
COMMUNICATIONS
SNA6
APPLICATION
PROGRAMMER'S
GUIDE

SUBJECT

COMMUNICATIONS
SNAG

APPLICATION PROGRAMMER'S GUIDE

Application Interface Facility LU Type 0 Session Calls and LU Type 6.2
Conversation Verbs for Use in DPS 6 or DPS 6 PLUS COBOL and Assembly
Language Programs

SPECIAL INSTRUCTIONS

This manual supersedes GRll-01, dated March 1986. This manual has been
extensively revised; therefore, change indicators have been omitted.

SOFTWARE SUPPORTED

This publication supports Release 4.0 of the SNA6 program products.

ORDER NUMBER

GRll-02 October 1986

Honeywell

PREFACE

The purpose of this manual is to describe the SNA6
Application Interface Facility {AIF). It is intended for the
COBOL or Assembly language programmer at a DPS 6 or DPS 6 PLUS
system. It provides the information necessary to write
application programs to communicate with transaction programs
running under Customer Information Control System {CICS) or
Information Management System {IMS).

The major topics presented in this manual are:

• Section 1 provides an introduction of AIF and the manual

• Section 2 describes the LU Type 0 ses~ion calls that are
used in Assembly language, the session call control block,
and Assembly language programming considerations

• Section 3 describes the LU Type 0 COBOL session calls, the
SNA work area in the WORKING-STORAGE-SECTION, and COBOL
programming considerations

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.
In no event is Honeywell liable to anyone for any indirect,special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©iioneywell Information Systems Inc., 1986 File No.: 1163, lR63, 1763 GRll-02

• Section 4 describes the LU Type 6.2 conversation verbs
that are used in an Assembly language program, the verb
parameter block, and Assembly language programming
considerations

• Section 5 describes the LU Type 6.2 COBOL conversation
verbs, the SNA work area in the WORKING-STORAGE-SECTION,
and COBOL programming considerations

• Section 6 describes LU Type 0 restart logic and message
resynchronization

• Section 7 describes Communications Network Management, SNA
Operator Control (SOPR) services, and maintainability
through various operating system utilities

• Appendix A presents a detailed description of the AIF
product architecture

• Appendix B contains sample Assembly language programs
demonstrating both LU Type 0 and LU Type 6.2 conversations

• Appendix C provides sample COBOL programs for both LU Type
session calls

• Appendix D lists the LU Type 0 session call return codes

• Appendix E contains a listing of the Session Call Control
Block (SCCB) template with offsets

• Appendix F lists the LU Type 6.2 conversation return codes

• Appendix G includes a listing of the Verb Parameter Block
(VPB) template with offsets.

• A glossary is provided to explain the meaning of terms
used within the text of this manual.

This manual assumes the reader is familiar with the SNA
networking system and COBOL or Assembly language programming.
The reader needs to be familiar with the following Honeywell
manuals:

• ONE PLUS COBOL 74 Language Reference Manual (Order No.
HE34)

• One PLUS Advanced COBOL Com}2iler User's Guide (Order No.
HE31)

• ONE PLUS AssemblI Language (MAP) Reference (Order No.
HE38)

In addition, the reader needs to be familiar with the SNA
transaction program protocols used by your IBM distributed
processing application.

iii GRll-02

The following syntax conventions are used in this manual:

Syntax Conventions

UPPERCASE CHARACTERS

Angle brackets <>

Brackets []

Braces {}

vertical line I

Meaning

Items in capital letters must be input as
shown, for example, SCNOER.

Items in lowercase letters enclosed in
angle brackets < > describe what you need
to supply; for example, <node name>.

Items in square brackets are optional;
for example, [sccb address].

Braces indicate that the user has a
choice between two or more entri~s. At
least one of the entries enclosed in
braces must be chosen (unless the entries
are also enclosed in square brackets);
for example, {NORMALIABNORMAL}.

Vertical bars separate the choices within
braces. At least one of the entries
separated by bars must be chosen (unless
the entries are enclosed in square
brackets); for example [{SYNCIASYNC}].

The following conventions are used to indicate the relative
levels cf topic headings used in this manual:

Level

1 (Highest)

2

3

4

Heading Format

ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, Underlined

ALL CAPITAL LETTERS, NOT UNDERLINED

Initial Capital Letters, Not Underlined

iv GRll-02

CONTENTS

SECTION 1 INTRODUCTION•••••••••••••••••••••••••••••••••••

How to Use This Manual ••••••••••••••••••••••••••••••••••••
Application Interface Facility ••••••••••••••••••••••••••••
LU Type 0 Sessions •••••.•••••••••.••••••••••••••••••••••••

Host Programming Considerations •••••••••••••••••••••••••
CICS Terminal Control Table Parameters ••••••••••••••••
IMS Terminal Definition Parameters ••••••••••••••••••••

LU Type 6.2 Conversations •••••••••••••••••••••••••••••••••

SECTION 2 PROGRAMMING LU TYPE 0 SESSIONS IN ASSEMBLY
LANGUAGE • ••••••••••••••••••••••••••••••••••••••

Session Call Format •••••••••••••••••••••••••••••••••••••••
Programming Considerations ••••••••••••••••••••••••••••••••

Getting Started •••
Synchronous vs. Asynchronous Processing •••••••••••••••••

Synchronous Processing ••••••••••••••••••••••••••••••••
Asynchronous Processing •••••••••••••••••••••••••••••••

Session Call Control Block ••••••••••••••••••••••••••••••
Host-Initiated Sessions •••••••••••••••••••••••••••••••••
Checking the Return Code ••••••••••••••••••••••••••••••••

Session Calls •••
$SACPT Accept Session Call ••••••••••••••••••••••••••••
$SCASR Cancel Asynchronous Request ••••••••••••••••••••
$SGTAT Get A Session Attribute ••••••••••••••••••••••••
$SINIT Establish A Session ••••••••••••••••• ~~·········
$SI NIT
$SPOLL
$SRECV
$SRI -
$SSEND
$SSI -
$SSRSP
$STERM
$STEST
$SWANY
$SACEB
$SEBAC

Restart Session •• : •••••••••••••••••••••••••••••
Poll Session •.•••••••••••••••••••••••••••••••••
Receive Message ••••••••••••••••••••••••••••••••

Read Interrupt •••••••••••••••••••••••••••••••••••
- Send Message •••••••••••••••••••••••••••••••••••
Send Interrupt •••••••••••••••••••••••••••••••••••

Send Response •••••••••••••.••••••••••••••••••••
Terminate Session ••••••••••••••••••••••••••••••
Test for Events ••••••••••••••••••••••••••••••••
Wait on Events ••••••••••••.••••••••••••••••••••
ASCII-To-EBCDIC Conversion Routine •••••••••••••
EBCDIC-To-ASCII Conversion Routine •••••••••••••

Page

1-1

1-2
1-2
1-3
1-3
1-4
1-4
1-6

2-1

2-1
2-3
2-3
2-4
2-4
2-4
2-5
2-7
2-8
2-10
2-11
2-13
2-15
2-18
2-21
2-24
2-26
2-29
2-31
2-35
2-38
2-40
2-42
2-44
2-46
2-47

v GRll-02

CONTENTS

SECTION 3 PROGRAMMING LU TYPE 0 SESSIONS IN COBOL ••••••••

COBOL Session Calls •••••••••••••••••••••••••••••••••••••••
Session Call Format •••••••••••••••••••••••••••••••••••••••
Programming Considerations ••••••••••••••••••••••••••••••••

synchronous vs. Asynchronous Processing •••••••••••••••••
Synchronous Processing ••••••••••••••••••••••••••••••••
Asynchronous Processing .•••••••••••••••••••••••••••••••

WORKING-STORAGE SECTION•••••••••••••••••••••••••••••••••
Host-Initiated Sessions •••••••••••••••••••••••••••••••••
Linking the Program •••••••••••••••••••••••••••••••••••••
Checking the Return Code ••••••••••••••••••••••••••••••••

Session Calls •••
CSACPT Accept Session Call ••••••••••••••••••••••••••••
CSCASR Cancel Asynchronous Request ••••••••••••••••••••
CSGTAT Get Session Attributes •••••••••••••••••••••••••
CS IN IT
CS POLL
CSRECV
CSRI -
CS SEND
CSSI -
CSSRSP
CST ERM
CST EST
CSWANY
CSACEB
CSEBAC

SECTION 4

Initiate Session •••••••••••••••••••••••••••••••
Poll session Call ••••••••••••••••••••••••••••••
Receive Message ••••••••••••••••••••••••••••••••

Read Interrupt •••••••••••••••••••••••••••••••••••
- Send Message •••••••••••••••••••••••••••••• , ••••
Send Interrupt •••••••••••••••••••••••••••••••••••

Send Response ••••••••••••••••••••••••••••••••••
Terminate Session ••••••••••••••••••••••••••••••
Test for Events •••••••.••••.•••••••••.•••••.•••
Wait on Events ••.••••••••••••••••••••••••••••••
ASCII-to-EBCDIC Conversion •••••••••••••••••••••
EBCDIC-to-ASCII Conversion •••••••••••••••••••••

PROGRAMMING LU TYPE 6.2 CONVERSATIONS ••••••••••

Basic Conversation Verbs••••••••••••••••••••••••••••••••••
Programming Considerations ••••••••••••••••••••••••••••••••

Getting Started •••
Verb Parameter Block••••••••••••••••••••••••••••••••••••
Conversation States •••••••••••••••••••••••••••••••••••••
Host-Initiated Conversations ••••••••••••••••••••••••••••
Checking the Return Code ••••••••••••••••••••••••••••••••

Individual Verb Formats•••••••••••••••••••••••••••••••••••
$SALLO
$SATCH
$SCONF
$SCNFD
$SDEAL

Allocate Verb ••••••••••••••••••••••••••••••••••
Attached Verb •
Confirm Verb •••.•••••.•••••.•.••••..•••••••••••
Confirmed Verb •••••••••••••••••••••••••••••••••
Deallocate Verb ••••••••••••••••••••••••••••••••

Page

3-1

3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-15
3-16
3-17
3-19
3-20
3-22
3-23
3-25
3-28
3-29
3-31
3-33
3-35
3 37
3-39
3-41
3-43
3-44
3-45

4-1

4-1
4-3
4-3
4-4
4-5
4-7
4-7
4-9
4-11
4-15
4-17
4-19
4-21

vi GRll-02

CONTENTS

$SFLSH Flush Verb •••••••••••••••••••••••••••••••••••••
$SPONR Post on Receipt Verb •••••••••••••••••••••••••••
$SPTOR Prepare to Receive Verb ••••••••••••••••••••••••
$SRAW - Receive and wait Verb •••••••••••••••••••••••••••
$SRTOS Request to Send Verb•••••••••••••••••••••••••••
$SSDAT Send Data Verb •••••••••••••••••••••••••••••••••
$SSERR Send Error Verb ••••••••••••••••••••••••••••••••
$SWAIT
$SACEB
$SEBAC

SECTION 5

Wait Verb •••••••••••••••••••••••••••••••••••••.
ASCII-to-EBCDIC Conversion Routine •••••••••••••
EBCDIC-to-ASCII Conversion Routine •••••••••••••

PROGRAMMING LU TYPE 6.2 CONVERSATIONS IN COBOL.

COBOL Conversation Verbs ••••••••••••••••••••••••••••••••••
Conversation Format •••••••••••••••••••••••••••••••••••••••
Programming Considerations ••••••••••••••••••••••••••••••••

WORKING-STORAGE SECTION•••••••••••••••••••••••••••••••••
Conversation States •••••••••••••••••••••••••••••••••••••
Host-Initiated Sessions •••••••••••••••••••••••••••••••••
Linking the Program •••••••••••••••••••••••••••••••••••••
Cheeking the Return Code ••••• • •••••••••••.•••••••••••••••

Individual Verb Format ••••••••••••••••••••••••••••••••••••
CSALLO
CSATCH
CSCONF
CSCNFD
CSDEAL

Allocate Verb ••••••••••••••••••••••••••••••••••
Attach~d Verb ••••••••••••••••••••••••••••••••••
Confirm Verb •••••••••••••••••••••••••••••••••••
Confirmed Verb •••••••••••••••••••••••••••••••••
Deallocate Verb ••••••••••••••••••••••••••••••••

CSFLSB Flush Verb•••••••••••••••••••••••••••••••••••••
CSPONR Post on Receipt verb •••••••••••••••••••••••••••
CSPTOR Prepare to Receive Verb ••••••••••••••••••••••••
CSRAW - Receive and Wait Verb •••••••••••••••••••••••••••
CSRTOS
CS SD AT
CS SERR
CSWAIT
CSACEB
CSEBAC

SECTION 6

Request to Send Verb •••••••••••••••••••••••••••
Send Data Verb •••••••••••••••••••••••••••••••••
Send Error Verb ••••••••••••••••••••••••••••••••
Wait Verb •••••.••••••••••••••••••••••••••••• ,~ ••
ASCII-to-EBCDIC Conversion •••••••••••••••••••••
EBCDIC-to-ASCII Conversion •••••••••••••••••••••

REST MT ••

Configuration Options •••••••••••••••••••••••••••••••••••••
Preestablished session Groups •••••••••••••••••••••••••••
Reserved Los •••••••••••••••.•••• ~ •••••••••••••••••••••••

Page

4-25
4-27
4-29
4-32
4-36
4-37
4-39
4-43
4-45
4-47

5-1

5-1
5-2
5-3
5-3
5-12
5-13
5-14
5-15
5-17
5-18
5-21
5-23
5-25
5-27
5-30
5-32
5-34
5-36
5-40
5-41
5-43
5-46
5-48
5-49

6-1

6-2
6-2
6-2

vii GRll-02

CONTENTS.

Normal Termination ••
Abnormal Termination ••••••••••••••••••••••••••••••••••••••
Restart Logic . •...•..•..............•.....................
Restart Initialization Request ••••••••••••••••••••••••••••
Release Time ••
Message Resynchronization in Assembly Language ••••••••••••
Message Resynchronization in COBOL ••••••••••••••••••••••••
Rules for Restart ••••••• ; •••••••••••••••••••••••••••••••••

SECTION 7 SUPPORT AND MAINTAINABILITY •••••••••••••••
SNA Operator Services •••••••••••••••••••••••••••••••••••••
Maintenance Utilities •••••••••••••••••••••••••••••••••••••
Communications Network Management •••••••••••••••••••••••••

AIF Alerts ..•..••.•.••...••.••.•.•••..•...•••.••••••.•.•
AIF Maintenance Statistics •••••••••••••••••••••

APPENDIX A AIF ARCHITECTURE •••••••••• .
Program Interface •.••••••.•••.•••.••••••••••..••••••••••••
PU Subcomponent • ••
LU Subcomponent •••

Control Module ••
Protocol Handler Module •••••••••••••••••••••••••••••••••
Session Control Module ••••••••••••••••••••••••••••••••••

Monitor Call Handler Subcomponent •••••••••••••••••••••••••
Basic Operation •••

APPENDIX B SAMPLE ASSEMBLY LANGUAGE PROGRAMS •••••••••••••

APPENDIX C SAMPLE COBOL PROGRAMS ••••••••••••••••••••••••••

APPENDIX D SESSION CALL RETURN CODES •••••••••••••••••••••

APPENDIX E $SSCCB TEMPLATE •••••••••••••••••••••••••••••••

APPENDIX F CONVERSATION VERB RETURN CODES ••••••••••••••••

APPENDIX G $SVPB TEMPLATE ••••••••••••••••••••••••••••••••

Page

6-3
6-3
6-3
6-4
6-4
6-5
6-5
6-5

7-1

7-1
7-2
7-3
7-3
7-8

A-1

A-1
A-3
A-3
A-3
A-3
A-3
A-4
A-5

B-1

C-1

D-1

E-1

F-1

G-1

viii GRll-02

CONTENTS

Page

GLOSSARY ••••.•••.••••••••••••••.•••••••••••••••••••••••••• g-1

MANUAL DIRECTORY••••••••••••••••••••••••••••••••~••••••••• h-1

INDEX... i-1

Figure

2-1
2-2

3-1
3-2
3-3

6-1

7-1

A-1
A-2

B-1

B-2

B-3

B-4

B-6

ILLUSTRATIONS

Synchronous Processing ••••••••••••••••••••••••••••••
Asynchronous Processing •••••••••••••••••••••••••••••

Synchronous Processing ••••••••••••••••••••••••••••••
Asynchronous Processing •••••••••••••••••••••••••••••
WORKING-STORAGE SECTION for AIF •••••••••••••••••••••

Session Restart •••••.•••••••••••••••••••••••••••••••

IBM Alert Format ••••••••••••••••••••••••••••••••••••

Overall Architecture of AIF •••••••••••••••••••••••••
Application Service Request/Reply Handling ••••••••••

Sample Assembly Language Program for LU Type 0
for DPS 6-Initiated Session •••••••••••••••••••••••••
Sample Assembly Language Program for LU Type 0
for Host-Initiated session ••••••••••••••••••••••••••
Subroutines for LU Type 0 Assembly
Language Programs.· ••••••••••••••••••••••••••••••••••
Sample Assembly Language Program for LU Type 6.2
for DPS 6-Initiated Session •••••••••••••••••••••••••
Sample Assembly Language Program for LU Type 6.2
for Host-Initiated Session ••••••••••••••••••••••••••
Subroutines for LU Type 6.2 Assembly
Language Programs • ••••••••••••••••••••••••••••••••••

Page

2-4
2-5

3-3
3-4
3-5

6-6

7-4

A-2
A-4

B-2

B-9

B-15

B-18

B-25

B-31

ix GRll-02

ILLUSTRATIONS

Figure Page

C-1 Sample COBOL Program for LU Type 0 for DPS 6-
Ini tiated Session ••••••••••••••••••••••••••••••••••• C-2

C-2 Sample COBOL Program for LU Type O for Host-
Initiated Session ••••••••••••••••••••••••••••••••••• C-15

C-3 Sample COBOL Program for LU Type 6.2 for
DPS 6-Initiated Session ••••••••••••••••••••••••••••• C-29

C=4 Sample COBOL Program for LU Type 6.2 for Host-

Table

2-1
2-2
2-3

3-1
3-2

4-1
4-2
4-3
4-4
4-5

5-1
5-2
5-3

D-1
D-2
D-3
D-4
D-5
D-6

E-1

F-1
F-2
F-3
F-4
F-5

Initiated Session~·································· C-41

TABLES

AIF Session Calls •••.•••••.••••••.••.••.•.•.••.•••••
Register Contents at Conversion •••••••••••••••••••••
Register Contents at Conversion •••••••••••••••••••••

COBOL Session Call RETURNS Fields •••••••••••••••••••
AIF Session Calls ••.••••.••.•••.•••.••.••..•••••••••

Conversation States •••••••••••••••••••••••••••••••••
Conversation States From Which Verbs Can Be Issued ••
AIF LU Type 6.2 Verbs •••••••••••••••••••••••••••••••
Register Contents at Conversion •••••••••••••••••••••
Register Contents at Conversion •••••••••••••••••••••

Conversation States •••••••••••••••••••••••••••••••••
Conversation States From Which Verbs Can Be Issued ••
AIF LU Type 6.2 Verbs •••••••••••••••••••••••••••••••

AIF Session Call Return Codes •••••••••••••••••••••••
Individual Return Codes •••••••••••••••••••••••••••••
COBOL Session Call RETURNS fields •••••••••••••••••••
General COBOL RETURN-B Values •••••••••••••••••••••••
Interrupt-Type Correspondence •••••••••••••••••••••••
Attribute Types

$SSCCB Template • ••••••••••••••••••••••••••••••••••••

Individual Return Codes •••••••••••••••••••••••••••••
Individual Return Codes •••••••••••••••••••••••••••••
Sense Data • •••••••••••••••••••••••••••••.•••••••••••
COBOL Session Call RETURNS fields •••••••••••••••••••
General COBOL RETURN-B Values •••••••••••••••••••••••

Page

2-10
2-46
2-47

3-12
3-19

4-6
4-6
4-10
4-46
4-47

5-12
5-13
5-17

D-2
D-3
D-5
D-5
D-6
D-6

E-2

F-2
F-3
F-5
F-6
F-6

G-1 $SVPB Template •••••••••••••••••••••••••••••.•••••••• G-2

x GRll-02

Section 1
INTRODUCTION

The Systems Network Architecture (SNA) Application Interface
Facility (AIF) allows a programmer to write COBOL or Assembly
language programs to communicate with Customer Information
Control System (CICS) or Information Management System (IMS)
transaction programs at an IBM host. The applications at the
DPS 6 or DPS 6 PLUS can be user-written, LU Type 0 or LU Type 6.2
applications, or transaction processing routines. AIF offers
SNA6 users access to information residing on an IBM host.

This facility allows applications to interface to an SNA
network at a high level. AIF manages data structures on behalf
of the application program$ However, some knowledge of SNA
protocols is necessary • ..

To provide this level of inte.rface, AIF supports session
calls for Session Type 0 users and basic conversation verbs for
Type 6.2 users. These session and verb callss are interface with
a user's control block through monitor calls to SNA. Macrocalls
are provided for the applications.

This section discusses the following:

• The SNA Application Interface Facility

• LU TYPE O sessions with Host Programming Considerations

• LU TYPE 6.2 conversations with Host Programming
Considerations.

1-1 GRll-02

HOW TO USE THIS MANUAL

This manual is provides an application programmer at either a
DPS 6 or DPS 6 PLUS system with the information necessary to
write COBOL or Assembly language application programs to
communicate with the IBM host CICS/IMS transaction processing
programs for Type 0 and CICS transaction programs for Type 6.2.

Section 2 describes the LU Type 0 session calls that are used
in Assembly language, the session call control block, and special
considerations in writing an Assembly language program using AIF.

Section 3 describes the LU Type 0 COBOL session calls, the
SNA work area in the WORKING-STORAGE-SECTION, and special
considerations in writing a COBOL program using AIF.

' >

Section 4 describes the LU Type 6.2 conversation verbs that
are used in an Assembly language program, the verb parameter
block, and special considerations in writing an Assembly language
program using AIF.

Section 5 describes the LU Type 6.2 COBOL conversation verbs,
the SNA work area in the WORKING-STORAGE-SECTION, and special
considerations in writing a COBOL program using AIF.

Section 6 describes LU Type O restart logic and message
resynchronization.

Section 7 describes Communications Network Management, SNA
Operator Control (SOPR) services, and maintainability through
Data Base Augmented Real-Time Tracing System (DARTS) •

Appendix A presents a detailed description of the AIF product
architecture. Appendix B contains sample Assembly language
programs demonstrating both LU Type 0 and LU Type 6.2
conversations. Appendix C provides sample COBOL programs for
both LU Type session calls. Appenix D lists the LU Type O
session call return codes. Appendix E contains a listing of the
Session Call Control Block (SCCB) template with offsets.
Appendix F lists the LU Type 6.2 conversation return codes.
Appendix G includes a listing of the Verb Parameter Block (VPB)
template with offsets.

A glossary is provided to explain the meaning of terms used
within the text of this manual.

APPLICATION INTERFACE FACILITY

Applications on a DPS 6 executing under the MOD 400 Executive
or applications on a DPS 6 PLUS executing under the HVS 6 PLUS
Operating System can communicate with IBM hosts that use SNA
network products.

1-2 GRll-02

AIF supports the application-to-application communications
facilities available with CICS and IMS systems~ AIF provides the
communications support necessary to implement the following:

• User Assembly language and COBOL communication with CICS
or IMS via LU Type 0 macrocalls

• user Assembly language and COBOL advanced program to
program communication with CICS via LU Type 6.2
conversation verbs.

LU TYPE 0 SESSIONS

AIF supports an application-to-application interface over a
Session Type O. The Session Type O is an interprogram Logical
Unit (LU) defined within SNA. It is supported by both CICS and
IMS and is used for communications between these subsystems and
applications on several IBM processors.

The Session Type O can use any feature of SNA that is defined
by Session Type 0 FM profile 4 and TS profile 4. The SNA
features that these sessions can use are further defined by how
CICS treats a full function LU or how IMS treats a secondary LU
programmable.

The constraints on this type of session are imposed by CICS
or IMS, each of which has a slightly different set of rules
governing the exchange of information. Since there are slight
differences in implementing the macrocalls for CICS and IMS, it
is important for the application programmer to know with which
the application program is communicating and how the LU is
defined.

AIF transactions are allowed to perform any function through
CICS or IMS; e.g., inquiry, update, etc,, These IBM subsystems
specify the order in which SNA requests and responses can be sent
but impose no restrictions on what can be done over the session.

Host Programming Considerations

A Session Type 0 requires that both applications expect the
same format and protocol. These applications must be written as
two complementary halves of a transaction. They must agree on
application protocols, transaction processor protocols, and the
host GEN environment.

Although host considerations are described in detail in the
SNAG Host System Programmer's Guide (GB88), the AIF programmer
should be aware of the host terminal definition of the
application with which he will be communicating. These
definitions influence how the AIF session calls are issued and
which parameters must be supplied with them.

1-3 GRll-02

The host views the application (LU) as a terminal, and
defines it within tables. The following subsections list the
host terminal definitions with .which you will be concerned.
Check with the host system programmer to determine the definition
of the terminal macro(s) that the IBM system uses.

CICS TERMINAL CONTROL TABLE PARAMETERS

This subsection describes the Terminal Control Table (TCT)
parameters which are of interest to you if your application is to
communicate with a CICS transaction program.

BRACKET= YES

This parameter indicates that bracket protocol is to be
enforced for the LU/LU session. This parameter is
required for a full function terminal.

BUFFER=buf fer size

This parameter indicates the size of the receive buffer
for the LU. This is the maximum data length the DPS 6 or
DPS 6 PLUS application can receive. The buffer size
specified to CICS indicates how CICS does chaining.

RELREQ={YESINO,YESINO}

This parameter instructs CICS whether to release the LU if
it is requested by another application and whether
disconnect requests are to be honored. If LUs are to be
released to another VTAM application, the DPS 6 or DPS 6
PLUS application may have to re-issue the !NIT.

RUSIZE=ru size

This parameter specifies the maximum size of the request
unit {RU) that the LU can receive. The size of the RU
with relation to the buffer size determines how much
chaining is done and how many receives one must do when
not using the message completion option.

TRMSTAT=term state

This parameter indicates the type of activity that can
occur at this LU. The terminal state determines whether
the application can send to or receive from the host.

IMS TERMINAL DEFINITION PARAMETERS

The IMS terminal definitions control the protocol
conversation in the LU-LU session to an even greater extent than
the CICS terminal definitions. This subsection describes the
parameters that are of particular interest to you if your
application is to communicate with an IMS program.

1-4 GRll-02

COMPTn=(x[,y,z])

This parameter specifies the component types and the
processing associated with that node. A node can have up
to four components {n=l-4) and three subparameters for
each component. For the purpose of writing AIF
transaction programs, you only need to know the value of
the first of these subparameters (x). The value of x can
be either:

Programl - IMS does not assume program protection and
can send consecutive messages without waiting for
intervening input requests.

Program2 - IMS assumes component protection and does
not send consecutive messages without intervening
input requests.

OPTIONS=(termresp,acknowl,relreq)

This parameter specifies certain communications associated
with the LU. These options dictate some of the basic
communication design of the DPS 6 or DPS 6 PLUS
application.

1. Terminal Response Mode Options (termresp).

When an application operates in terminal response
mode, all operations between the terminal (or
application) and IMS stop when IMS' receives a
transaction and do not resume until IMS receives an
acknowledgment that the application received IMS's
reply.

This option can be defined as follows:

a. TRANRESP: The transaction being executed can
select terminal response mode.

b. NORESP: Terminal response mode is not used for
any transaction.

c. FORCRESP: Terminal response mode is forced for
all transactions.

2. Acknowledgment (acknowl)

This specifies the mode of acknowledgment between the
terminal (application) and IMS. This option can be
defined as follows:

a. ACK: This option indicates that transactions are
recoverable and must be acknowledged. If this
option is specified, the AIF application must
request definite response on all input messages.

1-5 GRll-02

b. OPTACK: This option indicates that only input
messages containing a Begin Bracket (BB)
indicator are acknowledged with an outbound
message containing an End Bracket (EB)
indicator. If this option is specified a request
by AIF for definite response is optional.

3. Release Request (relreq)

This parameter indicates whether IMS should release
an LU if requested by another VTAM subsystem. This
option can be defined as follows:

a. RELRQ: This option specifies that IMS must honor
requests from other VTAM subsystems and release
the LU.

b. NORELRQ: This option specifies that IMS not
release an LU when it is requested by another
subsystem.

Refer to the IBM manual IMS/VS Programming Guide for Remote
SNA Systems for further information about programming secondary
LU Type 0 sessions to connect to IMS applications.

LU TYPE 6.2 CONVERSATIONS

AIF supports an advanced program to program communication
interface over an LU Type 6.2 Conversation. The LU Type 6.2 is
an interprogram Logical Unit (LU) defined within SNA. It is
supported by CICS and is used for communications between
transaction programs and network resources.

The LU Type 6.2 can use any feature of SNA that is defined by
LU Type 6.2 FM Profile 19 and TS Profile 7. The SNA features
that these sessions can use are further defined by how CICS
treats an LU 6.2 and the extent to which it has been implemented
in AIF.

The SNA features that these sessions can use are constrained
only by the level of LU Type 6.2 functions that are incorporated
in the program products. AIF supports the basic conversation
implementation of LU Type 6.2. Applications must conform to the
rules for basic conversations. For more information on LU Type
6.2 programming considerations, refer to the appropriate IBM
manuals listed in the front of this book.

The AIF transactions are allowed to perform any service or
application function through CICS; e.g., inquiry, update, etc.
An LU Type 6.2 application expects the same format and protocol
on both sides of the conversation. These applications must be
written as two complementary halves of a transaction. They must
agree on application protocols, transaction protocols, and
conversation states.

1-6 GRll-02

Section2
PROGRAMMING

LU TYPE 0 SESSIONS
IN ASSEMBLY LANGUAGE

This section describes the Assembly language session calls
that are used to converse over a Session Type 0 with host
transaction programs. Topics include:

e Session call format

• Programming considerations

- Getting started
- Synchronous vs. Asynchronous Processing
- Creating a session call control block
- Checking the return code

• Individual session calls

- Format
- Descriptions
- Return codes

SESSION CALL FORMAT

The session calls used by AIF are macrocalls provided by the
DPS 6 or DPS 6 PLUS system. These se.ssion calls have a list of
arguments that can be specified by the programmer or accepted in
tneir existing form. If no arguments are specified, then all
that is provided is the monitor call. AIF session calls follow
the conventions for Assembly language as described in the ONE
PLUS Assembly Language (MAP) Reference (HE38) manual. The~­
session call can have an optional label if no label is used at
least one blank space must precede the session call.

2-1 GRll-02

User-selected items are known as arguments. These arguments
are positional within the session call macros. The order of
positional arguments indicates the variables to which data is
applied. Thus, the order of your arguments must be the same as
the order of the positional arguments within the session call
macro.

The following rules govern the use of positional arguments:

• Omitted arguments that precede an included argument must
be indicated by the presence of a delimiting comma for
each omission.

• One or more spaces must separate the macrocall name from
its arguments, with a comma between each argument. (The
horizontal tab character is equivalent to a space.)

• A semicolon at the end of a line indicates that the next
line is a continuation line.

In the following example, the first and third arguments have
been omitted; their positions have been held by delimiting
commas. Spaces separate the session call name from its
arguments.

$SINIT ,'AIFNODEl',,'AA',SYNC

The arguments for these session calls are found in the SCCB.
An SCCB must be provided for each session call. These fields can
be altered either during initialization or by including the
appropriate arguments in the session call itBelf.

At the completion of each session call, when control is
returned to the application, a return code is placed in register
$Rl. This return code indicates whether a session call has been
completed error free. The application should check this return
code after each session call to verify the return status of the
session call. Additional information, if desired, can be found
in the output control word, found at the offset SC OCT of the
SCCB.

When AIF is activated, it defines one or more pools of
logical units (LU) according to the configuration file for that
node. Each pool of LUs is reserved for a specific host CICS or
IMS system. AIF can either start a session to the host system at
initiation or it can wait for an application to request a
session. The time of session initiation is a configuration
option.

2-2 GRll-02

When an application requests to initiate a session with an
LU, AIF checks the availability of that LU and assigns it if it
is available. If the specified LU is unavailable, AIF checks
first for an available reserved LU, second for an available
preestablished LU, and then for any available LU to assign to the
session. AIF either returns the address of the LU with which the
session is started, or rejects the request if there is no LU
available.

An application gains access to a host-initiated session by
executing a $SACPT session call. Executing the accept session
call causes the application to be connected to a host-initiated
session and causes the LU to send a positive response to the
host, accepting the session.

PROGRAMMING CONSIDERATIONS

Many of the programs that use AIF session calls are written
in Assembly language. These applications may be reentrant and
may not require more than one occurrence of a given macrocall.

Special considerations that the programmer must bear in mind
are discussed in this section:

• Getting started
• Synchronous vs. Asynchronous processing
• Creating a session call control block
• Host-initiated sessions
• Checking the return code.

Getting Started

When using AIF session calls in an Assembly language program,
remember the folowing steps:

1. In order to use the session calls and utility macros
included with AIF, you must first make them available to
your program. When beginning your program, include the
following statement:

LIBM '>>LDD>MACROS>MAC USER'

2. Then issue the macrocalls $SSCCB and $SAIRC to define the
SCCB and return codes in memory.

3. You must also set aside a workspace with room for the
stack, the SCCB, and your send/receive buffer, as in the
following example:

2-3 GRll-02

* * WORK LOCATIONS: STACK, SCCB, & SEND/RECEIVE BUFFER
*
WKSP
MY STACK
CNTLWD
MYSCCB
BUFFER
BUFSZ
WKSPSZ

EQU
EQU
EQU
EQU
EQU
EQU
EQU

0
WK SP+ SO
MY STACK
CNTLWD+l
MYSCCB+SC SIZ
2000
BUFFER+BUF SZ

BEGINNING OF WORKSPACE
REGISTER STACK
FOR PROGRAM CONTROL
BEGINNING OF SCCB
SEND/RECEIVE BUFFER
BUFFER SIZE
WORKSPACE SIZE

Synchronous vs. Asynchronous Processing

AIF session calls can be processed either synchronously or
asynchronously.

SYNCHRONOUS PROCESSING

Synchronous processing implies that when the application
passes an instructidn to AIF for processing, it waits for the
application to complete that instruction before continuing.

In Figure 2-1, a $SINIT session call has been issued
synchronously. The application completes its segment of
processing and passes the request to AIF. AIF executes the
$SINIT completely and passes the return code to the application.
The application does not process other instructions while AIF is
executing the $SINIT session call.

SYNCHRONOUS PROCESSING

ISSUES
SESSION
CALL

APPLICATION -----­
PROGRAM

AIF

ACCEPTS THE
REQUEST

EXECUTES SESSION CALL

CONTINUES PROCESSING

(DON El

I
I
I

85-271

Figure 2-1. Synchronous Processing

ASYNCHRONOUS PROCESSING

Asynchronous processing implies that when the application
passes an instruction to AIF for processing, the application
continues to process other instructions while it waits for AIF to
complete that instruction.

2-4 GRll-02

In Figure 2-2, a $SINIT session call has been issued
asynchronously. The application completes its segment of
processing and passes the request to AIF. While AIF executes the
$SINIT session call, the application is processing other
instructions. In order for the application to find out that AIF
has finished executing the $SINIT session call, the application
must execute a $SWANY or a $STEST session call.

ASYNCHRONOUS PROCESSING

ISSUES
SESSION
CALL

~:;~~:~ON -----

ACCEPTS

SSWANV
I

I
OTHER PROCESSING I

I

I
I
I
I

THE REQUEST DONE

Alf

EXECUTES SESSION CALL

CONTINUES PROCESSING

85·272

Figure 2-2. Asynchronous Processing

Each time you issue an asynchronous order, you must check the
receive buff er before you can receive information. You can do
this by either the $STEST or the $SWANY session call. These two
session calls differ as follows:

1. The $ST·EST session call checks to see if there is
information in the queue to be received and immediately
reports back to the application. This call can be
executed any time you wish to check for an outstanding
order, and as often as you wish to check, because the
application regains control immediately after the test is
completed.

2. The $SWANY session call checks for information on the
queue and waits until there is information waiting before
it returns control to the application.

Session Call Control Block

Communication between the application program and AIF is
through the application-provided SCCB. Following a $SINIT or a
$SCACPT, the same SCCB is used for all subsequent session calls
until a particular session is terminated. If a program is to run
multiple sessions, you must provide a separate SCCB for each
session.

When the application provides parameters with a given
macrocall, the macrocode updates the appropriate SCCB fields
before executing an AIF monitor call. If any of the fields have
been changed, the new values are in the SCCB when you reexamine
it.

2-5 GRll-02

The first parameter of each macro is the location of the
SCCB, except in the case of $SWANY. If not specified as the
first parameter of the macro, this pointer must be in register
$B4. Allowable formats for this parameter and all address
pointers are the same as found in the "Addressing Parameters"
section of the System Programmer's Guide, Vol. 2.

Where a value rather than an address is provided in a
parameter, allowable formats are:

1. (*)$Bl(.$R)
2. LABEL
3. =$Rl
4. =literal
5. !LABEL

When you establish a session through a $SINIT or a $SACPT,
you must supply an SCCB. This SCCB is used for all session calls
for this session. The application can move the session call
parameters to the SCCB before executing the session call (see
example 1 below). The programmer can also provide the parameters
for the session call in the macro itself (see example 2 below) ..

The following examples show both methods of creating an SCCB
for the $SINIT session call. Which convention you choose to
follow depends upon the requirements of your program.

Example l:

The following example shows the parameters in the SCCB being
loaded before issuing the session call. Offsets to the SCCB
are provided in the displacement macro $SSCCB. (Refer to the
SCCB template in Appendix E for appropriate offsets.)

NODENM DC.
HLU NM DC
STD-NM DC

•
•
•
LDB
LDI
SDI

LDI
SDI

LDI

SDI

LDI

'AIFSOS
'CICS
I AB'

$B4, $B6.SCCB
NODENM
$B4.SC_NOD

NODENM+2
$B4.SC_NOD+2

HLU NM

$B4.SC_RLN

HLU NM+2

2-6

Load SCCB address to $B4
Get first 4 bytes of nodename
Store first 4 bytes of
nodename in SCCB
Get second 4 bytes of nodename
Store second 4 bytes of
nodename in SCCB
Get first 4 bytes of Remote LU
name
Store first bytes of Remote LU
name
Get second 4 bytes of Remote
LU name

GRll-02

SDI

LDR
STR
LBT

$B4.SC_RLN+2

$R2, STD NM
$R2.SC STD
$B4.SC=ICT,SCRTNS

$SIN IT

Example 2:

Store second byres of Remote
LU name
Get STD name
Store STD name in SCCB
Set bit for synchronous
execution

The following example shows the $SINIT session call with the
same parameters specified within the macrocall.

$SINIT , 1 AIF505', 'CICS', 'AB' ,SYNC

Host-Initiated Sessions

AIF supports host-initiated sessions~ that is, it accepts
unsolicited binds. In order to accept an unsolicited bind, an LU
must be reserved with the HOST INIT SESS parameter specified as Y
(YES) in the LU entry of the configuration file.

The program name, node name, STD name, and base level are
provided to the application program by AIF via the standard
operating system parameter list (refer to the System Programmer's
Guide, Vol. 2). When the application program begins execution,
it must issue a $SACPT session call as the first session call,
providing the STD name and the node name for the LU to be used.
The node name and the STD name provided with the $SACPT call must
be the same as the parameters passed by AIFe

After the $SACPT call is executed, the application is in
receive state. The $SACPT session call allows AIF access to a
host-initiated session. The application must execute a receive
to have access to the bind. AIF associates the first unsolicited
bind (host-initiated session request) to the first $SACPT session
call from the task group that AIF spawned.

An unsolicited bind can be for a program designated in the
AUTO ATTACH entry of the AIF configuration or it can be.any other
unsloicited bind sent from the host.

When AIF receives an unsolicited bind for a specific LU, AIF
checks the LU entry for an AUTO ATTACH program. If it finds one,
AIF spawns a group with the program name as the lead task, and
passes to the lead task the STD name, node name, and base level
used in the spawn group. If AIF does not find an AUTO ATTACH
program in the LU entry, it accepts the session and looks for the
program name in the first four bytes of the first record
received, then spawns a group based on the ATTACH PROGRAM entry.
If none is provided, default values are used to spawn the group.

2-7 GRll-02

The application can issue multiple $SACPTs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one session,
all LUs that can receive binds for that application must be
reserved LUs with HOST INIT SESS=Y. Each of these LUs must have
the same group id specified-in the LU entry in the configuration
file. Note, if multiple $SACPTs are used, multiple SCCB should
also be used.

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (e.g.,
ATTACH PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.
Refer-to SNA6 Network Configuration for further
information.

Checking the Return Code

After a session call is executed, AIF returns a return code
to the Session Call Control Block (SCCB} to indicate how the call
was completed. The application should examine this return code
at the completion of each session call to determine if the call
has been completed error free.

The return code has 16 bits and is placed in register $Rl by
AIF before control is returned to the application program. The
return code can also be found in SC RCD.

Bits 0 through 4 have special meaning and represent general
AIF return codes that could occur for any session call. These
bits should be examined individually, then "masked out" so that
the application can examine the remaining bits. If the bit is
on, then the return code indicated is true. The following masks
are provided in the $SAIRC macrocall for checking each of the
first five bits as follows.

Bit 0 RCABRT

The session has been terminated. An SOPR command has
been entered that caused the session to terminate, or the
session has been unbound by the host. The reason for
this termination can be found in the "abort reason" code
in the SCCB (SCCB.SC_ABT).

2-8 GRll-02

Bit 1 RC STOP

An SOPR STOP command has been received. If the session
is still active (bit 0 = O), then check the SC TIM field
in the SCCB to determine the time at which the-session
ends. During this time the application can continue to
process, but should normally terminate.

The time found in the TIME argument (SCCB.SC TIM) is the
wall clock time in standard 48-bit format, at which the
session terminates.

Bit 2 RCRINT

An interrupt has been received. The interrupt type is
found in SC INT in the SCCB.

There are three categories of interrupt:

1. Expedited or normal flow data flow control commands
2. Communications Network Management data
3. Control information passed to application by AIF.

If sense data is present, it is found in SCCB.SC ESD.

Bit 3 RC SC NL

The call has been cancelled; it is not processed. If the
application desires the order to be processed, the call
must be reexecuted.

Bit 4 RCSCMP

The call has been completed.

A return code can indicate more than one condition occurring
at the same time. For example, it can indicate both an interrupt
and a completed call, a session abort and a completed call, or no
session abort and_ a cancelled call.

The masks RCABRT, RCSTOP, RCRINT, RCSCNL, and RCSCMP are
provided for your convenience in checking bits O through 4.
After you have checked these bits, null them out and examine bits
5 through 15. If you choose to null these bits by using RCMASK,
which is provided in the software (RCMASK=07FF), use the
following statement:

AND $Rl,=RCMASK

Bits 5 through 15 contain the return code for a completed or
cancelled call. One way of doing this part of the return code is
to issue a "compare" instruction as follows:

CMR
BE

$Rl,=RMNOER
CONT 1

Checks for "No error" code

2-9 GRll-02

If the Return code contains a "no error" message, branch to
the next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, branch to another segment of the program, or shut down
completely.

If during asynchronous processing an error is detected
immediately (e.g., a parameter is incorrectly specified), the
return code provides the error and the call is cancelled.
However, if during asynchronous processing AIF issues the monitor
call before an error is detected, the return code returns with a
zero indicating no error has been detected. However, an error
could occur elsewhere {e4g., at the host) and AIF would not be
aware of it. In order to determine if an error occurs with the
session after AIF has performed all of its error detection, issue
either a $STEST or a $SWANY_for the return code.

Appendix F contains a complete list of return codes. These
labels and their hexadecimal values can be found in the macro:
$SAIRC (AIF Return Codes).

SESSION CALLS

Table 2-1 contains a list and description of the session
calls used by AIF in an Assembly language program. The format of
these session calls is detailed on the following pages along with
a discussion of the input arguments and an output description.

Table 2-1. AIF Session Calls

Session Call Description

$SACPT
$SCASR
$SGT AT
$SINIT
$SPOLL
$SRECV
$SRI
$SSEND

$SSI
$SSRSP
$STERM
$STEST
$SWANY
$SACEB
$SEBAC

Accept Session
Cancel Outstanding Asynchronous Request
Get Session Attributes
Initiate or Restart a Session
Test for LU associated with task group
Receive message in application's buffer
Read Interrupt
Request AIF to send a message or message
segment
Send Interrupt
Caller instructs AIF to send a response
Terminate session
Test conditions
Wait on any event
Converts ASCII to EBCDIC
Converts EBCDIC to ASCII

2-10 GRll-02

$SACPT

$SACPT - Accept Session Call

The $SACPT session call causes AIF to connect the local
application to a host initiated session.

FORMAT:

[label] $SACPT

ARGUMENT:

sccb pointer

[sccb pointer]
[, node name 1
[,std name]

Pl: $84
P2: SC NOD
P3: SC-STD

This parameter contains a pointer to the address of the
SCCB. If this parameter is missing, the address is
assumed to be contained in register $B4.

node name (SC_NOD)

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

std name (SC_STD)

The configured Session Type Descriptor (STD) which lists
the attributes of the session to be established. This
field consists of two alphanumeric characters.

DESCRIPTION:
.

The $SACPT session call causes AIF to connect the local
application to a host-initiated session if there is one
available. If no session is available, AIF returns and
continues processing. The LU to which this bind refers
most be a reserved LU.

If your application is part of a host-initiated session,
the $SACPT session call should be the first call
executed. When the $SACPT call is completed, the session
is in receive state.

2-11 GRll-02

$SACPT

NOTE

This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label DescriJ2tion

0000 RMNOER No error
0019 RMACTO ACCEPT timed out
0040 RMINOD Invalid node name
0099 RMI STD Invalid STD name
009A RM IL UT Invalid LU type in STD
009B RMNOAT No LU attached

session id (SC_SID)

This two-word field is supplied by AIF after it accepts
the session request. The first word is the session group
name, which is assigned by AIF to each of the sessions
running in this session group. This value is used by AIF
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

maximum ru size (SC_MRU)

This field shows the RU size that is returned.

2-12 GRll-02

$SCASR

$SCASR - Cancel Asynchronous Request

The $SCASR session call causes AIF to cancel an outstanding
asynchronous request, if possible.

FORMAT:

[label]

ARGUMENT:

sccb pointer

$SCASR [sccb pointer] Pl: $B4

This parameter contains a pointer to the address of the
SCCB. If this parameter is missing, the address is
assumed to be contained in register $B4.

DESCRIPTION:

The $SCASR session call cancels an asynchronous request,
if there is one outstanding. If the previously executed
asynchronous request were completed when the $SCASR
session call was executed, then the return code from the
$SCASR session call is the return code for the completed
asynchronous session call. If the previously executed
asynchronous session call was not completed when the
$SCASR session call was executed and AIF succeeded in
cancelling the request, the return code from the $SCASR
session call indicates that the session call has been
cancelled.

If there is no asynchronous session call outstanding when
the $SCASR session call is executed, then the return code
is RCNOUT (no· outstanding session call).

NOTE

The $SCASR session call cannot be used to cancel a
$SINIT session call, even if it has been executed
asynchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then °masked out 0 so that the application can
examine bits 5 through 15.

2-13 GRll-02

$SCASR

In addition to the general return codes, the following values
are possible:

Value Label Description

0017 RMNOUT No outstanding asynchronous call

NOTE

If the previously executed asynchronous call were
already completed, the return code is for that
call.

Example:

In the following example, the application requests that AIF
cancel an outstanding asynchronous request. AIF assumes that
register $B4 is pointing to the SCCB of the session call to
be cancelled.

END IT $SCASR

2-14 GRll-02

$SGTAT

$SGTAT - Get A Session Attribute

The $SGTAT session call provides the application with attri­
bute information for the session specified in the SCCB pointer.

FORMAT:

[label] $SGTAT [sccb pointer]
[,attribute buffer]
[,attribute length]
[,{RIL}]
[,type]

ARGUMENTS:

sccb pointer

Pl: $B4
P2: SC BUF
P3: SC-DLG
P4: SC-ICT.SCRHBI
PS: SC-SIN

This parameter contains the address of the SCCB of the
session for which you are requesting attributes. If not
declared, the address is assumed to be in register $B4.

attribute buffer (SC_BUF)

A pointer to the application's attribute buffer. This
buffer will receive the data returned by this call.

attribute buffer length (SC_DLG)

The length of the receive buffer in bytes. The maximum
allowable length of this buffer is 32,741-bytes.

{R(L} (SC_ICT.SCRHBI)

Specifies whether data starts on the left (L) or right
(R) byte of the buffer address word.

type (SC_SIN)

Specifies the type of attribute you are requesting. The
attribute information available is BINDIM, which has a
value of l. You can specify either the attribute type or
its value.

DESCRIPTION:

The $SGTAT session call provides the application with attri­
bute information , one attribute at a time, for the session
whose SCCB pointer is specified when issuing the call. If
you plan to ask for the bind image, the STD entry in the AIF
configuration must include the parameter SAVE BIND=Y.

2-15 GRll-02

$SGTAT

Special notice should be given to the situation where an
interrupt is received either prior to or during the execution
of the $SGTAT session call.

1. When an interrupt is received before the execution of the
$SGTAT, the application is given the data that was in the
receive queue and informed of the interrupt.

2. If an interrupt is received during the execution of a
$SGTAT, the order is not completed, control is returned
to the application, and the return code indicates that an
interrupt has been received.

NOTE

This call is always made synchronously.

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0010
0013
0015
0018
0032

Label

RMNOER
RM IMPS
RMRB2S
RMI INT
P..MNBDS
RMDTCL

Description

No error
Improper State
Receive buffer too small
Invalid attribute type
No BIND IMAGE saved for $SGTAT
Send/receive rejected; data traffic
cleared or inactive.

Received Interrupt Type (SC_INT)

.•

This field contains the interrupt type if one is received
during the execution of this session call.

2-16 GRll-02

$SGTAT

Error Code or Sense Data Received (SC_ESD)

This field can contain either detailed information about
an error condition or sense data from a remote LU, if a
negative response has been received.

Received Buffer Data Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

2-17 GRll-02

$SINIT

$SINIT - Establish A Session

The $SINIT session call is used to establish or restart a
session. In issuing the session call, you must indicate for
which purpose it is to be executed, by specifying RESTART or
NO RESTART. If you are using $SINIT session call to establish a
session, you must use the following format:

FORMAT:

[label] $SINIT [sccb pointer]
[,node name]
[,remote lu name]
[,std name]

ARGUMENTS;

sccb pointer

[, { SYNC I ASYNC }]
[,NO_RESTART]

Pl: $B4
P2: SC NOD
P3: SC-RLN
P4: SC-STD
PS: SC-ICT.SCRTNS
P6: SC-ICT.SCRSTR

This parameter contains a pointer to the address of the
SCCB to be used for this session. If not declared, the
address is assumed to be in register $B4.

node name {SC_NOD)

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

remote lu name (SC_RLN)

The name by which the remote LU is known to this
application. This field contains eight alphanumeric
characters. If you are loading the SCCB yourself and
your remote lu name has fewer than eight characters, this
field must be left-justified and space-filled.

std name (SC_STD)

The configured Session Type Descriptor (STD) which lists
the attributes of the session to be established. This
field consists of two alphanumeric characters.

2-18 GRll-02

$SINIT

SYNCIASYNC (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

NO_RESTART (SC_ITC.SCRSTR)

NO RESTART is used to indicate that this is a newly
established session1 including NO RESTART causes this bit
to be reset.

DESCRIPTION:

The initiate session call requests that AIF establish a
session between an LU at the DPS 6 or DPS 6 PLUS and an LU at
the host, and that the local LU be assigned exclusively to
the application. In the event that AIF assigns a
preestablished session to the application, the application
should store the send/receive sequence numbers in case a
RESTART of this session ever becomes necessary. These
sequence numbers are not reset to zero after each use. To
the host, this appears as one session. On the DPS 6 or DPS 6
PLUS side, the session is a serially reusable resource.
After the $SINIT is executed, the session enters send state.

NOTE

A $SINIT session call, executed asynchronously,
cannot be cancelled by using the $SCASR session
call macro.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then •masked out• so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

2-19 GRll-02

$SINIT

Value

0000
0003
0004
0040
0096
0097
0098

0099
009A

Label

RMNOER
RMRNEG
RMNBIF
RMI NOD
RMNNAC
RMNLAC
RMNOAV

RMI STD
RMILUT

Description

No error
-RSP returned by host
Bind negotiation £ailed
Invalid node name
Node not yet active
Node active but no active LUs yet
LUs active, but none available for this
session
Invalid STD name
Invalid LU type in STD

If the $SINIT session call is successful (RMNOER), SC SQN and
SC RSQ have the send/receive sequence numbers for the­
session.

session id (SC_SID)

This two-word field is supplied by AIF after it accepts
the session request. The first word is the session group
name, which is assigned by AIF to each of the sessions
running in this session group. This value is used by AIF
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

maximum ru size (SC_MRU)

This field shows the RU size that is returned.

Example:

The following session call requests to establish a
synchronous session between the node named AIF50l and the
remote LO named CICS. AIF assumes that the address of the
SCCB is in register $B4.

$SINIT ,'AIFSOl','CICS','AA',SYNC,NO_RESTART

2-20 GRll-02

$SINIT

$SINIT - Restart Session

If you are using $SINIT to restart a session, you must
include the following parameters:

[label] $SINIT [sccb pointer] Pl: $B4
[,{SYNCIASYNC}] PS: SC ICT.SCRTNS
[,RESTART] P6: SC-ICT.SCRSTR

sccb pointer

[,session id P7: SC-SID
,msg resync send sequence PS: SC-MRS
,msg resync rec sequence] P9: SC-MRR

This parameter contains a pointer to the address of the
SCCB to be used for this session. If not declared, the
address is assumed to be in register $B4.

{SYNCIASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

RESTART (SC_ITC.SCRSTR)

RESTART is indicated only when the user wishes to restart
an abnormally terminated session1 including·RESTART
causes this bit to be set.

session id (SC_SID)

This two-word field is supplied by AIF after each $SINIT
session call if RESTART is specified. The first word is
the session group name, which is assigned by AIF to each
of the sessions running in this session group. This
value is used by AIF after the first $SINIT session call
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

message resynchronization send sequence number (SC_MRS)

If RESTART is specified, AIF places the sequence number
of the last sent message that the application program has
sent in this field. This number should be stored after
each send, so that it can be retrieved if a RESTART is
necessary.

2-21 GRll-02

$SINIT

message resynchronization receive sequence number (SC_MRR)

If RESTART is specified, AIF places the sequence number
of the last received message in this field. This number
should be stored after each receive, so that it can be
retrieved if a RESTART is necessary.

DESCRIPTION:

The $SINIT session call is used to restart a session in the
event that it has been abnormally terminated. Restart logic
and restart rules are described in detail in Section 6.

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0003
0004
0020
0040
0096
0097
0098

0099
009A

Label

RMNOER
RMRNEG
RMNBIF
RMRSRF
RMI NOD
RMNNAC
RMNLAC
RMNOAV

RMI STD
RMILUT

Description

No error
-RSP returned by host
Bind negotiation failed
Restart not possible
Invalid node name
Node not yet active
Node active, but no active LUs yet
LUs active, but none available for this
session
Invalid STD name
Invalid LU type in STD

If the $SINIT session call is successful (RMNOER), SC SON and
SC_RSQ have the send/receive sequence numbers for the­
session.

2-22 GRll-02

$SINIT

The following AIF sense data are associated with RMRSRF:

Value

0001
0002
0004

Label

SDOOOl
SD0002
SD0004

Description

Restart timed out or LU released by SOPR
Session not restartable type
Restart mismatch; synchronous point
records do not match

If RESTART is successful, the application should examine the
output control word (SCCB.SC OCT) for the following
indicators. If the bit is on, the condition described is
true.

SCRSTS: STSN received for message resynchronization;
application should store current value of send and
receive sequence numbers

SCL6RX: DPS 6 or DPS 6 PLUS application must retransmit last
full message

SCHORX: Host application must retransmit last full message:
receive required of DPS 6 or DPS 6 PLUS application.

Example:

The following session call requests AIF to restart the above
session after it has been abnormally terminated. AIF assumes
that the address of the SCCB is in $B4 and uses the
send/receive sequence numbers from the SCCB.

$SINIT ,,r,,RESTART

2-23 GRll-02

$SPOLL

$SPOLL - Poll Session

The $SPOLL session call checks to see if any LU associated
with the application program's task group has been attached by
the remote program.

FORMAT:

[label] $SPOLL [sccb pointer]
[, node name]
[,std name]

ARGUMENTS:

sccb pointer

Pl: $B4
P2: SC NOD
P3: SC-STD

This parameter contains the address of the SCCB to be
used for this session. The sccb pointer used for a
$SPOLL must be unique and should not be currently used by
an active session. If not declared, the address is
assumed to be in register $B4.

node name (SC_NOD)

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

std name (SC_STD)

The configured Session Type Descriptor (STD) which lists
the attributes of the session to be established. This
field consists of two alphanumeric characters.

DESCRIPTION:

The $SPOLL session call causes AIF to test to see if any LU
associated with the application programmer's task group has
been attached (bound) by the remote program. The $SPOLL
session call is similar to the $SACPT session call, except
that the $SPOLL does not cause a connection between AIF and
the application program if a bound LU is found.

NOTE

This call is always made synchronously.

2-24 GRll-02

$SPOLL

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Descri:Etion

0005 RMLUAT Indicates that there is an LU being
bound

0040 RMI NOD Invalid node name
0099 RMI STD Invalid STD name
009B RMNOAT No LU attached for $SPOLL

2-25 GRll-02

$SRECV

$SRECV - Receive Message

The $SRECV session call causes AIF to deliver to the
application's buffer a message or message segment from the
session partner.

FORMAT:

[label] $SRECV [sccb pointer]
[,receive data buffer]
[,rec•v buffer length]
[,{RIL}J

ARGUMENTS:

sccb pointer

[, {SYNC I ASYNC } 1
[,{MSG IM_SEG} 1

Pl: $B4
P2: SC BUF
P3: SC-DLG
P4: SC-ICT.SCRHBI
PS: SC-ICT.SCRTNS
P6: sc:ICT.SCRMSG

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

receive data buffer (SC_BUF)

A pointer to the appl ica ti on' s rece·i ve buf.f er.

receive data buffer length (SC_DLG)

The length of the receive buffer in bytes. The maximum
allowable length of this buffer is 32,767 bytes.

{RIL} (SC_ICT.SCRHBI)

Specifies whether data starts on the left (L) or right
(R) byte of the buffer address word.

{SYNCIASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether the execution of this
call is synchronous or asynchronous.

{MSGIM_SEG} (SC_ICT.SCRMSG)

Specifying MSG indicates that a complete message (whole
chain of request units) is to be delivered to the
application's buffer. If M SEG is specified, single
request units are delivered-to the application's buffer.
When the last message segment is delivered, AIF sets the
end of message bit in the output control word (SCREOM).

2-26 GRll-02

$SRECV

DESCRIPTION:

The $SRECV session call causes AIF to deliver a message or
message segment (request unit) to the application's buffer
from the session partner.

If the user specifies MSG, then AIF assembles the chain
before delivery. If the user's buffer is not large enough,
the message is not delivered; the actual length of the
message or message segment is returned to the application.
The application can either re-execute the receive with an
adequate buffer, or re-execute the receive specifying M SEG.

NOTE

If a RESTART of this session is a possibility,
then the receive sequence number should be stored
by the application executing this $SRECV session
call.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent geaeral AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0010
0013
0032

Label

RMNOER
RMIMPS
RMRB2S
RMDTCL

Description

No error
Improper State
Receive buffer too small
Send/receive rejected; data traffic
cleared or inactive

Received Interrupt Type (SC_INT)

This field contains the interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)

This field can contain either detailed information about
an error condition or sense data from a remote LU, if a
negative response has been received.

2-27 GRll-02

$SRECV

Receive Data Buffer Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

Output control word (SC_OCT)

This field contains certain indicators that are of
interest after a successful $SRECV session call. When
one or more of these bits is set, the condition described
is true.

Value Label DescriEtion

8000 SCRWRP Reply requested (CD)
4000 SCRRQD Definite response required (RQD)
2000 SCRLST LAST message received (EB)
1000 SCRFMH Function management header (FMH)
0200 SCREOM End of message (EC)
0400 SC RB OM Beginning of message (BC)

Special notice should be given to the situation where an
interrupt was received prior to or during the execution of a
$SRECV session call. Two situations are possible:

1. An interrupt was received before the execution of the
$SRECV session call. In this case, the application is
given the data if it was in the receive queue and the
application is also informed of the interrupt. The
return code is either RCRINT+RCSCNL (X'3000') or
RCRINT+RCSCMP (X'2800'), depending on whether or not
there was data in the receive queue.

