
FM1600B
Microcircuit
Computer

,,,,,,,,
. · .·.· '

r
l

Page 3

4

6

8

9

10

12

Ferranti FM1600B
Microcircuit Computer

Contents

Introduction

Main Features

Instruction Format

Control Hardware

Software

Input/Output

Autocode Instructions

©
The Copyright in this work is vested in Ferranti Ltd. and the document is issued in confidence for the
purpose only for which it is supplied. It must not be reproduced in whole or in part, o r used for
tendering or manufacturing purposes except under an agreement or with the consent in writing of
Ferranti Ltd .. and then only on condition that this notice is included in any such reproduction.

Structure

Logic

Size and Weight

Storage

Word Length

Mode

Clocl< Rate

A rithmetic

Fast Shift

Instruction Code

Linl< Nest

Standard Interfac e

FM1600B
Microcarcuat Computer

Basic Features

Central Processor formed of 19,
6-layer printed circuit panels which
plug into a 12-layer printed circuit
Backboard.

Ferranti Micronor 11 circuits.

Central Processor including
4 K,/ 1 µ,sec Ferranti store occupies
one shelf 19x16 x 7 in. and weighs
401b.

Up to 65 536 words in 4096 word
increments.

24 bits.

Parallel .

3 MHz. Each logic beat takes 1/:i µ,sec.

Fixed Point and Floating Point.

Single length shift, left or right, with
or without end around carry takes
'/:i µ,sec.

F1600, variable address.

Hardware 'push down' or l inl< nest
store.

Up to 22 'Christchurch ' Ferranti B
input/ output channels via modular
Computer Interrupt Equipment.

2

The FM 16008 is the latest machine in the series of F1600 general purpose real-time
digital computers developed by the Digital Systems Department of Ferranti Limited of
Bracknell, Berkshire. It is the 'basic' version of the recently introduced FM 1600
microcircuit computer and is intended for use in systems where the power of the
larger machine is not required.

Certain new features relating to the basic control of the machine and to the design of
the function unit, have been patented and incorporated into the FM16008. As a result,
the FM 1600B is about one fifth the size and yet retains about half the power of the
FM1600.

Together these two machines satisfy the requirements of real-time systems ranging
from large multiple computer automatic data handling and control systems down to
specific individual control applications in the military and civil fields.

The computers have been developed as two items in a range of modular equipment for
handling inputs and outputs from a multiplicity of sources as encountered in:

* Naval Data Handling and Weapon Control Systems

* Air Defence Systems * Message Switching Systems * Air Traffic Control Systems

* Tactical Trainers

* Simulators * Program Development Centres

The modules all use similar circuitry and mechanical construction and cover such
operations as:

* Automatic Radar Data Extraction

* Shaft Angle Encoding and Decoding * Control of C.R. T. displays * Interfacing to digital data links * Interfacing to backing stores * Interfacing to line printers and digital plotters

The computers have been engineered to meet British and NATO Defence specifications.
These reflect the exacting environmental conditions of military systems, but it must be
stressed that the computers are general purpose machines suitable for most on-line,
real-time, civil and military applications.

The F1600 instruction code is used. This code is well proven, having been in use for
more than five years' and the experience so gained is reflected in the performance of the
FM 16008. The full range of compilers, the sub-routine library and general support
software developed over this period is immediately available for use with the FM 16008.

3

Main Features

Word Length

Mode

Representation

Clocl< Rate

1 nstruction Code

Weight

Power Consumption

Storage

The FM1600B central processor is formed of 19, 6-layer printed circuit panels wh_ich
plug into a 12-layer printed circuit backboard. On th e panels are mount_ed Ferranti
Micronor 11 integrated circuits, a fast DTL logic with typical signal rise times of 8 nsecs,
in T05 cans. The panels and the backboard have the necessary transmission line .
characteristics for handling signals w ith such fast rise times, and the use of a multi - layer
backboard allows much complex backwiring to be avoided.

The central processor, including one 4096 word block of Ferranti 1 p..sec core store, .
complete with drive and address circu its, fits in a single shelf module of dimensions
19x16 x 7 in. (49 cm x 41 cm x 18 cm). This is normally mounted as one shelf of a
standard rack which holds six equipment shelves together with a common power
supply and cooling un it.

For systems req uiring up to 8192 words of store a second 4096 word block may be
mounted immediately above the first block ; the remaining space being occupied by a

6 % in. shelf Computer Interrupt Equipment. When larger stores are necessary these 409

word blocks are not fitted and the requ ired storage is fitted as a separate one, two or
three shelf module.

