PILOT

REFERENCE MANUAL
1973

L. TurRNER
DEPARTMENT OF PHYsICS
PaciFic UNioN COLLEGE

TABLE OF CONTENTS

INTRODUCTION

A PILOT PROGRAM

THE ESSENTIALS OF PILOT

CORE

PILOT PROGRAM STATEMENT
LINE NUMBER

LABEL . .

INSTRUCTION .
VARIABLE . .

STRING VARIABLE

NUMERIC CONSTANT
CONDITION . .

PILOT 73

REMARK STATEMENT

TYPE STATEMENT

ANSWER STATEMENT

MATCH STATEMENT

JUMP STATEMENT

USE STATEMENT .

END STATEMENT
COMPUTE STATEMENT . . .

EXTENSIONS TO PILOT 73 .

DEMAND STATEMENT . ‘
UNREFERENCED TYPE STATEMENT
EXTENDED MATCH STATEMENT
INTEGER FUNCTION .

RANDOM NUMBER FUNCTION

HOW TO ENTER A PILOT PROGRAM

LIST .

NUMBER ..

PURGE

SIZE
stop L

‘HOW TO RUN A PILOT PROGRAM .

PILOT IN THE 2000E ENVIRONMENT .

SAMPLE PROGRAM

PILOT SYNTAX

ERROR MESSAGES . . .

— o
. . . .

.

(o] o oror o o PS> L) WWWWWwWwWwWw w PPN NN N
L] . . . Ll . L] . . L) . L] . . - L) . - . . . L] . L]
~NoOYOrv bW

—

(Vo) o) ~
.] .
— — —

10.1

—t
'

0.1

INTRODUCTION

PILOT is an author language for Computer Assisted Instruction (CAI).
It is an implementation of PILOT 73 for a Hewlett-Packard 2000E Time-
shared BASIC system. PILOT 73 is a hybridization of several author
languages used in the San Francisco Bay area. Early in 1973 a group
organized by Stanford Research Institute met and agreed upon a standardi-
zation called PILOT 73. These antecedents of PILOT have been used
extensively for writing dialog type CAI programs.

There are several advantages of such an author language. First,
the syntax is relatively simple so that within a short time most any-
one can master the language. For traditional languages this is not
necessarily true. It takes several weeks for a person to become
proficient in BASIC. In general, most teachers do not have time to
overcome inexperience in programming to be able to write effective
teaching programs. Even more importantly, the constructiqn of the PILOT
language is such as to facilitate "dialog" type programming with a
minimum of effort. One is able to write effective programs quickly.

As a contrast, the BASIC language is designed for scientific computation.
It does not lend itself easily to writing dialog type programs
especially if the student's answer is to be examined for a given
response. While it is certainly possible to write CAI programs in

BASIC, the effort is very time consuming.

0.2

To be useful, any author Tanquage must be written as an interactive
language. PILOT is implemented in BASIC for HP 2000E Time-shared
syétem. This permits it to be used simultaneously with BASIC on this
system.

It is quite true that the capabilities of the language PILOT are
much less than that of BASIC. Its only virtues are the ease with which
the language may be learned and the ease with which dialog CAI programs
ﬁay be written.

Two cautions should be noted. Both concern themselves with
possible misuse of the computer. First, many CAI programs are indis-
tinguishab}e from ordinary programmed texts. This is not an effective
use of the computer. The computer has several advantages over regular
programmed texts, and effective use of the PILOT language will use
these advantages. Whereas most programmed texts have no branching,
that is, if a student learns rapidly there is no provision to skip
over more questions on the same topic, a computer can easily branch
to any other part of the program. In addition a computer can
analyze the student's response without revealing the correct answer
(It is not possible to "peek" at the expected response.) and it can
give hints that lead the student to the correct answer. Also, a
computer can keep track of how well a student progresses through the
material. A well-written program forces the student to interact, not
just passively read through the material.

Second, the PILOT language certainly lends itself to the writing
of tests. However, in most cases it is easier and cheaper to use
ordinary multiple copy techniques. One should not use the computer
merely because it is new and novel. It is important to keep in mind

the cost for a given result.

0.3

CAI can be an effective tool for the teacher just like audiovisual
material, but it cannot solve all problems, nor should it be expected
to take the place of effective existing (possibly cheaper) techniques;
rather, it should supplement them.

PILOT was implemented by Lawrence E. Turner, Jr. of the
Department of Physics, Pacific Union College. Any comments, reports

of problems, or suggestions should be directed toward him.

1.1

A PILOT PROGRAM

A PILOT program consists primarily of statements and questions
typed by the computer. The student's responses may be analyzed and
appropriate action is then taken by the computer dependent on exactly
what the student has typed. Thus a dialog between the computer and
the student may be established.

The syntax of PILOT is relatively easy to master. An example will
suffice to introduce one to the PILOT language.

19 R: THIS IS A PILOT PROGRAM
§8 $§HELLO! I AM YOUR FRIENDLY COMPUTER
WHAT IS YOUR NAME +

WELL $NAME HOW DO YOU USUALLY USE A COMPUTER??

T:

A:

T:
79 A:

T:

T:THAT SOUNDS PRETTY GOOD.:

E:

This program contains four out of the thirteen possible statement
types in PILOT. There are two features immediately obvious. The first
is the statement number associated with each statement. The second is
that each statement contains a colon (:). The character to the left of
the colon gives the statement type. |

The first statement is a REMARK statement which is not executed,
it only appears in the listing to give information to someone looking
at the listing. Statement 39 is a TYPE statement. Everything to the

right of the colon is printed on the terminal. Similarly, so is state-

ment 4@; however, the plus (+) as a last character prevents the

1.2

carriage return-line feed that would normé]]y occur at the end of the Tine.
Thus statement 50, an ANSWER statement prints a question mark (?) at the
second position after the last "E" in statement 4p. After printing the
question mark the computer waits for the user to type in something from
the terminal followed by a carriage return (ret). Whatever is typed-in is
stored in the string variable NAME and is printed out in statement 60,
wheré $NAME is replaced by whatever the student typed-in for the response
to statement 50. The last statement is an END statement which terminates
the program.

A typical execution of this program is as follows. For this example
the student's responses will be typed in lower case. On a conventional
terminal however, everything will be in upper case only.

HELLO: I AM YOUR FRIENDLY COMPUTER.
WHAT IS YOUR NAME ?johnny c.

WELL JOHNNY C. HOW DO YOU USUALLY USE A COMPUTER??
?7to play games and mess around

THAT SOUNDS PRETTY GOOD.:

If this were all the PILOT language could do, there would be little
value in PILOT programs. A main virtue of a computer is the ability to
analyze a student's response and to make decisions on the basis of what
the student has typed. 1In PILOT this is accomplished by the MATCH state-
ment and the use of a condition. Again an example.

