
FMS-11/RSX
Software Reference Manual

Order No. AA-H855A-TC

January 1980

This document describes how to use the Form Management System
(FMS-11) on RSX-11 M and RSX-11 M-PLUS systems. It provides
the information required to design forms for display on the VT100
video terminal and to develop BASIC-PLUS-2, COBOL-11,
FORTRAN IV, FORTRAN IV-PLUS, and MACR0-11 programs that
use FMS-11 forms for gathering and displaying data.

FMS-11/RSX
Software Reference Manual

Order No. AA-H855A-TC

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: RSX-11M V3.2
RSX-11 M-PLUS V1

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation· maynard. massachusetts

First Printing, January I980

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © I980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-I I
VAX
DECnet
DATATRIEVE

DECsystem-IO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-11
ITPS-IO
SBI
PDT

Contents

Preface

Chapter 1 Introduction to FMS-11

1.1 Overview

1.1.1 The Form Editor .
1.1.2 The Form Utility .
1.1.3 The Form Driver .
1.1.4 Developing Form Applications.

Chapter 2 The FMS-11 Form Editor (FED)

2.1 Overview
2.2 Form Editor Terminology

2.2.1 Screen Form .
2.2.2 Form Description .
2.2.3 Field.
2.2.4 Form Description File.
2.2.5 Form Library File

2.3 Starting the Form Editor.
2.4 Form Editor Commands .

2.4.1 Assigning the Form-Wide Attributes: The FORM Command
2.4.2 Editing the Form Display: the EDIT Command
2.4.3 Assigning the Field Attributes: the ASSIGN Commands

2.4.3.1 For All Fields: the ASSIGN ALL Command.
2.4.3.2 For New and Changed Fields Only: the ASSIGN

NEW Command.
2.4.3.3 For a Specified Field Only: the ASSIGN FIELD

Command.

2.4.4 Specifying the Named Data: the NAME Command.
2.4.5 Storing the Form Description: the SA VE Command
2.4.6 Cancelling the Session Without Saving the Form: the QUIT

Command

2.5 Edit Status Display
2.6 Form Editor Operations Reference

2.6.1 Creating the Form's Screen Image.
2.6.2 The Text Editor
2.6.3 Mode Changing Operations .

2.6.3.1 TEXT/FIELD .
2.6.3.2 ADV AN CE/BACKUP
2.6.3.3 INSERT/OVERSTRIKE .

2.6.4 Cursor Control Operations.
2.6.5 Text Modification Operations .

2.6.5.1 Inserting ASCII Characters .

Page

. 1-1

. 1-1

. 1-2

. 1-2

. 1-2

. 2-1

. 2-2

. 2-2

. 2-2

. 2-2

. 2-2

. 2-2

. 2-2

. 2-6

. 2-7

. 2-7

. 2-7

. 2-7

. 2-7

. 2-7

. 2-7

. 2-8

. 2-8

. 2-8

. 2-9

. 2-9

. 2-9
2-10

2-10
2-11
2-11

2-11
2-13

2-13

iii

IV

2.6.6
2.6.7

2.6.8

2.6.5.2
2.6.5.3
2.6.5.4
2.6.5.5
2.6.5.6
2.6.5.7
2.6.5.8
2.6.5.9
2.6.5.10
2.6.5.11
2.6.5.12
2.6.5.13
2.6.5.14
2.6.5.15

Inserting Characters in the INSERT Mode . . .
Inserting Characters in the OVERSTRIKE Mode
DELETE CHARACTER .
OPENLINE.
CTRL/W
CTRL/U ..
DELEOL.
DELLINE.
UNDELLINE.
REPEAT
SELECT
CUT .
PASTE
VIDEO

Scroll Operation .
Field Pictures . .

2.6.7.1
2.6.7.2
2.6.7.3
2.6.7.4
2.6.7.5
2.6.7.6
2.6.7.7

For Alphanumeric Characters - C.
For Letters - A
For Unsigned Numbers - 9
For Signed Numbers - N
For Any Printable Characters - X
For Mixed Pictures
With Field-Marker Characters

Assigning Form-Wide Attributes.

2.6.8.1
2.6.8.2
2.6.8.3
2.6.8.4
2.6.8.5
2.6.8.6
2.6.8.7
2.6.8.8
2.6.8.9

Form Name ...
Help Form Name
Reverse Screen.
Current Screen
Wide Screen .
Starting Line
Ending Line .
Impure Area.
Form Size ..

2.6.9 Assigning Field Attributes.
2.6.10 Assigning Named Data Attributes .

2.7 A Step-By-Step Example of How to Use the Form Editor

2.7.1

2.7.2

The Printed Form

2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4

Overview of the New Form
Requirements of the Fields in the Original Form.
Layout and Video Features of the New Form
Sketch of the Form Named VENDOR

Creating the Screen Form
2.7.2.1 Starting the Form Editor ...
2.7.2.2 Assigning the Form Name ..
2.7.2.3 Creating the Background Text
2.7.2.4 Creating the Fields
2.7.2.5 Assigning Field Attributes .
2.7.2.6 Assigning Video Attributes .
2.7.2.7 Assigning Named Data ...
2.7.2.8 Editing One of the Demonstration Forms
2.7.2.9 Storing the New Forms in a Form Library File

2-13
2-13
2-14
2-14
2-14
2-14
2-14
2-15
2-15
2-15
2-15
2-15
2-16
2-16

2-17
2-18

2-18
2-18
2-18
2-18
2-18
2-18
2-19

2-20

2-20
2-20
2-20
2-20
2-20
2-21
2-21
2-21
2-21

2-21
2-24

2-25

2-26

2-26
2-26
2-27
2-28
2-28
2-29
2-29
2-31
2-32
2-34
2-38
2-39
2-40
2-42

Chapter 3 The FMS-11 Form Utility (FUT)

3.1 Starting and Stopping the Form Utility .

3.1.1
3.1.2
3.1.3

Starting the Form Utility Directly with the Task Name FUT .
Using the MCR RUN Command.
Stopping the Form Utility.

. 3-1

. 3-1

. 3-2

. 3-2

3.2 Form Utility Defaults
3.3 Form Utility Errors
3.4 Prompts for Form Utility File Processes.
3.5 Form Utility Command Options

. 3-2

. 3-3

. 3-3

. 3-4

3.5.1 Options for Control and Help . . . 3-5

3.5.1.1 The /ID Option: Displaying the Form Utility
Identification 3-5

3.5.1.2 The /HE Option: Using the Form Utility Help File . . 3-5
3.5.1.3 The /SP and /-SP Options: Requesting Line Printer

Listings . 3-6
3.5.1.4 The /LI Option: Listing Directories of Form Library

Files 3-6

3.5.2 Options for Creating Form Library Files 3-7

3.5.2.1 The /BA and /-BA Options: Using Block-Aligned
Form Descriptions 3-7

3.5.2.2 The /CR Option: Combining Form Library Files and
Description Files. 3-8

3.5.2.3 The /DE Option: Deleting Form Descriptions from
Form Library Files. 3-8

3.5.2.4 The /EX Option: Extracting a Form Library File . 3-9
3.5.2.5 The /RP Option: Updating Form Descriptions in

Form Library Files. 3-9

3.5.3 Options for Processing and Converting Form Descriptions. 3-10

3.5.3.1 The /FF Option: Creating Form Description Files
from Form Library files 3-10

3.5.3.2 The /OB Option: Creating MACR0-11 Object
Modules for Forms 3-11

3.5.3.3 The /CC Option: Producing COBOL Data
Declarations for Forms 3-12

3.5.3.4 The /FD Option: Producing Form Descriptions for
Printed Listings 3-13

3.5.3.5 The /FD Option: the Form Description Header 3-14
3.5.3.6 The /FD Option: the Image Map 3-15
3.5.3. 7 The /FD Option: the Video Attributes Map . 3-16
3.5.3.8 The /FD Option: Field Descriptions. . . 3-17
3.5.3.9 The /FD Option: the Named Data Map. 3-18

Chapter 4 Introduction to the FMS-11 Form Driver (FDV)

4.1 Form Driver Interaction With the Form Description .

4.1.1
4.1.2
4.1.3

Media-Resident and Memory-Resident Forms
Defining Forms and Fields by Name.
Displaying the Form

. 4-1

. 4-1

. 4-2

. 4-2

v

vi

4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9

The Help Function
Internal Storage of Field Values: the Impure Area
Guiding the Operator Responses
The Order in Which the Form Driver Concatenates Fields
Text, Field Marker Characters, and Video Attributes .
Processing Fields .

4.1.9.1 The Field Pictures
4.1.9.2 The Right Justified and Left Justified Field Attributes .
4.1.9.3 The Clear Character and Zero Fill Attributes
4.1.9.4 The Default Value.
4.1.9.5 The Autotab Attribute
4.1.9.6 The Response Required and Must Fill Attributes
4.1.9.7 The Fixed Decimal Attribute
4.1.9.8 The Horizontal and Vertical Indexed Attributes .
4.1.9.9 The Display Only Attribute ..
4.1.9.10. The Echo off Attribute
4.1.9.11 The Supervisor Only Attribute .
4.1.9.12 The Scrolling Attributes

4.2 Form Driver Interaction With the Terminal Operator

4.2.1 Signaling and Recovering from Errors

4.2.2

4.2.3

4.2.4

4.2.1.1
4.2.1.2
4.2.1.3

The HELP Key and Help Messages.
Messages Controlled by the Program
Repainting the Screen: the CTRL/W Function.

Field Editing Principles and Functions.

4.2.2.1 Relationship With the VTlOO Alternate Keypad Mode .
4.2.2.2 The Cursor's Initial Position in a Field
4.2.2.3 Inserting a Field Value: the Default Function .
4.2.2.4 Erasing a Character: the DELETE Function .
4.2.2.5 Erasing a Field: the LINEFEED Function ...
4.2.2.6 Moving the Cursor to the Right: the Rightarrow

Function
4.2.2. 7 Moving the Cursor to the Left: the Leftarrow

Function
4.2.2.8 Switching the Insertion Modes: the

INSERT/OVERSTRIKE Function .

Field Terminating Functions

4.2.3.1 Signaling That the Form is Complete: the
ENTER and RETURN Functions.

4.2.3.2 Moving the Cursor to the Next Field: the Tab
Function

4.2.3.3 Moving the Cursor to the Previous Field: the

4.2.3.4
4.2.3.5
4.2.3.6

4.2.3.7

BACKSPACE Function
Scrolled Area Moves: the Uparrow Function.
Scrolled Area Moves: the Downarrow Function
Scrolled Area Moves: the EXIT SCROLLED
AREA BACKWARD Function
Scrolled Area Moves: the EXIT SCROLLED
AREA FORWARD Function . .

Typing and Editing Fixed Decimal Fields

. 4-3

. 4-3
'4-3
. 4-4
. 4-5
. 4-5

. 4-5

. 4-5

. 4-6

. 4-6

. 4-6

. 4-6

. 4-7

. 4-7

. 4-8

. 4-8

. 4-8

. 4-8

. 4-9

. 4-9

4-10
4-10
4-11

4-11

4-12
4-12
4-12
4-12
4-13

4-13

4-13

4-13

4-14

4-14

4-15

4-16
4-16
4-17

4-17

4-18

4-18

Chapter 5 Form Driver Programming Requirements and Concepts

5.1 Features for Checking Call Status

5.1.1
5.1.2
5.1.3
5.1.4

Form Driver and System Status Codes.
Debug Mode Support for Application Development .
The Debug Mode and Application Programming Techniques
Signaling the Application Operator About Program Errors

. 5-1

. 5-2

. 5-3

. 5-4

. 5-4

5.2 The Role of the Field Terminators 5-5

5.2.1 Relationship Between the Field Terminators and Form
Driver Calls

5.2.2 Using the Alternate Keypad Mode Terminators
. 5-5
. 5-9

5.3 The Impure Area 5-10
5.4 Task Building Programs with Memory Resident Forms. 5-11
5.5 FCS and RMS System Support. 5-11
5.6 Using the Form Driver as a Resident Library With FCS Support . 5-12
5.7 The High-Level Language Interface. 5-13

5.7.1 General Description of the Arguments 5-13

5.7.1.1 Argument Data Types 5-15
5. 7 .1.2 The Relationship Between Field Lengths and Values. 5-15

5.7.2 General Description of Call Syntax for High-Level Languages. 5-16
5. 7 .3 Status and Error Checking 5-17

5.8 The Interface for BASIC-PLUS-2. 5-17

5.8.1
5.8.2
5.8.3

Arguments for the Calls ..
Syntax for the Calls . . .
Building a BASIC-PLUS-2 Task

5.9 Interface for COBOL-11

5.9.1 Using the Form Utility to Create the Communication
Structure for a COBOL Program

5.9.2 Arguments for the Calls.
5.9.3 Syntax for the Calls
5.9.4 Building a COBOL Task

5.10 Interface for FORTRAN IV and FORTRAN IV-PLUS .

5.10.1 Arguments for the Calls ...
5.10.2 Syntax for the Calls
5.10.3 Building a FORTRAN Task.

5.11 Interface for MACR0-11

5.11.1 F$FNC, the MACR0-11 Function Code
5.11.2 F$REQ, the Required Argument List Pointer.

5.11.2.1 F$STS, the Status Block Pointer . .
5.11.2.2 F$CHAN, the Form Library Channel Number.
5.11.2.3 F$IMP, the Impure Area Pointer .

5.11.3 Function-Dependent Arguments

5.11.3.1 F$NAM, the Name Pointer.
5.11.3.2 F$NUM, the Line Number and Field Index .
5.11.3.3 F$VAL, the Data Value Pointer

5-18
5-18
5-21

5-22

5-23
5-23
5-24
5-27

5-29

5-29
5-30
5-33

5-34

5-35
5-36

5-36
5-36
5-36

5-37

5-37
5-37
5-37

Vll

5.11.3.4 F$LEN, the Data Length
5.11.3.5 F$TRM, the Field Terminator Code

5-38
5-38

5.11.4 Keyword Encoded MACROS 5-38
5.11.5 Special Information for I/O from a MACR0-11 Program 5-42
5.11.6 Program Sections Used by FMS. 5-43
5.11.7 Form Driver Conditionals 5-44
5.11.8 Event Flags 5-45
5.11.9 Building a MACR0-11 Program. 5-45

Chapter 6 The Form Driver Calls

6.1 FCLRSH - Clear Entire Screen and Display Form . . 6-1
6.2 FGCF - Return Current Field Name. 6-2
6.3 FGET - Get the Value from the Specified Field . 6-4
6.4 FGETAF - Get the Value for Any Field . . 6-5
6.5 FGETAL - Get All Field Values 6-7
6.6 FIDATA - Get Named Data by Index. 6-8
6.7 FINIT - Initialize Impure Area for High Level Language Tasks . . 6-9
6.8 FINLN - Get Current Line of Scrolled Area 6-10
6.9 FLCHAN - Set Channel (LUN) for Form Library File 6-11
6.10 FLCLOS - Close Form Library 6-12
6.11 FLEN - Return the Length of the Specified Field 6-13
6.12 FLOPEN - Open Form Library. 6-14
6.13 FNDATA - Get Named Data by Name 6-15
6.14 FOUTLN - Output Data to Current Line of Scrolled Area 6-16
6.15 FPFT - Process the Field Terminator . . . 6-18
6.16 FPUT - Output a Value to Specified Field. 6-20
6.17 FPUTAL - Output Values to All Fields . 6-21
6.18 FPUTL - Output to Last Line of Screen. . 6-23
6.19 FRETAL - Return Values for All Fields . . 6-24
6.20 FRETN - Return the Value for the Specified Field. 6-25
6.21 FSHOW - Display a Form 6-26
6.22 FSPOFF - Turn Supervisor-Only Mode Off . . 6-27
6.23 FSPON - Turn Supervisor-Only Mode On . . . 6-28
6.24 FST AT - Return the Status from the Last Call 6-29

Chapter 7 Form Driver Programming Techniques and Examples

Vlll

7.1
7.2

7.3

7.4

7.5
7.6

Scrolling Techniques
Three Common Scrolling Methods

7.2.1 Entry, Edit, and Review .
7 .2.2 Normal and Display-Only Fields.
7.2.3 Reviewing a Data List

Simultaneous Display of Multiple Forms

7.3.1 Impure Areas
7 .3.2 Help Forms

Emulating the FGETAL Call by Combining the FGET and FPFT
Calls
Using the FGETAF Call .
Using Indexed Fields. . .

. 7-1

. 7-2

. 7-2

. 7-3

. 7-4

. 7-4

. 7-4

. 7-5

. 7-5

. 7-5

. 7-6

7.7 Examples of Programming Techniques

7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6

Emulating FGETAL With FGET and FPFT.
Table Lookup
Form Linkage
Menus and Application Data
Initializing a Scrolled Area .
MACR0-11 Programming Examples.

7.7.6.1 Example 1: Emulating FGETAL With FGET and
FPFT

. 7-6

. 7-7

. 7-7

. 7-8

. 7-8

. 7-9

. 7-9

7-10
7.7.6.2 Example 2: Named Data. 7-11
7.7.6.3 Example 3: Combining the FGETAL and FRETN

Calls . 7-12
7.7.6.4 Example 4: Using FGET to Synchronize With

the Terminal Operator. 7-13

Chapter 8 Preparing Your System for FMS-11 Applications

8.1 RSX System Generation Options .

8.1.1 Terminal Service Option .
8.1.2 Mapping Options

8.2 RSX System Installation Procedures

8.3 Configuration Procedure for the Form Driver

8.3.1
8.3.2

8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11

Question Types and Defaults
Do You Want to Build the Form Driver Without the SOB
Institution?.
Do You Want Only Memory Resident Form Support?.
Do You Want to Delete Fixed Decimal Field Support?
Do You Want to Delete Scrolled Area Support?
Do You Want Debug Error Messages?
Do You Want Support for the VT52?
Size of Directory Buffers in Blocks. .
Number of Directory Buffers
Number of Libraries Open at a Time
Do You Want Support for Other Than Full Duplex Terminal
Service?

8.4 Building and Running Your Application Programs.

8.4.1 Program Sections Used by FMS.
8.4.2 Considerations When Using ODL

Appendix A The FMS System Macro Library

Appendix B FMS Extended Examples

B.l

B.2

A Typical Application Written in BASIC-PLUS-2, COBOL-11,
FORTRAN IV, FORTRAN IV-PLUS, and MACR0-11
Running the Programs

B.2.1 Running the BASIC-PLUS-2 Version
B.2.2 Running the COBOL Version

. 8-1

. 8-1

. 8-1

. 8-2

. 8-3

. 8-4

. 8-5

. 8-5

. 8-5

. 8-5

. 8-5

. 8-6

. 8-6

. 8-6

. 8-7

. 8-7

. 8-8

. 8-8

. 8-8

. B-1

.B-6

.B-6

.B-6

IX

B.2.3 Running the FORTRAN IV
B.2.4 Running the FORTRAN IV-PLUS Version.
B.2.5 Running the MACR0-11 Version

.B-6

.B-6

.B-6

Appendix C FMS Software Messages

Tables

x

C.1 How to Use This Appendix.
C.2 Order of Messages and Special features .
C.3 Types of FMS Messages

C.3.1 Types of Form Editor Messages .
C.3.2 Types of Form Utility Messages .
C.3.3 Types of Form Driver Messages .
C.3.4 Bell Message Signals

C.3.4.1 Bell Message Signals from the Form Driver .
C.3.4.2 Bell Message Signals from the Form Editor .

C.4 Suggestions to Follow if FMS Software Malfunctions
C.5 FMS Software Messages

. C-1

.C-1

.C-2

.C-2

.C-3

.C-3

.C-4

.C-4

.C-5

.C-5

.C-5

2-1 FED Command Summary 2-4
2-2 FED Picture-Validation Characters . 2-18
2-3 FED Field-Marker Characters . . . 2-19
2-4 Field Characters Required for the Example 2-36
2-5 Field Attributes Required for the Example 2-36
2-6 Form Driver Editing Functions Required for the Example 2-36
3-1 Default Values. 3-2
3-2 The /FD Option: Video Attributes Codes and Meanings . 3-16
4-1 Field Editing Keys, Functions, and Usage for the Form Driver . 4-11
5-1 Summary of Returned Status Values and Codes. 5-3
5-2 Field Terminator Keys, Codes, and Typical Effects 5-7
5-3 The Relationship Between the Calls to Get Operator Responses and

the Field Terminators 5-8
5-4 Alternate Keypad Mode Field Terminator Keys and Codes. . 5-10
5-5 FCS and RMS System Requirements for the Form Driver . . 5-11
5-6 Summary of Form Driver Inputs and Outputs in High-Level

Language Calls . 5-14
5-7 Typical Basic-PLUS-2 Data Types for Form Driver Arguments 5-18
5-8 Listing of BASIC-PLUS-2 Form Driver Calls 5-21
5-9 Typical COBOL-11 Data Types for Form Driver Arguments . . 5-23
5-10 Listing of COBOL-11 Form Driver Calls 5-24
5-11 Typical FORTRAN IV and FORTRAN IV-PLUS Data Types for

Form Driver Arguments . 5-30
5-12 Listing of FORTRAN IV and FORTRAN IV-PLUS Form Driver

Calls . 5-30
5-13 Offsets and Meanings of Necessary and Function Dependent

Arguments 5-34
5-14 MACR0-11 Function Codes and Meanings 5-35
5-15 Required Argument List Offsets and Meanings 5-37
5-16 Summary of Arguments, Keywords, and Offsets for High-Level

Language and MACR0-11 Form Driver Calls 5-38

Figures

2-1 FED Keypad Layout.
2-2 Form-Wide Attributes Questionnaire
2-3 Field Attributes Questionnaire
2-4 Named Data Questionnaire
2-5 Sketch of VENDOR
3-1 The /HE Option and the Help Display
3-2 The /RP Option: Effects of Input File Order on Output File

Contents
3-3 The /CC Option: Illustration of the COBOL Data Description
3-4 The /FD Option: The Form Description Header .
3-5 The /FD Option: The Image Map
3-6 The /FD Option: The Video Attributes Map.
3-7 The /FD Option: Field Descriptions
3-8 The /FD Option: The Named Data Map . .
B-1 The Extended Example Form Named FIRST
B-2 The Extended Example Form Named CUSTO.
B-3 The Extended Example Form Named CUSTPR .
B-4 The Extended Example Form Named LAST ..
B-5 The Extended Example Form Named EMPLOY.
B-6 The Extended Example Form Named PARTS ..

. 2-5
2-20
2-21
2-25
2-28
. 3-6

3-10
3-12
3-14
3-15
3-16
3-17
3-18
.B-2
.B-3
.B-4
.B-4
.B-5
.B-5

xi

Preface

This manual describes the FMS-11 Software System for use with the
RSX-UM and RSX-UM-PLUS operating systems. Overview sections tell
how FMS-U components work together. Detailed sections introduce the fea­
tures of each component.

This manual and FMS-U software are primarily for RSX-UM/M-PLUS
system programmers who have experience with BASIC-PLUS-2, COBOL-11,
FORTRAN IV, FORTRAN IV-PLUS, and MACRO-U programs.

The next section, Chapter Summary, briefly describes the chapters in this
manual and is followed by a separate section that describes the documenta­
tion conventions.

CHAPTER SUMMARY

Chapter 1 introduces form processing and presents general information about
the FMS-U software components.

Chapter 2 describes the FMS-U Form Editor in detail. The Form Editor is
the FMS-U component that creates and modifies computerized form descrip­
tions for later use in form applications.

Chapter 3 describes the FMS-U Form Utility in detail. The Form Utility is a
system utility for manipulating form descriptions by creating form library
files, printable files that show how forms have been designed, object modules
for forms, and directories of library files.

Chapters 4, 5, 6, and 7 introduce and describe the FMS-U Form Driver. The
Form Driver is the FMS-U component that displays forms and accepts data
that operators type in response to the forms.

Chapter 4 introduces Form Driver concepts in two major sections:

1. How the Form Driver interacts with the form descriptions that you have
created with the Form Editor.

2. How the Form Driver interacts with the terminal operator when an
FMS-11 application is running.

The section about interaction with the form description includes detailed
descriptions of how the Form Driver treats the field attributes and form at­
tributes. The section about interaction with the terminal operator includes
detailed descriptions of error handling, the field editing functions that an
operator can use, and the ways an operator can terminate input in fields and
forms.

Chapter 5 presents programming requirements and concepts. The first major
section presents requirements that apply to all programming languages. Then
separate sections for BASIC-PLUS-2, COBOL-11, FORTRAN IV and FOR­
TRAN IV-PLUS, and MACR0-11 present the special details that apply only
to each of those languages.

xiii

xiv

Chapter 6 is the main reference chapter for the Form Driver calls. Detailed
descriptions of the calls are arranged in alphabetical order by the high-level
language call name. Each description is organized as follows:

1. The purposes and effects of the call - This information applies to all
programming languages.

2. The forms of the call - For each high-level language, the general forms
of the CALL statement are given in full with argument abbreviations that
stand for the purposes of the arguments. For MACRO-U, the general
form of the macro call to the Form Driver ($FDV) is given.

3. The input and output arguments - The required and optional inputs
and outputs for the call are listed in tables that show the argument abbre­
viations and explain the requirement on input or the value on output.
This information applies to all programming languages.

4. The codes and values for the status of the call - The high-level language
status values and the MACRO-U status codes are listed and explained in
separate tables.

Chapter 7 presents programming techniques that illustrate special Form
Driver capabilities and show useful combinations of Form Driver calls. Exam­
ples in the high-level languages and MACRO-U are included.

Chapter 8.describes how to prepare your system for FMS applications. Sepa­
rate sections cover the relevant RSX-U system generation options, FMS-U
installation procedures, and the FMS-U configuration procedure for the
Form Driver, including a full listing of the interactive configuration dialogue.

Three appendixes supplement the manual. Appendix A contains a listing of
the FMS-U system macro library (FMSMAC.MAC). Appendix B contains
listings of executable examples of FMS-U that DIGITAL has distributed as
part of your kit. Appendix C lists and explains all of the FMS-U messages.

Symbols and Conventions

This manual and the FMS-11/RSX Mini-Reference use the following symbols
and conventions. Although most of them are the same as the symbols and
conventions used in other documents for PDP-U software, the VTlOO ter­
minal and the video orientation of the keypad editor require a few changes.

System prompts

Red print

Indicate that the system is ready for you to enter a
command. The system prompts are:

For RSX-UM: the characters MCR > or a right-angle
bracket (>) by itself.
For RSX-UM-PLUS: the dollar sign ($) or the
RSX-UM prompts (when the MCR is running).

Indicates the characters typed on the keyboard in ex­
amples of commands. Black print in these examples
indicates the characters displayed by the system or by
the FMS-U software.

Uppercase letters
(In commands
and calls)

Lowercase letters
(In commands
and calls)

Square brackets [l
(In general for ms
of commands)

Braces {I

Dot matrix letters

Indicate the characters that you must type on the key­
board (see "Lowercase letters" also).

Indicate the parts of commands or command strings
that you must supply (see "Uppercase letters" also).

Indicates a combination of the control key and another
keyboard key. For example, for tTRL/u) hold down the
CTRL key and press the U key.

Enclose an optional term or optional characters (do not
type square brackets as part of a command unless the
instructions explicitly require them).

Enclose a list of two or more terms from which you
must choose and type one (do not type braces as part of
a command).

Indicate prompts, short status messages, and examples.

xv

Chapter 1
INTRODUCTION TO FMS-11

1.1 Overview

FMS-11 is DIGITAL's Form Management System. FMS-11 software contains
the tools for developing form applications and running them on VTlOO termi­
nals. Printed forms have been the most common tool for collecting and
transmitting data in an orderly manner. FMS-11 software now brings the
speed, convenience, accuracy and low cost of computerized processing to users
who have been using printed forms.

FMS-11 was previously available only on RT-11 systems. The FMS-11 soft­
ware described in this manual is designed to run on RSX-llM, V3.2 and
RSX-llM-PLUS, Vl.O systems for user application development and execu­
tion. In addition, many FMS-11 application programs developed for
RSX-llM or RSX-llM-PLUS systems can be executed on RSX-llS, V2.2.

Forms are designed by typing them directly onto the terminal screen. Neither
layout charts nor a special forms design language are required. FMS-11 asso­
ciates constant data with the form, not with the application program, re­
sulting in simplified application program maintenance and increased applica­
tion program flexibility. Forms can later be modified without the need to
recompile the application program.

Form application programs can be written in one of several programming
languages. FMS-11 provides language supp·ort for COBOL-11,
BASIC-PLUS-2, FORTRAN IV, FORTRAN IV-PLUS, and MACR0-11.

FMS-11 software has three main components for developing and executing
form application programs:

• The Form Editor (FED)

• The Form Utility (FUT)

• The Form Driver (FDV)

1.1.1 The Form Editor

The Form Editor (FED) simplifies designing, modifying, and storing form
descriptions for video display. Your screen always shows the current state of
the form you are working on. Keypad and keyboard functions provide ways for
you to specify video display characteristics for constant text or fields that
contain picture characters. To help operators, you can include in the form
descriptions short, helpful explanations about individual fields and about
each form as a whole.

1-1

When designing forms, you assign form names, field names, and refer to data
that will be used (but not displayed) by the Form Driver when the form is
used by an application task. The desired operator response to information
displayed or data to be entered on forms is controlled by the actual design of
the form and the specific application task requirements.

1.1.2 The Form Utility

The Form Utility (FUT) allows you to create versions of form descriptions
that are suitable for hard-copy listings, to create and modify form libraries, to
list the names of forms contained in a form library, and to produce object
modules of form descriptions. You can task build the object modules with
form application code to produce form applications that are entirely memory­
resident. The Form Utility also generates COBOL data division code suitable
for copying into a COBOL task to correspond to a form definition.

1.1.3 The Form Driver

The Form Driver (FDV) is a set of subroutines that permits your application
program to access forms that you created using the Form Editor. Application
programs access forms by issuing Form Driver calls that are imbedded in the
task and are written in the source language of the task. All Form Driver calls
refer to specific forms and/or fields within forms using names that you as­
signed during the form editing process. The Form Driver performs field and
character validation for operator input based on the form definition (valida­
tion is based on picture validation characters and field attributes). The Form
Driver also responds to operator HELP requests by displaying appropriate
help text associated with the form and field being processed.

1.2 Developing Form Applications

Seven stages comprise the typical development cycle for form application
programs:

•PLAN

Study the existing process that the FMS-11 application will improve; list
the data that operators can provide; list the hardware resources that oper­
ator sites will have; describe the skills that operators have and the addi­
tional skills they will need; specify the features that FMS-11 forms for the
application are to have and the processes that the form application pro­
grams are to perform.

•DESIGN FORMS

Use the Form Editor to lay out, and modify the forms that the form applica­
tion programs will use; use the Form Utility to print form descriptions for
reference, to create object modules for form descriptions that are to be
memory resident, to store forms in a form library file, and to list the names
of forms that are in a form library file.

1-2 Introduction to FMS-11

• WRITE TASKS

Use the Form Driver calls in the form application task to process form
descriptions, to handle form-related terminal I/0, and to check the validity
of operator responses (to a limited extent).

• DEBUG TASKS WITH FORMS

Confirm that all processes that use the application's forms work.

• VALIDATE ON OPERATOR SITE SYSTEMS

Confirm that the forms and application program software work on each type
of target system on which it will be used.

• PREPARE APPLICATION SYSTEM DOCUMENTATION

Provide complete documentation for operators who will use the FMS-11
forms and application program software.

•DISTRIBUTE

Package and distribute the FMS-11 forms, application program software,
and user documentation as a complete application system package.

The two major stages required when developing form applications are de­
signing forms and writing application programs. Chapter 2 contains the infor­
mation that you will need in order to design and modify forms. After forms
have been designed, the Form Utility helps you to create and maintain form
library files; the Form Utility is described in detail in Chapter 3.

The application program writing stage deals with the use of the Form Driver.
Details for writing Form Driver application programs are contained in Chap­
ters 4 through 8. These chapters include information on Form Driver interac­
tion between forms and the operator as controlled by Form Driver calls issued
by the application program, application programming requirements and con­
cepts, Form Driver interface to various programming languages, the Form
Driver calls, programming techniques and examples, and building and run­
ning form application programs.

Introduction to FMS-11 1-3

Chapter 2
The FMS-11 Form Editor (FED)

2.1 Overview

The FMS-11 Form Editor allows you to create, modify, and store customized
forms. Your application programs can then use these forms to collect data
entered by an operator at a video terminal.

Creating or editing a form with the Form Editor is an interactive and iterative
process. You do not need to know in advance all the details or all the modifi­
cations that you intend to specify for a form. The Form Editor lets you test
various possibilities, observe their appearance on the screen, and choose the
design that you consider most successful.

The product of your work with the Form Editor is a form description that can
be saved in a file or form library. The form description can be retrieved from
the file or form library for additions or changes. You can change individual
fields or text portions of the form without affecting other fields or text.

For example, you might want to translate the text of a form into another
language, reposition items on the screen to make the form more attractive to
the eye or easier for an operator to handle, add or remove fields, or supply
additional help text. You can make these and other changes by calling the
Form Editor, editing the screen image of the form to make the desired changes
in the form description, and saving the modified form description in the file or
form library.

The purpose of the form description is to provide information to another
software component called the Form Driver. The Form Driver handles the
interaction of the terminal operator with the form displayed on the screen and
with the application program. The Form Driver is described in Chapter 4.

In summary, the Form Editor allows you to perform these operations:

1. Creation and modification of a form's screen image by means of the termi­
nal's main keyboard and the text editor keypad.

2. Storage of form descriptions in files and form libraries, and retrieval of the
files from those libraries.

2-1

2.2 Form Editor Terminology

2.2.1 Screen Form

The screen form looks like a paper form, but is a video display instead. The
computer forms the display by using a form description that specifies to the
computer which characters to display on the screen.

2.2.2 Form Description

The form description is a computerized specification of a screen form. It
specifies which characters to display on the screen as well as the location, size
and other characteristics of each field. The name of the form and how the
form and its fields are processed are also part of the specifications.

2.2.3 Field

The field is a set of contiguous characters (either picture-validation or field­
marker) terminated by a blank, a non-field character, an end-of-line delimiter
or a change in video attributes. A field is a formatted blank for some of the
information that a form has been designed to work with.

2.2.4 Form Description File

The form description file is a computer file that contains only one form de­
scription which may or may not be complete or accurate. It is a binary file
that has been arranged so FMS can use it to display screen forms.

2.2.5 Form Library File

The form library file is a computer file containing at lea~t one form descrip­
tion and a directory of the names for each form descriptiop.. It is a binary file
but is arranged so individual form descriptions can be ta1'en out by name for
use by FMS.

2.3 Starting the Form Editor

The Form Editor (FED) requires a VTlOO terminal. The terminal must be
made known to the system as a VTlOO. Use the MCR SET command for this:

SET /VT100=TI:

or

SET /TERM=TI:VT100

(The RSX MCR Operations Manual gives the SET command.)

The Form Editor requires the full duplex terminal driver to run.

2-2 The FMS-11 Form Editor (FED)

The main keyboard performs normally when you are using the Form Editor,
providing you with a means to insert characters, delete them, and so on. The
keypad to the right of the keyboard provides operations specifically related to
the Form Editor.

The following operations are used to design a form:

• Starting the Form Editor

By using the standard commands to load the Form Editor into memory, you
begin program execution.

When the Form Editor prompt (FED>) is displayed on the screen, you may
type in a response. The response describes the form file that you want to
create or edit, or the library that contains the desired form. The response
requires a prescribed syntax (that will be described in the "File Specifica­
tion" section).

To start the Form Editor if it is in the system account, type:

RUN $FED ffiffi

The Form Editor clears the screen, displays the prompt FED> at the bot­
tom of the screen and accepts a command line.

If the Form Editor is installed on your system, you can start it by typing:

FED ffiffi

The Form Editor is built with buffer space that should be sufficient to edit
almost any form. It will allow you to create or edit a form description 2048
words in length.

However, if you are editing forms larger than 2048 words or are editing forms
smaller than that, you may wish to change the size of the FED task. FED
can be installed or run with a different task increment:

I NS $FED I I NC =words

or

RUN $FED I I NC =words

The default task extension FED is built with 4096 words. The minimum
extension required for FED to run is 1024 words.

• Issuing Form Editor Commands

You can use any of several commands to enter a particular phase of the
Form Editor. Table 2-1 summarizes the commands. You type the com­
mands in response to the COMMAND: prompt. If you type HELP in re­
sponse to the COMMAND: prompt, the Form Editor displays the valid re­
sponses to the prompt.

The FMS-11 Form Editor (FED) 2-3

Table 2-1: FED Command Summary

Command

EDIT

ASSIGN [option)

where option can be one of
the following:

ALL

NEW

FIELD {ldnam

FORM

HELP

NAME

SAVE

QUIT

ED

A

Abbreviated
Command

AA

AN

AF fldnam

F

H

N

(None)

(None)

• Using Keypad Operations

Function

Create or edit the form's screen
image.

Assign field attributes. ("At­
tributes" are characteristics of
fields that you assign with
FED for use by the Form
Driver.)

Assign attributes for old and
new fields.

Assign attributes for newly cre­
ated fields.

Assign attributes for the par­
ticular field called fldnam.

Assign form-wide attributes.
(Form-wide attributes are at­
tributes that apply to an entire
form rather than a particular
field.)

Lists the commands available
in the form editor.

Enter and edit named data.
(Named data is information
that is to be associated with a
form but not displayed with
it.)

Store the completed form and
return to the FED> prompt.
Both input and output files are
preserved.

Cancel the current session
without saving output files and
return to the FED> prompt.
The input file is preserved.

The keypad layout for the Form Editor in Figure 2-1 shows the operations
that are associated with certain keys or key combinations.