Basic Features
24 bits.

Parallel.

Binary, two's complement for negative numbers.

The basic clock
1
ra te of the computer is 3 M Hz. Logic beats are carried out at the rate of

one beat every Y:i J-LS.

F1 600, variable address.

The central processor w ith 4096 words of store weighs 40 lb. (18 kg).

Central Processor
Storage : First 4096 words

For each additional 4096 words

50 watts
11 O watts
12 watts

Up to 65 536 words of core store, occupying three shelves, may be attached to the
computer._ At present Ferranti 1 ,.,..~ ~torage 1s available in un its of 4096 words. The
computer 1s ~es1g ned to make eff1c1 ent use of store speeds of up to 600 nsec and
storage of th is speed, under development by Ferranti, w ill be available by 1969 in
16 384 word units.

Input Output The FM 16008 input/outp.ut requirements conform to the Ferranti B (Christchurch)
Standard Interface spec1f1cat1on. Up to 2.0 Standard Interface input/output channels
can be hand led by the centra l processor, via modular Computer Interrupt Equipment.

4

Fast Shift Facility

Floating Point
Arithmetic

Linl< Nest Store

Single Address
Function

Special Features
A new feature in the function unit of the FM1600B is the powerful fast shift network.
In one pass through the function unit a 24-bit word can be shifted any number of
places left or right with or without end around carry. The time taken for such a shift is
one logic beat of Y:i µs. Besides increasing the speed of shift instructions, this feature
speeds up bit testing, bit changing, and normalising instructions. As about a fifth of
the instructions in typical tactical and fire control programs are of this type significant
speed increases are obtained.

Advantage has been taken of the fast shift faci lity to provide floating point arithmetic
which is fast, automatic and cost effective.

Floating point instructions are specified in the Extracode section of the F1 600
instruction code list. Operands are held in the computer packed into single words w ith
the format:
Bits 0-5, Exponent
Bits 6- 23, Mantissa

So far as is known the FM 1 600B is the only small computer currently available with
floating point operation as a basic feature of the central processor.

An address pointer is provided which enables an automated l ink nest to be placed
anywhere in the core store. Address or data words can be sequentially stored and
extracted in the reverse order to that in which they were entered. This provides a neat
method for handling entry and exit points of interrupt programs and sub-routines; each
time a program or sub-routine is interrupted the continuation address is automatically
stored and, w hen the interrupt program has been completed, is extracted. This enables
multi-activation of sub-routines to take place without increase in Supervisor program
load, and enables economies in storage space to be realised, typically between 5 and
11 words of store for each sub-routine and interrupt program.

A specia l Single Address Function has been buil t into the FM1600B. This function is
specified in the Extracode section of the instruction code and by transferring data from
random core store loca tion s to an accumulator, extends the ability of the FM1600B to
deal with the comparatively rare occasions on which true random access is req uired.

Instruction Times
Typical instruction times, assuming the use of 1 µs storage, are given below. Th ese are
for two and three address operations between direct ly addressable locations and are
often equivalent to two or more instructions in a single address code. For this reason
these times are not directly comparable w ith times quoted for sing le or one and a half
address computers.

The full implications of this instruction format in relation to single and one and a half
address operations are discussed in the next section.

Function
Add/subtract
Multiply
Divide
Shifts
Jumps

5

Time in Microseconds
Fixed Point Floating Point

2 ·7- 4·3 6·3- 7 ·0
11 . 3- 1 3 . 3 1 4 . 0
13·0- 16 ·0 15·3

2 ·7- 8·7
2 ·0- 5 ·7

One of the most advanced features common throughout the F1600 series machines is
the instruction code. The techniques used in this code offer a number of advantages
of increasing significance to all types of real-time system.

In the development of the code, priority was given to three main factors:

(a)

The desirability of improved methods of addressing to make more efficient use of
costly quick access storage. This has always been a major factor in achieving cost
effectiveness, but now that the cost of a modern compact central processor has been
reduced to little more than that of 4 000 words of core store the efficient use of storage
assumes even greater significance.

(b)

The need for a comprehensive function list so that maximum advantage may be gained
from a powe~ul function unit.

(c)

The problem of developing computers of different sizes and capability but with
complete instruction code compatibility.