2. An interrupt is received during the execution of a $SRECV
session call. In this case, the order is not completed
and return is made to the application with a return code
RCRINT+RCSCNL (X'3000').

Example:

The following example causes AIF to deliver an assembled
asynchronous message to the application's buffer, which is
256 bytes long, left-byte aligned. The values for parameters
1 and 2 remain as they were prior to issuing this session
call.

$SRECV ,,=256,L,ASYNC,MSG

2-28 GRll-02

$SRI

$SRI - Read Interrupt

The $SRI session call reads interrupt information from the
host or control information from the AIF LU when there is no
other AIF session call outstanding.

FORMAT:

[label] $SRI [sccb pointer]

ARGUMENT:

sccb pointer

Pl: $B4

This parameter contains the address of the SCCB to be
used for this session. If not declared, it is assumed to
be in register $B4.

DESCRIPTION:

The $SRI session call enables the application to read
interrupt information from the host or control information
from AIF when there is no other AIF session call outstanding.

If either of the following situations occurs, the condition
is reported to the application, the SCCB is updated the same
way as for the $STEST or $SWANY session call and a return is
made to the application.

As with any asynchronous call, the application must execute a
$SWANY or $STEST session call to determine when the $SRI
session call is complete and regain control.

1. When an interrupt is received, the Received Interrupt
Type and the Error Code Or Sense Data Received fields in
the SCCB contains the appropriate information.

2. If data has been received for which there is no
outstanding order, the user must issue a $SRECV session
call to gain access to this data. The length of the
received data is in SC ADL.

NOTE

The $SRI session call is always made asynchronously.

2-29 GRll-02

$SRI

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0002 RMDRNR Data received but no read
0010 RMI MPS Improper state
0032 RMDTCL Send/receive reject; data traffic

cleared/inactive

Received Interrupt Type

This field contains the interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received

This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Example:

This session call allows the application to read interrupt
information from the host when there is no other session call
outstanding. This example assumes that register $B4 has
previously been loaded with the address of the SCCB.

RDINT $SRI

2-30 GRll-02

$SSEND

$SSEND - Send Message

The $SSEND session call sends a message (chain) or message
segment (RU) to a session partner.

FORMAT:

[label]

ARGUMENTS:

sccb pointer

$SSEND [sccb pointer 1
[,send data buffer]
[,send buffer length]
[,{RIL}]
[,{SYNC IASYNC}]
[,{REPLYIRLCLRI

LAST}]
[I {MNTCMP IMCMP} 1
[,{FMHINOFMH
[,{ROD IROE} 1

Pl: $B4
P2: SC BUF
P3: SC-DLG
P4: SC-ICT.SCRHBI
PS: SC-ICT.SCRTNS
P6: SC-ICT.SCSWRP

: SC-ICT.SCSLST
P7: SC-ICT.SCSMNC
PS: SC-ICT.SCSFMH
P9: sc:IcT.SCSROD

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

send data buffer (SC_BUF)

A pointer to the application's data buffer.

send data buffer length SC_DLG)

The length of the data in bytes. The maximum buffer size
is 32,767 bytes.

{RIL} (SC_ICT.SCRHBI)

This argument specifies whether data starts on the left
or right byte of the buffer address word. The user
specifies R(L.

{SYNC IASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of the call is
synchronous or asynchronous.

2-31 GRll-02

$SSEND

{REPLYIRLCLR} (SC ICT.SCSWRP)
LAST (SC_ICT.SCSLST)

REPLY indicates to the application to send with reply
requested (set change direction indicator in request
header). This parameter is meaningful only when you are
sending the last message segment or a chain.

The LAST parameter causes AIF to flag the last message
(set end bracket indicator in request header}. This
parameter is meaningful only at the beginning of a
message (chain). This option is only valid with IMS
applications.

RLCLR clears both the REPLY and the LAST bits in the
input control word.

{MNTCMPIMCMP} (SC_ICT.SCSMNC)

MNTCMP indicates that the message chain is not complete.
MCMP resets this indicator in the input control word.

{FMHINOFMH} (SC_ICT.SCSFMH)

This parameter bit indicates that data is to be sent with
Function Management Header in Request/Response Unit.

{RODIRQE} (SC_ICT.SCSRQD)

ROD sends a messaage and requests a definite response.
ROE sends a message and requests an exception response.

DESCRIPTION:

The $SSEND session call instructs the sending of a message
(chain) or message segment (RU) to the session partner.
Special notice should be given to the situation where the
application is executing a $SSEND session call but an
interrupt is received before or during the execution of the
session call.

When you are sending an entire message (chain), use the MCMP
parameter. When sending message segments, use MCTCMP, except
for the last segment, with which you use MCMP.

If an interrupt has already been received when the $SSEND
session call is executed, the application is informed of the
interrupt. If an interrupt is received during the execution
of the $SSEND session call, the $SSEND session call

2-32 GRll-02

$SSEND

completes, and when the application executes the $SWANY or $STEST
session call, return is made to the application. The return code
indicates the interrupt received and the result of the $SSEND
session call.

NOTE

If RESTART of this session is a possibility, then
the send sequence number and the entire message
must be saved by the application executing this
$SSEND session call.

RETURN CODES

The application should check the return code after each
execution of a session call. Bits O through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15. In addition to the general return
codes, the following values are possible:

Value Label

0000 RMNOER
0003 RMRNEG

0010 Rf.UMPS
0012 RMIRHI

0032 RMDTCL

The following AIF

value Label

0828 SD0828

4004 SD4004
4040 SD4040

Description

No error
-RSP returned by host: application
should examine sense data
Improper State
Invalid input control indicators;
application should examine sense data
Send/receive rejected; data traffic
cleared or inactive

sense data are associated with RMIRHI:

DescriEtion

Reply not possible, session partner
quiesced
LAST not allowed for this session
REPLY or LAST required

Received Interrupt Type

This field contains the interrupt type if one is received
for the application during the execution of this session
call.

2-33 GRll-02

$SSEND

Error Code or Sense Data Received

This field can contain detailed information about an
error condition or sense data from a remote LU.

Example:

The following session call sends a whole message of 256 bytes
with left byte alignment with FM header. This $SSEND session
call is the first and only $SSEND session call for this
message. This $SSEND session call is executed asynchronously
and requests a definite response.

$SSEND ,,256,L,ASYNC,RLCLR,MCMP,FMH,RQD

2-34 GRll-02

$SSI

$SSI - Send Interrupt

The $SSI session call is used to send Data Flow Control
commands to the session partner or to pass control information to
the System service Control Point or to AIF.

FORMAT:

[label] $SSI

ARGUMENTS:

sccb pointer

[sccb pointer]
[,send data buffer]
[,send buffer length]
[,{RIL}]
[,type]
[,{REPLY

LAST}]
[,sense data]

Pl: $B4
P2: SC BUF
P3: SC-DLG
P4: SC-ICT.SCRHBI
PS: SC-SIN
P6: SC-ICT.SCSWRP

SC-ICT.SCSLST
P7: SC-SSD

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

send data buffer (SC_BUF)

A pointer to the application's send data buffer. This
parameter is required only if you are sending CNM data.

send data buffer length (SC_DLG)

The length in bytes of the send data in the buffer. The
maximum allowable size is the MAXIMUM RU SIZE which has
been configured minus three. This parameter is required
only if you are sending CNM data.

{RIL} (SC_ICT.SCRHBT)

This argument specifies whether data starts on the left
(L) or right (R) byte of the buffer address word. This
parameter is required only if you are sending CNM data.

type (SC SIN)

This field contains the interrupt type for this send.
Refer to the $SCCB template (Appendix E) for possible
values for this field.

2-35 GRll-02

$SSI

REPLY (SC ICT.SCSWRP)
LAST (SC_ICT.SCSLST)

If the application specifies LAST, the end bracket
indicator is set.

If the application specifies REPLY, the change direction
indicator is set.

sense data (SC_SSD)

This field contains the sense data if the specific
interrupt type calls for it. If the application places
the sense data in registers $R6 and $R7, then this
parameter is specified as register $R7 or =$R7. If the
literal sense data value is included for this parameter,
then it must be in a form acceptable as the operand of an
LDI instruction, such as, =Zi08240000'.

DESCRIPTION:

The $SSI session call is used to send the following three
types of information:

1. Send data flow control commands to the session partner

2. Pass control information to AIF (e.g., enable/disable
restart) •

3. Pass statistical information to SSCP.

The format of the buffers that you create to send CNM alerts
and maintenance statistics are detailed in Section 6.

NOTE

The $SSI session call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits O through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

2-36 GRll-02

$SSI

In addition to the general return codes, the following values
are possible:

The

Value

0000
0003

0010
0012

0015
0016
0032

Label

RMNOER
RMRNEG

RMIMPS
RMI RBI

RMI INT
RMI COD
RMDTCL

following sense

Value Label

0828 SD0828

4004 SD4004
4040 SD4040

Description

No error
-RSP returned by host; application
should examine sense data
Improper State
Invalid input control indicators;
application should examine sense data.
Invalid Interrupt Type
Invalid status word or user code
Send/receive rejected; data traffic
cleared or inactive

data are associated with RMIRHI:

DescriEtion

Reply not possible, session partner
quiesced
LAST not allowed for this session
REPLY or LAST required

Received Interrupt Type (SC_INT)

This field contains an interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)

This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Example:

The following session call sends a data flow control command,
LUSTAT, with change direction indicator and the sense data
0824 to the session partner. (LUSTAT is a label whose value
is found in the SCCB.)

SNDINT $SSI ,,,,=LUSTAT,REPLY,=Z'08240000'

2-37 GRll-02

$SSRSP

$SSRSP - Send Response

The $SSRSP session call requests that AIF send a response to
a previous message which requires a response.

FORMAT:

[label] $SSRSP [sccb pointer]
[,{SYNC IASYNC}]
[, {PRSP

NRSP
WAIT FOR RTRINO RTR}]

Pl: $B4
P2: SC ICT.SCRTNS
P3: SC-ICT.SCSRSP

: sc:IcT.SCSNEG

[,senseT - - P4: SC SSD·

ARGUMENTS:

sccb pointer

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

{SYNCIASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

NRSP (SC ICT.SCSNEG)
PRSP (sc:IcT.SCSRSP)

This argument indicates whether to send a positive
response or a negative response.

If a negative response is indicated (NRSP), the LU sends
a negative response accompanied by whatever sense data is
found in the SCCB. If the user wishes no sense data to
be sent, he must provide a sense data of nulls.

{WAIT_FOR_RTRINO_RTR}

If the data flow control command BID is rejected by the
application program, this parameter indicates whether the
session partner should wait for the Ready to Receive
(RTR) or if none is to be sent •.

If WAIT FOR RTR is indicated, AIF sends a negative
response with sense data Z'0814'; if NO RTR is indicated,
AIF sends a negative response with sense data Z'0813'.

2-38 GRll-02

$SSRSP

sense (SC_SSD)

This four-byte field provides sense data if NRSP is
specified. If no sense data is to be sent, this field
should be set to nulls by the application.

DESCRIPTION:

The $SSRSP session call sends either a negative or a positive
response to a previous message on behalf of the application.
If the response is negative, the application also has the
option of sending sense data.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits O through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then 8 masked outn so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0010
0012

0032

Label

RMNOER
RM IMPS
RMI RH I

RMDTCL

Description

No error
Improper State
Invalid input control indicators1
application should examine sense data
Send/receive rejected; data traffic
cleared

The following AIF sense data are associated with RMIRHI:

value Label Description

4041 SD4041 Response type improperly indicated

Example:

The following session call sends a negative response on
behalf of the application and sets the sense data to nulls.

$SSRSP ,,NRSP,=0000

2-39 GRll-02

$STEIL"'\f

$STERM - Terminate Session

The $STERM session call terminates the AIF session.

FORMAT:

[label] $STERM Pl: $B4 [sccb pointer}
[,{NORM IABNORM}] P2: SC ICT.SCATRM

ARGUMENTS:

sccb pointer

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

{NORMIABNORM} (SC_ICT.SCATRM)

NORM or ABNORM indicates to the host the reasons for
which this session is being terminated

DESCRIPTION
'

The $STERM session· call terminates the AIF session.
Termination can be either normal or abnormal. Whether it is
normal or abnormal is indicated by a parameter within the
$STERM session call.

• If the $STERM indicates normal termination, an orderly
termination message is sent to the session partner's LU.

• If the $STERM indicates abnormal termination, the
following events occur:

- The AIF LU terminates the session.

- AIF sends an abnormal termination message to inform the
host LU.

After the session is terminated, the LU task is again
available for other users.

Abnormal termination can be issued at any time; the last
session call is cancelled if it is not completed.

NOTE

The $STERM session call is always made synchronously.

2-40 GRll-02

$STERM

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

No error 0000
0010

RMNOER
RMI MPS Improper State (only applies to normal

termination)

The following sense data are associated with RMIMPS:

Value Label Descri:etion

2000 SD200D Response required
2040 SD2040 Normal termination rejected; data on

receive queue
2041 SD2041 Transaction not completed yet

Received Interrupt Type

This field contains the interrupt type, if one is
received during the execution of a normal termination.

Error Code or Sense Data Received

This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Example:

The following session call causes the AIF session to
terminate normally.

DONE $STERM ,NORM

2-41 GRll-02

$STEST

$STEST - Test for Events

The $STEsT·session call tests conditions for the session
whose SCCB is pointed to by register $B4.

FORMAT:

[label]

ARGUMENT:

sccb pointer

$STEST [sccb pointer] Pl: $B4

This parameter contains the address of the SCCB to be
used for this session. If not declared, this address is
assumed to be in register $B4.

DESCRIPTION:

This session call tests conditions for the session whose SCCB
is pointed to by register $B4. Executing this session call
causes AIF to immediately report to the application one of
the following conditions in register $Rl and SCCB:SC RCD:

1. No event
2. Interrupt received
3. Asynchronous order completed or cancelled
4. Permission to send after a send was rejected due to data

traffic inactive or pacing
5. Data has been received for which there is no outstanding

order.

Conditions 2 and 3 can coexist.

If an interrupt was received, the Received Interrupt Type and
the Error Code Or Sense Data Received fields in the SCCB
contain information pertaining to the type of interrupt.

If an asynchronous order were completed or cancelled, then
AIF delivers the return code of the completed order
immediately and the application must examine all pertinent
fields in the SCCB.

If data has been received for which there is no outstanding
order, the user must issue a $SRECV session call to gain
access to this data. Nothing is delivered to the user as a
result of the $STEST session call, but the length of the
received data is found in the SC ADL of the secs.

2-42 GRll-02

NOTE

The $STEST session call can be executed while an
asynchronous call is outstanding. This session call
is always made synchronously. If there were an
asynchronous order outstanding, the condition is
tested, reported, and the order remains outstand­
ing. Once the test determines that the order has
been completed, the call is no longer outstanding.

RETURN CODES:

ST EST

The application should check the return code after each
execution of a session call. Bits O through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0001
0002

Label

RMNOEV
RMPTSN
RMDRNR

Description

No Event
Permission to send
Data received but no read

Received I_nterrupt Type (SC_INT)

This field contains the interrupt type, if there is one
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)

This field contains either detailed information about an
error condition or sense data if received from a remote
LO.

Receive Data Buffer Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

Example:

This session call tests the status of the session indicated
by the SCCB to which register $B4 is pointing.

CHECK $STEST

2-43 GRll-02

$SWANY

$SWANY - Wait on Events

The $SWANY session call causes AIF to issue a system "wait
any" on behalf of the application. The application remains
dormant until one of the requests is complete.

FORMAT:

[label] $SWANY

ARGUMENT:

This session call has no arguments.

DESCRIPTION:

The $SWANY session call causes execution of the application
program to be suspended until any asynchronous request
terminates. Asynchronous requests other than AIF requests
also cause control to return to the $SWANY session call
executor providing that the P-bit in the request block was
set by the executor prior to the execution of the $SWANY
macrocall.

Unless you have an outstanding call, you should not issue a
$SWANY session call. If you do issue a $SWANY session call
with no outstanding asynchronous call, AIF returns an RCNOUT
return code to indicate that there are no orders outstanding.

If an application had more than one session established, with
outstanding asynchronous orders on multiple sessions,
executing a $SWANY session call returns control to the
application with register $B4 containing the SCCB address of
the session whose request has completed.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits O through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the $SWANY session
call can return return codes according to the following
conventions:

2-44 GRll-02

$SWANY

1. If, after a $SWANY session call is executed, register
$B4 contains the address of the SCCB, then register
$Rl contains the AIF session call return code.

2. If, after a $SWANY session call is executed, register
$B4 contains the address of the terminated request
block, then register $Rl contains the completion
status for that request block.

Upon return, registers $Rl and $B4 contain the following
information:

AIF Call Complete Other Asynchronous Call Complete

$B4 ADDRESS OF SCCB ADDRESS OF TERMINATED REQUEST
BLOCK

$Rl AIF CALL
RETURN CODE

POSTED COMPLETION STATUS OF
COMPLETED REQUEST BLOCK

NOTE

This session call is always made synchronously.
When this call is executed, AIF issues a "wait
any" on behalf of the application. The
application program remains dormant until one of
the requests is complete. If an application does
any asynchronous AIF processing, the application
should never execute a $WAITA. This command
causes unspecified results@

Example:

This session call causes the application program to remain
dormant until an asynchronous request terminates.

WAIT $SWANY

2-45 GRll-02

$SACEB

$SACEB - ASCII-To-EBCDIC Conversion Routine

Converts data from ASCII to EBCDIC.

FORMAT:

label

ARGUMENT:

$SACEB

There are no arguments associated with this macro.

DESCRIPTION:

These session calls convert data from ASCII to EBCDIC. Since
IBM handles data in EBCDIC and DPS 6 or DPS 6 PLUS handles it
in ASCII, you may sometimes wish to convert data from one to
the other, either before sending or before receiving.

The Application Interface Facility software provides the
following macros to perform these conversions.

$SACEB ASCII-To-EBCDIC Conversion

When this macro is activated, you must initialize registers
$B2, $B4, $R2, $R4, and $R6 to contain the values listed in Table
2-2. If you wish to convert in place, $B2=$B4.

Table 2-2. Register Contents at Conversion

Register Contents

$B2 Pointer to buffer to be converted
$B4 Pointer to buff er to contain converted data

$R2 Index for buff er to be converted
$R3 Function code ($SACEB=l1 $SEBAC=2)
$R4 Index for buffer to contain converted data
$R6 Length of data in bytes

NOTE

The maximum length of data that can be converted
by a single call is 32,767 bytes.

2-46 GRll-02

$SEBAC

$SEBAC - EBCDIC-To-ASCII Conversion Routine

Converts data from EBCDIC to ASCII.

FORMAT:

label $SEBAC

ARGUMENT:

There are no arguments associated with this macro.

DESCRIPTION:

These session calls convert data from EBCDIC to ASCII. Since
IBM handles data in EBCDIC and DPS 6 or DPS 6 PLUS handles it
in ASCII, you may sometimes wish to convert data from one to
the other, either before sending or before receiving.

The Application Interface Facility software provides the
following macros to perform these conversions.

$SEBAC EBCDIC-To-ASCII Conversion

When this macro is activated, you must initialize registers
$B2, $B4, $R2, $R4, and $R6 to contain the values listed in Table
2-2. If you wish to convert in place, $B2=$B4.

Table 2-3. Register Contents at Conversion

Register Contents

$B2 Pointer to buffer to be converted
$B4 Pointer to buff er to contain converted data

$R2 Index for buffer to be converted
$R3 Function code {$SACEB=l1 $SEBAC=2)
$R4 Index for buff er to contain converted data
$R6 Length of data in bytes

NOTE

The maximum length of data that can be converted
by a single call is 32,767 bytes.

2-47 GRll-02

SectWn3
PROGRAMMING

LU TYPE O SESSIONS
IN COBOL

This section describes the session calls that the COBOL
programmer uses to converse over a Session Type O with host
transaction programs. Topics include:

• COBOL session calls

• Session call format

• Programming Considerations

Synchronous vs. Asynchronous Processing
WORKING-STORAGE SECTION
Checking the Return Code

• Session Calls.

COBOL SESSION CALLS

The session calls used by the Application Interface
(AIF) in a COBOL applica.tion program call corresponding
language subroutines using the ncALL ••• USING ••• n verb.
calls are listed in Table 3-2.

Facility
Assembly
These

The parameters that the session calls use are positional.
They are defined in the WORKING-STORAGE SECTION of the COBOL
program. In this manual, these parameters are defined in the
discussion of the WORKING-STORAGE SECTION and are listed without
redefinition in the format description of each session call.

3-1 GRll-02

At the completion of each session call, when control is
returned to the application, a return code is placed in the
RETURNS field. This return code indicates whether a call has
been completed error free. The application should check the
return code after each session call to verify that the call was
completed error-free.

A sample COBOL program is provided in Appendix c to
demonstrate the use of the AIF session calls in a COBOL program.

SESSION CALL FORMAT

The session calls used by AIF in a COBOL program reference
Assembly language subroutines which include system-provided
macrocalls. The COBOL session calls have a list of arguments
that must be specified each time a session call is executed.
These arguments, which you have defined in the WORKING-STORAGE
SECTION,· correspond to parameters in the SCCB that are used by
the Assembly language subroutine. The AIF COBOL session calls
follow the conventions for COBOL {described in detail in the ONE
PLUS COBOL 74 Language Reference Manual (HE34). -

When an AIF session call is activated, it defines one or more
pools of logical units. Each pool of logical units is reserved
for a specific host CICS or IMS system. AIF can either start a
session to the host system at initiation or it can wait for an
application to request a session. The time of session initiation
is a configuration option.

An application requests to initiate a session with a reserved
LU by executing the CSINIT session call. AIF checks the
availability of that LU and assigns it if it is available. If
the specified LU is unavailable, AIF checks first for an
available reserved LU, second for an available preestablished LU,
and then for any available LU to assign to the session. AIF
either returns the address of the LU with which the session is
started, or rejects the request if there is no LU available.

An application gains access to a host-initiated session by
executing a CSACPT session call. Executing the accept session
call causes the application to be connected to the host-initiated
session and causes the LU to send a positive response to the
host, accepting the session.

PROGRAMMING CONSIDERATIONS

The special considerations that the COBOL programmer must
bear in mind fall into the following categories:

• Synchronous vs. Asynchronous Processing
e WORKING-STORAGE SECTION
• Host-initiated sessions
• Linking the program
• Checking the return code.

3-2 GRll-02

Synchronous vs. Asynchronous Processing

AIF session calls can be processed either synchronously or
asynchronously.

SYNCHRONOUS PROCESSING

Synchronous processing implies that when the application
passes an instruction to AIF for processing, it waits for the
application to complete that instruction before continuing.

In Figure 3-1, a CSINIT session call has been issued
synchronously. The application completes its segment of
processing and passes the request to AIF. AIF executes the
CSINIT session call completely and passes the return code to the
application. The application does not process other instructions
while AIF is executing the CSINIT session call.

SYNCHRONOUS PROCESSING

ISSUES
SESSION

:~:;~~~~ON ------CALL

AiF

ACCEPTS THE
REQUEST

EXECUTES SESSION CALL

CONTINUES PROCESSING

(DONEi

85·271

Figure 3-1. Synchronous Processing

ASYNCHRONOUS PROCESSING

Asynchronous processing implies that when the application
passes an instruction to AIF for processing, the application
continues to process other instructions while it waits for AIF to
complete that instruction.

In Figure 3-2, a CSINIT session call has been issued
asynchronously. The application completes its segment of
processing and passes the request to AIF. While AIF executes the
CSINIT session call, the application is processing other
instructions. In order for the application to find out that AIF
has finished executing the CSINIT session call, the application
must execute a CSWANY or a CSTEST session call.

3-3 GRll-02

ASYNCHRONOUS PROCESSING

ISSUES
SESSION
CALL

~~61,i~~~ION ------

ACCEPTS

SSWANY
1

OTHER PROCESSING I
I

I
I
I
I

THE REQUEST DONE

AIF

EXECUTES SESSION CALL

CONTINUES PROCESSING

85·272

Figure 3-2. Asynchronous Processing

Each time you issue an asynchronous order, you must check the
receive queue before you can receive information~ You can do
this by either the CSTEST or the CSWANY session call. These two
session calls differ as follows:

1. The CSTEST session call checks to see if there is
information in the queue to be received and immediately
reports back to the application. This call can be
executed any time you wish to check for an outstanding
order, and as often as you wish to check, because the
application regains control immediately after the test is
completed.

2. The CSWANY session call checks for information on the
queue and waits until there is information waiting before
it returns control to the application.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION defines the area to be used as
the SNA work area. The parameters specified in these fields are
passed to the SCCB when the session calls are executed.

The following parameters must be defined in the WORKING­
STORAGE SECTION. These parameters are used to create the session
call control block which is used by the Assembly language
subroutines you are calling.

Figure 3-3 shows a sample WORKING-STORAGE SECTION in which
the SNA work area has been defined. The data-names that are used
here are examples; you can name them according to your own naming
conventions.

3-4 GRll-02

DATA DIVISION.
WORKING-STORAGE SECTION.
77 SNA-WORK-AREA
77 NODE-NAME
77 REMOTE-LU-NAME
77 STD-NAME
7 7 SYNC-CALL
77 ASYNC-CALL
77 RESTART
77 NO-RESTART
77 SESSION-ID
77 MSG-RESYNC-SEND-SQN
77 MSG-RESYNC-RCV-SQN
77 SEND-BUFFER
77 SEND-BUFFER-SIZE
77 DATA-BUFFER-ALIGNMENT
77 REPLY-REQUEST
77 MSG-COMPLETE
77 FMH
77 RQD
77 RECEIVE-BUFFER
77 RECEIVE-BUFFER-SIZE
77 MSG
77 RECEIVED-DATA-LENGTH
77 INTERRUPT-DATA-LENGTH
77 WORK-AREA-ID
77 SEND-RESPONSE-TYPE
77 SENSE-DATA
01 RETURNS.

02 RETURN-A.
03 SESSION-ABORT
03 STOP-RCVD
03 INTRPT-RCVD
03 SERV-REQ-CANC
03 SERV-REQ-COMP
03 COBOL-ERROR

02 RETURN-B
77 INTERRUPT-TYPE
77 RCVD-SENSE
01 TIMEOUT.

02 DATEl.
03 yy
03 MM
03 DD

02 TIMEl.
03 HH
03 MN
03 ssss

77 TERMINATE-TYPE
77 GET-ATTR-TYPE

PIC X(200).
PIC X(8) VALUE "AIF501".
PIC X(8) VALUE "A06CICS".
PIC XX VALUE "BB".
PIC X VALUE "S".
PIC X VALUE "A".
PIC X VALUE "R".
PIC X VALUE "N".
PIC X(4).
PIC 9(5) VALUE 0.
PIC 9(5) VALUE O.
PIC X(BO).
PIC 9(5) VALUE 80.
PIC X VALUE "L".
PIC X VALUE "R".
PIC X VALUE "Y".
PIC X VALUE "N".
PIC X VALUE "N".
PIC X(80).
PIC 9(5) VALUE 80.
PIC X VALUE "Y".
PIC 9(5} VALUE O.
PIC 9(5} VALUE O.
PIC X(4).
PIC X VALUE "-".
PIC X(8).

PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N" ..
PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N".
PIC 9(4) VALUE O.
PIC 99 VALUE O.
PIC X(8).

PIC 99 VALUE O.
PIC 99 VALUE O.
PIC 99 VALUE O.

PIC 99 VALUE O.
PIC 99 VALUE O.
PIC 9(4) VALUE 0.
PIC X VALUE "N".
PIC 99 VALUE "01".

Figure 3-3. WORKING-STORAGE SECTION for AIF

3-5 GRll-02

01

77
01
77
01
01

OUTPUT-CONTROL-WORD.
02 REPLY-REQUESTED-CD PIC x VALUE "N" •
02 DEFINITE-RESP-REQ PIC X VALUE "N".
02 LAST-MSG-RCVD-EB PIC X VALUE "N".
02 FMH-IN-RCVD-DATA PIC X VALUE "N".
02 BEGIN-MSG-RCVD-BC PIC X VALUE "N".
02 END-MSG-RCVD-EC PIC X VALUE "N" •
02 SET-SEND-RECV-SEQ PIC X VALUE "N" •
02 APPL-RESEND-REQUIRED PIC X VALUE "N" •
02 HOST-RESEND-REQUIRED PIC X VALUE "N" •
CONVERT-FROM-FIELD PIC X(20).
CONVERT-FROM-LEFT-POSIT COMP-1 VALUE 1.
CONVERT-TO-FIELD PIC X (20).
CONVERT-TO-LEFT-POSIT COMP-1 VALUE 6.
CONVERSION-LENGTH COMP-1 VALUE 10.

Figure 3-3 (cont.). WORKING-STORAGE SECTION for AIF

These fields are defined as follows:

SNA-WORK-AREA

This input parameter is the name of a
area that is at least 200 bytes long.
to the "sccb pointer" argument of the
session calls.

contiguous memory
This corresponds

Assembly language

If your program will be running multiple sessions, you
must define a unique SNA-WORK-AREA for each session.

Example:

77 SNA-WORK-AREA PIC X(200).

NODE-NAME

This input parameter contains the name of the AIF node on
the DPS 6 or DPS 6 PLUS system with which the session is
being established. This field contains up to eight
alphanumeric characters.

Example:

77 NODE-NAME PIC X(8) VALUE "SNANODEl".

REMOTE-LU-NAME

This input parameter contains the name by which the
remote LU is known to this application. This field
contains up to eight alphanumeric characters. The
REMOTE-LU-NAME equates to the APPL VTAM macro on the
host.

3-6 GRll-02

Example:

77 REMOTE-LU-NAME PIC X(8) VALUE "A06CICS ".

STD-NAME

This input parameter contains the two alphanumeric
character field which is the session type descriptor
name. The STD is defined in the AIF configuration file.

Example:

77 STD-NAME

SYNC-CALL
ASYNC-CALL

PIC X(2) VALUE "BB".

These input parameters indicate whether execution of the
call is to be synchronous or asynchronous. Each field
contains one character, either S or A. Both parameters
must be included.

Example:

77 SYNC-CALL
77 ASYNC-CALL

RESTART
NO-RESTART

PIC X VALUE "s•.
PIC X VALUE "A".

These input parameters indicate whether or not the
application wishes to restart an abnormally terminated
session. Each field contains one character, either R or
N. Both parameters must be included.

Example:

77 RESTART
77 NO-RESTART

SESSION-ID

PIC X VALUE "R".
PIC X VALUE "N".

If RESTART is specified, AIF places a unique session
identifier in this field before returning control to the
application. This field contains four system-supplied,
alphanumeric characters that can be used to restart an
abnormally terminated session. This field should be
stored if restart is a possibility or if you plan to
execute multiple sessions.

Example:

77 SESSION-ID PIC X(4).

3-7 GRll-02

MSG-RSYNC-SEND-SQN

If RESTART is specified, AIF places the sequence number of
the last message sent in this field each time the
application does a send. This field contains up to five
numeric characters and should be stored after each send in
case a RESTART is necessary.

Example:

77 MSG-RSYNC-SEND-SQN

MSG-RSYNC-RCV-SQN

PIC 9(5) VALUE O.

If RESTART is specified, AIF places the sequence number
of the last message that the application has received in
this field each time the application issues a receive.
This field can be up to five numeric characters and
should be stored after each receive so that it can be
retrieved if a RESTART is necessary.

Example:

77 MSG-RSYNC-RCV-SQN

SEND-BUFFER

PIC 9(5) VALUE O.

This input parameter sets up the buffer for the messages
to be sent. It can contain up to 32,767 characters~ If
the data in the send/receive buffers must be converted
between ASCII and EBCDIC, the application must take care
of the conversion. Two macros are provided for this
purpose, CSACEB and CSEBAC.

Example:

77 SEND-BUFFER PIC X(80).

SEND-BUFFER-SIZE

This input parameter contains the length of the send data
buffer. The maximum buffer size is 32,767 bytes.

Example:

77 SEND-BUFFER-SIZE

DATA-BUFFER-ALIGN

PIC 9(5) VALUE 80.

This input parameter specifies whether data starts in the
left (L) or right (R) byte of the buffer address word.

Example:

77 DATA-BUFFER-ALIGN PIC X VALUE "L".

3-8 GRll-02

REPLY-REQUEST

This input parameter indicates whether the message being
sent is now complete (L), and if the application expects
a reply to this message (R). LAST sets the end bracket
indicator (not valid with CICS applications)1 REPLY sets
the change direction indicator.

Example:

77 REPLY-REQUEST

MSG-COMPLETE

PIC X VALUE "R".

FMH

RQD

This input parameter indicates whether a complete message
is to be sent or single response units which must be
assembled into a chain. Possible values are "Y" or "N".

Example:

77 MSG-COMPLETE PIC X VALUE "Y".

This input parameter indicates whether the function
management header (FMH) is part of the data to be sent.
Possible values are Y or N.

Example:

77 FMH

This input parameter indicates whether a definite
response is to be sent. Possible values are "Y" or 0 N".

Example:

77 RQD

RECEIVE-BUFFER

PIC X VALUE "N".

This input parameter sets up the buffer that receives the
data during the session. The length of the data cannot
exceed the size specified in the RECEIVE-BUFFER-SIZE (80
characters in this example).

Example:

77 RECEIVE-BUFFER PIC X(80).

3-9 GRll-02

RECEIVE-BUFFER-SIZE

MSG

This input parameter designates the size of the
RECEIVE-BUFFER in characters.

Example:

77 RECEIVE-BUFFER-SIZE PIC 9(5) VALUE 80.

This input parameter designates whether the message being
delivered to the application's buffer is a complete
message or a message segment. If a whole message is
being delivered, AIF must wait for the entire message and
determine whether or not it fits into the RECEIVE­
BUFFER. If the message is too large for the receive
buffer, AIF delivers only the size of the message so that
a new buffer can be assigned. Possible values for this
parameter are "Y" (complete message) or "N" (message
segment).

77 MSG PIC X VALUE "Y".

RECEIVED-DATA-LENGTH

This output parameter is to contain the length of the
data received.

Example:

77 RECEIVED-DATA-LENGTH PIC 9(5) VALUE O.

INTERRUPT-DATA-LENGTH

This output parameter contains the length of any
interrupt data that has been received.

Example:

77 INTERRUPT-DATA-LENGTH PIC 9(5) VALUE O.

WORK-AREA-ID

This output parameter, which is used by the CSWANY
session call, contains the SNA-WORK-AREA value of the
last COBOL session call that was executed. The
WORK-AREA-ID does not have to correspond to the
SNA-WORK-AREA unless there are no other active sessions.

Example:

77 WORK-AREA-ID PIC X (4) •

3-10 GRll-02

SEND-RESPONSE-TYPE

This parameter indicates the type of response that is
being sent. The following response types are possible:

Negative Response
Positive Response
Wait for Ready-to-receive
Not Ready-to-receive
None

Example:

77 SEND-RESPONSE-TYPE

SENSE-DATA

Value

n_n

"+"
"R"
"N"
n n

PIC X VALUE "-" •

This input parameter is required when a negative response
is being sent. The parameter is specified using
hexadecimal-coded ASCII characters.

Example:

77 SENSE-DATA PIC X(8).

RETURNS

This output parameter defines the field into which the
return code from all AIF session calls is placed. The
RETURNS field is divided into RETURN-A, which consists of
six yes/no conditions, and RETURN-B, which contains a
four character decimal status code to provide further
detail about the conditions indicated in RETURN-A.

The two subfields of RETURNS are presented below and are
described in Table 3-1. Refer to "Checking the Return
Code" for more information about RETURNS.

02 RETURN-A.
03 SESSION-ABORT
03 STOP-RCVD
03 INTRPT-RCVD
03 SERV-REQ-CANC
03 SERV-REQ-COMP
03 COBOL-ERROR

02 RETURN-B

PIC X VALUE 'N'.
PIC X VALUE 'N'.
PIC x VALUE IN'.
PIC X VALUE 'N'.
PIC X VALUE 'N'.
PIC X VALUE 'N'.
PIC 9(4) VALUE 0.

3-11 GRll-02

Table 3-1. COBOL Session Call RETURNS Fields

Field Meaning

,SESSION-ABORT LU-LU session or node has been aborted and
no longer exists. ·

STOP-RCVD SOPR STOP command received. If the TIME
argument is supplied with the STOP command,
check the TIME field for the time at which
the session ends. This field indicates how
much time you have to complete the session.

INTRPT-RCVD Interrupt received •. See INTERRUPT output
parameter;

SERV-REQ-CANC This request has been cancelled. The
application must issue it again if
necessary.

SERV-REQ-COMPLETE This request has been completed.

COBOL-ERROR Error in using COBOL interface to the AIF.
See RETURN-B for return code.

INTERRUPT-TYPE

This parameter shows the reason for interrupt when one is
sent or received.

Example:

77 INTERRUPT-TYPE PIC 99 VALUE O.

A complete list of interrupt types is provided in
Appendix D.

RCVD-SENSE

This output parameter contains the hexadecimal
representation of the sense data from the host if sense
data is present. This field corresponds to SC ESD in the
SCCB.

Example:

77 RCVD-SENSE PIC X(8).

3-12 GRll-02

TIMEOUT

This output parameter provides a formatted data area for
the date and time that a session must be stopped when a
STOP command is processed for the session or node. This
field must be 14 decimal digits long, as follows:

Example:

01 TIMEOUT
02 DATEl.

03 yy PIC 99 VALUE o.
03 MM PIC 99 VALUE o.
03 DD PIC 99 VALUE o.

02 TIMEl.
03 HH PIC 99 VALUE o.
03 MN PIC 99 VALUE O.
03 ssss PIC 9 (4) VALUE 0 •

TERMINATE-TYPE

This input parameter indicates whether termination is
normal (N) or abnormal (A).

Example:

77 TERMINATE-TYPE PIC X VALUE 0 N°.

GET-ATTR-TYPE

This input parameter indicates what attribute the CSGTAT
call is requesting. The only attribute available is 01
(bind image}.

Example:

77 GET-ATTR-TYPE PIC 99 VALUE 0 01".

OUTPUT-CONTROL-WORD

This output parameter provides information about the
received data. The characteristics that can be specified
are listed below. Each of these parameters must be
stated. Possible values are •yn or "N°.

01 OUTPUT-CONTROL-WORD.
02 REPLY-REQUESTED-CD PIC x.
02 DEFINITE-RESP-REQ PIC x.
02 LAST-MSG-RCVD-EB PIC x.
02 FMH-IN-RCVD-DATA PIC x.
02 BEGIN-MSG-RCVD-BC PIC x.
02 END-MSG-RCVD-EC PIC x.
02 SET-SEND-RECV-SEQ PIC x.
02 APPL-RESEND-REQUIRED PIC x.
02 HOST-RESEND-REQUIRED PIC x.

3-13 GRll-02

CONVERT-FROM-FIELD

This input parameter defines the buffer to be converted by
the ASCII-to-EBCDIC conversion subroutiness The maximum
size of this buffer is 32,767 bytes.

Example:

77 CONVERT-FROM-FIELD PIC X(20).

CONVERT-FROM-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-FROM-FIELD.

Example:

01 CONVERT-FROM-LEFT-POSIT COMP-1 VALUE 1.

CONVERT-TO-FIELD

This input parameter defines the buffer into which the
converted data will be placed by the ASCII-to-EBCDIC
conversion subroutines. The maximum size of this buffer
is 32,767 bytes.

Example:

77 CONVERT-TO-FIELD PIC X(lS).

CONVERT-TO-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-TO-FIELD.

Example:

01 CONVERT-TO-LEFT-POSIT COMP~ 1 VALUE 6 •

CONVERSION-LENGTH

This input parameter contains the length in bytes of the
data to be converted. The maximum length of this data is
32,767 bytes.

Example:

01 CONVERSION-LENGTH COMP-1 VALUE 10.

3-14 GRll-02

Host-Initiated Sessions

AIF supports host-initiated sessions; that is, it accepts
unsolicited binds. In order to accept an unsolicited bind, an LU
must be reserved with the HOST !NIT SESS parameter specified as Y
(YES) in the LU entry of the configuration file.

When the application program begins execution, it must issue
a CSACPT session call. as the first session call, providing the
STD name and the node name for the LU to be used. The CSACPT
session call allows AIF access to a host-initiated session. AIF
associates the first unsolicited bind (host-initiated session
request) to the first CSACPT session call from the task group
that AIF spawned.

An unsolicited bind can be for a program designated in the
AUTO ATTACH entry of the AIF configuration or it can be any other
unsloicited bind sent from the host.

When AIF receives an unsolicited bind for a specific LU, AIF
checks the LU entry for an AUTO ATTACH program. If it finds one,
AIF spawns a group with the program name as the lead task, and
passes to the lead task the STD name, node name, and base level
used in the spawn group. If AIF does not find an AUTO ATTACH
program in the LU entry, it accepts the session and looks for the
program name in the first four bytes of the first record
received, tpen spawns a group based on the ATTACH_PROGRAM entry.
If none is provided, default values are used to spawn the group.

The application can issue multiple ~SACPTs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one session,
all LUs that can receive binds for that application must be
reserved LUs with HOST INIT SESS=Y. Each of these LUs must have
the same group id specTf ied-in the LU entry in the configuration
file. -

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (eg.,
ATTACH PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.
Refer-to SNA6 Network Configuration for further
information.

3-15 GRll-02

Linking the Program

If a COBOL application program is written as a program to be
attached, that is, it includes an ACCEPT session call (CSACPT),
then a LINKAGE SECTION must be included in the program. The
LINKAGE SECTION must include three entries to accommodate the
node name, STD name, and base level, as in the following example:

LINKAGE SECTION.
77 NODE PIC X(B).
77 STD PIC XX.
77 BASE LVL PIC 99.
PROCEDURE DIVISION USING NODE, STD, BASE_LVL.

The LINKAGE SECTION is necessary whether the program is to be
compiled using COBOLA or COBOLM. The programs are coded in the
same way, regardless of which compiler is used, but they are
linked differently.

Within the COBOL application program, the three fields in the
LINKAGE SECTION must be moved to corresponding fields in
WORKING-STORAGE before they can be used in any AIF calls.

Two sample LINK directive sets are presented below to
demonstrate the different Linker directives you can use. The
following matrix shows which set you should use, based upon LU
type, whether you are writing an attached program, anQ the COBOL
compiler you are using.

Compiler used:

ACCEPTS
calls used:

No ACCEPTS
calls used:

COBO LA

3

l

LINK DIRECTIVE SET 1

&N
&A
LINKER &l
LIB >LDD>ZCART/
LIB >LDD>ZCMRT*
LINK &1
LINK CSPHRZ
MAP
QT

COBOLM

1

1

* Use either LIB, where ZCART is used for COBOLA and ZCMRT
is used for COBOLM.

3-16 GRll-02

LINK DIRECTIVE SET 3

&N
&A
LINKER &1
LIB >LDD>ZCART
LINKN CSLEAD
LINK &l
LINK CSPHRZ
MAP
LDEF CBLADR,&l
QT

NOTES

The module CSPHRA is the parameter processing
routine for LU Type 0 calls.

Programs compiled by COBOLM automatically have the
node name, STD name, and base level moved to the
LINKAGE SECTION. Programs compiled by COBOLA use
the CSLEAD Linker module to perform this
function. This module must be linked into the
bound unit of any program that executes a CSACPT
or CSATCH and is compiled using COBOLA.

Refer to the Multiuser COBOL Compiler User's Guide
(HE32) for information about linking programs
compiled under COBOLA and COBOLM into a single
bound unite

Checking the Return Code

On return from AIF, a COBOL interface routine fills the
output parameter fields with the SCCB results from the
subroutine.

After the session call is made, a return code is placed in
the RETURNS field. The RETURNS field is divided into RETURN-A,
which consists of six yes/no conditions, and RETURN-B, which
contains a four-character decimal return code to provide further
detail about the conditions indicated in RETURN-A.

RETURN-A reports the following conditions:

• • • • • •

SESSION-ABORT--The session has been aborted •
STOP-RCVD--SOPR stop command has been received •
INTRPT-RCVD--An interrupt has been received •
SERV-REQ-CANC--This request has been cancelled •
SERV-REQ-COMP--This request has been completed •
COBOL-ERROR--A COBOL interface error has occurred •

3-17 GRll-02

If the value of COBOL-ERROR is Y, then an error has occurred
in the COBOL interface to AIF. The following are the general
return codes that are in RETURN-B if you have a COBOL error. The
value of XX is the number of the parameter in which there is an
error:

Code

XXOl
XX02
XX03
XX04
xxos
XX06
XX07
xxoa
x·xog
XXlO
XXll

Meaning

Unrecognized parameter
Parameter must be 1 byte long
Parameter must be 5 bytes long
Default not acceptable
Node name error
Remote LU name error
Invalid session-id
Unknown interrupt type
Nondecimal digit
Nonhexadecimal digit
Error in conversion

The values of both RETURN-A and RETURN-B should be checked
after the completion of each session calL Since it is possible
to have more than one Y value in RETURN-A, and to have a value
greater than zero after a successfully completed call, the
application should check all fields in RETURN-A and RETURN-B for
all possible combinations.

If the return code contains a "no error" message, go to the
next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, go to another segment of the program, or shut down
completely.

Additional return codes are listed with the individual
session calls to which they pertain. The return codes and their
values are listed in Appendix D.

3-18 GRll-02

,•

SESSION CALLS

The AIF session calls used in COBOL programs are detailed on
the following pages.

Table 3-2. AIF Session Calls

Session
Call Description

CSACPT
CSCASR
CSGTAT
CS I NIT
CSPOLL
CSRECV
CSR!
CS SEND

CSSI
CSSRSP
CST ERM
CSTEST
CSWANY
CSACEB
CSEBAC

Accept session call
Cancel outstanding asynchronous request
Get attributes
Initiate or restart a session
Test for LU associated with task group
Receive message in application's buffer
Read interrupt
Request AIF to send a message or message
segment
Send interrupt
Application instructs AIF to send a response
Terminate session
Test conditions
Wait on any event
ASCII-to-EBCDIC conversion
EBCDIC-to-ASCII conversion

3-19 GRll-02

CSACPT

CSACPT - Accept session Call

The CSACPT session call causes AIF to connect to a host
initiated session.

FORMAT:

CALL "CSACPT" USING SNA-WORK-AREA
NODE-NAME

DESCRIPTION:

REMOTE~ LU-NAME
STD-NAME
SYNC-CALL
SESSION-ID
NO-RESTART
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RCV-SQN
RETURNS
INTERRUPT-TYPE
TIMEOUT
RCVD-SENSE

The CSACPT session call causes AIF to connect to a
host-initiated session if there is one available. If there
is no session, AIF returns and continues processing. The LU
to which this bind refers is a reserved LU.

If your application is part of a host-initiated session, the
CSACPT session call should 'be the first call executed. When
this call is completed, the session is in receive state.

NOTE

This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. In addition to the values
described for RETURN-A and RETURN-B in "Checking the Return
Code," the CSACPT session call can return the following
values in RETURN-B:

Value

0000
0025
0064

Description

No error
ACCEPT Timed out
Invalid node name

3-20 GRll-02

CSACPT

0153 Invalid STD name
0154 Invalid LU type in STD
0155 No LU attached

SESSION-ID

This four-character field is supplied by AIF after it
accepts the session request. The first word is the
session group name, which is assigned by AIF to each of
the sessions running in this session group. This value
is used by AIF to return a unique one-word session
identifier for this session. This value is stored in the
second word. This field is reserved for system use and
must never be alterPd by the application.

3-21 GRll-02

'

CSCASR

CSCASR - Cancel Asynchronous Request

The CSCASR session call causes AIF to cancel an outstanding
asynchronous request, if possible.

FORMAT:

CALL "CSCASR" USING SNA-WORK-AREA

DESCRIPTION:

The CSCASR session call cancels an outstanding asynchronous
request. If the previously executed asynchronous request was
already completed when the CSCASR was executed, then the
return code from CSCASR is for a completed asynchronous
call. If the previously executed asynchronous call was not
completed when CSCASR was executed and AIF succeeded in
cancelling the request, the return code from CSCASR indicates
that the call has been cancelled.

NOTE

The CSCASR session call cannot be used to cancel a
CSINIT session call, even if it has been executed
asynchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSCASR session call, the following combinations are possible:

• If SERV-REQ-CANC=Y (all other fields in RETURN-A = N) and
RETURN-B=O, you have cancelled the previously outstanding
call.

• If SERV-REQ-CANC=Y and RETURN-B>O, the previous call
completed with error. (RETURN-B contains the error code
for the previous call.)

• If SERV-REQ-COMP=Y and RETURN-B=O, the previous
outstanding call executed.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code,"
CSCASR can return the following values in RETURN-B.

Value Description

0023 No outstanding asynchronous call

3-22 GRll-02

CSGTAT

CSGTAT - Get Session Attributes

The CSGTAT session call provides the application with an
attribute for the session specified in the SNA-WORK-AREA.

FORMAT:

CALL ncsGTATn USING SNA-WORK-AREA
RECEIVE-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGN
GET-ATTR-TYPE

DESCRIPTION:

The CSGTAT session call provides the application with an
attribute for the session whose SNA-WORK-AREA is specified
when issuing the call. If you plan to use this session call
to request the bind image, the STD entry in the AIF
configuration must include the parameter SAVE_BIND=Y.

Special notice should be given to the situation where an
interrupt is received either prior to or during the execution
of the CSGTAT session call.

1. When an interrupt is received before the execution of the
CSGTAT, the application is given the data that was in the
receive queue and informed of the interrupt.

2. If an interrupt is received during the execution of a
CSGTAT, the order is not completed, control is returned
to the application, and the return code indicates that an
interrupt has been received.

NOTE

This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSGTAT session call, the following combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the receive data buffer
contains the attributes of the session specified.

3-23 GRll-02

CSGTAT

• If the value of another field in RETURN-A is Y, the CSGTAT
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code," the
CSGTAT session call can return the following values in
RETURN-B:

Value

0000
0016

0024
1013
1014
1032

Description

No error - session established
Improper state - i.e., trying to receive, but in
send.state '
No BIND IMAGE saved for $SGTAT
Receive-buffer too small
Invalid attribute type
Receive rejected: data traffic cleared/inactive

3-24 GRll-02

CSINIT

CSINIT - Initiate Session

The CSINIT session call can be used in two contexts:

1. To establish a session between the application and the
transaction at the host

2. To restart this session if it has been abnormally
terminated.

In issuing the session call, you must indicate for which
purpose it is to be executed.

CALL "CSINIT" USING SNA-WORK-AREA
NODE-NAME
REMOTE-LU-NAME
STD-NAME
SYNC-CALLJASYNC-CALL
SESSION-ID
NO-RESTART
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RCV-SQN
RETURNS
INTERRUPT-TYPE
TIMEOUT
RCVD-SENSE

CSINIT to Establish a Session

The initiate session call requests that AIF establish a
session between an LO at the DPS 6 or the DPS 6 PLUS and an
LU at the host, and that the local LU be assigned exclusively
to the application. Always specify NO_RESTART on initial
start-up.

In the event that AIF assigns a preestablished session to the
application, the application should store the send/receive
sequence numbers, in case a RESTART of this session ever
becomes necessary. These sequence numbers are not reset to
zero after each use. To the host, this appears as one
session. On the local application side, the session is a
serially reusable resource.

If multiple sessions are being established, a separate
SNA-WORK-AREA must be provided for each session. The session
ID should also be stored so that if a RESTART becomes
necessary, you can specify which session to restart.

3-25 GRll-02

CSINIT

NOTE

A CSINIT session call, executed asynchronously,
cannot be cancelled by using the CSCASR session
call.

CSINIT to Restart a Session

The CSINIT session call is used to restart a session in the
event that it has been abnormally terminated. Restart logic
and restart rules are described in detail in Section 6.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSINIT session call, the following combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the session has been
initiated successfully.

• If the value of another field in RETURN-A is Y, the CSINIT
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code," the
CSINIT session call can return the following values in
RETURN-B.

Value

0000
0003
0004
0016

0032
0048

0049
0064
0065
0150
0151
0152
0153
0154
1809

Description

No error - session established
Negative response received
Bind negotiation failed
Improper state - i.e., trying to CSINIT with
RESTART, but not in abnormally terminated state
Restart not possible
System error - i.e., not enough memory available
to establish session
Resource not available
Invalid node name
Invalid session-ID {Restart)
AIF Node not yet active
No active LU for session
No LU available for session
Invalid STD name
Invalid LU type in STD
Link failure

3-26 GRll-02

CS I NIT

Each time you do a CSINIT with RESTART, you should check the
OUTPUT-CONTROL-WORD to verify the send/receive sequence
numbers and to find out whether it is necessary to retransmit
the last message either from the DPS 6 or DPS 6 PLUS or from
the host.

The RCVD-SENSE field contains sense data, if present, as
listed in Appendix D.

3-27 GRll-02

CS POLL

CSPOLL - Poll Session Call

The CSPOLL session call checks to see if any LU associated
with the application program's task group has received an
unsolicited bind from the remote program.

FORMAT:

CALL "CSPOLL" USING SNA-WORK-AREA
NODE-NAME
STD-NAME
RETURNS

DESCRIPTION:

The CSPOLL session call causes AIF to test to see if any LU
associated with the application program's task group has been
attached (bound) by the remote program. The CSPOLL session
call is similar to the CSACPT session call except that the
CSPOLL does not cause a connection between AIF and the
application program if a bind has be received.

The SNA WORK-AREA used for a CSPOLL must be unique and should
not be currently used by an active session.

NOTE

This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. In addition to the values
described for RETURN-A and RETURN-B in "Checking the Return
Code," the CSACPT session call can return the following
values in RETURN-B.

Value Description

0064 Invalid node name
0153 Invalid STD name
0155 No LU attached
0005 Ther~ is an LU being bound

3-28 GRll-02

CS RE CV

CSRECV - Receive Message

The CSRECV session call causes AIF to deliver a message or
message segment from the session partner to the application's
buffer.

FORMAT:

CALL •csRECV" USING SNA-WORK-AREA
RECEIVE-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGN
SYNC-CALLIASYNC-CALL
MSG
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD

DESCRIPTION:

The CSRECV session call causes AIF to deliver a message to
the application's buffer from the session partner.

If the oser specifies MSG, then AIF assembles the chain
before delivery. If the user's buffer is not large enough,
the message is not delivered1 the actual length of the
message or message segment is returned to the application in
the RECEIVED-DATA-LENGTH. The application can either execute
the receive again with an adequate buffer, or move N to the
MSG field and execute the receive. If you specify N, single
segments are delivered to the application's buffer. If the
message segment delivered is the last segment, then AIF sets
the end Of message bit in the OUTPUT-CONTROL-WORD.

Special notice should be taken when an interrupt is received
prior to or during the execution of a CSRECV.

· If an interrupt has already been received when the CSRECV
session call is executed, the application is given the data
and informed of the interrupt. RETURNS shows either
SERV-REQ-CANC=Y and INT-REC=Y or SERV-REQ-COMP=Y and
INT-REC=Y, depending on whether or not the data was in the
receive queue.

If an interrupt is received during the execution of a CSRECV,
the order is not completed, and return is made to the
application.

3-29 GRll-02

CS RE CV

Check the OUTPUT-CONTROL-WORD before proceeding, to determine
if end of message indicator has been received or if the host
requires a response.

RETURN CODES:

The application should check the return code after each
execution of a session calle After the completion of the
CSRECV session call the following combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, then the CSRECV had
been completed with no error.

• If the value of another field in RETURN-A is Y, the CSRECV
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

If SERV-REQ-COMP=Y, check the OUTPUT-CONTROL-WORD to make
sure that the beginning of message and end of message
indicators have been received. If there is no end of message
indicator, you must do another CSRECV to receive the next
segment of the message.

In addition to these combinations and the values for RETURN-A
and RETORN-B described in "Checking the Return Code," the
CSRECV session call can return the following values in
RETURN-B.

Value

0000
0016

0019
0048
0050
0065
0066
0256
1809

Description

No error - CSRECV successful
Improper state - i.e., trying to receive while in
send state
Receive buffer too small
System error - unable to receive
Receive rejected1 data traffic cleared/inactive
Invalid session-ID
Asynchronous service request outstanding
Session unbound by host
Link failure

NOTE

If a RESTART of this session is a possibility,
then the receive sequence number should be stored
by the application executing this CSRECV session
call.

3-30 GRll-02

CSRI

CSRI - Read Interrupt

The CSRI session call reads interrupt information from the
host or control information from the AIF LU when there is no
other AIF session call outstanding.

FORMAT:

CALL "CSRI" USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH

DESCRIPTION:

The CSRI session call enables the application to read
interrupt information from the host or control information
from AIF when there is no other AIF session call outstanding.

If either of the following situations occurs, the condition
is reported to the application, the SNA-WORK-AREA is updated
the·same way as for CSTEST or CSWANY and a return is made to
the application.

As with any asynchronous call, the application must execute a
CSWANY or CSTEST session call to determine when the CSRI
session call is complete and regain control.

1. When an interrupt is received, the INTERRUPT-TYPE and the
SENSE-DATA fields in the SNA-WORK-AREA contains the
appropriate information.

2. If data has been received for which there is no
outstanding order, the user must issue a CSRECV to gain
access to this data. The length of the received data is
in INTERRUPT-DATA-LENGTH parameter of the SNA-WORK-AREA.

NOTE

The CSRI session call is always made asynchronously.

RETURN CODES

The application should check the return code after each
execution of a session call. After the completion of the
CSRI session call, the following combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the interrupt has been
received with no error.

3-31 GRll-02

CSRI

• If the value of another field in RETURN-A is Y, the CSRI
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSRI session call can return the following values in
RETURN-B. .

Value

0002
0016

0050

Description

Data received but no read
Improper state - i.e., trying to receive while
in send state
Receive rejected; data traffic cleared/inactive

3-32 GRll-02

CS SEND

CSSEND - Send Message

The CSSEND session call sends a message (RU) or message
segments (chain) to a session partner.

FORMAT:

CALL "CSSEND" USING

DESCRIPTION:

SNA-WORK-AREA
SEND-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGN
SYNC-CALLIASYNC-CALL
REPLY-REQUEST
MSG-COMPLETE
FMH
RQD

The CSSEND session call instructs the sending of a message
(RU) or message segments (chain) to a remote LU. When you
are sending an entire message, the MSG-COMPLETE parameter
must be Y. When sending message segments, the MSG-COMPLETE
parameter must be N, except for the last segment, when
MSG-COMPLETE = Y$

Special notice should be given to the situation where the
application is executing a CSSEND session call but an
interrupt is received before or during the execution of the
call..

If an interrupt has already been received when the CSSEND
session call is executed, the application is informed of the
interrupt. If an interrupt is·received during the execution
of the CSSEND session call, the CSSEND session call
completes, and when the application execu.tes the CSWANY or
CSTEST session call, return is made to the application. The
return code indicates the interrupt received and the result
of the CSSEND session call.

NOTE

If restart of this session is a possibility, then
the send sequence number and the entire message
must be saved by the application executing this
CSSEND session call.

3-33 GRll-02

CS SEND

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSSEND session call, the following combinations are possible.

• If SERV-REQ-COMP=Y and RETURN-B=O, the CSSEND has been
completed with no error.

• If the value Of another field in RETURN-A is Y, the CSSEND
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values for RETURN-A
and RETURN~B described in "Checking the Return Code," the
CSSEND session call can return the following values in
RETURN-B.

Value

0000
0003
0016

0018

0048
0050
0256

Description

No error - send successful
Negative response received
Improper state - i.e., trying to send in receive
state
Inva~id input control indicator(s) - i.e.,
REPLY-REQUEST improperly indicated
System error
Send rejected
Session unbound by host

3-34 GRll-02

CSSI

CSSI - Send Interrupt

The CSSI session call is used to send Data Flow Control
commands to the session partner or to pass control information to
the System Service Control Point or to AIF.

FORMAT:

CALL 'CSSI' USING

DESCRIPTION:

SNA-WORK-AREA
SEND-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
INTERRUPT-TYPE
REPLY-NAME
SENSE-DATA

The CSSI session call is used to send the following three
types of information:

1. Send data flow control commands to the session partner
2. Pass control information to AIF.
3. Pass statistical information to SSCP.

A list of interrupt types is discussed in Appendix D.

The format of the buffers that you create to send CNM, alerts
and maintenance statistics are detailed in Section 7.

NOTE

The CSSI session call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSSI session call, the following combinations are possible.

• If SERV-REQ-COMP=Y and RETURN-B=O, the interrupt has been
sent with no error.