2-4 The FMS-11 Form Editor (FED)

Figure 2-1: FED Keypad Layout

Goo OELLINE

GOLD - -

~
r ' /"

VIDEO TEXT """' 0 I-
COMMAND FIELD [<>vERSTRIKE

\.
/"

ADVANCE BACKUP CJLJ I-
BOTTOM TOP E

..I

5J ~o EDL

ENTER

DELEOL

' ' BLINE SELECT

NORMAL

OPENLINE RESET

• File Specifications

The Form Editor's output always goes to a form file. A form file contains
only one form description. (To create or update form libraries use the Form
Utility (FUT) described in Chapter 3) .

To create a new form, use the /CR option:

FED >I CR(BIT)

To edit a form contained in a form file, type the name of the form file , for
example " VENDOR" .

FED >t.>ENDOR(BIT)

To extract a form from a form library for editing, type the name of the library
file and respond to FED's 11 F o r r11 n a r11e? 11 prompt with the name of the form.
The default file type is .FRM indicating a form file. If it's .FLB, you must
type .FLB explicitly:

FED >DEMLIB.FLB(BIT)

"Forr11 nar11e?" FIRST(BIT)

If the specified form is not found, FED repeats the 11 F o r r11 n a r11 e? 11 prompt.
If you press the (8D) key in response to the 11 F o r r11 n a r11e? 11 prompt, FED
displays the FED > prompt again and waits for a new command line.

The FMS-11 Form Editor (FED) 2-5

It isn't necessary to distinguish a form file from a library file on the command
line. FED determines whether the input file is a form file or a library file, and
proceeds accordingly.

If you want to know the version number ofthe Form Editor you are using, you
can ask the Form Editor to display its identification message by typing:

FED>IIDml

The syntax for the form file and library file specifications is:

dev: [UICJfilenaine. type;version

If the device is not specified for the input file, FED assumes the system
device. For RSX, if the UIC (User Identification Code) is omitted, FED de­
faults to the currently assigned UIC.

The default file type for the input file is FRM (a form file). If an explicit
version number is not specified for an input file, FED uses the latest version of
the file.

The output file that FED creates during an editing session is always a form
file with the file specification "form.FRM". "Form" is the name of the form
when the session ends. FED creates the output file on the system device in the
RSX account under which the Form Editor is running.

2.4 Form Editor Commands

You can type any one of the commands shown in Table 2-1 (The FED Com­
mand Summary) in response to the COMMAND: prompt. The Form Editor
enters the specified command after you press the ENTER key on the keypad.
If you want to cancel your last command, type the trRL/uJ combination before
you press the ENTER key. If you want to change a command, use the @§;)key
to delete the characters that make up the command. You can use tl"RL!u) to
delete the entire command line and then type in a new command.

You can type the HELP command to display a list of the Form Editor com­
mands and their functions.

Begin an editing session with a rough pencil sketch of the form that you want
to create. You can elaborate the details of the form interactively with the
Form Editor by looping back through the command functions (by means of
the GOLD/COMMAND key sequence) and adding or deleting features gradu­
ally during the development of the form design.

The various command operations let you control the phases of your work
during a form editing session and to move in an orderly manner from one
phase to another. Any phase can be entered at any time. The FORM, AS­
SIGN, and NAME phases use the Form Driver to display and collect re­
sponses with questionnaire forms.

Form .Driver key operations are active while you are completing any of the
questionnaires. For example, when you are assigning form-wide, field, and

2-6 The FMS-11 Form Editor (FED)

named data attributes, the TAB key has the effect of moving the cursor to the
first character position of the next field, and the BACKSPACE key moves the
cursor to the previous field. Chapter 4, on Form Driver interaction with the
terminal operator, describes Form Driver key operations in detail.

2.4.1 Assigning the Form-Wide Attributes: The FORM Command

FORM places you in the Form-wide Attribute Questionnaire. The Form Edi­
tor displays a questionnaire that collects the necessary information from you
to create a form file.

2.4.2 Editing the Form Display: The EDIT Command

EDIT causes the Form Editor to enter the EDIT phase. In EDIT you create
and modify the screen image of the form. You may type background text,
create fields and scrolled areas, and assign some kinds of attributes. Use the
GOLD/COMMAND key sequence to return to the COMMAND: prompt.

2.4.3 Assigning the Field Attributes: The ASSIGN Commands

ASSIGN with any of its options tells the Form Editor to enter the field
attribute assignment phase. When the form is a new one, you usually type
ASSIGN after completing the EDIT phase. For each field in the form, the
Form Editor displays a questionnaire that requests field attributes. If you are
editing an existing form, you only need to fill in field attributes that weren't
assigned earlier.

If, during the ASSIGN phase, you wish to exit before completion of all field
attribute assignments, press the period (.) key on the keypad. This action
returns you to the COMMAND: prompt and .assigns default attributes to all
remaining fields.

2.4.3.1 For All Fields: The ASSIGN ALL Command - Causes the Form Editor
to request attributes for all fields. To display the questionnaire for the next
field, press the ENTER key.

2.4.3.2 For New and Changed Fields Only: The ASSIGN NEW Command -
Causes the Form Editor to request attributes for new fields only. To display
the questionnaire for the next field, press the ENTER key.

2.4.3.3 For a Specified Field Only: The ASSIGN Field Command - Followed by
a field name, allows you to assign attributes to the particular field whose
name you specify.

2.4.4 Specifying the Named Data: The NAME Command

NAME places you in the named data assignment phase. The Form Editor
displays a questionnaire that collects names and data to be associated with
those names. Named data is typically used to hold information about a form

The FMS-11 Form Editor (FED) 2-7

in the form description but outside the form itself. Named data is not dis­
played with a form.

2.4.5 Storing the Form Description: The SAVE Command

SA VE causes the Form Editor to place the form description that you are
working on in the output file and return you to the FED> or system prompt,
depending on how you started the program.

If field attributes have not yet been assigned to all fields when the SA VE
operation is performed, the Form Editor supplies default values for any fields
whose attributes have been left unspecified; a default name of all blanks is
supplied as the field name.

2.4.6 Cancelling the Session Without Saving the Form: The QUIT
Command

QUIT returns you to the FED> or system prompt. The form you were editing
is not saved in the output file, it is destroyed.

2.5 Edit Status Display

When you are in the EDIT phase, the bottom line (24) of the screen displays
information about the current status of the Form Editor. The format for the
line is:
CURSOR: TXT NOR LIN 1 COL 1 MODES: TXT ADV INS SELECT: LIN 1 COL

FLO SCR 23 132 FLO 5CK OVS 23 132

The second line (above) indicates the alternative choice or the limitations of the items
in the display.

The fields on line 24 are displayed in reverse video.

CURSOR This section indicates the line and character that the cursor is located
on.

nn,FLO The cursor character is either a text (Tl<T) character or a field (FLO)
character.

N 0 R, SC R The cursor line is either a normal screen line (N 0 R) or a part of a scrolled
region (SCR).

LIN 1-23 The line number at which the cursor is located.

COL 1-132 The column number at which the cursor is located.

MODES This section indicates the status of the internal mode indicators of the
editor.

nn ,FLO The current input mode is either text or field.

AOt.J,BCK The current move mode is either Advance (AOtJ) or Backup (BCK).

2-8 The FMS-11 Form Editor (FED)

INS,Ol.JS The current input mode is either Insert (INS) or Overstrike (Ol,JS).

SELECT This section is present only if a select range is active. Otherwise, this
portion of the line is blank.

LIN 1-23 The line number at which the select point is located.

COL 1-132 The column number at which the select point is located.

2.6 Form Editor Operations Reference

This section describes the creation of the form's screen image during the
EDIT phase and the assignment of all attributes during the FORM, EDIT,
ASSIGN, and NAME phases.

2.6.1 Creating the Form's Screen Image

The Form Editor includes a text editor for creating and modifying screen
images. The text editor lets you use standard operations for mode changing,
cursor control, and text modification.

The Form Editor lets you define fields in the form for data input/output
between your application task and the terminal operator. It also enables you
to assign video attributes (such as bold, blink, and underline) to any character
or set of characters on the terminal screen, and to define a block of lines as a
scrolled area.

NOTE

The Form Editor requires a VTlOO terminal to run on; however,
neither FED nor FDV supports the VTlOO's double-high or
double-wide video attributes.

2.6.2 The Text Editor

The keyboard performs like a typewriter when you use the Form Editor: it lets
you input and delete characters. The keypad to the right of the keyboard
provides operations specifically related to the Form Editor. It is recommended
that you make a copy of the keypad layout and keep it at the terminal.

The text editor provides four kinds of operations:

• Mode-Changing Operations

You change modes by pressing the appropriate key or key combination on
the keypad. Modes determine placement of characters, movement forward
or backward through the form, and definition of fields and background text.

• Cursor Control Operations

These operations change the cursor position but do not affect the text. The
cursor may advance only to the margin boundaries.

The FMS-11 Form Editor (FED) 2-9

•Text Modification Operations

These operations insert, delete, and modify text.

• Scroll Operation

This operation permits the definition of a scrolled line. Together with iden­
tical lines that immediately follow it, the line becomes a scrolled area.

2.6.3 Mode-Changing Operations

The Form Editor works in several modes. The mode choices are
TEXT/FIELD, INSERT/OVERSTRIKE, and ADVANCE/BACKUP. Only
one of each pair can be active at one time.

The TEXT/FIELD modes tell the Form Editor whether the characters you
enter are background text characters for the form (TEXT mode), or the spe­
cial set of field characters that define the picture format of a field (FIELD
mode). The special set of field characters includes field-markers (such as
slashes and hyphens that delimit fields) and picture-validation characters.

The INSERT/OVERSTRIKE modes determine how the Form Editor places
characters in the form with respect to characters already there.

The ADVANCE/BACKUP modes determine whether the Form Editor exe­
cutes an operation in a forward (right and downward) or backward (left and
upward) direction.

2.6.3.1 TEXT/FIELD - TEXT mode is activated by pressing the TEXT key on
the keypad. Start FIELD mode by pressing the GOLD/FIELD key sequence.
In TEXT mode, the Form Editor accepts any character as input. It enters any
printable character or space in the background text of the form. The Form
Driver does not see these characters as data. Rather, it treats the characters as
constant text that is always displayed on the form. TEXT mode is deac­
tivated by pressing the GOLD/FIELD key sequence, which places you in
FIELD mode.

In FIELD mode, the Form Editor accepts as input only the picture-validation
characters A, C, N, X, and the digit 9, as well as a set of ASCII field-marker
characters. Picture-validation characters tell the Form Editor whether to ac­
cept alphabetic (A), alphanumeric (C), numeric (9), signed numeric (N), or
any characters (X) as input for each character position in a field. Field­
marker characters, such as the pound sign (#) and the dash (-), are text
characters that you may define as part of a field.

If, while in FIELD mode, you enter a character that is neither a field-marker
nor a picture-validation character, the Form Editor sounds the terminal bell
and rejects the input. The Form Editor accepts a blank as input in FIELD
mode, but does not make it part of the field. Field-marker and picture-valida~
tion characters are treated as such only when the Form Editor is explicitly in
FIELD mode. For example, the digit 9 is associated with a field as a picture­
validation character if it is typed in FIELD mode; otherwise, it is treated as a
text character.

2-10 The FMS-11 Form Editor (FED)

You can deactivate FIELD mode and return to TEXT mode by pressing the
TEXT key.

2.6.3.2 ADVANCE/BACKUP - The ADVANCE/BACKUP modes affect the
BLINE (beginning of line) and EOL (end of line) operations. They do not
affect character insertion or deletion.

ADVANCE mode causes the Form Editor to implement operations in the
direction moving from the current cursor position toward the end of the line or
form. You can deactivate ADVANCE mode by pressing the BACKUP key.

BACKUP mode causes the Form Editor to implement operations in the direc­
tion toward the beginning of the line or form. You can deactivate BACKUP
mode by pressing the ADVANCE key.

2.6.3.3 INSERT/OVERSTRIKE - The INSERT/OVERSTRIKE modes affect
the way characters are placed or moved when you type or make deletions.

INSERT mode places typed characters at the current cursor location and
moves the cursor to the right. Any other characters on the line are moved over
to make room for the inserted character. If characters would be lost by being
pushed beyond the margin, the Form Editor sounds the terminal bell and
rejects the insertion.

If you delete a character in INSERT mode, the Form Editor removes the
character to the left of the cursor and characters to the right slide over to close
the space.

You can deactivate INSERT mode by pressing the GOLD/OVERSTRIKE key
sequence.

OVERSTRIKE mode causes the Form Editor to replace the character at the
current cursor position with the new character typed at the terminal. When a
character is deleted, adjacent characters do not close up the line. The char­
acter is erased. The deleted character is replaced by a blank, and the cursor is
positioned on that character's space. You can enter OVERSTRIKE mode by
typing the GOLD/OVERSTRIKE key sequence.

Deactivate OVERSTRIKE mode by pressing the INSERT key.

2.6.4 Cursor Control Operations

The following operations change the cursor's position during an editing ses­
sion.

The cursor symbol (either a solid rectangle or an underline) blinks on the
character cursor location. A row-column counter in the lower right corner of
the screen displays the precise character position where the cursor symbol is
blinking.

Uparrow (t) Press the UPARROW key to move the cursor up one line.
You cannot move the cursor above the top margin of the
form, otherwise the Form Editor sounds the terminal bell.

The FMS-11 Form Editor (FED) 2-11

Downarrow (i)

Rightarrow (-+)

Leftarrow (+-)

BLINE

RETURN

EOL

BOTTOM

Press the DOWNARROW key to move the cursor down
one line. You cannot move the cursor below the bottom
margin of the form, otherwise the Form Editor sounds the
terminal bell.

Press the RIGHTARROW key to move the cursor one
character position to the right. You cannot move the cur­
sor beyond the right margin, otherwise the Form Editor
sounds the terminal bell.

Press the LEFTARROW key to move the cursor one char­
acter position to the left. You cannot move the cursor be­
yond the left margin, otherwise the Form Editor sounds
the terminal bell.

Press the BLINE key to move the cursor to the beginning
of a line. Which line the cursor moves to the beginning of
depends on whether the Form Editor is in ADVANCE or
BACKUP mode when the BLINE key is pressed.

If the Form Editor is in ADVANCE mode, BLINE moves
the cursor to the beginning of the next line. Pressing
BLINE again moves the cursor to the beginning of the
subsequent line.

If the Form Editor is in BACKUP mode, BLINE moves
the cursor to the beginning of the current line. Pressing
BLINE again moves the cursor to the beginning of the
previous line.

If an attempt is made to move to a line beyond the top or
bottom screen boundary, the Form Editor sounds the ter­
minal bell.

The RETURN key on the keyboard provides an alternative
to LINE when used in ADVANCE mode. Pressing RE­
TURN moves the cursor to the beginning of the next line.
BACKUP mode has no effect on this operation.

Pressing the EOL key moves the cursor to the end of a line.
Which line the cursor moves to the end of depends on
whether the Form Editor is in ADVANCE or BACKUP
mode.

If the Form Editor is in ADVANCE mode, EOL moves the
cursor to the end of the current line. If you strike EOL
again, the cursor moves to the end of the next line.

If the Form Editor is in BACKUP mode, EOL moves the
cursor to the end of the previous line.

Pressing the GOLD/BOTTOM key sequence on the key­
pad moves the cursor to the bottom right corner of the
screen.

2-12 The FMS-11 Form Editor (FED)

TOP

REPEAT

Pressing the GOLD/TOP key sequence on the keypad
moves the cursor to the top left corner of the screen.

If you press the GOLD key, a number, and an operation
that you want to perform, the Form Editor repeats that
operation the number of times that you have specified.
After you type the first digit of the number, you see the
prompt REPEAT: on the screen as well as the number
itself. The first command or key typed after the digits is
repeated that number of times. You can edit the number
using the DELETE key to increase or decrease the repeti­
tions.

2.6.5 Text Modification Operations

Text modification operations allow you to insert, modify, and delete charac­
ters and lines in the form, as well as to assign video attributes to background
text and fields.

2.6.5.1 Inserting ASCII Characters - When you type any ASCII character,
the Form Editor inserts that character at the current cursor location and
moves the cursor one location to the right.

If you type a character at the end of a line, the Form Editor inserts the
character in the last available position, sounds the terminal bell, and causes
the cursor to "bounce back," leaving the cursor symbol at the last character
position on the line.

The Form Editor handles typed characters differently depending on whether
INSERT or OVERSTRIKE mode is in effect.

2.6.5.2 Inserting Characters in INSERT Mode - In INSERT mode, the Form
. Editor inserts the character at the current cursor position. The character
previously located there moves one position to the right. All other characters
on the line to the right of the cursor move one position to the right. If the last
character on the line is not a blank, the Form Editor rejects any operation
that would cause that character to be lost by pushing it off the end of the line.
If any fields are moved on a line, the Form Editor automatically updates their
field descriptors in the form description to reflect the change in the field's
screen location.

Press the DELETE or (Q§h) key on the keyboard to delete the character to the
left of the cursor. If the cursor position is column 1 when this key is pressed,
the Form Editor rejects the operation and sounds the terminal bell.

If the Form Editor is in INSERT mode, DELETE moves the cursor and the
remaining characters on the line one character position to the left. A blank is
inserted at the end of the line.

2.6.5.3 Inserting Characters in the OVERSTRIKE Mode - In OVERSTRIKE
mode, the Form Editor replaces the character at the current cursor position
with the new character that is typed.

The FMS-11 Form Editor (FED) 2-13

Press the DELETE or@§;) key on the keyboard to delete the character to the
left of the cursor. If the cursor position is column 1 when this key is pressed,
the Form Editor rejects the operation and sounds the terminal bell.

If the Form Editor is in INSERT mode, DELETE moves the cursor and the
remaining characters on the line one character position to the left. A blank is
inserted at the end of the line.

If the Form Editor is in OVERSTRIKE mode, DELETE replaces the char­
acter to the left of the cursor with a blank and moves the cursor one position
to the left. If a field's position is changed, the corresponding descriptor is
updated. However, if a field's picture is modified, it is a new field and old
attributes are lost.

2.6.5.4 DELETE CHARACTER - Press the DEL(ete)CHAR(acter) key on the
keypad to delete the character at the current cursor position. If a field's
position is changed, the descriptor is updated. However, if a field's picture is
changed, it is, for all intents, a new field and the old attributes are lost.

If the Form Editor is in INSERT mode, DELCHAR deletes the character,
moves the remaining characters on the line one position to the left , and
inserts a blank at the end of the line. The cursor remains in its current
position.

If the Form Editor is in OVERSTRIKE mode, DELCHAR replaces the char­
acter on which the cursor is positioned with a blank and moves the cursor one
position to the right. This is equivalent to typing a blank while in OVER­
STRIKE mode. If the cursor is on the last character position on the line, the
Form Editor deletes the character, sounds the terminal bell, and leaves the
cursor in its current position. The Form Edit or updates the field descriptors
of fields affected by the change.

2.6.5.5 OPENLINE - Press the OPENLINE key to insert a blank line at the
current line and move all remaining lines down one line. The Form Editor
reassigns screen locations to affected fields on the form that already have field
descriptors. If the next to last line on the screen (the last line available for
your form) is not blank, the Form Editor rejects the OPENLINE operation,
sounds the terminal bell, and prints an error message.

2.6.5.6 ~ - Press the ~ combination to redisplay the current screen,
and restore the keypad to application mode. This command is useful when
there are power failures, static problems, or distortions.

2.6.5.7 ~ - Press the ©IBilli) combination to delete all characters between
the current cursor position and the beginning of the line. The cursor remains
at its current position.

2.6.5.8 DELEOL - Press the DELEOL (DELete End Of Line) key on the
keypad to delete all characters between the cursor location and the end of the
line, replacing them with blanks. The cursor remains at its current position.

2-14 The FMS-11 Form Editor (FED)

2.6.5.9 DELLINE - Press the DEL(ete) LINE key to delete the current line,
move all the lines below it up one line, and insert a blank line at the bottom.
The Form Editor updates the field descriptors of any affected fields. The
UNDELLINE operation allows you to recover the deleted line. The entire line
is deleted regardless of the cursor position in the line.

2.6.5.10 UNDELLINE - Press the UNDEL(ete) LINE key to restore the line
or line segment that you have just deleted. This operation saves you from
mistaken or accidental deletions. It also provides you with an easy way to
duplicate lines. For example, UNDELLINE can be used to create many iden­
tical lines in a scrolled area.

The effect of the UNDELLINE operation depends on how the original dele­
tion was performed.

If the deletion was performed by using a DELEOL or a tTRL/UJ, the Form Editor
places th e contents of the buffer containing the deleted characters at a posi­
tion starting at the current cursor location. If deleted by (CTRL/u), the characters
are placed to the left of the cursor location; if by DELEOL, they are placed to
the right of the cursor location. This restoration can be performed only if the
deleted characters will be replacing blanks. Field descriptors for the original
fields are restored only if the cursor remains at the location where the original
deletion was made.

If you made the deletion with DELLINE, the Form Editor performs an
OPENLINE operation at the current cursor position. It then places the de­
leted line on the screen in the blank line created by OPENLINE. The Form
Editor updates all old field descriptors for fields affected by the OPENLINE
operation when the field's position changes, but not the picture. The field
descriptors for the deleted line are restored only when UNDELLINE is per­
formed the first time and on the same line where the deletion was done.

2.6.5.11 REPEAT - If you press the GOLD key, type a number, and perform
an operation that you want to perform, the Form Editor repeats that opera­
tion the number of times that you have specified. After you type the first digit
of the number, the prompt REP.EAT: and the number appear on the screen.
The first command or key typed after the digits is repeated that number of
times. You can edit the number to increase or decrease the repetitions by
using the @ru and (CTRL/u) operations. @ru is not a repeatable function.

2.6.5.12 SELECT - Press the SELECT key to mark the current cursor posi­
tion as a reference point for video attribute assignment and CUT operations.
SELECT defines the first character of the select range. The end of the select
range is the final position to which you move the cursor. In other words, the
select range is defined as all character positions in the area delimited by the
SELECT position at one corner and the current cursor position at the other.
SELECT is used with the CUT, PASTE and VIDEO operations.

2.6.5.13 CUT - Pressing the CUT key saves all the characters contained in
the current select range (the area defined by the place where SELECT was

The FMS-11 Form Editor (FED) 2-15

pressed and the current cursor position). The sharacters are stored in a buffer,
and blanks replace the contents of the area in the screen image. If a SELECT
operation has not been performed, the Form Editor sounds the terminal bell
in response to an attempted CUT.

2.6.5.14 PASTE - The PASTE operation inserts the characters saved by
CUT into the same area relative to the current location of the cursor as
obtained when the original CUT operation occurred. The PASTE operation
checks that the inserted material does not cross boundary lines or any other
text or fields in the form. If boundary lines are crossed, the Form Editor
displays the error message "Cannot paste over margins or non-blanks or in
scrolled areas" and sounds the terminal bell.

The PASTE operation is allowed only if the target paste area consists entirely
of blanks. If the target paste area is not blank, the target area is painted in
reverse video, and a message is displayed on line 24. When this occurs, press
any key to remove the reverse video attribute, move the cursor to define a
proper target area, and continue the operation.

2.6.5.15 VIDEO - Press the I..' I DEO key to activate video attribute assign­
ment. The prompt VIDEO: appears on the terminal screen. Type any of the
following responses to activate the specified attribute within the select range.
Press the ENTER key after typing the response. The abbreviations are under­
lined:

Bold Displays all characters within the select range in bold face.

Blink Displays all characters within the select range in alter­
nately increasing and decreasing screen brightness.

Reverse Displays all characters within the select range on a reverse
screen background. If the screen is white-on-black, charac­
ters in reverse video appear in black-on-white; if the screen
is black-on-white, the characters appear in white-on­
black.

Underline Underlines all characters within the select range.

Clear Deactivates or clears all the currently active video attrib­
utes in the select range.

Edit This is not an attribute, but returns you to the normal
screen editing mode.

You must use the SELECT operation (see above) to delimit the characters
affected. The SELECT range includes both text and fields; it may cut a field
in the middle. A field cut in two by the SELECT operation becomes two
separate fields if the two parts of the field receive different video attributes.

You can assign video attributes in either TEXT or FIELD mode.

2-16 The FMS-11 Form Editor (FED)

Since you can use the CLEAR attribute to cancel the other video attributes,
you can easily experiment with the various attributes to achieve the best
effect. When you have the combination of attributes that you want to keep in
your form, end the video attribute assignment session by typing EDIT or
pressing the RETURN key.

Note that a character can have more than one video attribute. For example,
the character can appear on the operator's screen as both bold and blinking.
However, all characters in a field must have the same video attributes.

2.6.6 Scroll Operation

The effect of defining an area as scrolled is that the Form Driver can scroll
lines up and down in response to subroutine calls from your program (see
Chapter 7).

The scrolled area that the Form Editor and Form Driver work with is like a
"window" into a collection of data too large to appear on the screen at any one
time. Your task must store and manipulate any data that scrolls off the
screen. The Form Driver does not have the capacity to store such data.

Scrolling, in effect, allows you to create a form of unlimited length that can be
filled in by an operator as information becomes available. An inventory clerk
receiving lists of needed materials continuously during the day, or a bank
teller recording ongoing transactions, could use a scrolled area in a form
application.

Pressing the GOLD/SCROLL key sequence tells the Form Editor to define the
current line as scrolled. A scrolled area is a minimum of two lines.

The GOLD/NORMAL key sequence removes the scrolling attribute from a
line.

Once you have defined a line as scrolled, you can extend the scroll and create
a scrolled area by using the DELLINE and UNDELLINE operations. Delete
the scrolled line and then "undelete" or restore it as many times as you wish.
In this way, you can be sure that the lines of the scrolled area are identical.

The GOLD/SCROLL key sequence only defines the current line as scrolled.
The succeeding lines that are identical to the scrolled line are processed as
part of the scrolled area. The first line that differs in any detail from the
original scrolled line causes the Form Editor to terminate the scrolled area.

All lines in a scrolled area must have identical fields. A scrolled area should
not contain text except for field-marker characters. Once the text scrolls off
the screen, it is lost.

The Form Editor, during its field attribute assignment phase, asks you about
the fields on the first line of a scrolled area only. Fields on subsequent lines of
the scroll are considered to have the same attributes as the fields on the first
line. A form may have more than one scrolled area.

The FMS-11 Form Editor (FED) 2-17

2.6. 7 Field Pictures

A field is a set of contiguous field characters (picture-validation or field­
marker characters) terminated by a blank, a non-field character, an end-of­
line delimiter, or a change in video attributes. Picture-validation attributes
apply only to characters in fields. They tell the Form Driver whether the
operator may input a number, a letter, 'etc., in response to a given field.

The Form Editor recognizes the five picture-validation characters shown in
Table 2-2.

Table 2-2: FED Picture-Validation Characters

Character Type

c Alphanumeric .

A Alphabetic

9 Numeric

N Signed Numeric

x Any Character

2.6.7.1 For Alphanumeric Characters-C - The C in any character position
defines what is valid input in that position. The C character is a character
attribute, rather than a field attribute that allows the operator to input the
digits 0 through 9, the letters A through Z (either in upper or lower case)
and/or a space. Any other attempted input sounds the terminal bell and
causes an error message.

2.6.7.2 For Letters-A - The A in a character attribute position indicates to
the operator to input the letters A through Z (either in upper or lower case)
and a space.

2.6.7.3 For Unsigned Numbers-9 - The 9 in a character attribute position
indicates to the operator to input only the digits 0 through 9.

2.6.7.4 For Signed Numbers-N - The N in a character attribute position
allows the operator to input the digits 0 through 9, with only one decimal
point and with only one plus (+) sign or one minus (-) sign. Their positions
within the field are not checked by the Form Driver. Any other input is
rejected.

2.6.7.5 For Any Printable Characters-X - The X in a character attribute
position allows the operator to input any displayable character.

2.6.7.6 For Mixed Pictures - A single field may contain different picture­
validation characters. For example, a field constructed to accept both alpha­
betic and numeric characters specifically may look like this:

AAA888

2-18 The FMS-11 Form Editor (FED)

Such a field allows the operator to enter alphabetic characters in the first
three field character positions and digits in the last three field character
positions. The field is said to have a "mixed picture."

2.6.7.7 With Field-Marker Characters - For example, a field whose picture
looks like this

888•AA-98

contains two field-marker characters, the pound sign and the dash.

The Form Editor treats all field-marker characters - whether leading, trail­
ing, or embedded - as part of the field in which they occur.

A field that contains field-marker characters but only one picture-validation
character does not have a mixed picture. Two or more picture-validation
characters in a single field constitute a mixed picture.

A field may contain the ASCII characters from 41 to 57 octal and 72 to 100
octal as field-marker characters (Table 2-3). The Form Editor accepts field­
marker characters when in FIELD mode. The Form Driver does not return
field-marker characters to the calling task or include them in the length of the
field. Field-marker characters are transparent to the task, which does not pass
them to the Form Driver in the data to be displayed in a field.

Table 2-3: FED Field-Marker Characters

Character

$

%

&

*

+

2.6.8 Assigning Form-Wide Attributes

Character

I

<

>

?

@

The Form Editor collects form-wide attributes by displaying the question­
naire shown in Figure 2-2. The Form Editor automatically displays the Form-

The FMS-11 Form Editor (FED) 2-19

Wide Attributes questionnaire when you create a new form or when you type
FORM in response to the COMMAND: prompt. The questionnaire contains the
default conditions for each choice.

Figure 2-2: Form-Wide Attributes Questionnaire

Form Name
Help Form Name
Reverse Screen
Current Screen
Wide Screen
Startins Line
Endins Line

Impure Area
Form Size

(Y 1Nl N
(Y 1Nl N
<Y 1N) N
(1 123) 1
(1 123) 23

bYtes
~·o rds

Press the TAB key to move from one question to the next. When you have
completed the necessary input and want to exit, return to the COMMAND:
prompt by pressing the ENTER key.

The fields listed in the Form-Wide Attributes Questionnaire are:

2.6.8.1 Form Name - A response to this field is required. The name of the
form is used in the form library directory and by Form Driver calls.

A form is always saved in a file with the name: form.FRM. When inserted in a
library, the name of the form is always taken from the form itself. The form
name may not contain embedded blanks.

2.6.8.2 Help Form Name - This field contains the name of an associated
Help form. The field may be left blank.

2.6.8.3 Reverse Screen - If this field contains a Y, the form is displayed
black-on-white. If it contains an N, the display is white-on-black. The default
is N.

2.6.8.4 Current Screen - If this field contains a Y, the Form Driver displays
the form in the current screen mode. An 80-column form with a Y answer to
this field does not require a change if the current mode is set at 132 columns.

The current screen also applies to reverse screen. If current screen is specified,
the Form Driver does not change the screen background or the screen width,
unless the form is specified for 132 columns and the screen is currently 80
columns.

You cannot specify Y both to this option and to the wide screen option de­
scribed below. If the choice is N, the Form Driver resets the screen if necessary
to conform to the display mode for this form. The default value is N.

2.6.8.5 Wide Screen - If this field contains a Y, the form is displayed in 132-
column mode and the Current Screen option described above is set to N. If the

2-20 The FMS-11 Form Editor (FED)

field contains an N, the form is displayed in 80-column mode. The Form
Editor changes the terminal to the selected mode. The default is N.

2.6.8.6 Starting Line - This field contains a value from 1 to 23 inclusive,
indicating the first line of the screen to be cleared when the form is displayed.
If you specify a starting line number greater than the ending line number, the
Form Editor automatically replaces your entry with the default value of 1.

2.6.8.7 Ending Line - This field contains a value from 1 to 23 inclusive,
indicating the last line of the screen to be cleared when the form is displayed.
If the supplied value is less than the starting line number, the default value of
23 is used.

Starting and ending line number defines the area of the screen to be cleared
when the form is displayed using the FSHOW call (which doesn't automati­
cally clear the entire screen) or when the form is displayed as a help form.

2.6.8.8 Impure Area - This is a Display-Only field that indicates the size of
the impure area required when the form is displayed by the Form Driver. For
applications written in a high level language, the impure area provided must
be 64 bytes larger than specified by FED. When creating a new form, this field
is initially displayed as question marks.

2.6.8.9 Form Size - This is a Display-Only field that indicates the length of
the form. This value is used in calculating the media or memory storage
requirements for the form. When creating a new form, the field is initially
displayed as question marks until the Form Editor determines the correct
value.

2.6.9 Assigning Field Attributes

The Form Editor collects field attributes by displaying the questionnaire
shown in Figure 2-3. Each entry in the questionnaire designates a single
attribute for a field. If the form or field is a new one, the Form Editor supplies
default values in the questionnaire. If the attributes for the field were assigned
in a previous editing session, those values are displayed.

Figure 2-3: Field Attributes Questionnaire

Name
Default
Help

Risht Just <Y1N) N Clear Char (chrl Zero Fill <Y1Nl N

Auto Tab <Y1Nl N Resp Reqd <Y1Nl N Must Fill <Y1Nl N Fixed Dec <Y1Nl N
Indexed CN1H1Vl N DisP Only (Y1Nl N Echo Off (Y,Nl N SuPu Only <Y1Nl N

Enter the attribute assignment phase by typing ASSIGN and any of the
following options in response to the COMMAND: prompt.

ASSIGN NEW

ASSIGN ALL

Assign attributes only to new fields

Assign or edit all attributes - for all fields in
form

The FMS-11 Form Editor (FED) 2-21

ASSIGN FIELD fldname Assign or edit attributes for the field named
fldname

ASSIGN is used to assign field attributes after creating the form's screen
image. Any new fields placed in the form may have their field attributes
defined by using either ASSIGN or ASSIGN NEW. If you exit from the field
attribute assignment phase and then return to change any previously assigned
fields, you must use the ASSIGN ALL or ASSIGN FIELD commands.

Fields that have changed their locations as a result of the OPENLINE or
DELLINE operations, or as a result of character insertion or deletion on
another part of the line, are recognized as existing fields. Fields whose pic­
tures are modified must be redefined.

If you select ASSIGN NEW or ASSIGN ALL, you proceed to assign attributes
to the next field by pressing the ENTER key. To return to the C 0 MM AND :
prompt before you have finished all the fields, type the period (.) on the
keypad. (Remember that this results in assignment of default values to all
remaining fields in the form. The default value for a field name is 6 blanks.) If
you used ASSIGN FIELD, the Form Editor returns to the COMMAND: prompt
when you press ENTER for that field.

The Form Editor displays the field attribute questionnaire for each field on
the form. The TAB key moves the cursor from one field to the next within the
questionnaire. Pressing ENTER after going through the questionnaire for the
last field in a form causes the Form Editor to reissue the COMMAND: prompt.

NOTE

The assignment of invalid combinations of attributes to a field
results in an error message. To continue, you press the ENTER
key to redisplay the questionnaire for that field and correct the
attribute that caused the error message.

The following field attributes appear in the Field Attributes Questionnaire:

Name Contains the name by which the field is known and referred to
by your task. Unique field names are not required if a form is to
be accessed by the FGETAL call. However, if the application is
to access one field at a time, unique names should be assigned.
(If a form contains more than one field with the same name, the
Form Driver can access only the first one.) The default value for
a field name is 6 blanks.

Right Just If you type a Y, the field is right-justified. If you type an N, the
field is left-justified. A right-justified field may not contain a
mixed picture. The default is N.

Clear Char The character that you type in this field is displayed in place of
the fill character (either zero or blank for the field). For zero­
filled fields, it must be a zero. For blank filled fields, the clear
character may be any character; underline, period, and blank
are the most common choices. A blank is the default.

2-22 The FMS-11 Form Editor (FED)

Zero Fill

Default

If you type a Y, the field is filled with zeroes before the operator
enters any data in the field. If you type an N, blanks are stored
in the field. Note that the Clear Character attribute must be set
to zero if the field is zero-filled. The default is N. The fill char­
acter is also returned to the calling program in any positions the
terminal operator does not enter data in.

Specifies the initial value to be stored in the field when the form
is loaded by the Form Driver. If you do not respond, the field
contains either blanks or zeroes, depending on your response to
the Zero Fill attribute. Your answer to Default should be con­
sistent with the picture-validation type of the field. If a default
value is not specified, the internal representation of the field is
blank or zerofilled depending on the definition. The fill char­
acter is always displayed as the clear character. If a field has no
default value it is initially displayed with clear characters. The
default value may not be longer than the field.

NOTE

The Form Editor does not validate default data
values to be certain that they are legal and con­
form to the picture-validation type of the field.

Help Specifies a line of information associated with the field that the
user can read by pressing the HELP key. The help message
appears on the last line of the terminal screen. The default is
that no help message is displayed. If this field is left blank, the
Help form for the entire form is displayed if there is one. Other­
wise, the message "NO HELP AVAILABLE" is displayed.

Auto Tab Determines whether entering the last character in the field
causes the cursor to advance automatically to the next field.
Typing a Y specifies that Auto Tab is in effect. The default is N.

Resp Reqd At least one character that isn't the fill character must be en­
tered in the field. If you type a Y, the operator at the terminal
must respond to the field with some kind of input before contin­
uing. If you type an N, the operator does not have to respond to
the field. The Form Driver uses this attribute to validate the
operator's responses for fields. The default value is N.

Must Fill If data is entered in the field, it must be filled so that it does not
contain a single fill character. The field must be either empty or
full. The default value is N.

A field defined as must-fill but not response-required must be
filled by the operator only if he or she enters data in it. It may be
left empty.

Fixed Dec If you type a Y, the field is a fixed decimal field, provided that
the picture must be all 9s with an embedded decimal point.

The FMS-11 Form Editor (FED) 2-23

Signed numeric is not valid. If you type an N or if the numeric
picture-validation type is not in effect, the field is not fixed
decimal. The default value is N.

Indexed This attribute enables you to define identical fields, one below
the other, as indexed fields. Typing an N indicates that the field
is not indexed. An H indicates that the field is horizontally
indexed and that the cursor should proceed horizontally to the
next field on the same line in response to the TAB key (or Auto
Tab) if the next field is also horizontally indexed. Typing a V
indicates that the field is vertically indexed and that the cursor
should proceed vertically to the next field in the same column in
response to the TAB key (or Auto Tab). The default value is N.
The Indexed attribute is illegal for fields in scrolled areas.