19 T:WHAT IS YOUR SEX +
20 A:
30 M:FEMALE,GIRL,WOMAN,LADY

4p TY:1 HOPE YOU ARE NOT A MEMBER OF WOMEN'S LIB!
590 TN:I HOPE YOU ARE NOT A CHAUVINIST PIG:

1.3

In this case the MATCH statement (number 3Q) has four possible
alternatives separated by a comma (,). To illustrate the function of
the MATCH statement, also consider two different executions of this
portion of a PILOT program.

WHAT IS YOUR SEX ?1 am a woman
I HOPE YOU ARE NOT A MEMBER OF WOMEN' S LIB!

and

WHAT IS YOUR SEX ?male
I HOPE YOU ARE NOT A CHAUVINIST PIG:

In the first cast the MATCH was successful; that is, somewhere
within the response one of the alternatives (WOMAN) in the MATCH state-
ment was found. Since the MATCH was successful, the TYPE statement with
a YES condition is executed, the TYPE statement with the NO condition is
skipped. In the second example, the MATCH failed, nowhere in the response
was one of the MATCH alternatives found. Thus the TYPE statement with
the NO condition was executed.

These examples introduce one to the general form of a PILOT program,
five of the thirteen possible PILOT statements, and the concept of a
condition. With this basis one could begin to write simple PILOT pro-
grams. Indeed some very effective programs have been written using only
a portion of these ideas. However, some very powerful extentions are
contained in the other statements.

Very briefly some of the more important of these are: the JUMP
statement allows one to branch to any labeled statement, again depending
on a condition, the DEMAND statement (.D) provides for accumulating the

results of more than one MATCH statement to check for several different

1.4

-responses in a single answer. With the COMPUTE statement the programmer
can define variables which have numeric values associated with them. These
variables may be given values, manipulated, and ultimately used in condi-

tions or even printed on the terminal.

THE ESSENTIALS OF PILOT

This section contains a detailed description of each of the
elements that make up the PILOT language. Hopefully, this manual
will serve both as an instruction guide and a reference manual for
PILOT.

Items contained within "<" and ">" are elements in the PILOT
language. Throughout this manual the number zero is slashed (9)

and the letter 0 is left unslashed.

2.1

2.2

PILOT PROGRAM STATEMENT

general form:

<line number> <instruction>:<object>

<line number> <label> <instruction>:<object>

<line number> <instruction><condition>:<object>

<line number> <label> <instruction><condition>:<object>

examples:

199 T:HI

200 *NAME A:$JOHNHENRY

309 JY:*QUESZ

409 *Q17 TN:SORRY YOU LOSE!
450 C:X=5%Y-Z

comments:
A program statement contains a maximum of 72 characters.
The label and the condition are optional.

Note that every statement must contain one colon, (:).
With some statement types the object may be blank.

Statements without a condition are termed unconditional and
are always executed. Statements with a condition are termed
conditional and may or may not be executed depending on the
condition and previous responses to the program.

The only place where blanks are required is to separate the
label from the instruction.

Extra blanks in the portion of the PILOT statement to the
left of the colon are deleted.

The end of the program is designated by some last statement
or possibly an END statement.

examples:

purpose:

comments:

2.3

LINE NUMBER

19 TY:HI
20@ *NOW J:*THEN
1997 M:BLUE,GREEN

Line numbers serve no purpose to the PILOT language except
to sequence the program statements as they are typed in and
allow editing of the PILOT statements. Thus the program
statements may be entered in any order. They are arranged
in order of increasing line numbers.

Line numbers are positive integers -in the range 1 to 9999.

To correct a statement, simply retype it with the same line
number. To delete a statement type its line number.

The Tline number is separated from the rest of the statement
by one or more blanks.

2.4

LABEL

general form:

*<string>

examples:
19 *NAME T:MY NAME IS HP2000E:
20 *AGE3 T:NOW IS THE TIME.
3p *37A JY:*AGE7
490 *NNN R:THIS IS A SUBROUTINE 'NNN'
purpose:
The label is an optional part of a PILOT program statement.
It is used as a reference for a JUMP statement or a USE
statement (subroutine jump).
comments:

The Tabel consists of an asterisk (*) followed by a string
consisting of letters and digits only and is ended by one or
more blanks. It can be any length.

INSTRUCTION

general form:

purpose:

comments:

<oz

TYPE
ANSHWER
REMARK
END
MATCH
JUMP
USE
COMPUTE

OCcoc=ZmxoD -

TYPE
TYPE

<=

UNREFERENCED TYPE
EXTENDED MATCH

INTEGER FUNCTION
DEMAND

RANDOM NUMBER FUNCTION

The instruction designates the kind of statement.

The eight statements of the standardized PILOT 73 are
designated by a single letter. The extensions which
are unique to this implementation are designated by
two characters, a period followed by a single letter.

For convenience the conditions Y and N indicate a

TYPE statement (T) with Y or N condition respectively.

2.5

2.6

examples:

purpose:

comments:

VARIABLE

N T >

The variables are in reality numeric variables and are
used to store a numeric value.

Any single letter (A-Z) may be used as a variable. Thus
there are 26 possible numeric variables.

Each variable may take on any real value.

Variables may be used as objects to ANSWER statements if
preceded by the number sign (#).

They may be used in conditions, COMPUTE statements, INTEGER
function statements, RANDOM number function statements, and
referenced in TYPE objects.

example:

purpose:

comments:

STRING VARIADLE

NAME

AGE73

ANSWER39
REMEMBERTHEALAMO

The purpose is to take on the value of a string
input as a response to an ANSWER statement.

The STRING VARIABLE consists of a string of characters
consisting of only letters and digits.

The maximum length is 50 characters.

Initially all string variables are set to null
(no characters).

2.7

2.8

examples:

comments:

NUMERIC CONSTANT

WO~
.

E+2
4.21E-17

Any integer or decimal number is allowed. In addition, powers
of ten notation is given by the 'E' designation.

Any value acceptable to 2000E BASIC is acceptable to PILOT.
The PILOT interpreter does no checking on sizes of numbers;
overflow and underflow error messages are generated by the
BASIC system. The approximate ranges of altowed numbers
are -1E+36 to -1E-36, 0, +1E-36 to +1E+36.

2.9

CONDITION

general form:

Y

N

G

B

(<variable>)

(<variable><relational operator><variable>)
(<variable><relational operator><signed number>)

examples:

201 JY:*THNM

273 TN:YOU BLEW IT!

1982 T(B#7.32):ARE YOU CERTAIN??
2009 T(D<=F):WELL NOW!!

purpose:

The condition allows the program to take alternative
actions depending on the results of the previous sections.
Every statement may optionally contain a condition.

comments:

The condition is followed immediately by the colon (:) in
the statement.