• If the value of another field in RETURN-A is Y, the CSSI
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

3-35 GRll-02

CSSI

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSSI session call can return the following values in
RETURN-B.

Value

0000
0003
0016
0018
0020
0021
0050

Description

No error
Negative response received
Improper state
Invalid input control indicator(s)
Invalid interrupt type
Invalid status word/user code
Receive rejected1 data ·traffic cleared/inactive

3-36 GRll-02

CSSRSP

CSSRSP - Send Response

The CSSRSP session call requests that AIF send a response to
a previous message.

FORMAT:

CALL "CSSRSP" USING

DESCRIPTION:

SNA-WORIC-AREA
SYNC-CALLIASYNC-CALL
SEND-RESPONSE-TYPE
SENSE-DATA

The CSSRSP session call sends a response to a previous
message on behalf of the application. The following response
types are possible:

Negative Response
Positive Response
Wait for Ready-to-receive
No Ready-to-receive
None

Value

n_n

11+•
"R"
•Nn
II II

If this response is negative, the application also has the
option of sending sense data.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSSRSP session call the following combinations are possible.

• If SERV-REQ-COMP=Y and RETURN-B=O, the response has been
sent with no error.

• If the value Of another field in RETURN-A is Y, the CSSRSP
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

3-37 GRll-02

CSSRSP

In addition to these combinations and the values for RETURN-A
and RETURN-B described in •checking the Return Code,• the
CSSRSP session call can return the following values in
RETURN-B:

Value

0000
0016
0018

0050

Description

No error
Improper state
Invalid input control indicator(s) - SEND
RESPONSE TYPE improperly indicated
Send rejected1 data traffic cleared/inactive

3-38 GRll-02

CS TERM

CSTERM - Terminate Session

The CSTERM session call terminates the AIF session.

FORMAT:

CALL "CSTERM" USING SNA-WORK-AREA
TERMINATE-TYPE

DESCRIPTION:

The CSTERM session call terminates the AIF session.
Termination can be either normal or abnormal. Whether it is
normal or abnormal is indicated by a parameter within the
CSTERM session call.

• If the CSTERM session call indicates normal termination,
an orderly termination message is sent to the session
partner's LU.

• If the CSTERM session call indicates abnormal termination,
the following events occur:

The AIF LU terminates the session.

AIF sends an abnormal termination message to inform
host LU.

After the session is terminated, the LU task is again
available for other users.

Abnormal termination can be issued at any time1 the last
session call is cancelled if it is not completed.

NOTE

The CSTERM session call is always made synchronously.

RETURN CODES:

the

The application should check the return code after each
execution of a session call. After the completion of the
CSTERM session call the following combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the session has been
terminated.

3-39 GRll-02

CST ERM

• If the value of another field in RETURN-A is Y, the
session was not terminated as intended, and RETURN-B
contains the return code to indicate the reason for the
error.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSTERM session call can return the following values in
RETURN-B:

Value

0000
0016

Description

No error
Improper state - i.e., normal termination
rejected because data is on receive queue

3-40 GRll-02

CSTEST

CSTEST - Test for Events

The CSTEST session call tests conditions for the session
whose work area address is provided in SNA-WORK-AREA.

FORMAT:

CALL "CSTEST" USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH

DESCRIPTION:

This session call tests conditions for the session currently
being executed. Executing this call causes AIF to
immediately report to the application one of the following
conditions:

1. No event

2. Interrupt received

3. Asynchronous order completed or cancelled

4. Permission to send after a send was rejected due to data
traffic inactive or pacing

5. Data has been received for which there is no outstanding
order.

Conditions 2 and 3 can coexist.

If an interrupt was received, the INTERRUPT-TYPE and the
SENSE-DATA fields in the SNA-WORK-AREA contain information
pertaining to the type of interrupt.

If an asynchronous order were completed or cancelled, then
AIF delivers the return code of the completed order
immediately, and the application must examine all pertinent
fields in the SNA-WORK-AREA.

If data has been received for which there is no outstanding
order, the user must issue a CSRECV session call to gain
access to this data. Nothing is delivered to the user as a
result of the CSTEST session call, but the length of the
received data is found in the INTERRUPT-DATA-LENGTH parameter
of the SNA-WORK-AREA.

3-41 GRll-02

CST EST

NOTE

The CSTEST session call can be executed while an
asynchronous call is outstanding. This session
call is always made synchronously. If there was
an asynchronous order outstanding, the condition
is tested, reported, and the order remains
outstanding. Once the test determines that the
order has been completed, the call is no longer
outstanding.

RETURN CODES:

The application should check both RETURN-A and RETURN-B after
each execution of a session call. After the completion of
the CSTEST call, the following combinations are possible.

• If all Of the fields in RETURN-A are N and RETURN-B=O,
there is an asynchronous call outstanding.

• If SERV-REQ-COMP=Y and RETURN-B=O, then the previously
executed asynchronous call has been completed
successful!~.

• If SERV-REQ-COMP=Y and RETURN-B>O, then the previously
executed asynchronous call has been completed with error.

• If SERV-REQ-CANC=Y and RETURN-B>O, then the previously
executed call has been cancelled for the reason
designated.

In addition to these combinations and the COBOL error codes
described in "checking the Return Code," the CSTEST session
call can return the following values in RETURN-B:

Value Description

0000 No event
0001 Permission to send - i.e., a previous attempt to

send was rejected
0002 Data received but no read

3-42 GRll-02

CSWANY

CSWANY - Wait on Events

The CSWANY session call causes AIF to issue a system "wait
any" on behalf of the application. The application is dormant
until one of the requests is complete.

FORMAT:

CAL,L "CSWANY" USING SNA-WORK-AREA
WORK-AREA-ID

DESCRIPTION:

The CSWANY session call causes execution of the application
program to be suspended until any asynchronous request
terminates. Asynchronous requests other than AIF requests
also cause control to return to the CSWANY session call
executor providing that the P-bit in the request block was
set by the executor prior to the execution of the CSWANY
macrocall.

You must specify an SNA-WORK-AREA when issuing a CSWANY. If
an application has multiple sessions established, specifying
an SNA-WORK-AREA does not imply that the CSWANY responds only
to an event on that session. If an application has more than
one session established, with outstanding asynchronous orders
on multiple sessions, executing a CSWANY session call returns
control to the application with WORK-AREA-ID containing the
session ID of the session whose request has completed.

NOTE

The CSWANY session call is always made synchronously.

RETURN CODES:

The application should check both RETURN-A and RETURN-B after
each execution of a session call. After the completion of
the CSWANY call, the following combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=O, then the previously
executed asynchronous call has been completed
successfully.

• If SERV-REQ-COMP=Y and RETURN-B>O, then the previously
executed asynchronous call has been completed with error.

• If SERV-REQ-CANC=Y and RETURN-B>O, then the previously
executed call has been cancelled for the reason
designated.

3-43 GRll-02

CSACEB

CSACEB - ASCII-to-EBCDIC Conversion

The CSACEB session call converts data from ASCII to EBCDIC.

FORMAT:

CALL "CSACEB" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST~POSITION

CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSACEB session call converts data from ASCII to EBCDIC.
The parameters used with this session call provide the
buffers containing the data to be converted and the converted
data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM-FIELD and the CONVERT-TO-FIELD.

3-44 GRll-02

CSEBAC

CSEBAC - EBCDIC-to-ASCII Conversion

The CSEBAC session call converts data from EBCDIC to ASCII.

FORMAT:

CALL •csEBAC" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST-POSITION
CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSEBAC session call converts data from EBCDIC to ASCII.
The parameters used with this session call provide the
buffers containing the data to be converted and the converted
data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM FIELD and the CONVERT-TO-FIELD.

3-45 GRll-02

Section4
PROGRAMMING

LU TYPE 6.2 CONVERSATIONS
IN ASSEMBLY LANGUAGE

This section describes the Assembly language verbs that are
used in an LU Type 6.2 conversation with host service or
transaction programs. Topics include:

• Basic Conversation Verbs

e Programming considerations
- Getting started
- Creating a verb parameter block
- Conversation states
- Checking the return code

• Individual conversation verbs
- Format
- Descriptions
- Return codes.

BASIC CONVERSATION VERBS

The basic conversation verbs used by AIF are system-provided
macrocalls. These verbs have a list of arguments that can be
specified by the programmer or accepted in their existing form.
AIF verbs follow the conventions for Assembly language, which are
described in detail in the ONE PLUS Assembly Language (MAP)
Reference manual (HE38). The verb can have an optional label.
If no label is used, at least one blank space must precede the
verb.

4-1 GRll-02

When AIF is activated, it defines the resources to be made
available to the session while that conversation is active. AIF
allocates a session for a conversation from a group of available
LU sessions. AIF can either start a session to the host system
at initiation or it can wait for an application to request to
allocate a conversation. The time of session initiation is a
configuration option.

An application requests to allocate a conversation with a
remote transaction program by executing the $SALLO verb. AIF
looks for an available session to allocate for that
conversation. If no session is immediately available, the
application can specify whether control should be returned to the
program. The conversation uses a session for only the time it
takes to execute the verb. After the verb is executed, the
conversation retains its resources until a deallocate verb is
issued or a deallocate confirmation is received from the host
application.

An application gains access to a host-initiated conversation
by executing a $SATCH verb. When an ATTACH command is received
from the host, AIF loads the transaction program by spawning a
group with the attached application as the lead task, and sends a
response to the host that the program is attached. The DPS 6
PLUS programs must issue a $SATCH verb before any other verbs are
issued.

User-selected items are known as arguments. These arguments
.are positional within the verb--the order of positional arguments
indicates the variables to which data is applied. Thus, the
order of your arguments must be the same as the order of the
positional arguments within the verb.

The following rules govern the use of positional arguments:

• Omitted arguments that precede an included argument must
be indicated by the presence of a delimiting comma for
each omission.

• One or more spaces must separate the verb name from its
arguments, with a comma between each argument. (The
horizontal tab character is equivalent to a space.)

• A semicolon at the end of a line indicates that the next
line is a continuation line.

In the following example, the first argument has been
omitted; its position has been held by a delimiting comma.
Spaces separate the verb name from its arguments.

$SALLO ,'AIFNODE1','LU104',=Z'20FOFOFO',AVAIL,CONFIRM

4-2 GRll-02

The arguments for these conversation verbs are found in the
verb parameter block (VPB). A VPB must be provided for each
verb. These fields can be altered either during initialization
or by including the appropriate arguments in the verb itself.

At the completion of each verb, when control is returned to
the application, a return code is placed in register $Rl. The
return code can also be found in VP RCD. This return code
indicates whether a verb has been completed error free. The
application should check this return code after each verb to
verify the return status of the verb. Additional information, if
desired, can be found in the output control word (VP OCT), and
other output parameters as defined for individual session calls.

PROGRAMMING CONSIDERATIONS

Many of the programs that
written in Assembly language.
reentrant and may not require
verb.

use AIF conversation verbs are
These applications may be

more than one occurrence of a given

Special considerations that the programmer must bear in mind
fall into five categories, which are discussed in this section:

• Getting Started
e Creating a verb parameter block
• Conversation state
e Host initiated sessions
• Checking the return code.

Getting Started

When using AIF verbs in an Assembly language program,
remember the following steps:

1. In order to use the verbs and utility macros included
with AIF, you must first make them available to your
program. When beginning your program, include the
following statement:

LIBM '>>LDD>MACROS>MAC USER'

2. Then issue the macrocalls $SVPB and $SAIRC to define the
VPBB and return codes in memory.

3. You must also set aside a workspace with room for the
stack, the VPB, and your send/receive buffer, as in the
following example:

4-3 GRll-02

* * WORK LOCATIONS: STACK, VPB, & SEND/RECEIVE BUFFER
*
WKSP
MY STACK
CNTLWD
MYVPB
BUFFER
BUFSZ
WKSPSZ

EQU
EQU
EQU
EQU
EQU
EQU
EQU

0
ivi<SP+50
MY STACK
CNTLWD+l
MYVPB+VP SIZ
2000
BUFFER+BUF SZ

Verb Parameter Block

BEGINNING OF WORKSPACE
REGISTER STACK
FOR PROGRAM CONTROL
BEGINNING OF VPB
SEND/RECEIVE BUFFER
BUFFER SIZE
WORKSPACE SIZE

Communication between the application program and AIF is
through the application-provided VPB. The programmer should note
that the same VPB is used each time a particular conversation is
referenced until that conversation is deallocated. If a program
is to run multiple conversations, you must supply a separate VPB
for each conversation.

When the application provides parameters with a given verb,
the macrocode updates the appropriate VPB fields before executing
an AIF monitor call. If any of the fields have been changed, the
new values are in the VPB when you reexamine it.

The first parameter of each verb is the location of the VPB,
with the exception of $SWAIT. If not specified as the first
parameter of the verb, this pointer must be in register $B4
Allowable formats for this parameter and all address pointers are
the same as found in the "Addressing Parameters" section of the
System Programmer's Guide, Vol. 2.

Where a value rather than an address is provided in a
parameter, allowable formats are:

1 . { *) $Bl (• $R)
2. LABEL
3. =$Rl
4. =literal
5. !LABEL

Conversation verb users must provide a separate VPB for each
conversation. The programmer can provide the parameters for the
verbs by moving the parameters to the VPB before issuing the verb
(Example 1) or when issuing the verb (Example 2).

The following examples show both methods of creating a VPB
for the $SATCH verb. Which convention you choose to follow
depends upon the requirements of your program.

4-4 GRll-02

Example l:

The following example shows the parameters in the VPB being
loaded before issuing the verb. Offsets to the VPB are
provided in the displacement macro $SVPB. (Refer to the VPB
template in Appendix I for appropriate offsets.)

NODE NM DC
STD NM DC
SLV-VL DC

•
•
•
LDB
LDI
SDI

LDI
SDI

LDR
STR
LDR
STR

'AIF505
'BB'
0

$B4, $B6.VPB
$B6.NODENM
$B4.VP_NOD

$B6.NODENM+2
$B4.VP_NOD+2

$R2,$B6.STD NM
$R2,$B4.VP STD
$R2,$B6.SLV VL
$R2,$B4.VPY,LV

$SATCH

Example 2:

Load VPB address to $B4
Get first 4 bytes of nodename
Store first 4 bytes of
nodename in VPB
Get second 4 bytes of nodename
Store second 4 bytes of
nodename in VPB
Get STD name
Store STD name
Set sync level to none
Store the sync level

The following example shows the $SALLO verb with the
parameters specified within the macrocall.

This sequence causes the equivalent of the following to be
issued:

$SATCH , 1 AIFSOS 1 , 1 BB',NONE

Conversation States

The subset of verbs that a program can issue at a given time
is determined by the state of the conversation at that time. For
example, if a conversation is in receive state, it cannot issue a
send verb without first issuing a verb to change the conversation
to send state. The program must be aware of the state of the
conversation, which can be found in the VP CST field of the VPB.
Executing many of the basic conversation verbs causes the
conversation to change its state.

Table 4-1 lists the conversation states and their
definition. Table 4-2 shows what verbs a conversation can issue
from each state. The description of each verb includes the state
of the conversation at the end of execution.

4-5 GRll-02

Table 4-1. Conversation States

State Definition

Reset The state in which the program can allocate a
conversation.

Send The state in which the program can send data
or request confirmation.

Defer The state in which the program can request
confirmation or flush the LU's send buffer to
prepare to change states~

Receive The state in which the program can receive
· data or confirmation information.

Confirm The state in which the program can send a
confirmation reply.

Table 4-2. Conversation States From Which verbs Can Be Issued

Conversation State

Verb Reset Send Def er Receive Confirm

$SALLO x
$SATCH x
$SCONF x x
$SCNFD x

$SDEAL flush x
$SDEAL sync level x
$SDEAL abend x x x x

$SFLSH x x
$SPONR x
$SPTOR x
$SRAW x x

$SRTOS x x
$SSDAT x
$SSERR x x x
$SWAIT x

4-6 GRll-02

Host-Initiated Conversations

AIF supports host-initiated conversations. The program name,
node name, STD name, and base level are provided to the
application program by AIF via the standard operating system
parameter list. Refer to the System Programmer's Guide, Vol. 2.
When the application program begins execution, it must execute a
$SATCH verb as the first conversation verb, providing the STD
name and the node name for the LU to be used. The node name and
the STD name provided with the $SATCH verb must be the same as
the parameters passed by AIF.

After the $SATCH verb is executed, the application is in
receive state. The $SATCH verb allows AIF access to a
host-initiated conversation. AIF associates the fir.st
unsolicited bind (host-initiated session request) to the first
$SATCH session call from the task group that AIF spawned.

The application can issue multiple $SATCHs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one
conversation, all LUs that can receive binds for that application
must be reserved LUs. Each of these LUs must have the same
group_id specified in the LU entry in the configuration file.

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (eg.,
ATTACH_PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.
Refer-to SNA6 Network Configuration for further
information.

Checking the Return Code

After a session call is executed, AIF returns a status code
known as the return code to the Verb Parameter Block (VPB) to
indicate how the call was completed. The application should
examine this return code at the completion of each verb to
determine if the call has been completed error free.

The return code has 16 bits and is placed in register $Rl by
AIF before control is returned to the application program. The
value of the return code can also be found in VP RCD.

4-7 GRll-02

Bits 0 through 4 have special meaning and represent general
AIF return codes that could occur for any session call. If the
bit is on, then the return code is set. These bits should be
examined individually, then "masked out" so that the application
can examine the remaining bits. The following masks are provided
in the $SAIVR macrocall for checking each of the first five bits
as follows.

Bit 0 VRABND

The conversation has abended or deallocated. An SOPR
command has been entered that caused the conversation to
abend, or the conversation was deallocated by the remote
program. The specific reason for this termination can be
found in the bits 5 through 15 of the return code or in
VP ABT.

Bit l VRSTOP

An SOPR STOP command has been received that causes the
conversation to be deallocated when the specified time has
elapsed. If no time is entered, the conversation is
deallocated immediately. During this time the application
can continue to process, but should normally terminate.

The time found in the TIME argument (VPB.VP TIM) is the
wall clock time in standard 48-bit format at which the
session terminates.

Bit 2 VRRINT

This bit is reserved and should not be used by the
application.

Bit 3 VRSCNL

The verb has been cancelled; it is not processed.
application desires the order to be processed, the
must be reexecuted. The specific reason for which
call has been cancelled can be found in the bits 5
15 of the return code.

Bit 4 VRSCMP

The service request (verb) has been completed.

If the
verb
the
through

A return code can indicate more than one condition occurring
at the same time. For example, it can indicate both a
deallocation and a completed call, or an SOPR STOP and a
completed call.

4-8 GRll-02

The masks VRABND, VRSTOP, VRRINT, VRSCNL, and VRSCMP are
provided for your convenience in checking bits 0 through 4.
After you have checked these bits, null them out and examine bits
5 through 15. If you choose to null these bits by using VRMASK,
which is provided in the software (VRMASK=07FF), use the
following statement:

AND $Rl ,=VRMASK

Bits 5 through 15 contain the return code for a completed or
cancelled call. One way of doing this part of the return code is
to issue a "compare" instruction as follows:

CMR
BE

$Rl , =VROKAY
CONT 1

(VROKAY = 0000)

If the return code contains an "okay" message, branch to the
next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, branch to another segment of the program, or shut down
completely.

Appendix F contains a complete list of return codes. These
labels and their hexadecimal values can be found in the macro
$SAIRC (AIF Return Codes).

INDIVIDUAL VERB FORMATS

Table 4-3 lists the basic conversation verbs that are
supported by AIF. These verbs are described in detail on the
following pages.

4-9 GRll-02

Table 4-3. AIF LU Type 6.2 Verbs

Verb I Description I
$SALLO Allocate verb

$SATCH Attached verb

$SCONF Confirm verb

$SCNFD Confirmed verb

$SDEAL Deallocate verb

$SFLSH Flush verb

$SPONR Post on Receipt verb

$SPTOR Prepare to Receive verb

$SRAW Receive and Wait verb

$SRTOS Request to Send verb

$SSDAT Send Data verb

$SSERR Send error verb

$SWAIT Wait verb

$SACEB Converts ASCII to EBCDIC

$SEBAC Converts EBCDIC to ASCII

4-10 GRll-02

$SALLO

$SALLO - Allocate verb

The $SALLO verb is used to allocate a conversation between a
local program and a remote program.

FORMAT:

[label]

ARGUMENTS:

vpb address

$SAL LO [vpb address]
[, node name]
[,remote lu name]
[,trans program name]
[,std name]
[,return control]
[,sync level]

Pl: $B4
P2: VP NOD
P3: VP-RLN
P4: VP TPN&VP TPL
PS: VP-STD -
P6: VP-ICT.VBRCTL
P7: VP-SLV

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

node name (VP_NOD)

This parameter identifies the AIF node to which the
application is directing this verb. This field contains
eight alphanumeric characters. If you are loading the
VPB yourself, and your node name contains fewer than
eight characters, this field must be left-justified and
space-filled.

remote lu name (VP_RLN)

The name by which the remote LU is known to this
application. This field contains eight alphanumeric
characters. If you are loading the VPB yourself, and the
remote lu name contains fewer than eight characters, this
field must be left-justified and space-filled.

trans program name (VP_TPN + VP_TPL)

This parameter contains the name of the transaction
program to be attached to the host. This host program
becomes the session partner of the program executing this
$SALLO.

4-11 GRll-02

$SALLO

How you enter the transaction program name determines how
the string is passed to the host. If you enter an ASCII
string, =A'name', $SALLO translates the string to EBCDIC
and puts the length of the string in VP TPL. If you
enter a hexadecimal string, =Z'hexname'~ where hexname
contains an even number of hexadecimal digits, $SALLO
puts the length of the string in VP TPL and does not
translate it. -

If you are loading the VPB yourself, clear bit
VP TPL.VBTPNT to indicate that you want the transaction
program name translated, or set this bit to indicate that
you do not want the TPN translated. Put the length of
the transaction program name into the right byte of
VP TPL.

std name (VP_STD)

The configured session type descriptor (STD) that lists
the attributes of the conversation to be allocated, as
defined in the configuration for this node. This field
consists of two alphanumeric characters.

return control (VP_ICT.VBRCTL)

This parameter indicates whether the local LU should
return control to the local program, in the event that it
is unable to allocate a conversation.

The following arguments are valid for this parameter:

• AVAIL - allocates a session for the conversation before
returning control to the program. If the local LU
fails to obtain a session for the conversation, an
allocation error is reported in $SALLO return code.

• IMMED - allocates a session for the conversation if one
is immediately available and then returns control to
the session.

If a session is immediately available, the
conversation is allocated and control is returned
with a return code of OKAY. The local LU must be
the contention winner.

4-12 GRll-02

If a session in not immediately available, the
conversation is not allocated and control is
returned with a return code of VRUNSU.

$SALLO

If a session is immediately available and an error
occurs in allocating a conversation, the error is
reported in the return code for the $SALLO.

NOTE

If an LU is configured with the contention winner
as non-negotiable, the LU must be both reserved
and preestablished to be available for allocation
with a return control of IMMED.

sync level (VP_SLV)

This parameter indicates how the local and remote
programs perform confirmation processing on this
conversation. The following arguments are valid for this
parameter:

• NONE - do not perform confirmation processing on this
conversation. Programs that specify NONE do not issue
any verbs or recognize return parameters related to
synchronization.

• CONFIRM - performs confirmation processing only on
this conversation. Programs that specify CONFIRM
issue verbs and recognize returned confirmation
parameters, but do not recognize return parameters
related to synchronization.

DESCRIPTION:

The $SALLO verb first allocates a session between a local LU
and a remote LU, then allocates a conversation over that
session, between a local program and a remote program, and
puts the conversation in send state. Once you have allocated
a conversation over a session, that session becomes available
to other conversations until this conversation is
deallocated.

The $SALLO verb is used to allocate conversations for either
transaction programs or service component programs. The
parameters issued with this verb identify the partners in the
conversation and provide bind information about the
conversation.

4-13 GRll-02

$SALLO

The $SALLO verb must be issued before any other verbs that
refer to the specified conversation. At the completion of
the $SALLO verb, the conversation enters send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value Label Description

0000 VROKAY OK
0040 VRINOD Invalid node name
0042 VRITPN Invalid transaction program name (null

value)
0049 VRSLNS Synchronization level not supported by LU
004B VRIRTC Invalid return control
0096 VRNNAC Node not yet active
0097 VRNLAC No active LU for session
0098 VRNOAV No LU available for session
0099 VRISTD Invalid STD name
009A VRILUT Invalid LU type in STD

In addition, if you specified a return control of IMMED, the
following return code is possible.

Value Label

0001 VRUNSU

Description

Unsuccessful

4-14 GRll-02

$SATCH

$SATCB - Attached verb

The $SATCB verb is used by an attached program to gain access
to the conversation.

FORMAT:

[label] $SATCB [vpb address]
[,node name]
[,std name]
[,sync level]

ARGUMENTS:

vpb address

Pl: $B4
P2: VP NOD
P3: VP-STD
P4: VP SLV

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

node name (VP_NOD)

This parameter identifies the AIF node to which the
application is directing this verb. This field contains
eight alphanumeric characters. If you are loading the
VPB yourself, and your node name contains fewer than
eight characters, this field must be left-justified and
space-filled.

std name (VP_STD)

The configured session type descriptor (STD) which lists
the attributes of the conversation to be allocated. This
field consists of two alphanumeric characters.

sync level (VP_SLV)

This parameter indicates how the local and remote
programs perform confirmation processing on this
conversation.

The following arguments are valid for this parameter:

• NONE - do not perform confirmation processing on this
conversation. Programs that specify NONE do not issue
any verbs or recognize return parameters related to
synchronization.

4-15 GRll-02

$SATCH

• CONFIRM - performs confirmation processing only on
this conversation. Programs that specify CONFIRM
issue verbs and recognize returned confirmation
parameters, but do not recognize return parameters
related to synchronization.

DESCRIPTION:

The $SATCH verb causes the program to be connected to a,
host-initiated conversation. When the host issues an ATTACH
command to allocate a conversation, AIF loads the DPS 6
transaction by spawning a group with the program as the lead
task. When the program is loaded, it must issue the $SATCH
verb to tell the host that the transaction program has been
attached to the session, and the node name and STD name with
which it is associated.

If the application is intended for host-initiated sessions,
the $SATCH should be the first verb executed. After the
$SATCH verb is executed, the conversation enters receive
state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value

0000
0040
0099
009B
OODO

Label

VROKAY
VRINOD
VRISTD
VRNOAT
VRAESP

Description

OK
Invalid node name
Invalid STD name
No LU attached by Remote TP
Synchronization level not supported by
LU

4-16 GRll-02

$SCONF

$SCONF - Confirm Verb

The $SCONF verb sends a confirmation request to the remote
program.

FORMAT:

[label] $SCONF [vpb address] Pl: $B4

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SCONF verb requests that the remote program send an
acknowledgment, and waits for a response. The $SCONF verb is
used in confirmation processing, and in verifying that the
conversation has been allocated or data has been received.
$SCONF is not used if the conversation has been allocated
with a synchronization level of NONE. This verb causes the
LU to flush its send buffers.

When the $SCONF verb is issued in def er state following a
$SPTOR, the conversation enters receive state. When the
$SCONF verb is issued in def er state following $SDEAL, the
conversation enters reset state. When the $SCONF verb is
issued in send state, the state does not change.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits O through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-17 GRll-02

$SCONF

In addition to the general return codes, the following values
are possible for bits 5 through 15.

Value

0000
0047

0041
0011
0018
OOFl
OOF2
OOF3
0004
0007
0103
0100
0101
0102
0310
0711
0712
0713
0714

Label

VROKAY
VRVBNS

VRIRID
VRNSDF
VRLRNF
VRDAPG
VRDASV
VRDATf.1
VRPEPR
VRSEPR
VRPGER
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

OUTPUT CONTROL WORD

Description

OK
Verb not supported (conversation was
allocated with a sync level of none)
Invalid resource ID
Not in send/defer state
Logical record not finished yet
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Program error--purging
Service program error, purging
Resource failure, no retry
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node
$S abort AIF group

The request to send received field in the output control word
(VP OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state. If VP OCT.VBRRTS is set, then this condition is true.

4-18 GRll-02

$SCNFD

$SCNFD - Confirmed Verb

The $SCONFD verb sends a confirmation response to the remote
program.

FORMAT:

[label] $SCNFD [vpb address] Pl: $B4

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SCNFD verb sends a confirmation to a remote program,
always in response to a request for confirmation. The $SCNFD
verb is used in confirmation processing and error detection.
$SCNFD is not used if the conversation has been allocated
with a synchronization level of NONE.

The what-received parameter of the previous receive and wait
verb determines what state the conversation enters after the
$SCNFD is executed. If the $SRAW returned a confirm
indicator, the conversation enters receive state. If the
$SRAW indicated confirm-send, the conversation enters send
state. If the $SRAW indicated confirm-deallocate, the
conversation enters reset state.

RETURN CODES:

The application should check the.return code after each
execution of a verb. 'Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-19 GRll-02

$SCNFD

In addition to the general return codes, the following values
are possible for bits 5 through 15:

Value

0000
0047

0041
0018

Label Description

VROKAY OK
VRVBNS Verb not supported (conversation was

allocated with a sync level of none)
VRIRID Invalid resource ID
VRNCNF Not in confirm state

4-20 GRll-02

$SDEAL

$SDEAL - Deallocate Verb

The $SDEAL verb deallocates the specified conversation from
the transaction program.

FORMAT:

[label] $SDEAL [vpb address]
[,type]

Pl: $B4
P2: VP TYP

ARGUMENTS:

[,LOG INO LOG]
[,log data buffer]
[,log data length]

P3: VP-ICT.VBLGDA
P4: VP-BUF
PS: VP-DLG

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

type {VP_TYP)

This parameter specifies whether the deallocation is to
be completed as part of this verb or deferred until
another verb is issued or a certain condition is met.

The following arguments are valid for this parameter:

• SYNC L - perform deallocation according to the sync
level specified when the conversation was allocated:

If sync level = NONE, $SDEAL flushes the local LU's
send buffer and deallocates normally.

If sync level = CONFIRM, $SDEAL sends a conf irma­
tion request to the remote LU and, if the return
code is OK, deallocates the conversation normally.
If the return code is UNSUCCESSFUL, $SDEAL returns
the conversation to its previous state.

• FLUSH - flushes the local LU's send buffer and
deallocates the conversation normally.

The following type arguments are for error handling, and
are application-dependent.

• PROG AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

4-21 GRll-02

$SDEAL

• SVC AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

• TIM AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

NOTE

If ABEND deallocation occurs when the conversation
is in send state, logical record truncation can
occur. When the conversation is in receive
state, data purging can occur.

{LOGINO_LOG}

This parameter indicates whether or not the system error
log is transferred to the transaction when the
conversation is deallocated in an ABEND situation.

log data buff er

This parameter is a pointer to the product specific error
data that is kept in the system error logs of the local
and remote LUs. This parameter is used only with an
ABEND deallocation type.

log data length

This parameter specifies the length of the log data
buffer in bytes. The maximum allowable length of this
buffer is 32,767 bytes.

DESCRIPTION:

The $SDEAL verb deallocates the specified conversation from
the transaction program. The parameters issued with this
verb identify the conversation to be deallocated and the type
of deallocation to be performed.

After the $SDEAL verb is executed, the conversation enters
reset state.

NOTE

AIF does not support a state that corresponds to
the AIF deallocate state. If you receive a
deallocate-confirm message after a $SCNFD verb,
the conversation has been deallocated and its
resources returned to the system. The
conversation is then in reset state.

4-22 GRll-02

$SDEAL

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
0 masked out 0 so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible for any execution of the $SDEAL.

Value Label Description

0000 VROKAY OK
0010 VRNSND Not in send state
0018 VRLRNF Logical record not finished yet
004C VRITYP Invalid type specified

If you executed the $SDEAL with a type of ABEND, the
following return codes are possible.

Value

OOlA
004C

Label

VRPDEA
VRITYP

Description

Improper state
Invalid type specified

If you executed the $SDEAL with a type of SYNC L and the
conversation was allocated with synchronization level of
CONFIRM., the following return codes are possible ..

Value

0047

004C
0011
0018
OOBO
ooco
OOCl
OOC2
OOC3
OODO
OODl
OOD2
OOD3

Label

VRVBNS

VRITYP
VRNSDF
VRLRNF
VRAETN
VRAEPI
VRAEIP
VRAESI
VRAECM
VRAESP
VRAERP
VRAENR
VRAETR

Description

Verb not supported (conversation was
allocated with a sync level of none)
Invalid type specified
Not in send/defer state
Logical record not finished yet
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry

4-23 GRll-02

$SDEAL

OOEO
OOFl
OOF2
OOF3
0007

,•

VRAEAN
VRDAPG
VRDASV
VRDATM
VRSEPR

ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Service program error, purging

4-24 GRll-02

$SFLSH - Flush Verb

The $SFLSH verb flushes the local LU's send buffer.

FORMAT:

[label] $SFLSH [vpb address] Pl: $B4

ARGUMENTS:

vpb address

$SFLSH

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SFLSH verb flushes the local LU's send buffer. Any
information that was in the buffer is sent to the remote
LU. The $SFLSH verb is useful for transferring incomplete
buffers of data to the remote LU, thus avoiding a delay in
processing.

If you execute a $SFLSH when the conversation is in def er
state following a $SPTOR, the conversation enters receive
state. If you execute a $SFLSH when the conversation is in
send state, the state of the conversation does not change.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes.that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-25 GRll-02

$SFLSH

In addition to the general return codes, the following values
are possible.

Value

0000
0041
0011
0103
0100
0101
0102
0310
0711
0712
0713

Label

VROKAY
VRIRID
VRNSDF
VRPGER
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA

Description

OK
Invalid resource ID
Not in send/defer state
Resource failure, no retry
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node

4-26 GRll-02

$SPONR

$SPONR - Post on Receipt Verb

The $SPONR verb causes the LU to signal the conversation when
there is information to receive.

FORMAT:

[label] $SPONR [vpb address]
[,fill]
[,length]

Pl: $B4
P2: VP ICT.VBFILL
P3: VP DLG

ARGUMENTS:

vpb address

fill

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

This parameter specifies when posting should occur in
terms of the length specified in the next parameter.

The following arguments are valid for this parameter.

• BUFFER - data is buffered into units of the length
specified in the next parametera Posting occurs when
the buffer is full or the end of data is indicated.

• LL - posting occurs when a complete or truncated
logical record is received, or when part of a logical
record is received that is as long as or longer than
the length specified in the next parameter.

length

This parameter specifies the maximum length of the
receive buffer.

DESCRIPTION:

The $SPONR verb causes the LU to signal the conversation when
there is information to receive. The information can be
data, status information, or a request for confirmation. The
$SPONR can be used with the $SWAIT verb or the $SRAW to allow
you to continue with other program processing while waiting
for data from the host.

4-27 GRll-02

$SPONR

Executing the $SPONR verb does not cause the state of the
conversation to change. In order to execute the $SPONR, you
must be in receive state. If you are not in receive state,
you must first issue the $SPTOR verb.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits O through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value

0000
0041
0016

Label

VROKAY
VRIRID
VRNRCV

Description

OK
Invalid resource ID
Not in receive state

If the return code indicates OKAY and the output control word
indicates that the conversation has been posted, then posting
has occurred and the LU has information that the program can
receive. The program has the option of issuing a $SRAW at
this point or it can ignore this posting by issuing a $SWAIT,
and .receive this data at a later time.

OUTPUT CONTROL WORD

The conversation posted field in the output control word
(VP OCT.VBPOST) indicates whether the conversation has been
posted. If this bit is true, the conversation is posted and
$SRAW can be used to receive data or information. If this
bit is false, posting is active for this conversation and
$SWAIT can be used to wait for posting to occur.

4-28 GRll-02

$SPTOR

$SPTOR - Prepare to Receive verb

The $SPTOR verb changes the state of the specified
conversation from send to receive.

FORMAT:

[label] $SPTOR [vpb address]
[,type]
[,locks]

Pl: $B4
P2: VP TYP
P3: VP-ICT.VBLOCK

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

type

This parameter specifies whether the prepare-to-receive
is to be completed as part of this verb or deferred until
another vd:Jrb is issued or a certain condition is met.

The following arguments are valid for this parameter:

• SYNCLVL - perform the prepare-to-receive according to
the synchronization level specified when the
conversation was allocated:

If sync level = NONE, $SPTOR flushes the local LU's
send buffer and enters the receive state.

If sync level = CONFIRM, $SPTOR sends a
confirmation request to the remote LU and, if the
return code is VROKAY, enters the receive state.
If the return code is VRUNSU, $SPTOR returns the
conversation to its previous state.

• FLUSH - flushes the local LU's send buffer and enters
the receive state.

4-29 GRll-02

$SPTOR

locks

This parameter specifies whether the local program must
wait for a reply when a request for confirmation is
executed following a $SPTOR. This parameter is relevant
only if the conversation was allocated with a sync level
of CONFIRM, and the $SPTOR is executed with a type of
SYNCLVL.

The following arguments are valid for this parameter.

• SHORT - Control is returned to the local program when
an acknowledgment is received.

• LONG - control is returned to the local program when
data is received from the remote program following an
acknowledgment.

DESCRIPTION:

The $SPOTR verb changes the state of the conversation from
send to receive. The parameters issued with this verb
identify the conversation whose state is being changed, the
type of prepare-to-receive to be performed, and when control
is to be returned to the local program after the receive.

After the $SPTOR is executed, the conversation enters receive
state. If the $SPTOR is unsuccessful, the conversation
remains in send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb~ These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

The value you specify for type determines what return codes
are possible. In addition to the general return codes, the
following values are possible for all types.

Value

0000
004C

Label

VROKAY
VRITYP

Description

OK
Invalid type specified

4-30 GRll-02

$SPTOR

In addition, If you executed the $SPTOR with a type of SNCLVL
and the conversation was allocated with synchronization level
of CONFIRM, the following return codes are possible.

Value

0007
0011
0018
0041
0047

OOBO
ooco
OOCl
OOC2
OOC3
OODO
OODl
OOD2
0003
OOEO
OOFl
OOF2
OOF3
0004
0103
0100
0101
0102
0310
0711
0712
0713
0714

Label

VRSEPR
VRNSND
VRLRNF
VRIRID
VRVBNS

VRAETN
VRAEPI
VRAEIP
VRAESI
VRAECM
VRAESP
VRAERP
VRAENR
VRAETR
VRAEAN
VRDAPG
VRDASV
VRDATM
VRPEPR
VRPGER
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

Description

Service program error, purging
Not in send state
Logical record not finished yet
Invalid resource ID
Verb not supported (conversation was
allocated with a sync level of none)
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Program error--purging
Resource failure, no retry
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node
$5 abort AIF group

4-31 GRll-02

$SRAW

$SRAW - Receive and wait Verb

The $SRAW verb causes the LU to wait for data and receive it.

FORMAT:

[label] $SRAW [vpb address]
[,data buffer]
[,data buffer length]
[fill]

Pl: $B4
P2: VP BUF
P3: VP-DLG
P4: VP-ICT.VBFILL

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversatione If not declared.
the address is assumed to be in register $B4.

data buff er

This parameter identifies the buffer set up to receive
the data from the remote program.

data buffer length

fill

This parameter specifies the maximum length of data that
the program can receive.

This parameter specifies whether data is received in
logical record format or by buffers.

The following arguments are valid for this parameter.

• BUFFER - data is buffered into units of the length
specified in the data buffer length parameter. When
the buffer is full or the end of data is indicated, it
is transmitted to the local program.

• LL - Each complete or truncated logical record is
transmitted to the local program. when a logical
record is received that is as long as or longer than
the data buffer length, the logical record is broken
up into units of that length.

4-32 GRll-02

$SRAW

DESCRIPTION:

The $SRAW verb causes the LU to wait for data to arrive at
the specified conversation and receive it. The information
can be data, status information, or a request for
confirmation. If there is data in the receive queue when
this verb is executed, the waiting time is eliminated. After
$SRAW is executed, control is returned to the local program
and the type of information received is indicated.

If the conversation is in send state when this verb is
issued, the local LU flushes its send buffer and the
conversation changes to receive state. A send indicator is

.sent to the remote LU, to notify the remote program that it
can send data to the local program.

The value of the WHAT RECEIVED parameter determines the state
of the conversation after the $SRAW is executed. If
WHAT RECEIVED indicates DATA, DATA COMPLETE, DATA INCOMPLETE,
or LL TRUNCATED, the conversation enters (or remaI'ns in)
receive state. If WHAT RECEIVED indicates SEND, the
conversation enters sena state. If WHAT RECEIVED indicates
CONFIRM, CONFIRM SEND, or CONFIRM DEALLOCATE, the
conversation enters confirm state:

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits O through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value

0000
0002
0003
0004
0014
0018
0041
OOBO
ooco
OOCl

Label

VROKAY
VRPENT
VRPETR
VRPEPR
VRNSOR
VRLRNF
VRIRID
VRAETN
VRAEPI
VRAEIP

Description

OK
Program error, not truncating
Program error, truncating
Program error--purging
Not in send/receive state
Logical record not finished yet
Invalid resource ID
TPN not recognized
PIP not allowed
PIP not specified correctly

4-33 GRll-02

$SRAW

OOC2
OOC3
OODO
0001
OOD2
OOD3
OOEO
OOFO
OOFl
OOF2
OOF3
0006
0005
0007
0103
0100
0101
0102
0310
0711
0712
0713
0714

VRAESI
VRAECM
VRAESP
VRAERP
VRAENR
VRAETR
VRAEAN
VRDANM
VRDAPG
VRDASV
VRDATM
VRSETR
VRSENT
VRSEPR
VRPGER
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Deallocate normal
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Service error, truncating
Service error, not truncating
Service error--purging
Resource failure, no retry
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node
$S abort AIF group

RETURN PARAMETER

actual data length (VP_ADL)

This field contains the length of the received data. The
actual data length includes the two byte binary field
that specifies the logical record length and the length
of the record itself. The length can range from 2 to
7FFF.

OUTPUT CONTROL WORD

The request to send received field in the output control word
(VP OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state.

WHAT RECEIVED

The WHAT RECEIVED field (VP WAR) defines what the transaction
program has received, and should be examined when the return
code is OKAY. The following values are possible within
VP WAR:

4-34 GRll-02

$SRAW

02 SEND (VBRSND)--the remote program has entered receive
state causing the local program to enter send state.
The local program can now issue a $SSDAT.

04 CONFIRM (VBRCNF)--the program has sent a
confirmation request to the local program. The local
program can respond by issuing a $SCNFD or another
verb, such as a $SSERR~

05 CONFIRM DEALLOCATE (VBRCDA)--the remote program has
issued a deallocate with type SNCLVL and a
synchronization level of CONFIRM. The local program
can respond by issuing a $SCNFD or another verb, such
as a $SSERR.o

06 CONFIRM SEND (VBRCSN}--the r program sued
a prepare to receive with type SNCLVL and a
synchronization CONFIRM. The local
can :r or r ve
as a $SSERR ..

was issued with the
f

was

a ze:ro a ccnnplete log
is being received by the program. No data is
to the caller.

14 DATA {VBRDAT)--The $SRAW was issued with the buffer
fill parameter and data is being received by the
program,.

15 DATA COMPLETE (VBRDCP)--The $SRAW was issued with the
LL fill parameter and a complete logical record, or
the completion of a logical record, is being received
by the program$

1'!5 DATA n~COMPLETE (VBRDIC) $SRAW was issued with
LL f parameter and an incomplete logical

record is being received by the program~ The program
must issue one or more additional $SRAWs to receive
the remainder of the logical record.

4-35 GRll-02

$SRTOS

$SRTOS - Request to Send Verb

The $SRTOS verb indicates to the remote program that the
local program is requesting to enter send state.

FORMAT:

[label] $SRTOS [vpb address] Pl: $B4

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SRTOS verb indicates to the remote program that the
local program is requesting to enter send state. When the
local program receives a send indicator in response, the
conversation changes to send state~ .
If a negative response is received, the conversation remains
in receive state. If a positive response is received with a
send indicator, the conversation changes to send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
0 masked out 0 so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible:

Value

0000
0041
0015
0019

Label

VROKAY
VRIRID
VRNRCS
VRCSCD

Description

OK
Invalid resource ID
Not in receive/confirm state
In confirm state (received CONFIRM SEND
or CONFIRM DEALLOCATE on the preceding
$SRAW

4-36 GRll-02

$SSDAT - Send Data Verb

The $SSDAT verb sends data to the remote program.

FORMAT:

[label] $SSDAT [vpb address]
[,data buffer]
[length]

ARGUMENTS:

vpb address

Pl: $B4
P2: VP BUF
P3: VP=DLG

$SSDAT

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

data buff er

This parameter contains a pointer to the local LU's send
buffer. This buffer ·contains the data being sent in the
form of logical records. Each logical record consists of
a two-byte field specifying the length of the data in
that logical record, and the logical record itself. A
buff er can contain any number of complete or partial
records that fills the buffer.

length

This parameter specifies the length of the data in the
local LU's send buffer. This value is independent of the
length of data contained in any individual logical record
and independent of the size of the send buffer. The
maximum length is 32,876 bytes.

DESCRIPTION:

The $SSDAT verb sends data to the remote program. This data
can be data, status information, or confirmation. The data
is formatted into logical records, which are buffered before
being transmitted. A logical record, by definition, can
range from 0002 bytes, including only the LL field, to 7FFF
bytes, including a two-byte LL field and 32765 bytes of data.

Executing the $SSDAT does not change the state of the
conversation.

4-37 GRll-02

$SSDAT

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000
0004
0010
004A
0044
0018
0041
OOBO
ooco
OOCl
OOC2
OOC3
OODO
OODl
OOD2
OOD3
OOEO
OOFl
OOF2
OOF3
0100
0101
0102
0310
0711
0712
0713
0714

VROKAY
VRPEPR
VRNSND
VRIVLL
VRLNER
VRLRNF
VRIRID
VRAETN
VRAEPI
VRAEIP
VRAESI
VRAECM
VRAESP
VRAERP
VRAENR
VRAETR
VRAEAN
VRDAPG
VRDASV
VRDATM
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

OUTPUT CONTROL WORD

OK
Program error--purging
Not in send state
Invalid logical record length
Data length errror
Logical record not finished yet
Invalid resource ID
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node
$S abort AIF group

The request to send received field in the output control word
(VP OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state. This condition is true when VP OCT.VBRRTS is set.

4-38 GRll-02

$SSERR

$SSERR - Send Error Verb

The $SSERR verb indicates to the remote program that an error
has occurred.

FORMAT:

[label]

ARGUMENTS:

vpb address

$SSERR [vpb address]
[,type]
[,LOG INO LOG]
[,log data buffer]
[,log data length]

Pl: $B4
P2: VP TYP
P3: VP-ICT.VBLGDA
P4: VP-BUF
PS: VP_DLG

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

type

This parameter specifies whether the error has occurred
as a result of the application or as a resuit of the LU
services transaction program, to identify to whom the
error should be reported.

The following arguments are valid for this parameter.

• PROG - The error has occurred at the application
level. The resulting error code is reported to the
remote LU.

• SVC - The error has occurred at the LU services.level.

{LOGINO_LOG}

This parameter indicates whether or not the system error
log is transferred to the transaction.

log data buffer

This parameter contains a pointer to the local LU's log
data buffer. This buffer contains the data being sent to
the remote LU's log data buffer.

4-39 GRll-02

$SSERR

log data length

This parameter specifies the length of the data in the
local LU's log data buffer. This value excludes the
logical record length and can be a maximum of 32,763
bytes.

DESCRIPTION:

The $SSERR verb indicates to the remote program that the
local program has detected an error. The parameters issued
with this verb identify the conversation on which the error
has occurred and the type of error which has been detected.
The local LU is in send state and the remote LU in receive
state. If the conversation was in send state when this verb
was issued, the local LU's send buffer is flushed and the
state of the conversation does not change.

If the conversation is in receive or confirm state when the
$SSERR is executed, the conversation enters send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

The state of the conversation when you issue the $SSERR
determines what return codes are possible. In addition to
the general return codes, the following values are possible
after any execution of the $SSERR.

Value

0000
0017
0041
0103
0100
0101
0102
0310
0711
0712
0713
0714

Label

VROKAY
VRNSRC
VRIRID
VRPGER
VRUNBI
VRSSHU
VRURTO
VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

Description

OK
Not in send, receive, or confirm state
Invalid resource ID
Resource failure, no retry
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) 'ABORT' AIF node
$S abort AIF group

4-40 GRll-02

$SSERR

In addition, if the conversation is in send state when you
execute the $SSERR, the following return codes are possible.

Value

OOBO
ooco
OOCl
OOC2
OOC3
OODO
OODl
OOD2
OOD3
OOEO
OOFl
OOF2
OOF3
0004

Label

VRAETN
VRAEPI
VRAEIP
VRAESI
VRAECM
VRAESP
VRAERP
VRAENR
VRAETR
VRAEAN
VRDAPG
VRDASV
VRDATM
VRPEPR

Description

TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Program error--purging

If the conversation is in receive state when you execute the
$SSERR, the following return codes are possible.

Value Label

004C VRITYP
OOBO VRAETN
ooco VRAEPI
OOCl VRAEIP
OOC2 VRAESI
OOC3 VRAECM
OODO VRAESP
OODl VRAERP
OOD2 VRAENR
OOD3 VRAETR . OOEO VRAEAN
OOFO VRDANM
0007 VRSEPR

Description

Invalid type specified
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Deallocate normal
Service program error, purging

If the conversation is in confirm state when you execute the
$SSERR, the following return codes are possible.

Value Label Description

004C VRITYP Invalid type specified

4-41 GRll-02

$SSERR

OUTPUT CONTROL WORD

The REQUEST TO SEND RECEIVED field in the output control word
(VP OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state. This condition is indicated when this bit is set.

4-42 GRll-02

$SWAIT

$SWAIT - Wait Verb

The $SWAIT verb waits for posting to occur on any of a list
of conversations.

FORMAT:

[label] $SWAIT [vpb list]

ARGUMENTS:

vpb list

Pl: $B4

This parameter contains a pointer to the address of the
list of VPBs identifying the conversations on which the
$SWAIT is waiting.

The VPB list consists of a single precision unsigned
integer containing the number of pointers in the list,
followed by a list of the addresses of all of the VPBs
used by the transaction program.

DESCRIPTION:

The $SWAIT verb causes the local program to suspend
processing and wait for posting to occur on any conversation
from a list of conversations. This verb is issued after the
$SPONR (Post on Receipt) verb. Following the $SWAIT verb,
you must execute the $SRAW verb to gain access to the data.

If you have issued the $SPONR to allow the application to
continue other program processing while waiting for data from
the host. The $SWAIT brings you back to the conversation
that has been posted.

Executing the $SWAIT verb does not change the state of the
conversation.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-43 GRll-02

$SWAIT

In addition to the general return codes, the following values
are possible.

Value

0000
0001
0041

0016

Label

VROKAY
VRUNSU
VRIRID

VRNRCV

RETURN PARAMETER

conversation posted

Description

OK
Unsuccessful
Invalid resource ID (the verb parameter
list contains an invalid resource
identifier. $B4 contains the pointer to
this ID.
Not in receive state

The address of the verb parameter block for the
conversation that has been posted is returned in $B4.

If you have multiple conversations, then this parameter
contains the VPB address of the conversation that has
been posted.

4-44 GRll-02

$SACEB - ASCII-to-EBCDIC Conversion Routine

Converts data from ASCII to EBCDIC.

FORMAT:

label $SACEB

ARGUMENT:

There are no arguments associated with this macro.

DESCRIPTION:

$SACEB

These session calls convert data from ASCII to EBCDIC. The
maximum length of data that can be converted by a single call
is 32,767 bytes.

Since IBM handles data in EBCDIC and AIF handles it in ASCII,
you may sometimes wish to convert data from one to the other,
either before sending or after receiving.

The AIF software provides the following macros to perform
these conversions.

$SACEB ASCII-To-EBCDIC Conversion

When this macro is activated, you must initialize registers
$B2, $B4, $R2, $R4, and $R6 to contain the values listed in Table
4-4. If you wish to convert in place, $B2 and $B4 must reference
the same address.

4-45 GRll-02

$SAC EB

Table 4-4. Register Contents at Conversion

Register Contents

$B2 Pointer to buffer to be converted
$B4 Pointer to buff er to contain converted data

$R2 Index for buffer to be converted
$R3 Function code ($SACEB=l; $SEBAC=2)
$R4 Index for buffer to contain converted . $R6 Length of data in bytes

IMPORTANT!

Do not convert the two-byte binary LL field of the
logical record.

4-46

data

GRll-02

$SEBAC

$SEBAC - EBCDIC-to-ASCII Conversion Routine

Converts data from EBCDIC to ASCII.

FORMAT:

label $SEBAC

ARGUMENT:

There are no arguments associated with this macro.

DESCRIPTION:

These session calls convert data from EBCDIC to ASCII. The
maximum length of data that can be converted by a single call
is 32,767 bytes.

Since IBM handles data in EBCDIC and AIF handles it in ASCII,
you may sometimes wish to convert data from one to the other,
either before sending or after receiving.

The AIF software provides the following macros to perform
these conversions.

$SEBAC EBCDIC-To-ASCII Conversion

When this macro is activated, you must initialize registers
$B2, $B4, $R2, $R4, and $R6 to contain the values listed in Table
4-4. If you wish to convert in place, $B2 and $B4 must reference
the same address.

4-47 GRll-02

$SEBAC

Table 4-5. Register Contents at Conversion

Register Contents

$B2 Pointer to buffer to be converted
$B4 Pointer to buff er to contain converted data

$R2 Index for buffer to be converted
$R3 Function code ($SACEB=l; $SEBAC=2)
$R4 Index for buffer to contain converted
$R6 Length of data in bytes

IMPORTANT!

Do not convert the two-byte binary LL field of the
logical record.

4-48

data

GRll-02

Section 5
PROGRAMMING LU TYPE

6.2 CONVERSATIONS IN
COBOL

This section describes the AIF conversation verbs that the
COBOL programmer uses to converse over an LU Type 6.2
conversation with host transaction programs. Topics include:

• COBOL conversation verbs

• Conversation format

• Programming Considerations

WORKING-STORAGE SECTION
Checking the return code
Conversation states
Session calls

COBOL CONVERSATION VERBS

The basic conversation verbs used by AIF in a COBOL
application program call correspond to Assembly language
subroutines using the "CALL ••• USING ••• " verb. These calls are
listed in Table 5-3.

The parameters that these verbs use are defined in the
WORKING-STORAGE SECTION of the COBOL program. In this manual,
these parameters are defined in the discussion of the
WORKING-STORAGE SECTION and are listed without redefinition in·
the format description of each conversation verb.

5-1 GRll-02

At the completion of each execution of a verb, when control
is returned to the application, a return code is placed in the
RETURNS field. This return code indicates whether a verb has
been completed error free. The application should check the
return code after each execution of a verb to verify that the
execution was completed error-free.

Sample COBOL programs is provided in Appendix C to
demonstrate an AIF application in a COBOL program.

CONVERSATION FORMAT

The conversation verbs used by A!F in a COBOL program
reference Assembly language subroutines which include
system-provided macrocalls. The COBOL conversation verbs have a
list of arguments that must be specified each time a verb is
executed. These arguments, which you define in the ·
WORKING-STORAGE SECTION, correspond to parameters in the verb
parameter block (VPB) tpat are used by the Assembly language
subroutine. These arguments are positional and must be included
each time the verb is issued. The AIF COBOL conversation verbs
follow the conventions for COBOL (described in detail in the ONE
PLUS COBOL 74 Language Reference Manual (HE34).

When an AIF conversation is activated, it defines the
resources to be made available to the session while that
conversation is active. AIF allocates a session for a
conversation from a group of available LU sessions. AIF can
either request a session to the host system at initiation or it
can wait for an application to request to allocate a conversation
before requesting a session. The time of logon is a
configuration option.

An application requests to allocate a conversation with a
remote transaction program by executing the CSALLO verb. AIF
looks for an available session to allocate for that
conversation. If no session is immediately available, the
application can specify whether control should be returned to the
program. The conversation uses a session for only the time it
takes to execute the verb. After the verb is executed, the
conversation retains its resources until a deallocate verb is
issued or a deallocate-confirmation is received from the host
application.

An application gains access to a host-initiated conversation
executing a CSATCH verb. When an ATTACH command is received from
the host, AIF loads the transaction program by spawning a group
with the attached application as the lead task, and sends a
response to the host that the program is attached. If the DPS 6
or DPS 6 PLUS program is intended to be part of a host-initiated
session, it must execute the CSATCH verb before any other verbs
are issued.

5-2 GRll-02

PROGRAMMING CONSIDERATIONS

The special considerations that the COBOL programmer must
bear in mind fall into the following categories.

e WORKING-STORAGE SECTION
• Conversation state
• Host-initiated sessions
• Linking the program
• Checking the return code
• Conversation format.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION defines the area to be used as
the SNA work area. The parameters specified in these fields are
passed to the VPB when the conversation verbs are executed.

The following parameters must be defined in the WORKING­
STORAGE SECTION. These parameters are used to create the verb
parameter block which is used by the Assembly language
subroutines you are calling.

Figure 5-1 shows a sample WORKING-STORAGE SECTION in which
the SNA work area has been defined. The data-names that are used
here are examples; you can name them according to your own naming
conventions.

These fields are defined as follows:

SNA-WORK-AREA

This input parameter is the name of a contiguous memory
area that is at least 200 bytes long. This corresponds
to the verb parameter block (VPB) argument of the
Assembly language conversation verbs.

Example:

SNA-WORK-AREAl PIC X(200). '

NODE-NAME

This parameter identifies the AIF node on the DPS 6 or
DPS 6 PLUS to which the application is directing this
verb. This field can contain up to eight alphanumeric
characters.

Example:

77 NODE-NAME PIC X{8) VALUE "AIFSOl".

5-3 GRll-02

DATA DIVISION.
WORKING-STORAGE SECTION.
77 SNA-WORK-AREAl
77 NODE-NAME
77 REMOTE-LU-NAME
77 CONVERSATION-ID
77 TRANS-PROGRAM-NAME
77 TRANS-TPN
77 NO-TRANS-TPN
77 STD-NAME
77 RETURN-CONTROL
77 SYNC-LEVEL
77 TYPE
77 LOG
77 NO-LOG
01 LOG-DATA-RECORD

05 LL
05 GDS-ID
05 LOG-DATA

77 LOG-DATA-SIZE
77 LOCKS
77
77
77
77
77
77
01

01

77
77
77
01
77
01
01

SEND-BUFFER
SEND-BUFFER-SIZE
RECEIVE-BUFFER
RECEIVE-BUFFER-SIZE
RECEIVED-DATA-LENGTH
FILL
RETURNS.
02 RETURN-A.

03 ABEND-DEALLOCATE
03 STOP-RCVD PIC
03 SERV-REQ-CANC
03 SERV-REQ-COMP
03 COBOL-ERROR

02 RETURN-B
OUTPUT-CONTROL-WORD.
02 REQ-TO-SEND-RCVD
02 CONV-POSTED
02 WHAT-RECEIVED
POSTED-CONV-ID
RCVD-SENSE
CONVERT-FROM-FIELD
CONVERT-FROM-LEFT-POSIT
CONVERT-TO-FIELD
CONVERT-TO-LEFT-POSIT
CONVERSION-LENGTH

PIC X(200).
PIC X(8) V1tLUE "AIF501". I

PIC X(8) VALUE "A06CICS".
PIC X(4).
PIC X{8) VALUE "TP42".
PIC X VALUE "Y".
PIC X VALUE "N".
PIC XX VALUE "BB".
PIC X VALUE "A".
PIC X VALUE "C".
PIC X VALUE "S!!.
PIC X VALUE "L".
PIC X VALUE "N".
PIC 9 (5) •
COMP-1 VALUE 84.
COMP-1.
PIC X(80).
PIC 9 (5) VALUE 80
PIC X VALUE "S".
PIC
PIC
PIC
PIC
PIC
PIC

v/on'
A \OV J •

9(5) VALUE 80.
X(80).
9(5) VALUE 80.
9(5) VALUE 0.
X VALUE "B".

PIC X VALUE "N".
X VALUE "N".

PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N".
PIC 9(4) VALUE O.

PIC X VALUE "N".
PIC X VALUE "N".
PIC 99.
PIC X (4) •
PIC X (8) •
PIC X (20).
COMP-1 VALUE 1 •
PIC X(20).
COMP-1 VALUE 6.
COMP-1 VALUE 10.

Figure 5-1. working-Storage Section for LU Type 6.2

5-4 GRll-02

REMOTE-LU-NAME

The name by which the remote LU is known to this
application. This field can contain up to eight
alphanumeric characters. This name equates to the
application VTAM macro at the IBM host.