Disp Only If you type a Y, only your application program may place data
in the field. If you type an N, both the terminal operator and
your task may enter data in the field. The default is N.

Echo Off If you type a Y, data in the field isn't displayed on the terminal
screen. If you type an N, the characters echo as in normal opera­
tion. The default is N.

Supv Only If you type a Y, the field is display-only unless the task has
turned off supervisor-only mode (by means of a Form Driver
call). If you type an N, the field is not display-only and may be
accessed by the terminal operator. The default value is N.

The attribute that defines a field as scrolled does not appear on this question­
naire. You can define all fields on a line as scrolled fields by pressing the
GOLD/SCROLL key sequence during the EDIT phase.

2.6.10 Assigning Named Data Attributes

Named data is any data that is to be associated with a form but not displayed
with it. Usually, named data contains information that the application uses to
control task flow in a form-dependent manner. The information may consist
of the names of other forms or task modules. Named data also might contain
field specific data. Your task accesses named data by means of calls to the
Form Driver.

The questionnaire that collects named data consists of the two horizontally­
indexed fields of 16 elements. When the questionnaire appears, it includes all
existing named data followed by blank named data fields.

Enter the named data phase by typing NAME in response to the
COMMAND: prompt. The Form Editor displays the Named Data question­
naire. When the questionnaire appears on the screen, the cursor is at the first
character position of the first field. Enter the name by which you want to
reference the data that you supply next. After you enter the name, press the
TAB key to move into the data field. Now enter or edit the named data itself.
If a name already exists, simply tab over to the data field. Exit from the
named data phase by pressing the ENTER key.

2-24 The FMS-11 Form Editor (FED)

The fields in the Named Data questionnaire (Figure 2-4) are:

NAME A 6-character field that receives the name of the data item. Form
Driver calls access a particular element of named data by using
either its name or its index number in the list of named data for a
form.

DATA A 60-character field that receives the data.

Figure 2-4: Named Data Questionnaire

Name Data

2. 7 A Step-by-Step Example of How to Use the Form Editor

This section presents an example of creating and modifying screen versions of
forms. The example demonstrates some of the most common Form Editor
commands, functions, and design processes. However, the example does not
cover all Form Editor features, and it is not a complete tutorial. Instead, the
purposes of this example are as follows:

• To illustrate how you can design a computerized version of a simple printed
form.

• To show you what the screen looks like while you are working with the Form
Editor.

• To introduce how the Form Editor uses the VTlOO special function keypad
to control editing functions.

• To introduce how the Form Editor uses the Form Driver and special ques­
tionnaires that collect information from you about the form that you are
designing.

The FMS-11 Form Editor (FED) 2-25

This example has three major stages. In the first stage, a printed form is
described. Assume that the form was originally designed for a card file of a
company's vendors. Before designing the computerized version of the form,
read the requirements of the fields in the form section (2.7.1.2).

In the second stage, you create the screen version of the form. Each step in
this stage starts with an instruction, and each step completes a part of the
exercise of designing the computerized version of the sample form. Read the
instruction, and then look at your screen while you follow the instruction.
Watch how the Form Editor responds. Finally, read the short explanation
that follows the instruction.

In the third stage, you modify one of the demonstration forms that you
received as part of your FMS software kit. Use the same procedure for the
steps in this stage as for the second stage.

You are encouraged to try using this example. You will be able to add the new
form that you create and the demonstration form that you modify to the
demonstration form library file DEMLIB.FLB. You can then demonstrate
how your new form works by running one of the demonstration programs that
are in your FMS software kit.

2. 7 .1 The Printed Form

The first steps in designing a screen version of the form are:

• Provide an overview or a rough draft of the new form.

• Describe the requirements for each field.

• Describe the layout of the form and any special video features that it is to
include.

• Sketch the screen form and include the maximum lengths of fields.

2.7.1.1 Overview of the New Form - The new form will have fields for all of
the information that the printed form can contain. This example assumes
that the new form will be used only to enter the vendor information that is
currently in a card file.

VENDOR is the name to be assigned to the form. For now the form will not
have a help form associated with it. It will use the 80-column screen width and
the full screen height (screen lines 1 through 23).

2.7.1.2 Requirements of the Fields in the Original Form - This section de­
scribes all of the requirements for the fields that are in the original form.

1. Vendor Number

Vendor numbers are in the following form:

B-67-0085

The first character can be any letter. Except for two hyphens as shown,

2-26 The FMS-11 Form Editor (FED)

the remammg characters must be digits. An operator must enter the
vendor number. Programs that use the form can then use the vendor
number to get other vendor information from a computer file and display
that information.

2. Vendor Name

Vendor names may be as long as 38 characters and may include any
printable character. When the name is first entered, it must be typed
exactly as it appears on the file card.

3. Address

The top line in the address shows the vendor's street address. The next
line shows the city and state. The bottom line shows foreign countries and
mail codes such as the ZIP code.

4. Contact

Contact names are the names of the people in the vendor companies who
are most informed about the sample company's business. Contact names
may be as long as 28 characters and may include any printable character.

5. Phone

The form needs to be designed only for one standard North American
telephone number in the following form:

(123) 555-4678

As shown, parentheses enclose a 3-digit area code. A 7-digit number has a
hyphen separating the exchange code from the line number. All input
characters must be numbers. The telephone number is not required infor­
mation, but if a telephone number is entered, all 10 digits must be en­
tered. The area code has the default value 111 because most vendors are in
that area, but there is no default value for the balance of the telephone
number.

6. Extension

The form needs to be designed for two telephone extension numbers. To
make the new form as flexible as the original printed form, the new form
will accept extension numbers up to seven digits, to cover the cases when
different vendor extensions are complete 7-digit telephone numbers. The
telephone extension is not required information. All input characters must
be numbers, but any number of characters is valid.

2. 7 .1.3 Layout and Video Features of the New Form - The layout of the new
form will follow the sketch that appears in Figure 2-5. With a screen width of
80 columns, there is ample room. Abbreviations are not necessary. The ex­
ample assumes that the vendor number is the most important piece of vendor
data, and therefore, the sketch shows it at the upper-left corner of the form.

The field will be in reverse video and underlined to show its importance.
Other fields will have the bold video attribute to make the values that opera-

The FMS-11 Form Editor (FED) 2-27

tors enter more visible. The title of the form, "Vendor Data," will also have
the bold video attribute. Field labels will be in standard video. (The bold
video attribute really doesn't look good in a form if it's used as much as
specified here.)

2.7.1.4 Sketch of the Form Named VENDOR - Figure 2-5 is a sketch of the
form that you will be creating in this example. Several other designs would be
equally effective. In many cases, the sketch that you use may be less detailed
than the one in Figure 2-5. Since you can easily change any design by using
the Form Editor, you need only enough detail in a sketch to show the number
of fields on each line and the rough alignment of fields. More detail appears in
Figure 2-5 in order to increase the reliability of this example.

Figure 2-5: Sketch of VENDOR

com PA t'V(rJA rrJ[.
l\ I I 0 lJ

VE.'-JOOf{_ ATA

U£ivooR rtJur11e£~: rJAmc...:
~-~-~-~--

Co fl.)TAC-T: ·--------

Prt a tv E..: (_) __ _
AJJ.,-Ess: ____ _

2.7.2 Creating the Screen Form

This section guides you from starting the Form Editor through each of the
other steps that you need to complete in order to create a screen version of the
form named VENDOR. Each step starts with an instruction. Read the in­
struction, and then look at your screen while you follow the instruction.
Watch how the Form Editor responds. Finally, if an explanation follows the
instruction, read it and then go on to the next step. Each explanation begins
with the symbol >>>.

The first time you work with this example, follow each instruction carefully.
Each step has been written to depend closely on the preceding step.

1. Log on to a system that includes the Form Editor. Check with your system
manager, if you are not sure whether or not the Form Editor is available
on your system.

2-28 The FMS-11 Form Editor (FED)

2. Set your VTlOO as follows:

• For the block cursor UO.
Use SET-UP MODE B.

• For the 80-column screen width.
In SET-UP MODE A (This is the default).

• For the standard video display (light characters on a dark background).
Use SET-UP MODE B (This is the default).

• For signalling with the terminal bell.
Use SET UP MODE B.

(The VT-100 User Guide has detailed directions.)

2. 7 .2.1 Starting the Form Editor - Step 3 -

3. Start the Form Editor by entering the appropriate command or sequence
of commands from the following list. The prompts that your system types
are in black. The responses that you should type are in red.

For RSX-11 and llM-PLUS Systems -

MCR >RUN $FED ID
FED>ICRIBD)

> > > Each set of commands starts the Form Editor on the corresponding
system. The commands also specify that you are developing a screen form.
The Form Editor responds by displaying the first questionnaire for a new
screen form, the Form-Wide Attributes questionnaire.

2.7.2.2 Assigning the Form Name - Steps 4 - 5 -

4. On the keyboard, type the name VENDOR. If you make a mistake, press
the DELETE key to erase incorrect characters and then complete the
form name correctly. Later steps depend on the fact that the name of the
new form is VENDOR. When the form name is correct, press the RE­
TURN key.

>>> Each character you type appears in the "Form Name" field. The
cursor advances through the field from left to right.

When a questionnaire is displayed, press the RETURN key to do the
following:

• Assign to each questionnaire whatever value you put into the field.

• Store the questionnaire information internally until you change it or
save the form description that you are creating.

• Erase the questionnaire from the screen and ask you for a Form Editor
command, in some cases.

• Continue a process by changing your display in some other way.

The FMS-11 Form Editor (FED) 2-29

With the Form-Wide Attributes questionnaire displayed, the RETURN
key always causes the Form Editor to erase the screen and ask you for a
Form Editor command by displaying the prompt COMMAND: on the last
line.

5. Type the command EDIT. Press the DELETE key to correct mistakes.
When you complete the command, use the ENTER function - press the
ENTER key on the keypad, or press the RETURN key.

> > > The ENTER or RETURN function keys cause the Form Editor to
execute the command that you have just typed. When the Form Editor
executes the EDIT command, it displays the screen form that you are
designing and shows you each detail of the form that you have specified so
far. In this case, your new form is entirely blank - 23 lines long, with 80
spaces in each line. The cursor appears in the upper left corner of the
screen on Line 1 and Column 1.

While you are editing a form, the Form Editor uses Line 24 to show you
information about the cursor's location and several Form Editor settings
that you can change while you are editing. At this point, the different
sections of Line 24 and their meanings are:

• CURSOR Tl<T NOR LIN 1 COL 1

The character that the cursor is on is a text character (T }{ T) and the line
is a normal line of a form (NOR), not a scrolled line. (Scrolling features
are explained later in this chapter.) The cursor's position is on Line 1
and Column 1.

• MODES T)<T Ol.JS ADl,J

The current settings of the editing modes are as follows (later steps
demonstrate the effects of the different modes):

- The text mode (T)-(T) for entering background text. You cannot use
the field mode until you have put in all the background text. The
field mode will allow you to assign attributes to each field label you
created in text mode.

- The overstrike mode (Ol,JS) for replacing the character that the
cursor is on with the character that you type.

- The advance mode (ADl,J) for advancing the cursor to the right and
downward when certain cursor movement functions are used.

NOTE

While using the Form Editor, you will be using the form editor
auxiliary keypad as well as the main keyboard to perform spe­
cific form editing functions. Refer to the Form Editor keypad
layout (Figure 2-1.)

2-30. The FMS-11 Form Editor (FED)

2.7.2.3 Creating the Background Text - Steps 6 - 20 -

6. Use the Downarrow function to move the cursor to Line 2. Press the
Downarrow key once.

> > > The Downarrow function moves the cursor straight down one line at
a time. The Form Editor reports the cursor's new position in Line 24.

7. With the cursor on Line 2 and Column 1, type the name of your company
or any other company name that you would like to use. Press the DE­
LETE key to correct mistakes.

8. Use the Leftarrow function to move the cursor back to Line 2 and Column
1. Press the Leftarrow key several times.

9. Use the INSERT function to set the Form Editor to the insert mode. Press
the 9 key on the keypad.

> > > The standard function of the 9 key on the keypad is the INSERT
function. The function sets the Form Editor to the insert mode. The
abbreviation I NS replaces Qt.JS in the modes section of Line 24. In the
insert mode, the Form Editor moves characters out of the way of inser­
tions rather than replacing the characters.

10. Move the company name to the right in Line 2 by inserting spaces at the
beginning of the line. Insert spaces until the company name is centered in
Line 2 on column 39 or 40. Hold the space bar down for each space that
you want to insert.

11. Use the BLINE function to move the cursor to Line 3 and Column 1. Press
the 0 key on the keypad.

The standard function of the 0 key on the keypad is BLINE. In the
advance mode, the BLINE function advances the cursor to the next line
and Column 1. In the backup mode, the BLINE function backs up the
cursor up to Column 1.

12. Use the following sequence of functions and keyboard keys to move the
cursor to Column 34.

Press the PFl key on the keypad, then type 33 on the keyboard, and
finally press the Rightarrow key.

GOLD 33 Rightarrow

> > > The only function on the PFl key is the GOLD function. When you
use the GOLD function before typing a number on the keyboard and then
use another Form Editor function, the Form Editor repeats the last func­
tion as many times as you have specified. In this case, the Form Editor
repeats the Rightarrow function 33 times and the cursor moves from
Column 1 to Column 34.

13. Type the title of the form, Vendor Data. Or type any other title that you
would like to use. With the cursor at Column 34, the title Vendor Data
will be centered.

The FMS-11 Form Editor (FED) 2-31

14. Move the cursor back to Line 2. Press the BACKUP key on the editor
keypad, then the BLINE key to get to Line 2. Then press the DELCHAR
key to remove spaces and to center the company name.

15. Move the cursor to Line 5 and Column 1. To do this, use the BLINE
function.

16. With the cursor on Line 5 and Column 1, type the field label for the
vendor number field, t; end or N UiTl be r:.

17. Use the Rightarrow function to move the cursor to Column 34. Press the
Rightarrow key and watch the column number in Line 24. You can also
press GOLD 18 Rightarrow. Then type the label for the vendor name
field, Na rr1 e : ,

18. Use the Downarrow and Leftarrow functions to move the cursor to Line 6
and Column 34, directly under the N of Name in Line 5. Then type the
label for the Vendor contact field, C o n t a c t : .

19. Use the Downarrow and Leftarrow functions again to move the cursor to
Line 7 and Column 34. Then type the label for the vendor telephone field,
Phone:

20. Use the Downarrow and Leftarrow functions again to move the cursor
down two lines to Line 9 and Column 34. Then type the label for the
vendor address fields, Ad d r e s s :

2. 7 .2.4 Creating the Fields - Steps 21 - 29 -

21. This and the following steps create the fields whose labels you have typed.
Use the BACKUP function to change the directional mode and the
BLINE function to move the cursor back to Line 5 and Column 1. Press
the 5 key on the keypad. Then the 0 key on the keypad several times until
the cursor is back on Line 5.

> > > The standard function of the 5 key on the keypad is the BACKUP
function. The BACKUP function sets the Form Editor to the backup
mode. The abbreviation BC K replaces AD t,J in the modes section of Line
24. In the backup mode, the BLINE function backs up the cursor directly
to Column 1.

22. Move the cursor to Line 5 and Column 15. Use the OVERSTRIKE func­
tion and the FIELD function to set the Form Editor to the overstrike and
field modes. Press the following sequences of keys:

• For the OVERSTRIKE function, the PFl key and then the 9 key on the
keypad.

• For the FIELD function, the PFl key and the 8 key on the keypad.

> > > The alternate function of each keypad key is the function whose
name is at the bottom of the key in the keypad diagram. The alternate
function of the 9 key on the keypad is the OVERSTRIKE function, and

2-32 The FMS-11 Form Editor (FED)

the alternate function of the 8 key on the keypad is the FIELD function.
To use an alternate function, use the GOLD function first and then press
the key that controls the function that you want to use.

The OVERSTRIKE function sets the Form Editor to the overstrike mode,
as described earlier.

The FIELD function sets the Form Editor to the field mode. To create a
field, the Form Editor must be in the field mode. In the field mode, you
can type only field picture characters and field format characters.

The full sets of field picture and field format characters are described later
in this chapter. In this example, you will need to use only the field charac­
ters that are listed in Table 2-4.

23. In this example, vendor numbers are in the following form:

B-67-0085

To create the field for the vendor number, type A - 9 9 -·· 9 9 9 9.

> > > A - 9 9 -· 9 9 g g specifies the characters that are valid for each column
in the field; they make up a field picture. The picture specifies that the
first character in the field must be a letter or a space and the other
characters must be digits. The hyphens separate parts of the field. For a
program that processes the field the hyphens will not be part of the field
value. Therefore, the program only uses seven characters, although nine
display.

24. Move the cursor to Line 5 and Column 43. Create the vendor name field
by inserting the letter X 37 times. The easiest way to do this accurately is
with the following sequence:

GOLD 37 X

Press the PFl key, type 37 on the keyboard, and press the X key.

> > > The GOLD function sequence for repeating functions also repeats
characters that you want to insert.

Any character may appear in a vendor name. Therefore, the form has to
allow any character.

25. Move the cursor to Line 6 and Column 43. Create the vendor contact field
by inserting the letter A 28 times. Use the following sequence:

GOLD ?8 A

> > > Assume that only spaces and letters can appear in the contact name.
Periods (.) after initials and abbreviations will not be copied from the card
file. If an operator types a period or other invalid character, the Form
Driver will refuse to accept the character and will signal the operator with
the following message:

Al... PHABET IC f~EC;lU I RED

The FMS-11 Form Editor (FED) 2-33

26. Move the cursor to Line 7 and Column 43 by pressing
GOLD l'.12 Rightarrow. Create the vendor phone field by typing
(888)888-8888.

>>> Assume that only the digits 0-9 can appear in a phone number.
When old phone numbers that include letters in the exchange code are
copied, the operator will convert the letters to the corresponding numbers.

27. Move the cursor to Line 9 and Column 43 by pressing the Do 1,.1 n a r r o 1,.1

key twice, and the <Leftarrow> until you see 43 in the Edit Status Display
field column on the bottom of the screen. Create the first vendor address
field by inserting the letter X 28 times.

>>>Assume that any character may appear in an address.

28. To experiment with duplicating a field without retyping it, move the
cursor back to the first X in the vendor address field. Then use the follow­
ing sequence of functions to erase the field picture and restore it to the
form description:

GOLD DELEOL GOLD UNDELLINE

Press the PFl key, the 2 key on the keypad, the PFl key again, and the
PF4 key.

> > > The alternate functions of the 2 and PF4 keys are DELEOL and
UNDELLINE. The DELEOL function erases the cursor's character and
the other characters between the cursor and the end of the line. The Form
Editor stores the erasure in an internal line buffer, in case you want to
restore the last line erasure that you make.

The UNDELLINE function restores the string that is in the line buffer to
the form description. Therefore, when you want to create several fields
with the same field picture, one easy method to use is to create one
picture, erase it, and then restore it in as many different positions as
needed.

29. Move the cursor to Lines 10, and 11. With the cursor in Column 43 in each
line, create one of the vendor address fields by using the
UNDELLINE function.

2.7.2.5 Assigning Field Attributes - Steps 30 - 40 -

30. In this step and the following steps, you will complete the Field Attributes
questionnaire for each field that you have created. To begin work with the
Field Attributes questionnaire, enter the ASSIGN command. Use the fol­
lowing sequence:

GOLD COMMAND ASSIGN ENTER (or RETURN)

> > > The alternate function of the 7 key on the keypad is the COMMAND
function. After the COMMAND function, the Form Editor erases Line 24
and displays the prompt Co 111111 and : . When the prompt appears, enter a
command by typing on the keyboard and use the ENTER function to
cause the Form Editor to execute the command.

2-34 The FMS-11 Form Editor (FED)

The ASSIGN command causes the Form Editor to display the Form At­
tributes questionnaire for each new field. A new field is a field for which no
field attributes have been assigned. In this case, all of the fields that you
have created are new. The first new field is the Vendor Number field. The
Form Editor displays the Form Attributes questionnaire so that you can
still see the field itself and then identifies the field by replacing each
picture character with an underline character (_). Within the Field At­
tributes questionnaire, the cursor is displayed in the first field of the
questionnaire.

Like the Form-Wide Attributes questionnaire, the Field Attributes ques­
tionnaire is also an FMS form that is displayed by the Form Driver. The
full set of fields in the Field Attributes questionnaire is explained later in
this chapter. For this example, the fields that you need to complete are
listed in Table 2-5.

31. For the Vendor Number field, type the field name NUMBER and press
the TAB key to move to the next field in the questionnaire. Press the
DELETE key to correct any typing errors.

> > > When the Form Driver is displaying a questionnaire, the Form Driver
displays each character as you type it. The TAB key signals that you are
finished with the Name field, although you can return to the field later
and change it. The Form Driver responds by moving the cursor to the next
field that you should complete. Table 2-6 lists the Form Driver editing
functions that you will need in this example. The full set of editing func­
tions is explained in Chapter 4.

32. Press the TAB key four times. With the cursor at the beginning of the
Help field, type a short, helpful message that describes how an operator is
to type a vendor number. For example:

Copy the 1..iendor nuiT'iber frDiri thE· old 1..iendor card.

Press the DELETE and LINEFEED keys to correct mistakes.

> > > Each time you press the TAB key, the cursor moves to the next field
in the questionnaire. For the Right Just, Clear Char, and Zero Fill fields,
the default field attributes are unchanged. Therefore, in your new form,
the Vendor Number field will have the following corresponding attributes:

• Not right justified.

• The space is the clear character. (It is better to assign a clear character
such as underline or if space is used assign the reverse video attribute so
the field is visible on the screen.)

• Not filled with zeroes.

The Default field in the questionnaire remains blank. Therefore, in your
new form, the Vendor Number field will not have a default value.

33. When you have typed the help message, move the cursor to the Resp Reqd
field. With the cursor in the Resp Reqd field, type Y for "yes".

The FMS-11 Form Editor (FED) 2-35

Table 2-4: Field Characters Required for the Example

Character Usage

Field-Picture Characters

9 For the positions in the vendor number and telephone number where a
number is the only valid character.

A For the first position in the vendor number, where a letter is the only valid
character.

X For the vendor name, contact name, and vendor address fields, where any
printable ASCII character is valid.

Field-Maker Character

Table 2-5:

Attribute

Default

Field name

Help

Must fill

Response
required

Table 2-6:

Function

BACKSPACE

DELETE

LINEFEED

RETURN

TAB

For enclosing the area code in the telephone number.

For enclosing the area code in the telephone number.

For separating the two parts of the telephone number.

Field Attributes Required for the Example

Usage

To specify the most common area code that occurs in vendor telephone
numbers.

To provide a unique identifier for each field.

To provide reminders to the operator about completing fields.

To require the operator to enter all of the characters in the vendor number
and telephone number.

To require the operator to enter the vendor number before finishing with
the form.

Form Driver Editing Functions Required in the Example

Usage

To backup from field to field in a questionnaire.

To erase a single character in a questionnaire response.

To erase an entire questionnaire response.

To signal that all responses are correct in a questionnaire.

To advance from field to field in a questionnaire.

2-36 The FMS-11 Form Editor (FED)

>>>In your new form, the Vendor Number is required information. By ·
typing Y, you assigned the response-required field attribute. The Form
Driver responds by automatically moving the cursor to the next
field - that is, as if you had pressed the TAB key.

34. With the cursor on the Must Fill field, type Y.

> > > In your new form, the operator response must fill the Vendor
Number field. By typing Y, you assigned the Must Fill attribute. The
Form Driver responds by automatically moving the cursor to the next
field.

35. Press the RETURN key.

> > > For the field attributes after the Must Fill field, the defaults are
correct for the Vendor Number field. The RETURN or ENTER key
signals that you are finished with the questionnaire. The Form Driver
responds by displaying a fresh image of the Field Attributes question­
naire. The Form Driver also identifies the next field in your new form,
the Vendor Name field, as the field to which you should now assign field
attributes. The cursor appears at the beginning of the Name field in the
questionnaire.

36. Type 1,JNAME as the field name. Move the cursor to the Help field with
the TAB key and type a HELP message such as the following:

Co P }' the '·'end or 's n ar11 e exact 1 }' as on the o 1 d 1.i end or
card.

> > > The other default attributes are correct for the Vendor Name field.
Therefore, press the RETURN key when you complete the HELP mes­
sage. The Form Driver identifies the next field in your new form, the
Contact field, as the field to which you should now assign field attrib­
utes.

37. Type CONT AC as the field name. If you want to specify a HELP mes­
sage for the Contact field, move the cursor to the Help field and type
the message. The other default attributes are correct for the
Contact field. Therefore, when the Name and Help fields are complete,
press the RETURN key.

38. Type the name PHONE for the next field. Move the cursor to the
Default field and type 111 as the default area code. Then move the
cursor to the Help field if you would like to assign a HELP message for
the Phone field. One example of a HELP message is:

The area code and a 7-disit nurr1ber are reciuired.

>>>For the new form, the default area code is 111, although the design
does not call for a default number. With 111 as the only printing char­
acters in the default value, the field will look like the following example
when the Form Driver displays your new form:

Phone: (111) ---

The FMS-11 Form Editor (FED) 2-37

39. Assign the Must Fill attribute to the Phone field. Advance the cursor to
the Must Fill field and type Y. The other default field. attributes are
correct for the Phone field. Therefore, press the RETURN key when you
have finished assigning the Must Fill attribute.

> > > Although the telephone number is not required input data, if the
operator types a number all 10 columns of the area code and number
must be complete. Therefore~ the Must Fill field attribute is assigned
but the Resp Reqd field attribute is not assigned. Since this field con­
tains data already (the default value), it is going to have to be filled
unless the default area code is deleted. The way Must Fill works is that
if a field contains any data, it must be filled - as is the case here.

40. For each of the Address fields in your new form, complete the following
procedure:

• Assign field names to each - for example, ADDRl, ADDR2, and
ADDR3.

• Assign a HELP message, if you would like to do so.

• For the other field attributes the defaults are correct. Press the RE­
TURN key when you finish assigning the field attributes for each
field.

When you press the RETURN key after assigning the field attributes
for the last Address field, you have finished assigning attributes to all
fields in your new form. The Form Editor will automatically return you
to the COMMAND: prompt.

2.7.2.6 Assigning Video Attributes - Steps 41 - 46 -

41. Assigning video attributes is part of the process of editing a form descrip­
tion. To illustrate the video attributes, the following steps guide you to
make the following assignments:

• Make the company name display in boldface.

• Make the Vendor Number field label and field picture display in reverse
video.

With the COMMAND: prompt displayed in Line 24, type ED IT.

> > > The Form Editor responds to the EDIT command by displaying your
new screen form.

42. To assign video attributes to character positions in a form, you must first
mark the positions by putting them in a select range. Then you assign to
the select range the combination of video attributes that you want.

Move the cursor to the first character of your company name. With the
cursor in that position, use the SELECT function. Press the period (.) on
the keypad.

> > > The Form Editor responds by adding information about your select
range to Line 24. When you are building a select range, the Form Editor

2-38 The FMS-11 Form Editor (FED)

shows the line and column number of the cursor's original position when
you used the SELECT function.

43. Advance the cursor to the blank that is at the end of your company name.
With the cursor in that position, use the VIDEO function. Press the 7 key
on the keypad.

> > > The Form Editor displays the 1.J IDE 0 : prompt on Line 24.

44. To assign the bold video attribute to the select range, respond to the
1.J I DED: attribute by typing BOLD and then press the ENTER key.

> > > The Form Editor immeddiately displays the select range in boldface
and again displays the t,i I DE 0 : prompt.

45. To finish assigning the video attributes, press the ENTER key without
specifying a video attribute. Then advance the cursor to the V of the
Vendor Number and begin to build a new select range by using the
SELECT function.

> > > The Form Editor updates the line and column numbers in the select
range report in Line 24.

46. Advance the cursor to the blank that follows the field picture
(A - 8 8 - 8 8 8 9) for the Vendor Number field, and use the VIDEO func­
tion. When the Form Editor displays the 1.i I DE 0 : prompt, type
REl.JERSE and press the ENTER key. To stop assigning graphic attrib­
utes, press the RETURN key again.

> > > The Form Editor responds by displaying the field label and picture in
reverse video.

2.7.2.7 Assigning Named Data - Steps 47 - 50 -

47. This example assumes that you want to experiment with your new form
by having the demonstration program display the form. To make that
possible, you must assign named data to your new form. The demonstra­
tion program is listed and explained in Appendix B. The named data label
that you need to assign is "NXTFRM" and the named data value to be
associated with that label is the string ".NONE." Press
GOLD COMMAND.

With the COMMAND: prompt displayed on Line 24, type the NAME com­
mand and press the ENTER key.

>>>The Form Editor responds by displaying the Named Data Question­
naire. The fields on the left in each line of named data are the fields for a
label that are from one to six characters long. On the right is the data
string that is from 0 to 66 characters long. The label is simply an identifier
by which a program can request (the Form Driver searches - not the
program) an associated data string. The cursor is at the beginning of the
first field in the questionnaire, the NAME field.

48. To enter the label, type NXTFRM. To enter the data value, press the
TAB key to move the cursor to the Data field and then type • ND NE •

The FMS-11 Form Editor (FED) 2-39

> > > As in the other questionnaires, the Form Driver is actually processing
the questionnaire and your responses.

49. The form does not require any other named data. Therefore, press the
RETURN key to get the COMMAND: prompt.

>>> When you press the RETURN key while working with the Named
Data questionnaire, the Form Editor displays the COMMAND: prompt.

50. You have now completed your new computerized version of the sample
form. To save the form description that you have created, use the SA VE
command. Complete the following sequence:

SAt..IE ENTER

> > > The Form Editor responds to the SA VE command by saving your
new form description in an output file and displaying messages like the
following:

?FED-Forrr1 beins saved

The Form Editor's prompt for a command line is also displayed.

2.7.2.8 Editing One of the Demonstration Forms - Steps 51 - 57 -

51. With the prompt displayed, you can continue to use the Form Editor to
work on another form description or you can stop the Form Editor. The
following steps assume that you want to have the demonstration program
display your new form. For the demonstration program to do that, you
must modify the named data for the First form that the demonstration
uses. The First form is a menu that is illustrated and explained in Ap­
pendix B. The form is named FIRST and is stored in the form library file
DEMLIB.FLB. You need to modify the form as follows:

• Add an alternative exercise to the list in the form by adding the fol­
lowing line of background text:

a Enter 1.iendor data

• Add a named data label and value to the other named data that are
already associated with the form. The label and value are:

5 1.'ENDOR

To edit the form named FIRST, respond to the FED prompt by typing the
following command:

FED>D

When the Form Editor responds with the prompt: For r11 n arr1 e?, type
FIRST and press the RETURN key.

> > > The Form Editor displays the screen image of the form named
FIRST and the COMMAND: prompt. The form has only one field, the
single character field following the word Do. The field picture character 9
specifies that only numeric responses are valid for the field. All other
characters in the form are background text.

2-40 The FMS-11 Form Editor (FED)

52. Type EDIT. Then advance the cursor to the E in the line that reads
4 Exit. With the cursor in that position, replace the word Exit with
Enter vendor data. Check the report in Line 24 that you are in the over­
strike mode, and type the new phrase.

> > > In the overstrike mode, each character that you type replaces the
character at the cursor's position.

53. To restore the choice of exiting from the demonstration program, you
must insert the Exit choice. Advance the cursor to the character position
directly below the 4 and type 5 Ex i t.

54. The demonstration program uses the named data that are associated with
the forms in DEMLIB.FLB to transfer control from form to form and to
exit. Therefore, you must now change the named data that are associated
with the form named FIRST so that:

• The response 5 stops the demonstration.

• The response 4 makes the demonstration display the form named
VENDOR and store vendor data in an output file.

To edit the named data associated with the form named FIRST, enter the
NAME command. Use the following sequence:

GOLD COMMAND NAME ENTER

>>>The Form Driver displays the Named Data Questionnaire which has
the data and labels that are associated with the form named FIRST. The
cursor is at the beginning of the Name field in the first line of the ques­
tionnaire.

55. Press the TAB key several times to advance the cursor to the label associ­
ated with , D(IT (4). Then, press the LINEFEED key to erase the 4, and
type 5 to enter the new label.

> > > When the Form Driver is displaying a questionnaire, press the
LINEFEED key to erase all of the characters in any field. The cursor must
be in the field that you want to erase, but it can be at any character
position in the field.

56. For programs that use named data labels to call for data, the named data
associated with a form can be in any order. Therefore, to associate the
response 4 with the form named VENDOR and the appropriate output file
for vendor data, you can add the new named data at the end of the
original data that is associated with the form. Do the following:

'.

• Press the TAB key until the cursor is in the first blank Name field of the
questionnaire.

• Type the label 4, and press the TAB key to advance the cursor to the
Data field.

• Type l,IENDDR, the name of the form that is to be displayed for the
response 4 to the form named FIRST. Press the TAB key to advance the
cursor to the next blank Name field.

The FMS-11 Form Editor (FED) 2-41

• Type 4 F, a special label that the demonstration program will create, as
explained in Appendix B. Press the TAB key to advance the cursor to
the Data field.

• Type SY : 1; END 0 R • DAT, or another file name that you want the dem-
onstration program to use for vendor data.

• To finish the named data editing, press the RETURN key.

>>> When you press the RETURN key while working with the Named
Data questionnaire, the Form Editor displays the COMMAND: prompt.

57. To s a 1.1 e the edited version of the form named FIRST, use the SAVE
command. Type SA VE and press the ENTER key. The Form Editor saves
a form description file named FIRST.FRM and displays a message similar
to the one illustrated in Step 50.

2.7.2.9 Storing the New Forms In a Form Library File - Steps 58 - 59 -

58. The preceding step is the last one in this example that deals with the
Form Driver and Form Editor. However, if you want to experiment with
your new form and the edited version of the form named FIRST, you must
add the form descriptions to the form library file DEMLIB.FLB. The
FMS component that manipulates form descriptions and form library files
is the Form Utility (FUT). The Form Utility is described in Chapter 3.
The following steps provide the instructions that you need for the forms
that you have just edited.

With the Form Editor prompt displayed, stop the Form Editor by typing
(CTRL/z). When the system prompt is displayed, start the Form Utility by
using one of the following commands or sequences:

• For RSX-11M and llM-PLUS

MCR >RUN $FUT IBIT)

or

FUT IB0

59. With the Form Utility prompt (FUT>) displayed, type the following Form
Utility command line:

DEM LIB, FLB= DEM LIB, FL.B tF IRST, FRM t t.)ENDDR, FRM/ RP ITT

>>> The Form Utility produces a new version of the form library file
DEMLIB.FLB. Because the command line causes the new version of the
form named FIRST to replace the original version, the Form Utility re­
ports the full file specification of the replacement. The report is a message
that looks like the following:

DPO: [220 110JFIRST .FRM ;2 For111 Na111e =FIRST
For111 replaced

2-42 The FMS-11 Form Editor (FED)

Therefore, the new version of the form library file DEMLIB.FLB contains
your edited copy of the form named FIRST and the new form description
that you created for the sample vendor data form. You can use this version
of DEMLIB.FLB instead of the distributed version when you run the
demonstration program.

The FMS-11 Form Editor (FED) 2-43

Chapter 3
The FMS-11 Form Utility (FUT)

The Form Utility is the only program that creates and modifies FMS-11 form
libraries. Only the Form Utility should be used when you want to examine
FMS library files.

The Form Utility program provides the following services:

1. Extracts and deletes form descriptions from form libraries.

2. Combines form descriptions and form libraries into large form libraries.

3. Converts form descriptions to MACR0-11 object format for applications
that use memory resident forms.

4. Produces printable data descriptions in COBOL format and listing files
for form library directories and form descriptions.

5. Creates form libraries from form files.

3.1 Starting and Stopping the Form Utility

You can run the Form Utility in two ways:

1. By calling the Form Utility directly with the task name FUT, if the Form
Utility has been installed as a system utility.

2. By using the MCR command RUN.

3.1.1 Starting the Form Utility Directly with the Task Name FUT

With the Form Utility installed in your system, you can call the Form Utility
directly by typing the task name. The two general formats of the call are:

1. FUT file-specification-string[/options] rsffJ

2. FUT(filf)

In the first format, the types of the files in the file specification string and the
options that you add to the string specify a Form Utility process. The Form
Utility starts immediately and generally returns to the MCR >prompt when it
finishes the process.

In the second format, the Form Utility first displays the prompt FUT>. When
you respond to the prompt by typing a file specification string and options,

3-1

the Form Utility starts the process you have specified and generally returns to
the FUT> prompt when finished.

The different forms of the file specification string and the options that the
Form Utility accepts are described in later sections of this chapter.

3.1.2 Using the MCR RUN Command

You can also start the Form Utility by using the MCR RUN command. The
command and its options are described in the RSX-llM/M-PLUS MCR
Operations Manual. With the Form Utility in the system account, the general
form of the command is:

RUN $FUT [/options] ffi)

The Form Utility starts by displaying the FUT> prompt. Later sections de­
scribe how to respond to the prompt.

3.1.3 Stopping the Form Utility

The Form Utility stops in two ways. The way it stops depends on how you
start the Form Utility. The two general cases are as follows:

1. When you start the Form Utility with the direct call FUT and include a
Form Utility command line. In this case the Form Utility exits after
completing the process you have specified and the system displays the
MCR > prompt.

2. When you start the Form Utility with the RUN command or with the
direct call FUT without a command line. In this case the Form Utility
remains active after completing a process and displays the prompt FUT>.
You can then enter a new file specification string or type ©TRL!z) to exit.

3.2 Form Utility Defaults

Table 3-1 summarizes the command default values for the Form Utility.

Table 3-1: Default Values

Item Default

Input & output The LOGON UIC or the UIC specified in the latest SET /UIC command.
UIC

Input & output The volume installed in the default device SY:.
volume

Input file The input file name must be specified. The default input file type is
name & type .FLB.