There are three types of conditions. The first is desig-
nated by 'Y' or 'N' and depends on the results of previous
MATCH statements. Each MATCH statement either fails or is
successful. If it fails, then a match flag is set to a "no"
state and all statements thereafter with a 'Y' are skipped.
If the MATCH is successful, then the flag is set to a "yes"
state and all statements thereafter with a 'N' are skipped.

2.10

The flag is initially set to a "yes" state and is reset to
this state by an ANSWER statement. The match flag may be
changed to either "yes" or "no" by the MATCH and DEMAND
statements.

The second type is designated by a 'G' or 'B' and is used
to test if a numeric response was contained in a previous
ANSWER statement with a numeric variable as an object.

If a valid number was present, then all statements with a
'B' condition are skipped. If no valid number was present,
the 'G' condition statements are skipped. The numeric flag
is initially set to "good" and is modified only by an
ANSWER statement with a numeric variable as an object.

The third type is designated by a relation between two values
enclosed in parenthesis. The execution of this statement
depends only on the truth or falsity of the relation, not on
the condition of the match flag or the numeric flag. The
first value must be a variable. The second may be either

a variable or a signed real numeric constant. The relational
operators may be one of the following:

less than

less than or equal to
equal to

not equal to

greater than or equal to
greater than

A A
1]

]

vV V 30

It is also possible to test on the "truth" of a single
variable. In this case the statement is skipped if the
value is zero, "false". It is executed if the value is
nonzero, "true".

3.1

CORE PILOT 73

This section describes the eight statements that EOmprise the
~standardized set of PILOT 73. These statements are represented by
one-letter instructions. |

There are two features of the basic PILOT 73 not implemented.
The first is the continuation (indicated in PILOT 73 by ":" only).
0f all the PILOT statements the only ones for which a continuation
feature is applicable are: TYPE, COMPUTE, and MATCH statements.
An\effective continuation of the TYPE statement may be implemented
by the use of '+', the concatenation operator. MATCH statements con-
tinuation may be effected by using a 'N' condition on the following
MATCH statements. The inclusion of an explicit continuation feature
grossly complicated the syntax analysis in an interactive environment.
(See section 7.)

This implementation also requires an instruction for every
labeled statement. Thus a statement consisting only of a label is
not allowed. In practice one can always use a labeled REMARK statement
if this construct is desired.

In addition, the object of the COMPUTE statement, while it is a
correct BASIC statement, is restricted to BASIC assignment statements
(without the preceding LET). These are further restricted to expres-
sions invo]ving only the arithmetic operators, i.e. no functions, no

~ Togical expressions, no Boolean connectives, and no MIN or MAX operators.

3.2

REMARK STATEMENT
R

general form:

examples:

comments:

<line number> R:<object>

<line number> <label> R:<object>

<line number> R<condition>:<object>

<line number> <label> R<condition>:<object>

10 R:THIS IS A REMARK

20 *REM R:I CAN'T BELIEVE IT!!

75 R:

100 R:THIS PROGRAM WAS WRITTEN BY JACK.

A REMARK statement is non-executable, that is, it does not
result in anything being done! Thus it is meaningless to
attach a condition.

A REMARK statement may be labeled and this label may be
referenced in a JUMP or USE statement.

The objecf of the REMARK statement is used to convey infor-
mation to someone who reads the listing of the program. It
may be omitted.

. ¢
@

3.3

TYPE STATEMENT
T

general form:

<line number> T:<object>

<line number> <label> T:<object>

<line number> T<condition>:<object>

<line number> <label> T<condition>:<object>
<1ine number> Y:<object>

<line number> N:<object>

<line number> <label> Y:<object>

<line number> <label> N:<object>

examples:

120 T:HI.

2P *NEW T:

309 Y:WELL $NAME YOU ANSWERED #N RIGHT::
400p *OLD T(R=N):VERY GOOD::

purpose:

The TYPE statement produces an output on the terminal.

comments:

The value of a numeric variable may be printed out by referencing
the variable in the TYPE object. This is done by preceding it
with a number sign (#) and following it with a plus (+), a blank,
or the end of the 1ine. The plus is not printed, and it de]etes
one blank following the printing of the value.

The value of a string variable may be printed by preceding it with
a dollar sign ($) and following it with a plus, blank, or the end
.of the line. The plus is not printed and causes the next character
following to be printed adjacent to the last character in the
string variable.

3.4

If the string variable has not yet been given a value by an ANSWER
statement, no characters are printed. If the string variable does
not appear as an object to an ANSWER statement the variable name
(with $ and ending character) is printed.

A plus (+) at the last character of the object is used for conca-
tenation. The plus sign is not printed and the normal carriage
return-line feed is not executed. Hence, the next printed character
immediately follows on the same line.

The ending plus sign is stripped off before the line is printed. If
a given word will not fit on a line it is printed on the next line.
A1l breaks are between words just preceding the next non-blank
character.

3.5

ANSWER STATEMENT
A

general form:

<1ine number> A:<object>

<line number> <label> A:<object>

<1ine number> A<condition>:<object>

<line number> <label> A<condition>:<object>

examples:

7000 A:

8PP *NAM A:$JOHNHANCOCK
8010 AY:#Z

8p2p *MAJOR A:$MAJORDEP

purpose:

The ANSWER statement requests a response from the terminal.

comments:

The object may be null (no characters) or may consist of a dollar
sign ($) followed by a string variable or a number sign (#) fol-
lowed by a numeric variable (single letter).

A11 multiple blanks in the response are reduced to a single blank
and the entire response is stored in the string variable if present.
The first valid numeric quantity is stored in the numeric variable
if it is present, and the numeric flag is set to "good". If no
valid number is present in the response and a numeric variable is
present, then the value of the numeric flag is set to "bad".

The ANSWER statement resets the match flag to a "yes" condition and
the match counter to zero. (See DEMAND statement.)

3.6

The response of the single character "@" terminates the execution of
the PILOT language program.

BASIC automatically supplies a question mark (?) when an ANSWER state-
ment is executed and waits for a response. '

The response is available for succeeding MATCH statements until
another ANSWER statement is executed, even though the response is
not stored in a string variable.

A single ANSWER statement may contain either a string variable or a
numeric variable as an object but not both.

