
PILOT

REFERENCE MANUAL

1973

L. TURNER

DEPARTMENT OF PHYSICS

PACIFIC UNION COLLEGE

TABLE OF CONTENTS

INTRODUCTION

A PILOT PROGRAM

THE ESSENTIALS OF PILOT

PILOT PROGRAM STATEMENT
LINE NUMBER
LABEL . .
INSTRUCTION
VARIABLE .
STRING VARIABLE
NUMERIC CONSTANT .
CONDITION .

CORE PILOT 73 .

REMARK STATEMENT .
TYPE STATEMENT
ANSWER STATEMENT .
MATCH STATEMENT
JUMP STATEMENT
USE STATEMENT .
END STATEMENT .
COMPUTE STATEMENT .

EXTENSIONS TO PILOT 73 .

DEMAND STATEMENT . . .
UNREFERENCED TYPE STATEMENT
EXTENDED MATCH STATEMENT .
INTEGER FUNCTION .
RANDOM NUMBER FUNCTION

HOW TO ENTER A PILOT PROGRAM

LIST .
NUMBER
PURGE .
SIZE .
STOP .

.•

HOW TO RUN A PILOT PROGRAM .

PILOT IN THE 2000E ENVIRONMENT .

SAMPLE PROGRAM .

PILOT SYNTAX

ERROR MESSAGES . •.

0. 1

1.1

2. 1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3. 1

3.2
3.3
3.5
3.7
3.8
3.9
3.10
3.11

4. 1

4.2
4.3
4.4
4.6
4.7

5. 1

5.3
5.4
5.5
5.6
5.7

6. 1

7. 1

8.1

9.1

10.1

0.1

INTRODUCTION

PILOT is an author language for Computer Assisted Instruction (CAI).

It is an implementation of PILOT 73 for a Hewlett-Packard 2000E Time­

shared BASIC system. PILOT 73 is a hybridization of several author

languages used in the San Francisco Bay area. Early in 1973 a group

organized by Stanford Research Institute met and agreed upon a standardi­

zation called PILOT 73. These antecedents of PILOT have been used

extensively for writing dialog type CAI programs.

There are several advantages of such an author language. First,

the syntax is relatively simple so that within a short time most any­

one can master the language. For traditional languages this is not

necessarily true. It takes several weeks for a person to become

proficient in BASIC. In general, most teachers do not have time to

overcome inexperience in programming to be able to write effective

teaching programs. Even more importantly, the construction of the PILOT

language is such as to facilitate "dialog 11 type programming with a

minimum of effort. One is able to write effective programs quickly.

As a contrast, the BASIC language is designed for scientific computation.

It does not lend itself easily to writing dialog type programs

especially if the student's answer is to be examined for a given

response. While it is certainly possible to write CAI programs in

BASIC, the effort is very time consuming.

0.2

To be useful, any author language must be written as an interactive

language. PILOT is implemented in BASIC for HP 2000E Time-shared

system. This permits it to be used simultaneously with BASIC on this

system.

It is quite true that the capabilities of the language PILOT are

much less than that of BASIC. Its only virtues are the ease with which

the language may be learned and the ease with which dialog CAI programs

may be written.

Two cautions should be noted. Both concern themselves with

possible misuse of the computer. First, many CAI programs are indis­

tinguishable from ordinary programmed texts. This is n£l an effective

use of the computer. The computer has several advantages over regular

programmed texts, and effective use of the PILOT language will use

these advantages. Whereas most programmed texts have no branching,

that is, if a student learns rapidly there is no provision to skip

over more questions on the same topic, a computer can easily branch

to any other part of the program. ·In addition a computer can

analyze the student's response without revealing. the correct answer

{It is not possible to 11 peek 11 at the expected response.) and it can

give hints that lead the student to the correct answer. Also, a

computer can keep track of how well a student progresses through the

material. A well-written program forces the student to interact, not

just passively read through t~e material.

Second, the PILOT language certainly lends itself to the writing

of tests. However, in most cases it is easier and cheaper to use

ordinary multiple copy techniques. One should not use the computer

merely because it is new and novel. It is important to keep in mind

the cdst for a given result.

0.3

CAI can be an effective tool for the teacher just like audiovisual

material, but it cannot solve all problems, nor should it be expected

to take the place of effective existing (possibly cheaper) techniques;

rather, it should supplement them.

PILOT was implemented by Lawrence E. Turner, Jr. of the

Department of Physics, Pacific Union College. Any comments, reports

of problems, or suggestions should be directed toward him.

1.1

A PILOT PROGRAM

A PILOT program consists primarily of statements and questions

typed by the computer. The student's responses may be analyzed and

appropriate action is then taken by the computer dependent on exactly

what the student has typed. Thus a dialog between the computer and

the student may be established.

The syntax of PILOT is relatively easy to master. An example will

suffice to introduce one to the PILOT language.

10 R: THIS IS A PILOT PROGRAM
20 R:
3'/J T:HELLO! I AM YOUR FRIENDLY COMPUTER
40 T: WHAT IS YOUR NAME +
5'/J A:
6'/J T:WELL $NAME HOW DO YOU USUALLY USE A COMPUTER??
7'/J A:
80 T:
9'/J T:THAT SOUNDS PRETTY GOOD!!
10'/J E:

This program contains four out of the thirteen possible statement

types in PILOT. There are two features immediately obvious. The first

is the statement number associated with each statement. The second is

that each statement contains a colon (:). The character to the left of

the colon gives the statement type.

The first statement is a REMARK statement which is not executed,

it only appears in the listing to give information to someone looking

at the listing~ Statement 30 is a TYPE statement. Everything to the

right of the colon is printed on the terminal. Similarly, so is state­

ment 40; however, the plus (+) as a last character prevents the

1.2

carriage return-line feed that would normally occur at the end of the line.

Thus statement 50, an ANSWER statement prints a question mark {?) at the

second position after the last 11 E11 in statement 49). After printing the

question mark the computer waits for the user to type in something from

the terminal followed by a carriage return (ret). Whatever 1s typed~in is

stored in the string variable NAME and is printed out in statement 60,

where $NAME is replaced by whatever the student ·typed-in for the response

to statement 50. The last statement is an END statement which terminates

the program.

A typical execution of this program is as follows. For this example

the student's responses will be typed in lower case. On a conventional

terminal however, everything will be in upper case only.

HELLO! I AM YOUR FRIENDLY COMPUTER.
WHAT IS YOUR NAME ?johnny c.

WELL JOHNNY C. HOW DO YOU USUALLY USE A COMPUTER??
?to play games and mess around

THAT SOUNDS PRETTY GOOD!!

If this were all the PILOT language could do, there would be little

value in PILOT programs. A main virtue of a computer is the ability to

analyze a student's response and to make decisions on the basis of what

the student has typed. In PILOT this is accomplished by the MATCH state­

ment and the use of a condition. Again an example.