Example:

77 REMOTE-LU-NAME

CONVERSATION-ID

PIC X(8) VALUE "A06CICS".

This parameter returns a unique four-character
conversation-id which is supplied by AIF.

Example:

77 CONVERSATION-ID PIC X(4).

TRANS-PROGRAM-NAME

This parameter contains the name of the transaction
program to be attached to the host. This host program
becomes the session partner of the local program.

Example:

77 TRANS-PROGRAM-NAME

TRANSLATE-TPN
NO-TRANSLATE-TPN

PIC X{8) VALUE "TP42".

This parameter specifies whether the transaction program
name specified above requires translation from ASCII to
EBCDIC.

Example:

77 TRANS-TPN
77 NO-TRANS-TPN

STD-NAME

PIC X VALUE "Y".
PIC X VALUE "N".

The configured session type descriptor (STD) which lists
the attributes of the conversation to be allocated. This
field consists of two alphanumeric characters and is
defined at AIF configuration time.

Example:

77 STD-NAME PIC XX VALUE "BB".

5-5 GRll-02

RETURN-CONTROL

This parameter indicates whether-the local LU should
return control to the local program, in the event that it
is unable to allocate a conversation.

The following arguments are valid for this parameter:

• A (AVAIL) - allocates a session for the conversation
before returning control to the program.

• I (IMMEDIATE) - allocates a session for the
conversation if one is immediately available and then
returns control to the session.

Example:

77 RETURN-CONTROL PIC X VALUE "A".

SYNC-LEVEL

This parameter indica.tes how the local and remote
programs perform confirmation processing on the specified
conversation.

The following arguments are valid for this parameter:

• N (NONE) - do not perform confirmation processing on
this conversation. Programs that specify NONE do not
issue any verbs or recognize return parameters related
to synchronization.

• C (CONFIRM) - performs confirmation processing only on
this conversation. Programs that specify CONFIRM
issue verbs and recognize returned confirmation
parameters.

TYPE

Example:

77 SYNC-LEVEL PIC X VALUE "C".

This parameter specifies whether the execution of the
verb is to be completed as part of this verb or deferred
until another verb is issued or a condition is met.

The following arguments can be used for this parameter:

• S (SYNCLVL) - executes the verb according to the
synchronization level specified when the conversation
was allocated:

5-6 GRll-02

LOG

• F (FLUSH) - flushes the local LU's send buffer and
executes the verb.

The following TYPE arguments are used for error handling
and are application dependent.

• p (ABEND PROG) - with CSDEAL, flushes the local LU'S
send buffer when the conversation is in send or def er
state and deallocates normally.

• v (ABEND_SVC) - with CSDEAL, flushes the local LU'S
send buffer when the conversation is in send or def er
state and deallocates the conversation abnormally.

• T (ABEND TIMER) - with CSDEAL, flushes the local LU'S
send buffer when the conversation is in send or defer
state and deallocates the conversation abnormally.

Example:

77 TYPE PIC X VALUE "S".

This parameter indicates whether or not the system error
log is transferred to the transaction when deallocating
the conversation. The value of LOG is L; the value of
NO-LOG is N. If you specify that error logging should
occur, the TYPE parameter must be specified as P, v, or
T.

Example:

77 LOG
77 NO-LOG

PIC X VALUE "L".
PIC X VALUE "N".

LOG-DATA

This parameter is a pointer to the product specific error
data that is kept in the system error logs of the local
and remote LUs. Error data is declared in the General
Data Stream record format as described in the IBM SNA
Format and Protocol Reference Manual for LU '!YPe 6:2:"
The record must start on a word boundary and all fields
must be filled by the application. This parameter is
only used with an ABEND deallocation type.

5-7 GRll-02

Example:

01 LOG-DATA-RECORD.
05 LL
05 GDS-ID
05 LOG-DATA

LOG-DATA-SIZE

PIC 9(4) COMP-1 VALUE 84~
PIC 9 COMP-1.
PIC X (80).

This parameter specifies the length of the LOG-DATA.

Example:

77 LOG-DATA-SIZE PIC 9(5) VALUE 80

LOCKS

This parameter specifies whether the local program waits
for a reply when a request for confirmation points is
executed following a CSPTOR (prepare to receive) verb.

The following arguments are valid for this parameter.

• S (SHORT) - Control is returned to the local program
when an acknowledgement is received.

• L (LONG) - control is returned to the local program
when data is received from the remote program
following an acknowledgment.

SEND-BUFFER

This parameter identifies the buffer which holds the data
to be sent to the remote program. This buff er contains
the data being sent in the form of logical records. Each
logical record consists of a two-byte field specifying
the length of the data in that logical record, and the
logical record itself. A buffer can contain any number
of complete or partial records that fills. the buffer.

Example:

77 SEND-BUFFER

SEND-BUFFER-SIZE

PIC X(80).

This parameter specifies the length of the SEND-BUFFER.

Example:

77 SEND-BUFFER-SIZE PIC 9(5) VALUE 80.

5-8 GRll-02

RECEIVE-BUFFER

This parameter identifies the buffer which receives the
data from the remote program.

Example:

77 RECEIVE-BUFFER

RECEIVE-BUFFER-SIZE

PIC X(80).

This parameter specifies the length of the
RECEIVE-BUFFER.

Example:

77 RECEIVE-BUFFER-SIZE PIC 9(5) VALUE 80.

RECEIVED-DATA-LENGTH

This parameter specifies the actual length of the data
which has been received from the remote program.

FILL

Example:

77 RECEIVED-DATA-LENGTH PIC 9(5).

This parameter specifies how the program receives data in
terms of the logical record format of the data. The
following arguments are valid for this parameter.

• B (BUFFER) - data is buffered into units of the length
specified in the LENGTH parameter, independent of its
logical record format. The verb is executed when the
buffer is full or the end of data is indicated.

• L (LL) - the verb is executed when.a complete or
truncated logical record is received, or when part of
a logical record is received that is at least ~s long
as the length specified in the LENGTH parameter.

Example:

77 FILL PIC X VALUE "B".

RETURNS

This output parameter defines the field into which the
return code from all AIF session calls is placed. The
RETURNS field is divided into RETURN-A, which consists of
five yes/no conditions, and RETURN-B, which contains a
four character decimal status code to provide further
detail about the conditions indicated in RETURN-A.

5-9 GRll-02

RETURN-A reports the following conditions:

• ABEND-DEALLOCATE--the conversation has Abended.
• STOP-RCVD--SOPR stop command has been received~
• SERV-REQ-CANC--This request has been cancelled.
• SERV-REQ-COMP--This request has been completed.
• COBOL-ERROR--A COBOL interface error has occurred.

Example:

01 RETURNS.

TIMEOUT

02 RETURN-A.
03 ABEND-DEALLOCATE
03 STOP-RCVD
03 SERV-REQ-CANC
03 SERV-REQ-COMP
03 COBOL-ERROR
02 RETURN-B

PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N".
PIC X VALUE "N".
PIC 9(4) VALUE O.

This output parameter provides a formatted data area for
the date and time that a session must be stopped when a
STOP command is processed for the session or node. This
field must be 14 decimal digits long, as in the following
format:

Example:

01 TIMEOUT
02 DATEl.

03 yy
03 MM
03 DD

02 TIMEl.
03 HH
03 MN
03 ssss

RCVD-SENSE

PIC 99 VALUE O.
PIC 99 VALUE O.
PIC 99 VALUE 0.

PIC 99 VALUE 0.
PIC 99 VALUE O.
PIC 9(4) VALUE O.

This output parameter contains the hexadecimal
representation of the sense data from the host if sense
data is present. This field corresponds to VP ESD in the
VPB.

Example:

77 RCVD-SENSE PIC X(8).

5-10 GRll-02

OUTPUT-CONTROL-WORD

This output parameter provides information about the
received data. The characteristics that can be specified
are listed below. Each of these parameters must be
stated. The possible values for the first two parameters
are "Y" or "N". For the third parameter refer to the
Receive and Wait (CSRAW) verb for the possible
parameters.

01 OUTPUT-CONTROL-WORD.
02 REQ-TO-SEND-RCVD
02 CONV-POSTED
02 WHAT-RECEIVED

CONVERT-FROM-FIELD

PIC X VALUE "N".
PIC X VALUE "N".
PIC 99.

This input parameter defines the buffer to be converted
by the ASCII-to-EBCDIC conversion subroutines. The
maximum size of this buffer is 32,767 bytes.

Example:

77 CONVERT-FROM-FIELD PIC X(20).

CONVERT-FROM-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-FROM-FIELD.

Example:

01 CONVERT-FROM-LEFT-POSIT COMP-1 VALUE 1.

CONVERT-TO-FIELD

This input parameter defines the buffer into which the
converted data will be placed by the ASCII-to-EBCDIC
conversion subroutines. The maximum size of this buffer
is 32,767 bytes.

Example:

77 CONVERT-TO-FIELD PIC X(l5).

CONVERT-TO-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-TO-FIELD.

Example:

01 CONVERT-TO-LEFT-POSIT COMP-1 VALUE 6.

5-11 GRll-02

CONVERSION-LENGTH

This input parameter contains the length in bytes of the
data to be converted. The maximum length of this data is
32,767 bytes.

Example:

01 CONVERSION-LENGTH COMP-! VALUE 10.

Conversation States

The subset of verbs that a program can issue at a given time
is determined by the state of the conversation at that time. For
example, if a conversation is in receive state, it cannot issue a
send verb without first issuing a verb to change the conversation
to send state. The program must be aware of the state of the
conversation. Executing many of the basic conversation verbs
causes the conversation to change its state.

Table 5-1 lists the conversation states and their
definition~ The description of each verb includes the state of
the conversation at the end of execution. Table 5-2 shows what
verbs a conversation can issue from each state.

Table 5-1. Conversation States

State Definition

Reset The state in which the program can allocate a
conversation.

Send The state in which the program can send data
or request confirmation.

Def er The state in which the program can request
confirmation or flush the LU's send buffer to
prepare to change states.

Receive The state in which the program can receive
data or confirmation information.

Confirm The state in which the program can send a
confirmation reply.

5-12 GRll-02

Table 5-2. Conversation States From Which Verbs Can Be Issued

Conversation State

Verb Reset Send Def er Receive Confirm

CS AL LO x
CSATCH x
CSCONF x
CSCNFD x
CSDEAL flush x
CSDEAL sync level x
CSDEAl abend x x x x
CSFLSH x x
CSPONR x
CSPTOR x
CS RAW x x
CSRTOS x x
CS SD AT x
CS SERR x x x
CSWAIT x

Bost-Initiated Sessions

AIF supports host-initiated sessions; that is, it accepts
unsolicited binds.

When the application program begins execution, it must issue
a CSATCB session call as the first session call, providing the
STD name and the node name for the LU to be used. The CSATCH
session call allows the AIF application access to a host-
ini tiated conversation. AIF associates the first unsolicited
bind (host-initiated session request) to the first CSATCH session
call from the task group that AIF spawned.

AIF accepts the session and looks for the program name in the
first four bytes of the first record received, then spawns a
group based on the ATTACH PROGRAM entry. If none is provided,
default values are used to spawn the group.

The application can issue multiple CSATCHs to check for
additional host-initiated sessions intended for this
application. Each of these LUs must have the same group_id
specified in the LU entry in the configuration file.

5-13 GRll-02

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (eg.,
ATTACH PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.
Refer-to SNA6 Network Configuration for further
information.

Linking the Program

If a COBOL application program is written as a program to be
attached, that is, it includes an ATTACHED verb (CSATCH), then a
LINKAGE SECTION ·must be included in the program. The LINKAGE
SECTION must include three entries to accommodate the node name,
STD name, and base level, as in the following example:

LINKAGE SECTION.
77 NODE PIC X(8).
77 STD PIC XX.
77 BASE LVL PIC 99.
PROCEDURE DIVISION USING NODE, STD, BASE_LVL.

The LINKAGE SECTION is necessary whether the program is to be
compiled using COBOLA or COBOLM. The programs are coded in the
same way, regardless of which compiler is used, but they are
linked differently.

Within the COBOL application program, the three fields in the
LINKAGE SECTION must be moved to corresponding fields in
WORKING-STORAGE before they can be used in any AIF calls.

Two sample LINK directive sets are presented below to
demonstrate the different Linker directives you can use. The
following matrix shows which set you should use, based upon LU
type, whether you are writing an attached program, and the COBOL
compiler you are using.

Compiler used:

ATTACHED
calls used:

No ATTACHED
calls used:

COBO LA

4

2

COBOLM

2

2

5-14 GRll-02

.•

LINK DIRECTIVE SET 1

&N
&A
LINKER &l
LIB >LDD>ZCART/
LIB >LDD>ZCMRT*
LINK &l
LINK CSPHRA
MAP
QT

* Use either LIB, where ZCART is used for COBOLA and ZCMRT
is used for COBOLM.

LINK DIRECTIVE SET 2

&N
&A
LINKER &l
LIB >LDD>ZCART
LINKN CSLEAD
LINK &l
LINK CSPHRA
MAP
LDEF CBLADR,&l
QT

NOTES

The module CSPHRZ is the parameter processing
routine for LU Type 6.2 calls.

Programs compiled by COBOLM automatically have the
node name, STD name, and base level moved to the
LINKAGE SECTION. Programs compiled by COBOLA use
the CSLEAD Linker module to perform this
function. This module must be linked into the
bound unit of .any program that executes a CSACPT

• or CSATCH and is compiled using COBOLA.

Refer to the Multiuser COBOL Compiler User's Guide
(HE32) for information about linking programs ·
compiled under COBOLA and COBOLM into a single
bound unit ..

Checking the Return Code

On return from AIF, a COBOL interface routine fills the
output parameter fields with the VPB results from the subroutine.

5-15 GRll-02

After the session call is made, a return code is placed in
the RETURNS field. The RETURNS field is divided into RETURN-A,
which consists of five yes/no conditions, and RETURN-B, which
contains a four-character decimal status code, known as the
return code, to provide further detail about the conditions
indicated in RETURN-A.

The following values are possible for RETURN-A:

• ABEND-DEALLOCATE--The conversation has ABENDed, the LU'S
receive buffer has been flushed, and the conversation has
been deallocated.

• STOP-RCVD--An SOPR STOP command received.. If the TIME
argument is supplied with the STOP command, check the
TIME field for the time at which the session will be
ended. This field indicates how much time you have to
complete the session.

• SERV-REQ-CANC--This request has been cancelled. The
application must issue it again if necessary.

• SERV-REQ-COMP--This request has been completed.

e COBOL-ERROR--Error in using COBOL interface to AIF. See
RETURN-B for return code.

If the value of COBOL-ERROR is Y, then an error has occurred
in the COBOL interface to AIF. Following are the general COBOL
return codes that can be received in RETURN-B after executing any
of the verbs to indicate a COBOL error. The value of XX is the
number of the parameter in which there is an error.

Code

XXOl
XX02
XX03
XX04
xxos
XX06
XX07
XX08
XX09
XXlO
XXll

Meaning

Unrecognized parameter
Parameter must be 1 byte long
Parameter must be 5 bytes long
Default not acceptable
Node name error
Remote LU name error
Not session-ID
Unknown interrupt type
Nondecimal digit
Nonhexadecimal digit
Error in conversion

The values of both RETURN-A and RETURN-B should be checked
after the execution of each verb. Since it is possible to have
more than one Y value in RETURN-A, and to have a value greater
than zero after a successfully completed call, the application
should check all fields in RETURN-A and RETURN-B for all possible
combinations.

5-16 GRll-02

If the return code contains a "no error" message, go to the
next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, go to another segment of the program, or shut down
completely.

Additional return codes are listed with the individual
conversation verbs to which they pertain. The return codes and
their values are listed in Appendix F.

INDIVIDUAL VERB FORMAT

Table 5-3 lists the basic conversation verbs that are
supported by AIF. These verbs are described in detail on the
following pages.

Table 5-3. AIF LU Type 6.2 Verbs

Verb Description

CS AL LO Allocate verb
CSATCH Attached verb
CSCONF Confirm verb
CSCNFD Confirmed verb
CSDEAL Deallocate verb
CSFLSH Flush verb
CSPONR Post on Receipt verb
CSPTOR Prepare to Receive verb
CSRAW Receive and Wait verb
CSRTOS Request to Send verb
CSSDAT Send Data verb
CS SERR Send error verb
CSWAIT Wait verb
CSACEB ASCII-EBCDIC Conversion
CSEBAC EBCDIC-ASCII Conversion

5-17 GRll-02

CSALLO

CSALLO - Allocate verb

The CSALLO verb is used to allocate a conversation between a
local program arid a remote program~

FORMAT:

CALL "CSALLO" USING SNA-WORK-AREA
NODE-NAME
REMOTE-LU-NAME
CONVERSATION-ID
TRANS-PROGRAM-NAME
TRANS-TPNINO-TRANS-TPN
STD-NAME
RETURN-CONTROL
SYNC-LEVEL

DESCRIPTION:

RETURNS
TIMEOUT
RCVD-SENSE
OUTPUT-CONTROL-WORD

The CSALLO verb first initiates a session between a local LU
and a remote LU, then allocates a conversation over that
session, between a local program and a remote program, and
puts the conversation in send state. Once you have allocated
a conversation over a session, that session becomes
unavailable to other conversations until this conversation is
deallocated.

The CSALLO verb is used to allocate conversations for either
transaction programs or service component programs. The
parameters issued with this verb identify the partners in the
conversation and initialize the returned fields.

The CSALLO verb must be issued before any other AIF verbs
that refer to the specified conversation.

When issuing the CSALLO, you have the option of whether you
want to wait for an available session or to return control to
the local program for processing if one is not immediately
available. These options are addressed by the RETURN-CONTROL
parameter.

5-18 GRll-02

CSALLO

1. The A (AVAIL) option allocates a session for the
conversation before returning control to the program. If
the local LU fails to obtain a session for this
conversation, an allocation error is reported in the
CSALLO return code.

2. The I (IMMED) option allocates a session for the
conversation if one is immediately available and then
returns control to the session. The following conditions
are possible:

• If a session is immediately available, the
conversation is allocated and control is returned with
a return code of OK. The IMMED option requests that a
local LU is the contention winner.

• If a session in not immediately available, the
conversation is not allocated and control is returned
with a return code of unsuccessful.

• If a session is immediately available and an error
occurs in allocating a conversation, the error is
reported in the return code.

NOTE

If the LU is configured with the contention winner
as nonnegotiable, an LU must be both reserved and
preestablishede

The CSALLO verb must be issued before any other verbs that
refer to the specified conversation.. At the completion of
the CSALLO verb, the conversation enters send state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSALLO verb, the following
combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the conversation has
been allocated •

• If the value Of another field in RETURN-A is Y, the CSALLO
was not allocated successfully and RETURN-B contains the
return code to indicate the reason for the error.

5-19 GRll-02

CSALLO

The value that you specified for the RETURN-CONTROL
parameter determines which return codes are possible.
The following values are possible in RETURN-B for any
value of RETURN-CONTROL.

Value

0000
0064
0066
0073
0075
0150
0151
0152
0153
0154

Description

OK
Invalid node name
Invalid transaction program name (null value)
Synchronization level not supported by LU
Invalid return control
Node not yet active
No active LU for session
No LU available for session

..
Invalid STD name
Invalid LU type in STD

In addition, if you specified a return control of IMMED, the
following value is possible:

Value

0001

Description

Unsuccessful

5-20 GRll-02

CSATCH

CSATCH - Attached Verb

The CSATCH verb is used by an attached program to gain access
to the coversation.

FORMAT:

CALL •csATCHn USING SNA-WORIC-AREA
NODE-NAME
REMOTE-LU-NAME
CONVERSATION-ID
STD-NAME
RETURN-CONTROL
SYNC-LEVEL

DESCRIPTION:

RETURNS
TIMEOUT
RCVD-SENSE
OUTPUT-CONTROL-WORD

The CSATCH verb causes an application to connect to a
host-initiated conversation. When the host issues an ATTACH
command to allocate a conversation, AIF loads the local
transaction by spawning a group with the program as the lead
task. When the program is loaded, the COBOL program must
issue the CSATCH verb to direct AIF to associate the session
to this COBOL program.

The CSATCH verb can be issued with the following values for
SYNC-LEVEL:

• NONE - do not perform confirmation processing on this
conversation. Programs that specify NONE do not issue any
verbs or recognize return parameters related to

. synchronization.

• CONFIRM - performs confirmation processing only on this
conversation. Programs that specify CONFIRM issue verbs
and recognize returned confirmation parameters, but do not
recognize return parameters related to synchronization.

If the application is intended to connect to a host-initiated
session, the CSATCH must be the first verb executed. After
the CSATCH verb is executed, the conversation enters receive
state.

5-21 GRll-02

CSATCH

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSATCH verb, the following
combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=O, the attached program
now has access to the session.

• If the value Of another field in RETURN-A is Y, the CSATCH
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible in RETURN-B:

Value

0000
0064
0073
0153
0155

Description

OK
Invalid node name
Synchronization level not supported by LU
Invalid STD name
No LU attached by remote TP

5-22 GRll-02

CS CO NF

CSCONF - Confirm Verb

The CSCONF verb sends a confirmation request to the remote
program.

FORMAT:

CALL "CSCONF" USING SNA-WORlC-AREA

DESCRIPTION:

The CSCONF verb requests that the remote program send an
acknowledgement, and waits for a response. The CSCONF verb
is used for confirmation processing and in verifying that the
conversation has been allocated or data has been received.
CSCONF is not used if the conversation has been allocated
with a synchronization level of NONE. This verb causes the
LU to flush its send buffers.

When the CSCONF verb is issued in defer state following a
CSPTOR, the conversation enters receive state. When the
CSCONF verb is issued in defer state following CSDEAL, the
conversation enters reset state. When the CSCONF verb is
issued in send state, the state does not change.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSCONF verb, the following
combinations are possible.

e If SERV-REO-COMP=Y and RETURN-B=O, the request for
confirmation has been sent.

• If the value Of another field in RETURN-A is Y, the CSCONF
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible in RETURN-B:

Value

0000
0004
0007
0017
0024
0065

Description

OK
Program error--purging
Service program error, purging
Not in send/def er state
Logical record not finished yet
Invalid resource ID

5-23 GRll-02

CSCONF

0071 Verb not supported (conversation was allocated
with a sync level of none)

0241 Remote deallocation--ABEND program
0242 Remote deallocation-~ABEND service
0043 Remote deallocation--ABEND timer
0256 Session unbound by host unexpectedly
0257 Session shutdown by host orderly
0258 You are timed out by SOPR command
0259 Resource failure, no retry--session abort due to

unrecoverable protocol errror
0784 ACTLU/DACTLU received
1809 Link failure
1810 ACTPU/DACTPU received
1811 $A (SOPR) ABORT AIF node
1812 $S ABORT AIF group

OUTPUT CONTROL WORD

The REQ-TO-SEND-RCVD field in the OUTPUT-CONTROL-WORD
indicates whether the remote program has issued a request to
send notification, requesting the local program to enter
receive state. The remote program enters send state.

5-24 GRll-02

CSCNFD

CSCNFD - Confirmed Verb

The CSCNFD verb sends a confirmation reply to the remote
program.

FORMAT:

CALL "CSCNFD" USING SNA-WORK-AREA

DESCRIPTION:

The CSCNFD verb sends a confirmation to a remote program,
always in response to a request for confirmation. The CSCNFD
verb is used in confirmation processing and error detection
and follows a receive-and-wait verb (CSRAW). CSCNFD is not
used if the conversation has been allocated with a
synchronization level of NONE.

The WHAT-RECEIVED parameter of the CSRAW verb determines what
state the conversation enters after the CSCNFD is executed.
If the CSRAW returned a CONFIRM indicator, the conversation
enters receive state. If the CSRAW indicated CONFIRM-SEND,
the conversation enters send state. If the CSRAW indicated
CONFIRM-DEALLOCATE, the conversation enters reset state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSCNFD verb, the following
combinations are possible.

• If SERV-REQ-COMP=Y and RETURN-B=O, the confirmation
response has been sent.

• If the value Of another field in RETURN-A is Y, the CSCNFD
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible in RETURN-B:

Value Description

0000 OK
0007 Service program error, purging
0018 Not in confirm state
0065 Invalid resource ID
0071 Verb not supported (conversation was allocated

with a sync level of none)

5-25 GRll-02

CSCNFD

0256 Session unbound by host unexpectedly
0257 Session shutdown by host orderly
0258 You are timed out by SOPR command
0784 ACTLU/DACTLU received
1809 Link failure
1810 ACTPU/DACTPU received
1811 $A (SOPR) ABORT AIF node
1812 $S ABORT AIF group

5-26 GRll-02

CS DEAL

CSDEAL - Deallocate Verb

The CSDEAL verb deallocates the specified conversation from
the transaction program.

FORMAT:

CALL •csDEAL· USING SNA-WORK-AREA
TYPE

DESCRIPTION:

LOG I NO-LOG
LOG-DATA

The CSDEAL verb deallocates the specified conversation from
the transaction program. The parameters issued with this
verb identify the conversation to be deallocated and the type
of deallocation to be performed.

When issuing the CSDEAL, the TYPE parameter allows you to
specify whether the deallocation is to be completed as part
of this verb or deferred until another verb is issued or a
certain condition is met. The following options are
available with the TYPE parameter.

• SYNC-LEVEL (S) - performs confirmation processing before
deallocating the conversation:

If SYNC-LEVEL were none, CSDEAL flushes the local LU'S
send buffer and deallocates normally.

If SYNC-LEVEL were confirm, CSDEAL sends a confirmation
requests to the remote LU and, if the return code is
OK, deallocates the conversation no~mally. If the
return code is UNSUCCESSFUL, CSDEAL returns the
conversation to its previous state.

• FLUSH (F) - flushes the local LU's send buffer and
deallocates the conversation normally.

• ABEND PROG (P) - flushes the local LU's send buffer when
the conversation is in send or defer state and deallocates
normally.

• ABEND SVC {V) - flushes the local LU's send buffer when
the conversation is in send or defer state and deallocates
the conversation abnormally.

5-27 GRll-02

CSDEAL

• ABEND TIM (T) - flushes the local LU's send buffer when
the conversation is in send or def er state and deallocates
the conversation abnormally.

If ABEND deallocation occurs when the conversation is in send
state, logical record truncation can occur. When the
conversation is in receive state, data purging can occur.

After the execution of the CSDEAL verb, the conversation
enters reset state.

NOTE

AIF does not support a state that corresponds to
the AIF deallocate state. If you receive a
deallocate-confirm message after a CSCNFD verb,
the conversation has been deallocated and its
resources returned to the system. The
conversation is then in reset state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSDEAL verb, the following
combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the confirmation
response has been sent.

• If the value of another field in RETURN-A is Y, the CSCNFD
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The SYNC-LEVEL at which the conversation was allocated
determines the return codes that are possible for this call.

If you executed the CSDEAL with a type of SNCLVL and the
conversation was allocated with synchronization level of NONE
or a type of FLUSH, the following return codes are possible
in RETURN-B.

Value

0000
0016
0024
0076

Description

OK
Not in send state
Logical record not finished yet
Invalid type specified

5-28 GRll-02

CSDEAL

If you executed the CSDEAL with a type of ABEND, the
following return codes are possible:

Value

0000
0026
0076

Description

OK {deallocation is complete)
Improper state
Invalid type specified

If you executed the CSDEAL with a type of SYNC-LEVEL and the
conversation was allocated with synchronization level of
CONFIRM, the following return codes are possible:

Value

0000
0007
0017
0024
0071

0076
0176
0192
0193
0194
0195
0208
0209
0210
0211
0224
0241
0242
0243

Description

OK
Service program error, purging
Not in send/defer state
Logical record not finished yet
Verb not supported (conversation was allocated
with a sync level of none)
Invalid type specified
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer

5-29 GRll-02

CSFLSH

CSFLSH - Flush Verb

The CSFLSH verb flushes the local LU's send buffer.

FORMAT:

CALL "CSFLSH" USING SNA-WORK-AREA

DESCRIPTION:

The CSFLSH verb flushes the local LU's send buffer. Any
information that was in the buff er is sent to the remote
LU. The CSFLSH verb is useful for transferring incomplete
buffers of data to the remote LU, thus avoiding a delay in
processing. ·

If you execute a CSFLSH when the conversation is in defer
state following a CSPTOR, the conversation enters receive
state. If you execute a CSFLSH when the conversation is in
send state, the state of the conversation does not change.

RETURN CODES:

The application should check the return code after each verb
is issued to dete~mine if the call has been completed error
free. After the execution of the CSFLSH verb, the following
combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the LU's receive buffer
has been flushed.

• If the value of another field in RETURN-A is Y, the CSFLSH
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible for RETURN-B:

Code Meaning

0000 OK
0017 Not in send/defer state
0065 Invalid resource ID
0256 Session unbound by host unexpectedly
0257 Session shutdown by host orderly
0258 You are timed out by SOPR command
0259 Resource failure, no retry--session abort due to

unrecoverable protocol error

5-30 GRll-02

CSFLSH

0784 ACTLU/DACTLU received
1809 Link failure
1810 ACTPU/DACTPU received
1811 $A {SOPR) ABORT AIF node
1812 $S ABORT AIF group

5-31 GRll-02

CSPONR

CSPONR - Post on Receipt verb

The CSPONR verb causes the LU to post the conversation when
there is information to receive.

FORMAT:

CALL "CSPONR" USING SNA-WOP.K-AREA

DESCRIPTION:

FILL
RECEIVE-BUFFER-SIZE

The CSPONR verb causes the LU to signal the conversation when
there is information to receive. The information can be
transmitted data, status information, or a request for
confirmation. The CSPONR can be used with the CSWAIT verb or
the CSRAW verb to allow the application to continue with
other processing while waiting for data from the host.

The FILL parameter allows you to specify whether posting
should occur when a logical record is received or when the
receive buffer is full.

Executing the CSPONR verb does not cause the state of the
conversation to change. In order to execute the CSPONR, you
must be in receive state. If you are not in receive state,
you must first issue the CSPTOR verb.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSPONR verb, the following
combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the CSPONR has been
successfully issued.

• If the value of another field in RETURN-A is Y, the CSPONR
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

If the the return code indicates OKAY and the output control
word indicates that the conversation has been posted, then
posting has occurred and the LU has information that the
program can receive. The program has the option of issuing a
CSRAW at this point or it can ignore this posting by issuing
a CSWAIT and receive this data at a later time.

5-32 GRll-02

The following values are possible for RETURN-B:

Value

0000
0022
0065

Description

OK
Not in receive state
Invalid resource ID

OUTPUT CONTROL WORD

CSPONR

The CONVERSATION-POSTED field in the OUTPUT-CONTROL-WORD
indicates whether the conversation has been posted. If this
parameter has a value of Y, the conversation is posted and
CSRAW can be used to receive data or information. If this
parameter has a value of N, posting has not occurred for this
conversation and CSWAIT can be used to wait for posting to
occur.

5-33 GRll-02

CSPTOR

CSPTOR - Prepare to Receive Verb

The CSPTOR verb changes the state of the conversation to
receive state.

FORMAT:

CALL ncsPTOR" USING SNA-WORK-AREA
TYPE
LOCKS

DESCRIPTION:

The CSPTOR verb changes the state of the conversation from
send to receive. The parameters issued with this verb
identify the conversation whose state is being changed, the
type of prepare-to-receive to be performed, and when control
is to be returned to the local program after the receive.

The TYPE parameter allows you to specify whether to perform
confirmation processing (SYNCLVL) before preparing to receive
or to flush the send buffer (FLUSH}.

The locks parameter allows you to specify whether the local
program waits for a reply when a request for confirmation is
executed following a CSPTOR. This parameter is relevent only
if the conversation was allocated with a synchronization
level of CONFIRM, and the CSPTOR is executed with a type of
SYNCLVL.

After the CSPTOR is executed, the conversation enters receive
state. If the CSPTOR is unsuccessful, the conversation
remains in send state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After .the execution of the CSPTOR verb, the following
combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the CSPTOR has been
successfully issued.

• If the value Of another field in RETURN-A is Y, the CSPTOR
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

5-34 GRll-02

CSPTOR

The following values are possible for RETURN-B:

Value

0000
0076

Description

OK
Invalid type specified

In addition, if you executed the CSPTOR with a type of SNCLVL
and the conversation was allocated with synchronization level
of CONFIRM, the following return codes are possible.

Value

0004
0007
0016
0024
0065
0071

0176
0192
0193
0194
0195
0208
0209
0210
0211
0224
0241
0242
0243
0256
0257
0258
0259

0784
1809
1810
1811
1812

Description

Program error--purging
Service program error, purging
Not in send state
Logical record not finished yet
Invalid resource ID
Verb not supported (conversation was allocated
with a sync level of none)
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
Resource failure, no retry--session abort due to
unrecoverable protocol error
ACTLO/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) ABORT AIF node
$S ABORT AIF group

5-35 GRll-02

CSRAW

CSRAW - Receive and Wait verb

The CSRAW verb causes the LU to wait for data on the receive
queue and receive it.

FORMAT:

CALL •csRAW" USING SNA-WORK-AREA
RECEIVE-BUFFER
RECEIVE-BUFFER-LENGTH
FILL
RECEIVED-DATA-LENGTH

DESCRIPTION:

The CSRAW verb causes the LU to wait for data to arrive at
the specified conversation and receives it~ The information
can be data, status information, or a request for
confirmation. If there is data in the receive queue when
this verb is executed, the waiting time is eliminated. After
CSRAW is executed, control is returned to the local program
and the type of information received is indicated.

If the conversation is in send state when this verb is
issued, the local LU flushes its send buffer and the
conversation changes to receive state. A send indicator is
sent to the remote LU, to notify the remote program that it
can send data to the local program.

The receive buffer is made up of logical records. The first
two bytes of the buffer indicate the length of the buffer.
If you want to convert the data you receive, you must first
break it down into the record length and the logical record.
Do not convert the record length field.

The FILL parameter allows you to specify whether the program
receives data in logical record format or buffers it.

If the conversation is in send state when this verb is
issued, the local LU flushes its send buffer and the
conversation changes to receive state. A send indicator is
sent to the remote LU, to notify the remote program that it
can send data to the local program.

5-36 GRll-02

CS RAW

The value of the WHAT-RECEIVED parameter determines the state
of the conversation after the $SRAW is executed. If WHAT­
RECEIVED indicates WAR-DATA, DATA-COMPLETE, DATA-INCOMPLETE,
or LL-TRUNCATED, the conversation enters (or remains in)
receive state. If WHAT-RECEIVED indicates WAR-SEND, the
conversation enters send state. If WHAT-RECEIVED indicates
CONFIRM, CONFIRM-SEND, or CONFIRM-DEALLOCATE, the
conversation enters confirm state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSRAW verb, the following
combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the conversation has
received the data successfully.

• If the value of another field in RETURN-A is Y, the CSRAW
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible for RETURN-B:

Value

0000
0002
0003
0004
0005
0006
0007
0020
0024
0065
0176
0192
0193
0194
0195
0208
0209
0210
0211
0224
0240
0241

Description

OK
Program error, not truncating
Program error, truncating
Program error--purging
Service error, not truncating
Service error, truncating
Service error--purging
Not in send/receive state
Logical record not finished yet
Invalid resource ID
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Deallocate normal
Remote deallocation--ABEND program

5-37 GRll-02

CSRAW

0242 Remote deallocation--ABEND service
0243 Remote deallocation--ABEND timer
0256 S~ssion unbound by.host unexpectedly
0257 Session shutdown by host orderly
0258 You are timed out by SOPR command
0259 Resource failure, no retry--session abort due to

unrecoverrable protocol error
0784 ACTLU/DACTLU received
1809 Link failure
1810 ACTPU/DACTPU receive¢!
1811 $A (SOPR) ABORT AIF node
1812 $S ABORT AIF group

RECEIVE-DATA-LENGTH

This field contains the actual length of the received
data, when WHAT-RECEIVED is a DATA indicator. The
RECEIVED-DATA-LENGTH includes the two-byte binary field
that specifies the logical record length and the length
of the record itself. The length can range from 2 to
32,767 characters.

OUTPUT-CONTROL-WORD
'

The REQ-TO-SEND-RCVD field in the OUTPUT-CONTROL-WORD
indicates whether the remote program has issued a request
to send notification, requesting the local program to
enter receive state and placing itself in send state.

WHAT-RECEIVED

The WHAT-RECEIVED field defines what the transaction
program has received, and should be examined when the
return code is SERV-REQ-COMP. The following values are
possible for WHAT-RECEIVED.

2 SEND INDICATOR RECEIVED--the remote program has
entered receive state causing the local program to
enter send state. The local program can now issue a
CSSDAT.

4 CONFIRM REQUEST RECEIVED--the remote program has sent
a confirmation request to the local program. The
local program can respond by issuing a CSCNFD or
another verb, such as a CSSERR.

5-38 GRll-02

CS RAW

5 CONFIRM DEALLOCATE--the remote program bas issued a
deallocate with type SNCLVL and a synchronization
level of CONFIRM. The local program can respond by
issuing a CSCNFD or another verb, such as a CSSERR.

6 CONFIRM SEND RECEIVED--the remote program has issued
a prepare to receive with type SNCLVL and a
synchronization level of CONFIRM. The local program
can respond by issuing a CSCNFD or another verb, such
as a CSSERR.

8 LL-TRUNCATED--The CSRAW was issued with the LL FILL
parameter and the length field is received
truncated. The program does not receive the length
of the data.

9 DATA INCOMPLETE WHEN LENGTH=O--The $SRAW was issued
with a LENGTH of zero and an incomplete logical
record is being received by the program. No data is
passed to the caller.

10 DATA AVAILABLE WHEN LENGTH=O--The $SRAW was issued
with a LENGTH of zero and a complete logical record
is being received by the program. No data is passed
to the caller.

20 DATA--The CSRAW was issued with the buffer FILL
parameter and data is being received by the program.

21 DATA-COMPLETE--The CSRAW was issued with the LL FILL
parameter and a complete logical record, or the
completion of a logical record, is being received by
the program.

22 DATA-INCOMPLETE--The CSRAW was issued with the LL •
FILL parameter and an incomplete logical record is
being received by the program. The program must
issue one or more additional CSRAWs to receive the
remainder of the logical record.

5-39 GRll-02

CSRTOS

CSRTOS - Request to Send Verb

The CSRTOS verb indicates to the remote program that the
local LU has data to send.

FORMAT:

CALL ncsRTOSn USING SNA-WORK-AREA

DESCRIPTION:

The CSRTOS verb indicates to the remote program that the
local program is requesting to enter send state. The local
LU has data to send. This data can include program data,
status information, or confirmation data. When the local
program receives a send indicator in response, the
conversation changes to send state.

If a negative response is received, the conversation remains
in receive state. If a positive response is received, the
conversation enters send state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSRTOS verb, the following
combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the request to send has
received the data successfully.

• If the value of another field in RETURN-A is Y, the CSRTOS
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The following values are possible for RETURN-B:

Value

0000
0021
0025

0065

Description

OK
Not in receive/confirm state
In confirm state (received CONFIRM SEND or
CONFIRM DEALLOCATE on the preceeding CSRAW
Invalid resource ID

5-40 GRll-02

CS SD AT

CSSDAT - Send Data Verb

The CSSDAT verb sends data to the remote program.

FORMAT:

CALL ncsSDATn USING SNA-WORIC-AREA
SEND-BUFFER
SEND-BUFFER-LENGTH

DESCRIPTION:

The CSSDAT verb sends data to the remote program. This data
can be data, status information, or confirmation. The data
is formatted into logical records, which are buffered before
being transmitted. A logical record includes the record
being sent and the two-byte binary field specifying the
length of the data being sent. A logical record, by
definition, can range from 2 bytes, including only the LL
field, to 7FFF bytes, including a two-byte LL field and 32765
bytes of data.

NOTE

If you are going to translate data, you must
translate it before you move it to the logical
record, in order not to translate the binary
record length field.

Executing the CSSDAT does not change the state of the
conversation.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSSDAT verb, the following
combinations are possible:

• If SERV-REQ-COMP=Y and RETURN-B=O, the send has been
executed successfully.

• If the value of another field in RETURN-A is Y, the CSSDAT
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

5-41 GRll-02

CS SD AT

The following values are possible for RETURN-B:

Value

0000
0004
0005
0016
0065
0068
0074
0176
0192
0193
0194
0195
0208
0209
0210
0211
0224
0241
0242
0243
0256
0257
0258
0259

0784
1809
1810
1811
1812

Description

OK
Program error--purging
Service program error, purging
Not in send state
Invalid resource ID
Data length error
Invalid logical record length
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
Resource failure, no retry--session abort due to
unrecoverable protocol error
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) ABORT AIF node
$S ABORT AIF group

OUTPUT CONTROL WORD

The REQ-TO-SEND-RCVD field in the OUTPUT-CONTROL-WORD
indicates whether the remote program has issued a request to
send notification, requesting the local program to enter
receive state and placing itself in send state.

5-42 GRll-02

CS SERR

CSSERR - Send Error Verb

The CSSERR verb indicates to the remote program that an error
has occurred.

FORMAT:

CALL "CSSERR" USING SNA-WORK-AREA
TYPE

DESCRIPTION:

LOG NO-LOG
LOG-DATA
LOG-DATA-SIZE

The CSSERR verb indicates to the remote program that the
local program has detected an error. The parameters issued
with this verb identify the conversation on which the error
has occurred and the type of error which has been detected.
The local LU is in send state and the remote LU in receive
state. If the conversation was in send state when this verb
was issued, the local LU's send buffer is flushed and the
state does not change.

The TYPE parameter indicates whether you are sending a
program error (ABSEND PROG) or a service error (SVC_ERROR).
These errors are application-dependent.

If the conversation is in receive or confirm state when the
CSSERR is executed, the conversation enters send state.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSSERR verb, the following
combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the send has been
executed successfully.

• If the value Of another field in RETURN-A is Y, the CSSDAT
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

The state of the conversation when you issue the CSSERR
determines what return codes are possible. The following
values are possible for RETURN-B, following any execution of
the CSSERR verb:

5-43 GRll-02

CSSERR

Value

0000
0023
0065
0256
0257
0258
0259

0784
1809
1810
1811
1812

Description

OK
Not in send, receive, or confirm state
Invalid resource ID
Session unbound by host unexpectedly
Session shutdown by host orderly
You are timed out by SOPR command
Resource failure, no retry--session abort due to
unrecoverable protocol error
ACTLU/DACTLU received
Link failure
ACTPU/DACTPU received
$A (SOPR) ABORT AIF node
$S ABORT AIF group

In addition, if the conversation is in send state when you
execute the CSSERR, the following return codes are possible.

Value

0004
0007
0176
0192
0193
0194
0195
0208
0209
0210
0211
0224
0241
0242
0243

Description

Program error--purging
Service program error, purging
TPN not recognized
PIP not allowed
PIP not specified correctly
Security not valid
Conversation type mismatch
Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry
TP not available--retry
ACC not valid
Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer

If the conversation is in confirm state when you execute the
CSSERR, the following return codes are possible.

Code - Meaning

0076 Invalid type specified

5-44 GRll-02

CS SERR

If the conversation is in receive state when you execute the
CSSERR, the following return codes are possible.

Code Meaning

0076 Invalid type specified
0176 TPN not recognized
0192 PIP not allowed
0193 PIP not specified correctly
0194 Security not valid
0095 Conversation type mismatch
0208 Sync level not supported by program
0209 Reconnect level not supported by program
0210 TP not available--no retry
0211 TP not available--retry
0224 ACC not valid
0240 Deallocate normal

OUTPUT CONTROL WORD

The REQ-TO-SEND-RCVD field in the OUTPUT-CONTROL-WORD
indicates whether the remote program has issued a request
to send notification, requesting the local program to
enter receive state and placing itself in send state.

5-45 GRll-02

CSWAIT

CSWAIT - Wait verb

The CSWAIT verb waits for post~ng to occur on any of a list
of conversations.

FORMAT:

CALL "CSWAI'l'" USING SNA-WORK-AREAl
SNA-WORK-AREA2

DESCRIPTION;

•
SNA-WORK-AREAN
POSTED-CONV-ID

The CSWAIT verb causes the local program to suspend
processing and wait for posting to occur on any conversation
from a list of conversations. This verb is issued after the
CSPONR (Post on Receipt) verb to allow synchronous processing
of multiple conversations. Following the CSWAIT verb, you
must execute the CSRAW verb to access the data. If you have
issued the CSPONR to allow the application to continue other
program processing while waiting for data from the host, the
CSWAIT brings you back to the conversation that has been
posted.

Executing the CSWAIT verb does not change the state of the
conversation.

RETURN CODES:

The application should check the return code after each verb
is issued to determine if the call has been completed error
free. After the execution of the CSWAIT verb, the following
combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=O, the CSWAIT has been
executed successfully.

• If the value Of another field in RETURN-A is Y, the CSWAIT
was not successful and RETURN-B contains the return code
to indicate the reason for the error.

5-46 GRll-02

CSWAIT

The following values are possible for RETURN-B

Value

0000
0001
0022
0065

Description

OK
Unsuccessful

Not in receive state
Invalid resource ID {the verb parameter list
contains an invalid resource identifier. $B4
contains the pointer to this ID)

OUTPUT-CONTROL-WORD

The CONVERSATION-POSTED parameter of the OUTPUT-CONTROL­
WORD indicates whether or not a conversation has been
posted. The address of the conversation that has been
posted appears in POSTED-CONV-ID. If you have multiple
conversations, then this parameter contains the VPB
address of the conversation that has been posted.

5-47 GRll-02

CSACEB

CSACEB - ASCII-to-EBCDIC Conversion

The CSACEB verb call converts data from ASCII to EBCDIC.

FORMAT:

CALL "CSACEB" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST-POSITION
CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSACEB verb converts data from ASCII to EBCDIC. The
parameters used with this verb provide the buffers containing
the data to be converted and the converted data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM FIELD and the CONVERT-TO-FIELD.

IMPORTANT!

Do not convert the two-byte binary length field of
the logical record.

5-48 GRll-02

CSEBAC

CSEBAC - EBCDIC-to-ASCII Conversion

The CSEBAC verb converts data from EBCDIC to ASCII.

FORMAT:

CALL "CSEBAC" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST-POSITION
CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSEBAC verb converts data from EBCDIC to ASCII. The
parameters used with this verb provide the buffers containing
the data to be converted and the converted data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM FIELD and the CONVERT-TO-FIELD.

IMPORTANT!
Do not convert the two-byte binary length field of
the logical record.

5-49 GRll-02

Section 6
RESTART

This section describes the procedures for restarting an LU
Type 0 session that has been abnormally terminated. Topics
include:

• Configuration Options

- Preestablished Session Groups
- Reserved LUs

• Normal Termination

• Abnormal Termination

• Restart Logic

• Confirmation

• Release Time

• Message Resynchronization

• Rules for restart.

6-1 GRll-02

CONFIGURATION OPTIONS

The application programmer has the option of allowing AIF to
assign any available LU to a session or defining preestablished
session groups during configuration with or without reserved
LUs. A preestablished session group is a group of one or more
permanent sessions that are preestablished for later use when AIF
is brought up.

All sessions in the group are established with one host LU
and are preestablished using one Session Type Descriptor (STD).
Subsequent application calls for sessions to that host LU, which
specify the appropriate STD, cause the AIF to assign an available
LU from this group to the calling application.

Preestablished session groups and reserved LUs are specified
during the configuration of AIF.

Preestablished Sessi~n Groups

An AIF node can be configured to contain more than one
preestablished session groups. If high traffic to a particular
host LU is anticipated, a number of permanent sessions can be
established to reduce the overhead required to establish these
sessions each time a $SINIT/CSINIT session call is executed.

When an application requests a session by executing a $SINIT
or CSINIT session call, a session from a preestablished session
group will be assigned if one is available. If a preestablished
session is not available, AIF assigns an available LU to the
application. The assigned LU then executes the procedure for
establishing an LU-LU session on behalf of the caller.

When an application using a preestablished session executes a
$STERM or CSTERM session call, AIF does not actually terminate
the LU-LU session but makes this permanent session available for
other $SINIT/CSINIT session call requests.

Reserved LUs

An LU can be reserved for special use by specifying
RESERVED=Y in the LU entry of the configuration file. If an LU
is reserved, an STD name must be provided. In order for an
application to gain access to a reserved LU, the STD name
specified with the $SINIT or CSINIT session call must be the STD
name associated with this LU address in the configuration of the
LU entry.

A reserved LU can also be preestablished. Preestablishing a
reserved LU saves the time required to establish a session when
you execute a $SINIT or CSINIT session call. Preestablishing the
session for a reserved LU does not assign it to a group.

6-2 GRll-02

NORMAL TERMINATION

Normal termination can occur when the session is completed by
the $STERM or CSTERM session call or when an SOPR command is
executed. The SOPR commands, STOP, ALTER, and SHUTDOWN, initiate
an orderly termination to the current session. These commands do
not cause the session to be held for restart.

ABNORMAL TERMINATION

Abnormal termination can occur for any of the following
reasons:

• LU is deactivated.

• Session is unbound unexpectedly.

• SDLC link failure (LU reactivated by the AIF node
recovery). ·

• CICS/IMS transaction program ABEND.

• A DPS 6 PLUS or a DPS 6 application program issues $STERM
or CSTERM abnormally.

• An operating system $S ABORT command aborts the
application task group.

RESTART LOGIC

You can restart an.abnormally terminated session by executing
a $SINIT or CSINIT session call. The parameters that you provide
in the $SINIT or CSINIT session call determine whether the call
is being used to initiate a session or restart one.

When you initiate a session using the $SINIT or CSINIT
session call, you should store the two-word session id
(SCCB.SC SID in assembly language programs1 the SESSION-ID field
in COBOL-programs). In order to restart a session after abnormal
termination, you have to provide this session id. You also have
to provide the most recent send and receive sequence numbers and
the last message. In assembly language programs, these are found
in SCCB.SC SQN and SCCB.SC RSQ, respectively. In COBOL programs,
these numbers are found in-the MSG-RESYNC-SEND- SON and
MSG-RESYNC-RCV-SQN fields. These sequence numbers should be
stored after each send and receive in order to have the most
current numbers available in case of abnormal termination.

NOTE

The session id and the send and receive sequence
numbers are system supplied. If a session
terminates abnormally, you do not have access to
these values unless you have previously stored
them.

6-3 GRll-02

RESTART INITIALIZATION REQUEST

After a session has been successfully initiated, using the
$SINIT or CSINIT session call, the application has the option of
notifying AIF that the session should be held for restart. The
application makes this request by executing the $SSI or CSSI
session call (send interrupt} with the interrupt type ENAPRS
(Enable Application Restart) to enable restart in the event of
abnormal termination.

This request is required to ensure that an application can be
restarted. The session is not held without confirmation
regardless of the configuration of the STD "Release on Abnormal
Termination" parameter.

If you decide to negate this confirmation, execute the $SSI
or CSSI session call with the interrupt type DSAPRS (Disable
Application Restart).

The application must restart the abnormally terminated
session within the time specified in the STDs "Release on
Abnormal Termination" parameter. Once the specified release time
has elapsed, it is no longer possible to restart a session. If
the application attempts to restart an abnormally terminated
session that is not being held for restart, a return code of
RCRSRF (restart failure) is returned. The sense data field shows
the exact reason for this failure.

RELEASE TIME

The configuration of the STD used at session initiation
determines how long the abnormally terminated session is to be
held for restart. The three possibilities are:

1.

2.

3.

If the STD
configured

If the STD
configured

If the STD
configured
n. • number

"Release on Abnormal Termination" parameter is
IMMEDIATE, the session is not held at all.

"Release on Abnormal Termination" parameter is
HOLD, the session is held indefinitely.

"Release on Abnormal Termination" parameter is
N(n ••), the session is held for the specified
of minutes.

The "Release on Abnormal Termination" can be overridden by
the use of SNA Operator (SOPR) Control commands.

6-4 GRll-02

MESSAGE RESYNCHRONIZATION IN ASSEMBLY LANGUAGE

If the $SINIT call successfully restarts a session, the
application should examine the output control word in the SCCB
(SC_OCT).

An assembly language program should check for the following
possible values.in SCCB.SC_OCT:

1. If the output control word indicates SCRSTS, then the
host has sent the •ready to sena• message and SC_SQN and
SC RSQ contain the new sequence numbers for the restarted
session.

2. If the output control word indicates SCL6RX, then the
last message being sent by the local program was lost,
and the local application must retransmit the last whole
message.

3. If the output control word indicates SCHORX, then the
last message being sent by the host was lost, and the
host must retransmit its last whole message, and the
local application must execute a receive.

MESSAGE RESYNCHRONIZATION IN COBOL

If the CSINIT call successfully restarts a session, the
application should examine the OUTPUT-CONTROL-WORD field.

A COBOL program should check for the following possible
values in the OUTPUT-CONTROL-WORD:

1. If the SET-SEND-RECV-SEQ = ny•, then the host has sent
the •ready to send• message and MSG-RESYNC-SEND-SQN and
MSG-RESYNC-RCV-SQN contain the new sequence numbers for
the restarted session.

2. If APPL-RESEND-REQUIRED= ny•, then the last message
being sent by the DPS 6 or DPS 6 PLUS was lost, and the
local application must retransmit the last whole message.

3. If HOST-RESEND-REQUIRED= •y•, then the last message
being sent by the host was lost, and the host must
retransmit its last whole message, and the local
application must execute a receive.

RULES FOR RESTART

When you attempt to restart a session that has abnormally
terminated, you must restart it from the original task in which
it was executing. The only time you may attempt to restart a
session from a task other than the original task is when the
application task group has been aborted.

6-5 GRll-02

If a session has abnormally terminated due to task group
termination, the application can restart the session from any
other group using the $SINIT or CSINIT session call, specifying
RESTART and the correct session ID. If you must restart a
session that has been terminated in this manner, the following
restrictions apply:

l. The application cannot have any other sessions active
when attempting to restart.

2. The session that is restarted is given the option of
restarting all of the aborted sessions of its session
group.

Figure 6-1 demonstrates a task restarting its sessions~

APPLICATION
PROGRAM

TASK

----r:::l
I I

SESSION

SESSION

85-273

Figure 6-1. Session Restart

Each of these sessions has been running in the same task.
When one or more of the sessions has been abnormally terminated,
the abnormally terminated sessions must be restarted from the
original task. The application program has the option of
restarting each session individually~

6-6 GRll-02

SectWn 7
SUPPORT AND

MAINTAINABILITY

This section discusses the role of SNA in supporting and
maintaining the Application Interface Facility (AIF). Topics
include the following:

• SNA Operator Services
• Maintenance Utilities
• Communications Network Management

- AIF Alerts
- AIF Maintenance Statistics.

SNA OPERATOR SERVICES

The control operator can use the SOPR facilities of the SNA
Transport Facility for the following:

• Changing the state Of an AIF LU (ALTER)

• Determining the status of an LU session (STATUS)

• Clearing the correspondence between a local LU, a local
application program, and the host system (ABORT, SHUTDOWN,
STOP).

These commands can be entered through the SOPR menu system or
from a command line. The SOPR commands and their arguments are
described in detail in the SNA6 Operator's Guide (GXlO).

7-1 GRll-02

MAINTENANCE UTILITIES

The following SNA6 maintenance utilities are provided by the
operating system (MOD 400 or HVS 6 PLUS) and aid in isolating
problems:

• Trace/Software Probe Points

AIF supports the Data Base Augmented Real-Time Tracing
System (DARTS) utility that allows the user to take a
snapshot of AIF activity. The utility records specific
events in order to aid in problem determination.

The Trace Information Capture Specification (TICS) file
for AIF is located in:

- >SID>AIF L.TICS for LUs ·
- >SID>AIF-P.TICS for PUS.

• SNAMAP

AIF supports the SNAMAP utility that displays all existing
SNA node structures, including AIF-specific information
and journal statistics. SNAMAP commands and operating
procedures are described in detail in the SNA6 0Eerator's
Guide.

• The AIF DUMP file

If AIF detects an unrecoverable program error, it
automatically executes SNAMAP and puts the dump file in
>>CCD>AIF DUMP. This dump file includes all existing node
structures for the SNA products currently being executed.
The following sequence occurs:

1. The application program is informed that the session
has been aborted. The return code RCPGER is returned.

2. SNAMAP executes an emergency dump and puts it into the
file >>CCD>AIF DUMP. A message appears on the console
to inform the operator. Processing continues after
the dump is completed.

3. The host is directed to terminate the session. The
affected LU then becomes available for assignment to
other callers.

AIF limits itself to 10 dumps for the file
>>CCD>AIF DUMP. This file should be printed and forwarded
to your local Honeywell representative for analysis, then
deleted in order to conserve file space. It is
recommended that the STARTUP.EC include directives to test
for the existence of >>CCD>AIF DUMP and print and delete
its contents.

7-2 GRll-02

• Event Logging

AIF makes an entry in the SNA event log when it detects
system or transmission errors and when a session recovers
from an error.

e SNEDIT

The SNEDIT utility allows the user to display SNA journal
files interactively • SNEDIT allows you to enter various
commands to specify parameters that define journals you
wish to display.

These utilities are described in detail in the SNA6
Operator's Guide.

COMMUNICATIONS NETWORK MANAGEMENT

The Communications Network Management (CNM) Facility allows
LU Type 0 application programs to send alerts and statistics via
AIF to the IBM host. Alerts are unsolicited messages that inform
the host network operator of an error. AIF creates the
transmission headers for these messages, but the application
program must provide the message itself. The message must be
formatted according to the IBM formats for alerts as detailed in
Figure 7-1.

Maintenance statistics are solicited messages that supply
application-dependent information, which the host requests. AIF
creates the transmission headers for these messages, but the
application program must provide the message itself. The format
of the message is determined by the application. AIF alerts and
maintenance statistics are discussed on the following pages.

AIF Alerts

As part of the program interface, AIF allows application
programs to alert the host network operator that a major error
has occurred by sending an SNA alert.

An SNA alert is used to inform the Network Communications
Control Facility {NCCF} or Network Problem Determination
Application (NPDA) that a problem exists on the DPS 6 or DPS 6
PLUS side. The AIF generates an alert on behalf of the DPS 6 or
DPS 6 PLUS application program via the $SSI (send interrupt)
session call where the interrupt type is specified ALERT.

The error message contents of the alert are provided by the
application, which must create a buffer in the format which the
IBM host can handle. AIF supplies bytes 0 through 7 and the
remainder of the alert. Bytes 8 through n, which are supplied by
the application program, must follow the format described in
Figure 7-1.

7-3 GRll-02

BYTE (S)

0-2
3-7
8-11

12-13
14
15

15

16

DESCRIPTION

Network services header; x'410384'
CNM header
Node identification
Bits 0-11: Block number
Reserved
X 1 40 I

bits 0-3: Event type
X'l' = Permanent error
X'2' = Temporary error
X'3' =Performance

bits 0-3: Event type (cont.)
X'4' = Operational/Procedure
X'S' = Customer Applications generated
X'6' = End user generated
X'7' = Reserved
X'8' = Intensive mode recording

bits 4-7: Major cause code
X'l' = Hardware/microde - either
X'2' = Software
X'3' =Communications
X'4' = Reserved
X'S' = Environment
X'6' = Removable media
X'7' = Hardware/software - either
X'S' = SNA logical
X'9' = Operator: of sending message
X'A' = Media/hardware - either
X'B' = Explicitly hardware
X'C' = Explicitly microde
X'D' = SNA protocol
X'E' = Link Level protocol
X'F' = Undetermined

Minor Cause Code
X'Ol' = Base processor
X'02' = Service processor
X'03' = Microde; non-customer programmable
X'04' = Main storage
X'OS' = DASD device
X'06' = Printer
X'07' = Card reader/punch
X'08' = Tape device
X'09' = Keyboard
X'OA' = Selector pen
X'OB' = Magnetic stripe reader
X'OC' = Display/printer
X'OD' = Display device
X'OE' = Remote Product
X'OF' = Internal power supply
X'lO' = I/O attached controller

Figure 7-1. IBM Alert Format

7-4 GRll-02

BYTE(S) DESCRIPTION

16 Minor Cause Code (cont.)
X'll' = COMC scanner
X'l2' = COMC line adapter
X'l3' = reserved
X'l4' = Channel adapter
X'lS' = Loop adapter
X'l6' =Direct attach adapter
X'l7' = Adapter
X'l8' = Channel
X1 19' = Link
X'lA' = Link (common carrier)
X'lB' = Link (customer)
X'lC' = Loop
X'lD' = Loop {common carrier)
X'lE' = Loop (customer)
X'lF' = X.21 network
X'21' = Local X.21 interface
X'23' = Local modem
X'24' = Remote modem
X'25' = Local modem interface
X'26' = Remote modem interface
X'27' = Local probe
X'28' = Remote probe
X'29' = Local probe interface
X'2A' = Remote Probe Interface
X'2B' = Network connection
X'2C' = IBM program SCP or major appl.
·x•20 1 = IBM application program
X'2E' = IBM communication access method
X'2F' = Customer application program
X1 30' = IBM COMC program (T4 PU)
X'31' = IBM control program
X'32' = Remote/modem/interface product
X'33' = Line/remote modem
X'34' = SDLC data link control
X'35' = BSC data link control
X'36' = S/S data link control
X'37' =Reserved
X'38' = Power - external
X'39' = Thermal
X'3A' = Reserved
X'3B' = Reserved
X'3C' = Reserved
X '3D' = Reserved
X'3E' = Reserved
X'3F' = Negative SNA Response
X'40' = Gen or customize parameter
X'41' = External facility
X'42' = Component off line

Figure 7-1 (cont). IBM Alert Format

7-5 GRll-02

BYTE (S) DESCRIPTION

16 Minor Cause Code (cont.)
X'43' = Component busy
X'44' ~ Controller or device
X'45' = Local probe modem interface
X'46' =Reserved
X'47' = Card reader/punch or display/printer
X'48' = Controller application program
X'49' = Keyboard or display
X'4A' = Storage Controller
X'4B' = Channel or storage unit
X'4C' = Reserved
Xi4D• = Controller
X'4E' = Reserved
X'4F' = Reserved
X'SO' = Reserved
X'Sl' = Reserved
X'52' = Maintenance device
X'53' - Maintenance device interface
X'67' = Sensor I/O unit
X'68' = Magnetic stripe reader/encoder
x•69' = Check reader
X'6A' = Document feed
X'6B' = Coin feed
X'6C' = Envelope depository
X'FF' = Undetermined

17 Reserved
18 User action code; used by NPDA, together with

block number, to locate the alert/event
description on the alert displays, the proper
recommended action display, and the proper event
detail display.

