *+4
0035 00034 062124R LOA =B4
0036 00035 066002R LOB .DATA
0037 00036 016012X JSB .IAR.

0039* THE DISTANCE BETWEEN THE TWO POINTS:
0040 IFZ
0041 LOA DATA+2
0042 CMA,JNA
0043 ADA DATA
0044 SPC I
0045 JMP *+5
0046 PRINT REP 4
0047 NOP
0048 SPC I
0049 STA PRINT
0050 SUP
0051 MPY PRINT
0052 STA PRINT
0053 SPC I
0054 LOA DATA+3
0055 CMA,INA
0056 ADA DATA+!
0057 STA PRINT+I
0058 MPY PRINT+ I
0059 ADA PRINT
0060 SPC I
0061 JSB FLOAT
0062 JSB SQRT
0063 DST PRINT
0064 XIF

0066* FIND THE SLOPE OF THE LINE
0067 I FN
0068 00037 062006R LOA DATA+2
0069 00040 003004 CMA,INA
0070 00041 042004R ADA DATA
0071 00042 026047R JMP *+5
0072 PRINT REP 4
0073 00043 000000 NOP
0073 00044 000000 NOP
0073 00045 000000 NOP
0073 00046 ·000000 NOP
0074 00047 072043R STA PRINT

0076 00050 062007R LOA DATA+3
0077 00051 003004 CMA,INA
0078 00052 042005R ADA DATA+!

D-20 Assembler

SYSTEM INPUT/OUTPUT SUBROUTINES E

The System Input/ Outout (SIO) subroutines may be used to
perform basic input/ output operations for programs in ab­
solute form. t

MEMORY ALLOCATION

These drivers are stored in high memory immediately
preceding the Basic Binary Loader. The Teleprinter driver
must be loaded first; it is stored in the highest portion of
this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic
Tape Unit may then be loaded. The sequence of loading
must fall within this order, depending on your equipment
configuration: Line Printer Driver, Punched Tape Reader
Driver (or Marked Card Reader), Tape PUnch Driver, Mag­
netic Tape Driver, and if needed, the MTS Boot.

The drivers are accessed through 15-bit absolute addresses
which are stored in the System Linkage area starting at loca­
tion 1018 • The allocation of memory is as follows:

BASIC BINARY LOADER

TELEPRINTER DRIVER

l================::::::l~;;--......PUNCHED TAPE
READER DRIVER

TAPE PUNCH DRIVER

MAGNETIC TAPE DRIVER

INTER - PASS LOADER

SYSTEM LINKAGE

RESERVED LOCATIONS

t The SIO subroutines are designed for use with FORTRAN,
Assembler, Symbolic Editor, etc.; however, they may be
used with any absolute object program.

Assembler E-1

OPERATION .AND CALLING SEQUENCE:

PAPER TAPE DEVICES
All data transmission is accomplished without interrupt con­
trol, and therefore, operations are not buffered by the drivers.
Control is not returned to the calling program until an opera­
tion is completed. Data is transferred to and from buff er
storage areas specified in the user program.

The general form of the paper tape input/ output calling sequence
is·

· LDA (buffer length) (words or characters)

LDB (buffer address)

JSB lOffi,I (f is Input/ Output function)

(normal return)

Register Contents

When the JSB is performed, the A-Register must contain the
length of the buffer storage area and the B-Register, the ad­
dress of the buffer. Control returns to the location following
the JSB. After an input request is completed, the A-Register
contains a positive integer indicating the number of characters,
or a negative integer to indicate the words transmitted or zeros,
if an End-of-Tape (EOT) condition occurred.

The digit supplied for fin the JSB instruction determines the
paper tape input/ output function to be performed. The value of
the operand address is the location in the System Linkage that
contains the absolute address of the driver entry point. The
following are available:

101 Input
102 List Output
103 Punch Output ,
104 Keyboard Input-ASCII data is read from Teleprinter

and printed as it is received.

H the Teleprinter driver alone is loaded, these locations point
to entry points of this driver. If Punched Tape Reader and
Tape Punch drivers are in memory, location 101 points to the
Punched Tape Reader driver and locatlon 103, to the Tape
Punch driver. If the latter are to be used, they must be loaded
after the Teleprinter driver.

E-2 Assembler

OPERATION AND CALLING SEQUENCE:
MAGNETIC TAPE DRIVER

As with the Paper Tape SIO drivers, all data transmission
is accomplished without interrupt control. Control is not re­
turned to the calling program until an operation is completed.
(Rewind and rewind standby are the only exceptions to this. In
these cases return is made as soon as the command is
accepted.)

The general form of the calling sequence is:

LDA (buffer length) or (file count)

LDB (buffer address) or (record count)

JSB 107B,I

OCT <command code)

< EOF /EOT /SOT return>

(error return)

<normal return)

NOTE: Location 107 8 must contain the address of the
magnetic tape driver.

Register Contents

Before initiating read or write operations, the A-Register must
contain the buffer length. This will be a positive integer if
length is defined in characters and a negative integer if length
is defined in words. The B-Register must contain the buffer
address.

Before initiating tape positioning operations, the A-Register
must contain the number of files that are to be spaced. A
positive integer indicates forward spacing; a negative integer
indicates backward spacing. The B-Register contains the
number of records that are to be spaced. A positive integer
indicates forward spacing; a negative integer indicates back­
ward spacing. The positioning may be defined in terms of any
combination of forward or backward spacing of files and records
(e.g., space forward two files then backspace three records).
If files only or records only are to be spaced, the contents of
the other register should be zeros.

The registers are not used when entering the subroutine to
perform one of the following operations:

Assembler E-3

Write end-of-file
Write file gap
Rewind

Linkage Address

Rewind/Standby
Status

107B is the System Linkage word that contains the absolute
address of the entry point for the Magnetic Tape driver.

On return from a read operation, the A-Register contains a
positive value indicating the number of words or characters
transmitted.

On return from all operations except Rewind and Rewind/
Standby the B-Register contains status of the operation (See
Status).

MAGNETIC TAPE OPERATIONS

The magnetic tape driver will perform the following operations.
The pertinent operation is specified by the command code
which appears after the OCT in the calling sequence.

Operation Command Code

R~d 0
Write 1
Write End-of- File 2
Rewind (Auto mode) 3
P~ilioo 4
Rewind/Standby (Local mode) 5
G~ 6
Status 7

Read
One tape record is read into the buffer. The number of
characters or words read is stored in the A-Register. The
value will be equal to the buffer length except when the data
on tape is less than the length of the buffer. One tape record
is read to transfer the number of characters specified into
the buffer. The number of characters in that record (not
the number transferred) will be stored in the A-Register.
If the tape record exceeds the buffer length, the data will
be read into the buffer until the buffer is filled, the remainder
of the record will be skipped. If the length of an input
buffer is an odd number of characters, a read operation will
result in the overlaying of the character following the last
character of the buffer; the subroutine actually transmits
full words only.

E-4 Assembler

Three attempts are made to read the record before return­
ing control to the parity error address.

If an EQT condition exists at the time of entry, the command
will be ignored and control will be returned to the EQT/EQF
address.

If the buff er length specified is 0 control will return to the
normal address without any tape movement.

The input buffer storage area can be as large or as small as
needed. The number of characters in the tape record will be
stored in the A-Register.

Write

The contents of the buffer is written on tape preceded by the
record length. Since a minimum of 7 tape characters (12 on
3030) may be written, short records are padded.

If the end-of-tape is detected during the write operation, the
normal return is used. The next write operation, however,
results in a return of control of the EQF /EQT location; no
data is written. If an EQT condition exists at the time of en­
try, the command will be ignored and control will be returned
to the EQT/EQF address.

Assembler E-5

Write End-of-File

A standardEOF character (173 for 2020, 238 for 3030) is written
on tape. Control returns to the normal location with the EOF
status on the B-Register. No gap is written.

If the end of tape was reached on a previous write command,
control returns to the EOF/EOT location; the character is
written.

Rewind

This command initiates a rewind operation and then immedi­
ately returns control to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,I
OCT 3
(normal return)

The user need not test status on the rewind operation befor~
issuing the next call.

Position

This is the general command to move the tape. Both file
and record operations may be defined in the same operation.
Either may be specified for forward or backward spacing.
At the completion of the operation the tape will be positioned
ready for reading or writing.

An attempt to space beyond the End-of-Tape or Start-of-Tape
will terminate the positioning operation and return control
to the EOF/EOT /SOT location.

E-6 Assembler

Rewind/Standby

This causes the tape to be positioned at load point and switches
the device to local status. Control returns to the norm al loca­
tion immediately after the operation is initiated.

The calling sequence for a Rewind I Standby
consists of:

JSB 107B,I
OCT 5
(normal return)

operation

An attempt to issue another call on this device results in a
halt (102044). The device must be switched to AUTO before
the program can continue.

Gap

This command causes a 3-inch gap to be written on the tape.

If the End-of-Tape was reached on a previous write command,
control returns to the EOF/EOT location; the gap is not
written.

Status

This command returns certain status bits in the B-Register.
The driver performs a clear command whenever it is entered
and as a result the only bits that are valid indicators are:

Start-of-Tape
End-of-Tape
Write Not Enabled

Assembler E·7

All other commands (except Rewind and Rewind/Standby)
provide valid status replies on return to the program.

The status reply consists only of bits 8-0 and has the
following significance:

Bits 8-0

lxxxxxxxx

xlxxxxxxx

xxlxxxxxx

xxxlxxxxx

xxxxlxxxx

xxxxxlxxx

xxxxxxlxx

xxxxxxxlx

xxxxxxxxl

E·B Assembler

Condition

Local - The device is in local status

EOF- An End-of-File character (178 for 7
track, 238 for 9) has been detected while
reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the
photo sense head.

EQT - The End-of-Tape reflective marker is
sensed while the tape is moving forward. The
bit remains set until a rewind command is
given.

Timing - A character was lost.

Reject - a) Tape motion is required and the
unit is busy. b) Backward tape motion is
required and the tape is at load point. c) A
write command is given and the tape reel
does not have a write enable ring.

v ... -rite not enabled - Tape reel does not have
write enable ring or tape unit is rewinding.

Parity error - A vertical or longitudinal
parity error occurred during reading or writ­
ing. (Parity is not checked during forward or
backward spacing operations.)

Busy - The tape is in motion or the device
is in local status.

Following is a table summarizing the tape commands:

Operation Command Call Return
Code A B A B

Read ¢ Buffer Buffer Buffer Status
Length Address or

Record
Length

Write 1 Buffer Buffer Buffer Status
Length Address Length

Write 2 - - - Status
EOF

Rewind 3 - - - -
(Auto mod~
Position 4 Number Number - Status

of Files, of
Di rec- Records,
tion Direction

Rewind/ 5 - - - -
Standby
(Local
mode)
Gap 6 - - - Status

Status 7 - - Status

Assembler E-9

Additional Linkage Addresses

Other locations in the System Linkage area contain the fol­
lowing:

100a Used by the standard software system to store a JMP
to the transfer address.

105a First word address of available memory.

1068 Last word address of available memory.

The latter two locations may be accessed by an absolute pro­
gram. The user may store the first word of available memo­
ry in 105 by performing the following:

ORG 105B
ABS < last location of user program + 1 >

The last word of available memory is established by the driv­
ers; it is the location immediately preceding the first location
used by the last driver loaded.

BUFFER STORAGE AREA

The Buffer Address is the location of the first word of data to
be written on an output device or the first word of a block re­
served for storage of data read from an input device. The
length of the buffer area is specified in the A-Register in terms
of ASCII input or output characters or binary output words.
For binary input, the length of the buffer is the length of the
record which is specified in the first character of the record.
ASCII and binary input record lengths are given as positive in­
tegers. The length of a binary output record is specified as
the two's complement of the number of words in the record.

In addition to describing the buff er area in the calling sequence,
(or first word of binary input record), the area must also be
specifically defined in the program, for example with a BSS
instruction.

Record Formats

ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an
end-of-record mark which consists of a carriage return, ®
and a line feed, @

E-10 Assembler

For an input operation, the length of the record transmitted to
the buffer is the number of characters designated in the A­
Register, or less if an end-of-record mark is encountered be­
fore the character count is exhausted. The codes for @ and
@are not transmitted to the buffer. An end-of-record mark

preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters designated in the request. An
end-of-record mark is supplied at the end of each output oper­
ation by the driver.

If a (RUB OUT) code followed by a ©,ID@ is encountered on
input from the Teleprinter or Punched Tape Reader, the cur­
rent record is ignored (deleted) and the next record trans­
mitted. t

If less than ten feed frames (all zeros) are encountered before
the first data character from the Punched Tape Reader, they
are ignored. Ten feed frames-are -i.ri.terpreted as an end-of­
tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in
memory or on 8-level paper tape. Each computer word is
translated into two tape "characters" (and vice versa) as
follows:

15 87 0

I I

For an output operation, the record length is the number of
words designated by the value in the A-Register (the value is
the two's complement of the number of words). For input
operations, the first word of the record contains a positive
integer in bits 15-8 specifying the length (in words) of the
record including the first word.

t (RUB OUT) which appears on the Teleprinter keyboard is
synonymous with the ASCII symbol ~

Assembler E· 11

On input operations if less than ten feed frames precede the
first data character, they are ignored; ten feedframes are in­
terpreted as an end-of-tape condition. On output, the driver
writes four feed frames to serve as a physical record sepa­
rator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd
parity) records only. A record count is supplied by the
driver as the first word of the record. This allows automatic
padding of short records to the minimum record length with
automatic removal of the padded portion of the record on
read.

2020 7-LEVEL TAPE
Each Computer word is translatedintothree tape ''characters"
(and vice versa) as follows:

1mputer word
15 II 10* 6 5* 0
110110011101100011

~ ___J *Bits 10 and 5 ore recorded
3rd part of --v--'-.-' t 1 ·

word 2nd part of a~ c;ho'~ntwo tape characters,
word 1st ~i~~of

TAPE TRACKS

ht tape character
2nd II

'3rd II

3030 9-LEVEL TAPE

P =Odd parity bit

Each Computer Word is translated into Two tape "characters"
by repositioning the bits in the following scheme:

COMPUTER WORD BITS 15 8 7 0

1st word contents 1 0 0 0 1 1 0 011 0 1 1 1 1 O 1

2nd word contents 0 1 1 0 1 0 0 1 i 1 1 O 1 O O 1 0

TAPE TRACK ~ ~ : ! ~ : ~ ! ! '11 ! l ! ! 11 ,
ASSIGNMENTS I 7 6 5 3 9 1 8 2 I

TAPE TRACKS 9 4 1

lsttapecharacter ~I
2nd tape character 11 0 1 0 1 1 1 1 1
3rd tape character 1 0 O 1 1 1 0 1 O
4th tape character 0 1 1 1 0 1 1 0 0

E-12 Assembler

TRACK 4 IS THE
ODD PARITY BIT

OPERATING AND CALLING SEQUENCE:
MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the Punched
Tape Reader Driver exactly, therefore , only one or the other of
these two drivers may be used in any one SIO System configura­
tion. Further, the driver has no binary read capability; if this
ability is needed, the BCS Mark Sense Card Reader Driver will
have to be used.

All data transmission is accomplished without interrupt control.
Execution control is not returned to the calling program until a
complete card has been read.

The general form of the calling sequence is:

LDA
LDB
JSB

< character count >
< buffer address >
<lOlB,I>

<normal return >

Register Contents

(positive)

Before the JSB is executed, the A-Register must contain the
character count (the buffer length) and the B-Register must con -
tain the buffer address. Control returns to the location follow­
ingthe JSB; then the A-Register will contain the number of char­
acters transmitted not including trailing blanks, or, if a trans­
mission error was detected, it will contain all zeros.

Assembler E-13

F FORMATTER

CALLING SEQUENCES

The Formatter is a library subroutine used by FORTRAN
and ALGOL to input or output data. An assembler program
may access the Formatter routine with a 5 to 9 line calling
sequence depending on the form of the call.

I. Format Definition

Formatted

Binary

where

unit

fmt

end of list

ABS 0

formatted
input/ output

binary
input/ output

F-0 Assembler

INPUT OUTPUT

LDA (unit) LDA (unit)
CLB,INB CLB
JSB .DIO. JSB .DIO.
DEF (fmt) or ABS 0 DEF (fmt)
DEF (end of list) DEF (end of list)

LDA (unit) LDA (unit)
CLB,INB CLB
JSB .BIO. JSB .BIO.

refers to the unit reference number of the
device to be called

is the label of an ASC pseudo instruction
which defines the format specification

is the location immediately following the last
parameter of the calling sequence; it is to this
location that the Formatter returns control.

is an option for free field input

is in ASCII code

is in binary code

II. Element Definition

Real Variable

Integer Variable

Array

where

x or i

array length

INPUT

JSB
DST

JSB
STA

LDA
LDB
JSB

.IOR.
x

.IOI

array length
array address

OUTPUT

DLD x
JSB .IOR.

LDA i
JSB .IOI.

.RAR. (real) or .IAR. (integer)

are addresses, real or integer, of the data

is the number of elements (not the number of
memory locations) in the block of data.
(Maximum length is equivalent to 60 computer
words.)

III. Terminator

INPUT OUTPUT

(none) JSB .DTA.

Symbols such as .DIO., .IOR., etc., are entry points to the
Formatter; all entry points used in the calling sequence must
be declared external with an EXT pseudo code.

Data stored in memory may be converted internally from one
format to another with the following initial call.

LDA
JSB
DEF
DEF
DEF.

=BO
.mo.
buffer
(fmt)
(end of list)

Element Definition

Terminator
where bUff er is the address of the data to be converted.

Assembler F-1

fORMAT SPECIFICATIONS

Below are listed the format conversion and editing specifica­
tions.

rAw
rEw.d
rFw.d

~~}
rKw

nX
nHh1 ... hn l
r"h1 ... hn"
r/

where

r

w
d

n
h's

Aw

Ew

F-2 Assembler

Alphanumeric character
Real number with exponent
Real number without exponent
Decimal integer

Octal integer

Blank field descriptor

Heading and labeling descriptors

Begin new resord

is the number of times the entire format is
repeated
is the number of digits in the format
is the number of digits to the right of the
decimal point (w-d should be greater than or
equal to 4)
is the number of characters or spaces
represents the ASCII characters

translates alphanumeric data to or from
memory. If w is greater than 2 only the last
two characters are processed; if w is 1, the
single character is read into or written from
the right-half of the computer word.

converts data to a real number. On output, data
may consist of integer, fraction, and exponent
subfields.

+ + N n ... n. n ... n E ee

On output, data appears in floating point form.

~. xl .•. Xa E ± ·ee

Fw

Iw

@wand Kw

For output operations real numbers in memory
are converted to character form which will
appear right justified in decimal form. Input
is identical to the E specification input.

~x ... x.x ..• x

translates decimal integers to or from memory

translates octal integers to or from memory.

provides for the transfer of any combination of
8-bit ASCII characters, including blanks.

also transfers ASCII characters; field length
is not specified, quotation marks are not trans­
ferred.

(For a more detailed description of the Format specifications
see the FORTRAN Programmer's Reference Manual, Section 7.)

EXAMPLE

Below is an example of a calling sequence to the Formatter that
will output the contents of a block data, SOLVE, such that
each number is printed on the teleprinter in the following
manner:

xxxxxx.xx

SOLVE occupies 10010 memory locations; the data stored there
is in floating point form.

Assembler F-3

...... "'"""""' °"""""' c-
5 1D 15 "' " "' " .. " "' EXT . D I 01. ,1. RA R. LL. D TA. I

FR ~T1 AsTc 5 (~x u_ F 8. lg) i l' 1 l ' ,I
so LVE B c;s 1100

I I I

l
I I

I T
: '' I : : I 11' ; :

LOA = 85 I I I l
l CLB I I l I

JSB . ID I 0 . l . I j
l DEF FR MT I I I I I l

I DEF '*,+5 T I I ! I

WDA =D 50 I T 11 T i i

l LOB so LVE I
I I l T I l

i JSB . R AR. i i I
I

T

JSB . D I A . l I

I

I
I

I I I I I I

F-4 Assembler

ASSEMBLER ERROR MESSAGES

During the compilation or assembly of programs, error messages are
typed on the list output device to aid the programmer in debugging
programs. Errors detected in the source program are indicated by a 1- or
2- letter mnemonic followed by the sequence number and the first 62
characters of the statement in error. The messages are printed on the
output device during the passes indicated.

For Extended Assembler, error listings produced during Pass 1 are pre­
ceded by a number which identifies the source input file where the error
was found. Pass 2 and 3 error messages are preceded by a reference to the
previous page of the listing where an error message was written. The first
error will refer to page "O ".

Error
Code

cs

DD

Pass

1

1

Description

Control statement error:

a) The control statement contained a
parameter other than the legal set.

b) Neither A nor R, or both A and R
were specified.

c) There was no output parameter (B,
T, or L.)

Doubly defined symbol: A name defined
in the symbol table appears more than
once as:

a) A label of a machine instruction.

b) A label of one of the pseudo
operations:

BSS EQU

ASC ABS

DEC OCT

DEF Arithmetic subroutine call

DEX

Assembler G-1

Error
Code

EN

Pass

1

EN(pjpjp <symbol> 2

IF 1

IL 1

IL 2or3

G-2 Assembler

Description

c) A name in the Operand field of a
COM or EXT statement.

d) A label in an instruction following a
REP pseudo operation.

e) Any combination of the above.

An arithmetic subroutine call symbol
appears in a program both as a pseudo in­
struction and as a label.

The symbol specified in an ENT state­
ment has already been defined in an EXT
or COM statement.

The entry point specified in an ENT state­
ment does not appear in the label field of
a machine or BSS instruction. The entry
point has been defined in the Operand
field of an EXT or COM statement, or has
been equated to an absolute value.

An IFZ or an IFN follows either an IFZ or
an IFN without an intervening XIF. The
second pseudo instruction is ignored.

Illegal instruction:

a) Instruction mnemonic cannot be used
with type of assembly requested in
control statement. The following are
illegal in an absolute assembly:

NAM EXT

ENT COM

ORB Arithmetic subroutine calls

b) The ASMB statement has an R param­
eter, and NAM has been detected after
the first valid Opcode.

Illegal character: A numeric term used in
the Operand field contains an illegal char­
acter (e.g. an octal constant contains other
than+,-, or IP-7).

Illegal instruction: ORB in an absolute
assembly

Error
Code

M

Pass

1, 2 or 3

Description

Illegal operand:

a) Operand is missing for an Opcode
requiring one.

b) Operands are optional and omitted
but comments are included for:

END

HLT

c) An absolute expression in one of the
following instructions from a relo­
catable program is greater than 77 8·

Memory Reference

DEF

Arithmetic subroutine calls

d) A negative operand is used with an
Opcode field other than ABS, DEX,
and OCT.

e) A character other than I follows a
comma in one of the following
statements:

ISZ ADA AND DEF

JMP ADB XOR Arithmetic

JSB LDA IOR subroutine

LDB CPA
calls

STA CPB

STB

f) A character other than C follows a
comma in one of the following
statements:

STC MIB

CLC OTA

LIA OTB

LIB HLT

MIA

Assembler G-3

Error
Code

G-4 Assembler

Pass Description

g) A relocatable expression in the oper-
and field of one of the following:

ABS ASR RRL

REP ASL LSR

SPC RRR LSL

h) An illegal operator appears in an
Operand field (e.g. + or - as the last
character).

i) An ORG statement appearing in a re­
locatable program includes an expres­
sion that is base page or common
relocatable or absolute.

j) A relocatable expression contains a
mixture of program, base page, and
common relocatable terms.

k) An external symbol appears in an
operand expression or is followed by
a common and the letter I.

1) The literal or type of literal is illegal
for the operation code used (e.g.,
STA = B7).

m) An illegal literal code has been used
(e.g., LDA = 077).

n) An integer expression in one of the
following instructions does not meet
the condition l~n~l6. The integer
is evaluated modulo 24.

ASR RRR LSR

ASL RRL LSL

o) The value of an 'L' type literal is
relocatable.

Error
Code

NO

OP

OP

ov

R?

Pass

1,2,3

1, 2, 3

1,2, or 3

1,2 or 3

Before 1

Description

No origin definition: The first statement
in the assembly containing a valid opcode
following the ASMB control statement
(and remarks and/or HED, if present) is
neither an ORG nor a NAM statement.
If the A parameter was given on the ASMB
statement, the program is assembled start­
ing at 200@; if an R parameter was given,
the program is assembled starting at zero.

Illegal Opcode preceding first valid Op­
code. The statement being processed does
not contain an asterisk in position one.
The statement is assumed to contain an
illegal Opcode; it is treated as a remarks
statement.

Illegal Opcode: A mnemonic appears in
the Opcode field which is not valid for the
hardware configuration or assembler being
used. A word is generated in the object
program.

Numeric operand overflow: The numeric
value of a term or expression has over­
flowed its limit:

1;;;.N;;;.16 Shift-Rotate Set

26-1 Input/Output, Overflow, Halt

210_1 Memory Reference (in absolute
assembly)

215-1 DEF and ABS operands; data
generated by DEC; or DEX: expressions
concerned with program location counter.

216-1 OCT

An attempt is made to assemble a relocat­
able program following the assembly of
an absolute program.

Assembler G-5

Error
Code

so

SY

SY

TP

UN

G-6 Assembler

Pass

1, 2, 3

2 or 3

1,2, or 3

1,2, or 3

Description

There are more symbols defined in the
program than the symbol table can handle.

Illegal Symbol: A Label field contains an
illegal character or is greater than 5
characters. A label with illegal characters
may result in an erroneous assembly if not
corrected. A long label is truncated on
the right to 5 characters.

Illegal Symbol: A symbolic term in the
Operand field is greater than five charac­
ters; the symbol is truncated on the right
to 5 characters.

Too many control statements: A control
statement has been input both on the
teleprinter and the source tape or the
source tape contains more than one con­
trol statement. The Assembler assumes
that the source tape control statement is
a label, since it begins in column 1. Thus,
the commas are considered as illegal
characters and the "label" is too long. The
binary object tape is not affected by this
error, and the control statement entered
via the teleprinter is the one used by the
Assembler.

An error has occurred while reading
magnetic tape.

Undefined Symbol:

a) A symbolic term in an Operand field
is not defined in the Label field of
an Instruction or is not defined in the
Operand field of a COM or EXT
statement.

Error
Code

UN

Pass

1,2, or 3

Description

Undefined Symbol: (continued)

b) A symbol appearing in the Operand
field of one of the following pseudo
operations was not defined previously
in the source program:

BSS ASC EQU ORG END

Assembler G-7

CONSOLIDATED CODING SHEET J

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/I AND 001 0 Z/C Memory Address
D/I XOR 010 0 Z/C
D/I IOR 011 0 Z/C
D/I JSB 001 1 Z/C
D/I JMP 010 1 Z/C
D/I ISZ 011 1 Z/C
D/I AD* 100 A/B Z/C
D/I CP* 101 A/B Z/C
D/I LD* 110 A/B Z/C
D/I ST* 111 A/B Z/C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRG 000 A/B 0 D/E *LS 000 CLE D/E SL* *LS 000

j j l
*RS 001

j
*RS 001

R*L OiO R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101

I

EL* 110

I

EL* 110
*LF 111 *LF 111

NOP 000 000 000 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ASG 000 A/B 1 CL* 01 I CLE
01 SEZ SS* SL* IN* sz• RSS

! ! CM* 10 CME 10
CC* 11 CCE 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 IOG 000 1 H/C HLT 000 Select Code-
1 0 STF 001
1 1 CLF 001

!
1 0 SFC 010
1 0 SFS 011

I A/B 1 H/C MI* 100
A/8 1 H/C LI* 101
A/B 1 H/C OT* 110

0 1 H/C STC 111
1 1 H/C CLC 111

1 0 STO 001 000 001
1 1 cw 001 000 001
1 H/C soc 010 000 001
1 H/C sos 011 000 001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 EAU 000 MPY** 000 010 000 000
DIV** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1 number LSR 001 000 1 0
LSL 000 000 1 0 - ct -RRR 001 001 0 0 bits

RRL 000 001 0 0

Notes: *=A or B.
D/I, A/B, Z/C, D/E, H/C coded: 0/1.
**Second :word is Memory Address.

Assembler H-1

Basic Control System Reference Manual I
A 2100A BK corestack with sense amplifiers and
diode decoding matrix is contained on a single plug­
in circuit board.

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION 1-1

1.1 Input/Output Subroutines 1-1
1.2 Relocating Loader 1-2
1.3 Prepare Control System 1-3
1.4 Debugging System 1-4

CHAPTER 2 INPUT/OUTPUT REQUIREMENTS 2-1

2.1 General Calling Sequence 2-1
2.1.1 Input/Output Subroutine (.IOC.) 2-1
2.1.2 Function, Subfunction, and

Unit Reference 2-2
2.1.3 Reject Address 2-4
2.1.4 Buffer Storage Area 2-5
2.2 Error Conditions During Execution 2-5
2-.3 Clear Request 2-7
2.4 Status Request 2-8
2.5 Paper Tape System 2-12
2.5.1 Record Formats 2-12
2.5.2 Calling Sequence 2-14
2.6 HP 2891A Card Reader 2-16
2.6.1 Data Formats 2-16
2.6.2 Calling Sequence 2-20
2.6.3 Status Requests 2-21
2.6.4 Transmission Log 2-22
2.7 HP 2778A, 2778A-001 Line Printer 2-24
2.7.1 Modes of Operation 2-24
2.7.2 Calling Sequence 2-25
2.7.3 Input/Output Control (.IOC.) 2-25
2.7.4 Function and Subfunction Codes 2-25

Write Function (02) 2-26
Control Function (03) 2-27

2.7.5 Reject Address 2-27
2.7.6 Buff er Storage Area 2-28
2.7.7 Status Requests 2-28
2.7.8 Clear Request 2-33
2.7.9 Error Conditions 2-33

Equipment Table Flags 2-33
Illegal Character 2-34
Illegal Buffer Length 2-34

2.8 HP 2767 Line Printer 2-35
2.8.1 Modes of Operation 2-35
2.8.2 Calling Sequence 2-36
2.8.3 Input/Output Control 2-36

BCSi

2.8.4 Function and Subfunction Codes 2-36
Write Function (02) 2-37
Control Function (03) 2-38

2.8.5 Reject Address 2-38
2.8.6 Buff er Storage Area 2-38
2.8.7 Status Requests 2-42

Status Return Information 2-42
2.8.8 Clear Request 2-43
2.8.9 Error Conditions 2-44

Equipment Table Flags 2-44
Illegal Character 2-44
Illegal Buffer Length 2-44

2.9 Kennedy Incremental Transport 2-45
2.9.1 Record Formats 2-45

Binary Coded Decimal Records 2-45
BCD Record Format 2-45

2.9.2 Calling Sequence 2-46
2.9.3 Function and Subfunction Codes 2-46
2.10 Magnetic Tape System - HP 2020

Magnetic Tape Unit 2-47
2.10.1 Record Formats 2-47

Binary Records 2-47
Binary Record Format 2-47
Binary Coded Decimal Records 2-48
BCD Record Format 2-48

2.10.2 Calling Sequence 2-49
2.10.3 Function and Subfunction Codes 2-49
2.10.4 Buffer Length 2-49
2.11 Magnetic Tape System - HP 3030

Magnetic Tape Unit 2-50
2.11.1 Record Format 2-50
2.11.2 Calling Sequence 2-51
2.11.3 Function and Subfunction Codes 2-52
2.11.4 Buff er Length 2-52
2.12 Magnetic Tape System - HP 7970

Magnetic Tape Unit 2-53
2.12.1 Calling Sequence 2-53
2.12.2 Function, Subfunction, Unit-Reference

Codes 2-54
2.12.3 Reject Address 2-54

Allowable Motion Requests 2-55
Read and Write Requests 2-55
Rewind or Backspace Record Request 2-55
Read Parity Error Conditions 2-55
Write Parity Error Conditions 2-56
Attempted Write Request 2-56
Forward Motion Request 2-56
Backward Motion Request 2-56

ii BCS

Function/Subfunction Code
Request 0307XX 2-56

Backspace File Request and
Forward Space File Request 2-57

2.12.4 Status Requests 2-57
Status Request Information 2-58

2.12.5 Clear Request 2-59
2.12.6 Control Requests 2-60
2.13 Data Source Interface Calling Sequences 2-61
2.13.1 Binary Output Operation 2-61
2.13.2 Binary Input Operation 2-62
2.13.3 ASCII Input Operation 2-63
2.14 Digital Voltmeter Programmer

Calling Sequence 2-64
2.15 Scanner Programmer Calling Sequence 2-65
2.16 Instrument Clear and Status Requests 2-66
2.16.1 Instrument Clear Request 2-66
2.16.2 Instrument Status Request 2-66
2.17 Mark Sense Card Reader 2-67
2.17.1 Calling Sequence 2-67
2.17.2 Buff er Length 2-68
2.17.3 Status Field 2-68
2.17.4 Functions 2-69

CHAPTER 3 RELOCATING LOADER 3-1

3.1 External Form of Loader 3-1
3.2 Internal Form of Loader 3-1
3.3 Relocatable Programs 3-1
3.4 Record Types 3-2

NAM 3-3
ENT 3-3
EXT 3-3
DBL 3-3
END 3-4

3.5 Memory Allocation 3-4
Common Block Allocation 3-6
Program Storage 3-7

3.6 Object Program Record Processing 3-8
ENT /EXT Record Processing 3-8
DBL Record Processing 3-9
END Record Processing 3-10
Relocatable Library Loading 3-10
End Condition 3-10
End-of-Loading Operation 3-11

3.7 Programming Considerations 3-12

BCSiii

3.8 Loader Operating Procedures 3-12
Loading Options 3-13

Memory Allocation List 3-13
Absolute Binary Output 3-13
Separation of List and Binary Output 3-14

CHAPTER 4 INPUT/OUTPUT DRIVERS 4-1

4.1 General Description 4-1
4.2 Structure 4-1
4.2.1 Initiator Section 4-2
4.2.2 Continuator Section 4-3

CHAPTER 5 PRE!PARE CONTROL SYSTEM 5-1

5.1 Initialization Phase 5-1
5.2 Loading of BCS Modules 5-2
5.3 Input/Output Equipment Parameters 5-3

Equipment Table Statements - EQT 5-3
Standard Equipment Table Statements -

SQT 5-4
Direct Memory Access Statement-DMA 5-5

5.4 Interrupt Linkage Parameters 5-6
5.5 Processing Completion 5-8

CHAPTER 6 DEBUGGING SYSTEM 6-1

6.1 Operator Communication 6-1
6.2 Control Statements 6-2

Program Relocation Base 6-2
Set Memory 6-2
Set Register 6-3
Dump Memory 6-3
Breakpoint Halt 6-4
Trace 6-4
Run 6-5
Restart 6-5

6.3 Control Statement Error 6-5
6.4 Halt 6-5
6.5 Indirect Loop 6-6
6.6 Output Formats 6-6

Standard Breakpoint Message 6-6
Dump 6-7

6.7 Operating Procedures 6-7
6.8 Example 6-8

iv BCS

APPENDIX A HP CHARACTER SET A-1

ASCII Character Format A-1
ASCII - BCD Conversion -

Kennedy 1406/1506 A-2
ASCII - BCD Conversion - HP 2020 A-3
HP 2761A-007 Mark Sense Card Reader A-4
Character Conversions - Mark Sense

Card Reader A-5

APPENDIX B EQUIPMENT TABLE B-1

APPENDIX C STANDARD UNIT
EQUIPMENT TABLE C-1

APPENDIX D .IOC. WITH OUTPUT BUFFERING D-1

Priority Output D-1
Operating Environment D-2
Restrictions D-2
Halt Conditions D-2
I/0 Error Conditions D-3

APPENDIX E RELOCATABLE TAPE FORMAT E-1

APPENDIX F ABSOLUTE FORMAT F-1

APPENDIX G HOW TO GENERATE A BASIC
CONTROL SYSTEM G-1

Operating Instructions G-3

APPENDIX H PCS ERROR HALTS AND

MESSAGES H-1

APPENDIX I HOW TO USE BCS TO RELOCATE

AND RUN PROGRAMS 1-1
Operating Instructions I-1

APPENDIX J BCS ERROR HALTS AND
MESSAGES J-1

BCS v/vi

GENERAL DESCRIPTION 1

The Basic Control System (BCS) provides an efficient loading and input/
output control capability for relocatable programs produced by the HP
Assembler, HP FORTRAN, FORTRAN IV, or HP ALGOL. BCS is
modular in design and is constructed to fit each user's hardware
configuration.

The Basic Control System performs the following functions:

• Loads and links relocatable programs

• Creates indirect and base page addressing when necessary

• Selects and loads referenced library routines

• Processes 1/0 requests and services 1/0 interrupts

The Basic Control System is comprised of two distinct parts: input/
output subroutines and the Relocating Loader. Associated with the Basic
Control System are two other systems: Prepare Control System and the
Debugging System. -

The Relocating Loader loads and links relocatable object pro­
grams generated bytheAssembler, FORTRAN, and ALGOL. It
also links the object programs with the input/output subroutines
and any library subroutines referred to in the programs. The
Prepare Control System is used to adapt the Basic Control Sys­
tem program to a particular hardware configuration. The De­
bugging System is a relocatable program that BCS loads after
the object program (s); with the debugging program the program­
mer can find errors in his program.

The minimum equipment configuration required for the Basic Control
System (and Prepare Control System) is as follow:s:

2100 family computer with 4K memory

Teleprinter

1.1 INPUT/OUTPUT' SUBROUTINES

The input/output package consists of an Input/Output Control
subroutine and driver subroutines for the peripheral devices.
Input/output operations are specified as symbolic calling se­
quences inAssembler language. These requests are translated
into object code calls to the I/O Control subroutine. The sub­
routine interprets the call and directs the request to the proper

BCS 1-1

driver. The driver initiates the operation and returns control
to the calling program. Whenever interrupt occurs, the driver
temporarily resumes control to transfer the next element of
data. When the operation is completed, the I/O Control sub­
routine makes the status of the operation available for checking
by the program.

The input/output package allows device independent program­
ming; a device is specified in terms ofa unit-reference number
rather than a channel number or select code. Furthermore, the
user need not be concerned about how data is transmitted (by
bit, by character, etc.), he need only specify the number of
words or characters and the location in memory where the data
is stored.

1.2 RELOCATING LOADER

The Relocating Loader loads objectcode programs produced by
the Assembler, FORTRAN and ALGOL. The linking capability
of the Loader allows the user to divide a program into several
subprograms, to assemble and test each separately, and finally
to execute all as one program. Object subprograms produced
by the Assembler may be combined with object subprograms
produced by FORTRAN and ALGOL. The subprograms are
linked through symbolic entry points and external references.

The loader also provides indirect addressing whenever an operand of
an instruction does not fall in the same page as that into which the
instruction is being loaded. This allows a program to be designed without
concern for page boundaries.

An optional feature of the loader allows the user to obtain an absolute
dump of a relocatable .program plus the Basic Control System and those
library subroutines that were referenced by the program. The process of
generating the absolute program is such that instructions (not just
common storage) may be allocated to the area normally occupied by
the loader. This feature may also be utilized for a program which has
reached "production" status; absolute format requires less loading time
because an absolute program is loaded by the Basic Binary Loader.

The following information is relevant to the Relocating Loader used in
core memory greater than 4K:

a. When the Relocating Loader is not requested to produce an
absolute version of a program, it sets all unused locations in memory to
1060553 (a unique halt instruction) so that a halt will occur if any
should be executed. This is useful for detecting errors in programs.

1-2 BCS

b. A certain portion of the BCS Relocating Loader must always
be resident in core while the BCS is in use. This portion of the Relocating
Loader contains a segment labeled HALT, which is used by the new
version of the .STOP routine in the Relocatable Library. The final halt
instruction for the BCS is directly associated with this entry point for
use in one of two ways. The final halt instruction remains unchanged if
paper tape operation is used, but it is changed to JSB 00106g, I (a call
to the Inter-Pass Loader of the Magnetic Tape System) if the BCS is run
using MTS.

For further information on the BCS and its relation to the Magnetic
Tape System see the Magnetic Tape System manual, HP 02116-91752.

1.3 PREPARE CONTROL SYSTEM

Prepare Control System is a special purpose program which
produces an absolute version of the Basic Control System from
relocatable BCS subprograms. During the construction of the
absolute BCS, the user also establishes the relationships among
I/O channel numbers, drivers, interrupt entry points in the
drivers, and unit-reference numbers. Prepare Control Sys­
tem is used when the configuration of the hardware is defined
initially or whenever there is a modification or expansion to
the configuration.

1.4 DEBUGGING SYSTEM

The debugging routine provides aids in program testing. Options
provided by the routine will print selected areas of memory,
trace portions of the program during execution, modify the con­
tents of selected areas in memory, modify simulated computer
registers, halt execution of the program at specified break­
points, and initiate execution at any point in the program.

BCS 1-3/1-4

INPUT/OUTPUT REQUESTS 2

The Basic Control System provides the facility to request in­
put/output operations in the form of five-word calling sequences
in assembly language. The Basic Control System interprets
the call, initiates the operation, and returns control to the
calling program. When the data transfer is complete, the Sys­
tem provides status information which may be checked by the
program. Interrupts which occur during or on termination of
the transfer are processed entirely by the System; interrupt
handling subroutines are not required in the user's program.

2.1 GENERAL CALLING SEQUENCE

The general form of the input/output request is:

EXT .IOC.

JSB .IOC.

OCT <function> <subfunction> <unit-reference>

{ JSB}
JMP

reject address <error return>

DEF buffer address

{~~} buff er length

<normal return>

2.1.1 INPUT/OUTPUT SUBROUTINE (.IOC.)

.IOC. is the symbolic entry point name of the input/output control
subroutine within the Basic Control System. All input/output operations
are requested by performing a jump subroutine (JSB) to this entry point.
The input/output control subroutine returns control to the calling pro­
gram at the first location following the last word of the calling sequence.
Programs referring to .IOC. must declare it as an external symbol.

BCS 2-1

2.1.2 FUNCTION, SUBFUNCTION, AND UNIT-REFERENCE

The second word of the request determines the function to be
performed and the unit of equipment for which the action is to
be taken. In assembly language, this information may be sup­
plied in the form of an octal constant. The bit combinations
that comprise the constant are as follows:

15 12 11 9 8 7 6 5 0

function ~plvlml unit - reference

subfunction

Function

The function (bits 15-12) indicates the basic read/write operation:

Function Name Code (octal)

Subfundion

Read

Write

01

02

The subfunction (bits 11-6) defines the options for certain read/write
operations:

p = 1 Print input: The ASCII data read from the Teleprinter
is printed as it is received.

v 1 Variable length binary input: The value in bits
15-8 of the first word on an input paper tape in­
dicates the length of the record (including the
first word). If the value exceeds the length of
the buffer, only the number of words specified
as the buffer length are read. If v = 0, the buf­
fer length field always determines the length of
record to be transmitted. If the device does not
read paper tape, the parameter is ignored.

2-2 BCS

m = 1 Mode: The data is transmitted in binary form ex­
actly as it appears in memory or on the
external device. If m = 0, the data is
transmitted in ASCII or BCD format.

Unit-Reference

The value specified for the unit-reference field indicates the
unit of equipment on which the operation is to be performed.
The number may represent a standard unit assignment or an
installation unit assignment. Standard unit numbers are as
follows:

Number Name Usual Equipment Type

1 Keyboard Input Teleprinter

2 Teleprinter Output Teleprinter

3 Program Library Punched Tape Reader

4 Punch Output Tape Punch

5 Input Punched Tape Reader

6 List Output Teleprinter

Installation unit numbers may be in the range 7s-74s with the
largest value being determined by the number. of units of equip­
ment available at the installation. The particular physical unit
that is referenced depends on the manner in which equipment
is defined within the Basic Control System by the installation.
When the Basic Control System configuration is established, an
equipment table (EQT) is created. This table defines the type
of equipment (Teleprinter, magnetic tape, etc.), the channel
on which each unit is connected, and other related details. The
ordinal of the unit's entry in this table is the value specified as
a unit-reference number for an installation unit. Since num­
bers 1-6 are reserved as standard unit numbers, the first unit

BCS 2·3

described in the table is ref erred to by the number 7 8; the second,
lOg; the third, llg; and so forth. The entries for one possible equip­
ment table configuration might establish the following relationships:

Installation unit number
(ordinal) Device I/O Channel ---

7 Teleprinter 12 or 12 and 13

10 Punched Tape 10
Reader

11 Tape Punch 11

The standard unit numbers are associated with physical equipment via
a standard equipment table (SQT) and EQT. The SQT is a list of
references to the EQT. SQT is also created by the installation when the
BCS configuration is established. Each standard unit may be a separate
device, or a single device may be accessed by several standard unit
numbers as well as an installation unit number. (For complete details
on the SQT and EQT, see Appendices Band C.)

2.1.3 REJECT ADDRESS

The content of the third word of the calling sequence is normally a
JSB or a JMP to a reject address which is the start of a user subroutine
designed to determine the cause of a reject and take appropriate action.

The Basic Control System transfers control to this address if the input/
output operation can not be performed. On transfer, the system pro­
vides status information that may be checked by the user's program.

15 14 13 8 7 l 0

A-Register =IL. _a-.L.l __ eq_u_ip_m_en_t_typ_e _ __._ __ s_ta-tu_s_~

B-Register =Id~ c I

The contents of the A-Register indicate the physical status of the
equipment. (See STATUS REQUEST.)

The contents of the B-Register indicate the cause of the reject (bits 14-1
are zeros):

2-4 BCS

d 1 The device or driver subroutine is busy and
therefore unavailable, or, for Kennedy 1406
Tape unit, a broken tape condition encoun-
tered.

c 1 ADirectMemory Access channel is not avail-
able to operate the device.

d c 0 The function or subfunction selected is not
legal for the device.

2.1.4 BUFFER STORAGE AREA

The buffer address is the location of the first word of data to
be written on an output device or the first word of a block re­
served for storage of data read from an input device. The
length of the buffer area may be specified in terms of words or
characters. If the length is given as words, the value in the
buffer length field must be a positive integer; if given as char­
acters, a negative integer. t

In addition to describing the buffer area in the calling sequence,
the area must also be specifically defined in the assembly lan­
guage program, usually with a BSS or COM pseudo instruction.

2.2 ERROR CONDITIONS DURING EXECUTION

Illegal conditions encountered during .IOC. request processing are termed
irrecoverable and cause a halt. (The halt is at the absolute location
assigned to the symbol IOERR during Prepare Control System process­
ing.) Diagnostic information is displayed in the A- and B-Registers at
the time of the halt.

The B-Register contains the absolute location of the JSB in­
struction of the request call containing the illegal condition.

The A-Register contains a code defining the illegal condition:

A-Register Explanation

000000 Illegal request code.

BCS 2-5

000001

000002

Examples:

o""'"'nd

"
j_ • ElX!T . 'lloJc. '

t j_ :

i.
I 1. T

JISB .11oc.
j6lcT 1 100 1 5

:

J_hlp !i[JCT
D!EF INAHA _:_
DIEC 10

STAT~ JiSB .TOG.
]OCT j4bO 15
SSA
JMP ~TAT~
RAL

] SSA
JMP ~OT

EOT! [AL.Flt.ALF
~AL j_

J_'Mp jA.so Rf T

j_
!

SSIE!
I j_ J~P !REA I~

JMP ~!BIO RT
I I

i 1 ;

ll I '
I I I I

2-6 BCS

Illegal unit-reference number in
request.

The Standard unit requested is not
defined as a particular device in
the Equipment Table.

c-n~
20 25 30 JS -'O 45 SO

T I I ! !

ATRiEA . 1 : l i ' I j_ ' : i I i

I ! I1 I • l

UNJT-R'EFERENClE N[Ql\1BERi I 5 I.AND
STORE AT LIQ._CAITI ON I ~AlRA .

l :
~ :

l :
iCHECK STATUS iOF READ REQUEST. :
IF INITlAL BI_lf 15 S T..J._ UNlT I 5 :
IS BUSY; LOOP'~ STATUS REQUEST:
UNTIL OPERATIC~ rs c[Q_MPLETE. :
CHECK rN I TI AL B IT I 4 . I F SET :
TRANSFER T[Q_ EI~-OF-_IAPE CltiECK. :

-'- IF !NIT; I AL BI:Ti 5 SET, PERFORM '

. IF NIOT SETLI. Tl~NSFE~ TO TERMlNA-:
I IT riot! PRoc E ouF{E! I.AT AiBlO RT. IF ,

'J PROCIES'S;ING AT! !PR10CS1

• i
1 l i 1 1 1

1 I :

l ! l I j i

I I CONl)ITIOJN. IFl THJE jDEVICE PR :
l: DRIViER il,S IB!USJY' JLOJ9f1 ON REQUEST :

1]AlN1Y iOT!HERi REASQNl.i_1 IT[l::RMlNA!_E THE :
I PIROGRA__M AJT ABOR['. l I j_ j_ :

i! ~ J I 1
1 j :

2.3 CLEAR REQUEST

The CLEAR request can be used to terminate a previously issued input
or output operation before all data is transmitted. It has the following
form:

EXT

JSB

OCT

.IOC.

.IOC.

<function> <unit-reference>

<normal return>

The second word consists of the following:

15 12 11 6 5

function ~ unit-reference

The function has the following value:

0

Function Name

Clear

Code (octal)

00

The only other parameter required is the unit-reference number. If the
unit-reference number is specified as 00 (i.e., the second word of the
calling sequence is OCT 0), all previous input and output operations are
terminated. This request, the system CLEAR request, makes all devices
available for the initiation of a new operation. On return from a system
CLEAR request, the contents of the A- and B-Registers are meaningless.

BCS 2·7

Example:

I

IREA!D~ JSB .roe.
l I IO\CT

: CjgNTTRIOfL RiETIURNS ~[FT'ERI tINITIAT!I NG:
L Dl'::_F !YSG

EC l
cou!Lo CHE'CK ITHE ff!IM A!LiUOf/iED I!! JSB

1 : FiQR, A MESJ)AG:E T]O !81E C!OMALETED.
'i ' :

! I • • 'I I i i

t-~t-L+-R+-~+-1 +-+-J+-S+-Bt-t-._:I,_1110+-C-·r--~+-+-I·'f ___ ' ,_T_HtE __ · _M_ESSAG!E LS _NC T FURNIS!t={E D
1--1-l-+-l+-4~H!HCT-+-+-+IJ-+!-+!-+-+--;----+-: +-iw_:r frHI N A s PECIIF re Tl ME ur.-ir1T, THE,
'-+-!lc--:,_..;..-.t-+-+-+-+-+---+-+-+->--_;_~+-R_Ei>UE ST IS CUE[A REDI BY THE SEK;O ND:
l 1

, • R EiQiUE ST TQ . I QC . -'- • i :

'I J_· : I
r T11 1. 1111 T i I i I I I

J.J.
T TT 1:

2.4 STATUS REQUEST

A request may be directed to .IOC. to determine the status of
a previous input/output request or to determine the physical
status of one or all units of equipment. The request has the
following form:

JSB • IOC.

OCT <function> <unit-reference>

<normal return>

The second word of the request has the following form:

15 12 l l 6 5 0

I function~ unit - reference

The function has the following value:

Function Name Code (octal)

Status 04

2-8 BCS

The calling sequence requires no other parameters. A reject
location is not necessary since the status information is always
available. If the unit-reference number is specified as 00 (i.e.,
the second word on the calling sequence is OCT 40000), the
request is interpreted as a system request.

If information is requested for a single unit, the Basic Control
System returns to the location immediately following the re­
quest with the status information in the A and B registers:

a

0

1

2

15 14 13 8 7 0

A-Register = I a I equipment type status

B-Register = Im I transmission log

Availability of device:

The device is available; the previous op­
eration is complete.

The device is available; the previous op­
eration is complete but a transmission
error has been detected.

The device is not available for another
request; the operation is in progress.

equipment type This field contains a 6-bit code that iden­
tifies the device referenced:

00-07 - Paper Tape devices
00 2752A Teleprinter
01 2737A Punched Tape Reader
02 2753A Tape Punch

10-17 - Unit Record devices
15 Mark Sense Reader

BCS 2-9

status

Device

Teleprinter reader or
Punched Tape Reader

Tape Punch

Kennedy 1406
Incremental Tape
Transport

20-37 - Magnetic Tape and Mass Storage
devices
20 Kennedy 1406 Incremental

Tape Transport
21 HP 2020AMagnetic Tape Unit
22 HP 3030A Magnetic Tape Unit

40-77 - Instrumentation devices
40 Data Source Interface
41 DVM Programmer
42 Scanner Programmer
43 Time Base Generator

The status field indicates the actual status
of the device when the data transmission
is complete. The contents depend on the
type of device referenced:

Bits 7-0

xxlxxxxx

xxlxxxxx

xxlxxxxx

xxxxlxxx

xxxxxxxl

Condition

End-of-Tape (10 Feed Frames)

Tape supply low

End-of-Tape mark sensed

Broken tape; no tape on write
head

Device busy

HP 2020 and 3030 lxxxxxxx End-of-file record (178 for
2020, 23g for 3030) is de­
tected or written.

Magnetic Tape Units =

xlxxxxxx Start-of-tape marker sensed

xxlxxxxx End-of-tape marker sensed

xxxlxxxx Timing error on read/write

2-10 BCS

m=

xxxxlxxx

xxxxxlxx

xxxxxxlx

xxxxxxxl

1/0 request rejected:
a. tape motion required but

controller busy
b. backward tape motion re­

quired but tape at load point
c. write request given but reel

does not have write enable
ring.

Reel does not have write enable
ring or tape unit is rewinding.

Parity error on read/write

Unit busy or in LOCAL mode.

This bit defines the mode of the data
transmission:

0 ASCII or BCD

1 Binary

transmission log= This field is a log of the number of char­
acters or words transmitted. The value
is given as a positive integer and indi­
cates characters or words as specified in
calling sequence. The value is stored in
this field only when the request is com­
pleted, therefore, when all data is trans­
mitted or when a transmission error is
detected.

BCS 2-11

If a system status request is made, the information in the A and
B registers is as follows:

15 14 0
A-Register = I b IZZZ/ZZZZZZZZZZZZZZZZ//J
B-Register = 10------------flll

b=
0
1

System Status
No device is busy
At least one device is busy

2.5 PAPER TAPE SYSTEM

2.5.1 RECORD FORMATS

The Paper Tape System operates on ASCII and binary records.

ASCII Records

An ASCII record is a group of characters terminated by an end-of-record
mark which consists of a carriage return, cm ' and a line feed, @ .
If an odd number of characters is input, theYast word transmitted to the
buffer is padded with an ASCII blank.

For an input operation, the length of the record transmitted to
the buffer is the number of characters or words designated in
the request, or less if an end-of-record mark is encountered
beforHhe char~er or word count is exhausted. The codes
for ~ and ~ are not transmitted to the buffer. An end­
of-record mark preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters or words designated in the request.
An end-of-record mark is supplied at the end of each output
record by the input/ output system.

2-12 BCS

If the last character of an ASCII output record to the teleprinter or
punch is +-, however, the end-of-record mark is omitted. This allows
control of teleprinter line spacing. For example, the user may write a
message (the +- is not printed) and expect the rep~o be typed on the
same line. The reply must be terminated with the 0 and @ .

If a (RUB OUT) code followed by a @ , @ is encountered on
input from the teleprinter or Paper Tape Reader, the curre record is
ignored (deleted) and the next record transmitted. (RUB OUT appears
on the ~rinter keyboard and is synonymous with the ASCII
symbol~ .)

If less than ten feed frames (all zeros) are encountered before
the first data character from a paper tape input device, they
are ignored. Ten feed frames are interpreted as an end-of­
tape condition

Binary Records

A binary record is transmitted exactly as it appears in memory
or an 8-level paper tape. The record length is specified by
the number of characters or words designated in the request.
The first character of a binary record must be non-zero. On
input operations, less than ten feed frames preceding the first
data character are ignored. Ten feed frames are interpreted
as an end-of-tape condition (see STATUS REQUEST). On out­
put, the system writes four feed frames to serve as a physical
record separator.

Binary input records may be variable in length. The first word
of the record contains a number in bits 15-8 specifying the
length of the record (including the first word). The entire
record including the word count is transmitted to the buffer.
Iftheactuallengthexceedsthe size of the buffer, only the num­
ber of words equivalent to the buffer length is transmitted.

BCS 2-13

NOTE: Although binary transmission is normally stated in words as
opposed to characters, if an odd number of characters is
requested on input the last word transmitted to the buffer is
padded with binary zeros.

2.5.2 CALLING SEQUENCE

EXT .roe.

.roe. JSB

OCT <function> <subfunction> <unit-reference>

{~~p} <reject address> <error return>

DEF <buffer address>

{ DEC}
OCT <buffer length>

<normal return>

Function and Subfunction Codes

Allowable combinations of function and subfunction codes are
as follows:

Operation

Read ASCil record

Read ASCil record
and print

Read binary record

Read variable length
binary record

2-14 BCS

Octal value of
Bits 15-6

0100

0104

0101

0103

Write ASCII or BCD
record

0200

Write binary record 0201

An illegal combination of codes is rejected.

Buffer Length

_Character or word transmission may be specified for any paper tape
device. The buffer length for data that may be printed on the tele­
printer should be no more than 72 characters (36 words) or else the
teleprinter will overprint at the end of line.

Examples:

J J I J i J JJ J J I :
I I

I • I ; -1. : ! !J l I i: :j

Ji . !I :<1C . DE CIL:A ~E . IjgC . ~ S E X_l EfflAIL ·J j ~ : .
3!~ 1 REiS,~RV'E ISTO!R~IGE AREjAS1

: j3'6 I : 1

C i;M BK'S (I OiO)! ' fN~R_'.9.S jF,OR Lll.N!E [ANlQ II~ WORD:S j : : I

1 ! 1 : J I · 1 jj l j I j ' I i J I I ! I ! l l ! J ! :

11 J ; I : I ! I ! I I ! I ! i_j' J j ! l ! ! i : !

R EIADiI J SB
j J Ojf(T

' ! DEF LI N'E I T RfANS F:EHI IT JR E!J .ajQ • i ! Jj I j ! J. ! : :
l I DiE1C - 72' l ! I J I I J I JJ I ; 11 ' : ! : i I

i1 J1 1!11 I l:'J I[! JI.:::·
I I: '1 I ! i_l I! : : I J.:. I

R:l'Tl
: !] I I ; '.l ! ! 'I ' i I: ! f_;.. ! :

I !

lll STjOR;EIQl iIIN HIE ICOMMOJ'l ;B!UOCKI ! I : :
T E!C lq_0

l 1 I I ! i I ll.i I I I l l : T

l ,I l l l l l ij ::1

NOTE: In READI and WRITI, the leading 0 of the second word of
the calling sequence need not be written in the source
language since it is supplied in the object code as a result of
using the OCT pseudo instruction.

BCS 2-15

2.6 HP 2891 A CARD READER

2.6.1 DATA FORMATS

The HP 2891A Card Reader driver (D.11) provides three card reading
functions to read any type of punched card, as described in the
following paragraphs.

Hollerith to ASCII (Octal Equivalents) Conversion

Hollerith characters are converted to ASCII octal equivalents which are
then placed into a buffer word according to the character's column
number. All characters in odd-numbered columns are placed into the
left byte (bits 15-8), and those in even-numbered columns are placed
into the right byte (bits 7-0). The following table shows how the octal
equivalent of each character appears in the two possible positions within
a buffer word.

