COMMUNICATIONS

SNA6

APPLICATION

PROGRAMMER’S

GUIDE







COMMUNICATIONS
SNAG6
APPLICATION PROGRAMMER’S GUIDE

SUBJECT

Application Interface Facility LU Type 0 Session Calls and LU Type 6.2
Conversation Verbs for Use in DPS 6 or DPS 6 PLUS COBOL and Assembly
Language Programs

SPECIAL INSTRUCTIONS

This manual supersedes GR11-01, dated March 1986. This manual has been
extensively revised; therefore, change indicators have been omitted.

SOFTWARE SUPPORTED
This publication supports Release 4.0 of the SNA6 program products.

ORDER NUMBER
GR11-02 October 1986

Honeywell



PREFACE

The purpose of this manual is to describe the SNA6

Application Interface Facility (AIF). It is intended for the
COBOL or Assembly language programmer at a DPS 6 or DPS 6 PLUS

system. It provides the information necessary to write

application programs to communicate with transaction programs

running under Customer Information Control System (CICS) or

Information Management System (IMS).

The major topics presented in this manual are:

@ Section 1 provides an introduction of AIF and the manual

e Section 2 describes the LU Type 0 session calls that are
used in Assembly language, the session call control block,

and Assembly language programming considerations

e Section 3 describes the LU Type 0 COBOL session calls, the

SNA work area in the WORKING-STORAGE-SECTION,

programming considerations

and COBOL

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record

any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or quential da

The information and specifications in this dc t are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1163, IR63, 1763

GR11-02



Section 4 describes the LU Type 6.2 conversation verbs
that are used in an Assembly language program, the verb
parameter block, and Assembly language programming
considerations

Section 5 describes the LU Type 6.2 COBOL conversation
verbs, the SNA work area in the WORKING-STORAGE-SECTION,
and COBOL programming considerations

Section 6 describes LU Type 0 restart logic and message
resynchronization

Section 7 describes Communications Network Management, SNA
Operator Control (SOPR) services, and maintainability
through various operating system utilities

Appendix A presents a detailed description of the AIF
product architecture

Appendix B contains sample Assembly language programs
demonstrating both LU Type 0 and LU Type 6.2 conversations

Appendix C provides sample COBOL programs for both LU Type
session calls

Appendix D lists the LU Type 0 session call return codes

Appendix E contains a listing of the Session Call Control
Block (SCCB) template with offsets

Appendix F lists the LU Type 6.2 conversation return codes

Appendix G includes a listing of the Verb Parameter Block
(VPB) template with offsets.

A glossary is provided to explain the meaning of terms
used within the text of this manual.

This manual assumes the reader is familiar with the SNA
networking system and COBOL or Assembly language programming.
The reader needs to be familiar with the following Honeywell
manuals:

In

ONE PLUS COBOL 74 Language Reference Manual (Order No.
HE34)

One PLUS Advanced COBOL Compiler User's Guide (Order No.
HE31)

ONE PLUS Assembly Language (MAP) Reference (Order No.
HE38)

addition, the reader needs to be familiar with the SNA

transaction program protocols used by your IBM distributed
processing application.

iii GR11-02



The following syntax conventions are used in this manual:

Syntax Conventions

UPPERCASE CHARACTERS

Angle brackets <>

Brackets []

Braces {}

Vertical line |

Meaning

Items in capital letters must be input as
shown, for example, SCNOER.

Items in lowercase letters enclosed in
angle brackets < > describe what you need
to supply; for example, <node name>.

Items in square brackets are optional;
for example, [sccb address].

Braces indicate that the user has a
choice between two or more entries. At
least one of the entries enclosed in
braces must be chosen (unless the entries
are also enclosed in square brackets);
for example, {NORMAL|ABNORMAL}.

Vertical bars separate the choices within
braces. At least one of the entries
separated by bars must be chosen (unless
the entries are enclosed in square
brackets); for example [{SYNC|ASYNC}].

The following conventions are used to indicate the relative
levels of topic headings used in this manual:

Level
1 (Highest)
2
3

Heading Format

ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, Underlined

ALL CAPITAL LETTERS, NOT UNDERLINED

Initial Capital Letters, Not Underlined

iv GR11-02



SECTION 1

CONTENTS

Page
INTRODUCTION........0.0..l..O..Q............." 1-1

HOW to Use This Manualllclouoo...0'.....0..0..0.....1.0.lc 1-2

Application Interface FaCilitYeeceececccososcscccssccccscscssceas 1=2
LU Type 0 SeSSiONS..cscceccccscsccssccccscsasssoscscsssccscssonns 1—3
Host Programming ConsiderationS.c.cccecececcecccceccsccsocceces 1-3
CICS Terminal Control Table ParameterS...ccecceccecces 1—4

IMS Terminal Definition ParameterScccceccceccccsccocsces 1—4

LU Type 6.2 ConversationS..cecececcscscscccoscscscsossnssccecs 16

SECTION 2 PROGRAMMING LU TYPE 0 SESSIONS IN ASSEMBLY

Session Call FOrmat.ececcoccoccccccsocossccscscscsacscsscccns
Programming ConsiderationS.ccecescccccscccocscccscssssnsnscs
Getting Started.e.ccecccccsccosccosscoscsosccsscscsccsascss
Synchronous vs. Asynchronous ProcessSiNg.ccecsccccscsocccs
Synchronous ProcCesSinNgccceccecccccccsccccoccsosocsosscsss
Asynchronous ProCesSiNg.cceccccccoscescoscccocsosscssss
Session Call Control BlOCKececosecoocososcsccoscoonoononosese
Host-Initiated SesSSiONS..cccsccecccccccccscscccsccossssne
Checking the Return Cod€..ccccecccccscccsscocosssssssscsas
Session CallScecosscceccocccocoososcscsococnccccoccsscnccssos
$SACPT - Accept Session Call..oncuoooco-.oootoctc-oooooo

SSCASR
$SGTAT
SSINIT
$SINIT
$SPOLL
$SRECV
$SRI -
$SSEND
$SSI -
$SSRSP
SSTERM
SSTEST
SSWANY
$SACEB
SSEBAC

LANGUAGE..C.G.".......O......Q....Q.O.'Q'..Q..

NNNNNNI})MMNNN N
i
EI—'OO\IWoh-b-bww"‘ |

Cancel Asynchronous RequeSt.cccecccccccccccscas
Get A Session Attribut@eccccecccccoccccscsssssse 2=15
Establish A SesSSiON..ccccecccccccccccsscccscess 218
Restart SesSSiON.eeccccecococcccsccsscsscssssssssaecs 2—21
POll SESSiOH.................-........-......... 2_24
ReCEiVE Message..........................-..... 2-26

Read Interrupt..000.0000000‘..QO...IQ.QQ.....QOO. 2—29

send MessageoQQOOQOOo.o.lo....oo..o..'.....'o'. 2-31

Send Interruptoc...00.00.0.00...0.'..0..00....Oo. 2_35

Send RESPONSEeccecccsossssssssccsosscssscsscscscse 2-38
Terminate SESSiOD.............................. 2—40
Test fOr EventSececccccccccsccccscscsccscsssscoccs 2—42
Wait on EventS.cccescceesccsscsscssscasossccsssss 2—44
ASCII-To-EBCDIC Conversion Routin€.c.cccscsccececs 2=-46
EBCDIC-To~ASCII Conversion Routin€.ccsscecccsses 2-47

v ‘ GR11-02



SECTION 3 PROGRAMMING LU TYPE 0 SESSIONS IN COBOL:ceccosee

COBOL SesSsSion CallS.cececesccosscsscoscsscsosssossscnssscsscs
Session Call FOIMaAt.ceeeecsececscocccscossscscccsccscsscccasscs
Programming ConsiderationNS.cceeecccscsccccsscssoncosscsscccss
Synchronous vs. Asynchronous ProCcesSing.....eececesceccss
Synchronous ProCeSSiNg.eccececcssccccccccsssscccssassscnss
Asynchronous ProCesSSiNgecececcscccccsccscscscscscscossccas
WORKING-STORAGE SECTION. csccccoocccessscsssscsscscccssccscse
HOSt-Initiated SeSSiOHS......................'..........
Linking the PrograM.ccccccccsscecscscscssccscsssssscssssncss
Checking the RetuUrn COQ€.cececcscesccsccsccsocssnscsscnsce

CONTENTS

Page

w
I
=

1
(8,

WWwWwwLwuwwwww
I
HMHEMAWWWNDDNDDH

SeSSion Calls‘l.......‘...."..Q......l.'.............l..' 3_19

CSACPT
CSCASR
CSGTAT
CSINIT
CSPOLL
CSRECV
CSRI -
CSSEND
CSSI -
CSSRSP
CSTERM
CSTEST
CSWANY
CSACEB
CSEBAC

SECTION 4

Basic Conversation VerbS.eeeeeecceeecssescssoscccscoscsccsns
Programming ConsiderationNS.ceecececcescscscsccecsssccccccscncsas
Getting Started.e.eccececesccccssanccscssssssssscccncsosns
Verb Parameter BlOCKeeeeeecoooososcoscsoscoscsssssncsccscsnsse
Conversation StateS..ceceececccccesscccccossssscssccosssasons
Host-Initiated ConversatiONS.ecececcesesccesccccsscscccacscse

Accept Session Calleseeececceccsccsssccscacenses 3—20
Cancel Asynchronous RequeSteicececsceccscsssceses 3—22
Get Session AttributeS..cccccecssccccccaccccsees 3-23
Initiate SeSSiON.ceeeeecccscosscssesccsasensess 3-25
Poll Session Call.ceeecececccccssscosssocssccsseces 328
Receive MeSSag€.cesescscsssnsscscsscsscsssesecsse 3—29

Read Interrupt.co.0..0...0-00-.....01’OOO.Q...I.. 3—31

Send Messageoootﬂo..o.'..'o.ocoo........l.9.0.0 3—33

Send Interrupt......ooooootooQc......o..oo.'.o.'o 3-35

Checking
Individual

$SALLO
$SATCH
$SCONF
S$SCNFD
$SDEAL

Send RESPONSEeecesesscsssssssoscssssscossascses 3—37
Terminate SeSSiON.cececcescccsscscccsscssassccnas 3—-39
TeSt fOI Events.............-.................. 3-41
Wait Oon EVentS.ieeeccccccccscccscscsscssccscsssses 3—43
ASCII-to-EBCDIC CONVEerSiONeseecsccscssceacssaccaans 3—44
EBCDIC-tO-ASCII CODVE[SiOH..................... 3—45

PROGRAMMING LU TYPE 6.2 CONVERSATIONS:cceccecsse

[
1
(e

o A i ol el e
I
NNHFHEEHEFOINOWWE

the Return CoOd€.ecccececccccccscscssscsssscsnssssasn
Verb FOIrmatS.eeeeeseecsccccsccoscsccscssssssccscas
Allocate VerbDeieeeosososeeosseescscscccscssssccscssans
Attached Verb.seececeececeososcocccscscsaassoscsccsccns
Confirm Verbeeeeeeeseeeeeeesscsoscscecscsccoossososnas
Confirmed VerbDeeeeeeeceoasscccscsossescssccccncss
Deallocate Verb.ceeecesecececeoscocsvocecsacssscsasnes

o+

vi GR11-02



CONTENTS

Page

SSFLSH - Flush Verbnoooooco.ooooooooo.ooooooooooooooo-oo 4-25
SSPONR - Post on Receipt Verb..:eccecccecccscccscscscaceeae 4-27
SSPTOR - Prepare to Receive Verb....ceecescesccccccccces 4-29
SSRAW - Receive and Wait Verb.cecececcecocccnsccosccnasee 4-32
$SRTOS - Request to Send Verb.cceeceececsceccccsccscsceas 4-36
SSSDAT - Send Data Verb.ooooooooncooo-oooooo-o.oouc-ooo. 4-37
$SSERR - Send Error Verb..oooo-oaoocooo.oooo.ooocooo-..y 4-39
$SWAIT - Wait Verb.......-................--............ 4-43
$SACEB - ASCII-to-EBCDIC Conversion RoutiN€.ceceececeeeee. 4-45
SSEBAC -~ EBCDIC-to-ASCII Conversion ROutiN€..cecececeeccee 4-47

SECTION 5 PROGRAMMING LU TYPE 6.2 CONVERSATIONS IN COBOL.

5-1
COBOL Conversation VerbS....ccceecescccecscscscscccscacsoes 51
Conversation FOrmat.cceeeeceococeccsscscccscscccocnnnsnnne 5=2
Programming ConsiderationNS..ceececcesesccsosscsossscsesssocse 5=3

WORKING_STORAGE SECTION................................. 5—3

Conversation StateS.cccceccccccccccscscecoccscoscsscsscsses 51

Host-Initiated SessionS..cesccccscocscsoscocccssssscscas 51

Linking the Program"......‘....‘.....'........C‘....... 51

CheCKing the Return COdeoooooo-o-oooonodvccooooooocoouoc 5—15
Individual Verb Format.cceccccsccccoccscsccscsssssascccsee 5-17

CSALLO - Allocate VEIbooiocoooo.oooooo.oooooo.oooo-oooco 5-18

CSATCH - Attached Verba......................--......... 5=21

CSCONF - Confirm Verboooooocnoo.ooooc-aoooocoo‘ooa-oo-cc 5—23

CSCNFD - Confirmed Verb.c.cocccocecocscoscsscasscscancas 5=25

CSDEAL DeallOC&te Verboooco-c-nooanoaocooooo;oocoooooo 5-27

CSFLSH FIUSh Verb......-.........--................... 5“30

CSPONR — Post on Receipt Verb..ceececccececccoccsccccoccses 5-32

CSPTOR - Prepare to Receive VerD..cececececccsccscscncsse 5=34

CSRAW - Receive and Wait Verb...........-............... 5-36

CSRTOS - Request tO Send Verb........................... 5-40

CSSDAT Send Data Verb.ceceeceeececccccoccecccccescscsee 5=41

CSSERR - Send Error Verb....................-........-.. 5-43

CSWAIT - Wait Verb...................................;.. 5-46

CSACEB - ASCII-to-EBCDIC CONVerSiON.:ececocsscccsccccaes O—48

CSEBAC EBCDIC-tO-ASCII ConverSion.................-... 5-49

SECTION6 RESTART.....l.'...."..........'..‘...‘.'I.....

Preestablished SesSiOn GIOUPS.csseccsccssscecssccsscccsns

6-1
Configuration OptionS-oooaoooooo.oo.ooo.ooooooo.toooooooo. 6-2
6-2
Reserved LUSI.................l.................I....... 62

vii GR11-02



CONTENTS .

g
[\
Q
(1]

Normal TerminatiON.ececeeecccccecscescsccccccsosscscsscccsssnsncscs
Abnormal TerminatiON...eececccccscescacscscsscsscsssssascsccss
Restart LOgiCeceececsceoscscsscosancssecscossssssoscanosnssses
Restart Initialization RequesSt..ceececsersssssscsssosssccce
Release Time.seeececsscccscsssscssscsossssscssoscssoccscssscssssnse
Message Resynchronization in Assembly Languag€.eecsecccssces
Message Resynchronization in COBOL.:ecscescesccaonannnnscces
Rules for ResStart.eceececcececcceccccccscscccsccccsossnscsccsncsscscae

SECTION 7 SUPPORT AND MAINTAINABILITY.ceeececcccccccssscas

SNA operator SerVices- ® @ & 0 9 O O 9 O 9 OO O OO G O OO OO OSSOSO eSS e
Maintenance Utilities. ® © 0 0 9 O O 0 0 OO OO OO O PO T OO OO OO0 OO S eSO e 00
Communications Network Management.ccceeccececsccccsscccscncce

T T A smd =
A.LF AJ.CLLS'Q.......l.......'.......‘.....IO..'.C........

AIF Maintenance StatistiCSeeececcecsccosccccssccscscsccsccscos

\)\I\ll\l\l ~ O'\O\O’\O\O\O\O\G\
I I
Ll QWWN - U ww

APPENDIX A AIF ARCHITECTURE..cccccccccccccsccccccscscssces A-
Program Interface..cceccecececcesceccscescscsssasnsscosscnsccsos A-l
PU Subcomponent..eccccececescscccesessssccscsscoscssssccsssssssscecs A3
LU SubcOmMPONEeNt.cceccececsocescssscssscsscssccsssscssscssscses A-3
Control ModuUle..iceeecesceecsscssscoccssccsasocssscncscnssses A-3
Protocol Handler MOAUl@...ceeecesccssssessssscsssscnsesnss A=3
Session Control MOAUle..ceceeeccoccsossccsscsscocnssscass A-3
Monitor Call Handler Subcomponent..ccecececececcccscoccecsasecs A-4
Basic OperatiONececccecccecsccsecsnsssnsssssssscsscesssnnsccccss A=5

APPENDIX B SAMPLE ASSEMBLY LANGUAGE PROGRAMS...¢ececeeees B-1l
APPENDIX C SAMPLE COBOL PROGRAMS.:cccccececccccsccsssscaecs C-1
APPENDIX D SESSION CALL RETURN CODES..................5.. D-1
APPENDIX E $SSCCB TEMPLATE.¢eccccccscocscscscccsssscnscssss E-1
APPENDIX F CONVERSATION VERB RETURN CODEScecevecscsccsess F-1

APPENDIXG $SVPB TEMPLATE.....‘...Q.'.......‘..".l...O.. G_l

viii GR11-02



CONTENTS

Page

GLOSSARYQ...-..-....-.0.0.0.-..loo...ooo..ooool...oo‘o.-.. g-l

MANUAL DIRECTORY....ICO.oo..oooo.coooooo.on--o.o;occoooo.c h-l

) ) P £ |
ILLUSTRATIONS
Figure Page

2-1 Synchronous ProCesSSiNge.ccscecccsccsscscscccscccssnsoscse 2—4
2-2 Asynchronous ProcCesSiNge.ccsccccscosscsosssssscsccscsccs

2
31 SynChronous PrOCeSSing.............................. 3
3"2 AsynChronous Processing...............g.........-... 3"
3 3 WORKING—STORAGE SECTION for AIF..'............'.‘... 3
6 6

-1 seSSion Restart.o.o--o.c'-o.oo...o.c"o..."l.-oo.o.
7-1 IBM Alert Format.....II....B......‘..‘...Ql...."’.l

2
A-l Overall ArchiteCture of AIFG..............-......... A-
A-2 Application Service Request/Reply Handling..eceeeeosss A

B-1 Sample Assembly Language Program for LU Type O

for DPS 6~Initiated SesSSiON..cescescscococcscscsscss B-2
B-2 Sample Assembly Language Program for LU Type 0

for Host-Initiated SesSiON.csececccccccssccsccscscces B9
B-3 Subroutines for LU Type 0 Assembly

Language ProgramS..cccceccscccsccscssoscescsscosscsssss B—l5
B-4 Sample Assembly Language Program for LU Type 6.2

for DPS 6-Initiated SesSiON.ccscecesccescccecscssecses B—-18
B-5 Sample Assembly Language Program for LU Type 6.2

for Host-Initiated SesSiON..ccoeccccsecocccccsccecaess B-25
B-6 Subroutines for LU Type 6.2 Assembly

Language ProOgramsS..cececsococcsscsccscosscosssssoscssecossss DB—31

ix GR11-02



ILLUSTRATIONS
Figure Page

C-1 Sample COBOL Program for LU Type 0 for DPS 6-

Initiated SesSSiON.ceecseccccccsscscsascssancsccnsnases C=2
C-2 Sample COBOL Program for LU Type 0 for Host-

Initiated SesSiON.ecicecccscsecsococsassscascscseasseses C=15
Cc-3 Sample COBOL Program for LU Type 6.2 for

DPS 6-Initiated SeSSiON.cceeccesesescssosscscccsccscsss C=29
C-4 Sample COBOL Program for LU Type 6.2 for Host-

Initiated SesSiON...cccccccceenscsssssscscssnsssessass C—41

TABLES

)
]
(o
—
(1)

Page

AIF Session Calls...I.Q....l............O..I........ 2—10
Register Contents at ConversSiON.ccececccccesccsccass 2-46
Register Contents at ConversSiONececceccececcccccacccese 2-47

COBOL SeSSion Call RETURNS Fields....Q..o.ooooo.o.o. 3_12
AIF SeSSion CallS................................... 3—19

Conversation StateS.eeececccsscccsccccsssssasscacecee 4-6
Conversation States From Which Verbs Can Be Issued.. 4-6
AIF LU Type 6.2 VerbSececeececsoccoscocsccscsasoscscsscsae 4=10
Register Contents at ConversSiON.ecicsecccecceccsscsaceas 4-46
Register Contents at ConversiON.i.ccececececscccccseeas 4=47

(SIS, ) ] Lo ww NN
1
WN - UL W N - (%) S0

Conversation States. ® & & O 0 0 0 0 OO 8 O O N O OO OB O S O E OO e 0O e 5-12
Conversation States From Which Verbs Can Be Issued.. 5-13
AIF LU Type 6.2 Verbs. ® ® @ 0 ® & 0 OO O 0 O " QO OO O S 0 O O a0 e 0 0 5—17

D-1 AIF Session Call Return CodeS.ceceeececscccacsccccses D=2
D-z Individual Return Codes..'.'........‘.............'. D-3
D-3 COBOL SeSSion Call RETURNS fields:..-....:ooooooooc. D_s
D—4 General COBOL RETURN-B ValueS....................... D-S
D_S Interrupt_Type CorreSPOHdenCe....................... D-6
D-6 Attribute Types...................-................. D—6
E-l $SSCCB Template..................................... E“Z
F-l IndiVidual Return COdeS......-.........--¢..-....-.. F—Z
F-z IndiVidual Return COdES.................-.......-... F_3
F_3 Sense Data..............-..-..-..--.....-........... F-S
F-4 COBOL SeSSiOD Call RETURNS fieldSnooouocoooo-ooooo-o F—6
F-5 General COBOL RETURN_B Values...............-....... F-6
G‘l $SVPB Template...................................... G-2

X GR11-02



Section 1
INTRODUCTION

The Systems Network Architecture (SNA) Application Interface
Facility (AIF) allows a programmer to write COBOL or Assembly
language programs to communicate with Customer Information
Control System (CICS) or Information Management System (IMS)
transaction programs at an IBM host. The applications at the
DPS 6 or DPS 6 PLUS can be user-written, LU Type 0 or LU Type 6.2
applications, or transaction processing routines. AIF offers
SNA6 users access to information residing on an IBM host.