MATCH STATEMENT
M

general form:

examples:

purpose:

comments:

<1ine number> M:<object>

<1ine number> <label> M:<object>

<line number> M<condition>:<object>

<1ine number> <label> M<condition>:<object>

199 M:WASHINGTON
209 *PRES M:WASHINGTON
3PP MN:MARTHA,MRS. WASHINGTON

The MATCH statement analyzes the uéer's response and
sets the match flag according to whether the match
failed or was successful.

The object for the MATCH consists of one or more
alternatives separated by the character ",". If

somewhere within the last ANSWER response one of

these alternatives is found, the matching is

halted and the match flag is set to "yes"; other-
wise, if none of the alternatives is found, the
match flag is set to "no". Blanks are significant
within an alternative. Multiple blanks in the
response are replaced by single blanks.

If the match was successful the match counter is
incremented by one.

Previous responses may be used as MATCH patterns by

enclosing the string variable (preceded by $)
in commas just like any other alternative.

3.7

3.8

JUMP STATEMENT -
-

general form:

examples:

purpose:

comments:

<1ine number> J:<label>

<line number> <label> J:<label>

<1ine number> J<condition>:<label>

<line number> <label> J<condition>:<label>

1019 J:*NEWQ

2071 *NOW J:*THEN
2Q77 JY:*AGE7

2p78 JIN:*AGE8

4721 *ABC J(A<B):*C

The JUMP statement provides for branching to any other
labeled statement in a program.

The condition specifies whether the branch is executed or not.

During the setup phase for execution a check is made for un-
referenced jumps. That is, a JUMP (or USE) statement object
that is not a label that is present in the program.

No check is made for more than one statement with the same label.
In that case the JUMP goes to the first one.

3.9

USE STATEMENT
U

general form:

<line number> U:<label>

<line number> <label> U:<label>

<1ine number> U<condition>:<label>

<line number> <label> U<condition>:<label>

examples:

2p U:*SUBROUTINES
30 U(X<7):*GOODIES

purpose:

The USE statement provides for a subroutine call to
another portion of the program.

comments:

A USE statement generates a JUMP but with one important
difference, the interpreter "remembers" from whence it

is called. Upon execution of an END statement it returns
to the next statement after the USE statement.

Subroutines may be nested up to 6 deep.

The main program is termed level zero, and each subroutine
call increases the level number by one. A return from a
subroutine (see END statement) decreases the level number
by one.

Subroutines should not be used for small patches in a
PILOT program since they involve at least two jumps which
may take several seconds to execute.

3.10

END STATEMENT
E

general form:

examples:

purpose:

comments:

<1ine number> E:<object>

<line number> <label> E:<object>

<line number> E<condition>:<object>

<line number> <label> E<condition>:<object>

9999 E:
19@7 E:THIS IS THE END..
8312 *ENDSTAT E:FINALLY

The execution of an END statement results in a return from a
subroutine (see USE statement) or a halting of the execution
of the PILOT program. ‘

The END statement may be conditional. If it is used as a return
from a subroutine (see USE statement) control is transferred to
the next statement following the USE statement. If the level is
zero, i.e. the main program, execution of the PILOT program is
terminated and control is passed to the interpreter.

The object of the END statement is used to'convey information to
someone who reads the listing of the program (just like the object
of a REMARK statement). It may be omitted.

¥

general form:

3.11

COMPUTE STATEMENT
C

<line number> C:<variable>=<expression>

<line number> <label> C:<variable>=<expression>

<line number> C<condition>:<variable>=<expression>

<line number> <label> C<condition>:<variable>=<expression>

13)*Y/(-14M)

OO0
X >x0=

wononou

:N=17
:R=X+Y43
:X=(X
X=Y=

0

The COMPUTE statement is used to evaluate an expression
and store the results in a numeric variable.

examples:
100
127
490
419
purpose:
comments:

The expression is a combination of numeric variables,
numeric constants and arithmetic operators which evaluates
to a unique numeric value.

The arithmetic operators are:

addition

subtraction (or unary minus)
division

multiplication

raise to a power

> ¥ N1 +

3.12

Evaluation is in order of priority as given by:

first 4
second / or *
third + or -

Within a priority group evaluation is left to right within
the expression.

Parentheses may be used at will to change the order of evaluation,
with quantities in parentheses being computed first.

The expression is evaluated using the values of the variables before
the expression is executed. This value is then stored in the
variables appearing to the left of the equals (=). Note that this
is a replacement statement not an algebraic equation.

Multiple replacement is allowed.

The syntax rules may be summarized as:

1. Only a single variable may appear to the left of an equals
sign, (or possibly pairs formed by a single variable
immediately followed by an equals sign).

2. A variable may be followed only by:

a. an arithmetic operator
b. a closed parenthesis
c. end of the statement

3. A numeric quantity (without sign) may be followed only by:

a. an arithmetic operator
b. a closed parenthesis
¢. end of the statement

4. An open parenthesis may be followed only by:

a. an open parenthesis

b. a variable

C. a numeric quantity

d. a minus sign

e. a plus sign (meaningless and is deleted)

5. A closed parenthesis may be followed only by:

a. a closed parenthesis
b. an arithmetic operator
c. end of the statement

6. An arithmetic operator may be followed only by:

a. an open parenthesis
b. a variable
Cc. a numeric quantity

10.

An equals sign may be followed only by:

a
b.
c.
d
e

an open parenthesis

a variable

a numeric quantity

a minus sign

a plus sign (meaningless and is de]eted)

During any point in a left to right scan the number
of closed parentheses may not exceed the number of
open parentheses.

The total number of closed parentheses must equal
the total number of open parentheses.

Blanks are meaningless and are deleted.

4.1

EXTENSIONS TO PILOT 73

Several extensions to PILOT 73 standard are possible. These
increase the power and convenience of the language. They are desig-
nated by a two character instruction. For ease in syntax analysis

the first is a period, and the second is a letter.

4.2

DEMAND STATEMENT
D

general form:

<line number> .D:<integer>

<line number> <label> .D:<integer>

<1ine number> .D<condition>:<integer>

<line number> <label> .D<condition>:<integer>

examples:
100 .D:3
1900 *DEM .D:2
2099 .DY:4
purpose:

The DEMAND statement is used to accumulate the results of
more than one MATCH. The match flag is set to "yes", if the
number of successful matches since the last ANSWER is greater
than or equal to the digit given in the object of the DEMAND
statement. If this is not the case, the flag will be set to
unoll.

comments:
If the number of executed MATCH statements since the laét
ANSWER is less than the object of the DEMAND, the match flag
will be set to "no". ‘
If the object is zero, the match flag is always set to "yes".

The largest integer allowed for a DEMAND object is 99.