19 Reserved.
After these fields, one or more of the following
appended vectors may be included.

TEXT VECTOR
0 Vector length (binary)
1 X'OO' = vector type
2-n Text message; up to 100 bytes of customer

defined data

DETAIL
0
l
2-n

QUALIFIER VECTOR
Vector length (binary)
X'OD' = vector type
Detail qualifiers; information
the NPDA Event Detail screen

to be shown on

There may be multiple detail qualifier vectors in the
same RU.

Figure 7-1 (cont). IBM Alert Format

7-6 GRll-02

BYTE (S) DESCRIPTION

NAME LIST VECTOR
O Vector length (binary)
1 X'OC' = vector type
2 X'02' = hierarchy name list in this vector is

used with network names supplied by
higher levels of CNM code.

3 Number of entries in the name list
4-n Name list7 identifies non NAU failing

components. Each entry has the following
format:

Byte 0: Length
Byte 1-x: Resource name
Byte x+l thru x+4: Resource type as follows:

NULL VECTOR

ADAP
ALA
ALS
BSC
CHAN
COMC
CPU
CTF
CTRL
DCA
DEV
DISK
DSKT
IOCU
LCTL
LDEV
LINK
LOOP
NETW
PGM
PROG
SCF
scu
STAT
TAPE
TCU
TTY
USER
WKST
nnnn

- Adapter
- Alternative line attachment
- Adjacent link stations
- Binary Synchronous link
- Channel
- Communications controller
- Central processing unit
- Customer transaction facility
- Controller
- Device cluster adapter
- Device
- Disk drive
- Diskette drive
- I/O control unit
- Local controller
- Local device
- Communications link
- Loop
- Network
- Program
- Program
- System Control Facility
- Storage control unit
- Terminal station on loop
- Magnetic Tape Drive
- Tape controller
- Teletype
- Human or programmed operator
- workstation
- Machine type designator

0 X'OO' = zero length1 indicates end of vectors.

Figure 7-1 (cont). IBM Alerts Format

7-7 GRll-02

AIF Maintenance Statistics

As part of the program interface, AIF allows session Type 0
programs to send maintenance statistics to the host network
operator in response to a Request for Maintenance Statistic
(REQMS) Type 4 made by the host.

AIF generates a reply called Records of Formatted Maintenance
Statistics (RECFMS Type 4) on behalf of the local application
program via the $SSI (send interrupt) session call where the
interrupt type is specified STATIC.

The application mu~t create a buffer in the format that the
IBM host can handlee AIF supplies bytes 0 through 7 and the
remainder of the RECFMS. Bytes 8 through n, which are supplied
by the _application program, are application-dependent and
formatted in any way that the host program requests.

7-8 GRll-02

Appendix A
AIF ARCIHTECTURE

The Application Interface Facility (AIF) is a general
interprogram communications facility that applications on a DPS 6
or DPS 6 PLUS system can use to communicate with applications
executing under the IBM host transaction processing systems
customer Information Control System (CICS) and Information
Management System (IMS). The communicating programs on the DPS 6
or DPS 6 PLUS are referred to as application programs, while
those on the host are referred to as transaction programs.

PROGRAM INTERFACE

AIF is a structured interface. That is, AIF specifies a
number of formatted requests called session calls for LU Type 0
and verbs for LU Type 6.2 that the transaction program uses to
request communication functions. These session calls equate to
specific macrocalls within AIF.

AIF adheres to Honeywell's SNA6 interprogram communications
architectural principals. The architecture of AIF is shown in
Figure A-l and is described below.

There are three logical subcomponents of AIF: the Physical
Unit (PU) subcomponent, the LU subcomponent for each LU
configured, and the monitor call handler subcomponent.

This appendix describes each of these subcomponents and the
modules that make up the LU subcomponent.

A-1 GRll-02

HOST
SJ

~

DPS 6

Eh
SNA l
CF

TP2

CICS

___ ...

APPLl

TP3 MP1

L s:
IMS/DC

BASELINE

LU TASKS

MONITOR CALL HANDLER

APPL2 APPL3 APPL4

Figure A-1. Overall Architecture of AIF

A-2

MP2

L

85-274

GRll-02

Figure A-1 shows the relationship between the different
components and modules which comprise an active AIF session.
DPS 6 PLUS or DPS 6 transaction programs designate LU sessions
through the Monitor Call Handler. The protocol handler module
supervises the passing of calls from the control module to the
session control module and on to the baseline.

On the host side, transaction programs communicate with the
~aseline through the IBM subsystems CICS and IMS.

PU SUBCOMPONENT

The PU subcomponent acts as the executive for the AIF program
product. The only time the PU subcomponent is active during a
session call is during the initialization or termination when it
creates and terminates the LU tasks. The PU subcomponent
interfaces to the Administrative Control System (ACS), SNA6
Operator Services (SOPR), and the monitor call handler. PU also
sends the ALERT and maintenance statistics and Communications
Network Management (CNM) commands.

LU SUBCOMPONENT

The LU subcomponent sends and receives data on behalf of the
application program. It interfaces to the SNA6 network via the
baseline. The LU subcomponent is comprised of three modules:

• The control module
• The protocol handler module
• The session control module.

Control Module

The LU control module has two main functions. It handles the
external interfaces to the PU, the application program, or to
transmission services; and it provides the mainloop processing
for the LU, controlling the execution of the session control
subroutines and the protocol handlers.

Protocol Handler Module

The protocol handler executes the session call subroutines on
behalf of the session call executor. This module is responsible
for consistent use of session calls.

Session Control Module

This module provides the subroutines that define the session
call macros that actually interface to the SNA6 baseline. These
subroutines are executed by protocol handlers. Subroutines are
provided to receive, send, initiate a session, terminate a
seession, send interrupt (control) information, and various other
subroutines to support these functions.

A-3 GRll-02

MONITOR CALL HANDLER SUBCOMPONENT

The monitor call handler is the main interface between the
application program and the LU and PU tasks. It manages the
intertask group communication from the user task group, and in
general acts as the interface to the AIF services.

When the monitor call handler receives a $SINIT or CS!NIT
session call from an application program for a session Type O, or
a $SALLO or CSALLO for ~Jpe 6.2, it sends an application service
request (any session call the application passes to AIF} . In
response, AIF returns the SCCB or VPB to the PU subcomponent.
The PU subcomponent looks for an available LU and assigns it to
the application taske

For the rest of the session, the monitor call handler sends
and receives application service requests/responses via the
control module of the LU subcomponent. This relationship is
shown in Figure A-2.

APPLJCA TION
TASK GROUP

APPLICATION
PROGRAM

SESSION
CALL

MONITOR
CALL
HANDLER

.

l
T

I

AJF
TASK
GROUP

ADMINISTRATIVE
CONTROL SERVICES

PU SUBCOMPONENT

CONTROL PROTOCOL
MOOULE HANDLER

SESSION CONTROL
MODULE

LU SUBCOMPONENT

85-275

Figure A-2. Application Service Request/Reply Handling

A-4 GRll-02

When a session call is made, the monitor call handler checks
the status of the call and issues an application service request
to either the PU or the LU task, as appropriate. On the initial
call for a session, the service request is directed to the PU.
The monitor call handler issues service requests for subsequent
calls to the LU.

When the PU or the LU completes a service request, it issues
a service reply to the monitor call handler. The LUO application
must determine when an asynchronous call is completed, since the
application program is not awakened until a $SWANY or CSWANY
session call is executed following an asynchronous send or
receive.

BASIC OPERATION

ACS is the lead task in the group running AIF. At start up,
ACS creates and requests the PU task, which in turn, creates the
LU tasks necessary to send and receive the data.

In order to execute a session call, the user executes a
session call with parameters in the application program. These
rnacrocalls resolve into the session call control block and a
monitor call. When the monitor call is executed, a monitor call
handler processes the call in the user task group.

The monitor call handler checks the state of the session,
copies the user data block to a global memory block and issues an
application service request to either the PU or LU task residing
in the AIF task group.

A-5 GRll-02

AppendixB
SAMPLE ASSEMBLY

LANGUAGE PROGRAMS

This appendix provides source listings of assembly language
programs. These programs demonstrate the use of AIF LU Type 0
and LU Type 6.2 for both DPS 6- and Bost-initiated sessions. All
references to the DPS 6 system also include the DPS 6 PLUS
system.

Figure B-1 is an AIF LU Type O sample program for a DPS 6-
ini tiated session. Figure B-2 is an AIF LU Type 0 sample program
for a Bost-initiated session. Figure B-3 shows subroutines that
can be linked by both program.

Figure B-4 is an AIF LU Type 6.2 sample program for a DPS 6
initiated session. Figure B-5 is an AIF LU Type 6.2 sample
program for a Bost initiated session. Figure B-6 are subroutines
that can be linked by both programs. ·

B-1 GRll-02

*
*

TITLE TR_Ol,'10/22/85' SAMPLE il LU 0 DPS 6 INITIATED SESSION

LIBM '>>LDD>MACROS>MAC USER'

*

*
ADLO
BUF SZ
P~a.~C
AP SCB
AP-SBF
AP-RBF
AP-CWl
AP-STK
AP-SIZ
* -
*
*
CW RST
* -
TR 01
* -
*
*
* START
*
*

LIBM OS LIB -
LIBM EXEC_LIB

XDEF
XLOC
$SSCCB
$SAIRC

TEXT
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

AP SCB,AP SBF
GTMEM,PRTSCB

A'ADLO'
141
2
0
AP SCB+SC SIZ
AP-SBF+BUF SZ
AP-RBF+BUF-SZ
AP-CWl+l -
AP::::STK+lOO

,•

REMOTE APPLICATION NAME
SIZE OF RECEIVE/SEND BUFFER
RAN = REMOTE APPLICATION NAME LENGTH
VPB
SEND BUFFER
RECEIVE BUFFER
APPLICATION CONTROL WORD 1
STACK SPACE
APPLICATION WORK SIZE

DEFINITON FOR CONTROL WORD (AP_CWl)

EQU z•aooo•

RESV 0

UPON ENTRY:

RESV

LDV
LDR
LDV
LNJ
BEZ

0

$R6 ,O
$R7,=AP SIZ
$RS ,O -
$B5,GTMEM
$Rl,SETREG

RESTART ENABLED

AMOUNT OF MEMORY TO GET
SET MEMORY TO ZEROS
GET MEMORY
IF NO ERROR SET UP REGISTERS

* E R R OR
SETREG RESV 0

*
*
*

LAB $B7,$B4.AP SIZ $B7 TO TOP OF STACK
LAB $B6,$B4 - $B6 WORK SPACE POINTER
THIS TEST EXECUTES FOUR MACROS IN THIS SEQUENCE:

Figure B-1. Sample Assembly Language Program for LU Type 0
for DPS 6-Initiated Session

B-2 GRll-02

* I N I T I A L I Z E S E S S I 0 N *
* *

*

$SIN IT
INIT RESV

,'SMPLAIF','A06CICS2','BB',SYNC,NO RESTART
0 -

LB =$Rl,=(RCSCNL+RCABRT) WAS SESSION ABORT OR REQUEST CANCEL?
BBT TERM IF TRUE END

* ELSE CONTINUE PROCESSING
I
*

* SEND ENABLE RESTART *
* TRY TO ENABLE RESTART FUNCTIONALITY FOR THIS SESSION. IF THIS SESSION IS *
* NOT RESTARTABLE, AN ERROR MESSAGE WILL APPEAR AND PROCESSING WILL CONTINUE.*
* IF THIS HAPPENS, AND YOU WOULD LIKE TO ENABLE RESTART, YOU WILL HAVE TO *
* UPDATE YOUR AIF CONFIGURATION FILE (AIF NODE) • *

*

*

*
I

LBT
$SSI

LB
BBT
LB
BBF
$USOUT
LBF

$B6.AP CWl,=CW RST SET INDICATOR FOR RESTART
, , , ,=ENAPRS -

=$Rl ,=RCABRT
QUIT
=$Rl ,=RCSCNL
OUTMSG
lNRSTRT,=NRSL,L
$B6.AP_CW1,=CW_RST

WAS IT ABAND OR ?
IF TRUE REPORT ERROR AND END

ELSE WAS IT REQUEST CANCELED
IF FALSE REQUEST DATA FROM TERM

ELSE OUTPUT RESTART ERROR
RESET RESTART INDICATOR
AND CONTINUE PROCESSING

*

* *
*
*

OUTPUT D A T A T 0 U S E R 0 UT *
*

* PLEASE ENTER DATA TO BE SENT TO THE HOST OR "END" TO END THE SESSION *

*
OUTMSG

I

RESV
$US OUT

0
!INPDAT,=INPL,L

Figure B-1 (cont). Sample Assembly Language Program for LU
Type 0 for DPS 6-Initiated Session

B-3 GRll-02

*
*

G E T DAT A F R 0 M U S E R I N *
*

*
GETCHR

*
*

BUFFER

CACL
*

*

*
I

RESV
LAB
LAB
LDR

$USIN

LDR
CMR
BE
LDR

CMR
BNE
$USOUT
B
SUB

ADD
STR

LAB
LDV
LAB
LDV
LDV
MMM

0
$B4,$B6.AP SBF
$B4 , $B4 • RAN
$R6,=(BUF_SZ-RAN)*2

$RS,=' EN'
$RS, $B4
TERMO
$RS,=(BUF_SZ-RAN)*2

$RS ,=$R6
>CACL
lNOCHAR,=NOL,L
>GETCHR
$RS ,=$R6

SET $B4 TO ADDR OF SEND BUFFER
SET UP LENGTH FIELD FOR RECORD
GET RECORD SIZE IN BYTES

CHECK TO SEE IF END WAS ENTERED
IS IT END ???

IF TRUE TERMINATE THE SESSION
ELSE GET MAXIUM LENGTH OF SEND

WERE 0 CHAR ENTERED ??
IF TRUE REPORT IT

OUPUT ERROR MSG
GET NEXT INPUT

$RS ,=RAN*2
$RS,$B6.(AP_SCB+SC_DLG)

ELSE CACULATE LL FIELD
TO THE RECORD LENGTH
ADD RAN TO INPUT LENGTH
STORE IT IN SEND BUFFER LENGTH

$B2,ADLO
$.P2,0
$B3,$B6.AP SBF
$R3 ,O -
$R6 ,RAN*2

RAN TO BE STORED IN SEND BUFFER
OFFSET TO MOVE
ADDR OF SEND BUFFER
OFFSET TO MOVE TO
i OF CHARS TO MOVE

* T R A N S L A T E D A T A F R 0 M A S C I I T 0 E B C D I C *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM ASCII *
* FROM $B2.$R2 TO $B4.$R4 EBCDIC (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE t OF CHAR TO TRANSLATE *

*

*
I

LAB $B2, $B4 .-RAN $B2 = ADDR FROM BUFFER
LDV $R2 ,o $R2 INDEX INTO FROM BUFFER
LAB $B4,$B4.-RAN $84 = ADDR TO BUFFER
LDV $R4 ,O $R4 = INDEX INTO TO BUFFER
LDR $R6 ,=$RS $R6 = t OF CHARS TO TRANSLATE
$SACEB

Figure B-1 (cont). Sample Assembly Language Program for LU
Type O for DPS 6-Initiated Session

B-4 GRll-02

* SEND DATA TO THE HOST *
* APPLICATION DATA IS STARTING AT POSITION #4 IN THE SEND BUFFER,POSITION *
* 0-3 ARE RESERVED FOR THE TRANSACTION NAME (THIS IS AN HOST APPLICATION *
* RESTRICTION) , DUE TO THE FACT THAT THE HOST APPLICATION SENDS AN END *
* BRACKET, TERMINATING THE APPLICATION TO APPLICATION TRANSACTION (N 0 T E :*
* (YOUR LU TO LU SESSION IS STILL ACTIVE) *

*
SEND

*
I

RESV
LAB
LAB
$SSEND
LB
BBT

0
$B4,$B6.AP SCB $B4 == VPB POINTER
$B2,$B6.AP-SBF $B2 ADDR OF SEND BUFFER
,=$B2,,L,SYNC,REPLY,MCMP
=$Rl,=(RCABRT+RCSCNL) WAS IT ABORT OR REQUEST CANCEL ?
TERM IF TRUE ERROR

* RECEIVE DATA FROM HOST *
* DATA UNTIL THE BUFFER IS FULL, OR END OF DATA IS INDICATED. BUFFER SIZE *
* IS SPECIFIED BYE DATA BUFFER LENGTH (SC DLG) *

*
RECV

*

*
RECVl

*
RECV2

*

*
RECERR

I

RESV
LAB
$SRECV
LB
BBT

0
$B2,$B6.AP RBF+l $B2 = ADDR OF RECEIVE BUFFER
,=$B2,=BUF-SZ,L,SYNC,MSG
=$Rl,=(RCABRT+RCSCNL) WAS IT ABORT OR REQUEST CANCEL ?
TERM IF TRUE ERROR

LB SB4.SC_OCT,=(SCRBOM+SCREOM) ELSE WAS BEGIN CHAIN/END CHAIN
BBT TRANS IF TRUE GO TRANSLATE

RESV
LB
BBT

R.ESV
LB
BBT

LB
BBF
B

RESV
SUSOUT
B

0
$B4.SC OCT,=SCRRQD
SRSP -

0
$B4.SC OCT,=SCRWRP
OUTMSG-

$B4.SC OCT,=SCRLST
RECERR-
OUTMSG

0
!INVOCT,=IOL,L
OUT MSG

ELSE WAS A DEFINITE RESP REQ ?
IF TRUE SEND +/- RESPONSE

ELSE WAS CHANGE DIR RECEIVED ?
IF TRUE GO SEND DATA

ELSE WAS IT END BRACKET ?
IF FALSE OUTPUT ERROR

ELSE GET MORE DATA

ELSE OUTPUT ERROR
CONTINUE PROCE~SING

Figure B-1 (cont). Sample Assembly Language Program for LU
Type O for DPS 6-Initiated' session

B-5 GRll-02

* *
*
*

COMPARE TO SEE IF SEND BUFFER EQUALS RECEIVE BUFFER *
*

*
TRANS RESV 0

LAB $B2,$B6.(AP SBF+RAN) $B2 = ADDR OF SEND BUFFER +RAN OFFSET
LAB $B3, $B6 .AP_RBF+l $B3 = ADDR OF RECEIVE BUFFER
LOR $R3,$B4.SC_ADL SR3 = # OF CHARS TO TRANSLATE
ADV $R3 ,-1 SUBTRACT l FOR BLZ

GETNXT BLZ $R3 ,TRANSl IF BUFFER EQUAL DISPLAY THEM
*

LOH $Rl, $B2. $R3 GET CHAR FROM SEND BUFFER
CMH $Rl, $B3. $R3 COMPARE WITH CHAR FROM RECEIVE BUFFER
ADV $R3,-1 SUBTRACT 1 FROM INDEX
BE GETNXT IF EQUAL GET NEXT CHAR
LBT $B4.SC_ICT,=SCSNEG ELSE SET BIT FOR NEG RESPONSE
LBF $B4.SC_ICT,=SCSRSP RESET POSSITIVE RESPONSE
$USOUT !BADDAT,=BADDL,L REPORT ERROR
B NXTRCV

*

* T R A N S L A T E D A T A F R 0 M E B C D I C T 0 A S C I I *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM EBCDIC *
* FROM $B2. $R2 TO $B4. $R4 ASCII (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE * OF CHAR TO TRANSLATE *
* SC AOL = ACTUAL # OF CHARS RECEIVED FROM REMOTE TRANSACTION *

*
TRANSl RESV 0

LBT $84.SC ICT,=SCSRSP SET POSITIVE RESPONSE
LBF $B4.SC-ICT,=SCSNEG RESET NEGITIVE RESPONSE
LDR $R6,$B4.sc AOL $R6 = i OF CHAR TO TRANSLATE
LAB $B2 1 $B6.AP=RBF+l $B2 = ADDR FROM BUFFER
LDV $R2 ,O $.R2 INDEX INTO FROM BUFFER
LAB $B4,$B2 $B4 = ADDR TO BUFFER
LDV $R4,0 $R4 = INDEX INTO TO BUFFER
$SEBAC

*
LOR $R6,$B6.SC_ADL GET i OF CHARS TO DISPLAY
ADV $R6,1 ADJUST FOR SLEW CHAR COUNT
LAB $B4,$B4.-1 ADJUST BUFFER ADDR FOR SLEW
LOR $Rl,=' A' SLEW CHAR TO OUTPUT
STR $Rl ,$B4 STORE IT IN THE BUFFER
$USOUT , ,R

NXTRCV LAB $B4,$B6.AP_SCB $B4 = ADDR OF VPB
B RECVl GET NEXT INPUT

*
I

Figure B-1 (cont). Sample Assembly Language Program for LU
Type 0 for DPS 6-Initiated Session

B-6 GRll-02

SRSP
*

*
I

RESV

$SSRSP
LB
BBT
B

0

, SYNC, ,=O
=$Rl ,= (RCABRT+RCSCNL)
TERM
RECV2

WAS IT ABORT OR CANCEL ?
IF TRUE ERROR

ELSE CONTINUE INPUT

* TERMINATE THE SESSION *
* TERMINATE THE SESSION NORMALLY, IF AN ERROR OCCURS, THEN AN ABNORMAL *
* TERMINATE WILL OCCURE (TO FREE UP THE LU) *

*
*
TERM

TERMO

*

*
I
*

RESV
LNJ
LB
BBF
LB
BBF
LBF
$SINIT
B
RESV
LAB
$STERM
LB
BBT

$STERM
B

0
$B5,PRTSCB
=$Rl,=RCABRT
TERMO
$B6.AP CWl,=CW RST
QUIT - -
$B6.AP CWl,=CW RST
,,,,SYNC,RESTART
INIT
0
$B4,$B6.AP SCB
,NORM -
=$Rl,=(RCABRT+RCSCMP)
QUIT

,ABNORM
QUIT

DISPLAY VERB CALL AND ERROR
IS IT SESSION ABORTED ?
IF FALSE TERMINATE SESSION

ELSE SEE IF RESTART ENABLED
IF NOT ENABLED QUIT

RESET RESTART CONDITION

GO CHECK RETURN CODE
ELSE TERMINATE THE SESSION

$B4 = ADDR OF THE SCCB

WAS IT ABORT OR REQUEST COMPLETE?
IF TRUE END PROGRAM

ELSE TERMINATE SESSION ABNORMALLY

Figure B-1 (cont)s Sample Assembly Language Program for LU
Type 0 for DPS 6-Initiated Session

B-7 GRll-02

QUIT

*
*

RESV
LAB
$RMEM
$TRMRQ

INPDAT TEXT
END THE SESSION'
* INPL
* SADDAT
* BADDL
*

EQU

TEXT

EQU

0
$B4,$B6 SET $B4 = WORK SPACE

'APLEASE ENTER DATA TO BE SENT TO HOST, OR TYPE •END• TO

($-INPDAT}*2

'A.FORMAT ERROR:RECEIVE BUFFER DOES NOT EQUAL SEND BUFFER'

($-BADDAT)*2

NOCHAR TEXT 'ANO DATA HAS BEEN ENTERED, PLEASE ENTER DATA OR END TO
TERMINATE THE SESSION'
*
NOL
* INVOCT

·• IOL
*

EQU

TEXT
EQU

NRSTRT TEXT
CONTINUES'
NRSL EQU
"' END

($-NOCHAR)*2

'AlNVALID OUTPUT CONTROL WORD RECEIVED'
($-INVOCT)*2

'ARESTART NOT POSSIBLE FOR THIS SESSION,BUT PROCESS

($-NRSTRT)*2

TR_Ol,START END

Figure B-1 (cont). Sample Assembly Language Program for LU
Type O for DPS 6-Initiated Session

B-8 GRll-02

*
*

TITLE TR_02,'10/22/85' SAMPLE i2 LU 0 HOST INITIATED SESSION

LIBM '>>LDD>MACROS>MAC USER'

*

* ADLH
BUF SZ
RAN-
AP SCB
AP-SBF
AP-RBF
AP-STK
APSIZ
* -
*
TR 02
* -
*
*
*
START
*
*

LlBM OS LIB -
LIBM EXEC LIB

XDEF
XLOC
$SSCCB
$SAIRC

TEXT
EQU
EQU
EQU
EQU
EQU
EQU
EQU

RESV 0

AP SCB,AP SBF
GTMEM,PRTSCB

A'ADLH 1

141
2
0
AP SCB+SC SIZ
AP-SBF+BUF SZ
AP-RBF+BUF-SZ
AP=STK+lOO-

UPON ENTRY:

RESV

LDV
LDR
LDV
LNJ
BEZ

0

$R6,0
$R7,=AP SIZ
$RS ,O -
$B5,GTMEM
$1U,SETREG

REMOTE APPLICATION NAME
SIZE OF RECEIVE/SEND BUFFER
RAN = REMOTE APPLICATION NAME LENGTH
VPB
SEND BUFFER
RECEIVE BUFFER
STACK SPACE
APPLICATION WORK SIZE

AMOUNT OF MEMORY TO GET
SET MEMORY TO ZEROS
GET MEMORY
IF NO ERROR SET UP REGISTERS

* E R R OR
SETREG RESV
*

LAB $B7,$B4.AP SIZ $B7 TO TOP OF STACK
LAB $B6 , $B4 - $86 WORK SPACE POINTER
THIS TEST EXECUTES FOUR MACROS IN THIS SEQUENCE:

Figure B-2. Sample Assembly Language Program for LU Type 0
for Host-Initiated session

B-9 GRll-02

* POLL FOR SESSION *
* CHECK TO SEE IF ANY LU ASSOCIATED WITH THE APPLICATION PROGRAM'S TASK GROUP *
* , HAS BEEN ATTACHED BY THE REMOTE PROGRAM, IF AN LU IS NOT PRESENT, THE *
* APPLICATION WILL CONTINUE TO POLL UNTIL AN LU IS PRESENT *
* P 0 L L (WILL NOT ESTABLISH A HOST INITIATED SESSION) *
**************************************~**

*
POLL

*
I

RESV
$SPOLL
LB
BBT
AND
OIR
BE
CMR
BNE

0
, I SMPLAIF' I' BB I

=$Rl,=(RCSCNL+RCABRT)
TERM
$Rl ,=ROIASK
$Rl ,=RMNOAT
POLL
$Rl ,=RMLUAT
TERM

WAS SESSION ABORT OR REQUEST CANCEL?
IF TRUE END

ESLE MASK OUT INDICATORS
NO LU TO ATTACH?

IF TRUE POLL AGAIN
ELSE IS THERE AN LU TO ATTACH?

IF FALSE ERROR
ELSE CONTINUE PROCESSING

*

* A C C E P T A H 0 S T S E S S I ON *
* *

*

$SACPT , • SMPLAIF I,' BB'
*

LB =$Rl,=(RCABRT+RCSCNL) WAS IT ABAND OR REQUEST CANCEL?
BBT QUIT IF TRUE REPORT ERROR AND END

*
I

* RECEIVE DATA FROM HOST *
* WHEN A SESSION IS A HOST INITIATED SESSION THE DPS6 SIDE OF THE SESSION *
* WILL ALWAYS BE IN RECEIVE STATE. AT THIS POINT THE APPLICATION WILL *
* RECEIVE A CHANGE DIRECTION INDICATOR, AND THE APPLICATION NAME (SC ADL WILL *
*EQUAL 4). THIS IS APPLICATION DEPENDENT, TO PUT THE DPS6 SIDE INTo *
*SEND STATE (DATA WILL NOT BE RECEIVED AT THIS TIME). *

*

*

*

*
I
*

LAB $B2,$B6.AP RBF $B2 = ADOR OF RECEIVE BUFFER
$SRECV ,=$B2,=BUF-SZ,L,SYNC,MSG
LB =$Rl,=(RCABRT+RCSCNL) WAS IT ABORT OR REQUEST CANCEL ?
BBT TERM IF TRUE ERROR

LB $84.SC_OCT,•SCRWRP ELSE WAS CHANGE DIR RECEIVED ?
BBT OUTMSG IF TRUE GO SEND DATA

$USOUT IINVOCT,=IOL,L ELSE OUTPUT ERROR
B TERM TERMINATE THE SESSION

Figure B-2 (cont). Sample Assembly Language Program for LU
Type 0 for Host-Initiated Session

B-10 GRll-02

* * * OUTPUT DATA TO USER OUT *
* *
* PLEASE ENTER DATA TO BE SENT TO THE BOST OR •END• TO END THE SESSION *

*
OUTMSG

*
I

RESV
$US OUT

0
lINPDAT,=INPL,L

********************************·********•**************************************
* GET DATA FROM USER IN *
* *

* GETCHR

*

*

CACL
*

*

*
I

RESV
LAB
LAB
LDR

$USIN

LDR
CMR
BE
LDR
CMR
BNE
$USOUT
B
SUB

ADD
STR

LAB
LDV
LAB
LDV
LDV
MMM

0
$B4,$B6.AP SBF
$B4,$B4.RAN
$R6,=(BUF_SZ-RAN)*2

$RS,= 1 EN'
$RS ,$B4
TERMO
$RS,=(BUF SZ-RAN)*2
$RS,=$R6 -
>CACL
1NOCHAR,=NOL,L
>GETCHR
$RS ,-=$R6

SET $B4 TO ADDR OF SEND BUFFER
SET UP LENGTH FIELD FOR RECORD
GET RECORD SIZE IN BYTES

CHECK TO SEE IF END WAS ENTERED
IS IT END ???

IF TRUE TERMINATE THE SESSION
ELSE GET MAX LENGTH OF SEND BUFFER

WERE 0 CHAR ENTERED ??
IF TRUE REPORT IT

OUPUT ERROR MSG
GET NEXT INPUT

ELSE CACULATE LL FIELD
TO THE RECORD LENGTH

$RS,•RAN*2
$RS,$B6.(AP_SCB+SC_DLG)

ADD RAN TO INPUT LENGTH
STORE IN THE SEND BUFFER LENGTH

$B2,ADLH
$R2 ,o
$B3,$B6.AP SBF
$R3 ,o -
$R6,RAN*2

RAN TO BE STORED IN SEND BUFFER
OFFSET TO MOVE
ADDR OF SEND BUFFER
OFFSET TO MOVE TO

t OF CHARS TO MOVE

Figure B-2 (cont). Sample Assembly Language Program for LU
Type 0 for Host-Initiated Session

B-11 GRll-02

* T R A N S L A T E D A T A F R 0 M A S C I I T 0 E B C D I C *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM ASCII *
* FROM $B2. $R2 'I'O $B4. $R4 EBCDIC (TH IS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE i OF CHAR TO TRANSLATE *

*

LAB $B2,$B4.-RAN $B2 = ADDR FROM BUFFER
LDV $R2 ,o $R2 = INDEX rNTO FROM BUFFER
LAB $B4, $B2 $B4 = ADDR TO BUFFER
LDV $R4,0 $R4 INDEX INTO TO BUFFER
LDR $R6 ,=$RS $R6 = i OF CHARS TO TRANSLATE
$SACEB

*
i

* SEND DATA TO THE HOST *
* APPLICATION DATA IS STARTING AT POSITION #4 IN THE SEND BUFFER,POSITION *
* 0-3 ARE RESERVED FOR THE TRANSACTION NAME { THIS IS AN HOST APPLICATION *
* RESTRICTION) • *

*
SEND

*
I

.RESV
LAB
LAB
$SSEND
LB
BBT

0
$B4,$B6.AP SCB $B4 == VPB POINTER
$B2,$B6.AP-SBF $B2 == ADDR OF SEND BUFFER
,~$B2,$B4.SC DLG,L,SYNC,REPLY,MCMP
=$Rl,=(RCABRT+RCSCNL) WAS IT ABORT OR REQUEST CANCEL ?
TERM IF TRUE ERROR

* RECEIVE DATA FROM HOST *
* DATA UNTIL THE BUFFER IS FULL, OR END OF DATA IS INDICATED. BUFFER SIZE *
* IS SPECIFIED BYE DATA BUFFER LENGTH (SC DLG) *

*
RECV

*

*
RECVl

*

. '

RESV
LAB
$SRECV
LB
BBT

0
$B2,$B6.AP RBF $B2 = ADDR OF RECEIVE BUFFER
,=$B2,=BUF-SZ,L,SYNC,MSG
=$Rl,=(RCABRT+RCSCNL) WAS IT ABORT OR REQUEST CANCEL ?
TERM IF TRUE ERROR

LB $B4.SC_OCT,=(SCRBOM+SCREOM) ELSE WAS BEGIN CHAIN/END CHAIN
BBT TRANS IF TRUE GO TRANSLATE

RESV
LB
BBT

0
$84.SC OCT,=SCRWRP
OUTMSG-

ELSE WAS CHANGE DIR RECEIVED?
IF TRUE GO SEND DATA

Figure B-2 (cont). Sample Assembly Language Program for LU
Type 0 for Host-Initiated session

B-12 GRll-02

LB $B4.SC_OCT,=SCRLST ELSE WAS IT END BRACKET ?
BBF REC ERR IF FALSE OUTPUT ERROR
B OUT MSG ELSE GET MORE DATA

*
REC ERR RESV 0

$USOUT IINVOCT,=IOL,L ELSE OUTPUT ERROR
B OUTMSG CONTINUE PROCESSING

*
I

* *
*
*

COMPARE TO SEE IF SEND BUFFER EQUALS RECEIVE BUFFER *
*

*
TRANS

GETNXT
*

*
*

RESV
LAB
LAB
LDR
SUB
BLZ

LDH
CMH
ADV
BE
$USOUT
B
B

0
$B2,$B6.AP SBF
$B3, $B6 .AP-RBF
$R3, $B4. SCADL
$R3 ,=l -
$R3 ,TRANSl

s
$Rl , $B2. $R3
$Rl r $B3. $R3
$R3 ,-1
GETNXT
!BADDAT,=BADDL,L
SNDERR
OUTMSG

$B2 = ADDR OF SEND BUFFER
$B3 = ADDR OF RECEIVE BUFFER
$R3 = i OF CHARS TO TRANSLATE
SUBTRACT 1 FOR BLZ
IF BUFFER EQUAL DISPLAY THEM

GET CHAR FROM SEND BUFFER
COMPARE WITH CHAR FROM RECEIVE BUFFER
SUBTRACT l FROM INDEX
IF EQUAL GET NEXT CHAR

ELSE REPORT ERROR
SEND ERROR SIGNAL TO REMOTE

* T R A N S L A T E D A T A F R 0 M E B C D I C T 0 A S C I I *
* THIS IS AN EX~PLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM EBCDIC *
* FROM $B2.$R2 TO $B4.$R4 ASCII (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE i OF CHAR TO TRANSLATE *
* SC ADL = ACTUAL i OF CHARS RECEIVED FROM REMOTE TRANSACTION *
**********~**
*
'I'RANSl RESV

LDR
LAB
LDV
LAB
LDV
SUB
$SEBAC

0
$R6 , $84 • SC ADL
$B2, $86. (AP RBF+RAN)
$R2,0 -
$B~u$B2
$R4 ,o
$R6 ,=RAN*2

$R6 = t OF CHAR TO TRANSLATE
$B2 = ADDR FROM BUFFER
$R2 = INDEX INTO FROM BUFFER
$B4 = ADDR TO BUFFER
$R4 = INDEX INTO TO BUFFER
SUBTRACT OUT LL FIELD

Figure B-2 {cont). Sample Assembly Language Program for LU
Type 0 for Host-Initiated Session

B-13 GRll-02

*
I

LDR
SUB
LAB
LDR
STR
$USOUT
LAB
B

$R6,$B6.SC AOL
$R6 ,=RAN -
$B4,$B4.-(RAN-l)
SRl,=' A'
$Rl ,$B4

n , , .i.'
SB4,$B6.AP SCB
RECVl -

GET i OF CHARS TO DISPLAY
SUBTRACT OUT RAN FIELD
ADJUST BUFFER ADDR FOR SLEW
SLEW CHAR TO OUTPUT
STORE IT IN THE BUFFER

SB4 = ADDR OF VPB
GET NEXT INPUT

* TERMINATE THE SESSION *
* TERMINATE THE SESSION NORMALLY, IF AN ERROR OCCURS, THEN AN ABNORMAL *
* TERMINATE WILL OCCURE (TO FREE UP THE LU) *

*
*
TERM

TERMO

*

RESV
LNJ
LB
BBT
RESV
LAB
SS TERM
LB
BBT

ABNORMALLY

*
I
*
QUIT

*
*
INPDAT
END THE
*
INPL
*
BADDAT
*
BADDL
*

SS TERM
B

RESV
LAB
SRMEM
$TRMRQ

TEXT
SESSION I

EQU

TEXT

EQU

0
$85,PRTSCB
=SRl ,=RCABRT
QUIT
0
$B4, $B6 ;AP SCB
,NORM -
~$Rl,=(RCABRT+RCSCMP)
QUIT

,AB NORM
QUIT

0
SB4, $B6

DISPLAY VERB CALL AND ERROR
IS IT SESSION ABORTED ?
IF TRUE END

ELSE TERMINATE THE SESSION
SB4 = ADDR OF THE SCCB

WAS IT .ABORT OR REQUEST COMPLETE ?
IF TRUE END PROGRAM

ELSE TERMINATE THE SESSION

SET $B4 = WORK SPACE

'APLEASE ENTER DATA TO B.E: SENT TO HOST, OR TYPE "END" TO

($-INPDAT)*2

'AFORMAT ERROR:RECEIVE BUFFER DOES NOT EQUAL SEND BUFFER '

($-BADDAT)*2

NOCHAR TEXT 'ANO DATA HAS BEEN ENTERED, PLEASE ENTER DATA OR END TO
TERMINATE THE SESSION '
*
NOL
EB REC
EBL
*
INV OCT
IOL
*

EQU
TEXT
EQU

TEXT
EQU

END

($-NOCHAR) *2
'AEND BRACKET RECEIVED,SESSION WILL BE TERMINATED '
($-EBREC) *2

'AINVALID OUTPUT CONTROL WORD RECEIVED '
($-INVOCT) *2

TR_02,START END

Figure B-2 (cont). Sample Assembly Language Program for LU
Type 0 for Host-Initiated Session

B-14 GRll-02

TITLE TR_SUB, 0 85011511' SPI TAP SUBROUTINS.
* LIBM '>>LDD>MACROS>MAC USER'

I
*
*
GTMEM
*
*

LIBM EXEC LIB
LIBM OS LIB
$SSCCB -

XVAL

XDEF
RESV

AP_SCB,AP_SBF

GTMEM
0

*THIS IS THE GET MEMORY SUBROUTINE.
*
* * THE SIZE OF THE BLOCK OF MEMORY AND ITS SPACE INITIALIZATION VALUE
* ARE PROVIDED BY THE CALLER OF THIS SUBROUTINE.
*
* $R6/$R7 -> THE SIZE OF THE BLOCK OF MEMORY TO BE OBTAINED
* $RS -> THE SPACE INTIALIZATION VALUE FOR THE MEMORY BLOCK
*
* * UPON EXIT FROM THIS SUBROUTINE, THE MEMORY BLOCK'S ADDRESS AND SIZE
* OR IF THERE WAS A PROBLEM, THE ERROR CODE ARE RETURNED TO THE CALLER.
* * $B4 -> ADDRESS OF THE MEMORY BLOCK
* $R7 -> SIZE OF THE MEMORY BLOCK
* $Rl -> ERROR CODE
* $GMEM
* * CHECK FOR ERROR CODE RETURN FROM MACRO CALL
*

BEZ $Rl,>+$C IF NO ERROR ON THE GET MEM, CONTINUE
* * UNABLE TO GET THE BLOCK OF MEMORY, RETURN WITH THE ERROR CODE IN $Rl
* $A
*
*

*

RESV

JMP

0

$B5 RETURN TO THE CALLER

* INITIALIZE THE BLOCK OBTAINED WITH THE PROVIDED VALUE ($R5)
* CLRIT
$C

*

RESV
RESV
LDR
LDB

0
0
$R2,•$R7
$B2,•$B4

INIT. THE INDEX WITH THE SIZE OF TH
MUST USE Bl, B2, OR B3 FOR B-REL.+INDEX

Figure B-3. Subroutines for LU Type O Assembly
Language Programs

B-15 GRll-02

* THE BLOCK INITIALIZATION LOOP
$D RESV 0

STR $R5,$B2.-$R2 STORE THE PROPER VALUE IN THE NEXT .BLOCK
BGZ $R2,>-$D THE INDEX IS ALSO THE NUMBER OF LOC.~T!ON

* END OF LOOP, BLOCK IS INTITIALIZED

*
I
*
*
*
*
*
*
*
ASCII

ASCil

STRASC

'* /

PRTSCB

OPCFND
$A

*

*

B >;-$A RETURN TO THE CALLER WITH THE BLOCK

CONVERT l HEX WORD TO 4 ASCII BYTES
$R7 = WORD TO CONVERT
$R3 = OFFSET INTO MEMORY TO STORE CONVERTED VALUE
$B3 = BASE MEMORY ADDR OT STORE CONVERTED VALUE
$R2 = t OF CHARS TO STORE

EQU
LDV
LDV
DIV
ADV
CMR
BL
ADV
STH
BDEC
JMP

XDEF
RESV
STB
LDR
LBF
LAB
MLV
LAB
LDV
LDV
MMM

LDR
LDV
LNJ

$USOUT
LAB
LDR
LDB
JMP

$
$R2,3
$R6 ,O
$R7,=l6
$R6,=X'30'
$R6 ,=X '003A I
>STRASC
$R6, 7
$R6 ,$83 .-$R3
$R2,>ASCI1
$BS

PRTSCB
0
$85,-$87
$R2,$B4.SC OPC
=$R2,=Z'F000'
$B2,0PCTBL
$R2,TBLGTH
$B3 ,$86 .AP SBF
$R3 ,O -
$R6,TBLGTH

$R7,$B4.SC RCD
$R3 ,12 -
$B5,ASCII

=$83 ,=TBLGTH+2
$B4,$B6.AP SCB
$Rl,$B4.SCRCD
$B5,+$B7 -
$85

t OF BYTES TO CONVERT -1

ADD ASCII BIAS
IS IT A THROUGH F ?
IF NOT STORE IT
ADD ALPHA OFFSET
STORE STRING

RETURN TO CALLER

SAVE RETURN ADDR
GET OP CODE OF VERB WITH ERROR
CHANGE HIGH ORDER NIBBLE TO 0

$B2 = TABLE TO SEARCH
$R2 = OFFSET INTO TABLE
$B3 = ADDR OF TO BUFFER
$R3 = OFFSET INTO BUFFER
$R6 = t OF BYTES TO MOVE

GET RETURN CODE
OFFSET INTO BUFFER TO STORE RCD
CONVERT AND STORE ASCII RETURN CODE

RESET $84 TO SCB
RESET $Rl TO RETURN CODE
RESTORE RETURN ADDR
RETURN TO CALLER

Figure B-3 (cont) • Subroutines for LU Type 0 Assembly
Language Programs

B-16 GRll-02

* OP CODE TABLE
OPCTBL RESV 0

TEXT 'A$SINIT
TB LG TH EQU ($-OPCTBL)*2

TEXT 'A$STERM
TEXT 'A$SSEND
TEXT 'A$SRECV
TEXT 'A$SSI
TEXT 'A$SRI
TEXT 'A$SCASR
TEXT 1 A$SWANY
TEXT 'A$STEST

*
END TR SUB

Figure B-3 (cont). Subroutines for LU Type O Assembly
Language Programs

B-17 GRll-02

*
*

TITLE VR_Ol,'10/22/85' SAMPLE tl LU 6.2 OPS 6 INITIATED SESSION

LIBM '>>LDD>MACROS>MAC USER'

*

*
BUF SZ
LL
*
AP VPB
AP-SBF
AP-RBF
AP-STK
AP-SIZ
* -
*
VR 01
* -
*
*
*
START
*
*

LIBM OS LIB -
LIBM EXEC_ LIB

XDEF
XLOC
$SVPB
$SAIVR

EQU
EQU

EQU
EQU
EQU
EQU
EQU

RESV 0

AP VPB,AP SBF
GTMEM,PRTVRB

141
l

()

AP VPB+VP SIZ
AP-SBF+BUF SZ
AP-RBF+BUF-SZ
AP=STK+lOO-

UPON ENTRY:

RESV

LDV
LOR
LDV
LNJ
BEZ

0

$R6,0
$R7 ,=AP SIZ
$RS ,O -
$B5,GTMEM
$Rl,SETREG

SIZE OF RECEIVE/SEND BUFFER
LENGTH OF THE LL FIELD
LL =
VPB
SEND BUFFER
RECEIVE BUFFER
STACK SPACE
APPLICATION WORK SIZE

AMOUNT OF MEMORY TO GET
SET MEMORY TO ZEROS
GET MEMORY
IF NO ERROR SET UP REGISTERS

* E R R OR
SETREG RESV 0
*

*
*
I
*

LAB $B7,$B4.AP SIZ $B7 TO TOP OF STACK
LAB $B6,$B4 - $B6 WORK SPACE POINTER
THIS TEST EXECUTES FOUR MACROS IN THIS SEQUENCE:

Figure B-4. Sample Assembly Language Program for LU Type 6.2
for DPS 6-Initiated Session

B-18 GRll-02

* ALLOCATE THE CONVERSATION *
* *

*

$SALLO ,'SMPLAIF','A06CICS2',=A'ADL6','AA',AVAIL,CONFIRM
*

LB =$Rl ,= (VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
BBT QUIT IF TRUE REPORT ERROR AND END

I
*

* FLUSH THE LU'S SEND BUFFER *
*FLUSH THE LOCAL LU'S SEND BUFFER,CAUSING THE ALLOCATE OF THE CONVERSATION *
* TO BE ESTABLISHED. THIS COMMAND IS OPTIONAL, IF IT IS NOT USED THE *
* COMMAND WILL BE BUFFERED UNTIL THE PREPARE TO RECEIVE IS ISSUED IN THE APPL*

*

*
I

$SFLSH
LB
BBT

=$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
QUIT IF TRUE REPORT ERROR AND END

* *
*
*

0 U T P U T D A T A T 0 U S E R 0 U T *
* * PLEASE ENTER DATA TO BE SENT TO THE HOST OR "END" TO END THE CONVERSATION *

*
OUTMSG

*
I

RESV
$USOUT

0
lINPDAT,=INPL,L

Figure B-4 (cont). Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated session

B-19 GRll-02

* GET DATA FROM USER IN *
* *
•••****************************
*
GETCHR

*

CACL

*

*
I

RESV
LAB
LAB
LOR

$USIN

LOR
CMR
BE
LDR
CMR
BNE
$USOUT
B
SUB
ADD

STR

0
$B4,$B6.AP SBF
$84, $B4 .LL-
$R6 ,= (BUF_SZ-LL) *2

$RS,=' EN'
$RS, $B4
DE ALO
$RS,=(BUF SZ-LL)*2
$RS ,,,,,$R6 -
>CACL
!NOCHAR,=NOL,L
>GETCHR
$RS ,=$R6
$RS,=LL*2

$RS, $B4 .-LL

SET SB4 TO ADDR OF SEND BUFFER
SET UP LENGTH FIELD FOR RECORD
GET RECORD SIZE IN BYTES

CHECK TO SEE IF END WAS ENTERED
IS IT END ???

IF TRUE DEALLOCATE THE CONVERSATION
ELSE GET MAX LENGTH OF SEND BUFFER

WERE 0 CHAR ENTERED ??
IF TRUE REPORT IT

OUPUT ERROR MSG
GET NEXT INPUT

ELSE CACULATE LL FIELD
ADD THE LENGTH OF THE LL FIELD
TO THE RECORD LENGTH
STORE IT IN THE SEND BUFFER

* T R A N S L A T E D A T A F R 0 M A S C I I T 0 E B C D I C *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM ASCII *
* FROM $B2.$R2 TO $B4.$R4 EBCDIC (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE t OF CHAR TO TRANSLATE *

*

*

*
I

LAB $82, $84 $82 = ADDR FROM BUFFER
LDV $R2 ,o $R2 INDEX INTO FROM BUFFER

$B4 = ADDR TO BUFFER
LDV $R4 ,O $R4 = INDEX INTO TO BUFFER
LOR $R6 ,=$RS $R6 = i OF CHARS TO TRANSLATE
SUB $R6 ,=LL*2 SUBTRACT OUT LL FIELD
$SACEB

Figure B-4 (cont). Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated Session

B-20 GRll-02

*
*

S E N D D A T A T 0 TB E B 0 S T *
*

*

*
I

LAB
LAB
$SSDAT
LB
BBT

$84 ,$B6 .AP VPB
$B2,$B6.AP-SBF
,=$B2, $B6 .AP SBF
=$Rl,=(VRABND+VRSCNL)
DEAL

$B4 == VPB POINTER
$B2 == ADDR OF SEND BUFFER

WAS IT ABAND OR REQUEST CANCEL ?
IF TRUE ERROR

* PREPARE TO RECEIVE *
* THIS COMMAND WILL CHANGE THE CONVERSATION STATE FROM SEND, TO RECEIVE, AND *
* FLUSH (TRANSMIT) THE LOCAL LU'S SEND BUFFER. *
* THIS COMMAND IS OPTIONAL, AND THE SAME RESULT COULD OF BEEN OPTAINED BY *
* A $SRAW { RECIEVE AND WAIT). THE LOCK OPTION BEING USED (LONG) SPECIFIES *
* RETURN CONTROL TO THE LOCAL PROGRAM AFTER DATA AND AN ACKNOWLEDGEMENT IS *
* RECEIVED FROM THE REMOTE TRANSACTION. *

*

* I

$SPTOR
LB
BBT

,FLUSH, LONG
=$Rl,•(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TRUE ERROR

Figure B-4 (cont). Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated session

B-21 GRll-02

* RECEIVE ANO WAIT *
*. THIS COMMAND WILL CHANGE YOUR CONVERSATION STATE TO RECEIVE , IF YOU ARE *
* NOT IN RECEIVE STATE, AND THEN FLUSH. ITS SEND BUFFER. THE LU THEN WAITS *
* FOR INFORMATION TO ARRIVE, OR RECEIVES THE DATA WITHOUT WAITING IF IT IS *
* CURRENTLY AVAILABLE. THIS RECEIVE SPECIFIES BUFFER, WHICH WILL RECEIVE *
* DATA UNTIL THE BUFFER IS FULL, OR END OF DATA IS INDICATED. BUFFER SIZE *
* IS SPECIFIED BYE DATA BUFFER LENGTH (VP DLG} *

*
RAW

*

CH Kl

CHK2

CHK3

*
I

RESV
LAB
$SRAW
LB
BB'!'

LOR
CMR
BE
CMR
BNE
LNJ
B
CMR
BE
CMR
BNE
LNJ
B
CMR
BNE
LNJ
B
$USOUT
B

0
$B2,$B6.AP RBF $B2 = ADOR OF RECEIVE BUFFER
1 •$B2,=BUF-SZ,BUFFER
•$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TRUE ERROR

$R2,$B4.VP WAR
$R2,=VBRDAT
TRANS
$R2 ,•VBRCSN
>CHKl
$B5,CONFMD
OUTMSG
$R2,•VBRSNO
OUT MSG
$R2,•VBRCOA
>CHK2
$85,CONFMO
QUIT
$R2,•VBRCNF
CHK3
$B5,CONFMO
RAW
lBADWHT,=WHTL,L
SNOERR

ELSE GET THE WAT RECEIVED FIELD
IF DATA RECEIVED TRANSLATE IT

ELSE WAS IT A CONFIRM WITH SEND ?
IF TRUE EXECUTE A COMFIRMED·

(SEND STATE }
GO BACK TO TERMINAL FOR MORE DATA

ELSE WAS IT A REQUEST TO SEND
IF TRUE OUTPUT PROMPT

ELSE WAS CONFIRM DEALOCATE?
IF TRUE EXECUTE CONFIRMED

(RESET STATE)
EXIT APPLICATION

ELSE WAS IT CONFIRM ?
IF TRUE EXECUTE CONFIRMED

(STATE DOES NOT CHANGE}
GOTO NEXT RECEIVE

ELSE REPORT ERROR & CONTINUE

* *
*
*

COMPARE TO SEE IF SEND BUFFER EQUALS RECEIVE BUFFER *
* ***

* TRANS

GETNXT
*

RESV
LAB
LAB
LOR
SUB
BLZ

0
$B2,$B6.AP SBF
$B3 , $B6 .AP-RBF
$R3 1 $B4 • VP-AOL
$R3,=l -
$R3,TRANS1

$B2 • ADDR OF SEND BUFFER
$B3 • ADDR OF RECEIVE BUFFER
$R3 • t OF CHARS TO TRANSLATE
SUBTRACT l FOR BLZ
IF BUFFER EQUAL DISPLAY THEM

Figure B-4 (cont). Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated Session

B-22 GRll-02

*

LDH
CMH
ADV
BE
$USOUT
B

$Rl, $B2. $R3
$Rl, $B3. $R3
$R3 ,-1
GETNXT
lBADDAT,=BADDL,L
SNDERR

GET CHAR FROM SEND BUFFER
COMPARE WITH CHAR FROM RECEIVE BUFFER
SUBTRACT l FROM INDEX
IF EQUAL GET NEXT CHAR

ELSE REPORT ERROR
SEND ERROR SIGNAL TO REMOTE

* T R A N S L A T E D A T A F R 0 M E B C D I C T 0 A S C I I *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM EBCDIC *
* FROM $B2. $R2 TO $B4. $R4 ASCII (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE t OF CHAR TO TRANSLATE *
* VP ADL = ACTUAL i OF CHARS RECEIVED FROM REMOTE TRANSACTION *

*
TRANSl

*

*
I

RESV
LDR
LAB
LDV
LAB
LDV
SUB
$SEBAC

LDR
SUB
LAB
LDR
STR
$USOUT
LAB
B

0
$R6,$B4.VP ADL
$B2,$B6.(AP RBF+LL)
$R2,0 -
$B4,$B2
$R4,0
$R6 ,=LL*2

$R6,$B6.VP ADL
$R6,=LL -
$B4,$B4.-LL
$Rl,=' A'
$Rl ,$B4
~ ,R
$B4 , $B6 • AP VPB
RAW -

$R6 = i OF CHAR TO TRANSLATE
$B2 = ADDR FROM BUFFER
$R2 = INDEX INTO FROM BUFFER
$B4 = ADDR TO BUFFER
$R4 INDEX INTO TO BUFFER
SUBTRACT OUT LL FIELD

GET t OF CHARS TO DISPLAY
SUBTRACT OUT LL FIELD
ADJUST BUFFER ADDR FOR SLEW
SLEW CHAR TO OUTPUT
STORE IT IN THE BUFFER

$B4 = ADDR OF VPB
GET NEXT INPUT

* D E A L L 0 C A T E T H E C 0 N V E R S A T I 0 N *
*DEALLOCATE THE CONVERSATION NOR.MALLY AND FLUSH THE LOCAL LU'S SEND BUFFER *
* IF THE DEALLOCATE NORMAL IS NOT HONORED, AN ABNORMAL DEALLOCATE TYPE = *
* PROGRAM ERROR WILL EXECUTE, FORCING THE CONVERSATION TO DEALLOCATE *

*
*
DEAL

DE ALO

*
*

*
I

RESV
LNJ
LB
BBT
RESV
LAB
$SDEAL
LB
BBT

$SDEAL
B

0
$BS ,PRTV.RB
=$Rl ,=VRABND
QUIT
0
$B4,$B6.AP VPB
,FLUSH, NO LOG,,
=$Rl,=(VRABND+VRSCMP)
QUIT

, PROG AB, NO LOG, ,
QUIT - -

DISPLAY VERB CALL AND ERROR
IS IT CONVERSATION ABEND ?
IF TRUE END

ELSE DEALLOCATE THE CONVERSATION
$B4 = ~DR OF THE VPB .

WAS IT ABAND OR REQUEST COMPLETE ?
IF TRUE END PROGRAM '

ELSE DEALOCATE ABNORMALLY
(PROGRAM ERROR)

Figure B-4 (cont)G Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated Session

B-23 GRll-02

* SEND ERROR TO REMOTE *
* SEND AN ERROR TO THE REMOTE. THE CONVERSATION STATE WILL CHANGE FROM ' *
* RECEIVE TO SEND STATE, AND THE SEND BUFFER WILL NOT BE FLUSHED. *

*
SNDERR RESV 0

LAB $B4,$B6.AP_VPB $B4 = ADDR OF VPB
$SSERR ,PROG,NO_LOG,
LB =$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
BBT DEAL IF TRUE ERROR

* B OUTMSG ELSE RECEIVE NEXT
*
I

* *
*
*

S E N D C 0 N F I R M E D T 0 R E M 0 T E *
*

*
CONFMD

*
I
* QUIT

*
*

RESV
$SCNFD
LB
BBT
JMP

RESV
LAB
$RMEM
$TRMRQ

0

=$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TRUE ERROR
$BS ELSE RETURN TO CALLER

0
$B4,$B6 SET $B4 = WORK SPACE

INPDAT TEXT 'APLEASE ENTER DATA TO BE SENT TO BOST, OR TYPE "END" TO
END THE CONVERSATION '
*
INPL
* BADDAT
* BADDL
*
BADWBT
*
WHTL
*

EQU

TEXT

EQU

TEXT

EQU

($-INPDAT)*2

'AFORMAT ERROR:RECEIVE BUFFER DOES NOT EQUAL SEND BUFFER '

($-BADDAT)*2

'AUNEXPECTED WHAT RECEIVED FIELD'

($-BADWHT) *2

NOCHAR TEXT 'ANO DATA HAS BEEN ENTERED, PLEASE ENTER DATA OR END TO
DEALOCATE THE CONVERSATION'
*
NOL EQU

END
($-NOCBAR)*2
VR 01 END

Figure B-4 (cont). Sample Assembly Language Program for LU
Type 6.2 for DPS 6-Initiated Session

B-24 GRll-02

*
*

*

*

TITLE

BUF SZ
LL
* AP VPB
AP-SBF
AP-RBF
AP-STK
AP-SIZ
* -
* VR_02
*
*
*
*
START
*
*

VR_02,'10/22/85' SAMPLE 12 LU 6.2 HOST INITIATED SESSION

LIBM '>>LDD>MACROS>MAC USER'
LIBM OS LIB -
LIBM EXEC_LIB

XLOC
XDEF
$SVPB
$SAIVR

EQU
EQU

EQU
EOU
EQU
EOU
EQU

RESV 0

GTMEM
AP_VPB,AP_SBF

141
l

0
AP VPB+VP SIZ
AP-SBF+BUF SZ
AP-RBF+BUF-SZ
AP=STK+lOO-

UPON ENTRY:

RESV

LDV
LOR
LDV
LNJ

0

$R6 ,O

SIZE OF RECEIVE/SEND BUFFER
LENGTH OF THE LL FIELD
LL =
VPB
SEND BUFFER
RECEIVE BUFFER
STACK SPACE
APPLICATION WORK SIZE

AMOUNT OF MEMORY TO GET
SET MEMORY TO ZEROS
GET MEMORY

. BEZ

$R7 ,=AP SIZ
$R5 ,o -
$B5,GTMEM
$Rl,SETREG IF NO ERROR SET UP REGISTERS

" E R R OR
SETREG RESV Cl
11

*
*
I
'il

LAB $B7,$B4.AP SIZ $57 TO TOP OF STACK
LAB $B6 u $B4 - $B6 WORK SPACE POINTER
THIS TEST EXECUTES FOUR MACROS IN THIS SEQUENCE:

Figure B-5. Sample Assembly Language Program for LU Type 6.2
for Host-Initiated Session

B-25 GRll-02

* ATTACHED THE CONVERSATION *
* *

*

$S}).TCH

*
LB
BBT
LB
BBF
AND
CMR
BNE
$USOUT
B

*
I

, I SMPLAIF', 'AA' ,CON.Fl.RM

=$Rl ,=VRABND
QUIT
=$Rl,=VRSCNL
RAW
$Rl ,=VRMASK
$Rl ,=VRSLNS
QUIT
IMISMSL,=MISL,L
QUIT

WAS IT ABAND
IF TRUE REPORT ERROR AND END

ELSE WAS IT REQUEST CANCELLED ?
IF FALSE PREFORM A $SRAW

ELSE MASK OUT RETURN CODE
COMPARE IS MISMATCH SYNC

IF NOT EQUAL QUIT
ELSE ISSUE MISMATCH ERROR

EXIT APPLICATION

LEVELS?

