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BEFORE YOU START

This is the second volume of ULTRIX-32 Supplementary Documents, a three volume set that
contains articles describing the ULTRIX-32 system. The authors are computer scientists and
program developers at Bell Laboratories and the University of California at Berkeley. The
articles explain the software tools and utilities available on your ULTRIX-32 system. They
constitute most of the lore that enriches this operating system; topics range from getting
started to the details of screen updating and cursor movement facilities.

Each volume in this set contains several parts, and each part begins with an introduction.
The introduction to each part serves as a map that will help you find your way around in the
documentation, allowing you to select articles that relate to your interest. Each introduction
gives an overview of the material covered in the part and a description of the articles included.
Most readers will not need to read all articles, since many articles cover parallel topics.

These articles provide authoritative and accurate information that is unavailable elsewhere.
However, you should be aware that some of the information in some articles is dated. We
include those articles because many of the concepts they develop are still current and impor-
tant.

At the end of each volume in this set, you will find a master index identifying topics in all
three volumes.

Topics in Volume 11

The articles in this second volume deal with programming and support tools for programmers
on the ULTRIX-32 system. Most of the authors assume that readers are familiar with one or
more programming languages. For example, the articles on FORTRAN 77 are written for peo-
ple who already know a standard version of FORTRAN. '

“UNIX Programming - Second Edition,” in Part 1 of this volume, tells how to write programs
that cooperate with the operating system. Many readers will find it useful to read this article
before going on to articles on the languages and utilities.

The articles in Part 2 deal with four languages and four preprocessors. The languages are:
« C
« FORTRAN 77
* Franz Lisp
e Pascal
The four preprocessors are:

« RATFOR
« EFL
« FP

e M4



viii

Part 3, Supporting Tools, offers articles on three kinds of utilities:
e Program and library maintenance tools
e Program checking and debugging tools
» Compiler and preprocessor development tools

And the articles in Part 4, System Programming, cover topics such as:
¢ Inner workings of the ULTRIX-32 system
* System and kernel facilities available to user programs
¢ Assembly language (as)
* Screen manipulation functions
o The ULTRIX-32 line printer spooler

The features described in this volume provide the flexibility and programming power for
which UNIX is famous. A good understanding of many of the concepts and procedures
presented here is essential for efficient use of your ULTRIX-32 system.
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PART 1: PROGRAMMING CONSIDERATIONS

This part contains one article, “UNIX Programming - Second Edition,” by Kernighan and
Ritchie. The article gives background information that will help you write programs that
make full use of the ULTRIX-32 system. Readers should be familiar with the fundamentals
of the ULTRIX-32 system (or the UNIX system). Although the techniques shown in the arti-
cle apply to programming in any language available on the ULTRIX-32 system, the sample
programs are written in the C language.

The authors explain how to:
» Pass arguments to and from a program
e Send program output to a file, to a pipe, or to a terminal
¢ Use the standard I/O (input/output) library
¢ Handle I/O errors
o Use low level I/0
¢ Execute a program from within another
¢ Handle signals (interrupts)






UNIX Programming — Second Edition 1-3

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating
system in a non-trivial way. This includes programs that use files by name, that use
pipes, that invoke other commands as they run, or that attempt to catch interrupts and
other signals during execution.

The document collects material which is scattered throughout several sections of The
UNIX Programmer’s Manual [1] for Version 7 UNIX. There is no attempt to be complete;
only generally useful material is dealt with. It is assumed that you will be programming
in C, so you must be able to read the language roughly up to the level of The C Program-
ming Language [2]. Some of the material in sections 2 through 4 is based on topics
covered more carefully there. You should also be familiar with UNIX itself at least to the
level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are
made available to the function main as an argument count argc and an array argv of
pointers to character strings that contain the arguments. By convention, argv[O0] is the
command name itself, so argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back
to the terminal. (This is essentially the echo command.)

main(arge, argv) /* echo arguments */
int argc;
char *argv[];

int i;

for (i = 1; i < arge; i++)

printf(*%s%c”, argv[i], (i<arge-1) ? ’ ’

'in’);
argv is a pointer to an array whose individual elements are pointers to arrays of charac-

ters; each is terminated by \ O, so they can be treated as strings. The program starts by
printing argv[1] and loops until it has printed them all.

The argument count and the arguments are parameters tomain. If you want to keep
them around so other routines can get at them, you must copy them to external variables.

UNIX is a Trademark of Bell Laboratories
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2.2. The “Standard Input” and “Standard Output”

The simplest input mechanism is to read the ‘“standard input,” which is generally the
user’s terminal. The function getchar returns the next input character each time it is
called. A file may be substituted for the terminal by using the < convention: if prog uses
getchar, then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program
via the

otherprog ' prog
provides the standard input for prog from the standard output of otherprog.

getchar returns the value BOF when it encounters the end of file (or an error) on
whatever you are reading. The value of BOF is normally defined to be -1, but it is unwise
to take any advantage of that knowledge. As will become clear shortly, this value is
automatically defined for you when you compile a program, and need not be of any con-
cern.

Similarly, putchar(c) puts the character ¢ on the “standard output,” which is also
by default the terminal. The output can be captured on a file by using >: if prog uses
putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn’t exist; if it already exists, its previous contents are overwritten. And a pipe can be
used:

prog 1 otherprog

puts the standard output of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism
as putchar does, so calls to printf and putchar may be intermixed in any order; the
output will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the
same mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost
always enough to get started. This is particularly true if the UNIX pipe facility is used to
connect the output of one program to the input of the next. For example, the following
program strips out all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters */

{
int c;
while ((e¢ = getchar()) != HOF)
if ((e>=’ 2 & c<0177) || ¢ = "’'\t’ || ¢ =="\n’)
putchar(c);
exit(0);
}
The line

#include <stdio.h>
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should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filel file2 ... | cestrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit
at the end is not necessary to make the program work properly, but it assures that any
caller of the program will see a normal termination status (conventionally 0) from the pro-
gram when it completes. Section 6 discusses status returns in more detail.

3. THE STANDARD I/0 LIBRARY

The “Standard I/O Library” is a collection of routines intended to provide efficient
and portable I/O services for most C programs. The standard I/O library is available on
each system that supports C, so programs that confine their system interactions to its
facilities can be transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix
contains a more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard
output, which we have assumed are magically pre-defined. The next step is to write a pro-
gram that accesses a file that is not already connected to the program. One simple exam-
ple is wc, which counts the lines, words and characters in a set of files. For instance, the
command

we X.C y.C

prints the number of lines, words and characters in x. ¢ and y.c and the totals.

The question is how to arrange for the named files to be read — that is, how to con-
nect the file system names to the I/0 statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the
standard library function fopen. fopen takes an external name (like x.c or y.c), does
some housekeeping and negotiation with the operating system, and returns an internal
name which must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which con-
tains information about the file, such as the location of a buffer, the current character
position in the buffer, whether the file is being read or written, and the like. Users don’t
need to know the details, because part of the standard I/0 definitions obtained by includ-
ing stdio.h is a structure definition called FILE. The only declaration needed for a file
pointer is exemplified by

FILE *fp, *fopen();
This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is
a type name, like int, not a structure tag.
The actual call to fopen in a program is
fp = fopen(name, mode);
The first argument of fopen is the name of the file, as a character string. The second

argument is the\gnode, also as a character string, which indicates how you intend to use
the file. The only allowable modes are read (”r”), write (”w”’), or append (”a”).

If a file that you open for writing or appending does not exist, it is created (if possi-
ble). Opening an existing file for writing causes the old contents to be discarded. Trying
to read a file that does not exist is an error, and there may be other causes of error as well
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(like trying to read a file when you don’t have permission). If there is any error, fopen
will return the null pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which getc and putc are the simplest. getc returns the next
character from a file; it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in ¢ the next character from the file referred to by fp; it returns BOF when it
reaches end of file. putc is the inverse of gete:

putc(c, fp)

puts the character ¢ on the file fp and returns ¢. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are
provided for them. These files are the standard input, the standard output, and the stan-
dard error output; the corresponding file pointers are called stdin, stdout, and stderr.
Normally these are all connected to the terminal, but may be redirected to files or pipes as
described in Section 2.2. stdin, stdout and stderr are pre-defined in the I/O library
as the standard input, output and error files; they may be used anywhere an object of type
FILE * can be. They are constants, however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design
is one that has been found convenient for many programs: if there are command-line argu-
ments, they are processed in order. If there are no arguments, the standard input is pro-
cessed. This way the program can be used stand-alone or as part of a larger process.
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#include <stdio.h>

main(argec, argv) /* we: count lines, words, chars */

int arge;
char *argv[];
{

int ¢, i, inword;

FILE *fp, *fopen();

long linect, wordct, charct;

long tlinect = 0, twordct = O, tcharct = 0;

i=1;
fp = stdin;
do {

if (arge > 1 & (fp=fopen(argv[i], ”r”)) == NULL) {
fprintf(stderr, "wc: can’t open %s0, argv[il]);
cont inue;

}
linect = wordct = charct = inword = O;
while ((c¢c = getce(fp)) != HOF) {
charct++;
if (¢ == ’0)
linect++;
if(ec=""1]lec=""1]c=="0)
inword = 0;
else if (imword == 0) {
inword = 1;
wordc t++;

}

}
printf(”%71d %71d %71d”, linect, wordet, charct);
printf(arge > 1 ? ” %0 : 70, argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < arge);
if (arge > 2)
printf("%71d %71d %71d totalQ, tlinect, twordct, tcharct);
exit(0);

}

The function fprintf is identical to printf, save that the first argument is a file pointer
that specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the
file pointer and the external name that was established by fopen, freeing the file pointer
for another file. Since there is a limit on the number of files that a program may have
open simultaneously, it’s a good idea to free things when they are no longer needed.
There is also another reason to call fclose on an output file — it flushes the buffer in
which putec is collecting output. (fclose is called automatically for each open file when
a program terminates normally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Out-
put written on stderr appears on the user’s terminal even if the standard output is
redirected. wc writes its diagnostics on stderr instead of stdout so that if one of the
files can’t be accessed for some reason, the message finds its way to the user’s terminal
instead of disappearing down a pipeline or into an output file.
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The program actually signals errors in another way, using the function exit to ter-
minate program execution. The argument of exit is available to whatever process called
it (see Section 6), so the success or failure of the program can be tested by another pro-
gram that uses this one as a sub-process. By convention, a return value of 0 signals that
all is well; non-zero values signal abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output,
then calls a routine named exit. The function exit causes immediate termination
without any buffer flushing; it may be called directly if desired.

3.3. Miscellaneous I/0 Functions

The standard 1/O library provides several other I/O functions besides those we have
illustrated above.