4.3

UNREFERENCED TYPE STATEMENT
T

general form:

<line number> .T:<object> :

<line number> <label> .T:<object

<1ine number> .T<condition>:<object>

<1ine number> <label> .T<condition>:<object>

examples:

199 .T:HI.

209 *NEW .T:

3pp .TY:THIS DOES NOT REFERENCE A VARIABLE #A OR $NAM +
4pp@ *OLD .T(R=N):VERY GOOD..

purpose:
The UNREFERENCED TYPE statement produces an output on the
terminal, but does not recognize any numeric or string
variable references.

comments:

The concatentation as designated by a plus (+) as the last
character is still executed.

4.4

EXTENDED MATCH STATEMENT
M

general form:

examples:

purpose:

comments:

<line number> .M:<object>

<1ine number> <label> .M:<abject>

<line number> .M<condition>:<object>

<line number> <label> .M<condition>:<object>

1990 .M:[WASHINGTONJ, GEORGE
200 *PRES .M:[WASHINGTON,G.W.
309 .MN:MARTHA,MRS*WASHINGTON

The EXTENDED MATCH statement analyzes the user's response and
sets the match flag accord1ng to whether the match failed or
was successful.

The object for the MATCH consists of one or more alternatives
separated by the character ",". If somewhere within the last
ANSWER response one of these alternatives is found, the match-
ing is halted and the match flag is set to "yes". Blanks are
significant. Multiple blanks in the response are replaced by
single blanks. '

A very powerful match pattern may be made using the character
"*" somewhere within one of the alternatives. This will match
any number of characters, including zero characters. In
example 3P9 above, for the second alternative, first "MRS" will
be used to attempt a match, if successful then "WASHINGTON"
will be used to attempt a match starting at the point where
"MRS" was found.

4.5

Consider the sample program below

19 T:WHO IS THE PRESIDENT +
20 A:
30 M:R*M*N*

The MATCH would be successful for the following responses:

RICHARD MILHOUS NIXON
RICHARD . NIXON

R.M.N.

RMN

T REALLY AM NOT SURE

GEORGE MCGOVERN

HENRY 'THE NANT KISSINGER
THAT IS A REAL MEAN QUESTION
ROOT MEAN SQUARE

RIGHT ONT MY NUTTY COMPUTER

Thus this construct must be used with care. A second
powerful pattern may be formed by using either a left
bracket ([) to begin the pattern and/or a right bracket

(J) to end it. A match is attempted on the pattern within
the brackets and if a match is found a further check is

made to see if an alphabetic character procedes (for [

at beginning) or follows (for J at end). If it is found the
match fails. Thus the brackets can force the match to look
for words.

Consider the program above but with the use of brackets:

19 T:WHO IS THE PRESIDENT +
29 A:
30 .MCR*[M*[N

This would be successful for
RICHARD MILHOUS NIXON
RICHARD M. NIXON

R.M.N.

RIGHT ON. MY NUTTY COMPUTER

As noted in the example brackets may be used with asterisks.

4.6

INTEGER FUNCTION
L} I

general form:

<1ine number> .I:<variable>

<line number> <label> .I:<variable>

<line number> .I<conditijon>:<variable>

<line number> <label> .I<condition>:<variable>

examp]e:
708 .I:H
719 .1(M>10):M
purpose:
The purpose is to replace the current value of the variable
with the greatest integer less than or equal to it.
comments:

This is a possibly useful function which cannot be easily
synthesized with COMPUTE statements as given in this
implementation.

RANDOM NUMBER FUNCTION
IX

general form:

examples:

purpose:

comment:

<1ine number> .X:<variable>

<1ine number> <label> .X:<variable>

<line number> .X<condition>:<variable>

<line number> <label> .X<condition>:<variable>

279 XX
289 .X(R):Z

The purpose 1is to provide a random number.

The value of the variable returned is a random number
in the range zero to one.

4.7

5.1

HOW TO ENTER A PILOT PROGRAM

The PILOT interpretive system consists of two BASIC programs. The
first is entitled 'PILOTS' and is used to enter the PILOT program and
provides editing and syntax checking. The second is entitled 'PILOT'
and is used to execute the PILOT program. |

The PILOT program is stored on one to three disk files, but three
program files must be declared during the syntax phase. The execution
of 'PILOTS' produces an input loop. At each question either a PILOT
command or a PILOT statement is required. Error messages indicate an
incorrect input. The execution of 'PILOTS' may be halted at each input
with the command STOP or with a 'ctrl C'. The 'break' should be used
only during a LIST.

The three program files, in which the PILOT program is stored,
are designated by the user. They should contain at least two records
each. In practice the entire PILOT program may fit into one or two
files. The PILOT program is stored three, four, five, or six statements
per record. Thus a maximum length of 864 PILOT statements is allowed.

These files need not be the same size. A fourth scratch file of at
least two records must be opened before entering a PILOT program. It
may be longer but only the first two records are used in editing the
three program files. A files statement must be declared in line 1 of

'"PILOT' before executing.

5.2

Consider the following example:
OPEN-FILET,30
OPEN-FILEZ,30
OPEN-FILE3,20
OPEN-SCRACH,2

GET-$PILOTS
1 FILES FILE1,FILE2,FILE3,SCRACH

Since a total of 80 records have been opened the PILOT program
must be less than 480 statements. The fourth file, 'SCRACH' must be
at least 2 records.

Tape dumped by the LIS command may‘be read back if the terminal has
an automatic reader control. Place the tape in the reader and turn it
to start after a question mark has been printed by 'PILOTS' for a new
statement. It will proceed to read in the tape. At the end of the tape
an extra ? will have been read in,ktyping a carriage return will clear

this.

PILOT COMMAND: LIST

general form:

examples:

purpose:

comments:

LIS
LIS-<statement number> ‘
LIS-<statement number>,<statement number>

LIS-20,400
LIST-3000
LIST

The LIST command is used to list all or only a
portion of the PILOT program on the terminal.

The first parameter is the starting statement
number, the second is the ending statement number.
The default is 1 and 9999 respectively.

Only the first three characters are required. The
two paramenters are optional. If used, the first
must be separated from the command by a hyphen (-),
the second, if used, from the first by a comma.

The LIST command may also be used to dump a PILOT
program on paper tape. This may be done by first
running off leader (either 'here is' or CTRL SHIFT
P), typing LIS (ret), then before the terminal
begins to type out the program, turn on the tape
punch.

5.3

5.4

PILOT COMMAND: NUMBER

general form:

example:

purpose:

comments:

NUM
NUM-<beginning number>
NUM-<beginning number>,<increment>

NUM-1029,1
NUM-1090
NUMBER

The NUMBER command is used to renumber the line numbers
of an existing PILOT program.