10 T:WHAT IS YOUR SEX +
2~ A:
30 M:FEMALE,GIRL,WOMAN,LADY
49) TY:I HOPE YOU ARE NOT A MEMBER OF WOMEN'S LIB!
50 TN:I HOPE YOU ARE NOT A CHAUVINIST PIG!

I

1.3

In this case the MATCH statemerit (number 3~) has four possible

alternatives separated by a coITTna (,). To illustrate the function of

the MATCH statement, also consider two different executions of this

portion of a PILOT program.

WHAT IS YOUR SEX ?1 am a woman
I HOPE YOU ARE NOT A MEMBER OF WOMEN'S LIB!

and

~:HAT IS YOUR SEX ?male
I HOPE YOU ARE NOT A CHAUVINIST PIG!

In the first cast the MATCH was successful; that is, somewhere

within the response one of the alternatives (WOMAN) in the MATCH state­

ment was found. Since the MATCH was successful, the TYPE statement with

a YES condition is executed, the TYPE statement with the NO condition is

skipped. In the second example, the MATCH failed, nowhere in the response

was one of the MATCH alternatives found. Thus the TYPE statement with

the NO condition was executed.

These examples introduce one to the general form of a PILOT program,

five of the thirteen possible PILOT statements, and the concept of a

condition. With this basis one could begin to write simple PILOT pro­

grams. Indeed some very effective programs have been written using only

.a portion of these ideas. However, some very powerful extentions are

contained in the other statements.

Very briefly some of the more important of these are: the JUMP

statement allows one to branch to any labeled statement, again depending

on a condition, the DEMAND statement (.D) provides for accumulating the

results of more than one MATCH statement to check for several different

1.4

·responses in a single answer. With the COMPUTE statement the programmer

can define variables which have numeric values associated with them. These

variables may be given values, manipulated, and ultimately used in condi•

tions or even printed on the terminal.

THE ESSENTIALS OF PILOT

This section contains a detailed description of each of the

elements that make up the PILOT language. Hopefully, this manual

will serve both as an instruction guide and a reference manual for

PILOT.

Items contained within 11 < 11 and 11 >11 are elements in the PILOT

language. Throughout this manual the number zero is slashed (~)

and the letter 0 is left unslashed.

2 .1

2.2

PILOT PROGRAM STATEMENT

general form:

examples:

comments:

<line number> <instruction>:<object>
<line number> <label> <instruction>:<object>
<line number> <instruction><condition>:<object>
<line number> <label> <instruction><condition>:<object>

H!J~ T:HI
2~0 *NAME A:$JOHNHENRY
3i}0 JY:*QUESZ
400 *Ql7 TN:SORRY YOU LOSE!
450 C:X=5*Y-Z .

A program statement contains a maximum of 72 characters.

The label and the condition are optional.

Note that every statement must contain one colon, (:).
With some statement types the object may be blank.

Statements without a condition are termed unconditional and
are always executed. Statements with a condition are termed
conditional and may or may not be executed depending on the
condition and previous responses to the program.

The only place where blanks are required is to separate the
label from the instruction.

Extra blanks in the portion of the PILOT statement to the
left of the colon are deleted.

The end of the program is designated by some last statement
or possibly an ENO statement.

examples:

purpose:

comments:

LINE NUMBER

lf' TY:HI
200 *NOW J:*THEN
1097 M:BLUE,GREEN

2.3

Line numbers serve no purpose to the PILOT language except
to sequence the program statements as they are typed in and
allow editing of the PILOT statements. Thus the program
statements may be entered in any order. They are arranged
in order of increasing line numbers.

Line numbers are positive integers ·in the range 1 to 9999.

To correct a statement, simply retype it with the same line
number. To delete a statement type its line number.

The line number is separated from the rest of the statement
by one or more blanks.

2.4

LABEL

general form:

examples:

purpose:

comments:

*<string>

1~ *NAME T:MY NAME IS HP2000E!
29) *AGE3 T:NOW IS THE TIME.
3~ *37A JY:*AGE7
4~ *NNN R:THIS IS A SUBROUTINE 'NNN'

The label is an optional part of a PILOT program statement.
It is used as a reference for a JUMP statement or a USE
statement (subroutine jump).

The label consists of an asterisk (*) followed by a string
consisting of letters and digits only and is ended by one or
more blanks. It can be any length.

INSTRUCTION

general form:

purpose:

comments:

T TYPE
A ANSWER
R REMARK
E END
M MATCH
J JUMP
U USE
C COMPUTE

N TYPE
Y TYPE

.T UNREFERENCED TYPE

.M EXTENDED MATCH

.I INTEGER FUNCTION

.D DEMAND

.X RANDOM NUMBER FUNCTION

The instruction designates the kind of statement.

The eight statements of the standardized PILOT 73 are
designated by a single letter. The extensions which
are unique to this implementation are designated by
two characters, a period followed by a single letter.

For convenience the conditions Y and N indicate a
TYPE statement (T) with Y or N condition respectively.

2.5

2.6

examples:

purpose:

comments:

A
B
F
z

VARIABLE

The variables are in reality numeric variables and are
used to store a numeric value.

Any single letter (A-Z) may be used as a variable. Thus
there are 26 possible numeric variables.

Each variable may take on any real value.

Variables may be used as objects to ANSWER statements if
preceded by the number sign (#).

They may be used in conditions, COMPUTE statements, INTEGER
function statements, RANDOM number function statements, and
referenced in TYPE objects.

example:

purpose:

conments:

STRING VARIABLE

NAME
AGE73
ANSWER39
REMEMBERTHEALAMO

The purpose is to take on the value of a string
input as a response to an ANSWER statement.

The STRING VARIABLE consists of a string of characters
consisting of only letters and digits.

The maximum length is 50 characters.

Initially all string variables are set to null
{no characters}.

2.7

2.8

examples:

comments:

7.3
5
2
3E+2
4.21E-17

NUMERIC CONSTANT

Any integer or decimal number is allowed. In addition, powers
of ten notation is given by the 'E' designation.

Any value acceptable to 2000E BASIC is acceptable to PILOT.
The PILOT interpreter does no checking on sizes of numbers;
overflow and underflow error messages are generated by the
BASIC system. The approximate ranges of al lowed numbers
are -1E+36 to -lE-36, 0, +lE-36 to +1E+36 .•

2.9

CONDITION

general form:

examples:

purpose:

comments:

y
N
G
B
(<variable>)
(<variable><relational operator><variable>)
(<variable><relational operator><signed number>)

201 JY:*THNM
273 TN:YOU BLEW IT!
1082 T(B#7.32):ARE YOU CERTAIN??
200~ T(D<=F):WELL NOW!!

The condition allows the program to take alternative
actions depending on the results of the previous sections.
Every statement may optionally contain a condition.