Normally output with pute, etc., is buffered (except to stderr); to force it out
immediately, use fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except
that the first argument names a character string instead of a file pointer. The conversion
is done from the string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline,
into buf; at most size-1 characters are copied; it returns NULL at end of file.
fputs (buf, fp) writes the string in buf onto file fp.

The function ungetc(c, fp) “pushes back” the character ¢ onto the input stream
fp; a subsequent call to getc, fscanf, etc., will encounter ¢. Only one character of
pushback per file is permitted.

4. LOW-LEVEL I/0

This section describes the bottom level of I/O on the UNIX system. The lowest level
of I/0 in UNIX provides no buffering or any other services; it is in fact a direct entry into
the operating system. You are entirely on your own, but on the other hand, you have the
most control over what happens. And since the calls and usage are quite simple, this isn’t
as bad as it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even the user’s terminal, are files in the file system. This
means that a single, homogeneous interface handles all communication between a program
and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the
system of your intent to do so, a process called “opening” the file. If you are going to
write on a file, it may also be necessary to create it. The system checks your right to do
80 (Does the file exist? Do you have permission to access it?), and if all is well, returns a
small positive integer called a file descriptor. Whenever 1/0 is to be done on the file, the
file descriptor is used instead of the name to identify the file. (This is roughly analogous
to the use of READ(5,...) and WRITE(,...) in Fortran.) All information about an open file is
maintained by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrange-
ments exist to make this convenient. When the command interpreter (the “shell”) runs a



INIX Prograaming — Second Edition 1-9

program, it opens three files, with file descriptors 0, 1, and 2, called the standard input,
the standard output, and the standard error output. All of these are normally connected
to the terminal, so if a program reads file descriptor 0 and writes file descriptors 1 and 2,
it can do terminal I/0 without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to
the named files. Similar observations hold if the input or output is associated with a pipe.
Normally file descriptor 2 remains attached to the terminal, so error messages can go
there. In all cases, the file assignments are changed by the shell, not by the program. The
program does not need to know where its input comes from nor where its output goes, so
long as it uses file 0 for input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the
first argument is a file descriptor. The second argument is a buffer in your program where
the data is to come from or go to. The third argument is the number of bytes to be
transferred. The calls are

n read = read(fd, buf, n);

n written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On
reading, the number of bytes returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a terminal, read normally
reads only up to the next newline, which is generally less than what was requested.) A
return value of zero bytes implies end of file, and -1 indicates an error of some sort. For
writing, the returned value is the number of bytes actually written; it is generally an error
if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common
values are 1, which means one character at a time (‘“‘unbuffered”), and 512, which
corresponds to a physical blocksize on many peripheral devices. This latter size will be
most efficient, but even character at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its
output. This program will copy anything to anything, since the input and output can be
redirected to any file or device.

#define BUFSIZE 512 /* best size for PDP-11 INIX */

main() /* copy input to output */

{
char buf[BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);
exit(0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of
bytes to be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level rou-
tines like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.
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f#fdefine (VASK 0377 /* for making char’s > 0 */

getchar() /* unbuffered single character input */

{

char c;

return((read(0, &, 1) > 0) ? ¢ & OMASK : HOF);
}

¢ must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension
may make it negative. (The constant 0377 is appropriate for the PDP-11 but not neces-
sarily for other machines.)

The second version of getchar does input in big chunks, and hands out the charac-
ters one at a time.

f##define (MASK 0377 /* for making char’s > 0 */
ffdefine BUFSIZE 512

getchar() /* buffered version */

{
static char buf[BUFSIZE];

static char *bufp = buf;
static int n = 0;

if (n ==0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;

}
return((--n >= 0) ? *bufpt+ & OVMASK : HOF);

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open
files in order to read or write them. There are two system entry points for this, open and
creat [sic].

open is rather like the fopen discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an int.

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rmode is 0 for read, 1 for write,
and 2 for read and write access. open returns -1 if any error occurs; otherwise it returns
a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is pro-
vided to create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the
file already exists, creat will truncate it to zero length; it is not an error to creat a file
that already exists.

If the file is brand new, creat creates it with the protection mode specified by the
pmode argument. In the UNIX file system, there are nine bits of protection information
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associated with a file, controlling read, write and execute permission for the owner of the
file, for the owner’s group, and for all others. Thus a three-digit octal number is most
convenient for specifying the permissions. For example, 0755 specifies read, write and
execute permission for the owner, and read and execute permission for the group and
everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which
copies one file to another. (The main simplification is that our version copies only one
file, and does not permit the second argument to be a directory.)

f#fdefine NULL O
#define BUFSIZE 512
ffdefine PMIDE 0644 /* W for owner, R for group, others */

main(arge, argv) /* cp: copy fl to f2 */
int argc;
char *argv[];

int f1, f2, n;
char buf[BUFSIZE];

if (arge != 3)
error(”Usage: cp fram to”, NULL);

if ((f1 = open(argv[l], 0)) == -1)
error(”cp: can’t open %s”, argv[l]);
if ((f2 = creat(argv[2], PMIDE)) == -1)

error(”cp: can’t create %s”, argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error(”cp: write error”, NULL);
exit(0);
1

error(sl, s2) /* print error message and die */
char *sl, *s2;

printf(sl, s2);
printf(”0);
exit(1l);

}

As we said earlier, there is a limit (typically 15-25) on the number of files which a pro-
gram may have open simultaneously. Accordingly, any program which intends to process
many files must be prepared to re-use file descriptors. The routine close breaks the con-
nection between a file descriptor and an open file, and frees the file descriptor for use with
some other file. Termination of a program via exit or return from the main program
closes all open files.

The function unl ink(filename) removes the file filename from the file system.

4.4, Random Access — Seek and Lseek

File I/0 is normally sequential: each read or write takes place at a position in the
file right after the previous one. When necessary, however, a file can be read or written in
any arbitrary order. The system call 1seek provides a way to move around in a file
without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position of fset,
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which is taken relative to the location specified by origin. Subsequent reading or writ-
ing will begin at that position. offset is a long; fd and origin are int’s. origin can
be 0, 1, or 2 to specify that offset is to be measured from the beginning, from the
current position, or from the end of the file respectively. For example, to append to a file,
seek to the end before writing:

lseek(fd, OL, 2);
To get back to the beginning (“rewind”),
lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of bytes from
any arbitrary place in a file.

get (fd, pos, buf, n) /* read n bytes fram position pos */
int fd, n;
long pos;
char *buf;

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));
}

In pre-version 7 UNIX, the basic entry point to the I/O system is called seek. seek is
identical to lseek, except that its offset argument is an int rather than a long.
Accordingly, since PDP-11 integers have only 16 bits, the offset specified for seek is
limited to 65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the
given offset by 512 (the number of bytes in one physical block) and then interpret origin
as if it were 0, 1, or 2 respectively. Thus to get to an arbitrary place in a large file
requires two seeks, first one which selects the block, then one which has origin equal to
1 and moves to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they indicate an error by returning a
value of —1. Sometimes it is nice to know what sort of error occurred; for this purpose all
these routines, when appropriate, leave an error number in the external cell errno. The
meanings of the various error numbers are listed in the introduction to Section II of the
UNIX Programmer’s Manual, so your program can, for example, determine if an attempt to
open a file failed because it did not exist or because the user lacked permission to read it.
Perhaps more commonly, you may want to print out the reason for failure. The routine
perror will print a message associated with the value of errno; more generally,
sys-errno is an array of character strings which can be indexed by errno and printed
by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own.
This section describes how to execute a program from within another.

5.1. The “System” Function

The easiest way to execute a program from another is to use the standard library rou-
tine system system takes one argument, a command string exactly as typed at the ter-
minal (except for the newline at the end) and executes it. For instance, to time-stamp the
output of a program,
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main()

system(”date”);
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities
of sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal I/0 will not be
properly synchronized unless this buffering is defeated. For output, use fflush; for
input, see setbuf in the appendix.

5.2. Low-Level Process Creation — Execl and Execv

If you’re not using the standard library, or if you need finer control over what hap-
pens, you will have to construct calls to other programs using the more primitive routines
that the standard library’s system routine is based on.

The most basic operation is to execute another program without returning, by using
the routine execl. To print the date as the last action of a running program, use

execl (”/bin/date”, ”date”, NULL);

The first argument to execl is the file name of the command; you have to know where it
is found in the file system. The second argument is conventionally the program name
(that is, the last component of the file name), but this is seldom used except as a place-
holder. If the command takes arguments, they are strung out after this; the end of the list
is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate
only through temporary files. Here it is natural to make the second pass simply an execl
call from the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can’t be found or is not executable. If you
don’t know where date is located, say

execl(”/bin/date”, ”date”, NULL);
execl(”/usr/bin/date”, ”date”, NULL);
fprintf(stderr, “Someone stole ’date’0);

A variant of execl called execv is useful when you don’t know in advance how many
arguments there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, filename is the file in which
the program is found, and argp[O] is the name of the program. (This arrangement is
identical to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There
is no automatic search of multiple directories — you have to know precisely where the
command is located. Nor do you get the expansion of metacharacters like <, >, *, ?, and
[] in the argument list. If you want these, use execl to invoke the shell sh, which then
does all the work. Construct a string coomandl ine that contains the complete command
as it would have been typed at the terminal, then say

execl (”/bin/sh”, ”sh”, ”-¢”, coomandline, NULL);
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The shell is assumed to be at a fixed place, /bin/sh. Its argument -c¢ says to treat the
next argument as a whole command line, so it does just what you want. The only problem
is in constructing the right information in caommandl ine.

5.3. Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really all that useful by itself. Now we will show
how to regain control after running a program with execl or execv. Since these routines
simply overlay the new program on the old one, to save the old one requires that it first be
split into two copies; one of these can be overlaid, while the other waits for the new, over-
laying program to finish. The splitting is done by a routine called fork:

proc id = fork();

splits the program into two copies, both of which continue to run. The only difference
between the two is the value of proc id, the “process id.” In one of these processes (the
“child”), proc id is zero. In the other (the “parent”), proc id is non-zero; it is the pro-
cess number of the child. Thus the basic way to call, and return from, another program is

if (fork() == 0)
execl(”/bin/sh”, ”sh”, ”-¢”, and, NULL);/* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two copies of
the program. In the child, the value returned by fork is zero, so it calls execl which
does the caonmand and then dies. In the parent, fork returns non-zero so it skips the
execl. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait:

int status;

if (fork() == 0)
execl(...);
wait (&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork,
or the possibility that there might be more than one child running simultaneously. (The
wait returns the process id of the terminated child, if you want to check it against the
value returned by fork.) Finally, this fragment doesn’t deal with any funny behavior on
the part of the child (which is reported in status). Still, these three lines are the heart
of the standard library’s system routine, which we’ll show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of
the child’s termination status; it is 0 for normal termination and non-zero to indicate vari-
ous kinds of problems. The next higher eight bits are taken from the argument of the call
to exit which caused a normal termination of the child process. It is good coding prac-
tice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up
pointing at the right files, and all other possible file descriptors are available for use.
When this program calls another one, correct etiquette suggests making sure the same
conditions hold. Neither fork nor the exec calls affects open files in any way. If the
parent is buffering output that must come out before output from the child, the parent
must flush its buffers before the execl. Conversely, if a caller buffers an input stream,
the called program will lose any information that has been read by the caller.