The two parameters are optional. If used, the first must
be separated from the command by a hyphen (-), the second,
if used, from the first by a comma.

The default quantities are 10 for beginning number and 10
for the increment.

If the last statement of the renumbered program is greater
than 9999, the message "NO NUM" is printed and the program
is not renumbered.

Only the first three letters of the command are required.

PILOT COMMAND: PURGE

general form:

PUR

purpose:
The PURGE command completely erases the
PILOT program; that is, the program files
are filled with eof's.

comments:

Only the first three characters are required.

5.5

5.6

PILOT COMMAND: SIZE

general form:

SIZ

purpose:
The SIZE command gives the number of statements,
the number of records, and the number of the last
statement.

comments:

Only the first three characters are required.

PILOT COMMAND: STOP

general form:

purpose:

comments:

STO

The STOP command is used to achieve an orderly
exit from the program 'PILOTS'. The files

are left in such a way as to allow future modi-
fication or execution.

Only the first three characters are required.

5.7

6.1

HOW TO RUN A PILOT PROGRAM

The BASIC program to execute a PILOT program is entitled 'PILOT'.
It requires, in addition to the PILOT program files, a scratch file
as long as necessary. These are to be entered in statement 1.
Consider the following example. A PILOT program has been stored
on the files: FILE1 and FILE2.
OPEN-TEMP,48
GET-$PILOT
1 FILES FILE1,FILE2,TEMP
RUN
PILOT

NUMBER PROGRAM FILES?2

The first part of the execution of 'PILOT' sets up reference tables,
checks for unreferenced JUMP statement and USE statements, and sets up a
response table. The reference table consists of statement numbers and
label names for all the labeled PILOT statements. The response table
consists of string variables and a place to store a response fof all
ANSWER statements with a string variable as an object. Both these tables
are stored on the scratch file. |

The response table will take one-half of a record for each
ANSWER statement with a string variable object. Thus in writing
a PILOT program it is best to keep labels short and the number of
ANSWER statement with string variable objects to a minimum. As

a rough example; out of a PILOT program of 600 statements, one may

6.2

have perhaps 80 labeled statements. If these are relatively short, say
less than 20 characters, then the reference table would take about 10
records Teaving room for 76 stored responses in the next 38 records. In
many cases it is not necessary to actual store the student's response in
order to analyze it. These numbers are based on the assumption that the
scratch file is the maximum length allowed of 48 records.

After the initial "set up" phase, the program 'PILOT' proceeds to
interpret the PILOT language program. When the PILOT program is finished,
control returns to 'PILOT' and the user is asked if he wishes to repeat the
execution of the PILOT program. If the response is 'YES' (or just 'Y'),
the PILOT program is re-executed, if not, control is returned to the

BASIC system.

7.1

PILOT IN THE 2000E ENVIRONMENT

The HP 2000E BASIC has certain limitations that make implementing
PILOT quite interesting and challenging. For this implementation it
was decided to make the language as interactive as possible, to store
the source code on files and interpret it directly, and to allow as
much flexibility in the choice of file names as possible.

In order to allow the user any choice of file names, one cannot
use the chain feature. Thus, as much as possible must be done in
realtively few programs. Fortunately, there are two rather distinct
phases: entering the program and checking for syntax errors and
executing it. For many applications most users will execute pre-written
programs. Thus there are two programs 'PILOTS' and 'PILOT' which imple-
ment the PILOT language. This does lead to a bit of clumsiness in going
from the entry stage to the execution phase as might occur during
"debugging".

It was also decided to do the syntax checking interactively as
each statement was typed in rather than all at once when the program
was executed. This virtually eliminates the possibility of using a
continuation feature as standard PILOT 73 requires. Also the concern
in this implementation is with number of lines rather than number of
statements as in other implementations where causing many lines to be

associated with one statement via continuation may be advantageous.

7.2

In the beginning it was decided to store only three statements
per record. This speeds up the syntax phase and greatly simplifies
deletion, insertion, or replacement of statements. It is somewhat
wasteful of file space, especially if large numbers of REMARK and
TYPE statements are used with a blank object.

The 1imit of 432 statements (or lines) that this would imply
‘did not seem to be a great restriction on the size of a PILOT program.
In practice most PILOT programs are much shorter. However, after
examining several PILOT programs it was discovered that only about
45 percent of the available space in the files was being used. By
packing statements as much as possible approximately 90 percent was
used. Currently PILOT puts up to six statements per record, this
results in about 85 percent utilization of the possible space in
increases the size of the maximum PILOT program to 864 statements.

In practice an upper limit of 750-800 statements can be expected.

8.1

SAMPLE PROGRAM

The following sample program is included to provide an example
- of a PILOT program. It is written to include all the possible features
in PILOT. It is not necessarily an effective or even a useful CAI

program.

THIS IS A DEMONSTRATION PILOT PROGRAM
PACIFIC UNION COLLEGE, L. TURNER, MAY 73
HELLO: I AM YOUR FRIENDLY HP 219PA.

:WHAT IS YOUR NAME +
1970 A:$NAM

1990 T:THAT IS A NICE NAME $NAM+. I RATHER LIKE IT!!:

1119 R: GET SEX, CHECK FOR 'FEMALE' FIRST SINCE IT CONTAINS 'MALE'
11290 T: IF YOU DON'T THINK IT TOO PERSONAL . . .

1139 *SEX T:WHAT IS YOUR SEX +

1140 A:$SEX

1150 T:

11690 M:FEMALE,GIRL,WOMAN,LADY,FEMIN,GAL

11790 Y: I THOUGHT SO. YOU'RE CUTE.

1189 CY:M=1

1199 JY:*AGE

1209 M:MALE,MAN,BOY,MASCUL,GUY

1219 Y: THAT WAS WHAT I WAS AFRAID OF!

1229 CY:M=0

1230 JY:*AGE

1249 T:ARE YOU TRYING TO FOOL ME??

12590 T:IT'S NOT NICE TO FOOL YOUR FRIENDLY HP COMPUTER::

1269 J:*SEX

1279 *AGE T:I WOULD ALSO LIKE YOUR AGE PLEASE +

1280 A:#A

1299 T:

- 13pp TB:TSK, TSK, TSK!