This facility allows applications to interface to an SNA
network at a high level. AIF manages data structures on behalf
of the application program. However, some knowledge of SNA
protocols is necessary.

To provide this level of interface, AIF supports session
calls for Session Type 0 users and basic conversation verbs for
Type 6.2 users. These session and verb callss are interface with
a user's control block through monitor calls to SNA. Macrocalls
are provided for the applications.

This section discusses the following:

e The SNA Application Interface Facility

@ LU TYPE 0 sessions with Host Programming Considerations

@ LU TYPE 6.2 conversations with Host Programming

Considerations.

1-1 GR11-02



HOW TO USE THIS MANUAL

This manual is provides an application programmer at either a
DPS 6 or DPS 6 PLUS system with the information necessary to
write COBOL or Assembly language application programs to
communicate with the IBM host CICS/IMS transaction processing
programs for Type 0 and CICS transaction programs for Type 6.2.

Section 2 describes the LU Type 0 session calls that are used
in Assembly language, the session call control block, and special
considerations in writing an Assembly language program using AIF.

Section 3 describes the LU Type 0 COBOL session calls, the
SNA work area in the WORKING-STORAGE-SECTION, and special
considerations in writing a COBOL program using AIF.

Section 4 describes the LU Type 6.2 conversation verbs that
are used in an Assembly language program, the verb parameter
block, and special considerations in writing an Assembly language
program using AIF.

Section 5 describes the LU Type 6.2 COBOL conversation verbs,
the SNA work area in the WORKING-STORAGE-SECTION, and special
considerations in writing a COBOL program using AIF.

Section 6 describes LU Type 0 restart logic and message
resynchronization.

Section 7 describes Communications Network Management, SNA
Operator Control (SOPR) services, and maintainability through
Data Base Augmented Real-Time Tracing System (DARTS).

Appendix A presents a detailed description of the AIF product
architecture. Appendix B contains sample Assembly language
programs demonstrating both LU Type 0 and LU Type 6.2
conversations. Appendix C provides sample COBOL programs for
both LU Type session calls. Appenix D lists the LU Type 0
session call return codes. Appendix E contains a listing of the
Session Call Control Block (SCCB) template with offsets.

Appendix F lists the LU Type 6.2 conversation return codes.
Appendix G includes a listing of the Verb Parameter Block (VPB)
template with offsets.

A glossary is provided to explain the meaning of terms used
within the text of this manual.

APPLICATION INTERFACE FACILITY

Applications on a DPS 6 executing under the MOD 400 Executive
or applications on a DPS 6 PLUS executing under the HVS 6 PLUS
Operating System can communicate with IBM hosts that use SNA
network products.

1-2 GR11-02



AIF supports the application-to-application communications
facilities available with CICS and IMS systems. AIF provides the
communications support necessary to implement the following:

e User Assembly language and COBOL communication with CICS
or IMS via LU Type 0 macrocalls

® User Assembly language and COBOL advanced program to
program communication with CICS via LU Type 6.2
conversation verbs.

LU TYPE 0O SESSIONS

AIF supports an application-to-application interface over a
Session Type 0. The Session Type 0 is an interprogram Logical
Unit (LU} defined within SNA. It is supported by both CICS and
IMS and is used for communications between these subsystems and
applications on several IBM processors.

The Session Type 0 can use any feature of SNA that is defined
by Session Type 0 FM profile 4 and TS profile 4. The SNA
features that these sessions can use are further defined by how
CICS treats a full function LU or how IMS treats a secondary LU
programmable,

The constraints on this type of session are imposed by CICS
or IMS, each of which has a slightly different set of rules
governing the exchange of information. Since there are slight
differences in implementing the macrocalls for CICS and IMS, it
is important for the application programmer to know with which
the application program is communicating and how the LU is
defined.

AIF transactions are allowed to perform any function through
CICS or IMS; e.g., inquiry, update, etc. These IBM subsystems
specify the order in which SNA requests and responses can be sent
but impose no restrictions on what can be done over the session.

Host Programming Considerations

A Session Type 0 requires that both applications expect the
same format and protocol. These applications must be written as
two complementary halves of a transaction. They must agree on
application protocols, transaction processor protocols, and the
host GEN environment.

Although host considerations are described in detail in the
SNA6 Host System Programmer's Guide (GB88), the AIF programmer
should be aware of the host terminal definition of the
application with which he will be communicating. These
definitions influence how the AIF session calls are issued and
which parameters must be supplied with them.

1-3 GR11-02



The host views the application (LU) as a terminal, and
defines it within tables. The following subsections list the
host terminal definitions with which you will be concerned.

Check with the host system programmer to determine the definition
of the terminal macro(s) that the IBM system uses.

CICS TERMINAL CONTROL TABLE PARAMETERS

This subsection describes the Terminal Control Table (TCT)
parameters which are of interest to you if your application is to
communicate with a CICS transaction program.

BRACKET=YES

This parameter indicates that bracket protocol is to be
enforced for the LU/LU session. This parameter is
required for a full function terminal.

BUFFER=buffer_ size

This parameter indicates the size of the receive buffer
for the LU. This is the maximum data length the DPS 6 or
DPS 6 PLUS application can receive. The buffer size
specified to CICS indicates how CICS does chaining.

RELREQ={YES|NO,YES|NO}

This parameter instructs CICS whether to release the LU if
it is requested by another application and whether
disconnect requests are to be honored. If LUs are to be
released to another VTAM application, the DPS 6 or DPS 6
PLUS application may have to re-issue the INIT.

RUSIZE=ru_size

This parameter specifies the maximum size of the request
unit (RU) that the LU can receive. The size of the RU
with relation to the buffer size determines how much
chaining is done and how many receives one must do when
not using the message completion option.

TRMSTAT=term_state

This parameter indicates the type of activity that can
occur at this LU. The terminal state determines whether
the application can send to or receive from the host.

IMS TERMINAL DEFINITION PARAMETERS

The IMS terminal definitions control the protocol
conversation in the LU-LU session to an even greater extent than
the CICS terminal definitions. This subsection describes the
parameters that are of particular interest to you if your
application is to communicate with an IMS program.

1-4 GR11-02



COMPTn'_‘(x [ e Y Z] )

This parameter specifies the component types and the
processing associated with that node. A node can have up
to four components (n=1-4) and three subparameters for
each component. For the purpose of writing AIF
transaction programs, you only need to know the value of
the first of these subparameters (x). The value of x can
be either:

Programl - IMS does not assume program protection and
can send consecutive messages without waiting for
intervening input requests.

Program2 - IMS assumes component protection and does
not send consecutive messages without intervening
input requests.

OPTIONS=(termresp,acknowl,relreq)

This parameter specifies certain communications associated
with the LU. These options dictate some of the basic
communication design of the DPS 6 or DPS 6 PLUS
application.

1. Terminal Response Mode Options (termresp).

When an application operates in terminal response
mode, all operations between the terminal (or
application) and IMS stop when IMS receives a
transaction and do not resume until IMS receives an
acknowledgment that the application received IMS's
reply.

This option can be defined as follows:

a. TRANRESP: The transaction being executed can
select terminal response mode.

b. NORESP: Terminal response mode is not used for
any transaction.

c. FORCRESP: Terminal response mode is forced for
all transactions.

2. Acknowledgment (acknowl)

This specifies the mode of acknowledgment between the
terminal (application) and IMS. This option can be
defined as follows:

a. ACK: This option indicates that transactions are
recoverable and must be acknowledged. 1If this
option is specified, the AIF application must
request definite response on all input messages.

1-5 GR11-02



b. OPTACK: This option indicates that only input
messages containing a Begin Bracket (BB)
indicator are acknowledged with an outbound
message containing an End Bracket (EB)
indicator. If this option is specified a request
by AIF for definite response is optional.

3. Release Request (relreq)

This parameter indicates whether IMS should release
an LU if requested by another VTAM subsystem. This
option can be defined as follows:

a. RELRQ: This option specifies that IMS must honor
requests from other VTAM subsystems and release
the LU.

- b. NORELRQ: This option specifies that IMS not
release an LU when it is requested by another
subsystem.

Refer to the IBM manual IMS/VS Programming Guide for Remote
SNA Systems for further information about programming secondary
LU Type 0 sessions to connect to IMS applications.

LU TYPE 6.2 CONVERSATIONS

AIF supports an advanced program to program communication
interface over an LU Type 6.2 Conversation. The LU Type 6.2 is
an interprogram Logical Unit (LU) defined within SNA. It is
supported by CICS and is used for communications between
transaction programs and network resources.

The LU Type 6.2 can use any feature of SNA that is defined by
LU Type 6.2 FM Profile 19 and TS Profile 7. The SNA features
that these sessions can use are further defined by how CICS
treats an LU 6.2 and the extent to which it has been implemented
in AIF.

The SNA features that these sessions can use are constrained
only by the level of LU Type 6.2 functions that are incorporated
in the program products. AIF supports the basic conversation
implementation of LU Type 6.2. Applications must conform to the
rules for basic conversations. For more information on LU Type
6.2 programming considerations, refer to the appropriate IBM
manuals listed in the front of this book.

The AIF transactions are allowed to perform any service or
application function through CICS; e.g., inquiry, update, etc.
An LU Type 6.2 application expects the same format and protocol
on both sides of the conversation. These applications must be
written as two complementary halves of a transaction. They must
agree on application protocols, transaction protocols, and '
conversation states.

1-6 GR11-02



Section 2

PROGRAMMING
LU TYPE 0 SESSIONS
IN ASSEMBLY LANGUAGE

This section describes the Assembly language session calls
that are used to converse over a Session Type 0 with host
transaction programs. Topics include:

@ Session call format

® Programming considerations

{

Getting started

Synchronous vs. Asynchronous Processing
Creating a session call control block
Checking the return code

® Individual session calls
.= Format
- Descriptions
- Return codes

SESSION CALL FORMAT

The session calls used by AIF are macrocalls provided by the
DPS 6 or DPS 6 PLUS system. These session calls have a list of
arguments that can be specified by the programmer or accepted in
their existing form. If no arguments are specified, then all
that is provided is the monitor call. AIF session calls follow
the conventions for Assembly language as described in the ONE
PLUS Assembly Language (MAP) Reference (HE38) manual. The
session call can have an optional label if no label is used at
least one blank space must precede the session call.

2-1 GR11-02



User-selected items are known as arguments. These arguments
are positional within the session call macros. The order of
positional arguments indicates the variables to which data is
applied. Thus, the order of your arguments must be the same as
the order of the positional arguments within the session call
macro.

The following rules govern the use of positional arguments:

® Omitted arguments that precede an included argument must
be indicated by the presence of a delimiting comma for
each omission.

® One or more spaces must separate the macrocall name from
its arguments, with a comma between each argument. (The
horizontal tab character is equivalent to a space.)

® A semicolon at the end of a line indicates that the next
line is a continuation line.

In the following example, the first and third arguments have
been omitted; their positions have been held by delimiting
commas. Spaces separate the session call name from its
arguments.

$SINIT ,'AIFNODEl',,'AA',SYNC

The arguments for these session calls are found in the SCCB.
An SCCB must be provided for each session call. These fields can
be altered either during initialization or by including the
appropriate arguments in the session call itself.

At the completion of each session call, when control is
returned to the application, a return code is placed in register
$R1. This return code indicates whether a session call has been
completed error free. The application should check this return
code after each session call to verify the return status of the
session call. Additional information, if desired, can be found
in the output control word, found at the offset SC_OCT of the
SCCB. ‘

When AIF is activated, it defines one or more pools of
logical units (LU) according to the configuration file for that
node. Each pool of LUs is reserved for a specific host CICS or
IMS system. AIF can either start a session to the host system at
initiation or it can wait for an application to request a
session. The time of session initiation is a configuration
option.

2-2 GR11-02



When an application requests to initiate a session with an
LU, AIF checks the availability of that LU and assigns it if it
is available. 1If the specified LU is unavailable, AIF checks
first for an available reserved LU, second for an available
preestablished LU, and then for any available LU to assign to the
session. AIF either returns the address of the LU with which the
session is started, or rejects the request if there is no LU
available.

An application gains access to a host-initiated session by
executing a $SACPT session call. Executing the accept session
call causes the application to be connected to a host-initiated
session and causes the LU to send a positive response to the
host, accepting the session.

PROGRAMMING CONSIDERATIONS

Many of the programs that use AIF session calls are written
in Assembly language. These applications may be reentrant and
may not require more than one occurrence of a given macrocall.

Special considerations that the programmer must bear in mind
are discussed in this section:

Getting started

Synchronous vs. Asynchronous processing
Creating a session call control block
Host-initiated sessions

Checking the return code.

Getting Started

When using AIF session calls in an Assembly language program,
remember the folowing steps:

1. In order to use the session calls and utility macros
included with AIF, you must first make them available to
your program. When beginning your program, include the
following statement:

LIBM '>>LDD>MACROS>MAC_USER'

2. Then issue the macrocalls $SSCCB and $SAIRC to define the
SCCB and return codes in memory.

3. You must also set aside a workspace with room for the

stack, the SCCB, and your send/receive buffer, as in the
following example:

2-3 GR11-02



*

* WORK LOCATIONS: STACK, SCCB, & SEND/RECEIVE BUFFER
*

WKSP EQU 0 BEGINNING OF WORKSPACE
MYSTACK EQU WKSP+50 REGISTER STACK

CNTLWD EQU MYSTACK FOR PROGRAM CONTROL
MYSCCB EQU CNTLWD+1 BEGINNING OF SCCB
BUFFER EQU MYSCCB+SC_SIz SEND/RECEIVE BUFFER
BUFSZ EQU 2000 BUFFER SIZE

WKSPSZ - EQU BUFFER+BUF_SZ WORKSPACE SIZE

Synchronous vs. Asynchronous Processing

AIF session calls can be processed either synchronously or
asynchronously.

SYNCHRONOUS PROCESSING

Synchronous processing implies that when the application
passes an instruction to AIF for processing, it waits for the
application to complete that instruction before continuing.

in Figure 2-1, a $SINIT session call has been issued
synchronously. The application completes its segment of
processing and passes the request to AIF. AIF executes the
$SINIT completely and passes the return code to the application.
The application does not process other instructions while AIF is
executing the S$SINIT session call.

SYNCHRONOUS PROCESSING

ISSUES
SESSION

CALL
APPLICATION - CONTINUES PROCESSING o

PROGRAM

ACCEPTS THE
REQUEST (DONE)
AIF | |
i 1
] ]

EXECUTES SESSION CALL
85-271

Figure 2-1. Synchronous Processing

ASYNCHRONOUS PROCESSING

Asynchronous processing implies that when the application
passes an instruction to AIF for processing, the application
continues to process other instructions while it waits for AIF to
complete that instruction.

2-4 GR11-02



In Figure 2-2, a $SINIT session call has been issued
asynchronously. The application completes its segment of
processing and passes the request to AIF. While AIF executes the
SSINIT session call, the application is processing other
instructions. 1In order for the application to find out that AIF
has finished executing the $SINIT session call, the application
must execute a $SWANY or a S$STEST session call.

ASYNCHRONOUS PROCESSING

SSWANY

ISSUES
SESSION OTHER PROCESSING
CALL

APPLICATION o
PROGRAM

CONTINUES PROCESSING

ACCEPTS
THE REQUEST DON

AlF 1

- e M e o wom - - ——

EXECUTES SESSION CALL

85-272

Figure 2-2. Asynchronous Processing

Each time you issue an asynchronous order, you must check the
receive buffer before you can receive information. You can do
this by either the $STEST or the $SWANY session call. These two
session calls differ as follows:

1. The S$STEST session call checks to see if there is
information in the queue to be received and immediately
reports back to the application. This call can be
executed any time you wish to check for an outstanding
order, and as often as you wish to check, because the
application regains control immediately after the test is
completed.

2. The SSWANY session call checks for information on the
gueue and waits until there is information waiting before
it returns control to the application.

,Session Call Control Block

Communication between the application program and AIF is
through the application-provided SCCB. Following a $SINIT or a
$SCACPT, the same SCCB is used for all subsequent session calls
until a particular session is terminated. If a program is to run
multiple sessions, you must provide a separate SCCB for each
session.

When the application provides parameters with a given
macrocall, the macrocode updates the appropriate SCCB fields
before executing an AIF monitor call. If any of the fields have
been changed, the new values are in the SCCB when you reexamine
it.

2-5 GR11-02



The first parameter of each macro is the location of the
SCCB, except in the case of $SWANY. If not specified as the
first parameter of the macro, this pointer must be in register
$B4. Allowable formats for this parameter and all address
pointers are the same as found in the "Addressing Parameters"
section of the System Programmer's Guide, Vol. 2.

Where a value rather than an address is provided in a
parameter, allowable formats are:

1. (*)$B1(.$R)

2. LABEL

3. =S$R1

4, =literal
5. !LABEL

When you establish a session through a S$SINIT or a $SACPT,
you must supply an SCCB. This SCCB is used for all session calls
for this session. The application can move the session call
parameters toc the SCCB before executing the session call (see
example 1 below). The programmer can also provide the parameters
for the session call in the macro itself (see example 2 helow).

The following examples show both methods of creating an SCCB
for the $SINIT session call. Which convention you choose to
follow depends upon the requirements of your program.

Example 1:

The following example shows the parameters in the SCCB being
loaded before issuing the session call. Offsets to the SCCB
are provided in the displacement macro $SSCCB. (Refer to the
SCCB template in Appendix E for appropriate offsets.)

NODENM DC. 'AIF505 '
HLU NM DC  'CICS '
STD_NM DC  'AB'

LDB $B4, $B6.SCCB Load SCCB address to $B4

LDI NODENM Get first 4 bytes of nodename

SDI $B4.SC_NOD Store first 4 bytes of
nodename in SCCB

LDI NODENM+2 Get second 4 bytes of nodename

SDI  $B4.SC_NOD+2 Store second 4 bytes of
nodename in SCCB

LDI HLU_NM Get first 4 bytes of Remote LU
name ‘

SDI $B4.SC_RLN Store first bytes of Remote LU
name

LDI HLU_NM+2 Get second 4 bytes of Remote
LU name

2-6 GR11-02



SDI $B4.SC_RLN+2 Store second byres of Remote

LU name
LDR S$R2, STD_NM Get STD name
STR S$R2.SC_STD Store STD name in SCCB
LBT $B4.SC_ICT,SCRTNS Set bit for synchronous
execution

SSINIT
Example 2:

The following example shows the SSINIT session call with the
same parameters specified within the macrocall.

$SINIT ,'AIF505','CICS','AB',SYNC

Host-Initiated Sessions

AIF supports host-initiated sessions; that is, it accepts
unsolicited binds. 1In order to accept an unsolicited bind, an LU
must be reserved with the HOST INIT SESS parameter specified as Y
(YES) in the LU entry of the configuration file.

The program name, node name, STD name, and base level are
provided to the application program by AIF via the standard
operating system parameter list (refer to the System Programmer's
Guide, Vol. 2). When the application program begins execution,
it must issue a S$SACPT session call as the first session call,
providing the STD name and the node name for the LU to be used.
The node name and the STD name provided with the $SACPT call must
be the same as the parameters passed by AIF.

After the S$SACPT call is executed, the application is in
receive state. The S$SACPT session call allows AIF access to a
host-initiated session. The application must execute a receive
to have access to the bind. AIF associates the first unsolicited
bind (host-initiated session request) to the first $SACPT session
call from the task group that AIF spawned.

An unsolicited bind can be for a program designated in the
AUTO_ATTACH entry of the AIF configuration or it can be.any other
unsloicited blnd sent from the host.

When AIF receives an unsolicited bind for a specific LU, AIF
checks the LU entry for an AUTO ATTACH program. If it finds one,
AIF spawns a group with the program name as the lead task, and
passes to the lead task the STD name, node_name, and base_level
used in the spawn group. If AIF does not find an AUTO ATTACH
program in the LU entry, it accepts the session and looks for the
program name in the first four bytes of the first record
received, then spawns a group based on the ATTACH PROGRAM entry.
If none is provided, default values are used to spawn the group.

2-7 GR11-02



The application can issue multiple $SACPTs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one session,
all LUs that can receive binds for that application must be
reserved LUs with HOST_INIT_SESS=Y. Each of these LUs must have
the same group id specified in the LU entry in the configuration
file. Note, if multiple $SACPTs are used, multiple SCCB should
also be used.

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (e.g.,
ATTACH_PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.

Refer to SNA6 Network Configuration for further
information.

Checking the Return Code

After a session call is executed, AIF returns a return code
to the Session Call Control Block (SCCB) to indicate how the call
was completed. The application should examine this return code
at the completion of each session call to determine if the call
has been completed error free.

The return code has 16 bits and is placed in register $R1 by
AIF before control is returned to the application program. The
return code can also be found in SC_RCD.

Bits 0 through 4 have special meaning and represent general
AIF return codes that could occur for any session call. These
bits should be examined individually, then "masked out" so that
the application can examine the remaining bits. If the bit is
on, then the return code indicated is true. The following masks
are provided in the $SAIRC macrocall for checking each of the
first five bits as follows.

Bit 0 RCABRT

The session has been terminated. An SOPR command has
been entered that caused the session to terminate, or the
session has been unbound by the host. The reason for
this termination can be found in the "abort reason"™ code
in the SCCB (SCCB.SC_ABT).

2-8 GR11-02



Bit 1 RCSTOP

An SOPR STOP command has been received. If the session
is still active (bit 0 = 0), then check the SC_TIM field
in the SCCB to determine the time at which the session
ends. During this time the application can continue to
process, but should normally terminate.

The time found in the TIME argument (SCCB.SC_TIM) is the
wall clock time in standard 48-bit format, at which the
session terminates.

Bit 2 RCRINT

An interrupt has been received. The interrupt type is
found in SC_INT in the SCCB.

There are three categories of interrupt:

1. Expedited or normal flow data flow control commands
2. Communications Network Management data
3. Control information passed to application by AIF.

If sense data is present, it is found in SCCB.SC_ESD.
Bit 3  RCSCNL

The call has been cancelled; it is not processed. If the
application desires the order to be processed, the call
must be reexecuted.