5.4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one pro-
cess writes into the pipe, while the other reads. The system looks after buffering the data
and synchronizing the two processes. Most pipes are created by the shell, as in

-~
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1s | pr

which connects the standard output of 1s to the standard input of pr. Sometimes, how-
ever, it is most convenient for a process to set up its own plumbing; in this section, we will
illustrate how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writ-
ing, two file descriptors are returned; the actual usage is like this:

int fd[2];

stat = pipe(fd);
if (stat == -1)
/* there was an error ... */

fd is an array of two file descriptors, where fd[0] is the read side of the pipe and fd[1]
is for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process
writes into a pipe which is too full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(and, mode), which creates a process and (just as system does), and returns a
file descriptor that will either read or write that process, according to mode. That is, the
call

fout = popen(”pr”, WRITE) ;

creates a process that executes the pr command; subsequent write calls using the file
descriptor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other
side of the pipe, then calls the shell (via execl) to run the desired process. The parent
likewise closes the end of the pipe it does not use. These closes are necessary to make
end-of-file tests work properly. For example, if a child that intends to read fails to close
the write end of the pipe, it will never see the end of the pipe file, just because there is
one writer potentially active.
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#include <stdio.h>

#define READ O

#define WRITE 1

#define tst(a, b) (mode == READ ? (b) : (a))
static int popen pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe(p) < 0)
return(NULL) ; )
if ((popen pid = fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst (p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl(”/bin/sh”, ”sh”, ”-¢”, and, 0);
exit(1l); /* disaster has occurred if we get here */

if (popen pid == -1)
return(NULL) ; ‘

close(tst(p[READ], p[WRITE]));

return(tst (p[WRITE], p[READ]));

}

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a
child process that will read data from the parent. Then the first close closes the write
side of the pipe, leaving the read side open. The lines

close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the
child. The close closes file descriptor 0, that is, the standard input. dup is a system call
that returns a duplicate of an already open file descriptor. File descriptors are assigned in
increasing order and the first available one is returned, so the effect of the dup is to copy
the file descriptor for the pipe (read side) to file descriptor 0; thus the read side of the
pipe becomes the standard input. (Yes, this is a bit tricky, but it’s a standard idiom.)
Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to
write from the parent instead of reading. You may find it a useful exercise to step
through that case.

The job is not quite done, for we still need a function pclose to close the pipe
created by popen. The main reason for using a separate function rather than close is
that it is desirable to wait for the termination of the child process. First, the return value
from pclose indicates whether the process succeeded. Equally important when a process
creates several children is that only a bounded number of unwaited-for children can exist,
even if some of them have terminated; performing the wait lays the child to rest. Thus:
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#include <signal .h>

pclose(fd) /* close pipe fd */

int fd;

{
register r, (*hstat)(), (*istat)(), (*agstat)();
int status;
extern int popen pid;

close(fd);
istat = signal (SIGINT, SIG IN);
gstat = signal (SIGQUIT, SIG IGN);
hstat = signal (SIGHP, SIG IN);
while ((r = wait(&status)) != popen pid && r != -1);
if (r == -1)
status = -1;

signal (SIGINT, istat);

signal (SIGQUIT, qgstat);
signal (SIGHP, hstat);
return(status);

}

The calls to signal make sure that no interrupts, etc., interfere with the waiting process;
this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen pid; it really should be an array indexed by
file descriptor. A popen function, with slightly different arguments and return value is
available as part of the standard I/O library discussed below. As currently written, it
shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside
world (like interrupts), and with program faults. Since there’s nothing very useful that
can be done from within C about program faults, which arise mainly from illegal memory
references or from execution of peculiar instructions, we’ll discuss only the outside-world
signals: interrupt, which is sent when the DEL character is typed; quit, generated by the
FS character; hangup, caused by hanging up the phone; and terminate, generated by the
kill command. When one of these events occurs, the signal is sent to all processes which
were started from the corresponding terminal; unless other arrangements have been made,
the signal terminates the process. In the quit case, a core image file is written for debug-
ging purposes.

The routine which alters the default action is called signal. It has two arguments:
the first specifies the signal, and the second specifies how to treat it. The first argument is
just a number code, but the second is the address is either a function, or a somewhat
strange code that requests that the signal either be ignored, or that it be given the default
action. The include file signal.h gives names for the various arguments, and should
always be included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG IN);
causes interrupts to be ignored, while

signal (SIGINT, SIG DFL);

restores the default action of process termination. In all cases, signal returns the previ-
ous value of the signal. The second argument to signal may instead be the name of a
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function (which has to be declared explicitly if the compiler hasn’t seen it already). In
this case, the named routine will be called when the signal occurs. Most commonly this
facility is used to allow the program to clean up unfinished business before terminating,
for example to delete a temporary file:

#include <signal.h>
main()
{

int onintr();

if (signal (SIGINT, SIG IN) != SIG IN)
signal (SIGINT, onintr);

/* Process ... */

exit(0);

}

onintr()
unlink(tempfile);
exit(l);

}

Why the test and the double call to signal? Recall that signals like interrupt are
sent to all processes started from a particular terminal. Accordingly, when a program is to
be run non-interactively (started by &), the shell turns off interrupts for it so it won’t be
stopped by interrupts intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the onintr routine regardless, that
would undo the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue
to ignore interrupts if they are already being ignored. The code as written depends on the
fact that signal returns the previous state of a particular signal. If signals were already
being ignored, the process should continue to ignore them; otherwise, they should be
caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of
a text editor: interrupting a long printout should not cause it to terminate and lose the
work already done. The outline of the code for this case is probably best written like this:

#include <signal .h>
#include <setjmp.h>
jop buf sjbuf;

main()

{

int (*istat)(), onintr();

istat = signal (SIGINTI, SIG IN); /* save original status */
setjmp(sjbuf); /* save current stack position */
if (istat != SIG IN)

signal (SIGINT, onintr);

/* main processing loop */
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onintr()

printf(”Onterrupt0);
longjmp(sjbuf); /* return to saved state */

The include file set jmp.h declares the type jmp buf an object in which the state can be
saved. sjbuf is such an object; it is an array of some sort. The set jmp routine then
saves the state of things. When an interrupt occurs, a call is forced to the onintr rou-
tine, which can print a message, set flags, or whatever. longjmp takes as argument an
object stored into by setjmp, and restores control to the location after the call to
set jmp, so control (and the stack level) will pop back to the place in the main routine
where the signal is set up and the main loop entered. Notice, by the way, that the signal
gets set again after an interrupt occurs. This is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called on
occurrence of a signal sets a flag and then returns instead of calling exit or longjmp,
execution will continue at the exact point it was interrupted. The interrupt flag can then
be tested later.

There is one difficulty associated with this approach. Suppose the program is reading
the terminal when the interrupt is sent. The specified routine is duly called; it sets its
flag and returns. If it were really true, as we said above, that “execution resumes at the
exact point it was interrupted,” the program would continue reading the terminal until
the user typed another line. This behavior might well be confusing, since the user might
not know that the program is reading; he presumably would prefer to have the signal take
effect instantly. The method chosen to resolve this difficulty is to terminate the terminal
read when execution resumes after the signal, returning an error code which indicates
what happened.

Thus programs which catch and resume execution after signals should be prepared for
“errors” which are caused by interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.) A program whose onintr program just sets
intflag, resets the interrupt signal, and returns, should usually include code like the fol-
lowing when it reads the standard input:

if (getchar() == HOF)
if (intflag)
/* HOF caused by interrupt */
else
/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined
with execution of other programs. Suppose a program catches interrupts, and also
includes a method (like ‘“!” in the editor) whereby other programs can be executed. Then
the code should look something like this:

if (fork() == 0)

execl(...);
signal (SIGINT, SIG IN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and
return to its main loop, and probably read your terminal. But the calling program will
also pop out of its wait for the subprogram and read your terminal. Having two processes
reading your terminal is very unfortunate, since the system figuratively flips a coin to
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decide who should get each line of input. A simple way out is to have the parent program
ignore interrupts until the child is done. This reasoning is reflected in the standard 1/0
library function sys tem

#include <signal.h>

system(s) /* run coomand string s */
char *s;
{

int status, pid, w;

register int (*istat)(), (*gstat)();

if ((pid = fork()) == 0) {
execl(”/bin/sh”, ”sh”, ”-¢”, s, 0);
exit(127);

}
istat = signal (SIGINT, SIG IN);

gstat = signal (SIGQUIT, SIG IQN);
while ((w = wait(&status)) != pid & w != -1)
if (w== -1)

status = -1;

signal (SIGINT, istat);

signal (SIGQUIT, gstat);
return(status);

}

As an aside on declarations, the function signal obviously has a rather strange
second argument. It is in fact a pointer to a function delivering an integer, and this is
also the type of the signal routine itself. The two values SIG IGN and SIG DFL have the
right type, but are chosen so they coincide with no possible actual functions. For the
enthusiast, here is how they are defined for the PDP-11; the definitions should be
sufficiently ugly and nonportable to encourage use of the include file.

f#define SIG DFL (int (*)())O0
#idefine SIG IGN (int (*)())1
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Appendix — The Standard I/0 Library

D. M. Ritchie

The standard I/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no
hesitation in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls
whose use mars the understandability and portability of many programs using older
packages.

3. The interface provided should be applicable on all machines, whether or not the pro-

grams which implement it are directly portable to other systems, or to machines other
than the PDP-11 running a version of UNIX.

1. General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so
no special library argument is needed for loading. All names in the include file intended
only for internal use begin with an underscore to reduce the possibility of collision with
a user name. The names intended to be visible outside the package are

stdin  The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

EOF is actually —1, and is the value returned by the read routines on end-of-file or
error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indi-
cate an error

FILE expands to struct iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned
here to point out that it is not possible to redeclare them and that they are not
actually functions; thus, for example, they may not have breakpoints set on
them.