Hollerith to ASCII Oc:tal Equivalents
ASCII ASCII

Character Octal ~uivalent Character Octal Equivalent
Bits 15-8 Bits7-0 Bits 15-8 Bits 7--0

(name) Hollerith ASCII (offset) (true) (name) Hollerith ASCII (offset) (true)

A A 404 ~11 (space) 200 040
B B 410 ~g; I

204 041
c c 414 (quote) 210 042
D D 420 104 I # # 214 043
E E 424 105

I
$ $ 220 044

F F 430 106 % % 224 045
G G 434 107 ~ ~ 230 046
H H 440 110 I (apostrophe) 234 047
I I 444 111 l 240 050
J J 450

::: 11

244 051
K K 454 250 052
L L 460 114 254 053
M M 464 115 (comma) 260 054
N N 470 116 I (hyphen or minus) 264 055
0 0 474 117 (period) 270 056
p p 500 120 274 057
Q Q 504 121 350 072
R R 510 122 354 073
s s 514 123 360 074
T T 520 124 364 075
u u 524 125 370 ~76

v v 530 126 374 077
w w 534 127 @ @ 400 100
x x 540 130 (cent) 4 554 133
y y 544 131 (not mark) 564 135
z z 550 132 (vertical bar *) 570 136

300 060 (underscore**) 574 137
304 061 O-S-2 560 134

310 062 *numeric Y
314 063 **numeric W
320 064
324 065
330 066
334

m11
340
344

2-16 BCS

Consecutive characters (including blanks) are placed into consecutive
buffer characters.

Read Hollerith to ASCII Function

The function code 0100 (READ HOLLERITH TO ASCII CON­
VERSION) reads a card containing "ASMB" in columns 1 through 4:

"A"= .1018 which appears as 4048 in "offset-octal" bits 15-8 of
the first buffer word:

15 12 9 6 3 0

I a 1aa aaa I

"S" = 1238 in "true-octal" bits 7-0 of the first buffer word:

15 12 9 6 3 0

a• a• a a• 1 I

Thus the first packed word of the buffer is:

15 12 9 6 3 0

I a IDD DOD IOI DID 011

"M" = 1158 which appears as 4648 in "offset-octal" bits 15-8
of the second buffer word, and "B" = 1028 in "true-octal" bits
7-0 of the second buffer word:

15 12 9 6 3 0

0 100 110 IOI ODD 010

NOTE: Bits 8, 7, and 6 contain the octal sum of the least
significant digit in the "offset-octal" value in bits 15-8
and the most significant digit in the "true-octal" value
in bits 7-0.

BCS 2-17

Packed Binary

The Read Packed Binary function is used for cards punched in relocatable
binary format by either an assembler or a compiler. The figure below
shows how data is packed four card-columns into three buffer-words.
One 80-column card fills 60 words of the user's buffer. Column 1 rows
12-5 in each card contain the Record Length octal value x, where
0 < x .;;;;;; 7 4g. See Appendix E Relocatable Tape Format.

Read Packed Binary Fundion

etc

8
1
6

MEMORY
"i--~t-----~--,.------;

4
WORDS

r-::--=--7"""::"~:;-:::--="'""-;:-~c-:;---;-;:--1 ~ j

10

121101?34567f:i9
---ROWS---

Column 1 rows 12-5 contain record
i.ength octal value (bits l5-B).

CARD LAYCUT
A 8

Word 1 bits 15-8 contain record
length occal va1ue (12-5).

USER BUFFER LAYOUT

9 R
8 !--'-----------; !--'--------.------~ 8
?!--'--------, t------~ • .,..--,,.-.:--:-1.~.--~ 1
6 ----t----=-=-.----:.:---=.-~----1 6

COLUMNS 5 1-....::::---=..,,.-,--;--,,..-,--=-!. ~=~.===~=.~==·:::=~:==~.~=:~==~: M!~RODRSY

l, ~~ r--;,E --::•,-.,,.8 -=er::e'"°'171 -=e-:e=-=-e -=e-4,....,-~ ...,6,....,7.--,,-8 --=e--1 3
L___! _ _r..,-2--::3-:•~5~6-:7;-;;-8-:9~1..,-i~ll-:C~'..,-1--::2-:3;-:-4--::5~2

~~~::.:::~~2=~~~::.:::1 /~2 /~ /~ 12 I~ I~ ~ ; ~ : ~ ~ ~ I~ ~ ~ I 

----BITS----

SAMPLE CARD DATA SAMPLE BUFFER ST'.JRAGE 

2-18 BCS 



Column Image Binary 

The Read Column Image Binary function places each 12-row card 
column into one 16-bit word of the user's buffer, right-justified. The 
four left bits (15-12) are set to 0, as shown below. 

Read Column Image Binary Function 

(12 EDGE) 

ROW ';'.;·t•:.;:.,:.r_ • .,-

12 I I 

11 I I 

0 ~~ ~ ~!!~ :!:~!~~~ ~ ~ ~ ~!~ ~!!!!!!:!~: ~ ~! :~ ~ ::~ ~~l!~!~r~!~~ ~~J~!!~ ~!!~~!~,!!~!!~~~~I~:~~:!! 
I 1 I 1 11 I I 1 I 1 I I I I 1 1 I I 11 1 I 1 I I 1 I t I 1 I I 1 I 1 I 1 I 1 I I I 1 I I I 1 I I l I I I I I 1 1 1 I 1 I 1 1 1 I I 1 1 I I 1 I I 1 I ~ I I I 

21212 2212 212 2 2 2 22' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 

3 3 3 3131311113 3 3 3 3 3 3 J J J 3 J 3 J J 3 3 J 3 3 J 3 J 3 3 J 3 J 3 3 3 J J 3 3 3 3 J J' 3 3 3 3 3 3 J J 3 3 J 3 J 3 3 3 3 3 J 3 3 3 3 J J 3 3 3 

-4 .tl4 4 C 44 44.U 444 C 4 4 44 .t 4 .t 4 4 4 C 44 C 4 U 4 4 CH 4 4 4 4 4 4 4 4 4 ~ ~ 4 4 4 4 4 4 4 C 4 4 4 4 4 C 4 4 4 4 4 4 4 H C 44 C 44 44 

sssssssssssssssssssss5ssssssssssssssssss5ss555555555Sssssssssssss55SSH5H555555 

'6 6 6& 6' u uu 6'6' & 6 6' 6 6 "' u Iii" 6& 6 6 6 6 6 6 66 6 6 66 6 66 Iii 66 6 6 6 Ii Ii 6 6 6 66 6 6 6 6 6 6 6 6 Ii'" u 6'''' 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

1188l!l1hl1111811181811111111118188888881881il888818881188888811!1888!111111111 

(9 EDGO 
--------- COLUMNS l THROUGH 80 ----------

ROW ASSIGNED: 

CARD 
COLUMN 

10 

CARD DATA READ 

(NONE) }2 11 0 l 2 3 4 ., 6 } 
All BUFFER WORDS 

(SET roa' l ONE COLUMN 

15 14 13 12 ll 10 9 8 7 6 5 4 3 2 J 0 BITS 

BUFFER WORD ASSIGNMENTS 

BUFFER 
WORD 

0000100100000000 lst 

0000001010000000 2nd 

0000010000100000 3rd 

0000100010000000 4th 

0000001001000010 Sth 

0000010000000001 6th 

0000001001000010 7th 

0000100010000000 8th 

0000001001000010 9th 

0000010001000000 10th 

BUFFER WORDS AFTER DATA TRANSFER 

BCS 2-19 



2.6.2 CALLING SEQUENCE 

A calling sequence must be executed for each card read . 

EXT 

JSB 

OCT 

JMP 

DEF 

DEC} 
OCT 

. IOC. 

.IOC. 

<function><subfunction><unit reference number> 

<reject address> 

<buffer address> 

<buffer length> 

[Omit for Clear or Status 
requests.] 

<normal return> 

where: 

function -in bits 15-12 } 

~tion ..!-- in bits 11-6 
Function and Subfunction Codes 
headings below. 

unit-reference number - bits 5-0 

reject address - .IOC. returns control to the user at this location if the 
function or subfunction request is rejected by the 
initiator section. The A-Register cont.a.ins 1 and 
B-Register cont.a.ins a cause-of-reject code: 

a. If the card reader is busy or inoperable, or if the 
driver is busy, the B-Register contains lOOOOOg. 

b. If the subfunction requested is invalid for the 
card reader, the B-Register contains O; or if DMA 
is required but a DMA channel is currently not 
available, the B-Register cont.a.ins 1. 

buffer address - address of the first word of the user's buffer. 

buffer length - a positive integer for 16-bit buffer words, or a negative 
integer for 8-bit buffer characters (half words). An 
odd number of characters specified is incremented by 

2-20 BCS 



one (i.e., "-3" sets two buffer words, [3+1] /2 = 2). 
A 0 buff er length for either Read binary function 
feeds a card but ignores the data. A 0 buff er length 
for Read Hollerith to ASCII Ca.uses an immediate 
normal return with no action performed. 

NOTE: Buffer characters (a negative integer) should be specified only 
with the READ HOLLERITH to ASCII function. 

Function and Subfunction Codes 

The allowable function and subfunction codes for the .IOC. calling 
equence are shown below. 

Function and Subfunction 
Octal Code 
(bits 15-6) 

Read Hollerith to ASCII octal equivalent 0100 
conversion. Two characters per buff er 
word; see table on pages 2-16 and 2-17 
and figure on page 2-18. Trailing 
blanks are suppressed. 

Read packed binary. Four 12-row card 0103 
columns packed into three 16-bit 
buffer words; see figure on page 2-19. 
One 80-column card fills 60 sixteen-
bit buff er words. 

Read column image binary. Each card 0101 
column stored in one 16-bit buff er 
word right-justified; see figure on page 
2-20. Bits 15-12 are set to 0. 

Clear request. 0000 

Dynamic Status request. See Status. 0300 

Status request. See Status. 0400 

2.6.3 STATUS REQUESTS 

Two types of status requests can be made: normal, which returns the 
status Of the Card Reader for the last time it was referenced, and dynamic, 
which returns the actual status of the card reader. 

BCS 2-21 



A normal status request returns the current contents of EQT entry words 
2 and 3 for the Card Reader in the A- and B-Registers, respectively. 
The table below shows the meanings of status bits 7-0 in the A-Register 
of EQT entry word 2. This driver returns an equipment type code of 
11 in bits 13-8. 

Status Bit Meanings 

Bit 
(when set to 1) 

0 

1 

2 

3 

4 

5 

6 

7 

Status Indicated 

Reader not ready, or in TEST 
mode. 

Illegal ASCII character(s), or hard­
ware read trouble. 

Card Reader in TEST mode. 

Timing error, last column. 

Pick failure. 

Hopper empty. 

Stacker is full. 

End of file scratch is set and the 
feed hopper is empty. 

When the user's calling sequence requests dynamic status, the driver 
returns only the status word in the A-Register (B-Register is unspecified). 
The status information is shown in the preceding table. 

2.6.4 TRANSMISSION LOG 

The transmission log in EQT entry word 3 for the Card Reader is a 
positive integer. It reports the number of buff er words or characters 
transmitted and the data transfer mode. (When bit 15 = 1, the mode is a 
Read Binary function; when bit 15 = 0, the mode is Read Hollerith to 

2-22 BCS 



ASCII.) According to the Read function requested, the transmission 
log count has one of three maximum values: 

Function Maximum Transmission Log Count 

Read Hollerith to ASCII 80 characters or 40 words. 

Read Packed Binary 60 words. 

Read Column Image Binary 80 words. 

The number of words or characters transmitted is determined by: 

Function 

Read Hollerith to ASCII 

Read Packed Binary 

Read Column Image Binary 

Transmission Log Method 

The number of buff er char­
acters requested, or the num­
ber of columns on the card, 
whichever is less, minus trail­
ing blanks. (A totally blank 
card returns a zero.) 

The number of buffer words 
requested, or the octal num­
ber recorded in rows 12-5 
of the first card column, 
whichever is less. 

The number of words re­
quested or the number of 
columns on the card, which­
ever is less. 

BCS 2-23 



2.7 HP 2778A, 2778A-001 LINE PRINTER 

2.7.1 MODES OF OPERATION 

This driver has three modes of operation: Plus, Normal, and TTY. The 
modes are selected by issuing the proper control subfunction or by 
selecting one of the following unit numbers at BCS configuration 
(PCS) time: 

Unit No. Mode 

0 (Default Unit #) Normal 

2 Plus 

4 TTY 

For example, the Plus mode may be set at PCS time by supplying the 
following Equipment Table entry: 

nn, D.12,U2 

where nn is the ohannel number (select code) for the device. 

In the Normal and Plus modes, the first character of the print buffer is 
used as control and is not printed. Instead, tl:le second character of the 
buff er is printed in column one of the line printer paper. 

In the Normal mode, if the first character is a "+", the driver interprets 
it as a blank (i.e., single space). In the Normal mode an attempt is made 
to drive the printer as a "space then print" device. Thus, if the command 
character says spr.ce 3 lines, the driver subtracts one and spaces 2 lines 
(one space was sent to terminate the last line, so the total is 3). 

The Plus mode interprets a "+" in column one and overprints the current 
line on top of the last line. The driver sends a hold command at the end 
of each line and a single space before each line without a"+" in column 
one. The net effect is that the printer runs as a "space then print" device 
at approximately half-speed. 

The TTY mode makes the Line Printer act like a teleprinter and prints 
the first character (in column one) of the buffer. Line space control for 
the TTY mode may be executed by using the print or control subfunction 
field. The TTY mode, if set, overrides the Plus and Normal modes and 
drives the printer as a "print then space" device. Two methods of spacing 
are permitted by using the print subfunction field. 

2-24 BCS 



The driver, in all modes, handles a line ending with a left arrow ( +-) by 
printing the first character in the buffer of the next request where the 
left arrow would have appeared had it been printed. 

2.7.2 CALLING SEQUENCE 

The general form of the input/output request is: 

EXT .IOC. 

JSB .IOC. 

OCT <function><subfunction>< unit-reference> 

JMP <reject address><error return> 

DEF <buffer address> 

DEC } <buffer length> 
OCT 

<normal return> 

2.7.3 INPUT/OUTPUT CONTROL (.IOC.) 

All line printer input/output operations are requested by performing a 
JSB to entry point .IOC. The input/output control subroutine returns 
control to the calling program at the first location following the last 
word of the 1/0 request. 

2.7.4 FUNCTION AND SUBFUNCTION (:ODES 

The second word of the 1/0 request determines the function to be per­
formed and the line printer unit-reference for which the action is to be 
taken. The bit combinations that comprise the control word are as 
follows: 

15 12 11 6 5 0 

function subfunction unit-reference 

BCS 2-25 



The function (bits 15-12) is the basic input/output operation; it may be 
any of the following: 

Function Name Code (Octal) 

Clear 00 

Write 02 

Control 03 

Status 04 

Write Function (02) 

Subfunction Bits 
(Ignore the x's) 

OOx xxx 

Olx xxx 

llx ddd 

lOx xxO 

lOx xxl 

2-26 BCS 

Subfunction Description 

Normal and Plus mode - first character is car­
riage control, the ASCII character in the Allow­
able Motion Request table on page 2-30. The 
second character is printed in column one of 
the line printer. 

TIY mode - first character is data. The 
carriage control character is the low 6 bits of 
the status word (second word of equipment 
table). The status word is set with an extended 
carriage control explained below. 

TTY mode - first character is data. Carriage 
control is tape level corresponding to ddd in 
the Allowable Motion Requests table on page 
2-30. 

Extended carriage control - first word in the 
buffer is sent as a carriage control command to 
the line printer. The first word is an octal code 
in bits 5-0, as defined in the Extended Carriage 
Control Code table on page 2-33. The buffer 
length (1/0 request fifth word) should be 
set to 1. 

Extended carriage control - first word of buffer 
is set into status word to be used as TTY car­
riage control. The first word is an octal code in 
bits 5-0, as defined in the Extended Carriage 
Control Code table on page 2-33. 



Control Function (03) 

Subfunction Bits 
(Ignore the x's) Subfunction Description 

OOx 000 Dynamic Status Request 

OOx 111 Clear TTY mode and Plus mode (and set 
Normal mode) 

OOx 110 Set TTY mode 

OOx 010 Set Plus mode 

cco CCC If not one of the above codes, CClCCC will be 
sent to the line printer. (See the Allowable 
Motion Requests table on page 2-33.) 

2.7.5 REJECT ADDRESS 

Control is transferred to the third word of the 1/0 request if the input/ 
output operation cannot be initiated. On transfer, the system provides 
status information which may be checked by the user's program. The 
A-Register is set to 0 to indicate that the operation is initiated, or is 
set to 1 to indicate that the operation is rejected. The B-Register con­
tains the cause-of-reject code: 

a. If the printer is busy or inoperable, or if the driver is busy, the 
B-Register contains lOOOOOs. 

b. If the subfunction requested for the printer is invalid, the 
B-Register contains O; or if DMA is required but a DMA channel 
is currently not available, the B-Register contains 1. 

BCS 2-27 



2.7.6 BUFFER STORAGE AREA 

The buffer address is the location of the first word of data to be printed. 
The length of the buff er area may be specified in terms of words or 
characters. If the length is given as words, the value in the buffer length 
field must be a positive integer; if given as characters, a negative integer. 
A length of zero causes a blank line to be printed. 

2.7.7 STATUS REQUESTS 

Either of the following types of status requests may be made: 

a. Normal status -

JSB .IOC. 

OCT 0400 <unit-reference> 

<normal return> 

b. Dynamic status -

2-28 BCS 

JSB .IOC. 

OCT 0300 <unit-reference> 

<normal return> 

The dynamic status request is used to obtain the actual status 
of a line printer unit. The normal status request returns the 
status of the line printer unit for the last time it was referenced. 
The dynamic status request goes to the driver for its operation; 
it returns only the status word in the A-Register with nothing 
in particular in the B-Register. The EQT status table entry is 
updated by this request. 



Allowable Motion Requests (HP 2778A, 2778A-001) 

ASCII 
Print Subfunction ContzolSubfunction* Character in 
ddd code (octal) CCO CCC code (octal) Column One Action 

0 Double space t 

7 67 1 Top of form t 

6 66 2 Bottom of form t 

5 65 3 Next sixth page t 

Printer 
4 64 4 Next quarter 

Carriage paget 

Controls 3 63 5 Next half page t 

2 62 6 Next triple space 
linet 

1 61 7 Next double space 
line t 

0 60 8 Next single space 
line t 

9 Advance 55 lines 

Advance 54 lines 

Advance 53 lines 

< Advance 52 lines 

Advance 51 lines 

> Advance 50 lines 

Advance 49 lines 

@ Advance 48 lines 

47 A Advance 4 7 lines 

46 B Advance 46 lines 

45 c Advance 45 lines 

44 D Advance 44 lines 

43 E Advance 43 lines 

42 F Ac;l.vance 42 lines 

41 G Advance 41 lines 

40 H Advance 40 lines 

Advance 39 lines 

J Advance 38 lines 

K Advance 37 lines 

L Advance 36 lines 

M Advance 35 lines 

N Advance 34 lines 

0 Advance 33 lines 

p Advance 32 lines 

BCS 2-29 



ASCII 
Print Subfunction Control Subfunction* Character in 
ddd code (octal) CCO CCC code (octal) Column One Action 

27 Q Advance 31 lines 
26 R Advance 30 lines 
25 s Advance 29 lines 
24 T Advance 28 lines 
23 u Advance 27 lines 
22 v Advance 26 lines 
21 w Advance 25 lines 
20 x Advance 24 lines 

y Advance 23 lines 
z Advance 22 lines 
[ Advance 21 lines 
\ Advance 20 lines 
] Advance 19 lines 
t Advance 18 lines 

Advance 1 7 lines 
(Blank) Advance 1 line 

Advance 15 lines 
Advance 14 lines 

04 # Advance 13 lines 
03 $ Advance 12 lines 
02 % Advance 11 lines 
01 & Advance 10 lines 

Advance 9 lines 
(apostrophe) 

( Advance 8 lines 
) Advance 7 lines 
* Overprint next 1 

line 
+ In Plus mode: over-

print this line 
+ In Normal mode: 

Advance 1 line 
Advance 4 lines 

(comma) 
Advance 3 lines 
Advance 2 lines 

(period) 
Advance 1 line 

* The x (priority bit 9) has been set = 0 for this table. 

t These control requests include an automatic page eject. 

2-30 BCS 



Extended Carriage Control Code (HP 2778A, 2778A-001) 

Octal Code Octal Code 
(in bits 5-0) Action (in bits 5-0) Action 

77 Top of Form t 37 Advance 31 lines 

76 Bottom of Form t 36 Advance 30 lines 

75 Next sixth page t 35 Advance 29 lines 

74 Next quarter page t 34 Advance 28 lines 

73 Next half page t 33 Advance 27 lines 

72 Next triple space line t 32 Advance 26 lines 

71 Next double space line t 31 Advance 25 lines 

70 Next single space line t 30 Advance 24 lines 

67 Advance 55 lines 27 Advance 23 lines 

66 Advance 54 lines 26 Advance 22 lines 

65 Advance 53 lines 25 Advance 21 lines 

.64 Advance 52 lines 24 Advance 20 lines 

63 Advance 51 lines 23 Advance 19 lines 

62 Advance 50 lines 22 Advance 18 lines 

61 Advance 49 lines 21 Advance 1 7 lines 

60 Advance 48 lines 20 Advance 16 lines 

57 Advance 47 lines 17 Advance 15 lines 

56 Advance 46 lines 16 Advance 14 lines 

55 Advance 45 lines 15 Advance 13 lines 

54 Advance 44 lines 14 Advance 12 lines 

53 Advance 43 lines 13 Advance 11 lines 

52 Advance 42 lines 12 Advance 10 lines 

51 Advance 41 lines 11 Advance 9 lines 

50 Advance 40 lines 10 Advance 8 lines 

47 Advance 39 lines 7 Advance 7 lines 

46 Advance 38 lines 6 Advance 6 lines 

45 Advance 37 lines 5 Advance 5 lines 

44 Advance 36 lines 4 Advance 4 lines 

43 Advance 35 lines 3 Advance 3 lines 

42 Advance 34 lines 2 Advance 2 lines 

41 Advance 33 lines 1 Advance 1 lines 

40 Advance 32 lines 0 Advance Oline 

t These actions include an automatic page eject. 

BCS 2-31 



Status Return Information 

15 14 13 8 7 0 

A-Register: a Equipment Type Status 

15 14 0 

B-Register: _j _M~j ________ Trans __ IDJSS_._io_n_L_o_g _____ ~ 

a = Availability (A-Register bits 15 and 14): 

0 The device is available; the previous operation is complete. 

1 The driver is available; the operation could not be initiated 
because the device is not ready. 

2 = The device is not available for another request; an operation 
is in progress. 

Equipment Type (A-Register bits 13-8): 

12g = HP 2778A (or 2778A-001) Line Printer 

Status (A-Register bits 7-0): 

Bits 

5-0 Tl'Y termination code with bits 3-5 inverted 

6 Left arrow (+-) last time flag; if true, bit 6 1 

7 Asterisk (*) last time flag; if true, bit 7 1 

M data transmission mode (B-Register bit 15): 

Always 0 = ASCII 

Transmission Log (B-Register bits 14-0): 

This field is a log of the number of characters or words transmitted. 
The value is given as a positive integer and indicates characters or 
words as specified in the I/0 request. 

2-32 RCS 



2.7.8 CLEAR REQUEST 

The clear request terminates a previously issued input or output 
operation and sets all busy flags to "not-busy." A clear request has the 
following form: 

EXT .IOC. 

JSB .IOC. 

OCT 0000 <unit-reference> 

On return, the contents of the A- and B-Registers are meaningless. The 
clear request checks for multi-unit operation based on the device; i.e., 
the I/0 channel number. The driver is cleared only if the clear request is 
for the current operation 1/0 channel. 

If a clear request is issued while operating the driver in the plus mode, 
either of the following two events may occur: 

1. If the driver is busy, the clear request will print and space 
one line. 

2. If the driver is not busy, the clear request will not print and 
space one line. 

In either case, the next print request following the clear request prints 
without spacing ("overprint next line" has been set by the driver); i.e., 
if the line printer paper is resting at Top-Of-Form and the driver is not 
busy, the first line of the next print request prints on the first line of the 
paper. However, if the line printer has just printed a line prior to the 
clear request and the driver is not busy, the first line of the next print 
request overprints the last line printed. To alleviate this problem, a 
control request may be issued prior to the print request. 

2.7.9 ERROR CONDITIONS 

Equipment Table Flags 

Word 2 of the equipment table contains no hardware status in bits 7-0. 
See Status Return Information for the meaning of these bits. 

BCS 2-33 



Illegal Character 

Should an illegal character be encountered, the driver will output an "@" 

character. A legal character is defined as ~40g and ~137g (all ASCII 
characters are legal), and all other octal numbers are considered to be 
illegal characters. 

Illegal Buffer Length 

Should an illegal buffer length be encountered, the driver will use 132 
characters (or 66 words) as a legal length. A legal buffer length is definerl 
as Q32 characters (or ~66 words). 

2-34 BCS 



2.8 HP 2767 LINE PRINTER 

2.8.1 MODES OF OPERATION 

The HP 2767 line printer driver has three modes of operation: Plus, 
Normal, and TTY. The modes are selected by issuing the proper control 
subfunction or by selecting one of the following unit numbers at BCS 
configuration (PCS) time: 

Unit No. Mode 

0 (Default Unit #) Normal 

2 Plus 

4 TTY 

For example, the Plus mode may be set at PCS time by supplying the 
following Equipment Table entry: 

nn, D.16,U2 

where nn is the channel number (select code) for the device. 

In the Normal and Plus modes, the first character of the print buffer 
is used as control and is not printed. Instead, the second character of 
the buffer is printed in column one of the line printer paper. 

In the Normal mode, if the first character is a "+", the driver interprets 
it as a blank (i.e., single space). In the Normal mode an attempt is made 
to drive the printer as a "space then print" device. Thus, if the command 
character says space 3 lines, the driver subtracts one and spaces 2 lines 
(one space was sent to terminate the last line, so the total is 3). 

The Plus mode interprets a"+" in column one and overprints the current 
line on top of the last line. The driver sends a hold command at the end 
of each line and a single space before each line without a"+" in column 
one. The net effect is that the printer runs as a "space then print" 
device. 

The TIY mode makes the Line Printer act like a teleprinter and prints 
the first character (in column one) of the buffer. Line space control for 
the TTY mode may be executed by using the print or control subfunction 
field. The TTY mode, if set, overrides the Plus and Normal modes and 
drives the printer as a "print then space" device. Two methods of spac­
ing are permitted by using the print subfunction field. 

BCS 2-35 



The driver, in all modes, handles a line ending with a left arrow (+-)by 
printing the first character in the buffer of the next request where the 
left arrow would have appeared had it been printed. 

2.8.2 CALLING SEQUENCE 

The general form of the input/output request is: 

EXT .IOC. 

JSB .IOC. 

OCT <function> <subfunction><unit-reference> 

JMP <reject address><error return> 

DEF <buffer address> 

DEC } <buffer length> 
OCT 

<normal return> 

2.8.3 INPUT/OUTPUT CONTROL (.IOC.) 

All input/output operations are requested by performing a JSB to entry 
point .IOC. The input/output control subroutine returns control to the 
calling program at the first location following the last word of the 
1/0 request. 

2.8.4 FUNCTION AND SUBFUNCTION CODES 

The second word of the 1/0 request determines the function to be per­
formed and the line printer unit-reference for which the action is to be 
taken. The bit combinations that comprise the control word as follows: 

15 12 11 6 5 0 

function sub function unit-reference 

2-36 BCS 



The function (bits 15-12) is the basic input/output operation; it may be 
any of the following: 

Function Name Code (Octal) 

Clear 00 

Write 02 

Control 03 

Status 04 

Write Function (02) 

Subfunction Bits 
(Ignore the x 's) 

00~ 

Olx xxx 

llx ddd 

lOx xxO 

lOx xxl 

Subfunction Description 

Normal and Plus mode - first character is car­
riage control, the ASCII character in the Allow­
able Motion Requests table on page 2-41. The 
second character is printed in column one of 
the line printer. 

TTY mode .,....._ first character is data. The car­
riage control character is the low 6 bits of the 
status word (second word of equipment table). 
The status word is set with an extended car­
riage control explained below. 

TTY mode - first character is data. Carriage 
control is tape level corresponding to ddd in 
the Allowable Motion Requests table on page 
2-41. 

Extended carriage control - first word in the 
buffer is sent as a carriage control command to 
the line printer. The first word is an octal code 
in bits 5-0, as defined in the Extended Car­
riage Control Code table on page 2-44. The 
buffer length (1/0 request fifth word) should 
be set to 1. 

Extended carriage control - first word of buf­
fer is set into status word to be used as TTY 
carriage control. The first word is an octal code 
in bits 5-0, as defined in the Extended Carriage 
Control Code table on page 2-44. 

BCS 2-37 



Control Function (03) 

Subfunction Bits 
(Ignore the x's) Subfunction Description 

OOx 000 Dynamic Status Request 

OOx 111 Clear TTY mode and Plus mode (and set Nor-
mal mode) 

00! 110 Set TTY mode 

00~ 010 Set Plus mode 

CCx CCC If not one of the above codes, CCl CCC will be 
sent to the line printer (See Allowable Motion 
Requests Table on page 2-41). 

2.8.5 REJECT ADDRESS 

Control is transferred to the third word of the I/0 request if the input/ 
output operation cannot be initiated. On transfer, the system provides 
status information which may be checked by the user's program. The 
A-Register is set to 0 to indicate that the operation is initiated, or is set 
to 1 to indicate that the operation is rejected. The B-Register contains 
the cause-of-reject code: 

a. If the printer is busy or inoperable, or if the driver is busy, the 
B-Register contains 1000003. 

b. If the subfunction requested for the printer is invalid, the B­
Register contains O; or if DMA is required but a DMA channel is 
currently not available, the B-Register contains 1. 

2.8.6 BUFFER STORAGE AREA 

The buffer address is the location of the first word of data to be printed. 
The length of the buffer area may be specified in terms of words or 
characters. If the length is given as words, the value in the buffer length 
field must be a positive integer; if given as characters, a negative integer. 
A length of zero causes a blank line to be printed. 

2-38 BCS 



Allowable Motion Requests {HP 2767) 

ASCII 
Print Subfunction Control Subfunction** Character in 
ddd code (octal) CCx CCC code (octal) Column One Action 

0 Double space t 

7 67 1 Top of form t 

6 66 2 Bottom of form t 

5 65 3 Next sixth page t 

4 64 4 Next quarter 
Printer page t 
Carriage 

3 63 5 Next half page t Controls 
2 62 6 Next triple space 

linet 

61 7 Next double space 
line t 

0 60 8 Next single space 
line t 

9 Advance 55 lines* 

Advance 54 lines* 

Advance 53 lines* 

< Advance 52 lines* 

Advance 51 lines* 

> Advance 50 lines* 

Advance 49 lines* 

@ Advance 48 lines* 

47 A Advance 47 lines* 

46 B Advance 46 lines* 

45 c Advance 45 lines* 

44 D Advance 44 lines* 

43 E Advance 43 lines* 

42 F Advance 42 lines* 

41 G Advance 41 lines* 

40 H Advance 40 lines* 

Advance 39 lines* 

J Advance 38 lines* 

K Advance 37 lines* 

L Advance 36 lines* 

M Advance 35 lines* 

N Advance 34 lines* 

0 Advance 33 lines* 

p Advance 32 lines* 

BCS 2-39 



ASCII 
Print Subfunction Control Subfunction** Character in 
ddd code (octal) CCx CCC Code (octal) Column One Action 

27 Q Advance 31 lines* 
26 R Advance 30 lines* 
25 s Advance 29 lines* 
24 T Advance 28 lines* 
23 u Advance 27 lines* 
22 v Advance 26 lines* 
21 w Advance 25 lines* 
20 x Advance 24 lines* 

y Advance 23 lines* 
z Advance 22 lines* 
[ Advance 21 lines* 
\ Advance 20 lines* 
] Advance 19 lines* 
t Advance 18 lines* 

Advance 1 7 lines* 
(Blank) Advance 1 line* 

Advance 15 lines* 
Advance 14 lines* 

# Advance 13 lines* 
04 $ Advance 12 lines* 
03 % Advance 11 lines* 
02 & Advance 10 lines* 
01 Advance 9 lines* 

(apostrophe) 
( Advance 8 lines* 
) Advance 7 lines* 
* Overprint next line 
+ In Plus mode: over-

print this line 
+ In Normal mode: 

Advance 1 line* 
Advance 4 lines* 

(comma) 

Advance 3 lines* 
Advance 2 lines* 

(period) 

I Advance 1 line* 

*Add six lines for any multiple skips crossing the paper perforations. 
The HP 2767 pine printer will not print in three lines before and after the 
page perforations. Continuous listings are not possible with this printer. 

2-40 BCS 



Extended Carriage Contol Code (HP 2767) 

Octal Code Octal Code 
(in bits 5-0) Action (in bits 5-0) Action 

77 Top of form t 37 Advance 31 lines 

76 Bottom of form t 36 Advance 30 lines 

75 Next sixth page t 35 Advance 29 lines 

74 Next quarter page t 34 Advance 28 lines 

73 Next half page t 33 Advance 27 lines 

72 Next triple space line t 32 Advance 26 lines 

71 Next double space line t 31 Advance 25 lines 

70 Next single space line t 30 Advance 24 lines 

67 Advance 55 lines 27 Advance 23 lines 

66 Advance 54 lines 26 Advance 22 lines 

65 Advance 53 lines 25 Advance 21 lines 

64 Advance 52 lines 24 Advance 20 lines 

63 Advance 51 lines 23 Advance 19 lines 

62 Advance 50 lines 22 Advance 18 lines 

61 Advance 49 lines 21 Advance 1 7 lines 

60 Advance 48 lines 20 Advance 16 lines 

57 Advance 4 7 lines 17 Advance 15 lines 

56 Advance 46 lines 16 Advance 14 lines 

55 Advance 45 lines 15 Advance 13 lines 

54 Advance 44 lines 14 Advance 12 lines 

53 Advance 43 lines 13 Advance 11 lines 

52 Advance 42 lines 12 Advance 10 lines 

51 Advance 41 lines 11 Advance 9 lines 

50 Advance 40 lines 10 Advance 8 lines 

47 Advance 39 lines 7 Advance 7 lines 

46 Advance 38 lines 6 Advance 6 lines 

45 Advance 37 lines 5 Advance 5 lines 

44 Advance 36 lines 4 Advance 4 lines 

43 Advance 35 lines 3 Advance 3 lines 

42 Advance 34 lines 2 Advance 2 lines 

41 Advance 33 lines 1 Advance 1 line 

40 Advance 32 lines 0 Advance 0 line 

tThese actions include an automatic page eject. 

BCS 2-41 



2.8.7 STATUS REQUESTS 

Either of the following types of status requests may be made: 

a. Normal status -

JSB .IOC. 

OCT 0400 <unit-reference> 

<return> 

b. Dynamic status -

JSB .IOC. 

OCT 0300 <unit-reference> 

<return> 

The dynamic status request is used to obtain the actual status 
of a line printer unit. The normal status request returns the 
status of the line printer unit for the last time it was referenced. 
The dynamic status request goes to the driver for its operation; 
it returns only the status word in the A-Register with nothing 
in particular in the B-Register. The EQT status table entry is 
updated by this request. 

Status Return Information 

15 14 13 8 7 0 

A-Register: a Equipment Type Status 

15 14 0 

B-Register: J~-M~J _______ Tr_a_n_s_m_i_ss_io_n_L_o_g ________ I 
a = Availability (A-Register bits 15 and 14): 

0 The device is available; the previous operation is co~a­
plete. 

1 The driver is available; the operation could not be 
initiated because the device is not ready. 

2 The device is not available for another request; an opera­
tion is in progress. 

Equipment Type (A-Register bits 13-8): 

168 = HP 2767 Line Printer 

2-42 BCS 



Status (A-Register bits 7-0): 

Bits Meaning 

5-0 TTY termination code with bits 3-5 inverted. 

6 Left arrow (*""") last time flag; if true, bit 6 = 1. 

7 Asterisk(*) last time flag; if true, bit 7 = 1. 

M =data transmission mode (B-Register bit 15): 

Always 0 = ASCII 

Transmission Log (B-Register bits 14-0): 

This field is a log of the number of characters or words trans­
mitted. The value is given as a positive integer and indicates 
characters or words as specified in the 1/0 request. 

2.8.8 CLEAR REQUEST 

The clear request terminates a previously issued input or output opera­
tion and sets all busy flags to "not-busy". A clear request has the follow­
ing form: 

EXT .IOC. 

JSB .IOC. 

OCT 0000 <unit-reference> 

On return, the contents of the A- and B-Registers are meaningless. The 
clear request checks for multi-unit operation based on the device; i.e., the 
1/0 channel number. The driver is cleared only if the clear request is for 
the current operation 1/0 channel. 

If a clear request is issued while operating the driver in the plus mode, 
either of the following two events may occur: 

1. If the driver is busy, the clear request will print and space one 
line. 

2. If the driver is not busy, the clear request will not print and 
space one line. -

BCS 2-43 



In either case, the next print request following the clear request prints 
without spacing ("overprint next line" has been set by the driver); i.e., if 
the line· printer paper is resting at Top-Of-Form and the driver is not 
busy, the first line of the next print request prints on the first line of the 
paper. However, if the line printer has just printed a line prior to the clear 
request and the driver is not busy, the first line of the next print request 
overprints the last line printed. To alleviate this problem, a control 
request may be issued prior to the print request. 

2.8. 9 ERROR CONDITIONS 

Equipment Table Flags 

Bits 14-9 of word one of the equipment table contain the line count of 
the HP 2767 Line Printer; i.e., if the carriage is resting on line 20, the 
bits contain 20B. Word 2 contains no hardware status in bits 7-0. See 
Status Return Information for the meaning of these bits. 

Illegal Character 

Should an illegal character be encountered, the driver will output an 
"@" character. A legal character is defined as ~408 and ~1378 (all 
ASCII characters are legal), and all other octal numbers are considered 
to be illegal characters. 

Illegal Buffer Length 

Should an illegal buffer length be encountered, the driver will use 80 
characters (or 40 words) as a legal length. A legal buffer length is defined 
as ~O characters (or ~O words). 

2-44 BCS 



2.9 KENNEDY INCREMENTAL TRANSPORT 

2.9.1 RECORD FORMATS 

Binary Coded Decimal Records 

A BCD record is a group of BCD characters terminated (on magnetic 
tape) by a record gap. A request to write a BCD record results in the 
translation of each 7-level ASCII character in the buffer area into a 6-
level BCD character on magnetic tape. (See Kennedy Incremental Trans­
port BCD Record format heading below and the Kennedy ASCII-BCD 
Conversion on page A-2.) The translation process does not alter the 
original contents of the buffer. 

The length of the record is determined by the number of characters or 
words designated in the request. A record gap is supplied at the end of 
each record by the input/output system. 

If the last character in- the buffer area is +-, however, the record gap is 
omitted. The +- is not written on tape. 

A WRITE request specifying a buffer length of zero causes a record gap 
only to be written. 

BCD Record Format - Kennedy Incremental Transport 

15 14 8 7 0 

First computer word I 1 0 0 0 0 0 11 11 0 0 1 1 0 11 A(lOl) and 
in buffer ._ _ ___,_ _____ ___. __ _._ _____ ____._ M(115) in 

TAPE TRACKS 

First tape character 

Second tape character 

Third* tape character 

Fourth* tape character 

Second ASCII First ASCII ASCII (octal) 
character character 
TRANSLATION (see APPENDIX A) 

5 0 

11 1 0 0 0 11 

A(61) in BCD 
(octal) 

5 0 

11 o o 1 o o I 
M(44) in BCD 
(octal) 

p 6 1 

1 1 1 0 0 0 1 

0 1 0 0 1 0 0 

0 1 0 0 1 1 1 

0 0 1 0 0 1 0 

P= Even Parity bit 

~1 RECORDEDDATA 
P* 

S* 

*From Second computer 
word in buffer. 

BCS 2-45 



2.9.2 CALLING SEQUENCE 

EXT 

JSB 

OCT 
JSB 
JMP 

DEF 

DEC 
OCT 

.IOC. 

.IOC. 

<function> <subfunction> <unit-reference> 

<reject address> <error return> 

<buffer address> 

<buff er length> 

<normal return> 

2.9.3 FUNCTION AND SUBFUNCTION CODES 

Allowable function codes for the 1406/1506 Kennedy Incremental Tape 
Transport are as follows: 

WRITE (ASCII Mode only) 0200 

WRITE End-of-file 0301 

CLEAR 0000 

2-46 BCS 



2.10 MAGNETIC TAPE SYSTEM (HP 2020 MAGNETIC 

TAPE UNIT) 

2. 10.1 RECORD FORMATS 

Binary Records 

A binary record on magnetic tape is a group of 6-level tape "characters" 
recorded in odd parity and terminated by a record gap. The record 
length is determined by the number of characters or words in the buffer 
as designated in the request. 

NOTE: Odd parity: a seventh bit is recorded on tape if the number 
of 1 bits in the six levels is an even decimal number (0, 2, 
4 or 6). 

Even parity: a seventh bit is recorded on tape if the number 
of 1 bits in the six levels is an odd decimal number (1, 3 or 
5). 

Each computer word is translated into three tape "characters" (and vice 
versa) as shown in the figure on page 2-51. 

For output operations, the minimum buffer length is three computer 
words. 

Binary Record Format (HP 2020) 

15 11 10* 6 5* 0 
Computer Word J 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 I 

Third part of 
wo d Second part of 

TAPE TRACKS 

First tape character 

Second tape character 

Third tape character 

word 

p 6 

1 0 1 

0 1 1 0 0 0 1 

*Bits 10 and 5 
are recorded 
twice, in two 
tape characters, 
as shown. 

P=Odd parity bit 

BCS 2-47 



Binary Coded Decimal Records 

A BCD record on magnetic tape is a group of BCD characters recorded 
in even parity and terminated by a record gap. A request to write a BCD 
record results in the translation of each 7-level ASCII character in the 
buffer area into a 6-level BCD character on magnetic tape. (Refer to the 
figure on page 2-52 and the table on page A-3.) A request to read a BCD 
record results in the translation of each BCD character into an ASCII 
character after the block has been read. 

The length of the record may not be more than 120 characters. A record 
gap is supplied at the end of each record. 

BCD Record Format (HP 2020) 

First computer word 
in buffer 

TAPE TRACKS 

First tape character 

Second tape character 

Third* tape character 

Fourth* tape character 

2-48 BCS 

1514 8 7 6 0 

I I 1 o o o o o 1 I I 1 o o 1 1 o 1 I ~~i~;~ :d 

Second ASCII First ASCII 
character character 
TRANSLATION (see APPENDIX A) 

5 0 5 0 

11 1 o o o 11 I 1 o o 1 o oj 

A(61) in BCD 
(octal) 

M(44) in BCD 
(octal) 

ASCII (octal) 

p 6 1 P= Even Parity bit 

1 1 1 0 0 0 1 

0 1 0 0 1 0 0 

0 1 0 0 1 1 1 

0 0 1 0 0 1 0 

:. } RECORDED DATA 

S* 

*From second computer word in 
buffer. 



2.10.2 CALLING SEQUENCE 

EXT .IOC. 

.IOC. JSB 

OCT <function>< subfunction><unit-reference> 

~} 
DEF 

DEC} 
OCT 

<reject address><error return> 

<buffer address> 

<buffer length> 

<normal return> 

2.10.3 FUNCTION AND SUBFUNCTION CODES 

All allowable combinations of function and subfunction codes are as 
follows: 

Operation 

Read BCD record and convert to ASCII 

Read binary record 

Write BCD record after converting from ASCII 

Write binary record 

Write End-of-File (EOF) mark 

Forward space one record 

Backspace one record 

Rewind to start of tape (SOT) the LOAD 
Point, Ready (AUTO mode) 

Rewind to start of tape (SOT) the LOAD 
Point, Unload (LOCAL mode) 

2.10.4 BUFFER LENGTH 

Octal value of 
Bit 15-6 

0100 

0101 

0200 

0201 

0301 

0302 

0303 

0304 

0305 

A WRITE request for the HP 2020 Magnetic Tape Unit must have a 
minimum buffer length of seven ASCII characters (four words). If less 
than seven characters are specified, spaces will be added to fill the seven 
characters. 

BCS 2-49 



2.11 MAGNETIC TAPE SYSTEM (HP 3030 MAGNETIC 
TAPE UNIT) 

The 3030 Driver operates the HP 3030 9-channel magnetic tape control­
ler. It initiates, continues and completes any tape operations requested 
through input/output control. As a module of the Basic Control System, 
the driver conforms to the general specifications for performing input/ 
output under control of the Input/Output Control (IOC) module. 

Two consecutive I/O channels are required with the data channel assigned 
to the higher priority of the two. The other channel is the command 
channel. Data is transferred to or from memory by a DMA channel. 

The name of the Driver is D.22. The entry points are D.22 (Initiator 
Section) and C.22 (Continuator Section). 

When configuring a BCS tape with the 3030 driver using PCS, the only 
requirement is a link from the command channel interrupt location to 
the entry point C.22 of the driver Interrupt Processor. 

If an error is detected on a WRITE operation, the tape is backspaced over 
the record; three inches of tape are erased and the record is rewritten. 
This will continue until end-of-tape is sensed. If an error is detected on 
a READ operatio.n, the driver will attempt to read ten times before abort­
ing the operation. 

2.11.1 RECORD FORMAT 

Each computer word is translated into two tape "characters" by reposi­
tioning the bits as shown in figure below. 

2-50 BCS 



Record Format (HP 3030) 

COMPUTER WORD BITS 15 8 7 0 

First word contents 1 0 0 0 1 1 0 0 1 l 0 1 1 1 1 0 1 

Second word contents 0 1 1 0 1 0 0 1 11 1 0 1 0 0 1 0 

~~~~~ { t i i ! ! ~ ~ ! ! ! 11 ! ! ! ! } isR¢i: 4 

ODD
PARITY
BIT

First tape character

Second tape character

Third tape character

Fourth rape character

9 4 1

1 0 1 0 0 0 0 0 1

1 0 1 0 1 1 1 1 1

1 0 0 1 1 1 0 1 0

0 1 1 1 0 1 1 0 0

2. 11.2 CALLING SEQUENCE

EXT

JSB

OCT

JSB}
JMP

DEF

DEC}
OCT

.IOC.

.IOC.

<function><subfunction><unit-reference>

<reject address><error return>

<buffer address>

<buffer length>

<normal return>

BCS 2-51

2.11.3'. FUNCTION AND SUBFUNCTION CODES

All allowable combinations of function and subfunction codes are as
follows:

Operation

·CLEAR

READ (binary only)

WRITE (binary only)

DYNAMIC STATUS

WRITE END-OF-FILE (EOF) MARK

BACKSPACE ONE RECORD

FORWARD SPACE ONE RECORD

REWIND TO START OF TAPE (SOT, or the
LOAD POINT), READY (AUTO mode)

REWIND TO START OF TAPE (SOT, or the
LOAD POINT), UNLOAD (LOCAL mode)

2.11.4 BUFFER LENGTH

Code

0000

0101 (or 0100)

0201 (or 0200)

0300

0301

0302

0303

0304

0305

Character transmission is not applicable since the transmission is via a
DMA channel. The minimum data block is twelve tape characters. Out­
put blocks with a block length less than twelve characters are padded
with zeros.

2-52 BCS

2.12 MAGNETIC TAPE SYSTEM (HP 7970 MAGNETIC
1'APE--CfNIT}

2.12.1 CALLING SEQUENCE

EXT .IOC.

JSB .roe.
OCT <function><subfunction>< unit-reference>

JMP <reject address>

DEF <buffer address>

DEC <buffer length>

<normal return>

where:

function (specified in bits 15-12)

subfunction (specified in bits 11-6)

unit-reference
(specified in bits 5-0)

reject address

buff er address

buffer length

Specifies the type of input/
output operation being re­
quested: Clear, Read,
Write, Control, Status.

Specifies the unit-reference
number of the device used
for input/output opera­
tions .

.IOC. returns control to
the user at this location.

Address of the first word
of the user's buffer.

The value in the buffer
length field is specified in
words (positive integer) or
characters (negative inte­
ger). A buffer length of
zero causes the driver to
take no action on a write.
A zero buffer length on
binary read causes the
driver to make a forward
skip of one record, while a
zero buffer length on
ASCII read causes no ac­
tion to be taken by the
driver.

BCS 2-53

2.12.2 FUNCTION SUBFUNCTION, UNIT-REFERENCE CODES

The second word of the request determines the function to be performed
and the MT unit-reference for which the action is to be taken.

15 12 11 7 6 5 0
I Function unit-reference

Su bf unction

If DMA is being used, the maximum I/O request must be no greater than
the equivalent of 16,383 words.

NOTE: Setting the mode (m) bit 6 (on) causes the computer to
transmit binary data as it appears in memory or on magnetic
tape. Clearing the mode bit 6 (off) causes the computer to
transmit ASCII data as it appears in memory or on tape.

2.12.3 REJECT ADDRESS

If the input/output operation cannot be performed, control is transferred
to the third word of the calling sequence. When control is transferred,
the computer system provides status information which can be checked
by the user's program. The contents of the A-Register indicate the physi­
cal status of the equipment, and the contents of the B-Register indicate
the cause of reject.

a. If bit 15 is 1, the driver is busy (unavailable).

b. If bit 0 is 1, a DMA channel is not yet available to operate the
device.

c. If both bit 15 and bit 0 are 0, then the subfunction selected is
illegal.

2-54 BCS

Allowable Motion Requests

Operation

Read ASCII record (RRF)

Read Binary Record (RRF)

Write ASCII record (WCC)

Write Binary record (WCC)

Write End-of-file mark (GFM)

Backspace record (BSR)

Forward space record (FSR)

Rewind (REW)

Rewind/Off Line (RWO)

Erase four inches of tape (GAP)

MTS Relocating Loader Skip record

Forward Space Record (FSF)

Backspace File (BSF)

Status

Clear

Read and Write Requests

Octal value of bits 15-6

0100

0101

0200

0201

0301

0302

0303

0304

0305

0306

0307

0320

0321

0400

0000

Bit 6 is only an indication of the request type; it does not imply two
physical modes on the magnetic tape unit.

Rewind or Backspace Record Requests

This request performs no action if the tape unit addressed is at load­
point. The status word indicates the SOT condition before and after the
request is made.

Read Parity Error Conditions

The driver attempts to read a given record up to three times before
declaring an irrecoverable parity error. If there is an irrecoverable parity
error, the last try is transmitted to the user buffer and a normal comple­
tion return occurs. The status word indicates the parity and/or timing
error.

BCS 2-55

Write Parity Error Conditions

The driver tries to rewrite a given record until either the record is success­
fully written or the end-of-tape is encountered.

Attempted Write Request

If a write request is made to a magnetic tape unit without a write enable
ring, the driver makes an immediate completion return to the caller.
Status bit 14 is set in the status word, causing the Formatter to print
*EQR and halt. To proceed, insert a write enable ring in the magnetic
tape.

Forward Motion Request

If forward motion is requested when the tape unit is at end-of-tape, the
MT driver ignores the request and makes an immediate completion re­
turn. The exceptions to this situation are:

a. Write End-of-file mark request, and

b. Read record request.

Only one of these privileged requests can be made once the EQT has been
encountered; after that, they are ignored by the driver.

Backward Motion Request (Rewind and Backspace Record and Back­
space File)

This request restores the privileged nature of the write-end-of-file and
read record requests.

Function/Subfunction Code Request 0307XX

Present in BCS MT drivers, the function/subfunction code request enables
the Relocating Loader to operate within the Magnetic Tape System. If
the request is followed by other I/0 requests, they are treated as if the
magnetic tape were not file-protected. The file protect feature is turned
on again when the tape unit is rewound.

This request is identical to the forward space record request vlith the
additional capability of spacing records within files 1 and 2 (even when
the MT unit is in the protected file mode).

2-56 BCS

Backspace File Request and Forward Space File Request

These two requests cause the tape unit to go forward or backward until a
file mark (EOF) is detected. Data is not transferred, and a parity error in
any file record sets the parity error status bit.

The backspace file request positions the tape in front of a file mark or at
load point, whichever comes first.

If the end-of-tape marker is sensed during execution of a forward space
(record) request, the tape stops at the end of the current record. A status
request should be used to check for this condition.

2.12.4 STATUS REQUESTS

As soon as tape movement operations for rewind and rewind/standby are
initiated, the magnetic tape unit is available. The "A" field of a status
reply is set to 00, enabling a system status request to indicate "not busy"
for this EQT entry.

The normal status request returns the tape unit to the status when it was
last referenced.

JSB .IOC.

OCT 0400 <unit-reference>

<return>

The dynamic status request is used to obtain the actual status of a mag­
netic tape unit. It goes to the driver for operation and returns only the
status word in the A-Register. The contents of the B-Register are not
significant.

JSB .IOC.

OCT 0300

<return>

BCS 2-57

Status Request Information

A-Register contents:

15 14 13 8 7 0

I a Equipment Type I Status

Bits 15-14 indicate the availability of the device (a):

If 0, the magnetic tape unit is available; previous operation is com­
plete.

If 1, the magnetic tape unit is available; previous operation was
ignored because either a write request was made without a
write enable ring, or a tape motion request was made when the
tape unit was off-line.

If 2, the magnetic tape unit is not available for another request; an
operation is now in progress.

Bits 13-8 indicate the equipment type, i.e., specified as 23g.

Bits 7-0 indicate the status of the device.

Bit Condition

7 File Mark Sensed (EOF)

6 Load Point Status (BOT)

5 End-of-tape (EOT)

4 Data Timing Error

3 Command Rejected by the Controller

2 File Protected (no write enable ring)

1 Parity and/or Timing Error

0 Tape unit not on-line

NOTE: Bit 3 cannot be set using the driver.

B-Register contents:

15 14 0

I m I Transmission Log I

2-58 BCS

Bit 15, m, indicates the mode of data transmission (from the request)

If bit 15

If bit 15

0, ASCII code transmission

1, binary code transmission

Bit 14-0 indicate the transmission log, a field that is the number of
characters or words transmitted. The value is given as a positive integer
and indicates characters or words as specified in the calling sequence of
the read or write request. The driver cannot read or write an odd number
of characters for this tape because the controller is a word device.

Minimum record length is one word.

An end-of-file mark record returns the user request length in the trans­
mission log after being read, therefore allowing the binary read operation
to operate properly through the Formatter. A write end-of-file mark re­
turns one in the transmission log.

Control requests with a subfunction between 02 and 07 set the trans­
mission log to zero.

Function requests of type 03 set m 1.

2.12.5 CLEAR REQUEST

The clear request terminates a previously issued input or output opera­
tion before all data is transmitted. This request checks for multi-unit
operation based on the device (i.e., I/0 channel number). The driver is
cleared only if the clear request is for the current operation I/0 channel
and physical unit number.

EXT .roe.

JSB .roe.
OCT 0000 <unit-reference>

On return, the contents of the A- and B-Registers are not significant.

BCS 2-59

2.12.6 CONTROL REQUESTS

A request directed to .IOC. may also control the positioning of a reel on
a magnetic tape device. The calling sequence is similar to the input/
output request, but consists of only three words:

EXT

JSB

OCT

JSB}
JMP

.IOC .

. IOC.

<function><subfunction><unit-reference>

<reject address><error return>

<normal return>

The second word of the request has the following composition:

15 12 11 9 8 6 5 0

I function ~ subfunction I unit-reference I
The function defines the calling sequence as a tape control request:

Function Name Code (octal)

Position Tape 03

The subfunction defines the type of positioning:

Subfunction (octal)

0

1

2

3

4

5

Operation

dynamic tape status

write end-of-file

backspace one record

forward space one record

rewind

rewind and standby

As soon as tape movement operations (rewind, and standby) are initiated,
the device is considered to be available; the "a" field of a status reply is
set to 00 (see STATUS Request). The input/output driver is thus free to
process requests for other devices. To obtain the actual status of the
device when one of these commands has been issued, the dynamic tape
status request is used. If the tape movement operation is still in progress
the "a" field is set to 10.

2-60 BCS

2.13 DATA SOURCE INTERFACE
CALLING SEQUENCES

2.13.1 Binary Output Operation

A· binary output operation causes the removal of "hold-off." The calling
sequence is as below:

.IOC. JSB

OCT

JSB }
JMP

<function><subfunction>< unit-reference>

<reject address><error return>

OCT 0 dummy buffer

OCT 0 buffer length

<normal return>

Example:

..... "-"""'
.,.._,

c-
ID "

.,
" JO " .. " ,.

J SB . I OC·
op 20 1 1 5 l"H OL& OF FI l.QN UN IT ~E F j!1 5
J~P RE J AD
OCT ~ DU M~Y BU FF ER
~CT ~

. __j

BCS 2-61

2.131.2 Binary Input Operation

A binary input operation must have a 2-word buffer. Thirty-two bits
(4 BCD characters) are read directly into the 2-word buffer.

JSB .IOC.

OCT <function><subfunction><unit-reference>

JSB} JMP <reject address><error return>

DEF <buffer address>

DEC 4 (for 4 characters) or DEC-2 (for 2 words)

buffer address BSS 2

Example:

, ... , O,..otiO'I °""""" ,_
' " "

,.
" ., " .. "

,.
l JSB ·II 0 C· :J ii l 1 I l

I I OCT !O 1 1 5 JI I NP UT ON U NT1 T JR E F \#1 5 ~ T I J'°1P RE J A]Q_ I ! T
i l DEF BU FF I I I I 11 i !

l DEC -2 111 I 'l I :

j ·i I I I 11 I ! I { J Jl J
Ji I l I'

l l~ I j l l
BU F IJ. ass 12 Jl i _l l l .J. I

:
' I
I
I

I
I

I
I

I
I

:
:
I
I

: j
)

H
''

]
I I I I I

1 Ji
I I I'

2-62 BCS

2.13.3 ASCII Input Operation

An ASCII input operation must have an 8 word buffer. Eight BCD char­
acters are converted into 16 ASCII characters in the following format:

r range - a negative power of 10

f function

d5-d0 six digit data value

E-ss range expressed as an exponent of two digits

fl fl two blanks

gg function expressed as a two-digit number

JSB .IOC.

OCT <function><subfunction>< unit-reference>

~~: } <reject address>

DEF <buffer address>

DEC -16

buffer address BSS 8

Example:

.... , 0P9<ot;..., "'"'""" c-, 10 20 " .,
" .. " ,.

1 JSB ··10 C·
OCT 1 0 01 5 RE AD ON UN IT REF J! 15

I J~P RE JAD
! DEF ~u FF

DlE!CI -1 6

-
I l

I l !
I

I l I

BU F 1 F BSS 8 I I
:

l
I

I I!
I I j_:

l
: I Ii! l i ..+

\

r 'I I' ,T: I 'I' I ''' I' I I'

BCS 2-63

1

2.14 DIGITAL VOLTMETER PROGRAMMER
CALLING SEQUENCE

A WRITE request for the Digital Voltmeter Programmer requires that a
one-word buffer be specified. This word contains the voltmeter program:
sample period (bit 7-6), function (bits 5-3), and range (bits 2-0). If bit
15 contains a 1, an encode command is sent to the Voltmeter (bit 15
will always be 0 if the configuration includes a Scanner).

JSB .IOC.

OCT <function><subfunction>< unit-reference>

~ } <reject address><error return>

DEF <buffer address>

OCT 1

<normal return>

buffer address OCT voltmeter program

Example:

..... , 0,-0.ior> ~ <-•
' 10 15 20 " .. " .. " ..

J~B ·II OC· l ! t I
! ~CT 2~ 11 6 IWR I TE ON CH AN"!l_E Lf#1 1 61 I I 1 1 l J~P RE J AID I I

I DEF BU FF ! 11 i I
IQCT 1 I l I I

I I I I I 1] l
J l i I I I I i

l i I i

BU FF OCT 10 02 44 , I ETN cJQ DEi TO DV ™ Ip RO GRA M:] J
i ''' . 01 SEC D E LJA yLl_:+ DC JvKJ L/T S!,I l I

1 0 VO LT RA NIG E .1 ! l i

l i ll i ifT _:I L
l I Ji

I I I I IT I I IT I I

2-64 BCS

2.15 SCANNER PROGRAMMER CALLING SEQUENCE

A WRITE request for the Scanner Program.mer requires a 2-word buffer.
The first word contains the channel number for the start of the scan.
The second word contains the scanner program: the function (bits 4-3)
and the delay (bits 2-0). The driver subroutine converts the binary
channel number value produced by the Assembler to the BCD format
required by the device.