Bit 4 RCSCMP
The call has been completed.

A return code can indicate more than one condition occurring
at the same time. For example, it can indicate both an interrupt
and a completed call, a session abort and a completed call, or no
session abort and a cancelled call.

The masks RCABRT, RCSTOP, RCRINT, RCSCNL, and RCSCMP are
provided for your convenience in checking bits 0 through 4.
After you have checked these bits, null them out and examine bits
5 through 15. If you choose to null these bits by using RCMASK,
which is provided in the software (RCMASK=07FF), use the
following statement:

AND $R1,=RCMASK
Bits 5 through 15 contain the return code for a completed or
cancelled call. One way of doing this part of the return code is
to issue a "compare" instruction as follows:

CMR $R1 ,=RMNOER Checks for "No error" code
BE CONT 1

2-9 GR11-02



If the Return code contains a "no error" message, branch to
the next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, branch to another segment of the program, or shut down

completely.

If during asynchronous processing an error is detected
immediately (e.g., a parameter is incorrectly specified), the
return code provides the error and the call is cancelled.
However, if during asynchronous processing AIF issues the monitor
call before an error is detected, the return code returns with a

zero indicating no error has been detected.

However, an error

could occur elsewhere (e.g., at the host) and AIF would not be
aware of it. In order to determine if an error occurs with the

session after AIF has performed all of its
either a S$STEST or a S$SWANY for the return

Appendix F contains a complete list of
labels and their hexadecimal values can be
SSAIRC (AIF Return Codes).

SESSION CALLS

error detection, issue
code.

return codes. These
found in the macro:

Table 2-1 contains a list and description of the session
calls used by AIF in an Assembly language program. The format of
these session calls is detailed on the following pages along with

a discussion of the input arguments and an

output description.

Table 2-1. AIF Session Calls

Session Call Description
$SACPT Accept Session
$SCASR Cancel Outstanding Asynchronous Request
$SGTAT Get Session Attributes
$SINIT Initiate or Restart a Session
$SPOLL Test for LU associated with task group
$SRECV Receive message in application's buffer
SSRI Read Interrupt
$SSEND Request AIF to send a message or message
segment
$SsSI Send Interrupt
$SSRSP Caller instructs AIF to send a response
$STERM Terminate session
$STEST Test conditions
SSWANY Wait on any event
$SACEB Converts ASCII to EBCDIC
$SEBAC Converts EBCDIC to ASCII

2-10 GR11-02



$SACPT

SSACPT - Accept Session Call

The SSACPT session call causes AIF to connect the local
application to a host initiated session.

FORMAT:
[label] $SACPT [sccb pointer] Pl: $B4
[ ,node name] P2: SC_NOD
[,std name] P3: SC_STD
ARGUMENT:

sccb pointer

This parameter contains a pointer to the address of the
SCCB. If this parameter is missing, the address is
assumed to be contained in register $B4.

node name (SC_NOD)

std

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

name (SC_STD)

The configured Session Type Descriptor (STD) which lists
the attributes of the session to be established. This
field consists of two alphanumeric characters.

DESCRIPTION:

The S$SACPT session call causes AIF to connect the local
application to a host-initiated session if there is one
available. If no session is available, AIF returns and
continues processing. The LU to which this bind refers
most be a reserved LU.

If your application is part of a host-initiated session,
the $SACPT session call should be the first call
executed. When the $SACPT call is completed, the session
is in receive state. ‘

2-11 GR11-02



$SACPT

NOTE
This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOER No error

0019 RMACTO ACCEPT timed out

0040 RMINOD Invalid node name

0099 RMISTD Invalid STD name

009A RMILUT 1Invalid LU type in STD
009B RMNOAT No LU attached

session id (SC_SID)

This two-word field is supplied by AIF after it accepts
the session request. The first word is the session group
name, which is assigned by AIF to each of the sessions
running in this session group. This value is used by AIF
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

maximum ru size (SC_MRU)

This field shows the RU size that is returned.

2-12 GR11-02



$SCASR

$SCASR - Cancel Asynchronous Request

The S$SCASR session call causes AIF to cancel an outstanding
asynchronous request, if possible.

FORMAT:

[label] $SCASR [sccb pointer] Pl: $B4
ARGUMENT :

sccbhb pointer

This parameter contains a pointer to the address of the
SCCB. If this parameter is missing, the address is
assumed to be contained in register $B4.

DESCRIPTION:

The $SCASR session call cancels an asynchronous request,
if there is one outstanding. If the previously executed
asynchronous request were completed when the $SCASR
session call was executed, then the return code from the
$SCASR session call is the return code for the completed
asynchronous session call. If the previously executed
asynchronous session call was not completed when the
SSCASR session call was executed and AIF succeeded in
cancelling the request, the return code from the $SCASR
session call indicates that the session call has been
cancelled.

If there is no asynchronous session call outstanding when
the $SCASR session call is executed, then the return code
is RCNOUT (no- outstanding session call).

NOTE

The S$SCASR session call cannot be used to cancel a
$SINIT session call, even if it has been executed
asynchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

2-13 GR11-02



$SCASR

In addition to the general return codes, the following values
are possible:

Value' Label Description

0017 RMNOUT No outstanding asynchronous call
NOTE

If the previously executed asynchronous call were
already completed, the return code is for that
call.

Example:

In the following example, the application requests that AIF
cancel an outstanding asynchronous request. AIF assumes that
register $B4 is pointing to the SCCB of the session call to
be cancelled.

ENDIT $SCASR

2-14 GR11-02



$SGTAT

SSGTAT - Get A Session Attribute

The $SGTAT session call provides the application with attri-
bute information for the session specified in the SCCB pointer.

FORMAT:
[label] S$SGTAT [sccb pointer] Pl: $B4
[,attribute buffer] P2: SC_BUF
[,attribute length] P3: SC_DLG
[,{RIL}] P4: SC_ICT.SCRHBI
[,type] P5: SC_SIN
ARGUMENTS:

scchb pointer
This parameter contains the address of the SCCB of the
session for which you are requesting attributes. If not
declared, the address is assumed to be in register $B4.
attribute buffer (SC_BUF)

A pointer to the application's attribute buffer. This
buffer will receive the data returned by this call.

attribute buffer length (SC_DLG)

The length of the receive buffer in bytes. The maximum
allowable length of this buffer is 32,747- bytes.

{RIL} (SC_ICT.SCRHBI)

Specifies whether data starts on the left (L) or right
(R) byte of the buffer address word.

type (SC_SIN)

Specifies the type of attribute you are requesting. The
attribute information available is BINDIM, which has a
value of 1. You can specify either the attribute type or
its value.

DESCRIPTION:

The $SGTAT session call provides the application with attri-
bute information , one attribute at a time, for the session
whose SCCB pointer is specified when issuing the call. 1If
you plan to ask for the bind image, the STD entry in the AIF
configuration must include the parameter SAVE BIND=Y.

2-15 GR11-02



SSGTAT

Special notice should be given to the situation where an
interrupt is received either prior to or during the execution
of the $SGTAT session call.

1. When an interrupt is received before the execution of the
$SGTAT, the application is given the data that was in the
receive queue and informed of the interrupt.

2. If an interrupt is received during the execution of a
SSGTAT, the order is not completed, control is returned
to the application, and the return code indicates that an
interrupt has been received.

NOTE
This call is always made synchronously.
RETURN CODES
The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined

individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

value Label Description

0000 RMNOER No error

0010 RMIMPS Improper State

0013 RMRB2S Receive buffer too small

0015 RMIINT Invalid attribute type

0018 RMNBDS Nc BIND IMAGE saved for S$SGTAT

0032 RMDTCL Send/receive rejected; data traffic
cleared or inactive.

Received Interrupt Type (SC_INT)

This field contains the interrupt type if one is received
during the execution of this session call.

2-16 GR11-02



$SGTAT

Error Code or Sense Data Received (SC_ESD)
This field can contain either detailed information about
an error condition or sense data from a remote LU, if a
negative response has been received.

Received Buffer Data Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

2-17 GR11-02



$SINIT

SSINIT - Establish A Session

The

session.

SSINIT session call is used to establish or restart a
In issuing the session call, you must indicate for

which purpose it is to be executed, by specifying RESTART or
NO RESTART. If you are using $SINIT session call to establish a
session, you must use the following format:

FORMAT:

[label] $SINIT [sccb pointer] Pl: $B4
[,node name] P2: SC_NOD
[,remote lu name] P3: SC_RLN
[,std name] P4: SC_STD
[, {SYNC|ASYNC}] P5: SC_ICT.SCRTNS
[ ,NO_RESTART] P6: SC_ICT.SCRSTR

sccbhb pointer

This parameter contains a pointer to the address of the
SCCB to be used for this session. If not declared, the
address is assumed to be in register $B4.

node name (SC_NOD)

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

remote lu name (SC_RLN)

std

The name by which the remote LU is known to this
application. This field contains eight alphanumeric
characters. If you are loading the SCCB yourself and
your remote lu name has fewer than eight characters, this
field must be left-justified and space-filled.

name (SC_STD)
The configured Session Type Descriptor (STD) which lists

the attributes of the session to be established. This
field consists of two alphanumeric characters.

2-18 GR11-02



SSINIT

SYNC |ASYNC (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

NO_RESTART (SC_ITC.SCRSTR)

NO_RESTART is used to indicate that this is a newly
established session; including NO_RESTART causes this bit
to be reset.

DESCRIPTION:

The initiate session call requests that AIF establish a
session between an LU at the DPS 6 or DPS 6 PLUS and an LU at
the host, and that the local LU be assigned exclusively to
the application. 1In the event that AIF assigns a
preestablished session to the application, the application
should store the send/receive sequence numbers in case a
RESTART of this session ever becomes necessary. These
sequence numbers are not reset to zero after each use. To
the host, this appears as one session. On the DPS 6 or DPS 6
PLUS side, the session is a serially reusable resource.

After the $SINIT is executed, the session enters send state.

NOTE

A SSINIT session call, executed asynchronously,
cannot be cancelled by using the $SCASR session
call macro.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

2-19 GR11-02



SSINIT

vValue Label Description

0000 RMNOER No error

0003 RMRNEG -RSP returned by host

0004 RMNBIF Bind negotiation failed

0040 RMINOD Invalid node name

0096 RMNNAC Node not yet active

0097 RMNLAC  Node active but no active LUs yet

0098 RMNOAV  LUs active, but none available for this
session

0099 RMISTD Invalid STD name

009A RMILUT Invalid LU type in STD

If the $SINIT session call is successful (RMNOER), SC_SQN and
SC_RSQ have the send/receive sequence numbers for the
session.

session id (SC_SID)

This two-word field is supplied by AIF after it accepts
the session request. The first word is the session group
name, which is assigned by AIF to each of the sessions
running in this session group. This value is used by AIF
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

maximum ru size (SC_MRU)

This field shows the RU size that is returned.
Example:
The following session call requests to establish a
synchronous session between the node named AIF501 and the
remote LU named CICS. AIF assumes that the address of the
SCCB is in register $B4.

$SINIT ,'AIF501','CICS','AA',SYNC,NO_RESTART

2-20 GR11-02



$SINIT

$SINIT - Restart Session

If you are using S$SINIT to restart a session, you must
include the following parameters:

sccbh pointer] Pl: S$B4

[label] $SINIT |
[, {SYNC|ASYNC}] P5: SC_ICT.SCRTNS
[ RESTART] P6: SC_ICT.SCRSTR
[,session id P7: SC_SID

ymSg resync send sequence P8: SC_MRS
/MSg resync rec sequence] P9: SC_MRR

sccb pointer

This parameter contains a pointer to the address of the
SCCB to be used for this session. If not declared, the
address is assumed to be in register $B4.

{SYNC |ASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

RESTART (SC_ITC.SCRSTR)
RESTART is indicated only when the user wishes to restart
an abnormally terminated session; including-RESTART
causes this bit to be set.

session id (SC_SID)

This two-word field is supplied by AIF after each $SINIT
session call if RESTART is specified. The first word is
the session group name, which is assigned by AIF to each
of the sessions running in this session group. This .
value is used by AIF after the first S$SINIT session call
to return a unique one-word session identifier for this
session. This value is stored in the second word. This
field is reserved for system use and must never be
altered by the application.

message resynchronization send sequence number (SC_MRS)

If RESTART is specified, AIF places the sequence number
of the last sent message that the application program has
sent in this field. This number should be stored after
each send, so that it can be retrieved if a RESTART is
necessary.

2-21 GR11-02



SSINIT

message resynchronization receive sequence number (SC_MRR)

If RESTART is specified, AIF places the sequence number
of the last received message in this field. This number
should be stored after each receive, so that it can be
retrieved if a RESTART is necessary.

DESCRIPTION:

The S$SINIT session call is used to restart a session in the
event that it has been abnormally terminated. Restart logic
and restart rules are described in detail in Section 6.

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

value Label Description

0000 RMNOER No error

0003 RMRNEG ~RSP returned by host

0004 RMNBIF Bind negotiation failed

0020 RMRSRF Restart not possible

0040 RMINOD Invalid node name

0096 RMNNAC Node not yet active

0097 RMNLAC Node active, but no active LUs yet

0098 RMNOAV LUs active, but none available for this
session

0099 RMISTD Invalid STD name

009A RMILUT Invalid LU type in STD

If the $SINIT session call is successful (RMNOER), SC_SQN and

SC_RSQ have the send/receive sequence numbers for the
session.

2-22 GR11-02



$SINIT

The following AIF sense data are associated with RMRSRF:

Value Label Description

0001 SD0001 Restart timed out or LU released by SOPR

0002 SD0002 Session not restartable type

0004 SD0004 Restart mismatch; synchronous point
records do not match

If RESTART is successful, the application should examine the
output control word (SCCB.SC_OCT) for the fecllowing
indicators. If the bit is on, the condition described is
true.

SCRSTS: STSN received for message resynchronization;
application should store current value of send and
receive sequence numbers

SCL6RX: DPS 6 or DPS 6 PLUS application must retransmit last
full message

SCHORX: Host application must retransmit last full message;
receive required of DPS 6 or DPS 6 PLUS application.

Example:

The following session call requests AIF to restart the above
session after it has been abnormally terminated. AIF assumes
that the address of the SCCB is in $B4 and uses the
send/receive sequence numbers from the SCCB.

SSINIT 4.+ RESTART

2-23 GR11-02



$SPOLL

SSPOLL - Poll Session

The $SPOLL session call checks to see if any LU associated
with the application program's task group has been attached by
the remote program.

FORMAT:
[{label] $SPOLL [sccb pointer] Pl: $B4
[ ,node name] P2: SC_NOD
[,std name] P3: SC_STD

ARGUMENTS:
sccb pointer

This parameter contains the address of the SCCB to be
used for this session. The sccb pointer used for a
$SPOLL must be unique and should not be currently used by
an active session. If not declared, the address is
assumed to be in register $B4.

node name (SC_NOD)

Identifies the AIF node to which the application is
directing this session call. This field contains eight
alphanumeric characters. If you are loading the SCCB
yourself and your node name has fewer than eight
characters, this field must be left-justified and
space-filled.

std name (SC_STD)

The configured Session Type Descriptor (STD) which lists
the attributes of the session to be established. This
field consists of two alphanumeric characters.

DESCRIPTION:

The S$SPOLL session call causes AIF to test to see if any LU
associated with the application programmer's task group has
been attached (bound) by the remote program. The S$SPOLL
session call is similar to the $SACPT session call, except
that the $SPOLL does not cause a connection between AIF and
the application program if a bound LU is found.

NOTE

This call is always made synchronously.

2-24 GR11-02



$SPOLL

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0005 RMLUAT Indicates that there is an LU being
bound

0040 RMINOD Invalid node name

0099 RMISTD Invalid STD name

009B RMNOAT No LU attached for S$SPOLL

2-25 GR11-02



$SRECV

SSRECV - Receive Message

The $SRECV session call causes AIF to deliver to the
application's buffer a message or message segment from the
session partner.

FORMAT:
[label] S$SRECV [sccb pointer] Pl: $B4

[sreceive data buffer] P2: SC_BUF
[rrec'v buffer length] P3: SC_DLG
[,{RIL}] P4: SC_ICT.SCRHBI
[, {SYNC|ASYNC}] P5: SC_ICT.SCRTNS
[,{MSG|M_SEG}] P6: SC_ICT.SCRMSG

ARGUMENTS:

sccb pointer
This parameter contains the address of the SCCB to be
used for this session. 1If not declared, the address is
assumed to be in register $B4.

receive data buffer (SC_BUF)
A pointer to the application's receive buffer.

receive data buffer length (SC_DLG)

The length of the receive buffer in bytes. The maximum
allowable length of this buffer is 32,767 bytes.

{RIL} (SC_ICT.SCRHBI)

Specifies whether data starts on the left (L) or right
(R) byte of the buffer address word.

{SYNC |ASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether the execution of this
call is synchronous or asynchronous.

{MSG|M_SEG} (SC_ICT.SCRMSG)

Specifying MSG indicates that a complete message (whole
chain of request units) is to be delivered to the
application's buffer. If M SEG is specified, single
request units are delivered to the application's buffer.
When the last message segment is delivered, AIF sets the
end of message bit in the output control word (SCREOM).

2-26 GR11-02



$SRECV

DESCRIPTION:

The S$SRECV session call causes AIF to deliver a message or
message segment (request unit) to the application's buffer
from the session partner.

If the user specifies MSG, then AIF assembles the chain
before delivery. If the user's buffer is not large enough,
the message is not delivered; the actual length of the
message or message segment is returned to the application.
The application can either re-execute the receive with an
adequate buffer, or re-execute the receive specifying M_SEG.

NOTE

If a RESTART of this session is a possibility,
then the receive sequence number should be stored
by the application executing this $SRECV session
call.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out"™ so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOER No error .

0010 RMIMPS Improper State

0013 RMRB2S Receive buffer too small

0032 - RMDTCL Send/receive rejected; data traffic
cleared or inactive

Received Interrupt Type (SC_INT)

This field contains the interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)
This field can contain either detailed information about
an error condition or sense data from a remote LU, if a
negative response has been received.

2-27 GR11-02



SSRECV

Receive Data Buffer Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

Output control word (SC_OCT)
This field contains certain indicators that are of
interest after a successful $SRECV session call. When
one or more of these bits is set, the condition described
is true.

value Label Description

8000 SCRWRP Reply requested (CD)

4000 SCRRQD Definite response required (RQD)
2000 SCRLST LAST message received (EB)

1000 SCRFMH Function management header (FMH)
0200 SCREOM End of message (EC)

0400 SCRBOM Beginning of message (BC)

Special notice should be given to the situation where an
interrupt was received prior to or during the execution of a
$SRECV session call. Two situations are possible:

1. An interrupt was received before the execution of the
SSRECV session call. 1In this case, the application is
given the data if it was in the receive queue and the
application is also informed of the interrupt. The
return code is either RCRINT+RCSCNL (X'3000') or
RCRINT+RCSCMP (X'2800'), depending on whether or not
there was data in the receive queue.

2. An interrupt is received during the execution of a $SRECV
session call. 1In this case, the order is not completed
and return is made to the application with a return code
RCRINT+RCSCNL (X'3000').

Example:

The following example causes AIF to deliver an assembled
asynchronous message to the application's buffer, which is
256 bytes long, left-byte aligned. The values for parameters

1 and 2 remain as they were prior to issuing this session
call.

2-28 GR11-02



$SRI

SSRI - Read Interrupt

The $SRI session call reads interrupt information from the
host or control information from the AIF LU when there is no
other AIF session call outstanding.

FORMAT:
[label] $SRI [sccb pointer] Pl: $B4
ARGUMENT:

sccb pointer

This parameter contains the address of the SCCB to be
used for this session. If not declared, it is assumed to
be in register $B4.

DESCRIPTION:

The S$SRI session call enables the application to read
interrupt information from the host or control information
from AIF when there is no other AIF session call outstanding.

If either of the following situations occurs, the condition

is reported to the application, the SCCB is updated the same
way as for the $STEST or S$SWANY session call and a return is
made to the application.

As with any asynchronous call, the application must execute a
SSWANY or S$STEST session call to determine when the $SRI
session call is complete and regain control.

1. When an interrupt is received, the Received Interrupt
Type and the Error Code Or Sense Data Received fields in
the SCCB contains the appropriate information.

2. If data has been received for which there is no
outstanding order, the user must issue a $SRECV session
call to gain access to this data. The length of the
received data is in SC_ADL.

NOTE

The $SRI session call is always made asynchronously.

2-29 GR11-02



$SRI

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0002 RMDRNR Data received but no read

0010 RMIMPS Improper state

0032 RMDTCL Send/receive reject; data traffic
cleared/inactive

Received Interrupt Type

This field contains the interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received
This field contains either detailed information about an
error condition or sense data if received from a remote
LU.
Example:
This session call allows the application to read interrupt
information from the host when there is no other session call
outstanding. This example assumes that register $B4 has
previously been loaded with the address of the SCCB.

RDINT $SRI

2-30 GR11-02



$SSEND

$SSEND - Send Message

The $SSEND session call sends a message (chain) or message
segment (RU) to a session partner.

FORMAT:
[label] $SSEND [sccb pointer] $B4
,send data buffer] SC_BUF
SC_DLG

SC_ICT.SCRHBI
SC_ICT.SCRTNS
SC_ICT.SCSWRP
SC_ICT.SCSLST
SC_ICT.SCSMNC
SC_ICT.SCSFMH
SC_ICT.SCSRQD

y{RIL}]

» {SYNC |ASYNC} ]

» {REPLY | RLCLR]
LAST}]

[, {MNTCMP |MCMP} ]

[, {FMH | NOFMH

[,{RQD|RQE}]

[
[
[,send buffer length]
[
[
[

20 o0 o es oo oo o8

g g ‘gddg g g
O 00 ~J AU WN -

0 oe

ARGUMENTS:

sccb pointer
This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

send data buffer (SC_BUF)
A pointer to the application's data buffer.

send data buffer length SC_DLG)

The length of the data in bytes. The maximum buffer size
is 32,767 bytes.

{RIL} (SC_ICT.SCRHBI)
This argument specifies whether data starts on the left
or right byte of the buffer address word. The user
specifies R|L.

{SYNC |ASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of the call is
synchronous or asynchronous.