The condition is followed immediately by the colon (:) in
the statement.

There are three types of conditions. The first is desig­
nated by 1 Y1 or 'N' and depends on the results of previous
MATCH statements. Each MATCH statement either fails or is
successful. If it fails, then a match f.:!.2.9_ is set to a "no"
state and all statements thereafter with a 'Y' are skipped.
If the MATCH is successful, then the flag is set to a 11yes 11

state and all statements thereafter with a 'N' are skipped.

2.10

The flag is initially set to a "yes" state and is reset to
this state by an ANSWER statement. The match flag may be
changed to either "yes" or 11 no 11 by the MATCH and DEMAND
statements.

The second type is designated by a 1 G1 or 1 81 and is used
to test if a numeric response was contained in a previous
ANSWER statement with a numeric variable as an object.
If a valid number was present, then all statements with a
'B' condition are skipped. If no valid number was present,
the 1 G1 condition statements are skipped. The numeric flag
is initially set to 11 good 11 and is modified only by an
ANSWER statement with a numeric variable as an object.

The third type is designated by a relation between two values
enclosed in parenthesis. The execution of this statement
depends only on the truth or falsity of the relation, not on
the condition of the match flag or the numeric flag. The
first value must be a variable. The second may be either
a variable or:--a-signed real numeric constant. The relational
operators may be one of the following:

< less than
<= less than or equal to
= equal to
not equal to
>= greater than or equal to
> greater than

It is also possible to test on the 11 truth" of a single
variable. In this case the statement is skipped if the
value is zero, 11 false 11 • It is executed if the value is
nonzero, "true".

CORE PILOT 73

This section describes the eight statements that comprise the

standardized set of PILOT 73. These statements are represented by

one-letter instructions.

There are two features of the basic PILOT 73 not implemented.

The first is the continuation (indicated in PILOT 73 by 11 : 11 only).

Of all the PILOT statements the only ones for which a continuation

feature is applicable are: TYPE, COMPUTE, and MATCH statements.

An effective continuation of the TYPE statement may be implemented

3. 1

by the use of 1 +1 , the concatenation operator. MATCH statements con­

tinuation may be effected by using a 1 N1 condition on the following

MATCH statements. The inclusion of an explic"it continuation feature

grossly complicated the syntax analysis in an interactive environment.

(See section 7.)

This implementation also requires an instruction for every

labeled statement. Thus a statement consisting only of a label is

not allowed. In practice one can always use a labeled REMARK statement

if this construct is desired.

In addition, the object of the COMPUTE statement, while it is a

correct BASIC statement, is restricted to BASIC assignment statements

(without the preceding LET). These are further restricted to expres­

sions involving only the arithmetic operators, i.e. no functions, no

logical expressions, no Boolean connectives, and no MIN or MAX operators.

3.2

REMARK STATEMENT
R

general form:

examples:

comments:

<line number> R:<object>
<line number> <label> R:<object>
<line number> R<condition>:<object>
<line number> <label> R<condition>:<object>

10 R:THIS IS A REMARK
20 *REM R:I CAN'T BELIEVE IT!!
75 R:
1~~ R:THIS PROGRAM WAS WRITTEN BY JACK.

A REM/\RK statement is non-executable, that is, it does not
result in anything being done! Thus it is meaningless to
attach a condition.

A REMARK statement may be labeled and this label may be
referenced in a JUMP or USE statement.

The object of the REMARK statement is used to convey infor­
mation to someone who reads the listing of the program. It
may be omitted.

TYPE STATEMENT
T

general form:

examples:

purpose:

comments:

<line number> T:<object>
<line number> <label> T:<object>
<line number> T<condition>:<object>
<line number> <label> T<condition>:<object>
<line number> Y:<object>
<line number> N:<object>
<line number> <label> Y:<object>
<line number> <label> N:<object>

1~0 T:HI !
200 *NEW T:
3~0 Y:WELL $NAME YOU ANSWERED #N RIGHT!!
4000 *OLD T(R=N):VERY GOOD!!

The TYPE statement produces an output on the terminal.

3.3

The value of a numeric variable may be printed out by referencing
the variable in the TYPE object. This is done by preceding it
with a number sign (#) and following it with a plus (+), a blank,
or the end of the line. The plus is not printed, and it deletes
one blank following the printing of the value.

The value of a string variable may be printed by preceding it with
a dollar sign {$) and following it with a plus, blank, or the end

.of the line. The plus is not printed and causes the next character
following to be printed adjacent to the last character in the
string variable.

3.4

If the string variable has not yet been given a value by an ANSWER
statement, no characters are printed. If the string variable does
not appear as an object to an ANSWER statement the variable name
(with $ and ending character) is printed.

A plus (+) at the last character of the object is used for conca­
tenation. The plus sign is not printed and the normal carriage
return-line feed is not executed. Hence, the next printed character
immediately follows on the same line.

The ending plus siqn is stripped off before the line is printed. If
a given word will not fit on a line it is printed on the next line.
All breaks are between words just preceding the next n~n-blank
character.

general form:

ANSWER STATEMENT
A

<line number> A:<object>
<line number> <label> A:<object>
<line number> A<condition>:<object>
<line number> <label> A<condition>:<object>

examples:

7l?Jl?Jl?J A:
8l?Jl?Jl?J *NAM A:$JOHNHANCOCK
80ll?J AY:#Z
802l?J *MAJOR A:$MAJORDEP

purpose:

The ANSWER statement requests a response from the terminal.

comments:

3.5

The object may be null (no characters) or may consist of a dollar
sign {$) followed by a string variable or a number sign (#) fol­
lowed by a numeric variable (single letter).

All multiple blanks in the response are reduced to a single blank
and the entire response is stored in the string variable if present.
The first valid numeric quantity is stored in the numeric variable
if it is present, and the numeric flag is set to 11 good 11 • If no
valid number is present in the response and a numeric variable is .
present, then the value of the numeric flag is set to 11 bad 11 •

The ANSWER statement resets the match flag to a "yes" condition and
the match counter to zero. (See DEMAND statement.)

3.6

The response of the single character ''@" terminates the execution of
the PILOT language program.

BASIC automatically supplies a question mark (?) when an ANSWER state­
ment is executed and waits for a response.

The response is available for succeeding MATCH statements until
another ANSWER statement is executed, even though the response is
not stored in a string variable.

A single ANSWER statement may contain either a string variable or a
numeric variable as an object but not both.

MATCH STATEMENT
M

general form:

examples:

purpose:

comments:

<line number> M:<object>
<line number> <label> M:<object>
<line number> M<condition>:<object>
<line number> <label> M<condition>:<object>

l~~ M:WASHINGTON
200 *PRES M:WASHINGTON
3~~ MN:MARTHA,MRS. WASHINGTON

The MATCH statement analyzes the user's response and
sets the match ~according to whether the match
failed or was successful.