The code has been well proven in over five years' use and its effectiveness is reflected
in the performance of the FM16008. Very high bit efficiency is achieved by the address
structure and this, together with the value of a comprehensive function list, reduces the
amount of program store required in representative systems. Recent studies have
shown, for example, that for typical programs the FM 16008 uses less than half the.
program store required by a single address computer of relatively limited fonction
repertoire.

The F1600 code uses a multiple address format which caters for the maximum of three
variables in typical autocode instructions and provides for both direct and indirect
addressing. A maximum of 23 accumulators, the first 23 locations of the core store in
the FM16008, may be directly addressed and the main store may be indirectly
addressed via index registers which hold the required full length addresses. A
generous allowance of 9 bits for the function field makes for a comprehensive function
list containing combinations of a main and a subsidiary function.

Three addresses and the large function field are handled within a single 24-bit
instruction in the following format:

FUNCTION
F I D S
9 bits

3 ADDRESSES
A B C
5 bits each

F, I, D, Sare the su~-fie.lds which ~onstitute the main and subsidiary function fields,
and give.512 ~ombinat1ons, of which a?out 350 have been used in practice. Typically
Band C 1dent1fy th.e operands u~on which the function is performed and A supplies
the address at wh1.ch the result 1s stored. 1.n certain instructions, such as 'jump storing
link·. part of the S field and the A, Band C fields are used to hold the jump address.

6

Load Functions

Index Functions

Modify Functions

--

In the F1600 code the required combinations of main and subsidiary functions have
been selectively spaced throughout th e 512 available codings, as opposed to being
formed into a consecutive list. The positioning of the undefined codings has been
exploited, in conjunction with the Executive Register, to simplify the computer control
logic. The Executive Control System is explained in the next section.

The addressing structure of the code exploits the fact that address references in rea l
programs are never distributed in a truly random fashion. In practice related data are
located either in limited areas of store or in a patterned sequence; consequently,
addressing usually takes the form of random access within these limited areas or of a
controlled sweep through the store. Most of the address of a required location can
therefore be predicted in advance so that the specification of a full length address in
each instruction would entail redundancy and consequent waste of storage space. In
the F1600 code this redundancy is avoided by the use of short addresses and indirect
addressing via index registers.

If it were necessary to use a fresh instruction to load an index register prior to every new
store access, then the advantage of indirect addressing w ould be lost. It follows
therefore that the efficiency of indirect addressing depends on the facilities available
for setting and changing the conte.nts of t~e index reg isters: These facil.ities are
provided by three subsidi~ry functions which ca~ ~e spec1f1~d and earned out
concurrently with the main function. These subs1d1ary functions are:

These set an index register to a main store address. The loaded address is then
immediately available for use as an operand source or destination in the main function.

These increment or decrement the contents of an index register by unity.

These add a constant within the range of 0- 31 to the address held in an index register
prior to th e address being used in ~he main fun~t.ion . The index register eithe~
retains its original contents or 1s given the mod1f1ed value at the programmers
discretion. Thu s either random access within a block of 32 words in the main store or a
controlled sweep of regularly spaced stored data is avail able.

The effectiveness of these subsidiary functions is i~lu strated by a recent analysis w hich
showed that of over 15 000 words of proven .real - t ime. software only 7% of the
instructions used involved the loading of an index register.

7

Control Hardware

The Executive Register Overall control of the computer is organised through a patented Executive Control
System in which use is made of the fact that any instruction included in F1600 code
can be executed by performing in a fi xed sequence a sub-set of 12 basic computer
actions. Th e system is centrali sed in a special 12-bit register, known as 'Executive', in
which each bit corresponds to one such basic action. The basic actions within the
Executive Register format are given in the following table.

F M16008 Executive
Format

Two Address
I nstruct1ons

Executive
Register Bit

2

3

4

5

6

7

8

9

10

11

12

Instruction

Load/ Modify Index Registers

Read C Operand

Read B Operand and perform simple function

Increment/ Decrement Index Registers

Justi fy

Denormalise

Multi beat functions

Floating point arithmetic

Normalise

W rite to A

Jump

Pseudo- instruction

As the instruction is read from the store the function bi ts are inspected and the
executive actions appropriate to the main and subsidiary fu nctions selected. After
completio n of the read-instructio n beat the relevant executive bits are set and, since
these bits def ine not only the req uired actions but also their sequence, th e instructi on
can then be processed automatica lly . The operations are always carried out in
numerica l sequence from 1 to 12 although, since typical instructions involve only
three or fou r executive acti ons, only those ca lled for are performed.