2-31 GR11-02



$SSEND

{REPLY |RLCLR} (SC_ICT.SCSWRP)
LAST (SC_ICT.SCSLST)

REPLY indicates to the application to send with reply
requested (set change direction indicator in request
header). This parameter is meaningful only when you are
sending the last message segment or a chain.

The LAST parameter causes AIF to flag the last message
(set end bracket indicator in request header). This
parameter is meaningful only at the beginning of a
message (chain). This option is only valid with IMS
applications.

RLCLR clears both the REPLY and the LAST bits in the
input control word.

{IVI"TCMP i MCMP } ( SC_ICT « SCSMNC)

MNTCMP indicates that the message chain is not complete.
MCMP resets this indicator in the input control word.

{FMH |[NOFMH} (SC_ICT.SCSFMH)

This parameter bit indicates that data is to be sent with
Function Management Header in Request/Response Unit.

{RQD|RQE} (SC_ICT.SCSRQD)

RQD sends a messaage and requests a definite response.
RQE sends a message and requests an exception response.

DESCRIPTION:

The S$SSEND session call instructs the sending of a message
(chain) or message segment (RU) to the session partner.
Special notice should be given to the situation where the
application is executing a $SSEND session call but an
interrupt is received before or during the execution of the
session call.

When you are sending an entire message (chain), use the MCMP
parameter. When sending message segments, use MCTCMP, except
for the last segment, with which you use MCMP.

If an interrupt has already been received when the $SSEND
session call is executed, the application is informed of the
interrupt. 1If an interrupt is received during the execution
of the $SSEND session call, the $SSEND session call

2-32 GR11-02



$SSEND

completes, and when the application executes the $SWANY or S$STEST
session call, return is made to the application. The return code
indicates the interrupt received and the result of the $SSEND
session call.

NOTE

If RESTART of this session is a possibility, then
the send sequence number and the entire message
must be saved by the application executing this
$SSEND session call.

RETURN CODES

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15. 1In addition to the general return
codes, the following values are possible:

Value Label Description

0000 RMNOER No error

0003 RMRNEG -RSP returned by host; application
should examine sense data

0010 RMIMPS Improper State

0012 RMIRHI Invalid input control indicators;
application should examine sense data

0032 RMDTCL Send/receive rejected; data traffic
cleared or inactive

The following AIF sense data are associated with RMIRHI:

value Label Description
0828 sSD0828 Reply not possible, session partner
quiesced

4004 SD4004 LAST not allowed for this session
4040 SD4040 REPLY or LAST required

Received Interrupt Type
This field contains the interrupt type if one is received

for the application during the execution of this session
call.

2-33 GR11-02



$SSEND

Error Code or Sense Data Received

This field can contain detailed information about an
error condition or sense data from a remote LU.

Example:

The following session call sends a whole message of 256 bytes
with left byte alignment with FM header. This $SSEND session
call is the first and only S$SSEND session call for this
message. This S$SSEND session call is executed asynchronously
and requests a definite response.

SSSEND ,,256,L,ASYNC,RLCLR,MCMP, FMH, RQD

2-34 GR11-02



$SSI

$SSI - Send Interrupt

The $SSI session call is used to send Data Flow Control
commands to the session partner or to pass control information to
the System Service Control Point or to AIF.

FORMAT:
[label] $SSI [sccb pointer] Pl: S$B4
[,send data buffer] P2: SC_BUF
[,send buffer length] P3: SC_DLG
[,{RIL}] P4: SC_ICT.SCRHBI
[,typel P5: SC_SIN
[, {REPLY P6: SC_ICT.SCSWRP
LAST}] SC_ICT.SCSLST

[,sense data] P7: SC_SSD

ARGUMENTS:

sccbhb pointer

This pérameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

send data buffer (SC_BUF)

A pointer to the application's send data buffer. This
parameter is required only if you are sending CNM data.

send data buffer length (SC_DLG)

The length in bytes of the send data in the buffer. The
maximum allowable size is the MAXIMUM RU SIZE which has
been configured minus three. This parameter is required
only if you are sending CNM data.

{RIL} (SC_ICT.SCRHBT)

This argument specifies whether data starts on the left
(L) or right (R) byte of the buffer address word. This
parameter is required only if you are sending CNM data.

type (SC_SIN)
This field contains the interrupt type for this send.

Refer to the $SCCB template (Appendix E) for possible
values for this field.

2-35 GR11-02



$SSI

REPLY (SC_ICT.SCSWRP)
LAST (SC_ICT.SCSLST)

If the application specifies LAST, the end bracket
indicator is set.

If the application specifies REPLY, the change direction
indicator is set.

sense data (SC_SSD)

This field contains the sense data if the specific
interrupt type calls for it. If the application places
the sense data in registers $R6 and $R7, then this
parameter is specified as register $R7 or =$R7. If the
literal sense data value is included for this parameter,
then it must be in a form acceptable as the operand of an
LDI instruction, such as, =z708240000"'.

DESCRIPTION:

The $SSI session call is used to send the following three
types of information:

1. Send data flow control commands to the session partner

2. Pass control information to AIF (e.g., enable/disable
restart).

3. Pass statistical information to SSCP.

The format of the buffers that you create to send CNM alerts
and maintenance statistics are detailed in Section 6.

NOTE
The $SSI session call is always made synchronously.
RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

2-36 GR11-02



$ss1I

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOER No error

0003 RMRNEG -RSP returned by host; application
should examine sense data

0010 RMIMPS Improper State

0012 RMIRHI Invalid input control indicators;
application should examine sense data.

0015 RMIINT Invalid Interrupt Type

0016 RMICOD Invalid status word or user code

0032 RMDTCL  Send/receive rejected; data traffic

’ cleared or inactive

The following sense data are associated with RMIRHI:

Value Label Description

0828 SD0828 Reply not possible, session partner
quiesced

4004 SD4004 LAST not allowed for this session

4040 SD4040 REPLY or LAST required

Received Interrupt Type (SC_INT)

This field contains an interrupt type if one is received
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)

This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Example:

The following session call sends a data flow control command,
LUSTAT, with change direction indicator and the sense data
0824 to the session partner. (LUSTAT is a label whose value
is found in the SCCB.)

SNDINT $SSI ",,=LUSTAT'REPLY'=Z'08240000'

2-37 GR11-02



$SSRSP

$SSRSP - Send Response

The $SSRSP session call requests that AIF send a response to
a previous message which requires a response.

FORMAT:
[label] $SSRSP [sccb pointer] Pl: $B4
[,{SYNC|ASYNC}] P2: SC_ICT.SCRTNS
[,{PRSP P3: SC_ICT.SCSRSP
NRSP : SC_ICT.SCSNEG
WAIT FOR_RTR|NO_RTR}]
[ ,senseT P4: SC_SSD-

ARGUMENTS:
sccb pointer

This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.

{SYNC|ASYNC} (SC_ICT.SCRTNS)

This parameter indicates whether execution of this call
is synchronous or asynchronous.

NRSP (SC_ICT.SCSNEG)
PRSP (SC_ICT.SCSRSP)

This argument indicates whether to send a positive
response or a negative response.

If a negative response is indicated (NRSP), the LU sends
a negative response accompanied by whatever sense data is
found in the SCCB. If the user wishes no sense data to
be sent, he must provide a sense data of nulls.

{WAIT FOR_RTR|NO_RTR}

If the data flow control command BID is rejected by the
application program, this parameter indicates whether the
session partner should wait for the Ready to Receive
(RTR) or if none is to be sent.

If WAIT FOR RTR is indicated, AIF sends a negative

response with sense data 2'0814'; if NO_RTR is indicated,
AIF sends a negative response with sense data Z'0813°'.

2-38 GR11-02



$SSRSP

sense (SC_SSD)

This four-byte field provides sense data if NRSP is
specified. If no sense data is to be sent, this field
should be set to nulls by the application.

DESCRIPTION:

The SSSRSP session call sends either a negative or a positive
response to a previous message on behalf of the application.
If the response is negative, the application also has the
option of sending sense data.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOER No error

0010 RMIMPS Improper State

0012 RMIRHI Invalid input control indicators:;
application should examine sense data

0032 RMDTCL  Send/receive rejected; data traffic
cleared

The following AIF sense data are associated with RMIRHI:

value Label Description

4041 SD4041 Response type improperly indicated
Example:

The following session call sends a negative response on
behalf of the application and sets the sense data to nulls.

$SSRSP , ,NRSP,=0000

2-39 GR11-02



$STERM

SSTERM - Terminate Session

The S$STERM session call terminates the AIF session,

FORMAT:
[label] $STERM [sccb pointer] Pl: SB4
[, {NORM|ABNORM} ] P2: SC_ICT.SCATRM
ARGUMENTS:

sccb pointer
' This parameter contains the address of the SCCB to be
used for this session. If not declared, the address is
assumed to be in register $B4.
{NORM | ABNORM} (SC_ICT.SCATRM)

NORM or ABNORM indicates to the host the reasons for
which this session is being terminated

DESCRIPTION

The S$SSTERM session call terminates the AIF session.
Termination can be either normal or abnormal. Whether it is
normal or abnormal is indicated by a parameter within the
SSTERM session call.

e If the S$STERM indicates normal termination, an orderly
termination message is sent to the session partner's LU.

e If the $STERM indicates abnormal termination, the
following events occur:

- The AIF LU terminates the session.

- AIF sends an abnormal termination message to inform the
host LU.

After the session is terminated, the LU task is again
available for other users.

Abnormal termination can be issued at any time; the last
session call is cancelled if it is not completed.

NOTE

The S$STERM session call is always made synchronously.

2-40 GR11-02



$STERM

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOER No error

0010 RMIMPS Improper State (only applies to normal
termination)

The following sense data are associated with RMIMPS:

Value Label Description

200D SD200D Response required
2040 SD2040 Normal termination rejected; data on
. receive queue
2041 SD2041 Transaction not completed yet
Received Interrupt Type

This field contains the interrupt type, if one is
received during the execution of a normal termination.

Error Code or Sense Data Received
This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Example:

The following session call causes the AIF session to
terminate normally.

DONE SSTERM + NORM

2-41 GR11-02



$STEST

SSTEST - Test for Events

The S$STEST session call tests conditions for the session
whose SCCB is pointed to by register $B4.

FORMAT:

[label] SSTEST |[sccb pointer] Pl: S$B4
ARGUMENT:
sccb pointer

This parameter contains the address of the SCCB to be
used for this session. If not declared, this address is
assumed to be in register $B4.

DESCRIPTION:

This session call tests conditions for the session whose SCCB
is pointed to by register $B4. Executing this session call
causes AIF to immediately report to the application one of
the following conditions in register $R1 and SCCB:SC_RCD:

1. No event

2. Interrupt received

3. Asynchronous order completed or cancelled

4. Permission to send after a send was rejected due to data
traffic inactive or pacing

5. Data has been received for which there is no outstanding
order.

Conditions 2 and 3 can coexist.

If an interrupt was received, the Received Interrupt Type and
the Error Code Or Sense Data Received fields in the SCCB
contain information pertaining to the type of interrupt.

If an asynchronous order were completed or cancelled, then
AIF delivers the return code of the completed order
immediately and the application must examine all pertinent
fields in the SCCB.

If data has been received for which there is no outstanding
order, the user must issue a $SRECV session call to gain
access to this data. Nothing is delivered to the user as a
result of the S$STEST session call, but the length of the
received data is found in the SC_ADL of the SCCB.

2-42 GR11-02



STEST

NOTE

The S$STEST session call can be executed while an
asynchronous call is outstanding. This session call
is always made synchronously. If there were an
asynchronous order outstanding, the condition is
tested, reported, and the order remains outstand-
ing. Once the test determines that the order has
been completed, the call is no longer outstanding.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 RMNOEV No Event

0001 RMPTSN Permission to send

0002 RMDRNR Data received but no read
Received Interrupt Type (SC_INT)

This field contains the interrupt type, if there is one
during the execution of this session call.

Error Code or Sense Data Received (SC_ESD)

This field contains either detailed information about an
error condition or sense data if received from a remote
LU.

Receive Data Buffer Length (SC_ADL)

This field contains the actual length of the received
data in bytes.

Example: .

This session call tests the status of the session indicated
by the SCCB to which register $B4 is pointing.

CHECK $STEST

2-43 GR11-02



$SWANY

SSWANY - Wait on Events

The $SWANY session call causes AIF to issue a system "wait
any" on behalf of the application. The application remains
dormant until one of the requests is complete.

FORMAT:
[label] SSWANY
ARGUMENT:
This session call has no arguments.
DESCRIPTION:

The $SWANY session call causes execution of the application
program to be suspended until any asynchronous request
terminates. Asynchronous requests other than AIF requests
also cause control to return to the $SWANY session call
executor providing that the P-bit in the request block was
set by the executor prior to the execution of the S$SWANY
macrocall.

Unless you have an outstanding call, you should not issue a
SSWANY session call. If you do issue a 3SWANY session call
with no outstanding asynchronous call, AIF returns an RCNOUT
return code to indicate that there are no orders outstanding.

If an application had more than one session established, with
outstanding asynchronous orders on multiple sessions,
executing a $SWANY session call returns control to the
application with register $B4 containing the SCCB address of
the session whose request has completed.

RETURN CODES:

The application should check the return code after each
execution of a session call. Bits 0 through 4 have special
meaning and represent general AIF return codes that could
occur for any session call. These bits should be examined
individually, then "masked out" so that the application can
examine bits 5 through 15.

In addition to the general return codes, the $SWANY session

call can return return codes according to the following
conventions:

2-44 GR11-02



$SSWANY

1. If, after a $SWANY session call is executed, register
$B4 contains the address of the SCCB, then register
$R1 contains the AIF session call return code.

2, If, after a $SWANY session call is executed, register
$B4 contains the address of the terminated request
block, then register $R1 contains the completion
status for that request block.

Upon return, registers $R1 and $B4 contain the following
information:

AIF Call Complete Other Asynchronous Call Complete

$B4 ADDRESS OF SCCB ADDRESS OF TERMINATED REQUEST
BLOCK
$SR1 AIF CALL POSTED COMPLETION STATUS OF
RETURN CODE COMPLETED REQUEST BLOCK
NOTE

This session call is always made synchronously.
When this call is executed, AIF issues a "wait
any" on behalf of the application. The
application program remains dormant until one of
the requests is complete. If an application does
any asynchronous AIF processing, the application
should never execute a SWAITA. This command
causes unspecified results.

Example:

This session call causes the application program to remain
dormant until an asynchronous request terminates.

WAIT $SWANY

2-45 GR11-02



$SACEB

SSACEB - ASCII-To-EBCDIC Conversion Routine

Converts data from ASCII to EBCDIC.
FORMAT:

label  $SACEB
ARGUMENT:
There are no arguments associated with this macro.
DESCRIPTION:
These session calls convert data from ASCII to EBCDIC. Since
IBM handles data in EBCDIC and DPS 6 or DPS 6 PLUS handles it
in ASCII, you may sometimes wish to convert data from one to

the other, either before sending or before receiving.

The Application Interface Facility software provides the
following macros to perform these conversions.

$SACEB ASCII-To-EBCDIC Conversion
When this macro is activated, you must initialize registers

$B2, $B4, S$R2, SR4, and $R6 to contain the values listed in Table
2-2. If you wish to convert in place, $B2=$B4.

Table 2-2. Register Contents at Conversion

Register Contents
$B2 Pointer to buffer to be converted
$SB4 Pointer to buffer to contain converted data
S$SR2 Index for buffer to be converted
SR3 Function code (S$SSACEB=l1; S$SSEBAC=2)
SR4 Index for buffer to contain converted data
$R6 Length of data in bytes
NOTE
The maximum length of data that can be converted
by a single call is 32,767 bytes.

2-46 GR11-02



$SEBAC

SSEBAC - EBCDIC-To-ASCII Conversion Routine
‘Converts data from EBCDIC to ASCII,
FORMAT:
label $SEBAC
‘ARGUMENT:
There are no arguments associated with this macro.
DESCRIPTION:
These session calls convert data from EBCDIC to ASCII. Since
IBM handles data in EBCDIC and DPS 6 or DPS 6 PLUS handles it
in ASCII, you may sometimes wish to convert data from one to

the other, either before sending or before receiving.

The Application Interface Facility software provides the
following macros to perform these conversions.

SSEBAC EBCDIC-To-ASCII Conversion
When this macro is activated, you must initialize registers

$B2, $B4, SR2, S$R4, and $R6 to contain the values listed in Table
2-2. 1If you wish to convert in place, $B2=$B4.

Table 2-3. Register Contents at Conversion

Register Contents
$B2 Pointer to buffer to be converted
$B4 Pointer to buffer to contain converted data
SR2 Index for buffer to be converted
SR3 Function code (S$SACEB=l; S$SEBAC=2)
SR4 Index for buffer to contain converted data
SR6 Length of data in bytes
NOTE
The maximum length of data that can be converted
by a single call is 32,767 bytes.

2-47 GR11-02






Section 3

PROGRAMMING
LU TYPE 0 SESSIONS
IN COBOL

This section describes the session calls that the COBOL
programmer uses to converse over a Session Type 0 with host
transaction programs. Topics include:
e COBOL session calls
® Session call format
@ Programming Considerations
- Synchronous vs. Asynchronous Processing
= WORKING-STORAGE SECTION
- Checking the Return Code

® Session Calls.

COBOL SESSION CALLS

The session calls used by the Application Interface Facility
(AIF) in a COBOL application program call corresponding Assembly
language subroutines using the "CALL...USING..." verb. These
calls are listed in Table 3-2.

The parameters that the session calls use are positional.
They are defined in the WORKING-STORAGE SECTION of the COBOL
program. In this manual, these parameters are defined in the
discussion of the WORKING-STORAGE SECTION and are listed without
redefinition in the format description of each session call.

3-1 GR11-02



At the completion of each session call, when control is
returned to the application, a return code is placed in the
RETURNS field. This return code indicates whether a call has
been completed error free. The application should check the
return code after each session call to verify that the call was
completed error-free.

A sample COBOL program is provided in Appendix C to
demonstrate the use of the AIF session calls in a COBOL program.

SESSION CALL FORMAT

The session calls used by AIF in a COBOL program reference
Assembly language subroutines which include system-provided
macrocalls. The COBOL session calls have a list of arguments
that must be specified each time a session call is executed.
These arguments, which you have defined in the WORKING-STORAGE
SECTION, correspond to parameters in the SCCB that are used by
the Assembly language subroutine. The AIF COBOL session calls
follow the conventions for COBOL (described in detail in the ONE
PLUS COBOL 74 Lanquage Reference Manual (HE34).

When an AIF session call is activated, it defines one or more
pools of logical units. Each pool of logical units is reserved
for a specific host CICS or IMS system. AIF can either start a
session to the host system at initiation or it can wait for an
application to request a session. The time of session initiation
is a configuration option.

An application requests to initiate a session with a reserved
LU by executing the CSINIT session call. AIF checks the
availability of that LU and assigns it if it is available. If
the specified LU is unavailable, AIF checks first for an
available reserved LU, second for an available preestablished LU,
and then for any available LU to assign to the session. AIF
either returns the address of the LU with which the session is
started, or rejects the request if there is no LU available.

An application gains access to a host-initiated session by
executing a CSACPT session call. Executing the accept session
call causes the application to be connected to the host-initiated
session and causes the LU to send a positive response to the
host, accepting the session.

PROGRAMMING CONSIDERATIONS

The special considerations that the COBOL programmer must
bear in mind fall into the following categories:

Synchronous vs. Asynchronous Processing
WORKING-STORAGE SECTION

Host-initiated sessions

Linking the program

Checking the return code.

3-2 GR11-02



Synchronous vs. Asynchronous Processing

AIF session calls can be processed either synchronously or
asynchronously.

SYNCHRONOUS PROCESSING

Synchronous processing implies that when the application
passes an instruction to AIF for processing, it waits for the
application to complete that instruction before continuing.

In Figure 3-1, a CSINIT session call has been issued
synchronously. The application completes its segment of
processing and passes the request to AIF. AIF executes the
CSINIT session call completely and passes the return code to the
application. The application does not process other instructions
while AIF is executing the CSINIT session call.

SYNCHRONOUS PROCESSING

ISSUES

SESSION
APPLICATION _CALL CONTINUES PROCESSING
PROGRAM

ACCEPTS THE
REQUEST (DONE)
AiF i f
§ [
' '

EXECUTES SESSION CALL

85-271

Figure 3-1. Synchronous Processing

ASYNCHRONOUS PROCESSING

Asynchronous processing implies that when the application
passes an instruction to AIF for processing, the application
continues to process other instructions while it waits for AIF to
complete that instruction.

In Figure 3-2, a CSINIT session call has been issued
asynchronously. The application completes its segment of
processing and passes the request to AIF. While AIF executes the
CSINIT session call, the application is processing other
instructions. 1In order for the application to find out that AIF
has finished executing the CSINIT session call, the application
must execute a CSWANY or a CSTEST session call.

3-3 GR11-02



ASYNCHRONOUS PROCESSING

$SWANY
1

i
ISSUES ’
‘S:ESSION QTHER PROCESSING CONT
ALL NTINUES PROCESSING
APPLICATION |

PROGRAM o

THE REQUEST DON

AlF
t

|
|
ACCEPTS |
£
!
|
| |

EXECUTES SESSION CALL

85.272

Figure 3-2. Asynchronous Processing

Each time you issue an asynchronous order, you must check the
receive queue before you can receive information. You can do
this by either the CSTEST or the CSWANY session call. These two
session calls differ as follows:

1. The CSTEST session call checks to see if there is
information in the queue to be received and immediately
reports back to the application. This call can be
executed any time you wish to check for an outstanding
order, and as often as you wish to check, because the
application regains control immediately after the test is
completed.

2. The CSWANY session call checks for information on the
queue and waits until there is information waiting before
it returns control to the application.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION defines the area to be used as
the SNA work area. The parameters specified in these fields are
passed to the SCCB when the session calls are executed.

The following parameters must be defined in the WORKING-
STORAGE SECTION. These parameters are used to create the session
call control block which is used by the Assembly language
subroutines you are calling.

Figure 3-3 shows a sample WORKING-STORAGE SECTION in which
the SNA work area has been defined. The data-names that are used
here are examples; you can name them according to your own naming
conventions.