JSB .IOC.

OCT <function><subfunction>< unit-reference>

JSB } JMP <reject address><error return>

DEF <buffer address>

DEC 2

<normal return>

buffer address OCT xx starting channel number

OCT xx Scanner Program

Ex.ample:

._. "-"- --5 .• " "' ,.
"' " ..

Jl~l8 ·I 0 C·
CT 20 118 ~R ITE ON UN IT 2]0

J"1P H JAD
p[EF ~u FF
D~C 2

CHANNEL 100

c-

~UFF tlCT 144
lf>R OG RJAM: 0 H~js, 27~ s D E~lAY IOlc T 2 3

.. ..

2-65 RCS

2.16 INSTRUMENT CLEAR AND STATUS REQUESTS

2.16.1 INSTRUMENT CLEAR REQUEST

A CLEAR request on one of the instrument drivers follows the standard
form:

JSB .IOC.

OCT <function>< unit-reference>

<return>

where the function code = 00.

The request will result in the following conditions:

Data Source Interface

Digital Voltmeter
Programmer

Crossbar Scanner

A CLEAR request causes no action. It is
included for compatibility only.

A CLEAR request to this driver will re­
move the present program from the DVM
but the program will not be destroyed.

A CLEAR request will inhibit the STEP
or RESET command on the Scanner pro­
grammer driver.

2.16.2 INSTRUMENT STATUS REQUEST

No status information is available from the instrument drivers.

2-66 BCS

2.17 MARK SENSE CARD READER

The BCS Mark Sense Card Reader Driver D.15 operates the HP 2761A-007
Mark Sense Card Reader by initiating, continuing, and completing any
operations through the Input/Output Control (.IOC.) subroutine within
the Basic Control System (BCS). As a module of the BCS, this driver
conforms to the general specifications for performing those controls.

The Initiator section of this driver interprets the function from the call­
ing sequence, stores the buffer address and length, and signals the Mark
Sense Card Reader to feed a card. An interrupt occurs for each clock
mark printed on the 9-edge of the card to cause a JMP to the Continuator
section of the driver. The Continuator then performs these tasks:

1. Saves the previous contents of all registers to be used by the
Continuator section.

2. Examines bits 15-12 to check the validity of data. If the data is
invalid, it determines why and sets status in the EQT table.

3. Ensures that only one card will be fed.

4. Stores the number of characters or words transmitted in the
transmission log.

5. Restores the previously saved contents to the registers.

6. Terminates the transfer when the end-of-card is detected.

2.17.1 CALLING SEQUENCE

EXT

JSB

OCT

JSB }
JMP

DEF

DEC}
OCT

.IOC.

.IOC.

<function>< unit-reference>

<reject address><error return>

<buffer address>

<buffer length>

<normal return>

BCS 2-67

2.17.2 BUFFER LENGTH

The length can be specified for either words (a positive integer) or for
characters (a negative integer) for any of the three reading functions. If
either of the READ binary functions are requested and the buffer length
specified is for an odd number of characters, the length will be effectively
incremented by 1. Thus if 3 characters are specified, the buffer will be
set for 2 computer words (i.e., (3+1)/2=2). If the buffer length is specified
to be zero, a card is fed, but its data is ignored.

2.17.3 STATUS FIELD

The Status field indications are:

Bits 7-0

xxxxxxxl
xxxxxxlx
xxxxxlxx

The equipment type code is 15.

Condition

Hopper empty or stacker full.

Reader not READY.

Pick failure.

The transmission log has the following maximum values:

BCS 2-68

Function

Read, Hollerith to ASCII

Read, column image binary

Read, packed binary

Maximum Value

80 characters

80 words

60 words

2.17 A FUNCTIONS

Function

Read, Hollerith to ASCII (octal equivalent)
conversion with two characters per
computer word, as described in
Appendix A.

NOTE: In translating Hollerith to
ASCII trailing zeros are
suppressed.

Contents of
bits 15-6

0100

Read, packed binary; four 12-row card columns 0103
packed into three 16-bit computer words.
Thus one 80-column card fills 60 words
of the user's buffer. The packing format
is described in the Small Programs Manual
"BCS MARK SENSE DRIVERS, D.15"
(HP 12602-90021)~

Read, column image binary; each card column
is placed right justified into one 16-bit
word. The four left bits (15-12) are set
to zero, as shown in the Small Programs
Manual.

CLEAR request; allows the current card to
finish feeding.

STATUS request.

0000

0400

BCS 2-69/2-70

RELOCATING LOADER 3

The Loader is the module of the Basic Control System that provides the
capability of loading, linking, and initiating the execution of relocatable
object programs produced by the Assembler, FORTRAN, and ALGOL.
It is available in 4K and non-4K versions. ALGOL programs and the
Relocatable Library stored on magnetic tape require the non-4K loader.

3.1 EXTERNAL FORM OF LOADER

The Loader, part of the tape titled "Configured BCS," is stored in an
absolute record format on an external medium (on magnetic tape or 8.
level paper tape) with the Input/Output Control subroutine (.IOC.) and
the equipment driver subroutines. It is loaded by the Basic Binary
Loader.

3.2 INTERNAL FORM OF LOADER

The Loader is located in high-numbered memory along with the
Input/Output Control subroutine and the equipment driver sub­
routines. The Loader uses .IOC. for input/output operations;
it refers to the Standard input and output units. The binary ob­
ject program is read from the Standard Input unit; comments
to the user (fi: g. , Loader diagnostics) are written on the Tele­
printer Output unit; and library routines referenced by the ob­
ject program are assumed to be on the Program Library unit.

3.3 RELOCATABLE PROGRAMS

The process of assembling or compiling a set of symbolic source program
statements results in the generation of relocatable object code. Relocat­
able code assumes a starting location of 00000. Location 00000 is
termed the relative, or relocatable origin. The absolute origin (also
termed the relocation base) of a relocatable program is determined by

BCS 3-1

the Loader. The value of the absolute origin is added to the zero-relative
value of each operand address to obtain the absolute operand address.
The absolute origin, and thus the values of every operand address, may
vary each time the program is loaded.

A relocatable program may be made up of several independent­
ly assembled or compiled subprograms. Each of the subpro­
grams would have a relative origin of 00000. Each subprogram
is then assigned a unique absolute origin upon being loaded.
Subprograms executed as a single program may be loaded in
any order. The absolute origins will differ whenever the order
of loading differs.

The operand values produced by the Assembler, FORTRAN, or
ALGOL maybe program relocatable, base page relocatable, or
common relocatable. Each of these segments of the program has
a separate relocation base or origin. Operands that are refer­
ences to locations in the main portion of the program are in­
cremented by the program relocation base; those ref erring to
the base page, by the base page relocation base; and those re­
ferring to common storage, by the common relocation base.

If the Loader encounters an operand that is a reference to a location in
a page other than the "current" page or "base" page, a link is established
through the base page. A word in the base page is allocated to contain the
full 15-bit address of the referenced location. The address of the word in
the base page is then substituted as an indirect address in the instruction
in the "current" page. if other similar references are made to the same
location, they are linked through the same word in the base page.

3A RECORD TYPES

The Loader processes three to five record types for a program.
These record types are produced by the Assembler, FORTRAN,
or ALGOL in the following sequence:

NAM
ENT
EXT
DBL
END

3-2 BCS

Name record
Entry point record
External name record
Data block record
End record

The NAM, -DBL, and END records exist for every object pro­
gram; ENT and EXT appear only if the corresponding pseudo
instructions are used in the source program.

NAM

The NAM record contains the name of the program and the
length of the main, base page, and common segments. The
NAM record signifies the beginning of the object program.

ENT

The ENT record defines the names of 1 to 14 entry points with­
in this program. Each of the four-word entries in the record
contains the name, the relocatable address of the name; and
an indicator which specifies whether the address is program or
base page relocatable.

EXT

TheEXTrecordcontainsfrom 1to19 three-word entries which
specify the external references defined in the program. The
three words allow a maximum of five ASCII characters for the
symbol and a number used by the Loader to identify the symbol.

DBL

A DBL record contains 1 to 45 words of the object program.
It indicates the relative starting address for the string of words
and whether this portion of the object code is part of the main
program or base page segment. For each of the words there
is also a relocation indicator which defines the relocation base
to be applied to each operand value. Possible _relocation fac­
tors are:

Absolute

15-bit Program
Relocatable

15-bit Base Page
Relocatable

Operand is an absolute expression or
constant. There is no relocation base.

Operand is a 15-bit value to which is
added the program relocation base.

Operand is a 15-bit value to which is
added the base page relocation base.

BCS3-3

15-bit Common
Relocatable

Operand is a 15-bit value to which is
added the common relocation base.

External Symbol
Reference

Operand is a reference to an external
symbol. Value is supplied when the
Loader determines the absolute loca­
tion of the linkage word in the Base Page
which contains the 15-bit address of
the related entry point.

Memory Reference
Instruction

A memory reference instruction in the
form of a two-word group which con­
sists of the instruction code, a full 15-
bit operand address, and a relocation
indicator for the operand address.
The relocation indicator can define the
operand address to be program, base
page, or common relocatable.

END

The END record terminates the block of records in an object
program. The END record may contain a 15-bit address which
is the location to which control is transferred by the Loader
to begin program execution.

3.5 MEMORYi ALLOCATION

The Loader loads the object program into available memory.
Available memory is defined as that area of memory not allo­
cated for hardware and system usage. Available memory is
divided into two segments:

Available Memory in Base Page - used for the operand
linkage area, program blocks origined into the Base Page
by the Assembler pseudo instruction ORB, and for pro­
gram blocks assigned to the Base Page by the Loader when
the amount of program available memory is insufficient.

Program Available Memory - used for the main body of
the program and may be used by the common block should
the area used by the Loader be insufficient.

3-4 BCS

Prior to loading the object program, memory is allocated as
follows:

07777 OR 1m7
07700 OR 17700

J:========================~~ BASIC

02000

00000

INPUT/OUTPUT CONTROL
AND

EQUIPMENT DRIVER
SUBROUTINES

RELOCATING LOADER

N = 0(4K}. 1(8K), 2(12K), 3(16K), 5(24K), 7(32K)

BINARY
LOADER

BASIC
CONTROL
SYSTEM

SYSTEM
LINKAGE

RESERVED
LOCATIONS

Assuming Program Z is to be loaded and executed - after load­
ing, the memory might be allocated as follows:

07777 OR 17777
07700 OR 17700

INPUT/OUTPUT CONTROL
AND

EQUIPMENT DRIVER
SUBROUTINES

LOADER

BASIC NON-RELEASABLE
PORTION OF
LOADER

r
~~~~~y 

r:;;;,.;.=;;:::.;:;;..=;:;.::::.;:;;..=.~=.,;;::..:::;::::..=~ CONTROL 
SYSTEM 

PROGRAM 
RELOCATION 
BASE 

02000 

BASE PAGE 
RELOCATION 
BASE 

00000 

N = 0(4K). 1 (8K), 2(12K), 3(16K), 5(24K), 7(32K) 

LINKAGE AREA 

SYSTEM 
LINKAGE 

RESERVED 
LOCATIONS 
AND 
INTERRUPT 
PROCESSING 

BCS 3·.5 



Options selected during PCS processing can define the equipment driver 
subroutines and other routines as external routines which must be satis­
fied at run-time. If selected, these routines would be allocated to the 
available memory areas, and the length of the absolute segment of BCS 
reduced accordingly. 

If several programs are to be loaded and executed together, 
the following might occur: 

Assume three programs, A, B, and C, comprise a run­
ning program. Programs A and B share a common block, 
a portion of which is also shared by C. Programs B and 
C contain segments which are designated to be allocated 
to the Base Page. Allocation is as follows: 

BASIC 07777 OR 17777 
07700 OR 17700 J:============:::J-'- BINARY LOADER 

COMMON 
RELOCATION 
BASE 

02000 

PROGRAM B 

PROGRAM A 

BASIC 
CONTROL 
SYSTEM 

COMMON 
BLOCK 

PROGRAM 
AVAILABLE 
MEMORY 

BASE PAGE 
AVAILABLE 
MEMORY 

SYSTEM 
LINKAGE 

RESERVED 

00000 -------------i-.....; LOCATIONS 

N = 0(4K), 1(8K), 2(12K), 3(16K), 5(24K). 7(32K) 

Common Block! Allocation 

AND 
INTERRUPT 
PROCESSING 

The first common length declaration (i.e., the first program 
containing a common segment) processed by the Loader estab­
lishes the total common storage allocation in high memory 
over laying the major portion of the area occupied by the Loader. 
Subsequent programs must contain common length declarations 

3-6 BCS 



which are less than or equal to the length of the first declara­
tion. 

To allocate the common area, the Loader subtracts the total 
length of the block from the address of the last releasable word 
in the Loader. The resulting memory address +1 is the origin 
of the common block. This value is used throughout the entire 
loading process as the common relocation base. 

Program Storage 

The program length is compared with the amount of available memory. 
If sufficient space is available, the program is loaded and the upper and 
lower bounds recorded. If the program has a base page segment, or if the 
program consists entirely of coding to be stored in the base page, the 
length of the segment is compared to the amount of available base page 
memory. If there is enough space in this area, the segment is loaded and 
the bounds recorded. Whatever is loaded first is usually originated at 
absolute location 02000 (page 1, module 0). The initial base page segment 
is usually originated immediately following the area set aside for reserved 
locations, interrupt processing, and system linkage. Subsequent main 
program and base page segments are loaded into the next available higher 
numbered areas contiguous with the previously loaded segments. 

Providing the memory allocation list option is selected, the name of 
each program, its upper and lower bounds, and its base page upper and 
lower bounds are printed after the program is loaded. The format is as 
follows: 

<program name> 

nm uuuuu (main program bounds) 

Um uuuuu (Base Page bounds) 

If the Loader finds that the main program segment about to be loaded 
can not fit in the memory area available for the main segment, it compares 
the segment's length to the length of available memory in the base page. 
If there is sufficient space, the main segment will be loaded in the base 
page. The next segment will be loaded in the main program area if it will 
fit, or in the base page if not (providing there is sufficient space in the 
base page). When all available base page space has been used, loading is 
terminated. 

BCS3-7 



For example, assume that several programs are to be loaded in sequence 
A, B, C, D, E, and have sizes such that they can not all fit in the main 
program available memory. 

1::::..----------- ----
COMMON BLOCK 

::s: 
PROGRAM D 

PROGRAM B 

PROGRAM A 

LINKAGE AREA 

~~= ~ ::s: 
PROGRAM E 

PROGRAM C 

} 

~ 

BASIC 
BINARY 
LOADER 

BASIC 
CONTROL 
SYSTEM 

PROGRAM 
AVAILABLE 
MEMORY 

BASE PAGE 
AVAILABLE 
MEMORY 

SYSTEM 
LINKAGE 
RESERVED 
LOCATIONS 
AND 
INTERRUPT 
PROCESSING 

3.6 OBJECT PROGRAM RECORD PROCESSING 

ENT /EXT Record Processing 

The Loader constructs and maintains a Loader Symbol Table 
which contains entry points and external symbols which are de­
clared in the programs and entry point names of any BCS sys­
tem subroutines that have been defined as relocatable. As each 
entry point is encountered its relocated (absolute) address is 
recorded in the table. As each external reference is proc­
essed, a link word is established in the Base Page. The gen-

3-8 BCS 



eral processing of the entries in an ENT and EXT record involves search­
ing the loader symbol table to locate a match between the symbols. When 
a match is found, the absolute entry point address is stored in the base 
page link word. 

The Loader assumes that there is a user program, BCS system routine, or 
Relocatable Library routine entry point for every external reference. If 
none exists, the external reference is undefined and considered to be in 
error. A list of undefined external symbols is printed at the end of the 
loading operation. If duplicate entry points are detected, a diagnostic is 
issued. For duplicate entry points, only the first routine is accepted. 

Each entry in the Loader Symbol Table occupies five words. 
The Table is positioned before the beginning of the Loader and 
extends backwards toward low-numbered memory. If suffi­
cient space is not available in the main program portion of 
memory to store a five-word entry, a diagnostic message is 
issued and the loading operation is terminated. 

DBL Record Processing 

A load address for the data or instruction words in a DBL rec­
ord is relocated by adding either the program relocation base 
or the base page relocation base. The resulting value is the 
absolute address for storing the first word. The second word 
is stored at address +1, the third at address +2 and so forth. 
A relocation base is added to each operand address as speci­
fied by the relocation indicator. 

The processing for an external referep.ce word involves a 
search of the Loader Symbol Table for the related entry. When 
found, the address of the link location in the Base Page is ex­
tracted and stored as an indirect address in the instruction. 

When a memory reference instruction is processed, the Load­
er first applies the proper relocation base, {program, base 
page, or common) to the 15-bit operand address. If the re­
sulting absolute operand address references the Base Page, 
the address (bits 09-00) is set into the operand field and the 
instruction is stored in memory at the current load address. 
When the absolute operand address and the current load ad­
dress are in the same page, the operand address is truncated 
to bits 09-00 and set as the instruction operand address. If 

BCS 3-9 



the operand address is in a page other than the current load 
address page, the operand address is stored in the Linkage 
area of the Base Page and a reference to this location set as 
an indirect address in the operand field of the instruction. 

A memory overflow condition can occur when insufficient space 
is available in the base page to allocate a linkage word. A 
diagnostic message is issued and the loading operation is ter­
minated. 

END Record ProceHing 

When an END record is encountered, the Loader determines if 
it contains a transfer of control address. If it does, the ad­
dress is saved. 

If loading is from the Relocatable Library and no undefined external 
references exist, the end-of-loading operation is performed. 

If loading is from the standard input unit or Relocatable Library unit and 
if undefined external references exist, the Loader requests the next 
record. If the next record is a NAM record, processing of the next pro­
gram begins. If the result of the request is an end-of-information indica­
tion, an End condition exists. 

Relocatable Library loading 

Loading from the Relocatable Library differs from loading user programs. 
Only those programs in the library that contain entry points matching 
undefined external symbols in the loader symbol table are loaded. After 
each library program is loaded, the loader symbol table is checked for 
undefined symbols. If none exist, the loading operation is complete and 
the program is ready to be executed. 

End Condition 

When the Loader requests input and end-of-tape occurs on the input 
device, an End condition exists. The Loader acknowledges this .condition 
by writing the message "LOAD" on the teleprinter. The user responds to 

3-10 BCS 



this message by setting switches 2-0 of the Switch Register. (See "Loader 
Operating Procedures.") Four replies are available; 

a Load next program from standard input unit. External BCS system 
subroutines are considered to be part of the program and must be 
loaded from the standard input unit (unless they are made part of 
Relocatable Library tape). 

b. All programs are loaded; proceed to the end-of-loading operation. 

c. Terminate loading operation. This forces program execution even 
through there may be undefined external references. 

d. Load from Relocatable Library; all user programs are loaded. 

End-of-Loading Operation 

The end of loading is signaled by the second or fourth response 
to an End Condition. The Loader then searches the Loader 
Symbol Table for any undefined external references. Any such 
undefined external symbols are written on the Teleprinter Out­
put unit and the "LOAD" message is repeated. 

When the loading operation is completed or when the user has requested 
termination of the loading process, the Loader produces a memory 
allocation list. (This list may be omitted; see "Loader Operating Pro­
cedures.") The format of the list is as follows: 

<symbol 1> aaaaa 

<symbol 2 > aaaaa 

<symbol n > aaaaa 

The symbols are the entry points in the user's program, the Basic Control 
System, or the Relocatable Library and the a's are their absolute ad­
dresses. 

If a common block was allocated, the lower and upper bounds 
of the block are listed as follows: 

*COM lllll uuuuu 

BCS3-11 



The botinds of the Linkage Area are listed as follows: 

*LINKS lllll uuuuu 

The l's are the absolute lower bounds and the u 's are the abso­
lute upper bounds. 

3.7 PROGRAMMING CONSIDERATIONS 

When a program has been completely loaded, its execution is 
initiated by performing a Jump Subroutine to the transfer ad­
dress (from the last END record containing an address). The 
initial contents of the transfer address should be aNOP, OCTO, 
etc., not the first executable instruction of the program. 

3.8 LOADER OPERATING PROCEDURES 

The exact operating procedures for the loader depend on the 
available hardware configuration and the construction of the 
Basic Control System through use of the Prepare Control Sys­
tem routine. The user should know the assignment of input/ 
output equipment and memory size before using the Loader .t 

3-12 BCS 



Loading Options 

The Basic Control System Loader loads one or more tapes containing 
relocatable programs. The message "LOAD" is typed when an end-of­
tape condition is encountered. The user then loads the next tape, indicates 
loading from the Relocatable Library, specifies that loading is complete, 
etc. When all programs are loaded and no undefined external references 
remain, the Loader types the message "*LST" allowing the user to by­
pass part of the memory allocation list. Following the response, the 
Loader types the message "*RUN." The user then initiates program 
execution. 

Memory Allocation List 

A memory allocation list can be obtained for the programs being loaded. 
The list includes the name, main program bounds, and base page bounds 
for each program. At the completion of the loading operation, this por­
tion of the list may be followed by a list of all entry points and their 
absolute addresses, the bounds of the common block, and the bounds 
of the linkage area. The Switch 15 setting determines the contents of 
the list. 

To obtain the bounds for each program on a tape, Switch 15 
must be set to 0 before the tape is loaded (in response to the 
"LOAD" message). To bypass the program bounds listing, set 
Switch 15 to 1 before loading the tape. The switch setting may 
be altered whenever the "LOAD" message is typed. 

To obtain the entry point list, the common bounds, and the linkage area 
bounds, set Switch 15 to 0 in response to the message "*LST", which is 
printed after all programs are loaded. To bypass this portion of the list, 
set Switch 15 to 1. 

Absolute Binary Output 

When it is necessary to utilize the area occupied by the Loader for pro­
gram storage or when an absolute version is desired for "production 
stage" programs, the user may specify that an absolute binary tape be 
punched. The process involves a simulated loading operation; however, 
the absolute program is punched on tape rather than being loaded. 

The absolute records produced consist of the relocated programs (in­
cluding all relocatable subroutines), the linkage area and all referenced 
segments of the Basic Control System. These include: 

BCS 3-13 



Input/Output control subroutine (.IOC.) 
All input/ output equipment drivers 
Memory Table (.MEM.) 
System Linkage Area 
Interrupt Processing area 
Absolute location 2 and 3 

In addition, the Loader Symbol Table, the common and linkage 
area bounds are punched in ASCII format on the end of the bi­
nary tape. Ten inches of feed frames separate the binary in­
structions and the ASCII data. This feature provides a record 
of the memory allocation. 

At the completion of the "loading" process the Loader types the 
message "END". 

To execute the program, it must be loaded using the Basic Bi­
nary Loader. To initiate execution, set 000002 into the P­
Register and press RUN. The Loader has stored the transfer 
address of the program in locations 2 and 3 as follows: 

2 contains JMP 3, I 
3 contains < transfer address> 

Separation of List and Binary Output 

If the absolute binary output option is selected and the Tele­
printer is use.d as both a list and punch device, the Loader halts 
before and after each line is printed to avoid punching the line 
and altering the binary output. 

The halts and related procedures are as follows: 

T-Register 
Contents. 

102055 

102056 

3-14 BCS 

Explanation 

A line is about to be 
printed. 

Aline has been printed. 

Action 

Turn punch unit OFF. 
Press RUN. 

Turn punch ·unit ON. 
Press RUN. 



INPUT/OUTPUT DRIVERS 4 

4.1 GENERAL DESCRIPTION 

An I/O driver, operating in the BCS environment, is respon­
sible for controlling all data transfer between an I/O device 
and the cpu. It operates under control from the program.IOC. 
Its operating parameters are the user I/O request and the in­
formation contained in the device associated Equipment Table 
entry. 

4.2 STRUCTURE 

An I/0 driver is a relocatable program segmented into two closed sub­
routines, termed the "initiator" and "continuator" sections. The entry 
point names for these two sections must be "D.nn" and "I.nn", respec­
tively. The numeric value "nn" in the names is the equipment type code 
assigned to the device. For example, D.00 and I.00 are the entry points 
for the teleprinter driver; "00" is the equipment type code assigned to 
a teleprinter. 

NAM DRIVER D. nn 

D.nn 

Initiator Section 

I. nn 

Continuator S~ction ----------

BCS4-1 



4.2.1 INITIATOR SECTION 

This section is called directly from IOC with calling param­
eters including the address of the second word of the user I/O 
request and the address of the EQT entry for the referenced 
device. IOC sets these parameters in A and B and performs a 
JSB to the entry point "D. nn ". Return to IOC from this section 
must be indirectly through D. nn. 

On entry to D. nn, 

(A) = Address of word 1 of 4-word EQT entry 
(B} =Address of word 2 of I/O request 

The initiator section of any driver must perform the functions 
described below. 

1) Reject the IOC request and return to IOC (see step 6) if 
any of the following conditions exist: 

a. the driver is busy operating another device 

b. the referenced device is busy or inoperable 

c. the user request code or other parameters illegal 
for the device 

d. a DMA channel is not available and DMA is re­
quired for data transfer. 

2) Extract the parameters from the user I/O request and 
save them within the driver storage. 

3) Configure all I/O instructions in the driver to include 
the channel number for the reference device. 

4) Indicate equipment in operation: 

4-2 BCS 

a. set the "a" field in the EQT entry to 2 (busy) for 
the device called 

b. set an internal driver "busy" flag for the driver 

c. set a "busy" flag in IOC if a DMA channel is used 



(To set a DMA flag in roe: 

Within the IOC p r o gr am the two entry points 
DMAe 1, DMAe 2 contain the DMA channel loca­
tions (6 and 7 or 7 and 6). The signbitof the chan­
nel used must be set to 1 to indicate that the chan­
nel is busy.) 

5) Initialize operating conditions and activate the device. 

6) Return to roe with the A and B registers set to indi­
cate initiation or rejection and the cause of the reject: 

(A) = ~, operation initiated 
= 1, operation rejected - reason in B-register 

(B) = lf1f1f1f1f1, the device is busy or inoperable, or 
the driver is busy 

= f1f1f1f1f11, a DMA channel is required but no 
channel is available 

= f1f1f1f1f1f1, the request code or sub-function is 
not legal for the device 

4.2.2 CONTINUATOR SECTION 

This section is entered bydevice interrupt to continue or com­
plete an operation. It may also be called from the Initiator 
Seci;ion to begin an operation. The entry point to this section 
is I. nn. There are no parameters on entry. 

The continuator section of any driver must perform the func­
tions described below. 

1) Save all registers which will be used by the continuator 
section. 

2) Perform the input or output of the next data item. If the 
transfer is not completed, restore the "saved" register 
and return control to the program. 

NOTE: A driver for a device which inputs or outputs data 
independent of program control such as DMA would 
not include step 2. The device is activated by the 
initiator section (step 5), and the data transfer is 
immediately accomplished. The continuator section 
for such drivers merely completes the input or out­
put operation. 

BCS4-3 



3) When data transfer is completed (end-of-operation) or if 
a device· malfunction is detected, set the following in­
formation in the EQT entry: 

The number of words or characters trans­
ferred (corresponding to the request) is set as 
a positive value in word 3. Bit 15 of word 3 
is set to fl or 1 to indicate the mode of tr an sf er. 

The device status, actual or simulated, is set 
in bits 07 -00 of word 2 and the "a" field (bits 
15-14) in word 2 set to: 

0 - device available (not busy) 
1 - device available; the operation is com­

plete but an error has been detected 

Bits 13-08 of word 2 must not be altered. 

4) Clear all ''busy" indicators. Clear the driver busy flag. 
If a DMA channel was used clear the flag in IOC. 

5) Restore all registers saved at the entry. 

6) Return indirectly through the entry point I. nn, with the 
following exception: 

If end-of-operation occurs for an output or function request, 
the driver returns to the entry point ".BUFR" in .IOC. This 
enables the buffered version of .IOC. to perform the automatic 
output buffering function. The standard version of .IOC. at this 
entry point just performs a normal return to the point of inter­
ruption. The calling sequence to .BUFR is: 

(P) 

(P+l) 

(P+2) 

4-4 BCS 

EXT 

JSB 

NOP 

NOP 

.BUFR 

.BUFR 

(holds return address from I. nn) 

(holds EQT entry address) 



PREPARE CONTROL SYSTEM 5 

The Prepare Control System (PCS) program processes relo­
catable modules of the Basic Control System and produces an 
absolute version designed to work on a specific hardware con­
figuration. It creates operating units of the Input/Output Con­
trol subroutine (. IOC. ), the equipment driver subroutines, and 
the Relocating Loader. It also establishes the contents of cer­
tain locations used in interrupt handling. Options are available 
to define the equipment driver modules and other BCS system 
subroutines as relocatable programs to be loaded with the 
user's object program. 

The Prepare Control System is an absolute program which is loaded by 
the Basic Binary Loader. It operates on a minimum configuration of 4K 
memory and a 2752A teleprinter. However, if a Paper Tape Reader and a 
Paper Tape Punch are available, the Prepare Control System. will utilize 
these devices. PCS requests their assignment during the initialization 
phase. 

After the Initialization phase is completed, each module of BCS 
is loaded and processed by PCS. The order in which the mod­
ules are processed is not significant except that the BCS Loader 
must be the last module loaded. Two modules, the Input/Out­
put Control subroutine and the Loader, require that parameters 
be entered via the Keyboard Input unit after being loaded. 

5.1 INITIALIZATION PHASE 

During the Initialization phase, the system requests the channel assign­
ments of the Paper Tape Reader and the Tape Punch if available. The 
operator supplies this information. Next the system requests the first 
and last words of available memory. The first word is the location in the 
base page following the locations required for interrupt processing (the 
interrupt locations and the locations containing the addresses of the 
Interrupt Processors). This location defines the start of the BCS system 
linkage area. The last word of available memory is usually the location 
prior to the protected area (e.g., 7677 for 4K memory, 17677 for SK 
memory). 

BCS 5-1 



Example: 

HS INP? message 

18 reply 

HS p l.Jil? message 

11 reply 

F'WA MEM? message 

30 reply 

LWA MEM? message 

17677 reply 

5.2 LOADING OF. BCS MODULES 

After the initialization phase is completed, the system types "LOAD." 
The BCS modules are loaded using the Paper Tape Reader (if available) 
or the teleprinter. The modules may include .IOC., the equipment drivers, 
and the Relocating Loader. They can be loaded in any order provided 
that the Relocating Loader is last. The message is repeated after each 
module is loaded until the Loader has been processed. Diagnostics are 
printed if certain error conditions occur during the loading. 

The absolute lower and upper bounds of each program within BCS are 
listed after the program is loaded. The format is as follows: 

<program name> 

lllll uuuuu 

Equipment driver subroutines and interr;upt processing sections that are 
to be used in relocatable form are identified ct'uring PCS processing but 
are not loaded. At the completion of the processing, PCS requests the 
missing subroutines. The proper response identifies each as external. 

5-2 BCS 



5.3 INPUT/ OUTPUT EQUIPMENT PARAMETERS 

After the Input/Output Control module is loaded, PCS requests 
the information needed to construct the Equipment Table (EQT) 
and Standard Equipment Table (SQT). t 

Equipment Table Statements 

PCS first types the messages "TABLE ENTRY" and "EQT". 
The operator responds by supplying the Equipment Table en­
tries in the following format: 

nn, D. ee [,DJ [, Uu] 

nn The channel number (select code) for the device. For 
a device connected to two or more channels, nn is the 
lower numbered channel. 

D. ee The Basic Control System symbolic name for the re­
lated equipment driver subroutine. ee is the equipment 
type code used by BCS. Driver names are as follows: 

D.00 - 2752A Teleprinter 
D.01-2737 A Punched Tape Reader 
D.02 - 2753A Tape Punch 
D.15 - Mark Sense Reader 
D.20-Kennedy1406 Incremental Tape Transport 
D.21 - 2020 Magnetic Tape Unit 
D-22 - 3030 Magnetic Tape Unit 
D-40 - Data Source Interface 
D.41 - Integrating Digital Voltmeter 
D.42 - Guarded Crossbar Scanner 
D.43 - Time Base Generator 

D A Direct Memory Access channel is required to oper­
ate the device. 

Uu The physical unit number u (0-7) for addressing the de­
vice if it is attached to a multi-unit controller. 

The same response is used regardless of whether the related 
subroutine driver is to be relocatable or absolute (part of BCS). 
If the driver is not encountered during processing, PCS prints 
the following: 

1/0 DRIVER? 
D·EE 

BCS 5-3 



A response of "!" indicates that the driver is to be in relocatable form. 
(Any other response at this time is an error.) Drivers which use DMA 
or reference IOERR in the .IOC. may not be used externally. 

The order in which the EQT statements are submitted defines 
the position of the entry in the Equipment Table. It also es­
tablishes the unit-reference number that the programmer uses 
in writing input/output requests to . IOC. The first statement 
entered describes the unit which is to be referenced as number 
7a; the second statement, number lOa; the third statement, 
number lla; etc. Numbers 1 through 6 are reserved for Stand­
ard unit definition in the Standard Equipment Table. 

The statement "/E" is entered to terminate the EQT input. 

E:x:am.ple: 

•TABLE ENTRY 

EQT? 

10 .. 0.01 

11 .. 0.02 

12 .. 0.00 

/E 

Message 

Message 

Statement 

Statement 

Statement 

Terminator 

Unit-Reference Number 

7 

10 

11 

Standard Equipment Table Statements 

In constructing the Standard Equipment Table, PCS types a 
mnemonic for the Standard unit and waits for the reply. The 
reply consists of the unit-reference number for a device pre­
viously described in the Equipment Table. 

E:x:am.ple: 

SQT? 

-KYBD? 

11 
-TTY? 

11 
-LIB? 

5-4 BCS 

message 

message to assign Keyboard Input 

reply: unit-reference number for Teleprinter 
message to assign Teleprinter Output 

reply: unit-reference number for teleprinter message 
to assign Relocatable Library 



7 

-P~CH? 

10 

-INPUT? 

7 

-LIST? 

11 

reply: unit-reference number for Punched Tape 
Reader 

message to assign Punch Output 

reply: unit-reference number for Tape Punch 

message to assign Input 

reply: unit-reference number for Punched Tape 
Reader 

message to assign List Output 

reply: unit-reference number for Teleprinter 

Dired Memory Access Statement 

After the equipment tables are completed, PCS requests :infur­
mation about the availability of DMA channels to be controlled 
by the Input/Output Control and equipment driver subroutines. 
PCS types the message 'DMA ?" and the operator responds with 
the available DMA channel numbers. The format of the reply 
is: 

c1 is 6 if one channel is available 

c2 is 7 if the second channel is available 

If no DMA channel is available, the reply is 0 (zero). 

Example: 

DMA? message 

6 .. 7 reply for two channels 

If the reply contains any characters other than 0, 6 or 7, it is an error 
and a diagnostic is issued. 

BCS 5-5 



5.4 INTERRUPT LINKAGE PARAMETERS 

After the Relocating Loader is loaded, PCS requests the param­
eters needed to set the Interrupt Linkage for Input/Output proc­
essing. The information required for each device includes: 

The interrupt location within the Reserved Location area 
in low core. 

The entry point name of the interrupt processing section 
in the equipment driver subroutine for the device. 

The address of the word in the Base Page which is to con­
tain the 15-bit absolute address of this entry point name. 

The same response is used regardless of whether the subrou­
tine driver is to be relocatable or absolute (part of BCS). If 
the entry point was not encountered during processing, PCS 
prints the following: 

•UN NAME 

A response of ! indicates that the driver is to be in relocatable form. 
(Any other response at this time redefines the linkage.) Drivers which use 
DMA or reference IOERR in .IOC. cannot be used externally. 

Given this information, PCS sets in the interrupt location a 
Jump Subroutine (Indirect) to the word holding the absolute ad­
dress for the entry point of the Interrupt Processor. 

Location Content 

10 JSB 20B, I 

20 DEF 1.01 

10 is the interrupt location 

20 holds the address of the entry point, I. 01, of the Inter­
rupt Processor. 

5-6 BCS 



PCS types the message "INTERRUPT LINKAGE?" The oper­
ator responds with a message in the following format: 

I. ee 

a
1

, a
2

, I. ee 

The address in low core of the interrupt location for the 
device (channel). 

The address in the Base Page of the word to contain the 
absolute address of the Interrupt Processor entry point. 

The entry point name of the Interrupt Processor section 
of the equipment driver subroutine. ee is the equipment 
type code used by BCS. Entry point names are as fol­
lows: 

LOO- 2752A Teleprinter 
1.01 - 2737 A Punched Tape Reader 
I.02-2753A Tape Punch 
1.15 - Mark Sense Reader 
1.20- Kennedy 1406 Incremental Tape Transport 
1.21 and C.21 t - 2020 Magnetic Tape Unit 
1.22 and C.22t - 3030 Magnetic Tape Unit 
1.43 - Time Base Generator 

The statement "/E" is entered to terminate the Interrupt Link­
age parameter input. 

Example: 

INTERRUPT LINKAGE? 

11 .. 21 .. I.02 

message 

reply: The Paper Tape Reader uses in­
terrupt location 10. The absolute 
address for entry point I.01 is 
location 20 in the base page. 

reply: The Tape Punch uses inter­
rupt location 11. The ad­
dress of I. 02 is at location 
21. 

t Both the magnetic tape systems are connected to two channels; the lower 
numbered channel transfers data (l.21, 1.22); the higher numbered chan­
nel transfers commands (C.21, C.22). 

BCS5-7 



12,22,I,(J(J The teleprinter uses interrupt lo­
cation 12. The address of 1.00 is 
at location 22. 

Terminates linkage param­
eters. 

The response to the "INTERRUPT LINKAGE?" message may 
have the following form if a constant, for example a halt, is to 
be set in the interrupt location. 

a,c 

a The address in low core of the interrupt location for the 
device (channel). 

c The constant in octal form that is to be stored at location a. 

Example: 

INTERRUPT LINKAGE? 

21 .. 102021 

message 

reply: A halt executed when inter­
rupt occurs on channel 27. 

reply: A NOP is executed when in­
terrupt occurs on channel 
26; the program resumes 
normal execution. 

5.5 PROCESSING COMPLETION 

When the Interrupt Linkage parameters have been supplied, PCS 
performs the following functions: 

1. Prints the message *UNDEFINED SYMBOL followed by the entry 
point names of all system subroutines which have been referenced 
as externals but not loaded. At this point, PCS may continue and 

5-8 BCS 



the missing subroutines loaded or, the symbols may be added to the 
Relocating Loader's Loader Symbol Table. Undefined symbols are 
assigned as value of 77777 for an absolute address. 

2. Completes the construction of the Loader Symbol Table. 

3. Sets the Memory Table (symbolic location. MEM.) in the 
Relocating Loader to reflect the final bounds of available 
memory. 

Following this, PCS prints a list of all Basic Control System 
entry points and the bounds of the System Linkage area in the 
Base Page. 

Example: 
.SQT. 
.EQT. 
.1oc. 
DMACl 
DMAC2 
IO ERR 
XSQT 
XEQT 
0.00 
I •00 
0.01 
1.01 
0.02 
1.02 
·LDR. 
HAl,.T 
•-M'EM. 
LST 

17472 
17500 
17515 
17676 
17677 
17656 
17674 
17675 
16745 
17107 
16406 
16521 
1611 5 
16226 
15413 
16110 
16110 
14102 

•SYSTEM LINK 
00030 00071 

The final step in PCS processing is the punching of an absolute binary 
tape of the configured Basic Control System. This tape can be loaded by 
the Basic Binary Loader. When the tape is to be punched, BCS types the 
message *BCS ABSOLUTE OUTPUT. At the completion of the PCS run, 
the message *END is typed. The tape is punched using the tape punch 
unit, if available, or the teleprinter. 

BCS 5-9/5-10 





DEBUGGING SYSTEM 6 

The debugging routine for BCS provides the following programming aids: 

Print (dump) selected areas of memory in octal or ASCII 
format 

Trace portions of the program during execution 
Modify the contents of selected areas in memory 
Modify simulated computer registers 
Instruction and operand breakpoint halts 
Initiate execution at any point in program 
Debugging routine restart 
Specifying relocatable program base 

The Debuggilig routine supervises the operation of a program 
in the check.;.out (debugging) phase through the use of an inter­
pretive mode of execution with simulated A, B, E overflow and 
P registers. 

The Debugging routine is a relocatable program. It is loaded 
into memory after the user's relocatable programs and before 
the library subroutines are loaded. The Debugging routine 
makes use of the input/ output control subroutine, IOC. 

6.1 OPERATOR COMMUNICATION 

All communication between the debugging routine and the user is done 
through the standard keyboard input and standard teleprinter output 
units normally assigned to a teleprinter. 

After the program is loaded, the Debugging routine pauses to 
allow the first type-in. The operator then types one or more 
control statements to direct the operation of the Debugging 
routine. Each statement must be terminated by an end-of:­
statement mark which consists of a carriage return, @ , and 
a line feed @ . The last statement of the set must tie a Run 
statement. 

When an operation requested by a control statement is com­
pleted, a pause occurs (except for the Trace operation). The 
operator may then continue by typing a Run statement, or he 
may enter new control statements. To regain control at any 

BCS 6-1 



other time, the operator must use Switch 15. Caution must be 
used, however, when input/output operations are in progress; 
setting the switch causes a message to be typed. This action 
may disrupt any incomplete I/ 0 operation. 

6.2 CONTROL STATEMENTS 

The basic format of the control statement is a single alpha­
betic character representing the requested operation followed 
by a parameter list containing the arguments for the operation 
separated by commas. The statement is of variable length and 
is terminated by @) @. The numeric fields in the param­
eter list must be in octal; leading zeros may be omitted. 

Program Relocation Base 

M,a 
This statement defines the program relocation base, a, as the 
absolute origin in memory of the user's relocatable program. 
This address may be obtained from the listing produced by the 
Relocating Loader during loading. If not specified, a value of 
zero is assumed. The value is added to all address parameters 
entered by the operator. 

Specification of this value allows subsequent reference in the control 
statements to addresses as shown on the program listing produced by 
the Assembler or the FORTRAN compiler. If this control statement is 
not used, program address parameters for other control statements must 
be absolute. DEBUG does not check for memory address greater than 
the core size; therefore, locations in the base page may be altered if 
the program relocation base is too high. 

Example: 

M, 2~~~ 

Set Memory 

S, a, v1, v2, ... , vn 
The above statement allows the user to set one or more values 
into locations defined by the first address, a. The value speci­
fied for v1 is stored in location a; the value for v2, in location 
a+ 1; and so forth. To specify that an existing value in memory 
is to remain unchanged, two consecutive ·commas are used in 
the control statement. Any number of values may be entered 
via one control statement provided the length of the statement 
does not exceed 72 characters. 

6-2 BCS 



Example: 

S,5,062006 
S,30, 136100,026040 
S,40,136101,026050 

Set Register 

W,r,v 

This statement sets the value, v, into register, r, where the 
register is defined as follows: 

r =A, A-Register 
= B, B-Register 
= E, E-Register 
= O,Overflow 

Since the Debugging routine simulates the register, the results 
of a Set Register operation are not reflected on the computer 
front panel. 

Examples: 

W,B,2 
W,A, 102000 
W,E,1 

Dump Memory 

D,A, a1, a2 
D, B,a1, a2 

The second parameter indicates the format of the print-out: A specifies 
ASCII, B specifies octal. The address ai designates the location of the 
word or the first of a series of words that is to be dumped. If the second 
address, a2, is greater than ai, a block of memory, ai through a2, is 
printed. If a2 is the same as ai, only one location is printed. 

After the data is printed, the Debugging routine waits for the 
operator to enter another control statement. 

Example: 

D, A, 430, 477 

BCS 6-3 



Breakpoint Halt 

B,r,a 
B,O,a 

The first form specifies the address, a, of an instruction break­
point. Before the instruction at address a is executed, the De­
bugging routine writes a standard breakpoint message (See Out­
put Formats). 

The second form specifies the address, a, of an operand break­
point. When the Debugging routine detects an effective operand 
address equal to the value of a, it writes a standard breakpoint 
message. The operand breakpoint occurs before the memory 
reference is completed and the register contents in the message 
are the contents during the instruction execution and not at 
completion. 

After the breakpoint message is transmitted, the Debugging 
routine waits for the user to enter another control statement. 

One or both types of breakpoint halts may be selected. Once 
selected, a breakpoint address remains in effect until a new 
address is selected, until a Restart statement is entered, or 
until the selection is terminated by the statements: 

Trace 

B,r,~ or B,O,~ 

When the Trace operation is specified, the execution of the instruction 
located at address ai, or the execution of every instruction within the 
area ai through a2, causes the printing of a standard breakpoint message. 
(See "Output Formats.") The printing occurs before each instruction is 
executed. Each time the ai - a2 area is reached, the printing resumes; no 
pause occurs on completion as in the other debugging routine operations. 

The area to be traced must not contain calls to the input/output 
control routine, roe. The Trace operation uses roe to print 
the breakpoint message. An attempt to trace r/O operations 
will result in I/O errors. 

The trace of the area remains in effect until a new area is se­
lected or until the selection is terminated by the statement: 

T,~ 

6-4 BCS 



To enter a new Trace control statement while the program is in 
operation, Switcq 15 must be used. 

Run 
R (,a] 

This statement is used to initiate the execution of the program being de­
bugged. It can also be used to continue execution after a pause in execu­
tion (caused by setting switch register bit 15 to 1 or by breakpoint halt). 
If the letter R only is entered, execution starts with the next sequential 
instruction in the user's program. To start at another location, the 
operator enters the address, a. 

Restart 

A 

This statement, consisting of the letter 11A11 is used to abort 
the current operation and restart. This results in all debugging 
routine and input/output operations in progress being cleared. 

6.3 CONTROL STATEMENT ERROR 

If an incorrect control statement is entered, the following mes­
sage is typed: 

11ENTRY ERROR" 

This indicates that the character representing the operation is 
invalid, or that an illegal parameter has been typed. To re­
cover, type in the correct control statement. 

6.4 HALT 

Any halt operations coded within the user's program result in a typeout 
consisting of the letter H followed by the standard breakpoint message. 
The operator can then type in one or more control statements or can 
reinitiate program execution (with the R control statement). 

BCS 6-5 



6.5 INDIRECT LOOP 

The debugging routine counts levels when indirect addressing is detected. 
When ten consecutive levels of indirect addressing have occurred, an 
indirect address loop is assumed and the following is typed out: 

''INDffiECT LOOP'' 

L <standard breakpoint message> 

6.6 OUTPUT FORMATS 

The Debugging routine operations may produce either of two 
printed outputs: the standard breakpoint message and the mem­
ory dump. 

Standard Breakpoint Message 

Each standard breakpoint message has the following format: 

<id> P = v l I = v 2 A = v 3 B = v 4 E = v 5 0 = v 6 MA = v 7 MC = v 8 

The <id> is a letter identifying the operation producing the out­
put: 

id = I, Instruction breakpoint 
= O, Operand breakpoint 
= T, Trace 
= S, Switch 15 set up 
= L, Indirect Loop 
= H, Halt in object program 

The v's are octal values of registers and memory locations as 
follows: 

P - P-Register (instruction address) 
I - Instruction (contents) 
A - A-Register 
B - B-Register 
E - E-Register 
0 - Overflow 

MA - Effective operand address of a memory reference in­
struction 

MC - Contents of effective address of a memory reference 
instruction 

6-6 BCS 



Dump 

The Dump output record format consists of the contents up to 
8 consecutive words preceded by the address of the first word: 

addr. word1 word2 . . . word8 

Octal: 

ASCII: 

aaaaa 

aaaaa 

000000 

cc 

000000 ••• 000000 

cc cc 

Octal words consist of 6 octal digits; ASCII words are listed as 
two ASCII characters. The contents of eight or more consecu­
tive words are not written or they are the same as the last 
word of the previous record. Instead, a record containing only 
an asterisk is produced. 

6.7, OPERATING PROCEDURES 

The following procedures indicate the sequence of steps for use 
of the Debugging routine. 

A. Set the Teleprinter to LINE and check that all equipment to 
be used is operable. 

B. Load Basic Control System using the Basic Binary Loader. 

C. Set a starting address of 2 and zero the Switch Register. 

D. Establish Relocating Loader parameters. (If relocation base is to be 
entered during operation of the debugging routine, the address must 
be obtained during loading by setting Switch 15 to 0.) 

E. Load user relocatable object programs. 

F. Load Debugging program (treated as a relocatable pro­
gram). t 

G. Load Relocatable Library routines. 

t The Debugging routine need not be loaded as the last reloca­
table program. If loaded in any other order, however, the ab­
solute address assigned to the symbolic location DEBUG must 
be entered manually as the starting address for the program. 

BCS 6-7 



H. Press RUN. 

I. The program pauses to allow the operator to type in the 
control statements. 

J. The program may be restarted at any point by entering the 
absolute address assigned to the symbolic location DEBRS 
into the P-Register, and pressing RUN. 

6.8 EXAMPLE 

The routine employed in this example is a simple loop which 
totals the contents of a block of data. In order to imbue it with 
a practical aspect, assume that program "TOTAL" computes 
personal expenses for a 31-day month. Data (each day's ex­
penses) is read in from the Punched Tape Reader. The sum is 
printed out on the Teleprinter. 

The program is written and assembled as below. To check it 
out a data tape, consisting of a series of 10 's is prepared: 

PAGE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

0012 
0013 
0014 
0015 
0016 
0017 

10 ®@ 
10 ®@ 
10 @@ 

0002 1'01 

00000 
00000 000000 
00001 062162R 
00002 0721 56R 
00003 062163R 
00004 006404 
00005 016004X 
00006 000000 
00007 000014R 
00010 016006X 
00011 016001X 
00012 100055R 
00013 016005X 
00014 066055R 
00015 046164R 
00016 076055R 
00017 036156R 
00020 026003R 

6-8 BCS 

NAM TOTAL 
START NOP 

LOA =D-31 
STA CTR 
LOA =85 
CLB11INB 
JSB .010. 
ABS 0 
DEF" *+5 
JSB .IOR. 
DST INPUT,. I 

JSB .RAR· 
LOB INPUT INPUT THE 
ADB =82 
STB INPUT 
ISZ CTR 
JMP START+3 

DATA 



0019 00021 062162R LOA =D-31 
0020 00022 072156R STA CTR INITIALIZE 
0021 00023 016002X OLD =F'0 .0 

00024 00016 SR 
0022 00825 016001X DST ANSW 

00026 000154R 

8024 00027 016002X DLD .MON.- I 
00030 100054R 

0025 00031 016003X F'AD ANSW 
00032 000154R 

0026 00033 016001X OST ANSW 
00034 000154R 

0027 00035 066054R SUM LOB .MON 
0028 00036 04616 4R ADB =82 ADDITION LOOP 
0029 00037 076054R STB .MON 
0030 00040 036 156R ISZ CTR 
0031 00041 026035R JMP SUM 

0033 00042 06216 4R LOA =82 
0034 00043 006400 CLB 
0035 00044 016004X JSB ·DIO. 
0036 00045 000157R DEF' OUTPT 
0037 00046 000053R DEF' *+5 
0038 00047 016002X DLD ANSW OUTPUT THE RESULT 

00050 000154R 
0039 00051 016006 x JSB .IOR· 
0040 00052 016007X JSB .OTA· 
0041 00053 102077 HLT 778 

0043 00054 000056R .MON DEF' MONTH 
0044 00055 000056R INPUT DEF' MONTH 
0045 00056 000000 MONTH BSS 62 
0046 00154 000000 ANSW SSS 2 
0047 00156 000000 CTR BSS 1 
0048 EXT .DI0•1•RAR•1•IORe1•DTA· 
0049 00157 024106 OUT PT ASC 3.- CF' 8·2> 

00160 034056 
00161 031051 

00162 1777 41 
00163 000005 
00164 000002 
00165 000000 
00166 000000 

0050 END START 

** NO ERRORS* 

BCS 6-9 



10.00 
H P=00053 

The "TOTAL" object tape is loaded by the Basic Control Sys­
tem. The debugging system is loaded next and then the library 
tape. The program is executed using the Debugging System by 
the following instructions: 

Set program relocation base 

Breakpoint instruction is 53, the location of the terminating 
halt in the program. 

Initiate execution at statement 1 

1=102077 A=l77777 8=006115 E=0 O=l 

The correct answer for the test data would be "31. 00", not the 
10. 00 that was output. 

The procedure below illustrates one method for detecting errors 
in the program. 

Set program relocation base 

Dump a portion of the storage area MONTH 

o. s. 56. 70 
DUMP--BASE = 02000 

00056 050503 000333 
00060 001253 000000 000000 004267 017700 000000 053070 011770 
00070 002256 

B. I• 21 
R. 1 

Read in the data: 

I P= 00021 1=062162 A=000000 8=002154 E=0 0=0 MA=,00162 MC=177741 

Check to see that the data has been stored in memory: 

D.B.56.70 
DUMP--BASE = 02000 

00056 050000 000010 

00060 050000 000010 050000 000010 050000 000010 050000 000010 

00070 050000 

6-10 BCS 



B, I, 3 5 
R,21 

Knowing that the data has been stored in MONTH, perform the 
first addition: 

I P= 00035 1=066054 A=050000 8=000010 E=0 0=0 MA=00054 MC=002056 

Check to see that the first day's expenses have been stored at 
ANSW: 

o,a, 154, 155 
DUMP--BASE = 02000 

00154 

a, l, 42 
R,35 

050000 000010 

The first addition was executed. Perform the remaining addi­
tions by looping: 

l P= 00042 1=062164 A=050000 8=002154 E=0 0=0 MA=00164 MC=000002 

Check final total ift' ANSW. 

o,a, 154, 155 
DUMP--BASE 02000 

00154 050000 000010 

Here, if not previously, the error should be detected; the pro­
gram does not perform more than the first addition. The label 
sum has been placed in the wrong instruction. It should be in 
location 27 preceding the "DLD . MON, I" instruction. 

BCS 6-11/6-12 





HP CHARACTER SET A 

ASC1 11 CHARACTER FORMAT 

0 I I I BELL LEM 
I I Q , 0 0 FEo So 
I '0 0 ·i% s, 
I 0 I 0 LF S2 
I 0 I I VTAe. S3 
I I 0 0 FF S4 (ooMW. < 
I I 0 I CR I S5 M 
I' I I 0 so s6 > N 

SI j S7 ? 0 

Standard 7-bit set code positional order and notation are shown below with b, the high-order 
and b, the low-order, bit position. 

EXAMPLE: The code for "R" is: 

LEGEND 

NULL Null/Idle DC,-DC3 Device Control 
SOM Start of message DC4(Stop) Device control (stop) 

EOA End of address ERR Error 
ECM End of message SYNC Synchronous idle 

EOT End of transmission LEM Logical end of media 
WRU "Who are you?" So-Sr Separator (information) 
RU "Are you •.. ?" t, 

Word separator (space, normally 

BELL Audible signal non-printing) 

FEo Format effector < Less than 

HT Horizontal tabulation > Greater than 

SK Skip (punched card) + Up arrow (Exponentiation) 

LF Line feed ... Left arrow (Implies/Replaced by) 

VTAe Vertical tabulation \ Reverse slant 

FF Form feed ACK Acknowledge 

CR Carriage return <D Unassigned control 

so Shift out ESC Escape 

SI Shift in DEL Delete/Idle 

DCo Device control reserved for 
data I ink escape 

BCS A-1 



BINARY CODED DECIMAL FORMAT 

Kennedy 1406/1506 ASCil-BCD Conversion 

Symbol BCD ASCII Equivalent 
Symbol BCD ASCII Equivalent 

(octal code} (octal code} (octal code) (octa I code) 

(Space) 2,0' ~,0' A 61 1,0'1 
! 52 ¢41 B 62 1,0'2 
# 13 ,043 c 63 1,0'3 
$ 53 ,044 D 64 1,0'4 
% 34 ~5 E 65 1,0'5 
& 6,0' ~ F 66 1,0'6 
I 14 ~7 G 67 l,W 
( 34 ¢50 H 7,0' 11,0' 
) 74 ,0'51 I 71 lll 
* 54 ,0'52 J 41 112 
+ 6,0' ,0'53 K 42 113 
I 33 ¢54 L 43 114 
- 4,0' ,0'55 M 44 115 

73 ¢56 N 45 116 
I 21 ,0'57 0 46 117 

p 47 12,0' 
,0' 12 ¢6,0' Q 50 121 
l 9'I ,0'61 R 51 122 
2 92 ,0'62 s 22 123 
3 ~ ¢63 T 23 124 
4 jiU ¢64 u 24 125 
5 ~5 ¢65 v 25 126 
6 ~6 ¢66 w 26 127 
7 rp ,067 x 27 13,0' 
8 1,0' ,W,0' y 30 131 
9 11 ,Wl z 31 132 

: 15 ,W2 [ 75 133 
i 56 ,W3 \ 36 134 
< 76 ,W4 ] 55 135 
= 13 ,W5 
> 16 ,W6 
? 72 %77 
@ 14 1.0',0 

Other symbols which may be represented in ASCII are converted to spaces in BCD (20) 

A-2 BCS 



HP 2020 ASCII - BCD Conversion 

ASCII BCD ASCII BCD 
Symbol (Octal code) (Octal code) Symbol (Octal code) (Octal code) 

(Space) 4,0 2,0 A 1,01 
~ 41 52 B 1,02 
" 42 37 c 1,03 
# 43 13 D 1,04 
$ 44 53 E 1,05 
% 45 34 F 1,06 
& 46 60t G 1,07 
' 47 36 H 11,0 
( 5,0 75 I 111 
) 51 55 J 112 
* 52 54 K 113 
+ 53 6,0 L 114 

' 54 33 M 115 
- 55 4,0 N 116 

56 73 0 117 
I 57 21 p 12,0 

Q 121 
,0 6,0 12 R 122 
1 61 ,eJl s 123 
2 62 ,e12 T 124 
3 63 ,03 u 125 
4 64 ,04 v 126 
5 65 ,e15 w 127 
6 66 ,06 x 13,0 
7 67 ,07 y 131 
8 7,0 1,0 z 132 
9 71 11 

[ 133 
: 72 15 J 135 
; 73 56 T 136 
< 74 76 - 137 
= 75 35 
> 76 16 
? 77 72 
@ 1,0,0 14 

t BCD code of 60 always converted to ASCII code 53 ( +). 

t BCD code of 75 always converted to ASCII code 50 ( () and 

BCD code of 55 always converted to ASCII code 51 () ). 

61 
62 
63 
64 
65 
66 
67 
70 
71 
41 
42 
43 
44 
45 
46 
47 
50 
51 
22 
23 
24 
25 
26 
27 
30 
31 

75 t 
55 t 
77 
32 

BCS A-3 



HP 2761A-007 Mark Sense Card Reader 

Data read from Mark Sense Cards is converted from the same Hollerith 
codes used for punched cards to ASCII codes (octal equivalents) and 
packed two characters per computer word. The first character and every 
other character after it are placed in the upper half (bits 15 thru 8) of 
successive words in the buffer. The second character and every other 
character after it are placed in the lower half (bits 7 thru 0) of those same 
successive words. Thus, each character has the potential of either one of 
two representations in a computer word, depending on its position within 
the reading sequence. Both of these potentials are listed for each charac­
ter available from Mark Sense Cards in Table A-3, starting below. 

For example, if the word HEMP were being read the ASCII octal equiva­
lent for Has the first character is 044000, which is stored as 

15 87 0 
I o 100 100 ooo ooo ooo I 

Next, the ASCII octal equivalent for E as the second character is 000105, 
which is stored as 

15 87 0 
I o 100 100 001 ooo 1011 

The first packed computer word then, is 

15 87 0 
I o 100 100 001 ooo 1011 

Finally, the next two characters M (046400) and P (000120) are stored 
in the next packed computer word as 

15 87 0 
I o 100 110 101 010 ooo I 

BCS A-4 



CHARACTER CONVERSIONS-MARK SENSE CARD READER 

Hollerith or ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent 

A 040400 000101 

B 041000 000102 

c 041400 000103 

D 042000 000104 
E 042400 000105 
F 043000 000106 
G 043400 000107 

H 044000 000100 
044400 000111 

J 045000 000112 

K 045400 000113 

L 046000 000114 
M 046400 000115 
N 047000 000116 

0 047400 000117 
p 050000 000120 
Q 050400 000121 

R 051000 000122 

s 051400 000123 
T 052000 000124 

u 052400 000125 
v 053000 000126 
w 053400 000127 
x 054000 000130 
y 054400 000131 
z 055000 000132 

0 030000 000060 
1 030400 000061 
2 031000 000062 
3 031400 000063 
4 032000 000064 
5 032400 000065 

BCSA-5 



CHARACTER CONVERSIONS-MARK SENSE CARD ·READER 

Hollerith or ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent 

6 033000 000066 
7 033400 000067 
8 034000 000070 
9 034400 000071 

(space) 020000 000040 

020400 000041 
(quote) 021000 000042 

# 021400 000043 

$ 022000 000044 
% 022400 000045 
& 023000 000046 

(apostrophe) 023400 000047 
024000 000050 
024400 000051 

* 025000 000052 
+ 025400 000053 

(comma) 026000 000054 
(hyphen or 026400 000055 
minus) 

(period) 027000 000056 
027400 000057 

035000 000072 

035400 000073 

< 036000 000074 

036400 000075 

> 037000 000076 

? 037400 000077 
@ 040000 000100 

c (cent) or [ 055400 000133 

(not mark) or ] 056400 000135 

I (vertical bar*) or t 057000 000136 
_(underscore**) or+- 057400 000137 

0-8-2 or\ 056000 000134 

*NUMERIC Y 

**NUMERICW 

BCS A-6 



EQUIPMENT TABLE B 

The Equipment Table (EQT) provides information for the input/ 
output control routine, . IOC. , and the equipment driver sub­
routines. The table contains an entry for each peripheral de­
vice attached to a Computer configuration. 

The table is constructed as a block of entries assembled by the 
Prepare Control System routine. The first word of the table, 
at the symbolic entry point . EQT. , contains the number of en­
tries in the table. An entry in the table is referenced accord­
ing to its position. The numbers 1 through 6 are reserved for 
Standard units (see Standard Equipment Table). The number 
7a appearing in a program refers to the 1st table entry; the 
number 108 , the second, and so forth. The numbers may be 
in the range 78-748 with the largest value being determined by 
the number of units of equipment available at the installation. 

The 4-word entry for each device contains the following infor­
mation: 

The channel number of the device (108-768) 

A Direct Memory Access channel indicator if pertinent 

Absolute address of equipment driver subroutine 

Equipment type identification code. 

The above information is static for each in~tallation; it is not 
altered by . IOC. The entry also contains dynamic information 
which is supplied by the equipment driver subroutine. This in­
formation includes: 

Status of operation (i.e., in progress or complete) 

Status of equipment 

Number of characters or words transmitted when the oper­
ation is completed. 

BCS B-1 



The format of the entry is as follows: 

15 14 9 8 6 5 0 

ld~unit channel 

15 14 

15 14 

15 

d = 

unit= 

channel= 

a= 

8 7 0 I equipment type status 

0 

transmission log 

0 

driver address 

Direct Memory Access channel indicator 

1 DMA channel is to be used for each data 
transmission operation 

0 DMA channel not required 

Physical unit number (0-7) used to address 
the device if it is attached to a multi-unit 
controller. 

The channel number (select code) for the 
physical device (also the low core location 
containing a JSB to the related interrupt 
subroutine. ) 

Availability of device: 

0 The device is available; the previous 
operation is complete. 

1 The device is available; the previous 
operation is complete but a transmis­
sion error has been detected. 

2 The device is not available for another 
request; the operation is in progress. 

equipment type= This field contains a 6-bit code that identi­
fies the device: 

8-2 BCS 

00-07 - Paper Tape devices 
00 Teleprinter 
01 Paper Tape Reader 
02 Tape Punch 



status= 

m= 

10-17 - Unit Record devices 
15 Mark Sense Reader 

20-37 - Magnetic Tape and Mass Storage 
devices 
20 Kennedy 1406 Incremental Tape 

Transport 
21 2020 Magnetic Tape Unit 
22 3030 Magnetic Tape Unit 

40-77 - Instrumentation devices 
40 Data Source Interface 
41 Integrating Digital Voltmeter 
42 Guarded Crossbar Scanner 
43 Time Base Generator 

The status field indicates the actual status 
of the device when the data transmission is 
complete. The contents depend on the type 
of device (see Status Table). 

This bit defines the mode of the data trans­
mission: 

0 ASCII or BCD 

1 Binary 

transmission log= This field is alog of the number of charac­
ters or words transmitted. The value is 
given as a positive integer and indicates 
characters or words as specified in the 
calling sequence. The value is stored in 
this field only when the input/output request 
has been completed, therefore, when all 
data is transmitted or when a transmission 
error is detected. 

driver address= Absolute address of the entry point for the 
associated driver subroutine for the device. 

BCS 8·3 



STATUS TABLE 

~ e 7 6 5 4 3 2 1 0 

2752A Teleprinter End of 
Input 
Tape 

2737 A Punched Tape End of 
Reader Tape 

2753A Tape Punch Tape 
Supply 
Low 

Kennedy 1406 Incre- End of 
BT DB mental Tape Transport Tape 

2020A Magnetic Tape 
EOF ST End of TE 1/0 NW PA .DB Unit Tape R 

3030 Magnetic Tape 
EOF ST End of TE 1/0 NW PA DB Unit Tape R 

Mark Sense Reader PF RNR HE or 
SF 

BT Broken Tape 

DB Device Busy 

EOF End of File 

ST Start of Tape 

TE Timing Error 

I/OR I/O Reject 

NW No Write (write enable ring missing or tape unit is rewinding) 

PA Parity Error 
HE Hopper Empty 

SF Stacker Full 

RNR Reader Not Ready 

PF Pick Fail 

B-4 BCS 



STANDARD UNIT EQUIPMENT TABLE c 

The Standard Unit Equipment Table (SQT) allows reference to 
input/output devices designated as Standard units. The Table 
contains six 1-word entries. Each entry corresponds to a par­
ticular Standard unit and contains a pointer to the Equipment 
Table. The Standard units are as follows: 

Number Name 

1 Keyboard Input 

2 Teleprinter Output 

3 Program Library 

4 Punch Output 

5 Input 

6 List Output 

The number defines the position in the SQT at which the device 
is listed. Each Standard unit may be a different device, or a 
single physical device may represent several Standard units. 
The value of the pointer in the SQT is the position of the physi­
cal unit'sentryin the EQT, with the lowest vq.lue being 78.· 

BCS C-1 



D IOC WITH OUTPUT BUFFERING 

IOC with Output Buffering is an extension of the standard ver­
sion and provides for automatic stacking and buffering of all 
output and function requests. This involves moving an output 
request and associated buffer into available memory and adding 
the request location into a thread of stacked requests for the 
referenced unit. At the completion of an output operation, the 
next entry in the stack for the unit is initiated by IOC. The 
processing of output/function requests for a particular unit is 
according to the order of the requests (first in/firstout). This 
version of IOC requires the use of the program MEMRY to per­
form the allocation and release of blocks of available memory. 
If available memory is exhausted when an allocation is at­
tempted, IOC repeats the call until space is made available, 
i. e. , previous blocks are released. 

PRIORITY OUTPUT 

A "priority" write or function request has been added for use with the 
Buffered version of .IOC. A priority request is processed immediately 
without the request and buffer being moved to available memory. The 
current operation in the stack is suspended, the priority request processed 
and the suspended operation re-initiated. The priority feature is useful 
for writing messages or diagnostics for immediate action or for perform­
ing output without reserving a segment of available memory for request/ 
buffer storage. (All output performed by the BCS Relocating Loader is 
done as priority requests for the latter reason.) If two or more priority 
requests are called in immediate succession (without intervening status 
checks), the last requested operation is performed with the previous ones 
being "lost." 

A "Priority" request (i.e., Write function) is indicated by set­
ting bit ~9 of Word 2 of the request call = 1. Bit ~9 = 0 means 
normal operation with the Standard IOC and means the request 
will be stacked and buffered with the extended version. 

D-0 BCS 



Example: "Priority" Write to Teleprinter 

JSB .roe. 
OCT 21~~2 

JMP REJ 

DEF BUFFR 

DEC -37 

OPERATING ENVIRONMENT 

roe with Output Buffering provides for writing a data block on 
more than one output device in parallel and does not restrict 
output rates to the lowest speed device. Because all requests 
and buffers are moved into available memory for subsequent 
processing, peak load output processing is not delayed due to 
device speed or saturated buffer storage within the bounds of 
user programs. System I/O saturation occurs when available 
memory is exhausted. 

RESTRICTIONS 

The routines used to allocate/release blocks in available memory and to 
initiate stacked output requests operate with the Interrupt System dis­
abled. Therefore, the use of medium/high speed synchronous 1/0 devices 
(e.g., HP 2020 Magnetic Tape) under program control is not recommended 
because of possible data loss. 

An I/O driver routine operating under the extended version of 
IOC may not be used to control more than one like device. This 
is because the buffering control routine in roe only checks for 
stacked requests referencing the unit on which an operation was 
just completed. 

HALT CONDITIONS 

Irrecoverable error conditions are identical to the Standard 
version of roe. The location of the halt is at the entry point 
''IOERR". These conditions are: 

BCS D-1 



A-Register B-Register Meaning 

~ Location at Request Request Code Illegal 

1 Location at Request Unit Reference Illegal 

~ ~ Write request for an 
input only device. 

1/0 ERROR CONDITIONS 

The routine .BUFR in the version of IOC with Output Buffering 
checks for error conditions of the end of each output operation. 
If any error conditions and End-of-Tape or Tape Supply Low, 
etc. conditions are present, IOC halts to allow the condition to 
be corrected. Processing is continued by pressing RUN. 

Halt: (T) 

(A) Word 2 of EQT entry (Status word) 

(B) Hardware I/O address of unit 

An addition has been made to this :routine to handle requests for 
buffered output of records too long to be buffered with the amount 
of memory available. If such a request is made, the following 
occurs: 

a. IOC outputs the contents of any buffers which have been 
previously "stacked" for the referenced 1/0 device. 

b. The computer halts to inform the user that his program 
cannot buffer output records of the length requested. The 
contents of the registers are as follows: 

(T) 102001 

(A) Maximum length record that can be buffered 
with the amount of memory available. 

(B) = Memory location of the output request which 
caused the halt. 

The user restarts the program by pushing the RUN button. The 
output request is honored immediately without buffering. roe 
waits until the output operation is complete before returning 
control to the program. This ensures that the data area is not 
modified before the complete record is output, and that the out­
put results are identical to those produced if buffered output of 
the record had occurred. 

D-2 BCS 



RELOCATABLE TAPE FORMAT 

NAM RECORD 

15 

RECORD 
LENGTH 

WORD 1 t 

WORD4 

1514 

LENGTH OF 
MAIN PROGRAM 

SEGMENT 
(OR ZERO) 

... A/C 
WORD? 

CONTENT 

0151312 

015 

0 15 

CHECKSUM 

WORD 2 WORD3 

WORD5 WORD6 

015 

LENGTH OF LENGTH OF 
BASE PAGE COMMON 
SEGMENT SEGMENT 
(OR ZERO) {OR ZERO) 

WORD 8 WORD9 

tEach word represents two frames arranged as follows: 

Bit 8-1-Bit 0 

• • - Feed Holes 

Bit 15 - - Bit 7 

E 

EXPLANATION 

RECORD LENGTH = 9 WORDS 

IDENT = 001 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
IN RECORD EXCLUDING 
WORDS I AND 3. 

A/C: BINARY TAPE PROCESSOR 
= 0 IF ASSEMBLER 

PRODUCED 

= I IF COMPILER 
PRODUCED 

BCS E-1 



ENT RECORD 

15 

RECORD 
LENGTH 

87 

WORD l 

CONTENT 

0151312 

WORD 2 

# 
E 
N 
T 
R 
I 
E 
s 

CHECKSuM 

WORD3 

I' r y r M r r ·11 
WORD 4 WORD5 WORD6 

lR 

15 015 8 7 015 87 

RELOCATABLE 
ADDRESS s y M B 

FOR 
SYMBL 

WORD? WORD 8 WORD 9 

15 87 1 015 015 

> 
RELOCATABLE 

ADDRESS 

~ 
WORD 10 WORD 59 

E-2 BCS 

EXPLANATION 

RECORD LENGTH = 7-59 WORDS 

IDENT = 010 

ENTRIES: 1 to 14 ENTRIES PER 
PROGRAM; EACH ENTRY 
IS FOUR WORDS LONG. 

SYMBL: 5 CHARACTER ENTRY 
POINT SYMBOL 

R: RELOCATION INDICATOR 
= 0 IF PROGRAM RELOCATABLE 
= 1 IF BASE PAGE 

RELOCATABLE 

WORDS 4 THlOUGH 7 ARE 
RE PEA TED FOR EACH 
ENTRY POINT SYMBOL. 



EXT RECORD 

15 

15 

87 

RECORD 
LENGTH 

WORD l 

WORD 4 

87 

s 

WORD 7 

CONTENT 

0151312 

WORD 2 

WORD5 

015 

> 
y 

~ 
? 
5 
~ 

54 0 15 

I 
E 
N 
T 
R 
I 
E 
s 

015 

L 

CHECKSUM 

WORD 3 

WORD 6 

87 

SYMBOL 
ID 

NO. 

WORD 60 

EXPLANATION 

RECORD LENGTH = 6-60 WORDS 

IDENT = 100 

ENTRIES: 1 TO 19 PER 
RECORD; EACH ENTRY 
IS THREE WORDS LONG 

SYMBL: 5 CHARACTER 
EXTERNAL SYMBOL 

SYMBOL JD. NO.: NUMBER 
ASSIGNED TO SYMBL FOR 
USE IN LOCATING 
REFERENCE JN BODY 
OF PROGRAM. 

} 

WORDS 4 THROUGH 6 REPEATED 
FOR EACH EXTERNAL 
SYMBOL (MAXIMUM OF 
19 PER RECORD). 

BCS E·l 



DBL RECORD 

15 

RECORD 
LENGTH 

87 

WORD l 

1514 

RELOCATABLE 
LOAD 

ADDRESS 

WORD4 

CONTENT 

0151312 765 015 

WORD 2 

015 1312109 76 43 1015 

R R R R R 

WORDS 

CHECKSUM 

WORD 3 

ABSOLUTE 
VALIA: 

INSTRUCTION WORD 
R =000 

EXPLANATION 

RECORD LENGTH = 5-60 WORDS 
IDENT = 011 
Z/C: BASE/CURRENT PAGE LOADING 

= 0 FOR BASE PAGE 
= l FOR CURRENT PAGE 

NO. OF INST. WORDS: I TO 45 
LOADABLE INSTRUCTION 
WORDS PER RECORD 

RELOCATABLE LOAD ADDRESS: 
o STARTING ADDRESS FOR 

LOADING THE INSTRUCTIONS 
WHICH FOLLOW. 

R's: RELOCATION INDICATORS: 
000 = ABSOLUTE 
001 = 15-lllT PROGRAM 

RELOCATABLE 
010 = 15-lllT BASE PAGE 

RELOCATABLE 
011 = 15-lllT COMMON 

RELOCATABLE 
100 =EXTERNAL REFERENCE 
101 =MEMORY REFERENCE 

1514 0 1514 1514 

~ 
'"'"-------_;;O R1 IS RELOCATION INDICATOR FOR 

15-BIT PROGRAM 
RELOCATABLE 

VALUE 

INSTRUCTION WORD 
R = 001 

1514 1110 

I 
N 
s c 
T 0 
R D g E 
T 

D/I 

EXTERNAL 
SYMBOL 
1.D.NO. 

INSTRUCTION WORD 
R = 100 

E-4 BCS 

11 

15-lllT BASE PAGE 
RELOCATABLE 

VALUE 

INSTRUCTION WORD 
R =010 

v 
15-BIT COMMON 

RELOCATABLE 
VALIA: 

INSTRUCTION WORD 
R =011 

RELOCATABLE 
VALIA: 

INSTRUCTION WORDS 
R = 101 

INSTRUCTION WORD1; R2, FOR 
INSTRUCTION WORD2i ETC-MEMORY 
REFERENCE INSTRUCTIONS USE 
TWO WORDS, WITHIN THE TWO­
WORD GROUP, "MR" INDICATES 
RELOCATABILITY OF OPERAND 
SPECIFIED IN SECOND WORD: 

00 =PROGRAM RELOCATABLE 
01 =BASE PAGE RELOCATABLE 
10 =COMMON RELOCATABLE 

D/I: INDIRECT ADDRESSING 

0 =DIRECT 
l =INDIRECT 

Z/C: BASE/C~RENT PAGE LOCA­
TION OF OPERAND ADDRESS 
AS DETERMINED BY LOADER. 

0 =BASE PAGE 
I - CURRENT PAGE 



Et.I> RECORD 

15 

RECORD 
LENGTH 

87 

WORD 1 

1514 

RELOCATABt.E 
TRANSFER 
ADDRESS 

WORD4 

CONTENT 

0151312 

WORD 2 

21015 

Cl-ECK SLM 

WORD3 

EXPLANATION 

RECORD LENGTH = 4 WORDS 

IDENT= 101 

R: RELOCATION lt-l>ICATOR 
FOR TRANSFER ADDRESS 

= 0 IF PROGRAM RELOCATABLE 
= 1 IF BASE PAGE 

RELOCATABLE 

T: TRANSFER ADDRESS 
INDICATOR 

= 0 IF NO TRANSFER 
ADDRESS IN RECORD 

= l IF TRANSFER ADDRESS 
PRESENT 

BCS E-5/E-6 





ABSOLUTE TAPE FORMAT 

15 

15 

RECORD 
LENGTH 

87 

WORD 1 t 

D 

CONTENT 

01514 

0 15 

ABSOLUTE 
LOAD 

ADDRESS 

WORD2 

INSTRUCTION 
WORD; 

WORD n-1 

015 

0 15 

INSTRUCTION 
WORD 1 

WORD 3 

CHECKSUM 

WORD n 

tEach word represents two frames arranged as follows: 

Bit 8 - Bit 0 

Feed Holes 

Bit 15 ·- - Bit 7 

F 

EXPLANATION 

RECORD LENGTH= NUMBER OF 
WORDS IN RECORD EXCLUDING 
WORDS 1 AND 2 AND THE 
LAST WORD. 

ABSOLUTE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW 

INSTRUCTION WORDS: 
ABSOLUTE INSTRUCTIONS 
OR DATA 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
EXCEPT FIRST AND LAST 

BCS F-1/F-2 





HOW TO GENERATE A BASIC CONTROL G 
SYSTEM 

The stand-alone program Prepare Control System (PCS) is used to 
generate BCS. The following parameters must be specified during 
generation (all numbers typed in octal): 

First Word of Available Memory (FWA MEM) 

This is the lowest memory location that is available to PCS for BCS 
construction. It should be higher than the last linkage location used 
in the Interrupt Table and if the BCS is to be used within MTS (Magnetic 
Tape System) it must be set to exactly 1108 (to allow for MTS linkage 
locations). (Interrupt Table must be pre-planned before running PCS, 
since (FWA MEM) depends upon Interrupt Table length.) 

Last Word of Available Memory (LWA MEM) 

This is the highest memory location available to BCS. This value depends 
on the core size and the context as follows: 

Core Size Last Word BCS BCS in MTS 

4K 7677 

8K 17677 15777 

16K 37677 35777 

24K 57677 

32K 77677 

Equipment Table (EQT) 

A table of varying size whose entries are numbered sequentially starting 
with 7. The user relates each entry to a specific I/0 device and to an I/0 
driver. There must be at least one EQT entry per device to be used in BCS. 

BCS G-1 



Standard Unit Table (SOT) 

A set of 6 numbers (chosen from the EQT) that specify devices for 
standard functions (i.e., keyboard, list output, etc.). 

Interrupt Table 

The set of memory locations where interrupts may occur and a matching 
set of linkage locations (one per interrupt location). Also, an entry point 
into a driver is associated with each interrupt. 

Each interrupt location corresponds directly to the select code of the 
device, i.e., if the teleprinter select code is lOg, the interrupt location 
in memory is lOg. The linkage location associated with the device must 
be higher than the highest select code (interrupt location) used. 

Driver Identification Codes 

Driver Identification codes are required when creating the EQT and the 
Interrupt Table. These are the currently defined driver codes: 

00 to 07 

l(i) to 17 

G-2 BCS 

Paper Tape Devices: 

00 Teleprinter 

01 Tape Reader 

02 Tape Punch 

Unit Record Devices: 

1 Ci) Calcomp Plotter 

11 Card Reader 

12 Line Printer 

15 Mark Sense Card Reader (uses DMA) 

16 SO-Column Line Printer 



2~ to 37 

4~ to 77 

Magnetic Tape/Mass Storage Devices: 

21 HP 2~2~ (A or B) Magnetic Tape (7-Track) 

22 HP 3~3Q G Magnetic Tape (9-Track) (uses DMA 
with character packing) 

23 HP 797(fl (A or B) Magnetic Tape (9-Track) 

Instruments 

OPERATING INSTRUCTIONS 

1. Turn on all desired equipment. 

2. Load PREP ARE CONTROL SYSTEM (PCS) using the Basic Binary 
Loader (BBL) or Basic Binary Disc Loader (BBDL). 

3. Set starting address 2000g. 

4. Set all switch register bits off; then set switches 5 through 0 to 
the octal select code (1/0 channel) of the teleprinter. 

5. Start program execution. 

6. Set all switch register bits off. 

7. PCS asks for the high-speed input device. (Remember to terminate 
each reply with a RETURN and LINEFEED.)t 

HS INP? 

Reply with the select code of the high-speed input unit 
for PCS (either tape reader or teleprinter) 

8. PCS asks for high-speed punch 

HS PUN? 

Type the select code of the tape punch or teleprinter to 
be used by PCS 

fTerminate any reply typed on the keyboard throughout PCS execution with RETURN LINE­
FEED. If an error occurs while typing a response, press RUBOUT, RETURN LINEFEED, then 
retype 1he response. 

BCS G-3 



9. PCS asks for the first word of available memory 

FWAMEM? 

Type the octal address beyond the last address necessary 
for interrupt linkages 

10. PCS asks for the last word of available memory 

LWAMEM? 

Type the octal address of last available memory address 
(first digit must be non-zero) 

11. PCS prints 

*LOAD 

At this point, load the appropriate BCS drivers (Magnetic 
tape first, if present) one at a time. Place the driver tape 
in the reader and press RUN. 

PCS prints the driver name and absolute memory bounds, then 
prints *LOAD'and halts for the next tape. 

Keep loading driver tapes until all are loaded. Then load 
the Input/Output Control routine (IOC), either buffered 
or non-buffered. 

NOTE: If driver D.21 (HP 2020 (A or B) Magnetic Tape Unit) is 
loaded, only non-buffered IOC can be used; D.21 turns 
off the interrupt system. D.11 (Card Reader Driver) and 
D.23 (HP 7970 (A or B) Magnetic Tape Unit) also re­
quire non-buffered IOC when used without DMA. 

12. PCS prints IOC and the memory bounds and then asks for Equip­
ment Table entires by printing 

*TABLE ENTRY EQT? 

Press RUN. Then type in the required EQT entries, one 
per line (each entry followed by RETURN and LINEFEED). 

Remember that the entries are implicitly assigned octal 
numbers, starting with 7 8 , as they are entered 

xx,D.yy[,D[,Ul]] 

NOTE: Elements in brackets " [ ] " are omitted according to the 
driver requirements. 

G-4 BCS 



where 

xx = high priority select code of the device 

D.yy= driver identification number (see chart). 

,Q = uses DMA; omit if device does not use DMA. 

Ul = file protect mode for mass storage device; omit if file 
protect is not desired. 

Terminate the EQT by typing 

/E 

13. PCS asks for the Standard Unit Table 

SQT? 

and requests octal EQT entry numbers (7, 10, 11, ... ) for the 
following standard functions: 

1. Keyboard input ................. -KYBD? 

2. Teleprinter. . . . . . . . . . . . . . . . . . . . . . -TTY? 

3. Library subroutine input 
at load-time . . . . . . . . . . . . . . . . . . . . . -LIB? 

4. Punch output . . . . . . . . . . . . . . . . . . -PUNCH? 

5. Standard input................. -INPUT? 

6. Standard list output ............... -LIST? 

Respond to each request by typing the EQT entry number of the 
device that is most appropriate for the specific function. 

14. PCS requests information about the availability of Direct Memory 
Access 

DMA? 

Respond by typing 0 (no DMA), 6 (one channel DMA), 
or 6, 7 (two channel DMA) 

15. PCS halts after typing 

*LOAD 

Place the BCS Relocating Loader in the reader and press 
RUN. 

16. PCS loads the Relocating Loader, then prints 

LOADR 

BCS G-5 



and the loader's memory bounds 

xxxxxyyyyy 

PCS then asks for the Interrupt Linkage Table by printing 

INTERRUPT LINKAGE? 

and halts. 

Press RUN. Type the Interrupt Linkage Table entries for 
each device, one per line, in order of ascending select 
codes. 

For a device using only one select code (I/0 channel) type 

xx,yy,l.zz 

where 

xx= select code of the device. (Lower numbered of two select 
codes if device is mass storage.) 

yy = octal address of interrupt linkage memory word for the 
- device. 

zz =driver identification number (see Table BCS-1). 

Example: 10,16,1.00 

For a mass storage device using two select codes (I/0 channels) 
type 

XX,y:j,I.~ 

qq,~C.zz 

where 

qq =the lower priority (higher numbered) select code (xx = 
- higher priority, lower numbered select code) . 

.!! = octal address of the interrupt linkage memory word for 
the device (different from yy). 

zz =driver identification number (same as for I.~). 

Example: 11,17,1.21 
12,20,C.21 

To put an octal instruction (i.e., a precautionary halt instruction) in 
an unused interrupt location (select code) type 

xx,bbbbbb 

G-6 BCS 



where 

xx = select code 

bbbbbb =an oct.al instruction(~= 0-7). 

_ halt number 
Example: 15,102055 

halt instruction 

PCS checks each entry after it is typed. If the driver name was 
typed incorrectly, PCS types 

*ERROR 

If the driver was not loaded earlier (step 11) then PCS types 

*UN name 

In either of the above cases, ref er to Procedure 2 to continue. 
Terminate the Equipment Table by typing 

/E 

17. PCS determines whether there are any undefined references (e.g., to 
drivers that were not loaded). If none, PCS goes on to the next step. 

If some symbols are undefined, PCS prints 

*UNDEFINED SYMBOLS: 

followed by a list of entry points for drivers which have been 
referenced in tables but not loaded 

I.xx 

If the drivers were not loaded during step 11 but should have been, 