The routines in this package offer the convenience of automatic buffer allocation and
output flushing where appropriate. The names stdin, stdout, and stderr are in effect
constants and may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be
”r”, w”, o "a” to indicate intent to read, write, or append. The value returned is a
file pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
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The stream named by ioptr is closed, if necessary, and then reopened as- if by fopen.
If the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer
to the new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a
file such as returned by fopen, or the name stdin. The integer EOF is returned on
end-of-file or when an error occurs. The null character x0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed
as an argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character ¢ on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as
value, but HOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like pute but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allo-
cated by the I/O system is freed. fclose is automatic on normal termination of the
program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out.
Output files are normally buffered if and only if they are not directed to the terminal;
however, stderr always starts off unbuffered and remains so unless setbuf is used,
or unless it is reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a spe-
cial version of the routine which calls fflush for each output file. To terminate
without flushing, use exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

getchar();
is identical to getc(stdin).

putchar(c);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The
read terminates with a newline character. The newline character is placed in the
buffer followed by a null character. fgets returns the first argument, or NULL if error
or end-of-file occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No new-
line is appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character ¢ is pushed back on the input stream named by ioptr. Only

N
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one character may be pushed back.

printf(format, al, ...) char *format;

fprintf(ioptr, format, al, ...) FILE *ioptr; char *format;

sprintf(s, format, al, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The
specifications are as described in section printf(3) of the UNIX Programmer’s
Manual.

scanf(format, al, ...) char *format;

fscanf(ioptr, format, al, ...) FILE *ioptr; char *format;

sscanf(s, format, al, ...) char *s, *format;
scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, inter-
prets them according to a format, and stores the results in its arguments. Each rou-
tine expects as arguments a control string format, and a set of arguments, each of
which must be a pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. On end of file,
BOF is returned; note that this is different from 0, which means that the next input
character does not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads ni tems of data beginning at ptr from file ioptr. No advance notification that
binary I/O is being done is required; when, for portability reasons, it becomes
required, it will be done by adding an additional character to the mode-string on the
fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a
rewound output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. BEOF is returned on
end-of-file or error, but since this a perfectly good integer feof and ferror should be
used. A “word” is 16 bits on the PDP-11.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.
setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before I/O has started. If

buf is NULL, the stream will be unbuffered. Otherwise the buffer supplied will be
used. It must be a character array of sufficient size:

char buf[BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a
long integer. If ptrname is 0, the offset is measured from the beginning of the file; if
ptrname is 1, the offset is measured from the current read or write pointer; if
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ptrname is 2, the offset is measured from the end of the file. The routine accounts
properly for any buffering. (When this routine is used on non-UNIX systems, the
offset must be a value returned from ftell and the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named
stream is returned. Any buffering is properly accounted for. (On non-UNIX systems
the value of this call is useful only for handing to fseek, so as to position the file to
the same place it was when ftell was called.)

getpw(uid, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is
found, it is copied into the character array buf, and 0 is returned. If no line is found
corresponding to the user ID then 1 is returned.

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for
any purpose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is guaranteed to be set to 0
and the pointer is sufficiently well aligned to be usable for any purpose. NULL is
returned if no space is available .

cfree(ptr) char *ptr;
Space is returned to the pool used by calloec. Disorder can be expected if the
pointer was not obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype.h>.

isalpha(c) returns non-zero if the argument is alphabetic.

isupper(c) returns non-zero if the argument is upper-case alphabetic.

islower (c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab, newline, car-
riage return, vertical tab, form feed, space.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a
space, letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctua-
tion character.

iscntrl(c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ascii character, i.e., less than octal
0200.

toupper (c) returns the upper-case character corresponding to the lower-case letter c.

tolower (c) returns the lower-case character corresponding to the upper-case letter c.
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PART 2: LANGUAGES

This part includes articles on four of the languages and four of the language preprocessors
available on ULTRIX-32:

e C

« FORTRAN 77
e RATFOR

« EFL

e Pascal

¢ Franz Lisp
« FP
« M4

These articles are authoritative reference materials appropriate for people familiar with pro-
gramming in the languages described. Each article defines the implementation of a language
or preprocessor on the ULTRIX-32 system. With the exception of the articles on Pascal,
RATFOR, and M4, these articles are not tutorial, and they are not for beginners.

C Language

The first three articles deal with the C language. “The C Programming Language - Reference
Manual” lists in detail the rules, conventions, and concepts that define the implementation of
C on the VAX computer. This is reprinted from an appendix in The C Programming
Language [1], by Kernighan and Ritchie. Before you use this article, you should know how to
write programs in C and have read The C Programming Language.

The next two articles describe C language compilers. “A Tour Through the Portable C Com-
piler,” by Johnson, explains the Berkeley C compiler available in the ULTRIX-32 system. It
tells what happens when you compile a C program on ULTRIX-32 and is meant for people
who may support the C compiler. This article gives an excellent overview of the organization,
operation, and background of the ULTRIX-32 C compiler. The Ritchie article, “A Tour
Through the UNIX C Compiler,” describes the Bell UNIX C compiler, not implemented on
ULTRIX-32.

FORTRAN

The two articles that follow describe f77 FORTRAN. The “Introduction to the f77 I/0
Library,” by Wasley, lists specifications and rules for using the £77 I/O library routines. These
routines make use of the standard C I/O library routines in ULTRIX-32. The article explains

[1] Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice Hall, Englewood
Cliffs, N.J., 1978.
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the different methods available for accessing files, rules for use of logical units for I/O, and
error and status handling for I/O processing. It tells in detail how the standard FORTRAN
commands and concepts are implemented on the ULTRIX-32 system. In addition, the article
identifies non-ANSI standard extensions to the library and shows methods you can use to
make older FORTRAN programs compatible with this I/O library.

“A Portable FORTRAN 77 Compiler,” by Feldman and Weinberger, describes the rules and
conventions of FORTRAN 77 as implemented on the ULTRIX-32 system. Familiarity with
FORTRAN 66 or another standard FORTRAN is prerequisite to comprehending this article.

RATFOR and EFL

The next two articles deal with FORTRAN preprocessors. RATFOR and EFL translate input
files into FORTRAN source code. They overcome some of the cosmetic and control-flow
defects of FORTRAN while retaining desirable FORTRAN features such as universality and
efficiency. RATFOR and EFL programs are compatible with FORTRAN libraries, yet they
offer a significant improvement over standard FORTRAN.

The article “RATFOR - A Preprocessor for a Rational FORTRAN,” by Kernighan, tells how
to write RATFOR code that is easier to read and write than FORTRAN code. The article also
explains how to:

¢ Eliminate goto statements
* Group statements within a conditional construction
¢ Include the else clause as a part of a conditional construction
¢ Improve do, while, for, and repeat until functions
Readers will find this article easy to read and full of useful examples.

EFL is a descendant of RATFOR. EFL is more flexible; it allows more general forms for
expressions and it provides a more uniform syntax. “The Programming Language EFL,” by
Feldman, lists concepts and rules and provides some programming examples.

Berkeley Pascal

The “Berkeley Pascal User’s Manual” tells what you need to know to write and execute Pas-
cal programs on the ULTRIX-32 system if you are already familiar with Pascal programming.
The article is arranged in tutorial format; it lists reference materials, explains how to use an
editor to create a Pascal program, and gives various execution options. Berkeley Pascal
includes six utilities for translating, compiling, running, and analyzing programs:

pi Translates the source program into object code and stores the object code

px Interprets (executes) the object code created by pi

pix Translates the source program and then executes it
pc Processes the source program to compile an executable binary file
pXp Creates an execution profile for a program when used together with pi or pix

pxref  Produces a program listing and a cross-reference identifier from a source pro-
gram

“The Berkeley Pascal User’s Manual” explains how to use these utilities, how to handle pip-
ing, input, and output, how to interpret error diagnostics, how to include source text from
several files for the translator, and how to compile separate segments of a Pascal program to
be linked for running later. An appendix gives a precise definition of Berkeley Pascal.
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Franz Lisp

“The Franz Lisp Manual” gives a detailed and extensive description of the Berkeley dialect of
Lisp. Franz Lisp is a sophisticated language that provides a complete environment in which
you can develop and run programs. In addition, it offers:

e 14 data types

* Both a compiler and an interpreter

* Special functions (such as apply)

e System control functions (such as memory allocation)
» Macros and fclosures

¢ Compatibility with foreign subroutines

e Error handling capabilities

¢ Powerful debugging tools (trace, stepper, fixit)

e A CMU top-level package that serves as an alternative to the default Franz Lisp top-
level package

» A file package that allows you to save functions for use in other sessions
e An editor specially designed for modifying Lisp programs

Because this long article is organized as a reference manual, you may find it useful to read the
introductory section in each chapter to gain an overview, before reading the chapters in depth.

FP

FP is a preprocessor that produces Franz Lisp source code. The ‘“Berkeley FP User’s
Manual” is appropriate reading for sophisticated programmers familiar with Lisp. The article
describes, in terse terms, the principles and rules of the language. This description includes
definitions of:

* Objects
* Operations
e Functions
¢ Input and output procedures
¢ Execution options
You may find the extensive programming examples helpful.

M4

M4 is a macro processor that provides string substitution. It accepts as input source code in
any computer language and substitutes a defined text for each occurrence of a macro name.
“The M4 Macro Processor,” by Kernighan and Ritchie, offers readable explanations and good
examples. You can use M4 to:

e Set up your own macros

e Create and use macros that take several arguments
¢ Use a set of built-in macros

¢ Bring in new files with an include function

e Call shell functions with a system command






The C Programming Language 2-5

The C Programming Language — Reference Manual
Dennis M. Ritchie

Bell Laboratories, Murray Hill, New Jersey

This manual is reprinted. with minor changes, from The C Programming Language, by Brian W. Ker-
nighan and Dennis M. Ritchie. Prentice-Hall. Inc., 1978.

1. Introduction

This manual describes the C language on the DEC PDP-11, the DEC VaX-11, the Honeywell 6000.
the I1BM System/370. and the Interdata 8/32. Where differences exist. it concentrates on the PDP-11. but
tries to point out implementation-dependent details. With few exceptions. these dependencies follow
directly from the underlying properties of the hardware: the various compilers are generally quite compa-
tible.

2. Lexical conventions

There are six classes of tokens: identifiers, keywords. constants, strings. operators. and other separa-
tors. Blanks, tabs, newlines, and comments (collectively, **white space’™) as described below are ignored
except as they serve 1o separaie tokens. Some white space is required to separate otherwise adjacent
identifiers. keywords, and constants.

If the input stream has been parsed into tokens up to a given character. the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters /« introduce a comment, which terminates with the characters »/. Comments do not
nest.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits: the first character must be a letter. The underscore _
counts as a letter. Upper and lower case letters are different. No more than the first eight characters are
significant, although more may be used. External identifiers, which are used by various assemblers and
loaders. are more restricted:

DEC PDP-11 7 characters, 2 cases
DEC vaXx-l11 8 characters, 2 cases
Honeywell 6000 6 characters, | case
1BM 360/370 7 characters, | case
Interdata 8/32 8 characters. 2 cases

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry
unsigned continue

auto if

The entry keyword is not currently implemented by any compiler but is reserved for future use. Some

t UNIX is a Trademark of Beil Laboratories.
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implementations also raserve the words fortran and asm

2.4 Constants

There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are
summarized in $2.6.