3-4 GR11-02



DATA DIVISION.
WORKING-STORAGE SECTION.

77
77
01

77
77

SNA-WORK-AREA
NODE-NAME
REMOTE-LU-NAME
STD-NAME
SYNC-CALL
ASYNC-CALL
RESTART
NO-RESTART
SESSION-ID
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RCV-SQN
SEND-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
REPLY-REQUEST
MSG-COMPLETE
FMH
RQOD
RECEIVE-BUFFER
RECEIVE-BUFFER-SIZE
MSG
RECEIVED-DATA~-LENGTH
INTERRUPT-DATA-LENGTH
WORK-AREA-ID
SEND-RESPONSE-TYPE
SENSE-DATA
RETURNS.
02 RETURN-A.
03 SESSION-ABORT
03 STOP-RCVD
03 INTRPT-RCVD
03 SERV-REQ-CANC
03 SERV-REQ-COMP
03 COBOL-ERROR
02 RETURN-B
INTERRUPT-TYPE

RCVD-SENSE
TIMEOUT.
02 DATELl.
03 YY
03 MM
03 DD
02 TIMEl.
03 HH
03 MN
03 SSSS

TERMINATE-TYPE
GET-ATTR-TYPE

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC

PIC
PIC
PIC
PIC

- PIC

X(200) .

X(8) VALUE "AIF501".
X(8) VALUE "A06CICS".
XX VALUE

X VALUE
X VALUE
X VALUE
X VALUE
X(4).

9(5) VALUE 0.
9(5) VALUE 0.

X(80).

9(5) VALUE 80.

X VALUE
X VALUE
X VALUE
X VALUE
X VALUE
X(80).

9(5) VALUE 80.

X VALUE

9(5) VALUE 0.
9(5) VALUE 0.

X(4).
X VALUE
x(8).

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

D6 DG DS 26 X

3(4) VALUE 0.
99 VALUE 0.

X(8).

99 VALUE 0.
99 VALUE 0.
99 VALUE 0.

99 VALUE 0.
99 VALUE 0.
9(4) VALUE 0.

X VALUE

99 VALUE

"BB".
"s".
IlAl!.
"R".
"N".

"L".
"R".
"Y".
"N" @
"N".

"y".

"N".
nN" @
"Nn Ll
"N".
NNH N
l!Nll o

"N".
"01".

Figure 3-3.

WORKING-STORAGE SECTION for AIF

GR11-02



01

77

77
01
01

OUTPUT-CONTROL-WORD.

02 REPLY-REQUESTED-CD PIC X VALUE "N".
02 DEFINITE-RESP-REQ PIC X VALUE "N".
02 LAST-MSG-RCVD-EB PIC X VALUE "N".
02 FMH-IN-RCVD-DATA PIC X VALUE "N".
02 BEGIN-MSG-RCVD-BC PIC X VALUE "N".
02 END-MSG-RCVD-EC PIC X VALUE "N".
02 SET-SEND-RECV-SEQ PIC X VALUE "N".
02 APPL-RESEND-REQUIRED PIC X VALUE "N".
02 HOST-RESEND-REQUIRED PIC X VALUE "N".
CONVERT-FROM-FIELD PIC X(20).
CONVERT-FROM-LEFT-POSIT COMP-1 VALUE 1.
CONVERT-TO-FIELD PIC X (20).
CONVERT-TO-LEFT-POSIT COMP-1 VALUE 6.
CONVERSION-LENGTH COMP-1 VALUE 10.

Figure 3-3 (cont.). WORKING-STORAGE SECTION for AIF

These fields are defined as follows:

SNA-WORK-AREA

This input parameter is the name of a contiguous memory
area that is at least 200 bytes long. This corresponds

to the "sccb pointer" argument of the Assembly language
session calls. , :

If your program will be running multiple sessions, you

must define a unique SNA-WORK-AREA for each session.
Example:
77 SNA-WORK-AREA PIC X(200).

NODE-NAME

This input parameter contains the name of the AIF node on
the DPS 6 or DPS 6 PLUS system with which the session is

being established. This field contains up to eight
alphanumeric characters.

Example:

77 NODE-NAME PIC X(8) VALUE "SNANODEl".
REMOTE-LU-NAME

This input parameter contains the name by which the

remote LU is known to this application. This field

contains up to eight alphanumeric characters. The

REMOTE-LU-NAME equates to the APPL VTAM macro on the
host.

3-6 GR11-02




Example:

77 REMOTE-LU-NAME PIC X(8) VALUE "A06CICS ".
STD~NAME

This input parameter contains the two‘alphanumeric

character field which is the session type descriptor

name. The STD is defined in the AIF configuration file.

Example:

77 STD-NAME PIC X(2) VALUE "BB".

SYNC-CALL
ASYNC-CALL

These input parameters indicate whether execution of the
call is to be synchronous or asynchronous. Each field
contains one character, either S or A. Both parameters
must be included.

Example:
77 SYNC-CALL PIC X VALUE "s",.
77 ASYNC-CALL PIC X VALUE "A".
RESTART
NO-RESTART

These input parameters indicate whether or not the
application wishes to restart an abnormally terminated
session. Each field contains one character, either R or
N. Both parameters must be included.

Example:

77 RESTART PIC X VALUE "R".

77 NO-RESTART PIC X VALUE "N".
SESSION-ID

If RESTART is specified, AIF places a unique session
identifier in this field before returning control to the
application. This field contains four system-supplied,
alphanumeric characters that can be used to restart an
abnormally terminated session. This field should be
stored if restart is a possibility or if you plan to
execute multiple sessions.

Example:

77 SESSION-ID PIC X(4).

3-7 GR11-02



MSG-RSYNC-SEND-SQN

If RESTART is specified, AIF places the sequence number of
the last message sent in this field each time the
application does a send. This field contains up to five
numeric characters and should be stored after each send in
case a RESTART is necessary.

Example:
77 MSG-RSYNC-SEND-SQN PIC 9(5) VALUE 0.
MSG-RSYNC-RCV-SQN
If RESTART is specified, AIF places the sequence number
of the last message that the application has received in
this field each time the application issues a receive.
This field can be up to five numeric characters and
should be stored after each receive so that it can be
retrieved if a RESTART is necessary.
Example:
77 MSG-RSYNC-RCV-SQN PIC 9(5) VALUE 0.
SEND-BUFFER
This input parameter sets up the buffer for the messages
to be sent. It can contain up to 32,767 characters. If
the data in the send/receive buffers must be converted
between ASCII and EBCDIC, the application must take care
of the conversion. Two macros are provided for this
purpose, CSACEB and CSEBAC.
Example:
77 SEND-BUFFER PIC X (80).
SEND-BUFFER-SIZE

This input parameter contains the length of the send data
buffer. The maximum buffer size is 32,767 bytes.

Example:
77 SEND-BUFFER-SIZE PIC 9(5) VALUE 80.
DATA-BUFFER-ALIGN

This input parameter specifies whether data starts in the
left (L) or right (R) byte of the buffer address word.

Example:
77 DATA-BUFFER-ALIGN PIC X VALUE "L".
3-8 GR11-02



REPLY-REQUEST
This input parameter indicates whether the message being
sent is now complete (L), and if the application expects
a reply to this message (R). LAST sets the end bracket
indicator (not valid with CICS applications); REPLY sets
the change direction indicator.
Example:
77 REPLY-REQUEST PIC X VALUE "R".

MSG-COMPLETE
This input parameter indicates whether a complete message
is to be sent or single response units which must be
assembled into a chain. Possible values are "Y" or "N".
Example:
77 MSG-COMPLETE PIC X VALUE "Y".

FMH
This input parameter indicates whether the function
management header (FMH) is part of the data to be sent.
Possible values are Y or N.
Example:
77 FMH PIC X VALUE "N".

RQOD

This input parameter indicates whether a definite
response is to be sent. Possible values are "Y" or "N".

Example:
77 RQD PIC X VALUE "N".

RECEIVE-BUFFER
This input parameter sets up the buffer that receives the
data during the session. The length of the data cannot
exceed the size specified in the RECEIVE-BUFFER-SIZE (80
characters in this example).
Example:

77 RECEIVE-BUFFER PIC X (80).

3-9 GR11-02



RECEIVE-BUFFER-SIZE

This input parameter designates the size of the
RECEIVE-BUFFER in characters.

Example:
77 RECEIVE-BUFFER-SIZE PIC 9(5) VALUE 80.
MSG
This input parameter designates whether the message being
delivered to the application's buffer is a complete
message or a message segment. If a whole message is
being delivered, AIF must wait for the entire message and
determine whether or not it fits into the RECEIVE-
BUFFER. If the message is too large for the receive
buffer, AIF delivers only the size of the message so that
a new buffer can be assigned. Possible values for this
parameter are "Y" (complete message) or "N" (message
segment) .
77 MSG PIC X VALUE "Y".
RECEIVED-DATA-LENGTH

This output parameter is to contain the length of the
data received.

Example:
77 RECEIVED-DATA-LENGTH PIC 9(5) VALUE 0.
INTERRUPT-DATA-LENGTH

This output parameter contains the length of any
interrupt data that has been received.

Example:

77 INTERRUPT-DATA-LENGTH PIC 9(5) VALUE 0.
WORK-AREA-ID

This output parameter, which is used by the CSWANY

session call, contains the SNA-WORK-AREA value of the

last COBOL session call that was executed. The

WORK-AREA-ID does not have to correspond to the

SNA-WORK-AREA unless there are no other active sessions.

Example:

77 WORK-AREA-ID PIC X(4).

3-10 GR11-02



SEND-RESPONSE-TYPE

This parameter indicates the type of response that is
being sent. The following response types are possible:

Type Value
Negative Response "n
Positive Response "4
Wait for Ready-to-receive "R"
Not Ready-to-receive "N"
None "o
Example:
77 SEND-RESPONSE-TYPE PIC X VALUE "-".
SENSE-DATA

This input parameter is required when a negative response
is being sent. The parameter is specified using
hexadecimal-coded ASCII characters.

Example:
77 SENSE-DATA PIC X(8).
RETURNS

This output parameter defines the field into which the
return code from all AIF session calls is placed. The
RETURNS field is divided into RETURN-A, which consists of
six yes/no conditions, and RETURN-B, which contains a
four character decimal status code to provide further
detail about the conditions indicated in RETURN-A,

The two subfields of RETURNS are presented below and are
described in Table 3-1. Refer to "Checking the Return
Code"™ for more information about RETURNS.

02 RETURN-A.

03 SESSION-ABORT PIC X VALUE 'N'.
03 STOP-RCVD PIC X VALUE °'N°'.
03 INTRPT-RCVD PIC X VALUE 'N'.
03 SERV-REQ-CANC PIC X VALUE 'N'.
03 SERV-REQ-COMP PIC X VALUE 'N'.
03 COBOL-ERROR PIC X VALUE 'N'.
02 RETURN-B PIC 9(4) VALUE 0.

3-11 GR11-02



Table 3-1. COBOL Session Call RETURNS Fields

Field Meaning

SESSION-ABORT LU-LU session or node has been aborted and
no longer exists.

STOP-RCVD SOPR STOP command received. If the TIME

argument is supplied with the STOP command,
check the TIME field for the time at which
the session ends. Thigs field indicates how
much time you have to complete the session.

INTRPT-RCVD Interrupt received.  See INTERRUPT output
parameter.

SERV-REQ-CANC This request has been cancelled. The
application must issue it again if
necessary.

SERV-REQ-COMPLETE | This request has been completed.

COBOL-ERROR Error in using COBOL interface to the AIF.
See RETURN-B for return code.

INTERRUPT-TYPE

This parameter shows the reason for interrupt when one is
sent or received.

Example:
77 INTERRUPT-TYPE PIC 99 VALUE 0.

A complete list of interrupt types is provided in
Appendix D.

RCVD-SENSE
This output parameter contains the hexadecimal
representation of the sense data from the host if sense
data is present. This field corresponds to SC_ESD in the
SCCB.
Example:

717 RCVD-SENSE PIC X(8).

3-12 GR11-02




TIMEOUT

This output parameter provides a formatted data area for
the date and time that a session must be stopped when a
STOP command is processed for the session or node. This
field must be 14 decimal digits long, as follows:

Example:
01 TIMEOUT
02 DATElL.
03 YY PIC 99 VALUE 0.
03 MM PIC 99 VALUE 0.
03 DD PIC 99 VALUE 0.
02 TIMEl.
03 HH PIC 99 VALUE O.
03 MN PIC 99 VALUE 0.
03 Ssss PIC 9(4) VALUE 0.

TERMINATE-TYPE

This input parameter indicates whether termination is
normal (N) or abnormal (A).

Example:
77 TERMINATE-TYPE PIC X VALUE "N".
GET-ATTR-TYPE
This input parameter indicates what attribute the CSGTAT
call is requesting. The only attribute available is 01
(bind image).
Example:
77 GET-ATTR-TYPE PIC 99 VALUE "01°,
OUTPUT-CONTROL-WORD
This output parameter provides information about the
received data. The characteristics that can be specified
are listed below. Each of these parameters must be

stated. Possible values are "Y" or "N".

01 OUTPUT-CONTROL-WORD.

02 REPLY-REQUESTED-CD PIC X.
02 DEFINITE-RESP-REQ PIC X.
02 LAST-MSG-RCVD-EB PIC X.
02 FMH-IN-RCVD-DATA PIC X.
02 BEGIN-MSG-RCVD-BC PIC X.
02 END-MSG-RCVD-EC PIC X.
02 SET-SEND-RECV-SEQ PIC X.
02 APPL-RESEND-REQUIRED PIC X.
02 HOST-RESEND-REQUIRED PIC X.

3-13 GR11-02



CONVERT-FROM-FIELD
This input parameter defines the buffer to be converted by
the ASCII-to-EBCDIC conversion subroutines. The maximum
size of this buffer is 32,767 bytes.
Example:
77 CONVERT-FROM-FIELD PIC X(20).
CONVERT-FROM-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-FROM-FIELD.

Example:

0l CONVERT-FROM-LEFT-POSIT COMP-1 VALUE 1.
CONVERT-TO-FIELD

" This input parameter defines the buffer into which the

converted data will be placed by the ASCII-to-EBCDIC

conversion subroutines. The maximum size of this buffer

is 32,767 bytes.

Example:

77  CONVERT-TO-FIELD ' PIC X(15).
CONVERT-TO-LEFT-POSIT

This input parameter provides a starting index for the
data in CONVERT-TO-FIELD.

Example:
01l CONVERT-TO-LEFT-POSIT COMP-1 VALUE 6.
CONVERSION-LENGTH

This input parameter contains the length in bytes of the
data to be converted. The maximum length of this data is
32,767 bytes. .

Example:

0l CONVERSION-LENGTH COMP-1 VALUE 10.

3-14 GR11-02



Host~Initiated Sessions

AIF supports host-initiated sessions; that is, it accepts
unsolicited binds. 1In order to accept an unsolicited bind, an LU
must be reserved with the HOST INIT SESS parameter specified as Y
(YES) in the LU entry of the configuration file.

When the application program begins execution, it must issue
a CSACPT session call as the first session call, providing the
STD name and the node name for the LU to be used. The CSACPT
session call allows AIF access to a host-initiated session. AIF
associates the first unsolicited bind (host-initiated session
request) to the first CSACPT session call from the task group
that AIF spawned.

An unsolicited bind can be for a program designated in the
AUTO ATTACH entry of the AIF configuration or it can be any other
unsloicited bind sent from the host.

When AIF receives an unsolicited bind for a specific LU, AIF
checks the LU entry for an AUTO_ATTACH program. If it finds one,
AIF spawns a group with the program_name as the lead task, and
passes to the lead task the STD name, node_name, and base_level
used in the spawn group. If AIF does not find an AUTO_ ATTACH
program in the LU entry, it accepts the session and looks for the
program name in the first four bytes of the first record
recelved, then spawns a group based on the ATTACH_PROGRAM entry.
If none is provided, default values are used to spawn the group.

The application can issue multiple CSACPTs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one session,
all LUs that can receive binds for that application must be
reserved LUs with HOST INIT SESS=Y. Each of these LUs must have
the same group _id specified in the LU entry in the configuration
file.

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (eg.,
ATTACH_PROG=ABC);, specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS= >>SYSLIB2>EC°EXECL) to execute the
START UP.EC specified in the home directory.
Refer to SNA6 Network Configuration for further
information.

3-15 GR11-02



Linking the Program

If a COBOL application program is written as a program to be
attached, that is, it includes an ACCEPT session call (CSACPT),
then a LINKAGE SECTION must be included in the program. The
LINKAGE SECTION must include three entries to accommodate the
node name, STD name, and base level, as in the following example:

LINKAGE SECTION.

77 NODE PIC X (8).

77 STD PIC XX.

77 BASE_LVL PIC 99.

PROCEDURE DIVISION USING NODE, STD, BASE_LVL.

The LINKAGE SECTION is necessary whether the program is to be
compiled using COBOLA or COBOLM. The programs are coded in the
same way, regardless of which compiler is used, but they are
linked differently.

Within the COBOL application program, the three fields in the
LINKAGE SECTION must be moved to corresponding fields in

o

WORKING-STORAGE before they can be used in any AIF calls.

Two sample LINK directive sets are presented below to
demonstrate the different Linker directives you can use. The
following matrix shows which set you should use, based upon LU
type, whether you are writing an attached program, and the COBOL
compiler you are using.

Compiler used: COBOLA ~ COBOLM

ACCEPTS 3 1
calls used:

No ACCEPTS 1 1
calls used:

LINK DIRECTIVE SET 1

&N

&A

LINKER &l

LIB >LDD>ZCART/
LIB >LDD>ZCMRT*
LINK &1

LINK CSPHRZ

MAP

QT

* Use either LIB, where ZCART is used for COBOLA and ZCMRT
is used for COBOLM.

3-16 GR11-02



LINK DIRECTIVE SET 3

&N

&A

LINKER &l

LIB >LDD>ZCART
LINKN CSLEAD
LINK &1

LINK CSPHRZ
MAP

LDEF CBLADR, &1
QT

NOTES

The module CSPHRA is the parameter processing
routine for LU Type 0 calls.

Programs compiled by COBOLM automatically have the
node name, STD name, and base level moved to the
LINKAGE SECTION. Programs compiled by COBOLA use
the CSLEAD Linker module to perform this

function. This module must be linked into the
bound unit of any program that executes a CSACPT
or CSATCH and is compiled using COBOLA.

Refer to the Multiuser COBOL Compiler User's Guide
(HE32) for information about linking programs
compiled under COBOLA and COBOLM into a single
bound unit.

Checking the Return Code

On return from AIF, a COBOL interface routine fills the
output parameter fields with the SCCB results from the
subroutine.

After the session call is made, a return code is placed in
the RETURNS field. The RETURNS field is divided into RETURN-A,
which consists of six yes/no conditions, and RETURN-B, which
contains a four-character decimal return code to provide further
detail about the conditions indicated in RETURN-A.

RETURN-A reports the following conditions:

SESSION-ABORT--The session has been aborted.
STOP-RCVD--SOPR stop command has been received.
INTRPT-RCVD--An interrupt has been received.
SERV-REQ-CANC--This request has been cancelled.
SERV-REQ-COMP--This request has been completed.
COBOL-ERROR--A COBOL interface error has occurred.

3-17 GR11-02



If the value of COBOL-ERROR is Y, then an error has occurred
in the COBOL interface to AIF. The following are the general
return codes that are in RETURN-B if you have a COBOL error. The
value of XX is the number of the parameter in which there is an
error:

Code Meaning

XX01 Unrecognized parameter

XX02 Parameter must be 1 byte long
XX03 Parameter must be 5 bytes long
XX04 Default not acceptable

XX05 Node name error

XX06 Remote LU name error

XX07 Invalid session-id

XX08 Unknown interrupt type

XX09 Nondecimal digit

XX10 Nonhexadecimal digit

XX11 Error in conversion

The values of both RETURN-A and RETURN-B should be checked
after the completion of each session call. Since it is possible
to have more than one Y value in RETURN-A, and to have a value
greater than zero after a successfully completed call, the
application should check all fields in RETURN-A and RETURN-B for
all possible combinations.

If the return code contains a "no error" message, go to the
next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, go to another segment of the program, or shut down
completely.

Additional return codes are listed with the individual

session calls to which they pertain. The return codes and their
values are listed in Appendix D.

3-18 GR11-02



SESSION CALLS

The AIF session calls used in COBOL programs are detailed on
the following pages.

Table 3-2. AIF Session Calls

Session
Call Description

CSACPT Accept session call

CSCASR | Cancel outstanding asynchronous request
CSGTAT Get attributes

CSINIT Initiate or restart a session

CSPOLL Test for LU associated with task group
CSRECV Receive message in application's buffer

CSRI Read interrupt

CSSEND Request AIF to send a message or message
segment

CSSI Send interrupt

CSSRSP Application instructs AIF to send a response
CSTERM Terminate session

CSTEST Test conditions

CSWANY Wait on any event

CSACEB ASCII-to-EBCDIC conversion

CSEBAC EBCDIC-to~-ASCII conversion

3-19 GR11-02




CSACPT

CSACPT - Accept Session Call

The CSACPT session call causes AIF to connect to a host

initiated session.

FORMAT:

CALL "CSACPT" USING SNA-WORK-AREA
NODE-NAME
REMOTE-LU~-NAME
STD-NAME
SYNC-CALL
SESSION-ID
NO-RESTART
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RCV-SQN
RETURNS
INTERRUPT-TYPE
TIMEOUT
RCVD-SENSE

DESCRIPTION:

The CSACPT session call causes AIF to connect to a
host-initiated session if there is one available. If there
is no session, AIF returns and continues processing. The LU
to which this bind refers is a reserved LU.

If your application is part of a host-initiated session, the
CSACPT session call should be the first call executed. When
this call is completed, the session is in receive state.

NOTE
This call is always made synchronously.
RETURN CODES:

The application should check the return code after each
execution of a session call. 1In addition to the values
described for RETURN-A and RETURN-B in "Checking the Return
Code," the CSACPT session call can return the following
values in RETURN-B:

Value Description

0000 No error
0025 ACCEPT Timed out
0064 Invalid node name

3-20 GR11-02



CSACPT

0153 Invalid STD name
0154 Invalid LU type in STD
0155 No LU attached

SESSION-ID

This four-character field is supplied by AIF after it
accepts the session request. The first word is the
session group name, which is assigned by AIF to each of
the sessions running in this session group. This value
is used by AIF to return a unique one-word session
identifier for this session. This value is stored in the
second word. This field is reserved for system use and
must never be altered by the application.