The object for the MATCH consists of one or more
alternatives separated by the character 11 , 11 • If
somewhere within the last ANSWER response one of
these alternatives is found, the matching is
halted and the match flag is set to 11 yes 11 ; other­
wise, if none of the alternatives is found, the
match flag is set to 11 no 11 • Blanks are significant
within an alternative. Multiple blanks in the
response are replaced by single blanks.

If the match was successful the match counter is
incremented by one.

Previous responses may be used as MATCH patterns by
enclosing the string variable (preceded by $}
in commas just like any other alternative.

3.7

3.8

JUMP STATEr1ENT ·
J

general form:

examples:

purpose:

comments:

<line~number> J:<label>
<line number> <label> J:<label>
<line number> J<condition>:<label>
<line number> <label> J<condition>:<label>

H!ll 'Ii J: *NEWQ
2'/171 *NOW J:*THEN
2'/177 JY:*AGE7
2'/J78 JN:*AGE8
472l *ABC J(A<B):*C

The JUMP statement provides for branching to any other
labeled statement in a program.

The condition specifies whether the branch is executed or not.

During the setup phase for execution a check is made for un­
referenced jumps. That is, a JUMP {or USE) statement object
that is not a label that is present in the progr~m.

No check is made for more than one statement with the same label.
In that case the JUMP goes to the first one.

USE STATEMENT
u

3.9

general form:

examples:

purpose:

comments:

<line number> U:<label>
<line number> <label> U:<label>
<line number> U<condition>:<label>
<line number> <label> U<condition>:<label>

20 U:*SUBROUTINES
30 U(X<7):*GOODIES

The USE statement provides for a subroutine call to
another portion of the program.

A USE statement generates a JUMP but with one importa~t
difference, the interpreter 11 remembers 11 from whence it
is called. Upon execution of an END statement it returns
to the next statement after the USE statement. ·

Subroutines may be nested up to 6 deep.

The main program is termed level zero, and each subroutine
call increases the level number by one. A return from a
subroutine (see END statement) decreases the level number
by one.

Subroutines should not be used for small patches in a
PILOT program since they involve at least two jumps which
may take several seconds to execute.

3.10

END STATEMENT
E

general form:

examples:

purpose:

comments:

<line number> E:<object>
<line number> <label> E:<object>
<line number> E<condition>:<object>
<line number> <label> E<condition>:<object>

9999 E:
1~~7 E:THIS IS THE ENO!!
8312 *ENOSTAT E:FINALLY

The execution of an ENO statement results in a return from a
subroutine (see USE statement) or a halting of the execution
of the PILOT program.

The ENO statement may be conditional. If it is used as a return
from a subroutine (see USE statement) control is transferred to
the next statement following the USE statement. If the level is
zero, i.e. the main program, execution of the PILOT program is
terminated and control is passed to the interpreter.

The object of the END statement is used to convey information to
someone who reads the listing of the program (just like the object
of a REMARK statement). It may be omitted.

COMPUTE STATEMENT
c

3 .11

general form:

examples:

purpose:

comments:

<line number> C:<variable>=<expression>
<line number> <label> C:<variable>=<expression>
<line number> C<condition>:<variable>=<expression>
<line number> <label> C<condition>:<variable>=<expression>

H'J9J C:N=l7
127 C:R=X+Vt3
400 C:X=(X-13)*Y/(-l+M)
419} C:X=Y=O

The COMPUTE statement is used to evaluate an expression
and store the results in a numeric variable.

The expression is a combination of numeric variables,
numeric constants and arithmetic operators which evaluates
to a unique numeric value.

The arithmetic operators are:

+

I
*
t

addition
subtraction (or unary minus}
division
multiplication
raise to a power

3.12

Evaluation is in order of priority as given by:

first
second
third

t
l or *
+ or -

Within a priority group evaluation is left to right within
the expression.

Parentheses may be used at will to change the order of evaluation,
with quantities in parentheses being computed first.

The expression is evaluated using the values of the variables before
the expression is executed. This value is then stored in the
variables appearing to the left of the equals (=). Note that this
is a replacement statement not an algebraic equation.

Multiple replacement is allowed.

The syntax rules may be summarized as:

1. Only a single variable may appear to the left of an equals
sign, (or possibly pairs formed by a single variable
immediately followed by an equals sign).

2. A variable may be followed only by:
a. an arithmetic operator
b. a closed parenthesis
c. end of the statement

3. A numeric quantity (without sign) may be followed only by:
a. an arithmetic operator
b. a closed parenthesis
c. end of the statement

4. An open parenthesis may be followed only by:
a. an open parenthesis
b. a variable
c. a numeric quantity
d. a minus sign
e. a plus sign (meaningless and is deleted)

5. A closed parenthesis may be followed only by:
a. a closed parenthesis
b. an arithmetic operator
c. end of the statement

6. An arithmetic operator may be followed only by:
a. an open parenthesis
b. a variable
c. a numeric quantity

7. An equals~ may be followed only by:
a. an open parenthesis
b. a variable
c. a numeric quantity
d. a minus sign
e. a plus sign (meaningless and is deleted)

8. During any point in a left to right scan the number
of closed parentheses may not exceed the number of
open parentheses.

9. The total number of closed parentheses must equal
the total number of open parentheses.

10. Blanks are meaningless and are deleted.

3. 13

4.1

EXTENSIONS TO PILOT 73

Several extensions to PILOT 73 standard are possible. These

increase the power and convenience of the language. They are desig­

nated by a two character instruction. For ease in syntax analysis

the first is a period, and the second is a letter.

4.2

DEMAND STATEMENT
.D

general form:

examples:

purpose:

comments:

<line number> .D:<integer>
<line number> <label> .D:<integer>
<line number> .D<condition>:<integer>
<line number> <label> .D<condition>:<integer>

l 9J9J • 0:3
19J9J9J *DEM .D:2
29J9J9J • DY: 4

The DEMAND statement is used to accumulate the results of
more than one MATCH. The match flag is set to 11yes 11 , if the
number of successful matches since the last ANSWER is greater
than or equal to the digit given in the object of the DEMAND
statement. If this is not the case, the flag will be set to
"no".

If the number of executed MATCH statements since the last
ANSWER is less than the object of the DEMAND, the match flag
wi 11 be set to "no''.

If the object is zero, the match flag is always set to "yes".

The largest integer allowed for a DEMAND object is 99.

UNREFERENCED TYPE STATEMENT
.T

4.3

general form:

examples:

purpose:

corrunents:

<line number> .T:<object>
<line number> <label> .T:<object>
<line number> .T<condition>:<object>
<line number> <label> .T<condition>:<object>

HI~ . T: HI!
2~~ *NEW .T:
3~~ .TY:THIS DOES NOT REFERENCE A VARIABLE #A OR $NAM+
4~~~ *OLD .T(R=N):VERY GOOD!!