(continued on next page)

3-2 The FMS-11 Form Utility (FUT)

Table 3-1 (Cont.): Default Values

Item

Output file
name & type

Input file
version

Output file
version

Option

Spooling &
Block-Align­
ment

3.3 Form Utility Errors

Default

With the /FF option, no output file name or type can be specified. The
form name becomes the file name and the file type is .FRM. With the
/FD option, the form name is the default output file name. With the /LI
option, the input form library file name is the default output file name.
With the /CC option the output extension is .LIB. With other options,
the output file name must be specified and the default file types are:

.FLB for any output form library file .

. FMD for printable form descriptions .

. LIB for COBOL data descriptions .

. LST for form library file directories .

. OBJ for MACR0-11 object module memory resident forms

The latest version of the input file that is on the input volume.

Version 1 for an entirely new file. Otherwise, the Form Utility assigns a
version number that is one plus the version number of the latest version
that is on the output volume.

The default option is /FD, to produce a printable version of a form de­
scription.

The /-SP and /BA options are the defaults for spooling and block-align­
ment of form descriptions. The default is to block align the form library.

When an error occurs, the Form Utility displays a message and transfers
control in one of the three following ways:

1. When recovery is impossible, control transfers to your operating system.

2. When recoverable errors occur in processing form descriptions or files,
control transfers to the FUT> prompt.

3. When file specifications and options control transfers to the FUT>
prompt.

Appendix C lists Form Utility messages and explains how to look messages
up.

3.4 Prompts for Form Library File Processes

The following six options allow you to select individual forms from form
library files and process them in different ways:

1. /CC to produce a COBOL data description structure.

2. /DE to delete form descriptions from form library files.

The FMS-11 Form Utility (FUT) 3-3

3. /EX to select specific form descriptions from one form library file and
store them in a new form library file.

4. /FD, the default option, to produce a printable form description.

5. /FF to select a form description from a form library file and store it in a
form description file.

6. /OB to convert form descriptions to object format for memory resident
purposes.

For each of the six options, the Form Utility prompts you for a form name.
The general format of the prompt is the full file specification of the form
library file followed by the prompt F o r r11 n a.Me';) For example, with DMO:,
(30,10], and .FLB as the default input volume, UIC, and form library file type,
and with version 6 as the latest version of the form library file DEMLIB, the
Form Utility would prompt you as follows:

MCR>FUT DESCR,FMD=DEMLIB/FDlBTIJ
DM0:[30t10JDEMLIB.FLB;G Form name?

You can respond to the F o r rt1 n am e? : prompt by typing:

1. A valid form name and pressing the Return key.

The Form Utility processes only the form description for the form name
that you type. It then requests another form name.

2. An asterisk (*) and pressing the Return key.

The Form Utility processes all form descriptions that the form library file
contains.

NOTE

Responding with the asterisk is not valid when you have speci­
fied the /FF option.

3. The Return key only.

The Form Utility begins processing the next input file that you have
specified, if there is another input file, or stops.

3.5 Form Utility Command Options

This section describes each of the Form Utility command options. The de­
scriptions are arranged in three groups, as follows:

1. Options for control and HELP.

The /ID option to display the Form Utility identification.
The /HE option to display the Form Utility HELP file.

3-4 The FMS-11 Form Utility (FUT)

The /SP and /-SP options to control spooling of the files to the line
printer.
The /LI option to list the names of forms in form library files.

2. Options for creating form library files.

The /BA and /-BA options to control form description block alignment.
The /CR option to create a form library file by combining files.
The /DE option to delete form descriptions from files.
The /EX option to extract form descriptions from files.
The /RP option to update form descriptions in files.

3. Options for processing and converting form descriptions.

The /CC option to create COBOL data declarations for form descriptions.
The /FD option to create a listing of a form description.
The /FF option to create a form description file from a form in a library
file.
The /OB option to create MACR0-11 object modules of form descriptions
for memory resident forms.

3.5.1 Options for Control and HELP

3.5.1.1 The /ID Option: Dlsplaylng the Form Utlllty Identification - Use the /ID
option by itself in the command line to make the Form Utility display its
identification. The identification includes the Form Utility's task name
(FUT), version number, and patch level.

The following examples illustrate how the Form Utility responds to the /ID
option.

MCR>FUT /IDffi)
FUT vo1.oo
MCR>

MCR>RUN $FUTml
FUT> I IDOO)
FUT vo1.oo
FUT>

3.5.1.2 The /HE Option: Using Form Utlllty HELP Fiie - Use the /HE option by
itself in the command line to have the Form Utility display a short summary
of the Form Utility command line forms, as well as a list of the command line
options and their meanings.

Figure 3-1 shows how to use the /HE option and includes a copy of the Form
Utility help display. Later sections in this chapter present the full details
about the other options.

The FMS-11 Form Utility (FUT) 3-5

Figure 3-1: The /HE Option and the Help Display

MCR >FUT@rn
FUT>/HE@rn

Cotrlf11and line:

OUtPUt-file

0Ptions:

HELP FOR FRMUTL vo1.oo

inPut-file1 ... dnPut file/oPtion

/ID Print identification on terminal
/HE Print this help text on t~rMinal

/FD Write form descriPtion Cdefaultl
/LI Write library directory listinf
/06 Write obJect module of forms
/CR Create library from libraries and forms
/RP Replace forms in library
/DE Delete forms from library
/EX Extract forms to build library
/CC Create COBOL form d•scriPtion
/FF Create a form file from a library form
/-BA Do not blocK alifn forms in library
/SP SPool listinf output to line Printer

FUT>

3.5.1.3 The /SP and /-SP Options: Requesting Line Printer Listings - Use the
/SP option with one of the following options to direct the Form Utility output
to the default line printer on your system:

• With the /LI option, for form library file directories.

• With the /FD option, for printed descriptions of forms.

• With the /CC option, for COBOL data descriptions of forms.

When you use the /SP option, the Form Utility creates the output file and
spools the file to your line printer after you specify either the form name or
indicate with an asterisk you want all the forms listed.

Use the /-SP option with the same options to explicitly prohibit line printer
listings. The default option is /-SP.

If no output file is specified in the /SP option, then the default output device
is the terminal, not the line printer.

3.5.1.4 The /LI Option: Listing Directories of Form Library Flies - Use the /LI
option to create a printable file that lists the names of the forms that are in
form library files. The output file includes the following information:

1. The Form Utility identification and the current date.

2. The full file specification for the form library file.

3. The date the form library file was last updated.

3-6 The FMS-11 Form Utility (FUT)

4. The size of the directory within the form library file.

This directory size is larger than one block only when the file contains an
unusually large number of forms. To use a form library file whose direc­
tory is larger than one block in an FMS application, you will need to
configure the Form Driver for the larger directory.

5. For each form description in the form library file:

• The form name (as assigned by using the Form Editor).

• The date the form description was last edited with the Form Editor.

• The size of the impure area that the form requires in an application.

The following example illustrates the /LI option and the format of the output
file that the Form Utility produces. Because the command line also includes
the /SP option, the Form Utility spools the output file to the line printer after
creating the file.

FUT I.JO 1, 00
4-·· ...JA~~ --t30

Library DMO:C30110JDEMLIB.FLB;1 created: 4-DEC-78
Directory is 1 blocks lons

Form Date Impure Area (bytes)

FIRST
CUSTPR
LAST
EMPLOY
PARTS
CUSTO

4-DEC-79
4-DEC--79
tJ--DEC--79
4--DEC--79
4-DEC-79
4-DEC--79

389
328
2·75
812
794
812

3.5.2 Options for Creating Form Library Files

3.5.2.1 The /BA and /-BA Options: Using Block-Aligned Form Descriptions -
Use the /BA option with one of the following options to explicitly align each
form description from the beginning of a block on the output mass storage
volume (/BA is the default option):

•With the /CR option.

•With the !DE option.

•With the /EX option.

•With the /RP option.

The input form library files can be aligned or unaligned.

Block aligned form libraries may result in faster access times for an applica­
tion. Block-aligned form descriptions require larger form library files than

The FMS-11 Form Utility (FUT) 3-7

non-block-aligned form descriptions. The maximum increase in form library
fiie size is 1 block for each form description.

In practice, block-aligned form library files are usually used unless space is
severely limited. For example, if you are packaging an FMS-11 application
with its form library files on RXOl diskettes or other media with small ca­
pacity, you may want to use non-block-aligned form libraries.

Use the /-BA option with the same options to prohibit block-aligned form
descriptions.

Section 3.5.2.2 includes an example of the /BA option.

3.5.2.2 The /CR Option: Combining Form Library Flies and Description Files -
Use the /CR option to combine all input form descriptions in one form library
file. The option has no effect on any of the input files. If the Form Utility finds
a form name more than once in the input files that you specify, the following
message is displayed:

FUT - Illesal rePlacement of form1 use /RP

The following example illustrates the /CR option. Because the /BA option is
also used, the form descriptions in the output file will be block aligned.

MCR>FUT DEPT52.FLB/CR/BA=PRDJ011EC012.FRM;5,PROJ23IBrn

When the Form Utility completes the command, the form library file
DEPT54.FLB contains the following form descriptions:

• All form descriptions in the latest version of the form library file
PROJOl.FLB.

• The single form description in the form description file EC012.FRM;5.

• All form descriptions in the latest version of the form library file
PROJ23.FLB.

3.5.2.3 The /DE Option: Deleting Form Descriptions from Form Library Files -
The /DE option lets you delete some form descriptions from form library files
and combines the remaining form descriptions into a new form library file.

The Form Utility does not change any of the input files. For each input file
that is a form library file, the Form Utility displays the full file specification
and prompts you for the names of the forms you want to exclude from the
output file.

NOTE

The Form Utility accepts form description files as input files
with the /DE option. However, none of the form description
files will be combined in the output file. In effect, form descrip­
tion files are ignored in this case.

3-8 The FMS-11 Form Utility (FUT)

The following example illustrates the /DE option and responses that exclude
two forms from each of the input form library files:

MCR>FUTm
FUT> FILM GD IDE= SLIDE , FL B ill , M 0 I.JI E , FL B ; GIRE]
DM0:[30110JSLIDE.FLB;a Form name?FIRSTlRU)
DM0:[30110JSLIDE.FLBi4 Form name?SECONDlBb)
DM0:[30t10JSLIDE.FLBi4 Form na~ie?m
DMO:C30110JMOVIE.FLBi8 Form name?THIRD(il~

DM0:[30110JMm1IE.FLBi8 Form na1t1e?FDURTH(BIT)
DM0:[30110JMOVIE1FLBi8 Form name?ll\U)
FUT>

When the Form Utility finishes, the form library file FILMGD.FLB;l contains
the following:

• All of the form descriptions that are in SLIDE.FLB;4 except for the forms
named FIRST and SECOND.

• All of the form descriptions that are in MOVIE.FLB;6 except for the forms
named THIRD and FOURTH.

3.5.2.4 The /EX Option: Extracting a Form Library File - Use the /EX option to
extract some form descriptions from form library files and combine them in a
new form library file. When you include an input file that is a form descrip­
tion file, the Form Utility also adds the form description to the output file.

The Form Utility does not change any of the input files. For each input file
that is a form library file, the Form Utility displays the full file specification
and prompts you for the names of the forms you want to extract.

The following example illustrates the /EX option and responses to extract two
form descriptions from each input form library file:

MCR >FUT PICH LP IE)\= SL IDE , FL B it~ , 0 U 5 H l... i'' , F i'I M , M 01,1 i E , FL B ; G rREtl
DM0:[30110JSLIDE.FLB;a Form name?(1(1 1HLP®ill
DM0:[30110JSLIDE.FLB;a Form name?002HLPffi)
DM0:[30t10JSLIDE.FLB;a Form name?(BQJ
DM0:[30110JMOVIE.FLBi8 Form name?(l03HLPffi)
DM0:[30110JMOVIE.FLBi8 Form name?004HLPffi)
DM0:[30110JMOVIE.FLBi8 Form name?(HU)
MCR>

When the Form Utility finishes, the form library file PICHLP.FLB;l contains
the form descriptions for the forms named OOlHLP, 002HLP, 003HLP,
004HLP, and 005HLP.

3.5.2.5 The /RP Option: Updating Form Descriptions In Form Library Flies -
You can use the /RP option to:

1. Replace a form description that is in a form library file with a new version
that is in a form description file.

2. Create a form library file that contains all of the different forms (by form
name) that are in several form library files.

The FMS-11 Form Utility (FUT) 3-9

The Form Utility can process the /RP option if each form that is stored in a
form library file has a unique name. The Form Utility processes the input files
one at a time from left to right. For input form descriptions with unique form
names, the output form library file includes each one. For input form descrip­
tions with the same form names, the output form library file includes only the
last one processed. Therefore, the final contents of the output form library file
in some cases depend on the order you use when typing the input file specifi­
cations.

Figure ~-2 illustrates how the final contents of a form library file are different
for two Form Utility commands. In the first case, the last version of the form
named TEST02 that the Form Utility processes is in the input file TIN.FRM,
and the output form library file includes only that version of TEST02. In the
second case, the last version of TEST02 that the Form Utility processes is in
the input file T .FLB, and the output form library file includes only that
version.

Figure 3-2: The /RP Option: Effects of Input File Order on Output File
Contents

>FUT TOUT!,FLB=T,FLB·TIN,FRM/RP

1
Output Form
Library File
TOUT1.FLB

TEST01

TEST03

:FUT TOUT2.FLB=T!N.FRM,T.FLB/Rf'

1
Output Form
Library File
TOUT2.FLB

TEST01

TE8T02
(arlglnol)

TEST03

3.5.3 Options for Processing and Converting Form Descriptions

3.5.3.1 The /FF Option: Creating Form Description Flies from Form Library Files
- Use the /FF option to extract a form description from a form library file
and store the description in a form description file. With this option, you may
not specify an output file name and you may not extract more than one form
description at a time. To create a form description file from a form library file,
use the general form:

form-library-file-spec IF F (flflJ

The Form Utility displays the full form library file specification and prompts
you for the name of the form that you want to extract. The Form Utility then

3-10 The FMS-11 Form Utility (FUT)

uses the form name that you specify as an output file name, adding the file
type .FRM.

In the following example, the /FF option extracts a form description from the
input form library file DMO:FRMLIB.FLB;5 in the account (100,30]. The
Form Utility creates the form description file named HELPl.FRM.

>FUTffi]
FUT>:SY: FRMLI B, FLB; 5/FFffi]
DM0:[100130JFRMLIB.FLBi5 Forni na1t1e? HELPlffi]
FUT>

3.5.3.2 The /OB Option: Creating MACR0-11 Object Modules for Forms - Use
the /OB option to convert form descriptions to MACR0-11 object format. You
can then task build the object files with your FMS application to add memory
resident forms to the application.

The Form Utility processes the input files in the order that you type the file
specifications. For each input form library file, the Form Utility prompts you
for the names of the forms you want to convert. Conversion is automatic for
each input form description file.

For each form that you specify, the Form Utility creates an object module
with the following two program sections PSECTs:

1. $FIDX$

Contains the name of the form and a pointer to the beginning of the form's
data structure.

2. $FORM$

Contains the form description, including display attributes, default field
values, named data, and field help.

The format used by the Form Utility for the object module is the same as for
the following MACR0-11 module:

• TITLE frr1inar11
.!DENT /1,JC)l.00/
.PSECT $FID>($ tD 1GBL
+RAD50 If r rrin arri/

.WORD FSTR

.PSECT $FORM$1D
FSTR:

+END

iTitle of the module
iForm UtilitY version number
ilndex that the Form Driuer uses
ito find the data structure for
ia form that is called bY name
iPointer to the belinnina of the
iform data structure

;Form data structure PSECT
; F o rr11

data
structure

When you specify more than one form name, the Form Utility converts each
form description and produces a concatenated object module of all the forms.
The following example illustrates the /OB option and responses to convert one

The FMS-11 Form Utility (FUT) 3-11

form description from the form library file DM0:[30,10JBILL.FLB and the
form description file DM0:[30,10JBILHLP.FRM to object format:

>FUT 5ILFRM.OBJ=DM0:[30110JBILL.FL5;DMO:BILHLP.FRM/05(8IT)
DM0:[30t10JBILL+FL5iG For1T1 nafTle? STARTUP(8IT)
DM0:[30t10JBILL.FL5iG Forrn narne? (8IT)
MCR>

The TKB command file order is important:

HLLCBL1FDVLRM/LB:FDVDAT1BILFRM.OBJ1FDVLRM/LB

The Form Driver data module (FDVDAT) must come before any memory­
resident forms to be included in the task.

3.5.3.3 The /CC Option: Producing COBOL Data Declarations for Forms - Use
the /CC option to produce an ASCII file that contains the data declaration
statements that COBOL applications require for forms. You can then use the
COBOL COPY statement in the data division of your COBOL program to
refer to the files that contain the data declaration statements. Or you can use
a text editor to add the data declaration statement file to your COBOL data
division.

For each form that you specify, the Form Utility produces a three-level
COBOL structure in the Terminal Format as illustrated in Figure 3-3:
COBOL also supports the Conventional (ANS) Format. You can use the
COBOL REFORMAT utility to convert the Form Utility's data declaration
structure to the Conventional Format. Refer to the COBOL-11 User's Guide
for a description of the REFORMAT utility and to the COBOL-11 Language
Reference Manual for a description of the Terminal and Conventional For­
mats.

Figure 3-3 shows a simple three-field form named PARTS and the COBOL
data declaration structure that the Form Utility produces for the form. As­
sume that the field names PARTNO, DESCRP, and SUPPLR were assigned
by using the Form Editor and that the "Suppliers" field has been designed as
a vertically indexed field.

Figure 3-3: The /CC Option: Illustration of the COBOL Data
Description

* COBOL ForfTl Library Structure
* This structure contains three tYPes of data itefTls:
* For111 Na111e1 Prefixed i...•ith "FORM-"
* NafTled1 Prefixed with "N-", and
* Data1 Prefixed 1,1ith "D-"+
01 FORM-PARTS-DEF.

03 FORM-PARTS PIC }((8) l,JALUE "PARTS II

03 N-PARTS-PARTNO PIC X(G) VALUE "PARTNO",
03 D-PARTS-PARTNO PIC X(9),
03 N-PARTS-DESCRP PIC X(G) VALUE "DESCRP",
03 D-PARTS-DESCRP PIC XC28),
03 N-PARTS-SUPPLR PIC XCG) lJALUE "SUPPLR",
03 D-PARTS-SUPPLR PIC XC25) OCCURS 3 TIMES.

3-12 The FMS-11 Form Utility (FUT)

The following example illustrates the /CC option and responses to produce
concatenated COBOL data descriptions for the form that is in the form de­
scription file DM0:[30,10JHELP04.FRM;2 and all forms in the form library
file DM0:[30,10JFRMLIB.FLB;l.

MCR>FUT
D. LI B=DMO: [30, 10 JHELPOt'.1. FRM; 2 tDMO: [30, 10 J FRMLI B. FLB; 1 /CC~
DM0:[30dOJFRMLIB.FLBi1 For1rt na1rte? *~
MCR>

NOTE

1. If the same name is used for more than one field in a form, the COBOL
compiler will flag one of the fields as an error.

2. A COBOL data declaration cannot be created for a form description that
contains blank field names.

3.5.3.4 The /FD Option: Producing Form Descriptions for Printed Listings -
Use the /FD option to produce an ASCII file that describes all of the features
of a form. You can print the file that the Form Utility produces or display it
on your video terminal.

The printable description produced by the Form Utility is arranged in the
following five major sections:

1. The form description header

This section lists all form-wide information. For example, the section lists
the form name, the associated HELP form name, and the impure area size
that the form requires.

In unusual cases, the Form Utility may also detect a problem with a form
that the Form Editor did not detect. In such a case, the Form Utility
prints a brief summary of each possible problem in this section.

2. The image map

This section shows all of the constant text in the form and the default
value that has been assigned to each field. When no default has been
assigned, the image map shows the clear character that has been assigned.

3. The video attributes map

This section shows the video attributes of all constant text and fields in
the form.

4. The field descriptions

For each field in the form, this section lists the field name, length, posi­
tion, picture, clear character, and other assigned features.

The FMS-11 Form Utility (FUT) 3-13

5. The named data map

This section includes a full list of the names, associated data, and order of
the named data that have been assigned to the form.

The following example illustrates the /FD option and responses to produce
printable descriptions for one form from each of two form library files:

MCR>RUN $FUTffi)
FUT>FD.TXT=DM0:[30110JAM.FLBffi)
DM0:[30dOJAM.FLBi1 Form na111e? CHILAffi)
DM0:[30dOJAM.FLBi1 Forhl na111e? ffi)
DM0:[30.10JAM.HLPi1 For111 na111e? CHI001ffi)
DM0:[30dOJAM.HLPi1 For111 na111e? ffi)
FUT>

The following sections describe each section of the output file that the Form
Utility creates when you use the /FD option.

3.5.3.5 The /FD Option: The Form Description Header - Figure 3-4 shows an
example of the form description header in a printable form description.

Figure 3-4: The /FD Option: The Form Description Header

Form na1ne:
Help form na111e:
First line:
Last line:
Date created:
01A1ner ID:
For111 lensth:
Number of fields:
ImPure area size:

BYE
BYEHLP
1
23
28-DEC-78
0
1478 bYtes
a
2010 bYtes

The individual lines in the form description header provide the following
information:

•Form name

As assigned by completing the form-wide attributes questionnaire in the
Form Editor.

• Help form name

As assigned by completing the form-wide attributes questionnaire in the
Form Editor.

• First line

As assigned by completing the form-wide attributes questionnaire in the
Form Editor.

• Last line

As assigned by completing the form-wide attributes questionnaire in the
Form Editor.

3-14 The FMS-11 Form Utility (FUT)

• Date created

The most recent date on which the form was processed with the Form
Editor.

• Owner ID

Reserved for future use.

• Form attributes

If the reverse screen, current screen, and wide screen attributes have been
selected in the form-wide attributes questionnaire, they are reported on this
line.

• Form length

As reported in the form-wide attributes questionnaire in the Form Editor.

• Number of fields

The number of fields with different names. Each occurrence of a scrolled or
indexed field is counted.

• Impure area size

As reported in the form-wide attributes questionnaire in the Form Editor.

3.5.3.6 The /FD Option: The Image Map - Figure 3-5 shows an example of the
80-column image map that the Form Utility produces in a printable form
description. (Although the Form Utility shows all 24 lines in the image map,
the figure has been compressed for printing in this manual.)

Figure 3-5: The /FD Option: The Image Map

1 2 3 4 5
1234567890123456789012345678901234567890123456789012345678

CUSTOHER PROFILE

Annua I IncoMe in Thousands
Expected purchases
NuMber of eMp I o~ees

soooooo
soooooo
000000

For 80-column forms, the borders of the image map include scales that show
the line and column numbers for the map. For 132-column forms, the line
numbers do not appear. Except for the video attributes of the form, the image
map shows the form as the operator will see it before the Form Driver or the
operator enter information in any fields. Each character of the constant text
appears in the correct line and column position. Each field appears in the

The FMS-11 Form Utility (FUT) 3-15

image map with the clear character that was assigned by using the Form
Editor, and each field includes any field marker characters such as the hy­
phen(-).

3.5.3.7 The /FD Option: The Video Attributes Map - Figure 3-6 shows an
example of the 80-column video attributes map that the Form Utility pro­
duces in a printable form description. (Although the Form Utility shows all 24
lines in the map, the figure has been compressed for printing in this manual.)

Figure 3-6: The /FD Option: The Video Attributes Map

1 2 3 4 5
1234567890123456789012345678901234567890123456789012345678

22222222222222222222
22222222222222222222
22222222222222222222

. 0000000000000000000000000000000222222
000000000000000000 0222222
0000000000000000000 222222

Key to Video Attributes

Code Attributes
0 Normal
2
4
G

Re<1erse l.Jideo
Bold
Bold• Reverse Video

For 80-column forms, the borders of the video attributes map include scales
that show the line and column numbers for the map. For 132-column forms,
the line numbers do not appear. Within the map, a one-digit or one-letter
code for the video attributes of each character appears at the character's
position. Table 3-2 contains a complete list of the codes and their meanings.
In each map, the codes that actually appear are described below the map
under the heading "Key to Video Attributes."

Table 3-2: The /FD Option: Video Attributes Codes and Meanings

Code Meaning

0 Normal

1 Underline

2 Reverse video

3 Underline, Reverse video

(continued on next page)

3-16 The FMS-11 Form Utility (FUT)

Table 3-2 (Cont.): The /FD Option: Video Attributes Codes and Meanings

Code Meaning

4 Bold

5 Bold, Underline

6 Bold, Reverse video

7 Bold, Reverse video, Underline

8 Blinking

9 Blinking, Underline

A Blinking, Reverse video

B Blinking, Underline, Reverse video

C Blinking, Bold

D Blinking, Bold, Underline

E Blinking, Bold, Reverse Video

F Blinking, Bold, Reverse video, Underline

3.5.3.8 The /FD Option: Field Descriptions - Figure 3-7 shows an example of
the field description that the Form Utility produces in the printable form
description.

Figure 3-7: The /FD Option: Field Descriptions

1 39 Field INl) of lensth 10
DisPlar attributes: Autotab1 Vertical
Field TrPe: NuMeric1 Scrolled1 Indexed and repeated
G times
Clear character: "@'
Help text: "Invoice nu111ber is re9uired infor1t1ation'
Picture •1alue: "99999999.99'

The individual lines in each field description provide the following informa­
tion:

• Field name, size, and position

The first line of the field description describes the starting position of the
field in terms of the row and column numbers for the first character ("1 39"
in the example above). The line also provides the field name and the length
of the field as used by the application.

• Display attributes

Any of the following field attributes, as assigned with the Form Editor:

- Autotab
- Display Only
- Fixed Decimal
- Full Required
- Vertical (indexed)
- Horizontal (indexed)
- No Echo

The FMS-11 Form Utility (FUT) 3-17

- Right Justified
- Some Required
- Supervise Protect
- Zero Fill

• Field Type

The type of characters that an operator can enter in the field, corresponding
as follows with the field picture characters that the Form Editor accepts:

- 9 Numeric type
- A Alphabetic type
- C Alphanumeric type
- N Signed numeric type
- X Any printing character

The other field type features listed in this section are:

- Indexed
- Mixed picture
- Scrolled

• Clear character

As assigned with the Form Editor field attributes questionnaire.

• Help text

As assigned with the Form Editor attributes questionnaire.

• Picture value

As entered in the Form Editor's field mode.

3.5.3.9 The /FD Option: The Named Data Map - Figure 3-8 shows an example
of the named data map that the Form Utility produces in the printable form
description.

Figure 3-8: The /FD Option: The Named Data Map

Named Data Information

Na1t1e Data

218 285 23 G 171 ONE
ONEOUT DM2:[21GOJ6YWAYS.DAT

3-18 The FMS-11 Form Utility (FUT)

83 END

Chapter 4
Introduction to the FMS-11 Form Driver {FDV)

The Form Driver is a library routine that is a subcomponent of your program.
In an application that uses video images of forms on the terminal screen,
using the Form Driver can reduce your programming effort by manipulating
the screen, checking responses that an operator types, and displaying help
messages and forms when the operator requests them.

This chapter discusses how the Form Driver interacts with:

• The form description, which is created with the Form Editor.

• The terminal operator, who completes the fields in a displayed form.

Throughout the chapter, programming requirements are sketched in a general
way and specific subroutine calls are mentioned occasionally but not fully
described. In Chapter 5, the programming requirements are covered in detail
for the different high-level languages and MACR0-11. In Chapter 6, the calls
are arranged in alphabetical order and the full description is presented for
each one. In Chapter 7, programming techniques are described for some typ­
ical Form Driver applications.

4.1 Form Driver Interaction with the Form Description

This section describes in a general way how the Form Driver uses forms to
display information for the operator, guide the operator through a form, and
collect the responses that the operator types. Throughout the section, and in
many of the other descriptions in this and later chapters, the term "form"
refers to the image that the operator sees and to the computerized form
description that the Form Driver handles internally.

4.1.1 Media-Resident and Memory-Resident Forms

Your program can use form descriptions in two ways:

• As media-resident forms, by reading them directly from a form library file
that has been stored on a mass storage volume, such as a disk.

• As memory-resident forms, for which the form descriptions are included
with the program itself as a part of the task build procedure.

Both ways use form descriptions that have been created with the Form Editor
and processed with the Form Utility. For example, after using the Form
Editor to create a form description, you must use the Form Utility to store the

4-1

description in a form library file or to produce the object module that
memory-resident usage requires. Chapter 2 describes how to use the Form
Editor, and Chapter 3 describes how to use the Form Utility. Chapter 5
describes the task build procedure for each language.

For each call to display a form, the Form Driver checks the set of memory­
resident forms first. When memory-resident and media-resident form descrip­
tions have the same form name, the Form Driver uses only the memory­
resident version.

4.1.2 Defining Forms and Fields by Name

The name that you assign to a form with the Form Editor is the only informa­
tion that the Form Driver needs to read the form from its form library file or
find its memory-resident description. The name that you assign to a field is
also all that the Form Driver requires, regardless of where you locate the field
within the form. As long as changes to form and field characteristics have no
effect on the logic of your programs, you can change the characteristics
without having to modify your programs.

4.1.3 Displaying the Form

A typical procedure for displaying a form at the beginning of an FMS applica­
tion is as follows. (The calls are described in full in Chapter 6, and the
MACR0-11 procedures are explained in Chapter 5.)

1. If your program uses media-resident forms:

• Identify the 1/0 channel the Form Driver is to use for reading form
descriptions from the form library file. With the high-level languages,
use the FLCHAN call. With MACR0-11, complete the Required Argu­
ment List.

• Open the form library file. Use the FLOPEN call.

2. For all applications, identify an internal storage area, called the impure
area, that the Form Driver is to use for field values and other form require­
ments. With the high-level languages, use the FINIT call. With
MACR0-11, complete the Required Argument List.

3. Display a form. Use the FCLRSH or FSHOW call.

The Form Driver provides two calls for displaying a form: FCLRSH and
FSHOW. The FCLRSH call clears the entire terminal screen before dis­
playing a form. The FSHOW call clears only the screen lines that are required
by the form that you want to display. If you use short forms, you can use the
FSHOW call to create a screen display for the operator that is composed of
more than one form or part of a form. In this case, only one form would
normally be active for the operator, but you could also use special techniques
like the ones described in Chapter 7 to keep more than one form active at a
time.

4-2 Introduction to the FMS-11 Form Driver (FDV)

4.1.4 The HELP Function

Whenever your program issues a call for an operator response, the Form
Driver can display two levels of help if the operator requests it: help for the
field in which the cursor is located and help for the entire form. When the
operator uses the Form Driver's HELP function once, the Form Driver dis­
plays the help text that was typed in the Field Attribute Questionnaire. Then,
when the operator uses the HELP function again, the Form Driver displays
the HELP form that was specified in the Form-Wide Attributes Question­
naire.

The operator can erase any HELP form and have the Form Driver restore the
original form at any time. The cursor's position in the original form and all
field values will be unchanged.

For each form in your application, both the help text for fields and the HELP
forms have to be specified when the form is created or changed with the Form
Editor. For applications that use media-resident forms, the HELP forms must
be stored in the same form library file as the other forms with which they are
associated.

Section 4.2.1 describes the HELP function and related functions in detail.

4.1.5 Internal Storage of Field Values: The Impure Area

When you display a form, the Form Driver stores its form description inter­
nally in a special area called the impure area. Internal buffers are set up for
the fields in the display and the other characteristics of the form, such as its
named data labels and values. When you issue calls to get or display values,
identify fields, and complete other processes, the Form Driver uses and up­
dates the impure area as well as displaying information for the operator and
providing values to your program.

Both the Form Editor and the Form Utility report the size of the impure area
that is needed for each specific form for a MACR0-11 application. For high
level language programs, an additional 64. bytes is required for the impure
area. Although you can vary the size of the impure area to match the exact
needs of each form you use, for practical purposes you need only define one
impure area that is large enough for the largest form that your application
uses. With the high-level languages, use the FINIT call to define the impure
area. With MACR0-11, complete the Required Argument List.

The impure area is strictly for use by the Form Driver. Your program must not
use it directly. You can, however, use the FRETN and FRETAL calls to find
out any field value as stored in the impure area. The FRETN call returns the
value for a specified field, and the FRETAL call returns a concatenated string
of the values for all fields.

4.1.6 Guiding the Operator Responses

The general principle that the Form Driver uses for guiding the operator from
field to field is first from left to right within a screen line, then line by line

Introduction to the FMS-11 Form Driver (FDV) 4-3

from the top of the form to the bottom. However, the field attributes, such as
the Vertical Indexed attribute, and the order of calls that you use usually
define a unique order for each form. In fact, your program is entirely in control
of the order in which the operator works with the fields.

For example, you can control the order completely by using only the call to get
the value of a specified field, the FGET call. By repeating the call and speci­
fying different fields, you require the operator to complete the fields in the
order that you specify.

You can also allow the operator partial control by using the call that allows
him or her to choose any field in the form, the FGETAF call. The operator can
respond in only one field, but it can be any of the non-Display-Only fields in
the form. Since this call also identifies the name of the completed field, your
program can then direct the operator to any other field.

You can also allow the operator complete control over the order in which he or
she completes the fields by using the call for all field values, the FGETAL
call. The Form Driver returns the field values to your program and updates
the impure area only when the operator signals that the entire form is com­
plete.

4.1.7 The Order in Which the Form Driver Concatenates Fields

Two of the calls for operator responses get more than one field value. The
FGETAL call gets a concatenated string of all field values for the form. The
FINLN call gets a concatenated string of the field values in one line of a
scrolled area. Regardless of the order in which the operator has entered and
corrected the field values, the Form Driver concatenates them according to
the following conventions:

1. Except for fields that have the Vertical Indexed attribute, field values are
concatenated from left to right within each line and then line by line from
the top of the form to the bottom. This convention includes fields that
have the Horizontal Indexed attribute and fields that are in scrolled areas.

2. Fields that have the Vertical Indexed attribute are concatenated line by
line (in index order).

3. Within the concatenated string, the length of each field value is the full
length of the field. Each value that is shorter than the field is padded out
to the field length with the fill character assigned to the field. For a Right
Justified field, the fill characters precede the value, and for a Left Justi­
fied field, they follow the value.

Two calls display more than one field value. The FPUTAL call displays all
field values in the form. The FOUTLN call displays the field values for one
line of a scrolled area. For these calls, you must create a concatenated string
of the values, including fill characters where they are needed for padding. The
values must be in the same order that the Form Driver would use in pro­
cessing the call to get all field values.

4-4 Introduction to the FMS-11 Form Driver (FDV)

4.1.8 Text, Field Marker Characters, and Video Attributes

After displaying a form, the Form Driver normally uses only the information
that relates to the fields, such as a field picture, the fill and clear characters,
the default value, and the line of HELP information. Unless the operator
requests the Form Driver to redisplay the entire form with the CTRL/W
function, the Form Driver makes no further use of the information that is not
related to the fields, such as the text in the form, the field marker characters,
and the video attributes of the characters displayed.

In particular, the field values that the Form Driver returns do not contain any
of the field marker characters that the operator sees, such as the hyphen,
decimal point, slash, and minus sign. Also, the field values that your program
passes to the Form Driver to display must not include field marker characters.

4.1.9 Processing Fields

This section describes how the Form Driver processes fields in terms of the
field attributes.

4.1.9.1 The Field Pictures - The Form Driver uses the field pictures only
when the operator is typing field values. The values that your program passes
to the Form Driver for display are not validated against the field pictures.

When the operator is responding, a field picture is used to:

• Validate that each character satisfies the requirements of the picture char­
acter at the corresponding position. For example, in a field that has the
mixed picture 8 9 9 A A A, the Form Driver accepts only digits in the first
three positions and only letters in the last three positions.

• Limit the operator's use of the INSERT and OVERSTRIKE modes of en­
tering field values. For example, the operator cannot change the combina­
tion of modes used for a fixed decimal field or use the INSERT mode when
he or she is completing a field that has a mixed picture. (Section 4.2.3
describes the INSERT and OVERSTRIKE modes in detail.)

Section 2.6 describes the field picture characters and the valid operator re­
sponses.

4.1.9.2 The Right Justified and Left Justified Field Attributes - The Form
Driver uses the Right Justified and Left Justified attributes to:

• Determine the position of the cursor when it first is displayed in a field. This
position, called the cursor's initial position, is described in detail in Section
4.2.2.2.

• Align the field value both on the screen and in the impure area when the
value is shorter than its field. For example, the value in a Right Justified
field always ends at the last character position in the field.

Introduction to the FMS-11 Form Driver (FDV) 4-5

• Determine when the operator has filled the field if the field has the Autotab
attribute. (Section 4.1.8.5 describes the effect of the Autotab attribute in
detail.)

• Set the default mode of entering values in the field. For example, the IN­
SERT mode is the default for a Right Justified field. (Section 4.2.3 de­
scribes the INSERT and OVERSTRIKE modes in detail.)

4.1.9.3 The Clear Character and Zero Fill Attributes - The Clear Character
and Zero Fill attributes affect how field values are padded on the screen and
in the impure area. The clear character is displayed and the fill character is
used as padding in the impure area. When a field has no value, it is displayed
with only the assigned clear character and stored in the impure area with only
the assigned fill character.

If a field has the Zero Fill attribute, the clear character must be zero (0), and,
if necessary, the field value is padded with zeroes in the impure area. The
Form Editor does not allow other combinations. If a field does not have the
Zero Fill attribute, the clear character can be any printing character, and, if
necessary, the field value is padded with spaces in the impure area.

4.1.9.4 The Default Value - When you display a form, the Form Driver
displays the default field values and stores them as the current field values in
the impure area. However, neither the Form Editor nor the Form Driver
validates the default value in any way. For example, the Form Editor does
allow you to assign the numeric default value 13aG7 for a field with the
picture A A A A A, and the Form Driver does display the value in such a case,
even though the Form Driver does not allow the operator to enter the value.
Therefore, when developing your application, you must check that the default
value is correct for the field.