A simple priority network continuously inspects the executive register and defines the
action currently being performed. On completion of this action the corresponding bit is
cleared and the priority network automati cal ly selects the next action required . W hen
all the bits are clear the current instruction has been completed and the next instruction
is accessed.

In practice some instruct ions occur in which the destination address A is the same as
address B. In th~ FM16008 the Executive Re.gister Control takes advantage of this to
save signifi cant time in all. simple funct ions. In instructions of this type, bit 1 o
(WR ITE TO A) of Executive 1s not set. Instead the READ B OPERAND micro-action is
extended by 1!i 1,s to al low time for the function to be performed between the read and
w rite halves of the store cyc le.

8

Autocodes:
FIXPAC

FLO PAC

High Level Languages :
ALGOL

FO RTRAN

CORAL

Software

The Digital Systems Department incorporates a Programming Section employing
upwards of one hundred programmers. The section has an in-house Computer Centre
comprising a multi-access computer suite with a quad magnetic tape unit and a million
word drum store. Up to four programmers may have simu ltaneous use of the su ite
which is also equipped with high speed line printers and digital plotters.

During the last five years' both Fixed Point and Floati ng Po int A utocodes together w ith
a large Standard Sub- routine Library, have been developed and used in many
applications. In addition compilers for a number of high level languages including
Algol, Fortran and Coral are available.

Thi s is a Fixed Point Autocode, enabling computer programs to be w ri tten in a
conven iently simple and economical form, saving the programmer the considerable
effort required in machine language prog ramming to compose complex sequences
for d irec t input to the computer.

As shown in the bri ef description of the instruction format, the three address f ields of
t he instruction cod e correspond to the maximum of three variabl es of a typical Fixed
Point Autocode instruction. Programs written in FI XPAC therefore exhibi t a close
correspondence with programs written in F1600 machine code, and hence are
virtually as effi c ient as machine code programs.

This is a double word length Floating Point Autocode which has been designed to give
flexibility in complex mathematical calculations. In FLO PAC the mantissa and expo nent
can each be up to 24 bits in length.

An A lgol compiler which accepts a sub -set of Algol 60 is ava ilable. A fu ll descripti on is
given in a separate publi cat ion entit led 'Ferrant i A lgol '.

Th e version of Fortran implemented by Ferranti is based on the ECMA specifi cat ion,
and has been des igned to provide a Fortran faci li ty for a small machine. Compi lation
works from a paper tape. produces mach ine code in a sing le pass and can be used in a
computer having 8000 words of store.

CORAL is a real-time language w hich is derived from the wel l established JOVIAL
language. The orig inal defini tion of CORAL (ca lled CO RA L 64) was made by a
committee at the Roya l Radar Establishment, Malvern, England, primarily for use in the
real - time radar data processing fi eld. Th e design of Ferranti's implementat ion of
CORA L is based on this specificatio n. and o n discussions w ith offi cers of the Royal
Radar Establishment. It includes features not present in CORAL 64, for example,
floating point arithmetic.

Great attention has been g iven to providing good 'debugg ing' faci lit ies. Rigorous
syntax and semantic checks are applied at compile-time and one of the inte.rmediate.
codes produced can be run interpretively wi th extensive run -time d iagnost ic capabil ity.

9

Computer Interrupt
Equipment

Standard Interface

Input/Output

The FM 16008 central processor is designed to work with modular Computer Interrupt
Equipment (C.l.E.) which is constructed in the same technology as the computer. The
basic C.l.E. module is a three -quarter shelf unit capable of handling up to 12 Ferranti B
(Christchurch) Standard Interface Channels. A larger, full shelf, C. I.E. module is also
ava ilable w hich can hand le up to 22 Standard Interface Channels.

The Ferranti B (Christchurch) Standard Interface was designed to cater for the
requirements of real - time systems in which a variety of fast independent peripherals
may work together. These needs are met by ensuring that all transfers to or from the
computer are ent i rely autonomous and independent of t he program currently running.
Transfers across this interface are carried out on a handshake basis. This avoids strict
timing rules and restrictions on computer to periphera l cable lengths.