2.4.1 Integer constants

An integer constant consisting of a sequence of digits is taken (o be octal if it begins with 0 (digit
zero). decimal otherwise. The digits 8 and 9 have octal value 10 and 1] respectively. A sequence of
digits preceded by 0x or 0X (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through £ or F with values 10 through 15. A decimal constant whose value exceeds the
largest signed machine integer is taken to be long: an octal or hex constant which excseds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long
constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants

A character constant is a character enclosed in single quotes, as in *x’. The value of a character
constant is the numerical value of the character in the machine’s character set.

Certain non-graphic characters, the single quote * and the backslash \, may be represented according
to the following table of escape sequences:

newline NL(LF) \n
horizontal tab HT \t
backspace BS \b
carriage return. CR \z
form feed FF \£
backslash \ \\
single quote 4 \’
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not one of those specified. the
backslash is ignored.

2.4.4 Floating constaats

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequencs of digits.
Either the integer part or the (raction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings

A string is a sequence of characters surrounded by double quotes, as in *...". A string has type
**array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings. even when written identically, are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string; the doubie quote charac-
ter " must be preceded by a \: in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

Although these affect program portability, in practice they are less of a problem than might be thought a
priort,

PN
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DEC PDP-11  Honeywell 6000 1BM 370 Interdata 8/32
ASCll ASClI EBCDIC ASClI

char 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16

long 32 36 32 32
float 32 36 32 32
double 4

range +10=38 +10= +10=76 +10%7

The VAX-11 is identical to the POP-11 except that integers have 32 bits.

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by ialic type, and literal
words and characters in bold type. Alternative categories are listed on separate lines. An optional ter-
minal or non-terminal symbol is indicated by the subscript **opt,” so that

 expression,, )
indicates an optional expression enclosed in braces. The syntax is summarized in §18.

4. What's in 2 name?

C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its
ope., The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari-
ables are local to each invocation of a block (§9.2), and are discarded upon exit from the block; static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine: like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:

Objects declared as characters (char) are large enough to store any member of the implementation's
character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari-
ables, but the implementation is machine-dependent.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. ‘‘Plain’ integers have the natural size
suggested by the host machine architecture; the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is the
number of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double-precision floating point (double) may be
synonymous in some impiementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will coilectively be called integral types. float
and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

arrays of objects of most types;

Jfunctions which return objects of a given type;

pointers 10 objects of a given type;

structures containing a sequence of objects of various types;

unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.
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5. Objects and lvalues

An object is a manipulatable region of storage: an /vaive is an expression referring to an object. An
obvious axampie of an lvalue expression is an identifier. There are operators which vieid Ivalues: for
example. if £ is an expression of pointer type. then «£ is an Ivalue expression referring to the object to
which E poiats. The name “‘lvalue’ comes from the assignment expression £1 = E2 in which the left
operand =1 must be an lIvaiue axpression. The discussion of each operator below indicates whather it
expects Ivalue operands and whether it yields an lvalue.

6. Conversions ‘

A number of operators may, depending on their operands. cause conversion of the value of an
operand from one type to another. This section explains the resuit to be expected from such conver-
sions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be supplemented as
required by the discussion of each operator.

6.1 Characters and integers

A character or a short integer may be used wherever an integer may be used. [n all cases the value
is converted to an integer. Conversion of a shorter integer 10 a longer always involves sign exteasion:
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent.
but it is guarantesd that 2 member of the standard character set is non-negative. Of the machines treated
by this manual. only the PDP-11 sign-extends. On the PDP-11, character variables range in value from
=128 10 127: the characters of the ASCII alphabet are all positive. A character constant specified with an
octal escape su Ters sign extension and may appear negative: for example, *\377' has the value -1.

When 1 I+ ager integer is converted to a shocter or 10 2 char, it is truncated on the left; excess bits
are simpiy dic irded.

6.2 Float and double

All floating arithmetic in C is carried out in double-precision: whenever a £loat appears in an
expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to £loac. for example by an assignment, the double is rounded before truncation to £loac length.

6.3 Floating and integral

Conversions of floating values to integral type tend to be rather machine-dependent. in particular the
direction of truncation of negative numbers varies from machine to machine. The result is undefined if
the value will not fit in the space provided.

Coaversions of integral values to floating type are well behaved. Some loss of precision occurs if the
destination lacks sufficient bits.

6.4 Pointers and integers

An integer or long integer may be added to or subtracted from a pointer: in such a case the first is
converted as specified in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted: in this case the result is converted to an
integer as specified in the discussion of the subtraction operator.

6.5 Uasigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to
unsigned and the resuit is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2¥°"%%%) [ a 2°s complement representation. this conversion is conceptual and there is
no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the resuit is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A greal many operators cause conversions and yield result types in a similar way. This pattern will
be called the ““usual arithmetic conversions.”

First, any operands of type char or short are converted to int, and any of type £loat are con-
verted 10 double.
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Then, if either operand is double, the other is converted to double and that is the type of the
result.

Otherwise. if either operand is long, the other is converted to long and that is the type of the
result.

Otherwise. if either operand is unsigned, the other is converted 10 unsigned and that is the type
of the result.

Otherwise, both operands must be int, and that is the type of the result.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this sec-
tion, highest precedence first. Thus. for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7.1-7.3. Within each subsection, the operators have the same pre-
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient. even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (=, +, &, 1, ~) may be rearranged arbitrarily, even in the presence
of parentheses; to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist-
ing implementations of C ignore integer overflows: treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving ., ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
sring
( expression )
primary-expression { expression ]
primary-expression ( expression-list,, )
primary-lvalue . identifier
primary-expression => identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is **array of ..."", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
‘*pointer to ..."". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which
is declared ‘‘function returning ...”", when used except in the function-name position of a call. is con-
verted to ‘‘pointer to function returning ..."".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int; floating constants are double.

A string is a primary expression. Its type is originally *‘array of char’’: but following the same rule
given above for identifiers, this is modified to *‘pointer t0o char'’ and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually. the primary expression has type ‘‘pointer to ..."", the
subscript expression is int. and the type of the resuit is **..."". The expression E1 (E2] is identical (by
definition) to «((E1)+(E2)). All the clues needed to understand this notation are contained in this sec-
tion together with the discussions in §§ 7.1, 7.2, and 7.4 on identifiers. », and + respectively: §14.3 below
summarizes the implications.
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A function call is a2 primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type “‘function returning ...”, and the result of the function call is of type **..."".
As indicated below. a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer: thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type £loat are converted 0 double before the call: any of type chax or
short are converted (0 int: and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is nesded, use a cast: see §7.2, 8.7.

In preparing for the call to a function. a copy is made of each actual parameter: thus, all argument-
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand. it is possible 10 pass a
pointer on the understanding that the {unction may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language: take note that the various compilers differ.

Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first expres-
sion must be an lvalue naming a structure or a union. and the identifier must name a member of the
structure or union. The result is an Ivalue referring 10 the named member of the structure or union.

A primary expression followed by an arrow (built from 2 - and a2 >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or 2 union and the identifier must name
a member of that structure or union. The result is an ivalue referring to the named member of the struc-
ture or union to which the pointer expression points.

Thus the expression E1->MOS is the same as (#E1) .MOS. Structures and unions are discussed in
§8.5. The rules given here for the use of structures and unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See §14.1.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-expression: -
*» expression
s lvalue
- expression
! expression
< expression
++ lvalue
— Ivalue
hvalue ++
lvalue =
( ype-name ) expression
sizeof expression
sizeof ( pype-name)

The unary » operator means indirection: the expeession must be a pointér, and the result is an lvalue
referring to the object to which the expression points. If the type of the expression is *‘pointer to ..."",
the type of the result is **..."".

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the type of
the Ivalue is **..."", the type of the result is **pointer to ..."".

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 27,
where 7 is the number of bits in an int. There is no unary + operator.

The result of the logical negation operator ! is | if the value of its operand is 0. 0 if the value of its
operand is non-zero. The lype of the result is ine [t is applicable 0 any arithmetic type or (0 pointers.

The = operator yields the one's complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The object referred to by the Ivalue operand of prefix ++ is incremented. The value is the new value
of the operand. but is not an lvalue. The expression ++x is equivalent to x+=1. Ses the discussions of
addition (§7.4) and assignment operators (§7.14) for information on conversions.

PSRN
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The Ivalue operand of prefix -- is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an Ivalue the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue the result is the value of the object referred to by the lvalue.
After the result is noted, the object is decremented in the manner as for the prefix —— operator. The type
of the result is the same as the type of the lvaiue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8.7.

The sizeof operator vields the size, in bytes. of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti-
cally an integer constant and may be used anywhere a constant is required. [ts major use is in communi-
cation with routines like storage allocators and [/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (fype) is taken to be a unit, so the expression sizeof (ype)-2 is the
same as (sizeof (ype))-2.

7.3 Multiplicative operators
The multiplicative operators =, /, and % group left-to-right. The usual arithmetic conversions are
performed.

multiplicative-expression:
expression « expression
expression / expression
expression % expression

The binary » operator indicates multiplication. The » operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b)+b + axb
is equal to a (if bis not 0).

The binary % operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions are performed. The operands must not be £loat.

7.4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed.
There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi-
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.

The + operator is associative and expressions with several additions at the same level may be rear-
ranged by the compiler.

The resuit of the - operator is the difference of the operands. The usual arithmetic conversions are
performed. Additionaily, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same
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array. since pointers. 2ven to objects of the same type. do not necassarily differ by a multiple of the
object-length.

7.5 Shift operators

The shift operators << and >> group left-to-right. Both perform the usual arithmetic conversions on
their operands. each of which must be integral. Then the right operand is converted to inz: the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression << expression
expression >> expression

The value of 21<<E2 is E1 (interpreted as a bit pattern) left-shifted £2 bits; vacated bits are O-filled.
The value of E1>>E2 is E1 right-shiflted £2 bit positions. The right shift is guarantesd !0 be logical (0-

fil) if £1 is unsigned: otherwise it may be (and is, on the PDP-11) arithmetic (fill by a copy of the sign
bit).

7.6 Relational operators

The relational operators group left-to-right, but this fact is not very useful, a<b<c does not mean
what it sesms to.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal 10) and >« (greater than or equal to)
all vield O il the specified relation is false and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression == expression
expression ! = expression

The == (equal t0) and the != (not equal 10) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the same
truth-value).

A pointer may be compared t0 an integer, but the result is machine dependent unless the integer is
the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed; the resuit is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression ~ expression
The ~ operator is associative and expressions involving ~ may be rearranged. The usual arithmetic

conversions are performed: the result is the bitwise exclusive OR function of the operands. The opercator
applies only to integral operands.
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7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression | expression

The | operator is associative and expressions involving | may be rearranged. The usual arithmetic
conversions are performed: the result is the bitwise inclusive OR function of its operands. The operaior
applies only to integral operands.