The UNREFERENCED TYPE statement produces an output on the
terminal, but does not recognize any numeric or string
variable references~.~

The concatentation as designated by a plus (+} as the last
character is still executed.

4.4

EXTENDED MATCH STATEMENT
.M

general form:

examples:

purpose:

comments:

<linenumber> .M:<object>
<line number> <label> .M:<object>
<line number> .M<condition~:<object>
<line number> <label> .M<condition>:<object>

l~~ .M:[WASHINGTON],GEORGE
2~~ *PRES .M:[WASHINGTON,G.W.
3~~ .MN:MARTHA,MRS*WASHINGTON

The EXTENDED MATCH statement analyzes the user's response and
sets the match .fJ.2.g_according to whether the match failed or
was successful.

The object for the MATCH consists of one or more alternatives
separated by the character 11 , 11 • If somewhere within the 1ast
ANSWER response one of these alternatives is found, the match­
ing is halted and the match flag is set to "yes 11 • Blanks are
significant. Multiple blanks in the response are replaced by
single blanks. ·

A very powerful match pattern may be made using the character
11*11 somewhere within one of the alternatives. This will match
any number of characters, including zero characters. In
example 3~0 above, for the second a 1 ternative~ first "MRS" wil 1
be used to attempt a match, if successful then "WASHINGTON"
will be used to attempt a match starting at the point where
"MRS" was found.

Consider the sample program below

10 T:WHO IS THE PRESIDENT +
. 20 A:

30 .M:R*M*N*

The MATCH would be successful for the following responses:

RICHARD MILHOUS NIXON
RICHARD M. NIXON-
R. M. N.
RMN-
TREALLY AM t!OT SURE
GEORGE MCGOVERN
HENRY 'THE ilANT KISSINGER
THAT IS A REAL MEAN QUESTION
ROOT MEAN SQUARE -
RIGHT-ON! MY NUTTY COMPUTER

Thus this construct must be used with care! A second
pm11erful pattern may be formed by using either a left
bracket ([) to begin the pattern and/or a right bracket
(]) to end it. A match is attempted on the pattern within
the brackets and if a match is found a further check is
made to see if an alphabetic character precedes (for [

4.5

at beginning) or follows (for J at end). If it is found the
match fails. Thus the brackets can force the match to look
for words.

Consider the program above but with the use of brackets:

10 T:WHO IS THE PRESIDENT +
20 A:
30 .M[R*[M*[N

This would be successful for

RICHARD MILHOUS NIXON
RICHARD M. NIXON­
R.M. N.
RIGHT ON! MY NUTTY COMPUTER

As noted in the example brackets may be used with asterisks.

4.6

INTEGER FUNCTION
I I

general form:

example:

purpose:

comments:

<line number> .!:<variable>
<line number> <label> .!:<variable>
<line number> .I<condition>:<variable>
<line number> <label> .I<condition>:<variable>

700 .I:H
71 fi) • I (M> 10}: M

The purpose is to replace the current value of the variable
with the greatest integer less than or equal to it.

This is a possibly useful function which cannot be easily
synthesized with COMPUTE statements as given in this
implementation.

RANDOM NUMBER FUNCTION
.x

general form:

examples:

purpose:

comment:

<line number> .X:<variable>
<line number> <label> .X:<variable>
<line number> .X<condition>:<variable>
<line number> <label> .X<condition>:<variable>

27~ .X:X
28~ .X(R):Z

The purpose is to provide a random number.

The value of the variable returned is a random number
in the range zero to one.

4.7

5. l

HOH TO ENTER A PILOT PROGRAM

The PILOT interpretive system consists of two BASIC programs. The

first is entitled 'PILOTS' and is used to enter the PILOT program and

provides editing and syntax checking. The second is entitled 'PILOT'

and is used to execute the PILOT program.

The PILOT program is stored on one to three disk files, but three

program files must be declared during the syntax phase. The execution

of 'PILOTS' produces an input loop. At each question either a PILOT

command or a PILOT statement is required. Error messages indicate an

incorrect input. The execution of 'PILOTS' may be halted at each input

with the command STOP or with a 'ctrl c•. The 'break' should be used

2.!!.l.l. during a LIST.

The three program files, in which the PILOT program is stored,

are designated by the user. They should contain at least two records

each. In practice the entire PILOT program may fit into one or two

files. The PILOT program is stored three, four, five, or six statements

per record. Thus a maximum length of 864 PILOT statements is allowed.

These files need not be the same size. A fourth scratch file of at

least two records must be opened before entering a PILOT program. It

may be longer but only the first two records are used in editing the

three program files. A files statement must be declared in line l of

'PILOT' before executing.

5.2

Consider the following example:

OPEN-FILEl,30
OPEN-FILE2,30
OPEN-FILE3,20
OPEN-SCRACH,2

GET-$PILOTS
1 FILES FILE1,FILE2,FILE3,SCRACH

Since a total of 80 records have been opened the PILOT program

must be less than 480 statements. The fourth file, 'SCRACH' must be

at least 2 records.

Tape dumped by the LIS command may be read back if the terminal has

an automatic reader control. Place the tape in the reader and turn it

to start after a question mark has been printed by 'PILOTS' for a new

statement. It will proceed to read in the tape. At the end of the tape

an extra ? will have been read in, typing a carr.iage return will clear

this.

PILOT COMMAND: LIST

general form:

examples:

purpose:

comments:

LIS
LIS-<statement number>
LIS-<statement number>,<statement number>

LIS-20,400
LIST-3000
LIST

The LIST conmand is used to list all or only a
portion of the PILOT program on the terminal.

The first parameter is the starting statement
number, the second is the ending statement number.
The default is 1 and 9999 respectively.

Only the first three characters are required. The
two paramenters are optional. If used, the first
must be separated from the command by a hyphen (-),
the second, if used, from the first by a comma.

The LIST command may also be used to dump a PILOT
program on paper tape. This may be done by first
running off leader (either 'here is' or CTRL SHIFT
P), typing LIS (ret), then before the terminal
begins to type out the program, turn on the tape
punch.

5.3

/
5.4

PILOT COMMAND: NUMBER

general form:

example:

purpose:

comments:

NUM
NUM-<beginning number>
NUM-<beginning number>,<increment>

NUM-1~~,l
NUM-1~~~
NUMBER

The NUMBER command is used to renumber the line numbers
of an existing PILOT program.

The two parameters are optional. If used, the first must
be separated from the command by a hyphen (-}, the second,
if used, from the first by a comma.

The default quantities are 10 for beginning number and 10
for the increment.

If the last statement of the renumbered program is greater
than 9999, the message 11 NO NUW is printed and the program
is not renumbered.

Only the first three letters of the conmand are required.

PILOT COMMAND: PURGE

general form:

purpose:

comments:

PUR

The PURGE command completely erases the
PILOT program; that is, the program files
are filled with eof's.