Each Standard Interface Channel can handle a single complex peripheral, such as a
mu lt i -console alpha-numeric display system, or a number of simpler periphera ls
mult iplexed o n to the one channel. Examples of groups of peripherals which can be
serviced by a sing le channel are:

A few hundred single bit input and output lines.
A few tens of teleprinters.
A Master/ Slave quad magnetic tape system.
A sing le Shaft Ang le Encoder which accepts inputs from up to 28 shafts on a time
multipl exed sampling basis and
eight Shaft Angle Decoders, each capable of accurately controlling the position of an
independent shaft.

The autonomous transfer requests fa ll into two classes: Data Interrupts and
Program Interrupts.

Data Interrupts Data interrupts are allowed w ithin instructions between executive beats and also
between the individual beats of multi-beat functions, e.g. mu l tiply, divide. This gives a
maximum waiting time for data interrupts of 3 µ.s.

Since requests from peripherals are all independent and asynchronous, allowance has
to be rnade for the presence of mu ltipl e requests. Prior to carry ing out a data interrupt,
therefore, a priority assessment of all requests present is performed. Advantage is taken
of the fast shift capabil ity of FM 16008 to save the additional hardware which is
normally requi red to ca rry out such priority assessments.

When one or more data interrupt requests are present, the C. l.E. seeks to interrupt the
central processor. As soon as the interrupt is established (within 3 µ.s) a request word
is input to the central processor. This word consists of the complete set of request
staticisers and is normalised by the central processor. The number of shifts required to
normal ise this word is available within 'h /tS and is equal to the channel number of the
highest priority request present.

The time taken by each data interrupt is dependent on the number of store cycles
required by the interrupt and on the number of extra logi c beats required for indexing
and address transfers. Si nce a handshake pri nciple is used for the transfer of data across
the standard interface. a further variable time may be added to the interrupt time
depending on the distance between the computer and the peripheral. For peripherals
wi thin 40 ft of the computer this time can usually be absorbed w ithin the interrupt. The
fo llowing are some typica l times for peripherals w ithin 40 f t. of the computer.

10

Program Interrupts

Fast Input
Slow Input
Fast Output
Slow Output

2 µ.s
3Y:i µ.s
3Y:i µ.s
47'3 µ.s

W hen multiple requests of the computer are present at one time, the complete set of
data interrupts required are carried out w ithout any gaps between them.

Program interrupts are only accepted between instructions. The wait ing time for the
highest priority program interrupt, when no other interrupt is already in progress, is
therefore no greater than the lo ngest instruction time (19 µ.s).

When a program interrupt occurs, the interrupt staticiser, 02, is set and al l further
program interrupts are locked out until 02 has been cleared. It is norma l practice to
cl ear this staticiser within the interrupt program, as soon as any urgent work has been
ca rried out. It should be noted that data interru pts are not locked out while 02 is set.

The program interrupt mechanism is similar to that for data interrupts. An interrupt is
established at th e end of an instruction when one or more program interrupt requests
are present. Prior to actually accepting the interrupt. the central processor carries out a
store l ink procedure identical to that performed by the jump and store link process,
except that 02 is also set. Assuming no data interrupt requests have occurred during
the store link process, a procedure similar to that of a data interrupt is entered on behalf
of the program interrupt. The actions carried out are : the assessment of the prog ram
interrupt priori ty (identical to that for a data interrupt) ; the loading of th e instruction
number register w ith the first address of the interrupt program; the transfer of the
status word. The total time taken in establishing the interrupt and entering the new
program is about 7 µ.s .

11

A Full Table of Fixed-Point Autocode Instructions

Operation

Basic Operations
1. vA = vB
2. vA = vB + vC
3. vA = vB - vC
4. vA = vB & vC
5. vA = vB-=F vC

Multiplication
6. vA = vB x vC
7. vA= vB x vC,F
8. vA = vB x vC,I

Division
9. vA = vB/vC,Q

10. vA = vB/vC,R
11. vA = vB/vC,QR
12. vA = vB/vC,10
13. vA = vB/vC,FQ
Arithmetic Shifts
14. vA = vB (vC),LD
15. vA=vB(vC),RD
16. vA = vB (vC),L
17. vA = vB (vC),R
Logical Shifts
18. vA = vB((vC)),L
19. vA = vB((vC)),R
20. vA = vB((vC)),E
21. vA = vB((vC)),LD
22. vA = vB((vC)),RD
Special Shifts
23. vA = vB-+ N
24. vA = vB -+ C
Indexing
25. vA = vB, ni ± 1

26. vA = vB + vC, ni ± 1
vA = vB - vC, ni ± 1
uA = vB & vC, ni ± 1
vA = vB -::/= vC, ni ± 1