7.11 Logical AND operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. It returns ! if both its operands are non-zero, 0 otherwise. Unlike
&, && guarantees left-to-right evaluation: moreover the second operand is not evaluated if the first
operand is 0.

The operands need not have the same type, but each must have one of the fundamenial types or be
a pointer. The result is always int.

7.12 Logical OR operator

logical-or-expression:
expression | | expression

The 11 operator groups left-to-right. [t returns 1 if either of its operands is non-zero, and O otherwise.
Unlike 1, |1 guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero. the
result is the value of the second expression. otherwise that of third expression. [f possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type: other-
wise, if both are pointers of the same type, the result has the common type: otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7.14 Assignment operators

There are a number of assignment operators, all of which group right-to-left. All require an lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:

Ivalue = expression
hvalue += expression
Ivalue -= expression
lvalue == expression
lvalue /= expression
Ivalue %= expression
Ivalue >>= expression
lvalue <<= expression
halue &= expression
Ivalue ~= expression
Ivalue | = expression

[n the simple assignment with =, the value of the expression replaces that of the object referred to by
the lvalue. If both operands have arithmetic type. the right operand is converted to the type of the left
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preparatory to the assignment.

The behavior of an expression of the form E1 op= E2 may be inferred by taking it as equivalent 10
E1 = E1 op (E2): however, =1 is evaluated only once. In += and -=, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer. an integer to a pointer, and a
pointer to a pointer of another type. The assignment is a pure copy operation. with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer 10 any object.

7.15 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7.1) and lists of initializers (§8.6), the comma operator as described in this sec-
tion can only appear in parenthsses: for example,

f(a, (t=3, t+2), c)
has three arguments, the second of which has the value §.

8. Declarations
Declarations are used to specily the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers dec!crator—lis:" ;

The deciarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers,,
sc-specifier dect-specifiers,,,

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a *“‘storage class specifier’ only for syntactic
convenience: it is discussed in §8.8. The meanings of the various storage classes were discussed in $4.

The auto. static. and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external definition
(§10) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com-
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of csrtain types will be stored in registers: on the PDP-11, they are int, char,
or pointer. One other restriction applies to register variables: the address-of operator s cannot be applied
to them. Smaller; faster programs can be expected if register declarations are used appropriataly, obut
future improvements in code generation may render them unnecessary.

~.

PN
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At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara-
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
£float
double
struct-or-union-specifier
ypedef-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be int.

' Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis-
cussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator inilializer”,

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
( declarator )
» declarator
declararor ()
declarator constant-expression,, ]

The grouping is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head-
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now ima3ine a declaration
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T D

where T is a type-specifier (like in=. 2tc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type **... T.” where the **..."" is empty if D1 is just a plain identifier (so that the type of
xin "*int x'' is just inc). Then if D1 has the form

»D

the type of the contained ideatifier is **... pointer to T."
[f 01 has the form

o)

then the contained identifier has the type **... function returning T.”
If D1 has the form

D (constant-expression)

or
o(l]

then the contained ideatifier has type **... array of T.” In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is int. (Constant expressions
are defined precisely in §15.) When several *‘array of* specifications are adjacent, a multi-dimensional
array is created; the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition. which allocates storage. is given eisewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial slements supplied.

An array may be constructed from one of the basic types, {rom a pointer, {rom a structure or union,
or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: function$ may not return arrays, structures, unions or functions, although they may return
pointers to such things; there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not conuain a function, but it may contain a pointer t0 a
function.

As an example, the declaration

int 4, »ip, £(), «£ip(), (»p£i)();

declares an integer i, a pointer ip to an integer, a function £ returning an integer, a function £ip
returning a pointer to an integer, and a pointer p£i to a function which returns an integer. It is espe-
cially useful to compare the last two. The binding of «£ip() is «(£ip() ), so that the declaration sug-
gests, and the same construction in an expression requires, the calling of a function £ip, and then using
indirection through the (pointer) resuit to yield an integer. In the declarator (#pf£i) (), the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
1o a function yields a function, which is then called; it returns an integer.
As another example,

float fa(17), »afp(17];
declares an array of £1loat numbers and an array of pointers to float numbers. Finally,
static int x3d(3](5](7];

declares a static three-dimensional array of integers, with rank 3xSx7. In complete detail. x3d is an
array of three items: each item is an array of five arrays: each of the latter arrays is an array of seven
integers. Any of the expressions x34, x3d(i). x3a(i) (3], x3d4{i] (3] (k] may reasonably appear in
an expression. The first three have type *‘array,” the last has type int

8.5 Structure and union declarations

A structure is an object consisting of a sequence of named members. Each member may have any
type. A union is an object which may, at a given time, contain any one of several members. Strucjure
and union specifiers have the same form.
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struct-or-union-specifier:
struct-or-union | struct-decl-list )
struct-or-union identifier ( swruct-decl-list )
struct-or-union identifier

soruct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declararor , swruct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc-
ture member may also consist of a specified number of bits. Such a member is also called a field: its
length is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
s constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left-
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type:
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers:
they do not straddle words. A‘field which does not fit into the space remaining in a2 word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-left on the PDP-11, left-to-
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a2 word boundary. The *“*next field"" presumably is a field. not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP-11, fields are not signed and have only integer values. [n all implementations.
there are no arrays of fields, and the address-of operator & may not be applied to them, so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form, that is, one of

struct identifier ( struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the strucrure tag (or union tag) of the structure specified by the list. A subse-
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures: they also permit the long part of the declara-
tion to be given once and used several times. [t is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itseif.
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The names of members and tags may be the same as ordinary variables. However, names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members: that is, the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually, the compiler checks only that a2 name in two different structures has the same type
and ofset in both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode (
char tword(20];
int count;
struct tnode rleft;
struct tnode rright;

which contains an array of 20 characters. an integer. and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sSp;

declares s 10 be a structure of the given sort and sp 10 be a pointer t0 a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points:
s.left

refers to the left subtres pointer of the structure s: and
s.right->tword (0]

refers to the first character of the twozd member of the right subtree of s.

8.6 I[nitialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded
by =, and consists of an expression or a list of values nested in braces..
initializer:
= expression
= { initializer-list }
= | initalizer-list , )

initializer-lise
expression
initializer-list , initializer-list
( initializer-list )

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in §15. or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0: automatic and
register variaoles which are not initialized are guaranteed to start off as garbage.

When an initializer applies 1o a scalar (a pointer or an object of arithmetic type). it coasists of 2 sin-
gle expression. perhaps in braces. The initiai value of the object is taken from the expression. the same
conversions as for assignment are performed.

When the declared variable is an aggregare (a structure or acray) then the initializer consists of a
brace-enclosed. comma-separated list of initializers for the members of the aggregate, written in increas-
ing subscript or member order. [f the aggregate contains subaggregates, this rule applies recursively 1o
the members of the aggregate. If there are 'ewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with 0's. [t is not permitted (o initialize unions or automatic
aggregates.
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Braces may be elided as follows. If the initializer begins with a left brace. then the succeeding
comma-separated list of initializers initializes the members of the aggregate: it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate: any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac-
ters of the string initialize the members of the array.

For example,

int x(1 = (1, 3, S });

declares and initializes x as a 1-dimensional array which has three members, since no size was specified
and there are three initializers.

float y(4]1(3] = {
{1, 3,5,
( 2, 4, 6 },
(3,5,71,
H

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y (0], namely
y (01 (0], y(0) (1), and y(0) [2]. Likewise the next two lines initialize y{1] and y(2). The initial-
izer ends early and therefore y (3] is initialized with 0. Precisely the same effect could have been
achieved by

float y(4]1(3] = {
1, 3,5,2,4,6,3,5,7
|H

The initializer for y begins with a left brace, but that for y(0) does not, therefore 3 elements from the
list are used. Likewise the next three are taken successively for y (1) and y(2]. Also,

float y(41(3] = {(
{11, (21}, (31, (4)
):

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msg{] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.7 Type names

In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of
sizeof) it is desired to supply the name of a data type. This is accomplished using a *‘type name.”
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
( abstract-declarator )
» abstract-declararor
abstract-declararor ()
abstract-declarator ( constant-expression,,, ]

To avoid ambiguity, in the construction
( abstract-declarator )

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.’
For example.
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int

int »

int «(3]
int (=) (3]
int «()
int (#) ()

name respectively the types *‘integer.”” *‘pointer to integer,” *‘array of J pointers to integers,’” ‘‘pointer
to an array of 3 integers.’” *‘function returning pointer to integer.”” and **pointer to function returning an
integer.”

3.8 Typedef
Declarations whose *‘storage class’™ is typedef do not define storage. but instead define identifiers
which can be u§ed later as if they were type keywords naming fundamental or derived types.

ypedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator
therein become syntactically equivaleat to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES, «KLICKSP;
typedef struct ( double e, im;) complex;

the constructions

MILES distance;
extern KLICXSP metricp:;
complex 2, *zp;

are all legal declarations: the type of distance is int, that of metricp is “*pointer to int." and that of
z is the specified structure. zp is a pointer to such a structure.

typede# does not introduce brand new types, only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. Statements
Except as indicated. statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also, and
equivalently, called **block’") is provided:

compound-statement:
{ dec!aratiomlisrm statement-list,, )

declaration-list:
declaration
declaration declaration-list

statement-list:
starement
statement siatement-list

If any of the identifiers in the declaration-list ‘were previously declared, the outer declaration is pushed
down for the duration of the block. after which it resumes its force.
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Any initializations of auto or register variables are performed each time the block is 2ntered at
the top. It is currently possible (but a bad practice) to transfer into a block: in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block. extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if ( expression ) statement
if ( expression ) statement else statement

In both cases the expression is evaluated and if it is non-zero. the first substatement is executed. In the
second case the second substatement is executed if the expression is 0. As usual the “else™ ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while ( expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while ( expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for ( expression-l ope expression-Za ; expression-]w ) Statement
This statement is equivalent to

expression-1 ;

while (expression-2) (
statement
expression-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0. the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to while (1); other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch ( expression ) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The state-
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in §15.
There may also be at most one statement prefix of the form
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default

When the switch statement is executed, its expression is evaluated and compared with each case con-
stant. [f one of the case constants is equal 1o the value of the expression. control is passed to the state-
ment following the matched case prefix. [f no case constant matches the expression. and if there is a
default prefix, control passes to the prefixed statement. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themseives do not alter the flow of control. which continues unim-
peded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are inefTective.