4.1.9.5 The Autotab Attribute - When the operator types the character that
fills a field that has the Autotab attribute, the Form Driver terminates the
field as if the operator had pressed the Tab key. (Section 4.2.4 describes the
use of the Tab key and the other field terminators.)

With respect to the Autotab attribute, the Form Driver determines that a
field has been filled as follows:

• The Must Fill attribute, if assigned to the field, must be satisfied (Section
4.1.8.6 describes the Must Fill attribute).

• For a Left Justified field, the operator must have typed a character in the
rightmost character position.

• For a Right Justified field, the leftmost character position must contain a
character other than the Fill Character.

4.1.9.6 The Response Required and Must Fill Attributes - The Form Driver
uses the Response Required and Must Fill attributes to validate the complete­
ness of an operator's response in a field.

4-6 Introduction to the FMS-11 Form Driver (FDV)

In a field that has the Response Required attribute, the operator must type at
least one character other than the assigned Fill Character.

In a field that has the Must Fill attribute, the operator may type nothing or
fill the field completely. The Form Driver will not accept a field value that is
shorter than its field or a value that contains a Fill Character.

The Form Driver validates the Response Required and Must Fill attributes at
different times depending on the call that your program issues for an operator
response. For the call to get all field values from the operator, the Form Driver
validates these attributes for each field when the operator terminates input in
the field with the tab key and when the operator signals that he or she is
finished with the form by pressing the Enter or Return key. For the other
calls, the Form Driver validates these attributes when the operator terminates
the field. (Section 4.2.4 describes how to use the Enter and Return keys to
terminate a field and also the other field terminators in detail.)

4.1.9. 7 The Fixed Decimal Attribute - The Form Driver uses the Fixed Dec­
imal attribute to:

• Determine the position of the cursor when it first is displayed in a field. This
position is called the cursor's initial position and is described in detail in
Section 4.2.2.2.

• Align the parts of the field value that are to the left and right of the decimal
point. For example, the Form Driver displays the part to the left of the
decimal point as if in a Right Justified field and the part to the right as a
Left Justified field.

• Determine the fill and clear characters for the left and right parts of the
field. For example, the Form Driver always displays the decimal part of the
field value as if it is in a Zero Fill and Left Justified field, regardless of
whether the Zero Fill or Clear Character attribute is assigned. The Form
Driver applies the assigned Zero Fill or Clear Character attribute to only the
part of the value that is to the left of the decimal point.

Section 4.2.5 describes the special characteristics of fixed decimal fields with
respect to typing and editing the field values.

4.1.9.8 The Horizontal and Vertical Indexed Attributes - The Form Driver
uses the Horizontal and Vertical Indexed attributes to:

• Define the indexes for the individual fields that make up the indexed field.

• Move the cursor to the proper individual field when your program issues a
call for the value of a specific indexed field.

• Determine the order in which the cursor moves through the individual
fields. For example, when your program issues the call to get all field values
(the FGETAL call), the TAB function moves the cursor through an indexed
field as shown in Figure 4-1. (Section 4.2 .4 describes the TAB function and
the other field terminator functions in detail.)

Introduction to the FMS-11 Form Driver (FDV) 4-7

• Determine the order in which the field values are concatenated for the call
to get all field values. Figure 4-1 illustrates the concatenated order.

4.1.9.9 The Display Only Attribute - The Form Driver uses the Display Only
attribute to allow your program to display variable field values without al­
lowing the operator to type or change the field values. The Form Driver does
not allow the operator to position the cursor in a Display Only field. When the
operator uses the TAB function or other functions to move the cursor from
field to field, the cursor jumps past the Display Only fields as if they are part
of the form's background text. (Section 4.2.4 describes the TAB function and
the other field terminator functions in detail.)

4.1.9.10 The Echo Off Attribute - The Form Driver uses the Echo Off at­
tribute to prohibit field values from being displayed in fields. When the oper­
ator responds in an Echo Off field or when your program issues a call to
display a field value in an Echo Off field, the Form Driver returns the field
value to your program and stores it in the impure area but does not display it.

4.1.9.11 The Supervisor Only Attribute - When your program uses the
FSPON call to turn on the supervisor-only mode, the Form Driver prevents
the operator from typing or changing values for fields that have the Supervisor
Only attribute. In effect, after the program issues the FSPON call, the Form
Driver treats all fields that have the Supervisor-Only attribute as Display
Only fields.

This treatment, which remains in effect until the program issues the FSPOFF
call, applies to all forms that are displayed. When the program issues the
FSPOFF call, the Form Driver ignores the Supervisor-Only attribute until the
program issues the FSPON call again.

4.1.9.12 The Scrolling Attributes - Although the Form Editor and Form
Driver do not allow you to use a form that is longer than 23 screen lines, both
FMS components allow you to define multiline sections within a form for
displaying data tables of as many lines as you need. Each of these sections is
called a scrolled area because you can use it to treat your long data table like a
scroll, winding it upward or downward to expose in the scrolled area the
specific lines that you want the operator to see or complete. In effect, a
scrolled area is like a separate window within a form and the terminal screen.
In the window, you can show any part of a longer file.

Each scrolled area must be at least two lines long. Within one form you may
define as many separate scrolled areas as will fit within 23 lines. Each line can
have as many separate fields as will fit on one screen line, but for each scrolled
area, all lines must be identical with respect to the number of fields, their
sizes and attributes, and all other details.

Because the Form Driver can store field values only for the fields that are on
the terminal screen, your program must maintain all scrolled area field values
that are not displayed, that is, all of the values that are "above" and "below"
each scrolled area. When your program scrolls the lines of a scrolled area

4-8 Introduction to the FMS-11 Form Driver (FDV)

upward or downward, the program must collect the line of values scrolled out
of the area and display the line of values, if any, scrolled into the area.

Chapter 7, Form Driver Programming Techniques and Examples, includes
more detailed explanations of scrolled area usage and summaries of typical
programming methods that apply to using scrolled areas.

4.2 Form Driver Interaction with the Terminal Operator

While working with an FMS application, the terminal operator may feel that
he or she is constantly in control of the form that is displayed on the screen. In
fact, the operator has no control until your program allows it by issuing one of
the four Form Driver calls for an operator response. The calls are:

• FGET, to get the value of a specified field.

• FGETAF, to get the value of the field that the operator chooses.

• FGETAL, to get a concatenated string of all field values for the current
form.

• FINLN, to get a concatenated string of all field values for a line of a scrolled
area.

Each of the four calls puts the operator in control until the requirements of
the call are satisfied. For example, after your program issues the FGET call
for the value of a specific field, the operator can type and correct the response
for as long as he or she wishes. The operator also can request help by using the
HELP function. When the operator terminates the field by using a field termi­
nator function such as the TAB function, the Form Driver returns control to
the program. Then, until the program issues another call for an operator
response, the operator has nothing to do.

This section introduces the three general kinds of operator activity:

• Correcting errors and requesting HELP.

• Editing fields.

• Terminating and choosing fields.

4.2.1 Signaling and Recovering from Errors

The Form Driver responds to typing errors and invalid uses of the editing and
field termination functions by ringing the terminal bell and by displaying
messages on the bottom screen line. For all errors, the Form Driver rings the
terminal bell and ignores the invalid character or function. For some errors,
the Form Driver also displays a one-line explanation on the bottom screen
line. For example, when an operator tries to enter a letter in a field that has
been designed to accept only numbers, the Form Driver rings the bell and
displays the following message:

NUMERIC REQUIRED

Introduction to the FMS-11 Form Driver (FDV) 4-9

Appendix C lists and explains each of the messages that can appear in these
cases.

The Form Driver also provides a special operating mode, called the debug
mode, that produces an extensive set of error messages that are most useful
while you are developing and refining your FMS application programs. Sec­
tion 5.1 describes the debug mode in detail. When you are using the Form
Driver with the debug mode features and an error occurs, the Form Driver
stops your program, rings the terminal bell, displays the debug mode message
on the bottom screen line, and then waits for you to press the Enter or Return
key before resuming your program.

4.2.1.1 The HELP Key and Help Messages - The HELP function can display
two levels of information.

When the operator presses the HELP key for the first time, the Form Driver
determines whether a help message exists for the current field. If such a one­
line help message exists, the Form Driver displays it in the last line of the
screen. The cursor remains in place within the field.

If the operator does not find the one-line help message sufficiently helpful, he
or she may press the HELP key a second time. The Form Driver then deter­
mines whether a help form exists for the current form.

If a help form exists, the Form Driver displays the help form while saving the
context of the current form. Each help form may have yet another help form
associated with it. Until the last of a chain of help forms is displayed, the
HELP function causes the next form in the chain to appear.

To return to the form that he or she was originally working on, the operator
presses the ENTER key. In response, the Form Driver restores the form and
cursor as they were before the HELP key was pressed.

If no one-line help message for a particular field exists, the Form Driver
displays the help form directly. At whatever point no help is available, the
Form Driver displays a message to that effect in the last line of the screen.
When, in the course of continuing work on the form, the operator next types a
field terminator, the Form Driver clears the last line.

4.2.1.2 Messages Controlled by the Program - The Form Driver cannot
distinguish valid and invalid operator responses in two cases. First, although
the Form Driver accepts only the operator responses that meet the require­
ments of the field picture that was assigned with the Form Editor, the Form
Driver cannot detect a field value that is invalid in your application. Second,
when an operator uses certain functions to terminate work with a field, the
Form Driver waits for your program to respond rather than automatically
processing the terminator.

For both of these cases, you can design the program to detect errors and other
conditions and display messages to the operator. Chapter 5 describes the
typical processes and techniques in detail.

4-10 Introduction to the FMS-11 Form Driver (FDV)

4.2.1.3 Repainting the Screen: The CTRL/W Function

VTlOO Keys: Hold down the CTRL key and at the same time press the W key
on the keyboard.

The CTRL/W function repaints the current form and its current field values
on the screen. The function is useful for ensuring that the screen is displaying
the field values that are stored in the impure area and the background text for
the form.

If part or all of an earlier form was left on the screen when the current form
was displayed, the CTRL/W function erases the earlier form completely and
repaints only the current form. (The FSHOW call can be used to leave an
earlier form on the screen when another form is displayed.)

The CTRL/W function is always valid.

4.2.2 Field Editing Principles and Functions

Table 4-1 summarizes the field editing functions that the Form Driver pro­
vides and lists the keys that control the functions. These functions are exe­
cuted entirely by the Form Driver. You can implement added functions
within your program by switching the VTlOO to the alternate keypad mode
and using the numeric keypad keys to control the functions that you design.

Table 4-1: Field Editing Keys, Functions, and Usage for the Form
Driver

Key Function Usage

Leftarrow Cursor Left Moves the cursor to the preceding character position within
the field.

Rightarrow Cursor Right Moves the cursor to the next character position within the
field.

Delete Erase Character In the INSERT mode, erases the character at the cursor's

Linefeed Erase Field

PFl INSERT/
OVERSTRIKE

PF2 HELP

CTRL/W Repaint Screen

Most Insertion
keyboard
keys

left and closes the space.

In the OVERSTRIKE mode, moves the cursor to the pre­
ceding character position within the field but erases it only
when the character is the last one in a left justified field.

Erases the entire field.

Switches from the INSERT mode to the OVERSTRIKE
mode, or vice versa.

First, displays the HELP text for the cursor's field, and
then displays successive HELP forms for the current form.

Repaints the screen with the current form, field values, and
cursor location.

The keys for the printing characters on the keyboard insert
their characters. In the normal (numeric) keypad mode, the
numeric and punctuation keys on the keypad also insert
their characters.

Introduction to the FMS-11 Form Driver (FDV) 4-11

4.2.2.1 Relationship with the VT100 Alternate Keypad Mode - The VTlOO
terminal can be set to an alternate keypad mode or a normal (numeric)
keypad mode, as described in the VT100 User Guide. The Form Driver does
not change the keypad mode at any time, and regardless of the terminal's
keypad mode, the editing and terminator functions are always the same. If
your program requires either of the keypad modes, you must set the mode
from within the program. Section 5.2 provides further information about set­
ting the alternate keypad mode so that the numeric keys on the keypad can be
used as special field terminators.

4.2.2.2 The Cursor's Initial Position in a Field - The location of the cursor
when it first is displayed in a field is called its initial position in the field. The
initial position depends on whether the field has the Right Justified, Left
Justified, or Fixed Decimal field attribute.

For Right Justified fields, the initial position is just to the right of the last
character position in the field. This position is called the hanging cursor
position because the cursor hangs off of the end of the field.

For Left Justified fields, the initial position is the leftmost character in the
field.

For Fixed Decimal fields, the initial position is the decimal point. Section
4.2.5 describes the special characteristics of Fixed Decimal fields with respect
to typing and editing the field values.

4.2.2.3 Inserting a Field Value: The Default Function

VTlOO Keys: The Form Driver accepts the standard letters, numbers, and
special characters on the keyboard that meet the requirements of the field.

For the keyboard keys, insertion of values in fields is the default function. For
the numeric and punctuation keys on the keypad, insertion is also the default
when the keypad is in the normal (numeric) mode. In both cases, the operator
types values as if he or she were using a typewriter.

Insertion is invalid only when it does not meet the field's requirements. For
example, letters are invalid where numbers are required, and for a field that
does not have the Autotab attribute, all characters are invalid when the field
is full.

4.2.2.4 Erasing a Character: The DELETE Function

VTlOO Key: The Delete key on the keyboard.

The DELETE function normally erases the character that is to the left of the
cursor. The function has different effects, however, in the INSERT and
OVERSTRIKE modes. The modes are explained in detail in Section 4.2.3.

In the INSERT mode, the Form Driver erases the character to the left of the
cursor and closes up the space. In a Left Justified field, the value remains left­
justified and in a Right Justified field, the value remains right-justified.

4-12 Introduction to the FMS-11 Form Driver (FDV)

In the OVERSTRIKE mode, the DELETE function always moves the cursor
one character to the left. However, to prevent an operator from accidentally
introducing errors in a field that has a mixed picture, the function does not
erase a character in the OVERSTRIKE mode except for the rightmost char­
acter in a left justified field.

The DELETE function is invalid when the cursor is on the leftmost character
in the field.

4.2.2.5 Erasing a Field: The LINEFEED Function

VTlOO Key: The Linefeed key on the keyboard.

Regardless of the cursor's position in a field, the LINEFEED function erases
all of the characters (except for field marker characters) that are in the field.
The Form Driver then displays the assigned clear character for the field and in
the impure area fills the field with the assigned fill character. When the
function is complete, the cursor is located at the initial position for the field
(the leftmost character for a left justified field and to the right of the right­
most character for a right justified field).

Errors: The Linefeed function is always valid input in a field.

4.2.2.6 Moving the Cursor to the Right: The Rightarrow Function

VTlOO Key: The rightarrow key(--+) on the keyboard.

The Rightarrow function normally moves the cursor one character to the right
within a field. However, the cursor always skips the field marker characters
such as the hyphen (-) and slash (I) in a field.

Errors: The Rightarrow function is invalid when the cursor is to the right of
the rightmost character in a field.

4.2.2.7 Moving the Cursor to the Left: The Leftarrow Function -

VTlOO Key: The leftarrow key (.-) on the keyboard.

The Leftarrow function normally moves the cursor one character to the left
within a field. However, the cursor always skips the field marker characters in
a field.

Errors: The Leftarrow function is invalid when the cursor is on the leftmost
character of a field.

4.2.3 Switching the Insertion Modes: The INSERT/OVERSTRIKE
Function

VTlOO Key: The PFl key on the keypad.

While the operator is typing a field value, the INSERT and OVERSTRIKE
insertion modes control how the Form Driver displays the characters. For

Introduction to the FMS-11 Form. Driver (FDV) 4-13

most of the different types of fields that can be designed, the operator can
control the insertion mode by using the INSERT/OVERSTRIKE function.

When either the operator or your program first meves the cursor to a field, the
Form Driver sets the insertion mode according to the attributes of the field.
The INSERT mode is the default for right justified fields, and the OVER­
STRIKE mode is the default for left justified fields.

While the operator types in the INSERT mode in a left justified field, the
Form Driver inserts each character at the cursor's position. The cursor, the
cursor's character, and all characters within the field that are to the right of
the cursor are shifted to the right. In a right justified field, all characters to
the left of the cursor are shifted to the left and the character is inserted to the
left of the cursor.

In the OVERSTRIKE mode, the Form Driver replaces the cursor's character
with the character typed and moves the cursor to the right.

The INSERT/OVERSTRIKE function switches the insertion mode from one
to the other. For example, when the Form Driver is initially in the INSERT
mode, pressing the PFl key once switches the Form Driver to the OVER­
STRIKE mode and pressing it again switches back to the INSERT mode.

In fields that have mixed pictures, the INSERT mode is invalid. In Fixed
Decimal fields, the INSERT/OVERSTRIKE function is ignored entirely be­
cause of the special data entry conventions that Fixed Decimal fields require.
Section 4.2.5 describes how the Form Driver handles operator responses in
Fixed Decimal fields. In all other cases, the INSERT/OVERSTRIKE function
is valid.

4.2.4 Field Terminating Functions

The field terminating functions for the Form Driver are the functions with
which the operator signals that he or she wants to work with a different field
or a different form. The Form Driver processes these functions differently
depending on the current Form Driver call that is being executed. In many
cases, the Form Driver gives your program an opportunity to intercept and in
effect change the terminator function that the operator has used. The way
that the Form Driver identifies each terminator function is with a unique
terminator code.

This section describes the normal effects of the terminator functions and lists
the terminator codes for both high-level languages and MACR0-11. Section
5.2 describes the field terminator processing in detail, including how to use
the terminator codes.

4.2.4.1 Signaling that the Form Is Complete: The ENTER and RETURN
Functions

VTlOO Keys: The Enter key on the keypad and the Return key on the key­
board both control this terminator.

4-14 Introduction to the FMS-11 Form Driver (FDV)

Terminator Code and Value:
MACR0-11 Code:
High-level Language Value:

FT$NTR
0

The ENTER and RETURN functions signal that the operator has completed
the current form. The operator uses either function when he or she does not
want to enter or change any field values.

When an FGETAL call is issued, the Form Driver does not accept either the
ENTER or the RETURN function until all field values satisfy their field
requirements. For example, a Response Required field must have a response
and a Must Fill field must be filled. However, the Form Driver cannot check
that the field values are valid. You must chack them in the program.

For any other Form Driver call, control is returned to the program if the
requirements for the current field value are satisfied.

4.2.4.2 Moving the Cursor to the Next Field: The TAB Function

VTlOO Key: The Tab key on the keyboard.

Terminator Code and Value:
MACR0-11 Code:

High-Level Language Value:

FT$NXT (when terminating a field out­
side of a scrolled area)

FT$SNX (when terminating the last
field in a line in scrolled area)

1 (when terminating a field out-
side of a scrolled area)

6 (when terminating a field
within a scrolled area)

The TAB function is only valid when the requirements for the current field
value (Response Required and/or Must Fill) are satisfied.

The effects of the TAB function depend on the Form Driver call that is being
executed.

For the FGETAL and FINLN calls and for the FGETAF call before the
operator enters or changes a field value, the Form Driver processes the func­
tion directly and moves the cursor to the initial position of the next non­
Display-Only field. The order in which the Form Driver moves from field to
field is described in Section 4.1.6.

For the FGET call and for the FGETAF call after the operator enters or
changes a field value, the Form Driver transfers control to the program. The
next call in your program determines what the operator sees. For example,
after the operator terminates a field with the TAB function, your program
may display a new form, calculate and display a value in a Display Only field,
or issue another call for another operator response in a specific field.

The function is invalid when the cursor is in the last non-Display-Only field of
the form.

Introduction to the FMS-11 Form Driver (FDV) 4-15

4.2.4.3 Moving the Cursor to the Previous Field: The BACKSPACE Function

VT100 Key: The Backspace key on the keyboard.

Terminator Code and Value:
MACR0-11 Code:

High-level Language Value:

FT$PRV (when terminating a field out­
side of a scrolled area)

FT$SPR (when terminating the first
field in a line in a scrolled
area)

3 (when terminating a field out-
side of a scrolled area)

7 (when terminating a field
within a scrolled area)

The effects of the BACKSPACE function depend on the Form Driver call that
is being executed.

For the FGETAL and FINLN calls and for the FGETAF call before the
operator enters or changes a field value, the Form Driver processes the func­
tion directly and moves the cursor to the initial position of the previous non­
Display-Only field. The order in which the Form Driver moves from field to
field is described in Section 4.1.6.

For the FGET call and for the FGETAF call after the operator enters or
changes a field value, the Form Driver transfers control to the program. The
next call in your program determines what the operator sees.

The function is invalid when the cursor is in the first non-Display-Only field
of the form.

4.2.4.4 Scrolled Area Moves: The Uparrow Function

VTlOO Keys: The Uparrow key on the keyboard.

Terminator Code and Value:
MACR0-11 Code:
High-level Language Value:

FT$SBK
9

The Uparrow function is valid only when the cursor is in a field that is within
a scrolled area. The function always transfers control to your program. There­
fore, you can choose to use the function in any way you wish, and the effects
that the operator sees depend on the next calls that your program issues.

The Form Driver processes the Uparrow function only when you specify its
code in the FPFT call. The Form Driver either moves the cursor to the pre­
ceding data line within the scrolled area and places the cursor at the initial
position of the first non-Display-Only field in that data line or scrolls the area
backward and places the cursor at the initial position of the first non-Display­
Only field in the current line.

When the cursor is in the top screen line of the scrolled area or if the program
specifies data to update the top line, the Uparrow function scrolls the bottom

4-16 Introduction to the FMS-11 Form Driver (FDV)

scrolled line of information off the screen, scrolls a new line of information
into the top scrolled line, and moves the intermediate scrolled lines down­
ward. If the cursor is in the top line and your program specifies values for the
new line of information, they are displayed; otherwise, the default field values
are displayed.

The function is invalid when the cursor is in a field that is not within a
scrolled area.

4.2.4.5 Scrolled Area Moves: The Downarrow Function

VTlOO Key: The Downarrow key on the keyboard.

Terminator Code and Value:
MACR0-11 Code:
High-level Language Value:

FT$SFW
8

The Downarrow function is valid only when the cursor is in a field that is
within a scrolled area. The function always transfers control to your program.
Therefore, you can choose to use the function in any way you wish, and the
effects that the operator sees depend on the next calls that your program
issues.

The Form Driver processes the Downarrow function only when you specify its
code in the FPFT call. The Form Driver either moves the cursor to the next
data line within the scrolled area and places the cursor at the initial position
of the first non-Display-Only field in that data line or scrolls the area forward
and places the cursor at the initial position of the first non-Display-Only field
in the current line.

When the cursor is in the bottom screen line of the scrolled area or if the
program specifies data to update the bottom line, the Downarrow function
scrolls the top scrolled line of information off the screen, scrolls a new line of
information into the bottom scrolled line, and moves the intermediate scrolled
lines upward. If the cursor is in the bottom line and your program specifies
values for the new line of information, they are displayed; otherwise, the
default field values are displayed.

The function is invalid when the cursor is in a field that is not within a
scrolled area.

4.2.4.6 Scrolled Area Moves: The EXIT SCROLLED AREA BACKWARD
Function

VTlOO Key: The PF3 key on the keypad.

Terminator Code and Value:
MACR0-11 Code:
High-level Language Value:

FT$XBK
4

The EXIT SCROLLED AREA BACKWARD function is valid only when the
cursor is in a field that is within a scrolled area. The function always transfers

Introduction to the FMS-11 Form Driver (FDV) 4-17

control to your program. Therefore, you can choose to use the function in any
way you wish, and the effects that the operator sees depend on the next calls
that your program issues.

The Form Driver processes the EXIT SCROLLED AREA BACKWARD func­
tion only when you specify its code in the FPFT call. The Form Driver moves
the cursor to the initial position of the first non-Display-Only field above the
scrolled area.

The function is invalid when:

1. The cursor is in a field that is not within a scrolled area.

2. There is no mm-Display-Only field above the scrolled area.

4.2.4.7 Scrolled Area Moves: The EXIT SCROLLED AREA FORWARD
Function

VTlOO Key: The PF4 key on the keypad.

Terminator Code and Value:
MACR0-11 Code:
High-level Language Value:

FT$XFW
5

The EXIT SCROLLED AREA FORWARD function is valid only when the
cursor is in a field that is within a scrolled area. The function always transfers
control to your program. Therefore, you can choose to use the function in any
way you wish, and the effects that the operator sees depend on the next calls
that your program issues.

The Form Driver processes the EXIT SCROLLED AREA FORWARD func­
tion only when you specify its code in the FPFT call. The Form Driver moves
the cursor to the initial position of the first non-Display-Only field below the
scrolled area.

The function is invalid when:

1. The cursor is in a field that is not within a scrolled area.

2. There is no non-Display-Only field below the scrolled area.

4.2.5 Typing and Editing Fixed Decimal Values

The cursor's initial position for a Fixed Decimal field is the decimal point that
the Form Driver displays. The decimal point is a field marker character. It is
not stored in the impure area or returned to your program as part of the field
value.

As the operator types a Fixed Decimal value, he or she sees the Form Driver
treat the left part as if it is in a Right Justified field and the right part as if it
is in a Left Justified field. With the cursor at the initial position, the Form
Driver displays the first digits that the operator types in the part of the field
that is to the left of the decimal point until the operator actually types a
decimal point. Then the Form Driver displays the digits that the operator
types in the part of the field that is to the right of the decimal point.

4-18 Introduction to the FMS-11 Form Driver (FDV)

As the operator edits a Fixed Decimal value, the LINEFEED function erases
the entire value and leaves the cursor at the initial position. The DELETE
function also erases the digits in the field value normally. However, with the
cursor just to the right of the decimal point, the DELETE function moves the
cursor back to the decimal point but does not erase it.

Introduction to the FMS-11 Form Driver (FDV) 4-19

Chapter 5
Form Driver Programming Requirements and
Concepts

This chapter provides a technical overview of the Form Driver for the high
level language and MACR0-11 programmer. (Although this chapter discusses
the Form Driver calls in several sections, the principal description of each call
is in Chapter 6.)

The topics in this chapter are arranged in three general groups:

• First, information such as checking the status of Form Driver calls and
using field terminator features, that is important to all programmers who
design or write Form Driver applications.

• Second, information that applies only to the high-level languages. The sec­
tions in this group cover BASIC-PLUS-2, COBOL-11, FORTRAN IV, and
FORTRAN IV-PLUS, in that order. The section for each language describes
the data types, syntax requirements, arguments used, and typical proce­
dures for task building an FMS application program.

• Finally, information that applies only to MACR0-11.

5.1 Features for Checking Call Status

To improve the effectiveness of FMS applications and reduce the time re­
quired for you to produce fully debugged applications, the Form Driver main­
tains the completion status of each call and provides four general ways for you
to obtain the status:

• For high-level language applications, the FSTAT call returns the Form
Driver status code for the last call that was processed. The FSTAT call also
returns the FCS or RMS system error code when a call fails because of an
error in opening or reading a form library file.

• For MACR0-11 applications, a 2-word status block holds the Form Driver
and system status codes for the last call that was processed.

• For added support while an FMS application is being developed, a special
debug mode is available for displaying explicit messages about the status of
calls.

5-1

• For customized support of FMS applications in the field, the FPUTL call
can be used to signal the application operator about program conditions
with any message that you think is appropriate.

5.1.1 Form Driver and System Status Codes

Table 5-1 lists and describes the status codes. For FMS applications in high­
level languages, the FSTAT call returns one of the listed numeric codes in the
first of its two status arguments. For applications in MACR0-11, DIGITAL
recommends that you use the listed global symbols instead of the numeric
codes in order to ensure greater application compatibility with later versions
of FMS software.

Two of the status conditions listed in Table 5-1 indicate an error in trying to
open or read a form library file (code values -4 and -18). In these two cases,
the FSTAT call also returns (in the second status argument) FCS or RMS
system error codes that help to define the exact cause of the problem. For the
full list of FCS system errors, refer to the RSX-llM/M-PLUS I/O Operations
Manual. For RMS errors, refer to the RMS-11 User's Guide.

Note that the status code FE$DLN, value -16., (data specified too long for
output) is returned to the program only in Debug Mode. Regardless of
whether the Form Driver provides support for Debug Mode, the specified data
is truncated when displayed and the Form Driver completes the call in the
normal way.

Table 5-1: Summary of Returned Status Values and Codes

Status Value
in High-Level

Languages
(decimal)

1.

2.

- 1.

- 2.

- 3.

- 4.

- 5.

- 6.

- 7.

- 8.

- 9.

-10.

Status Code
(MACR0-11)

FS$SUC

FS$INC

FE$FCD

FE$IMP

FE$FSP

FE$IOL

FE$FLB

FE$1CH

FE$FCH

FE$FRM

FE$FNM

FE$LIN

Meaning

Successful completion.

Current form incomplete.

Specified function code undefined.

Impure area too small.

Invalid file specification.

Error encountered opening form library (an
FCS or RMS system error code that provides
more detail can be found with the FST AT call
and is returned in the second word of the
Status Block).

Specified file not form library.

Invalid channel number specified.

Form library not open on specified channel.

Invalid form definition.

Specified form does not exist.

Invalid first line number to display form.

(continued on next page)

5-2 Form Driver Programming Requirements and Concepts

Table 5-1 (Cont.): Summary of Returned Status Values and Codes

Status Value
in High-Level

Languages
(decimal)

-11.

-12.

-13.

-14.

-15.

-16.

-17.

-18.

-19.

-20.

-21.

-22.

Status Code
(MACR0-11)

FE$FLD

FE$NOF

FE$DSP

FE$NSC

FE$DNM

FE$DLN

FE$UTR

FE$IOR

FE$IFN

None

None

None

Meaning

Specified field does not exist (invalid field
name or index).

No fields defined for current form.

Get call illegal for display only field(s).

Specified field not in scrolled area.

Named data specified does not exist.

Data specified for output too long (truncated
by Form Driver). This error is returned by the
Form Driver only when Debug Mode Support
is included.

Undefined field terminator.

Error encountered reading form library (an
FCS or RMS system error code that provides
more detail can be found with the FST AT call
and is returned in the second word of the
Status Block).

Specified call invalid in current context of
form.

(For high-level language programs only)
Wrong number of arguments in call.

(For high-level language programs only) Im­
pure area not yet initialized.

(BASIC-PLUS-2 only) Returned string is
longer than the declared variable length.

5.1.2 Debug Mode Support for Application Development

The Form Driver debug mode is available to both high-level language and
MACR0-11 programmers. The debug mode is a Form Driver configuration
option that adds explicit messages for the status conditions to the Form
Driver. Chapter 8 describes the configuration dialogue and procedure in de­
tail. Usually, programmers who want debug mode support configure a version
of the Form Driver that includes that support as well as another version that
does not include it. Then the version with the debug mode support is used
during application development and the version without the debug mode
support is used for final testing and distribution.

In the debug mode, the Form Driver rings the terminal bell and uses the
bottom screen line to display a message for each of the status conditions
(except "Successful completion" and "Current form incomplete") listed in
Table 5-1. Appendix C lists the messages. After displaying a debug mode
message, the Form Driver places the cursor in the lower right corner of the
screen until you press the ENTER or RETURN key. This process prevents

Form Driver Programming Requirements and Concepts 5-3

your program from clearing or overwriting a debug mode message before you
have seen it. When you press the ENTER or RETURN key, your program
resumes and can then use the FPUTL call to display program-related mes­
sages on the bottom screen line.

The appropriate error code is returned to the calling program except for status
code FE$DLN, value -16 (data specified for output too long).

5.1.3 The Debug Mode and Application Programming
Techniques

Because the Form Driver explicitly signals all errors with calls in the debug
mode, you can use the Form Driver to fully debug your program (with respect
to mistakes with the Form Driver). Therefore, after debugging a program, you
may choose not to test for certain errors that should not occur in a fully
debugged application, such as an incorrect field name or form name or an
incorrect number of arguments in a call.

However, some errors can occur even in a fully debugged program. In partic­
ular, even in a finished FMS program, you should check for 1/0 errors after
calls that:

• Open and close a form library file.

• Display a form (and must therefore read a form library file).

• Solicit operator responses.

5.1.4 Signaling the Application Operator about Program Errors

In many cases, FMS application operators cannot be expected to learn much
about the hardware or software that they use. With respect to error conditions
that are not totally avoidable, the application designer and programmer are
under pressure to signal the problem and its solution as clearly as possible.
The FPUTL call is especially useful for giving operators and their supervisors
the messages about the application program status that they will find most
useful. Using as an example a case when an VO error may occur, the following
general illustration shows one way that the FPUTL call can be used with the
other status and error-checking features:

1. The program encounters an 1/0 error while trying to display a form.

2. The program detects the error by using the FST AT call. The call returns
the error code -18 for an error in reading a form library file.

3. The program uses the status code as an index into a list of program­
specific messages and finds the following message: "Proper form not avail­
able. Contact Ms. Jackson."

4. The program uses the FPUTL call to display the message on the bottom
screen line. The program then immediately uses a call for an operator
response (the FGET call) to ensure that the message remains visible until
the operator sees and responds to it.

The FPUTL call is described in full in Chapter 6.

5-4 Form Driver Programming Requirements and Concepts

5.2 The Role of the Field Terminators

The field terminators define one of the following conditions:

1. When the operator wants to work on the next form.

2. When the operator wants to work on a different field from the current
field.

Each of the keys listed in Table 5-1 controls a field terminator. The Autotab
field attribute also controls a unique terminator. When an operator presses a
key or completes a field that has the Autotab attribute, the Form Driver
either processes the terminator itself and displays the effect for the operator or
returns a unique field terminator code to your program and leaves the choice
of processes to the program. Table 5-2 also lists the process and code that the
Form Driver uses for each field terminator key.

When you set the VTlOO keypad to the alternate keypad mode, the Form
Driver also treats the keypad's numeric keys, comma (,) key, hyphen (-)
key, and decimal point (.) key as field terminators. The codes for these
alternate keypad mode terminators are always returned to your program im­
mediately.

This section describes how your program can use the field terminators and
Form Driver calls to guide an operator through the fields in a form in any
order.

5.2.1 Relationship Between the Field Terminators and Form
Driver Calls

In effect, the Form Driver works between the operator and the application
program that the operator is using. When the program initiates a call to get an
operator response, the Form Driver allows the operator to type an entry in a
field. When the operator presses a field terminator key that completes the
call, the Form Driver passes the response and the field terminator code to the
program and prohibits the operator from further typing.

Only the following four Form Driver calls allow the operator to respond:

• FGET, to get the value for a specified field and the field terminator.

• FGETAF, to get the value for any field that the operator chooses, as well as
the field name and the field terminator.

• FGETAL, to get a concatenated string of all field values for the current form
and the last field terminator used.

• FINLN, to get a concatenated string of the field values from the current line
of the specified scrolled area and the last field terminator used.

For each of these four calls, the Form Driver validates all field terminators.
For example, with the cursor in the first field in a form, the Form Driver

Form Driver Programming Requirements and Concepts 5- 5

accepts the field terminator for the TAB key but does not accept the field
terminator for the BACKSPACE key.

Table 5-3 lists the four calls and shows the field terminator keys that com­
plete each call. The FGET call leaves total control of responding to any field
terminator to the program. The FGETAF call allows the operator to choose
one field but returns control to the program as soon as the operator completes
an Autotab field or modifies a field and presses any field terminator key. The
FGETAL call leaves the Form Driver in control of responding to any field
terminator except when the operator presses the ENTER or RETURN key.
The FINLN call leaves the Form Driver in control within a line of a scrolled
area.

For a general illustration of the flexibility that the set of field terminator
features and related calls gives you, compare the following two methods of
getting all of the current field values from the operator. (The illustration
assumes that none of the fields has any special attributes, such as the Re­
sponse Required attribute.)

1. Using the FGETAL call.

• The program initiates the FGETAL call.

• The operator uses the field terminator keys that move the cursor from
field to field at any time. The Form Driver processes these field termina­
tors without returning them to the program.

• When the operator presses the ENTER or RETURN key, the Form
Driver returns the field terminator code and the string of field values to
the program.

• The program then is in control of what the operator does next.

2. Using a series of FGET calls

• The program initiates the FGET call. The operator can only type and
change the entry in the specified field.

• When the operator presses any field terminator key, the Form Driver
returns the field terminator code and the single field value to the pro­
gram. The program then is in control of what the operator does next. For
example, on the basis of the field value or the field terminator, the
program can specify the same field or another field in the next FGET
call.

5-6 Form Driver Programming Requirements and Concepts

Table 5-2: Field Terminator Keys, Codes, and Typical Effects

Key

ENTER
or RETURN

TAB

BACKSPACE

None
(Autotab)

PF3
(Exit
Scrolled
Area
Backward)

Code

High Level
Languages
(Decimal)

MACR0-11
(Global)

0. FT$NTR

1. FT$NXT

6. FT$SNX

2. FT$PRV

7. FT$SPR

3. FT$ATB

4. FT$XBK

Usage or Meaning

Terminates all entries in the form. If the
call being processed is an FGETAL and
required entries are not complete, the
Form Driver refuses to accept the termi­
nator, and the operator remains in con­
trol. If required entries are complete,
the terminator is always returned to the
program. Therefore, the final effect de­
pends on the next call that the program
initiates for an operator response.

If any other call is being processed, only
the requirements for the current field
must be satisfied. If so, control is re­
turned to the program.

Valid only when the current field is not
the last field in the form that is not Dis­
play Only. Moves the cursor to the ini­
tial position of the next field.

Processed by the Form Driver for the
FGETAL and FINLN calls and, until
an entry is typed or modified, for the
FGETAF call. Returned to the program
for the FGET call and, after an entry is
typed or modified, the FGETAF call.

Scroll forward to the next field. The
TAB key terminated input in last field
of a scrolled line. Always returned to the
program.

Valid only when the current field is not
the first field in the form that is not
display only. Moves the cursor to the
initial position of the previous field.