* *
* 0 U T P U T DAT A T 0 U S E R 0 U T *
* * * PLEASE ENTER DATA TO BE SENT TO THE HOST OR nEND" TO END THE CONVERSATION *

*
OUTMSG

*
I

RESV
$USOUT

0
IINPDAT,=INPL,L

* GET DAT.A FROM USER IN *
* *

*
GETCHR

*
*

CACL

*

RESV
LAB
LAB
LDR

$USIN

LDR
CMR
BE
LDR
CMR
BNE
$USOUT
B
SUB
ADD

STR

0
$B4 , $B6 • AP SBF
$B4,$B4.LL­
$R6,=(BUF_SZ-LL) *2

$RS,= I EN'
$RS, $64
DEAL
$RS,=(BUF SZ-LL)*2
$RS ,=$R6 -
>CACL
I NOCHAR,=NOL, L
>GETCHR
$RS ,=$R6
$RS t=LL*2

$RS, $B4 .-LL

SET $B4 TO ADDR OF SEND BUFFER
SET ur LENGTH FIELD FOR RECORD
GET RECORD SIZE IN BYTES

CHECK TO SEE IF END WAS ENTERED
IS IT END ???
IF TRUE DEALLOCATE THE CONVERSATION

ELSE GET MAXIUM LENGTH OF SEND BUFFER
WERE 0 CHAR ENTERED ??
IF TRUE REPORT IT

OUPUT ERROR MSG
GET NEXT INPUT

ELSE CACULATE LL FIELD
ADD THE LENGTH OF THE LL FIELD
TO THE RECORD LENGTH
STORE IT IN THE SEND BUFFER

Figure B-5 (cont). sample Assembly Language Program for LU
Type 6.2 for Host-Initiated Session

B-26 GRll-02

*
I

* T R A N S L A T E D A T A F R 0 M A S C I I T 0 E B C D I C *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM ASCII *
* FROM $B2.$R2 TO $B4.$R4 EBCDIC (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE t OF CHAR TO TRANSLATE *

*

LAB $B2,$B4 $B2 = ADDR FROM BUFFER
LDV $R2,0 $R2 = INDEX INTO FROM BUFFER

* $B4 = ADDR TO BUFFER
LDV $R4,0 $R4 = INDEX INTO TO BUFFER
LDR $R6 ,=$RS $R6 = t OF CHARS TO TRANSLATE
SUB $R6,=LL*2 SUBTRACT OUT LL FIELD
$SACEB

*
I

* SEND DATA TO THE HOST *
* *

*

LAB $B4 ,$B6 $B4 VPB POINTER
LAB $B2,$B6.AP SBF $B2 == ADDR OF SEND BUFFER
$SSDAT ,=$B2,$B6.AP SBF
LB =$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
BBT DEAL IF TRUE ERROR

*
I

* PREPARE TO RECEIVE *
* THIS COMMAND WILL CHANGE THE CONVERSATION STATE FROM SEND, TO RECEIVE, AND *
* FLUSH (TRANSMIT) THE LOCAL LU'S SEND BUFFER. *
* THIS COMMAND IS OPTIONAL, AND THE SAME RESULT COULD OF BEEN OPTAINED BY *
* A $SRAW (RECIEVE AND WAIT). THE LOCK OPTION BEING USED (LONG) SPECIFIES *
* RETURN CONTROL TO THE LOCAL PROG.RAM AFTER DATA AND AN ACKNOWLEDGEMENT IS *
* RECEIVED FROM THE REMOTE TRANSACTION. *

*

*
I

$SPTOR
LB
BBT

,FLUSH,LONG
=$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TROE ERROR

Figure B-5 (cont) • Sample Assembly Language Program for LU
Type 6.2 for Host-Initiated Session

B-27 GRll-02

* RECEIVE AND WAIT *
* THIS COMMAND WILL CHANGE YOUR CONVERSATION STATE TO RECEIVE , IF YOU ARE *
* NOT IN RECEIVE STATE, AND THEN FLUSH ITS SEND .BUFFER. THE LU THEN WAITS *
* FOR INFORMATION TO ARRIVE, OR RECEIVES THE DATA WITHOUT WAITING IF IT IS *
* CURRENTLY AVAILABLE. THIS RECEIVE SPECIFIES BUFFER, WHICH WILL RECEIVE *
* DATA UNTIL THE BUFFER IS FULL, OR END OF DATA IS INDICATED. BUFFER SIZ.E *
* IS SPECIFIED BYE DATA BUFFER LENGTH (VP DLG) *
~**********************************
*
RAW

*

CHKl

CHK2

CHK3

*
I

RESV
LAB
SS.RAW
LB
BBT

LDR
CMR
BE
CMR
BNE
LNJ
B
CMR
BE
CMR
BNE
LNJ
B
CMR
BNE
LNJ
B
$USOUT
B

0
$B2,$B6.AP RBF $B2 = ADDR OF RECEIVE BUFFER
,=$B2,=BUF-SZ,BUFFER
=$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TRUE ERROR

$R2,$B4.VP WAR
$R2,=VBRDAT
TRANS
$R2,=VBRCSN
>CHKl
$B5,CONFMD
OUTMSG
$R2, =VBRSND
OUT MSG
$R2,=VBRCDA
>CHK2
$B5,CONFMD
QUIT
$R2,=VBRCNF
CHIO
$B5,CONFMD
RAW
!BADWHT,=WHTL,L
SNDERR

ELSE GET THE WAT RECEIVED FIELD
IF DATA RECEIVED TRANSLATE IT

ELSE WAS IT A CONFIRM WITH SEND ?
IF TRUE EXECUTE A COMFIRMED

(SEND STATE)
GO BACK TO TERMINAL FOR MORE DATA

ELSE WAS IT A REQUEST TO SEND
IF TRUE OUTPUT PROMPT

ELSE WAS CONFIRM DEALOCA.TE?
IF TRUE EXECUTE CONFIRMED

(RESET STATE)
EXIT APPLICATION

ELSE WAS IT CONFIRM ?
IF TRUE EXECUTE CONFIRMED

(STATE DOES NOT CHANGE)
GOTO NEXT RECEIVE

ELSE REPORT ERROR & CONTINUE

* * * COMPARE TO SEE IF SEND BUFFER EQUALS RECEIVE BUFFER *
* *

*
TRANS

GETNXT
*

RESV
LAB
LAB
LOR
SUB
BLZ

0
$B2,$B6.AP SBF
$B3, $B6 .A:P-RBF
$R3, $B4. VP-AOL
$R3 ,=l -
$R3 ,TRANSl

$B2 = ADDR OF SEND BUFFER
$B3 = ADDR OF RECEIVE BUFFER
$R3 = t OF CHARS TO TRANSLATE
SUBTRACT 1 FOR BLZ
IF BUFFER EQUAL DISPLAY THEM

Figure B-5 (cont). Sample Assembly Language Program for LU
Type 6.2 for Host-Initiated Session

B-28 GRll-02

*

LDH
CMH
ADV
BE
$USOUT
B

$Rl , $B2 • $R3
$Rl, $B3. $R3
$R3,-l
GETNXT
lBADDAT,=BADDL,L
SNDERR

GET CHAR FROM SEND BUFFER
COMPARE WITH CHAR FROM RECEIVE BUFFER
SUBTRACT 1 FROM INDEX
IF EQUAL GET NEXT CHAR

ELSE REPORT ERROR
SEND ERROR SIGNAL TO REMOTE

* T R A N S L A T E D A T A F R 0 M E B C D I C T 0 A S C I I *
* THIS IS AN EXAMPLE OF THE TRANSLATE CALL. IT WILL TRANSLATE FROM EBCDIC *
* FROM $B2.$R2 TO $B4.$R4 ASCII (THIS EXAMPLE WILL TRANSLATE IN PLACE) • *
* $R6 WILL CONTAIN THE i OF CHAR TO TRANSLATE *
* VP AOL = ACTUAL i OF CHARS RECEIVED FROM REMOTE TRANSACTION *

*
TRANSl RESV 0

LOR $R6,$B4.VP ADL $R6 t OF CHAR TO TRANSLATE
LAB $B2,$B6.(AP_RBF+LL) $B2 = ADDR FROM BUFFER
LDV $R2,0 $R2 = INDEX INTO FROM BUFFER
LAB $B4,$B2 $B4 = ADDR TO BUFFER
LDV $R4,0 $R4 = INDEX INTO TO BUFFER
SUB $R6 1 =LL*2 SUBTRACT OUT LL FIELD
$SEBAC

*
LOR $R6, $B6. VP_ADL GET i OF CHARS TO DISPLAY
SUB $R6,=LL SUBTRACT OUT LL FIELD
LAB $B4,$B4.-LL ADJUST BUFFER ADDR FOR SLEW
LOR $Rl,=' A' SLEW CHAR TO OUTPUT
STR $Rl ,$B4 STORE IT IN THE BUFFER
$USOUT , ,R
LAB $B4 ,$B6 .AP_VPB $B4 = ADDR OF VPB
B RAW GET NEXT INPUT

*
I

* D E A L L 0 C A T E T H E C 0 N V E R S A T I 0 N *
*DEALLOCATE THE CONVERSATION NORMALLY AND FLUSH THE LOCAL LU'S SEND BUFFER *
* IF THE DEALLOCATE NORMAL IS NOT HONORED, AN ABNORMAL DEALLOCATE TYPE = *
* PROGRAM ERROR WILL EXECUTE, FORCING THE CONVERSATION TO DEALLOCATE *

*
*
DEAL RESV

LAB
$SDEAL
LB

0

*

*
I

BBT

$SDEAL
B

$B4 ,$B6 .AP VPB
,FLUSH, NO LOG,,
=$Rl , ... (VRABND+VRSCMP)
QUIT

$54 = ADDR OF THE VPB

WAS IT ABAND OR REQUEST COMPLETE ?
IF TRUE END PROGRAM

ELSE·DEALOCATE ABNORMALLY (PROGRAM ERROR)
,PROO AB,NO LOG,,
QUIT - -

Figure B-5 (cont). Sample Assembly Language Program for LU
Type 6.2 for Host-Initiated session

B-29 GRll-02

* SEND ERROR TO REMOTE *
* SEND AN ERROR TO THE REMOTE. THE CONVERSATION STATE WILL CHANGE FROM *
* RECEIVE TO SEND STATE, AND THE SEND BUFFER WILL NOT BE FLUSHED. *

*·
SNDERR RESV 0

LAB S,B4,$B6.AP_VPB $B4 "" ADDR OF VPB
$SSERR ,PROG,NO LOG,
LB =$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
BBT DEAL IF TRUE ERROR

*
B OUTMSG ELSE RECEIVE NEXT

*
I

* *
*
*

S E N D C 0 N F I R M E D T 0 R E M 0 T E *
*

*
CONFMD

*
I
*
QUIT

*
*

RESV
$SCNFD
LB
BBT
JMP

RESV
LAB
$RMEM
$TRMRQ

0

=$Rl,=(VRABND+VRSCNL) WAS IT ABAND OR REQUEST CANCEL ?
DEAL IF TRUE ERROR
$BS ELSE RETURN TO CALLER

0
$B4,$B6 SET $B4 = WORK SPACE

INPDAT TEXT 'APLEASE ENTER DATA TO BE SENT TO BOST, OR TYPE •END• TO
END THE CONVERSATION '
*
INPL
*

($-INPDAT)*2

SADDAT
*
BADDL

EQU

TEXT

EQU

'AFORMAT ERROR:RECEIVE BUFFER DOES NOT EQUAL SEND BUFFER '

($-BADDAT)*2

*
BADWBT
*
WHTL
*

TEXT 'AUNEXPECTED WHAT RECEIVED FIELD'

EQU ($-BADWBT)*2

NOCBAR TEXT 'ANO DATA HAS BEEN ENTERED, PLEASE ENTER DATA OR END TO
DEALOCATE THE CONVERSATION'
*
NOL
*

EQU ($-NOCHAR)*2

MISMSL TEXT 'ASYNC LEVEL MISMATCH, PLEASE CHANGE AND REASSEMBLE
APPLICATION, APPLICATION ABORTED'
MISL EQU ($-MISMSL)*2

*
END VR_02

Figure B-5 (cont).

END

Sample Assembly Language Program for LU
Type 6.2 for Host-Initiated session

B-30 GRll-02

TITLE VR_SUB, 1 85011511 1 SPI TAP SUBROUTINES.
* LIBM '>>LDD>MACROS>MAC USER'

I
*
*
GTMEM
*
*

LIBM EXEC LIB
LIBM OS LIB
$SVPB -

XVAL

XDEF
RESV

AP_VPB,AP_SBF

GTMEM
0

*THIS IS THE GET MEMORY SUBROUTINE.
*
*
* THE SIZE OF THE BLOCK OF MEMORY AND ITS SPACE INITIALIZATION VALUE
* ARE PROVIDED BY THE CALLER OF THIS SUBROUTINE.
* * $R6/$R7 -> THE SIZE OF THE BLOCK OF MEMORY TO BE OBTAINED
* $RS -> THE SPACE INTIALIZATION VALUE FOR THE MEMORY BLOCK
*
*
*
*
*

UPON EXIT FROM THIS SUBROUTINE, THE MEMORY BLOCK'S ADDRESS AND SIZE
OR IF THERE WAS A PROBLEM, THE ERROR CODE ARE RETURNED TO THE CALLER.

* $84 -> ADDRESS OF THE MEMORY BLOCK
* $R7 -> SIZE OF THE MEMORY BLOCK
* $Rl -> ERROR CODE
* $GMEM
* * CHECK FOR ERROR CODE RETURN FROM MACRO CALL
* BEZ $Rl,>+$C IF NO ERROR ON THE GET MEM, CONTINUE
* * UNABLE TO GET THE BLOCK OF MEMORY, RETURN WITH THE ERROR CODE IN $Rl
* $A
*
*
*

RESV

JMP

0

$BS RETURN TO THE CALLER

* INITIALIZE THE BLOCK OBTAINED WITH THE PROVIDED VALUE ($RS)
* CLRIT
$C

*

RESV
RESV
LDR
LDB

0
0
$R2,•$R7
$B2,•$B4

INIT. THE INDEX WITH THE SIZE OF TB
MUST USE Bl, B2, OR B3 FOR B-REL.+INDEX

Figure B-6. Subroutines for LU Type 6.2 Assembly
Language Programs

B-31 GRll-02

* THE BLOCK INITIALIZATION LOOP
$D RESV 0

STR $R5,$B2.-$R2 STORE THE PROPER VALUE IN THE NEXT BLOCK
BGZ $R2,>-$D THE INDEX IS ALSO THE NUMBER OF LOCATION

* END OF LOOP, BLOCK IS INTITIALIZEO

*
I
*
*
*
*
*
*
*
ASCII

ASCil

STRASC

/*

PR TV RB

OPCFND
$A

*

*

*

B >-$A RETURN TO THE CALLER WITH THE BLOCK

CONVERT l HEX WORD TO 4 ASCII BYTES
$R7 = WORD TO CONVERT
$R3 = OFFSET INTO MEMORY TO STORE CONVERTED VALUE
$B3 = BASE MEMORY ADDR OT STORE CONVERTED VALUE
$R2 = t OF CHARS TO STORE

EQU $
LDV $R2,3
LDV $R6,0
DIV $R7,=16
ADV $R6,=X'30'
CMR $R6,=X'003A'
BL >STRASC
ADV $R6,7
STH $R6 , $B3 • -$R3
BDEC $R2,>ASCI1
JMP $BS

XD.t:F PRTVRB
RESV 0
STB $BS,-$B7
LDR $R2,$B4.VP OPC
LBF =$R2,=Z'F000'
CMV $R2 ,=4
BNE >OPCFND
LDR $R2,$B4.VP CTL
LBF =$R2 ,=Z' FOOO.
LAB $B2,CTLTBL
B >+$A
LAB $B2,0PCTBL
MLV $R2,TBLGTH
LAB $83, $B6 .AP SBF
LDV $R3 ,O -
LDV $R6,TBLGTH
MMM

LDR $R7,$B4.VP_RCD
LDV $R3,12
LNJ $BS,ASCII

LDR $R7, $84. VP WAR
LDV $R3,l8 -
LNJ $BS ,ASCII

t OF BYTES TO CONVERT -1

ADD ASCII BIAS
IS IT A THROUGH F ?
IF NOT STORE IT
ADD ALPHA OFFSE.T
STORE STRING

RETURN TO CALLER

SAVE RETURN ADDR ON STACK
GET OP CODE OF VERB WITH ERROR
CHANGE HIGH ORDER NIBBLE TO 0
WAS IT A CONTROL TYPE VERB
IF FLASE SET TABLE

ELSE GET CONTROL TYPE
RESET HIGH ORDER NIBBLE
$B2 = TABLE TO SEARCH

$82 = TAB LE TO SEARCH
$R2 = OFFSET INTO TABLE
$B3 = ADDR OF TO BUFFER
$R3 = OFFSET INTO BUFFER
$R6 = I OF BYTES TO MOVE

GET RETURN CODE
OFFSET TO STORE ASCII RETURN CODE
TRANSLATE HEX TO.ASCII

GET WHAT RECEIVED
OFFSET TO STORE ASCII WHAT RECEIVED
TRANSLATE HEX TO ASCII

Figure B-6 (cont). Subroutines for LU Type 6.2 Assembly
Language Programs

B-32 GRll-02

$USOUT
LAB
LDR
LDB
JMP

* OP CODE TABLE
OPCTBL RESV

TEXT
TBLGTH EQU

TEXT
TEXT

CTLTBL RESV

*

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

=$B3 ,=TBLGTB+2
$B4, $86 .AP VPB
$Rl , $B4 • VP-RCD
$BS,+$B7 -
$BS

0
'A$SALLO
($-OPCTBL)*2
'AINVLD
'A$SSDAT
0
'A$SFLSH
'A$SCONF
'A$SCNFD
'A$SRTOS
'A$SSERR
1 A$SPTOR
'A$SPONR
'A$SDEAL

END VR SUB

RESET $B4 TO VPB
RESET $Rl TO RETURN CODE
RESTORE RETURN ADDR
RETURN TO CALLER

Figure B-6 (cont). Subroutines for LU Type 6.2 Assembly
Language Programs

B-33 GRll-02

AppendixC
SAMPLE COBOL

PROGRAMS

This appendix provides compilation listings of COBOL
programs. These programs demonstrate the use of AIF LU Type 0
and LU Type 6.2 for both DPS 6- and Host-initiated sessionse All
references to the DPS 6 system also include the DPS 6 PLUS
system.

Figure C-1 is an AIF LU Type 0 sample program for a DPS 6-
ini tiated session. Figure C-2 is an AIF LU Type 0 sample program
for a Bost-initiated session.

Figure C-3 is an AIF LU Type 6.2 sample program for a DPS 6-
initiated session. Figure C-4 is an AIF LU Type 6.2 sample
program for .. a Host-initiated session ..

C-1 GRll-02

PROGRAM-ID. LOSlC.

**
*
*
*
*
*
*
*
*
*
*
*
*

THIS IS A SAMPLE LU 0 PROGRAM WHICH WILL EXERCISE SOME OF THE *
AIF LUO COBOL CALLS. THE PROGRAM WILL START A SESSION WITH THE *
HOST TRANSACTION ADLO. IT WILL READ DATA FROM THE TERMINAL, *
CONVERT IT TO EBCDIC, AND SEND THE CONVERTED RECORD TO THE HOST *
THEN RECEIVE THE RECORD BACK. UPON RECEIVING THE DATA BACK, THE *
PROGRAM WILL COMPARE THE DATA THAT WAS RECEIVED WITH THE DATA *
$ENT DIPLAYING A PROPER MESSAGE ON THE TERMINAL. IT WILL *
CONVERT THE RECEIVED DATA TO ASCII AND DISPLAY IT ON THE *
TERMINAL. IF THE TERMINAL INPUT DATA STARTS WITH: END; THE *
PROGRAM WILL TERMINATE THE SESSION AND END, OTHERWISE, THE *
PROGRAM WILL GC THROUGH THE SAME PROCESS WITH WHAT HAS BEEN *
RECEIVED FROM THE TERMINAL. *

**

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-6.
OBJECT-COMPUTER. LEVEL-6.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 START-OF-WS PIC X(32)

VALUE "START OF WORKING STORAGE SECTION".
01 AIP-PARAMETERS PIC X(21) VALUE "AIF PARAMETERS FOLLOW".
77 SNA-WORK-AREA PIC X(200).
77 AIF-NODE-NAME PIC X(8) VALUE "SMPLAIF".
77 REMOTE-LU-NAME PIC X(8) VALUE "A06CICS2".
77 STD-NAME PIC XX VALUE "BB".
77 SYNC-CALL PIC X VALUE "S" •
77 ASYNC-CALL PIC X VALUE "A,.•
77 RESTART-SESSION PIC X VALUE "R".
77 NEW-SESSION PIC X VALUE "N" •
77 SESSION-ID PIC X(4) VALUE SPACES.
77 MSG-RESYNC-SEND-SQN PIC 9(5) VALUE ZEROS.
77 MSG-RESYNC-RECV-SQN PIC 9(5) VALUE ZEROS.
01 SEND-DATA-BUFFER PIC X(84) VALUE SPACES.
77 SEND-BUFFER-SIZE PIC 9(5) VALUE ZEROS.
77 DATA-BUFFER-ALIGNMENT PIC X VALUE "L".
77 REPLY-REQUEST PIC X VALUE "R" •
77 WHOLE-MSG-INDICATOR PIC X VALUE "Y" •
77 FMH-INDICATOR PIC X VALUE "N•.
77 RQD-INDICATOR PIC X VALUE "N" •
01 RECEIVE-DATA-BUFFER.

05 RECEIVE-RECORD PIC X(80) VALUE SPACES.
77 RECEIVE-BUFFER-SIZE PIC 9(5) VALUE 80.
77 RECEIVED-DATA-LENGTH PIC 9 (5) VALUE o.
77 RECV-COMPLETE-MSG PIC X VALUE "Y" •
77 WORK-AREA-ID PIC X(4) VALUE SPACES.
77 SEND-RESPONSE-TYPE PIC X VALUE "-" •
77 SEND-SENSE-DATA PIC X(8) VALUE ZEROS.

Figure C-1. Sample COBOL Program for_ LU Type 0 for DPS 6-
Initiated session

C-2 GRll-02

01

77
77
77
77
01

77
01

77
77
77
01

RETURN-CODE-VALUES.
05 MAJOR-RETURN-CODES.

10 SESSION-ABORT
88 SESSION-ABORTED

10 STOP-RECEIVED
88 SOPR-ISSUED-STOP

10 INTERRUPT-RECVD
88 INTERRUPT-RECEIVED

10 SERV-REQ-CANCELLED
88 CALL-WAS-CANCELLED

10 SERV-REQ-COMPLETE
88 CALL-WAS-COMPLETED

10 COBOL-ERROR
88 CALL-FORMAT-ERROR

05 MINOR-RETURN-CODE
INTERRUPT-TYPE
INTERRUPT-DATA-LENGTH
TERMINATE-TYPE
GET-ATTR-TYPE
SOPR-STOP-TIME.
05 DATE-OF-STOP.

10 STOP-YEAR
10 STOP-MONTH
10 STOP-DAY

05 TIME-OF-STOP.
10 STOP-HOUR
10 STOP-MINUTE
10 STOP-SECONDS

RECEIVED-SENSE-DATA
OUTPUT-CONTROL-WORD.
05 REPLY-REQUEST-CD

88 CHANGE-DIRECTION-RCVD
05 DEFINITE-RESPONSE-REQ

88 DEFINITE-RESPONSE-RCVD
05 LAST-MSG-EB

88 MSG-WITH-EB-RECEIVED
·os FMH-IN-RCVD-DATA

88 RCVD-DATA-HAS-FMH
05 BEGIN-MSG-RCVD-BC

88 BEGIN-CHAIN-RCVD
05 END-MSG-RCVD-EC

88 END-CHAIN-RCVD
05 SET-SEND-RECV-SEQ

88 STSN-RECEIVED
05 APPL-RESEND-REQUIRED

88 RESTART-LAST-MSG-INB
05 HOST-RESEND-REQUIRED

88 RESTART-LAST-MSG-OUTB
CONVERSION-LENGTH
TRANSLATE-FROM-POSITION
TRANSLATE-TO-POSITION
END-OF-AIF PIC X(21) VALUE "END

PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE nyn.
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE nyn.
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC 9(4) VALUE ZEROS.
PIC 99 VALUE ZEROS.
PIC 9(5) VALUE ZEROS.
PIC X VALUE "N".
PIC 99 VALUE 01.

PIC 99.
PIC 99.
PIC 99.

PIC 99.
PIC 99.
PIC 9(4).
PIC X(8) VALUE ZEROS.

PIC X.
VALUE 11 Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y 11 • •

PIC X.
VALUE 11 Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE nyn.
PIC X.
VALUE "Y".
COMP-1.
COMP-1 VALUE 1.
COMP-1 VALUE 1.

OF AIF PARAMETERS".

Figure C-l {cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-3 GRll-02

01 MISC-PROGRAM-VARIABLES PIC X(26) VALUE
"OTHER WORKING STORAGE DATA".

01 DATA-TO-HOST PIC X (84) VALUE HIGH-VALUES.
01 DATA-TO-HOST-REDEF REDEFINES DATA-TO-HOST.

05 HOST-TRANSACTION P!C X(4).
05 DPS6-DATA~RECORD.

10 CHECK-INPUT-FIELD OCCURS 80 TIMES.
15 DATA-FIELD-CHAR PIC X.

01 DATA-FROM-HOST.
05 DATA-FIELD OCCURS 80 TIMES.

10 DATA-FLD-CHAR PIC X.
01 DATA-FROM-TERMINAL.

05 END-INDICATOR
88 END-J?ROGRAM

05 FILLER

PIC XXX.
VALUE "END".
PIC X(77) VALUE SPACES.

01 SWITCH-COUNT-VARIABLES.
05 INDXl COMP-1
05 INDX2 COMP-1
05 NUMBER-CHARS PIC 9 (4)
05 CALC-LENGTH COMP-1
05 TEMP-LENGTH PIC 9 (5)
05 ERROR-IN-CALL-SW PIC 9

88 OK-TO-CONTINUE VALUE O.
05 RECORD-CHECK-SW PIC 9

88 RECORD-CHECKED VALUE 1.
05 NO-INPUT-SW PIC 9

88 NO-INPUT-DATA VALUE 1.
05 COMPARE-REC-SW PIC 9

88 COMPARE-OK VALUE O.
05 NO-MORE-SW PIC 9

88 NO-MORE-TO-CHECK VALUE 1.
05 INTERRUPT-SW PIC 9

88 INTERRUPT-CALL-NEXT VALUE 1.

VALUE 1.
VALUE 0.
VALUE ZEROS.
VALUE ZEROS.
VALUE ZEROS.
VALUE 0.

VALUE O.

VALUE O.

VALUE O.

VALUE O.

VALUE 0.

01 ENTER-MESSAGE PIC X(80) VALUE
"PLEASE ENTER DATA TO TRANSMIT TO HOST OR END TO QUIT".

01 END-OF-WORK-STOR PIC X(l9) VALUE "END WORKINq STORAGE".
PROCEDURE DIVISION.
000-BEGIN.

DISPLAY "START OF LU 0 SAMPLE COBOL PROGRAM".

* START BY TRYING TO INITIATE A SESSION WITH THE HOST CICS *
* SUBSYSTEM. *

PERFORM 100-INITIATE-SESSION THRU 100-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

GO TO 099-TERMINATE.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-4 GRll-02

* IF THE SESSION IS INITIATED THEN WE CAN PROCEED WITH THE *
* REMAINDER OF THE PROGRAM PROCESS. *
•***

005-CONTINUE.
MOVE "ADLO" TO HOST-TRANSACTION.
PERFORM 200-GET-RECORD THRU.200-EXIT.
IF END-PROGRAM .

ELSE

DISPLAY "END OF RUN REQUESTED - PROGRAM WILL END"
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE

NEXT SENTENCE.
MOVE HIGH-VALUES TO DPS6-DATA-RECORD.
MOVE SPACES TO DATA-FROM-HOST

RECEIVE-RECORD.
MOVE DATA-FROM-TERMINAL TO DPS6-DATA-RECORD.
MOVE 0 TO INDXl

NO-INPUT-SW
RECORD-CHECK-SW
SEND-BUFFER-SIZE.

PERFORM 300-CHECK-TERMINAL-DATA THRU 300-EXIT VARYING INDXl
FROM 1 BY 1 UNTIL RECORD-CHECKED.

IF 110-INPUT-DATA
DISPLAY "NO DATA WAS ENTERED FROM THE TERMINAL"
DISPLAY "PLEASE KEY SOME DATA BEFORE BITTING ENTER KEY"
GO TO 005-CONTINUE

ELSE
NEXT SENTENCE.

MOVE DATA-TO-HOST TO SEND-DATA-BUFFER.
PERFORM 400-SEND-RECORD THRU 400-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRO 700-EXIT

ELSE
NEXT SENTENCE.

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

010-DO-RECEIVE.
PERFORM 500-RECEIVE-INFO THRO 500-EXIT.
IF OK-To-CONTINUE

ELSE
NEXT SENTENCE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

PERFORM 600-COMPARE-INOUT THRO 600-EXIT.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated session

c-s GRll-02

*
*
*

020-CHECK-COMPARE.
IF COMPARE-OK

ELSE
DISPLAY 9 PROGRAM WILL CONTINUE"

DISPLAY "CHECK PROGRAM LOGIC - SESSION WILL TERMINATE•
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.'

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRO 700-EXIT

ELSE
NEXT SENTENCE.

GO TO 005-CONTINUE.
099-TERMINATE.

STOP RUN.

100-INITIATE-SESSION:

* THIS ROUTINE WILL ISSUE A CSINIT TO ATTEMPT TO START A *
* SESSION WITH THE HOST CICS SUBSYSTEM. THIS CALL WILL BE *
* MADE SYNCHRONOUSLY BECAUSE WE WANT TO MAKE SURE A SESSION *
* IS AVAILABLE BEFORE ATTEMPTING TO START A PROGRAM TO *
* PROGRAM CONVERSATION WITH A HOST TRANSACTION. *

*****DISPLAY 9 GOING TO DO CSINIT NCM".

CALL •csINIT 9 USING SNA-WORK-AREA
AIF-NODE-NAME
REMOTE-LU-NAME
STD-NAME
SYNC-CALL
NEW-SESSION
SESSION-ID
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RECV-SQN
RETURN-CODE-VALUES
INTERRUPT-TYPE
SO PR-STOP-TIME
RECEIVED-SENSE-DATA.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-6 GRll-02

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSINIT REQUEST - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL END - NO SESSION"
GO TO 100-EXIT.

DISPLAY "SESSION HAS BEEN ESTABLISHED - ID IS: "
SESSION-ID.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRU 700-EXIT

ELSE
NEXT SENTENCE.

100-EXIT.
EXIT.

*E.JECT
200-GET-RECORD.

MOVE HIGH-VALUES TO DATA-FROM-TERMINAL.

* NOW GET SOME DATA FROM THE TERMINAL OPERATOR TO SEND TO THE *
* HOST REMOTE PROGRAM. *

DISPLAY ENTER-MESSAGE.
ACCEPT DATA-FROM-TERMINAL.

200-EXIT.
EXIT.

*SKIP3
300-CHECK-TERMINAL-DATA.

*
*
*

NOW CHECK THE INPUT FROM THE TERMINAL TO SEE IF ANY DATA
WAS ENTERED AND CALCULATE THE LENGTH OF THE DATA ENTERED
THEN CONVERT THE DATA TO EBCDIC.

*
*
*

IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO HIGH-VALUES

MOVE 1 TO RECORD-CHECK-SW

ELSE

COMPUTE CALC-LENGTH = INDXl - 1
IF CALC-LENGTH IS EQUAL TO ZEROS OR

CALC-LENGTH IS LESS THAN ZEROS
MOVE l TO NO-INPUT-SW

ELSE
GO TO 300-EXIT

ADD 4 TO SEND-BUFFER-SIZE
COMPUTE CONVERSION-LENGTH = SEND-BUFFER-SIZE
PERFORM 305-CONVERT-RECORD THRU 305-EXIT

ADD 1 TO SEND-BUFFER-SIZE.
300-EXIT.

EXIT.
*SKIP3

305-CONVERT-RECORD.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-7 GRll-02

* THIS ROUTINE WILL ISSUE THE CSACEB CALL TO CONVERT THE DATA *
* FROM THE TERMINAL AND THE HOST TRANSACTION NAME TO EBCDIC *
* BEFORE THE DATA IS SENT TO THE HOST CICS SYSTEM. *

CALL ncsACEBn USING SNA-WORK-AREA
DATA-TO-HOST
TRANSLATE-FROM-POSITION
DATA-TO-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL•FORMAT-ERROR
DISPLAY ncOBOL ERROR IN CSACEB CALL - CHECK RETURN CODESn
DISPLAY ncOBOL RETURN CODE IS: n MINOR-RETURN-CODE
DISPLAY nPROGRAM WILL TERMINATE"
MOVE 1 TO ERROR-IN-CALL-SW

ELSE
NEXT SENTENCE.

305-EXIT.
EXIT.

*EJECT
400-SEND-RECORD.

* THIS ROUTINE WILL ISSUE THE CSSEND CALL TO SEND THE DATA *
* TO THE HOST. THE FIRST FOUR BYTES OF THE DATA CONTAIN THE *
* HOST CICS TRANSACTION CODE (ADLO) WHICH CAUSES CICS TO LOAD *
* THE PROGRAM ASSOCIATED WITH THAT TRANSACTION AND BEGINS THE *
* PROGRAM TO PROGRAM CONVERSATION. THIS CALL IS MADE *
* SYNCHRONOUSLY SINCE THE DESIGN OF THE PROGRAMS IS TO SEND *
* A MESSAGE THEN WAIT FOR THE RETURN MESSAGE. ALSO, THE *
* ENTIRE MESSAGE IS DELIVERED TO AIF, NOT MESSAGE SEGMENTS. *

*****DISPLAY nGOING TO DO CSSEND NOWn.

CALL ncsSENDn USING SNA-WORK-AREA
SEND-DATA-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
REPLY-REQUEST
WHOLE-MSG-INDICATOR
FMH-INDICATOR
ROD-INDICATOR.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY nERRORS FROM CSSEND REQUEST - CHECK RETURN CODESn
DISPLAY nPROGRAM WILL TERMINATEn.

400-EXIT.
EXIT.

*EJECT
500-RECEIVE-INFO.

Figure C-1 (cont) • Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-8 GRll-02

**
* THIS ROUTINE WILL ISSUE THE CSRECV CALL TO RECEIVE THE *
* DATA FROM THE HOST TRANSACTION PROGRAM. THIS CALL IS MADE * * SYNCHRONOUSLY AND THE PROGRAM EXPECTS THE ENTIRE MESSAGE *
* TO BE DELIVERED. *
*********************************~******************************
*****DISPLAY "GOING TO DO CSRECV"

CALL "CSREGV" USING SNA-WORK-AREA
RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
WHOLE-MSG-INDICATOR
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RE':'URN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSRECV - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 500-EXIT.

SOS-CHECK-STATUS-WORD.

* THIS ROUTINE WILL CHECK THE OUTPUT CONTROL WORD STATUS *
* FIELDS TO DETERMINE WHAT CONTROL INFORMATION WAS RETURNED *
* TO THE PROGRAM BESIDES THE DATA. THE CONTROL INFORMATION *
* WOULD INDICATE ADDITIONAL PROCESSING THIS PROGRAM WOULD *
* HAVE TO DO BEFORE CONTINUING NORMAL PROCESSING. THE *
* DESIGN OF THE TWO COMPLEMENTARY PROGRAMS WOULD INDICATE *
* WHETHER ANY SPECIAL PROCESSING, LIKE CHAINING OR DEFINITE *
* RESPONSE, WOULD HAVE TO BE HANDLED. *

IF CHANGE-DIRECTION-RCVD
DISPLAY "HOST PROGRAM IS WAITING TO RECEIVE NOW"

ELSE
NEXT SENTENCE.

IF MSG-WITH-EB-RECEIVED
DISPLAY "HOST TRANSACTION HAS ENDED - PROGRAM CAN SEND"

ELSE
NEXT SENTENCE.

IF DEFINITE-RESPONSE-RCVD

ELSE

DISPLAY "HOST PROGRAM IS EXPECTING A RESPONSE"
DISPLAY "ISSUE A CSSRSP CALL NEXT"

NEXT SENTENCE.

Figure C-1 (cont). sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-9 GRll-02

IF RCVD-DATA-HAS-FMH
DISPLAY 9 DATA FROM HOST CONTA!NS FMH INFORMATION•
DISPLAY 9 CHECK THE FMH DATA BEFORE CONTINUING·

ELSE
NEXT SENTENCE.

IF BEGIN-CHAIN-RCVD
DISPLAY 9 HOST PROGRAM HAS SENT THE BEGINNING OF A CHAIN·
DISPLAY n OF DATA - MULTIPLE RECEIVES MAY BE REQUIRED•

ELSE
NEXT SENTENCE.

IF END-CHAIN-RCVD
DISPLAY 9 LAST RECEIVE CALL HAS ENDED THE CHAIN"

ELSE
NEXT SENTENCE.

500-EXIT.
EXIT.

*EJECT
600-COMPARE-INOUT.

**
* THIS ROUTINE WILL COMPARE THE DATA RECEIVED FROM THE HOST *
* WITH THE DATA ORIGINALLY SENT. IF THEY ARE NOT THE SAME *
* A SWITCH IS SET AND ERROR MESSAGES ARE DISPLAYED. *
**

DISPLAY 9 GOING TO COMPARE RECORD SENT TO RECEIVED NOW~.
MOVE RECEIVE-RECORD TO DATA-FROM-HOST.
COMPUTE SEND-BUFFER-SIZE = SEND-BUFFER-SIZE - 4.
IF SEND-BUFFER-SIZE IS EQUAL TO RECEIVED-DATA-LENGTH

NEXT SENTENCE
ELSE

DISPLAY •suFFER LENGTHS ARE NOT THE SAME· •
DISPLAY "SEND LENGTH: " SEND-BUFFER-SIZE

" RECEIVE LENGTH: • RECEIVED-DATA-LENGTH.
MOVE 0 TO COMPARE-REC-SW

NUMBER-CHARS
NO-MORE-SW
INDXl.

PERFORM 800-COMPARE-EACH-FIELD THRO 800-EXIT
VARYING INDXl FROM l BY 1

UNTIL NO-MORE-TO-CHECK.
IF COMPARE-OK

DISPLAY 9 DATA FROM HOST IS THE SAME AS DATA SENT9 .

ELSE
DISPLAY •oATA FROM HOST IS NOT THE SAME AS DATA SENT"
DISPLAY 9 POSSIBLE LOGIC ERROR•.

605-CONVERT-DATA.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

c-10 GRll-02

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *

COMPUTE CONVERSION-LENGTH = RECEIVED-DATA-LENGTH.
CALL "CSEBAC" USING SNA-WORK-AREA

IF CALL-FORMAT-ERROR

DATA-FROM-HOST
TRANSLATE-FROM-POSITION
DATA-FROM-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"
DISPLAY "COBOL RETURN CODE IS: n MINOR-RETURN-CODE
DISPLAY "PROGRAM WILL TERMINATE•
MOVE l TO ERROR-IN-CALL-SW
GO TO 600-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "RECIEVED DATA IS: n

DISPLAY DATA-FROM-HOST.
600-EXIT.

EXIT.
*SKIP3

700-GET-INTERRUPT-INFO.
**
* THIS ROUTINE WILL ISSUE A CSRI CALL IN ORDER TO PICK UP THE *
* LENGTH OF ANY INTERRUPT INFORMATION THAT IS BEING RETURNED *
* TO THE PROGRAM. AFTER THIS CALL IS COMPLETED A CSWANY MUST *
* BE ISSUED BECAUSE A CSR! IS AN ASYNCHRONOUS CALL. A CSRECV *
* WOULD BE ISSUED AFTER THAT IF THERE IS AN INTERRUPT MESSAGE *
* TO PICK UP. THE INTERRUPT TYPE RETURNED ON THE ORIGINAL *
* SESSION CALL WILL INDICATE WHAT FURTHER PROCESSING THE *
* PROGRAM SHOULD DO NEXT. WE JUST DISPLAY ANY INFORMATION *
* RETURNED TO THE PROGRAM THEN CONTINUE NORMAL PROCESSING. *
* SOME INTERRUPTS MAY REQUIRE OTHER PROCESSING LOGIC. *
**
*****DISPLAY ~GOING TO ISSUE CSRI CALL NOW"

CALL 11 CSRI 11 USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSRI - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 700-EXIT.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

c-11 GRll-02

* ISSUE THE CSWANY CALL TO FORCE THE PROGRAM TO WAIT FOR THE *
* RETURN FROM THE CSR! CALL. *

CALL "CSWANY" USING SNA-WORI<-AREA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSWANY - CHECK RETURN CODES•
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 700-EXIT.

IF INTERRUPT-DATA-LENGTH IS EQUAL TO ZERO
DISPLAY "NO INTERRUPT MESSAGE RECEIVED - CONTINUE"
GO TO 700-EXIT

ELSE
,•

DISPLAY "NEED TO DO CSRECV FOR INTERRUPT MESSAGE".
MOVE INTERRUPT-DATA-LENGTH TO RECEIVE-BUFFER-SIZE.
CALL "CSRECV" USING SNA-WORI<-AREA

RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
WHOLE-MSG-INDICATOR
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSRECV {I} - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 700-EXIT.

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *

COMPUTE CONVERSION-LENGTH = RECEIVED-DATA-LENGTH.
CALL "CSEBAC" USING SNA-WORI<-AREA

RECEIVE-DATA-BUFFER
TRANSLATE-FROM-POSITION
RECEIVE-DATA-BUFFER
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-12 GRll-02

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"
DISPLAY "COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY "PROGRAM WILL TERMINATE"
MOVE 1 TO ERROR-IN-CALL-SW
GO TO 600-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "INTERRUPT INFORMATION IS: " RECEIVE-DATA-BUFFER.
700-EXIT.

EXIT.
*EJECT

BOO-COMPARE-EACH-FIELD.
IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO DATA-FIELD (INDXl)

ADD 1 TO NUMBER-CHARS
ELSE

ADD 1 TO NUMBER-CHARS
DISPLAY "CHARACTER NOT THE SAME IS: "

NUMBER-CHARS
MOVE 1 TO COMPARE-REC-SW.

IF INDXl IS EQUAL TO RECEIVED-DATA-LENGTH
MOVE 1 TO NO-MORE-SW
DISPLAY "END OF COMPARE"

ELSE
ADD 1 TO INDX2.

800-EXIT.
EXIT.

*SKIP3
900-CHECK-RETURN.

* THIS ROUTINE WILL CHECK THE RETURN CODES FROM THE VARIOUS *
* AIF CALLS. A SWITCH IS SET TO INDICATE WHETHER THE CALL *
* WAS OK OR NOT. WHEN THE RETURN CODES ARE NOT OK THEY *
* WILL BE DISPLAYED ON THE TERMINAL. *

MOVE 0 TO ERROR- IN-CALL-SW.
IF CALL-FORMAT-ERROR

ELSE

MOVE 1 TO ERROR-IN-CALL-SW
DISPLAY "COBOL FORMAT ERROR IN CALL - RETURN CODE IS: "

MINOR-RETURN-CODE
DISPLAY "NEXT MESSAGE INDICATES CALL IN ERROR"
GO TO 900-EXIT

NEXT SENTENCE.
IF SOPR-ISSUED-STOP

ELSE

DISPLAY "SOPR OPERATOR HAS ISSUED A STOP COMMAND"
DISPLAY "STOP TIME IS: " SOPR-STOP-TIME

NEXT SENTENCE.
IF SESSION-ABORTED

ELSE

DISPLAY "LU SESSION HAS BEEN ABORTED - REINIT REQUIRED"
MOVE 1 TO ERROR-IN-CALL-SW

NEXT SENTENCE.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated session

C-13 GRll-02

IF INTERRUPT-RECEIVED
DISPLAY "INTERRUPT FROM HOST OR AIF RECEIVED"
DISPLAY "INTERRUPT TYPE IS! " INTERRUPT~TYPE

n RECEIVED SENSE DATA IS: n RECEIVED-SENSE-DATA
DISPLAY "DO A CSR! FOR ADDITIONAL INFORMATION"
MOVE l TO INTERRUPT-SW

ELSE
MOVE 0 TO INTERRUPT-SW.

IF CALL-WAS-COMPLETED AND
MINOR-RETURN-CODE IS EQUAL TO ZEROS
GO TO 900-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "SESSION CALL CONTAINS ERRORS - RETURN CODE IS: "
MINOR-RETURN-CODE n MAJOR RETURN CODE IS: "
MAJOR-RETURN-CODES.

MOVE 1 TO ERROR- IN- CALL- SW.
900-EXIT.
EXIT.

*SKIP3
999-END-PROGRAM.

* THIS ROUTINE WILL BE USED TO ISSUE A CSTERM CALL TO END THE *
* CONVERSATION WITH THE HOST TRANSACTION AND THE LU SESSION. *
* A NORMAL TERMINATE IS ATTEMPTED FIRST BUT IF ERRORS ARE *
* RETURNED THEN AND ABNORMAL TERMINATE IS ATTEMPTED. *

*****DISPLAY "GOING TO TRY A NORMAL TERMINATE NOW".

MOVE "N" TO TERMINATE-TYPE
CALL "CSTERM" USING SNA-WORK-AREA

TERMINATE-TYPE.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE

DISPLAY "SESSION TERMINATION COMPLETE"
GO TO 999-EXIT

DISPLAY "ERRORS FROM CSTERM N - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL ISSUE ABNORMAL TERMINATE".

MOVE "A" TO TERMINATE-TYPE.
CALL "CSTERM" USING SNA-WORK-AREA

TERMINATE-TYPE.
999-EXIT.

EXIT.

Figure C-1 (cont). Sample COBOL Program for LU Type 0 for
DPS 6-Initiated Session

C-14 GRll-02

PROGRAM-ID. LOS2CH.

**
* THIS IS A SAMPLE LU 0 PROGRAM WHICH WILL EXERCISE SOME OF THE *
* AIF LUO COBOL CALLS. THE PROGRAM WILL START A SESSION WITH THE *
* HOST TRANSACTION ADLO. IT WILL READ DATA FROM THE TERMINAL, *
* CONVERT IT TO EBCDIC, AND SEND THE CONVERTED RECORD TO THE HOST *
* THEN RECEIVE THE RECORD BACK. UPON RECEIVING THE DATA BACK, THE *
* PROGRAM WILL COMPARE THE DATA THAT WAS RECEIVED WITH THE DATA *
* SENT DIPLAYING A PROPER MESSAGE ON THE TERMINAL. IT WILL *
* CONVERT THE RECEIVED DATA TO ASCII AND DISPLAY IT ON THE *
* TERMINAL. IF THE TERMINAL INPUT DATA STARTS WITH: END; THE *
* PROGRAM WILL TERMINATE THE SESSION AND END, OTHERWISE, THE *
* PROGRAM WILL GO THROUGH THE SAME PROCESS WITH WHAT HAS BEEN *
* RECEIVED FROM THE TERMINAL. *
**

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-6.
OBJECT-COMPUTER. LEVEL-6.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 START-OF-WS PIC X(32)

VALUE "START
01 AIF-PARAMETERS PIC X(21)
77 SNA-WORK-AREA
77 AIF-NODE-NAME
77 REMOTE-LU-NAME
77 STD-NAME
77 SYNC-CALL
77 ASYNC-CALL
77 RESTART-SESSION
77 NEW-SESSION
77 SESSION-ID
77 MSG-RESYNC-SEND-SQN
77 MSG-RESYNC-RECV-SQN
01 SEND-DATA-BUFFER
77 SEND-BUFFER-SIZE
77 DATA-BUFFER-ALIGNMENT
77 REPLY-REQUEST
77 WHOLE-MSG-INDICATOR
77 FMH-INDICATOR
77 ROD-INDICATOR
01 RECEIVE-DATA-BUFFER.

05 RECIEVE-TRAN
05 RECEIVE-RECORD

77 RECEIVE-BUFFER-SIZE
77 RECEIVED-DATA-LENGTH

OF WORKING STORAGE SECTION".
VALUE "AIF PARAMETERS FOLLOW".

PIC X(200).
PIC X(S) VALUE "SMPLAIF".
PIC X(8) VALUE "A06CICS2".
PIC XX VALUE "BB".
PIC X VALUE "S".
PIC X VALUE "A".
PIC X VALUE "R".
PIC X VALUE "N".
PIC X(4) VALUE SPACES.
PIC 9(5) VALUE ZEROS.
PIC 9(5) VALUE ZEROS.
PIC X(84) VALUE SPACES.
P!C 9(5) VALUE ZEROS.
PIC X VALUE "L".
PIC X VALUE "R".
PIC X VALUE "Y".
PIC X VALUE "N".
PIC X VALUE "N".

PIC X(4) VALUE SPACES.
PIC X(SO) VALUE SPACES.
PIC 9(5) VALUE 84.
PIC 9(5) VALUE O.

Figure C-2. Sample COBOL Program for LU Type 0 for Host­
Initiated Session

C-15 GRll-02

77 RECV-COMPLETE-MSG
77 WORK-AREA-ID
77 SEND-RESPONSE-TYPE
77 SEND-SENSE-DATA
01 RETURN-CODE-VALUES.

05 MAJOR-RETURN-CODES.
10 SESSION-ABORT

88 SESSION-ABORTED
10 STOP-RECEIVED

88 SOPR-ISSUED-STOP
10 INTERRUPT-RECVD

88 INTERRUPT-RECEIVED
10 SERV-REQ-CANCELLED

88 CALL-WAS-CANCELLED
10 SERV-REQ-COMPLETE

88 CALL-WAS-COMPLETED
l 0 COBOL- ERROR

88 CALL-FORMAT-ERROR
05 MINOR-RETURN-CODE

77 INTERRUPT-TYPE
77 INTERRUPT-DATA-LENGTH
77 TERMINATE-TYPE
77 GET-ATTR-TYPE
01 SOPR-STO.l?=TIME.

05 DATE-OF-STOP.
10 STOP-YEAR
10 STOP-MONTH
10 STOP-DAY

05 TIME-OF-STOP.
10 .STOP-HOUR
10 STOP-MINUTE
10 STOP-SECONDS

77 RECEIVED-SENSE-DATA
01 OUTPUT-CONTROL-WORD.

05 REPLY-REQUEST-CD
88 CHANGE-DIRECTION-RCVD

05 DEFINITE-RESPONSE-REQ
88 DEFINITE-RESPONSE-RCVD

05 LAST-MSG-EB
88 MSG-WITH-EB-RECEIVED

05 FMH-IN-RCVD-DATA
88 RCVD-DATA-HAS-FMH

05 BEGIN-MSG-RCVD-BC
88 BEGIN-CHAIN-RCVD

05 END-MSG-RCVD-EC
88 END-CHAIN-RCVD

05 SET-SEND-RECV-SEQ
88 STSN-RECEIVED

05 APPL-RESEND-REQUIRED
88 RESTART-LAST-MSG-INB

05 HOST-RESEND-REQUIRED
88 RESTART-LAST-MSG-OUTS

77 CONVERSION-LENGTH
77 TRANSLATE-FROM-POSITION

PIC X VALUE "Y".
PIC X(4) VALUE SPACES.
PIC X VALUE "-".
PIC X(8) VALUE ZEROS.

PIC X VALUE "N".
VALUE "Y".
PIC X VP.LUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC 9(4) VALUE ZEROS.
PIC 99 VALUE ZEROS.
PIC 9(5) VALUE ZEROS.
PIC X VALUE "N".
PIC 99 VALUE 01.

PIC 99.
PIC 99.
PIC 99.

PIC 99.
PIC 99.
PIC 9 (4) •
PIC X(8) VALUE ZEROS.

PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
PIC X.
VALUE "Y".
COMP-1.
COMP-1 VALUE 1.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

C-16 GRll-02

77
01
01

TRANSLATE-TO-POSITION COMP-1 VALUE 1.
END-OF-AIF PIC X(21) VALUE "END OF AIF PARAMETERS".
MISC-PROGRAM-VARIABLES PIC X(26) VALUE

"OTHER WORKING STORAGE DATA".
01 DATA-TO-HOST PIC X(84) VALUE HIGH-VALUES.
01 DATA-TO-HOST-REDEF REDEFINES DATA-TO-HOST.

05 HOST-TRANSACTION PIC X(4) ~
05 DPS6~DATA-RECORD.

10 CHECK-INPU~FIELD OCCURS 80 TIMES.
15 DATA-FIELD-CHAR PIC X.

01 DATA-FROM-HOST.
05 DATA-FIELD OCCURS 80 TIMES.

10 DATA-FLD-CHAR PIC X.
01 DATA-FROM-TERMINAL.

05 END-INDICATOR
88 END-PROGRAM

05 FILLER

PIC XXX.
VALUE "END 11 •

PIC X(77) VALUE SPACES.
01 SWITCH-COUNT-VARIABLES.

05 INDXl COMP-1
0 5 INDX2 COMP-1
05 NUMBER-CHARS PIC 9 (4)
05 CALC-LENGTH COMP-1
05 TEMP-LENGTH PIC 9(5)
05 ERROR-IN-CALL-SW PIC 9

88 OK-TO-CONTINUE VALUE O.
05 RECORD-CHECK-SW PIC 9

88 RECORD-CHECKED VALUE 1.
05 NO-INPUT-SW PIC 9

88 NO-INPUT-DATA VALUE 1.
05 COMPARE-REC-SW PIC 9

BS COMPARE-OK VALUE O.
05 NO-MORE-5W PIC 9

88 NO-MORE-TO-CHECK VALUE 1.
05 INTERRUPT-5W PIC 9

68 INTERRUPT-CALL-NEXT VALUE l.

VALUE 1.
VALUE O.
VALUE ZEROS.
VALUE ZEROS.
VALUE ZEROS.
VALUE O.

VALUE O.

VALUE O.

VALUE O.

VALUE O.

VALUE 0 ..

01 ENTER-MESSAGE PIC X(SO) VALUE
111 PLEASE ENTER DATA TO TRANSMIT TO HOST OR END TO QUIT".

01 END-OF-WORK-STOR PIC X(l9) VALUE 00 END WORKING STORAGE".
LINKAGE SECTIONe
77 NODE-NAME
77 STD
77 BASE-LEVEL
PROCEDURE DIVISION USING

000-BEGIN.

PIC X(8).
PIC XX.
PIC 99.

NODE-NAME
STD
BASE-LEVEL.

DISPLAY "START OF LU 0 SAMPLE COBOL PROGRAM".
MOVE NODE-NAME TO AIF-NODE-NAME.
MOVE STD TO STD-NAME.
DISPLAY "AIF NODE IS: " NODE-NAME " STD IS: " STD.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

C-17 GRll-02

* START BY TRYING TO ATTACH TO A SESSION THAT WAS STARTED BY *
* THE HOST CICS TRANSACTION ADLH. *

PERFORM 100-ACCEPT-SESSION THRU 100-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

GO TO 099-TERMINATE.

* IF THE SESSION IS CONNECTED THEN WE MUST ISSUE A RECEIVE *
* CALL SINCE A HOST INITIATED PROGRAM COMES UP IN RECEIVE *
* STATE TO RECEIVE AT A MININUM THE TRANSACTION NAME SENT *
* BY THE HOST. *

PERFORM 500-RECEIVE-INFO THRU 500-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "INITIAL CSR,SCV PROBLEM - PROGRAM WILL TERMINATE"
.·PERFORM 999-END-PROGRAM THRU 999-EXIT

GO TO 099-TERMINATE.

*
*

IF THE SESSION IS CONNECTED THEN WE CAN PROCEED WITH THE
REMAINDER OF THE PROGRAM PROCESS.

*
* ***

005-CONTINUE.
MOVE "ADLH" TO HOST-TRANSACTION.
PERFORM 200-GET-RECORD THRU 200-EXIT.
IF END-PROGRAM

ELSE

DISPLAY "END OF RUN REQUESTED - PROGRAM WILL END"
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE

NEXT SENTENCE.
MOVE H.IGH-VALUES TO DPS6-DATA-RECORD.
MOVE SPACES TO DATA-FROM-HOST

RECEIVE-RECORD.
MOVE DATA-FROM-TERMINAL TO DPS6-DATA-RECORD.
MOVE 0 TO INDXl

NO- INPUT- SW
RECORD-CHECK-SW
SEND-BUFFER-SIZE.

PERFORM 300-CHECK-TERMINAL-DATA THRU 300-EXIT VARYING INDXl
FROM 1 BY l UNTIL RECORD-CHECKED.

IF NO-INPUT-DATA
DISPLAY "NO DATA WAS ENTERED FROM THE TERMINAL"
DISPLAY "PLEASE KEY SOME DATA BEFORE HITTING ENTER KEY"
GO TO 005-CONTINUE

ELSE
NEXT SENTENCE.

MOVE DATA-TO-HOST TO SEND-DATA-BUFFER.
PERFORM 400-SEND-RECORD THRU 400-EXIT.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

C-18 GRll-02

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRO 700-EXIT

ELSE
NEXT SENTENCE.

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

010-DO-RECEIVE.
PERFORM 500-RECEIVE-INFO THRU 500-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

PERFORM 600-COMPARE-INOUT THRU 600-EXIT.
020-CHECK-COMPARE.

IF COMPARE-OK
DISPLAY "PROGRAM WILL CONTINUE"

ELSE
DISPLAY "CHECK PROGRAM LOGIC - SESSION WILL TERMINATE"
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRO 700-EXIT

ELSE
NEXT SENTENCE.

GO TO 005-CONTINUE.
099-TERMINATE.

STOP RUN.

100-ACCEPT-SESSION.

Figure C-2 (cont). Sample COBOL Program for LU Type O for
Host-Initiated Session

C-19 GRll-02

* THIS ROUTINE WILL ISSUE A CSACPT TO ATTEMPT TO CONNECT TO *
* AN AIF SESSION THAT HAS A BIND PENDING FROM CICS. THIS CALL*
* IS ALWAYS MADE SYNCHRONOUSLY. *

DISPLAY "GOING TO DO CSACPT NOW".
CALL "CSACPT" USING SNA-WORK-AREA

AIF-NODE-NAME
REMOTE-LU-NAME
STD-NAME
SYNC-CALL
NEW-SESSION
SESSION-ID
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RECV-SQN
RETURN-CODE-VALUES
INTERRUPT-TYPE
SOPR-STOP-TIME
RECEIVED-SENSE-DATA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSINIT REQUEST - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL END - NO SESSION"
GO TO 100-EXIT.

DISPLAY "SESSION HAS BEEN ESTABLISHED - ID IS: "
SESSION-ID.

IF INTERRUPT-CALL-NEXT
PERFORM 700-GET-INTERRUPT-INFO THRO 700-EXIT

ELSE
NEXT SENTENCE.

100-EXIT.
EXIT.

*EJECT
200-GET-RECORD.

MOVE HIGH-VALUES TO DATA-FROM-TERMINAL.

* NOW GET SOME DATA FROM THE TERMINAL OPERATOR TO SEND TO THE *
* HOST REMOTE PROGRAM. *

DISPLAY ENTER-MESSAGE.
ACCEPT DATA-FROM-TERMINAL.

200-EXIT.
EXIT.