3-21 GR11-02



CSCASR

CSCASR - Cancel Asynchronous Request

The CSCASR session call causes AIF to cancel an outstanding
asynchronous request, if possible.

FORMAT:
CALL "CSCASR" USING SNA-WORK-AREA
DESCRIPTION:

The CSCASR session call cancels an outstanding asynchronous
request. If the previously executed asynchronous request was
already completed when the CSCASR was executed, then the
return code from CSCASR is for a completed asynchronous

call. If the previously executed asynchronous call was not
completed when CSCASR was executed and AIF succeeded in
cancelling the request, the return code from CSCASR indicates
that the call has been cancelled.

NOTE

The CSCASR session call cannot be used to cancel a
CSINIT session call, even if it has been executed
asynchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSCASR session call, the following combinations are possible:

e If SERV-REQ-CANC=Y (all other fields in RETURN-A = N) and
RETURN-B=0, you have cancelled the previously outstanding
call.

e If SERV-REQ-CANC=Y and RETURN-B>0, the previous call
completed with error. (RETURN-B contains the error code
for the previous call.)

e If SERV-REQ-COMP=Y and RETURN-B=0, the previous
outstanding call executed.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code,"
CSCASR can return the following values in RETURN-B.

Value Description

0023 No outstanding asynchronous call

3-22 GR11-02



CSGTAT

CSGTAT - Get Session Attributes

The CSGTAT session call provides the application with an
attribute for the session specified in the SNA-WORK-AREA.

FORMAT:

CALL "CSGTAT" USING SNA-WORK-AREA
RECEIVE~BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGN
GET-ATTR-TYPE

DESCRIPTION:

The CSGTAT session call provides the application with an
attribute for the session whose SNA-WORK-AREA is specified
when issuing the call. If you plan to use this session call
to request the bind image, the STD entry in the AIF
configuration must include the parameter SAVE BIND=Y.

Special notice should be given to the situation where an
interrupt is received either prior to or during the execution
of the CSGTAT session call.

l. When an interrupt is received before the execution of the
CSGTAT, the application is given the data that was in the
receive queue and informed of the interrupt.

2. If an interrupt is received during the execution of a
CSGTAT, the order is not completed, control is returned

to the application, and the return code indicates that an
interrupt has been received.

NOTE
This call is always made synchronously.
RETURN CODES:
The application should check the return code after each
execution of a session call. After the completion of the

CSGTAT session call, the following combinations are possible:

® If SERV-REQ-COMP=Y and RETURN-B=0, the receive data buffer
contains the attributes of the session specified.

3-23 GR11-02



CSGTAT

e If the value of another field in RETURN-A is Y, the CSGTAT
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code," the
CSGTAT session call can return the following values in
RETURN-B:

Value Description

0000 No error - session established

0016 Improper state - i.e., trying to receive, but in
send state :

0024 No BIND_IMAGE saved for $SGTAT

1013 Receive buffer too small

1014 Invalid attribute type

1032 Receive rejected; data traffic cleared/inactive

3-24 GR11-02



CSINIT

CSINIT - Initiate Session

The CSINIT session call can be used in two contexts:

l. To establish a session between the application and the
transaction at the host

2. To restart this session if it has been abnormally
terminated.

In issuing the session call, you must indicate for which
purpose it is to be executed.

CALL "CSINIT" USING SNA-WORK-AREA
NODE-NAME
REMOTE-LU-NAME
STD-NAME
SYNC-CALL | ASYNC-CALL
SESSION-ID
NO-RESTART
MSG-RESYNC-SEND-SQN
MSG-RESYNC-RCV-SQN
RETURNS
INTERRUPT-TYPE
TIMEOUT
RCVD-SENSE

CSINIT to Establish a Session

The initiate session call requests that AIF establish a
session between an LU at the DPS 6 or the DPS 6 PLUS and an
LU at the host, and that the local LU be assigned exclusively
to the application. Always specify NO_RESTART on initial
start-up.

In the event that AIF assigns a preestablished session to the
application, the application should store the send/receive
sequence numbers, in case a RESTART of this session ever
becomes necessary. These sequence numbers are not reset to
zero after each use. To the host, this appears as one
session. On the local application side, the session is a
serially reusable resource.

If multiple sessions are being established, a separate
SNA-WORK-AREA must be provided for each session. The session
ID should also be stored so that if a RESTART becomes
necessary, you can specify which session to restart.

3-25 GR11-02



CSINIT

NOTE

A CSINIT session call, executed asynchronously,
cannot be cancelled by using the CSCASR session
call.

CSINIT to Restart a Session

The CSINIT session call is used to restart a session in the
event that it has been abnormally terminated. Restart logic
and restart rules are described in detail in Section 6.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSINIT session call, the following combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=0, the session has been
initiated successfully.

® If the value of another field in RETURN-A is Y, the CSINIT
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values described
for RETURN-A and RETURN-B in "Checking the Return Code," the
CSINIT session call can return the following values in
RETURN-B. '

value Description

0000 No error - session established

0003 Negative response received

0004 Bind negotiation failed

0016 Improper state - i.e., trying to CSINIT with
RESTART, but not in abnormally terminated state

0032 Restart not possible

0048 System error - i.e., not enough memory available
to establish session

0049 Resource not available

0064 Invalid node name

0065 Invalid session-ID (Restart)

0150 AIF Node not yet active

0151 No active LU for session

0152 No LU available for session

0153 Invalid STD name

0154 Invalid LU type in STD
1809 Link failure

3-26 GR11-02



CSINIT

Each time you do a CSINIT with RESTART, you should check the
OUTPUT-CONTROL-WORD to verify the send/receive sequence
numbers and to find out whether it is necessary to retransmit
the last message either from the DPS 6 or DPS 6 PLUS or from
the host.

The RCVD-SENSE field contains sense data, if present, as
listed in Appendix D.

3-27 GR11-02



CSPOLL

CSPOLL - Poll Session Call

The CSPOLL session call checks to see if any LU associated
with the application program's task group has received an
unsolicited bind from the remote program.

FORMAT:
CALL "CSPOLL" USING SNA-WORK-AREA
NODE~NAME
STD-NAME
RETURNS

DESCRIPTION:

The CSPOLL session call causes AIF to test to see if any LU
associated with the application program's task group has been
attached (bound) by the remote program. The CSPOLL session
call is similar to the CSACPT session call except that the
CSPOLL does not cause a connection between AIF and the
application program if a bind has be received.

The SNA WORK-AREA used for a CSPOLL must be unique and should
not be currently used by an active session.

NOTE
This call is always made synchronously.

RETURN CODES:

The application should check the return code after each
execution of a session call. In addition to the values
described for RETURN-A and RETURN-B in "Checking the Return
Code," the CSACPT session call can return the following
values in RETURN-B.

value Description

0064 Invalid node name

0153 Invalid STD name

0155 No LU attached

0005 There is an LU being bound

3-28 GR11-02



CSRECV

CSRECV - Receive Message

The CSRECV session call causes AIF to deliver a message or
message segment from the session partner to the application's
buffer.

FORMAT:

CALL "CSRECV" USING SNA-WORK-AREA
RECEIVE-BUFFER
RECEIVE-BUFFER-SIZE
DATA-BUFFER-ALIGN
SYNC-CALL | ASYNC-CALL
MSG
RECEIVED-DATA-LENGTH
OUTPUT-CONTROL-WORD

DESCRIPTION:

The CSRECV session call causes AIF to deliver a message to
the application's buffer from the session partner.

If the user specifies MSG, then AIF assembles the chain
before delivery. 1If the user's buffer is not large enough,
the message is not delivered; the actual length of the
message or message segment is returned to the application in
the RECEIVED-DATA-LENGTH. The application can either execute
the receive again with an adequate buffer, or move N to the
MSG field and execute the receive. If you specify N, single
segments are delivered to the application's buffer. If the
message segment delivered is the last segment, then AIF sets
the end of message bit in the OUTPUT-CONTROL-WORD.

Special notice should be taken when an interrupt is received
prior to or during the execution of a CSRECV.

If an interrupt has already been received when the CSRECV
session call is executed, the application is given the data
and informed of the interrupt. RETURNS shows either
SERV-REQ-CANC=Y and INT-REC=Y or SERV-REQ-COMP=Y and
INT-REC=Y, depending on whether or not the data was in the
receive queue.

If an interrupt is received during the execution of a CSRECV,

the order is not completed, and return is made to the
application.

3-29 GR11-02



CSRECV

Check the OUTPUT-CONTROL-WORD before proceeding, to determine
if end of message indicator has been received or if the host
requires a response.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSRECV session call the following combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=0, then the CSRECV had
been completed with no error.

e If the value of another field in RETURN-A is Y, the CSRECV
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

If SERV-REQ-COMP=Y, check the OUTPUT-CONTROL-WORD to make
sure that the beginning of message and end of message
indicators have been received. If there is no end of message
indicator, you must do another CSRECV to receive the next
segment of the message.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSRECV session call can return the following values in
RETURN-B.

Value Description

0000 No error - CSRECV successful

0016 Improper state - i.e., trying to receive while in
send state

0019 Receive buffer too small

0048 System error - unable to receive

0050 Receive rejected; data traffic cleared/inactive
0065 Invalid session-ID

0066 - Asynchronous service request outstanding

0256 Session unbound by host
1809 Link failure

NOTE
If a RESTART of this session is a possibility,
then the receive sequence number should be stored

by the application executing this CSRECV session
call.

3-30 ' GR11-02



CSRI

CSRI - Read Interrupt

The CSRI session call reads interrupt information from the
host or control information from the AIF LU when there is no
other AIF session call outstanding.

FORMAT:

CALL "CSRI" USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH

DESCRIPTION:

The CSRI session call enables the application to read
interrupt information from the host or control information
from AIF when there is no other AIF session call outstanding.

If either of the following situations occurs, the condition
is reported to the application, the SNA-WORK-AREA is updated
the ‘same way as for CSTEST or CSWANY and a return is made to
the application.

As with any asynchronous call, the application must execute a
CSWANY or CSTEST session call to determine when the CSRI
session call is complete and regain control.

1. When an interrupt is received, the INTERRUPT-TYPE and the
SENSE-DATA fields in the SNA-WORK-AREA contains the
appropriate information.

2. If data has been received for which there is no
outstanding order, the user must issue a CSRECV to gain
access to this data. The length of the received data is
in INTERRUPT-DATA-LENGTH parameter of the SNA-WORK-AREA.

NOTE
The CSRI session call is always made asynchronously.

RETURN CODES

The application should check the return code after each
execution of a session call. After the completion of the
CSRI session call, the following combinations are possible:

® If SERV-REQ-COMP=Y and RETURN-B=0, the interrupt has been
received with no error.

3-31 GR11-02



CSRI

e If the value of another field in RETURN-A is Y, the CSRI
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSRI session call can return the following values in
RETURN-B. ‘

Value Description

0002 Data received but no read

0016 Improper state - i.e., trying to receive while
in send state

0050 Receive rejected; data traffic cleared/inactive

3-32 GR11-02



CSSEND

CSSEND - Send Message

The CSSEND session call sends a message (RU) or message
segments (chain) to a session partner.

FORMAT:

CALL "CSSEND" USING SNA-WORK-AREA
SEND-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGN
SYNC-CALL | ASYNC-CALL
REPLY-REQUEST
MSG-COMPLETE
FMH
RQD

DESCRIPTION:

The CSSEND session call instructs the sending of a message
(RU) or message segments (chain) to a remote LU. When you
are sending an entire message, the MSG-COMPLETE parameter
must be Y. When sending message segments, the MSG-COMPLETE
parameter must be N, except for the last segment, when
MSG-COMPLETE = Y.

Special notice should be given to the situation where the
application is executing a CSSEND session call but an
interrupt is received before or during the execution of the
call.

If an interrupt has already been received when the CSSEND
session call is executed, the application is informed of the
interrupt. If an interrupt is received during the execution
of the CSSEND session call, the CSSEND session call
completes, and when the application executes the CSWANY or
CSTEST session call, return is made to the application. The
return code indicates the interrupt received and the result
of the CSSEND session call.

NOTE
If restart of this session is a possibility, then
the send sequence number and the entire message

must be saved by the application executing this
CSSEND session call.

3-33 GR11-02



- CSSEND

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSSEND session call, the following combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=0, the CSSEND has been
completed with no error.

e If the value of another field in RETURN-A is Y, the CSSEND
was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSSEND session call can return the following values in

RETURN-B.

vValue

Description

0000
0003
0016

0018
0048

0050
0256

No error - send successful

Negative response received

Improper state - i.e., trying to send in receive
state

Invalid input control indicator(s) - i.e.,
REPLY-REQUEST improperly indicated

System error

Send rejected

Session unbound by host

3-34 GR11-02



CSSI

CSSI - Send Interrupt

The CSSI session call is used to send Data Flow Control
commands to the session partner or to pass control information to
the System Service Control Point or to AIF.

FORMAT:

CALL 'CSSI' USING SNA-WORK-AREA
SEND-BUFFER
SEND-BUFFER-SIZE
DATA-BUFFER-ALIGNMENT
INTERRUPT-TYPE
REPLY~-NAME
SENSE-DATA

DESCRIPTION:

The CSSI session call is used to send the following three
types of information:

1. Send data flow control commands to the session partner
2. Pass control information to AIF.

3. Pass statistical information to SSCP.

A list of interrupt types is discussed in Appendix D.

The format of the buffers that you create to send CNM, alerts
and maintenance statistics are detailed in Section 7.

NOTE
The CSSI session call is always made synchronously.
RETURN CODES:
The application should check the return code after each
execution of a session call. After the completion of the

CSSI session call, the following combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=0, the interrupt has been
sent with no error.

@ If the value of another field in RETURN-A is Y, the CSSI

was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

3-35 GR11-02



CssI

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the

CSSI session call can return the following values in
RETURN-B.

value Description

0000 No error

0003 Negative response received

0016 Improper state

0018 Invalid input control indicator(s)

0020 Invalid interrupt type

0021 Invalid status word/user code

0050 Receive rejected; data traffic cleared/inactive

3-36 GR11-02



CSSRSP

CSSRSP - Send Response

The CSSRSP session call requests that AIF send a response to
a previous message.

FORMAT:

CALL "CSSRSP" USING SNA~-WORK-AREA
SYNC-CALL | ASYNC-CALL
SEND-RESPONSE-TYPE
SENSE-DATA

DESCRIPTION:

The CSSRSP session call sends a response to a previous
message on behalf of the application. The following response
types are possible:

Type Value
Negative Response "t
Positive Response b
Wait for Ready-to-receive "R"
No Ready-to-receive "N"
None non

If this response is negative, the application also has the
option of sending sense data.

RETURN CODES:

The application should check the return code after each
execution of a session call. After the completion of the
CSSRSP session call the following combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=0, the response has been
sent with no error.

@ If the value of another field in RETURN-A is Y, the CSSRSP

was not successful, and RETURN-B contains the return code
to indicate the reason for the error.

3-37 GR11-02



CSSRSP

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSSRSP session call can return the following values in
RETURN-B:

value Description

0000 No error
0016 Improper state

0018 Invalid input control indicator(s) - SEND
RESPONSE TYPE improperly indicated
0050 Send rejected; data traffic cleared/inactive

3-38 GR11-02



CSTERM

CSTERM - Terminate Session

The CSTERM session call terminates the AIF session.
FORMAT:

CALL "CSTERM" USING SNA-WORK-AREA
TERMINATE-TYPE

DESCRIPTION:

The CSTERM session call terminates the AIF session.

Termination can be either normal or abnormal. Whether it is

normal or abnormal is indicated by a parameter within the

CSTERM session call.

@ If the CSTERM session call indicates normal termination,
an orderly termination message is sent to the session
partner's LU.

@ If the CSTERM session call indicates abnormal termination,
the following events occur:

- The AIF LU terminates the session.

- AIF sends an abnormal termination message to inform the
host LU.

After the session is terminated, the LU task is again
available for other users.

Abnormal termination can be issued at any time; the last
session call is cancelled if it is not completed.

NOTE
The CSTERM séssion call is always made synchronously.
RETURN CODES:
The application should check the return code after each
execution of a session call. After the completion of the

CSTERM session call the following combinations are possible:

e If SERV-REQ-COMP=Y and RETURN-B=0, the session has been
terminated. '

3-39 GR11-02



CSTERM

e If the value of another field in RETURN-A is Y, the
session was not terminated as intended, and RETURN-B
contains the return code to indicate the reason for the
error.

In addition to these combinations and the values for RETURN-A
and RETURN-B described in "Checking the Return Code," the
CSTERM session call can return the following values in

RETURN~B:

value Description

0000 No error -
0016 Improper state - i.e., normal termination

rejected because data is on receive queue

3-40 GR11-02



CSTEST

CSTEST - Test for Events

The CSTEST session call tests conditions for the session
whose work area address is provided in SNA-WORK-AREA.

FORMAT:

CALL "CSTEST" USING SNA-WORK-AREA
INTERRUPT-DATA-LENGTH

DESCRIPTION:

This session call tests conditions for the session currently
being executed. Executing this call causes AIF to
immediately report to the application one of the following
conditions:

1. No event
2. Interrupt received
3. Asynchronous order completed or cancelled

4. Permission to send after a send was rejected due to data
traffic inactive or pacing

5. Data has been received for which there is no outstanding
order.

Conditions 2 and 3 can coexist.

If an interrupt was received, the INTERRUPT-TYPE and the
SENSE-DATA fields in the SNA-WORK-AREA contain information
pertaining to the type of interrupt.

If an asynchronous order were completed or cancelled, then
AIF delivers the return code of the completed order
immediately, and the application must examine all pertinent
fields in the SNA-WORK-AREA.

If data has been received for which there is no outstanding
order, the user must issue a CSRECV session call to gain
access to this data. Nothing is delivered to the user as a
result of the CSTEST session call, but the length of the
received data is found in the INTERRUPT-DATA-LENGTH parameter
of the SNA-WORK-AREA.

3-41 GR11-02



CSTEST

NOTE

The CSTEST session call can be executed while an
asynchronous call is outstanding. This session
call is always made synchronously. If there was
an asynchronous order outstanding, the condition
is tested, reported, and the order remains
outstanding. Once the test determines that the
order has been completed, the call is no longer
outstanding.

RETURN CODES:

The appiication should check both RETURN-A and RETURN-B after
each execution of a session call. After the completion of
the CSTEST call, the following combinations are possible.

e If all of the fields in RETURN-A are N and RETURN-B=0,
there is an asynchronous call outstanding.

e If SERV-REQ-COMP=Y and RETURN-B=0, then the previously
executed asynchronous call has been completed
successfully.

e If SERV-REQ-COMP=Y and RETURN-B>0, then the previously
executed asynchronous call has been completed with error.

e If SERV-REQ-CANC=Y and RETURN-B>0, then the previously
executed call has been cancelled for the reason
designated.

In addition to these combinations and the COBOL error codes
described in "checking the Return Code," the CSTEST session
call can return the following values in RETURN-B:

value Description

0000 No event

0001 Permission to send - i.e., a previous attempt to
send was rejected
0002 Data received but no read

3-42 GR11-02



CSWANY

CSWANY - Wait on Events

The CSWANY session call causes AIF to issue a system "wait
any" on behalf of the application. The application is dormant
until one of the requests is complete.

FORMAT:

CALL "CSWANY" USING SNA-WORK-AREA
WORK=-AREA-ID

DESCRIPTION:

The CSWANY session call causes execution of the application
program to be suspended until any asynchronous request
terminates. Asynchronous requests other than AIF requests
also cause control to return to the CSWANY session call
executor providing that the P-bit in the request block was
set by the executor prior to the execution of the CSWANY
macrocall.

You must specify an SNA-WORK-AREA when issuing a CSWANY. If
an application has multiple sessions established, specifying
an SNA-WORK-AREA does not imply that the CSWANY responds only
to an event on that session. If an application has more than
one session established, with outstanding asynchronous orders
on multiple sessions, executing a CSWANY session call returns
control to the application with WORK-AREA-ID containing the
session ID of the session whose request has completed.

NOTE
The CSWANY session call is always made synchronously.
RETURN CODES:

The application should check both RETURN-A and RETURN-B after
each execution of a session call. After the completion of
the CSWANY call, the following combinations are possible.

e If SERV-REQ-COMP=Y and RETURN-B=0, then the previously
executed asynchronous call has been completed
successfully.

® If SERV-REQ-COMP=Y and RETURN-B>0, then the previously
executed asynchronous call has been completed with error.

@ If SERV-REQ-CANC=Y and RETURN-B>0, then the previously

executed call has been cancelled for the reason
designated.

3-43 GR11-02



CSACEB

CSACEB - ASCII-to-EBCDIC Conversion

The CSACEB session call converts data from ASCII to EBCDIC.
FORMAT:

CALL "CSACEB" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST-POSITION
CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSACEB session call converts data from ASCII to EBCDIC.
The parameters used with this session call provide the
buffers containing the data to be converted and the converted
data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM-FIELD and the CONVERT-TO-FIELD.

3-44 GR11-02



CSEBAC

CSEBAC - EBCDIC-to—-ASCII Conversion

The CSEBAC session call converts data from EBCDIC to ASCII.
FORMAT:

CALL "CSEBAC" USING SNA-WORK-AREA
CONVERT-FROM-FIELD
FROM-LEFT-MOST-POSITION
CONVERT-TO-FIELD
TO-LEFT-MOST-POSITION
CONVERSION-LENGTH

DESCRIPTION:

The CSEBAC session call converts data from EBCDIC to ASCII.
The parameters used with this session call provide the
buffers containing the data to be converted and the converted
data.

The maximum length of data that can be converted is 32,767
bytes.

If you want to convert the data in place, specify the same
dataname for the CONVERT-FROM FIELD and the CONVERT-TO-FIELD.