restart PCS from step 1. To leave the references unresolved and 
load in the driver tapes at load-time, (Procedure 3) continue PCS 
processing with step 18. 

NOTE: Drivers that use DMA or entry point IOERR in the 
loader cannot be left undefined (must be loaded during 
step 11). 

BCS G-7 



18. PCS lists the entry points of BCS and prints the system linkage 
area 

*SYSTEM LINK 
xxxxx yyyyy 

19. PCS then prints 

*BCS ABSOLUTE OUTPUT 

Check that the tape punch is operable and press RUN. PCS punches 
a configured BCS tape and halts. To punch additional copies, set 
switch register bit 15 on and press RUN. 

20. Terminate PCS by setting all switch register bits to zero and pres­
sing RUN. PCS halts after printing 

*END 

G-8 BCS 



PCS ERROR HAL TS AND MESSAGES H 

Halt Code Meaning 

A line is about to be printed 
on the teleprinter 

Action 

Turn punch unit OFF. Press 
RUN. 

Alinehasbeenprinted while Turn punch unit ON. Press 
the teleprinter punch unit RUN. 
was off. 

Tape supply low on tape Place new reel of tape in unit. 
punch which is producing Press RUN. Leader is punched. 
absolute binary output. Trail-
er follows last valid output. 

1r,2r,77 BCA tape is punched To produce additional copies, 
set switch 15 on. 

Message Meaning Action 

*EOT End-of-tape Place next tape in tape reader 
and press RUN to continue 
loading. 

*ERROR A non-numeric parameter or Retype the entire entry cor­
illegal numeric parameter rectly. 
has been entered. 

1/0 DRIVER? D.g 

A driver has been named in 
EQT entry but has not been 
loaded. 

1. If the driver is to be loaded 
with user's program at load­
time, type an exclamation 
mark(!). The driver name 
is added io the loader's 
LST. 

2. If the driver should have 
been loaded, restart PCS. 

BCS H-1 



*Ll,H 

*L(,h2 

*L(,h4 

*L(,h5 

*L(,h6 

*L(,h7 

Meaning 

Checksum error 

Illegal record read: The last 
record read was not recog­
nized as a valid relocatable 
format record. 

Memory overflow: The 
length of BCS exceeds avail­
able memory' 

System linkage area over­
flow in Base Page. 

Loader symbol table over­
flow: The number of EXT/ 
ENT symbols exceeds avail­
able memory. 

PCS interprets the program 
length of BCS to be zero. 

Duplicate entry points; an 
entry point in the current 
program matches a previous­
ly loaded entry point. 

*UNDEFINED SYMBOL: 

Action 

To reread record, reposition 
tape to beginning of record 
and press RUN. If computer 
halts again, tape must be re­
placed. 

To reread record, reposition 
tape to beginning of record 
and press RUN. If computer 
halts again, tape must be re­
placed. 

Abort PCS. Reduce the num­
ber of core resident I/0 driv­
ers or increase memory. 

Abort PCS. Reduce the num­
ber of, or reorder the core 
resident I/O drivers. 

Abort PCS. Reduce the num­
ber of, or reorder the core 
resident I/0 drivers. 

Abort PCS. 

Eliminate an entry point. 
Check to see if the same pro­
gram was loaded twice. 

symbol An entry point in a BCS If the subroutine should have 
module cannot be located. been loaded, rerun PCS. 

*UN name The name I.~ is not defined 
as an entry point in any I/0 
driver previously loaded. 

H-2 BCS 

1. If the driver name was 
typed incorrectly, retype 
the entire entry correctly. 

2. Ii the driver is to be loaded 
with the user's program at 
load-time, type an exclama­
tion mark(!). 



HOW TO USE BCS TO RELOCATE AND 
RUN -PROGRAMS 

BCS performs two main functions: 1) relocates and links subroutines to 
main programs, and 2) executes programs. 

Starting with relocatable code produced by an assembler or compiler, 
there are two possible methods to accomplish function 1 and reach 
function 2: 

a. BCS relocates the code (including subroutines) into core mem­
ory directly and then executes it. 

b. BCS relocates the code (including subroutines) and punches it 
onto an absolute tape along with the necessary system rou­
tines, drivers, tables, etc. This absolute tape can then be loaded 
into core through BBL or BBDL and executed. 

Method (a) is faster, but does not provide a permanent, runnable copy of 
the program. Not only does the program code have to be relocated each 
time the program is to be run, but less core is available because the Re­
locating Loader occupies a part of memory. 

Method (b) takes longer the first time, but provides a permanent copy of 
the program that can be executed. Also, more core is available since the 
program can (at run-time) use the space occupied by the Relocating 
Loader at load-time. 

OPERA TING INSTRUCTIONS 

1. Load a configured BCS into core with BBL or BBDL. (See Proce­
dure 1 for generation of a configured BCS.) 

2. Set a starting address of 28 . 

3. Set all switch register bits off, then select the following options: 

Bit 15 on (suppress memory allocation listing) 
off (include memory allocation listing) 

Bit 14 on (punch absolute tape copy of program) 
off (relocate into core, do not punch tape) 

BCS 1-1 



If Bit 14 on and a t.eleprinter is to be used for punching, then 

Bit 13 on (teleprint.er is a 2754B and can print and punch 
separat.ely; set t.eleprinter mode to KT) 

off (teleprint.er cannot print and punch separately; 
BCS halts before and aft.er each line of printing so that 
the operator can turn on/off punch unit to avoid 
punching list output, then punch the absolute binary 
output). 

4. Place the first relocatable program tape into the reader. Press 
PRESET and RUN. BCS reads and relocat.es the binary code on the 
tape. If switch register bit 14 is on, an absolut.e binary tape is 
punched. (Otherwise, BCS relocat.es the program in memory.) 

5. BCS halts after typing 

*WAD 

Load the user relocatable tapes as follows: Set switch 
regist.er bits 2 - 0 off. 

Place the tape in the reader. Set switch regist.er bit 15 on 
(if desired) to suppress memory allocation listing. Press 
RUN. When tape has been read, BCS halts aft.er printing 

*LOAD 

If there are more user tapes to load, repeat step 5. 

6. Aft.er all user program tapes have been loaded, there are several 
options: 

To read a library subroutine tape (and load only those sub­
routines which are necessary to resolve ext.ernals). (Step 7) 

To list undefined ext.ernals (or bypass further loading if there 
are no undefined ext.ernals). (St.ep 8) 

To bypass further loading even if undefined externals remain. 
(St.ep 9) 

7. Set switch regist.er bit 2 on (bits 1 and 0 off). Place the relocatable 
library tape in the reader (FORTRAN IV library must be loaded 
first). Set switch regist.er bit 15 on to suppress the memory alloca­
tion listing, if desired. Press RUN. 

1-2 BCS 



When the tape has been read, BCS halts after indicating: 

No undefined externals 

*LST 

(Set switch register bit 2 off and go to step 10.) 

or 

Undefined externals 

symbol 
symbol 

symbol 
*LOAD 

Return to Step 6 and select an option. 

8. Set switch register bit 0 on (bits 1 and 2 off). Press RUN. BCS indi­
cates whether undefined externals exist by printing either: 

No undefined externals 

*LST 

(Set switch register bit 2 off and go to Step 10) 

or 

Undefined externals 

symbol 
symbol 

symbol 
*LOAD 

Return to Step 6. 

9. Set switch register bit 1 on (bits 2 and 0 off). Press RUN. BCS goes 
on to Step 10, even though undefined externals may still exist. 

BCS 1-3 



10. BCS has completed loading and is ready to print the Loader Symbol 
Table (LST), common bounds, and linkage area bounds. Set switch 
register bit 15 on to suppress listing of these items. Set bit 15 off to 
list them. 

If a 2754B Teleprinter is used, set the mode switch to "T" to 
enable the tape punch. 

Press RUN. 

11. BCS completes listing (if requested by bit 15). 

If the program was relocated into core (bit 14 off), BCS prints 

*RUN 

Press RUN to execute the program. 

12. If the program was punched onto paper tape (bit 14 on), BCS prints 

*END 

13. Tear off the absolute tape output and wind. To execute the 
program: 

1-4 BCS 

Load the tape with BBL or BBDL. 

Sta.rt the program at location 28. 



BCS ERROR HAL TS AND MESSAGES J 

LOAD· TIME 

Error Halt Meaning 

1~2~55 A line is about to be printed 
on the teleprinter. 

1~2~56 A line has just been printed 
on the teleprinter with the 
tape punch OFF. 

1~2~66 Tape supply low on tape 
punch which is producing 
absolute binary output. 
Trailer follows last valid 
output 

*L~l 

*L~2 

*L~4 

Checksum error. 

Illegal record read: The last 
record read was not recog­
nized as a valid relocatable 
record tape. 

Memory overflow: The 
length of BCS exceeds avail­
able memory. 

System linkage area over­
flow in Base Page. 

Action 

Turn punch unit OFF. Press 
RUN. 

Turn punch unit ON. Press 
RUN. 

Place new reel of tape in unit. 
Press RUN. Leader is punched. 

Action 

To reread record, reposition 
tape to beginning of record 
and press RUN. If computer 
halts again, tape must be re­
placed. 

To reread record, reposition 
tape to beginning of record 
and press RUN. If computer 
halts again, tape must be re­
placed. 

Abort load. Reduce program 
size or increase memory 

Abort load. Reduce program 
size or alter subprogram load­
ing sequence. 

BCS J-1 



Message 

*L~6 

*L~7 

*L~ 

*L~9 

Meaning Action 

Loader symbol table over- Abort load. Reduce program 
flow: The number of EXT/ size or increase memory. 
ENT symbols exceeds avail-
able memory. 

Common block error: The 
length of the common block 
in the current program is 
greater than the length of 
the first common block 
allocated 

Duplicate entry points: An 
entry point in the current 
program matches a previous­
ly declared entry point. 

No transfer address: The 
ii;iitial starting location was 
not present in any of the 
programs which were loaded. 

Record out of sequence: A 
NAM record was encoun­
tered before the previous 
program was terminated 
with an END record. 

Abort load. Reorder the pro­
grams during loading or make 
the common blocks the same 
length. 

Abort load. Eliminate an en­
try point. Check to see if the 
same program was loaded 
twice. 

Load the absolute starting 
address into the A-register. 
Start program execution. 

1. Reload the program. 

2. If program does not load 
properly, replace the bi­
nary tape for the program 
being loaded. 

RUN·TIME. 

Certain library routines, including the Formatter, produce error messages 
at run-time. 

Halt Code 

1~6{)55 

J-2 BCS 

Program has attempted to execute a non-program area 
of core. Warning-only. Program can be restarted. 



In the HP 9625C Real-Time Executive System, the 
2100A mobilizes disc storage, data acquisition sub­
systems, instruments and computer peripherals into 
a powerful real-time multiprogramtning system. 

FORTRAN Reference Manual 



CONTENTS 

INTRODUCTION vi 

CHAPTER 1 PROGRAM FORM 1-1 
1.1 Character Set 1-1 
1.2 Lines 1-2 

Statements 1-2 
Statement Labels 1-2 
Comments 1-2 
Control Statement 1-3 
End Line 1-3 

1.3 Coding Form 1-3 

CHAPTER 2 ELEMENTS OF HP FORTRAN 2-1 
2.1 Data Type Properties 2-1 
2.2 Constants 2-2 

Integer 2-2 
Octal 2-2 
Real 2-3 

2.3 Variables 2-3 
Simple Variable 2-3 
Subscripted Variable 2-4 

2.4 Arrays 2-5 
Array Structure 2-5 
Array Notation 2-6 

2.5 Expressions 2-6 
2.6 Statements 2-7 

CHAPTER 3 ARITHMETIC EXPRESSIONS AND 
ASSIGNMENT STATEMENTS 3-1 

3.1 Arithmetic Expressions 3-1 
Order of Evaluation 3-2 
Types of Expression 3-3 

3.2 Assignment Statements 3-4 
Type of Statement 3-4 

3.3 Masking Operations 3-5 

FORTRAN i 



CHAPTER 4 SPECIFICATIONS STATEMENTS 4-1 
4.1 Dimension 4-1 
4.2 Common 4-2 

Correspondence of Common Blocks 4-3 
4.3 Equivalence 4-5 

CHAPTER 5 CONTROL STATEMENTS 5-1 
5.1 GO TO Statements 5-1 
5.2 IF Statements 5-2 
5.3 DO Statements 5-3 

DO Nests 5-6 
5.4 CONTINUE 5-9 
5.5 PAUSE 5-9 
5.6 STOP 5-9 
5.7 END 5-10 
5.8 END$ 5-10 

CHAPTER 6 MAIN PROGRAM, FUNCTIONS, 
AND SUBROUTINES 6-1 
6-1 Argument Characteristics 6-1 
6.2 Main Program 6-2 
6.3 Subroutine Subprogram 6-2 
6.4 Subroutine Call 6-4 
6.5 Function Subprogram 6-5 
6.6 Function Reference 6-7 
6.7 Statement Function 6-9 
6.8 Basic External Functions 6-11 
6.9 RETURN and END 6-12 

CHAPTER 7 INPUT/OUTPUT LISTS AND 
FORMAT CONTROL 7-1 
7.1 Input/Output Lists 7-1 

DO-Implied Lists 7-2 
7.2 Format Statement 7-4 
7.3 Format Statement Conversion 

Specifications 7-4 
Ew.d Output 7-5 
Ew.d Input 7-6 
Fw.d Output 7-8 
Fw.d Input 7-9 

ii FORTRAN 



Iw 
Aw 
r@w rKw 
nX 
nHh1h2 ... hn 
r"h1h2 ... hn 
New Record 
Repeat Specifications 
Unlimited Groups 

7.4 Free Field Input 
Data Item Delimiters 
Floating Point Input 
Octal Input 
Record Terminator 
List Terminator 
Comments 

7-9 
7-10 
7-11 
7-12 
7-12 
7-13 
7-14 
7-16 
7-16 
7-16 
7-16 
7-17 
7-17 
7-17 
7-18 
7-18 

CHAPTER 8 INPUT/OUTPUT STATEMENTS 8·1 
8.1 Logical Unit Numbers 8-1 
8.2 Formatted READ, WRITE 8-2 
8.3 Unformatted READ, WRITE 8-3 
8.4 Auxiliary Input/Output Statements 8-3 

CHAPTER 9 COMPILER INPUT AND OUTPUT 9;.1 
9.1 Control Statement 9-1 
9.2 Source Program 9-2 
9.3 Binary Output 9-2 
9.4 List Output 9-2 

APPENDIX A HP CHARACTER SET A· 1 

APPENDIX B ASSEMBLY LANGUAGE SUBPROGRAMS B· 1 
FORTRAN Reference B-1 
Direct Transfer of Values B-2 
Transfer via .ENTR B-4 

APPENDIX C SAMPLE PROGRAM C-1 
Object Program Input and Output Data C-4 

APPENDIX D FORTRAN ERROR MESSAGES D· 1 

FORTRAN iii 



I OPTIONAL 

I 
I 
I 
I 
I 

I ONE OUTPUT 
DEVICE 
ONLY 

I I 
L.---1-- -

FORTRAN t 
COMPILER 

PASSI 

FORTRAN 
COMPILER 

PASS2 

FORTRAN 
COMPILER 

PASS2 
REPEATED 

0Pr10NAL r A"oDiT10NAr 1 
r- -:.I OUTPUT: I 
I 

1
soURCE PROGRAM I 

I LISTING 
.._ _, -~ --

1
1 

r ADDrTiONAL ,I 
_I OUTPUT 

L- -1111'1 OBJECT PROGRAM I 
OPTIONAL I LISTING -- ..J ......__,, 

1------IM OBJECT PROGRAM 
LISTING 

tWhen compiling with the magnetic tape system, operator 
intervention ceases after Pass 1 has been loaded. 

IK MEMORY 
PORTRAN COMPILATION PROCESS 

iv FORTRAN 



(°A0Dit10NAL l 
OPTIONAL ~I OUTPUT: I 

r- ?tlsOURCE PROGRAM 
I LISTING j 
I I.... ,_-
I --

FORTRAN 
COMPILER 

PASSl 

...._ __ _ 

I I OPTIONAL 

FORTRAN 
COMPILER 

PASS2 

FORTRAN 
COMPILER 

PASS3 

FORTRAN 
COMPILER 

PASS4 

I ONE OUTPUT 

I I o6~1~ 
I I 
I I 
I I 
~i-

FORTRAN 
COMPILER 

PASS4 
REPEATED 

4K MEMORY 

I 
I r-ADOiTiONAL -, 
L+J OUTPUT I 

OPTIONAL I OBJECT PROGRAM I 
LISTING ~ ..... __ ,,,,,,,,. 

FORTRAN COMPILATION PROCESS 

FORTRAN v 



INTRODUCTION 

The FORTRAN compiler system accepts as input, a source program written according 
to American Standard Basic FOR TRAN specifications; it produces as output, a re­
locatable binary object program which can be loaded and executed under control of 
an HP operating system. 

In addition to the ASA Basic FOR TRAN language, HP FOR TRAN provides a number 
of features which expand the flexibility of the system. Included are: 

Free Field Input: Special characters included with ASCII input data direct 
its formatting; a FORMAT statement need not be specified in the source 
program. 

Specification of heading and editing information in the FORMAT statement 
through use of the " ... " notation; permits alphanumeric data to be read or 
written without giving the character count. 

Array declaration within a COMMON statement. 

Redefinition of its arguments and common areas by a function subprogram. 

Interpretation of an END statement as a RETURN statement. 

Basic External Functions which perform masking (Boolean) operations. 

Two-branch IF statement. 

Octal constants. 

There are several versions of the HP FORTRAN Compiler; each is designed to run 
in a different operatini:r environment: Software Input/Output System, etc. The 
operating system manuals contain descriptions of any features limited to special 
versions of the compiler. 

vi FORTRAN 



PROGRAM FORM 1 

A FORTRAN program is constructed of characters grouped in­
to lines and statements. 

1.1 CHARACTER sn 
The program is written using the following characters: 

Alphabetic: 
Numeric: 
Special: 

+ 

* 
I 
( 
) 

$ 

A through Z 
0 through 9 

Space 
Equals 
Plus 
Minus 
Asterisk 
Slash 
Left Parenthesis 
Right Parenthesis 
Comma 
Decimal Point 
Dollar Sign 
Quotation mark 

Spaces may be used anywhere in the program to improve ap­
pearance; they are significant only within heading data of FOR­
MAT statements and, in lieu of other information, in the first 
six positions of a line. 

In addition to the above set which is used to construct source 
language statements, certain characters have special signifi­
cance when appearing with ASCII input data. They are the fol­
lowing: 

space, 
I 
+ -
.E+-
@ 

" 

Data item delimiters 
Record terminator 
Sign of item 
Floating point number 
Octal integer 
Comments 
Suppresse@an@( output) 

Details on the input data character set are given in Chapter 7. 

FORTRAN 1-1 



1.2 LINES 

A line is a sequence of up to 72 characters. On paper tape, each line 
is terminated by a return, @ , followed by a line feed, @ . 
This terminator may be in any position following the statement 
information or comment contained in the line. If an error is punched 
on a paper tape, a rubout before the return and line feed causes the 
entire line containing the error to be ignored. 

Statements 

A statement may be written in an initial line and up to five con­
tinuation lines. The statement may occupy positions 7 through 
72 of these lines. The initial line contains a zero or blank in 
position 6. A continuation line contains any character other 
than zero or space in position 6 and may not contain a C in posi -
tion 1. 

Statement Labels 

A statement may be labeled so that it may be referred to in 
other statements. A label consists ofone to four numeric digits 
placed in any of the first five positions of a line. The number 
is unsigned and in the range of 1 through 9999. Imbedded 
spaces and leading zeros are ignored. If no label is used, the 
first five positions of the statement ~e must be blank. The 
statement label or blank follows the ~ @ terminator of 
the previous line. 

Comments 

Lines containing comments may be included with the statement 
lines; the comments are printed along with the source program 
listing. A comment line requires a C in position 1 and may 
occupy positions 2 through 72. If more than one line is used, 
each line requires a C in~ator. Each comment line is termi­
nated with a @ and ~ . 

1·2 FORTRAN 



Control Statement 

The first statement of a program is the control statement; it 
defines the output to be produced by the FORTRAN compiler. 
The following options are available: 

Relocatable binary - The program can be loaded by the relocating 
loader and run. 

Source Listing output - A listing of the source program is 
produced. 

Object Listing output - A list of the object program is produced. 

The control statement must be followed by the @ @ termi­
nator. 

End Line 

Each subprogram is terminated with an end line which consists 
of blanks in positions 1 through 6 and the letters E, N, and D 
located in any of the positions 7 through 72. The special end 
line, END$, signifies the end of five or less progr~s ~ng 
compiled at one time. The end line is terminated by ~ ~ . 

1.3 CODING FORM 

The FORTRAN coding form is shown below. Columns 73-80 
may be used to indicate a sequence number for a line; they must 
not be punched on paper tape. All other columns of the form 
conform with line positions for paper tape. 

FORTRAN1-3 



~ ..,, 
Cl 
::D 
-I 
::D 
> z 

>tl.l 
o~ a- 1-d 
e:. t"' 
tl.ll:1:l 
~· (j 
ct> 0 

~~ 
~p 
Ct.)lotj 
'O 

-!::'..::ti 
~a:: 

HEWLETT-PACKARD FORTRAN CODING FORM 

·-0--------------------E--~°"-""' __ -_-_-_-_-:__-_-_-_-_-_-_-_-_-_-_-_-:_-_·_-_~-~ .. -°' -_--o-, -__ --. 
t---, 

~L 
I 

I 

1T 
>--+-+--+-+-+-+-!--+ - - t-+--1 r··+-·i ;--+·· - 1+++ 

t--+-+-+-+-+-+--<-+-•··· +-+-++··+·· + f--1 - ·· H 

T 

Ii 

11 
Ii 

I I 

t I ~-++- l-H-+-+--+-1-•-+-+--+-+-1--+-!-!--+-+ +-i-+-+-•-t-i I++- T 1+- ---t++ 
t--+-+--+-+-1--+-+-+-+ .. +->,-+--+-_;_-'-+ -~-t-t- t--+-1 -+- +-+--+-+-+--11--t-+--+-+· +-+-+- -+--+-+-1-+-+-+-1--t-+-+--+-+-+-+-+-+-!-+-r-+-+-+-+--t-!l-+-+-+-t-t-+-+--+--+-+-+-l-+--!-

f·-

11 .. _,_-+-+-+-1-+-+-+-j_+: · +->
1

-+--+---t- l--i - t-t-t-H - +· t-i-- -+-·-t ·i·-t-i t·-·t-·I I····· ·· t···i - t--1·-+--+-+-+--!--!-+-+1-+-1- ··+····1-+-+ t--t-' -i---1--t-·1--+-t-11--t-+-+ +i--t-+-t--1--1 
! I 

I 
t--+-+--+-+-1--+-+-+--+-+-1!-+-t-"--t--~t-t-t--++-­

H!--+--+-+-l-+-->-t--+-+~1--t-+--+1-t-+-+-t-t--+-t-t-t-i- -r-1-
1' 

j_: 
I! 

1-1 t··: t-t-t - - t·t- +·-t··-t-··t·+--1 ·++--+-t-J··t-- -- · t-1- --+--t-·-1- - · -1--t H t- -t-

t--+-+--+-+--1-+i--..--t--t-+-,~~,_,_I +--+---+-t--1t--t--+-+-+-+--+-+--+·+-+-+-•-+-+--+-+i--+-+-·+-+-+-+-1-H-t--1t-t-+-+--+-+-+-+-+-+-+-+-1--t-+-+-+-+-+-+-+-+-t--+++-+f-+-1--+-+-+-t--1--1 

+-+-+- -H-t-+++ !·--+ H +-+-

l-+-+-t-H-+-+++-+-+--1--+-++-1-+-+-++-++-1--+-+-+-t--1-+-+++-t-++- ··+++-+-+-l--+-++-t--1-+-+-++-+-+--1--+-++-t-+-+-t-++-t-+--lt--t--+-+-t--1-+-+-+- t--+-

1-t--+-t-t--f-+-+-++-+-+--1--+-t-+-1-t-+-+-H+-1--+-+-+-t--1-+-+-+-1!--f-+-t--+-+-++-+-+-t--t--+-+-+--l--+-+-+·+-+-t--t-++-+-+-+c-+-+-H-t-1 - -- 1--t-+·· --t--+-+ 

1-++-+-+-+--+-+-++-l-+-t-++-+-;-H-t++ r' 1-t-- · 1-t--H H-~ H- -+-++-~-t-t---l-+-t-+--IH--t-++-+-+-H-++-H--+-+-t-t-+-+-+-t--++-+---+-++-+--1-t-H 

LIMITUM!N.t.TCOIYlllTUlH/UHt:HlOWU'l 
UNltSDU.ITIOIV,lJllOUT•HOlll,IU' 

-+-+-+-+-++-+-+-+--+--t-+-t-t-+-t-++-+-+---+-+-t-t--f-t-+-++-·t-t-f-+-+-+i--+--+--1--!--! 



ELEMENTS OF HP FORTRAN 2 

HP FORTRAN processes two types of data. They differ in 
mathematical significance, constant format, and symbolic rep­
resentation. The two types are real and integer quantities. 

2.1 DATA TYPE PROPERTIES 

Integer and real data quantities have dnferent ranges of values. 

An integer quantity has an assumed fixed decimal point. It is 
represented by a 16-bit computer word with the most signlli­
cant bit as the sign and the assumed decimal point on the rJght 
of the least signllicant bit. 

An integer quantity has a range of -215 to 215 -1. 

15 14 0 

It 
SIGN 

integer 

A real quantity has a floating decimal point; it consists of a 
fractional part and an exponent part. It is represented by two 
16-bitcomputer words; the exponent and its sign are eight bits; 
the fraction and its sign are twenty-four bits. 

15 14 0 

Ii fraction ~t significant bits) I 
SIGN OF FRACTION 

15 8 7 1 0 

fractioo I exponent ~ I 
SIGN OF EXPONENT 

It has a range in magnitude of approximately 10-38 to1038 and 
may assume positive, negative, or zero values. If the fraction 
is negative, the number is in two's complement form. A zero 

FORTRAN 2-1 



value is stored as all zero bits. Precision is approximately 
seven decimal digits. 

2.2 CONSTANTS 

A constant is a value fhat is always defined during execution and 
may not be redefined. Three types of constants are used in 
HP FORTRAN: integer, octal (treated as integer), and real. 
The type of constant is determined by its form and content. 

Integer 

An integer constant consists of a string of up to five decimal 
digits. If the range -32768 to 32767 (-215 to 215 -1) is ex­
ceeded, a diagnostic is provided by the compiler. 

Examples: 

8364 5932 
1720 9 
1872 31254 
125 1 
3653 30000 

Octal 
Octal constants consist of up to six octal digits followed by the 
letter B. The form is: 

n1 n2 n3 
n4 n5 

n6 B 

n1 is 0 or 1 

n2 - n6 are 0 through 7 

If the constant exceeds sixdigits, or if a non-octal digit appears, 
the constant is treated as zero and a compiler diagnostic is pro­
vided. 

Examples: 

7677B 
3270B 
3520B 
175B 
567B 

2-2 FORTRAN 

7631B 
5B 
75026B 
177776B 
177777B 



Real 

Real constants may be expressed as an integer part, a decimal 
point, and a decimal fraction part. The constant may include 
an exponent, representing a power of ten, to be applied to the 
preceding quantity. The forms of real constants are: 

n.n n. .n n.nE±e n.E±e .nE±e 

n is the number and e is the exponent to the base ten. The 
plus sign may be omitted for a positive exponent. The range 
of e is 0 through 38. When the exponent indicator E is fol­
lowed by a + or - sign, then all digits between the sign and the 
next operator or delimiter are assumed to be part of the ex­
ponent expression, e. 

If the range of the real constant is exceeded, the constant is 
treated as zero and acompilerdiagnostic message occurs. 

Examples: 

4.512 
4. 
. 512 
4.0 
4. E-10 
1. 

2.3 VARIABLES 

4. 5E2 
. 45E+3 
4.5E-5 
0.5 
. 5E+37 
10000.0 

A variable is a quantity that may change during execution; it is 
identified by a symbolic name. Simple and subscripted vari­
ables are recognized. A simple variable represents a single 
quantity; a subscripted variable represents a single quantity 
(element) within an array of quantities. Variables are identi­
fied by one to five alphanumeric characters; the first character 
must be alphabetic. 

The type of variable is determined by the first letter of the 
name. The letters I, J, K, L, M, and N, indicate an integer 
(fixed point) variable; any other letter indicates a real (floating 
point) variable. Spaces imbedded in variable names are ignored. 

Simple Variable 

A simple variable defines the location in which values can be 
stored. The value specified by the name is always the current 
value stored in that location. 

FORTRAN 2·3 



Examples: 

I 
JAIME 
K9 
MIL 
NIT 

Real 

ALPHA 
Gl3 
DOG 
XP2 
GAMMA 

Subscripted Variable 

A subscripted variable defines an element of an array; it con­
sists of an alphanumeric identifier with one or two associated 
subscripts enclosed in parentheses. The identifier names the 
array; the subscripts point to the particular element. If more 
than two subscripts appear, a compiler diagnostic message is 
given. 

Subscripts maybe integer constants, variables, or expressions; 
they may have the form (exp1, exp2), where exp. is one of the 
folliw~: 1 

c*v+k v-k 
c*v-k v 
c*v k 
v+k 

where c and k are integer constants and v is a simple inte­
ger variable. 

Examples: 

I(J, K) 
LAD(3, 3) 
MAJOR (24*K, !+5) 
NU (K+2) 
NEXT (N*5) 

2-4 FORTRAN 

Real 

A(J) 
BACK(M+5, 9) 
OP45(4*I) 
RAD! (!DEG) 
VOLT! (I,J) 



2.4 ARRAYS 

An array is an ordered set of data of one or two dimensions; it 
occupies a block of successive memory locations. It is identi­
fied by a symbolic name which may be used to refer to the entire 
array. An array and its dimensions must be declared at the 
beginning of the program in a DIMENSION or COMMON state­
ment. The type of an array is determined by the first letter of 
the array name. The letters I, J, K, L, M, and N, indicate 
an integer array; any other letter indicates a real array. 

Each element of an array may be referred to by the array name 
and the subscript notation. Program execution errors may 
result if subscripts are larger than the dimensions initially 
declared for the array, however, no diagnostic messages are 
issued. 

Array Structure 

Elements of arrays are stored by columns in ascending order 
of storage locations. An array declared as SAM(3, 3), would 
be structured as: 

Columns 

SAM(l, 1) SAM(l, 2) SAM(l, 3) 

Rows SAM(2, 1) SAM(2, 2) SAM(2, 3) 

SAM{3, 1) SAM{3, 2) SAM{3, 3) 

and would be stored as: 

m SAM{l, 1) 
m+l SAM(2, 1) 
m+2 SAM(3, 1) 
m+3 SAM(l, 2) 
m+4 SAM{2, 2) 
m+5 SAM{3, 2) 
m+6 SAM(l, 3) 
m+7 SAM(2, 3) 
m+8 SAM(3, 3) 

The location of an array element with respect to the first ele­
ment is a function of the subscripts, the first dimension, and 
the type of the array. Addresses are computed modulo 215 . 

FORTRAN 2-5 



Given DIMENSION A (L, M), the memory location of A (i, j) with 
respect to the first element, A, of the array, is given by the 
equation: 

Q = A + [ i - 1 + L(j - 1) ] *S 

The quantity in brackets is the expanded subscript expression. The 
element size, s , is the number of storage words required for each 
element of the array: for integer arrays, s = 1 ; for real arrays, s = 2. 

Array Notation 

The following subscript notations are permitted for array ele­
ments: 

For a two-dimensional array, A(d
1 

, d
2

): 

A(I, J) 
A(I) 
A 

implies A(I, J) 
implies A(I, 1) 
implies A(l, l)t 

For a single-dimension array, A(d) 

A(I) implies A(I) 
A implies A(l) 

The elements of a single-dimension array, A(d), however, may 
not be referred to as A(I, J). A diagnostic message is given by 
the compiler if this is attempted. 

2.5 EXPRESSIONS 

An expression is a constant, variable, function or a combina­
tion of these separated by operators and parentheses, written 
to comply with the rules for constructing the particular type of 
instruction. An arithmetic expression has numerical value; its 
type is determined by the type of the operands. 

t In an Input/Output list, the name of a dimensioned array im­
plies the entire array rather than the first element. 

2·6 FORTRAN 



Examples: 

A+B-C 
X*COS(Y) 
RALPH-ALPH 

2.6 STATEMENTS 

. 4+SIN(ALPHA) 
A/B+C-D*F 
4+2*IABS(LITE) 

Statements are the basic functional units of the language. Exec­
utable statements specify actions; non-executable statements 
describe the characteristics and arrangement of data, editing 
information, statement functions, and classification of program 
units. 

A statement may be given a numeric label of up to four digits 
(1 to 9999); a label allows other statements to refer to a state­
ment. Each statement label used must be unique within the 
program. 

FORTRAN 2-7/2-8 





ARITHMETIC EXPRESSIONS 
AND ASSIGNMENT STATEMENTS 3 

3.1 ARITHMOIC EXPRESSIONS 

An arithmetic expression may be a constant, a simple or sub­
scripted variable, or a function. Arithmetic expressions may 
be combined by arithmetic operators to form complex expres­
sions. 

Arithmetic operators are: 

-r Addition 
Subtraction 

* Multiplication 
I Division 
** Exponentiation 

If a is an expression, (a) is an expression. 
If a and f3 are arithmetic expressions, then the following are 
expressions: 

a + f3 
a * f3 
a** f3 

a - f3 
+a -a 

An arithmetic expression may not contain adjoining arithmetic 
operators, a op op f3. 

Expressions of the form a **f3 and a** (- f3) are valid; a** f3 **'Y 
is not valid. 

Integer overflow resulting from arithmetic operations is not detected at 
execution time. 

Examples: 

c ..... , 
c 
0 

L * 5 3 3 + 2 *:* I 51-1! 
! l IABLEt-13. l~H[QUSE**32. E-2 

FORTRAN 3-1 



Order or Evaluation 

In general, the hierachy of arithmetic operation is: 

** exponentiation class 1 
I division class 2 
* multiplication 

subtraction class 3 
+ addition 

In an expression with no parentheses or within a pair of paren­
theses, evaluation basically proceeds from left to right, or in 
the above order if adjacent operators are in a different class. t 

Expressions enclosed in parentheses and function references 
are evaluated as they are encountered from left to right. 

Examples: 

In the examples below, s 1, s2, ... , sn indicate intermediate 
results during the evaluation of the expression; the symbol 
can be interpreted as "goes to". 

a) Evaluation of class 1 precedes class 3 

A+B**C-D 
B**C-s1 s 1+A-s2 s
2

- D -s
3 

s
3 

is the evaluated expression 

b) Evaluation of class 2 precedes class 3 

A*B*C/D+E*F-G/H 
A*B-s1 
s1*C-s2 
s2/D-s3 
E*F-s4 
s4 + s3-s5 
G/H-s5 
-s5-s7 
s
7 

+ s
5
- s

8 
s
8 

is the evaluated expression 

t When writing an integer expression it is important to remem­
ber not only the left to right scanning process, but also that 
dividing an integer quantity by an integer quantity yields a 
truncated result; thus 11/3 = 3 . The expression I*J/K may 
yield a different result than the expression J/K*I . For ex­
ample, 4*3/2 = 6 ; but 3/2*4 = 4 . 

3-2 FORTRAN 



c) Evaluation of an expression including a function is 
performed. 

A+B**C+D+COS(E) 
B**C-s1 A+s1-s2 
s2 + D-s3 
COS(E)- s 4 
s 4 + s3-s5 s 5 is the evaluated expression 

d) Parentheses can control the order of evaluation 

A*B/C+D 
A*B-s1 s1 /c-s2 
s 2 +D-s3 s3 is the evaluated expression 

A*B/(C+D) 
A*B-s1 
C+D-s2 
s 1 /s2- s3 s3 is the evaluated expression 

e) If more than one pair of parentheses or if an exponen­
tial expression appears, evaluation is performed left 
to right. 

A+B**C-(D*E+F)+(G-H*P) 
B**C-s1 
s 1 + A-s2 
D*E-s3 
s 3 +F-s4 
-s4-s5 
s5 + s2-s5 
H*P-s7 
-s7-ss 
ss + G-s9 
s9 + s6- s 10 s 10 is the evaluated expression 

Type of Expression 

With the exception of exponentiation and function arguments, 
all operands within an expression must be of the same type. An 
expression is either real or integer depending on the type of all 
of its constituent elements. 

FORTRAN 3-3 



If either an integer or real operand is exponentiated by an inte­
ger operand, the resultant element is of the same type as that 
of the operand being exponentiated. If both operands are real, 
the resultant element is real. 

Examples: 

J**I 
A**I 
A**B 

integer 
real 
real 

An integer exponentiated by a real operand is not valid. 

3.2 ASSIGNMENT STATEMENTS 

An arithmetic assignment statement is of the form: 

v = e 

The variable, v , may be simple or subscripted; e is an ex­
pression. Execution of this statement causes the evaluation of 
the expression, e , and the assignment of the value to the var­
iable. 

Type of Statement 

The processing of the evaluated expression is performed ac­
cording to the following table: 

Type of v Type of e Assignment rule 

Integer Integer Transmit e to v without change. 

Integer Real Truncate and tr an sf er as in -
teger to v. 

Real Integer Transform integer form of e 
to floating decimal and trans-
fer to v. 

Real Real Transmit e to v without change. 

3-4 FORTRAN 



Examples: 

c 
0 

C Lob.I 5 ! 7 10 15 20 25 

I I ~= l~lri+lQ+ Cb~ (Fl ) 

I I N=~+3.*(X**Y-Z) 
l l SI~ ( '6 ) = R- s ( , ~ ) * ( T tjl.J ) 

J ' N=IZ~Y+LIAKE!MoPI 

3.3 MASKING OPERATIONS 

Transmit without change 
Transmit without change 
Truncate 
Convert to real 
Transmit without change 

In HP FORTRAN, masking operations may be performed 
using the Basic External Functions IAND, IOR, ,and NOT (see 
Chapter 6). These functions are as follows: 

IAND Form the bit-by-bit logical product of two 
operands 

IOR Form the bit-by-bit logical sum of two operands 
NOT Complement the operand 

The operations are described by the following table: 

Value of 
Arguments 

al a2 IAND (a1 , a
2

) 

1 1 1 
1 0 0 
0 1 0 
0 0 0 

Examples: 

IAND (IA, IB) is 70500B 
IOR (IA, IB) is 73557B 
NOT (IA) is 105270B 

Value of 
Function 

IOR (a
1

, a
2

) NOT (a
1

) 

1 0 
1 0 
1 1 
0 1 

FORTRAN 3-5/3-6 





SPECIFICATIONS STATEMENTS 4 

The Specifications statements, which include DIMENSION, 
COMMON, and EQUIVALENCE, define characteristics and 
arrangement of the data to be proce-ssed. These statements 
are non-executable; they do not produce machine instructions 
in the object program. The statements must all appear before 
the first executable statement in the following order: DIMEN­
SION, COMMON, and EQUIVALENCE. 

4.1 DIMENSION 

The DIMENSION statement reserves storage for one or more 
arrays. 

An array declarator, Vj (ij) ; defines the name of an array, 
Vj , and its associated dimensions, (ij) . The declarator sub­
script, i , may be an integer constant or two integer constants 
separated by a comma. The magnitude of the values given for 
the subscripts indicates the maximum value that the subscript 
may attain in any reference to the array. 

The number of computer words reserved for a given array is 
determined by the product of the subscripts and the type of the 
array name. For integer arrays, the number of words equals 
the number of elements in the array. For real arrays, two 
words are used for each element; the storage area is twice the 
product of the subscripts. 

A diagnostic message is printed if an array size exceeds 215 -1 
locations. 

Examples: 

DIMENSION SAM (5, 10), ROGER (10, 10), NILE (5, 20) 

Area reserved for SAM 
Area reserved for ROGER 
Area reserved for NILE 

5*10*2 
10*10*2 

5*20*1 

100 words 
200 words 
100 words 

FORTRAN 4-1 



4.2 COMMON 

The COMMON statement reserves a block of storage that can 
be referenced by the main program and one or more subpro­
grams. The areas of common information are specified by the 
statement form: 

COMMON a1, a2, ... , an 

Each area element, ai , identifies a segment of the block for 
the subprogram in which the COMMON statement appears. The 
area elements may be simple variable identifiers, array names, 
or array declarators (dimensioned array names). 

If dimensions for an array appear both in a COMMON statement 
and a DIMENSION statement, those in the DIM:ENSION state­
ment will be used. 

Any number of COMMON statements may appear in a subpro­
gram section (preceding the first executable statement). The 
order of the arrays in common storage is determined by the 
order of the COMMON statements and the order of the area ele­
ments within the statements. All elements are stored contig­
uously in one block. 

At the beginning of program execution, the contents of the com­
mon block are undefined; the data may be stored in the block 
by input/ output or assignment statements. 

Examples: 

COMMON I (5), A (6), B (4) 

Area reserved for I 5 words 
Area reserved for A = 12 words 
Area reserved for B = 8 words 

Common area 

Common 
Block 

Origin 

4-2 FORTRAN 

I (1) 
I (2) 
I (3) 
I (4) 
I (5) 
A (1) 
A (1) 

25 words 



A (2) 
A (2) 
A (3) 
A (3) 
A (4) 
A (4) 
A (5) 
A (5) 
A (6) 
A (6) 
B (1) 
B (1) 
B (2) 
B (2) 
B (3) 
B (3) 
B (4) 
B (4) 

Correspondence of 1 Common Blocks 

Each subprogram that uses the common block must include a 
COMMON statement. Each subprogram may assign different 
variable and array names, anddifferentarraydimensions, how­
ever, if corresponding quantities are to agree, the types should 
be the same for corresponding positions in the block. 

Examples: 

MAIN PROG COMMON I (5), A (6), B (4) 

SUBPROGl COMMON J (3), K (2), C (5), D (5) 

MAIN PROG Common SUBPROGl 
reference Block reference 

I (1) integer 1 J (1) 
I {2) integer 2 J (2) 
I (3) integer 3 J (3) 
I (4) integer 4 K {1) 
I (5) integer 5 K (2) 
A (1) real 1 c {1) 
A (1) real 1 c {1) 

FORTRAN4-3 



MAIN PROG Common SUBPROGl 
reference Block reference 

A (2) real 2 c (2) 
A (2) real 2 c (2) 
A (3) real 3 c (3) 
A (3) real 3 c (3) 
A (4) real 4 c (4) 
A (4) real 4 c (4) 
A (5) real 5 c (5) 
A (5) real 5 c (5) 
A (6) real 6 D (1) 
A (6) real 6 D (1) 
B (1) real 7 D (2) 
B (1) real 7 D (2) 
B (2) real 8 D (3) 
B (2) real 8 D (3) 
B (3) real 9 D (4) 
B (3) real 9 D (4) 
B (4) real 10 D (5) 
B (4) real 10 D (5) 

If portions of a common block are not referred to by a particu­
lar subprogram, dummy variables may be used to provide cor­
respondence in reserved areas. 

Examples: 

MAIN PROG COMMON I (5), A (6), B (4) 

SUBPROG2 COMMON J (17), B (4) 

MAIN PROG Common SUBPROG2 
reference Block reference 

I {1) integer 1 J (1) 
I (2) integer 2 J (2) 
I (3) integer 3 J (3) 
I (4) integer 4 J (4) 
I (5) integer 5 J (5) 

4-4 FORTRAN 



MAIN PROG Common SUBPROG2 
reference block reference 

A (1) real 1 J (6) 
A (1) real 1 J (7) J (17) is adum-
A (2) real 2 J (8) my array. It is 
A (2) real 2 J (9) not referenced 
A (3) real 3 J (10) in SUBPROG 2 
A (3) real 3 J (11) but provides 
A (4) real 4 J (12) proper corre-
A (4) real 4 J (13) spondence in 
A (5) real 5 J (14) reserved areas 
A (5) real 5 J (15) so that SUB-
A (6) real 6 J (16) PROG 2 can re-
A (6) real 6 J (17) fer to array B. 
B (1) real 7 B (1) 
B (1) real 7 B (1) 
B (2) real 8 B (2) 
B (2) real 8 B (2) 
B (3) real 9 B (3) 
B (3) real 9 B (3) 
B (4) real 10 B (4) 
B (4) real 10 B (4) 

The length of the common block may differ in different subpro­
grams, however, the subprogram (or main program) with the 
longest common block must be the first to be loaded at execu­
tion time. 

4.3 EQUIVALENCE 

The EQUIVALENCE statement permits sharing of storage by 
two or more entities. The statement has the form: 

in which each k is a list of the form: 

Each a is either a variable name or a subscripted variable; 
the subscript of which contains only constants. The number of 
subscripts must correspond to the number of subscripts for the 
related array declarator. 

FORTRAN 4-5 



All names in the list may be used to represent the same loca­
tion. If an equivalence is established between elements of two 
or more arrays, there is a corresponding equivalence between 
other elements of the arrays; the arrays share some storage 
locations. The lengths may be different or equal. 

Examples: 

DIMENSION A (5), B (4) 

EQUIVALENCE {A (4), B (2)) 

Array 1 
Name 

A {1) 

A (2) 

A (3) 

A (4) 

A (5) 

Array 2 
Name 

B {l) 

B (2) 

B (3) 

B (4) 

Quantity 
Element 

real 1 
real 1 
real 2 
real 2 
real 3 
real 3 
real 4 
real 4 
real 5 
real 5 
real 6 
real 6 

The EQUIVALENCE statement establishes that the names A ( 4) 
and B {2) identify the fourth real quantity. The statements also 
establish a similar correspondence betweenA (3) and B (1), and 
A (5) and B (3). 

An integer array or variable may be made equivalent to a real 
array or variable; equivalence may be established between dif­
ferent types. The variables may be with or without subscripts. 

The effect of an EQUIVALENCE statement depends on whether 
or not the variables are assigned to the common block. When 
two variables or array elements share storage, the symbolic 
names of the variables or arrays may not both appear in COM­
MON statements in the same subprogram. The assignment of 
storage to variables and arrays declared in a COMMON state­
ment is determined on the basis of their type and the array 

4-6 FORTRAN 



declarator. Entities so declared are alwayscontiguousaccord­
ing to the order in the COMMON statement. The EQUIVALENCE 
statement must not alter the origin of the common block, but 
arrays may be defined so that the length of the common block 
is increased. 

Examples: 

a) Effect of EQUIVALENCE, variables not in . common 
block: 

storage is assigned as follows: 

Arrays 

I (1) 
I (2) K (1) 
I (3) K (2) 
I (4) K (3) 

K (4) 
K (5) 

J (1) 
J (2) 

Quantities 

integer 1 
integer 2 
integer 3 
integer 4 
integer 5 
integer 6 
integer 7 
integer 8 

b) Effect of EQUIVALENCE, some variables in common 
block: 

FORTRAN4-7 



storage is assigned as follows: 

Arrays 

I (1) 
I (2) K (1) 
I (3) K (2) 
I (4) K (3) 
J (1) K (4) 
J (2) K (5) 

Quantities 

integer 1 
integer 2 
integer 3 
integer 4 
integer 5 
integer 6 

) common block 

c) Effect of EQUIVALENCE on the length of the common 
block: 

storage is assigned as follows: 

Arrays 

I (1) 
I (2) K (1) 
I (3) K (2) 
I (4) K (3) 
J (1) K (4) 
J (2) K (5) 

K (6) 
K (7) 

Quantities 

integer 1 
integer 2 
integer 3 
integer 4 
integer 5 
integer 6 
integer 7 
integer 8 

common block 

The value of the subscripts for an array being made 
equivalent to another array should not be such that the 
origin of the common block is changed (for example, 
EQUIVALENCE (I (3), K(4)). 

4-8 FORTRAN 



Arrays Quantities 
K (l) _origin 

changed integer 1 

origin - I (1) K (2) integer 2 

I (2) K (3) integer 3 

I (3) K (4) integer 4 

I (4) K (5) integer 5 

J (1) K (6) integer 6 

J (2) K (7) integer 7 

If contradictory EQUIVALENCE relationships are spec­
ified, a diagnostic message is printed. 

Example: 

a) 

PROGRAMMER DATE PROGRAM 

c STATEMENT 0 
c Lob.I 

' '' IO 15 20 ,, 30 JS "' " 50 

1 l E'glU li'!!_ajL ~ G[E (~( ~)LI. ~( 2)) lll J l 1 j_ I J l Ji i 
j Ii l l I 

l I l ! Il l 
I l I I 

,, 
I l 

I I 
~QUI VALEN CE ( fA ( 51)....L 8(3 ) ) I 

i l i I' I I I I 

b) 

PROGRAMMER ]DATE PROGRAM 

0 
STATEMENT 

c Label 
5 6 7 10 15 20 " 30 " •O " 50 

jJ EJQU l~LE1NG[~j~ (jaj)j_,_ l~G2 ij) TJJJ lj l 
i' ' l ! J J JJ l J J J' 

i 

_;_I I J_ J_ I 
' l • 

~l i I _l 

EQU1I VALEN CE l(~ ( 3)1_ C(J3,)) -I-
i 

! l I '.l 
-~ I l 

l i 

I 

EQUI VALEN CE (A ( 5 )...!. C( 2)) _;_ I 

I I : I 

FORTRAN 4-9/4-10 





CONTROL STATEMENTS 5 

Program execution normally proceeds from statement to state­
ment as they appear in the program. Control statements can 
be used to alter this sequence or cause a number of iterations 
of a program section. Control may be transferred to an exe­
cutable statement only; a transfer to a non-executable state­
ment will result in a program error which is usually recognized 
during compilation as a transfer to an undefined label.t With 
the DO statement, a predetermined sequence of instructions 
can be repeated a number of times with the stepping of a simple 
integer variable after each iteration. 

Statements are labelled by unsigned numbers, 1 through 9999, 
which can be referred to from other sections of the program. 
A label up to four digits long precedes the FORTRAN statement 
and is separated from it by at least one blank or a zero. Im­
bedded blanks and leading zeros in the label are ignored: 1, 
01, 0 1, 0001 are identical. 

5.1 GO TOr STATEMENTS 

GO TO statements provide transfer of control. 

GO TOk 

This statement, an unconditional GO TO, causes the transfer 
of control to the statement labelled k . 

This statement, a computed GO TO, acts as a many-branched 
transfer. The k's are statement labels and i is a simple 
integer variable. Execution of this statement causes the state­
ment identified by the label kj to be executed next, where j 

t A transfer to a FORMAT statement is not detectable during 
compilation; if such an error occurs, no diagnostic message 
is produced. 

FORTRAN 5-1 



is the value of i at the time of execution, and 1 ~ j ~ n. If 
i < 1, a transfer to k1 occurs; if i > n , a transfer to kn 
occurs. 

Examples: 

c 
0 

C Label 5: 7 10 15 20 30 

I J11'J IQJQl T~l5~ ll l l l l I I ! 

1J3 5 ~ = X*''Y I ! I 1 I I 1 t I 

I I :.I : l I I l 
I _l ! 

5¢~ JSWC H = I S~H +J I ! l 
T T -, 1 i I I I I 

j jll l • I I 

i 1 
l' 

'l ! l 
i I I l 
l l 

l IJJ l i :1 
I I I ' I I I I 

At statement 40, control transfers to statement 10, which is an 
unconditional transfer to statement 500. At 540 control trans­
fers to statement 35. 

5.2 IF STATEMENTS 

The arithmetic IF statement provides conditional transfer of 
control 

The e is an arithmetic expression and the k's are statement 
labels. The arithmetic IF is a three-way branch. Execution 
of this statement causes evaluation of the expression and trans­
fer of control depending on the following conditions: 

e < 0, go to k1 e 0, go to k
2 e > 0, go to k3 

Examples: 

~ Label 
5 
! J 

5·2 FORTRAN 

[DATE I PROGRAM 



The logical IF statement provides conditional transfer of con­
trol to either of two statements: 

The e is an arithmetic expression that may yield a negative 
or non-negative (positive or zero) value. Execution of this 
statement causes evaluation of the expression and transfer of 
control under the following conditions: 

e < O, go to k1 e ~ 0, go to k2 

Examples: 

c 
0 

C Lobel T 

!J J' 'I Fl CI Sfs}ll(~flfl5( lW " 

5.3 DO STATEMENTS 

]DATE 

JO 

JJ 1 !]J 
j' 
J' ~Hi 

PROGRAM 

STATEMENT 

35 40 ., 50 

l Hll 11 J 
'11 1: 
II ,\ 

A DO statement makes it possible to repeat a group of state­
ments. 

The n is the label of an executable statement which ends the 
group of statements. The statement, called the terminal state­
ment, must physically follow the DO statement in the source 
program. It may not be a GO TO of any form, IF, RETURN, 
STOP, PAUSE, or DO statement. 

The i is the control variable; it may be a simple integer var­
iable. 

The m's are indexing parameters: m1 is the initial param­
eter; m2 , the terminal parameter; and m3 , the incrementa­
tion parameter. They may be unsigned integer constants or 

FORTRAN 5-3 



simple integer variables. At time of execution, they all must 
be greater than zero. If m3 does not appear (second form), 
the incrementation value is assumed to be 1. 

A DO statement defines a loop. Associated with each DO state­
meant is a range that is defined to be those executable statements 
following the DO, to and including the terminal statement as­
sociated with the DO. Attime of execution, the following steps 
occur: 

1. The control variable is assigned the value of the initial 
parameter. 

2. The range of the DO is executed. 
3. The terminal statement is executed and the control vari­

able is increased by the value of the incrementation param­
eter. 

4. The control variable is compared with the terminal param­
eter. If less than or equal to the terminal parameter, the 
sequence is repeated starting at step 2. If the control var­
iable exceeds the terminal parameter, the DO loop is sat­
isfied and control transfers to the statement following n . 
The control variable becomes undefined. 

Should ml exceed m2 on the initial entry to the loop, the 
range of the DO is executed and control passes to the statement 
after n . If a transfer out of the DO loop occurs before the DO 
is satisfied, the current value of the control variable is pre­
served. The control variable, initial parameters, terminal 
parameter, and incrementation parameters may not be rede­
fined during the execution of the range of the DO loop. 

5-4 FORTRAN 



ASSIGN 
m1 TO i 

EXECUTE STATEMENTS 
IN LOOP INCLUDING 

STATEMENT n 

ADD m
3 

TO i 

AND STORE 
IN i 

FORTRAN 5-5 



DO Ne1t1 

When the range of a 00 loop contains another 00 loop, the 
latter is said to be nested. 00 loops may be nested 10 deep. 
The last statement of a nested 00 loop must be the same as 
the last statement of the outer loop or occur before it. If 
di, d2, ... , dn are 00 statements, which appear in the order 
indicated by the subscripts; and if nl, n2, ... , nm are the 
respective terminal statements, then nm must appear before 
or be the same as nm-1 , nm-1 must appear before or be the 
the same as n2, and n2 must appear before or be the same 
as n1. 

Examples: 

nl 

5-6 FORTRAN 

c 
0 

s 6 7 10 15 20 2S JO 

J 15 lcid I 001 Ir =JJIJ I~ !~J JJJ J 
j_J .I I ! ! J l I I l i IJ 
11 . • ~ j_ I l i ; I 1 I : 

JJ : IJ ! • . . I 

lJ Jl ...; • 'I I ; : 

[n

dm j '9 ~I 60 iK = !Ll.i_ 10u2 JJJ 
•• i I J ! I I I 

J .1 i ! l i 

j j' ...i.J. J....: I .l jjj_ : 

I 'J ·1-l I 1 i • i I JJ i 

I •I i 111 
i l 

I I I I I 



-----n1=n2 

n =n =n l 2 m 

.----d m 

PROGRAMW.f.R 

c 
0 

c Lobo.I ) 

5 6 7 10 

ll !5 lold I~ il 
H J! 

I 
lj_ '• 

J 8 D10 100 J 

l " 
,. 

T 
I I~ DO 9¢ K 

t 90 £ONT INUE 

I 

1011 CONT INUE 

PROGRAMMER 

c 
0 

c Lob.. I ) 

I;, b:ig 
i 1~IJ1! 
l I· I 

I l 
i 

} I~ DO 100 J 

I 

T 20 Q_o 100 K 

I 0J:! CONT INUE 

15 25 "' :! 1[_._12~ 11 HH l 
l ; 'l l '11 

_'._ I 

= I JJ I j(jJ..3 
T 
l 

= 1...1.2 0...1.12 
I 

l 
I 

15 20 25 30 

=II1 Lt-1310. sII 1 T 
I : I 

11 ! 

I 

I I 

= 2J§ I 

r '! 
-'- ..L I 

I 

= 5Li_ 5~5 I 

_:_ 

If one or more nested loops have the same terminal statement, 
when the inner 00 is satisfied, the control variable for the 
next outer loop is incremented and tested against its associated 
terminal parameter. Control transfers to the statement fol­
lowing the terminal statement only when all related loops are 
satisfied. 

00 loops may be nested in common with other loops as long as 
their ranges do not overlap. 

FORTRAN 5-7 



Examples: 

____ nl 

c 
0 

C Lobel 

1 5 6 7 10 15 

: ·1 j_ ! l 
I .:1 1 l l + I 

I ! I I 

•• 

·J l I l 
• l I i l 

l I I j i l l ' I 

l '.l I l 1 
' l · ! : 

I ·I I _j_ Ii I i 

l 1 1 l 

I .j j l 

j ,. lj I 

i j• J. j. I 

I ..1. j 
1_9~ ~ INU_fil J J 

11 "2 ':: d

2 

:: } fu~lid, r~es over ffip 

l 

l !J 
l 
I j 

! I 

I I 
Ii 

1: 

Jj 
Ii 

\j 

In a DO nest, a transfer may be made from an inner loop into 
an outer loop, and transfer is permissible outside of the loop. 
It is illegal, however, for a GO TO or IF to initiate a transfer 
of control from outside of the range of a DO into its range. 

When nested DO loops have the same terminal statement, a transfer to 
that terminal statement causes a transfer to the innermost logs of the 
nest. When this transfer occurs, the current value of the control variable 
for the innermost loop is incremented and that loop is executed until its 
range is satisfied, etc. 

5-8 FORTRAN 



VALID 
TRANSFERS 

5.4 CONTINUE 

This statement acts as no-operation instruction. 

CONTINUE 

nl 

INVALID 
TRANSFERS 

The CONTINUE statement is most frequently used as the last 
statement of a DO loop to provide a loop termination when a 
GO TO or IF would normally be the last statement of the loop. 
If used elsewhere in the source program, it acts as a do-nothing 
instruction and control passes to the next sequential program 
statement. 

5.5 PAUSE 

This statement provides a temporary program halt. 

PAUSE n 
or 

PAUSE 

n may be up to four octal digits (without a B suffix) in the range 
0 to 7777. This statement halts the execution of the program and 
types PAUSE on the Standard Output unit. The value of n , if given is 
displayed in the A-Register. Program execution resumes at the next 
statement. 

5.6 STOP 

The STOP statement terminates the execution of the program. 

STOPn 
or 

STOP 

FORTRAN 5-9 



n may be up to four octal digits (without a H suffiX) m tne range 
0 to 7777. This statement halts the execution of the program and 
types STOP on the Standard Output unit. The value of n , if given, is 
in the A-Register. 

5.7 END 

The END statement indicates the physical end of a program or 
subprogram. It has the form: 

END name 

The END statement is required for every program or subpro­
gram. The name of the program can be included but it is 
ignored by the compiler. The END statement is e~ecutable in 
the sense that it will effect return from a subprogram in the 
absence of a RETURN statement. An END statement may be 
labeled and may serve as a junction point. 

5.8 END$ 

The END$ statement indicates the physical end of five or less 
programs or subprograms that are to be compiled at one time. 
If there are four or less programs, the statement is printed on 
the source program listing. If there areexactlyfive, the state­
ment is not printed. If more than five programs are on the 
same tape, the END$ may be omitted after the fifth program; 
the compiler stops accepting input after the fifth is processed. 

5-10 FORTRAN 



MAIN PROGRAM, FUNCTIONS, 
AND SUBROUTINES 6 

A FORTRAN program consists of a main program with or with­
out subprograms. Subprograms, which are either functions or 
subroutines, are sets of statements that may be written and 
compiled separately from the main program. 

The main program calls or references subprograms; and sub­
programs may call or reference other subprograms as long as 
the calls are non-recursive. That is, if program A calls sub­
program B, subprogram B may not call program A. Further­
more, a program or subprogram may not call itself. A calling 
program is a main program or subprogram that refers to 
another subprogram. 

In addition to multi-statement function subprograms, a function may 
be defined by a single statement in the program (statement function) 
or it may be defined as basic external function. A statement function 
definition may appear in a main program or subprogram body and is 
available only to the main program or subprogram containing it. A state­
ment function may contain references to function subprograms, basic 
external functions, or other previously defined statement functions in 
the same subprogram. Basic external function references may appear in 
the main program, subprogram, and statement functions. 

Main programs, subprograms, statement functions, and basic 
external functions communicate by means of arguments (param­
eters). The arguments appearing in a subroutine call or func­
tion reference are actual arguments. The corresponding entities 
appearing with the subprogram, statement function, or basic 
external function definition are the dummy arguments. 

6.1 ARGUMENT CHARACTERISTICS 

Actual and dummy arguments must agree in order, type, and 
number. If they do not agree in type, errors may result in the 
program execution, since no conversion takes place and no 
diagnostic messages are produced. 

FORTRAN 6-1 



Within subprograms, dummy arguments may be array names 
or simple variables; for statement functions, they may be var­
iables only. Dummy arguments are local to the subprogram or 
statement function containing them and, therefore, may be the 
same as names appearing elsewhere in the program. A max­
imum of 63 dummy arguments may be used in a function or 
subroutine. 

No element of a dummy argument list may appear in a COMMON 
or EQUIVALENCE statement within the subprogram. If itdoes, 
a compiler diagnostic results. When a dummy argument repre­
sents an array, it should be declared in a DIMENSION state­
ment within the subprogram. If it is not declared, only the 
first element of the array will be available to the subprogram 
and the array name must appear in the subprogram without sub­
scripts. 

Actual arguments appearing in subroutine calls and function 
references may be any of the following: 

A constant 
A variable name 
An array element name 
An array name 
Any other arithmetic expression 

6.2 MAIN PROGRAM 

The first statement of a main program may be the following: 

PROGRAM name 

The name is an alphanumeric identifier of up to five characters. 
If the PROGRAM statement is omitted, the compiler assigns 
the name "FTN. " 

6.3 SUBROUTINE SUBPROGRAM 

An external subroutine is a computational procedure which may 
return none, one, or more than one value through its arguments 
or through common storage. No value or type is associated 
with the name of a subroutine. 

6-2 FORTRAN 



The first statement of a subroutine subprogram gives its name 
and, if relevant, its dummy arguments. 

SUBROUTINE s (a1, a2, ..• , an) 

or 

SUBROUTINE s 

The symbolic name, s, is an alphanumeric identifier of up to 
five characters by which the subroutine is called. If the sub­
routine is unnamed the compiler will assign the name of 11

• 
11 

{period). Thea's are the dummy arguments of the subroutine. 

The name of the subroutine mustnotappear in any other state­
ment within the subprogram. 

The subroutine may define or redefine one or more of its argu­
ments and areas in common so as to effectively return results. 
It may contain any statements except FUNCTION, another SUB­
ROUTINE statement, or any statement that directly or indirectly 
references the subroutine being defined. It must have at least 
one RETURN or END statement which returns control to the 
calling program. 

Examples: 

PROGRAMMER 

c 
0 

c .... , 
I 

''5µa~uTI~ JI~(P~) P, W and H are the dummy 
Z=5. *~**3 J parameters. Actual values 
ti= IZJ-~. l supplied by a calling pro-
RE lriU ~ , I I gram are to be substituted 
\EN 10 L I 

for P and W. The variable 
I i 1 lJ name supplied for H would 

'J_ 

! ! i i l I , 

contain the result on return 

J_: 1 i 
I I to the calling program. 

i~I RE lliTI_f.i E lMU L( K) 1 1 MUL multiplies the array 
c~MIV N' MA T( I gl) 1_i_P Bo nc ~}: supplied for MAT by the 

l I 

p 5 I = 11..1. I ~ single value supplied for K 
5 p 0 (I > =M AT (I )*K I: to produce values to be 

! ~ TU ~~· stored in array PROD. 
~ND l i I I 

1 I T TT TIT I 

FORTRAN 6·3 



6.4 SUBROUTINE CALL 

The executable statement in the calling program for referring 
to a subroutine is: 

CALL s (al' a2, ... , an) 

or 

CALL s 

The symbolic name, s , identifies the subroutine being called; 
the a's definethe actual arguments. The name may not appear 
in any specification statements in the calling program. 

If an actual argument corresponds to a dummy argument that 
is defined or redefined in the called subprogram, the actual 
argument must be a variable name, an array element name, or 
an array name. 

The CALL statement transfers control to the subroutine. Exe­
cution of the subroutine results in an association of actual argu­
ments with all appearances of dummy arguments in executable 
statement and function definition statements. If the actual argu­
ment is an expression, the association is by value rather than 
by name. Following these associations, the statements of the 
subprogram are executed. When a RETURN or END statement 
is encountered, control is returned to the next executable state­
ment following the CALL in the calling program. If the CALL 
statement is the last statement in a 00 loop, looping continues 
until satisfied. 

Examples: 
l'ROGRAMMER 

c 
0 

c Lobel 
l 5 ', IO 15 

lf C!AiL_h JIIv 
! I i _il ! 

IT I T I 

I 

' 

_._I i 

CiOMM ON !N{ 

l' 
: -:-T. 

• 

I I! 
: . 

i IC~LL !1U-f:< 
l i I 

I L i ! ij_ 

6-4 FORTRAN 

" 25 

(' IT5f. !. 1}2:.~fill.JEl> 1 

_l_ I J_ I Ill, 
i I, [:I 

l' i 

' 
I T + l i 

I, 

10)_,_i Qi ijl ~) 1I 
! I 11 I jT 

! I j T •F 
! I I [ I I I 

I(15i,~ »Il 
I i I i 

I ll: I 

I J !ll ! i l 

These calls provide actual 
or the subrou­
d in the pre­
le. In subrou­

arguments f 
tines define 
vious examp 
tine JIV, 15. 
for P; 12.' 

is substituted 
for W; and 

ABLE, for H. 
For subrout ine MUL, the 

sed via COM­
value supplied 

data is pas 
MON. The 
for the dum my argument K 

5, 3) of matrix 
ling program. 

is element ( 
I of the cal 



6.5 FUNCTION SUBPROGRAM 

A function subprogram is a computational procedure which 
returns a single value associated with the function name. The 
type of the function is determined by the name; an integer quan­
tity is returned if the name begins with I, J, K, L, M, or N, 
otherwise it will be a real quantity. 

The first statement of a function subprogram must have the fol­
lowing form: 

The symbolic name, f, is an alphanumeric identifier of up to 
five characters by which the function is referenced. If the 
function is unnamed the compiler will assign the name of "." 
(period). Thea's are the dummy arguments of the function. 

The name of the function must not appear in any non-executable 
statement in the subprogram. It must be used in the subpro­
gram, however, at least once as any of the following: 

The left-hand identifier of an assignment statement 
An element of an input list 
An actual parameter of a subprogram reference 

The value of name at the time of execution of a RETURN or 
END statement in the subprogram is called the value of the 
function. 

The function subprogram may define or redefine one or more 
of its arguments and areas in ·common so as to effectively 
return results in addition to the value of the function. If the 
subprogram redefines variables contained in the same expres­
sion as the function reference, the evaluation sequence of the 
expression must be taken into account. Variables in the por­
tion of the expression that is evaluated before the function ref­
erence is encountered and the values of variable subscripts 
are not affected by the execution of the function subprogram. 
Variables that appear following the function reference are mod­
ified according to the subprogram processing. 

FORTRAN 6-5 



Examples: 

a) PROGRAMMER 

c 

c '°""' 5 ! 7 10 15 20 I " J FUNir:[LI ON} IP I/Y_ {I J}) 
I IDIV=II!Jl I 
1 ~£rrlu1RN1 I l 

~N~ l I 
l l + I 

b) l"ROGlA.MMER 

c 
0 

c , ... , 
T 

, °FuNcff[rlqri'1RF~I~ " 

1 
(I u~ T) 

l l l 
! •I iI11 I 

l t t I 
REAQ ( ]I'U!N] LI_!* ) I l~A1D I 

! lil I ! 

l: ! •I l ~ I I J I l I I I 

l1 . l JI j l 
l REi![U lft!j_ l 1 I 

l ~INQJ ll l l 
I' I [ I I I I I I 

c) ~ 
c 
0 

~ """'' T • 

" 
., 

" ' . F~cffiOON !AL !SCI (~BLt_C) 

l ! 

! 

+ 
1 
i 

T 

d) PIOG...,....l 

c 
0 

T 

. il 

., 11 
!_l 

ClAfLo SUBF 1 

"i I ! ! I: 
.1 l ! 

l 
~~ TU IRNt 
END I 

r I 

1 
I 

(S ~IA LJi_A i..!JB Ii. C) 
i I ! 1 

i 

l I I 

I I n 

The function IDIV calculate s 
the value of I divided by J. 
On return to the calling pro-
gram the result provided is 
the value of IDIV. 

The function IB.EAD reads 
a value from the unit TIJNT 
(specified as an actual 
parameter in the calling 
program. ) ffiEAD has this 
value on return to the call-
ing program. 

SCALL is both the function 
name and an actual param-
eter of a subroutine call. 
The value of SCALL is pro-
vided by SUBF and returned 
to the calling program. 

5 6} 10 15 20 25 JC 35 

~ T= ~£Ti&**2-D~ ..... TA**3! 

J: END l_l I 

I I I I I I 

6-6 FORTRAN 

The function 
defines the 
value 0£ GAM­
MA as well as 
finding the 
value of ZETA. 



a) 

b) 

6.6 FUNCTION REFERENCE 

A function subprogram is referenced by using the name and 
arguments in an arithmetic expression: 

The type of function depends on the first letter .. of the name of 
the function referenced; the a's are the actual arguments. 
The reference may appear any place in an expression as an 
operand. The evaluated function will have a single value asso­
ciated with the function name. When a function reference is 
encountered in an expression, control is transferred to the 
function hldicated. Execution of the function results in an as­
sociation of actual arguments with all appearances of dummy 
arguments in executable statements and function definition state­
ments. If the actual argument is an expression, this associa­
tion is by value rather than by name. Following these associa­
tions, the statements of the subprogram are executed. When 
a RETURN or END statement in the function subprogram is 
encountered, control returns to the statement containing the 
function reference. During execution the function also may 
define or redefine one or more of its arguments and areas in 
common. 

Example: 

c 
0 

c """' T 
I 

' · sA~~u= K 1~ 1Ior'{Jc, 0u_ 5) ttrK:l9~ 
1 T 
I I 

I l I I I l 
lsiAN!D U= TiA08jI RIElADiNJ~B ) I I ! 

l I l j J _l 
i _;_: ' ! 

_l i 1 

i l i 

1 T 

I : j 

I J ] 
1 I 1 ' I I I \ I 1 I 

I J_ 

Tl I 

The values of 10 and 5 
are provided for I and 
J: The resulting value 
of ID IV would be 2. 
The function ffiEAD· 
is called with lOB as 
the unit number. The 
value of !READ would 
be the value of the 
item read from the 
device with unit ref­
erence number 10

8 

FORTRAN 6-7 



I.;} PROGRAAWCR 

c Leibel 

1 
i 

I 

!T 

JDATE 
c 
0 
N 
T 

· ·~tEI~=~E~*sI~tJ(, ~:u_T9 .IJs J>I 
I Ii I I i I I 1 l I I 
] Ii I I i [ I l 1 i 1 
_i I 'i ! 11 11 

l ] JI l] :J 
jj I i~ j jj1 Jj_ i 

11 
1 j IJ J]' 

TT I I 1 I I I i i I I I 

The actual param­
eters SCALL are 10., 
9., and 8. The value 
of SCALL would de­
pend on the value sup­
plied by the subrou­
tine SUBF. 

d) The program, 

would result in the following calculation: 

RSLT = 5.0 + 7.5 +ZETA 

where ZETA would be determined as: 

A = . 2**2 - . 3**3 = . 04 - . 027 = . 013 
GAMMA= . 013*5. 2 = . 0676 (GAMMB is not altered) 

ZETA= . 0676**2 = . 00456976 

RSLT = 5. 0 + 7. 5 + . 00456976 
= 12. 50456976 

But, the program, 

would result in the foil owing calculations for ZETA and GAMMB: 

A = . 2**2 - . 3**3 = . 04 - . 027 = . 013 
GAMMA = . 013*5. 2 = . 0676 = GAMMB 

ZETA= . 0676**2 = . 00456976 

RSLT = . 00456976 + 7. 5 + • 0676 
= 7. 57216976 

6·8 FORTRAN 



When ref erring to a function which redefines an argument which 
appears as a variable elsewhere in the same expression, the 
order of evaluation (i. e. , the order in which the expression is 
stated) is significant. 

6.7 STATEMENT FUNCTION 

A statement function is defined internally to the program or 
subprogram in which it is referenced and must precede the 
first executable statement. The definition is a single statement 
similar in form to an arithmetic assignment statement. 

The name of the statement function, f , is an alphanumeric 
identifier; a single value is associated with the name. The dum­
my arguments, a's , must be simple variables. One to ten 
arguments maybe used. The expression, e, may be an arith­
metic expression and may contain references to basic external 
functions, previously defined statement functions, or function 
subprograms. The dummy arguments must appear in the ex­
pression. Other variables appearing in the expression have 
the same values as they have outside the statement function. 

The statement function name mustnot appear in any specifica­
tion statements in the program or subprogram containing it. 

Statement functions must precede the first executable statement 
of the program or subprogram, but they must follow all speci­
fication statements. 

A statement function reference has the form: 

f is the function name and the a's are the actual arguments. 
A function reference with its appropriate actual arguments may 
be used to define the value of an actual argument in a subroutine 
call or function subprogram reference. 

FORTRAN 6-9 



Example: 

r 

c 
0 
N 

5 6 7 10 JS 

I~JR CM Ni) ,= IM~2+N*l*2]±5 l 
• ! I ! 1 TJ 

l l l i l 
I l I J 

C~LL M_AffiX I( IN J]Bj( 5 
! ! : 

~µBRldU!T IJNE ~X ( J, K) 
l 

j_ 

l 

Statementfunction defini­
tion. 

Subroutine call using 
statement function refer­
ence. 

Execution of a statement function reference results in an asso­
ciation of actual argument values with the corresponding dum­
my arguments in the expression of the function definition, and 
evaluation of the expression. Following this, the resultant 
value is made available to the expression that contained the 
function reference and control is returned to that statement. 

Example: 

Statement function: 

Function reference: 

6-10 FORTRAN 



6.8 BASIC EXTERNAL FUNCTIONS 

Certain basic functions are defined as part of the FOR­
TRAN Library. When one of these appea ~s as an operand 
in an expression, the compiler generates the appropriate call­
ing sequence within the object program. 

The types of these functions and their arguments are defined. 
The compiler recognizes the basic function and associates the 
type with the results. The actual arguments must correspond 
to the type required for the function; if not, a diagnostic mes­
sage is issued. The functions available are shown below: 

Function Symbolic No. of Type of 

Name Definition Name Arguments Argument Function 

Absolute Value lal ABS 1 Real Real 
JABS 1 Integer Integer 

Float Conversion FLOAT 1 Integer Real 
from in-
teger to 
real 

Fix Conversion !FIX 1 Real Integer 
from real 
to integer 

Tran sf er sign Sign of a2 SIGN 2 Real Real 
times ia11 !SIGN 2 Integer Integer 

Exponential ea EXP 1 Real Real 
Natural loge (a) ALOG 1 Real Real 

Logarithm 
Trigonometric sine (a)t SIN 1 Real Real 

Sine 
Trigonometric cos (a)t cos 1 Real Real 

Cosine 
Trigonometric tan (a)t TAN 1 Real Real 

Tangent 
Hyperbolic tanh (a) TANH 1 Real Real 

Tangent 
(a)l/2 Square Root SQRT 1 Real Real 

Arctangent arctan(a) ATAN 1 Real Real 
And (Boolean) al A a2 !AND 2 Integer Integer 
Or (Boolean) a

1 
v a

2 
IOR 2 Integer Integer 

Not (Boolean) -,a NOT 1 Integer Integer 
Sense Switch Sense Switch !SSW 1 Integer Integer 

Register 
switch (n) 

ta is in radians 

FORTRAN 6-11 



Examples: 

c 
0 

C Label T 

i J', stIG~D1=AI+l~*_fl!lD:E 
s I!GNN=lAJ_sls (is IjG~D) 

I SIGiND!= Il+IJ *K//l/-~ I 

l 
l 
l 

• 

1 I SIGININ1= IiABS!( IISGND) l 
I ! I Aili =JJ AiC K,* KjEIN *L A!RR y ' I ! ! 

I PIQWR 1=JEiXP ( x >J l I J 

l 
l 

Ii 

010\AH i= TANIH ( AIGLH:) I ! ~ 
H:FjPR =SQRT ( Z:) IL : i ' 

L~ LSIU[M 1= IOJR CM.JN) ! l I I I i 

1 -h LtjL~T1= ~ ~)j i Ii i ' 
1 I I ' 1 I I I I I 1 I 

IW~RODl= !AND (M,~) I I L 
IA!RIC J=~T,AN ( Sj) j_ l l • 

6.9 RETURN AND END 

l l 
j I l 
l l l 

i 'l 
j_ 

I I 

'! 

l 
l 

j I 

I j 

l l 
j I l 

i I I ; 

I I Iii; 

A subprogram normally contains a RETURN statement that indi­
cates the end of logic flow within the subprogram and returns 
control to the calling program. It must always contain an END 
statement. 

In function subprograms, control returns to the statement con­
taining the function reference. In subroutine subprograms, 
control returns to the next executable statement following the 
CALL. A RETURN statement in the main program is inter­
preted as a STOP statement. 

The END statement marks the physical end of a program, sub­
routine subprogram, or function subprogram. If the RETURN 
statement is omitted, END causes a return to the calling pro­
gram. The END$ is required in addition to END statements 
when five or less subprograms are being compiled at one time. 

6-12 FORTRAN 



INPUT/OUTPUT LISTS AND 
FORMAT CONTROL 7 

Data transmission between internal storage and external equip­
ment requires an input/output statement and, for ASCII char­
acter strings, either a FORMAT statement or format control 
symbols with the input data. The input/output statement spec­
ifies the input/output process, such as READ or WRITE; the 
unit of equipment on which the process is performed; and the 
list of data items to be moved. The FORMAT statements or 
control symbols provide conversion and editing information be­
tween the internal representation and the external character 
strings. If the data is in the form of strings of binary values, 
format control is unnecessary. 

7.1 INPUT/OUTPUT LISTS 

The input list specifies the names of the variables and array 
elements to which values are assigned on input. The output 
list specifies the references to the variables, array elements, 
and constants whose values are transmitted. The input and 
output lists are of the same form. The list elements consist 
of variable names, array elements, and array names separated 
by commas. The order in which the elements appear in the list 
is the sequence of transmission. If FORMAT statements are 
used, the order of the list elements must correspond to the 
order of the format descriptions for the data items. In array 
elements buffer length is limited to a maximum output of 60 
computer words. 

Subscripts in an input/output list may be of the form (expl' 
exp2), where expi is one of the following: 

c*v+k v-k 
c*v-k v 
c*v k 
v+k 

where c and k are integer constants and v is a simple in­
teger variable previously defined or defined within an implied 
DO loop. 

FORTRAN 7-1 



DO-Implied Li1t1 

A DO-implied list consists of one or more list elements and 
indexing parameters. The general form is 

list Any series of arrays, array elements, or 
variables separated by commas 

Control variable 

m's Index parameters in the form of unsigned 
integer constants or predefined integer 
variables 

Data defined by the list elements is transmitted starting at the 
value of mi in increments of m3 until m 2 is exceeded. If 
m3 is omitted it is assumed to be one. 

An implied DO loop may be used to transmit a simple variable 
or a sequence of variables more than one time. 

Two-dimensional arrays may appear in the list with values 
specified for the range of the subscripts in an implied DO loop. 
The general form for an array is: 

where, 

a 

m's, n's 

7-2 FORTRAN 

An array name 

Subscripts of the array in one of 
the preceding forms 

Control variables representing 
either of the variable subscripts 
d1 and d

2 
Index parameters in the form of un -
signed integer constants or predefined 
integer variables. If m3 or n3 is 
omitted, it is construed as 1. 



The input/ output list may contain nested implied DO loops. Dur­
ing execution, the control variables are assigned the values of 
the initial parameters (i1 = ml, i2 = nl). The first control 
variable defined in the list is incremented first. When the first 
control variable reaches the maximum value, it is reset; the 
next control variable to the right is incremented and the process 
is repeated until the last control variable has been incremented. 

If the name of a dimensioned array appears in a list without sub­
scripts, the entire array is transmitted. 

Examples: 

a) The DO-implied list: 
((A(I,J), I=l, 20, 2}, J=l, 50, 5} 
replaces the following: 
DO x J=l, 50, 5 
DO x I=l, 20, 2 
transmit A (I, J) 

x CONTINUE 

b) Other implied DO loops might be: 
((ABLE(5*KID-3, lOO*LID), KID=l, 100), LID=l, 10) 
((A(I, J), I=l, 5), J=l, 5) Transmit elements by column 
((A(I, J), J=l, 5), l=l, 5) Transmit elements by row. 

c) Nested implied DO loops: 
((((A(I, J), B(K, L), K=l, 10},L=l, 15}, I=l, 20), J=l, 25) 
(((A(I, J), B(K), K=l, 10), 1=20, 100, 10), K=9, 90, 10) 