1319 JB:*AGE

1329 T(A<8):1 DON'T BELIEVE YOQU!!'!

1330 T(A>75):ARE YOU REALLY THAT OLD???

1349 J(A<5) *AGE

1359 .I:A

1369 R:
1379 R: N
13890 R: R
1399 R: F
1409 R:
1419 C:R=N=p
1420 T: I HAVE A FEW QUESTIONS FOR YOU. +
143p *BEG T:ARE YOU READY+

1449 A:

1450 M:Y,0K,0.K,RIG,REA,GO

1460 N: NOW WHAT'S THE MATTER??

1479 JIN:*BEG

1480 R:

1499 C:N=N+1

1599 C:F=1

NUMBER OF QUESTIONS
NUMBER OF CORRECT INITIAL RESPONSES
NUMBER OF TIMES FOR EACH QUESTION

8.3

1519 *Q1 T:

152@ T:WHO IS THE PRESIDENT OF THE U.S. +

1539 A:

1549 M:TRICK,HENRY,KIS,SPIR,AGN

1550 Y:1 SUSPECT YOU ARE A DEMOCRAT..

1560 M:NIXON

1579 Y:MY, YOU ARE UP TO DATE::

1589 JY:*Q2

1599 M:DICK,RICH,R.

160P Y:YOU KNOW HIS FIRST NAME, HOW ABOUT THE LAST NAME??

- 1619 N:YOU MUST BE A DEMOCRAT OR ARE YOU AFRAID THIS TERMINAL IS BUGGED?
1620 C:F=F+1

1639 J:*Q1

164p R:

1650 *Q2 T:

1660 C(F=1):R=R+1

1679 T(M=1):FOR A CUTE CHICK +

1689 T(M=0):FOR A HANDSOME GUY +

1699 T:0F #A+YEARS, YOU TOOK ONLY #F+
1799 T(F=1):TRY!!

1719 T(F>1):TRIES!:

1729 C:F=1

1739 C:N=N+1

1749 R:

1750 T:

1760 *QUES2A T:CAN YOU NAME AT LEAST THREE COMPUTER MANUFACTURERS??
1770 A:

1780 M:YES,THINK SO,WILL TRY,RIGHT,OF COURSE, YEA
1790 Y: GOOD WHAT ARE THEY??

1800 JY: *QUESTZB

1819 M:NO,CAN'T,CANNOT,DON'T

1829 Y:WELL, TRY ANYWAY.

183p *QUEST2B AY:

1849 T:

1850 .M:IBM, INT*BUS*MAC

1860 .M:HP,H-P,HEW*PAC

1879 .M:DEC,PDP,DIG*EQ

1880 .M:NOVA,DAT*GEN

1899 M:XDS,XEROX

1909 .M:GE,GEN*EL

1919 .M:CDC,CON*DAT

1929 M:BURRO,BOUR

1930 .M:HON*WELL

1949 M:UNIVAC

195@ .M:RCA,RAD*CORP*AM

1960 .M:NCR,NAT*CA*REG

1970 M:VARIAN

198p .D:4

1999 Y:VERY, VERY GOOD!: YOU GOT MORE THAN THREE, +
2009 JY:*QUESBB

8.4

2019 .D:3

2020 Y:RIGHT ON, +

2030 JY:*QUESBB

2049 .D:2

2p5@ Y:ALMOST, YOU GOT TWO CORRECT!

2069 C:F=F+1

2079 JY:*QUES3

2080 .D:1

2099 JN:*NOWAY

2199 .M:IBM,INT*BUS*MAC

2119 Y:SO YOU ARE ONE OF THOSE HEADLESS CHICKENS WHO THINK THAT +
2120 Y:IBM IS THE WORLD'S ONLY COMPUTER MANUFACTURER!

2130 Y:

2149 *QU2B T:I THINK YOU SHOULD TRY AGAIN!

2150 C:F=F+1

2169 .D:0

2179 J:*QUEST2B

2180 *NOWAY T:NO WAY: YOU DIDN'T EVEN GET ONE RIGHT.

2199 J:*QU2B

220p *QUESBB T:$NAM+! I CAN TELL YOU'RE AN EXPERT!

2219 *QUES3 R:

2229 C(F=1):R=R+1

2230 T:

22490 T:YOU DID SO WELL ON THAT LAST QUESTION, LET ME TRY A MORE +
2250 T:THOUGHT PROVOKING ONE:

2260 T:

2279 T:1 AM THINKING OF A NUMBER BETWEEN O AND 100. CAN YOU GUESS +
228p T:1T?7??

2299 U:*GOGETRANDOMNUMBER

2300 *TRYAGAIN C:H=1

2310 *QNUM T: #H+

2320 A:#T

2330 TB:COME ON, TRY A NUMBER!

2340 JB:*QNUM

2359 J(T=Y):*VERYGOOD

2360 C:H=H+1

2379 T(T>Y):TOO LARGE!

238p T(T<Y):TOO SMALL!

2399 J:*QNUM

24pp R

2419 *VERY GOOD J(H>7):*QVER

2429 T:THAT IS VERY GOOD $NAM+, YOU DID IT IN SEVEN TRIES OR LESS!
2430 J:*ENDNUM

2449 *QVER T:YOU WASTED A FEW GUESSES, THE MOST IT SHOULD TAKE IS +
245Q T:SEVEN, BUT $NAM+, YOU TOOK #H+GUESSES'

2460 *ENDNUM T(F=4):ONLY ONE MORE TIME.

2479 J(F>=5):*NEXTQ

248p T:WOULD YOU LIKE TO TRY IT AGAIN +

2499 A:

2500 M:YES,RI,PLE,OF COUR

8.5

2519 JN:*NEXTQ

2529 U:*GOGETRANDOMNUMBER

2530 C:F=F+1

2540 J:*TRYAGAIN

2550 R:

2560 *NEXTQ T:

2579 C:N=N+1

258p T:1 HAVE ONE LAST QUESTION FOR YOU $NAM+. WHAT DOES CAI MEAN??
2590 A: '

2600 .MCCOMP*[ASS*[INS,[COMP*[AID*[INST

2610 Y:EXCELLENT $NAM+! +

2629 CY:R=R+1

263p N:YOU BLEW IT. +

2649 T:CAI STANDS FOR COMPUTER ASSISTED INSTRUCTION THAT'S WHAT +
2650 T:WE'RE DOING RIGHT NOW..

2660 T:

2679 T:WELL, $NAM+, OUT OF THE #N+QUESTIONS I ASKED (NOT COUNTING +
2680 T:THE NUMBER GUESSING ONE), YOU GOT #R+CORRECT ON THE FIRST +

2699 T:TRY. +

2709 T(N=R):THAT IS JUST ABOUT PERFECT!

2719 T(R=0):NOT EVEN ONE RIGHT! WHAT'S A COMPUTER TO DO?

272p T(R=1):YOU GOT AT LEAST ONE CORRECT.

2739 E: THIS IS THE END OF THE MAIN LINE PROGRAM

2749 *GOGETRANDOMNUMBER R:

2759 .X:Y

276@ C:Y=Y*99

2779 .1:Y

2789 C:Y=Y+1

2799 E:

PILOT SYNTAX

The PILOT syntax is described on the following pages. The

characters "<" and ">" enclose an element of PILOT.