Load
27. ni = vA
28. ni = vA, ni = vC
29. ni = vA, ni = vB ± vC

ni = vA, ni = vB & vC
ni = vA, ni = vB =I=- vC

30. ni = vB, vA = ni + vC
ni = vC, vA = vB - ni

Modification (O~ K~ 31)
31. vA = v(ni + K)
32. v(ni + K) = vC
33. v(ni + K) = vB ± vC
Bit Operations
34. vB(vC) = 0

:f=O
35. QC= 0

:f:O
Unconditional Jumps
36. -+Label
37. -? Label, L
38. > L
39. ->Sn
40. ->Sn, m
Conditional Jumps
41. -+Label, uB;;;:: 0
42. -:o Label, uB ± uC < 0
43. > Label. uB & uC = 0
44. .. Label, uB = uB ± 11C ~ 0
45. . Label. 118 = u8 -1- 11C , 0
46. .. Label. v8(uC) = 0

rO
47. . Label. vB(vC} = 0
48. . Label. QC= 0

/ 0

Miscellaneous
49. ,,A== DATA (label)

50. STOP C
51. WAIT
52 END
53 ,.A . BIT ,.c
54 r·A MASK ,.c
55 ,.A MASK ,.c

Description

Transfer from register B to register A
Add contents of two registers
Subtract contents of two registers
AND operation (logical multiplication)
NOT EQUIVALENT operation (logical addition)

Double length multiplication - result in A and (A+ 1)
Single length product (rounded) -fractional interpretation
Single length product {unrounded) - integer interpretation

Division; store quotient in A
Division; store remainder in A
Division; store remainder in A and quotient in (A+1)
Integer division; store quotient in A.
Fractional division, single length divisor; store quotient in A

Double length shift left vC places of v(8,8 + 1)
Double length shift right vC places of v{B,B + 1)
Single length shift left vC places of vB
Single length shift right vC places of v8 {rounded)

Single length shift left vC places of v8
Single length shift right vC places of vB
Single length right end-around shift vC places of vB
Double length shift left vC places of v(8,B + 1)
Double length shift right vC places of v{B,8 + 1)

Normalize vB, number of shifts in A; normalized form in (A+ 1)
Count number of ones in 8

Transfer order with simultaneous indexing of specified N register
{i = 1,2,3)
Add with indexing }
Subtract with indexing
AND with indexing
NOT EQUIVALENT with indexing

Load index register Ni l
Load Ni and transfer

~::: :: ::: :::::::·.::::I: :~:~:::::ii:~ to main store r

Modified transfer }
Modified transfer
Modified write to store

Clear bit uC of u8
Set bit vC of vB
Clear Q stat C
Set Qstat C

Unconditional jump
Unconditional jump storing link in nest
Obey link
Jump to subroutine n, normal entry
Jump to subroutine n, entry m

Test uB, jump if positive
Jump if result< 0
Jump if result= 0
Jump if result is zero and store result
Jump if result non zero and store result
Jump if specified bit clear
Jump if specified bit set
Jump if specified bit set and clear it
Jump if 0 statiscisor clear
Jump if Q statiscisor set

Read labelled data and set address in N 1

Stop identified by number C
Optional Stop
Last instruction in program
Clear uA and set it equal to bit uC only
Set register to 1•C. Zeros at most significant end and ones elsewhere
Set C to the inverse pattern of the above

NOTE ALL the t11nes quoted are between accumulators.

Nominal instruction time in µ.S

3·3
4·3
4·3
4·3
4·3

13·3
12·3
12·3

15·0
15·0
16·0
14·0
14·0

8·7
8·7
6·7
6·7

4·3
4·3
4·3
8·3
8·3

5·0
11 ·3

4·7

5·7

7·3

7·3

4·0
4·0
2·3
2·3

2·0
4·3
3·7
3·7
3·7

~:~:!:~l
3·7, 4·3 Longer time
4·0, 4·7 if jump> 16
4·0,4·7 places;
3·7, 4·3 independent
3·7,4·3 ofwhether
4·0, 4· 7 satisfied
2·0, 2·7
2·0,2·7

7·7

4·3
4·3
4·3

FERRANTI

For further details contact :

Ferranti Limited,
Digital Systems Department,
Western Road,
Bracl<nell,
Berl<shire,
England.

Telephone : 0344 3232
Telex : 84117

List oSD/ 68/ 6. Printed in England PLH. September 1968. Revised October 1968