d) Simple variable transmission: 
(A, K=l, 10) Transmits 10 values of A. 

e) Dimensioned array transmission: 
DIMENSION A(50, 20) 

A ... 
is equivalent to: 
DO x I = 1, 20 
DO x J = 1, 50 
transmit A(J, I) 

x CONTINUE 

list element 

FORTRAN 7-3 



7.2 FORMAT STATEMENT 

ASCII input/ output statements may refer to a FORMAT state­
ment which contains the specifications relating to the internal­
external structure of the corresponding input/output list ele­
ments. 

FORMAT (spec1, ... , r(specm, ... ), specn, ... ) 

The spec's are format specifications and r is an optional rep­
etition factor which must be an unsigned integer constant. 
FORMAT specifications may be nested to a depth of one level. 
The FORMAT statement is non-executableandmayappear any­
where in the program. 

7 .3 FORMAT STATEMENT 
CONVERSION SPECIFICATIONS 

The data elements in the input/ output lists may be converted 
from external to internal and from internal to external repre­
sentation according to FORMAT conversion specifications.:t 
FORMAT statements may also contain editing codes. 

Conversion Specifications 

rEw. d 
rFw. d 
rlw 
r@w 

rKw 
rAw 

Real number with exponent 
Real number without exponent 
Decimal integer 

Octal integer 

Alphanumeric character 

Editing Specification 

nX Blank field descriptor 
nHh1 h2 ... hn } Heading and labeling descriptors 
r"h1 h2 ... hn" Specification should not be on more than 

one line. If continuation is nece$Clry, speci­
fication should be broken up in two speci­
fications. 

r/ Begin new record 

tlf the type of a variable in the input/output list does not corre­
spond to the type specified in the FOR!Vi.AT statement, the formatter 
insures that the proper conversion from one type to the other will 
take place. 

7-4 FORTRAN 



Both w and n are nonzero integer constants representing the 
width of the field in the external character string; n may be 
omitted if the width is one. d is an integer constant repre­
senting the number of digits in the fractional part of the string. 
r , the repeat count, is an optional nonzero integer constant in­
dicating the number of times to repeat the succeeding basic field 
descriptor. Each h is one character. 

Ew.d Output 

The E specification converts numbers in storage to character 
form for output. The field occupies w positions in the output 
record; the number appears in floating point form right justified 
in the field as: 

~.x1 ... xd E±eet 

x1 ... xd are the most significant digits of the value of the data 
to be output. ee are the digits in the exponent. Field w must 
be wide enough to contain significant digits, signs, decimal 
point, E , and exponent. Generally, w should be greater than 
or equal to d + 4. 

If the field is not long enough to contain the output value, an attempt 
is made to adjust the value of d (i.e., truncating part or all of the frac­
tion) so that a number is written in the field. If the remaining value is 
still too large for the field, dollar signs($) are inserted in the entire field. 
If the field is longer than the output value, the quantity is right-justified 
with spaces to the left. 

Examples: 

PROGRAMME~ 

c 
0 

c Lob.I 

n' ·~~I~E1<I4G_ls >1~ 20 

A contains +12. 34 or -12. 34 
11 T5 FOTRMA TiCTE 1 oT.T3· l Result is AA. 123E+02 or A-. 123E+0-2 
IJ r J 
j1 IWRI TE( 4r, 5 )A A contains +12. 34 or -12. 34 

I 5 FORM AT{]Eil 2.13) Result is AAAA. 123E+02 or 
; ! 

I 1 AAA - • 123E+02 
l ~RIT EC4i,15 )A· A contains +12. 34 or -12. 34 
] 15 F1c)TRM ATlCE7 . 3il, Result is . l 2E+02 or - . 1E+02 
L l l 

~FU,T E(!4 ,5 l,Ai1l A contains +12.34 
~ 5 FORM AT(E5 . 11)1 Result is $$$$$ 

' ' 

tThe caret symbol, " , indicates the presence of a space. 

FORTRAN 7-5 



Ew.d Input 

The E specification converts the number in the input field 
(specified by w ) to a real number and stores it in the appro­
priate storage locations. 

The input field may consist of integer, fraction, and exponent 
subfields: 

integer fraction 
I , ,=---1---::i ~exponent 

1± ... n. n ... rr±ee 

n ~d . El . t 
ec1ma porn 

The integer subfield begins with a + or - sign, or a digit and 
may contain a string of digits terminated by a decimal point, an 
E , + , - , or the end of the input field. 

The fraction subfield begins with a decimal point and may con­
tain a string of digits terminated by an E , + , - , or the end 
of the input field. 

The exponent field may begin with a sign or an E and contains 
a string of digits. When it begins with E , the + is optional 
between E and the string. The value of the string of digits 
should not exceed 38. The number may appear in any positions 
within the field; spaces in the field are ignored. 

Examples: 

+1. 2345E2 
123.456+9 
-0.1234-6 
.12345E-3 
1234 
+12345 
+1234E6 

When no decimal point is present in the input quantity, d acts 
as a negative power of ten scaling factor. The internal repre­
sentation of the input quantity will be: 

(integer subfield) x10-d xio(exponent subfield) 

7-6 FORTRAN 



Example: 

>-+-......+->--+-<>-+--;-+--<,_..._,_,_,__,._,_,........___,_.,._,......,._,......,.--.- Input quantity = AAA1234+5AA 

Conversion performed: 1234xto-8xto5 
Result: 1. 234 

If a d value in the specification conflicts with the a decimal 
point appearing in an input field, the actual decimal point takes 
precedence. 

Example: 

i:~·}1F9RWJr:<JE1iJ2l·l~l(J I I I l"I 
Quantity stored: 

Input quantity = AAAAAl. 234+5· 

1. 234xto5 

The field width specified by w should always be the same as 
the width of the input field. When it is not, incorrect data may 
be read, converted and stored. The value of w should include 
positions for signs, the decimal point, the letter E , as well as 
the digits of the subfields: 

Example: 

Assuming input data in contiguous fields: 

-12.3E1+1234123.46E-3 
1-7~5 *--9-I 

The fields read would be: 

-12. 3El 
+1234 
123. 46E-3 

and converted as: 

-123. 
1. 234 
.12346 

FORTRAN 7-7 



However, if specifications were: 

The fields read would be: 

-12. 3E1 
+123 
4123.46 

and converted as: 

-123 
.123 
4123.46 

The effects of possible FORMAT specification errors such as 
the above may not be detected by the system. 

Examples: 

FORMAT 
Specification 

E9.2 
E9.4 
E4.2 

Fw.d Output 

Input 
Field 

+1. 2345E2 
-0.1234-6 
1234 

Converted 
Value 

123.45 
-.0000001234 
12.34 

The F specification converts real numbers in storage to char­
acter form for output. The field occupies w positions and will 
appear as a decimal number, right justified in the field. 

t!x ... x.x ... x 

The x's are the most significant digits. The number of decimal 
places to the right of the decimal point is specified by d . If d 
is zero, no digits appear to the right of the decimal point. The 
field must be wide enough to contain the significant digits, sign, 
and decimal point. If the number is positive, the + sign is sup­
pressed. If the field is not long enough to contain the output 
value, an attempt is made to adjust the value of d (i.e., trun­
cating part or all of the fraction) so that a number is written in 
the field. If the remaining value is still too large for the field, 
qollar signs ($) are inserted in the entire field. If the field is 
longer than the output value, the number is right-justified v:ith 
spaces occupying the excess positions on the left. 

7-8 FORTRAN 



Examples: 

PftOGRAMMElt 

c 

c 
0 

"'"'' T 

I 

n' · ~R:1 ;E!<J4i.J5 lM If A contains +12. 34 or -12. 34 
l '5 FPlRMIAT!( F 1 IQL. 3ltl Result: """"12. 340 or AAA-12. 340 
l !. 1 : l 

A contains +12. 34 or -12. 34 i ~R!l1T E(4,5 )A 
5 FOR_t.-1 AT(F I 2. 3) Result: """"""12. 340 orl\/\AAA -12. 340 

~RIT E(4,5 )A A contains +12. 34 
5 FORM AT( F4 . 3) I Result: 12.3 

; 

= ~RIT E(4,5 )A ..i. A contains +12345. 12 
5 FOR~ AT( F4 . 31) ! Result: $$$$ 

'I 

Fw.cl Input 

The F specification input is identical to the E specification 
input. Although the fields are generally assumed to contain only 
a sign, integer, decimal point, and fraction; they may also con­
tain an exponent subfield. All restrictions for Ew. d input apply. 

lw 

The Iw specification converts internal values to output char­
acter strings, or input character strings to internal numbers. 
The output external field occupies w record positions and ap­
pears right just~ied (spaces on left) as: 

During input conversion, if a value is les.s than -3276810, the value is 
converted to a positive 32767. 

FORTRAN 7.9 



The x's represent the decimal digits (maximum of 5) of the in­
teger. When the integer is positive on output, the sign is sup­
pressed. If an output field is too short, dollar signs ($) will be 
placed in the output record. 

The Iw specification, when used for input, is identical to an 
Fw. 0 specification. 

Examples: 

Result: -123412345$$$$A12345 

l--s+-s+4+-6---I 

I contains -0123 
J contains 12003 
K contains 0102 
L contains 3 

Aw 

i contains -1234 
J contains +12345 
K contains +12345 
L contains +12345 

Input contains: 

-A12312M3AlA23 

!--s-t-s+4+1 

This specification (not available in the 4K version of FORTRAN) causes 
alphanumeric data on an external medium to be translated to or from 
ASCII form in memory. The associated list element must be of type 
integer. 

On input, if the field, as indicated by w, is greater than 2, the 
first w-2 characters are ignored; only the last two characters 
are read. When w equals 2, the two characters are read. If 
w equals 1, one character is read and stored in the right half 
of a computer word; zero is entered in the left half. 

On output, if the field is greater than 2, two characters are 
written with right justification in the field; the leading posi­
tions are filled with spaces. If w equals 2, the two characters 
are written. If w equals 1, the character in the right half of 
the computer word is written. 

7-10 FORTRAN 



W>2 

Example: 

W=2 W=1 

~ d5 
( ignored .on output) 

zero on input 

Input data: AZZ213-ABCXABC137 - ZZ9 @) (~) 
DIMENSION ID (5) 
READ (5, 10) 12, 11, ID 

10 FORMAT(A10, Al, 5A2) 

Result: 12 BC 
I1 J}X 
ID AB 

Cl 
37 
-Z 
Z9 

r@w rKw 

Octai integer vaiues are converted under either the @ or the K specifica­
tion. The field is w octal digits in length; the corresponding list element 
must be of type integer. (Not available in the 4K version of FORTRAN.) 

On input, if w is greater than or equal to 6, up to six octal digits 
are stored; non-octal digits appearing within the field are ig­
nored. If the value of the octal digits within the field is greater 
than 177777, the results are unpredictable. If w is less than 
6, or if less than six octal digits are encountered in the field, 
the number is right justified in the computer word with zero 
fill on the left. 

On output, if the field is greater than 6, six octal digits are 
written with right justification in the field; the leading positions 
are filled with spaces. If w equals 6, the six octal digits are 
written. If w is less than 6, the w least significant octal digits 
are written. 

Example: 

Input data: 123456-1234562342342342, 396E-,05 @ @ 
DIMENSION ID(2), IE(2) 
READ (5, 10) IB, IC, ID, IE 

10 FORMAT (@6, @7, 2@5, 2@4) 

FORTRAN 7-11 



nX 

Result: IB 123456 
IC 123456 
ID ¢23423 

¢42342 
IE ¢¢¢¢36 

¢¢¢¢¢5 

The X specification may be used to include n blanks in an out­
put record or to skip n characters on input to permit spacing 
of input/ output quantities. In the specifications list, the comma 
following X is optional. AX is interpreted as lX. OX is not 
permitted. 
Examples: 

1-+-H--1-:t-f-++=+'--F:-''Fl-'4-'-f:+'--f-¥-f::pf""+-+-+-1-H-H-+'r-l-f--+-!1-+-+ A contains + 123 . 4 
1-+-+..-+.:-~+-+=+-+=.+-:i-:...µ+:"1=-1-':.+=-+-L!=+-'1--1-+~~.i..i.::.;::....:u.J~~L.L~ B contains -12. 34 

1 

: I contains -123 

Result: A .1234E2AAAAA-12. 34AAAAA-123 

Input: 

WEIGHT AA10MPRICEM$1. 98AATOTALAA$19. 80 

Result: I contains 10 
A contains 1. 98 
B contains 19. 80 

nHh1h2 ••• hn 

The H specification provides for the transfer of any combina­
tion of 8-bit ASCII characters, including blanks. n is an un­
signed integer specifying the number of characters to the right 
of the H that are to be transmitted. The comma following the 
H specification is optional. AH is interpreted as lH. OH is 
not permitted. An H specification should not span more than one line. 
If continuation is necessary the H specification should be broken off in 
2H specifications, one on each line. 

On output, the ASCII data in the FORMAT statement is written 
on the unit in the form of comments, titles, and headings. 

7·12 FORTRAN 



Example: 

Result: THIS IS AN EXAMPLE 

I contains 10 
A contains 1. 98 
B contains 19. 80 

Result: WEIGHT 10 PRICE $1. 98 TOTAL $19. 80 

On input, the data is transmitted from the unit to the FORMAT 
statement. A subsequent output statement transfers the new 
data to the output record. 

Examples: 

Input: H INPUT ALLOWS VARIABLE HEADERS 

Result: H INPUT ALLOWS VARIABLE HEADERS 

"h h h " r 1 2· .. n 

This specification also provides for the transfer of any combin­
ation of ASCII characters (except the quotation marks). The 
number of characters transmitted is the number of positions be­
tween the two quotation marks; field length is not specified. If 
r , an optional repeat count, is present, the character string 
within the quotation marks is repeated that number of times. 
Commas preceding the initial quotation mark and following the 
closing quotation are optional. As with H, the specification must be 
contained on one line. 

FORTRAN HJ 



Examples: 

Result: THIS ALSO IS AN EXAMPLE 

Result: ABCABCABC 

On input, the number of characters within the quotation marks 
is skipped on the input field. 

New Record 

The slash, I, terminates the current record and signals the 
beginning of a new record of formatted data. It may occur any­
where in the specifications list and need not be separated from 
the other list elements by commas. Several records may be 
skipped by indicating consecutive slashes or by preceding the 
slash with a repetition factor; r-1 records are skipped for r I. 
On output the slash is used to skip lines, cards, or tape records; 
on input, it specifies that control passes to the next record or 
card. 

Examples: 

c 
0 

C l•I 

J° ·~RI~ E( 61,T;'!e > 
20 

" { "' .. 

, T ~5HJPRI'CE ,J9X, 5'H"]TOTAL .l8x > ' 
i ' I I 

1 or, 
: 

~~ F R~l~T(~~X,6H UDGET,3/6H~EIG~lf ,6X, 
l jC5HPR I CE J9X' 5HllO!TAL' ax) 

' I I 

7·14 FORTRAN 



Result: 

line 1 """""AN\ """"/\ """"" "" /\ /\ BUDGET 

line 2 

line 3 

line 4 WEIGHT"""""" PRICE A.AAAAAAAA TOTALA/\/\/\NVV\ 

Repeat Specifications 

Repetition of the field descriptors (except nH) is accomplished 
by precedingthe descriptor witha repeat count, r . If the in­
put/output list warrants, the conversion is interpreted repeti­
tively up to the specified number of times. 

Repetition of a group of field descriptors, including nH is ac­
complished by enclosing the group in parentheses and pre­
ceding the left parenthesis with a group repeat count. If no group 
repeat count is specified, a value of one is assumed. Grouped 
field descriptors may be nested to a depth of one level. 

Examples: 

can be written as 

I J_ J_ t I' I Ht I I 

TT 1 
1 I T : 1-:- : IT 

I I I I ' I II ' I 11 I T I ' T I I I 

can be written as 

A nested repetition specification would be: 

The group F6. 2, 5X, I 4 would be written five 
times, and the entire group, once. 

Tl l 
T l 

•I 

I 

1 
I :i I 

FORTRAN 7-15 



1) 

Unlimited Groups 
FORMAT specifications may be repeated without use of the 
repetition factor. If list elements remain after all specifica­
tions in a FORMAT statement are processed, the rightmost 
group of repeated (enclosed in parentheses) specifications is 
used. If there is no repeated group, processing resumes with 
the first specification in the statement. On output, each time 
the rightmost parenthesis in the statement, or in the unlimited 
group, is reached, the current record is terminated. 

-7.4 FREE FIELD INPUT 
By following certain conventions in the preparation of the input 
data, a 2116A FORTRAN program may be written without use 
of FORMAT statements. Special symbols included with the 
ASCII input data items direct the formatting: 

space or, 
I 
+ -
. E + -
@ 

Data item delimiters 
Record terminator 
Sign of item 
Floating point number 
Octal integer 
Comments 

All other ASCII non-numeric characters are treated as spaces 
(and delimiters). Free field input may be used for numeric data 
only. Free field input is indicated in the FORTRAN READ 
statement by using an asterisk rather than a number of a FOR­
MAT statement. 
Data Item Delimiters 
Any contiguous string of numeric and special formatting char­
acters occurring between two commas, a comma and a space, 
or two spaces, is a data item whose value corresponds to a 
list element. A string of consecutive spaces is equivalent to 
one space. Two consecutive commas indicate that no data item 
is supplied for the corresponding list element; the current value 
of the list element is unchanged. An initial comma causes the 
first list element to be skipped. 

Example: 

Input data: 1720, 1966 
1980 1492 

Input data: 1266,, 1794, 2000 

Result: I contains 1266 Result: I contains 1720 
J contains 1966 
K contains 1980 
L contains 1492 

7-16 FORTRAN 

J contains 1966 
K contains 1794 
L contains 2000 



Floating Point Input 

The symbols used to indicate a floating point data item are the 
same as those used in representing floating point data for FOR­
MAT statement directed input: 

integer fraction .....-----
! I r exponent 

~±-n-.~.-.-,n! n ... rr±iee1 
n ~ E 

decimal point 

If the decimal point is not present, it is assumed to follow the 
last digit. 

Examples: 

Input Data: 3. 14, 314E-2, 3140-3, . 0314+2, . 314El 

All are equivalent to 3. 14 

Octal Input 

An octal input item has the following format: 

@ xl ... xd 

The symbol @ defines an octal integer. The x's are octal 
digits each in the range of 0 through 7. List elements corre­
sponding to the octal data items must be type integer. 

Record Terminator 

A slash within a record causes the next record to be read im­
mediately; the remainder of the current record is skipped. 

Example: 

FORTRAN 7-17 



Input data: 987, 654, 321, 123/DESCENDING@@ 
456 

Result: II contains 987 
JJ contains 654 
KK contains 321 
LL contains 123 
MM contains 456 

List Terminator 

If a line terminates (with a @ Q ) and a slash has not been 
encountered, the input operation terminates even though all list 
elements may not have been processed. The current values of 
remaining elements are unchanged. 

Examples: 

Input Data: 

A=7. 987 B=5E2 C=4. 6859E-3@@ 
J=3456@@ 

Result: A contains 7. 987 
B contains 5E2 
C contains 4. 6859E-3 

J, X, Y, Z are unchanged. 

Comments 

All characters appearing between a pair of quotation marks in 
the same line are considered to be comments and are ignored. 

Examples: 

"6.7321" 
6.7321 

7-18 FORTRAN 

is a comment and ignored 
is a real number 



INPUT/OUTPUT STATEMENTS 8 

Input/output statements transfer information between memory and 
an external unit. The logical unit is specified as an integer variable 
that is defined elsewhere in the program or an integer constant. 

Each statement may include a list of names of variables, arrays, 
and array elements. The named elements are assigned values on input 
and have their values transferred on output. 

Records may be formatted or unformatted. A formatted rec­
ord consists of a string of ASCil characters. The transfer of 
such a record requires the specification of a FORMAT state­
ment or free field input data. An unformatted record consists 
of a string of binary values. 

8.1 LOGICAL UNIT NUMBERS 

FORTRAN input/output statements refer to logical unit numbers 
(1 to 63) whose meaning varies depending upon the operating system 
used. Refer to the appropriate manual. The operating system relates 
the logical unit number to a physical unit through system tables. 
Logical unit 4 always refers to a punch device, 5 to an input device, 
and 6 to a list output device. 

FORTRAN 8-1 



8.2 FORM A TIED READ, WRITE 

A formatted READ statement is one of the forms: 

READ (u, f)k 
READ (u, *)k 
READ (u, f) 

Execution of this statement causes the input of the next ASCil 
records from unit u. The information is scanned and converted 
according to the FORMAT specification statement, f, and as­
signed to the elements of list k. If the input is free field, an 
asterisk is specified in the READ statement rather than the la­
bel of a FORMAT statement. If the list is absent, the FORMAT 
statement should contain editing specifications only. 

A formatted WRITE statement may have one of the following 
forms: 

WRITE (u, f)k 
or 

WRITE (u, f) 

This statement transfers ASCil information from locations given 
by names in the list k to output unit u. The values are convert­
ed and positioned as specified by the FORMAT statement f. If 
the list is absent, the FORMAT statement should contain editing 
specifications only. 

8-2 FORTRAN 



8.3 UNFORMATIED READ, WRITE 

An unformatted READ statement has one of the forms: 

READ (u)k 
or 

READ (u) 

This statement transfers the next binary input record from the 
unit u to the elements of list k. The sequence of values re­
quired by the list may not exceed the sequence of values from 
the record. If no list is specified, READ (u) skips the next 
record. 

An unformatted WRITE statement has the form: 

WRITE (u)k 

Execution of this statement creates the next record on unit u 
from the sequence of values represented by the list k. 

8.4 AUXILIARY INPUT/OUTPUT STATEMENTS 

There are three types of auxiliary input/output statements: 

REWIND 
BACKSPACE 
END FILE 

A REWIND statement has the form: 

REWIND u 

This statement causes the unit u to be positioned at its initial 
point. If the unit is currently at this position, the statement 
acts as a CONTINUE. 

A BACKSPACE statement is as follows: 

BACKSPACE u 

FORTRAN 8·3 



BACKSPACE positions the unit u so that what had been the pre­
ceding record becomes the next record. If the unit is currently 
at its initial point, the statement acts as a CONTINUE. 

An ENDFILE statement is of the form: 

ENDFILE u 

Execution of this statement causes the recording of an end-of­
file record on the output unit u. If given for an input unit, the 
statement acts as a CONTINUE. 

8-4 FORTRAN 



COMPILER INPUT AND OUTPUT 9 

The FORTRAN Compiler accepts as input, paper tape contain­
ing a control statement and a source language program. The 
output produced by the Compiler may include a punched paper 
tape containing the object program; a listing of the source lan­
guage program with diagnostic messages, if any; and a listing 
of the object program in assembly level language. 

9.1 CONTROL STATEMENT 

The control statement must be the first statement of the source 
program; it directs the compiler. 

FTN is a free field control statement. Following the comma 
are one to three parameters, in any order, which define the 
output to be produced. The control s~me~ must be termi­
nated by an end-of-statement mark, ~ ~ . Spaces em­
bedded in the statement are ignored. 

The parameters may be a combination of the following: 

B Binary output: A program is to be punched in relocatable 
binary format suitable for loading by the Relocating Loader. 

L List output: A listing of the source language program is to 
be produced as the source program is read in. 

A Assembly listing: A listing of the object program in 
assembly level language is to be produced in the last 
pass. 

T Symbol table only: A listing of the symbol table only is 
produced; in MTS, if both T and A are specified, only the 
last used will be decisive. 

FORTRAN 9·1 



9.2 SOURCE PROGRAM 

The source program follows the control statement. E~h s~e­
ment is followed by the end-of-statement mark, C ~ . 
Specifications statements must precede executable s atements. 
The last statement in each program submitted for compilation 
must be an END statement. Up to five source programs may 
be compiled at one time. The last program must be followed 
by and END$ statement, if less than six programs are to be 
compiled. 

The control statement, each of the five programs, and the 
END$ terminator may be submitted on a single tape or on sep­
arate tapes. If more than five programs are contained on a 
tape, the compiler procesres the first five. The remaining programs must 
be compiled separately. 

9.3 BINARY OUTPUT 

The punch output produced by the compiler is a relocatable 
binary program. It does not include system subroutines in­
troduced by the compiler, or library subroutines referred to 
in the program. 

9.4 LIST OUTPUT 

If the List Output parameter is specified, the first 72 charac­
ters of each line of the source program is printed on the List 
Output device. The END$ is the last statement printed. If 
exactly five programs are compiled, however, the END$ is 
omitted from the list. 

If the Assembly listing parameter is specified, the program is printed 
in asrembly level language on the List Output device. If the Symbol 
Table option is specified, the program listing is followed by a Symbol 
Table for the asrembly level program. 

The format for the assembly level listing is as follows: 

Columns Content 

1-5 Zero-relative location (octal) of the instruction 

6-7 Blank 

9-2 FORTRAN 



Columns Content 

Object code word in octal 8-13 

14 Relocation or external symbol indicator 

15 Blank 

16-18 Mnemonic operation code 

19 Blank 

20-25 Operand address in octal or external symbol name. 

26-27 The indicator 11
, 111 if indirect addressing is used. 

The Symbol Table listing has the following format: 

Columns 

1-5 

6 

7 

8 

Content 

Symbol, statement label, or numeric symbol as­
signed by the compiler. 

Blank 

Relocation indicator 

Blank 

9-14 The zero-relative value of the symbol 

The characters that designate an external symbol or type of 
relocation for the operand address or a symbol in the Symbol 
Table are: 

Character Relocation Base 

Blank Absolute 

R 

x 

c 
NOTE: 

Program relocatable 

External symbol 

Common relocatable 

The operating procedures for the FORTRAN Compiler are 
contained in the ASSEMBLER Appendix D, SIO SUBSYS­
TEMS OPERATION (5951-1390). 

FORTRAN 9-3 



HP CHARACTER sn A 

ASCII CHARACTER FORMAT 
b7 0 0 0 0 I !1 I I 

bs 0 0 I I 0 0 I I 

b5 0 I 0 I 0 I 0 I 

b4 

I b3 

1 b2 

i ~I 
0 0 0 0 NULL DCo "b 0 ® p 

l: --r-0 0 0 I SOM DC1 ! I A Q 
II 

-- -
0 0 I 0 EOA DC2 2 B R __ u_ 
0 0 I I EOM DC3 * 3 c s N 

0 I 0 0 DC4 $ 
-- --A-

EOT 4 D T !STOP) U- --S-
0 I 0 I WRU ERR Ofo 5 E u N s 
0 I I 0 RU SYNC a 6 F v A - --1-

. -S- --G -
0 I I I BELL LEM (APOSl 7 G w s N 

I 0 FEo So ( 
- I 

- --E-
0 0 8 H x 
I~ 

-G -

ff I 0 0 S1 ) 9 I y N 

I 0 I 0 LF S2 11- : J z E-

I 0 I I VTAe S3 + K 
D- -

; [ 

I I 0 0 FF S4 lroMMA < L \ ACK 
- - l--=-

I I 0 I CR S5 - = M J CD 
t 

- - +--'='---
I I I 0 so Ss > N ESC 

- !---
I I I I SI S7 I ? 0 - DEL 

Standard 7-bit set code positional order and notation are shown below with bT the 
high-order and b, the low-order, bit position. b

7 
b

6 
b

5 
b4 b

3 
b

2 

NULL 
SOM 
EOA 
EOM 
EOT 
WRU 
RU 
BELL 
FEo 
HT 
SK 
LF 
YrAa 
FF 
CR 
so 
SI 
DCo 

EXAMPLE: The code for "R" is: 1 0 1 0 0 1 

Null/Idle 
Start of message 
End of address 
End of message 
End of transmission 
"Who are you?" 
"Are you ... ?" 
Audible signal 
Format effector 
Horizontal tabulation 
Skip (punched card) 
Line feed 
Vertical tabulation 
Form feed 
Carriage return 
Shift out 
Shift in 
Device control reserved for 

data I ink escape 

LEGEND-----------­
DC1-DC3 
DC4(Stop) 
ERR 
SYNC 
LEM 
So-57 

< 
> 
+ +-
\ 

ACK 
Q) 

ESC 
DEL 

Device Control 
Device control (stop) 
Error 
Synchronous idle 
Logical end of media 
Separator (information) 
Word separator (space, normally 

non-printing) 
Less than 
Greater than 
Up arrow (Exponentiation) 
Left arrow (lmpl ies/Replaced by) 
Reverse slant 
Acknowledge 
Unassigned control 
Escape 
Delete/Idle 

FORTRAN A-1 



ASSEMBLY LANGUAGE SUBPROGRAMS B 

A FORTRAN program can refer to a subprogram that has been 
prepared using Assembler source language. The subprogram 
may be treated as a subroutine or as a function. The object 
code programs generated by FORTRAN and by the Assembler 
are then linked together by the Relocating Loader when the programs 
are loaded. 

FORTRAN REFERENCE 

In the FORTRAN program, a subroutine is called using the fol­
lowing statement: 

The symbolic name, s, identifies the subroutine and the a's are 
the actual arguments. 

If the subprogram is a function, it is referenced by using the 
name and the actual arguments in an arithmetic expression: 

As a result of either the call or the reference, FORTRAN gen -
erates the following coding sequence: 

JSB s/f 
DEF*+n+l 
DEF a1 
DEF a2 

DEF a 
n 

Transfers control to subroutine or function 
Defines return location 
Defines address of a1 
Defines address of a2 

Defines address of a 
n 

The words defining the addresses of the arguments may be di­
rect or indirect depending on the actual arguments. For exam­
ple, an integer constant as an actual argument would yield a 
direct reference; an integer variable might yield an indirect 
reference. 

FORTRAN B-1 



If the subprogram being referenced is a subroutine, it may re­
turn none, one, or more than one value through its arguments 
or through common storage. If the subprogram is a function, 
it is assumed to return a single value in the accumulators: a 
function of type integer returns a value in the A-Register; a 
function of type real returns a value in the A- and B-Registers. 

The subprogram may transfer values directly by accessing the 
words in the calling sequence or it may make use of the FOR­
TRAN library subroutine . ENTR to aid in the transfer. 

DIRECT TRANSFER OF VALUES 

Any suitable technique may be used to obtain or deliver values 
for the arguments and to return control to the calling program. 
If address arithmetic is used in conjunction with an argument 
(e.g., to process elements of an array), the base location must 
be a direct reference; the location given in the calling sequence 
must be checked to determine if it is a direct or indirect ref­
erence. If it is an indirect reference the location to which it 
points must also be checked, and so forth. 

Example: 

Ope<~rci 

10 15 20 25 lO 35 -'S SO 

STA RET!RN IRIET'Rj_Ni C~NTAiI NfS: VAL
1

UE qF: l"T*T+N[+ll '. · : 
~IXT''°d_G I!S:Z IAMS1UIB lA\MSU!B ~IO~HiAIIjNiS' ADDR. Pf !LPCAlfiIJQlN: 

L!DiA ~S:UB OiF AHGiUMENT. !TEIST I Fl A]UU IAIRGTuT- ' 1 : 

n ', , 'Lo~_AH01r-t oF IAiRGiu~ENTJ. rF1~au1AL1 : : 
PRS1AG J; :RETUiRiNi TO :Cf6.LLiiN1G PRO~R1AM 1 l!F N!O"ff;,: 

1,.: P:R OCiE .sis 'ARG'UjM~ENIT A\S :R EIQ\U IRE D . 

B-2 FORTRAN 



oy_o ~.II I 11 rv!ALUEI INTIOI IA J~ND ~.; ! i I Ill 1 J I 
1 i J' I 

1 J 1 I l 

l 
I1 I i I I ! I-'-

l' I I -'- 11 I I I 

LOA AMSUB ,I STQ[_RE ONE1-WOR:O VIAL:LJ;E1 IN ARGUMENT i : 

I _j_ l : I I 

LOIA AMSU,B I I ,STORE [T~0 1-WO~D IN 

l STA l9_UT~D I LIO~IA:TI ON._._ j 
1 Lo A m:nv AJL , I : , , 

STA qu~o,I l 
! _j_ ! I l I 

l I j -'- j 
ARGU~E~ -'-

OLD ~2VAL -'- J l 
DST IQ_UT AD I I I I l 

l 
l 

• , : I 11 · I • : l I l I-'- i ! l ! i 

I ' I ·1 l I l I ! ! I I I -'- I l l l i i ! • 

i "j_ j_ J 11 I I lj ! I ! • l 
SiS,A ' ARGU~ENl![.j TO DE,TE~MINE IF REF: IS 
JMP *4-·2'. IINDIR1~Cl:!1, T'ESjT BIT 15. IF IONE,I 

Ai~lD ~NMS:K I AJ ~ITH REF1ERENCED LOC~TION. i : 

LQ[A ~.I I ]l REPEIAT! T!ESjT MITH NEXT REJF. ~JE!N 
J_MP *;-5 DIRE1C 1T REF ENCOUNTER!EIO, PROCEED 

]AN~SK !01CT '@_777177 ~ITH PROCESSING.! 
: I: 

! 

RETURN: TiHROUGJH HERE MHEN iNEX.T 
RETRN BSS l ARGUMENT IS R!QUIREDI. 
QUTAO B~S I 1 

~!VAL BSS l 
~2VAL BSS )2i 

• 

END l 
l 

The preceding example assumes that each argument is proc­
essed or partially processed before the next is obtained or 
delivered. Control returns to the calling program when all 
arguments have been picked up or delivered. 

FORTRAN B-3 



TRANSFER VIA .ENTR 

The transfer of values to or from the locations listed in the 
calling sequence maybe facilitated through use of the FORTRAN 
library subroutine . ENTR. This subroutine moves the addres­
ses of the arguments into an area reserved within the Assembly 
language subroutine. The addresses stored in the reserved area 
are all direct references; . ENTR performs all the necessary 
direct/indirect testing, etc. It also sets the correct return 
address in the entry point location. 

The general form of the subroutine is: 

a 
s 

NAM s 
ENT s 
EXT.ENTR 
BSS n 
NOP 

JSB .ENTR 

The subroutine name is s. 

. ENTR must be declared as external. 
Reserves n words of storage for the 
addresses of the arguments; this pseudo 
instruction must directly precede the 
entry point location, s. 

DEF a Defines first location of area used to 
(First instruction) store argument addresses. 

JMP s, I 
END 

B-4 FORTRAN 



Example: 

IPlOGRAMMER !DATE 

Lob.I 0pt'<Otion OP"rond c-ni.. 

' ID IS 20 25 ., 
" •0 " so 

Nllf.1 IAM S UBI l J: 
ENT ~~ SUB l J: 
EXT .E l'![R Ji I 

I I /: 
!AG MTS BSS 5 I I i J_ : 
~M SUB NlQP I I 

i 

I 

JS~ -~ !fil~I l i : .i.l' l : 
I 
I 

DEF ~~ MIS I I I 
I 
I 

P~, SA~ I 11 PH Q)c ES/S AR G!U MEN TS ~s )RiE®J IR ED : 
·i I I I 

I I 

•i J_ -'- I! _;_ 
I 
I 

·!-'- I i I 

...:. I 

LIQ.A AGMTJS iI i 
P1ICK, UP VA b_.UE ff 1 FIR ST AR ~ll~ ENT I I 

~ ~ I I 

' 

., I 

·-'- I 

! I ...:. l . 

I 
I 

I j_ 
! ll _;_ 

I 
i I I 

Q@ ~GMTS J±,1 , I PI1CK UP VA LU~: _l}F SE~ IQ_ND A~GUME NT: 
I .I 

I i 
I : 

J_ j_j_ ! ; i 

! 1 
I_;_ I I 

I 

I : ': ii I 
I 

' 

I I : 
i=:!DA ~I VJ.AL ST OR~I VALU E1 J_F gR' THIRD :A_RG UMEJiT : 
STA G MTlS tf-2:, f[ I 

I-,- I I 
I 

i ,. 
i I 

: 
I 
I 

+ 
.. I I ~ i ! I I 

I 
I 

j TJ_ 
! 

I! 

I I 
J_ I 

DUD 2V !AL ST!O R~ \f[ALU ]E TF p~ FOU]RI TH !ABJ ~U~EN]T I 
I 

D§T ~:G]M TS +3. !! 1 : I 

j_ I I I 
I 
I 

I _l_. ! ! 
I 

I 
I 
I 

I I ' J_ I ! l I 
I 

LDA AG MT lfilt4 : E IClS UP AD gRESS ~~ IF"r!i ~RGUM ~NrT_ 
T i I T, il l i I 

, I ! i iT 
i 

I : 
T I I 

I 

JJ.'P JAMsus Li_ I J_ ~ET!U;RN TO CALLI N:G PR [Q(G~ I 
I 

~IVAL ~SS I T I I I I 

_;_ I 

~2V,AL BSS 2 l • 

I 

j_ I 

END ! L l I I l }!1 ! ll J. I l: I 

FORTRAN B-5/B-6· 





SAMPLE PROGRAM c 

Using Simpson's rule, calculate the value of the integral: 

b 

J co! x dx 

a 

for the following possible values: 

Variable Range of Values 

a -6. 99 to +6. 99 

b -6. 99 to +6. 99 

6X -.25 to +.25 

Simpson's rule for approximating a definite integral is: 

b 

J f(x)dx = tl: (f(a)+4f(aMx)-f2f(a+26x)+4f(a+36x)+ ... +f(b) 

a 

The last term is reached when (a+k6x)=b , and when neither a 
2 nor a 4 appears in front of the first or last term. 

FORTRAN C-1 



START 

LAST TERM 
LIMITS 

K = (B~;tl 

INCREMENT DO: 
.--------"Pl N = N + l 

TERM= 

SUM= SUM+ 
c• TERM 

c =•. 

YES 

SUM= SUM+ 
TERML 

c = 2. 

SAMPLE PROGRAM FLOWCHART 

C-2 FORTRAN 

END 



c 
0 

5 6 7 10 15 

FITNJTBl_,L~ I ! 1 
j PRP_§RAJM iSM_F>!SN 

J 
ll 

, J1!3 F~RTu'Ti(t2E8. 2L._E7. 2) l • 
ll TERML=:c:os (Js!>!tillJ I : : 

1 

SUM= CO'S'(~ )t/At l 
J_ t K:= { 8-A) /C EL TX J I j_ 

q=4. I :J T 

ll Il= K + 1, I I I 

· r Do. r60 IN= 1 Li.!r 1 1 

1 
1 r 

J_ FN= ~ i I T ! T I 

I It 

J_ 

I I : 

I FC:TER,M-TEIRML) 3!2), 7~, 13T~ 1 J.. t 

:3.0 S,UM= S:U~+C*TtERM I ' I 

40 C= 2:. 1 i I J i ! 

: !Go Jr o 60 1 • r 

5'0 IC=4:. I I J 
I~~ je;ON1T IN!UE l I 

T 110 suM:= s1uM+rTERHL : II l 
I 8~ SUM= { SUM*DETL1T\><ll I 3. I J l 

j_ 

l 

l I 

9~ FOR~AT <"SU~= "wE s. 2 > l 
STOP J_ T I 1 

ENID j 
ENID$ ' ! 

I I ,-t 
j_ I : I 

: 

i I I l 
I l ! i -,-

L'...L 
i I 

T ! 

lORl•ONE. 

2•TWO 

I 

i 

I 

1 

T I 
! 

I 

TJ 
I I 

I, 
l 

i 
1 1 

I J_ I l 
I I! I 

I I 

j_ 

l 

LINE TUMINATED SY RETURN/ LINE FEED \'VLF) 
LINEISDELETf.D!YRUIOUTllEFORER/lf 

1 

PROGRAM 

" so 

! 
I 

i I 

I 

J_ I 

i I 

-'-
! j_ 
I 

I I i 

! 

l 

I 

_j_ I 

I 
I 

I l j_ 

IT 
j_ l 

1 l I i I 

I i; 11 

I l 
T 

I 

, I 

I i 

1 
J! 

T I 

J_ + 
I I 

t l 

FORTRAN C-3 



OBJECT PROGRAM 

Input and Output Data 

1·23 ~.72 ·25 
SUM=-·63E+00 
STOP 

1.23 2.01 •• ., 
SUM=-• 12E-01 
STOP 

0.34 1.01 ·02 
SUM= .88E+00 
STOP 

0.00 1.00 .01 
SUM= • 57E+36 
STOP 

1.00 1.25 ·05 
SUM= e92E-01 
STOP 

C-4 FORTRAN 



FORTRAN ERROR MESSAGES D 

During the compilation or assembly of programs, error messages are 
typed on the list output device to aid the programmer in debugging 
programs. Errors detected in the source program are indicated by a 
numeric code inserted before or after the statement in the List Output. 

The format is as follows: 

E-eeee: ssss + nnnn 

eeee The error diagnostic code shown below. 

ssss The statement label of the statement in which the 
error was detected. If unlabeled, 0000 is typed. 

nnnn Ordinal number of the erroneous statement follow­
ing the last labeled statement. (Comment statements 
are not included in this count.) 

Error 
Code Description 

0001 Statement label error: 

a) The label is in positions other than 1-5. 

b) A character in the label is not numeric. 

c) The label is not in the range 1-9999. 

d) The label is doubly defined. 

e) The label indicated is used in a GO TO, DO, or IF 
statement or in an 1/0 operation to name a 
FORMAT statement, but it does not appear in the 
label field for any statement in the program (printed 
after END). 

FORTRAN 0-1 



Error 
Code 

0002 

0003 

0004 

Description 

Unrecognized Statement 

a) The statement being processes is not recognized 
as a valid statement. 

b) A specifications statement follows an executable 
statement. 

c) The specification statements are not in the follow­
ing order: 

DIMENSION 
COMMON 
EQUIVALENCE 

d) A statement function precedes a specification state­
ment. 

Parenthesis error: There are an unequal number of left 
and' right parentheses in a statement. 

Illegal character or format: 

a) A statement contains a character other than A 
Z, 0 through 9, or space=+-/(),.$". 

,b) A statement does not have the proper format. 

c) A control statement is missing, misspelled, or does 
not have the proper format. 

d) An indexing parameter of a DO-loop is not an 
unsigned integer constant or simple integer variable 
or is specified as zero. 

0005 Adjacent operators: An arithmetic expression contains 
adjacent arithmetic operators. 

0006 Illegal subscript: A variable name is used both as a simple 
variable and a subscripted variable. 

0-2 FORTRAN 



Error 
Code 

0009 

0010 

0011 

Description 

Doubly defined variable: 

a) A variable name appears more than once in a 
COMMON statement. 

b) A variable name appears more than once in a 
DIMENSION statement. 

c) A variable name appears more than once as a dummy 
argument in a statement function. 

d) A program subroutine, or function name appears 
as a dummy parameter; in a specifications statement 
of the subroutine or function; or as a simple variable 
in a program or subroutine. 

Invalid parameter list: 

a) The dummy parameter list for a subroutine or 
function exceeds 63. 

b) Duplicate parameters appear in a statement func­
tion. 

Invalid arithmetic expression: 

a) Missing operator 

b) Illegal replacement 

Mixed mode expression: integer constants or variables 
appear in an arithmetic expression with real constants 
or variables. 

Invalid subscript: 

a) Subscript is not an integer constant, integer variable, 
or legal subscript expression. 

b) There are more than two subscripts (i.e., more than 
two dimensions.) 

c) Two subscripts appear for a variable which has been 
defined with one dimension only. 

FORTRAN D-3 



Error 
Code 

0012 

0013 

~fill4 

0015 

~fi)16 

D-4 FORTRAN 

Description 

Invalid constant: 

a) 

b) 

c) 

An integer constant is not in the range of -215 · 
to 215 -1. 

A real constant is not in the approximate range of 
1038 to 10-38. 

A constant contains an illegal character. 

Invalid EQUIV ALEN CE statement: 

a) Two or more of the variables appearing in an 
EQUIV ALEN CE statement are also defined in the 
COMMON block. 

b) The variables contained in an EQUIVALENCE cause 
the origin of COMMON to be altered. 

c) Contradictory equivalence; or equivalence between 
two or more arrays conflicts with a previously 
established equivalence. 

Table overflow: Too many variables and statement labels 
appear in the program. 

Invalid DO loop: 

a) The terminal statement of a DO loop does not 
appear in the program or appears prior to the 
DO statement. 

b) The terminal statement of a nested DO loop is not 
within the range of the outer DO loop. 

c) DO loops are nested more than lfil deep. 

d) Last statement in a loop is a GO TO, arithmetic 
IF, RETURN, STOP, PAUSE, or DO. 

Statement function name is doubly defined. 



The 7210A Graphic Plotter is easily added to your 
HP 2100A Computer. Up to 20 coordinate pairs per 
second can be accurately plotted. 

BASIC Language Reference Manual I 



CONTENTS 

CHAPTER 1 COMMUNICATING WITH THE COMPUTER 1·1 
1.1 Statement 1-2 
1.1.1 Statement Number 1-2 
1.1.2 Instruction 1-3 
1.1.3 Operand 1-3 
1.1.4 Free Format in Statement 1-4 
1.2 A Program 1-4 
1.3 Spot Check 1-5 
1.4 Working with the Computer 1-5 
1.4.1 Entering a Program 1-6 
1.4.2 Mistakes and Corrections 1-7 
1.4.3 Deleting a Statement 1-7 
1.4.4 Changing a Statement 1-8 
1.5 Running a Program 1-9 
1.6 Stopping a Program 1-10 
1. 7 How the Program Works 1-10 

CHAPTER 2 THE ESSENTIALS OF BASIC 2· 1 
2.1 Terms 2-2 
2.1.1 Term: Simple Variable 2-2 
2.1.2 Term: Number 2-3 
2.1.3 Term: E Notation 2-3 
2.1.4 Term: Expression 2-4 
2.1.5 Term: Arithmetic Evaluation 2-4 
2.2 Operators 2-5 
2.2.1 The Assignment Operator 2-5 
2.2.2 Relational Operators 2-6 
2.2.3 Arithmetic Operators 2-7 
2.2.4 The AND Operator 2-9 
2.2.5 The OR Operator 2-10 
2.2.6 The NOT Operator 2-11 
2.3 Order of Precedence 2-12 
2.4 Statements 2-13 
2.4.1 The LET Statement 2-14 
2.4.2 REM-Comments Statement 2-15 
2.4.3 INPUT Statement 2-16 
2.4.4 PRINT Statement 2-18 
2.4.5 GO TO Statement 2-24 
2.4.6 IF ... THEN 2-25 
2.4. 7 FOR ... NEXT 2-27 
2.4.8 Nesting FOR ... NEXT Loops 2-30 
2.4.9 READ, DATA and RESTORE 

Statements 2-31 

BASICi 



2.5 Program Halts-Temporary, Permanent 2-33 
2.5.1 WAIT Statement 2-33 
2.5.2 END and STOP Statements 2-34 
2.6 Sample Program 2-35 
2.6.1 Listing of Sample Program 2-36 
2.6.2 Running the Sample Program 2-39 
2.7 Commands 2-40 
2.7.1 RUN 2-41 
2.7.2 LIST 2-41 
2.7.3 SCRATCH 2-42 
2.7.4 TAPE 2-43 
2.7.5 PT APE 2-44 
2.7.6 PLIST 2-45 

CHAPTER 3 ADVANCED BASIC 3-1 
3.1 Terms 3-2 
3.1.l Term: Routine 3-2 
3.1.2 Term: Array or Matrix 3-3 
3.1.3 Term: String 3-4 
3.1.4 Term: Function 3-4 
3.1.5 Term: Word 3-5 
3.2 Subroutines and Functions 3-6 
3.2.1 GOSUB ... RETURN 3-6 
3.2.2 FOR ... NEXT with STEP 3-10 
3.2.3 General Mathematical Functions 3-11 
3.2.4 Trigonometric Functions 3-12 
3.2.5 DEF FN - Function Definition 3-13 
3.2.6 COM Statement 3-15 
3.2.7 The TAB and SGN Functions 3-17 

CHAPTER 4 MATRICES 4-1 
4.1 Terms 4-1 
4.1.1 Term: Matrix (Array) 4-1 
4.1.2 DIM Statement 4-2 
4.1.3 MAT ... ZER 4-3 
4.1.4 MAT ... CON 4-4 
4.2 Inputting Single Matrix Elements 4-6 
4.3 Printing 4-7 
4.3.1 Printing Single Matrix Elements 4-7 
4.3.2 MAT PRINT 4-8 
4.4 Reading 4-9 
4.4.1 Reading Matrix Elements 4-9 
4.4.2 MATREAD 4-10 

ii BASIC 



4.5 Matrix Arithmetic 4-11 
4.5.1 Matrix Addition 4-11 
4.5.2 Matrix Subtraction 4-12 
4.5.3 Matrix Multiplication 4-13 
4.5.4 Scalar Multiplication 4-14 
4.6 Copying a Matrix 4-15 
4.7 Identity Matrix 4-16 
4.8 Matrix Manipulation 4-17 
4.8.1 Matrix Transposition 4-17 
4.8.2 Matrix Inversion 4-18 

CHAPTER 5 LOGICAL OPERATIONS 5-1 
5.1 Logical Values and Numeric Values 5-1 
5.2 Relational Operators 5-2 
5.3 Boolean Operators 5-3 
5.4 Some Examples 5-4 

CHAPTER 6 SYNTAX REQUIREMENTS OF BASIC 6-1 

CHAPTER 7 FOR ADVANCED PROGRAMMERS 7-1 
7.1 Modifying HP BASIC 7-1 
7.2 CALL Statement 7-1 
7.3 BYE Command 7-5 
7.4 First and Last Words of Available. 

Memory 7-6 
7.5 First Word Available in Base Page 7-6 
7.6 Link Points 7-7 
7.7 Linkages to Subroutines 7-7 
7.8 Deleting the Matrix Subroutines 7-9 

APPENDIX A GENERATING HP BASIC A·l 
Configuring an HP BASIC System A-2 
Loading the Configured HP BASIC 

System A-4 



COMMUNICATING WITH THE COMPUTER 1 

There are many types of languages. English is a natural language used to 
communicate with people. 

To communicate with the computer, formal languages are used. A formal 
language is a combination of simple English and algebra. BASIC, the 
Beginner's All-purpose Symbolic Instruction Code, permits the user to 
easily communicate with the computer. It is easy for even beginners to 
learn, but powerful enough for the advanced user. 

Like natural languages BASIC has grammatical rules, but they are much 
simpler. For example, this series of BASIC statements (which calculates 
the average of five numbers given by you, the user) shows the funda­
mental rules: 

10 INPUT A,B,C,D,E 

20 LETS = (A+B+C+D+E) /5 

30PRINTS 

40GOTO 10 

50END 

This and the following pages show how to interpret these rules. Notice 
how the statements are written. What they do is explained later. 

BASIC 1-1 



1.1 STATEMENT 

This is a BASIC statement: 

10 INPUT A,B,C,D,E 

Comments 

A statement contains a maximum of 72 characters (one teletypewriter 
line). 

A statement may also be called a line. 

1.1.1 STATEMENT NUMBER 

Each BASIC statement begins with a statement number (in this 
example, 20): 

20 LETS= (A+B+C+D+E) /5 

Comments 

The number is called a statement number or a line number. 

The statement number is chosen by you, the programmer. It may be any 
integer from 1 to 9999 inclusive. 

1-2 BASIC 



Each statement has a unique statement number. The computer uses the 
numbers to keep the statements in order. 

Statements may be entered in any order; they are usually numbered by 
fives or tens so that additional statements can be easily inserted. The 
computer keeps them in numerical order no matter how they are 
entered. For example, if statements are input in the sequence 30,10,20; 
the computer arranges them in the order: 10,20,30. 

1.1.2 INSTRUCTION 

The statement then gives an instruction to the computer (in this 
example, PRINT): 

30PRINTS 

Comments 

Instructions are sometimes called statement types because they identify 
a type of statement. For example, the state_ment above is a "print" 
statement. 

1.1.3 OPERAND 

If the instruction requires further details, operands (numeric details) 
are supplied (in this example, 10; above, "S"): 

40 GO TO 10 

Comments 

The operands specify what the instruction act upon; for example, what 
is PRINTed, or where to GO. 

BASIC 1-3 



1.1.4 FREE FORMAT IN STATEMENT 

BASIC is a "free format" language-the computer ignores extra blank 
spaces in a statement. For example, these three statements are 
equivalent: 

30 PRINT S 

30 PRINT S 

30PRINTS 

Comments 

When possible, leave a space between words and numbers in a statement. 
This makes a program easier for people to read. 

1.2 A PROGRAM 

The sequence of BASIC statements given on the previous pages is called 
a program. The last statement in a program, as shown here, is an END 
statement. 

10 INPUT A,B,C,D,E 

20 LE'T S=(A+B+C+D+E) /5 

30 PRINTS 

40 GOTO 10 

50 END 

1-4 BASIC 



Comments 

The last (highest numbered) statement in a program must be an END 
statement. 

The END statement informs the computer that the program is finished. 

1.3 SPOT CHECK 

Be sure you are familiar with these terms before continuing: 

statement 

instruction 

statement type 

statement number 

line number 

operand 

program 

All of these terms are defined in the context of the preceding pages. 

1.4 WORKING WITH THE COMPUTER 

The following pages explain how to correct mistakes and list programs. 

BASIC 1-5 



1.4.1 ENTERING A PROGRAM 

Return 

The RETURN key must be pressed after each statement. 

10 INPUT A,B,C,D,E, RETURN 

20 LET S=(A+B+C+D+E) /5 RETURN 

30 PRINT s RETURN 

40 GO TO 10 RETURN 

50 END RETURN 

Comments 

Pressing RETURN informs the computer that the statement is complete. 
The computer then checks the statement for mistakes. 

linefeed 

The computer responds with a linefeed (terminal skips a line) after each 
statement is entered, indicating that the statement has been checked, 
accepted, and the computer is ready for another statement. 

lfl INPUT A,B,C,D,E RETURN 

linefeed 
20 LET s (A+B+C+D+E) /5 RETURN 

linefeed 
30 PRINT s RETURN 

linefeed 
40 GO TO 10 RETURN 

linefeed 
50 END RETURN 

linefeed 

1-6 BASIC 



1.4.2 MISTAKES AND CORRECTIONS 

The reverse arrow ( +--) key acts as a backspace, deleting the immediately 
preceding character. 

Typing these characters: 

is equivalent to typing: 

And, typing these characters: 

is equivalent to typing: 

Comments 

20 LR+-ET 8=10 RETURN 

20 LET S-10 RETURN 

30 LET+-+--+-- PRINT s RETURN 

30 PRINT s RETURN 

The +--character is a "shift" 0 on most terminals. 

1.4.3 DELETING A STATEMENT 

To delete the statement being typed, press the Esc or ALT-MODE key. 
This causes a \ to be printed, and deletes the entire line being typed. 

20 LET s = ESC 

NITTE: The computer responds with a\ when Esc is typed, like this: 

20 LET S = \ 

BASIC 1-7 



To delete a previously typed statement, type the statement number 
followed by a RETURN in the following sequence: 

5LETS=0 

10 INPUT A,B,C,D,E 

20 LET S = (A+B+C+D+E) /5 

To delete statement 5 type: 

5 RETURN 

1.4.4 CHANGING A STATEMENT 

To change a previously typed statement, retype it with the desired 
changes. The new statement replaces the old one. 

To change statement 5 in the above sequence, type: 

5 LET s = 5 RETURN 

The old statement is replaced by the new one. 

Typing an Esc (or ALT-MODE ) before a RETURN prevents replacement 
of a previously typed statement. 

For example, typing: 5 LET ESC 

or: 5 ESC 

has no effect on the original statement 5. 

1-8 BASIC 



1.5 RUNNING A PROGRAM 

The program does not begin execution (does not run) until the command 
RUN followed by a RETURN is typed. 

NOTE: The sample program (averaging 5 numbers) has been entered. 

Comments 

The computer responds with 
a linefeed indicating that the 
command is being executed. 

The question mark indicates 
that input is expected. The five 
numbers being averaged should 
be typed in, SEPARATED BY 
COMMAS, and followed by a 
RETURN. 

The answer is printed. 

? indicates that five more 
numbers are expected. 

The answer is printed. 

NOTE: This program con­
tinues executing in­
definitely, unless ter­
minated by the user. 
To terminate, type an 
s RETURN when 
more input is re­
quested. 

The program is finished. 

RUN RETURN 

linefeed 

? 95.6,87,3,5,90,82.8 RETURN 

linefeed 

78.08 RETURN 

linefeed 

? -12.5,-5f.).6,-32,45.6,6@ RETURN 

2.1 RETURN 

linefeed 

? 8 RETURN 

BASIC 1-9 



1.6 STOPPING A PROGRAM 

When RUN or LIST is typed, BASIC "takes over" the terminal until 
the program finishes executing or the listing is complete. 

To stop a program that is running or being listed, press, then release, 
any key. 

Esc (or any key) 

BASIC then responds with the STOP message: 

STOP 

Comments 

Remember that: S RETURN is used to end input loops. 

1.7 HOW THE PROGRAM WORKS 

10 INPUT A,B,C,D,E 

1-10 BASIC 

Line 10 tells the computer that five 
numbers will be input, and that they 
should be given the labels A,B,C,D,E 
in sequence. The first number input 
is labeled "A" by the computer, the 
second "B", etc. A,B,C,D, and E are 
called variables. 



20 LET S (A+B+C+D+E)/5 

30 PRINTS 

40 GO TO 10 

After line lC) is executed, the vari­
ables and their assigned values, typed 
in by the user, are stored. For 
example, using the values entered by 
the user in the previous example, this 
information is stored: A = -12.5; 
B = -50.6; C = -32; D = 45.6; 
E = 60. 

Line 20 declares that a variable 
called S exists, and is assigned the 
value of the sum of the variables 
A,B,C,D,E divided by 5. 

Line 30 instructs the computer to 
output the value of S to user's 
terminal. 

NOTE: If the PRINT statement 
were not given, the value 
of S would be calculated 
and stored, but not print­
ed. The computer must be 
given explicit instruction 
for each operation to be 
performed. 

Line 40 tells the computer to go to 
line 10 and execute whatever instruc­
tion is there. 

NOTE: A "loop" is formed by 
lines 10 to 40. The se­
quence of statements in 
this loop execute until the 
user breaks the loop. This 
particular kind of loop is 
called an input loop (be­
cause the user must con­
sistently input data). 

BASIC 1-11 



50 END 

1-12 BASIC 

TYPING: S WHEN INPUT IS RE­
QUESTED BY A "?" IS THE ONLY 
WAY TO BREAK AN INPUT LOOP. 
Other, more controlled loops are 
explained later. Line 5f) is not exe­
cuted until the loop is broken by 
typing S when input is requested. 

Line 50 informs the computer that 
the program is finished. 



THE ESSENTIALS OF BASIC 

This section contains enough information to allow you to use BASIC 
in simple applications. 

2 

Proceed at your own pace. The information in the vocabulary and 
operators subsections is included for completeness; experienced pro­
grammers may skip these. 

The "Operators" pages contain brief descriptions, rather than explana­
tions, of the logical operators. The novice should not expect to gain a 
clear understanding of logical operators from this presentation. Chapter 5 
presents more details and examples of logical operations. Readers wishing 
to make best use of logical capabilities should consult this chapter. Those 
unfamiliar with logical operations should also ref er to an elementary 
logic text. 

A simple program is included at the end of this chapter for reference; it 
contains a running commentary on the uses of many of the BASIC 
statements presented in the chapter. 

BASIC 2-1 



2.1 TERMS 

2.1.1 TERM: SIMPLE VARIABLE 

A letter (from A to Z); or a letter immediately followed by a digit 
(from 0 to 9). 

EXAMPLES: A0 B 

M5 C2 

Z9 D 

Comments 

Variables are used to represent numeric values. For instance, in the 
statement: 

HJ LET M5 96. 7 

M5 is a variable; 96. 7 is the value of the variable M5. 

There is one other type of variable in BASIC, the array (subscripted) 
variable; its use is explained in Chapter 4. 

2-2 BASIC 



2.1.2 TERM: NUMBER 

A number is defined in BASIC as a decimal number (the sign is optional) 
between an approximate minimum of: 10-38 (or 2-129) and an approx­
imate maximum of: 1038 (or 2127). Zero is included in this range. 

EXANlPLES: -10008 

126.257 

16.01 

2.1.3 TERM: E NOTATION 

5 

0 

.06784 

3.14159 

10E37 

-10 E37 

10E+37 

10E-37 

1.0E+2 

E notation in BASIC is a means of expressing numbers having more than 
six decimal digits, in the form of a decimal number raised to some power 
of 10. 

EXANlPLES: l.00000E+06 is equal to 1,000,000 and is read: "1 times 
10 to the sixth power" (lx106). 

1.02000E+04 is equal to 10,2f)0 

1.02000E-04 is equal to .000102 

Comments 

"E" notation is used to print numbers having more than six significant 
digits. It may also be used for input of any number. 

When entering numbers in "E" notation, leading and trailing zeros may 
be omitted from the number; the + sign and leading zeros may be 
omitted from the exponent. 

The precision of numbers is 6 to 7 decimals digits (23 binary digits). 

BASIC 2-3 



2.1.4 TERM: EXPRESSION 

An expression is a combination of variables, constants and operators 
which evaluates to a numeric value. 

EXAMPLES: 

(P + 5)/27 

(where P has previously been assigned a numeric value.) 

Q - (N + 4) 

(where Q and N have previously been assigned numeric values.) 

2.1.5 TERM: ARITHMETIC EVALUATION 

Arithmetic evaluation is the process of calculating the value of an expres­
sion. 

2-4 BASIC 



2.2 OPERA TORS 

2.2.1 THE ASSIGNMENT OPERA TOR 

SYMBOL: 

EXAMPLES: 

10 LET A = B2 = C 0 

20 LET A9 = C5 

30 LET Y = (N-(R+5))/T 

40 LET N5 = A + B2 

50 LET P5 = P6=P7=A=B=98.6 

GENERAL FORlVI: 

LET variable = expression 

Purpose 

Assigns an arithmetic or logical value to a variable. 

Comments 

When used as an assignment operator, = is read "takes the value of," 
rather than "equals." It is, therefore, possible to use assignment 
statements such as: 

LET X = X+2 

This is interpreted by BASIC as: "LET X take the value of (the present 
value of) X, plus two."· 

Several assignments may be made in the same statement, as in statements 
10 and 50 above. 

See Chapter 5, "Logical Operations" for a description of logical 
assignments. 

BASIC 2-5 



2.2.2 RELATIONAL OPERA TORS 

SYMBOLS: 

# < > > < >= <= 

EXAMPLES: 

100 IF A=B THEN 9CJ0 

110 IF A+B >C THEN 910 

120 IF A+B < C+E THEN 920 

130 IF C>=D*E THEN 930 

140 IF C9<= G*H THEN 940 

150 IF P2#C9 THEN 950 

160 IF J <> K THEN 950 

Purpose 

Determines the logical relationship between two expressions, as 

equality: 

inequality: # or <> 

greater than: > 

less than: < 

greater than or equal to: >= 

less than or equal to: <= 

Comments 

NOTE: It is not necessary for the novice to understand the nature 
of logical evaluation of relational operators, at this point. The 
comments below are for the experienced programmer. 

2-6 BASIC 



Expressions using relational operators are logically evaluated, and 
assigned a value of "true" or "false" (the numeric value is 1 for "true," 
and 0 for "false"). 

When the = symbol is used in such a way that it might have either an 
assignment or a relational function, BASIC assumes it is an assignment 
operator. For a description of the assignment statement using logical 
operators, see Chapter 5, "Logical Operations." 

2.2.3 ARITHMETIC OPERA TORS 

SYMBOLS: 

t * I + -

EXAMPLES: 

40 LET Nl = X-5 

50 LET C2 = Nt3 

60 LET A = (B-C)/4 

70 LET X = ((Pt2)-(Y*X))/N+Q 

Purpose 

Represents an arithmetic operation, as: 

exponentiate: t 

multiply: * 

divide: 

add: + 

subtract: 

BASIC 2-7 



Comments 

The "-" symbol is also used as a sign for negative numbers. It is good 
practice to group arithmetic operations with parentheses when unsure 
of the exact order of precedence. The order of precedence (hierarchy) 
is: 

t 

* I 
+ -

with t having the highest priority. Operators on the same level of 
priority are acted upon from left to right in a statement. See "Order 
of Precedence" in this Chapter for examples. 

The symbols + and - are also used to indicate unary plus and unary 
minus. For example, negative numbers may be expressed in a statement 
without using parentheses: 

10 LET Al = -B 

20 LET C2 D ++E 

30 LET B5 B --C 

See "Order of Precedence" in this Chapter for examples of how unary + 
and unary - are interpreted. 

2-8 BASIC 



2.2.4 THE AND OPERATOR 

SYMBOL: 

AND 

EXAMPLES: 

60 IF A9<Bl AND C#5 THEN 100 

70 IF T7#T AND J=27 THEN 150 

80 IF Pl AND R> 1 AND N AND V2 THEN 10 

90 PRINT X AND Y 

Purpose 

Forms a logical conjunction between two expressions. If both are 
"true," the conjunction is "true"; if one or both are "false," the con­
junction is "false." 

NOTE: It is not necessary for the novice to understand how this 
operator works. The comments below are for experienced 
programmers. 

Comments 

The numeric value of "true" is 1, of "false" is 0. 

All non-zero values are "true." For example, statement 90 would print 
either a 0 or a 1 (the logical value of the expression X AND Y) rather 
than the actual numeric values of X and Y. 

BASIC 2-9 



Control is transferred in an IF statement using AND, only when all 
parts of the AND conjunction are "true." For instance, example state­
ment 80 requires four "true" conditions before control is transferred 
to statement 10. 

See Chapter 5, "Logical Operations" for a more complete description 
of logical evaluation. 

2.2.5 THE OR OPERA TOR 

SYMBOL: 

OR 

EXAMPLES: 

100 IF A> 1 OR B<5 THEN 500 

110 PRINT 'C OR D 

120 LET D = X ORY 

130 IF (X AND Y) OR (P AND Q) THEN 600 

Purpose 

Forms the logical disjunction of two expressions. If either or both of 
the expressions are "true," the OR disjunction is "true"; if both expres­
sions are "false," the OR disjunction is "false." 

NOTE: It is not necessary for the novice to understand how this 
operator works. The comments below are for experienced 
programmers. 

2·10 BASIC 



Comments 

The numeric values are: 'true" = 1, "false" = 0. 

All non-zero values are "true"; all zero values are "false." 

Control is transferred in an IF statement using OR, when either or both 
of the two expressions evaluate to "true." 

See Chapter 5, "Logical Operations" for a more complete description 
of logical evaluation. 

2.2.6 THE NOT OPERATOR 

SYMBOL: 

NOT 

EXAMPLES: 

30 LET X = Y = 0 

35 IF NOT A THEN 30() 

45 IF (NOT C) AND A THEN 400 

55 LET B5 = NOT P 

65 PRINT NOT (X AND Y) 

70 IF NOT (A=B) THEN 500 

Purpose 

Logically evaluates the complement of a given expression. 

NOTE: It is not necessary for the novice to understand how this 
operator works. The comments below are intended for experi­
enced programmers. 

BASIC 2-11 



Comments 

If A= 0, then NOT A= 1; if A has a non-zero value, NOT A= 0. 

The numeric values are: "true" = 1, "false" = 0; for example, statement 
65 above would print "l'', since the expression NOT (X AND Y) 
is "true." 

Note that the logical specifications of an expression may be changed 
by evaluating the complement. In statement 35 above, if A equals zero, 
the evaluation would be "true" (1); since A has a numeric value of (J, 
it has a logical value of "false," making NOT A "true." 

See Chapter 5, "Logical Operations" for a more complete description 
of logical evaluation. 

2.3 ORDER OF PRECEDENCE 

The order of performing operations is: 

t 

NOT unary + unary -

* 
+ 

Relational Operators 

AND 

OR 

2-12 BASIC 

highest precedence 

lowest precedence 



Comments 

If two operators are on the same level, the order of execution is left 
to right, for example: 

5 + 6*7 

7/14*2/5 

is evaluated as: 

is evaluated as: 

5 + (6x7) 

(7/14)x2 

5 

Parentheses override the order of precedence in all cases, for example: 

5 + (6x3) is evaluated as: 5 + 18 

and 

3 + (6+(2t2)) is evaluated as: 3 + (6+4) 

Unary + and - may be used; the parentheses are assumed by BASIC. 
For example: 

A++B 

C - + D -5 

is interpreted: 

is interpreted: 

A+ (+B) 

C - (+D)-5 

Leading unary + signs are omitted from output by BASIC, hut remain 
in program listings. 

2.4 STATEMENTS 

Statements are instructions to the computer. They are contained in 
numbered lines within a program, and execute in the order of their line 
numbers. Statements cannot be executed without running a program. 
They tell the computer what to do while a program is running. 

Here are some examples mentioned in Chapter 1: 

LET 

PRINT 

INPUT 

BASIC 2-13 



Do not attempt to memorize every detail in the "Statements" subsection; 
there is too much material to master in a single session. By experimenting 
with the sample programs and attempting to write your own programs, 
you will learn more quickly than by memorizing. 

2.4.1 THE LET STATEMENT 

EXAMPLES: 

10 LET A 5.02 

20 LET X Y7 = Z 0 

30 LET B9 = 5* (Xt2) 

40 LET D = (3*C2tN)/(A*(N/2)) 

GENERAL FORM: 

statement number LET variable = number or expression or variable 
variable . .. 

Purpose 

Used to assign or specify the value of a variable. The value may be an 
expression, a number, or a variable. 

Comments 

The assignment statement must contain: 

1. A statement number, 

2. LET, 

3. The variable to be assigned a value (for example, B9 in state­
ment 30 above), 

4. The assignment operator, an = sign, 

5. The number, expression or variable to be assigned to the vari­
able (for exampie, 5*(Xt2) in statement 30 above). 

2-14 BASIC 



Statement 20 in the example shows the use of an assignment to give 
the same value (0) to several variables. This is a useful feature for 
initializing variables in the beginning of a program. 

2.4.2 REM - COMMENTS STATEMENT 

EXAMPLES: 

10 REM-THIS IS AN EXAMPLE 

20 REM: OF REM STATEMENTS 

30 REM----/////*****!!!!! 

40 REM. STATEMENTS ARE NOT EXECUTED BY BASIC 

GENERAL FORM: 

statement number REM any remark or series of characters 

Purpose 

Allows insertion of a line of remarks or comment in the listing of a 
program. 

Comments 

Must be preceded by a line number. Any series of characters may follow 
REM. 

REM lines are part of a BASIC program and are printed when the 
program is listed or punched; however, they are ignored when the pro­
gram is executing. 

Remarks are easier to read if REM is followed by a punctuation mark, 
as in the example statements. 

BASIC 2-15 



2.4.3 INPUT STATEMENT 

This program shows several variations of the INPUT statement and 
their effects. 

Sample Program Using INPUT 

10 INPUT A 

20 INPUT Al,B2,C3,Z0,Z9,E5 

30 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R"; 

40 INPUTR 

50 PRINT A;Al;B2;C3;Z0;Z9;E5; "R=";R 

60GOTO10 

70 END 

- - - - - - - - - - - - - - - - - - - - - - - - - RESULTS - - - - - - - - - - - - - - - - - - - - - - - -

RUN RETURN 

?1 RETURN 

?2, 3, 4, 5, 6, 7 RETURN 

WHAT VALUE SHOULD BE ASSIGNED TO R?27 RETURN 

1 2 3 4 5 6 7 R= 27 

?1.5 RETURN 

?2.5, 3.5, 4.5, 6., 7.2 RETURN 

?8.1 RETURN ? indicates that more input is expected 

WHAT VALUE SHOULD BE ASSIGNED TO R?-99 RETURN 

1.5 2.5 3.5 4.5 6 7.2 8.1 R= -99 

GENERAL FORM: 

statement number INPUT variable , variable , ... 

2-16 BASIC 



Purpose 

Asfilgns a value input from the teleprinter to a variable. 

Comments 

The program comes to a halt, and a question mark is print.ed when the 
INPUT statement is used. The program does not continue execution 
until the input requirements are satisfied. 

Only one question mark is printed for each INPUT statement. The 
statements: 

10 INPUT A, B2, C5, D, E, F, G 

20 INPUT X 

each cause a single "?" to be printed. The "?" generated by stat.ement 
10 requires seven input items, separated by commas, while the "?" 
generated by statement 20 requires only a single input item 

The only way to terminate or exit a program when input is required is 
entering: S RETURN. Note that the S ends the program; it must be 
restarted with the RUN command. 

Relevant Diagnostics: 

? indicates that input is required. 

NOTE: A? is print.ed on the terminal when more numbers are required 
to satisfy an input statement (usually, too few numbers were 
typed). The ? continues to be printed after each response until 
enough numbers are typed in. 

See PRINT in this chapter for output variations. 

BASIC 2-17 



2.4.4 PRINT STATEMENT 

This sample program gives a variety of examples of the PRINT state­
ment. The results are shown below. 

10 LET A=B=C=10 

20 LET D1 =E9=20 

30 PRINT A,B,C,Dl,E9 

40 PRINT A/B,B/C/Dl +E9 

50 PRINT "NOTE THE POWER TO EVALUATE AN 
EXPRESSION AND PRINT THE" 

60 PRINT "VALUE IN THE SAME STATEMENT." 

70 PRINT 

80 PRINT 

90 REM* "PRINT" WITH NO OPERAND CAUSES THE 
TELEPRINTER TO SKIP A LINE. 

100 PRINT" 'A' DIVIDED BY 'E9' ="; A/E9 

110 PRINT "11111", "22222", "33333", "44444", 
"55555", "66666" 

120 PRINT "11111"; "22222"; "33333"; "44444"; 
"55555";"66666" 

130 END 

- - - - - - - - - - - - - - - - - - - - - - - - -RESULTS- - - - - - - - - - - - - - - - - - - - - - - -

RUN RETURN 

10 10 10 20 20 
1 20.05 

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT 
THE VALUE IN THE SAME STATEMENT. 

'A' DIVIDED BY 'E9' = .5 

11111 22222 33333 44444 55555 66666 

111112222233333444445555566666 

2-18 BASIC 



NOTE: The "," and ";" used in statements 110 and 120 have very 
different effects on the format. 

GENERAL FORM: 

statement number PRINT expression , expression , ... 

or 

statement number PRINT ''any text"; expression; .. . 

or 

statement number PRINT "text"; expression; "text", "text", . .. 

or 

statement number PRINT any combination of text 
and/or expressions 

or 

statement number PRINT 

Purpose 

Causes the expression or "text" to be output to the terminal. 

Causes the teleprinter to skip a line when used without an operand. 

Comments 

Note the effects of , and ; on the output of the sample program. If a 
comma is used to separate PRINT operands, five fields are printed per 
teleprinter line. If semicolon is used, up to twelve "packed" numeric 
fields are output per teleprinter line (72 characters). 

Text in quotes is printed literally. 

BASIC 2-19 



NOTE: A variable name is considered as a simple expression by 
BASIC. For example, a statement for the first general form 
shown above might be: 

100 PRINT Al, B2, C3 

or 

100 PRINT A, Z, X, T9 

where the variables represent numeric expressions. 

Remember that variable values must be defined in an assignment, INPUT, 
READ or FOR statement before being used in a PRINT statement. 

Although the format of the PRINT statement is "automatic" to help 
beginning programmers, the experienced programmer may use several 
features to control his output format. 

Each line output to the terminal is divided into five print fields when 
commas are used as separators (as in statement 30 in the sample pro­
gram). The fields begin at print spaces 0, 15, 30, 45, and 60. The first 
four fields contain fifteen spaces, and the last field contains twelve. 
The comma signals the computer to move to the next print field, or if 
in the last field, to move to the next line. 

More information may be printed on a line by using semicolons as 
separators. Twelve numbers may be printed per line by using semi­
colons. (See the output from statements 110 and 120 in the sample 
program for an example of the differences in the two separators.) 

Spacing within a print field depends on the value and type of the 
number being print.ed. A number is always printed in a field larger 

2-20 BASIC 



than itself and is left-justified. The space required for a number is 
determined by these formulas: 

Value of Number 

-999 < n < + 999 

-32768 <n< -1000 
+1000 < n < +32767 

.1 <n<999999.5 

n<.1 
999999.5 < n 

Type of Number 

Integer 

Integer 

Large Integer or 
Real 

Large Integer or 
Real 

*The A symbol indicates a space. 

Output Field Size 

AxxxAA* 

AXXXXXAA 

Axxxxxxx AAAA 
(Decimal point 
printed as one of 
the x's; trailing 
zeros suppressed.) 

Ax.xxxxxE ± ee AAA 

Ending a PRINT statement with a semicolon causes the output to be 
printed on the same line, rather than generating a RETURN linefeed after 
the statement is executed. For example, the sequence: · 

20 LET X = 1 

30 PRINT X; 

40 LET X=X+l 

50 GO TO 30 

produces output in this format: 

1 2 3 
13 14 15 

4 5 6 
16 17 18 

7 8 9 
19 20 21 

10 11 
22 23 

12 
24 

BASIC 2-21 



Similarly, ending a PRINT statement with a comma causes output to fill 
all five fields on a line before moving to the next line. The trailing 
comma in statement 30 in the sequence: 

20 LET X = 1 

30 PRINT X, 

40 LET X=X+l 

50 GO TO 30 

produces output in this format: 

1 
6 
11 

2 
7 
12 

3 
8 
13 

4 
9 
14 

5 
10 
15 

A PRINT statement without an operand (statements 70 and 80 in the 
sample program) generates a RETURN linefeed. 

Three general rules for planning output formats are: 

1. If a number is an integer with a value between -32768 and 
+32767, inclusive, the decimal point is not printed. 

2. If the number is an integer out of the above range or if the 
number is real and has an absolute value between .1 and 
999999.5, the number is rounded to six digits and printed 
with a decimal point. Zeros trailing the decimal point 
are suppressed. 

3. If a number is either greater than 999999.5 or less than .1, 
it is rounded to six places; the teletypewriter then prints a 
space (if positive) or minus sign (if negative), the first digit, 
the decimal point, the next five digits, the letter E (indicating 
exponent), the sign of the exponent, and the exponent. 

2-22 BASIC 



Unlike numbers, strings (characters enclosed in quotation marks) are 
printed without leading or trailing blanks when the semicolon separator 
is used. For example, the program: 

15 PRINT "ANTIDISESTABLISH"; 

20 PRINT "MENT ARIANISM" 

30 END 

when executed prints the two strings adjacent to one another: 

RUN 

ANTIDISESTABLISHMENTARIANISM 

See the description of the TAB function in Chapter 3 for more informa­
tion on controlling output format. 

BASIC 2-23 



2.4.5 GO TO STATEMENT 

EXAMPLES: 

10 LET X = 20 

50 GOTO 100 

80 GOTO 10 

GENERAL FORM: 

statement number GO TO statement number 

Purpose 

Transfers control to the specified statement. 

Comments 

GO TO may be written: GOTO or GO TO. 

This statement must be followed by the statement number to which 
control is transferred. 

GO TO overrides the normal execution sequence of statements in a 
program. 

Useful for repeating a task infinitely, or "jumping" (GOing TO) 
another part of a program if certain conditions are present. 

GO TO should not be used to enter FOR-NEXT loops; doing so may 
produce unpredictable results or fatal errors. (See "FOR ... NEXT" 
in this section for details on loops.) 

To get out of a GO TO loop, press any key. 

2-24 BASIC 



2.4.6 IF ... THEN 

SAMPLE PROGRAM: 

10 LET N = 10 

20 READ X 

30 IF X <=N THEN 60 

40 PRINT "X IS OVER"; N 

50 GO TO 100 

60 PRINT "X IS LESS THAN OR EQUAL TO"; N 

70 GO TO 20 

80 STOP 

GENERAL FORM:: 

statement number IF expression I relational op I expression 
THEN statement number 

Purpose 

Transfers control to a specified statement if a specified condition is 
true. 

Comments 

Som~t,imes described as a conditional transfer; "GO TO" is implied by 
IF ... ''\'HEN, if the condition is true. In the example above, if X<=10, 
the me~ ~'ige in statement 60 is printed (statement 60 is executed). 

BASIC 2-25 



Since numbers are not always represented exactly in the computer, the 
= operator should be used carefully in IF ... THEN statements. Limits, 
such as <=,>=, etc. should be used in an IF expression, rather than =, 
whenever possible. 

If the specified condition for transfer is not true, the program will 
continue executing in sequence. In the example above, if X> 10, the 
message in statement 40 prints. 

The relational operator is optional in logical evaluations. 

See Chapter 5, "Logical Operations," for a more complete description 
of logical evaluation. 

2-26 BASIC 



2.4.7 FOR ... NEXT 

EXAMPLES: 

100 FOR Pl = 1 TO 5 

110 FOR Ql = N TO X 

120 FOR R2 = N TO X STEP 2.5 

130 FOR S = 1 TO X STEP Y 

140 NEXT S 

150 NEXT R2 

160 NEXT Ql 

170 NEXT Pl 

Sample Program - Variable Number of Loops 

40 PRINT "HOW MANY TIMES DO YOU WANT TO LOOP"; 

50 INPUT A 

60 FOR J = 1 TO A 

70 PRINT "THIS IS LOOP"; J 

80 READ Nl, N2, N3 

90 PRINT "THESE DATA ITEMS WERE READ:" Nl; N2; N3 

100 PRINT "SUM ="; (Nl +N2+N3) 

110 NEXT J 

120 DATA 5, 6, 7, 8, 9, 10, 11, 12 

130 DATA 13, 14, 15, 16, 17, 18, 19, 20, 21 

140 DATA 22, 23, 24, 25, 26, 27, 28, 29, 30 

150 DATA 31, 32, 33, 34 

160 END 

BASIC 2-27 



GENERAL FORM: 

statement number FOR simple variable= initial value TO final value 

or 

statement no. FOR simple var. =initial value TO final value STEP 
step value 

statement number NEXT simple variable 

NOTE: The same simple variable must be used in both the FOR 
and NEXT statements of a loop. 

Purpose 

Allows controlled repetition of a group of statements within a program. 

Comments 

Initial value, final value and step value may be any expression. 

STEP and step value are optional; if no step value is specified, the 
computer will automatically increment by one each time it executes 
the loop. 

2-28 BASIC 



How the loop works: 

The simple variable is assigned the value of the initial value; the value 