Only the first three characters are required.

5.5

5.6

PILOT-COMMAND: SIZE

general form:

purpose:

comments:

SIZ

The SIZE command gives the number of statements,
the number of records, and the number of the last
statement.

Only the first three characters are required.

PILOT COMMAND: STOP

general form:

purpose:

comments:

STO

The STOP command is used to achieve an orderly
exit from the program 'PILOTS'. The files
are left in such a way as to allow future modi­
fication or execution.

Only the first three characters are required.

5.7

6.1

HOW TO RUN A PILOT PROGRAM

The BASIC program to execute a PILOT program is entitled 'PILOT'.

It requires, in addition to the PILOT program files, a scratch file

as long as necessary. These are to be entered in statement 1.

Consider the following example. A PILOT program has been stored

on the files: FILEl and FILE2.

OPEN-TEMP,48
GET-$PILOT
1 FILES FILE1,FILE2,TEMP
RUN
PILOT

NUMBER PROGRAM FILES?2

The first part of the execution of 'PILOT' sets up reference tables,

checks for unreferenced JUMP statement and USE statements, and sets up a

response table. The reference table consists of statement numbers and

label names for all the labeled PILOT statements. The response table

consists of string variables and a place to store a response for all

ANSWER statements with a string variable as an object. Both these tables

are stored on the scratch file.

The response table will take one-half of a record for each

ANSWER statement with a string variable object. Thus in writing

a PILOT program it is best to keep labels short and the number of

ANSWER statement with string variable objects to a minimum. As

a rough example; out of a PILOT program of 600 statements, one may

6.2

have perhaps 80 labeled statements. If these are relatively short, say

less than 20 characters, then the reference table would take about 10

records leaving room for 76 stored responses in the next 38 records. In

many cases it is not necessary to actual store the student's response in

order to analyze it. These numbers are based on the assumption that the

scratch file is the maximum length allowed of 48 records.

After the initial "set up" phase, the program 'PILOT' proceeds to

interpret the PILOT language program. When the PILOT program is finished,

control returns to 'PILOT' and the user is asked if he wishes to repeat the

execution of the PILOT program. If the response is 'YES' (or just 'Y'),

the PILOT program is re-executed, if not, control is returned to the

BASIC system.

7 .1

PILOT IN THE 2000E ENVIRONMENT

The HP 2000E BASIC has certain limitations that make implementing

PILOT quite interesting and challenging. For this implementation it

was decided to make the language as interactive as possible, to store

the source code on files and interpret it directly, and to allow as

much flexibility in the choice of file names as possible.

In order to allow the user any choice of file names, one ~annot

use the chain feature. Thus, as much as possible must be done in

realtively few programs. Fortunately, there are two rather distinct

phases: entering the program and checking for syntax errors and

executing it. For many applications most users will execute pre-written

programs. Thus there are two programs 'PILOTS' and 'PILOT' which imple­

ment the PILOT language. Th1s does lead to a bit of clumsiness in going

from the entry stage to the execution phase as might occur during

"debugging".

It was also decided to do the syntax checking interactively as

each statement was typed in rather than all at once when the program

was executed. This virtually eliminates the possibility of using a

continuation feature a~ standard PILOT 73 requires. Also the concern

in this implementation is with number of lines rather than number of

statements as in other implementations where causing many lines to be

associated with one statement via continuation may be advantageous.

7.2

In the beginning it was decided to store only three statements

per record. This ?Peeds up the syntax phase and greatly simplifies

deletion, insertion, or replacement of statements. It is somewhat

wasteful of file space, especially if large numbers of REMARK and

TYPE statements are used with a blank object.

The limit of 432 statements {or lines) that this would imply

·did not seem to be a great restriction on the size of a PILOT program.

In practice most PILOT programs are much shorter. However, after

examining several PILOT programs it was discovered that only about

45 percent of the available space in the files was being used. By

packing statements as much as possible approximately 90 percent was

used. Currently PILOT puts up to six statements per record, this

results in about 85 percent utilization of the possible space in

increases the size of the maximum PILOT program to 864 statements.

In practice an upper limit of 750-800 statements can be expected.

8.1

SAMPLE PROGRAM

The following sample program is included to provide an example

. of a PILOT program. It is written to include all the possible features

in PILOT. It is not necessarily an effective or even a useful CAI

program.

8.2

l'/J'/J'/J R: THIS IS A DEMONSTRATION PILOT PROGRAM
H~l'/J R:
102'/J R: PACIFIC UNION COLLEGE, L. TURNER, MAY 73
H?3'/J R:
104'/J T: HELLO! I AM YOUR FRIENDLY HP 21'/J'/JA.
H?5'/J T:
106'/J T:WHAT IS YOUR NAME +
1070 A:$NAM
1080 T:
H?90 T:THAT IS A NICE NAME $NAM+. I RATHER LIKE IT!!
11'/J'/J T:
111'/J R: GET SEX, CHECK FOR 'FEMALE' FIRST SINCE IT CONTAINS 'MALE'
1120 T: IF YOU DON'T THINK IT TOO PERSONAL
113'/J *SEX T:WHAT IS YOUR SEX +
114'/J A:$SEX
115'/J T:
116'/J M:FEMALE,GIRL,WOMAN,LADY,FEMIN,GAL
117'/J Y: I THOUGHT SO. YOU'RE CUTE.
118'/J CY:M=l
119'/J JY:*AGE
12'/J'/J M:MALE,MAN,BOY,MASCUL,GUY
121'/J Y: THAT WAS WHAT I WAS AFRAID OF!
122'/J CY:M=~
123'/J JY:*AGE
124'/J T:ARE YOU TRYING TO FOOL ME??
125'/J T:IT'S NOT NICE TO FOOL YOUR FRIENDLY HP COMPUTER!!
126'/J J:*SEX
127'/J *AGE T: I WOULD ALSO LIKE YOUR AGE PLEASE +
128'/J A:#A
129'/J T:
13'/J'/J TB:TSK, TSK, TSK!
131'/J JB:*AGE
132'/J T(A<8):I DON'T BELIEVE YOU!!!
133'/J T(A>75):ARE YOU REALLY THAT OLD???
134'/J J(A<5):*AGE
135'/J . I :A
136'/J R:
137'/J R: N = NUMBER OF QUESTIONS
138'/J R: R = NUMBER OF CORRECT INITIAL RESPONSES
139'/J R: F = NUMBER OF TIMES FOR EACH QUESTION
14'/J'/J R:
141'/J C:R=N='/J
142'/J T: I HAVE A FEW QUESTIONS FOR YOU. +
143'/J *BEG T:ARE YOU READY+ _
144'/J A:
145'/J M:Y,OK,0.K,RIG,REA,GO
146'/J N: NOW WHAT'S THE MATTER??
147'/J JN:*BEG
148'/J R:
149'/J C:N=N+l
150'/J C:F=l

1510 *Ql T:
1520 T:WHO IS THE PRESIDENT OF THE U.S. +
1530 A:
1540 M:TRICK,HENRY,KIS,SPIR,AGN
1550 Y:I SUSPECT YOU ARE A DEMOCRAT!!
1560 M:NIXON
1570 Y:MY, YOU ARE UP TO DATE!!
1580 JY:*Q2
1590 M:DICK,RICH,R.
1600 Y:YOU KNOW HIS FIRST NAME, HOW ABOUT THE LAST NAME??