3-45 GR11-02






Section 4

PROGRAMMING
LUTYPE 6.2 CONVERSATIONS
IN ASSEMBLY LANGUAGE

This section describes the Assembly language verbs that are
used in an LU Type 6.2 conversation with host service or
transaction programs. Topics include:

® Basic Conversation Verbs

® Programming considerations
- Getting started
- Creating a verb parameter block
- Conversation states

Checking the return code

® Individual conversation verbs
- Format
- Descriptions
- Return codes.

BASIC CONVERSATION VERBS

The basic conversation verbs used by AIF are system-provided
macrocalls. These verbs have a list of arguments that can be
specified by the programmer or accepted in their existing form.
AIF verbs follow the conventions for Assembly language, which are
described in detail in the ONE PLUS Assembly Language (MAP)
Reference manual (HE38). The verb can have an optional label.

If no label is used, at least one blank space must precede the
verb.

4-1 GR11-02



When AIF is activated, it defines the resources to be made
available to the session while that conversation is active. AIF
allocates a session for a conversation from a group of available
LU sessions. AIF can either start a session to the host system
at initiation or it can wait for an application to request to
allocate a conversation. The time of session initiation is a
configuration option.

An application requests to allocate a conversation with a
remote transaction program by executing the $SALLO verb. AIF
looks for an available session to allocate for that
conversation. If no session is immediately available, the
application can specify whether control should be returned to the
program. The conversation uses a session for only the time it
takes to execute the verb. After the verb is executed, the
conversation retains its resources until a deallocate verb is
issued or a deallocate confirmation is received from the host
application.

An application gains access to a host-initiated conversation
by executing a $SATCH verb. When an ATTACH command is received
from the host, AIF loads the transaction program by spawning a
group with the attached application as the lead task, and sends a
response to the host that the program is attached. The DPS 6
PLUS programs must issue a $SATCH verb before any other verbs are
issued.

User-selected items are known as arguments. These arguments
are positional within the verb--the order of positional arguments
indicates the variables to which data is applied. Thus, the
order of your arguments must be the same as the order of the
positional arguments within the verb.

The following rules govern the use of positional arguments:
e Omitted arguments that precede an included argument must
be indicated by the presence of a delimiting comma for

each omission.

e One or more spaces must separate the verb name from its
arguments, with a comma between each argument. (The
horizontal tab character is equivalent to a space.)

® A semicolon at the end of a line indicates that the next
line is a continuation line.

In the following example, the first argument has been
omitted; its position has been held by a delimiting comma.
Spaces separate the verb name from its arguments.

$SALLO ,'AIFNODEl','LU104',=Z'20FO0F0F0"',AVAIL,CONFIRM

4-2 GR11-02



The arguments for these conversation verbs are found in the
verb parameter block (VPB). A VPB must be provided for each
verb. These fields can be altered either during initialization
or by including the appropriate arqguments in the verb itself.

At the completion of each verb, when control is returned to
the application, a return code is placed in register $Rl. The
return code can also be found in VP RCD. This return code
indicates whether a verb has been completed error free. The
application should check this return code after each verb to
verify the return status of the verb. Additional information, if
desired, can be found in the output control word (VP_OCT), and
other output parameters as defined for individual session calls.

PROGRAMMING CONSIDERATIONS

Many of the programs that use AIF conversation verbs are
written in Assembly language. These applications may be
reentrant and may not require more than one occurrence of a given
verb.

Special considerations that the programmer must bear in mind
fall into five categories, which are discussed in this section:

Getting Started

Creating a verb parameter block
Conversation state

Host initiated sessions
Checking the return code.

Getting Started

When using AIF verbs in an Assembly language program,
remember the following steps:

1. 1In order to use the verbs and utility macros included
with AIF, you must first make them available to your
program. When beginning your program, include the
following statement:

LIBM '>>LDD>MACROS>MAC_USER'

2. Then issue the macrocalls $SVPB and $SAIRC to define the
VPBB and return codes in memory.

3. You must also set aside a workspace with room for the

stack, the VPB, and your send/receive buffer, as in the
following example:

4-3 GR11-02



*

* WORK LOCATIONS: STACK, VPB, & SEND/RECEIVE BUFFER
*

WKSP EQU 0 BEGINNING OF WORKSPACE
MYSTACK EQU WRKSP+50 REGISTER STACK

CNTLWD EQU MYSTACK FOR PROGRAM CONTROL
MYVPB EQU CNTLWD+1 BEGINNING OF VPB
BUFFER EQU MYVPB+VP_SIZ SEND/RECEIVE BUFFER
BUFSZ EQU 2000 BUFFER SIZE

WKSPSZ EQU BUFFER+BUF_SZ WORKSPACE SIZE

Verb Parameter Block

Communication between the application program and AIF is
through the application-provided VPB. The programmer should note
that the same VPB is used each time a particular conversation is
referenced until that conversation is deallocated. If a program
is to run multiple conversations, you must supply a separate VPB
for each conversation.

When the application provides parameters with a given verb,
the macrocode updates the appropriate VPB fields before executing
an AIF monitor call. If any of the fields have been changed, the
new values are in the VPB when you reexamine it.

The first parameter of each verb is the location of the VPB,
with the exception of $SWAIT. If not specified as the first
parameter of the verb, this pointer must be in register $B4
Allowable formats for this parameter and all address pointers are
the same as found in the "Addressing Parameters" section of the
System Programmer's Guide, Vol., 2.

Where a value rather than an address is provided in a
parameter, allowable formats are:

1. (*)$Bl(.S$R)

2. LABEL

3 ) =$Rl

4. =literal
5. !LABEL

Conversation verb users must provide a separate VPB for each
conversation. The programmer can provide the parameters for the
verbs by moving the parameters to the VPB before issuing the verb
(Example 1) or when issuing the verb (Example 2).

The following examples show both methods of creating a VPB

for the $SATCH verb. Which convention you choose to follow
depends upon the requirements of your program.

4-4 GR11-02



Example 1l:

The following example shows the parameters in the VPB being
loaded before issuing the verb. Offsets to the VPB are
provided in the displacement macro $SVPB. (Refer to the VPB
template in Appendix I for appropriate offsets.)

NODENM DC  'AIF505 '
STD NM DC  'BB'
SLV.VL DC 0

LDB $B4, $B6.VPB Load VPB address to $B4

LDI $B6.NODENM Get first 4 bytes of nodename

SDI $B4.VP_NOD Store first 4 bytes of
nodename in VPB

LDI $B6 .NODENM+2 Get second 4 bytes of nodename

SDI $B4.VP_NOD+2 Store second 4 bytes of

nodename in VPB
LDR $R2,$B6.STD_NM Get STD name
STR S$R2,$B4.VP_STD Store STD name
LDR $R2,$B6.SLV_VL Set sync level to none
STR $R2,$B4.VP_SLV Store the sync level

$SATCH

Example 2:

The following example shows the S$SSALLO verb with the
parameters specified within the macrocall.

This sequence causes the equivalent of the following to be
issued:

$SATCH , 'AIF505','BB',NONE

Conversation States

The subset of verbs that a program can issue at a given time
is determined by the state of the conversation at that time., For
example, if a conversation is in receive state, it cannot issue a
send verb without first issuing a verb to change the conversation
to send state. The program must be aware of the state of the
conversation, which can be found in the VP_CST field of the VPB.
Executing many of the basic conversation verbs causes the
conversation to change its state.

Table 4-1 lists the conversation states and their
definition. Table 4-2 shows what verbs a conversation can issue
from each state. The description of each verb includes the state
of the conversation at the end of execution.

4-5 GR11-02



Table 4-1.

Conversation States

State Definition

Reset The state in which the program can allocate a
conversation.

Send The state in which the program can send data
or request confirmation.

Defer The state in which the program can request
confirmation or flush the LU's send buffer to
prepare to change states.

Receive | The state in which the program can receive

. data or confirmation information.

Confirm | The state in which the program can send a
confirmation reply.

Table 4-2. Conversation States From Which Verbs Can Be Issued
Conversation State
Verb Reset | Send | Defer | Receive | Confirm

$SALLO X

$SATCH X

$SCONF X X

$SCNFD X

$SDEAL flush X

$SDEAL sync level X

$SSDEAL abend X X X X

S$SFLSH X X

SSPONR X

$SPTOR X

SSRAW X X

$SRTOS X X

$SSDAT X

$SSERR X X X

$SWAIT X

4-6 GR11-02




Host-Initiated Conversations

AIF supports host-initiated conversations. The program name,
node name, STD name, and base level are provided to the
application program by AIF via the standard operating system
parameter list. Refer to the System Programmer's Guide, Vol. 2.
When the application program begins execution, it must execute a
SSATCH verb as the first conversation verb, providing the STD
name and the node name for the LU to be used. The node name and
the STD name provided with the $SATCH verb must be the same as
the parameters passed by AIF.

After the S$SATCH verb is executed, the application is in
receive state. The $SATCH verb allows AIF access to a
host-initiated conversation. AIF associates the first
unsolicited bind (host-initiated session request) to the first
$SSATCH session call from the task group that AIF spawned.

The application can issue multiple $SATCHs to check for
additional host-initiated sessions intended for this
application. For an application to accept more than one
conversation, all LUs that can receive binds for that application
must be reserved LUs. Each of these LUs must have the same
group_id specified in the LU entry in the configuration file.

NOTE

In order to execute a START UP.EC instead of an
attached program, you must create an attach
program table entry with a dummy name (eg.,
ATTACH_PROG=ABC), specifying the appropriate spawn
group parameters, and include an ALIAS for ABC
(eg., ALIAS=>>SYSLIB2>EC?EXECL) to execute the
START UP.EC specified in the home directory.

Refer to SNA6 Network Configuration for further
information.

Checking the Return Code

After a session call is executed, AIF returns a status code
known as the return code to the Verb Parameter Block (VPB) to
indicate how the call was completed. The application should
examine this return code at the completion of each verb to
determine if the call has been completed error free.

The return code has 16 bits and is placed in register SRl by

AIF before control is returned to the application program. The
value of the return code can also be found in VP_RCD.

4-7 GR11-02



Bits 0 through 4 have special meaning and represent general
AIF return codes that could occur for any session call. If the
bit is on, then the return code is set. These bits should be
examined individually, then "masked out" so that the application
can examine the remaining bits. The following masks are provided
in the $SAIVR macrocall for checking each of the first five bits
as follows.

Bit 0 VRABND

The conversation has abended or deallocated. An SOPR
command has been entered that caused the conversation to
abend, or the conversation was deallocated by the remote
program. The specific reason for this termination can be
found in the bits 5 through 15 of the return code or in
VP ABT.

Bit 1 VRSTOP

An SOPR STOP command has been received that causes the
conversation to be deallocated when the specified time has
elapsed. If no time is entered, the conversation is
deallocated immediately. During this time the application
can continue to process, but should normally terminate.

The time found in the TIME argument (VPB.VP_TIM) is the
wall clock time in standard 48-bit format at which the
session terminates.

Bit 2 VRRINT

This bit is reserved and should not be used by the
application.

Bit 3 VRSCNL

The verb has been cancelled; it is not processed. If the
application desires the order to be processed, the verb
must be reexecuted. The specific reason for which the
call has been cancelled can be found in the bits 5 through
15 of the return code.

Bit 4 VRSCMP
The service request (verb) has been completed.
A return code can indicate more than one condition occurring
at the same time. For example, it can indicate both a

deallocation and a completed call, or an SOPR STOP and a
completed call.

4-8 GR11-02



The masks VRABND, VRSTOP, VRRINT, VRSCNL, and VRSCMP are
provided for your convenience in checking bits 0 through 4.
After you have checked these bits, null them out and examine bits
5 through 15. If you choose to null these bits by using VRMASK,
which is provided in the software (VRMASK=07FF), use the
following statement:

AND SRl ,=VRMASK

Bits 5 through 15 contain the return code for a completed or
cancelled call. One way of doing this part of the return code is
to issue a "compare" instruction as follows:

CMR SR1,=VROKAY  (VROKAY = 0000)
BE CONT_1

If the return code contains an "okay" message, branch to the
next segment of the program. If the return code contains an
error condition, you might decide to record it to an error-out
file, branch to another segment of the program, or shut down
completely.

Appendix F contains a complete list of return codes. These
labels and their hexadecimal values can be found in the macro
SSAIRC (AIF Return Codes).

INDIVIDUAL VERB FORMATS

Table 4-3 lists the basic conversation verbs that are
supported by AIF. These verbs are described in detail on the
following pages.

4-9 GR11-02



Table 4-3. AIF LU Type 6.2 Verbs

Verb Description

$SALLO | Allocate verb

$SATCH Attached verb

$SCONF | Confirm verb

$SCNFD | Confirmed verb

$SDEAL | Deallocate verb

$SFLSH | Flush verb

$SPONR Post on Receipt verb
$SPTOR Prepare to Receive verb
SSRAW Receive and Wait verb
$SRTOS | Request to Send verb
$SSDAT | Send Data verb

$SSERR | Send error verb

$SWAIT | Wait verb

$SACEB Converts ASCII to EBCDIC
SSEBAC Converts EBCDIC to ASCII

4-10

GR11-02



$SALLO

SSALLO - Allocate Verb

The $SALLO verb is used to allocate a conversation between a
local program and a remote program.

FORMAT:
[label] $SALLO [vpb address] Pl: SB4
[,node name] P2: VP_NOD
[,remote lu name] P3: VP_RLN
[,trans program name] P4: VP_TPN&VP_TPL
[,std name] P5: VP_STD
[,return control] P6: VP_ICT.VBRCTL
[ssync levell] P7: VP_SLV

ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

node name (VP_NOD)

This parameter identifies the AIF node to which the
application is directing this verb. This field contains
eight alphanumeric characters. If you are loading the
VPB yourself, and your node name contains fewer than
eight characters, this field must be left-justified and
space-filled.

remote lu name (VP_RLN)

The name by which the remote LU is known to this
application. This field contains eight alphanumeric
characters. If you are loading the VPB yourself, and the
remote lu name contains fewer than eight characters, this
field must be left-justified and space-filled.

trans program name (VP_TPN + VP_TPL)
This parameter contains the name of the transaction
program to be attached to the host. This host program

becomes the session partner of the program executing this
$SALLO.

4-11 GR11-02



$SALLO

std

How you enter the transaction program name determines how
the string is passed to the host. If you enter an ASCII
string, =A'name', S$SALLO translates the string to EBCDIC
and puts the length of the string in VP_TPL. If you
enter a hexadecimal string, =Z'hexname', where hexname
contains an even number of hexadecimal digits, $SALLO
puts the length of the string in VP_TPL and does not
translate it.

If you are loading the VPB yourself, clear bit
VP_TPL.VBTPNT to indicate that you want the transaction
program name translated, or set this bit to indicate that
you do not want the TPN translated. Put the length of
the transaction program name into the right byte of

VP TPL.

name (VP_STD)

The configured session type descriptor (STD) that lists
the attributes of the conversation to be allocated, as
defined in the configuration for this node. This field
consists of two alphanumeric characters.

return control (VP_ICT.VBRCTL)

This parameter indicates whether the local LU should
return control to the local program, in the event that it
is unable to allocate a conversation.

The following arguments are valid for this parameter:

AVAIL - allocates a session for the conversation before
returning control to the program. If the local LU
fails to obtain a session for the conversation, an
allocation error is reported in $SALLO return code.

e IMMED - allocates a session for the conversation if one

is immediately available and then returns control to
the session.

- If a session is immediately available, the
conversation is allocated and control is returned
with a return code of OKAY. The local LU must be
the contention winner.

4-12 GR11-02



$SALLO

- If a session in not immediately available, the
conversation is not allocated and control is
returned with a return code of VRUNSU.

- If a session is immediately available and an error
occurs in allocating a conversation, the error is
reported in the return code for the $SALLO.

NOTE

If an LU is configured with the contention winner
as non-negotiable, the LU must be both reserved
and preestablished to be available for allocation
with a return control of IMMED.

sync level (VP_SLV)

This parameter indicates how the local and remote
programs perform confirmation processing on this
conversation. The following arguments are valid for this
parameter:

@ NONE - do not perform confirmation processing on this
conversation. Programs that specify NONE do not issue
any verbs or recognize return parameters related to
synchronization.

@ CONFIRM - performs confirmation processing only on
this conversation. Programs that specify CONFIRM
issue verbs and recognize returned confirmation
parameters, but do not recognize return parameters
related to synchronization.

DESCRIPTION:

The $SALLO verb first allocates a session between a local LU
and a remote LU, then allocates a conversation over that
session, between a local program and a remote program, and
puts the conversation in send state. Once you have allocated
a conversation over a session, that session becomes available
to other conversations until this conversation is
deallocated.

The $SALLO verb is used to allocate conversations for either
transaction programs or service component programs. The
parameters issued with this verb identify the partners in the
conversation and provide bind information about the
conversation.

4-13 GR11-02



$SALLO

The $SALLO verb must be issued before any other verbs that
refer to the specified conversation. At the completion of
the $SALLO verb, the conversation enters send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value Label Description

0000 VROKAY OK

0040 VRINOD Invalid node name

0042 VRITPN Invalid transaction program name (null
value)

0049 VRSLNS Synchronization level not supported by LU

004B VRIRTC Invalid return control

0096 VRNNAC Node not yet active

0097 VRNLAC No active LU for session

0098 VRNOAV No LU available for session

0099 VRISTD Invalid STD name

009A  VRILUT Invalid LU type in STD

In addition, if you specified a return control of IMMED, the
following return code is possible.

Value Label Description

0001 VRUNSU Unsuccessful

4-14  GR11-02



$SATCH

SSATCH - Attached Verb

The $SATCH verb is used by an attached program to gain access
to the conversation.
FORMAT:
[label] S$SATCH |[vpb address] Pl: $B4
[ ,node name] P2: VP_NOD
[,std name] P3: VP_STD
[,sync level] P4: VP_SLV
ARGUMENTS
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register §$B4.

node name (VP_NOD)

std

This parameter identifies the AIF node to which the
application is directing this verb. This field contains
eight alphanumeric characters. If you are loading the
VPB yourself, and your node name contains fewer than
eight characters, this field must be left-justified and
space-filled.

name (VP_STD)
The configured session type descriptor (STD) which lists

the attributes of the conversation to be allocated. This
field consists of two alphanumeric characters.

sync level (VP_SLV)

This parameter indicates how the local and remote
programs perform confirmation processing on this
conversation.

The following arguments are valid for this parameter:
@ NONE - do not perform confirmation processing on this
conversation. Programs that specify NONE do not issue

any verbs or recognize return parameters related to
synchronization.

4-15 GR11-02



$SATCH

® CONFIRM - performs confirmation processing only on
this conversation. Programs that specify CONFIRM
issue verbs and recognize returned confirmation
parameters, but do not recognize return parameters
related to synchronization.

DESCRIPTION:

The $SATCH verb causes the program to be connected to a
host-initiated conversation. When the host issues an ATTACH
command to allocate a conversation, AIF loads the DPS 6
transaction by spawning a group with the program as the lead
task. When the program is loaded, it must issue the $SATCH
verb to tell the host that the transaction program has been
attached to the session, and the node name and STD name with
which it is associated.

If the application is intended for host-initiated sessions,
the $SATCH should be the first verb executed. After the
$SATCH verb is executed, the conversation enters receive
state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

Value Label Description

0000 VROKAY OK

0040 VRINOD Invalid node name

0099 VRISTD Invalid STD name

009B VRNOAT No LU attached by Remote TP

00D0 VRAESP Synchronization level not supported by
LU

4-16 GR11-02



$SCONF

SSCONF - Confirm Verb

The $SCONF verb sends a confirmation request to the remote
program.

FORMAT:

[label] S$SCONF [vpb address] Pl: $B4
ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SCONF verb requests that the remote program send an
acknowledgment, and waits for a response. The S$SCONF verb is
used in confirmation processing, and in verifying that the
conversation has been allocated or data has been received.
SSCONF is not used if the conversation has been allocated
with a synchronization level of NONE. This verb causes the
LU to flush its send buffers.

When the SSCONF verb is issued in defer state following a
SSPTOR, the conversation enters receive state. When the
$SCONF verb is issued in defer state following $SDEAL, the
conversation enters reset state. When the $SCONF verb is
issued in send state, the state does not change.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-17 GR11-02



$SCONF

In addition to the general return codes, the following values
are possible for bits 5 through 15.

value Label Description

0000 VROKAY OK

0047 VRVBNS Verb not supported (conversation was
allocated with a sync level of none)

0041 VRIRID Invalid resource ID

0011 VRNSDF Not in send/defer state

0018 VRLRNF Logical record not finished yet

00F1 VRDAPG Remote deallocation--ABEND program

00F2 VRDASV Remote deallocation--ABEND service

00F3 VRDATM Remote deallocation--ABEND timer

0004 VRPEPR Program error--purging

0007 VRSEPR Service program error, purging

0103 VRPGER Resource failure, no retry

0100 VRUNBI Session unbound by host unexpectedly

0101 VRSSHU Session shutdown by host orderly

0102 VRURTO You are timed out by SOPR command

0310 VRADLU ACTLU/DACTLU received

0711 VRLKFL Link failure

0712 VRADPU ACTPU/DACTPU received

0713 VRACSA SA (SOPR) 'ABORT' AIF node

0714 VRSABT $S abort AIF group

OUTPUT CONTROL WORD

The request to send received field in the output control word
(VP_OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state. If VP_OCT.VBRRTS is set, then this condition is true.

4-18 GR11-02



$SCNFD

$SCNFD - Confirmed Verb

The $SCONFD verb sends a confirmation response to the remote
program.

FORMAT:

[label] S$SCNFD [vpb address] Pl: $B4
ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SCNFD verb sends a confirmation to a remote program,
always in response to a request for confirmation. The $SCNFD
verb is used in confirmation processing and error detection.
$SCNFD is not used if the conversation has been allocated
with a synchronization level of NONE.

The what-received parameter of the previous receive and wait
verb determines what state the conversation enters after the
$SCNFD is executed. If the $SRAW returned a confirm
indicator, the conversation enters receive state. If the
S$SRAW indicated confirm-send, the conversation enters send
state. If the S$SRAW indicated confirm-deallocate, the
conversation enters reset state.