of the simple variable is increased by 1 (or by the step value) each time 
the loop executes. When the value of the simple variable passes the final 
value, control is transferred to the statement following the "NEXT" 
statement. 

The initial, final, and step values are all evaluated upon entry to the loop 
and remain unchanged after entry. For example, 

FOR I = 1 TO I + 5 

goes from 1 to 6; that is, the final value does not "move" as I increases 
with each pass through the loop. 

For further details on the STEP feature, see "FOR ... NEXT with 
STEP" in Chapter 3. 

Try running the sample program if you are not sure what happens when 
FOR ... NEXT loops are used in a program. 

BASIC 2-29 



2.4.18 1NESTING FOR ... NEXT LOOPS 

Several FOR ... NEXT loops may be used in the same program; they 
may also be nested (placed inside one another). There are two important 
features of FOR ... NEXT loops: 

1. FOR ... NEXT loops may be nested. 

1
10 FOR Al= 1 TO 5 

Range of loop Al 20 FOR B2 = N TO P 

30 FOR C3 = X TO Y STEP R 

Range of loop B2 

Range of loop ca- 80 NEXT C3 

90 NEXT B2 

100 NEXT Al 

2. The range of FOR ... NEXT loops may not overlap. The 
loops in the example above are nested correctly. This example 
shows improper nesting. 

The range of loops 
I and J overlaps. 

2-30 BASIC 

10 FOR I = 1 TO 5 

30 FOR J = 1 TO N 

50 NEXT I 

90 NEXT J 



2.4.9 READ, DATA AND RESTORE 
1
STATEMENTS 

Sample Program using READ and DATA 

15 FOR I=l TO 5 

20 READ A 

40 LET X=At2 

45 PRINT A;" SQUARED ="; X 

50 NEXT I 

55 DATA 5.24,6.75,30.8, 72.65,89.72 

60 END 

Each data item may be read only once in this program. BASIC keeps 
track of data with a "pointer." When the first READ statement is 
encountered, the "pointer" indicates that the first item in the first 
DATA statement (the one with the lowest statement number) is to be 
read; the pointer is then moved to the second item of data, and so on. 

In this example, after the loop has executed five times, the pointer 
remains at the end of the data list. To reread the data, it is necessary to 
reset the pointer. A RESTORE statement moves the pointer back to 
the first data item. 

Sample Program Using RESTORE with READ and DATA. 

20 FOR I = 1 TO 5 

30 READ A 

40 LET X=At2 

50 PRINT A; "SQUARED =";X 

60 NEXT I 

80 RESTORE 

BASIC 2-31 



100 FOR J=l TO 5 

110 READ B 

120 LET Y=Bt4 

130 PRINT B; "TO THE FOURTH POWER =";Y 

140 NEXT J 

150 DATA 5.24,6.75,30.8, 72.65,89.72 

160 END 

GENERAL FORM: 

statement number READ variable, variable, .. . 

statement number DATA number, number, .. . 

statement number RESTORE 

Purpose 

The READ statement instructs BASIC to read an item from a DATA 
statement. 

The DATA statement is used for specifying data in a program. The data 
is read in sequence from first to last DATA statements, and from left 
to right within the DATA statement. 

The RESTORE statement resets the pointer to the first data item, 
allowing data to be reread. 

2-32 BASIC 



2.5 PROGRAM HALTS - TEMPORARY, PERMANENT 

2.5.1 WAIT I STATEMENT 

EXAMPLE: 

900 WAIT (1000) 

990 WAIT ( 3000) 

GENERAL FORM: 

statement number WAIT (expression I max. value of 32767) 

Purpose 

Introduces delays into a program. WAIT causes the program to wait 
the specified number of milliseconds (maximum 32767 milliseconds) 
before continuing execution. 

Comments 

The time delay produced by WAIT is not precisely the number of 
milliseconds specified because there is no provision to account for time 
elapsed during calculation or terminal-computer communication. 

One millisecond = 1/1000 second. 

BASIC 2-33 



2.5.2 END AND STOP STATEMENTS 

EXAMPLES: 

200 IF A # 27.5 THEN 350 

300 STOP 

500 IF B # A THEN 9999 

550 PRINT "B = A" 

600 END 

9999 END 

GENERAL FORM: 

any statement number STOP 

any statement number END 

highest statement number in program END 

Purpose 

Terminates execution of the program. 

Comments 

The highest numbered statement in the program must be an END 
statement. 

2-34 BASIC 



END and STOP statements may be used in any portion of the program 
to terminate execution. 

END and STOP have identical effects; the only difference is that the 
highest numbered statement in a program must be an END statement. 

The RUN command is used to rerun programs terminated by STOP 
or END statements; execution always begins at the lowest numbered 
statement in the program. 

2.6 SAMPLE PROGRAM 

If you understand the effects of the statement types presented up to 
this point, skip to the "COMMANDS" section. -

The sample program on the next two pages uses several BASIC state­
ment types. 

Running the program gives a good idea of the various effects of the 
PRINT statement on teleprinter output. If you choose to run the pro­
gram, you may save time by omitting the REM statements. 

After running the program, compare your output with that shown under 
"RUNNING THE SAMPLE PROGRAM." If there is a difference, LIST 
your version and compare it with the one presented on the next two 
pages. Check the commas and semicolons; they must be used carefully. 

BASIC 2-35 



2.6.1 LISTING OF SAMPLE PROGRAM 

10 REMARK: "REMARK" OR "REM" IS USED TO INDICATE 
REMARKS OR COMMENTS 

20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF 
HIS PROGRAM. 

30 REM: THE COMPUTER LISTS AND PUNCHES THE "REM" 
LINE, BUT DOES NOT 

40 REM: EXECUTE IT. 

50 REM: "PRINT" USED ALONE GENERATES A "RETURN" 
"LINEFEED" 

60 PRINT 

70 PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF 
NUMBERS YOU SPECIFY." 

80 PRINT 

90 PRINT "IT WILL ASK ALL NECESSARY QUESTIONS AND 
GIVE INSTRUCTIONS." 

100 PRINT 

110 PRINT "PRESS THE RETURN KEY AFTER YOU TYPE YOUR 
REPLY." 

120 PRINT 

130 PRINT 

140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE 
INITIALIZED 

150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO). 

160 LET A=N=Rl=S=0 

180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO 
SPECIFY HOW MANY 

190 REM: NUMBERS HEW ANTS TO AVERAGE. 

200 PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE"; 

210 INPUT N 

2-36 BASIC 



220 PRINT 

230 PRINT "O.K., TYPE IN ONE OF THE ";N;" NUMBERS AFTER 
EACH QUES. MARK." 

240 PRINT "DON'T FORGET TO PRESS THE RETURN KEY AFTER 
EACH NUMBER." 

250 PRINT 

260 PRINT "NOW, LET'S BEGIN" 

270 PRINT 

280 PRINT 

300 REM: "N" IS NOW USED TO SET UP A "FOR-NEXT" LOOP 
WHICH WILL READ 

310 REM: 1 TO "N" NUMBERS AND KEEP A RUNNING TOTAL. 

320 FOR I=l TON 

330 INPUT A 

340 LET S=S+ A 

350 NEXT I 

360 REM: "I" IS A VARIABLE USED AS A COUNTER FOR THE 
NUMBER OF TIMES . 

370 REM: THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS 
PERFORMED. 

380 REM: "I" INCREASES BY 1 EACH TIME THE LOOP IS 
EXECUTED. 

390 REM: "A" IS THE VARIABLE USED TO REPRESENT THE 
NUMBER TOBE 

400 AVERAGED. THE VALUE OF "A" CHANGES EACH TIME 
THE 

410 REM: USER INPUTS A NUMBER. 

420 REM: "S" WAS CHOSEN AS THE VARIABLE TO REPRESENT 
THE SUM 

430 REM: OF ALL NUMBERS TO BE AVERAGED. 

440 REM: AFTER THE LOOP IS EXECUTED "N" TIMES, THE 
PROGRAM CONTINUES. 

BASIC 2-37 



460 REM: A SUMNIARY IS PRINTED FOR THE USER. 

470 PRINT 

480 PRINT 

490 PRINT N; "NUMBERS WERE INPUT." 

500 PRINT 

510 PRINT "THEIR SUM IS:";S 

520 PRINT 

530 PRINT "THEIR AVERAGE IS:";S/N 

540 PRINT 

550 PRINT 

570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF 
QUITTING OR 

580 REM: RESTARTING THE PROGRAM. 

590 PRINT "DO YOU WANT TO AVERAGE ANOTHER GROUP OF 
NUMBERS?" 

600 PRINT 

610 PRINT "TYPE 1 IF YES, 0 IF NO" 

620 PRINT "BE SURE TO PRESS THE RETURN KEY AFTER YOUR 
ANSWER." 

630 PRINT 

640 PRINT "YOUR REPLY"; 

650 INPUT Rl 

660 IF Rl =1 THEN 120 

670 REM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN 
THE REPLY. 

680 IF R1#0 THEN 700 

690 GO TO 720 

700 PRINT "TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 
IFNO." 

710 GO TO 640 

720 END 

2-38 BASIC 



2.6.2 RUNNING THE; SAMPLE PROGRAM 

RUN RETURN 

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU 
SPECIFY. 

IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUC-
TIONS. 

PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY. 

HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 RETURN 

O.K., TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. 
MARK. 

DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH 
NUMBER. 

NOW, LET'S BEGIN 

? 99 RETURN 

? 87 .6 RETURN 

? 92. 7 RETURN 

? 79.5 RETURN 

? 84 RETURN 

5 NUMBERS WERE INPUT. 

THEIR SUM IS: 442.8 

THEIR AVERAGE IS: 88.56 

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS? 

TYPE 1 IF YES, 0 IF NO 

BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. 

YOUR REPLY? 2 RETURN 

TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO. 

YOUR REPLY? 1 RETURN 

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? S RETURN 

BASIC 2-39 



2.7 COMMANDS 

Note the difference between commands and statements. (See "State­
ments" in this section.) 

Commands are also instructions. They are executed immediately, do 
not have line numbers, and may not be used in a program. They are 
used to manipulate programs, and for utility purposes. 

Do not try to memorize all of the details in the COMMANDS subsection. 
The various commands and their functions will become clear to you as 
you begin to write your own programs. 

2.7.1 RUN 

EXAMPLE: RUN RETURN 

GENERAL FORM: RUN 

Purpose 

Starts execution of a program at the lowest numbered statement. 

Comments 

A running program may be terminated by pressing any key. To terminate 
a running program at some point when input is required, type: 

S RETURN 

2-40 BASIC 



2.7.2 LIST 

EXAMPLE: LIST RETURN 

or 

LIST 100 RETURN 

GENERAL FORM: LIST 

LIST statement number 

Purpose 

Produces a listing of all statements in a program (in statement number 
sequence) when no statement number is specified. 

When a statement number is specified, the listing begins at that 
statement. 

Comments 

A listing may be stopped by pressing any key. 

BASIC 2-41 



2.7.3 SCRATCH 

EXAMPLE: SCRATCH RETURN 

GENERAL FORM: SCRATCH 

or 

SCR 

Purpose 

Deletes (from memory) the program currently being accessed from the 
teleprinter. 

Comments 

SCRATCH erases everything in the user's area of computer memory. 

SCRATCHed programs are not recoverable. For information about 
saving programs on paper tape, see the PLIST command in this section. 

2-42 BASIC 



2.7.4 TAPE 

EXAMPLE: TAPE RETURN 

GENERAL FORM: TAPE 

or 

TAP 

Purpose 

Informs the computer that following input is from paper tape being 
read from the terminal tape reader. 

Comments 

BASIC responds to the TAPE command with a linefeed. 

TAPE suppresses linefeeds following statements. 

Error messages are printed as the tape is input; the tape reader is held 
inactive while they are being printed. 

BASIC2-43 



2.7.5 PTAPE 

EXAMPLE: PTAPE RETURN 

GENERAL FORM: PTAPE 

or 

PTA 

Purpose 

Causes the computer to read in a program from the punched tape 
photoreader. 

Comments 

If the computer does not have a photoreader, the message: 

STOP 

READY 

is printed on the terminal, and BASIC waits for further input. 

BASIC responds to the PTAPE command with a linefeed. 

2-44 BASIC 



2.7.6 PLIST 

EXAMPLE: PLIST RETURN 

GENERAL FORM: PLIST 

or 

PLIST statement number 

Purpose 

Causes the program in memory to be punched onto paper tape, with 
leading and trailing guide holes; also produces a listing of the program 
on the HP modified ASR-33 terminal; one listing is produced on the 
HP modified ASR-35 in 'KT' mode. 

Comments 

Be sure to press the "ON" button on the terminal paper tape punch 
before pressing re turn after PLIST. 

If there is no paper tape punch on the terminal, a listing is printed. 

BASIC uses the high-speed punch if available, otherwise the terminal 
punch is used. 

BASIC 2-45/2-46 





ADVANCED BASIC 3 

This section describes further capabilities of BASIC. 

The experienced programmer has the option of skipping the "Vocabulary" 
subsection, and briefly reviewing the commands and functions presented 
here. Matrices are explained in the next chapter. 

The inexperienced programmer need not spend a great deal of time 
on programmer-defined and standard functions. They are shortcuts, 
and some programming experience is necessary before their applications 
become apparent. 

BASIC 3-1 



3.1 TERMS 

3.1.1 TERM: ROUTINE 

A sequence of program statements which produces a certain result. 

Purpose 

Routines are used for frequently performed operations, saving the 
programmer the work of defining an operation each time he uses it, 
and saving computer memory space. 

Comments 

A routine may also be called a program, subroutine, or sub-program. 

The task performed by a routine is defined by the programmer. 

Examples of routines and subroutines are given in this section. 

3-2 BASIC 



3.1.2 TERM: ARRAY OR MATRIX 

An ordered collection of numeric data (numbers). 

Comments 

Arrays are divided into columns (vertical) and rows (horizontal): 

C ROWS 

0 
L 
u 
M 
N 
s 

Arrays may have one or two dimensions. For example, 

1.0 
2.1 
3.2 
4.3 is a one-dimensional array, 

while, 6 5 4 
3 2 1 
0 , 9 8 is a two-dimensional ar~ay. 

Array elements are referenced by their row and column position. For 
instance, if the two examples above were arrays A and Z respectively, 
2.1 would be A(2); similarly, 0 would be Z(3,1). The references to 
array elements are called subscripts, and set apart with parentheses. 
For example, P(l,5) references the fifth element of the first row of array 
P; 1 and 5 are subscripts. In X(M,N) M and N are the subscripts. 

BASIC 3-3 



3.1.3 TERM: STRING 

Zero to 65 teleprinter characters enclosed by quotation marks (one 
line on a teleprinter terminal). 

Comments 

Sample strings: "ANY CHARACTERS!?* I --- " 

"TEXT 1234567 ... " 

Quotation marks may not be used within a string. Strings are used only 
in PRINT statements. 

The statement number, PRINT, and quotation marks are not included 
in the 65 character count. Each statement may contain up to 72 
characters. Maximum string length is 72 characters minus 6 characters 
for "PRINT", two for the quotation marks, and the number of 
characters in the statement number. 

3.1.4 TERM: FUNCTION 

The mathematical relationship between two variables (X and Y, for 
example) such that for each value of X there is one and only one value 
of Y. 

3-4 BASIC 



Comments 

The independent variable in a function is called an argument; the 
dependent variable is the function value. For instance, if X is the argu­
ment, the function value is the square root of X, and Y takes the value 
of the function. 

3.1.5 TERM: WORD 

The amount of computer memory space occupied by two teleprinter 
characters. 

Comments 

Numbers require two words of memory space when stored as numbers. 
When used within a string, numbers require 1/2 word of space per 
character in the number. 

BASIC 3-5 



3.2 SUBROUTINES AND FUNCTIONS 

The following pages explain BASIC features useful for repetitive 
operations - subroutines, programmer-defined functions and standard 
functions. 

The programmer-defined features, such as GOSUB, FOR ... NEXT with 
STEP, and DEF FN become more useful as the user gains experience 
and learns to use them as shortcuts. 

Standard mathematical and trigonometric functions are convenient 
timesavers for programmers at any level. They are treated as numeric 
expressions by BASIC. 

3.2.1 GOSUB ... RETURN 

EXAMPLE: 

50 READ A2 

60 IF A2<100 THEN 80 

70 GOSUB 400 

380 STOP (STOP, END, or GO TO frequently precedes the 
first statement of a subroutine to prevent accidental 
entry.) 

390 REM- -THIS SUBROUTINE ASKS FOR A 1OR0 REPLY. 

400 PRINT "A2 IS>100" 

3-6 BASIC 



410 PRINT "DO YOU WANT TO CONTINUE"; 

420 INPUT N 

430 IF N #0 THEN 450 

440 LET A2 = 0 

450 RETURN 

600 END 

GENERAL FORM: 

statement number GOSUB statement number starting subroutine 

statement number RETURN 

Purpose 

GOSUB transfers control to the specified statement number. 

RETURN transfers control to the statement following the GOSUB state­
ment which transferred control. 

GOSUB ... RETURN eliminates the need to repeat frequently used 
groups of statements in a program. 

Comments 

The portion of the program to which control is transferred must 
logically end with a RETURN statement. RETURN statements may be 
used at any desired exit point in a subroutine. 

BASIC 3-7 



Subroutines should be entered only with GOSUB statements rather than 
GO TO's, to avoid unexpected RETURN errors (which cause the 
program to stop execution). 

GOSUB ... RETURN's may be logically "nested" to a level of nine 
during execution. There is no limit on physical nesting in a program. 

This sequence shows logically nested GOSUB's: 

10 INPUT 

20 GOSUB 100 

100 IF C>0 THEN 120 

110 LET C=-C 

120 GOSUB 200 

130 RETURN 

200 LET A=SQR(C) 

210 LET C=SQR(A) 

220 RETURN 

3Q(J END 

3-8 BASIC 



The order in which this program is executed is: 

when C>0: when C<=0: 

10 10 

20 20 

100 100 

120 110 

200 120 

210 200 

220 210 

130 220 

statements after 20 130 

statements after 20 

Note that the first GOSUB executed is 100, and that the second GOSUB 
(200) is "nested" in the first, that is, the second GOSUB is executed 
before the RETURN in the first GOSUR The structure is simple: 

GOSUB #1 

GOSUB #2 

RETURN FOR #2 

RETURN FOR #1 

GOSUB #2 is logically nested inside GOSUB #1; a maximum of 9 
GOSUB's may be nested in this manner. 

BASIC 3-9 



3.2.2 FOR ... NEXT WITH STEP 

EXAMPLES: 

20 FOR 15 = 1 TO 20 STEP 2 

40 FOR N2 = 0 TO -10 STEP -2 

80 FOR P = 1 TO N STEP X5 

90 FOR X = N TO W STEP (Nt2-V) 

GENERAL FORM: 

statement no. FOR simple var. = expression TO 
expression STEP expression 

Purpose 

Allows the user to specify the size of the increment of the FOR variable. 

Comments 

The step size need not be an integer. For instance, 

100 FOR N = 1 TO 2 STEP .(ll 

is a valid statement which produces approximately 100 loop executions, 
incrementing N by .01 each time. 

Since no binary computer represents all decimal numbers exactly, 
round-off errors may increase or decrease the number of steps when a 
non-integer step size is used. 

3-10 BASIC 



A step size of 1 is assumed if STEP is omitted from a FOR statement. 

A negative step size may be used, as shown in statement 40 above. 

3.2.3 GENERAL MA TH EMA TICAL FUNCTIONS 

EXAMPLES: 

642 PRINT EXP(N); ABS(N) 

652 IF RND (0)>=.5 THEN 900 

662 IF INT (R) # 5 THEN 910 

672 PRINT SQR (X) ; LOG (X) 

GENERAL FORM: 

The general mathematical functions may be used as expressions, 
or as parts of an expression. 

Purpose 

Facilitates the use of common mathematical functions by pre-defining 
them as: 

ABS (expression) 

EXP (expression) 

INT (expression) 

LOG (expression) 

the absolute value of the expression; 

the constant e raised to the power of the 
expression value (in statement 642 above, etN); 

the largest integer ~ the expression; 

the logarithm of the positively valued expres­
sion to the base e; 

BASIC 3-11 



RND (expression) 

SQR (expression) 

Comments 

a random number between 1 and 0; the expres­
sion is a dummy argument; 

the square root of the positively valued ex­
pression. 

The RND function is restartable; the sequence of random numbers 
using RND is identical each time a program is RUN. 

3.2.4 TRIGONOMETRIC FUNCTIONS 

EXAMPLES: 

500 PRINT SIN(X): COS(Y) 

510 PRINT 3*SIN(B); TAN (C2) 

520 PRINT ATN (22.3) 

530 IF SIN (A2) <1 THEN 800 

540 IF SIN (B3) = 1 AND SIN(X) < 1 THEN 90 

Purpose 

Facilitates the use of common trigonometric functions by pre-defining 
them, as: 

SIN (expression) the sine of the expression (in radians); 

COS (expression) the cosine of the expression (in radians); 

3-12 BASIC 



TAN (expression) 

ATN (expression) 

the tangent of the expression (in radians); 

the arctangent of the expression (returns the 
angle in radians.) 

Comments 

The function is of the value of the expression (the value in parentheses, 
also called the argument). 

The trigonometric functions may be used as expressions or parts of 
an expression. 

3.2.5 DEF FN - FUNCTION DEFINITION 

EXAMPLE: 

60 DEF FNA (B2) = A t2 + (B2/C) 

70 DEF FNB (B3) = 7*B3t2 

80 DEF FNZ (X) = X/5 

GENERAL FORM: 

statement no. DEF FN single letter A to Z 
(simple var.) = expression 

BASIC 3-13 



Purpose 

Allows the programmer to define functions. 

Comments 

The simple variable is a "dummy" variable whose purpose is to indicate 
where the actual argument of the function is used in the defining 
expression. After a function has been defined, the value of that function 
is referenced whenever the function is used by the programmer. For 
example, in this sequence: 

10 LET Y = 100 

20 DEF FNA (Y) Y /10 

30 PRINT FNA (Y) 

40 END 

RUN 

10 

When FNA (Y) is called for in statement 30, the formula defined for 
FNA in statement 20 is used to determine the value printed. 

A maximum of 26 programmer-defined functions are possible in a 
program (FNA to FNZ). 

Any operand in the program may be used in the defining expression; 
however such circular definitions as: 

10 DEF FNA (Y) = FNB (X) 

20 DEF FNB (X) = FNA (Y) 

cause infinite looping. 

See the vocabulary at the beginning of this section for a definition of 
"function" and an explanation of "arguments." 

3-14 BASIC 



3.2.6 COM STATEMENT 

EXAMPLES: 

1 COM A(10), B(3,3) first program 

1 COM C(5), D(5), F(3,3) subsequent program 

GENERAL FORM: 

lowest statement no. COM subscripted array var., 
separated by commas 

Purpose 

Allows a BASIC program to store data in memory for retrieval by a 
subsequent BASIC program. 

Comments 

The data designated by a COM statement is accessible only as an array; 
since COM designates a common array of data, the same array variable 
cannot appear in both DIM and COM statements within a program. 

COM must be the first statement entered and the lowest numbered 
statement in a program. 

The common area is a block of contiguous data in memory (two 
computer words per number). The storage space is allotted in the order 
that the arrays appear in the COM statement; the elements within an 
array are stored row by row. 

BASIC 3-15 



It is the user's responsibility to see that the portions of the common 
area are accessed properly by subsequent programs. For example, if the 
first program starts with the statement 1 COM A(10), B(3,3) and a 
subsequent program with 1 COM C(S), D(S), F(3,3), the common 
storage area elements are assigned as follows: 

Element First Program Second Program 
Position Reference Reference 

1 A(l) C(l) 

2 A(2) C(2) 

3 A(3) C(3) 

4 A(4) C(4) 

5 A(5) C(5) 

6 A(6) D(l) 

7 A(7) D(2) 

8 A(S) D(3) 
9 A(9) D(4) 

10 A(l0) D(5) 
11 B(l,1) F(l,1) 
12 B(l,2) F(l,2) 
13 B(l,3) F(l,3) 
14 B(2,1) F(2,l) 
15 B(2,2) F(2,2) 
16 B(2,3) F(2,3) 
17 B(3,1) F(3,1) 

18 B(3,2) F(3,2) 
19 B(3,3) F(3,3) 

A reference in the first program to B(l,1) accesses the same element as 
a reference to F(l,1) in the second program. If A contained only 9 
elements, however, the B(l,l) and F(l,1) references would access 
different elements. 

The length of the common area may vary between programs, but for 
any two programs, information may be transferred only via the portion 
which is common to both. 

3-16 BASIC 



If the first program declares 1 COM A(lO), B(5,5) and a succeeding 
program contains 1 COM D(lO), E( 5,5), F(lO), the values of F would be 
unpredictable. If the second program contained 1 COM D(lO) only, the 
contents of B would be destroyed. 

3.2.7 THE TAB AND SGN FUNCTIONS 

EXAMPLES: 

500 IF SGN (X) # 0 THEN 800 

510 LET Y = SGN(X) 

520 PRINT TAB (5); A2; TAB (20)"TEXT" 

530 PRINT TAB (N),X,Y,Z2 

540 PRINT TAB (X+2) "HEADING"; R5 

GENERAL FORM: 

The TAB and SGN may be used as expressions, or parts of an 
expression. The function forms are: 

TAB ( expression indicating number of spaces to be moved ) 

SGN ( expression ) 

Purpose 

TAB (expression) is used only in a PRINT statement, and causes the 
terminal typeface to move to the space number specified by the expres­
sion (0 to 71). The expression value after TAB is rounded to the nearest 
integer. Expression values greater than 71 cause a R-ETURl'J linefeed to 
be generated. 

SGN (expression) returns a 1 if the expression is greater than 0, returns 
a 0 if the expression equals 0, returns a -1 if the expression is less 
than 0. 

BASIC 3-17/3-18 





MATRICES 4 

4.1 TERMS 

This section explains matrix manipulation. It is intended to show the 
matrix capabilities of BASIC and assumes that the programmer has some 
knowledge of matrix theory. 

4.1.1 TERM: MA TRIX (ARRAY) 

An ordered collection of numeric data (numbers). 

Matrix elements are referenced by subscripts following the matrix vari­
able, indicating the row and column of the element. For example, if 
matrix A is: 

1 2 3 

4 5 6 

7 8 9 

the element 5 is referenced by A( 2,2); likewise, 8 is A( 3,2). 

See 3.1.2 for a more complete description of matrices. 

BASIC 4-1 



4.1.2 DIM STATEMENT 

EXAMPLES: 

110 DIM A (50), B(20,20) 

120 DIM Z (5,20) 

130 DIM S (5,25) 

140 DIM R (4,4) 

GENERAL FORM: 

statement number DIM matrix variable ( integer ) ... 

or 

statement number DIM matrix variable ( integer , integer ) ... 

Purpose 

Reserves working space in memory for a matrix. 

The maximum integer value (matrix bound) is 255. 

Comments 

The integers refer to the number of matrix elements if only one 
dimension is supplied, or to the number of rows and columns respec­
tively, if two dimensions are given. 

A matrix (array) variable is any single letter from A to Z. 

Arrays not mentioned in a DIM statement are assumed to have 10 
elements if one-dimensional, or 10 rows and columns if two-dimensional. 

4-2 BASIC 



The working size of a matrix may be smaller than its physical size. For 
example, an array declared 9 x 9 in a DIM statement may be used to 
store fewer than 81 elements; the DIM statement supplies only an upper 
bound on the number of elements. 

The absolute maximum matrix size depends on the memory size of 
the computer. 

4.1.3 MAT ... ZER 

EXAMPLES: 

305 MAT A = ZER 

310 MAT Z = ZER (N) 

315 MAT X = ZER (30, 10) 

320 MAT R = ZER (N, P) 

GENERAL FORM: 

statement number MAT matrix variable = ZER 

or 

statement number MAT matrix variable ZER ( expression ) 

or 

statement number MAT matrix variable = ZER 
( expression , expression ) 

Purpose 

Sets all elements of the specified matrix equal to 0; a new working size 
may be established. 

BASIC 4-3 



Comments 

The new working size in a MAT ... ZER is an implicit DIM statement, 
and may not exceed the limit set by the DIM statement on the total 
number of elements in an array. 

Since 0 has a logical value of "false," MAT ... ZER is useful in logical 
initialization. 

4.1.4 MAT ... CON 

EXAMPLES: 

205 MAT C = CON 

210 MAT A = CON (N,N) 

220 MAT Z ;:: CON (5,20) 

230 MAT Y = CON (50) 

GENERAL FORM: 

statement number MAT matrix variable CON 

or 

statement nwrtber MAT matrix variable CON ( expression 

or 

statement number MAT matrix variable CON 
( expression , expression ) 

4-4 BASIC 



Purpose 

Sets up a matrix with all elements equal to 1; a new working size may 
be specified, within the limits of the original DIM statement on the total 
number of elements. 

Comments 

The new working size (an implicit DIM statement) may be omitted as 
in example statement 205. 

Note that since 1 has a logical value of "true," the MAT ... CON state­
ment is useful for logical initialization. 

The expressions in new size specifications should evaluate to integers. 
Non-integers are rounded to the nearest integer value. 

BASIC 4-5 



4.2 INPUTTING SINGLE MA TRIX ELEMENTS 

EXAMPLES: 

600 INPUT A( 5) 

610 INPUT B(5,8) 

620 INPUT R(X), N, A(3,3), S ,T 

630 INPUT Z(X,Y), P3, W 

640 INPUT Z(X,Y), 7.(X+l, Y+l), Z(X+R3, Y+S2) 

GENERAL FORM: 

statement number INPUT matrix variable ( expression ) ... 

or 

statement number INPUT matrix variable 
( expression , expression ) ... 

Purpose 

Allows input of a specified matrix element from the teleprinter. 

Comments 

The subscripts (in expressions) used after the matrix variable designate 
the row and column of the matrix element. Do not confuse these expres­
sions with working size specifications, such as those following a MAT 
READ statement. 

Expression used as subscripts should evaluate to integers. Non-integers 
are rounded to the nearest integer value. 

Inputting, printing, and reading individual array elements are logically 
equivalent to simple variables and may be intermixed in INPUT, PRiNT, 
and READ statements. 

4-6 BASIC 



4.3 PRINTING 

4.3.1 PRINTING SINGLE MA TRIX ELEMENTS 

EXAMPLES: 

800 PRINT A(3) 

810 PRINT A (3,3); 

820 PRINT F(X); E; C5;R(N) 

830 PRINT G(X,Y) 

840 PRINT Z(X,Y), Z(l,5), Z(X+N), Z(Y+M) 

GENERAL FORM: 

statement number PRINT matrix variable ( expression ) ... 

or 

statement number PRINT matrix variable 
( expression , expression ) ... 

Purpose 

Causes the specified matrix element(s) to be printed. 

Comments 

Expressions used as subscripts should evaluate to integers. Non-integers 
are rounded to the nearest integer value. 

A trailing semicolon packs output into twelve elements per teleprinter 
line, if possible (statement 810 above). A trailing comma or RETURN 

prints five elements per line. 

Expressions (or subscripts) following the matrix variable designate the 
row and column of the matrix element. Do not confuse these with new 
working size specifications, such as those following a MAT IDN (identity 
matrix) statement. 

BASIC 4-7 



4.3.2 MAT PRINT 

EXAMPLES: 

500 MAT PRINT A 

505 MAT PRINT A; 

515 MAT PRINT A,B,C 

520 MAT PRINT A,B,C; 

GENERAL FORM: 

statement number MAT PRINT matrix variable 

or 

statement number MAT PRINT matrix variable , 
matrix variable ... 

Purpose 

Causes an entire matrix to be printed, row by row, with double spacing 
between rows. 

Comments 

Matrices may be printed in "packed" rows up to 12 elements wide by 
using the ";" separator, as in example statement 505. Separation with 
commas or a RETURN prints 5 elements per row. 

4-8 BASIC 



4.4 READING 

4.4.1 READING MA TRIX ELEMENTS 

EXAMPLES: 

900 READ A(6) 

910 READ A(9,9) 

920 READ C(X); P; R7 

930 READ C(X, Y) 

940 READ Z(X,Y), P(R2, 85), X(4) 

GENERAL FORM: 

statement number READ matrix variable ( expre'Ssion 

or 

statement number READ matrix variable 
( expression , expression ) ... 

Purpose 

Causes the specified matrix element to be read from the current DATA 
statement. 

Comments 

Expressions (used as subscripts) should evaluate to integers. Non-integers 
are rounded to the nearest integer. 

BASIC 4-9 



Expressions following the matrix variable designate the row and column 
of the matrix element. Do not confuse these with working size specifica­
tions, such as those following MAT READ statement. 

The MAT READ statement is used to read an entire matrix from DATA 
statements. See details in this section. 

4.4.2 MAT READ 

EXAMPLES: 

350 MAT READ A 

370 MAT READ B(5),C,D 

380 MAT READ Z (5,8) 

390 MAT READ N (P3,Q7) 

GENERAL FORM: 

statement number MAT READ matrix variable 

or 

statement number MAT READ matrix variable ( expression ) ... 

or 

-statement number MAT READ matrix variable 
( expression , expression ) ... 

Purpose 

Reads an entire matrix from DATA statements. A new working size 
may be specified, within the limits of the original DIM statement. 

4-10 BASIC 



Comments 

MAT READ causes the entire matrix to be filled from the current DATA 
statement in the row, column order: 1,1; 1,2; 1,3; etc. In this case, the 
DIM statement controls the number of elements read. 

4.5 MA TRIX ARITHMETIC 

4.5.1 MA TRIX ADDITION 

EXAMPLES: 

310 MAT C = B + A 

320 MAT X = X + Y 

330 MAT P = N + M 

GENERAL FORM: 

statement number MAT matrix variable = matrix 
variable + matrix variable 

Purpose 

Establishes a matrix equal to the sum of two matrices of identical 
dimensions; addition is performed element by element. 

Comments 

The resulting matrix must be previously mentioned in a DIM statement 
if it has more than 10 elements, or 10 x 10 elements if two-dimensional. 
Dimensions must be the same as the operand matrices. 

BASIC 4-11 



The same matrix may appear on both sides of the = sign, as in example 
statement 320. 

4.5.2 MA TRIX SUBTRACTION 

EXAMPLES: 

550 MAT C A - B 

560 MAT B = B - Z 

570 MAT X = X - A 

GENERAL FORM: 

statement number MAT matrix variable matrix 
variable - matrix variable 

Purpose 

Establishes a matrix equal to the difference of two matrices of identical 
dimensions; subtraction is performed element by element. 

Comments 

The resulting matrix must be previously mentioned in a DIM statement 
if it has more than 10 elements, or 10 x 10 elements if two-dimensional. 
Its dimension must be the same as the operand matrices. 

The same matrix may appear on both sides of the = sign, as in example 
statement 560. 

4-12 BASIC 



4.5.3 MATRIX MULTIPLICATION 

EXAMPLES: 

930 l\1AT Z = B * C 

940 MAT X = A *A 

950 l\1AT C = Z * B 

GENERAL FORM: 

statement number l\1AT matrix variable = matrix 
variable * matrix variable 

Purpose 

Establishes a matrix equal to the product of the two specified matrices. 

Comments 

Following the rules of matrix multiplication, if the dimensions of matrix 
B = (P ,N) and matrix C = (N,Q), multiplying matrix B by matrix C 
results in a matrix of dimensions (P,Q). 

Note that the product matrix must have an appropriate working size. 

The same matrix variable may not appear on both sides of the = sign. 

BASIC 4-13 



4.5.4 SCALAR MULTIPLICATION 

EXAMPLES: 

110 MAT A = (5) * B 

115 MAT C 

120 MAT C 

(10) * c 
(N/3) * X 

130 MAT P = (Q7*N5) * R 

GENERAL FORM: 

statement number MAT matrix variable = 

( expression ) * matrix variable 

Purpose 

Establishes a matrix equal to the product of a matrix multiplied by a 
specified expression (number); that is, each element of the original 
matrix is multiplied by the number. 

Comments 

The resulting matrix must be previously mentioned in a DIM statement 
if it contains more than 10 elements (10 x 10 if two-dimensional). 

The same matrix variable may appear on both sides of the sign. 

Both matrices must have the same working size. 

4-14 BASIC 



4.6 COPYING A. MATRIX 

EXAMPLES: 

405 MAT B =A 

410 MAT X = Y 

420 MATZ= B 

GENERAL FORM; 

statement number MAT matrix variable matrix variable 

Purpose 

Copies a specified matrix into a matrix of the same dimensions; copying 
is performed element by element. 

Comments 

The resulting matrix must be previously mentioned in a DIM statement 
if it has more than 10 elements, or 10 x 10 if two-dimensional. It must 
have the same dimensions as the copied matrix. 

BASIC 4-15 



4.7 IDENTITY MA TRIX 

EXAMPLES: 

205 MAT A = IDN 

210 MAT B = IDN (3,3) 

215 MAT Z = IDN (Q5, Q5) 

220 MAT S = IDN (6, 6) 

GENERAL FORM: 

statement number MAT array variable = IDN 

or 

statement number MAT array variable = IDN 
( expression , expression ) 

Purpose 

Establishes an identity matrix (all 0's, with a diagonal from left to right 
of all l's); a new working size may be specified. 

Comments 

The IDN matrix must be two-dimensional and square. 

Specifying a new working size has the effect of a DIM statement. 

Sample identity matrix: 1 0 0 

0 1 0 

0 0 1 

4-16 BASIC 



4.8 MATRIX MANIPULATION 

4.8.1 MATRIX TRANSPOSITION 

EXAMPLES: 

959 MAT Z = TRN (A) 

969 MAT X = TRN (B) 

979 MAT Z = TRN (C) 

GENERAL FORM: 

statement number MAT matrix variable = TRN 
( matrix variable ) 

Purpose 

Establishes a matrix as the transposition of a specified matrix (transposes 
rows and columns). 

Comments 

Sample transposition: 

Original 

1 2 3 

4 5 6 

7 8 9 

Transposed 

1 4 7 

2 5 8 

3 6 9 

Note that the dimensions of the resulting matrix must be the reverse of 
the original matrix. For instance, if A has dimensions of 6,5 and MAT C = 

TRN (A), C must have dimensions of 5,6. 

Matrices cannot be transposed or inverted into themselves. 

BASIC 4-17 



4.8.2 MA TRIX INVERSION 

EXAMPLES: 

380 MAT A = INV(B) 

390 MAT C = INV(A) 

400 MAT Z = INV(Z) 

GENERAL FORM: 

statement number MAT matrix variable = INV 
( matrix variable ) 

Purpose 

Establishes a square matrix as the inverse of the specified square matrix 
of the same dimensions. 

Comments 

The inverse is the matrix by which you multiply the original matrix to 
obtain an identity matrix. 

For example: 

Original Inverse Indentity 

( ~ ~ : ) x (-~ ~ : ) ( ~ ~ : ) 
1 1 1 0-1 1 0 0 1 

Number representation in BASIC is accurate to 6-7 decimal digits; 
matrix elements are rounded accordingly. 

4-18 BASIC 



LOGICAL OPERATIONS s 

5.1 LOGICAL VALUES AND NUMERIC VALUES 

A distinction should be made between logical values and the numeric 
values produced by logical evaluation, when using the logical capability 
of BASIC. 

The logical value of an expression is determined by definitions estab· 
lished in the user's program. 

The numeric values produced by logical evaluation are assigned by 
BASIC. The user may not assign these values. 

Logical value is the value of an expression or statement, using the 
criteria: 

any non-zero expression value = "true" 

any expression value of zero = "false" 

When an expression or statement is logically evaluated, it is assigned 
one of two numeric values, either: 

1, meaning the expression or statement is "true," 

or 

0, meaning the expression or statement is "false." 

BASIC 5-1 



5.2 RELATIONAL OPERA TORS 

There are two ways to use the relational operators in logical evaluations: 

1. As a simple check on the numeric value of an expression. 

EXAMPLES: 150 IF B=7 THEN 600 

200 IF A9#27 .65 THEN 700 

300 IF (Z/10)>0 THEN 800 

When a statement is evaluated, if the IF condition is currently "true" 
{for example, B = 7 in statement 150), then control is transferred to 
the specified statement; if it is not "true," control passes to the next 
statement in the program. 

Note that the numeric value produced by the logical evaluation is 
unimportant when the relational operators are used in this way. 
The user is concerned only with the presence or absence of the 
condition indicated in the IF statement. 

2. As a check on the numeric value produced by logically evaluating 
an expression, that is: "true" = 1, "false" = 0. 

EXAMPLES: 610 LET X=27 

615 PRINT X=27 

620 PRINT X#27 

630 PRINT X>=27 

The example PRINT statements give the numeric values produced 
by logical evaluation. For instance, statement 615 is interpreted by 
BASIC as "Print 1 if X equals 27, 0 if X does not equal 27." There 
are only two logical alternatives; 1 is used to represent "true," and 
0 "false." 

The numeric value of the logical evaluation is dependent on, but 
distinct from, the value of the expression. In the exampie above, 
X equals 27, but the numeric value of the logical expression X=27 
is 1 since it describes a "true" condition. 

5-2 BASIC 



5.3 BOOLEAN OPERATORS 

There are two ways to use the Boolean Operators. 

1. As logical checks on the value of an expression or expressions. 

EXAMPLES: 510 IF Al OR B THEN 670 

520 IF B3 AND C9 THEN 680 

530 IF NOT C9 THEN 690 

540 IF X THEN 70£) 

Statement 510 is interpreted: "If either Al is 'true' (has a non-zero 
value) or B is 'true' (has a non-zero value), then transfer control to 
statement 670." 

Similarly, statement 540 is interpreted: "If X is 'true' (has a non­
zero value), then transfer control to statement 700. 

The Boolean operators evaluate expressions for their logical values 
only: these are "true" = any non-zero value, "false" = zero. For 
example, if B3 = 9 and C9 = -5, statement 520 would evaluate to 
"true," since both B3 and C9 have a non-zero value. 

2. As a check on the numeric value produced by logically evaluating 
an expression, that is: "true" = 1, "false" = 0. 

EXAMPLES: 490 LET B = C = 7 

500 PRINT B AND C 

510 PRINT C OR B 

520 PRINT NOT B 

BASIC 5-3 



Statements 500 - 520 return a numeric value of either 1, indicating 
that the statement has a logical value of "true," or 0, indicating a 
logical value of "false." 

Note that the criteria for determining the logical values are: 

"true" = any non-zero expression value. 

"false" = an expression value of 0. 

The numeric value 1 or 0 is assigned accordingly. 

5.4 SOME EXAMPLES 

These examples show some of the possibilities for combining logical 
operators in a statement. 

It is advisable to use parentheses wherever possible when combining 
logical operators. 

EXAMPLES: 

3HJ IF (A9 AND B7)=0 OR (A9 + B7)> 100 THEN 900 

310 PRINT (A>B) AND (X<Y) 

320 LET C = NOT D 

330 IF (C7 OR D4) AND (X2 OR Y3) THEN 930 

340 IF (Al AND B2) AND (X2 AND Y3) THEN 940 

5-4 BASIC 



The numerical value of "true" or "false" may be used in algebraic 
operations. For example, this sequence counts the number of zero 
values in DATA statements. 

90LETX=0 

100 FOR I = 1 TO N 

110 READ A 

120 LET X = X+(A=0) 

130 NEXT I 

140 PRINT N; "VALUES WERE READ." 

150 PRINT X; "WERE ZEROS." 

160 PRINT (N-X); "WERE NON-ZERO." 

Note that X is increased by 1 or 0 each time A is read; when A= 0, the 
expression A = 0 is "true," and X is increased by 1. 

BASIC 5-5/5-6 





SYNTAX REQUIREMENTS OF BASIC 6 

LEGEND 

"is defined as ... " 

"or" 

< > enclose an element of BASIC 

LANGUAGE RULES 

1. The <COM statement >, if any exists, must be the first statement 
presented and have the lowest sequence number; the last statement 
must be an < END statement >. 

2. A sequence number may not exceed 9999 and must be non-zero. 

3. Exponent integers may not have more than two digits. 

4. A formal bound may not exceed 255 and must be non-zero. 

5. A subroutine number must lie between 1 and 63, inclusive. 

6. Strings may not contain the quote character ("). 

7. A< bound part> for an IDN must be doubly subscripted. 

8. An array may not be inverted or transposed into itself. 

9. An array may not be replaced by itself multiplied by another array. 

BASIC 6-1 



< basic program > 

< program statement > 

<sequence number> 

< basic statement > 

< let statement > 

<let head> 

<formula> 

< conjunction > 

< Boolean primary > 

< arithmetic expression > 

<term> 

<factor> 

6-2 BASIC 

. . < program statement > I < basic pro­
gram>< program statement >(1) 

< sequence number > < basic state­
ment > carriage return 

<integer >(2) 

. . < let statement > I < dim 
statement > I < com statement > I 
< def statement > I < rem 
statement > I < go to statement > I 
< if statement > I < for statement > I 
< next statement > I 
< gosub statement > I < return 
statement > I < end statement > I 
< stop statement > I < wait 
statement> I< call statement> I 
< data statement > I < read 
statement > I < restore statement > I 
< input statement > I < print 
statement > I < mat statement > 

<let head > < formula > 

- LET < variable >=I < let head > 
< variable > = 

. . < conjunction > I < formula > OR 
< conjunction > 

- < Boolean primary > I < conjunction > 
AND < Boolean primary > 

< arithmetic expression > I 
< Boolean primary > 
<relational operator>< arithmetic 
expression > 

< term > I <arithmetic expression > 
+ < term > I < arithmetic expression> 
- <term> 

< factor > I < term > * < factor > I 
< term > I < factor > 

< primary > I <sign > < primary > I 
NOT < primary > 



<primary> 

< relational operator > 

<operand> 

<variable> 

< simple variable > 

< subscripted variable > 

< array identifier > 

<subscript head> 

<subscript > 

<letter> 

<digit> 

< left bracket > 

<right bracket > 

<sign> 

<unsigned number> 

< decimal part > 

<integer> 

<exponent> 

< system function > 

< system function name > 

< parameter part > 

< actual parameter > 

: := < operand > I < primary > t 
<operand> 

::= > I < I>= I < = I = I # I < > 

: := < variable > I < unsigned number > I 
< system function > I < function > I 
< formula operand > 

: := <simple variable> I <subscripted 
variable> 

: := < letter > I < letter > < digit > 

::= <array identifier>< subscript head> 
<subscript ><right bracket > 

: := < letter > 

: := < left bracket > I < left bracket > 
< subscript > 

::=<formula> 

: := A I BI CID IE IF I GI HI I I JI KIL IM IN I 
OIPIQIRISITIUIVIWIXIYIZ 

:~ 0111213141516171819 
::= ( I [ 

::= ) I ] 

::= + 1-

: := < decimal part > I < decimal part > 
<exponent> 

: : = < integer > I < integer > . < integer > 
I . < integer > 

: := < digit > I < integer > < digit > 

::= E <integer> IE< sign> 
<integer >(3) 

: := < system function name > 
< parameter part > 

::= SIN I COS I TAN I ATN I EXP I 
LOG I ABS I SQR I INT I RND I SGN 

: := < left bracket > < actual parameter > 
<right bracket> 

::= <formula> 

BASIC 6-3 



<function> .. = FN < letter > < parameter part > .. 

< formula operand > <left bracket>< formula>< right 
bracket> 

< dim statement > .. = DIM < formal array list > 

< formal array list > < formal array > I < formal array 
list > , < formal array > 

< formal array > .. = < array identifier > < formal bound 
head > < formal bound > 
< right bracket > 

< formal bound head > < left bracket > I < left bracket > 
< formal bound >, 

< formal bound > <integer >(4) 

< com statement > .. = COM < formal array list > .. 

< def statement > .. = DEF FN < letter > < left bracket > 
< formal parameter > < right 
bracket > = < formula > 

< formal parameter > .. = < simple variable > 

< rem statement > REM < character string > 

<character string> .. = any teletype character except carriage 
return, alt mode, escape, rubout, line 
feed, null, control B, control C, or 
left arrow 

< goto statement > .. = GO TO < sequence number > 

< if statement > .. = IF < formula> THEN < sequence .. 
number> 

< for statement > < for head > I < for head > 
STEP < step size > 

<for head> .. = FOR < for variable > = < initial .. 
value > TO < limit value > 

< for variable > .. = < simple variable> .. 

<initial value> <formula> 

<limit value> <formula> 

<step size> .. = <formula> 

6-4 BASIC 



< next statement > 

< gosub statement > 

< return statement > 

<end statement > 

< stop statement > 

< wait statement > 

< call statement > 

<call head> 

< subroutine number > 

< data statement > 

<constant> 

< read statement > 

<variable list > 

< restore statement > 

< input statement > 

< print statement > 

< print head > 

< print part > 

<string> 

< delimiter > 

. . NEXT < for variable > 

GOSUB <sequence number > 

- RETURN 

::=END 

::= STOP 

: := WAIT < parameter part > 

·· CALL< call head>< right 
bracket> 

- <left bracket>< subroutine 
number > I < call head > , 
< actual parameter > 

· · < integer >( 5) 

.. DATA< constant> I< data 
statement>,< constant> 

: := < unsigned number > I < sign > 
< unsigned number > 

· · READ < variable list > 

. . < variable > I < variable list > , 
<variable> 

.. RESTORE 

: := INPUT < variable list > 

: := < print head > I < print head > 
< print formula > 

: := PRINT I < print head > 
< print part > 

: := < string > I < string > < delimiter > 
I < print formula> < delimiter > 
I < print formula > < string > I 
< print formula > < string > 
<delimiter> 

" < character string> ,,( 6) 

'I; 

BASIC 6-5 



< print formula > 

<mat statement> 

<mat body> 

<matread> 

< actual array > 

< bound part > 

< actual bound head > 

< actual bound > 

<mat print> 

< mat print part > 

< mat replacement > 

< mat formula > 

< mat function > 

<mat initialization> 

< array parameter > 

< mat operator > 

6-6 BASIC 

: := < formula > I TAB < parameter 
part> 

::= MAT< mat body> 

- < mat read > I < mat print > I 
< mat replacement > 

. . READ < actual array > I < mat 
read > , < actual array > 

. . < array identifier > I < array 
identifier > < bound part > 

. . < actual bound head > 
< actual bound > < right bracket > 

. . < left bracket > I < left bracket > 
< actual bound > , 

.. <formula> 

: := PRINT < mat print part > I PRINT 
< mat print part > <delimiter> 

. . < array identifier > I < mat print 
part > < delimiter > < array 
identifier > 

. . < array identifier > = < mat 
formula> 

· · < array identifier > I < mat 
function > I < array identifier > 
< mat operator > < array 
identifier > I < formula operand >* 
< array identifier > 

. . < mat initialization > I < mat 
initialization > < bound part > I 
INV < array parameter > I 
TRN < array parameter > 

- ZER I CON I IDN (7) 

- < left bracket > < array identifier > 
<right bracket> (8) 

.. +I - I* (9) 



FOR ADVANCED PROGRAMMERS 7 

7.1 MODIFYING HP BASIC 

As indicated in the configuration instructions, an HP BASIC system 
configured with PBS may include user-written assembly language sub­
routines. These subroutines are accessed with a CALL statement while 
a BASIC progra'in is running. HP BASIC may also be run under the 
HP Magnetic Tape System (MTS), provided that the amount of core 
memory in the configured tape of HP BASIC is the same as the MTS 
under which it is run. 

The information in this section is intended to help the programmer in 
modifying HP BASIC. Users are reminded that HP cannot be responsible 
for non-standard or user-modified software. 

7.2 CALL STATEMENT 

EXAMPLE: 

20 CALL (5, A(l0), 1, 1188, 10) 

GENERAL FORM: 

statement number CALL (statement number, parameter list) 

Purpose 

Allows addition of absolute assembly language routines (such as input­
output drivers) to BASIC, for specialized configurations. CALL transfers 
control to the specified assembly language subroutine. 

BASIC 7-1 



Comments 

Subroutines executed by CALL are not constrained by BASIC and have 
absolute control of the computer. The assembly language subroutine 
may, therefore, alter any portion of the system, including BASIC. For 
this reason, it is recommended that only programmers proficient in 
assembly language attempt to add CALL subroutines to BASIC 
programs. 

CALL subroutines are "loaded into the computer" through the photo­
reader or terminal tape reader either at configuration time or as a load­
time overlay. 

The CALL subroutine number is a positive integer between 1 and 63 
specifying the desired subroutine. If no such subroutine number exists, 
the statement is rejected. 

The other parameters, separated by commas, may be any formula and 
their number is dependent upon the subroutine called. For example, a 
subroutine designated by 5 is appended to the system to take readings 
from an A to D subsystem and store them in an array. The parameters 
specify the array into which the values are inserted, the channel number 
of the first point to be measured, the setup for the A to D converter 
and the number of points to be measured. A representative call for this 
subsystem is: 

20 CALL (5, A[ 1], 1, 1188, 10) 

I I 
+ 

Number of points 

A to D setup 

Starting channel number 

First element of data array 

Subroutine number 

7-2 BASIC 



When using the CALL statement, it is important that correct parameters 
be specified. Accidentally reversing the first and second parameters 
could destroy the core-resident BASIC system, unless precautions have 
been taken by the writer of the called subroutine to protect the 
BASIC system. 

The parameters of a CALL statement provide the dynamic link between 
BASIC and the called subroutine. Prior to transferring control to the 
subroutine, BASIC evaluates the parameters and stacks the addresses of 
the results. Upon entering the subroutine, the A-register contains the 
address of this stack (i.e., the address of the addresses of the parameter 
values). The A-register initially points to the address of the first 
parameter; successively decrementing the A-register causes it to point to 
successive parameter addresses. For example, if the A-register= 17302 
when a subroutine is entered, the first parameter address is 17302, the 
second 17301, the third 17300, etc. 

The parameter addresses passed by BASIC give the subroutine access to 
values in the BASIC program. The only way a called subroutine can 
transmit results to a BASIC program is to store them by means of a 
parameter address. 

Transmittal of quantities of data between a BASIC program and a called 
subroutine is most conveniently handled through arrays. Since only 
addresses are passed to a subroutine, an array parameter must be an 
element of the array (in general this would be the first element of the 
array). It is important to remember that arrays are stored by rows, and 
that each element is a floating point number occupying two (16-bit) 
words. Hence, if an array A has M columns per row, the address of 
A[I,J] is (address A[l,l]+ 2(M(I-1) + (J-1)). 

To output from a subroutine to the terminal: 

1. Load a buffer address into the B-register. 

2. Load a character count into the A-register. 

3. Execute a JSB 102B, I. 

BASIC 7-3 



The referenced block of core is then interpreted as an ASCII string and 
output, followed by a RETURN linefeed if the count was negative. 

Whenever data is transferred from a called subroutine through the 
address of a parameter, there is a danger that the BASIC system or a 
program might be destroyed. This situation can arise when parameters 
are specified incorrectly or insufficient space is allocated in a data array. 
For example, constants such as 2 or -1.1 in a BASIC program are stored 
in the program as they appear; therefore, storing through the address 
of a constant parameter changes the actual constant in the CALL 
statement. A subsequent execution of that statement may lead to un­
predictable results. A parameter that is an expression (for example, A 
AND B or NOT A AND B) is evaluated and the result placed in a 
temporary location. Since the parameter address references this tempor­
ary location, storing into it will not harm the BASIC system or pro­
gram. However, the value stored there is lost to the BASIC program. If 
a called subroutine stores more values in an array than the array can 
hold, the resulting overflow of data may destroy the BASIC system 
or program. 

Users of CALL statements should be cautioned against using unsuitable 
parameters in CALL statements (especially against using a simple variable 
or a constant where an array element is expected). Also, when using 
arrays as parameters it is good practice to include the dimensions of the 
array as additional parameters to allow a means of checking within 
the subroutine. 

An effective protection requires additional programming effort. BASIC 
contains sets of pointers delimiting the areas of memory within which 
different types of parameters exist. By checking parameter addresses 
against these bounds, the subroutine can verify that they are of the 
expected type. If X represents the parameter address, the following 
applies: 

a. Constant parameter (1128) < X < (1138) 

b. Simple variable parameter (1168) < X < (1178) 

7-4 BASIC 



c. Array parameter 1) In common storage (1108) ~X 
< (1128) 

2) Not in common storage (1138) 
~X<(ll58) 

d. Expression parameter (1158) < X <(1208) 
where (1128) means the contents of location number octal 
112. 

7.3 BYE COMMAND 

EXAMPLE: BYE 

GENERAL FORM: BYE 

Purpose 

Produces a HLT 778 when used under the HP BASIC system; or causes 
transfer of control from the HP BASIC system to the Magnetic Tape 
System (MTS) executive when used in an MTS based HP BASIC system. 

Comments 

HP BASIC may be configured as part of an HP Magnetic Tape System. 

If it is intended to run under the Magnetic Tape System, PBS may be 
configured separately or together with the HP BASIC interpreter. 

User-written assembly language subroutines may be added to an MTS 
based HP BASIC system; they may be configured along with the drivers 
and interpreter using PBS or added while preparing the MTS. 

BASIC 7-5 



Note that configuration of an HP BASIC system cannot be done under 
the control of an MTS; rather a configured system may be one of the 
subsystems supplied when creating an MTS. 

Remember that an HP BASIC system running under MTS must specify 
the same core memory size as the MTS. 

7.4 FIRST AND LAST WORDS OF AVAILABLE MEMORY 

The first word of available memory (FW AM) is contained in location 
llOg in the HP BASIC system. 

The last word of available memory (LW AM) is contained in location 
lllg in the HP BASIC system. 

Comments 

When HP BASIC is run under MTS, FW AM is contained in location 
110g; LWAM is dynamically determined and placed in location 106g 
after the system is loaded. 

7.5 FIRST WORD AVAILABLE IN BASE PAGE 

The address of the first word available in base page is contained in 
location 114g. All locations from the location referenced in 114g 
through 17778 are not used by BASIC, and are therefore available for 
CALL subroutines or other modifications. 

7-6 BASIC 



7.6 LINK POINTS 

For ease in user modification, locations 2018 through 3228 contain links 
to various subportions and subroutines of BASIC often used in creating 
customized systems. The identity and locations of these links is fixed 
(will not change with subsequent versions), but the contents of these 
locations are subject to change if the routines they point to move as a 
result of future revisions. The assembly language listing of the HP BASIC 
interpreter captions each link briefly. Since these links are an integral 
part of BASIC, the user is responsible for interpreting and using this 
information. 

7.7 LINKAGES TO SUBROUTINES 

BASIC accesses called subroutines through a table containing linkage 
information. Entries in the table, one per subroutine, are two words in 
length. Bits 5-0 of the first word contain the number identifying the 
subroutine (chosen freely from 1 to 778 inclusive) and bits 15-8 contain 
the number of parameters passed to the subroutine. (CALL statements 
with an incorrect number of parameters are rejected by the syntax 
analyzer.) The second word contains the absolute address of the entry 
point of the subroutine. (Control is transferred via a JSB.) Although 
subroutine numbers need not be assigned in any particular order, all 
entries in the table must be contiguous. An acceptable auxiliary tape 
contains the following: 

1. An ORG statement to originate the program at an address greater 
than that of the last word of the BASIC system. The address of 
this last word + 1 is contained in location 110g of the standard 
BASIC system. Hence, a suitable lower limit for the origin address 
can be determined by loading BASIC and examining location 
110g. 

2. The subroutine linkage table.described above. 

3. The assembly language subroutines. 

BASIC 7-7 



4. Code to set the following linkage addresses: 

a. In location 110g put the address of the last word + 1 used in 
the auxiliary tape. 

b. In location 1218 put the address of the first word of the 
subroutine linkage table. 

c. In location 122g put the address of the last word + 1 of the 
subroutine linkage table. 

Assuming, for example, that location 1108 of the standard BASIC 
system contains 13142g; an acceptable auxiliary tape could be assembled 
from the following code: 

ORG 13142B 

SBTBL OCT 2406 Subroutine 6 has 5 parameters 

DEF SB6 

OCT 1421 Subroutine 17 has 3 parameters 

DEF SB17 

END TB EQU * 
SB6 NOP 

Subroutine #6 body 

JMP SB6,I 

SB17 NOP 

Subroutine #17 body 

JMP SBl 7, I 

LSTWD EQU * 
ORG 110B 

7-8 BASIC 



DEF LSTWD 

ORG 121B 

DEF SBTBL 

DEF END TB 

END 

Acceptable calls to subroutines SB6 and SBl 7 might be 

CALL (6, A, B, 1, N*3, SIN(X+Y)) 

CALL (17, A(l], 5, N) 

NOTE: Location 1118 of the standard BASIC system contains the 
address of the last word of available memory. It is not 
possible to create a system which requires more space than 
that existing between the addresses in locations 1108 and 
1118. Systems using all or most of this space leave very little 
space for the user of the system. 

7.8 DELETING THE MA TRIX SUBROUTINES 

This assembly language pseudo-program shows a method of deleting the 
MAT execution package to gain more user space, or for replacing it with 
CALL routines or other customized code. 

ORG <contents of 2108 > 
OCT 0,0 

ORG 110B 

DEF < contents of 2118 > 

This sequence has the effect of preventing the syntax processor from 
recognizing "MAT" and of resetting the first word of available memory 
pointer to the first word of the matrix execution package. 

BASIC 7-9/7-10 





GENERATING HP BASIC A 

An HP BASIC system consists of the HP BASIC interpreter and the 
Prepare BASIC System (PBS) programs. Assembly language subroutines 
written by the user may be included. 

The HP BASIC tape consists of the HP BASIC interpreter. The PBS 
tape contains drivers for the terminal, photoreader, high-speed punch, 
and the routines necessary to configure these drivers into an HP 
BASIC system. 

An HP BASIC system is generated by: 

Loading the configuration program (PBS) into memory. 

Loading other tapes (HP BASIC, user subroutines) to be 
included on the system tape. 

[ Using PBS to configure the HP BASIC System and to dump 
it onto a single tape. 

[ Loading the configured HP BASIC System tape into memory 
along with any separate programs (HP BASIC, user sub­
routines) included in the system. 

BASIC A-1 



CONFIGURING AN HP BASIC SYSTEM 

1. Decide which elements the configured HP BASIC system tape will 
contain. 

The three choices are: 

a. I/O drivers, BASIC, user subroutines 

b. 1/0 drivers, BASIC 

c. I/0 drivers. 

2. Turn on all necessary peripheral devices (teleprinter, tape punch, 
etc). 

3. Make sure the computer has halted. 

4. Use the Basic Binary Loader (BBL) or the Basic Binary Disc 
Loader (BBDL) to load the PBS tape into memory.* 

5. If option a or b was chosen in step 1, use the BBL or the BBDL to 
load the HP BASIC tape into memory. If option a or b was not 
chosen, skip to step 7. 

6. If option a was chosen in step 1, then use the BBL or BBDL to 
load the user-subroutine tapes into memory. If option a was not 
chosen, skip to step 7. 

7. Set a starting address of 2g. 

8. Set the switch register to the octal select code of the terminal. 
(Set bit 15 OFF.) 

9. Start PBS execution. 

10. The PBS program types: 

PHOTOREADER 1/0 ADDRESS? 

Type the photoreader octal select code on the teleprinter key­
board, then press the RETURN key. If there is no photoreader, then 
press RETURN key only. 

*If an operator error is made or if any tape does not load properly, return 
to step 3 to reload PBS. 

A-2 BASIC 



11. PBS then types: 

PUNCH I/O ADDRESS? 

Type the high-speed punch octal select code on the teleprinter 
keyboard, then press the RETURN key. If there is no high-speed 
punch, press the RETURN key only. 

12. PBS then asks: 

SYSTEM DUMP I/O ADDRESS? 

Type the high-speed punch octal select code on the teleprinter 
keyboard, then press the RETURN key. If no high-speed punch 
exists, press the RETURN key only. 

13. PBS then asks: 

CORE SIZE? 

Enter the computer core size (8, 16, 24 or 32), then press the 
RETURN key. (Pressing RETURN only indicates an SK memory size.) 

14. If a high-speed punch is available, a configured HP BASIC system 
tape is punched. If a high-speed punch is not available, the message: 

TURN ON TTY PUNCH, PRESS RUN 

is printed, and the computer halts. 

15. Turn the teleprinter punch on and start the computer, without 
modifying the contents of any computer register. 

The configured HP BASIC system tape is punched on the tele­
printer punch and the computer halts. 

16. To punch another copy of the system tape, merely restart the 
computer without modifying any register contents. 

NOTE: After the configured system tape is punched (Steps 14, 15 and 
16), the configured system remains intact in memory. To 
run the system right away on the same computer that con­
figured it, start at Step 4 when using PROCEDURE 2 (to 
avoid loading in the configured system tape). If the system is 
to run on a computer different from the one that configured it, 
or on the same computer at a later time, start at Step 1 when 
using PROCEDURE 2. 

BASIC A-3 



LOADING THE CONFIGURED HP BASIC SYSTEM 

1. Turn on all necessary peripheral equipment (teleprinter, tape input 
device, etc.). 

2. Make sure that the computer has halted. 

3. Load the configured HP BASIC system tape using the BBL or 
BBDL. 

4. If the HP BASIC interpreter was not included as part of the 
configured HP BASIC system tape, load the HP BASIC interpreter 
tape into memory using the BBL or BBDL. 

5. If any user subroutines are to be included in the system and if they 
are not part of the HP BASIC system tape previously loaded, load 
the user-subroutine tapes using the BBL or BBDL. 

6. Set a starting address of 100s. 

7. Start program execution. The message: 

READY 

is typed. HP BASIC is ready for use. 

A-4 BASIC 



SALES & SERVICE OFFICES 

UNITED STATES 
ALABAMA COLORAOO MARYLAND NEW MEXICO NORTH CAROLINA TEXAS 
8290 Whitesburg Dr., S.E. 7965 East Prentice 6707 Whitestone Road P.O. Box 8366 P.O. Box 5188 P.O. Box 1270 
P.O. Box 4207 Englewood 80110 Baltlmore 21207 station c 1923 North Main Street 201 E. Arapaho Rd. 
Hun1tvllle 35802 Tel: (303) 771·3455 Tel: (301) 944-5400 6501 Lomas Boulevard N.E. Hllh Point 27262 Richardson 75080 
Tali (205) 881·4591 TWX: 910·935·0705 TWX: 710·862·9157 Albuquerque 87108 Tali (919) 885·8101 Tel: (214) 23J.6101 
TWXr 810·726·2204 20010 Century Blvd. 

Tel: (505) 265·3713 TWX: 5]0·926-1516 TWX1 910-867-4723 

ARIZONA 
CONNECTICUT TWX: 910·989·1665 P.O. Box 27409 
12 Lunar Drive Germantown 20767 OHIO 

2336 E. Ma1nolla St. New Haven 06525 Tel, (31) 428-0700 156 Wyatt Drive 25575 Center Rld1e Road 
6300 Westpark Drive 

Pho1nlx 85034 Tel:(203)389'6551 P.O. Box 1648 
Lu Cruces 88001 c11ve1and 44145 

Suite 100 
Tel: (602) 244-1361 TWX: 710-465-2029 Tel: (505) 526·2485 Tell (218) 835-0300 

Houston 77027 

TWX: 910-951·1330 2 Choke Cherry Road TWX• 910·983·0550 Tel: (713) 781-6000 
Rockville 20850 TWX: 810-427-9129 TWX: 910·881·2645 

5737 East Broadway FLORIDA Tai: (301) 948-6370 NEW YORK 
Tucson 85711 P.O. Box 24210 TWX1 710·828-9684 330 Pro11ress Rd. 231 Biiiy Mitchell Road 

Ttl: (602) 298-2313 2806 W. Oakland Park Blvd. 6 Automation Lane Dayton 45449 Sin Antonio 78226 

TWX1 910·952·1182 Ft. LIUdlrdlle 33307 MASSACHUSETTS Computer Park Tali (513) 859-8202 Tali (512) 434-4171 
Tait (305) 731·2020 32 Hartwell Ave. Alb1ny 12205 TWX1 8]0·459-1925 TWX1 910·871·1170 

(Effective Dec. 15, 1973) TWX1 510·955·4099 Ltxln1ton 02173 Tel: (518) 458-1550 
8865 Busch Blvd. UTAH 

2424 East Araton Rd. Telt(817)861·8960 TWX1 710-441·8270 
P.O. Box 13910 Columb~1 43229 2890 South Mein Street 

Tucson 85706 
6177 Lake Ellenor Dr. 

TWX: 710·326·6904 1219 Campvllle Road Tel: (614) 846·1300 Salt Like City 84115 
Tait (602) 889·4681 

Orl1ndo, 32809 MICHIQAN 
Endicott 13760 Tell (801) 487-0715 

CALIFORNIA Tel1 (305) 859-2900 23855 Research Drive 
Tel: (607) 754-0050 OKLA!'IOMA TWX1 910·925-5881 

1430 EHi Oren1ethorpe Ave. TWX: 810·850-0113 Farm1n1ton 48024 
TWX1 510·252·0690 P.O. Box 32008 VIRQINIA 

Pulltrtan92831 Okl1homa City 73132 
Telt (714) 87Q.IOOO QEORQIA 

Tait (313) 478·6400 New Yark City Telt (405) 721-0200 
P.O. Box 6514 

TWX1 810·242·2900 Manhattan, Bronx 2111 Spencer Road 
TWX: 910-592-1288 P.O. Box 28234 Contact Paramus, NJ Office TWX: 910·830·8862 Richmond 23230 

3939 L1nker1hlm Boulevard 450 Interstate North MINNESOTA Tali .(201) 285·5000 OREGON Talt(804)285·3431 

North Hollywood 91604 At11nt1 30328 2459 University Avenue Brooklyn, Queens, Richmond 17890 S't/ Boones Ferry Road TWX1 710·956-0157 

Tait (213) 877·1282 Ttli (404) 438·6181 St. Paul 55114 Contact Woodbury, NY Office TUllllln 97062 WASHINGTON 
TWX1 910·499·2170 

TWX1 810·788·4690 Ttlt (612) 845·9481 Tait (516) 921-0300 Tait (503) 620-3350 Bellaflald Office Pk. 
TWX: 910-563-3734 

6305 Arizona Place HAWAII 82W11hln1ton Street TWXr 91.0·487·8714 1203 • 114th SE 

LOI An1el11 90045 2875 So. Kini Street MISSOURI Pou1hk11p1l112601 Bellevue 98004 

Tait (213) 649·2511 Honolulu 96614 11131 Colorado Ava. Tel. (914) 454-7330 PENNSVLVANIA Tai: (206) 454-3971 

TWX: 910·328-6148 Tel: (808) 955·4455 K1n111 City 84137 TWX1 510·248·0012 2500 Moss Side Boulevard TWX: 910-443·2303 

Tel1 (818) 783-8000 39 Saalnaw Drive 
Monroeville 15146 •WEST VIRGINIA 

1101 Embarcadero Road ILLINOIS TWX1 910-771·2087 Tel: (412) 271-0724 Chul11ton 
Pelo Alto 94303 5500 Howarc( Street Rochester 14623 TWX1 710·797-3850 Tel: (304) 345-1640 
Tait (415) 327-8500 Skokie 50076 148 Waldon Parkway Tel, (716) 473-9500 

TWX1 910-373·1280 Telt (312) 677·0400 Maryland H•l1ht163043 TWX: 510-253-5981 10218th Avenue WISCONSIN 

Twx, 910·223·3613 Tai: (314) 567-1455 5858 East Molloy Road King of Prussia Industrial Park 9431 W. Beloit Road 
2220 Watt Ave. TWX1 910-764·0830 Kln1 of Prussia 19406 Sultall7 
S1cr1m1nto 95825 IN DIANA 

Syr1cuse13211 Tait 1215) 285-7000 Miiwaukee 53227 
Tait (916) 482-1463 3839 Meadows Drive •NEVADA Tait (315) 454-2486 TWX: 510-660-2670 Tel. (414) 541·0550 
Twx, 910·367-2092 lndl1napoll146205 Lii Yllll TWX: 710-541-0482 

Tel:(317)546·4891 Tali (702) 382-5777 1 Crossways Park West RHODE ISLAND FOR U.S. AREAS NOT 
9606 Aero Drive Twx, 810-341-3263 Woodbury 11797 873 Waterman Ave. LISTED: 
P.O. Box 23333 NEW JERSEY Tel: (516) 921·0300 East Providence 02914 Contact the regional office near-
San 01e10 92123 LOUISIANA 1060 N. Kings Highway TWX: 510-221·2168 Tel: (40\) 434-5535 est YOU• Atlanta, Georgia ... 
Tel1 (714) 279-3200 P. 0. Box 840 Cherry Hiii 08034 TWX: 710-381-7573 North Hollywood, California ... 
Twx, 910-335-2000 3239 Wiiiiams Boulevard Tel: (609) 667-4000 

0 TENNtSSEE 
Paramus, New Jersey •.. Skokie, 

Kanner 70062 TWX, 710-892-4945 llllnols. Their complete ad-
Tel: (504) 721-6201 W. 120 Century Rd. 

Memphl$ dresses are listed above. 
TWX: 810·955·5524 Paramus 07652 

Tel. (901) 274-7472 •service Only 

Tel: (201) 265-5000 
TWX: 710-990-495! 



CANADA 
ALBERTA 
Howlett-Packard (Canada) Ltd. 
11748 Klngsway Ave. 
Edmonton TSG OX5 
Teh (403) 452-3670 
TWX: 610·831·2431 

Hewlett-Packard (Canada) ltd. 
825-Bth Ave., S.W. 
Suite 804 
Calgary 
Tel: (403) 262-4279 

BRITISH COLUMBIA 
Hewlett-Packard (Canada) Lid. 
837 E. Cordova St. 
Vancouver 6 
Tel: (604) 254-0531 

SALES & SERVICE OFFICES 

MANITOBA 
Hewlett-Packard (Canad,1l ltd 
513 Century St. 
Winnipeg 
Tel: (204) 786·7581 
TWX: 610-671-3531 

NOVA SCOTIA 
Hewlett-Packard (Canada) Ltd. 
2745 Dutch Village Rd. 
Suite 210 
Halifax 
Tel: (902) 455-0511 
TWX: 610-271-4482 

ONTARIO 
Hewlett-Packard (Canada) Ltd. 
1785 Woodward Dr. 
Ottawa K2C OP9 
Tel: (613) 255-6180, 255-6530_ 
TWX: 610-562-8968 

Hewlett-Packard (Canada) Ltd. 
50 Galaxy Blvd. 
Rexdale 
Tel: (416) 677-9611 
TWX: 610-492-4246 

CENTRAL AND SOUTH AMERICA 
ARGENTINA 
Hewlett.Packard Argentina 
S.A.C.e.I 
Lavallell71·3° 
Buenos Aires 
Tel: 35·0436, 35-0627, 35-0341 
Telex: 012·1009 
Cable: HEWPACK ARG 

BOLIVIA 
Stambuk & Mark (Bolivia) LTDA. 
Av. Mariscal, Santa Cruz 1342 
La Paz 
Tel: 40626, 53Hi3, 52421 
Telex: 3560014 
Cable: BUKMAR 

BRAZIL 
Hewlett·Packard Do Brasil 
1.E.C. Lida. 
Rua Frei Caneca 1119 
01307-Sao Paula·SP 
Tel: 288·7111, 287·5858 
Telex. 309151/2/3 
Cable: HEWPACK Sao Paulo 

Hewlett-Packard Do Brasil 
l.E.C. Lida. 
Praca Dom Feliciano, 78 
90000-Porto Alo11re-RS 
Rio Grando do Sul !RS) Brasil 
Tel: 25·8470 
Cable: HEWPACK Porto Alegre 

Hewlett·Packard Do Brasil 
l.E.C. Ltda. 
Rua da Matriz, 29 
20000·Rlo da Janeiro-GB 
Toi: 266·2643 
Telex: 210079 HEWPACK 
Cable: HEWPACK Rio de Janeiro 

CHILE 
H~ctor Calcagni y Cia, Ltda. 
Casilla 16.475 
Santla110 
Tel: 423 96 
Cable: CALCAGNI Santiago 

COLOMBIA 
tnstrumentaci6n 
Henrik A. Langebaek & Kier S.A. 
Carrera 7 Na. 48·59 
Apartado Mreo 6287 
Bogota, 1 D.E. 
Tel: 45·7806, 45·55-46 
Cable: AARIS Bogota 
Telex: 444001NSTCO 

COSTA RICA 
Lie. Alfredo Gallegos c~l'dlAn 
Apartado 10159 -
San Jas6 
Tel: 21-86·13 
Cable: GALGUR San Jos6 

ECUADOR NICARAGUA 
Laboratorios de Radlo-lnaenierla Roberto Ter4n G. 
Calle Guayaquil 1246 Aparlado Postal 689 
Post Office Box 3199 Edlficio TerAn 
Qui ta Mona11ua 
Tel: 212·496: 219·185 Tel: 3451, 3452 
Cable: HORVATH Quito Cable: ROTERAN Managua 

EL SALVADOR 
Electronic Associates 
Apartado Postal 1682 
Centro Comercial Gigante 
San Salvador, El Salvador C.A. 
Paseo Escalon 4649-4° Pisa 
Tel: 23-44·60. 23·32-37 
Cable: ELECAS 

GUATEMALA 
IPESA 
Avenida La Reforma 3-48, 
Zona 9 
Guatemala 
Tel: 63627, 64736 
Telex: 4192 TELTRO GU 

MEXICO 
Hewlett-Packard Mexicana, 
S.A. de C.V. 
Torres Adalid No. 21, 11 Pisa 
Col. del Valle 
Mexico 12, D.F. 
Tel: 543-42-32 
Telex: 017-74·507 

PANAMA 
Electr6nlco Balboa, S.A. 
P.O. Box 4929 
Ave. Manuel Espinosa No. 13-50 
Bld11. Alina 
Panama City 
Tel: 230833 
Tele>: 3481103, Curunda, 
Canal Zone 
Cable: ELECTRON Panama City 

PARAGUAY 
Z. J. Melamed S.R.L. 
Division: Aparatos y Equipos 

Medicos 
Division: Aparatos y Equipos 

Sclentlflcos y de 
lnvestlgaclon 

P.O. Box 676 
Chile, 482, Edificio Victoria 
Asuncion 
Tel: 4·5069, 4·6272 
Cable: RAMEL 

PERU 
Companla Electro M6dlca S.A. 
Ave. Enrique Canaual 312 
San Isidro 
Casilla 1030 
Lima 
Tel: 22·3900 
Cable: ELMEO Lima 

PUERTO RICO 
San Juan Electronics, Inc. 
P.O. Box 5167 
PoncedeLeonl54 
Pda. 3-PTA de Tierra 
San Juan 00906 
Tel: (809) 725·3342, 722-3342 
Cable: SATRONICS San Juan 
Telex: SATRON 3450 332 

QUEBEC 
Howlett-Packard (Canada) Ltd. 
275 Hymus Boulevard 
Pointe Claire H9R IG7 
Tel:(514)697-4232 
TWX: 610·422·3022 
Telex: 01-20607 

Hewlett-Packard (Canada) Ltd. 
2376 Galvani Street 
Stefay GIN 4G4 
Tel: (418) 688-8710 

FOR CANADIAN AREAS NOT 
LISTED: 
Contact Hewlett-Packard (Can· 
ada) Ltd. In Pointe Claire. 

URUGUAY 
Pablo Ferrando S.A. 
Comerclal e Industrial 
Avenlda Italia 2877 
Casilla de Correo 370 
Montevideo 
Tel: 40·3102 
Cable: RADIUM Montevideo 

VENEZUELA 
Hewlett-Packard de Venezuela 
C.A. 
Apartado 50933 
Edificio Segre 
Tercera Transversal 
Los Ruices Norte 
Caracas 107 
Tel: 35-00·11 
Telex: 21146 HEWPACK 
Cable: HEWPACK Caracas 

FOR AREAS NOT LISTED, 

CONTACT: 
Hewlett-Packard 
Inter-Americas 
3200 Hillview Ave. 

r:I~ cW~> ~3Y!f 5~\a 94304 

TWX: 910·373·1267 
Cable: HEWPACK Palo Alto 
Telex: 034-8300, 034·8493 

E 11/73 



EUROPE 
AUSTRIA Hewlett-Packard France Hewlett-Packard GmbH ITALY PORTUGAL TURKEY 
Hewlett-Packa1d Ges.m.b.H Zone Aeronautique VertriebsbUro Hamburg Hewlett Packard ltal1Jna S.o.A. Telecti""a·Empresa Tecnica de Telekom Engineering Bureau 
Handelska 52/3 Avenue Clement .!\der Wendcnstr. 23 Via Amerigo Vespucci 2 Equipam.entos El~ctrlcos S.a.r.I. Saglik Sok No. 15/1 
P.O. Box 7 F-31770 Colomlers D-2000 Hamburg 1 1·20124 Milan Rua Rodrigo da Fonseca 103 Ayaspasa-Beyoglu 
A-1205 Vienna Tel,(61)868155 Teh (040) 24 13 93 Tel: (2) 6251 {10 linesi P.O. Bo! 2531 P.O. Box 437 Beyoglu 
Tel, (0222133 66 06 to 09 Telex,51957 Cable, HEWPACKSA Hamburg Cable, HEWPACKIT Milan P-Lisbonil TR·IS!anbul 
Cable: HEWPAK Vienna 

Hewlett-Packard France Telex, 21 63 032 hphh d Telex, 32046 Teh (19) 68 60 72 Tel, 49 40 40 
Telex~ 75923 hewpak a 

Hewlett-Packard ltaliana S.p.A Cable, TIELECTRA Lisbon Cable, TELEMATION Istanbul Agence R6gionate Hewlett-Packard GmbH Telex, 1598 
BELGIUM Boulevard Ferato-Gamarra Vertriebsbilro Hannover Piazza Marconi, 25 

UNITED KINGDOM 
Hewlett-Packard Benelux Boite Postale No. 11 Mellendorfer Strasse 3 1·00144 Rome. Eur SPAIN Hewlett-Packard Ltd. 
S.A./N.V. F-13100 Luynes D-3000 Hannover-Kleeteld Teh(6)59125445,5915947 Hewlett-Packard Espaliola, S.A. 224 Bath Road 
Avenue de Col-Vert, 1. Teh (47) 24 00 66 Tel, (0511) 55 06 26 Cable, HEWPACKIT Rome Jerez No 8 GB-Slough, SL! 4 OS, Bucks 