Processed as for the TAB key.

Scroll backward to the previous field.
The BACKSPACE key terminated
input in the first field in a scrolled line.
Always returned to the program.

Processed as for the TAB key.

(Valid input only when the current field
is in a scrolled area) Moves the cursor
out of the scrolled area to the initial po­
sition of the previous field that the oper­
ator is allowed to complete.

(continued on next page)

Form Driver Programming Requirements and Concepts 5-7

Table 5-2 (Cont.): Field Terminator Keys, Codes, and Typical Effects

Key

PF4
(Exit
Scrolled
Area
Forward)

Downarrow
(Scroll
Forward)

Uparrow
(Scroll
Backward)

Code

High Level
Languages
(Decimal)

MACR0-11
(Global)

5. FT$XFW

8. FT$SFW

9. FT$SBK

Usage or Meaning

(Valid input only when the current field
is in a scrolled area) Moves the cursor
out of the scrolled area to the initial po­
sition of the next field that the operator
is allowed to complete.

(Valid input only when the current field
is in a scrolled area). The scrolled area
is scrolled up and the current line re­
mains the same physical line (with new
data) or the cursor moves down one line
and that line becomes the new current
line. The cursor moves to the initial po­
sition of the first field that the operator
is allowed to complete in the current
line.

(Valid input only when the current field
is in a scrolled area). The scrolled area
is scrolled down and the current line re­
mains the same physical line (with new
data) or the cursor moves up one line
and that line becomes the new current
line. The cursor moves to the initial po­
sition of the first field that the operator
is allowed to complete in the current
line.

Table 5-3: The Relationship Between the Calls to Get Operator
Responses and the Field Terminators

Call Field Terminator Keys that Complete the Call

FGET Any valid field terminator key or the Autotab code.

FGETAF ENTER, RETURN, or any typed field entry followed by any valid field
terminator key or the Autotab code.

FGETAL ENTER or RETURN.

FINLN Any valid field terminator key or the Autotab code.

In terms of designing forms and programs for FMS applications, the following
principles provide a useful summary of Tables 5-2 and 5-3:

1. Except for the ENTER, RETURN, PF3, and PF4 keys, the effects of the
field terminator keys cannot be changed from what DIGITAL has de­
signed in the following cases:

• For the FGETAL call.

• For the FINLN call.

• For the FGETAF call before the operator makes a field entry.

5-8 Form Driver Programming Requirements and Concepts

2. When the operator presses the ENTER, RETURN, PF3, or PF4 key, or, in
response to the FGET call, any field terminator key, the program alone
controls the effect that the operator sees.

For example, if you use the FGETAL call in a program, the TAB k,ey will
always advance the cursor from field to field according to the default order
that DIGITAL has implemented. However, if you use a series of FGET calls
instead of the FGETAL call, the program is passed the field terminator code
for the TAB key and can react to it in any way you specify. For example:

You can use the FPFT call. After the operator uses any field terminator that
returns control to the application program, the program can initiate the FPFT
call, in effect making the Form Driver display the effects of any field termi­
nator key. In the example of an FGET call terminated by pressing the TAB
key, the program can react by specifying the BACKSPACE key code in the
FPFT call. Then, the effect of the next FGET call would be to move the cursor
back to the previous field in the form.

Or you can use another FGET call. Again in the example of an FGET call
terminated by pressing the TAB key, the program can react with another
FGET call that specifies by name the next field that the operator is to com­
plete, regardless of where the field appears on the operator's screen.

5.2.2 Using the Alternate Keypad Mode Terminators

Normally, the numeric and punctuation keys on the VTlOO keypad produce
the same numbers and characters that the corresponding keyboard keys pro­
duce. Therefore, for many common applications the operator can enter nu­
meric data by using the keypad rather than the more cumbersome keyboard
arrangement.

For special applications, you can set the VTlOO to the alternate keypad mode
from your program and then design the applications to use the numeric and
punctuation keys on the keypad as field terminator keys. In this case, the
Form Driver always passes the alternate keypad mode terminators to the
program immediately, regardless of whether the Input Required and Must Fill
requirements are satisfied for the form. The VTJOO User Guide describes how
to set the alternate keypad mode. Table 5-4 lists the keypad keys that are
affected by the alternate keypad setting and the code that is returned to your
program for each key.

In each case, the character returned is the last character in the escape se­
quence generated by the key in alternate keypad mode.

Form Driver Programming Requirements and Concepts 5-9

Table 5-4: Alternate Keypad Mode Field Terminator Keys and Codes

Code Returned
Keypad Key Character Value (decimal)

Comma (,) I (lowercase L) 108.

Hyphen (-) m 109.

Decimal (.) n 110.

0 p 112.

1 q 113.

2 r 114.

3 s 115.

4 t 116.

5 u 117.

6 v 118.

7 w 119.

8 x 120.

9 y 121.

5.3 The Impure Area

The size of the impure area must satisfy the requirements of the largest form
that you are using. The actual size also depends on the programming language
that you are using for your application. For any high level language, create an
impure area that is 64. bytes larger than the impure area size reported by the
Form Editor or Form Utility. For MACRO-U, you do not need to add the 64.
bytes.

NOTE

Because of operating system factors, a form description on
RSX-UM and RSX-UM-PLUS systems requires an impure
area that is 44. bytes larger than on RT-U systems, regardless
of the language used for the application. On RSX-UM and
RSX-UM-PLUS systems, the Form Editor and Form Utility
include this extra requirement when they report the impure
area size. On RT-U systems, they do not include the extra
requirement.

The impure area is used by the Form Driver to maintain terminal context
between calls. If you issue direct calls from your program to display data on or

5-10 Form Driver Programming Requirements and Concepts

solicit input from the terminal, rather than using the Form Driver for all
terminal I/0, the results of the next Form Driver call may not be as expected.

5.4 Task Building Programs with Memory Resident Forms

Memory resident forms are easily created and included in your FMS applica­
tion. Use the Form Utility to create object modules of the forms you wish to
include in your program as in the following example.

>FUT FORMS.OBJ=DEMLIB.FLB/OB
DM0:[30t10JDEMLIB,FLB;1 Forn na1T1e? PART::3!Brn
DM0:[30t10JDEMLIB.FLBj1 Forr11 nar11e'":· FIRST!Brn
DMO: [30 tlOJDEMLIB,FLB; Forri1 nar11e? !Brn

Both form descriptions are included in the module FORMS.OBJ. If you wish,
forms may be put in separate files.

When your application is task built with memory resident forms, the
FDVDAT module of the Form Driver must be referenced before any of the
memory resident forms. This is done by including the Form Driver library
with an explicit reference to FDVDAT in the Task Builder command se­
quence before any of the files containing forms. The following example illus­
trates this.

TKB> FORDEMrFORDEM/-SP=FORDEM
TKB> HLLFOR0FDVLIB/LB:FDVDAT1FDVLIB/LB
TKB> FORMS
TKB> LB:[111JFOROTS/L.B
TK B > / /

5.5 FCS and RMS System Support

Two versions of the Form Driver are supplied as object libraries:

• FDVLIB.OLB - the Form Driver library for FCS I/0 support.

• FDVLRM.OLB - the Form Driver library for RMS I/0 support.

The choice you make depends on the programming language you use for your
application as well as the overall design of the application. Regarding the
design, make your choice on the basis of your experience with and knowledge
of the FCS and RMS systems. Regarding the relationship between the pro­
gramming languages and the two systems, Table 5-5 summarizes the Form
Driver requirements.

Table 5-5: FCS and RMS System Requirements for the Form Driver

Language

BASIC-PLUS 2

PDP-11 COBOL

FORTRAN IV

Requirements for
FCS Support RMS Support

None.

None.

Required.

Required.

Required.

None.

(continued on next page)

Form Driver Programming Requirements and Concepts 5-11

Table 5-5 (Cont.): FCS and RMS System Requirements for the Form Driver

Language

FORTRAN IV-PLUS

MACR0-11

Requirements for
FCS Support RMS Support

Optional.

Optional.

Optional.

Optional.

5.6 Using the Form Driver As a Resident Library with FCS
Support

The command file FDVRES.CMD builds the Form Driver as a resident li­
brary with FCS support. This command file can be modified to include addi­
tional routines, such as a high level language interface, in the library.

To use the Form Driver as a resident library, you must allocate a partition
named FDVRES and then install the resident library when you build your
application system.

The following command to VMR allocates the partition

SET /MAIN=FDVRES:*:400:COM

The partition size, here 400, must be adjusted for any additional modules
added to the Form Driver.

*, the base address of the partition, is here specified in the format of RSX
V3.2 VMR. As a command to MCR, the address must be specified as a
number.

Details on the allocation of partitions can be found in the Operator's Proce­
dures Manual under the SET command and in the SYSGEN Manual in the
section describing VMR.

When you build your application system, a privileged user can use the fol­
lowing MCR command to install the resident library from UIC (30,10]:

INSTALL [30110JFDVRES

To replace a resident library, install a new copy.

The Form Driver cannot be built as a resident library with RMS support.

An example of a Task Builder command procedure to build a program with
resident library support follows:

TASK1TASK=TASK1C30110JFDVDRS
I
RESLI5=[30o10JFDVRES/RO
PAR=FDVRES:lOOOOO:O
II

The base of the PAR option must agree with the base given in the PAR option
in the FDVTKB command file. The Form Driver is not PIC (position inde-

5-12 Form Driver Programming Requirements and Concepts

pendent code). See Chapter 7 of the Task Building Reference Manual for
more details on building and using resident libraries.

5. 7 The High Level Language Interface

A special component of the Form Driver, called the high-level language inter­
face, processes your high-level language Form Driver calls. The interface
passes the values that you supply to the Form Driver and returns values to
your program from the Form Driver.

The high-level language interface is entirely transparent to you and to your
program except when you build your FMS application. To use forms, you
need to use only the Form Driver calls. However, as part of the procedure for
building a running application, you must link the proper high-level language
interface component with the Form Driver and your program. The details for
building applications in each language are described later in this chapter.

Most of the mutual requirements for the Form Driver and each high-level
language are the same. They are grouped in the following four categories and
described in the sections that follow:

1. The input and output arguments for the Form Driver calls.

2. The syntax of the calls and conventions used in this manual to define the
syntax for the different languages.

3. The completion status of calls for success and failure.

4. Interpretation of the field terminators that an operator uses while working
with your application and using the terminators flexibly.

5.7.1 General Description of the Arguments

Collectively, the high-level language calls use arguments to pass values to the
Form Driver and to receive values that the Form Driver returns. For each call,
this manual uses the term Input Arguments (or Inputs) to refer to the argu­
ments that pass values from your program to the Form Driver. The term
Output Arguments (or Outputs) refers to the arguments for values that the
Form Driver returns to your program. For example, the FGET call allows an
operator to enter data in a field and then returns the field value to the
program when the operator finishes. The input arguments for the FGET call
are the field name and, if the field is indexed, the field index. The output
arguments for the FGET call are the field value when the operator terminated
the field and the code for the field terminator.

Table 5-6 shows the abbreviations that this manual uses for all of the Form
Driver call arguments and describes briefly the requirements or value for each
input argument and output argument. (In Section 5.11, Table 5-16 is a sim­
ilar list for MACR0-11.)

The full descriptions of the Form Driver calls in Chapter 6 also use the abbre­
viations that appear in Table 5-6.

Form Driver Programming Requirements and Concepts 5-13

Table 5-6: Summary of Form Driver Inputs and Outputs in High Level
Language Calls

High-Level Language
Argument Abbreviation

Inputs

Outputs

CHAN

FID

FIDX

FLNM

FNAME

FVAL

IMPURE

LINE

SIZE

TERM

FID

FIDX

FLEN

FVAL

Requirement or Value

A channel number for a form library file.

A field name or a named data label, 6 characters long,
including padding (for FORTRAN IV and FORTRAN
IV-PLUS, add a NULL byte also). To specify a
scrolled area, use the name of any field in the scrolled
area.

A field index for the specified field (when the field is
indexed) or the index for a named data value. The
argument is ignored unless the Form Driver is pro­
cessing an indexed field or accessing named data by
index.

A form library file specification.

A form name, 6 characters long, including padding (for
FORTRAN IV and FORTRAN IV-PLUS, add a NULL
byte also).

As an input value, the single value or the concatenated
values to be displayed:

• in a field.
• in the top, bottom, or current line of a scrolled

area.
• in the last line of the

screen.
• in an entire form.

The name of a subscripted variable (or array) of bytes
for the impure area.

The explicit starting line number for the form, over­
riding the line number assigned with the Form Editor.

The size of the impure area in bytes.

As an input value, the numeric code for the terminator
that the Form Driver is to process.

[The status code is set for all calls.]

The current field name or a named data label.

A field index.

The length of a specified field (not the length of the
data the field contains).

A named data value, a single field value, or a conca­
tenated string that is composed of several field values
(including padding when a value is shorter than its
field).

(continued on next page)

5-14 Form Driver Programming Requirements and Concepts

Table 5-6 (Cont.): Summary of Form Driver Inputs and Outputs in High
Level Language Calls

High-Level Language
Argument Abbreviation

TERM

STATUS

STAT2

Requirement or Value

The numeric code for the key that the operator used to
terminate input:

• in a field.

• in a line in a scrolled
area.

• in an entire form.

A numeric code for the completion status of the last
call that was executed.

A numeric RMS or FCS status code for detailed infor­
mation when the STATUS value is -4 or -18.

As shown in Table 5-6, the maximum length of form names and field names is
six characters. For FMS applications in the high-level languages except FOR­
TRAN IV, the Form Driver pads form and field names that are shorter than
six characters with spaces. Form and field names that are longer than six
characters are truncated when passed to the Form Driver. The field names
that the Form Driver returns are six characters long, including any spaces
that have been added.

5.7.1.1 Argument Data Types - The data types of the Form Driver argu­
ments depend on the language that you are using. Therefore, specific require­
ments are listed later in this chapter in the sections that provide information
that is specific to the languages.

The general data types that the Form Driver uses regularly are integers and
alphanumeric strings. Examples of arguments that pass integer values to and
from the Form Driver are the arguments for:

• The starting line number for a form.

• The code for the key that an operator uses to finish a field.

• The size of the impure area.

Examples of arguments that pass alphanumeric strings to and from the Form
Driver are the arguments for:

• The name of a field.

• A named data value.

• A value to be displayed in a field.

5.7.1.2 The Relationship Between Field Lengths and Values - Regardless of
the practical purposes of the fields in a form, the Form Driver always treats
field values as strings. For example, when the Form Driver returns a field
value to your program as an argument to the FGET call, your program re-

Form Driver Programming Requirements and Concepts 5-15

ceives a string of characters that is exactly as long as the field that you
specified. (Except for FORTRAN IV and FORTRAN IV-PLUS, in which case
the data is one byte longer because it is terminated with a NULL byte). If the
value is shorter than the field, Fill Characters (either zeroes or spaces, as
assigned with the Form Editor) are added.

As another example of the relationship between field lengths and values, when
you use the FPUT AL call to display specified values in the first three fields of
a form, you pass to the Form Driver a concatenated string of the three field
values. For any value that is shorter than the field in which it is to be dis­
played, you add Fill Characters so that the value and the field are the same
length.

5. 7.2 General Description of Call Syntax for High Level
Languages

The syntax of the Form Driver calls follows the requirements and conventions
of the language that you use. BASIC-PLUS-2, COBOL-11, FORTRAN IV,
and FORTRAN IV-PLUS calls all use the CALL statement. In this manual,
only the call statement forms are listed in the detailed descriptions of the
calls. For example, the CALL statement syntax for the calls to get a field
value from the operator and then display a message on the last line of the
operator's screen is as follows:

1. For BASIC-PLUS-2, FORTRAN IV, and FORTRAN IV-PLUS

CAL. L F.G ET (fual, term,fid[,fidx])

CALL. FPUTL.(fual)

2. For COBOL-11 -

c AL. L. ii F~ GET" LVi3 ING fual, term,fid[,fidx].

Cf.iLL. ii F PUTL" US I NG fual.

The argument abbreviations that are printed in lowercase letters stand for
arguments that you must provide. They must be in the order shown for each
call and must meet the functional requirements described in Table 5-5.

In the call descriptions in this manual, square brackets ([and l) enclose
optional arguments. For example, in the FGET call illustrated above, the
argument for a field index (fidx) is required only to specify a particular field
that is in an indexed field.

For calls that have more than one optional field, omitting one requires you to
omit the others to its right. For example, if you omit the optional field name
argument (fid) in the following call, you must also omit the field value argu­
ment (fual).

CAL..l_ FPFT(term[,fid[,fual]])

CAL.L. "FPFT" USING term[,fid[,fual]].

5-16 Form Driver Programming Requirements and Concepts

For some calls, you can omit the entire list of arguments. For added clarity in
this manual, these calls are listed both with and without the argument lists.
For example, the full syntax of the FPUTAL call is shown as follows:

CALL FPUTAL(fual)

CALL FPUTAL

The Form Driver's high-level language interface does not support null argu­
ment lists in calls. Using the second form of the FPUTAL call above as an
example, the following form is invalid at all times within an FMS application:

CALL FPUTAL() !The null argument form is
!always invalid with FMS.

With FORTRAN IV and FORTRAN IV-PLUS, you can also use the standard
syntax for calling a function subprogram. The function subprogram syntax for
the FGET and FPUTL calls is (fncual stands for the value of the function):

fncual = F GET (fual, term,fid[,fidxl)

fncual ·· F PUTL(fual)

When you use a Form Driver call as a function, the value of the function is the
Form Driver completion status for the call. Section 5.1 explains status and
error checking in more detail.

5. 7 .3 Status and Error Checking

As described fully in Section 6.24, the Form Driver includes a specific call, the
FSTAT call, that returns status codes for the completion status of the last call
that was processed. Table 5-1 lists the status codes and their meanings.

5.8 The Interface for BASIC-PLUS-2

In BASIC-PLUS-2 applications, all numeric values passed to and from the
Form Driver must be integer variables or constants. String values must also
be string variables or constants. When the Form Driver returns a string value,
the length is the length of the field, including any trailing spaces or fill
characters. String values that are shorter than the BASIC-PLUS~2 variables
to which they are assigned are left justified and the fields are blank-filled.
String values that are longer than the variables to which they are assigned are
truncated and cause the Form Driver to set the status code to -22.

BASIC-PLUS-2 programs should use RMS support.

To avoid loss of typeahead, FMS applications must attach the terminal. This
is done by calling the subroutine "WTQIO", the queue I/O request and wait
call (see the description of QIOW$ in the RSX-11M Executive Manual). The
arguments are the same as for the FORTRAN form of the call: INUM is 768
and LUN is the LUN assigned to the terminal for the Form Driver, as shown
in the following example.

CALL WTQIO C7GB'X, ,5·x. 15'X,)

Form Driver Programming Requirements and Concepts 5-17

5.8.1 Arguments for the Calls

Table 5-7 lists typical BASIC-PLUS-2 data types and data structures for
each of the arguments in the Form Driver calls.

Table 5-7: Typical BASIC-PLUS-2 Data Types for Form Driver Argu­
ments

Argument
Abbreviation

CHAN

FID

FIDX

FLEN

FLNM

FNAME

FVAL

IMPURE

LINE

SIZE

STATUS

STAT2

TERM

Purpose, Data Type, and Data Structure

ChannE\l number: integer variable or constant.

Field name: 6-byte string variable or constant.

Field and named data index: integer variable or constant.

Field length: integer variable or constant.

Form library file specification: string variable or constant (the size
depends on application requirements and conventions).

Form name: 6-byte string variable or constant.

Named data value, one or more field values, text for display on the
bottom screen line: string variable or constant (the size depends on
the application).

Impure area: byte array (using the impure area size that the F.orm
Editor and Form Utility report, the size of the array should be 64.
bytes larger than the largest impure area for the forms that the
application uses).

Starting line number for a displayed form: integer variable or con­
stant.

The size of the impure area in bytes.

Call completion status: integer variable.

FCS or RMS system error code: integer variable.

Field terminator code: integer variable or constant.

5.8.2 Syntax for the Calls

All of the Form Driver calls use the CALL statement. Table 5-8 summarizes
the principal purposes and shows the full CALL statement syntax for each
call. The arguments that you must supply are in lowercase letters, and op­
tional arguments are enclosed in square brackets ([and]) . The forms of
calls that have no arguments are listed separately. The argument abbrevia­
tions and purposes are fully described in Table 5-7.

5-18 Form Driver Programming Requirements and Concepts

Table 5-8: Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FCLRSH

FGCF

FGET

FGETAF

FGETAL

FIDATA

FINIT

FINLN

FLCHAN

FLCLOS

FLEN

Summary and Forms

Clears the entire screen and displays the form with the default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL FCLRSH(fnam[,linel)

Returns the field name from the Form Driver argument list (and if
it is an indexed field, its index).

The form is: CALL FGCF(fid[,fidxl)

If a field name is specified, gets and returns the value for the field
and the field terminator used. If no field name is specified, places
the cursor at the lower right corner of the screen and deactivates all
operator responses except the Return and Enter keys.

The forms are:CALL FGET(fval,term,fid[,fidxl)
CALL FGET

Gets and returns the value, field name (and, if the field is indexed,
its index), and the field terminator used for the field that the
operator chooses.

The form is: CALL FGETAF(fval,term,fid[,fidxl)

If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator
used). If no arguments are specified, gets all values from the oper­
ator but only stores them in the impure area.

The forms are: CALL FGETAL(fval[,terml)
CALL FGETAL

Gets and returns the named data value that has the specified
index.

The form is: CALL FIDATA(fidx,fval)

Supplies to the Form Driver the name of the impure area to use
and its size.

The form is: CALL FIN I T(impure,size[,statusl)

Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field
name and the last terminator used.

The form is: CALL FI NLN(fid,fval,term)

Supplies to the Form Driver the 1/0 channel (LUN) to use for
reading a form library file.

The form is: CALL FLCHAN(chan)

Closes the current form library file.

The form is: CALL FLCLOS

Returns the length of the specified field.

The form is: CALL FLEN(flen,fid[,fidxl)

(continued on next page)

Form Driver Programming Requirements and Concepts 5-19

Table 5-8 (Cont.): Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FL OPEN

FNDATA

FOUTLN

FPFT

FPUT

FPUTAL

FPUTL

FRET AL

FRETN

FSHOW

Summary and Forms

Opens the specified form library file.

The form is: CALL FLO PEN(flnm)

Gets and returns the named data value that has the named data
label specified.

The form is: CALL FNOATA(fid,fval)

Displays the specified string of field values in the current line of
the scrolled area that contains the specified field.

The form is: CALL FOUTLN(fid,fval) ·

If the call includes an argument, processes the specified field ter­
minator and identifies the appropriate field as the current field. To
get the name of the field, use the FGCF call.) If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, they will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.

The forms are: CALL FPFT(term[,fid[,fval]])
CALL FPFT

Displays the specified value in the specified field.

The form is: CALL F P LIT (fval,fid[,fidxl)

Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field
in which it is to be displayed and the values must be in the same
order that the FGETAL call would produce for the form. Values
from the string supplied are displayed in the first fields of the form,
and defaults are displayed in any field that remain. If no string of
values is supplied, default values are displayed in all fields.

The forms are: CALL FPUTAL(fval)
CALL FPUTAL

If an argument is specified, displays the specified string on the
bottom line of the screen. If no argument is specified, clears the
bottom line.

The forms are: CALL FPUTL(fval)
CALL FPUTL

Returns the current values for all fields in the form in the same
order that the FGETAL call would produce.

The form is: CALL FRETAL(fval)

Returns the current value of the specified field.

The form is: CALL FRETN(fval,fid[,fidxl)

Clears the part of the screen that the specified form requires and
displays the form with default field values. If a line number is
specified, uses it as the starting line number for the form.

The form is: CALL FSHOW(fnam[,line])

(continued on next page)

5-20 Form Driver Programming Requirements and Concepts

Table 5-8 (Cont.): Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FSPOFF

FSPON

FSTAT

Summary and Forms

Turns off the Supervisor Only mode and allows the operator to
enter and change data in fields to which the Supervisor Only at­
tribute was assigned with the Form Editor.

The form is: CALL FSPOFF

Turns on the Supervisor Only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
was assigned with the Form Editor.

The form is: CALL FSPON

Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an FCS or RMS system error code (depending on the
version of the Form Driver in use) only if the value of the first
argument is -4 or -18, indicating an error while trying to open or
read a form library file.

The form is: CALL FSTAT(status[,stat2J)

5.8.3 Building a BASIC-PLUS-2 Task

Building BASIC PLUS-2 tasks involves editing the command and ODL files
produced by BASIC PLUS-2.

iBASDEM,CMD

Command file to build BASIC+2 Demo

Underlined items are chanses from file built with
BASIC+2 BUILD command.

BASDEM/CP1BASDEM/-SP=-----------BASDEM/MP

Add map file if desired.

UNITS = 14
ASG TI:13:5

Assisn LUN 5 as terminal.
ASG SY:G:7:8:8:10:11:12

Remove LUN 5 from this line.
II

iBASDEM, ODL

TKB Overlay DescriPtion File for BASIC-2 Demo

Underlined items are chanses from file built by
BASIC+2 BUILD command.

,ROOT BIROT1-USER1RMS
USER: , FCTR SY: BASDEM-·LI BR-FORM

Add FMS factor to root
LIBR: ,FCTR LB:C1dJBASIC2/LB

Form Driver Programming Requirements and Concepts 5-21

FORM: .FCTR HLL5P2--FRM1
;---------------------- Add HLL Interface
FRM1~ .FCTR FDt,,JLR'M/L.B-Lf}::[1 ~1]RMSLI5/L..B:F(MSSYM

;---

RMS: ,FCTR 510017
@LB: [1 t1 J5ASIC1

.END

Add FDV and define RMS
S)'illbnls

5.9 The Interface for COBOL-11

In COBOL programs, only data names may be passed as arguments, except in
the cases of FPUTL and FLO PEN. All values that are passed must have been
defined in the data division of the program. No string literals or numeric
constants are allowed.

The COBOL interface assumes two specific data types when passing data to
and from the Form Driver. These data types are:

for strings: left justified sign separate

for numbers: computational

See Section 5-9 for a list of COBOL arguments that shows the necessary data
types. You may create your own data structure provided that you use the
listed data types in your Form Driver calls.

When your program writes text to the bottom of the screen (FPUTL call) or
specifies a form library file (FLOPEN call), the first character of the text
string is the implied delimiter of the string. For example, to output the string
ABCD, create the string "ABCD". The delimiting character may not be used
in the string. For example:

in FPUTL call: "This is a delimited string."

in FLOPEN call: *SYl:MYFILE.TST*

COBOL tasks should use the Form Driver with RMS support.

To avoid loss of.typeahead, FMS applications must attach the terminal. This
is done by calling the subroutine "WTQIO", the queue 1/0 request and wait
call (see the description of QIOW$ in the RSX-llM Executive Manual). The
arguments are the same as for the FORTRAN form of the call: INUM is 768
and LUN is the LUN assigned to the terminal for the Form Driver as shown in
the following example.

INUM PIC 999 COillP value 768,
LUN PIC 9 COillP value 1.

CALL "WTQIO" USING INUM 1LUN +LLJN,

5-22 Form Driver Programming Requirements and Concepts

5.9.1 Using the Form Utility (FUT) to Create the Communication
Structure for a COBOL Program

The Form Utility (FUT) creates the communication structure for a form used
by a COBOL program. (See Chapter 3 on the Form Utility.) In response to the
/CC option, FUT creates a COBOL library file. The output is a text file with
the default file type .LIB.

At compile time, you request the library file by means of a COPY command in
the data division of your program. (See the PDP-11 COBOL Language Refer­
ence Manual for details on the COPY command.)

Group items created by FUT have the same names as the field names in the
form that you are using.

The library file contains the necessary communication structure. If you do not
wish to use the structure provided, you may create your own.

The output of the Form Utility is in terminal format with respect to the
COBOL program. If you want to use conventional format, you must reformat
the file. (See the Reformat utility in the PDP-11 COBOL User's Guide. On
COBOL program formats, see the PDP-11 COBOL Language Reference
Manual.)

Chapter 3 includes an example of the COBOL structure that the Form Utility
can produce.

5.9.2 Arguments for the Calls

Table 5-9 lists typical PDP-11 COBOL data types and data structures for
each of the arguments in the Form Driver Calls.

Table 5-9: Typical COBOL-11 Data Types for Form Driver Arguments

Argument
Abbreviation

CHAN

FID

FIDX

FLEN

FLNM

Purpose, Data Type, and Picture Attributes

Channel number: binary index.
Picture: one word computational, synchronized left.

Field name: 6-character string.
Picture: any character, blank padded, left justified, sign sepa­
rate, synchronized left.

Field and named data index: binary index.
Picture: one word computational, synchronized left.

Field length: binary index.
Picture: one word computational, synchronized left.

Form library file specification: a string whose length is the
length of the file specification plus two characters for the delim­
iters that enclose the specification.
Picture: any character, blank padded, left justified, sign sepa­
rate, synchronized left.

(continued on next page)

Form Driver Programming Requirements and Concepts 5-23

Table 5-9 (Cont.): Typical COBOL-11 Data Types for Form Driver Arguments

Argument
Abbreviation

FNAME

FVAL

IMPURE

LINE

SIZE

STATUS

STAT2

TERM

Purpose, Data Type, and Picture Attributes

Form name: 6-character string.
Picture: any character, blank padded, left justified, sign sepa­
rate, synchronized left.

Named data value, one or more field values, text for display on
the bottom screen line. A string whose length is:
• For a single field value, the length of the field.
• For a string of field values, the sum of the lengths of all fields

to be processsed.
• For a named data value, the length of the named data field

maximum 60- actual length is variable.
• For text to be displayed on the bottom line, the length of the

text plus 2 characters for the delimiters that enclose the text.

Impure area: (using the impure area size that the Form Editor.
and Form Utility report, the size of the subscripted variable
should be 64. bytes larger than the largest impure area for the
forms that the application uses).

Starting line number for a displayed form: binary index.
Picture: one word computational, synchronized left.

The size of the impure area in bytes.

Call completion status: binary index.
Picture: one word signed computational, synchronized left.

FCS or RMS system error code: binary index.
Picture: one word signed computational, synchronized left.

Field terminator code: binary index.
Picture: one word (two bytes) computational, synchronized left.

5.9.3 Syntax for the Calls

All of the Form Driver calls use the CALL statement. Table 5-10 summarizes
the principal purposes and shows the full CALL statement syntax for each
call. The arguments that you must supply are in lowercase letters, and op­
tional arguments are enclosed in square brackets ([and l) . The forms of
calls that have no arguments are listed separately. The argument abbrevia­
tions and purposes are fully described in Table 5-10.

Table 5-10: Listing of COBOL-11 Form Driver Calls

Call
Abbreviation

FCLRSH

Summary and Forms

Clears the entire screen and displays the form with default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL 11 FCLRSH 11 US I NG fnam[,line].

(continued on next page)

5-24 Form Driver Programming Requirements and Concepts

Table 5-10 (Cont.): Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FGCF

FGET

FGETAF

FGETAL

FIDATA

FI NIT

FINLN

FLCHAN

FLCLOS

FLEN

FLOP EN

FNDATA

Summary and Forms

Returns the field name from the Form Driver argument list (and
if it is an indexed field, its index).

The form is: CALL "FGCF" US I NG fid[,fidx].

If a field name is specified, gets and returns the value for the
field and the field terminator used. If no field name is specified,
synchronizes the program with the operator.

The forms are: CALL "F GET" u:; ING fval, term,fid[,fidx].
CALL "FGET",

Gets and returns the value, field name (and, if the field is in­
dexed, its index), and the field terminator used for the field that
the operator chooses.

The form is: CALL "FGETAF" USING fval,term,fid[,fidx].

If the call includes an argument, gets and returns a conca­
tenated string of all field values (and optionally the last field
terminator used). If no arguments are specified, gets all values
but only stores them in the impure area.

The forms are: CALL "FGETM_" US I NG fva[[,term].
CALL "FGETAl..",

Gets and returns the named data value that has the index speci­
fied.

The form is: CALL "FIDATA" USING fidx,fval.

Supplies to the Form Driver the name of the impure area to use
and its size. This call returns its own status code if the third
argument is specified.

The form is: CALL "FIN IT" US I t'~G impure,size[,status].

Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field
name and the last terminator used.

The form is: CALL "FI NLN" US I NG fid,fval,term.

Supplies to the Form Driver the I/O channel (LUN) to use for
reading a form library file.

The form is: CALL "FLCHAN" US I NG chan.

Closes the current form library file.

The form is: CALL "FLCLOS",

Returns the length of the specified field.

The form is: CALL "FLrn" US I NG flen,fid[,fidx].

Opens the specified form library file.

The form is: CALL "FLOPEN'' USING flnm.

Gets and returns the named data value that has the named data
label specified.

The form is: CALL "FNDATA" USING fid,fval.

Fmm Driver Programming Requirements and Concepts 5-25

Table 5-10 (Cont.): Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FOUTLN

FPFT

FPUT

FPUTAL

FPUTL

FRETAL

FRETN

FSHOW

FSPOFF

Summary and Forms

Displays the specified string of field values in the current line of
the scrolled area that contains the specified field.

The form is: CALL 11 FOUTLN 11 USING fid,fval.

If the call includes an argument, processes the specified field
terminator and identifies the appropriate field as the current
field. (To find the current field name, use the FGCF call.) If the
specified terminator is a scrolled area terminator, the name of a
field in the intended scrolled area must be specified, and if a
string of values is specified, they will be displayed on the top or
bottom line of the scrolled area after the terminator is pro­
cessed. If no argument is included, the call processes the last
terminator that was used.

The forms are: CALL 11 FPFT 11 US I NG term[,fid[,fvalll.
CALL 11 FPFT 11 +

Displays the specified value in the specified field.

The form is: CALL 11 FPUT 11 US I NG fval,fid[,fidxJ.

Displays values in all fields of the form. If a concatenated string
of values is supplied, each value must be the same length as the
field in which it is to be displayed and the values must be in the
same order that the FGETAL call would produce for the form.
Values from the string supplied are displayed in the first fields
of the form, and defaults are displayed in any field that remain.
If no string of values is supplied, default values are displayed in
all fields.

The forms are: CALL 11 F PUT AL 11 US I NG fval.
CALL 11 FPUTAL 11 •

If an argument is specified, displays the specified string on the
bottom line of the screen. If no argument is specified, clears the
bottom line.

The forms are: CALL 11 F PUTL 11 US I NG fval.
CALL II F PUTL II •

Returns the current values for all fields in the form in the same
order that the FGETAL call would produce.

The form is: CALL 11 FRETAL 11 USING fval.

Returns the current value of the specified field.

The form is: CALL 11 FRETN 11 US I NG fval,fid[,fidx].

Clears the part of the screen that the specified form requires and
displays the form with default field values. If a line number is
specified, uses it as the starting line number for the form.

The form is: CALL 11 FSHOW 11 US I NG fnam[,line].

Turns off the Supervisor Only mode and allows the operator to
enter and change data in fields to which the Supervisor Only
attribute was assigned with the Form Editor.

The form is: CALL 11 FSPOFF 11 ,

5-26 Form Driver Programming Requirements and Concepts

Table 5-10 (Cont.): Listing of BASIC-PLUS-2 Form Driver Calls

Call
Abbreviation

FSPON

FSTAT

Summary and Forms

Turns on the Supervisor Only mode and prevents the operator
from entering or changing data in fields to which the Supervisor
Only was assigned with the Form Editor.

The form is: CALL "FSPON".

Returns the status code for the last call that was processed as
the value of the first argument. The value of the second argu­
ment is meaningful as an FCS or RMS system error code (de­
pending on the version of the Form Driver in use) only if the
value of the first argument is -4 or -18, indicating an error while
trying to open or read a form library file.

The form is: CALL "FSTAT" USING status[,stat2].

5.9.4 Building a COBOL Task

Below is an example of the command file used to build the non-overlaid
COBOL task CBLDEM. For more information refer to the RSX-llM Task
Builder Manual.

CBLDEM.CMD

Command file to build COBOL demo

E170t40lCBLDEM,[170o30JCBLDEM/-SP=E170t20JCBLDEM

COBOL interface and Form Driver library,

E150t20JHLLCBL1E120120JFDVLRM/LB

LB:El 1llCOBLIB/LBtRMSLIB/LB
I
UNITS=9

LUN 1,1 i 1 1 be the ter111inal.
ASG TI : 1

LUN 3 1,1 i 1 1 be the output file
ASG SY:3

1..1 nit.

Reassisn the loSical unit in the Form Driver.
GBLDEF = T$LUN:1
II

Note that when a COBOL application is task built as indicated, the option
GBLDEF = T$LLN:l produces the following diagnostic message:

TKB -- •DIAG•-MODULE FDVDAT MULTIPLY
DEFINES SYMBOL T$LUN

This is only a warning message and will not impact the application.

Here is a complete sample session to compile and build a COBOL program:

>CBL CBLDEM1CBLDEM=CBLDEM/ERR~l

>TKB @CBLDEM,CMD
>RUr~ CBLDEM

Form Driver Programming Requirements and Concepts 5-27

It is highly recommended that you use the compiler's /ERR:l option because
Form Driver calls allow a variable number of arguments. If you do not use the
/ERR:l switch option, COBOL will produce warnings when you use optional
argument lists. However, the /ERR:l option also suppresses other warning
diagnostics.

If you elect to build an overlaid COBOL application, problems may arise
during task building. This can occur if the COBOL MERGE Utility is used
and the resulting ODL file edited. This is the result of the task builder not
accepting files with lines longer than 80. characters. COBOL MERGE creates
lines which are blank filled to exactly 80. characters. If you use an editor to
modify the ODL file, characters will be inserted and the lines will be longer
than the task builder's maximum. This problem can be solved by deleting all
trailing blanks from any line which is modified by an editor.