RETURN CODES:

" The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-19 GR11-02



$SCNFD

In addition to the general return codes, the following values
are possible for bits 5 through 15:

Value Label Description

0000 VROKAY OK

0047 VRVBNS Verb not supported (conversation was
allocated with a sync level of nonej

0041 VRIRID Invalid resource ID

001ls VRNCNF Not in confirm state

4-20 GR11-02



$SDEAL

SSDEAL -~ Deallocate Verb

The S$SDEAL verb deallocates the specified conversation from
the transaction program.

FORMAT:
[label] S$SDEAL ([vpb address] Pl: $B4
[,type] P2: VP_TYP
[,LOGlNO_LOG] P3: VP_ICT.VBLGDA
[slog data buffer] P4: VP_BUF
[,1og data length] P5: VP_DLG

ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

type (VP_TYP)

This parameter specifies whether the deallocation is to
be completed as part of this verb or deferred until
another verb is issued or a certain condition is met.

The following arguments are valid for this parameter:

® SYNC L - perform deallocation according to the sync
level specified when the conversation was allocated:

= If sync level = NONE, $SDEAL flushes the local LU's
send buffer and deallocates normally.

- If sync level = CONFIRM, S$SDEAL sends a confirma-
tion request to the remote LU and, if the return
code is OK, deallocates the conversation normally.
If the return code is UNSUCCESSFUL, S$SDEAL returns
the conversation to its previous state.

@ FLUSH - flushes the local LU's send buffer and
deallocates the conversation normally.

The following type arguments are for error handling, and
are application-dependent.

e PROG_AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

4-21 GR11-02



$SDEAL

e SVC_AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

e TIM AB - flushes the local LU's send buffer when the
conversation is in send or defer state and deallocates
the conversation abnormally.

NOTE

If ABEND deallocation occurs when the conversation
is in send state, logical record truncation can
occur. When the conversation is in receive

state, data purging can occur.

{LOG|NO_LOG}

log

log

DES

This parameter indicates whether or not the system error
log is transferred to the transaction when the
conversation is deallocated in an ABEND situation.

data buffer

This parameter is a pointer to the product specific error
data that is kept in the system error logs of the local
and remote LUs. This parameter is used only with an
ABEND deallocation type.

data length

This parameter specifies the length of the log data
buffer in bytes. The maximum allowable length of this
buffer is 32,767 bytes.
CRIPTION:

The $SDEAL verb deallocates the specified conversation from

the
ver
of

Aft
res

transaction program. The parameters issued with this
b identify the conversation to be deallocated and the type
deallocation to be performed.

er the S$SDEAL verb is executed, the conversation enters
et state.

NOTE

AIF does not support a state that corresponds to
the AIF deallocate state. If you receive a
deallocate-confirm message after a S$SCNFD verb,
the conversation has been deallocated and its
resources returned to the system. The
conversation is then in reset state.

4-22 GR11-02



SSDEAL

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible for any execution of the $SDEAL.

Value Label Description

0000 VROKAY OK

0010 VRNSND Not in send state

0018 VRLRNF Logical record not finished yet
004C VRITYP Invalid type specified

If you executed the S$SDEAL with a type of ABEND, the
following return codes are possible.

Value Label Description

001A VRPDEA Improper state
004C VRITYP Invalid type specified

If you executed the $SDEAL with a type of SYNC L and the
conversation was allocated with synchronization level of
CONFIRM, the following return codes are possible.

Value Label Description

0047 VRVBNS Verb not supported (conversation was
allocated with a sync level of none)

004C VRITYP Invalid type specified

0011 VRNSDF Not in send/defer state

0018 VRLRNF Logical record not finished yet

00BO VRAETN TPN not recognized

00CO VRAEPI PIP not allowed

00Cl1 VRAEIP PIP not specified correctly

00C2 VRAESI Security not valid

00C3 VRAECM Conversation type mismatch

00D0 VRAESP Sync level not supported by program

00D1 VRAERP Reconnect level not supported by program

00D2 VRAENR TP not available--no retry

00D3 VRAETR TP not available--retry

4-23 GR11-02



$SDEAL

00EO
00F1
00F2
00F3
0007

VRAEAN
VRDAPG
VRDASV
VRDATM
VRSEPR

ACC not wvalid

Remote deallocation-—-ABEND program
Remote deallocation--ABEND service
Remote deallocation-—ABEND timer
Service program error, purging

4-24 GR11-02



$SFLSH

SSFLSH - Flush Verb

The $SFLSH verb flushes the local LU's send buffer.
FORMAT:

[label] $SFLSH [vpb address] Pl: $B4
ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The $SFLSH verb flushes the local LU's send buffer. Any
information that was in the buffer is sent to the remote
LU. The S$SFLSH verb is useful for transferring incomplete
buffers of data to the remote LU, thus avoiding a delay in
processing.

If you execute a $SFLSH when the conversation is in defer
state following a $SPTOR, the conversation enters receive
state. If you execute a $SFLSH when the conversation is in
send state, the state of the conversation does not change.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes.that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

4-25 GR11-02



$SFLSH

In addition to the general return codes, the following values
are possible.

value Label Description

0000 VROKAY OK

0041 VRIRID Invalid resource ID

0011 VRNSDF Not in send/defer state

0103 VRPGER  Resource failure, no retry

0100 VRUNBI Session unbound by host unexpectedly
0101 VRSSHU Session shutdown by host orderly
0102 VRURTO You are timed out by SOPR command
0310 VRADLU ACTLU/DACTLU received

0711 VRLKFL Link failure

0712 VRADPU ACTPU/DACTPU received

0713 VRACSA $A (SOPR) 'ABORT' AIF node

4-26 GR11-02



$SPONR

$SPONR -~ Post on Receipt Verb

The $SPONR verb causes the LU to signal the conversation when
there is information to receive.

FORMAT:
[label] $SPONR [vpb address] Pl: $B4
[,£il1] P2: VP_ICT.VBFILL
[slength] P3: VP_DLG

ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

fill

This parameter specifies when posting should occur in
terms of the length specified in the next parameter.

The following arguments are valid for this parameter.

® BUFFER - data is buffered into units of the length
specified in the next parameter. Posting occurs when
the buffer is full or the end of data is indicated.

e LL - posting occurs when a complete or truncated
logical record is received, or when part of a logical
record is received that is as long as or longer than
the length specified in the next parameter.

length

This parameter specifies the maximum length of the
receive buffer.

DESCRIPTION:

The $SPONR verb causes the LU to signal the conversation when
there is information to receive. The information can be
data, status information, or a request for confirmation. The
SSPONR can be used with the S$SWAIT verb or the $SRAW to allow
you to continue with other program processing while waiting
for data from the host.

4-27 GR11-02



SSPONR

Executing the $SPONR verb does not cause the state of the
conversation to change. In order to execute the $SPONR, you
must be in receive state. If you are not in receive state,
you must first issue the $SPTOR verb.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible.

value Label Description

0000 VROKAY OK
0041 VRIRID Invalid resource ID
0016 VRNRCV Not in receive state

If the return code indicates OKAY and the output control word
indicates that the conversation has been posted, then posting
has occurred and the LU has information that the program can
receive. The program has the option of issuing a $SRAW at
this point or it can ignore this posting by issuing a $SWAIT,
and receive this data at a later time.

OUTPUT CONTROL WORD

The conversation posted field in the output control word
(VP_OCT.VBPOST) indicates whether the conversation has been
posted. If this bit is true, the conversation is posted and
$SRAW can be used to receive data or information. If this
bit is false, posting is active for this conversation and
SSWAIT can be used to wait for posting to occur.

4-28 GR11-02



$SPTOR

SSPTOR - Prepare to Receive Verb

The $SPTOR verb changes the state of the specified
conversation from send to receive.

FORMAT:
[label] $SPTOR [vpb address] Pl: $B4
[ rtype] P2: VP_TYP
[,locks] P3: VP_ICT.VBLOCK

ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register S$B4.

type

This parameter specifies whether the prepare-to-receive
is to be completed as part of this verb or deferred until
another v®rb is issued or a certain condition is met.

The following arguments are valid for this parameter:

@ SYNCLVL - perform the prepare-to-receive according to
the synchronization level specified when the
conversation was allocated:

- If sync level = NONE, $SPTOR flushes the local LU's
send buffer and enters the receive state.

- If sync level = CONFIRM, $SPTOR sends a
confirmation request to the remote LU and, if the
return code is VROKAY, enters the receive state.
If the return code is VRUNSU, $SPTOR returns the
conversation to its previous state.

® FLUSH - flushes the local LU's send buffer and enters
the receive state.

4-29 GR11-02



$SPTOR

locks

This parameter specifies whether the local program must
wait for a reply when a request for confirmation is
executed following a $SPTOR. This parameter is relevant
only if the conversation was allocated with a sync level
of CONFIRM, and the $SPTOR is executed with a type of
SYNCLVL.

The following arguments are valid for this parameter.

® SHORT - Control is returned to the local program when
an acknowledgment is received.

e LONG - control is returned to the local program when
data is received from the remote program following an
acknowledgment.

DESCRIPTION:

The $SPOTR verb changes the state of the conversation from
send to receive. The parameters issued with this verb
identify the conversation whose state is being changed, the
type of prepare-to-receive to be performed, and when control
is to be returned to the local program after the receive.

After the SSPTOR is executed, the conversation enters receive
state. If the S$SPTOR is unsuccessful, the conversation
remains in send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

The value you specify for type determines what return codes
are possible. 1In addition to the general return codes, the
following values are possible for all types.

Value Label Description

0000 VROKAY OK
004cC VRITYP Invalid type specified

4-30 GR11-02



SSPTOR

In addition, If you executed the $SPTOR with a type of SNCLVL
and the conversation was allocated with synchronization level
of CONFIRM, the following return codes are possible.

Service program error, purging

Logical record not finished yet
Invalid resource ID

Verb not supported (conversation was
allocated with a sync level of none)

PIP not specified correctly

Conversation type mismatch

Sync level not supported by program
Reconnect level not supported by program
TP not available--no retry

TP not available--retry

Remote deallocation--ABEND program
Remote deallocation--ABEND service
Remote deallocation--ABEND timer
Program error--purging

Resource failure, no retry

Session unbound by host unexpectedly
Session shutdown by host orderly

You are timed out by SOPR command
ACTLU/DACTLU received

ACTPU/DACTPU received
SA (SOPR) 'ABORT' AIF node

value Label Description

0007 VRSEPR

0011 VRNSND Not in send state
0018 VRLRNF

0041 VRIRID

0047 VRVBNS

00BO - VRAETN TPN not recognized
00CO VRAEPI PIP not allowed
00C1 VRAEIP

00C2 VRAESI Security not valid
00C3 VRAECM

00DO VRAESP

00D1 VRAERP

00D2 VRAENR

00D3 VRAETR

00EO VRAEAN ACC not valid
00F1 VRDAPG

00F2 VRDASV

00F3 VRDATM

0004 VRPEPR

0103 VRPGER

0100 VRUNBI

0101 VRSSHU

0102 VRURTO

0310 VRADLU

0711 VRLKFL Link failure

0712 VRADPU

0713 VRACSA

0714 VRSABT

$S abort AIF group

4-31 GR11-02



$SRAW

SSRAW - Receive and Wait Verb

The $SRAW verb causes the LU to wait for data and receive it.

FORMAT:
[label] S$SRAW [vpb address] Pl: $B4
[,data buffer] P2: VP_BUF
[,data buffer length] P3: VP_DLG
[£1i11] P4: VP_ICT.VBFILL
ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. 1If not declared,
the address is assumed to be in register $B4.

S A=

data buffer

This parameter identifies the buffer set up to receive
the data from the remote program.

data buffer length

This parameter specifies the maximum length of data that
the program can receive.

fill

This parameter specifies whether data is received in
logical record format or by buffers.

The following arguments are valid for this parameter.

BUFFER - data is buffered into units of the length
specified in the data buffer length parameter. When
the buffer is full or the end of data is indicated, it
is transmitted to the local program.

LL - Each complete or truncated logical record is
transmitted to the local program. when a logical
record is received that is as long as or longer than
the data buffer length, the logical record is broken
up into units of that length.

4-32 GR11-02



SSRAW

DESCRIPTION:

The $SRAW verb causes the LU to wait for data to arrive at
the specified conversation and receive it. The information
can be data, status information, or a request for
confirmation. If there is data in the receive queue when
this verb is executed, the waiting time is eliminated. After
SSRAW is executed, control is returned to the local program
and the type of information received is indicated.

If the conversation is in send state when this verb is
issued, the local LU flushes its send buffer and the
conversation changes to receive state. A send indicator is
~sent to the remote LU, to notify the remote program that it
can send data to the local program.

The value of the WHAT RECEIVED parameter determines the state
of the conversation after the $SRAW is executed. If

WHAT RECEIVED indicates DATA, DATA COMPLETE, DATA_ INCOMPLETE,
or LL_TRUNCATED, the conversation enters (or remains in)
receive state, If WHAT RECEIVED indicates SEND, the
conversation enters send state. If WHAT RECEIVED indicates
CONFIRM, CONFIRM_ SEND, or CONFIRM DEALLOCATE, the
conversation enters confirm state,

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out®™ so that the application can examine bits 5
through 15.

In addition to the general return codes, the follow1ng values
are possible.

vValue Label Description

0000 VROKAY OK

0002 VRPENT Program error, not truncating
0003 VRPETR Program error, truncating

0004 VRPEPR Program error--purging

0014 VRNSOR Not in send/receive state

0018 VRLRNF Logical record not finished yet
0041 VRIRID Invalid resource 1D

00BO VRAETN TPN not recognized

00CO VRAEPI PIP not allowed

00C1 VRAEIP PIP not specified correctly

4-33 GR11-02



SSRAW

00C2 VRAESI Security not valid

00C3 VRAECM Conversation type mismatch

00DO VRAESP Sync level not supported by program
00D1 VRAERP Reconnect level not supported by program
00D2 VRAENR TP not available--no retry

00D3 VRAETR TP not available--retry

00EO VRAEAN ACC not valid

00F0 VRDANM Deallocate normal

00F1 VRDAPG Remote deallocation--ABEND program
O00F2 VRDASV Remote deallocation--ABEND service
00F3 VRDATM Remote deallocation--ABEND timer
0006 VRSETR Service error, truncating

0005 VRSENT Service error, not truncating )
0007 VRSEPR Service error--purging
0103 VRPGER Resource failure, no retry

0100 VRUNBI Session unbound by host unexpectedly
0101 VRSSHU Session shutdown by host orderly
0102 VRURTO You are timed out by SOPR command
0310 VRADLU  ACTLU/DACTLU received

0711 VRLKFL Link failure

0712 VRADPU ACTPU/DACTPU received

0713 VRACSA  $A (SOPR) 'ABORT' AIF node

0714 VRSABT $S abort AIF group

RETURN PARAMETER
actual data length (VP_ADL)

This field contains the length of the received data. The
actual data length includes the two byte binary field
that specifies the logical record length and the length
of the record itself. The length can range from 2 to
7FFF.

OUTPUT CONTROL WORD

The request to send received field in the output control word
(VP_OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state.

WHAT RECEIVED
The WHAT_ RECEIVED field (VP_WAR) defines what the transaction
program has received, and should be examined when the return

code is OKAY. The following values are possible within
VP_WAR:

4-34 GR11-02



02

04

05

06

08

Ga

14

15

16

SSRAW

SEND (VBRSND)--the remote program has entered receive
state causing the local program to enter send state.
The local program can now issue a $SSDAT.

CONFIRM (VBRCNF)--the remote program has sent a
confirmation request to the local program. The local
precgram can respond by issuing a $SCNFD or another
verb, such as a $SSERR.

CONFIRM DEALLOCATE (VBRCDA)--the remote program has
issued a deallocate with type SNCLVL and a
synchronization level of CONFIRM. The local program
can respond by issuing a $SCNFD or another verb, such
as a S$SSERR.

CONFIRM SEND (VBRCSN}-==the remote program has issued
a prepare to receive with type SNCLVL and a
synchronization level of CONFIRM. The local program
can respond by issuing a $SCNFD or another verb, such
as a S$SSERR.

LL TRUNCATED (VBRLLT)=--The S$SRAW was issued with the
LL £il]l parameter and the length field is received
truncated. The program does not receive the length
of the dats.

DATA INCOMPLETE WHEN LENGTH=0 (VBDICC)--The S$SRAW was
issued with a LENGTH of zero and an incomplete
lecgical reccrd is being received by the program. HNo

= d= S & o= N I =9 T 2 “
gata is p to the caller.

DATA AVAILABLE WHEN LENGTH=0 (VBDAT(O)--The S$SRAW was
issued with a LENGTE of zero and a complete logical
record is being received by the program. No data is
passed to the caller.

DATA (VBRDAT)--The S$SRAW was issued with the buffer
fill parameter and data is being received by the
program.

DATA COMPLETE (VBRDCP)--The $SRAW was issued with the
LL £ill parameter and a complete logical record, or
the completion of a logical record, is being received
by the program.

DATA INCOMPLETE (VBRDIC)=-The $SRAW was issued with
the LL £ill parameter and an incomplete logical
record is being received by the program. The program

must issue one or more additional $SRAWs to receive
the remainder of the logical record.

4-35 GR11-02



$SRTOS

$SRTOS - Request to Send Verb

The S$SRTOS verb indicates to the remote program that the
local program is requesting to enter send state.

FORMAT:

[label] S$SRTOS [vpb address] Pl: $B4
ARGUMENTS:
vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

DESCRIPTION:

The S$SRTOS verb indicates to the remote program that the
local program is requesting to enter send state. When the
local program receives a send indicator in response, the
conversation changes to send state.

If a negative response is received, the conversation remains
in receive state. If a positive response is received with a
send indicator, the conversation changes to send state.

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 VROKAY OK

0041 VRIRID Invalid resource ID

0015 VRNRCS Not in receive/confirm state

0019 VRCSCD In confirm state (received CONFIRM SEND
or CONFIRM DEALLOCATE on the preceding
$SRAW

4-36 GR11-02



$SSDAT

$SSDAT - Send Data Verb

The $SSDAT verb sends data to the remote program.

FORMAT:
[label] $SSDAT |[vpb address] Pl: $B4
[,data buffer] P2: VP_BUF
[length] P3: VP_DLG
ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

data buffer

This parameter contains a pointer to the local LU's send
buffer. This buffer contains the data being sent in the
form of logical records. Each logical record consists of
a two-byte field specifying the length of the data in
that logical record, and the logical record itself. A
buffer can contain any number of complete or partial
records that fills the buffer.

length

This parameter specifies the length of the data in the
local LU's send buffer. This value is independent of the
length of data contained in any individual logical record
and independent of the size of the send buffer. The
maximum length is 32,876 bytes.

DESCRIPTION:

The $SSDAT verb sends data to the remote program. This data
can be data, status information, or confirmation. The data
is formatted into logical records, which are buffered before
being transmitted. A logical record, by definition, can
range from 0002 bytes, including only the LL field, to 7FFF
bytes, including a two-byte LL field and 32765 bytes of data.

Executing the $SSDAT does not change the state of the
conversation.

4-37 GR11-02



$SSDAT

RETURN CODES:

The application should check the return code after each
execution of a verb. Bits 0 through 4 have special meaning
and represent general AIF return codes that could occur for
any verb. These bits should be examined individually, then
"masked out" so that the application can examine bits 5
through 15.

In addition to the general return codes, the following values
are possible:

Value Label Description

0000 VRORAY OK

0004 VRPEPR Program error--purging

0010 VRNSND Not in send state

004A VRIVLL Invalid logical record length

0044 VRLNER Data length errror

0018 VRLRNF Logical record not finished yet
0041 VRIRID Invalid resource ID

00BO VRAETN TPN not recognized

00cCo VRAEPI PIP not allowed

00C1 VRAEIP PIP not specified correctly

00C2 VRAESI Security not valid

00C3 VRAECM Conversation type mismatch

00DO0 VRAESP Sync level not supported by program
00D1 VRAERP Reconnect level not supported by program
00D2 VRAENR TP not available--no retry

00D3 VRAETR TP not available--retry

00EO VRAEAN ACC not valid

O00F1 VRDAPG Remote deallocation--ABEND program
00F2 VRDASV Remote deallocation--ABEND service
00F3 VRDATM Remote deallocation--ABEND timer
0100 VRUNBI Session unbound by host unexpectedly
0101 VRSSHU Session shutdown by host orderly
0102 VRURTO You are timed out by SOPR command
0310 VRADLU ACTLU/DACTLU received

0711 VRLKFL Link failure

0712 VRADPU ACTPU/DACTPU received

0713 VRACSA  SA (SOPR) 'ABORT' AIF node

0714 VRSABT $S abort AIF group

OUTPUT CONTROL WORD

The request to send received field in the output control word
(VP_OCT.VBRRTS) indicates whether the remote program has
issued a request to send notification, requesting the local
program to enter receive state and placing itself in send
state. This condition is true when VP_OCT.VBRRTS is set.

4-38 GR11-02



$SSERR

$SSERR - Send Error Verb

has

The $SSERR verb indicates to the remote program that an error

occurred.
FORMAT:
[label] S$SSERR [vpb address] Pl: $B4

[.type] P2: VP_TYP
[,LOGINO_LOG] P3: VP_ICT.VBLGDA
[rlog data buffer] P4: VP_BUF
[,1og data length] P5: VP_DLG

ARGUMENTS:

vpb address

This parameter contains a pointer to the address of the
VPB to be used for this conversation. If not declared,
the address is assumed to be in register $B4.

type

This parameter specifies whether the error has occurred

as

a result of the application or as a result of the LU

services transaction program, to identify to whom the
error should be reported.

The following arguments are valid for this parameter.

PROG - The error has occurred at the application
level. The resulting error code is reported to the
remote LU.

SVC - The error has occurred at the LU services level.

{LOG |NO_LOG}

This parameter indicates whether or not the system error
log is transferred to the transaction.

log data buffer

This parameter contains a pointer to the local LU's log
data buffer. This buffer contains the data being sent to
the remote LU's log data buffer.

4-39 GR11-02



$SSERR

log data length

This parameter specifies the length of the data in the
local LU's log data buffer. This value excludes the
logical record length and can be a maximum of 32,763
bytes.

DESCRIPTION:

The $SSERR verb indicates to the remote program that the
local program has detected an error. The parameters issued
with this verb identify the conversation on which the error
has occurred and the type of error which has been detected.
The local LU is in send state and the remote LU in receive
state. If the conversation was in send state when this verb
was issued, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>