8.3

1610 N:YOU MUST BE A DEMOCRAT OR ARE YOU AFRAID THIS TERMINAL IS BUGGED?
. 1620 C:F=F+l

1630 J:*Ql
1640 R:
1650 *Q2 T:
1660 C(F=l):R=R+l
1670 T(M=l):FOR A CUTE CHICK+
1680 T(M=O):FOR A HANDSOME GUY+
1690 T:OF #A+YEARS, YOU TOOK ONLY #F+
1700 T(F=l):TRY!!
1710 T(F>l):TRIES!!
1720 C:F=l
1730 C:N=N+l
1740 R:
1750 T:
1760 *QUES2A T:CAN YOU NAME AT LEAST THREE COMPUTER MANUFACTURERS??
1770 A:
1780 M:YES,THINK SO,WILL TRY,RIGHT,OF COURSE,YEA
1790 Y:GOOD, WHAT ARE THEY??
1800 JY:*QUEST2B
1810 M:NO,CAN'T,CANNOT,DON'T
1820 Y:WELL, TRY ANYWAY!
1830 *QUEST2B AY:
1840 T:
1850 .M:IBM,INT*BUS*MAC
1860 .M:HP,H-P,HEW*PAC
1870 .M:DEC,PDP,DIG*EQ
1880 .M:NOVA,DAT*GEN
1890 M:XDS ,XEROX
1900 .M:GE,GEN*EL
1910 .M:CDC,CON*DAT
1920 M:BURRO,BOUR
1930 .M:HON*WELL
1940 M:UNIVAC
1950 .M:RCA,RAD*CORP*AM
1960 .M:NCR,NAT*CA*REG
1970 M:VARIAN
1980 .0:4
1990 Y:VERY, VERY GOOD!! YOU GOT MORE THAN THREE, +
2000 JY:*QUESBB

8.4

2010 .D:3
2020 Y:RIGHT ON, +
2030 JY:*QUESBB
2040 .D:2
2050 Y:ALMOST, YOU GOT TWO CORRECT!
2060 C:F=F+l
2070 JY:*QUES3
2080 .D:l
2090 JN:*NOWAY
2100 .M:IBM,INT*BUS*MAC
2110 Y:SO YOU ARE ONE OF THOSE HEADLESS CHICKENS WHO THINK THAT +
2120 Y:IBM IS THE WORLD'S ONLY COMPUTER MANUFACTURER!
2130 Y:
2140 *QU2B T:I THINK YOU SHOULD TRY AGAIN!
2150 C:F=F+l
2160 .D:0
217'/J J:*QUEST2B
2180 *NOWAY T:NO WAY! YOU DIDN'T EVEN GET ONE RIGHT.
2190 J:*QU2B .
2200 *QUESBB T:$NAM+! I CAN TELL YOU'RE AN EXPERT!
2210 *QUES3 R:
2220 C(F=l):R=R+l
2230 T:
2240 T:YOU DID SO WELL ON THAT LAST QUESTION, LET ME TRY A MORE +
2250 T:THOUGHT PROVOKING ONE!
2260 T:
2270 T:I AM THINKING OF A NUMBER BETWEEN 0 ANO 100 •. CAN YOU GUESS+
2280 T: IT???
2290 U:*GOGETRANDOMNUMBER
2300 *TRYAGAIN C:H=l
2310 *QNUM T: #H+
2320 A:#T
2330 TB:COME ON, TRY A NUMBER!
2340 JB:*QNUM
2350 J(T=Y):*VERYGOOD
2360 C:H=H+l
2370 T(T>Y):TOO LARGE!
2380 T(T<Y):TOO SMALL!
2390 J:*QNUM
2400 R:
2410 *VERY GOOD J(H>7):*0VER
2420 T:THAT IS VERY GOOD $NAM+, YOU DID IT IN SEVEN TRIES OR LESS!
2430 J: *ENDNUM
2440 *OVER T:YOU WASTED A FEW GUESSES, THE MOST IT SHOULD TAKE IS +
2450 T:SEVEN, BUT $NAM+, YOU TOOK #H+GUESSES!
2460 *ENDNUM T{F=4):0NLY ONE MORE TIME.
2470 J(F>=S):*NEXTQ
2480 T:WOULD YOU LIKE TO TRY IT AGAIN +
2490 A:
2500 M:YES,RI,PLE,OF COUR

8.5

251'/J JN:*NEXTQ
252~ U:*GOGETRANDOMNUMBER
253'/J C:F=F+l
2540 J :*TRYAGAIN
2550 R:
2560 *NEXTQ T:
2570 C:N=N+l
2580 T:I HAVE ONE LAST QUESTION FOR YOU $NAM+! WHAT DOES CAI MEAN??
259'/J A:
26'/J'IJ .M[COMP*[ASS*[INS,[COMP*[AID*[INST
261'/J Y:EXCELLENT $NAM+! +

. 262'/J CY: R=R+ 1
263'/J N:YOU BLEW IT! +
264'/J T:CAI STANDS FOR COMPUTER ASSISTED INSTRUCTION. THAT'S WHAT +
265'/J T:WE'RE DOING RIGHT NOW!!
266'/J T:
267'/J T:WELL, $NAM+, OUT OF THE #N+QUESTIONS I ASKED (NOT COUNTING +
268'/J T:THE NUMBER GUESSING ONE), YOU GOT #R+CORRECT ON THE FIRST +
269'/J T:TRY. +
27'/J'IJ T(N=R):THAT IS JUST ABOUT PERFECT!
271'/J T(R=O):NOT EVEN ONE RIGHT! WHAT'S A COMPUTER TO DO?
272'/J T(R=l):YOU GOT AT LEAST ONE CORRECT.
273'/J E: THIS IS THE END OF THE MAIN LINE PROGRAM
2740 *GOGETRANDOMNUMBER R:
2750 .X:Y
276'/J C:Y=Y*99
277'/J . I: Y
278'/J C:Y=Y+l
279'/J E:

PILOT SYNTAX

The PILOT syntax is described on the following pages. The

characters 11 < 11 and 11 > 11 enclose an element of PILOT. The character

11 ··= 11 is to be read: 11 is defined as". The character "I" is to be

read as 11 or 11 •

9. 1

9.2

<digit>

<integer>

<decimal number>

<number>

<exponent>

<signed number>

<letter>

<letter di git>

<ld string>

<character>

<m character>

<e character>

<null>

<string>

<m string>

<e string>

<vari ab 1 e>

<string variable>

<program statement>

<line number>

::=

: : =
: : =

.. -..
: : =

.. -.. -

SYNTAX OF PILOT

Ojll21314l5J6l7l8l9

<digit>l<integer><digit>

<integer>l<integer>. j<integer>.<integer>I
• <integer>

<decimal number>l<decimal number><exponent>

E<integer>IE+<integer>IE-<integer>

<number>l+<number>l-<number>

::= AIBIC!DIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUI
v1w1x1v1z

··= <letter>l<digit>

::=<letter digit>l<ld string><letter digit>

::=any ASCII character except: null, line feed,
carriage return, f, x-off, +, ", rubout.