*SKIP3
300-CHECK-TERMINAL-DATA.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

C-20 GRll-02

* NCM CHECK THE INPUT FROM THE TERMINAL TO SEE IF ANY DATA *
* WAS ENTERED AND CALCULATE THE LENGTH OF THE DATA ENTERED *
* THEN CONVERT THE DATA TO EBCDIC. *

IF CHECK-INPUT-FIELD (INDXl). IS EQUAL TO HIGH-VALUES
MOVE 1 TO RECORD-CHECK-SW

ELSE

COMPUTE CALC-LENGTH = INDXl - 1
IF CALC-LENGTH IS EQUAL TO ZEROS OR

CALC-LENGTH IS LESS THAN ZEROS
MOVE 1 TO NO-INPUT-SW

ELSE
GO TO 300-EXIT

COMPUTE SEND-BUFFER-SIZE = SEND-BUFFER-SIZE + 4
COMPUTE CONVERSION-LENGTH = SEND-BUFFER-SIZE
PERFORM 305-CONVERT-RECORD THRU 305-EXIT

ADD 1 TO SEND-BUFFER-SIZE.
300-EXIT.

EXIT.
*SKIP3

305-CONVERT-RECORD.

* THIS ROUTINE WILL ISSUE THE CSACEB CALL TO CONVERT THE DATA *
* FROM THE TERMINAL AND THE HOST TRANSACTION NAME TO EBCDIC *
* BEFORE THE DATA IS SENT TO THE HOST CICS SYSTEM. *

CALL •csACEB" USING SNA-WORK-AREA
DATA-TO-HOST
TRANSLATE-FROM-POSITION
DATA-TO-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSACEB CALL - CHECK RETURN CODES"
DISPLAY ncOBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY wPROGRAM WILL TERMINATEn
MOVE l TO ERROR- IN-CALL- SW

ELSE
NEXT SENTENCE.

305-EXIT.
EXIT.

*EJECT
400-SEND-RECORD.

Figure C-2 (cont). Sample COBOL Program for LU Type O for
Host-Initiated session

c-21 GRll-02

* THIS ROUTINE WILL ISSUE THE CSSEND CALL TO SEND THE DATA *
* TO THE HOST. THE FIRST FOUR BYTES OF THE DATA CONTAIN THE *
* HOST CICS TRANSACTION CODE (ADLO) WHICH CAUSES CICS TO LOAD *
* THE PROGR.~ ASSOCIATED WITH THAT TRA.i.~SACTION AND BEGINS THE *
* PROGRAM TO PROGRAM CONVERSATION. THIS CALL IS MADE *
* SYNCHRONOUSLY SINCE THE DESIGN OF THE PROGRAMS IS TO SEND *
* A MESSAGE THEN WAIT FOR THE RETURN MESSAGE. ALSO, THE *
* ENTIRE MESSAGE IS DELIVERED TO AIF, NOT MESSAGE SEGMENTS. *

*****DISPLAY "GOING TO DO CSSEND NOW".

CALL "CSSEND" USING SNA-WOR!C-AREA
SEND-DATA-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
REPLY-REQUEST
WHOLE-MSG-INDICATOR
FMH-INDICATOR
RQD-INDICATOR.

*
*

CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL H.Z\S *
COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSSEND REQUEST - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

400-EXIT.
EXIT.

*EJECT
500-RECEIVE-INFO.

**
*
*
*
*

THIS ROUTINE WILL ISSUE THE CSRECV CALL TO RECEIVE THE *
DATA FROM THE HOST TRANSACTION PROGRAM. ~HIS CALL IS MADE *
SYNCHRONOUSLY AND THE PROGRAM EXPECTS THE ENTIRE MESSAGE *
TO BE DELIVERED. *

**
*****DISPLAY "GOING TO DO CSRECV"

CALL "CSREcvn USING SNA-WORlC-AREA
RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
WHOLE-MSG-INDICATOR
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

c-22 GRll-02

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY •ERRORS FROM CSRECV - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 500-EXIT.

505-CHECK-STATUS-WORD.

* THIS ROUTINE WILL CHECK THE OUTPUT CONTROL WORD STATUS *
* FIELDS TO DETERMINE WHAT CONTROL INFORMATION WAS RETURNED *
* TO THE PROGRAM BESIDES THE DATA. THE CONTROL INFORMATION *
* WOULD INDICATE ADDITIONAL PROCESSING THIS PROGRAM WOULD *
* HAVE TO DO BEFORE CONTINUING NORMAL PROCESSING. THE *
* DESIGN OF THE TWO COMPLEMENTARY PROGRAMS WOULD INDICATE *
* WHETHER ANY SPECIAL PROCESSING, LIKE CHAINING OR DEFINITE *
* RESPONSE, WOULD HAVE TO BE HANDLED. *

IF CHANGE-DIRECTION-RCVD
DISPLAY "HOST PROGRAM IS WAITING TO RECEIVE NCM 8

ELSE
NEXT SENTENCE.

IF MSG-WITH-EB..:RECEIVED
DISPLAY "HOST TRANSACTION HAS ENDED - PROGRAM CAN SEND 8

ELSE
NEXT SENTENCE.

IF DEFINITE-RESPONSE-RCVD

ELSE

DISPLAY 8 HOST PROGRAM IS EXPECTING A RESPONSE·
DISPLAY 8 ISSUE A CSSRSP CALL NEXT·

NEXT SENTENCE.
IF RCVD-DATA-HAS-FMH

DISPLAY 8 DATA FROM HOST CONTAINS FMH INFORMATION•
DISPLAY "CHECK THE FMH DATA BEFORE CONTINUING•

ELSE
NEXT SENTENCE.

IF BEGIN-CHAIN-RCVD
DISPLAY "HOST PROGRAM HAS SENT THE BEGINNING OF A CHAIN•
DISPLAY n OF DATA - MULTIPLE RECEIVES MAY BE REQUIRED"

ELSE
NEXT SENTENCE.

IF END-CHAIN-RCVD
DISPLAY "LAST RECEIVE CALL HAS ENDED THE CHAIN•

ELSE
NEXT SENTENCE.

500-EXIT.
EXIT.

*EJECT
600-COMPARE-INOUT.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Bost-Initiated Session

C-23 GRll-02

**
* THIS ROUTINE WILL COMPARE THE DATA RECEIVED FROM THE HOST *
* WITH THE DATA ORIGINALLY SENT. IF THEY ARE NOT THE SAME *
* A SWITCH IS SET AND ERROR MESSAGES ARE DISPLAYED. *
****************•***

,•

DISPLAY "GOING TO COMPARE RECORD SENT TO RECEIVED NOW".
MOVE RECEIVE-RECORD TO DATA-FROM-HOST.
IF . SEND-BUFFER-SIZE IS EQUAL TO RECEIVED-DATA-LENGTH

NEXT SENTENCE
ELSE

DISPLAY "BUFFER LENGTHS ARE NOT THE SAME"
DISPLAY "SEND LENGTH: " SEND-BUFFER-SIZE

" RECEIVE LENGTH: " RECEIVED-DATA-LENGTH.
MOVE 0 TO COMPARE-REC-SW

NUMBER-CHARS
NO-MORE-SW
INDXl.

COMPUTE RECEIVED-DATA-LENGTH = RECEIVED-DATA-LENGTH - 4.
PERFORM 800-COMPARE-EACH-FIELD THRU 800-EXIT

VARYING INDXl FROM l BY l
UNTIL NO-MORE-TO-CHECK.

IF COMPARE-OK
DISPLAY "DATA FROM HOST IS THE SAME AS DATA SENT"

ELSE
DISPLAY "DATA FROM HOST IS NOT THE SAME AS DATA SENT"
DISPLAY "POSSIBLE LOGIC ERROR".

605-CONVERT-DATA.

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *
~

COMPUTE CONVERSION-LENGTH = RECEIVED-DATA-LENGTH + 4.
CALL "CSEBAC" USING SNA-WORK-AREA

RECEIVE-DATA-BUFFER
TRANSLATE-FROM-POSITION
RECEIVE-DATA-BUFFER '
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"
DISPLAY "COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY "PROGRAM WILL TERMINATE"
MOVE l TO ERROR-IN-CALL-&'W
GO TO 600-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "RECIEVED DATA IS: "
DISPLAY RECEIVE-RECORD.

600-EXIT.
EXIT.

*SKIP3
700-GET-INTERRUPT-INFO.

Figure C-2 (cont). sample COBOL Program for LU Type 0 for
Host-Initiated session

C-24 GRll-02

**
* THIS ROUTINE WILL ISSUE A CSRI CALL IN ORDER TO PICK UP THE *
* LENGTH OF ANY INTERRUPT INFORMATION THAT IS BEING RETURNED *

'* TO THE PROGRAM. AFTER THIS CALL IS COMPLETED A CSWANY MUST *
* BE ISSUED BECAUSE A CSRI IS AN ASYNCHRONOUS CALL. A CSRECV *
* WOULD BE ISSUED .AFTER THAT IF THERE IS AN INTERRUPT MESSAGE *
* TO PICK UP. THE INTERRUPT TYPE RETURNED ON THE ORIGINAL *
* SESSION CALL WILL INDICATE WHAT FURTHER PROCESSING THE *
* PROGRAM SHOULD DO NEXT. WE JUST DISPLAY ANY INFORMATION *
* RETURNED TO THE PROGRAM THEN CONTINUE NORMAL PROCESSING. *
* SOME INTERRUPTS MAY REQUIRE OTHER PROCESSING LOGIC. *
**
*****DISPLAY "GOING TO ISSUE CSRI CALL NOW"

CALL "CSRI" USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSRI - CHECK RETURN CODES 9

DISPLAY 9 PROGRAM WILL TERMINATE•
GO TO 700-EXIT.

* ISSUE THE CSWANY CALL TO FORCE THE PROGRAM TO WAIT FOR THE *
* RETURN FROM THE CSRI CALL. *

CALL "CSWANY" USING SNA-WORK-AREA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY 9 ERRORS FROM CSWANY - CHECK RETURN CODES 9

DISPLAY "PROGRAM WILL TERMINATE"
GO TO 700-EXIT.

IF INTERRUPT-DATA-LENGTH IS EQUAL TO ZERO
DISPLAY "NO INTERRUPT MESSAGE RECEIVED - CONTINUE"
GO TO 700-EXIT

ELSE
DISPLAY "NEED TO DO CSRECV FOR INTERRUPT MESSAGE•.

MOVE INTERRUPT-DATA-LENGTH TO RECEIVE-BUFFER-SIZE.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated session

C-25 GRll-02

CALL "CSRECV" USING SNA-WORK-AREA
RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
SYNC-CALL
WHOLE-MSG-INDICATOR
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD.

* CHECK THE RETURN COD~ VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSRECV (I) - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 700-EXIT.

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *

COMPUTE CONVERSION-LENGTH = RECEIVED-DATA-LENGTH.
CALL "CSEBAC" USING SNA-WORK-AREA

RECEIVE-DATA-BUFFER
TRANSLATE-FROM-POSITION
RECEIVE-DATA-BUFFER
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"
DISPLAY "COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY "PROGRAM WILL TERMINATE"
MOVE l TO ERROR-IN-CALL-SW
GO TO 600-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "INTERRUPT INFORMATION IS: "
RECEIVE-DATA-BUFFER.

700-EXIT.
EXIT.

*FJECT
800-COMPARE-EACH-FIELD.

IF CHECK-INPUT-FIELD (INDXl} IS EQUAL TO DATA-FIELD {INDXl)
ADD l TO NUMBER-CHARS

ELSE
ADD l TO NUMBER-CHARS
DISPLAY "CHARACTER NOT THE SAME IS: "

NUMBER-CHARS
MOVE l TO COMPARE-REC-SW.

Figure C-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated Session

C-26 GRll-02

IF INDXl IS EQUAL TO RECEIVED-DATA-LENGTH
MOVE l TO NO-MORE-SW
DISPLAY •END OF COMPARE•

ELSE
ADD 1 TO INDX2.

800-EXIT.
EXIT.

*SKIP3
900-CHECK-RETURN.

* THIS ROUTINE WILL CHECK THE RETURN CODES FROM THE VARIOUS *
* AIF CALLS. A SWITCH IS SET TO INDICATE WHETHER THE CALL *
* WAS OK OR NOT. WHEN THE RETURN CODES ARE NOT OK THEY *
* WILL BE DISPLAYED ON THE TERMINAL. *

MOVE 0 TO ERROR-IN-CALL-SW.
IF CALL-FORMAT-ERROR

MOVE l TO ERROR-IN-CALL-SW
DISPLAY •cOBOL FORMAT ERROR IN CALL - RETURN CODE IS: n

MINOR-RETURN-CODE

ELSE

DISPLAY •NEXT MESSAGE INDICATES CALL IN ERROR"
GO TO 900-EXIT

NEXT SENTENCE.
IF SOPR-ISSUED-STOP

ELSE

DISPLAY "SOPR OPERATOR HAS ISSUED A STOP COMMAND"
DISPLAY "STOP TIME IS: n SOPR-STOP-TIME

NEXT SENTENCE.
IF SESSION-ABORTED

DISPLAY "'LU SESSION HAS BEEN ABORTED - REINIT REQUIRED"
MOVE l TO ERROR-IN-CALL-SW

ELSE
NEXT SENTENCE.

IF INTERRUPT-RECEIVED
DISPLAY "INTERRUPT FROM HOST OR AIF RECEIVED 11

DISPLAY "INTERRUPT TYPE IS: " INTERRUPT-TYPE
11 RECEIVED SENSE DATA IS: 11 RECEIVED-SENSE-DATA

DISPLAY "DO A CSR! FOR ADDITIONAL INFORMATION"
MOVE l TO INTERRUPT-SW

ELSE
MOVE 0 TO INTERRUPT-SW.

IF CALL-WAS-COMPLETED AND
MINOR-RETURN-CODE IS EQUAL TO ZEROS

GO TO 900-EXIT
ELSE

NEXT SENTENCE.
DISPLAY "VERB CALL CONTAINS ERRORS - RETURN CODE IS: n

MINOR-RETURN-CODE " MAJOR RETURN CODE IS: n

MAJOR-RETURN-CODES.
MOVE l TO ERROR-IN-CALL-SW.

900-EXIT.
EXIT.

Figure ~-2 (cont). Sample COBOL Program for LU Type 0 for
Host-Initiated session

C-27 GRll-02

*SKIP3
999-END-PROGRAM.

* THIS ROUTINE WILL BE USED TO ISSUE A CSTERM CALL TO END THE *
* CONVERSATION WITH THE HOST TRANSACTION AND THE LU SESSION. *
* AN ABNORMAL TERMINATE IS DONE SINCE THE HOST TRANSACTION *
* IS DESIGNED TO NOT END THE BRACKET. *

*****DISPLAY nGOING TO TRY A NORMAL TERMINATE NOWn.

MOVE nAn TO TERMINATE-TYPE
CALL ncSTERMn USING SNA-WORK-AREA

TERMINATE-TYPE.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL H.AS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE

DISPLAY nsESSION 'l'ERMINATION COMPLETEn
GO TO 999-EXIT

DISPLAY "ERRORS FROM CSTERM A - CHECK RETURN CODESn
DISPLAY npRQGRAM WILL ISSUE ABNORMAL TERMINATE AGAINn.

MOVE "A" TO TERMINATE~TYPE.
CALL "CSTERMr. USING $NA-WORK-AREA

TERMINATE-TYPE.
999-EXIT.

EXIT.

Figure C-2 (cont). Sample COBOL Program for LU Type O for
Host-Initiated session

C-28 GRll-02

PROGRAM-ID. L6SlC.

~*
* THIS IS A SAMPLE LU 6.2 PROGRAM WHICH WILL EXERCISE SOME *
* OF THE AIF 6.2 VERBS. THE PROGRAM WILL ALLOCATE A *
* CONVERSATION WITH THE HOST TRANSACTION ADL6. IT WILL *
* READ DATA FROM THE TERMINAL, CONVERT IT TO EBCDIC, BUILD *
* THE LOGICAL .RECORD TO SEND TO THE HOST, SEND THE RECORD *
* TO THE HOST AND RECEIVE THE RECORD BACK. UPON RECEIVING *
* THE DATA BACK, THE PROGRAM WILL COMPARE THE DATA THAT *
* WAS RECEIVED WITH THE DATA SENT AND SEND EITHER A CON- *
* FIRMATION OR AN ERROR MESSAGE TO THE HOST DEPENDING ON *
* WHETHER THE TWO COMPARED THE SAME. IT WILL CONVERT THE *
* RECEIVED DATA TO ASCII AND DISPLAY IT ON THE TERMINAL. *
* IF THE TERMINAL INPUT DATA STARTS WITH: END; THE PROGRAM *
* WILL DEALLOCATE THE CONVERSTATION AND END OTHERWISE IT *
* WILL DO THE SAME PROCESS WITH WHAT HAS BEEN RECEIVED *
* FROM THE TERMINAL. *
**

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-6.
OBJECT-COMPUTER. LEVEL-6.

DATA DIVISION.
WORKING-STORAGE
01 START-OF-WS

SECTION.
PIC X (32)
VALUE "START OF WORKING STORAGE SECTION".

AIF-PARAMETERS PIC X(21) VALUE "AIF PARAMETERS FOLLOW".
SNA-WORK-AREA PIC X(200).

01
11
77
77
77
77
77
77
77
77
77
01

AIF-NODE-NAME PIC X(8} VALUE "SMPLAIF".

77
77
01

77
77
77
77

REMOTE-LU-NAME PIC X(8) VALUE HA06CICS2".
STD-NAME PIC XX VALUE
SYNC-LEVEL PIC X VALUE
HOST-TRANSACTION-NAME PIC X(4) VALUE
TRANSLATE-TRAN-NAME PIC X VP.LUE "Y".
RETURN-CONTROL PIC X VALUE "A".
CONVERSATION-ID PIC X(4).
POSTED-CONVERSATION-ID PIC X(4) •
LOGICAL-DATA-BUFFER.
05 LOGICAL-REC-LENGTH
05 LOGICAL-RECORD
DATA-BUFFER-LENGTH
DATA-BUFFER-ALIGNMENT
RECEIVE-DATA-BUFFER.
05 RECEIVE-REC-LENGTH
05 RECEIVE-RECORD
TYPE-OF-RECEIVE
RECEIVE-BUFFER-SIZE
RECEIVED-DATA-LENGTH
SEND-SENSE-DATA

COMP-1.
PIC X(80) VALUE SPACES.
PIC 9(5) VALUE 82.
PIC X VALUE "L".

COMP-1.
PIC X(80) VALUE SPACES.
PIC X VALUE "B".
PIC 9(5) VALUE 82.
PIC 9(5) VALUE O.
PIC X(S) VALUE ZEROS.

Figure C-3. Sample COBOL Program for LU Type 6.2 for
DPS 6-Initiated session

C-29 GRll-02

01 RETURN-CODE-VALUES.
05 MAJOR-RETURN-CODES.

10 ABEND-DEALLOCATE PIC X.
88 ABEND-RECEIVED VALUE "Y".

10 STOP-RECEIVED PIC X.
88 SOPR-ISSUED-STOP VALUE "Y".

10 SERV-REQ-CANCELLED PIC X.
88 CALL-WAS-CANCELLED VALUE "Y".

10 SERV-REQ-COMPLETE PIC X.
88 CALL-WAS-COMPLETED VALUE "Y".

10 COBOL-ERROR PIC X.
88 CALL-FORMAT-ERROR VALUE "Y".

05 MINOR-RETURN-CODE PIC 9(4) VALUE ZEROS.
01 SOPR-STOP-TIME.

05 DATE-OF-STOP.
10 STOP-YEAR PIC 99.
10 STOP-MONTH PIC 99.
10 STOP-DAY PIC 99.

05 TIME-OF-STOP.
10 STOP-HOUR PIC 99.
10 STOP-MINUTE PIC 99.
10 STOP-SECONDS PIC 9(4).

77 RECEIVED-SENSE-DATA PIC X(8) VALUE ZEROS.
01 OUTPUT-CONTROL-WORD.

05 REQUEST-SEND-RECVD PIC X.
88 REQUEST-TO-SEND VALUE "Y".

05 CONVERSATION-POSTED PIC X.
88 POSTED-CONVERSATION VALUE "Y".

05 WHAT-RECEIVED PIC 99.
88 DATA-RECEIVED VALUE 20.
88 LL-DATA-RECEIVED-COMP VALUE 21.
88 LL-DATA-RECEIVED-INCOMP VALUE 22.
88 LL-FIELD-TRUNCATED VALUE 08.
88 CONFIRM-REQUEST VALUE 02.
88 CONFIRM-ON-HOST-PTOR VALUE 06.
88 SEND-REQUEST-RECVD VALUE 04.
88 DEALLOCATE-CONFIRM VALUE 05.
88 DATA-INC-LENG-0 VALUE 09.
88 DATA-AVAIL-LENG-0 VALUE 10.

77 LOG-SWITCH PIC X VALUE "N".
77 LOG-DATA PIC X (80) VALUE

"ERROR IN PROGRAM".
77 TYPE-SWITCH PIC X VALUE "S".
77 CONVERSION-LENGTH COMP-1.
77 CONFIRMATION-LOCKS PIC X VALUE "L".
77 TRANSLATE-FROM-POSITION COMP-1 VALUE 1.
77 TRANSLATE-TO-POSITION COMP-1 VALUE 1.
01 END-OF-AIF PIC X(21) VALUE "END OF AIF PARAMETERS".
01 MISC-PROGRAM-VARIABLES PIC X(26) VALUE

"OTHER WORKING STORAGE DATA".
01 DATA-TO-HOST PIC X(80) VALUE HIGH-VALUES.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-30 GRll-02

01 DATA-TO-HOST-REDEF REDEFINES DATA-TO-HOST.
05 CHECK-INPUT-FIELD OCCURS 80 TIMES.

10 DATA-FIELD-CHAR PIC X.
01 DATA-FROM-HOST.

05 DATA-FIELD OCCURS 80 TIMES.
10 DATA-FLO-CHAR PIC X.

01 DATA-FROM-TERMINAL.
05 END-INDICATOR

88 END-PROGRAM
05 FILLER

PIC XXX.
VALUE "END".
PIC X(77} VALUE SPACES.

01 SWITCH-COUNT-VARIABLES.
05 INDXl COMP-1
05 NUMBER-CHARS PIC 9(4)
05 CALC-LENGTH COMP-1
0 5 TEMP-LENGTH PIC 9 (5)
05 ERROR-IN-CALL-SW PIC 9

88 OK-TO-CONTINUE VALUE O.
05 RECORD-BUILT-SW PIC 9

88 RECORD-BUILT VALUE 1.
05 NO-INPUT-SW PIC 9

88 NO-INPUT-DATA VALUE l.
05 COMPARE-REC-SW PIC 9

88 COMPARE-OK VALUE O.
05 NO-MORE-SW PIC 9

88 NO-MORE-TO-CHECK VALUE l.

VALUE l.
VALUE ZEROS.
VALUE ZEROS.
VALUE ZEROS.
VALUE O.

VALUE O.

VALUE O.

VALUE O.

VALUE O.

01 ENTER-MESSAGE PIC X(BO) VALUE
"PLEASE ENTER DATA TO TRANSMIT TO HOST OR ENP TO QUIT".

01 END-OF-WORK-STOR PIC X(l9) VALUE "END WORKING STORAGE".
PROCEDURE DIVISION.
000-BEGIN.

DISPLAY "START OF LU 6 .2 SAMPLE COBOL PROGRAM".

*
*

START BY TRYING TO ALLOCATE A CONVERSATION WITH HOST CICS
TRANSACTION ADL6.

*
*

PERFORM 100-ALLOCATE-CONVERSATION THRU 100-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

GO TO 099-TERMINATE.

* IF THE CONVERSATION IS ALLOCATED THEN WE CAN PROCEED WITH *
* THE REMAINDER OF '.!!HE PROGRAM PROCESS. . *

005-CONTINUE.
PERFORM 200-GET-RECORD THRU 200-EXIT.
IF END-PROGRAM

ELSE

DISPLAY "END OF RUN REQUESTED - PROGRAM WILL END"
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE

NEXT SENTENCE.
MOVE HIGH-VALUES TO DATA-TO-HOST.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated session

C-31 GRll-02

MOVE SPACES TO DATA-FROM-HOST
RECEIVE-RECORD.

MOVE DATA-FROM-TERMINAL TO DATA-TO-HOST.
MOVE 0 TO INDXl

NO-INPUT-SW
RECORD-BUILT-SW
LOGICAL-REC-LENGTH
DATA-BUFFER-LENGTH.

PERFORM 300-BUILD-LOGICAL THRU 300-EXIT VARYING INDXl FROM l
BY l UNTIL RECORD-BUILT.

IF NO-INPUT-DATA
DISPLAY "NO DATA WAS ENTERED FROM THE TERMINAL"
DISPLAY "PLEASE KEY SOME DATA BEFORE HITTING ENTER KEY"
GO TO 005-CONTINUE

ELSE
NEXT SENTENCE.

MOVE DATA-TO-HOST TO LOGICAL-RECORD.
PERFORM 400-SEND-RECORD THRU 400-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END=PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

010-00-RECEIVE.
PERFORM. SOO~RECEIVE~INFO THRU 500-EXIT.

0101-NEXT-RECEIVE.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

015-CHECK-WHAT-RECEIVED.
IF DATA-RECEIVED

ELSE

PERFORM 600-COMPARE-INOUT THRO 600-EXIT
PERFORM 505-ISSUE-CSRAW THRU 500-EXIT
GO TO 0101-NEXT-RECEIVE

IF DEALLOCATE-CONFIRM

ELSE

ELSE

PERFORM 700-ISSUE-CONFIRMED THRU 700-EXIT
GO TO 099-TERMINATE

IF CONFIRM-ON-HOST-PTOR
GO TO 020-CHECK-COMPARE

NEXT SENTENCE.
DISPLAY "UNEXPECTED WHAT RECEIVED FIELD".
DISPLAY "WHAT RECEIVED IS: n WHAT-RECEIVED.
PERFORM 705-SEND-ERROR THRU 705-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

GO TO 0101-NEXT-RECEIVE.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated session

C-32 GRll-02

*
*
*

020-CHECK-COMPARE.
IF COMPARE-OK

PERFORM 700-ISSUE-CONFIRMED THRU 700-EXIT
ELSE

PERFORM 705-SEND-ERROR THRO 705-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE .

PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

GO TO 005-CONTINUE.
099-TERMINATE.

STOP RUN.

100-ALLOCATE-CONVERSATION.

* THIS ROUTINE WILL ISSUE A CSALLO TO ATTEMPT TO ALLOCATE A *
* LU 6.2 CONVERSATION WITH THE HOST CICS TRANSACTION ADL6. *
* A CSFLSH IS ISSUED TO FORCE AIF TO SEND THE ATTACH REQUEST *
* TO CICS IMMEDIATELY, INSTEAD OF WAITING FOR THE SEND BUFFER *
* TO FILL UP OR ANOTHER VERB BEING ISSUED WITH A FLUSH OPTION.*
* WE WANT TO FIND OUT IF A CONVERSATION CAN BE STARTED BEFORE *
* PROCEEDING FURTHER. *

*****DISPLAY "GOING TO DO CSALLO NCM' 8 •

CALL "CSALL08 USING SNA-WORK-AREA
AIF-NODE-NAME
REMOTE-LU-NAME
CONVERSATION-ID
HOST-TRANSACTION-NAME
TRANSLATE-TRAN-NAME
STD-NAME
RETURN-CONTROL
SYNC-LEVEL
RETURN-CODE-VALUES
SOPR-STOP-TIME
RECEIVED-SENSE-DATA
OUTPUT-CONTROL-WORD.

*
*

CHECK THE RETURN CODE VALUES NEXT TO MAKE S9RE THE CALL HAS *
COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CBECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY 8 ERRORS FROM CSALLO REQUEST - CHECK RETURN CODES"
DISPLAY 8 PROGRAM WILL END - NO CONVERSATION"
GO TO 100-EXIT.

Figure C-3 {cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-33 GRll-02

* NOO ISSUE THE CSFLSH TO FORCE AIF TO SEND THE ATTACH REQUEST*
* TO THE HOST CICS SYSTEM. *

*****DISPLAY "GOING TO DO CSFLSH NOO".

CALL "CSFLSH" USING SNA-WORK-AREA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSFLSH - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL END - NO cmNERSATION"
GO TO 100-EXIT.

DISPLAY "CONVERSATION HAS BEEN ALLOCATED - ID IS: "
CONVERSATION-ID.

100-EXIT.
EXIT.

*EJECT
200-GET-RECORD.

MOVE HIGH-VALUES TO DATA-FROM-TERMINAL.

* NOO GET SOME DATA FROM THE TERMINAL OPERATOR TO SEND TO THE *
* HOST REMOTE PROGRAM. *

DISPLAY ENTER-MESSAGE.
ACCEPT DATA-FROM-TERMINAL.

200-EXIT.
EXIT.

*SKIP3
300-BUILD-LOGICAL.

* NOW BUILD THE LOGICAL RECORD THAT WILL BE SENT TO THE HOST *
* BY CALCULATING THE LENGTH OF THE DATA RECEIVED THEN CONVERT *
* THE DATA TO EBCDIC. *

IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO HIGH-VALUES
MOVE 1 TO RECORD-BUILT-SW
COMPUTE CALC-LENGTH = INDXl - 1
IF CALC-LENGTH IS EQUAL TO ZEROS OR

CALC-LENGTH IS LESS THAN ZEROS
MOVE l TO NO-INPUT-SW

ELSE
GO TO 300-EXIT

ADD 2 TO DATA-BUFFER-LENGTH
LOGICAL-REC-LENGTH

MOVE CALC-LENGTH TO CONVERSION-LENGTH
MOVE LOGICAL-REC-LENGTH TO TEMP-LENGTH
PERFORM 305-CONVERT-RECORD THRU 305-EXIT

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-34 GRll-02

ELSE
ADD l TO DATA-BUFFER-LENGTH

LOGICAL-REC-LENGTH.
300-EXIT.

EXIT.
*SKIP3

305-CONVERT-RECORD.

* THIS ROUTINE WILL ISSUE THE CSACEB CALL TO CONVERT THE DATA *
* FROM THE TERMINAL TO EBCDIC BEFORE IT IS SENT TO THE HOST. *

CALL "CSACEB" USING SNA-WORK-AREA
DATA-TO-HOST
TRANSLATE-FROM-POSITION
DATA-TO-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSACEB CALL - CHECK RETURN CODES"
DISPLAY "COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY "PROGRAM WILL TERMINATE"
MOVE l TO ERROR-IN-CALL-SW

ELSE
NEXT SENTENCE.

305-EXIT.
EXIT.

*EJECT
400-SEND-RECORD.

* THIS ROUTINE WILL ISSUE THE CSSDAT CALL TO SEND THE DATA *
* TO AIF. AIF WILL NOT SEND THE DATA TO THE HOST UNTIL WE *
* ISSUE ANOTHER CALL TO FORCE A FLUSH OF THE BUFFERS. THIS *
* WILL BE DONE IN THE NEXT ROUTINE. *

*****DISPLAY "GOING TO DO CSSDAT NCM".

CALL "CSSDAT" USING SNA-WORK-AREA
LOGICAL-DATA-BUFFER
DATA-BUFFER-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSSDAT REQUEST - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

400-EXIT.
EXIT.

*EJECT
500-RECEIVE-INFO.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-35 GRll-02

**
* THIS ROUTINE WILL ISSUE A NUMBER OF AIF VERBS. FIRST IT *
* WILL DO A CSPTOR WHICH WILL CAUSE AIF TO FLUSH THE SEND *
* BUFFER SENDING THE DATA FROM THE CSSD.AT CALL lUm A SEND *
* INDICATOR TO THE HOST PROGRAM TO TELL THAT PROGRAM IT CAN *
* TURN AROUND AND SEND TO THIS PROGRAM. *
* AFTER THE CSPTOR, THE PROGRAM WILL ISSUE A CSRAW TO WAIT *
* FOR THE DATA TO COME BACK FROM THE HOST AND RECEIVE IT. *
**
**
* THE TYPE OF PREPARE TO RECEIVE IS A FLUSH (TYPE-SWITCH=F) *
* THE TYPE OF LOCKS IS LONG (CONFIRMATION-LOCKS=L) *
**
*****DISPLAY "GOING TO DO CSPTOR TYPE F NOW 111 •

MOVE "F" TO TYPE-SWITCH.
CALL "CSPTOR" tJSING SNA-WOR.IC-AREA

TYPE-SWITCH
CONFIRMATION-LOCKS.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSPTOR - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 500-EXIT.

505-ISSUE-CSRAW.
~
* ISSUE THE CSRAW TO CAUSE THE PROGRAM TO WAIT FOR A RECEIVE *
* AND RECEIVE THE DATA COMING BACK FROM THE HOST TRANSACTION. *
* THE TYPE OF RECEIVE IS A BUFFER (TYPE-OF-RECEIVE=B) SO *
* AIF WILL PASS AN ENTIRE BUFFER'S WORTH OF DATA AS OPPOSED *
* TO A LOGICAL RECORD. THIS ROUTINE WILL ALSO BE USED TO *
* RECEIVE STATUS OR STATE CHANGE INFORMATION. *

*****DISPLAY "GOING TO DO CSRAW NOW".

CALL "CSRAW" USING SNA-WORK-AREA
RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
TYPE-OF-RECEIVE
RECEIVED-DATA-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSRAW - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-36 GRll-02

500-EXIT.
EXIT.

*EJECT
600-COMPARE-INOUT.

**
* THIS ROUTINE WILL COMPARE THE DATA RECEIVED FROM THE HOST *
* WITH THE DATA ORIGINALLY SENT. IF THEY ARE NOT THE SAME *
* A SWITCH IS SET AND ERROR MESSAGES ARE DISPLAYED. *
**

DISPLAY "GOING TO COMPARE RECORD SENT TO RECEIVED NCJi•.
MOVE RECEIVE-RECORD TO DATA-FROM-HOST.
IF DATA-BUFFER-LENGTH IS EQUAL TO RECEIVED-DATA-LENGTH

NEXT SENTENCE
ELSE

DISPLAY •suFFER LENGTHS ARE NOT THE SAME·
DISPLAY •sEND LENGTH: • DATA-BUFFER-LENGTH

• RECEIVE LENGTH: • RECEIVED-DATA-LENGTH.
IF LOGICAL-REC-LENGTH IS EQUAL TO RECEIVE-REC-LENGTH

NEXT SENTENCE
ELSE

DISPLAY "LOGICAL LENGTHS ARE NOT THE SAME•.
MOVE 0 TO COMPARE-REC-SW

NUMBER-CHARS
NO-MORE-SW
INDXl.

COMPUTE RECEIVE-REC-LENGTH = RECEIVE-REC-LENGTH - 2.
PERFORM BOO-COMPARE-EACH-FIELD THRU BOO-EXIT

VARYING INDXl FROM 1 BY 1
UNTIL NO-MORE-To-CHECK.

IF COMPARE-OK
DISPLAY "DATA FROM HOST IS THE SAME AS DATA SENT•

ELSE
DISPLAY •DATA FROM HOST IS NOT THE SAME AS DATA SENT•
DISPLAY •posSIBLE LOGIC ERROR·.

605-CONVERT-DATA.

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *

COMPUTE CONVERSION-LENGTH s RECEIVE-REC-LENGTH.
CALL •csEBAC" USING SNA-WORK-AREA

DATA-FROM-HOST
TRANSLATE-FROM-POSITION
DATA-FROM-HOST
TRAN'SLATE-To-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"
DISPLAY •COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY •PROGRAM WILL TERMINATE•
MOVE 1 TO ERROR-IN-CALL-SW
GO TO 600-EXIT

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated session'

C-37 GRll-02

ELSE
NEXT SENTENCE.

DISPLAY nRECIEVED DATA IS: n
DISPLAY DATA-FROM-HOST.

600=EXIT.
EXIT.

*EJECT
700-ISSUE-CONFIRMED.

* THIS ROUTINE WILL ISSUE A CSCNFD CALL. THIS WILL CAUSE AIF *
* TO SEND A CONFIRMATION TO THE HOST TRANSACTION. *

*****DISPLAY nGOING TO DO CSCNFD NOWn.

CALL ncSCNFD" USING SNA-WORK-AREA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY nERRORS FROM CSCNFD - CHECK RETURN CODESn
DISPLAY nPROGRAM WILL TERMINATEn.

700-EXIT.
EXIT.

*SKIP3
705-SEND-ERROR.

* THIS ROUTINE WILL ISSUE A CSSERR CALL TO NOTIFY THE HOST *
* TRANSACTION OF AN ERROR IN PROCESSING. THE TYPE OF ERROR *
* IS PROG (TYPE-SWITCH=P) • THE PROGRAM WILL NOT REQUEST THE *
* LOGGING OF DATA (LOG-SWITCH=N). *

*****DISPLAY "GOING TO DO CSSERR TYPE P NOW".

MOVE "P" TO TYPE-SWITCH.
CALL "CSSERR" USING SNA-WORK-AREA

TYPE-SWITCH
LOG-SWITCH
LOG-DATA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY nERRORS FROM CSSERR - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

705-EXIT.
EXIT.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated session

C-38 GRll-02

*EJECT
800-COMPARE-EACH-FIELD.

IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO DATA-FIELD (INDXl)
ADD 1 TO NUMBER-CHARS

ELSE
ADD 1 TO NUMBER-CHARS
DISPLAY "CHARACTER NOT THE SAME IS: n

NUMBER-CHARS
MOVE 1 TO COMPARE-REC-SW.

IF INDXl IS EQUAL TO RECEIVE-REC-LENGTH
MOVE 1 TO NO-MORE- SW
DISPLAY "END OF COMPARE"

ELSE
NEXT SENTENCE.

800-EXIT.
EXIT.

*SKIP3
900-CHEC.K-RETURN.

* THIS ROUTINE WILL CHECK THE RETURN CODES FROM THE VARIOUS *
* AIF VERB CALLS. A SWITCH IS SET TO INDICATE WHETHER THE *
* CALL WAS OK OR NOT. WHEN THE RETURN CODES ARE NOT OK THEY *
* WIL BE DISPLAYED ON THE TERMINAL. *

MOVE 0 TO ERROR=IN=CALL-SW.
IF CALL-FORMAT-ERROR

MOVE 1 TO ERROR-IN-CALL-SW
DISPLAY "COBOL FORMAT ERROR IN CALL - RETURN CODE IS: "

MINOR-RETURN-CODE

ELSE

DISPLAY "NEXT MESSAGE INDICATES CALL IN ERROR"
GO TO 900-EXIT

NEXT SENTENCE.
H'· SOPR-ISSUED-STOl?

ELSE

DISPLAY "SOPR OPERATOR HAS ISSUED A STOP COMMAND"
DISPLAY "STOP TIME IS: n SOPR-STOP-TIME

NEXT SENTENCE.
IF ABEND-RECEIVED

ELSE

DISPLAY "AN ABEND/DEALLOCATE HAS BEEN RECEIVED"
DISPLAY nsESSION WILL BE TERMINATED"
MOVE 1 TO ERROR-IN-CALL-SW

NEXT SENTENCE.
IF CALL-WAS-COMPLETED AND

MINOR-RETURN-CODE IS EQUAL TO ZEROS
GO TO 900-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "VERB CALL CONTAINS ERRORS - RETURN CODE IS: "
MINOR-RETURN-CODE.

MOVE 1 TO ERROR- IN-CALL- SW.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-39 GRll-02

900-EXIT.
EXIT.

*SKIP3
999-END-PROGRAM.

* THIS ROUTINE WILL BE USED TO ISSUE A CSDEAL CALL ENDING THE *
* CONVERSATION WITH THE HOST TRANSACTION. THE TYPE OF DE- *
* ALLOCATE IS FLUSH (TYPE-SWITCH=F) ON THE FIRST ATTEMPT IF *
* THAT HAS AN ERROR THEN AND ABEND PROG TYPE WILL BE ISSUED *
* (TYPE-SWITCH=P). THE PROGRAM WILL NOT REQUEST THE LOGGING *
* OF ERROR DATA (LOG-SWITCH=N). *

*****DISPLAY "GOING TO TRY A NOP.MAL DEALLOCATE NOW".

MOVE "F" TO TYPE-SWITCH.
CALL "CSDEAL" USING SNA-WORK-AREA

TYPE-SWITCH
LOG-SWITCH
LOG-DATA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE

DISPLAY "CONVERSATION HAS BEEN DEALLOCATED"
GO TO 999-EXIT

DISPLAY "ERRORS FROM CSDEAL F - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL ISSUE DEALLOCATE/ABEND".

MOVE "P" TO TYPE-SWITCH.
CALL "CSDEAL" USING SNA-WORK-AREA

TYPE-SWITCH
LOG-SWITCH
LOG-DATA.

999-EXIT.
EXI.T.

Figure C-3 (cont). Sample COBOL Program for LU Type 6.2
for DPS 6-Initiated Session

C-40 GRll-02

PROGRAM-ID. L6S2CH.

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS IS A SAMPLE LU 6.2 PROGRAM WHICH WILL EXERCISE SOME *
OF THE AIF 6.2 VERBS. THE PROGRAM WILL ATTACH TO A CONVERSATION *
THAT IS ALLOCATED BY THE HOST TRANSACTION ADL6. IT WILL
READ DATA FROM THE TERMINAL, CONVERT IT TO EBCDIC, BUILD
THE LOGICAL RECORD TO SEND TO THE HOST, SEND THE RECORD
TO THE HOST·AND RECEIVE THE RECORD BACK. UPON RECEIVING
THE.DATA BACK, THE PROGRAM WILL COMPARE THE DATA THAT
WAS RECEIVED WITH THE DATA SENT AND SEND EITHER A CON­
FIRMATION OR AN ERROR MESSAGE TO THE HOST DEPENDING ON
WHETHER THE TWO COMPARED THE SAME. IT WILL CONVERT THE
RECEIVED DATA TO ASCII AND DISPLAY IT ON THE TERMINAL.
IF THE TERMINAL INPUT DATA STARTS WITH: END; THE PROGRAM
WILL DEALLOCATE THE CONVERSTATION AND END OTHERWISE IT
WILL DO THE SAME PROCESS WITH WHAT HAS BEEN RECEIVED
FROM THE TERMINAL.

*
*
*
*
*
*
*
*
*
*
*
*
*

**

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-6.
OBJECT-COMPUTER. LEVEL-6.

DATA DIVISION.
WORKING-STORAGE
01 START-OF-WS

SECTION.
PIC X (32)
VALUE "START OF WORKING STORAGE SECTION".

AIF-PARAMETERS PIC X(21) VALUE "AIF PARAMETERS FOLLOW".
SNA-WORK-AREA PIC X(200).

01
77
77
77
77
77
n
77
77
77
77
01

AIF-NODE-NAME PIC X (8) VALUE "SMPLAIF".

77
77
01

77
77
77
77

REMOTE-LU-NAME PI-C X(8) VALUE "A06CICS2".
STD-NAME PIC XX VALUE
SYNC-LEVEL PIC X VALUE
HOST-TRANSACTION-NAME PIC X(4) VALUE
TRANSLATE-TRAN-NAME PIC X VALUE 19Y".
RETURN-CONTROL P!C X VALUE "A"e
CONVERSATION-ID PIC X(4).
POSTED-CONVERSATION-ID PIC X{4).
LOGICAL-DATA-BUFFER.
05 LOGICAL-REC-LENGTH
05 LOGICAL-RECORD
DATA-BUFFER-LENGTH
DATA-BUFFER-ALIGNMENT
RECEIVE-DATA-BUFFER.
05 RECEIVE-REC-LENGTH
OS RECEIVE-RECORD
TYPE-OF-RECEIVE
RECEIVE-BUFFER-SIZE
RECEIVED-DATA-LENGTH
SEND-SENSE-DATA

COMP-1.
PIC X{SO) VALUE SPACES.
PIC 9(5) VALUE 82.
PIC X VALUE "L".

COMP-1.
PIC X(80) VALUE SPACES.
PIC X VALUE "B".
PIC 9(5} VALUE 82.
PIC 9(5) VALUE O.
PIC X(8) VALUE ZEROS.

Figure C-4. Sample COBOL Program for LU Type 6.2 for Host­
Initiated Session

C-41 GRll-02

01

01

77
01

77
77

77
77
77
77
77
01
01

RETURN-CODE-VALUES.
05 MAJOR-RETURN-CODES.

10 ABEND-DEALLOCATE
88 ABEND-RECEIVED

10 STOP-RECEIVED
88 SOPR-ISSUED-STOP

10 SERV-REQ-CANCELLED
88 CALL-WAS-CANCELLED

10 SERV-REQ-COMPLETE
88 CALL-WAS-COMPLETED

10 COBOL- ERROR
88 CALL-FORMAT-ERROR

05 MINOR-RETURN-CODE
SOPR- STOP-TIME.
05 DATE-OF-STOP.

10 STOP-YEAR
10 STOP-MONTH
10 STOP-DAY

05 TIME-OF-STOP.
10 STOP-HOUR
10 STOP-MINUTE
10 STOP-SECONDS

RECEIVED-SENSE-DATA
OUTPUT-CONTROL-WORD.
05 REQUEST-SEND-RECVD

88 REQUEST-TO-SEND
OS CONVERSATION-POSTED

88 POSTED-CONVERSATION
05 WHAT-RECEIVED

88 DATA-RECEIVED
88 LL-DATA-RECEIVED-COMP
88 LL-DATA-RECEIVED-INCOMP
88 LL-FIELD-TRUNCATED
88 CONFIRM-REQUEST
88 CONFIRM-ON-HOST-PTOR
88 SEND-REQUEST-RECVD
88 DEALLOCATE-CONFIRM
88 DATA-INC-LENG-0
88 DATA-AVAIL-LENG-0

LOG-SWITCH
LOG-DATA

"ERROR IN PROGRAM".

PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
PIC X VALUE "N".
VALUE "Y".
P!C 9(4) VALUE ZEROS.

PIC 99.
PIC 99.
PIC 99.

PIC 99.
PIC 99.
PIC 9(4).
P!C X(8) VALUE ZEROS.

PIC X.
VALUE "Y".
PIC X.
VALUE ny•.
PIC 99.
VALUE 20.
VALUE 21.
VALUE 22.
VALUE 08.
VALUE 04.
VALUE 06.
VALUE 02.
VALUE 05.
VALUE 09.
VALUE 10.
PIC X VALUE "N".
PIC X(80) VALUE

TYPE-SWITCH PIC X VALUE
CONVERSION-LENGTH COMP-1.
CONFIRMATION-LOCKS PIC X VALUE "L".
TRANSLATE-FROM-POSITION COMP-1 VALUE 1.
TRANSLATE-TO-POSITION COMP-1 VALUE 1.
END-OF-AIF PIC X(21) VALUE "END OF AIF PARAMETERS".
MISC-PROGRAM-VARIABLES PIC X(26) VALUE

"OTHER WORKING STORAGE DATA".
01 DATA-To-HOST PIC X(80) VALUE HIGH-VALUES.
01 DATA-TO-HOST-REDEF REDEFINES DATA-TO-HOST.

05 CHECK-INPUT-FIELD OCCURS 80 TIMES.
10 DATA-FIELD-CHAR PIC X.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-42 GRll-02

01 DATA-FROM-HOST.
05 DATA-FIELD OCCURS 80 TIMES.

10 DATA-FLO-CHAR PIC X.
01 DATA-FROM-TERMINAL.

05 END-INDICATOR
88 END-PROGRAM

05 FILLER

PIC XXX.
VALUE "END".
PIC X(77) VALUE SPACES.

01 SWITCH-COUNT-VARIABLES.
05 INDXl COMP-1
0 5 NUMBER-CHARS PI C 9 (4)
05 CALC-LENGTH COMP-1
05 TEMP-LENGTH PIC 9(5)
05 ERROR-IN-CALL-SW PIC 9

8B OK-TO-CONTINUE VALUE O.
05 RECORD-BUILT-SW PIC 9

BB RECORD-BUILT VALUE l.
05 NO-INPUT-SW PIC 9

88 NO-INPUT-DATA VALUE 1.
05 COMPARE-REC-SW PIC 9

88 COMPARE-OK VALUE O.
05 NO-MORE-SW PIC 9

88 NO-MORE-TO-CHECK VALUE 1.

VALUE 1.
VALUE ZEROS.
VALUE ZEROS.
VALUE ZEROS.
VALUE O.

VALUE 0.

VALUE O.

VALUE O.

VALUE O.

01 ENTER-MESSAGE PIC X(BO) VALUE
11 PLEASE ENTER DATA TO TRANSMIT TO HOST OR END TO QUIT".

01 END-OF-WORK-STOR PIC X(l9) VALUE "END WORKING STORAGE".
LINKAGE SECTION.
77 NODE-NAME
77 STD
77 BASE-LEVEL
PROCEDURE DIVISION USING

000-BEGIN.

PIC X(B).
PIC XX.
PIC 99.

NODE-NAME
STD
BASE-LEVEL.

DISPLAY "START OF LU 6 .2 SAMPLE COBOL PROGRAM".
MOVE NODE-NAME TO AIF-NODE-NAME.
MOVE STD TO STD-NAME.
DISPLAY "AIF NODE IS: 11 NODE-NAME n STD IS: 11 STD.

* START BY TRYING TO ATTACH TO A CONVERSATION WITH HOST CICS *
* TRANSACTION ADL6. *

PERFORM 100-ATTACH-CONVERSATION THRU 100-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

GO TO 099-TERMINATE.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-43 GRll-02

* IF THE CONV.ERSATION IS ATTACHED THEN WE MUST ISSUE A *
* RECEIVE AND WAIT SINCE A HOST INITIATED PROGRAM ALWAYS *
* COMES UP IN RECEIVE STATE. *

PERFORM 505-ISSUE-CSRAW THRU 500-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "INITIAL CSRAW PROBLEM - PROGRAM WILL TERMINATE"
PERFORM 999-END-PROGRAM THRO 999-EXIT
GO TO 099-TERMINATE.

* CHECK THE WHAT RECEIVED VALUE TO MAKE SURE WE HAVE BEEN *
* PUT INTO A SEND STATE. *

IF SEND-REQUEST-RECVD
NEXT SENTENCE

ELSE
DISPLAY "INITIAL WHAT RECE!VEO IS UNEXPECTED"
DISPLAY "WHAT RECEIVED VALUE IS: n WHAT-RECEIVED
DISPLAY "PROGRAM WILL TERMINATE"
PERFORM 999-END-PROGRAM THRU 999=EXIT
GO TO 099-TERMINATE.

**
* AT THIS POINT THE CONVERSATION HAS BEEN ATTACHED AND WE *
* ARE IN A SEND STATE THAT ALLOWS US TO PROCEED WITH THE *
* REMAINDER OF THE PROGRAM PROCESS. *
**

005-CONTINUE.
PERFORM 200-GET-RECORD THRO 200-EXIT.
IF END-PROGRAM

ELSE

DISPLAY "END OF RUN REQUESTED - PROGRAM WILL END"
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE

NEXT SENTENCE.
MOVE HIGH-VALUES TO DATA-TO-HOST.
MOVE SPACES TO DATA-FROM-HOST

RECEIVE-RECORD.
MOVE DATA-FROM-TERMINAL TO DATA-TO-HOST.
MOVE 0 TO INDXl

NO-INPUT-SW
RECORD-BUILT-SW
LOGICAL-REC-LENGTH
DATA-BUFFER-LENGTH.

PERFORM 300-BUILD-LOGICAL THRO 300-EXIT VARYING INDXl FROM 1
BY 1 UNTIL RECORD-BUILT.

IF NO-INPUT-DATA
DISPLAY "NO DATA WAS ENTERED FROM THE TERMINAL"
DISPLAY "PLEASE KEY SOME DATA BEFORE HITTING ENTER KEY"
GO TO 005-CONTINUE

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated session

C-44 GRll-02

ELSE
NEXT SENTENCE.

MOVE DATA-TO-HOST TO LOGICAL-RECORD.
PERFORM 400-SEND-RECORD THRU 400-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

P~RFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

010-DO-RECEIVE.
PERFORM 500-RECEIVE-INFO THRO 500-EXIT.

0101-NEXT-RECEIVE.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

015-CHECK-WHAT-RECEIVED.
IF DATA-RECEIVED

PERFORM 600-COMPARE-INOUT THRO 600-EXIT
PERFORM 505-ISSUE-CSRAW THRU 500-EXIT
GO TO 0101-NEXT-RECEIVE

ELSE
IF DEALLOCATE-CONFIRM

ELSE

ELSE

PERFORM 700-ISSUE-CONFIRMED THRO 700-EXIT
GO TO 099-TERMINATE

IF CONFIRM-ON-HOST-PTOR
GO TO 020-CHECK-COMPARE

NEXT SENTENCE.
DISPLAY "UNEXPECTED WHAT RECEIVED FIELD".
DISPLAY "WHAT RECEIVED IS: " WHAT-RECEIVED.
PERFORM 705-SEND-ERROR THRU 705-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

GO TO 0101-NEXT-RECEIVE.
020-CHECK-COMPARE.

IF COMPARE-OK
PERFORM 700-ISSOE-CONFIRMED THRO 700-EXIT

ELSE
PERFORM 705-SEND-ERROR THRU 705-EXIT.

IF OK-TO-CONTINUE
NEXT SENTENCE

ELSE
PERFORM 999-END-PROGRAM THRU 999-EXIT
GO TO 099-TERMINATE.

GO TO 005-CONTINUE.
099-TERMINATE.

STOP RUN.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated session

C-45 GRll-02

*
*
*

100-ATTACH-CONVERSATION.

*
*
*
*
*

THIS ROUTINE WILL ISSUE A CSATCH TO ATTEMPT TO ATTACH AN
LU 6.2 CONVERSATION WITH THE HOST CICS TRANSACTION ADL6.
SINCE THE CONVERSATION WAS ALLOCATED BY THE HOST TRANS­
ACTION WE MUST DO AN ATTACH COMMAND SO AIF CAN PUT US IN
CONVERSTAION WITH THE HOST TRANSACTION.

*
*
*
*
*

*****DISPLAY "GOING TO DO CSATCH NOW".

CALL "CSATCH" USING SNA-WORK-AREA
AIF-NODE-NA.ME
REMOTE-LU-NAME
CONVERSATION-ID
STD-NAME
RETURN-CONTROL
SYNC-LEVEL
RETURN-CODE-VALUES
SOPR-STOP-TIME
RECEIVED-SENSE-DATA
OUTPUT-CONTROL-WORD.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSATCH REQUEST - CHECK RETURN CODES"
DISPLAY "MAJOR RETURN CODES ARE: " MAJOR-RETURN-CODES
DISPLAY "PROGRAM WILL END - NO CONVERSATION"
GO TO 100-EXIT.

DISPLAY "CONVERSATION HAS BEEN ATTACHED - ID IS: "

CONVERSATION-ID.
100-EXIT.

EXIT.
*EJECT

200-GET-RECORD.
MOVE HIGH-VALUES TO DATA-FROM-TERMINAL.

* NCM GET SOME DATA FROM THE TERMINAL OPERATOR TO SEND TO THE *
* HOST REMOTE PROGRAM. *

DISPLAY ENTER-MESSAGE.
ACCEPT DATA-FROM-TERMINAL.

200-EXIT.
EXIT.

*SKIP3
300-BUILD-LOGICAL.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-46 GRll-02

* NOW BUILD THE LOGICAL RECORD THAT WILL BE SENT TO THE HOST *
* BY CALCULATING THE LENGTH OF THE DATA RECEIVED THEN CONVERT *
* THE DATA TO EBCDIC. *

IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO HIGH-VALUES
MOVE l TO RECORD-BUILT-SW

ELSE

COMPUTE CALC-LENGTH • INDXl - l
IF CALC-LENGTH IS EQUAL TO ZEROS OR

CALC-LENGTH IS LESS THAN ZEROS
MOVE l TO NO-INPUT-SW

ELSE
GO TO 300-EXIT

ADD 2 TO DATA-BUFFER-LENGTH
LOGICAL-REC-LENGTH

MOVE CALC-LENGTH TO CONVERSION-LENGTH
MOVE LOGICAL-REC-LENGTH TO TEMP-LENGTH
PERFORM 305-CONVERT-RECORD THRU 305-EXIT

ADD l TO DATA-BUFFER-LENGTH
LOGICAL-REC-LENGTH.

300-EXIT.
EXIT.

*SKIP3
305-CONVERT-RECORD.

* THIS ROUTINE WILL ISSUE THE CSACEB CALL TO CONVERT THE DATA *
* FROM THE TERMINAL TO EBCDIC BEFORE IT IS SENT TO THE HOST. *

CALL 11 CSACEB 11 USING SNA-WORK-AREA
DATA-TO-HOST
TRANSLATE-FROM-POSITION
DATA-TO-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY 11 COBOL ERROR IN CSACEB CALL - CHECK RETURN CODES 11

DISPLAY 11 COBOL RETURN CODE IS: II MINOR-RETURN-CODE
DISPLAY 11 PROGRAM WILL TERMINATE"
MOVE l TO ERROR- IN-C£1LL- SW

ELSE
NEXT SENTENCE.

305-EXIT.
EXIT.

*EJECT
400-SEND-RECORD.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-47 GRll-02

* THIS ROUTINE WILL ISSUE THE CSSDAT CALL TO SEND THE DATA *
* TO AIF. AIF WILL NOT SEND THE DATA TO THE HOST UNTIL WE *
* ISSUE ANOTHER CJl.LL TO FORCE A FLUSH OF THE BUFFERS. THIS *
* WILL BE DONE IN THE NEXT ROUTINE. *

*****DISPLAY "GOING TO DO CSSDAT NOW".

CALL "CSSDAT" USING SNA-WORI<-AREA
LOGICJ'.L-DATA-BUFFER
DATA-BUFFER-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

NEXT SENTENCE
ELSE

DISPLAY "ERRORS FROM CSSDAT REQUEST - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

400-EXIT.
EXIT.

*EJECT
SOO=RECEIVE~INFO.

**
* THIS ROUTINE WILL ISSUE A NUMBER OF AIF VERBS. FIRST IT *
* WILL DO A CSPTOR WHICH WILL CAUSE AIF TO FLUSH THE SEND *
* BUFFER SENDING THE DATA FROM THE CSSDAT CALL AND A SEND *
* INDICATOR TO THE HOST PROGRAM 'l'O TELL THAT PROGRAM IT CAN *
* TURN AROUND AND SEND TO THIS PROGRAM. *
* AFTER THE CSPTOR, THE PROGRAM WILL ISSUE A CSRAW TO WAIT *
* FOR THE DATA TO COME BACK FROM THE HOST AND RECEIVE IT. *
**
**
* THE TYPE OF PREPARE TO RECEIVE IS A FLUSH (TYPE-SWITCH=F) *
* THE TYPE OF LOCKS IS LONG (CONFIRMATION-LOCKS=L) *
**
*****DISPLAY "GOING TO DO CSPTOR TYPE F NCW".

MOVE "F" TO TYPE-SWITCH.
CALL "CSPTOR" USING SNA-WORI<-AREA

TYPE-SWITCH
CONFIRMATION-LOCKS.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSPTOR - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE"
GO TO 500-EXIT.

505-ISSUE-CSRAW.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-48 GRll-02

* ISSUE THE CSRAW TO CAUSE THE PROGRAM TO WAIT FOR A RECEIVE *
* AND RECEIVE THE DATA COMING BACK FROM THE HOST TRANSACTION. *
* THE TYPE OF RECEIVE IS A BUFFER (TYPE-OF-RECEIVE=B) SO *
* AIF WILL PASS AN ENTIRE BUFFER'S WORTH OF DATA AS OPPOSED *
* TO A LOGICAL RECORD. THIS ROUTINE WILL ALSO BE USED TO *
* RECEIVE STATUS OR STATE CHANGE INFORMATION* *

*****DISPLAY "GOING TO DO CSRAW NOW".

CALL "CSRAW" USING SNA-WORK-AREA
RECEIVE-DATA-BUFFER
RECEIVE-BUFFER-SIZE
TYPE-OF-RECEIVE
RECEIVED-DATA-LENGTH.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSRAW - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

500-EXIT.
EXIT.

*EJECT
600-COMPARE-INOUT.

**
* THIS ROUTINE WILL COMPARE THE DATA RECEIVED FROM THE HOST *
* WITH THE DATA ORIGINALLY SENT. IF THEY ARE NOT THE SAME *
* A SWITCH IS SET AND ERROR MESSAGES ARE DISPLAYED. *
**

DISPLAY l'IGOING TO COMPARE .RECORD SENT TO RECEIVED NCM".
MOVE RECEIVE-RECORD TO DATA-FROM-HOST.
IF DATA-BUFFER-LENGTH IS EQUAL TO RECEIVED-DATA-LENGTH

NEXT SENTENCE
ELSE

DISPLAY "BUFFER LENGTHS ARE NOT THE SAME"
DISPLAY •sEND LENGTH: " DATA-BUFFER-LENGTH

" RECEIVE LENGTH: " RECEIVED-DATA-LENGTH.
IF LOGICAL-REC-LENGTH IS EQUAL TO RECE.IVE-REC-LENGTH

NEXT SENTENCE
ELSE

DISPLAY "LOGICAL LENGTHS ARE NOT THE SAME".
l.fOVE 0 TO COMPARE-REC-SW

NUMBER-CHARS
NO-MORE-SW
INDXl.