The following is an example of the Task Builder command sequence and the
overlay descriptor file for an overlaid COBOL program using FMS. The ODL
file was created by COBOL MERGE and modified to include FMS files.

iTKBODL,CMD

To task build CGUIDE with CGTEMP,ODL

CGUIDE,CGUIDE/-SP/CR=CGTEMP/MP
UNITS=8

LUN 1 will be the terminal.
ASG TI:l

LUN 2,3 willa be the RDWRT outrut files units,
LUN 4 is for fo rr11 1 i b, ars'1 . .lf11ent to routine "FLCHN",

ASG SY:2:3:4
Reassis'n the los'ical unit in the Farm Driver.

GBLDEF = T$LUN:1
//

FRM1: .FCTR FDVLRM.OLB/LB
FORM: .FCTR HLLCBL.OBJ-FRM1
iMERGED ODL FILE CREATED ON 18-JAN-80 AT 15:48:23
iCOBOL STANDARD ODL FILE GENERATED ON:18-JAN-80 15:43:38
iCOBOBJ=CGUIDE.OBJ
iCOBKER=Al
iCOBMAIN

.NAME A1$001 ,GBL

.PSECT $A10011GBL1I .Rw.cm1
A1001$: .FCTR •Ai$001-$A1001
A 10l,lR$; , FCTR A 1001$
iCOBOL STANDARD ODL FILE GENERATED ON: 18-JAN-80 15:45:10
iCOBOBJ=RDWRT.OBJ
iCOBKER=ZZ
iRMSREQ=CI0027

, NAME ZZ$001 , GBL
, PSECT $ZZ001 ,GBL, I ,RW ,CON

ZZOO 1 $: • FCTR •ZZ$001--$ZZOO 1
.NAME ZZ$002,GBL
• PSECT $ZZ002 ,GBL 'I .R~1 .coN

ZZ002$: , FCTR •ZZ$002 ·-$ZZ002
ZZOl,lR$: • FCTR zzoo 1 $,zz002$
CBOBJ$: , FCTR CGU I DE, OBJ-RDWF?T, OBJ
CBOt,lR$:: , FCTR A 10'·,lR$, ZZOt,lR$

5-28 Form Driver Programming Requirements and Concepts

CBOTS$: , FCTR LB: [1 , 1 :J COBOi.JR ! LB
• NAME OTS$01.J

CN1,JRT$: , FCTR LB: [1 , 1 J COBOl,!R ! LB: CONl.JEf~
LDC'·.JT$: , FCTR LB: [1 , 1 l COBOi.JR I LB: LDCl.JT
USRIO$: .FCTR LB:[l ilJCOBOl.JR/LB:USRSIO
OTSOl.J $: , FCTR OTS$01,! ·- (OJl.JRT $-- (*LDCl.JT$) , *USR IO$)
@LB:[l 11JRMS11S.ODL

.NAME RMS$TR
RMSTR$: , FCTR RMS$TR-RMSALL
RMS$: .FCTR RMSROT
OBJRT$: , FCTR CBOBJ$--CBOTS$ FORM-RMS$

, ROOT OB.JRT$- (CBOl,lR$) iRMSTR$ 10TSOI,!$
.END

5.10 The Interface for FORTRAN IV and FORTRAN IV-PLUS

The calling sequences for FORTRAN IV and FORTRAN IV-PLUS are iden­
tical.

Numeric arguments must be one-word integers. If you use real numbers or
bytes instead, the calls do not work properly.

Strings returned from the Form Driver are ASCIZ, and strings input to the
Form Driver must be ASCIZ. "ASCIZ strings" contain a null byte as their last
character. Therefore, programs must allocate an extra byte for data returned
from the Form Driver.

For literals enclosed in quotation marks that are passed as arguments, FOR­
TRAN generates ASCIZ strings. The best way to implement string variables
is by means of byte arrays. The variables can be passed as arguments and
manipulated one character at a time. The data in the array must end with a
null.

All subroutines may be called either as subprograms or as functions. If they
are called as functions, the name of the routine must be declared in an integer
statement or an implicit integer statement (for example, IMPLICIT IN­
TEGER (F)). If called as functions, the subroutines return the status of the
call from the Form Driver on output.

FORTRAN IV-PLUS programs can use the Form Driver with FCS or RMS
support.

FORTRAN IV programs should use the Form Driver with FCS support. To
avoid loss of typeahead, FMS applications must attach the terminal. The
FORTRAN programmer attaches the terminal with the high-level language
interface "WTQIO" call, (see the description of QIOW$ in the RSX-llM
Executive Manual) which is the queue I/0 request and wait call. The INUM
is 768. LUN is the LUN assigned as terminal for the Form Driver.

CALL WTQIO (7681515)

5.10.1 Arguments for the Calls

Table 5-11 lists typical FORTRAN IV and FORTRAN IV-PLUS data types
and data structures for each of the arguments in the Form Driver calls.

Form Driver Programming Requirements and Concepts 5-2~

Table 5-11: Typical FORTRAN IV and FORTRAN IV-PLUS Data
Types for Form Driver Arguments

Argument
Abbreviation

CHAN

FID

FIDX

FLEN

FLNM

FNAME

FVAL

IMPURE

LINE

SIZE

STATUS

STAT2

TERM

Purpose, Data Type, and Data Structure

Channel number: integer variable or constant.

Field name: 7-byte string variable.

Field and named data index: integer variable.

Field length: integer variable.

Form library file specification: string or constant (the size depends
on application requirements and conventions).

Form name: 7-byte string variable or constant.

Named data value, one or more field values, text for display on the
bottom screen line: string variable (the size depends on the appli­
cation).

Impure area: byte array (using the impure area size that the Form
Editor and Form Utility report, the size of the array should be 64.
bytes larger than the largest impure area for the forms that the
application uses).

Starting line number for a displayed form: integer variable or con­
stant.

The size of the impure area array in bytes.

Call completion status: integer variable.

FCS or RMS system error code: integer variable.

Field terminator code: integer variable.

5.10.2 Syntax for the Calls

All of the Form Driver calls use the CALL statement. The function subpro­
gram form can also be used. Table 5-12 summarizes the principal purposes
and shows the full CALL statement syntax for each call. The arguments that
you must supply are in lowercase letters, and optional arguments are enclosed
in square brackets ([and l). The forms of calls that have no arguments are
listed separately. The argument abbreviations and purposes are fully de­
scribed in Table 5-11.

Table 5-12: Listing of FORTRAN IV and FORTRAN IV-PLUS Form
Driver Calls

Call
Abbreviation

FCLRSH

Summary and Forms

Clears the entire screen and displays the form with the default field
values. If a line number is specified, uses it as the starting line
number for the form.

The form is: CALL FCLRSH(fnam[,linel)

(continued on next page)

5-30 Form Driver Programming Requirements and Concepts

Table 5-12 (Cont.): Listing of FORTRAN IV and FORTRAN IV-PLUS Form Driver
Calls

Call
Abbreviation

FGCF

FGET

FGETAF

FGETAL

FIDATA

FINIT

FINLN

FL CHAN

FLCLOS

FLEN

FLO PEN

FNDATA

Summary and Forms

Returns the field name from the Form Driver argument list (and if
it is an indexed field, its index).

The form is: CALL F G CF (fid[,fidxl)

If a field name is specified, gets and returns the value for the field
and the field terminator used. If no field name is specified, syn­
chronizes the program with the operator.

The forms are: CALL FGET(fval,term,fid[,fidx])
CALL FGET

Gets and returns the value, field name (and, if the field is indexed,
its index), and the field terminator used for the field that the
operator chooses.

The form is: CALL FGETAF(fval,term,fid[,fidx])

If the call includes an argument, gets and returns a concatenated
string of all field values (and optionally the last field terminator
used). If no arguments are specified, gets all values but only stores
them in the impure area.

The forms are: CAL.L FGETAL(fval[,term])
CAL.L FGETAL

Gets and returns the named data value that has the index speci­
fied.

The form is: CAL.L F IDATA(fidx,fval)

Supplies to the Form Driver the name of the impure area to use
and its size.

The form is: CALL FIN IT(impure,size[,status])

Gets and returns a concatenated string of the field values for the
current line of the scrolled area that contains the specified field
name and the last terminator used.

The form is: CAL.L. FI NLN(fid,fval,term)

Supplies to the Form Driver the 1/0 channel (LUN) to use for
reading a form library file.

The form is: CALL FL.CHAN(chan)

Closes the current form library file.

The form is: CALL FLCLOS

Returns the length of the specified field.

The form is: CAL.L. FL.EN(flen,fid[,fidxl)

Opens the specified form library file.

The form is: CAL.L FL.OPEN(flnm)

Gets and returns the named data value that has the named data
label specified.

The form is: CAL.L. FNDATA(fid,fval)

(continued on next page)

Form Driver Programming Requirements and Concepts 5-31

Table 5-12 (Cont.): Listing of FORTRAN IV and FORTRAN IV-PLUS Form Driver
Calls

Call
Abbreviation

FOUTLN

FPFT

FPUT

FPUTAL

FPUTL

FRET AL

FRETN

FSHOW

FSPOFF

Summary and Forms

Displays the specified string of field values in the current line of
the scrolled area that contains the specified field.

The form is: CALL FOUTLN(fid,fual)

If the call includes an argument, processes the specified field ter­
minator and identifies the appropriate field as the current field.
(To find the current field name, use the FGCF call.) If the specified
terminator is a scrolled area terminator, the name of a field in the
intended scrolled area must be specified, and if a string of values is
specified, they will be displayed on the top or bottom line of the
scrolled area after the terminator is processed. If no argument is
included, the call processes the last terminator that was used.

The forms are: CALL FPFT(term[,fid[,fualJJ)
CALL FPFT

Displays the specified value in the specified field.

The form is: CALL FPUT(fual,fid[,fidxl)

Displays values in all fields of the form. If a concatenated string of
values is supplied, each value must be the same length as the field
in which it is to be displayed and the values must be in the same
order that the FGETAL call would produce for the form. Values
from the string supplied are displayed in the first fields of the form,
and defaults are displayed in any field that remain. If no string of
values is supplied, default values are displayed in all fields.

The forms are: CALL FPUTAL(fual)
CALL FPUTAL

If an argument is specified, displays the specified string on the
bottom line of the screen. If no argument is specified, clears the
bottom line.

The forms are: CALL FPUTL(fval)
CALL FPUTL

Returns the current values· for all fields in the form in the same
order that the FGETAL call would produce.

The form is: CALL FRETAL(fval)

Returns the current value of the specified field.

The form is: CALL FRETN(fual,fid[,fidxl)

Clears the part of the screen that the specified form requires and
displays the form with default field values. If a line number is
specified, uses it as the starting line number for the form.

The form is: CALL FSHOW(fnam[,lineJ)

Turns off the Supervisor Only mode and allows the operator to
enter and change data in fields to which the Supervisor Only at­
tribute was assigned with the Form Editor.

The form is: CALL FSPOFF

(continued on next page)

5-32 Form Driver Programming Requirements and Concepts

Table 5-12 (Cont.): Listing of FORTRAN IV and FORTRAN IV-PLUS Form Driver
Calls

Call
Abbreviation Summary and Forms

FSPON Turns on the Supervisor Only mode and prevents the operator from
entering or changing data in fields to which the Supervisor Only
was assigned with the Form Editor.

The form is: CALL FSPON

FSTAT Returns the status code for the last call that was processed as the
value of the first argument. The value of the second argument is
meaningful as an FCS or RMS system error code (depending on the
version of the Form Driver in use) only if the value of the first
argument is -4 or -18, indicating an error while trying to open or
read a form library file.

The form is: CALL F ST AT (status [,stat2])

5.10.3 Building a FORTRAN Task

The following command files illustrate how to build FORTRAN tasks:

FORDEM,CMD
Build the FORTRAN demo

FORDEM1FORDEM/CR/-SP=FORDEM

FORTRAN interface and Form Driver library

HLLFOR,FDVLIB/LB

Use FOROTS for Fa or FaPOTS for Fa+,

LB: [1I1 JFOROTS/LB
; ;

i l

FaPFCS,CMD

Build the FORTRAN demo for FORTRAN IV+ usins FCS

;FaPFCS/FP1FaPFCS/CR/-SP=FaPDEM

FORTRAN interface and Form Driuer library

;HLLFOR1FDVLIB/LB

Use FaPFCS for Fa+ with FCS

LB: [1I1 JFaPFCS/LB
//

FaPRMS,CMD

Build the FORTRAN demo for FORTRAN IV+ usins RMS

Form Driver Programming Requirements and Concepts 5-33

;F4PRMS/FP1F4PRMS/CR/-SP=F4PDEM

FORTRAN interface and Form Driuer library

;HLLFOR1FDVLRM/LB

Use F4PRMS for F4+ usins RMS

LB: [1 d :JFtiPRMS/LB

Also include the RMS library

LB:[i 11JRMSUB/LB
//

5.11 The Interface for MACR0-11

In MACR0-11 programs, you can call the Form Driver with the instruction:

JSR PC 1$FDt.J

$FDV is global
RO must point to a list that includes both necessary and function de­
pendent arguments. Table 5-13 summarizes the argument list.

Table 5-13: Offsets and Meanings of Necessary and Function Dependent
Arguments

Offset Meaning

F$FNC One-word function code.

F$REQ One-word required arguments list pointer.

F$NAM One-word pointer to ASCIZ form library file specification or pointer to 6-byte
ASCII form name, field name, or data name.

F$NUM One-word starting line number to display form or index value for field or named
data.

F$TRM One-word field terminator code.

F$VAL One-word data pointer.

F$LEN One-word data length (in bytes).

(F$ASIZ is the size in bytes of the argument list.)

NOTE: The offsets to the arguments in the argument list are defined as global
symbols. The values for the offsets may change between releases of the soft­
ware. For this reason, you should always refer to these offsets by name in your
applications.

You must specify the $FDVDF macro in a .MCALL statement and invoke it
in a MACRO task to define F$ASIZ so that you can use the symbol to allocate
space for the argument list at assembly time. F$RSIZ, below, also is defined
by the $FDVDF macro. The $FDVDF macro is provided in the library.

You must specify a function code (F$FNC) and a pointer to the required
arguments list (F$REQ) for each call to the Form Driver. But you do not need

5-34 Form Driver Programming Requirements and Concepts

to specify all of the remaining arguments for each call. Which arguments you
must supply to the Form Driver depends on which call you are issuing (in
other words, which function code you specify).

On return from the Form Driver, the carry bit is clear if the Form Driver
completed the call successfully and the status code is positive (>0). All regis­
ters are preserved across a call to the Form Driver. If an error occurred, the
carry bit is set and the Form Driver returns an error code in the status block.
If you specified an invalid (undefined) function code, the error code FE$FCD
is returned. Each call description in Chapter 6 includes the errors specific to
that call.

The two necessary arguments in the argument list are F$FNC and F$REQ.
The other arguments listed in Table 5-13 are function dependent arguments.

5.11.1 F$FNC, the MACR0-11 Function Code

Table 5-14 lists the MACR0-11 function codes for the different Form Driver
calls and notes the corresponding high level language calls.

In your application, you should always refer to the functions by the specified
symbols, in order to ensure compatibility with future versions of the software.

Table 5-14: MACR0-11 Function Codes and Meanings

Function
Code

FC$ALL

FC$ANY

FC$CLS

FC$CSH

FC$DAT

FC$GET

FC$GSC

FC$LST

FC$0PN

FC$PAL

FC$PSC

FC$PUT

FC$RAL

FC$RTN

FC$SHO

FC$SPF

FC$SPN

FC$TRM

Meaning

FGETAL - Get the responses for all fields.

FGETAF - Get the response for any field that the user inputs.

FLCLOS - Close form library.

FCLRSH - Clear the entire screen and show the specified form.

FIDATA & FNDATA - Get named data by index or by name.

FG ET - Get the response for the specified field.

FINLN - Get the current line of a scrolled area.

FPUTL - Output data to last line of display.

FLOPEN - Open form library.

FPUTAL - Output data to all fields.

FOUTLN - Output data to the current line of a scrolled area.

FPUT - Output data to a specified field.

FRETAL - Return the contents of all fields.

FRETN - Return the contents of the specified field.

FSHOW - Show the specified form.

FSPOFF - Turn supervisor-only mode off.

FSPON - Turn supervisor-only mode on.

FPFT - Process field terminator.

Form Driver Programming Requirements and Concepts 5-35

5.11.2 F$REQ, the Required Arguments List Pointer

Table 5-15 lists the contents of the required argument list that F$REQ must
point to.

F$REQ points to a required arguments list for all calls that the following
format:

Table 5-15: Required Argument List Offsets and Meanings

Offset Meaning

F$STS One-word status block pointer.

F$CHN One-word channel number (LUN) for form 1/0.

F$IMP One-word pointer to the impure area provided for the Form Driver.

(F$RSIZ is the size in bytes of the required arguments list.)

You must use the $FDVDF macro to define F$RSIZ at assembly time.
F$RSIZ should be used to allocate space for the required arguments list.

5.11.2.1 F$STS, the Status Block Pointer - This word points to a 2-word status
block that the Form Driver maintains for each active call. The first word of
the status block reflects the status of a call to the.Form Driver as follows:

>0 - Successful completion
<0 - Error encountered

Table 5-1 in Section 5.1.1 lists the MACR0-11 status codes and their mean­
ings.

Your MACR0-11 application should always use the global symbols listed in
Table 5-1 in order to ensure compatibility with future versions of the soft­
ware. Values are also given for each symbol only because it is not possible to
refer to the global symbols from high-level language programs.

If the first word of the status block contains FE$IOL or FE$IOR, the code
corresponding to the specific error is returned in the second word. See RMS or
FCS documentation for a list of these error codes. (MACRO tasks may use
either RMS or FCS, depending on which one you have configured your version
of the Form Driver to use.)

5.11.2.2 F$CHAN, the Form Channel Number - This word contains the
channel number (LUN) information that the Form Driver uses to access a
form library.

5.11.2.3 F$1MP, the Impure Area Pointer - This word points to the beginning
of the impure area available to the Form Driver. The impure area is used to
store information pertaining to the current form and operator responses in the

5-36 Form Driver Programming Requirements and Concepts

context of that form. The first word of the impure area must contain its total
length in bytes. Both the Form Editor's form-wide attributes questionnaire
and the listing of your form that the Form Utility (FUT) produces in response
to the /FD option tell you the length of the necessary impure area.

In order to preserve the context of a form, the impure area pointer must be the
same for all calls to the Form Driver that refer to that form. Your program
may not modify the impure area, which is reserved for use by the Form Driver.

5.11.3 Function-Dependent Arguments

For each function code, a different set of function dependent arguments may
be required. In the file descriptions of each call in Chapter 6, the required and
optional arguments are listed in full.

Table 5-16 summarizes all of the MACR0-11 function dependent arguments
and the following sections describe them in detail.

5.11.3.1 F$NAM, the Name Pointer - This argument points to various names;
which name depends on the call it is associated with.

In a call to open a form library, F$NAM on input contains a pointer to the file
specification for the form library. The file specification must be an ASCII
string terminated with a null.

In a call to display a form, F$NAM on input contains a pointer to a 6-byte
ASCII form name. The name must be left-justified, with unused positions
blank-filled.

In a call that requires a field name, F$NAM points to the 6-byte ASCII field
name associated with the field when the form was defined.

In a call to get named data, F$NAM points to a 6-byte ASCII data name that
you specified by means of the Form Editor.

5.11.3.2F$NUM, the Line Number and Field Index - F$NUM may contain two
kinds of information, depending on whether the call displays a form or re­
quires a field name.

In a call to display a form, F$NUM on input contains a line number from 0 to
23 specifying the line on the screen at which the form is to begin when dis­
played.

In calls that require a field name, F$NUM is used to pass a field index
identifying the specific field between the Form Driver and the application
task. The field index is a positive integer specifying the element referred to for
a field defined as an array. For fields that are not defined as arrays, the Form
Driver ignores the index value and returns it to the application task as 1.

5.11.3.3 F$VAL, Data Value Pointer - In a call to output data (to a specified
field, to all fields, or to the last line) F$VAL on input contains a pointer to the
data to be displayed. But if the corresponding length of data (F$LEN) is zero,
the Form Driver ignores F$V AL and uses default values.

Form Driver Programming Requirements and Concepts 5-37

On return from a call to get data (get a field, get any field, get all fields, return
a specified field or all fields, or get named data), $FVAL contains a poinler
into the Form Driver impure area to the data requested.

5.11.3.4 F$LEN, the Data Length - You must provide the data length in bytes
for all calls to output data. The Form Driver uses a length greater than zero as
the length of the data to output. The F$VAL argument points to this data.

The Form Driver uses a length less than zero as an indicator that the data
ends with a null. See descriptions of individual calls for use of a length of zero,
which specifies that default values are to be used.

For all calls to get data, the Form Driver returns the data length in bytes in
F$LEN. Responses returned to the calling task are always the length of the
field (minus field-marker characters) and are blank-filled or zero-filled ac­
cording to the field definition.

5.11.3.5 F$TRM, the Field Terminator Code - F$TRM is one word in which the
Form Driver returns to your task an integer code for the key that the operator
used to terminate a field entry. The argument is also input for the FPFT call.

Table 5-2 in Section 5.2.1 summarizes the field terminator keys, codes, and
meanings. Table 5-14 summarizes the codes for the alternate keypad mode
terminators. Values of the terminators are given for use by high level language
tasks, which cannot refer to global symbols. These are also the terminators
that the FPFT call processes.

5.11.4 Keyword Encoded Macros

In ord,er to simplify the interface to the Form Driver for the MACR0-11
programmer, the software provides the following keyword macro in the macro
library FMSMAC.MLB:

Table 5-16 summarizes the requirements and meanings of the keywords and
shows the relationships between the keywords on input and the global offsets
for function dependent arguments on output. The high level language argu­
ments are also listed in Table 5-16 to show the correspondence between them
and the MACR0-11 counterparts.

Table 5-16: Summary of Arguments, Keywords, and Offsets for High
Level Language and MACR0-11 Form Driver Calls

High-Level
Language
Argument

Abbreviation

Inputs

MACR0-11
Keyword

or
Offset

ARG

REQ

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

(continued on next page)

5-38 Form Driver Programming Requirements and Concepts

Table 5-16: Summary of Arguments, Keywords, and Offsets for High Level Language
and MACR0-11 Form Driver Calls

High-Level
Language
Argument

Abbreviation

CHAN

FID

FIDX

FLNM

FNAME

FVAL

IMPURE

LINE

TERM

Outputs

MACR0-11
Keyword

or
Offset

*None

NAM

NUM

LEN

NAM

NAM

VAL

*None

NUM

TRM

Requirement or Value

A channel number for a form library file.

A field name or a named data label, 6 char­
acters long, including padding (for FOR­
TRAN IV and FORTRAN IV-PLUS, add a
NULL byte also). For MACR0-11 only a
pointer to a 6-byte ASCII field name or
named data label. To specify a scrolled area,
use the name of any field in the scrolled
area.

A field index for the specified field (when the
field is indexed) or the index for a named
data value.

(An input value for MACR0-11 only) the
total length of the data to be displayed. The
value must be -1 for ASCIZ strings and 0 for
restoring default values or clearing the last
line of the screen.

A form library file specification. For
MACR0-11 only, a pointer to an ASCIZ
form library file specification.

A form name, 6 characters long, including
padding (for FORTRAN IV and FORTRAN
IV-PLUS, add a NULL byte also). For
MACR0-11 only a pointer to a 6-byte ASCII
form name.

As an input value, the single value or the
concatenated values to be displayed:

• in a field.
• in the top, bottom, or current line of a

scrolled area.
• in the last line of the screen.
• in an entire form.

The name of a subscripted variable (or
array) of bytes for the impure area.

The explicit starting line number for the
form, overriding the line number assigned
with the Form Editor.

As an input value, the numeric code for the
terminator that the Form Driver is to pro­
cess.

[The Status Code is set for all calls. Most calls are processed by the Form Driver, and for
these (with MACR0-11 only) RO points to the Argument List when the call processing is
complete.]

(continued on next page)

Form Driver Programming Requirements and Concepts 5-39

Table 5-16: Summary of Arguments, Keywords, and Offsets for High Level Language
and MACR0-11 Form Driver Calls

High-Level
Language
Argument

Abbreviation

FID

FIDX

FLEN

FVAL

TERM

STATUS

STAT2

MACR0-11
Keyword

or
Offset

F$NAM(RO)

F$NUM(RO)

F$LEN(RO)

F$VAL(RO)

F$TRM(RO)

*None

*None

Requirement or Value

A named data label or the current field
name. For MACR0-11 only, a pointer to a
named data label or data name.

A field index.

For the FLEN high-level language call, the
length of a specified field (not the length of
the data the field contains). For MACR0-11
calls, the total length of the fields for which
values are returned by the Form Driver,
such as:

• a named data value.
• a single field.
• all fields in one line of a scrolled area.
• all fields in a form.

A named data value, a single field value, or
a concatenated string that is composed of
several field values (including padding when
a value is shorter than its field). For
MACR0-11 only, a pointer to the value or
string in the impure area.

The numeric code for the key that the oper­
ator used to terminate input:

• in a field.
• in a line in a scrolled area.
• in an entire form.

A numeric code for the completion status of
the last call that was executed.

A numeric RMS or FCS status code for de­
tailed information when the STATUS value
is -4 or -18 (for MACR0-11, the equivalent
codes are FE$IOL and FE$IOR).

*For MACR0-11 only, the channel number and pointers to the impure area and status block
must be specified in the Required Arguments List.

The $FDV macro should be used in accordance with the keyword calling
convention of MACR0-11. The argument names correspond to the last three
characters of the global argument list offsets defined by the Form Driver.

The information that follows should enable you to use the $FDV macro in
most instances. For further details about calling macros with keyword argu­
ments, see the PDP-11 MACR0-11 Language Reference Manual.

5-40 Form Driver Programming Requirements and Concepts

All arguments to the $FDV macro must be in. the form of instruction source
operands to be used in MOV instructions on the source operand side as shown
below:

M 0 \,J arg, destination

The destination of all the arguments is either RO, in the case of ARG, or
F$xxx(RO) in the case of all other arguments, where xxx is the name of the
argument. Any arguments that do not appear in the macro call are not
changed in the argument list by the macro expansion.

Since the list of arguments to the macro may be quite long, a single call to the
Form Driver may be broken up into several calls to the macro. If the FNC
argument specifying the function code is missing, the call to the Form Driver
is not generated, and the next call to the macro can fill in further arguments.
Argument blocks should be built at execution time or by symbolic means at
assembly time.

The following macro call loads the required arguments list pointer into the
argument list. Loading the pointer normally needs to be done only once in a
program.

$FDt,J ARG =arglst, REQ =reqlst

As a result of this call, RO points to the specified argument list. The Form
Driver is not called by the macro call.

The following variations on a call to the Form Driver to write data to a
specified field (FPUT) illustrate the syntax of the $FDV macro:

Example 1

.MCALL SFDV1SFDVDF
SFDl,lDF DEF I NE ARGUMENT LI ST

SIZES
(FSASIZ AND FSRSIZ)

Initialize reciuired arsur11ents list

MOl,l #REQLST1RO

MDV #STAT1FSSTS<RO)
STATUS BLOCK PO INTER

REQUIRED ARGUMENTS LI ST
POINTER

MOl,l # 1 1FSCHN (RO l LI BR ARY CHANNEL NUMBER
MDV #IMPURE1FSIMPIROl

IM PURE AREA PO INTER
SFDV ARG=#ARGLST1REQ=#REQLST

PUT REQ ARG

LIST PTR IN ARG LIST
SFDV ARG=#ARGLST1FNC=PUT1VAL=#BUFFER1LEN=DATLN1

NAM=#FLD11NUM=#1

Form Driver Programming Requirements and Concepts 5-41

In this call, the argument list is ARGLST, the function is FC$PUT, the data
to output is in BUFFER, the data length is in Di~ .. TLl'!, the field name is in
FLDl, and the index is 1. The following data are associated with the call.

ISIZ = 1024+
BUFFER: , ASCII
DATLN: , WORD
FLD1: +ASCII
ARGLST: , BLKB

REOLST: , BLKB

IMPURE: , WORD
.BLKB

/TEN CHARS? I
10.
/FIELD1/
F$ASIZ

F$RSIZ

ISIZ
ISIZ-2

STAT: .BLKW 2

Example 2

iDATA
LENGTH OF DATA
FI ELD NAME (G CHARS)
ALLOCATE SPACE FOR
ARGUMENT LI ST
ALLOCATE SPACE FOR
REQ ARG LST
SIZE OF IMPURE AREA IN BYTES
THE IMPURE AREA

i 2 WORD STATUS BLOCK

The call in Example 1 may be broken into two lines as follows:

$FDV ARG=#ARGLST1VAL=#BUFFER1LEN=DATLN
$FDV FNC=PUT1NAM=#FLDl 1NUM=#l

After the first call to the macro, the Form Driver is not called because the
function code (FNC=PUT) is not included. It is the second call to the Form
Driver that, in addition to providing values for further arguments, calls the
Form Driver.

Example 3

In the following example of an FPUT call below, RO is assumed to point to the
argument block.

1. The field name is in FLDl.

2. The index is in R2.

3. The data to output is pointed to by Rl.

4. The length is pointed to by R3.

5. R3 is advanced by the call.

$FDV FNC=PUT1NAM=#FLDl 1NUM=R21VAL=R11LEN=CR3)+

This way of issuing the macro call is an alternative to those shown in the first
two examples.

Chapter 6 describes each call to the Form Driver in detail.

5-42 Form Driver Programming Requirements and Concepts

5.11.5 Special Information for 1/0 from a MACR0-11 Program

A MACR0-11 program may use either RMS or FCS. The program must
initialize FCS before calling the Form Driver if media resident forms are used.
(See the RSX-11M 1/0 Operations Manual, Chapter 2 for details.) If RMS is
chosen, the program must initialize RMS with a call to the $INIT or $INITIF
macros if media resident forms are used.

To avoid loss of typeahead in MACR0-11 programs using the Form Driver,
attach the terminal with the QIO system directive.

Example: QIOW$S #lO+ATT t#5 1#5

5.11.6 Program Sections Used by FMS

The following PSECT names are reserved for use by FMS.

PSECT Usage

$$FMS Task specific data and buffers

$$FMSV Offsets to vector area

$$FMSB Offsets to buffer descriptor

$$FMS1 Data areas for form driver

$FIDX$ Memory resident form index

$FIDY$ End of memory resident form index

$FORM$ Memory resident form descriptions

.FDV. Form driver and support code

$FDARG Argument list definitions

$RQARG Required argument list definitions

$FNCOD Function code definitions

$SYCOD Success code definitions

$LNCOL Line column definitions

$FLDSC Field descriptor offsets

$IMP HD Impure area header offsets

$HLLDFN High-level language call definitions

$HLL High-level language/FDV Interface

.ERR. Error messages

.DBG. Debug error messages

Form Driver Programming Requirements and Concepts 5-43

Three PSECTs are used to keep information about memory resident forms.

$FIDX$ Form Index
$FIDY$ End ofForm Index
$FORM$ Form Descriptions

A pointer in the Form Driver data area 1 FDVDAT) points to the form index
PSECT $FIDX$. FDVDAT must be the first contribution to this PSECT.
That is, it must be referenced in the task build command before any of the
memory resident forms. PSECTs must be ordered such that $FIDX$ and
$FIDY$ are adjacent. This is normally the case since PSECTs are normally
ordered alphabetically.

Any of these PSECTs may be in overlays, but $FIDX$ and $FIDY$ are nor­
mally in the root. It is quite reasonable to place forms in overlays. The index
entries will be pulled into the root since $FIDX$ and $FIDY$ have the GBL
attribute.

5.11. 7 Form Driver Conditionals

All Form Driver conditionals are in the file FSYCND.MAC. The values of the
following conditionals are set by the- configuration procedure.

Symbol Default Meaning

DRB$N

FDB$N

RMSl$0

1 BUFS$B 1 Buffer size in blocks.

1

1

0

Number of directory buffers.

Number of form libraries which can be open simultaneously.

0 for FCS
1 for RMS

Terminal support code varies for the systems which FMS supports. This
conditional selects the terminal service required.

Symbol Value Meaning

0 TIOT$P 0 RSX-UM Half duplex driver (V3.1).

1 RSX-UM, M+ Full duplex driver.

2 Reserved.

4 Reserved.

The default is 1.

The Form Driver uses several conditionals for internal processing of event
flags and 1/0 management. The following table lists the conditionals and their
default values.

5-44 Form Driver Programming Requirements and Concepts

Symbol Default Meaning

0 RESL$B 0 FDVDAT conditional data and offsets.

1 Library offsets.

2 Data only for task.

IOE$F 32 Event flag for form library 1/0.

TLU$N 5 Terminal LUN.

TEF$N 31 Terminal output event flag.

TIEF$N 30 Terminal input event flag.

5.11.8 Event Flags

The terminal event flags (TEF$N and TIEF$N) are selected to not interfere
with event flags used by the task for other purposes.

5.11.9 Building a MACR0-11 Program

When assembling MACR0-11 programs, include the macro library

FMSMAC/ML

in the command line to resolve MACR0-11 definitions for $FDV and other
FMS macros.

The following TKB command file illustrates task building a MACR0-11 pro­
gram:

MACTKB, CMD

Task Build the Macro version of the DEMO aPPlication

MACDEM1MACDEM/-SP=MACDEM1FDVLIB/LB
I
UNITS=7
MA>(BUF=512
II

Form Driver Programming Requirements and Concepts 5-45

Chapter 6
Form Driver Calls

A flexible set of Form Driver calls provide functions that display forms, dis­
play data in fields, and handle terminal input. (Additional calls are provided
for high-level language programs only.) The descriptions below show what
each call does, what input arguments it requires, and what output it returns
to your task. For each call, syntax in high-level languages and MACR0-11 is
indicated.

See Chapter 5 for information on each programming language.

6.1 FCLRSH - Clear Entire Screen and Display Form

The Form Driver clears the entire screen and displays the specified form as
described under FSHOW.

BASIC-PLUS-2 and FORTRAN Call

CALL FCLRSH(fnam[,linel)

COBOL Call

CALL 11 FCLRSH 11 US I NG fnam[,lineJ.

MACR0-11 Call

$FDV ARG =arglst, FNC = CSH t RE Q =reqlst, NAM =form, NUM =line

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FNAME

LINE

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

NUM

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A form name. For MACR0-11 only, a
pointer to a 6-byte form name.

The explicit starting line number for the
form, overriding the line number assigned
with the Form Editor.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

6-1

Returned Status Values and Codes

Status Value
High-Level Status Code
Languages (MACR0-11)

1 FS$SUC
- 6 FE$ICH
- 7 FE$FCH
- 8 FE$FRM
- 9 FE$FNM
-10 FE$LIN
-18 FE$IOR

-20 none

-21 none

Meaning

Successful completion
Invalid channel number specified
Form library not open on specified channel
Invalid form definition
Specified form does not exist
Invalid first line number to display form
Error encountered reading form library (an FCS or
RMS system error code that provides more detail
can be found with the FSTAT call and is returned
in the second word of the Status Block)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.2 FGCF - Return the Current Field Name

The FGCF call does not call the Form Driver. It merely returns arguments
from the Form Driver argument block. FGCF is to be used in conjunction with
the FGET call to allow immediate processing of fields and immediate feed­
back to the terminal operator (as well as implementing scrolling.)

In a high-level language task, this call must follow a call to process a field
terminator if you wish to access the name of the new current field and its
index value.

There is no MACR0-11 equivalent for this call.

BASIC-PLUS-2 and FORTRAN Call

CALL FGCF (fid[,fidx])

COBOL Call

CALL 11 FGCF 11 US I NG fid[,fidx].

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

None.

6-2 Form Driver Calls

MACR0-11
Keyword

or
Offset Requirement or Value

Outputs

FID

FIDX

(An output value for high-level languages
only) The field name for the current field.

(An output value for high-level languages
only) The field index for the current field
(when that field is an indexed field).

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-20

-21

-22

Status Code
(MACR0-11)

FS$SUC

none

none

none

Meaning

Successful completion

(For high-level language programs only)

Wrong number of arguments in call

(For high-level language programs only)

Impure area not yet initialized

(BASIC-PLUS-2 only) Returned string is longer

than the declared variable length

6.3 FGET - Get the Value from the Specified Field

The Form Driver places the cursor in the initial position of the specified field
and accepts input by the operator in that field. (Section 4.2.2.2 describes the
initial cursor position for fields that have different attributes.) When the
Form Driver returns control to the application, the specified field is the cur­
rent field.

If the first character of the field name that you specify is an asterisk (*), the
Form Driver sets as the current field the first field in the form that is not
Display-Only and not within a scrolled area. The field name and index value
for that field are returned to your task. A high-level language program must
use the FGCF call to get the field name and index.

If you do not specify a field name, the Form Driver places the cursor in the
lower right corner of the screen and waits for the operator to press the ENTER
key, indicating that he or she is ready to proceed and the field terminator code
0 (or, for MACR0-11 only, FT$NTR) is returned to your program. This "spe­
cial get" call is a way of synchronizing the operation of your program with the
pace of the terminal operator.

BASIC-PLUS-2 and FORTRAN Call

CAL. L F GET (fval, term,fid[,fidx])

CALL FGET

COBOL Call

CALL 11 FGET 11 US I MG fval,term,fid[,fidxJ.

CALL II FGET II

Form Driver Calls 6-3

MACR0-11 Call

$FDV ARG =argist, FNC =GET , REQ =reqist, NAM ={id, NUM =idx

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

FIDX

Outputs

None.

FVAL

TERM

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

NUM

None.

F$LEN(RO)

F$NAM(RO)

F$NUM(RO)

F$VAL(RO)

F$TRM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A field name. For MACR0-11 only, a
pointer to a 6-byte ASCII field name.

A field index for the specified field (when the
field is indexed).

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) The
length of the field.

(An output value for MACR0-11 only)
When the input field name begins with an
asterisk (*), a pointer to the 6-byte ASCII
name of the field name for the first field that
is not Display Only and not within a scrolled
area.