::=any ASCII character except: null, line feed,
carriage return, f, x-off, +, ", comma, rubout.

::=any ASCII character except: null, line feed,
carriage return, f, x-off, +, ", comma, ~
rubout.

: : = no characters

::= <character>l<null>j<string><character>

::= <m character>l<null>l<m string><m character>

::= <e character>l<null>l<e string><e character>

: : = <1 etter>

· ·= <ld string> maximum length is 50

::=<line number><PILOT statement> carriage return!
<line number><label>~<PILOT statement>carriage
return

: := <integer> allowed range is: 1 to 9999

<label>

<condition>

<YN condition>

<GB condition>

<conditional>

<relational>

<primary>

<PILOT statement>

<core statement>

<extended statement>

<TYPE statement>

<TYPE instruction>

<TYPE object>

<endr>

.. -..

.. -..

9.3

*<ld string>

<YN condition>l<GB condition>l<conditional>

YIN

::=GIB

. ·­..

. ·­..
: :=

: : =

. ·=

: : =

•• =

(<variable>) I
(<variable><relational><primary>)

< I <= I = I# I >= I >

<variable>l<signed number>

<core statement>l<extended statement>

<TYPE statement>l<ANSVJER statement>!
<MATCH statement>l<REMARK statement>!
<JUMP statement>l<USE statement>!
<END statement>j<COMPUTE statement>

<EMATCH statement>l<ETYPE statement>!
<DEMAND statement>l<INTEGER statement>j
<RANDOM statement>

<TYPE instruction>:<TYPE object>!
<TYPE instruction>:<TYPE object>+

TIT<condition>l<YN condition>

<string>j
<TYPE object>$<string variable><endr><TYPE object>!
<TYPE object>$<string variable>!
<TYPE object>#<variable><endr><TYPE object>!
<TYPE object>#<variable>

~I+

<ANSWER statement> ::=<ANSWER instruction>:<ANSWER object>

<ANSWER instruction> ::= AIA<condition>

<ANSWER object>

<MATCH statement>

<MATCH instruction>

<MATCH object>

<alternative>

: : =

<null>l$<string variable>i#<variable>

<MATCH instruction>:<MATCH object>

::= MIM<condition>

: : =

.. -..
<alternative>j<MATCH object>,<alternative>

<m string>l$<string variable>

9.4

<REMARK statement> ::= <REMARK instruction>:<REMARK object>

<REMARK instruction.> : := R IR<condition>

<REMARK object> ::= <string>

<JUMP statement> : := <JUMP instruction>: <JUMP object>

<JUMP instruction>

<JUMP object>

<USE statement>

<USE instruction>

<USE object>

<END statement>

<END instruction>

<END object>

<COMPUTE statement>

::= JIJ<condition>

: := <label>

::= <USE instruction>:<USE object>

::= UIU<condition>

: := <label>

::=<END instruction>:<END object>

::= EIE<condition>

: : = <string>

::=<COMPUTE instruction>:<COMPUTE object>

<COMPUTE instruction> : := C IC<condition>

<COMPUTE object> ::= <destination><expression>

<des ti nation> ::= <variable>=l<destination><variable>=

<expression> ··= <term>l<expression>+<term>l<expression>-<term>I
-<term> I +<term>. ·

<term> : : = <factor>l<term>*<factor>l<term>/<factor>

<factor> •• = <subfactor>l<factor>t<subfactor>

<subf actor> ::= <variable>l<number>l(<expression>)

<EMATCH statement> .. -.. - <EMATCH instruction>:<EMATCH object>

<EMATCH instruction> . ·= .Ml .M<condition>

<EMATCH object> •• = .. <pattern>l<EMATCH object>,<pattern>

<pattern> ::= <complex>l<pattern>*<complex>

<complex> .. -.. - <e string>j<word>

<word> . ·= [<e string>j[<e string>Jl<e string>]

<ETYPE statement>

<ETYPE instruction>

<ETYPE object>

<DEMAND statement>

<DEMAND instruction>

<DEMAND object>

<INTEGER statement>

<INTEGER instruction>

<INTEGER object>

<RANDOM statement>

<RANDOM instruction>

<RANDOM object>

.. -..

•• =

.. -..

<ETYPE instruction>:<ETYPE object>!
<ETYPE instruction>:<ETYPE object>+

. TI· T <condition>

<string>

<DEMAND instruction>:<DEMAND object>

.Dl.D<condition>

9.5

- <integer> allowed range 0 + 99

: : =

.. =

: : =

<INTEGER instruction>:<INTEGER object>

.II .!<condition>

<variable>

<RANDOM instruction>:<RANDOM object>

.Xj .X<condition>

<variable>

l 0. 1

ERROR MESSAGES
SYNTAX PHASE: PILOTS

MISSING OR PROTECTED FILE

F # x TOO SMALL

????

UNRECOGNIZED

LBL ERR

NO COLON

CON ERR

OBJ ERR

EXP ERR: xx

PAR ERR

FILES FULL

NO NUM

BAD INPUT RETYPE

'PILOTS' needs exactly four files

file number x has only one record

entry has no statement number and
is not a valid command

entry has a valid statement number
but a non-recognized instruction

label error

missing or misplaced colon

condition error

object error

expression error occurring after the
rightmost =, offending characters are
printed

parenthesis error due to number of
close parentheses exceeding open
parentheses at a given point, or
unmatched open parentheses ·

the number of statements already
stored is sach that the new entry
may cause the last few statements
to be lost

unable to renumber because last state­
ment number would exceed 9999

more than 72 characters were entered

l 0. 2

SCR FILE OVRFLW

UNREF, JMP xxxx

USE ERR

SETUP PHASE: PILOT

scratch file is too small
for reference and response
tables

a JUMP or USE object to a
label that does not exist,
the statement number is
given

EXECUTION: PILOT

subroutines nested more than
six deep

Note: no special checking is made for numeric overflow. The BASIC
system may generate several possible error messages not given above.
In this case please check in 2000E: A GUIDE TO TIME-SHARING BASIC.