~~~%~kr:~~~~g~~ 
Telex, 41770

Hewlett-Packard GmbH
Telex, 61514 E-Madrld 16 Tel, Slough (0753) 33341

Hewlett-Packard France Vertriebsburo Nuremberg Hewlett-Packard ltallana S.p.A. Tel, 458' 26 00 Cable, HEWPIE Slough
Tel, (02) 72 22 40 Agency Regionale Hersbruckerstrasse 42 Vicolo Pastori, 3 Telex, 23515 hpe Telex: 848413
Cable, PALOBEN Brussels 63, Avenue de Rochester D-8500 Nuremberg 1·35100 Padova Hewlett-Packard Espanola, S.A. Hewlett-Packard Ltd. Telex, 23 494 paloben bru F-35oooRennes Tel, (0911) 57 10 66 Tel, (49) 66 40 62 Milanesado 21-23 "The Graftons"

Tel,(99)363321 Telex' 623 860 Telex, 32046 via Miian E-Barcel~na 17 Stamford New Road DENMARK Telex,74912F
Hewlett-Packard GmbH Hewlett-Packard ltaliana S.p.A. Tel, (3) 203 62 00 GB·Altrincham, Cheshire Hewlett-Packard A/S

Via Colli, 24 Tele" 5~603 hpbe e Teh (061) 928-9021 Oatavej 38 Hewlett-Packard France VertriebsbUro MGnchen
Telex,668068 DK-3460 Blrkerod Agence Rtigionale Unterhachlnger Strasse 28 1·10129 Turin

SWEDEN Tel,(01)816640 74, Allee de la Robertsau JSAR Center Tel,(11)538264 Hewlett-Packard Ltd's registered
Cable, HEWPACK AS F-67000 Strasbourg D-8012 Ottobrunn Telex: 32046 via Miian Hewlett-Packard Sverlge AB

address for V.A.T. purposes
Telex, 166 40 hp as Teh (88) 35 23 20/21 Tel, (089) 601 30 61/7 Enlghetsv§genl-3

only,
Telex,89141 Telex, 52 49 85 LUXEMBURG Fack

70, Finsbury Pavement Hewlett-Packard A/S Cable, HEWPACK STRBG Cable, HEWPACKSA MUchen Hewlett-Packard Benelux S-16120 Bromma 20
London, EC2AISX Torvet 9 S.A./N.V. Teh (08) 98 12 50
Registered No, 690597 DK-8600 Sllkeborg GERMAN FEDERAL (West Berlin) A'/enue de Col-Vert, 1, Cable, MEASUREMENTS

Teh (06) 82-71-66 REPUBLIC Hewlett-Packard GmbH (Groenkraaglaan) Stockholm
SOCIALIST COUNTRIES Telex, 166 40 hp as Hewlett-Packard GmbH VertriebsbUro Berlin B-1170 Brussels Telex, 10721
PLEASE CONTACT: Cable, HEWPACK AS Vertrlebszentrale Frankfurt Wilmersdorfer Strasse 113/114 Teh (03/02) 72 22 40

Hewlett-Packard Sverlge AB Hewlett-Packard Ges.m.b.H.
Bernerstrasse 117 D-1000 Berlin W. 12 Cable, PALOBEN Brussels

Hagakersgatan 9C Handelskai 52/3 FINLAND Postfach 560 140 Teh (030) 3137046 Telex, 23 494
S-43141 M61ndal P.O. Box 7 Hewlett-Packard Oy D-6000 Frankfurt 56 Telex, 18 34 05 hpbln d Tel, (031) 27 68 00/01 A-1205 Vienna Bulevardi 26 Teh (0611) 50 04·1 NETHERLANDS
Telex, Via Bromma Ph, (0222) 33 66 06 to 09 P.O. Box 12185 Cable, HEWPACKSA Frankfurt GREECE Hewlett-Packard Benelux/N.V. Cable: HEWPACK Vienna SF-00120 Helsinki 12 Telex, 41 32 49 fra Kostas Karayannis Weerdesteln 117
SWITZERLAND Telex: 75923 hewpak a Teh (90) 13730

Hewlett-Packard GmbH
18, Ermou Street P.O. Box 7825 Hewlett Packard (Schweiz) AG Cable, HEWPACKOY Helsinki GR-Athens 126 NL-Ams!9rdam, 1011 ALL OTHER EUROPEAN Telex, 12-15363 hel VertriebsbUro Bobllngen Teh 3230·303, 3230-305 Tel, 020·42 77 77, 44 29 66 ZUrcherStrasse 20

COUNTRIES CONTACT: Herrenbergerstrasse 110 Cable, RAKAR Athens Cable, PALOBEN Amsterdam P.O. Box 64
Hewlett-Packard S.A. FRANCE D-7030 BHbllngen, WUrttemberg Telex: 21 59 62 rkar gr Telex, 13 216 hepa nl CH-8952 Schlleren Zurich
Rue du Bois-du-Lan 7 Hewlett-Packard France Tel, (07031) 66 72 87 Tel, (01)• 98 18 21/24
P.O. Box 85 Quartier de Courtaboeuf Cable, HEPAK Boblingen IRELANO NORWAY Cable, HPAG CH
cH-1217 Meyrln 2 Geneva Bolte Postale No. 6 Telex, 72 65 739 bbn Hewlett-Packard Lid. Hewlett-Packard Norge A/S Telex, 53933 hpag ch

Switzerland F-91401 Orsay
Hewlett-Packard GmbH 224 Bath Road Nesveien 13 Hewlett-Packard (Schweiz) AG Tel, (022) 41 54 00 Tel: (1) 907 78 25
VertrlebsbUro DUsseldorf GB-Slough, SL! 4 OS, Bucks Box 149 9, Chemin Louls-Plctet Cable, HEWPACKSA Geneva Cable, HEWPACK Orsay
Vogetsanger Weg 38 Tel, Slough (0753) 33341 N-1344 Haslum CH-1214 Vernler--Genava Telex. 2 24 86 Telex, 60048
D-4000 DUsseldorf Cable, HEWPIE Slough Teh (02) 53 83 60 Tel, (02~) 41 4950

Hewlett-Packard France Teh (0211) 63 BO 31/38 Tele>: 848413 Telex, 1662lhpnasn Cable, HEWPACKSA Geneva
Agenee Regional Tele<, 85/86 533 hpdd d Hewlett-Packard Ltd. TeleX: 27 333 hpsa ch
4Qual des Etrolls The Graftons
F-69321 Lyon Codex 1 Stamford New Road
Tel: (78) 42 63 45 Allrlncham, Cheshire
Cable: HEWPACK Lyon Teh (061) 928-9021
Telex, 31617 Telex: 668068

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA
ANGOLA CYPRUS Blue Star Ltd. JAPAN MOZAMBIQUE SINGAPORE UGANDA
Telectr~·Empresa Tecnica Kypronlcs Blue Star House, Yoko1awa-Hewlett-Packard Ltd A.N. Goncalves, Lta. Mechanl.cal & Combustion Uganda Tele-Electric Co., Ltd.

de "Equlpamentos Electrlcos 19 Gregorios & Xenopoulos Road 34 Rini Road Ohashi Bulldln1 162, Av. D. Luis Enslneerlng Company Pte., P.O. Box 4449
SARL P.O. Box 1152 Lajpat ~a1ar 1-59·1 Yoyogi P.O. Box 107 Ltd. Kampa I•

Rua de Barbosa, Rodrigues, CY·Nlcosl1 New Delhi tlO 024 Shlbuya-ku,Tokyo Lourenco Marques 10112, Jalan Kilang Tel: 57279
42-1-", DI' Teh 45628/29 Tel: 62 32 76 Tel:· 03-370-2281/92 Tel: 27091, 27114 Red Hiii Industrial Estate Cable: COMCO Kampala

P.O. Box 6487 Cable: KYPRONICS PANDEHIS Telex: 2463 Telex: 232·2024YHP Telex: 6·203 Neron Mo ·s1n11par1, 3
Luanda Cable: BLUESTAR Cable: YHPMARKET TOK 23·724 Cable: NEGON Tel:647151(711nes) VIETNAM
Cable: TELECTRA Luarida ETHIOPIA

Blue Star, Ltd. Yoko1awa·Hewlett·Packard Ltd.
Cable: MECOMB Singapore Peninsular Trading Inc.

African Salespower & A1ency NEW ZEALAND P.O. Box H·3
AUSTRALIA Private Ltd., Co. Blue Star House Nisei lbara1I Bld1. Hewlett·Packard 1N.Z.) Ltd. Hewlett-Packard Far East 216 Hien-Vuong
Hewlett-Packard Australia P. o. Box 718 11/llA Magarath Road 2·2·8 Kasu1a 94·96 Dixon Street Area Olflce S1l1on

Ply. Ltd. 58/59 Cunningham St. Ban1aloro 560' 025 lbara1l·Shl P.O. Box 9443 P.O. Box 87 Tel: 20·805, 93398
22-26 Weir Street Addis Ablbl Tel: 55668 011k1 Courtenay Place, Alexandra Post Oftlce Cable, PENTRA, SAIGON 242
Gl1n Iris, 3146 Toi: 12265 Telex:430 Toh (0726) 23-1641 W1llln1ton Sln11por1 3
Victoria C1bll• ASACO Addlsababe Cable: BLUESTAR Telex: 5332·385 YHP OSAKA Tel: 59.559 Tel:633022 . ZAMBIA
Tel1 20·1371 (6 lines: HONG KONQ Blue Star, Ltd. Yoko1awa·Hewlett·Packard Ltd. Telex:3898 Cable: .HEWPACK SINGAPORE R. J. Tilbury (Zambia) Ltd.
C1bl11 HEWPARD Melbourne Schmidt & Co. (Hon1 Kon1) Ltd. 1·1·117/1 Nakamo Bulldln1 'Cable: HEWPACK Welllnalon

SOUTH AFRICA
P.O. Box 2792

Telex, 31 024 P.O. Box 297 No. 24 KamlsaSlzlma·cho i~!:~~~~·::c ~~~~. i~;n~1 L bdin ire

LUllkl
SaroJlnl Devi Road Hewlett Packard South Africa Zambia, Central Africa

Hewlett-Packard Australia Connall&ht Centre S1cund1r1b1d 500 003 N1k1mura·kU, NllDY• City (Pty.), Ltd. Teh73793
Ply.Ltd. 39thFloor Tel, 7 63 91, 7 73·93 Tel:(052)571-5171 i~~~ m~;an11 Hl1hway Hewlett-Packard House Cable: ARJAYTEE, Lusaka

31 Bridie Street Connau1ht Road, Central Cabll• BLUEFROST Yoko1ewa-Hewletl·Pack11d Lid. Daphne Street, Wendywood,
Pymbll, Hon1 Konr Telex: 459 Nlllo Bid&.

:Pakuranu Sandton, Transvaal 2001 MEDITERRANEAN AND
New South Wales, 2013 Tel: 240168, 232735 Blue Ster, Ltd. 2·4·2 Shlnohare-Klta

Tel:S69·651 Tai: 407841 (five lines) MIDDLE EAST COUNTRIES
Telo4496566 Telex: HX4766 23/24 Second Line Beach Kohoku·ku

Cable: HEWPACK, Auckland NOT SHOWN PLEASE
Telex:21561 Cable, SCHMIDTCO Hon1 Kon1 Hawlltt Packard Soulh Africa

M1dr11 600 001 Yokoh1m1 222 NIGERIA (Pty.),Ltd. CONTACTt
Cable: HEWPARD Sydney INDIA Tel. 23954 Tel: 04"432·1504 The Electronics lnstrumenta· Sreecutle House Hewlett-Ptckard

Hewlett-Pickard Auslralla Blue Star Ltd. Telex, 379 Telex: 382-3204 YHP YOK tlon1Ltd.(TEIL) Bree Street Co·ordln1tlon Office tor

Ply.Ltd. Kuturl Bulldlo15 ~able: BLUESTAR Yoko11w1·Hewlelt-Packard Ltd. 144 A1eu Motor Rd., Mushln C1p1 Town Medlterraneen end Middle

97 Churchill Road JamshedJI Tat• Rd. Blue Star, Ltd. Chuo Bld1. P.O. Box 6645 Tel: 2·6941/2/3 · East Operations

Pro1p1ct 5062 Bomb1y 400 020 Nathraj Manslono Rm. 603 3, L11os Cable, HEWPACK Cape Town Plazza Merconl 25

South Australia Tel: 29 50 21 2nd Floor Blstupur 2-Chome Cable, THETEIL Laios Tele" 0006 CT 1·00144 Rome·Eur, 1t1ly

Tel, 44 8151 Telex" 3751 l1m1hedpur 83! 00! IZUMl·CHO, The Electronics lnstrumenta·
Tai. (8) 59 40 29

Cable• HEWPARO Adelaide Cable: BLUEFROST Tel: 38 04 Mlto, 310 lions Ltd. (TEil)
Hewlett Packard South Africa Cable, HEWPACKIT Rome

Telo 0292-25-7470 1Pty.'.Ltd. Tellx:61514
Hewlett-Packard Australia Slue Star Ltd. Cable: SLUESTAR 16th Floor Cocoa House 641 Rld1e Road. Durban

Pty. Ltd. Sa has Telex: 240 KENYA P.M.B. 5402 P.O. Box 99 OTHER AREAS NOT

C1aablanca Buildings 414/2 Vlr Savarkar Mari INDONESIA Kenya Kinetics lb1d1n Ovuport, Natal LISTED, CONTACT:

196 Adelaide Terrace Prabhadevl Bah Bolon Tradln1 Coy. N.V. P.O. Box 1831! Telo22325 Tei:88·6102 Hewlett-Packerd

Perth, W.A. 6000 Bombay 400 025 Dlalah Merdeka 29 N1lrobl, Kenya Cable: THETEIL Ibadan Telex: 567954 Export Trade Company

Tel: 25-6800 Tel• 45 78 87 B1ndun1 Tel,57726
PAKISTAN Cable: HEWPACK 3200 Hiiiview Ave.

Cable: HEWPARO Perth Tele" 4093 Tel: 4915: 51560 Cable: PROTON Palo Alto, California 94304
Cable. FROSTBLUE Ceble, ILMU

Mushko & Company, Ltd.
TAIWAN Tel: 1415) 326·7000

Hewlett-Packard Auslralia KOREA Oosman Chambers
Pty. Ltd. Blue Star Ltd. Telex: 08-809 American Tradln1 Company Abdullah Haroon Road Hawlett Packard Taiwan (Feb. 71 493-1501)

10 Woolley Street Band Box House IRAN l<orea, K1r1chl J 39 Chun1 Shl10 West Road TWX: 910-373-1267

P.O. Box 191 Prabhadevl Multi Corp International ltd. l.P.O. Box 1103 Tali 511027, 512927 sec. l Cable: HEWPACK Palo Alto

Dickson A.C.T. 2602 Bomb1y400 025 Avenue Soraya 130 Dae Kyun1 Bid&., 8th Floor Cable• COOPERATOR Karachi g~~~~e:rd~~)~~anF~~or
TeleX: 034-8300, 034-8493

Tel: 49-8194 Tai: 45 73 01 P.O. Box 1212 107 Sejona-Ro, Mushko & Company, Ltd.
Cable: HEWPARD Cannerra ACT Telex:375! IA·Tth1r1n Chongro-Ku, Seoul 38B, Satellite Town

Taipei
Cable: BLUESTAR Tel: 63 10 35-39 Tel: (4 lines) 73·8924·7 Tel. 389160,1,2, 375121,

Hewlett-Packard Australia
Blue Star Ltd. Cable: MULTICORP Tehran Cable: AMTRACO Seoul Rawalpindi Ext. 240-249

Ply.Ltd.
14/40 Civil lines Telex: 2893 MCI TN

Tel: 41924 TeleX: TP824 HEWPACK
2nd Flo.or, 49 Gregory Terrace ~ LEBANON Cable: FEMUS Rawalpindi Cable, HEWPA.CK Taipei
Brl1b1ne, Queensland, 4000 Kampur 20B OD! ISRAEL Constantin E. Macridls

Tel: 29 1544 Tel: 6 88 82 Electronics & Engineering P.O. Box 7213 PHILIPPINES THAILAND
Cable: BLUESTAR Div. of Motorola Israel ltd. RL·Beirut Electromex, Inc. UNIMESA Co., Ltd.

CEYLON Blue Star, Ltd. 17 Amlnadav Street Tel: 2W846 6th Floor, Amala:amated Chongkolnee Building

United Electricals Ltd. 7 Hare Street Tel-Aviv Cable: ELECTRONUCLEAR Beirut Development Corp. Bldg. 56 Surlwongse Road

P.O. Box 681 P.O. Box 506 Tel: 36941 (3 lines) MALAYSIA
Ayala Avenue, Makatl, Rizal Bangkok

60, Park St. Calcutta 700 001 Cable: BASTEL Tel-Aviv C.C.P.O. Box 1028 Tel: 37956, 31300, 31307,
Colombo 2 Tel:23·0131 Telex:33569

MECOMS Malaysia Ltd. Makatl, Rizal 37540
2 Loron1 13/6A

Tel: 26696 TeleX: 655 Section 13
Tel: 86-18·87, 87·76-77, Cable: UNIMESA Banakok

Cable: HOTPOINT Colombo Cable: BLUESTAR 87·86·88, 87-18·45, 88-91-71,
Ptlalln1 Jaya, S1l1n1or 83-81-12, 83·82-12
Cable: MECOMB Kuala Lumpur C~le: i:lifMEX ManHa:...,·

	0_000
	0_001
	0_002
	0_003
	0_004
	0_005
	0_006
	1_0-000
	1_0-001
	1_0-002
	1_0-003
	1_0-004
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_2-18
	1_2-19
	1_2-20
	1_2-21
	1_2-22
	1_2-23
	1_2-24
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_3-07
	1_3-08
	1_3-09
	1_3-10
	1_3-11
	1_3-12
	1_3-13
	1_3-14
	1_3-15
	1_3-16
	1_3-17
	1_3-18
	1_3-19
	1_3-20
	1_3-21
	1_3-22
	1_3-23
	1_3-24
	1_3-25
	1_3-26
	1_3-27
	1_3-28
	1_3-29
	1_3-30
	1_3-31
	1_3-32
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_4-08
	1_4-09
	1_4-10
	1_4-11
	1_4-12
	1_4-13
	1_4-14
	1_4-15
	1_4-16
	1_4-17
	1_4-18
	1_4-19
	1_4-20
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_A-01
	1_A-02
	1_B-01
	1_B-02
	1_B-03
	1_B-04
	2_0-000_ASM
	2_0-001
	2_0-002
	2_0-003
	2_0-004
	2_0-005
	2_0-006
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	2_2-14
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_3-12
	2_3-13
	2_3-14
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_4-19
	2_4-20
	2_4-21
	2_4-22
	2_4-23
	2_4-24
	2_4-25
	2_4-26
	2_4-27
	2_4-28
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_A-01
	2_A-02
	2_A-03
	2_A-04
	2_B-01
	2_B-02
	2_B-03
	2_B-04
	2_B-05
	2_B-06
	2_B-07
	2_B-08
	2_C-01
	2_C-02
	2_C-03
	2_C-04
	2_D-01
	2_D-02
	2_D-03
	2_D-04
	2_D-05
	2_D-06
	2_D-07
	2_D-08
	2_D-09
	2_D-10
	2_D-11
	2_D-12
	2_D-13
	2_D-14
	2_D-15
	2_D-16
	2_D-17
	2_D-18
	2_D-19
	2_D-20
	2_E-01
	2_E-02
	2_E-03
	2_E-04
	2_E-05
	2_E-06
	2_E-07
	2_E-08
	2_E-09
	2_E-10
	2_E-11
	2_E-12
	2_E-13
	2_F-00
	2_F-01
	2_F-02
	2_F-03
	2_F-04
	2_G-01
	2_G-02
	2_G-03
	2_G-04
	2_G-05
	2_G-06
	2_G-07
	2_H-01
	3_0-000_BCS
	3_0-001
	3_0-002
	3_0-003
	3_0-004
	3_0-005
	3_0-006
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_2-12
	3_2-13
	3_2-14
	3_2-15
	3_2-16
	3_2-17
	3_2-18
	3_2-19
	3_2-20
	3_2-21
	3_2-22
	3_2-23
	3_2-24
	3_2-25
	3_2-26
	3_2-27
	3_2-28
	3_2-29
	3_2-30
	3_2-31
	3_2-32
	3_2-33
	3_2-34
	3_2-35
	3_2-36
	3_2-37
	3_2-38
	3_2-39
	3_2-40
	3_2-41
	3_2-42
	3_2-43
	3_2-44
	3_2-45
	3_2-46
	3_2-47
	3_2-48
	3_2-49
	3_2-50
	3_2-51
	3_2-52
	3_2-53
	3_2-54
	3_2-55
	3_2-56
	3_2-57
	3_2-58
	3_2-59
	3_2-60
	3_2-61
	3_2-62
	3_2-63
	3_2-64
	3_2-65
	3_2-66
	3_2-67
	3_2-68
	3_2-69
	3_2-70
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_6-06
	3_6-07
	3_6-08
	3_6-09
	3_6-10
	3_6-11
	3_6-12
	3_A-01
	3_A-02
	3_A-03
	3_A-04
	3_A-05
	3_A-06
	3_B-01
	3_B-02
	3_B-03
	3_B-04
	3_C-01
	3_D-00
	3_D-01
	3_D-02
	3_E-01
	3_E-02
	3_E-03
	3_E-04
	3_E-05
	3_E-06
	3_F-01
	3_F-02
	3_G-01
	3_G-02
	3_G-03
	3_G-04
	3_G-05
	3_G-06
	3_G-07
	3_G-08
	3_H-01
	3_H-02
	3_I-01
	3_I-02
	3_I-03
	3_I-04
	3_J-01
	3_J-02
	4_0-000_FTN
	4_0-001
	4_0-002
	4_0-003
	4_0-004
	4_0-005
	4_0-006
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_2-01
	4_2-02
	4_2-03
	4_2-04
	4_2-05
	4_2-06
	4_2-07
	4_2-08
	4_3-01
	4_3-02
	4_3-03
	4_3-04
	4_3-05
	4_3-06
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_4-09
	4_4-10
	4_5-01
	4_5-02
	4_5-03
	4_5-04
	4_5-05
	4_5-06
	4_5-07
	4_5-08
	4_5-09
	4_5-10
	4_6-01
	4_6-02
	4_6-03
	4_6-04
	4_6-05
	4_6-06
	4_6-07
	4_6-08
	4_6-09
	4_6-10
	4_6-11
	4_6-12
	4_7-01
	4_7-02
	4_7-03
	4_7-04
	4_7-05
	4_7-06
	4_7-07
	4_7-08
	4_7-09
	4_7-10
	4_7-11
	4_7-12
	4_7-13
	4_7-14
	4_7-15
	4_7-16
	4_7-17
	4_7-18
	4_8-01
	4_8-02
	4_8-03
	4_8-04
	4_9-01
	4_9-02
	4_9-03
	4_A-01
	4_B-01
	4_B-02
	4_B-03
	4_B-04
	4_B-05
	4_B-06
	4_C-01
	4_C-02
	4_C-03
	4_C-04
	4_D-01
	4_D-02
	4_D-03
	4_D-04
	5_0-000_BAS
	5_0-001
	5_0-002
	5_0-003
	5_1-01
	5_1-02
	5_1-03
	5_1-04
	5_1-05
	5_1-06
	5_1-07
	5_1-08
	5_1-09
	5_1-10
	5_1-11
	5_1-12
	5_2-01
	5_2-02
	5_2-03
	5_2-04
	5_2-05
	5_2-06
	5_2-07
	5_2-08
	5_2-09
	5_2-10
	5_2-11
	5_2-12
	5_2-13
	5_2-14
	5_2-15
	5_2-16
	5_2-17
	5_2-18
	5_2-19
	5_2-20
	5_2-21
	5_2-22
	5_2-23
	5_2-24
	5_2-25
	5_2-26
	5_2-27
	5_2-28
	5_2-29
	5_2-30
	5_2-31
	5_2-32
	5_2-33
	5_2-34
	5_2-35
	5_2-36
	5_2-37
	5_2-38
	5_2-39
	5_2-40
	5_2-41
	5_2-42
	5_2-43
	5_2-44
	5_2-45
	5_2-46
	5_3-01
	5_3-02
	5_3-03
	5_3-04
	5_3-05
	5_3-06
	5_3-07
	5_3-08
	5_3-09
	5_3-10
	5_3-11
	5_3-12
	5_3-13
	5_3-14
	5_3-15
	5_3-16
	5_3-17
	5_3-18
	5_4-01
	5_4-02
	5_4-03
	5_4-04
	5_4-05
	5_4-06
	5_4-07
	5_4-08
	5_4-09
	5_4-10
	5_4-11
	5_4-12
	5_4-13
	5_4-14
	5_4-15
	5_4-16
	5_4-17
	5_4-18
	5_5-01
	5_5-02
	5_5-03
	5_5-04
	5_5-05
	5_5-06
	5_6-01
	5_6-02
	5_6-03
	5_6-04
	5_6-05
	5_6-06
	5_7-01
	5_7-02
	5_7-03
	5_7-04
	5_7-05
	5_7-06
	5_7-07
	5_7-08
	5_7-09
	5_7-10
	5_A-01
	5_A-02
	5_A-03
	5_A-04
	x-01
	x-02
	x-03
	x-04