9.8 Break statement
The statement
break ;
causes termination of the smallest enclosing while, do. for. or switch statement; control passes to the
statement following the terminated statement.
9.9 Coatinue statement
The statement
continue ;

causes control 1o pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment: that is to the end of the loop. More precisely, in each of the statements

while (...) | do | gor (...) |
contin: ; contin: ; contin: ;
) )} while (...); )

a continue is equivalent 10 goto contin (Following the contin: is a null statement, §9.13.)
9.10 Return statement
A function returns 10 its caller by means of the return statement, which has one of the forms

return ;

return expression ;
In the first case the returned value is undefined. ln the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted. as if by assignment, to the

type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
goto identifier ;
The identifier must be a label (§9.12) located in the current function.
9.12 Labeled statement
Any statement may be preceded by label prefixes of the form
idenufier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function. excluding any sub-blocks in which the same identifier has bees
redeclared. Ses §i1.
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9.13 Null statement
The null statement has the form

.
’

A null statement is useful to carry a label just before the } of a compound statement or to supply 2 nuil
body to a looping statement such as while.

10. External definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static. and a specified type. The type-
specifier (§8.2) may also be empty. in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per-
sists to the end of a block. The syntax of external definitions is the same as that of ail declarations.
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

Sfunction-definition:
decl-speciﬁersw JSunction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static: see §11.2 for the distinc-
tion between them. A function declarator is similar to a declarator for a **function returning ..."" except
that it lists the formal parameters of the function being defined.

function-declarator:
declarator ( paramerer-lislw )

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

JSunction-body:
declaration-list compound-statement

The identifiers in the parameter list. and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be
specified is registexr; if it is specified, the corresponding actual parameter will be copied. if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, <)
int a, b, c;
(

int m;

m=(a>b) ? a: b;

return((m > ¢) ? m c)

-

)

Here int is the type-specifier: max(a, b, c) is the function-declarator: int a, b, ¢; is the
declaration-list for the formal parameters: { ... ) is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared £1oat have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared ‘‘array of ..."" are adjusted to read ‘‘pointer to .."". Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

.
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10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static. but not au=s or
register.

11. Scope rules ,

A C program need not all be compiled at the same time: the source text of the program may be kept
in several files, and precompiled routines may be loaded from libraries. Communication among the func-
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first. what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
*undefined identifier’” diagnostics: and second. the scope associated with external identifiers. which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope

The lexical scope of identifiers declared in external definitions persists from the definition through
the end of the source file in which they appear. The lexical scope of identifiers which are fcrmal parame-
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear. ‘

Because all references to the same external identifier refer to the same object (see §11.2) the com-
piler checks all declarations of the same external identifier for compatibility: in effect their scope is
increased to the whole file in which they appear.

In all cases. however. if an identifier is explicitly declared at the head of a block. including the block
constituting a function. any declacation of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form iwo disjoint classes which do
not conilict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks. but an explicit type must
be given in the inner declaration:

typedef float distance;

auto int distance;

cee

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancet.

11.2 Scope of externals

If a function refers to an identifier declared 10 be extern. then somewhere among the files or
libraries constituting the complete program there must be an externai definition for the identifier. All
functions in a given program which refer 10 the same external identifier refar 10 the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data. .

The appearancs of the extern keyword in an external definition indicates that storage for the
- identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any other files which
wish (0 give an external definition for the identifier must include the exzexrn in the definition. The
identifier can be initialized only in the declaration where storage is allocated.

Identifiers declared static at the top leve! in external definitions are not visible in other fles.
Functions may be declared szatic.

*1t is agreed that the e 13 thin here.
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12. Compiler control lines ‘

The C compiler contains a preprocessor capable of macro substitution, conditional compilation. and
inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language: they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form
#define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#define identifier( identifier , ... , identifier ) token-siring

where there is no space between the first identifier and the (. is 2 macro definition with arguments. Sub-
sequent instances of the first identifier followed by a (. a sequence of tokens delimited by commas. and a
) are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas: however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This (acility is most valuable for definition of **manifest constants."” as in

#define TABSIZE 100

int table(TABSIZE];
A control line of the form
#undef£ identifier
causes the identifier's preprocessor deifinition to be forgotten.
12.2 File inclusion
A compiler control line of the form
#include “filename"

causes the replacement of that line by the entire contents of the file filemame. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna-
tively, a control line of the form

#include <filename>
searches only the standard places, and not the directory of the source file.
#include's may be nested.
12.3 Conditional compilation
A compiler control line of the form
#1f constant-expression
checks whether the constant expression (see §15) evaluates to non-zero. A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is. whether it has been the
subject of 2 #define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line
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telse
and then by a control line
#endif

If the checked condition is true then any lines between #else and sendif are ignored. If the checked
condition is false then any lines between the test and an #else or. lacking an #else. the 4endié, are
ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the form

#line conswant identifier

causes the compiler to believe, for purposes of error diagnostics., that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations

It is not always necessary 10 specify both the storage class and the type of identifiers in a declaration.
The storage class is supplied by the context in external definitions and in declarations of formal parame-
ters and structure members. In a declaration inside a function. if a storage class but no type is given, the
identifier is assumed to be int: if a type but no storage class is indicated. the identifier is assumed to be
auto. An exception to the latter rule is made for functions. since auto functions are meaningless (C
being incapable of compiling code into the stack): il the type of an identifier is **function returning ..."", it
is implicitly declared to be extern

In an expression, an identifier followed by ( and not already declared is contextually declared to be
**function returning int™.

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions

There are only two things that can be done with a structure or union: name one of its members (by
means of the . operator): or take its'address (by unary &). Other operations. such as assigning from or
to it or passing it as a parameter, draw an error message. In the future, it is expected that these opera-
tions. but not necessarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with . or -=>) the name on the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape
from the typing rules, this restriction is not firmly enforced by the compiler. In fact. any lvalue is ailowed
before ., and that lvalue is then assumed to have the form of the structure of which the name on the
right is a member. Also, the expression before a -> is required only to be a pointer or an integer. If a
pointer, it is assumed to point to a structure of which the name on the right is a member. If an integer,
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functioas

There are only two things that can be done with a function: call it. or take its address. [f the name
of a function appears in an expression not in the function-name position of a cail. a pointer to the func-
tion is generated. Thus. to pass one function to another. one might say

int £();

e

g(f);
Then the definition of g might read
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g (funcp)
int (efuncp) ();
{

(«funcp) () ;

)

Notice that £ must be declared explicitly in the calling routine since its appearance in g (£) was not fol-
lowed by (.

14.3 Arrays, pointers, and subscripting

Every time an ideatifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript
operator {] is interpreted in such a way that E1({E2] is identical to »((E1)+(E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer. then E1(E2] refers to the £2-th
member of E1. Therefore. despite its asymmetric appearance. subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank iXjX -+ Xk, then E appearing in an expression is converted to a pointer to an (n—1)-
dimensional array with rank jX - - - Xk. If the » operator, either explicitly or implicitly as a resuit of
subscripting, is applied to this pointer, the result is the pointed-to (7—1)-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x(3]1(S1;

Here x is 2 3x$5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) S-membered arrays of integers. In the expression x(i], which is equivalent to #(x+i), x
is first converted to a pointer as desczibed: then i is converted to the type of x. which involves multiply-
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of S integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again: this time the
result is an integer. i

It follows from all this that'arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer coanversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects.
They are all specified bv means of an explicit type-conversion operator, $§§7.2 and 8.7.

A pointer may be converted to any of the integral types large enough to hold it. Whether an int or
long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer 10 an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example. a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer: it might be used in this way.

extern char ralloc();

double #dp;

dp = (double ») alloc(sizeof(double));
«dp = 22.0 / 7.0;

alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double: then the use of the function is portable.
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The pointer representation on the POP-11 corresponds 0 a 16-bit integer and is measured in bytes.
chars have no alignment requirements: everything else must have an even address.

On the Honeywell 60C0. a pointer corresponds (o a 36-bit integer: the word part is in the left 13 bus.
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 2'® bytes: everything else is measured in units of 2'¥ machine words. double quantities and
aggregates containing them must lie on an even word address (0 mod 2'%).

The 1BM 370 and the Interdata 8/32 are similar. On both, addresses are measured in bytes: eiemen-
tary objects must be aligned on a boundary equal to their leagth. so pointers to shor< must be 0 mod 2.
to int and float 0 mod 4. and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

15. Constant expressions

In several places C requires expressions which evaluate to a constant: after case, as array bounds,
and in initializers. In the first two cases. the expression can involve only integer constants, character con-
stants. and sizeof expressions, possibly connected by the binary operators

+ = « [/ % & | ~ €< >> =m Im < > <= O>=

or by the unary operators

or by the ternary operator
?:

Parentheses can be used for grouping, but not for function cails.

More latitude is permitted for initializers: besides constant expressions as discussed above. one can
also apply the unary & operator to external or static objects, and to external or static arrays subscripted
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must evaluate either (0 a constant or to the
address of a previously declared external or static object plus or minus a constant.

16. Portability considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble spots is
not meant to be all-inclusive. but (o point out the main ones.

Purely hardware issues like word size and the properties of {loating point arithmetic and integer divi-
sion have proven in practice (0 be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these, particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be
carefully waiched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine. as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine: excess or invalid register declarations are ignoced.

Some difficulties arise only when dubious coding practices are used. It is excesdingly unwise 0 write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. [t is right to left on
the PDP-11, and VAX-11. left to right on the others. The order in which side effects take placs is also
unspecified.

Since character constants are really objects of type int. multi-character character constants may be
permitted. The specific implementation is very machine dependent. however, because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned 10 words and characters (o integers right-to-left on the POP-11 and VaX-11 and
left-to-right on other machines. These differences are invisible to isolated programs which do not induige
in type punning (for example, by converting an int pointer to a char pointer and inspecting the
pointed-t0 storage). but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
POP-11 compiler will not initialize structures containing bit-fields, and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.
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17. Anachroanisms o ‘

Since C is an evolving language, certain obsolete constructions may be found in older programs.
Although most versions of the compiler support such anachronisms, ultimately they will disappear. leav-
ing only a portability problem béhind.

Earlier versions of C used the form =op instead of op= for assignment operators. This leads to
ambiguities, typified by

X=—1

which actually decrements x since the = and the - are adjacent, but which might easily be intended to
assign -1 10 x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x - 1;
one used
int x 1;
The change was made becauseé the initialization
int ¢ (1+2)
resembles a function déclaration closely enough to confuse the compilers.



,2-30‘ The C Programming Language

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of’
the language.