The character

"::="1is to be read: "is defined as". The character "|" is to be

read as "or".

9.1

9.2

<digit>
<integer>

<decimal number>

<number>
<exponent>
<signed number>

<letter>

<letter digit>
<1d string>

<character>
<m character>

<e character>

<null>

<string>

<m string>

<e string>
<variable>
<string variable>

<program statement>

<line number>

.
.

L]

[

L]

L]

.
:.=

SYNTAX OF PILOT

0|1]2]3|4|5]6|7|8]9
<digit>|<integer><digit>

<integer>|<integer>. | <integer>.<integer>|
.<integer>

<decimal number>|<decimal number><exponent>
E<integer>|E+<integer>|E-<integer>
<number> | +<number> | -<number>

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U]
VIW|X|Y|Z

<letter>|<digit>
<letter digit>|<1d string><letter digit>

any ASCII character except: null, line feed,
carriage return, s X-0ffs <, "y rubout.

any ASCII character except: mnull, line feed,
earriage return, s x-off, <, "y comma, rubout.

any ASCIT character except: null, line feed,
earriage return, s &=0ffs *, ", comma, *,
rubout. :

no characters
<character>|<null>|<string><character>
<m character>|<nul1>|<m string><m character>
<e character>|<null>|<e string><e character>
<letter>
<1d string> maximum length is §0
<line number><PILOT statement> carriage return|
<line number><label>p<PILOT statement>carriage’
return

<integer> allowed range is: 1 to 9999

<label>
<condition>
<YN condition>
<GB condition>

- <conditional>

<relational>
<primary>
<PILOT statement>

<core statement>

<extended statement>

<TYPE statement>

<TYPE instruction>

<TYPE object>

<endr>

<ANSWER statement>
<ANSUWER instruction>
<ANSWER object>
<MATCH statement>
<MATCH instruction>
<MATCH object>

<alternative>

9.3

*<1d string>

<YN condition>|<GB condition>|<conditional>
YN

G|B

(<variable>) | .
(<variable><relational><primary>)

<Je=l=l# =15
<variable>|<signed number>

<core statement>|<extended statement>
<TYPE statement>|<ANSWER statement> |
<MATCH statement>|<REMARK statement> |
<JUMP statement>|<USE statement>|

<END statement>|<COMPUTE statement>
<EMATCH statement>|<ETYPE statement> |
<DEMAND statement>|<INTEGER statement>|
<RANDOM statement>

<TYPE instruction>:<TYPE object> |
<TYPE instruction>:<TYPE object>+

T|T<condition>|<YN condition>

<string> | ,
<TYPE object>$<string variable><endr><TYPE object>|
<TYPE object>$<string variable>|

<TYPE object>#<variable><endr><TYPE object> |
<TYPE object>#<variable>

B+

<ANSWER instruction>:<ANSWER object>
A|A<condition>

<nul1>|$<string variable>|#<variable>

<MATCH instruction>:<MATCH object>
M|M<condition>

<alternative>|<MATCH object>,<alternative>

<m string>|$<string variable>

9.4

<REMARK statement>
<REMARK instruction>
<REMARK object>
<JUMP statement>
<JUMP instruction>
<JUMP object>

<USE statement>

<USE instruction>
<USE object>

<END statement>

<END instruction>
<END object>
<COMPUTE statement>
<COMPUTE instruction>
<COMPUTE object>
<destination>

<expression>

<term>

<factor>

<subfactor>

<§MATCH statement>
<EMATCH instruction>
<EMATCH object>

- <pattern>

<complex>

<word>

il

]

1

H

<REMARK instruction>: <REMARK object>
R [R<condition>

<string>

<JUMP instruction>: <JUMP object>
J|d<condition>

<label>

<USE instruction>:<USE object>
U|U<condition>

<label>

<END instruction>:<END object>
E|E<condition>

<string>

<COMPUTE 1instruction>:<COMPUTE object>
C|C<condition>
<destination><expression>
<variable>=|<destination><variable>=

<term>|<express1on>+<term>|<expresswon> <term> |
-<term> |+<term>

<factor>|<term>*<factor>|<term>/<factor>
<subfactor>|<factor>+t<subfactor>
<variable>|<number> | (<expression>)
<EMATCH dinstruction>:<EMATCH object>

M| .M<condition>

<pattern>|<EMATCH object>,<pattern>
<complex>|<pattern>*<complex>

<e string>|<word>

:= [<e string>|[<e string>]|<e string#]

<ETYPE statement>

<ETYPE instruction>
<ETYPE object>
<DEMAND statement>
<DEMAND 1instruction>
<DEMAND object>
<INTEGER statement>
<INTEGER instruction>
<INTEGER object>
<RANDOM statement>
<RANDOM instruction>

<RANDOM object>

9.5

<ETYPE instruction>:<ETYPE object>|
<ETYPE instruction>:<ETYPE object>+

.T|.T<condition>

<string>

<DEMAND instruction>:<DEMAND object>

.D].D<condition>

<integer>

allowed range 0 -+ 99

<INTEGER instruction>:<INTEGER object>

.I|.I<condition>

<variable>

<RANDOM instruction>:<RANDOM object>

.X| .X<condition>

<variable>

10.1

ERROR MESSAGES
SYNTAX PHASE: PILOTS

MISSING OR PROTECTED FILE 'PILOTS' needs exactly four files

F # x TOO SMALL

file number x has only one record

2?7?77 entry has no statement number and
is not a valid command

UNRECOGNIZED entry has a valid statement number
but a ncn-recognized jnstruction

LBL ERR label error

NO COLON missing or misplaced colon

CON ERR condition error

0BJ ERR object error

EXP ERR: xx expression error occurring after the
rightmost =, offending characters are
printed

PAR ERR parenthesis error due to number of
close parentheses exceeding open
parentheses at a given point, or
unmatched open parentheses

FILES FULL the number of statements already
stored is such that the new entry
may cause the last few statements
to be lost

NO NUM unable to renumber because last state-

BAD INPUT RETYPE

ment number would exceed 9999

more than 72 characters were entered

10.2

SETUP PHASE: PILOT

'SCR FILE OVRFLW scratch file is too small
for reference and response
tables

UNREF, IMP xxxx a JUMP or USE object to a

label that does not exist,
the statement number is
given

EXECUTION: PILOT

USE ERR subroutines nested more than
six deep

Note: no special checking is made for numeric overflow. The BASIC
system may generate several possible error messages not given above.
In this case please check in 2000E: A GUIDE TO TIME-SHARING BASIC.