COMPUTE RECEIVE-REC-LENGTH = RECEIVE-REC-LENGTH - 2.
PERFORM 800-COMPARE-EACH-FIELD THRU 800-EXIT

VARYING INDXl FROM l BY. l
UNTIL NO-MORE-TO-CHECK.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-49 GRll-02

IF COMPARE-OK
DISPLAY "DATA FROM HOST IS THE SAME AS DATA SENT"

ELSE
DISPLAY "DATA FROM HOST IS NOT THE SAME AS DATA SENT"
DISPLAY "POSSIBLE LOGIC ERROR".

605-CONVERT-DATA.

* THIS ROUTINE WILL CONVERT THE RECEIVED DATA FROM EBCDIC TO *
* ASCII AND DISPLAY THE RECORD ON THE TERMINAL. *

COMPUTE CONVERSION-LENGTH = RECEIVE-REC-LENGTH.
CALL "CSEBAC" USING SNA-WORK-AREA

DATA-FROM-HOST
TRANSLATE-FROM-POSITION
DATA-FROM-HOST
TRANSLATE-TO-POSITION
CONVERSION-LENGTH.

IF CALL-FORMAT-ERROR
DISPLAY "COBOL ERROR IN CSEBAC CALL - CHECK RETURN CODES"

·DISPLAY "COBOL RETURN CODE IS: " MINOR-RETURN-CODE
DISPLAY' "PROGRAM WILL TERMINATE"
MOVE l TO ERROR-IN-CALL-SW
GO TO 600-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "RECIEVED DATA IS: "
DISPLAY DATA-FROM-HOST.

600-EXIT.
EXIT.

*EJECT
700-ISSUE-CONFIRMED.

* THIS ROUTINE WILL ISSUE A CSCNFD CALL. THIS WILL CAUSE AIF *
* TO SEND A CONFIRMATION TO THE HOST TRANSACTION. *

*****DISPLAY "GOING TO DO CSCNFD NCM'".

CALL "CSCNFD" USING SNA-WORK-AREA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSCNFD - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

700-EXIT.
EXIT.

*SKIP3
705-SEND-ERROR.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated session

c-so GRll-02

* THIS ROUTINE WILL ISSUE A CSSERR CALL TO NOTIFY THE HOST *
* TRANSACTION OF AN ERROR IN PROCESSING. THE TYPE OF ERROR *
* IS PROG (TYPE-&WITCH=P). THE PROGRAM WILL NOT REQUEST THE *
* LOGGING OF DATA (LOG-SWITCH=N) • *

*****DISPLAY "GOING TO DO CSSERR TYPE P NCM".

MOVE "P" TO TYPE-&WITCH.
CALL "CSSERR" USING SNA-WORK-AREA

TYPE- &WITCH
LOG-SWITCH
LOG-DATA.

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

PERFORM 900-CHECK-RETURN THRU 900-EXIT.
IF OK-TO-CONTINUE

ELSE
NEXT SENTENCE

DISPLAY "ERRORS FROM CSSERR - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL TERMINATE".

705-EXIT.
EXIT.

*EJECT
800-COMPARE-EACH-FIELD.

IF CHECK-INPUT-FIELD (INDXl) IS EQUAL TO DATA-FIELD (INDXl)
ADD l TO NUMBER-CHARS

ELSE
ADD l TO NUMBER-CHARS
DISPLAY "CHARACTER NOT THE SAME IS: 11

NUMBER-CHARS
MOVE l TO COMPARE-REC-SW.

IF INDXl IS EQUAL TO RECEIVE-REC-LENGTH
MOVE l TO NO-MORE- SW
DISPLAY "END OF COMPARE"

ELSE
NEXT SENTENCE.

800-EXIT.
EXIT.

*SKIP3
900-CHECK-RETURN.

* THIS ROUTINE WILL CHECK THE RETURN CODES FROM THE VARIOUS *
* AIF VERB CALLS. A SWITCH IS SET TO INDICATE WHETHER THE *
* CALL WAS OK OR NOT. WHEN THE RETURN CODES ARE NOT OK THEY *
* WIL BE DISPLAYED ON THE TERMINAL. *

MOVE 0 TO ERROR-IN-CALL-SW.
IF CALL-FORMAT-ERROR

MOVE 1 TO ERROR-IN-CALL-SW
DISPLAY "COBOL FORMAT ERROR IN CALL - RETURN CODE IS: "

MINOR-RETURN-CODE
DISPLAY "NEXT MESSAGE INDICATES CALL IN ERROR"

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-51 GRll-02

GO TO 900-EXIT
ELSE

NEXT SENTENCE.
IF SOPR-ISSUED-STOP

ELSE

DISPLAY "SOPR OPERATOR HAS ISSUED A STOP COMMAND"
DISPLAY "STOP TIME IS: " SOPR-STOP-TIME

NEXT SENTENCE.
IF ABEND-RECEIVED

ELSE

DISPLAY "AN ABEND/DEALLOCATE HAS BEEN RECEIVED"
DISPLAY "SESSION WILL BE TERMINATED"
MOVE l TO ERROR-IN-CALL-SW

NEXT SENTENCE.
IF CALL-WAS-COMPLETED AND

MINOR-RETURN-CODE IS EQUAL TO ZEROS
GO TO 900-EXIT

ELSE
NEXT SENTENCE.

DISPLAY "VERB CALL CONTAINS ERRORS - RETURN CODE IS: "
MINOR-RETURN-CODE.

MOVE 1 TO ERROR-IN-CALL-SW.
900-EXIT.

EXIT.
*SKIP3

999-END-PROGRAM.

* THIS ROUTINE WILL BE USED TO ISSUE A CSDEAL CALL ENDING THE *
* CONVERSATION WITH THE HOST TRANSACTION. THE TYPE OF DE- *
*· ALLOCATE IS FLUSH (TYPE-SWITCH=F) ON THE FIRST ATTEMPT IF *
* THAT HAS AN ERROR THEN AND ABEND PROG TYPE WILL BE ISSUED *
* (TYPE-SWITCH=P). THE PROGRAM WILL NOT REQUEST THE LOGGING *
* OF ERROR DATA (LOG-.SWITCH=N) • *

*****DISPLAY "GOING TO TRY A NORMAL DEALLOCATE NOO".

MOVE "F" TO TYPE-SWITCH.
CALL "CSDEAL" USING SNA-WORK-AREA

TYPE-SWITCH
LOG-SWITCH
LOG-DATA.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-52 GRll-02

* CHECK THE RETURN CODE VALUES NEXT TO MAKE SURE THE CALL HAS *
* COMPLETED WITHOUT ANY ERRORS. *

·***
PERFORM 900-CHECK-RETURN THRO 900-EXIT.
IF OK-TO-CONTINUE

ELSE

DISPLAY "CONVERSATION HAS BEEN DEALLOCATED"
GO TO 999-EXIT

DISPLAY "ERRORS FROM CSDEAL F - CHECK RETURN CODES"
DISPLAY "PROGRAM WILL ISSUE DEALLOCATE/ABEND".

MOVE "P" TO TYPE-SWITCH.
CALL "CSDEAL" USING SNA-WORK-AREA

TYPE-SWITCH
LOG-SWITCH
LOG-DATA.

999-EXIT.
EXIT.

Figure C-4 (cont). Sample COBOL Program for LU Type 6.2
for Host-Initiated Session

C-53 GRll-02

AppendixD
SESSION CALL RETURN

CODES

The following pages show the unique return codes that are
returned by AIF after the execution of each call or verb. As
described in the Assembly language sections, bits 0 through 4 of
the return code have special meaning. The tables in this section
present the return codes both after these bits have been masked
out.

The following tables are included in this appendix:

~ Table D-1 provides the AIF session call return codes

• Table D-2 provides the individual return codes

• Table D-3 ·provides the COBOL RETURNS fields

• Table D-4 provides the general COBOL RETURN-B codes

• Table D-6 provides the interrupt types

• Table D-7 provides the attribute types •

D-1 GRll-02

Table D-1. AIF Session Call Return Codes

Mask Label Meaning

8000 RC AB RT SESSION ABORTED, CHECK SC ABT FIELD FOR -REASON
*4000 RC STOP SOPR COMMAND RECEIVED

2000 RCRINT INTERRUPT RECEIVED
1000 RCSCNL SERVICE REQUEST NOT PROCESSED OR

CANCELLED
0800 RC SC MP SERVICE REQUEST COMPLETED
07FF RC MASK MASK FOR INDIVIDUAL RETURN CODES (SEE

TABLE D-2)

*Return codes marked with an asterisk can be received
after any session call.

D-2 GRll-02

Table D-2. Individual Return Codes

COBOL Assembly Macro
RETURN-B Language Label Meaning

0000
0001
0002
0003

0004
0005
0016

0018
0019
0020
0021
0023
0025
0032

*0048
*0049

0050

0064
*0065

*0066

*0067

0068
0069

0070

0150
0151
0152
0153
0154
0155

*0256

*0257
*0258
*0259

0000
0001
0002
0003

0004
0005
0010

0012
0013
0014
0015
0017
0019
0020

0030
0031
0032

0040
0041

0042

0043

0044
0045

0046

0096
0097
0098
0099
009A
009B

0100

0101
0102
0103

RMNOER
RMPTSN
RMDRNR
RMRNEG

RMNBIF
RMLUAT
RM IMPS

RMIRHI
RMRB2S
RMIINT
RMI COD
RMNOUT
RMACTO
RMRSRF

RMSYSE
RMRNAV
RMDTCL

RMI NOD
RMINVS

RMASYN

RMIVSR

RMLNER
RMIVFC

RMIMCS

RMNNAC
RMNLAC
RMNOAV
RMI STD
RMILUT
RMNOAT

RMUNBI

RMS SHU
RMURTO
RMPGER

NO ERROR
PERMISSION TO SEND
DATA RECEIVED BUT NO READ
NEGATIVE RESPONSE RECEIVED FROM
HOST
BIND NEGOTIATION FAILED
LU ATTACHED BY REMOTE
IMPROPER STATE

INVALID INPUT CONTROL INDICATORS
RECEIVE BUFFER TOO SMALL
INVALID INTERRUPT TYPE
INVALID STATUS VALUE OR USER CODE
NO OUTSTANDING ASYNCHRONOUS ORDER
ACCEPT TIMED OUT
RESTART NOT POSSIBLE

SYSTEM ERROR
RESOURCE NOT AVAILABLE
SEND/RECEIVE REJECT, DATA TRAFFIC
INACTIVE/RESET
INVALID NODE NAME
INVALID SESSION ID

ASYNCHRONOUS SERVICE REQUEST
OUTSTANDING
INVALID SERVICE REQUEST (OPERATION
CODE)
DATA LENGTH ERROR ON SEND
INVALID FUNCTION CODE ON
$SWANY/CSWANY
IMPROPER CALLING SEQUENCE

NODE NOT YET ACTIVE
NO ACTIVE LU FOR SESSION
NO LU AVAILABLE FOR SESSION
INVALID STD NAME
INVALID LU TYPE IN STD
NO LU ATTACHED FOR $SACPT

SESSION UNBOUND BY HOST
UNEXPECTEDLY
SESSION SHUTDOWN BY HOST ORDERLY
YOU ARE TIMED OUT BY SOPR COMMAND
SESSION ABORT DUE TO UNRECOVERABLE
PROGRAM ERROR

D-3 GRll-02

Table D-2 (cont). Individual Return Codes

COBOL Assembly Macro
RETURN-B Language Label Meaning

*0784 0301. RMADLU ACTLU/DACTLU RECEIVED
*1809 0711 RMLKFL LINK FAILURE
*1810 0712 RMADPU ACTPU/DACTPU RECEIVED
*1811 0713 RMACSA $A (SOPR) 'ABORT' AIF NODE
*1812 0714 RMSABT $S ABORT AIF GROUP

*Return codes marked with an asterisk can be received after
any session call.

D-4 GRll-02

Table D-3. COBOL Session Call RETURNS fields.

Fields

SESSION-ABORT

STOP-RCVD

INTRPT-RCVD

SERV-REQ-CANCLD

SERV-REQ-COMPLETE

COBOL-INT-ERROR

Value Meaning

Y LU-LU session or node has been
aborted

Y SOPR STOP command received.

y

y

y

y

Interrupt received. See INTERRUPT
output parameter

This request has been cancelled. The
application must issue it again if
necessary.

This request has been completed.

Error in using COBOL interface to
AIF. See RETURN-B for return code.

Table D-4. General COBOL RETURN-B Values

Code Meaning

XXOl Unrecognized parameter
XX02 Parameter must be 1 byte long
XX03 Parameter must be 5 bytes long
XX04 Default not acceptable
xxos Node name error
XX06 Remote LU name error
XX07 Not session-ID
xxos Unknown interrupt type
XX09 Nondecimal digit
XXlO Nonhexadecimal digit
XXll Error in conversion

D-5 GRll-02

Table D-5. Interrupt-Type Correspondence

COBOL Hex
Value value Label Comment

01 40CO SHUTD Shutdown
02 40Cl SHUTC Shutdown complete
03 40C2 RSHUTD Request shutdown
04 40C9 SIGNAL Signal
05 4080 QEC Quiesce at end of chain
06 0081 QCOMPL Quiesce complete
07 4082 I RELQ Release quiesce I
08 4071 SBI Stop bracket initialization i

09 0070 BIS Bracket initiation stopped
10 0083 CANCEL Cancel
11 0084 CHASE Chase
12 ooca BID Bid
13 0004 LU STAT LU status
14 0005 RTR Ready to receive
15 8001 CLEAR Data traffic cleared/reset by host
16 8010 ENAPRS Enable restart for DPS 6 or DPS 6

PLUS application
17 8011 DSAPRS Disable restart for DPS 6 or DPS 6

PLUS application
18 8012 RQRCVR DPS 6 or DPS 6 PLUS application

request for recefve
19 2008 ALERT Alert
20 200E STAT Statistics

Table D-6. Attribute Types

COBOL Hex
Value Value Label Comment

01 0001 BIND IM Bind image attribute

D-6 GRll-02

AppendixE
$SSCCB TEMPLATE

This appendix contains the template for $SSCCB, the Session
Call Control Block (SCCB). This template is used in creating an
SCCB for your LU Type 0 application.

E-1 GRll-02

'Offset

0000
0000
0000
0001
0002
0004

0005
0008
0009
OOOD
0011
0019
0019
OOlA
OOlA
OOlC
0010
OOlE
OOlF
OOlF
0021
0022

0023

0026
0010
0029
0029
002A
002C
002D

0020
002E
002F
0030
OOOA
0033
0041

Table E-1. $SSCCB Template.

Label

$SSCCB
SC SID
sc-:-sGP
SC-SES
SC-APS
SC-OPC

SC RFl
SC-STD
SC-RLN
SC-NOD
SC-TPN
SCOUPT
SC OCT
SC-PHB
SC-AOL
SC-INT
SC-SQN
SC-RSQ
SC-ESD
SC-MRU
SC-RCD
SC-ABT

SC TIM

SC RF2
SCOUPS
SCINPT
SC ICT
SC-BUF
SC-DLG
SC-SSD

SC MRS
SC-MRR
SC-SIN
SC-RF3
SClNPS
SC REG
SC-SIZ

Meaning

SESSION ID
SESSION GROUP NAME
SESSION NAME
(FOR AIF USE ONLY)
OPERATION CODE SC OPC IS NORMALLY LOADED
BY AN AIF MACROCALL
RESERVED FOR FUTURE USE (1)
STD
REMOTE LU NAME IN ASCII
SNAP! NODE NAME IN ASCII
TRANSACTION PROGRAM NAME IN ASCII
SC OUTPUT PARAMETER AREA
SC OUTPUT CONTROL WORD
FOR AIF USE ONLY
ACTUAL DATA LENGTH RECEIVED
RECEIVED INTERRUPT TYPE
SEQUENCE NUMBER OF LAST SENT RU

,•

SEQUENCE NUMBER OF LAST RECEIVED RU
ERROR CODE OR SENSE DATA RECEIVED
MAXIMUM RU SIZE
RETURN CODE OF SESSION CALL
SESSION ABORT REASON WHEN RCABRT SET IN
SC RCD - REFER TO MACRO $SAIRC FOR
DEFINITION
TIME OF SESSION TERMINATION WHEN RCSTOP
SET IN SC RCD OR TIME TO RELEASE
ABNORMALLY TERMINATED SESSION
RESERVED FOR FUTURE USE (2)
SIZE OF SCCB OUTPUT AREA
SESSION CALL INPUT PARAMETER AREA
SESSION CALL INPUT CONTROL WORD
-> SEND/RCV DATA BUFFER
SEND/RECIEVE DATA BUFFER LENGTH
SENSE DATA FOR SENDING INTERRUPT, -RSP
OR ABNORMAL TERMINATION
SEND SQN FOR MESSAGE RESYNCHRONIZATION
RCV SQN FOR MESSAGE RESYNCHRONIZATION
SEND INTERRUPT TYPE
RESERVED FOR FUTURE USE (3)
SIZE OF SCCB INPUT AREA
SAVE REGISTER SPACE
SCCB SIZE

E-2 GRll-02

Table E-1 (cont.). $SSCCB Template

Off set Label Meaning

OPERATION CODE (SC_OPC)

4000
4001
0002
0003
0004
0005
0006
OOOA
OOOB

ASCINI
ASCTER
ASCSND
ASCRCV
ASCSIN
ASCRIN
ASCASR
ASCWAN
ASCTST

$SI NIT
$STERM
$SSEND
$SRECV
$SSI
$SRI
$SCASR
$SWANY
$STEST

SESSION CALL INPUT CONTROL WORD (SC_ICT)

0800

0400
0200

0100

8000
4000
2000
1000
0080
0040
0020
0010

0008
0004

0001

SCRTNS

SCRHBI
SCRMSG

SCRSTR

SCSWRP
SCSRQD
SC SL ST
SCSFMH
SCSRSP
SCSNEG
SCSMNC
SCACPT

SCGTAT
SC POLL

SCATRM

RETURN CONTROL WHEN SESSION CALL
COMPLETED (SYNC.}
DATA START AT RIGHT BYTE OF BUFFER
USED FOR $SRECV TO WAIT FOR WHOLE
MESSAGE
RESTART, USED ONLY FOR $SINIT AFTER
SESSION HAS BEEN ABNORMALLY TERMINATED
SEND WITH REPLY (SET CD IN RH)
SEND WITH DEFINITE RESP REQUIRED
SEND LAST MESSAGE (SET EB IN RH)
SEND WITH FMH IN DATA .RU ,
SEND +RSP
SEND -RSP
MESSAGE (CHAIN) NOT COMPLETE
l=ACCEPT, $SACPT WITH SC OPC
THIS BIT SHOULD BE 0 IF $SIN
l=GET ATTRIBUTE, O=RECEIVE D
l=POLL, $SPOLL WITH SC OPC­
THIS BIT SHOULD BE 0 IF $SIN
ABNORMAL TERMINATION

SESSION CALL OUTPUT CONTROL WORD {SC_OCT)

0008 SCRWRP REPLY REQUESTED (CD RECEIVED IN RH)
0001 SCRRQD DEFINITE RESPONSE REQUESTED
2000 SCRLST LAST MESSAGE RECEIVED (EB RECEIVED IN

RH)
1000 SCRFMH FMH IN RECEIVED DATA
0400 SC RB OM BEGINNING OF MESSAGE RECEIVED (BC IN RH)
0200 SCREOM END OF MESSAGE RECEIVED (EC IN RH)

E-3 GRll-02

Table E-1 (cont.). $SSCCB Template.

Off set Label Meaning

BITS USED FOR SESSION RESTART

0008 SCRSTS STATION RECEIVED FOR MSG_RESYNC, SET SQN
TO SC_SQN, SC_RSQ

0004 SCL6RX DPS 6 OR DPS 6 PLUS APPLICATION
RETRANSMIT REQUIRED

0002 SCHORX HOST APPLICATION RETRANSMIT REQUIRED,
READY TO RECEIVE

INTERRUPT TYPE

THERE ARE 3 CATEGORIES OF INTERRUPT:

1. EXPEDITED OR NORMAL FLOW DFC COMMAND
2. CNM DATA
3. INFORMATION PASSED TO OR FROM APPLICATION PROGRAM

FFOO
8000
4000
2000
OOFF

INTCAT
APP INF
EXPDFC
INTBUF
INTCOD

CATEGORY
APPLICATION INFORMATION
EXPEDITED DFC COMMAND
INTERRUPT WITH BUFFER FOR DATA
INTERRUPT TYPE CODE

DATA FLOW CONTROL COMMANDS

40CO
40Cl
40C2
40C9
4080
0081
4082
4071
0070
0083
0084
OOC8
0004
0005

SHUTD
SHUTC
RSHUTD
SIGNAL
QEC
QCOMPL
RELQ
SBI
BIS
CANCEL
CHASE
BID
LU STAT
RTR

SHUTDOWN
SHUTDOWN COMPLETE
REQUEST SHUTDOWN
SIGNAL
QUIESCE AT END OF CHAIN
QUIESCE COMPLETE
RELEASE QUIESCE
STOP BRACKET INITIALIZATION
BRACKET INITIALIZATION STOPPED
CANCEL
CHASE
BID
LU STATUS
READY TO RECEIVE

INFORMATION PASSED TO OR FROM APPLICATION

8001 CLEAR DATA TRAFFIC CLEARED/RESET BY HOST
8010 ENAPRS ENABLE RESTART FOR DPS 6 OR DPS 6 PLUS

APPLICATION
8011 DSAPRS DISABLE RESTART FOR DPS 6 OR DPS 6 PLUS

APPLICATION
8012 RQRCVR DPS 6 OR DPS 6 PLUS APPLICATION REQUEST

FOR RECOVERY

E-4 GRll-02

Table E-1 (cont.). $SSCCB Template.

Off set Label Meaning

CNM DATA

2008
"T

ALERT ALERT
200E STATIC STATISTICS OF REQMS (TYPE 4) SC_ESD=O;

NO PARAMETER IN REQMS TO PASS TO
APPLICATION

0001 SDOOOl SC ESD=l: REQMS RECEIVED IN RECEIVE
BUFFER TO PASS PARAMETER
SC ESD=2: PARAMETER IN REQMS NEEDS TO BE
PASSED

GET ATTRIBUTE TYPE

0001 BINDM BIND IMAGE STARTING FROM BYTEl

E-5 GRll-02

AppendixF
CONVERSATION VERB

RETURN CODES

The following pages show the unique return codes that are
returned by AIF after the execution of each call or verb. As
described in the Assembly language sections, bits 0 through 4 of
the return code have special meaning. The tables in these
section present the return codes both before and after these bits
have been masked out.

The following tables are included in this appendix:

• Table F-1 provides the general return codes for the
conversation verb

• Table F-2 provides the individual return codes

• Table F-3 provides sense data

• Table F-4 provides COBOL RETURN-A fields

• Table F-5 provides general COBOL RETURN-B codes.

F-1 GRll-02

Table F-1. Individual Return Codes

Hex
Value Label Meaning

8000 VRABND CONVERSATION ABEND/DEALLOCATED
*4000 VRSTOP SOPR STOP COMMAND RECEIVED1

CHECK VP TIM FOR TIME
2000 VRRINT RESERVED WHEN USING VERB
1000 VRSCNL

I
SERV. REQ. NOT PROCESSED OR CANCELLED

0800 VRSCMP SERVICE REQUEST COMPLETED

I 07FF VRMASK MASK FOR INDIVIDUAL RETURN CODES (SEE
TABLE F-2)

· *Return codes noted by an asterisk can be received after the
execution of any verb. ..

F-2 GRll-02

Table F-2. Individual Return Codes

COBOL Assembly Macro
RETURN-B · Language Label Meaning

0000 0000 VROKAY O.K. (NO ERROR)
0001 0001 VRUNSU UNSUCCESSFUL
0002 0002 VRPENT PROG ERROR NO TRUNC
0003 0003 VRPETR PROG-ERROR-TRUNC
0004 0004 VRSEPR PROG-ERROR-PURGING
0005 0005 VRSENT SVC ERROR NO TRUNC
0006 0006 VRSETR SVC-ERROR-TRUNC
0007 0007 VRSEPR SVC-ERROR-PURGING
0008 0008 VRIHLN INVALID HOST LU NAME
0009 0009 VRHLNA HOST LU NOT AVAILABLE

0016 0010 VRNSND CONV. NOT IN SEND STATE
0017 0011 VRNSDF CONV. NOT IN SEND OR DEFER STATE
0018 0012 VRNCNF CONV. NOT IN CONFIRM STATE
0019 0013 VRRB2S RECEIVE BUFFER TOO SMALL
0020 0014 VRNSOR CONV. NOT IN SEND OR RECEIVE STATE
0021 0015 VRNSCS CONV. NOT IN RECEIVE OR CONFIRM

STATE
0022 0016 VRNRCV CONV. NOT IN RECEIVE STATE

0023 0017 VRNSRC CONV. NOT IN SEND, RECEIVE OR
CONFIRM STATE

0024 00,18 VRLRNF LOGICAL RECORD NOT FINISHED YET
0025 0019 VRCSCD CONV .. IN CONFIRM SEND OR

CONFIRM DEALLOCATE RECEIVED
0026 ' OOlA VRPDEA CONV0 IN PEND DEALLOCATE STATE -

*0048 0030 VRSYSE SYSTEM ERROR
*0049 0031 VRRNA~IT RESOURCE

0064 0040 VRINOD INVALID NODE NAME
*0065 0041 VRIRID INVALID RESOURCE ID

0066 0042 VRITPN INVALID TPN (LENGTH OF TPN = O)
*0067 0043 VRIVSR INVALID SERVICE REQ.(OPERATION

CODE)
0068 0044 VRLNER DATA LENGTH ERROR ON SEND DATA

*0069 0045 VRIVFC INVALID FUNCTION CODE ON MCL 2319
*0070 . 0046 VRIMCS IMPROPER CALLING SEQUENCE
*0071 0047 VRVBNS VERB NOT SUPPORTED
*0072 0048 VRSRMU ASR (VERB/SC) USAGE MIXED

0073 0049 VRSLNS SYNC. LEVEL NOT SUPPORTED BY LU
0074 004A VRIVLL INVALID LOGICAL RECORD LENGTH
0075 004B VRIRTC INVALID RETURN CONTROL FOR ALLOCATE
0076 004C VRITYP INVALID TYPE SPECIFIED

F-3 GRll-02

COBOL
RETURN-B

0150
0151
0152
0153
0154
0155

0176
0192
0193
0194
0195
0208

0209

0210
0211
0224

*0240
*0241
*0242
*0243

*0256

*0257
*0258
*0259

*0784
*1809
*1810
*1811
*1812

Table F-2 (cont). Individual Return Codes

Assembly
Language

0096
0097
0098
0099
009A
009B

OOBO
ooco
OOCl
OOC2
OOC3
OODO

OODl

l\l'\"""-1'\
VVlJ..1:

OOD3
OOEO

OOFO
OOFl
OOF2
OOF3

0100

0101
0102
0103

0310
0711
0712
0713
0714

Macro
Label

VRNNAC
VRNLAC
VRNOAV
VRISTD
VRILUT
VRNOAT

VRAETN
VRAEPI
VRAEIP
VRAESI
VRAECM
VRAESP

VRAERP

VRAENR
VRAETR
VRAEAN

VRDANM
VRDAPG
VRDASV
VRDATM

VRUNBI

VRSSHU
VRURTO
VRPGER

VRADLU
VRLKFL
VRADPU
VRACSA
VRSABT

Meaning

NODE NOT YET ACTIVE
NO ACTIVE LU FOR SESSION
NO LU AVAILABLE FOR SESSION
INVALID STD NAME
INVALID LU TYPE IN STD
NO LU ATTATCHED BY REMOTE TP

TPN NOT RECONIZED
PIP-NOT-ALLOWED
PIP-NOT-SPECIFIED CORRECTLY
SECURITY NOT VALID
CONVERSATION-TYPE MISMATCH
SYNC. LEVEL NOT SOPPORTED BY
PROGRAM - - -
RECONNECT LEVEL NOT SUPPORTED BY
PROGRAM - - -
TRANS PRG NOT AVAILABLE NO RETRY
TRANS-PRG-NOT-AVAILABLE-RETRY
ACC NOT VALID- -

DEALLOCATE NORMAL
DEALLOCATE-ABEND PROGRAM
DEALLOCATE-ABEND-SERVICE
DEALLOCATE-ABEND-TIMER

SESSION UNBOUND BY HOST
UNEXPECTEDLY
SESSION SHUTDOWN BY HOST ORDERLY
YOU ARE TIMED OUT BY SOPR COMMAND
SESSION ABORT DUE TO UNRECOVERABLE
PROTOCOL ERROR
ACTLU/DACTLU RECEIVED
LINK FAILURE
ACTPU/DACTPU RECEIVED
$A (SOPR) 'ABORT' AIF NODE
$S ABORT AIF GROUP

*Return codes noted by an asterisk can be received after the
execution of any verb.

F-4 GRll-02

Table F-3 contains AIF specific sense data that is associated
with certain AIF return codes. For sense codes not listed, refer
to sense codes listed in the SNA6 Reference Summary or in the
SNA6 Operator's Guide.

Table F-3. Sense Data

Macro Hex Sense
Label Value Data Meaning

VRRNAV 74Cl VR74Cl INVALID CALLER
74C2 VR74C2 NO ASRBS AVAILABLE ON NODE
74C6 VR74C6 EXCEEDED MAX. NO. OF SESSION GROUPS
74C9 VR74C9 TIME OUT PASSING A REQUEST TO PU

VRIRID 74CO VR74CO ASRB NOT FOUND
74C7 VR74C7 CAN'T FIND A VALID SESSION GROUP

VRIMCS 74CB VR74CB CAN'T PROCESS THIS CALL AT THIS TIME
74D3 VR74D3 CALL WHEN NOT IN SESSION ERROR

F-5 GRll-02

Table F-4. COBOL Session Call RETURNS fields.

Fields Value Meaning

ABEND-DEALLOCATE y The conversation has ABENDed and
therefore been deallocated

STOP-RCVD y SOPR STOP command received.

SERV-REQ-CANC Y This request has been cancelled.

SERV-REQ-COMP

COBOL-ERROR

y

y

The application must issue it again
1 if necessary.

This request has been completed.

Error in using COBOL interface to
the AIF. See RETURN-B for return
code.

Table F-5. General COBOL RETURN-B Values

Code Meaning

XXOl Unrecognized parameter
XX02 Parameter must be l byte long
XX03 Parameter must be 5 bytes long
XX04 Default not acceptable
xxos Node name error
XX06 Remote LU name error
XX07 Not session-ID
XX08 Unknown interrupt type
XX09 Nondecimal digit
XXlO Nonhexadecimal digit
XXll Error in conversion

F-6 GRll-02

Appendix G
$SVPB TEMPLATE

Table G-1 contains the template for $SVPB, the verb Parameter
Block (VPB). This template is used in creating a VPB for your LU
Type 6.2 application.

G-1 GRll-02

Offset

0000
0000
0000
0001
0002

0004
0005
0007

0008
0009
OOOD
0011
8000
0012

0019
0019

·OOlA
OOlA
OOlC
OOlD
OOlE
OOlF

0021
0022

0023

0026
0010
0029
0029
002A
002C
002D

002F
0030
OOOA
0033
0041

Label

$SVPB
VP SID
VP-SGP
VP-SES
VP-APS

VP OPC
VP-RFl
VP-SLV -
VP STD
VP-RLN
VP-NOD
VP-TPL
VBTPNT
VP TPN -
VPOOPT
VP OCT
VP-PHB
VP-AOL
VP-WAR
VP-CST
VP-RFU
VP-ESD

VP TIM

VP RF2
VPOUPS
VPINPT
VP ICT
VP-BUF
VP-DLG
VP-TYP

VP CTL
VP-RF3
VPINPS
VP REG
VP SIZ

Table G-1. $SVPB Template

Meaning

SESSION ID
SESSION GROUP NAME
SESSION NAME
(FOR AIF USE ONLY)

OPERATION CODE
RESERVED FOR FUTURE USE 1
SYNC. LEVEL USED BY CONVERSATION 0 = NONE,
1 = CONFIRM
STD NAME IN ASCII
REMOTE LU NAME IN ASCII
AIF NODE NAME IN ASCII
LENGTH OF TRANSACTION PROG NAME
DO NOT TRANSLATE TP NAME WHEN SET
TP NAME (MAX. 14 BYTES)

VERB OUTPUT PARAMETER AREA
VERB OUTPUT CONTROL WORD
(FOR AIF USE ONLY)
ACTUAL DATA LENGTH RECEIVED
WHAT RECEIVED
CONVERSATION STATE
RFU
ERROR CODE OR SENSE DATA FOR SOME RETURN
CODES. REFER TO MACRO $SAIVR.

RETURN CODE OF VERB CALL
CONVERSATION ABEND REASON WHEN VRBAND SET
IN VP RCD; REFER TO $SAIVR
TIME OF SESSION TERMINATION WHEN VRSTOP SET
IN VP RCD, INDICATING THAT THE SOPR STOP
COMMAND WAS RECEIVED
RFU 2
SIZE OF VPB OUTPUT AREA
VERB INPUT PARAMETER AREA
VERB INPUT CONTROL WORD
-> SEND/RCV/LOG DATA BUFFER
SEND/RCV DATA LENGTH
USED BY DEALLOCATE, PREPARE TO RECEIVE, AND
SEND ERROR VERBS TO SPECIFY-TYPE
SEND-CONTROL INFOMATION TYPE
RFU 3
SIZE OF VPB INPUT AREA
SAVE REG. SPACE
VPB SIZE

G-2 GRll-02

Table G-1 (cont). $SVPB Template

Off set Label

OPERATION CODE

cooo
COOl
8002
8003
8004

VERB

0800
0400
0200

0100
8000
2000
1000

0080
0040
0010
0008

0006
0004
0002
0001

VBALLO
VBCVDA
VBSNDA
VBRANW
VBSCTL

CALL INPUT

VBRTNS
VBRHBI
VBFILL

VBRSTR
VBSWRP
VBSLST
VB LG DA

VBSRSP
VBSNEG
VBATCH
VB LOCK

VBRCTL
VBWALL
VB I MMD
VBATRM

Meaning

$SALLO, ALLOCATE
USED BY AIF ONLY
$SSDTA, SEND DATA
$SRAW, RECEIVE AND WAIT
USED BY $SFLSH~ $SCONF, $SCNFD, $SSERR,
$SDEAL, $SPONR, $SPTOR, $SRTOS, WITH TYPE
SET IN VP CTL -

CONTROL WORD (VP_ICT)

l=SYNC. PROC. (VERB ALWAYS SYNC.)
DATA START AT RT. BYTE OF BUFF.
FILL FOR $SRAW AND $SPONR VERB 0 = BUFFER,
1 = LL
RESERVED WHEN USING VERB (0 ALWAYS)
SEND WITH REPLY (SET CD IN RH)
SEND LAST MSG (SET EB IN RH)
LOG DATA PRESENT (USED BY SEND ERROR OR
DEALLOCATE ABEND) -
RESERVED WHEN USING VERB (0 ALWAYS)
RESERVED WHEN USING VERB (0 ALWAYS)
ATTATCHED, $SATCH W/ VP OPC = VBALLO
LOCK FOR PREPARE TO RECEIVE VERB ($SPTOR):
0 = SHORT, 1 = LONG-
RETURN CNT'L (USED BY ALLOCATE ONLY)
WHEN ALLOCATED
IMMEDIATE
RESERVED WHEN USING VERB (0 ALWAYS)

VERB CONTROL INFORMATION TYPE (VP_CTL)

0000
0001
0002
0003
2004
0005
0006
2007
0007

VBFLSH
VBCONF
VBCNFD
VBRTOS
VB SERR
VBPTOR
VBPONR
VB DEAL
VBCTLM

FLUSH SEND BUFFER, $SFLSH
CONFIRM, $SCONF
CONFIRMED, $SCNFD
REQUEST TO SEND, $SRTOS
SEND ERROR; $SSERR
PREPARE TO RECEIVE, $SPTOR
POST ON-RECEIPT, $SPONR
DEALLOCATE, $SDEAL
MAX VALUE OF CONTROL INFORMATION TYPE

G-3 GRll-02

Table G-1 (cont). $SVPB Template

Offset Label Meaning

VERB OUTPUT CONTROL WORD

0080 VBRRTS REQUEST TO SEND RECEIVED WHEN SET
0040 VBPOST CONV. POSTED (USED BY POST_ON_RECEIPT ONLY}

WHAT-RECEIVED INDICATORS

2 0002 VBRSND SEND INDICATOR RCV'D
4 0004 VBRCNF CONFIRM REQ. RCV'D
5 0005 VBRCDA CONFIRM DEALLOCATE RCV'D
6 0006 VBRCSN CONFIRM-SEND RCV'D
8 0008 VBRLLT LL TRUNCATED
10 OOOA VBRDATO DATA AVAILABLE WHEN LENGTH=O
14 0014 VBRDAT DATA RECEIVED
15 0015 VBRDCP DATA COMPLETE
16 0016 VBRDIC DATA-INCOMPLETE

TYPE VALUES (VP_TYP)

0000 VBTPFL FLUSH
0001 VBTPSL SYNC LEVEL
0002 VBTPAP ABEND PROGRAM
0003 VBTPAS ABEND-SERVICE
0004 VBTPAT ABEND-TIMER
0005 VBTPPG PROGRAM
0006 VBTPSV SERVICE

CONVERSATION STATE (VP_CST)

0000 VBCRST RESET .
0100 VBCSND SEND STATE
0200 VBCRCV RECEIVE STATE
0300 VBCCNF RCV'D CONFIRM
0400 VBCCSN RCV'D CONFIRM SEND
0500 VBCCDA RCV'D CONFIRM-DEALLOCATE
0600 VBCDPR DEFER STATE--PREPARE TO RECEIVE
0700 VBCDDA DEFER STATE--DEALLOCATE
0800 VBCPDA PEND DEALLOCATE
0900 VBCSPT SYNC. POINT
OAOO VBCBOT BACKED OUT STATE

~4 Gfill~2

GLOSSARY

basic information unit (BIU)

The unit of data and control information that is passed
between half-sessions. It consists of a request/response
header (RH) followed by a request/response unit (RU) •

class of service

A designation of the path control network characteristics,
such as path security, transmission priority, and bandwidth,
that apply to a particular session. The end user designates
class of service at session initiation by using a symbolic
name that is mapped into a list of virtual routes, any one of
which can be selected for the session to provide the
requested level oF service.

configuration services

One of the types of network services in the system services
control point (SSCP) and in the physical unit (PU);
configuration services activate, deactivate, and maintain the
status of physical units, links, and link stations.

contention state

The state in which neither half-session is transmitting data
or in which both half-sessions are transmitting data
simultaneously. The contention winner can be configured to
be non-negotiable, in which case the specified primary or
secondary LU would always be the winner when a contention
state occurred.

g-1 GRll-02

data flow control (DFC)

A request/response unit (RU) category used for requests and
responses exchanged between the data flow control layer in
the session partner.

end user

The ultimate source or destination of application dataflowing
through an SNA6 network. An end user may be an application
program or a terminal operator.

function management (fm) header

One or more headers, optionally present in the leading
request units (RUs) of an RU chain, that is provides
information to: (1) select a destination at the session
partner, (2) control the way that end-user data is handled at
the destination, (3) change the characteristics of the data
during the session, and (4) transmit status or user
information about the destination (for example, a program or
device).

half-session

A component that provides FMD services, data flow control,
and transmission control for one of the sessions of a network
addressable unit (NAU).

host node

A subarea node that contains a system services control point
(SSCP); for example, a System/370 with OS/VS2 and ACF/TCAM.

interrupt type

link

The type of flag which is sent by either the host or the
DPS 6 or DPS 6 PLUS during the session. These flage can be
SNA6 commands or indicators or SPI control information,

The combination of the link connection and the link stations
joining network nodes; for example, (1) a System/370 channel
and its associated protocols, (2) a serial-by-bit connection
under the control of synchronous data link control (SDLC).

link connections

The physical equipment providing two-way communication
between one link station and one or more other link stations;
for example, a communication line and data circuit
terminating equipment (DCE) •

g-2 GRll-02

link station

The combination of hardware and software that allows a node
to attach to and provide control for a link.

logical unit (LU)

A port through which an end user accesses the SNA6 network
the functions· provided by system services control points
(SSCPs). An LU is capable of supporting at least two
sessions--one with an SSCP and one with another logical
unit--and may be capable of supporting many sessions with
other logical units.

LU-LU session

A session between two logical units in an SNA6 network. It
provides communication between two end users or between an
end user and an LU services component.

network addressable unit (NAU)

node

A logical unit, a physical unit, or a system services control
point. It is the origin or the destination of information
transmitted by the path control network.

An endpoint of a link or a junction common to two or more
links in a network. Nodes can be distributed or host
processors, communication controllers, cluster controllers,
or terminals. Nodes can vary in routing and other functional
capbilities@

pacing

A technique by which a receiving component controls the rate
of transmission of a sending component to prevent overrun or
congestion.

parallel sessions

Two or more currently active sessions between the same two
logical units (LU's) using different pairs of network
addresses. Each session can have independent session
parameters.

physical unit (PU)

The component that manages and monitors the resources of a
node, as requested by an SSCP via an SSCP-PU session. Each
node of an SNA6 network contains a physical unit.

g-3 GRll-02

protocol

The meaning of, and the sequencing rules for, requests and
responses used for managing the network, transferring data,
and synchronizing the states of network components.

request header (RH)

A request unit (ru) header preceding a request unit.

request unit (RU)

A message unit that contains control information such as a
request code of FM header, end-user data, or both.

request/response header (RH)

Control information, preceding a request/response unit (RU),
that specifies the type· of RU (request unit or response unit)
and contains control in formation associated with that RU.

request/response unit (RU)

A generic term for a request unit or a response unit.

response

(1) A message unit that acknowledges receipt of request; a
response consists of a response header (RH), a response unit
(RU), or both. (2) in SDLC, the control information sent
from the secondardy station to the primary station.

response header (RH)

A header, optionally followed by a response unit (RU), that
indicates whether the response is positive or negative and
that may contain a pacing response.

response unit (RU)

A message unit that acknowledges a request unit; it may
contain prefix information received in a request unit. If
positive, the response unit may contain additional
information (such as session parameters in response to bind
session), or if negative, contains sense data defining the
exception condition.

g-4 · GRll-02

session

A logical connection between two network addressable units
(NAUs) that can be activated, tailored to provide various
protocols, and deactivated, as requested. The session
activation request and response can determine options
relating to such things as the rate and concurrency of data
exchange, the control of contention and error recovery, and
the characteristics of the data stream. Sessions compete for
network resources such as the links within the path control
network.

session partner

One of the two network addressable units having an active
session.

SNA6 network

The part of a user-application network that conforms to the
formats and protocols of Systems Network Architecture. It
enables reliable transfer of data among end users and
provides protocols for controlling the resources of various
network configurations. The SNA6 network consists of network
addressable units, boundary function components, and the path
control network.

SNA6 node

A node that supports SNA6 protocols

SSCP-PU session

A session between a system services control point (SSCP) and
a physical unit (PU). SSCP-PU sessions allow SSCP's to send
requests to and receive status information from individual
nodes in order to control network configuration.

SSCP-SSCP session

A session between the system services control point (SSCP) in
one domain and the SSCP in another domain. An SSCP-SSCP
session is used to initiate and terminate cross-domain LU-LU
sessions.

Synchronous Data Link Control (SDLC)

A discipline for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
transmission exchanges may be duplex or half duplex over
switched or nonswitched links. The configuration of the link
connection may be point-to-point, multipoint, or loop.

g-5 GRll-02

System Services Control·Point (SSCP)

A focal point withing an SNA6 network for managing the
configuration, coordinating network operator and problem
determination requests, and providing directory support and
other session services for end users of the network.
Multiple SSCPs cooperating as peers with one another, can
divide the network into domains of control, with each SSCP
having a hierarcical control relationship to the physical
units and logical units within its own domain.

g-6 GRll-02

SNA6 MANUALS

Base
Publication

Number

CR56
CR57
CR58
CR59
CR60
GRll
GB88
GXlO
GXll
GX.12

IBM MANUALS

MANUAL DIRECTORY

Manual Title

IBM Distributed Data Processing Overview
SNA6 Network Configuration
SNA6 Interactive Terminal Facility user's Guide
SNA6 Remote Job Entry Facility user's Guide
SNA6 File Transfer Facility User's Guide
SNA6 Application Programmer's Guide
SNA6 Host System Programmer's Guide
SNA6 Operator's Guide
SNA6 Host System Operator's Guide
SNA6 Internetworking user's Guide

Refer to these IBM documents for host programming, operating,
application, and configuration information:

Base
Publication

Number

SC27-0164
SC27-0610

SC27-0611
SC30-3142
SC30-3143
SC30-3145
SC23-0046
SC33-0149
SH20-9081
SH20-9045
SC33-0077
SC33-0133
GC30-3084

Manual Title

ACF/VTAM Version 2 Messages and Codes
ACF/VTAM Version 2 Installation/Resource

Definition
ACF/VTAM Version 2 Programming
ACF/NCP/VS & SSP Installation (Release 2.1}
ACF/NCP/VS & SSP Utilities (Release 2el)
ACF/NCP/VS & SSP Messages {Release 2.1)
JES2 Initialization and Tuning
CICS Resource Definition Guide
IMS/VS Installation Guide
IMS/VS Programming Guide for Remote SNA Systems
CICS Application Programmer's Reference Manual
CICS Intercommunication Facilities Guide
Transaction Programmer's Reference Manual for LU

Type 6.2

h-1 GRll-02

HVS 6 PLUS OPERATING SYSTEM MANUALS

Base
Publication

Number

HEOl

HE02
HE03
HE04
HEOS

HE06

HE07
HE09

HElO
HEll
HE13
HE14
HElS
HE16
HE17
HE18
HE19

HE21
HE22
HE23

Manual Title

ONE PLUS Guide to Software
Documentation

HVS 6 PLUS System Building and Administration
HVS 6 PLUS System Concepts
HVS 6 PLUS System user's Guide
HVS 6 PLUS System Programmer's Guide -

Volume I
HVS 6 PLUS System Programmer's Guide -

Volume II
HVS 6 PLUS Programmer's Pocket Guide
HVS 6 PLUS System Maintenance Facility

Administrator's Guide
HVS 6 PLUS Menu system user's Guide
HVS 6 PLUS Software Installation Guide
HVS 6 PLUS Migration Guide
HVS 6 PLUS Application Development Overview
HVS 6 PLUS Application Developer's Guide
HVS 6 PLUS System Messages
HVS 6 PLUS Commands
HVS 6 PLUS Sort/Merge
HVS 6 PLUS Data File Organizations and

Formats
HVS 6 PLUS Display Formatting and Control
HVS 6 PLUS VISION Reference Manual
HVS 6 PLUS Editors Manual

h-2 GRll-02

MOD 400 OPERATING SYSTEM MANUALS

Base
Publication

Number

CZ02
CZ03
CZ04
czos

CZ06

CZ07
CZ09

CZlO
CZll
CZlS
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ22
GZ13
HCOl

Manual Title

GCOS 6 MOD 400 System Building and Administration
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System user's Guide
GCOS 6 MOD 400 System Programmer's Guide -

Volume I
GCOS 6 MOD 400 System Programmer's Guide -

Volume II
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu System user's Guide
GCOS 6 MOD 400 Software Installation Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 VISION Reference Manual
GCOS 6 MOD 400 R3.l to R4.0 Migration Guide
GCOS 6 MOD 400 Application Development Overview

h-3 GRll-02

INDEX

$SACEB - ASCII-to-EBCDIC
Conversion, 2-46, 4-45

$SACPT - Accept Session Call,
2-11

$SALLO - Allocate Verb, 4-11

$SATCH - Attached Verb, 4-15

$SCASR - Cancel Asynchronous
Request, 2-13

$SCNFD - Confirmed Verb, 4-19

$SCONF - Confirm Verb, 4-17

$SDEAL - Deallocate Verb, 4-21

$SEBAC - EBCDIC-to-ASCII
Conversion, 2-47, 4-47

$SFLSH - Flush Verb, 4-25

$SGTAT - Get a Session
Attribute, 2-15

$SI NIT
$SINIT - Establish a
Session, 2-18

$SINIT - Restart a Session,
2-21

$SPOLL - Poll Session, 2-24

$SPONR - Post On Receipt Verb,
4-27

$SPTOR - Prepare to Receive
verb, 4-29

$SRAW - Receive and wait verb,
4-32

$SRECV - Receive Message, 2-26

$SSEND - Send Message, 2-31

$SSERR - Send Error Verb, 4-39

$SSI - Send Interrupt, 2-35

$SSRSP - Send Response, 2-38

$STERM - Terminate Session,
2-40

$STEST - Test for Events, 2-42

$SWAIT - Wait Verb, 4-43

$SWANY - Wait On Events, 2-44

Abnormal Termination, 6-3

AIF
AIF Alerts, 7-3
AIF Maintenance Statistics,

7-8
AIF LU Type 6.2 Verbs

(COBOL) (Tbl), 5-17
AIF Session Calls (Assembly

Language) (Tbl) , 2-10,
AIF Session Calls {COBOL)

(Tbl), 3-19
Overall Architecture of AIF

{Fig), A-2
WORKING-STORAGE Section for

AIF (Fig), 3-5

Alerts
AIF Alerts, 7-3
IBM Alert Format (Fig), 7-4

Application
Application Interface
Facility, 1-2

Application Service
Request/Reply Handling
(Fig), A-4

Architecture
$SRI - Read Interrupt, 2-29 Overall Architecture of AIF

(Fig), A-2
$SRTOS - Request to Send Verb,
4-36 Asynchronous

Asynchronous Processing,
$SSDAT - Send Data Verb, 4-37 2-4, 3-3

Synchronous vs.
Asynchronous Processing,
2-4, 3-3

i-1 GRll-02

Basic Conversation Verbs, 4-1

CICS Terminal Control Table
Parameters, l-4

Communications Ne~work
Management, 7-3

Configuration Options, 6-2

Confirmation Processing, 6-4

Conversation
Basic Conversation Verbs,

4-1
COBOL Conversation Verbs,

5-1
Conversation Format, 5-2
Conversation States, 4-5,

5-12
Conversation Verb General

Return Codes (Tbl), F-1
Host-Initiated Conversa­
tions, 4-7

LU Type 6.2 Conversations,
1-6

Conversation Verbs (Assembly
Langage)

$SACEB - ASCII to EBCDIC
Conversion, 4-45

$SALLO - Allocate Verb,
4-11

$SATCH - Attached Verb,
4-15

$SCNFD - Confirmed verb,
4-19

$SCONF - Confirm verb, 4-17
$SDEAL - Deallocate Verb,

4-21
$SEBAC - ASCII to EBCDIC
Conversion Routine, 4-47

$SFLSH - Flush Verb, 4-25
$SPONR - Post On Receipt
verb, 4-27

$SPTOR - Prepare to Receive
Verb, 4-29

$SRAW - Receive and wait
Verb, 4-32

$SRTOS - Request to Send
Verb, 4-36

INDEX

i-2

Conversation Verbs . (Assembly
Language) (cont) •

$SSDAT - Send Data Verb,
4-37

$SSERR - Send Error verb,
4-39

$SWAIT - Wait Verb, 4-43

Conversation verbs (COBOL)
CSACEB - ASCII to EBCDIC

Conversion, 5-48
CSALLO - Allocate Verb,

5-18
CSATCH - Attached Verb,

5-21
CSCNFD - Confirmed Verb,

5-25
CSCONF Confirm Verb, 5-23
CSDEAL - Deallocate verb,

5-27
CSEBAC - ASCII to EBCDIC

Conversion, 5-48
CSFLSH - Flush Verb, 5-30
CSPONR - Post On Receipt
Verb, 5-32

CSPTOR - Prepare to Receive
Verb, 5-34

CSRAW - Receive and Wait
Verb, 5-36

CSRTOS - Request to Send
Verb, 5-40

CSSDAT - Send Data verb,
5-41

CSSERR - Send Error verb,
5-43

CSWAIT - Wait Verb, 5-46

Conversion
$SACEB - ASCII-to-EBCDIC
Conversion, 2-46, 4-45

$SEBAC - EBCDIC-to-ASCII
Conversion, 2-47, 4-47

CSACEB - ASCII-to-EBCDIC
Conversion, 3-44, 5-48

CSEBAC - EBCDIC-to-ASCII
Conversion, 3-45, 5-49

Register Contents at
Conversion (Tbl), 2-46,
4-46

CSACEB - ASCII-to-EBCDIC
Conversion, 3-44, 5-48

GRll-02

CSACPT - Accept Session Call,
3-20

CSALLO - Allocate Verb, 5-18

CSATCH - Attached Verb, 5-21

CSCASR - Cancel Asynchronous
Request, 3-22

CSCNFD - Confirmed verb, 5-25

CSCONF - Confirm Verb, 5-23

CSDEAL - Deallocate Verb, 5-27

CSEBAC - EBCDIC-to-ASCII
Conversion, 3-45, 5-49

CSFLSH - Flush Verb, 5-30

CSGTAT - Get Session
Attributes, 3-23

CSINIT - Initiate Session,
3-25

CSPOLL - Poll Session Call,
3-28

CSPONR - Post On Receipt Verb,
5-32

CSPTOR - Prepare to Receive
verb, 5-34

CSRAW - Receive and Wait verb,
5-36

CSRECV - Receive Message, 3-29

CSRI - Read Interrupt, 3-31

CSRTOS - Request to Send Verb,
5-40

CSSDAT - Send Data Verb, 5-41

CSSEND - Send Message, 3-33

INDEX

CSSI - Send Interrupt, 3-35

CSSRSP - Send Response, 3-37

CSTERM - Terminate Session,
3-39

CSTEST - Test for Events, 3-41

CSWAIT - Wait verb, 5-46

CSWANY - Wait On Events, 3-43

Format
Conversation Format, 5-2
IBM Alert Format (Fig), 7-4
Individual Verb Format,
4-9, 5-15

Session Call Format, 2-1,
3-2

Host Programming
Considerations, 1-3

Host-Initiated Sessions, 2-7,
3-15, 4-7, 5-13

IMS Terminal Definition
Parameters, 1-4

Initialization
Restart Initialization

Request, 6-4

Linking the Program, 3-16,
5-14

Logical Unit (LO)
LU Subcomponent, A-3
LU Type 0 Sessions, 1-4
LU Type 6.2 Conversations,
1-6

Reserved LOs, 6-2

Maintenance
AIF Maintenance Statistics,

7-8
Maintenance Utilities, 7-2

Message Resynchronization
CSSERR - Send Error Verb, 5-43 Message Resynchronization

in Assembly Language, 6-5
Message Resynchronization
in COBOL, 6-5

i-3 GRll-02

Operator
SNA Operator Services, 7-1

Parameters
CICS Terminal Control Table
Parameters, 1-4

IMS Terminal Definition
Parameters, 1-4

Verb Parameter Block, 4-4

Preestablished Session Groups,
6-2

Programming
Host Programming
Considerations, 1-3

Programming Considerations,
2-3, 3-2, 4=3, 5-3

Protocol Handler Module, A-3

PU Subcomponent, A-3

Register Contents at
Conversion. (Tbl), 2-46, 4-46

Release Time, 6-4

Request/Reply
Application Service

Request/Reply Handling
(Fig), A-4

Reserved LUs, 6-2

Restart
$SINIT to Restart a
Session, 2-21

Restart Initialization
Request, 6-4

Restart Logic, 6-3
Rules for Restart, 6-5
Session Restart {Fig), 6-6

Resynchronization
Message Resynchronization

in Assembly Language, 6-5
Message Resynchronization
in COBOL, 6-5

INDEX

i-4

Return Codes
Checking the Return Code,

2-8, 3-17, 4-7, 5-15

Rules
Rules for Restart, 6-5

Sense Data (Tbl), D-1, F-1,
F-5

Session Calls (Assembly
Language)

$SACEB - ASCII to EBCDIC
Conversion, 2-46

$SACPT - Accept Session
Call, 2-11

$SCASR - Cancel Outstanding
Service Request, 2-13

$SEBAC - EBCDIC to ASCII
Conversion: 2-47. 4-47

$SGTAT - Get a Session
Attribute, 2-15

$SINIT - Establish a
Session, 2-18

$SINIT - Restart a Session,
2-21

$SPOLL - Poll Session, 2-24
$SRECV - Receive Message,
2-26

$SRI - Read Interupt, 2-29
$SSEND - Send Message, 2-31
$SS! - Send Interrupt, 2-35
$SSRSP - Send Response,

2-38
$STERM - Terminate Session,
2-40

$STEST - Test for Events,
2-42

$SWANY - Wait on Events,
2-44

Session Calls {COBOL)
CSACEB - ASCII to EBCDIC

Conversion, 3-44
CSACPT - Accept Session
Call, 3-20

CSCASR - Cancel Outstanding
Service Request, 3-22

CSEBAC - EBCDIC to ASCII
Conversion, 3-45

CSGTAT - Get Session
Attributes. 3-23

GRll-02

Session Calls (COBOL) (cont).
CS IN IT

3-25
CSPOLL

3-28
CSRECV

3-29
CSRI -
CS SEND
CSSI -
CSSRSP

3-37
CST ERM

3-39
CSTEST

3-41
CSWANY

3-43

- Initiate Session,

Poll Session Call,

Receeive Message,

Read Interupt, 3-31
- Send Message, 3-33
Send Interrupt, 3-35

Send Response,

Terminate Session,

Test for Events,

- Wait on Events,

Session Restart (Fig), 6-6

States
Conversation States (Tbl),

4-6, 5-12
Conversation States, 4-5,

5-12
Conversation States From

Which Verbs Can Be Issued
(Tbl), 4-6, 5-13

Synchronous
Synchronous Processing,

2-4, 3-3
Synchronous vs.

Asynchronous Processing,
2-4, 3-3

Termination
Abnormal Termination, 6-3
Normal Termination, 6-3

Time
Release Time, 6-4

Utilities
Maintainance Utilities, 7-2

INDEX

Verbs

i-5

AIF LU Type 6.2 Verbs
{COBOL) (Tbl), 5-17

Basic Conversation Verbs,
4-1

COBOL Conversation Verbs,
5-1

Conversation States From
Which Verbs Can Be Issued
(Tbl), 4-6, 5-13

Verb Parameter Block, 4-4

GRll-02

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE COMMUNICATIONS
SNA6
APPLICATION PROGRAMMER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be O
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME---

TITLE ~--------------------------·~------------~
COMPANY--------------~---~------------------~

ADDRESS--

ORDER NO. '~-G_R_1_1_-0_2 ________ ~

DATED I SEPTEMBER 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Ser'.'ice will not deliver $tapled forms

111111

BUSINESS REPLY MAIL
FIRST Cl.ASS PERMIT NO. 39531 WAL.THAM, MA02154

POSTAGE Wll.l. SE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS; MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
I UNITED STATES I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE COMMUNICATIONS
SNA6
APPLICATION PROGRAMMER"S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be O
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME~--------..;._------------------------------­

TITLE--~

COMPANY--~

ADDRESS---

ORDER NO. l __ G_R_1_1_-0_2 ________ _

DATED I SEPTEMBER 1986

DATE

PLEASE FOLD ANO TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL SE PAID SY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS·
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
I UN!TED STATES I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE COMMUNICATIONS
SNA6
APPLICATION PROGRAMMER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be O
acknowledged; however, if you require a detailed reply, check here.

FROM:NAME----------..;._------------------------------­

TITLE ~--------------------------·~--------------­
COMPANY--------------~--------------------------

ADDRESS--------------------------------------~

ORDERN0.1 ~-G_R_1_1_-0_2 ________ ~

DATED I SEPTEMBER1986

PLEASE FOLD ANO TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

I NO POSTAGE
NECESSARY
IF MAILED

H'~J THE
UNITED STATES

Together, we can find the answers.

Honeywell
Hon~ll lnfomuition Systems

U.S.A.; 200 <>milt. St., MS 466, Wi.ltt.am, MA 0:2154
Canadll: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

Mexico: Av. Constit~es 900, 11950 Mexico, D.F. Mexico
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Hiiiy: 32 Via Pirelli, 20124 MHano

Austnllla: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Aala: Mandarin Plaza, Tsimshatsui East, H.K.
46625, 1086, Printed in U.S.A. GA11-02