18.1 Expressions
The basic expressions are:

expression:
primary
* expression
& expression
- expression
! expression
= expression
++ lvalue
- lvalue
Ivalue ++
alue —
sizeof expression
( oype-name ) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary: o
identifier
conswant
sring
( expression )
primary ( expression-list,, )
primary -( expression ]
Ivalue . identifier
primary -=> identifier

ivalue:
identifier
primary ( expression )
Ivalue . identifier
primary -> identifier

* expression
( ivalue )
The primary-expression operators
O . -

have highest priority and group left-to-right. The unary operators
* & = ! ° 4+ == gizeof ( (ype-name)

have priority below the primary operators but higher than any binary operator, and group right-to-left.
Binary operators group left-to-right. they have priority decreasing as indicated below. The conditional
operator groups right to lefl.
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binop:
* / %
+ -
>> <<
< > <= >m=
- =
&
|
&&

H
?:

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
- dm w~a tm [/m Ym D>D>a. <<= = ‘= =

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration:
decl-specifiers init-declarator-list,,, ;

decl-specifiers:
ype-specifier decl-speciﬁersw
sc-specifier decl-speciﬁersw

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier

typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declararor inilializer*

declarator:
identifier
( ‘declarator )
» declarator
declarator ()
declarator ( constant-expression,,, ]
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struct-or-union-specifier:
struct | struct-decl-list |
stxuct identifier | struct-decl-list )
struct identifier
union |{ szucr-decl-list }
unien identifier | souct-decl-list )
union /dentifier

struct-decl-lisc
struct-declaration
struct-declaration struct-deci-list

struct-declaration:
ype-specifier swruct-deciarator-list ;

sruct-declarator-list;
struct-declarator
struct-declarator , struct-deciarator-list

srruct-declarator:
declarator
declarator : constant-expression
: consignt-expression

initializer:
= expression
= ( initiglizer-list }
= { initializer-list , )

initializer-list:
expression
initializer-list , initializer-list
( initiglizer-list }

ype-name:
type-specifier abstract-declarator

abstract-declarator:
empry
( abstracr-declarator )
» abstract-declargror
absract-declarator ()
abstract-declarator { constant-expression,, )

ypedef-name:
identifier

18.3 Statements

compound-statement;
{ declaranon-lisrw statement-list,, |

declaranon-list:
declaranon
declaranon declaranon-list
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statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if ( expression ) siatement
if ( expression ) statement else statement
while ( expression ) statement
do sratement while ( expression) ;
for ( expression-/ oot ¢
switch ( expression ) statement
case constant-expression :  statement
default : swatement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

18.4 External definitions

program:
external-definition
external-definition program

external-definition:
Junction-definition
data-definition

Jfunction-definition:
ype-specifier, , function-declarator function-body

JSunction-declarator:
declarator ( parameter-listw )

parameter-list:
identifier
identifier , parameter-list

function-body:
ype-decl-list function-statement

Junction-statement.
{ declaralion-lis:w statement-list )

datg-definition:

extern,, type-specifier oot init-declararor-list _ ;
static,, ¥ -specijierm imt-declaralor-listw ;

18.5 Preprocessor

expression-?w ; expression-3 o ) Statement

2-33
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sdefine idennfier token-siring
$define idenufier( identifier , ... , identifier ) token-string
sundef idenufier

#include "filename*
#include <filename>

#if conswant-expression
#ifdef identifier

#ifndef identifier

#else

#endif

#line conswnt identifier
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Recent Changes to C
November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu-
ment (**‘The C Programming Language,’ Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned. passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDP-11 implementation of functions that return structures: if an inter-
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt.
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals: ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

enum-specifier
with syntax
enume-specifier:

enum ( enum-list
enum identifier { enum-list }
enum /dentifier

enum-list
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color ( chartreuse, burgundy, claret, winedark };

enum color w»cp, col;

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by |
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated: subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and. unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types. and lint flags type mismatches. In the PDP-11 implementation all enumeration variables are treated
as if they were int.
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A Tour Through the Portable C Compiler
S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard.l

Among the goals of this compiler are portability, high reliability, and the use of state-of-
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro-
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-11 version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou-
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was
the basis of his Master’s Thesis at M.L.T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder’s ideas appear in this work.

Most earlier portable compilers, including Snyder’s, have proceeded by defining an inter-
mediate language, perhaps based on three-address code or code for a stack machine, and writ-
ing a machine independent program to translate from the source code to this intermediate
code. The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine
independent way that still allows them to be easily adapted to the target assemblers. Most of
these approaches require a symbol table to be constructed in the second (machine dependent)
pass, and/or require powerful target assemblers. Also, many conversion operators may be gen-
erated that have no effect on a given machine, but may be needed on others (for example,
pointer to pointer conversions usually do nothing in C, but must be generated because there
are some machines where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine
independent. It contains some machine dependent features, such as initialization, subroutine
prolog and epilog, certain storage allocation functions, code for the switch statement, and code
to throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine
dependent (12% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly
as the compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for
the Honeywell 25%. If the assembler format and structure were the same for all these
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machines, perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way.
On the other hand, a certain amount of the code requres hard intellectual effort to convert,
since the algorithms embodied in this part of the code are typically complicated and machine
dependent.

To summarize, however, if you need a C compiler written for a machine with a reason-
able architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent
is to give the big picture, rather than dlscussmg the details of a particular machine implemen-
tation. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is dis-
cussed elsewhere.* One of the major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum.®

The compiler consists of two passes, pass] and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and related features (e.g., #ifdef, etc.).
It is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. This produces as standard output another text file that becomes the standard input of
the second pass. The second pass produces, as standard output, the desired assembler
language source code. The preprocessor and the two passes all write error messages on the
standard error file. Thus the compiler itself makes few demands on the I/O library support,
aiding in the bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes
operate in the same program. This “one pass” operation eliminates the overhead of reading
and writing the intermediate file, so the compiler operates about 30% faster in this mode. It
also occupies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as
one, this document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass
serve to generate subroutine prologs and epilogs, code for switches, and code for branches,
label definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine prologs,
etc., each line is prefaced with a right parenthesis; the second pass passes these lines to
through to the assembler.

The major job done by the second pass is generation of code for expressions. The
expression parse trees produced in the first pass are written onto the intermediate file in Pol-
ish Prefix form: first, there is a line beginning with a period, followed by the source file line
number and name on which the expression appeared (for debugging purposes). The successive
lines represent the nodes of the parse tree, one node per line. Each line contains the node
number, type, and any values (e.g., values of constants) that may appear in the node. Lines
representing nodes with descendants are immediately followed by the left subtree of descen-
dants, then the right. Since the number of descendants of any node is completely determined

P
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by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left
square bracket (‘") represent the beginning of blocks (delimited by { ... } in the C source);
lines beginning with right square brackets (‘]’) represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ‘)’ lines, makes note of the
information in the ‘[’ and ‘]’ lines, and devotes most of its effort to the ‘.’ lines and their asso-
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first
pass have been declared to have room for the second pass information as well. Instead of
writing the trees onto an intermediate file, each tree is transformed in place into an acceptable
form for the code generator. The code generator then writes the result of compiling this tree
onto the standard output. Instead of ‘[’ and ‘]’ lines in the intermediate file, the information
is passed directly to the second pass routines. Assembly code produced by the first pass is
simply written out, without the need for ’)’ at the head of each line.

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdefs, are
header files included with all other files. Manifest has declarations for the node numbers,
types, storage classes, and other global data definitions. Macdefs has machine-dependent
definitions, such as the size and alignment of the various data representations. Two machine
independent header files, mfilel and mfile2, contain the data structure and manifest
definitions for the first and second passes, respectively. In the second pass, a machine depen-
dent header file, mac2defs, contains declarations of register names, etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comm1.c and comm2.c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once:
commZ2.c is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compil-
ing and loading scan.c, cgram.c, xdefs.c, pftn.c, trees.c, optim.c, local.c, code.c, and
comml.c. Scan.c is the lexical analyzer, which is used by cgram.c, the result of applying
Yacct to the input grammar cgram.y. Xdefs.c is a short file of external definitions. Pftn.c
maintains the symbol table, and does initialization. Trees.c builds the expression trees, and
computes the node types. Optim.c does some machine independent optimizations on the
expression trees. Comml.c includes common, that contains service routines common to the
two passes of the compiler. All the above files are machine independent. The files local.c and
code.c contain machine dependent code for generating subroutine prologs, switch code, and
the like.

The second pass is produced by compiling and loading reader.c, allo.c, match.c,
comml.c, order.c, local.c, and table.c. Reader.c reads the intermediate file, and controls the
major logic of the code generation. Allo.c keeps track of busy and free registers. Match.c
controls the matching of code templates to subtrees of the expression tree to be compiled.
Comm2.c includes the file common, as in the first pass. The above files are machine indepen-
dent. Order.c controls the machine dependent details of the code generation strategy.
Local2.c has many small machine dependent routines, and tables of opcodes, register types,
etc. Table.c has the code template tables, which are also clearly machine dependent.
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Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to
use the same symbol name (e.g., MINUS) for the given operator throughout the lexical
analysis, parsing, tree building, and code generation phases; this requires some synchroniza-
tion with the Yacc input file, cgram.y, as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is
a unary or binary operator; clearly, it is necessary to know this by the time the parse tree is
constructed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS
and UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist
in an assignment form (for example, —=), and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro optype(o)
returns one of the manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending
on the node number o. Similarly, asgop(o) returns true if o is an assignment operator
number (=, +=, etc. ), and logop(o) returns true if o is a relational or logical (&&, ||,or !)
operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY, and ENUMTY. Then, there are three operators that can be applied to
types to make others: if ¢ is a type, we may potentially have types pointer to t, function
returning t, and array of t’s generated from ¢. Thus, an arbitrary type in C consists of a
basic type, and zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits
hold the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no
operator), or one of the three operators described above. The modifiers are read right to left
in the word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it
is reached. The macros PTR, FTN, and ARY represent the pointer to, function returning,
and array of operators. The macro values are shifted so that they align with the first two-bit
field; thus PTR+INT represents the type for an integer pointer, and

ARY + (PTR<<2) + (FTN<<4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If ¢t is a type word, BTYPE(t)
gives the basic type. ISPTR(t), ISARY(t), and ISFTN(t) ask if an object of this type is a
pointer, array, or a function, respectively. MODTYPE(t,b) sets the basic type of t to b.
DECREF(t) gives the type resulting from removing the first operator from ¢t. Thus, if ¢ is a
pointer to t’, a function returning t’, or an array of t’, then DECREF(t) would equal t’.
INCREF(t) gives the type representing a pointer to ¢. Finally, there are operators for dealing
with the unsigned types, ISUNSIGNED(t) returns true if ¢ is one of the four basic unsigned
types; in this case, DEUNSIGN(t) gives the associated ‘signed’ type. Similarly,
UNSIGNABLE(t) returns true if ¢t is one of the four basic types that could become unsigned,
and ENUNSIGN(t) returns the unsigned analogue of ¢ in this case.

The other important global data structure is that of expression trees. The actual shapes
of the nodes are given in mfilel and mfile2, They are not the same in the two passes; the
first pass nodes contain dimension and size information, while the second pass nodes contain
register allocation information. Nevertheless, all nodes contain fields called op, containing the
node number, and type, containing the type word. A function called talloc() returns a
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