(An output value for MACR0-11 only)
When the input field name begins with an
asterisk (*), the field index for the first field
that is not Display Only and not within a
scrolled area (when that field is an indexed
field).

The field value, including padding.

The numeric code for the key that the oper­
ator used to terminate input in the field.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
- 6
- 7

-11

6-4 Form Driver Calls

Status Code
(MACR0-11)

FS$SUC
FE$ICH
FE$FCH
FE$FLD

Meaning

Successful completion
Invalid channel number specified
Form library not open on specified channel
Specified field does not exist (invalid field name or
index)

-12
-13
-18

-20

-21

-22

FE$NOF
FE$DSP
FE$IOR

none

none

none

No fields defined for current form
Get call illegal for display only field(s)
Error encountered reading form library (an FCS or
RMS system error code that provides more detail
can be found with the FSTAT call and is returned
in the second word of the Status Block)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.4 FGETAF - Get the Value for Any Field

The Form Driver waits for the operator to respond to any field. The operator
can move the cursor to any field that is not Display Only. The Form Driver
accepts as valid responses either the ENTER key alone or any field terminator
entered in a field that has been modified by the operator. The field that is
entered becomes the current field.

The FGETAF call is invalid for a form that contains a scrolled area.

BASIC-PLUS-2 and FORTRAN Call

CALL FGETAF(fval, term, fid[,fidx])

COBOL Call

CALL "FGETAF" US I NG fval,term,fid[,fidxJ.

MACR0-11 Call

$FDV ARG=a~b~FNC=ANY1REQ=~qbt

Inputs and Outputs
High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

FID

FIDX

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

F$NAM(RO)

F$NUM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

The field name for the field in which the
operator responds. (For MACR0-11 only, a
pointer to the 6-byte ASCII field name.)

The field index for the field in which the
operator responds (when that field is an in­
dexed field).

Form Driver Calls 6-5

FVAL

TERM

F$LEN(RO)

F$VAL(RO)

F$TRM(RO)

The length of the field.

The field value, including padding.

The numeric code for the key that the oper­
ator used to terminate input in the field.

Returned Status Values and Codes

Status Value
High-Level Status Code
Languages (MACR0-11)

1 FS$SUC
- 6 FE$ICH
- 7 FE$FCH
-12 FE$NOF
-13 FE$DSP
-18 FE$IOR

-19 FE$IFN
-20 none

-21 none

-22 none

Meaning

Successful completion
Invalid channel number specified
Form library not open on specified channel
No fields defined for current form
Get call illegal for display only field(s)
Error encountered reading form library (an FCS or
RMS system error code that provides more detail
can be found with the FST AT call and is returned
in the second word of the Status Block)
Specified call invalid in current context of form
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.5 FGETAL - Get All Field Values

Beginning with the first field in the form, the terminal operator may move
about the form and enter and change values in any fields that he or she
chooses. The Form Driver waits for the operator to press the ENTER key as a
signal that he or she has completed the entire form. The values of all fields are
then returned to your program as a concatenated string of the default values
and new entries that are displayed. Fields are returned in left-to-right, top-to­
bottom order, except when a form contains vertically indexed fields. See
Sections 4.1.7 on the order of return for indexed fields.

Normally, when a form includes fields with the Response Required or Must
Fill attribute, the fields must be completed before the Form Driver will return
to the program. Otherwise, a message is displayed, the bell rings, and the
cursor is located at the first incomplete field.

However, when the program has set the VTlOO to the alternate keypad mode,
the alternate keypad mode terminators are always passed immediately to the
program. Section 4.2.2 describes the alternate keypad mode feature.

6-6 Form Driver Calls

The FGETAL call with no arguments only stores the values for all fields in the
Form Driver impure area. You can then access the values with the FRETN or
FRETAL call. The calls are described later in this chapter.

The FGETAL call is invalid for a form that contains a scrolled area.

BASIC-PLUS-2 and FORTRAN Call

CALL FGETAL(fval[,term])

CALL FGETAL

COBOL Call

CALL "FGETAL" US I NG {val[, term].

CALL "FGETAL"

MACR0-11 Call

SFDV ARG=a~~~FNC=ALL1REQ=~q~t

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

FVAL

TERM

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

F$LEN(RO)

F$VAL(RO)

F$TRM(RO)

Returned Status Values and Codes

Status Value
High-Level
Languages

Status Code
(MACR0-11)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) the
total length for all fields in the form.

The concatenated values for all fields in the
form. For MACR0-11 only, a pointer to the
concatenated values in the impure area.

The numeric code for the key that the oper­
ator used to terminate input in the form.

Meaning

1
- 6

FS$SUC
FE$1CH
FE$FCH

Successful completion
Invalid channel number specified

- 7 Form library not open on specified channel

Form Driver Calls 6-7

-12 FE$NOF

-13 FE$DSP
-18 FE$IOR

-19 FE$IFN
-20 none

-21 none

-22 none

No fields defined for current form
Get call illegal for display only field(s)

Error encountered reading form library (an FCS or
RMS system error code that provides more detail
can be found with the FST AT call and is returned

in the second word of the Status Block)
Specified call invalid in current context of form
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)

Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.6 FIDATA - Get Named Data by Index

This call accesses named data by using the index into the named data rather
than the name of the data.

BASIC-PLUS-2 and FORTRAN Call

CALL FIDA TA <fidx, fual)

COBOL Call

CALL 11 F ID AT A 11 US I NG fidx,fual.

MACR0-11 Call

$FDV ARG =arglst, FNC =DAT , REQ=reqlst, NAM=#O, NUM =num

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FIDX

Outputs

None.

6-8 Form Driver Calls

MACR0-11
Keyword

or
Offset

ARG

REQ

NUM

NAM

None.

F$NAM(RO)

F$LEN(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The index for a named data value.

(An input value for MACR0-11 only) for
this call, the value of the NAM keyword
must be 0.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) a
pointer to the named data label in the im­
pure area.

(An output value for MACR0-11 only) The
length of the named data value.

FVAL F$VAL(RO) The named data value for the index re­
quested. For MACR0-11 only, a pointer to
the named data value in the impure area.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-15
-20

-21

-22

Status Code
(MACR0-11)

FS$SUC
FE$DNM
none

none

none

Meaning

Successful completion
Named data specified does not exist
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.7 FINIT - Initialize Impure Area for High-Level Language
Tasks

The FINIT call specifies the space for the impure area. The FINIT call must
precede any other Form Driver calls in a program.

For the size of the impure area, use the size reported by the Form Editor for
the largest form that your program uses, and add 64 bytes. The high level.
language interface uses the first 64 bytes of the impure area for the argument
list for Form Driver calls.

BASIC-PLUS-2 and FORTRAN Call

CALL FIN I T(impure, size[, status])

COBOL Call

CALL 11 FINIT 11 US I NG impure, size[,status).

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

IMPURE

SIZE

Outputs

MACR0-11
Keyword

or
Offset

* None

Requirement or Value

The name of a subscripted variable (or ar­
ray) of bytes for the impure area.

The size of the impure area.

STATUS * None A numeric code for the completion status of
the call.

•For MACR0-11 only, the pointers to the impure area and status block are contained in the
Required Arguments List.

Form Driver Calls 6-9

Returned Status Values and Codes

Status Value
High-Level
Languages

1

- 2
-20

Status Code
(MACR0-11)

FS$SUC
FE$IMP
none

Meaning

Successful completion
Impure area too small
(For high-level language programs only)
Wrong number of arguments in call

6.8 FINLN - Get Current Line of Scrolled Area

Within the current line of the specified scrolled area, the Form Driver usually
places the cursor at the initial position of the first field that is not Display
Only. However; if the last call to the Form Driver was an FPFT call to process
the terminator to scroll backward to the previous field (value=7, MACR0-11
global = FT$SPR), the cursor is placed at the initial position of the last field
on the line that is not display only. The terminal operator may complete the
line to his or her satisfaction. The Form Driver then returns the contents of
the line as a concatenated string of field values.

BASIC-PLUS-2 and FORTRAN Call

CALL FINL N(fid, {val[, term])

COBOL Call

CALL "FINLN" USING fid,fval[,term].

MACR0-11 Call

$FDl.l ARG =arglst, FNC = GSC t REQ =reqlst, NAM =fld

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

Outputs

None.

6-10 Form Driver Calls

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

None.

F$LEN(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A field name for any field within the scrolled
area to be processed. For MACR0-11 only, a
pointer to a 6-byte ASCII field name.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) the
total length of all fields in the line.

FVAL

TERM

F$VAL(RO)

F$TRM(RO)

The values for all fields in the line, conca­
tenated from left to right. For MACR0-11
only, a pointer to the concatenated values in
the impure area.

The numeric code for the key that the oper­
ator used to terminate input in the line.

Returned Status Values and Codes

Status Value

High-Level Status Code
Languages (MACR0-11)

1 FS$SUC
- 6 FE$ICH
- 7 FE$FCH
-11 FE$FLD

-14 FE$NSC

-18 FE$IOR

-20 none

-21 none

-22 none

Meaning

Successful completion

Invalid channel number specified

Form library not open on specified channel

Specified field does not exist (invalid field name or

index)

Specified field not in scrolled area

Error encountered reading form library (an FCS or

RMS system error code that provides more detail

can be found with the FST AT call and is returned
in the second word of the Status Block)

(For high-level language programs only)

Wrong number of arguments in call

(For high-level language programs only)

Impure area not yet initialized

(BASIC-PLUS-2 only) Returned string is longer

than the declared variable length

6.9 FLCHAN - Set Channel (LUN) for Form Library File

The FLCHAN call sets the channel (LUN) to be used to open or access a form
library file. The FLCHAN call must be issued after the FINIT call and before
the first FLOPEN call.

The FLCHAN call has two uses: it sets the channel for the next FLO PEN call,
and it sets the channel on which forms will be accessed by FSHOW and
FCLRSH calls. More than one form library file can be open at one time by
using FLCHAN to switch channels between FLOPEN calls. Forms can be
selected from one of several libraries by using FLCHAN to select the desired
library before the FSHOW or FCLRSH call. The library channel should not
be switched until just before the next call to show a form, since operator help
or screen refresh functions require re-accessing of the form description for the
current form that the operator is using.

The channel named must be legal for the program and must have been desig­
nated as such when the program was built.

BASIC-PLUS-2 and FORTRAN Call

CALL FLCHAN (chan)

Form Driver Calls 6-11

COBOL Call

CALL 11 FLCHAN 11 US I NG chan.

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

CHAN

Outputs

None.

MACR0-11
Keyword

or
Offset

* None

Requirement or Value

A channel number for a form library file.

• For MACR0-11 only, the channel number is specified in the Required Arguments List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-20

-21

Status Code
(MACR0-11)

FS$SUC
none

none

Meaning

Successful completion
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.10 FLCLOS - Close Form Library

The Form Driver closes the form library open on the current channel (LUN).

BASIC-PLUS-2 and FORTRAN Call

CALL FLCLOS

COBOL Call

CALL II FLCLOS II •

MACR0-11 Call

$FDl..' ARG=a~btFNC=CLS1REQ=~qbt

6-12 Form Driver Calls

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
- 6
- 7

-20

-21

Status Code
(MACR0-11)

FS$SUC
FE$ICH
FE$FCH
none

none

Meaning

Successful completion
Invalid channel number specified
Form library not open on specified channel
(For high-level language programs only)

Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.11 FLEN - Return the Length of the Specified Field

The FLEN call returns the length of the specified field. The high level lan­
guage forms of the call are the only ones that exist. No MACR0-11 equivalent
is supplied.

BASIC-PLUS-2 and FORTRAN Call

CALL FLEN(flen, fid[,fidxl)

COBOL Call

CALL 11 FLEN 11 US I NG flen, fid[,fidx].

Form Driver Calls 6-13

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

FIDX

Outputs

FLEN

MACRO-ll
Keyword

or
Offset Requirement or Value

A field name.

A field index for the specified field (when the
field is indexed).

The field length.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-20

-21

Status Code
(MACRO-ll)

FS$SUC
none

none

Meaning

Successful completion
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.12 FLOPEN - Open Form Library

The Form Driver opens the specified form library file on the current form
library channel. The channel (LUN) must be valid for the task and not at­
tached by the program for another use. Except for COBOL which uses LUN 1,
LUN 5 is the default used for terminal service by the Form Driver and is
therefore not available to your program. The form library file specification
must have the following format (optional elements are enclosed in square
brackets, but the UIC, if specified, must be enclosed in square brackets):

[device:] [U!CJfile. typ[;uersion]

The default file type for a form library file is .FLB.

BASIC-PLUS-2 and FORTRAN Call

CALL FLOPEN(flnm)

COBOL Call

CALL " FL 0 PEN " US I NG flnm.

MACR0-11 Call

$FDt,1 ARG =arglst, FNC = 0 PN t RE 0 =reqlst, NAM= lib

6-14 Form Driver Calls

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FLNM

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A form library file specification. For
MACR0-11 only, a pointer to an ASCIZ
form library file specification.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
- 3

- 4

- 5

- 6
-18

-20

-21

Status Code
(MACR0-11)

FS$SUC
FE$FSP
FE$IOL

FE$FLB
FE$1CH
FE$IOR

none

none

Meaning

Successful completion
Invalid file specification
Error encountered opening form library (an FCS or
RMS system error code that provides more detail
can be found with the FSTAT call and is returned
in the second word of the Status Block)
Specified file not form library
Invalid channel number specified
Error encountered reading form library (an FCS or
RMS system error code that provides more detail
can be found with the FSTAT call and is returned
in the second word of the Status Block)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.13 FNDATA - Get Named Data by Name

This call is used to access, by name, data that has previously been associated
with a form as named data. The Form Driver can access the named data that
is attached to a form description but does not display the data with the form.

You can determine whether the FNDATA call returns a valid named data
value by using the FSTAT call. If the FSTAT call returns a status value of
-15, no named data value was found.

Form Driver Calls 6-15

BASIC-PLUS-2 and FORTRAN Call

CALL FNDATA(fid, {val)

COBOL Call

c ALL 11 F ND AT A 11 LIS I NG {id, {val.

MACR0-11 Call

$FDIJ ARG =arglst,FNC =DAT , REQ =reqlst,NAM =nam

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

Outputs

None.

FVAL

MACR0-11
Keyword

or
Offset

ARG

REQ
NAM

None.

F$LEN(RO)

F$VAL(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A named data label. For MACR0-11 only, a
pointer to a 6-byte ASCil named data label.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) The
length of the named data value.

The named data value for the label re­
quested. For MACR0-11 only, the pointer
to the named data value in the impure area.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-15
-20

-21

-22

Status Code
(MACR0-11)

FS$SUC
FE$DNM
none

none

none

Meaning

Successful completion
Named data specified does not exist
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.14 FOUTLN - Output Data to Current Line of Scrolled Area

The Form Driver outputs the data that you specify to the current line of the
scrolled area. You identify the scrolled area by specifying the name of any
field in that area.

6-16 Form Driver Calls

If the data is too long for the line, the Form Driver returns an error to your
program and truncates the data when it is displayed. If the data is too short
for the line, default values are displayed for fields for which no data is pro­
vided. If the length of the data is zero, the Form Driver restores default values
to all fields in the current line of the scrolled area.

The Form Driver does not validate data output to fields from the application
task. This is true for both explicit output and default values.

BASIC-PLUS-2 and FORTRAN Call

CALL FOUTLN(fid[,fva/])

COBOL Call

CALL II FOUTLN" us I NG fid[,fval].

MACR0-11 Call

$F0l.J ARG =arglst, FNC = PSC , REO =reqlst, NAM :=fld, l.JAL. =val, LEN =len

Inputs and Outputs

High-Level
Language
Argument

A bbrevia ti on

Inputs

FID

FVAL

Outputs

None.

MACRO-II
Keyword

or
Offset

ARG

REQ

NAM

LEN

VAL

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A field name for any field within the scrolled
area to be processed. For MACR0-11 only, a
pointer to a 6-byte ASCII field name.

(An input value for MACR0-11 only) the
total length of the data to be displayed
(must be -1 for ASCIZ strings and 0 for res­
toring the default values to all fields in the
line).

The field value(s) to be displayed in the cur­
rent line of the scrolled area.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-11

Status Code
(MACR0-11)

FS$SUC
FE$FLD

Meaning

Successful completion
Specified field does not exist (invalid field name or
index)

Form Driver Calls 6-17

-14 FE$NSC
-16 FE$DLN

-20 none

-21 none

Specified field not in scrolled area
Data specified for output too long (truncated by
Form Driver)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.15 FPFT - Process the Field Terminator

The Form Driver processes the field terminator that you specify. Then, if it is
valid, the Form Driver returns the name and index for the new current field to
your program. In high-level languages, the FGCF call must be issued immedi­
ately after the FPFT call to get the name of the new current field.

If the field terminator specified is for the ENTER key, the Form Driver checks
the form for Response Required and Must Fill fields. If the form contains such
fields and the requirements are not met for every field in the form, the status
code is set to show that the form is incomplete as shown below.

In MACR0-11 tasks, the Form Driver returns the pointer to the name of the
first incomplete field and that field's index value. In high-level language
tasks, the FGCF ("Get the Name of the Current Field") call is used to obtain
the field name and index value.

If the terminator relates to scrolling, you must provide the name of a field in
the call. The field name identifies the scrolled area that the Form Driver is to
manipulate. The name of any field in the scrolled area will do.

If the field terminator is for the TAB or Downarrow key, your task may also
specify data to be displayed in the bottom line of the scrolled area when the
area is scrolled forward.

If no data is specified and the current line is not the bottom line of the scrolled
area, the cursor moves down one line and that line becomes the new current
line. If no data is specified and the current line is the bottom line, the area is
scrolled up and default values restored to the bottom line. If data is specified,
the area is always scrolled up, the data displayed on the bottom line, and the
current line remains the same line. If the terminator is for the BACKSPACE
or Uparrow key, your task may specify the data to be displayed in the top line
of the scrolled area when the area is scrolled backward. If no data is specified
and the current line is not the top line of the scrolled area, the cursor moves
up one line and that line becomes the new current line. If no data is specified
and the current line is the top line, the area is scrolled down and default
values restored to the top line. If data is specified, the area is always scrolled
down, the data displayed on the top line, and the current line remains the
same

If a field terminator is not specified in the call, the last field terminator
returned from the Form Driver is processed.

6-18 Form Driver Calls

FORTRAN and BASIC-PLUS-2 Call

CALL FPFT(term[,fid[,fval]l)

or

CALL FPFT

COBOL Call

CALL "FPFT" USING term[,fid[,fval]].

MACR0-11 Call

$FDl..I ARG =arglst, FNC = TRM , RE Q =reqlst, TRM = trm, NAM =fld, t,IAL =val, LEN =len

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

FVAL

TERM

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

LEN

VAL

TRM

None.

F$NAM(RO)

F$NUM(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

(An input value only if a scrolled area termi­
nator is specified) a field name, identifying
the scrolled area to be processed. For
MACR0-11 only, a pointer to a 6-byte
ASCII field name.

(An input value for MACR0-11 only and
only if a scrolled area terminator is speci­
fied) the length of the data to be displayed
(must be -1 for ASCIZ strings and 0 if no
data is specified.

(An input value only if a scrolled area termi­
nator is specified) the field value(s) to be
displayed in the top or bottom line of the
scrolled area.

A numeric code for the terminator that the
Form Driver is to process.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

(An output value for MACR0-11 only) A
pointer to the 6-byte ASCII field name for
the current field.

(An output value for MACR0-11 only) The
field index for the current field (when that
field is an indexed field).

Form Driver Calls 6-19

Returned Status Values and Codes

Status Value
High-Level
Languages

1
2

-11

-14
-17
-19
-20

-21

Status Code
(MACR0-11)

FS$SUC
FS$INC
FE$FLD

FE$NSC
FE$UTR
FE$IFN
none

none

Meaning

Successful completion
Current form incomplete
Specified field does not exist (invalid field name or
index)
Specified field not in scrolled area
Undefined field terminator
Specified call invalid in. current context of form
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.16 FPUT - Output a Value to Specified Field

The Form Driver displays the value in the field that you specify and stores the
value in the impure area. If the value to be displayed is shorter than the field
for which it is intended, the Form Driver right or left justifies and zero or
blank fills the field according to the field's definition. If the value is longer
than the field, the Form Driver truncates the value when displayed and if the
Form Driver contains Debug support, sets the status code to -16.

If the length of the value to be output is zero and the field has a default value,
the Form Driver restores the default value to the screen and the impure area.
If the field has no default value, the Form Driver clears the field.

The Form Driver does not validate either the specified or the default values.

FORTRAN and BASIC-PLUS-2 Call

CALL FPUT(fval, fid[,fidxl)

COBOL Call

CALL 11 FPUT 11 US I NG fval,fid[,fidx].

MACR0-11 Call

$FOV ARG =arglst, FNC =PUT t REQ =reqlst, NAM =fld, NUM =idx, I.JAL =val, LEN =len

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

6-20 Form Driver Calls

MACR0-11
Keyword

or
Offset

ARG

Requirement or Value

A pointer to the Argument List.

FID

FIDX

FVAL

Outputs

None.

REQ

NAM

NUM

LEN

VAL

None.

A pointer to the Required Arguments List.

A field name. For MACR0-11 only, a
pointer to a 6-byte ASCII field name.

A field index for the specified field (when the
field is indexed).

(An input value for MACR0-11 only) the
length of the data to be displayed (must be
-1 for ASCIZ strings and 0 for restoring the
default field value).

The field value to be displayed.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-11

-16

-20

-21

Status Code
(MACR0-11)

FS$SUC
FE$FLD

FE$DLN

none

none

Meaning

Successful completion
Specified field does not exist (invalid field name or
index)
Data specified for output too long (truncated by
Form Driver)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.17 FPUTAL - Output Values to All Fields

The Form Driver outputs the specified data to all fields in the form. The data
for each field must match the length of that field. Data must be arranged in
the order in which the Form Driver would retrieve the fields if an FGETAL
call were issued for the form.

If the data that you supply is too long, the Form Driver returns an error to
your task and truncates the data. If the data is too short, the Form Driver
outputs defaults for any fields for which no data is provided.

If the length of the data specified is zero, the Form Driver restores default
values for all fields in the form and clears any fields that do not have defaults.
(If the form contains any scrolled areas, the offset to the current line for each
of those areas is re-initialized to zero, with the top line as the current line.)
Thus, the FPUTAL call with data length of zero is one way to re-initialize a
form. It is the only form of the call that is valid for a form that contains a
scrolled area.

Form Driver Calls 6-21

The Form Driver does not validate data output to fields from the application
task. This is true for both expiicit output and default values.

FORTRAN and BASIC-PLUS-2 Call

CALL FPUTAL(fval)

CALL FPUTAL

COBOL Call

CALL "FPUTAL" USING {val.

CALL "FPUTAL",

MACR0-11 Call

$FDV ARG =arglst, FNC =PAL t REQ =reqlst, \JAL =val, LEN:: len

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FVAL

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

LEN

VAL

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Argument List.

(An input value for MACR0-11 only) the
length of the data to be displayed (must be
-1 for ASCIZ strings and 0 for restoring the
default field values).

The concatenated field value(s) to be dis­
played.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-12
-16

-19
-20

-21

6-22 Form Driver Calls

Status Code
(MACR0-11)

FS$SUC
FE$NOF
FE$DLN

FE$IFN
none

none

Meaning

Successful completion
No fields defined for current form
Data specified for output too long (truncated by
Form Driver)
Specified call invalid in current context of form
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.18 FPUTL - Output to Last Line of Screen

The Form Driver clears the last line of the screen and displays the specified
string on that line. On the VTlOO terminal with the advanced video option,
the Form Driver always applies the bold attribute to the last line of the screen
when data is displayed there with the FPUTL call. On other VTlOO terminals,
the line appears underlined or in reverse video matching the cursor that the
terminal is set to use. (The VTJOO User Guide describes how to change the
VTl 00 cursor.)

If the string is longer than the current maximum line length for the terminal
(80 or 132 characters), the Form Driver sets the status code as shown below
and truncates the string when displaying it. If the length of the string is zero,
the Form Driver clears the last line.

This call is the only means by which your task can access the last line of the
screen. Otherwise, the last line is reserved for use by the Form Driver to
display error messages and help text.

The Form Driver does not examine data output to the last line from the
application task.

BASIC-PLUS-2 and FORTRAN Call

CALL FPUTL(fual)

CALL FPUTL

COBOL Call

CALL 11 F PUT L 11 US I NG fual.

CALL 11 FPUTL 11 ,

MACR0-11 Call

ARG =arglst, FNC = LST , REQ =reqlst, t,JAL =val, LEN= len

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FVAL

MACR0-11
Keyword

or
Offset

ARG

REQ

LEN

VAL

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

(An input value for MACR0-11 only) the
length of the data to be displayed (must be
-1 for ASCIZ strings and 0 for clearing the
last line of the screen).

The string to be displayed on the last line of
the screen.

Form Driver Calls 6-23

Outputs

None. None. The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

I

-16

-20

-21

Status Code
(MACRO-II)

FS$SUC
FE$DLN

none

none

Meaning

Successful completion
Data specified for output too long (truncated by
Form Driver)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.19 FRETAL - Return Values for All Fields

FRETAL returns a concatenated string of the current values for all fields in
the form. The order of the fields is the same as for the FGETAL call.

BASIC-PLUS-2 and FORTRAN Call

CALL FRETAL ({val)

COBOL Call

CALL 11 FRET AL 11 Us I NG {val.

MACR0-11 Call

$FDl,J ARG=a~~~FNC=RAL1REQ=~q~t

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

FVAL

6-24 Form Driver Calls

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

F$LEN(RO)

F$VAL(RO)

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11
only, RO points to the Argument List.

The total length of all fields in the form.

The concatenated values for all fields in
the form. For MACR0-11 only, a
pointer to the concatenated fields in the
impure area.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-12
-20

-21

-22

Status Code
(MACR0-11)

FS$SUC
FE$NOF
none

none

none

Meaning

Successful completion
No Fields defined for current form
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer
than the declared variable length

6.20 FRETN - Return the Value for the Specified Field

The most common use for this call is to get the value of a particular field after
a call to get all fields (FGETAL). But the FRETN call may be issued at any
time after the Form Driver displays the form. The FRETN call always returns
the current contents of a field.

By using the FGETAL and FRETN calls to complement each other, you avoid
having your task deal with a buffer that contains all the operator's responses
for the form. You can still take advantage of the Form Driver's management
of all terminal interaction and use the FRETN call to access one field at a
time. Other calls may be issued between FGETAL and FRETN.

BASIC-PLUS-2 and FORTRAN Call

CALL FRETN(fval, fid[,fidx])

COBOL Call

CALL "FRETN" US I NG fval, fid[,fidxJ.

MACR0-11 Call

$FDl..l ARG =arglst, FNC = RTN , REQ =reqlst, NAM =fld, NUM =idx

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

FID

FIDX

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

NUM

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

A field name. For MACR0-11 only, a
pointer to a 6-byte ASCII field name.

A field index for the specified field (when the
field is indexed).

Form Driver Calls 6-25

Outputs

None. None.

F$LEN(RO)

FVAL F$VAL(RO)

The status code is set. For MACR0-11 only,
RO points to the Argument List.

The length of the field.

The field value, including padding.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-11

-20

-21

-22

Status Code
(MACR0-11)

FS$SUC
FE$FLD

none

none

none

6.21 FSHOW - Display a Form

Meaning

Successful completion

Specified field does not exist (invalid field name or
index)
(For high-level language programs only)

Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized
(BASIC-PLUS-2 only) Returned string is longer

than the declared variable length

The Form Driver clears only the portion of the screen required for the speci­
fied form and, starting at the starting line number, clears the screen and
displays the form. When first displayed, the form includes all text and the
default values for all fields. The Form Driver clears any fields for which
defaults were not assigned with the Form Editor.

If a starting line number is not specified in the call, the Form Driver uses the
starting line number that was assigned with the Form Editor.

If the starting line number argument is specified in the call, the Form Driver
starts to display the form at that line. If the form description specifies the
entire screen is to be cleared (lines 1 through 23) the Form Driver ignores the
line number specified in the call.

BASIC-PLUS-2 and FORTRAN Call

CALL FSHDW(fnam[,linel)

COBOL Call

CALL 11 FSHDW 11 US I NG fnam[,line].

MACR0-11 Call

ARG =arglst, F NC::: SHO 'REO =reqlst, NAM ===form, NUM ::::line

6-26 Form Driver Calls

Inputs and Outputs
High-Level
Language
Argument

Abbreviation

Inputs

FNAME

LINE

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

NAM

NUM

None.

Requirement or Value

A pointer to Argument List.

A pointer to Required Arguments List.

A form name. For MACR0-11 only, a
pointer to a 6-byte form name.

The explicit starting line number for the
form, overriding the line number assigned
with the Form Editor.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes
Status Value
High-Level Status Code
Languages (MACR0-11)

1 FS$SUC
- 6 FE$1CH
- 7 FE$FCH
- 8 FE$FRM
- 9 FE$FNM
-10 FE$LIN
-18 FE$IOR

-20 none

-21 none

Meaning

Successful completion
Invalid channel number specified
Form library not open on specified channel
Invalid form definition
Specified form does not exist
Invalid first line number to display form
Error encountered reading form library (an FCS·or
RMS system error code that provides more detail
can be found with the FST AT call and is returned
in the second word of the Status Block)
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.22 FSPOFF - Turn Supervisor-Only Mode Off

When supervisor-only mode is on (the default choice), the Form Driver treats
fields with the supervisor-only attribute as display-only. The operator may
not enter data in such fields. Your program can turn supervisor-only mode off,
making fields with the supervisor-only attribute accessible to the operator, by
means of the FSPOFF call.

BASIC-PLUS-2 and FORTRAN Call

CALL FSPOFF

Form Driver Calls 6-27

COBOL Call

CALL II FSPOFF II.

MACR0-11 Call

$FDt.J ARG=a~~~FNC=SPFtREQ=~q~t

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-20

-21

Status Code
(MACRO-II)

FS$SUC
none

none

Meaning

~uccessful completion
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.23 FSPON - Turn Supervisor-Only Mode On

This call turns supervisor-only mode on (the original or default condition).
Fields having the supervisor-only attribute are handled by the Form Driver as
display-only; the terminal operator cannot access them.

BASIC-PLUS-2 and FORTRAN Call

CALL FSPON

COBOL Call

CALL "FSPON",

6-28 Form Driver Calls

MACR0-11 Call

$FDl.l ARG=a~b~FNC=SPNtREQ=~qbt

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

Outputs

None.

MACR0-11
Keyword

or
Offset

ARG

REQ

None.

Returned Status Values and Codes

Status Value
High-Level
Languages

1
-20

-21

Status Code
(MACR0-11)

FS$SUC
none

none

Requirement or Value

A pointer to the Argument List.

A pointer to the Required Arguments List.

The status code is set. For MACR0-11 only,
RO points to the Argument List.

Meaning

Successful completion
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

6.24 FSTAT - Return the Status from the Last Call

The FSTAT call returns the status from the last call to the Form Driver. The
secondary status, STAT2, has an FCS or RMS error code, depending on the
version of the Form Driver that you are using. This STAT2 value is useful
only when the value of STATUS is -4 or -18, indicating a problem while
opening or reading a form library file. The FCS error codes are documented in
the IAS/RSX-11 1/0 Operations Manual. The RMS error codes are docu­
mented in the RMS-11 User's Guide.

BASIC-PLUS-2 and FORTRAN Call

CALL FSTAT(stat[,stat2])

COBOL Call

CALL "FSTAT" USING stat[,stat2].

Form Driver Calls 6-29

Inputs and Outputs

High-Level
Language
Argument

Abbreviation

Inputs

None.

Outputs

STATUS

STAT2

MACR0-11
Keyword

or
Offset Requirement or Value

A numeric code for the completion status of
the last Form Driver call that was executed.

A numeric RMS or FCS status code for de­
tailed information when the STATUS value
is -4 or -18.

Returned Status Values and Codes

Status Value
High-Level
Languages

1

-20

-21

6-30 Form Driver Calls

Status Code
(MACR0-11)

FS$SUC
none

none

Meaning

Successful completion
(For high-level language programs only)
Wrong number of arguments in call
(For high-level language programs only)
Impure area not yet initialized

Chapter 7
Form Driver Programming Techniques and
Examples

This chapter discusses some programming techniques for using the Form
Driver. The techniques discussed include scrolling, simultaneous display of
multiple forms, using the FGETAL call with FGET and FPFT, and using
indexed fields. Some examples of Form Driver programming techniques are in
the last section.

7.1 Scrolling Techniques

A scrolled area is defined as a number of consecutive lines with identical
format. The purpose of the scrolled area is to allow entry, editing and re­
viewing of more data than can be displayed on the screen at one time. It is, in
effect, a window into a data base which is managed by your calling task. The
size of the data base is determined by your task, and it is not limited by the
Form Driver's impure area.

Under your task's direction, the Form Driver controls the scrolled area by
means of a series of calls to get data and to process field terminators. The
Form Driver maintains a current line in a scrolled area and restricts your task
to only accessing that line. Thus the Form Driver ignores the index value
argument in a scrolled area.

When a form is displayed, the current line in each scrolled area is initialized
to the top line of the scrolled area. The current line's identity is updated when
field terminators are processed by the Form Driver.

To provide complete support for scrolling, your task must analyze the field
terminators to be processed and update the screen with the appropriate data
from the data base. In order to do this, the task must maintain pointers into
the data base to the current line and the current window of the scrolled area.
With this information, your task can exercise complete control over the
scrolled area and the position of the current line.

When lines are scrolled forward, the task must provide the data to be dis­
played on the bottom line of the scrolled area. When lines are scrolled back­
wards, the task must provide the data to be displayed on the top line. There­
fore your task must know the number of lines in the scrolled area and main­
tain pointers into the data base for the current top and bottom lines of your
screen as the data is scrolled forward and backward.

To some extent, when a scrolled area is physically scrolled it is under the
control of the application program. If the current line of a scrolled area is the

7-1

bottom line, the Form Driver will always scroll the area when the scroll for-
\vard terminator is processed. Ho,s;e·ver, if the current line is not the bottom
line, the area is only scrolled if the application program specifies data to
update the bottom line in the Form Driver call to process the scroll forward
terminator (FPPT). Otherwise, the cursor moves down one line and that line
becomes the new current line.

The same applies to scroll backward. If the current line is the top line, scroll
backward always causes the scrolled area to scroll. If the current line is any
other line, the area scrolls only if data to update the top line is specified in the
Form Driver call to process the scroll backward terminator. Otherwise, the
cursor moves up one line and that line becomes the new current line.

The Form Driver provides calls to get the current scrolled line (FINLN) and to
output data to the current scrolled line (FOUTLN) to aid you in imple­
menting support for scrolled areas. If you wish to validate the fields within a
scrolled area on an individual basis, you may wish to use calls to get a speci­
fied field (FGET) in combination with the call to process a field terminator
(FPFT) to handle input in a scrolled line.

The calls to get all fields (FGETAL) and to get any field (FGETAF) are illegal
for a form that contains a scrolled area. The call to output data to all fields
(FPUTAL) is legal for a form with a scrolled area only in the special case that
restores the default values to all fields.

When you define forms containing scrolled areas, remember that the Form
Driver does not maintain text within a scrolled area (other than field-marker
characters) after the text scrolls off the screen.

If, however, you do not wish to support all the features of scrolling, you may
choose to display error messages instead of processing certain field termina­
tors.

7.2 Three Common Scrolling Methods

The three common methods for using scrolled areas described below do not
exhaust the possibilities. You may think of other methods more suitable for
your application.

7 .2.1 Entry, Edit, and Review

The first method may be called entry, edit, and review. This method uses a
scrolled area to gather many lines of data, each one of which contains several
fields. The operator's interaction with the form in this case is similar to his or
her interaction with an FGETAL call. The scrolled area acts as a window into
a segment of the data being collected. The operator is free to move about the
form arbitrarily and to change the input data. When finished, he or she
presses the ENTER key to signal that the data is complete.

To use this method, your task establishes a data array containing enough
space for the maximum number of scrolled lines that you want. Employing
the calls to get a scrolled line (FINLN) and process a field terminator (FPFT),

7-2 Form Driver Programming Techniques and Examples

the task exchanges control with the Form Driver and saves the data line by
line as it is entered. Whenever the Form Driver passes a scrolling field termi­
nator back to the application, the task must take appropriate action to posi­
tion itself in the array.

Your task can control which line of the scrolled area the Form Driver accepts
data on by choosing whet her or not to pass data to be displayed on the top or
bottom line of the scrolled area with the call to process a field terminator
(FPFT). If no data is passed, the Form Driver simply moves the cursor up or
down one line, provided the cursor is not on the first or last line of the scrolled
area.

The boundary of the available data space may be reached while scrolling. In
this situation, your task may, without processing the field terminator, print a
line of text on the last line of the screen informing the terminal operator of the
situation. The task may then reissue the call to get a scrolled line (FINLN).

You may wish to initialize the scrolled area to some values other than the
defaults for the fields that it contains. This can be done by issuing calls to
output a scrolled line (FOUTLN) and to process a field terminator (FPFT)
along with the scroll forward and scroll backward terminators. Each line is
filled by the FOUTLN call, followed by the FPFT call scrolling forward with
no data passed. In this way, each line is filled in turn. After the last line is
filled, no scroll forward is done. You can reposition the cursor to the line that
you want by issuing several FPFT calls with scroll backward terminators.

If, on the other hand, you wish to reinitialize all scrolled area lines on the
screen with the default values for the fields that they contain, you can use a
call to put all fields (FPUTAL) that passes no data. The entire form is reini­
tialized.

A form may have more than one scrolled area, or may be complex because
several non-scrolled fields are scattered on either side of the scrolled areas. In
this situation, your task can emulate a get-all fields operation by means of the
following procedure: the task uses a field name of asterisk (*) to get the first
field. Get-field (FGET) and process-field-terminator (FPFT) calls are then
used until the field returned from the FPFT call is in a scrolled area. The
method of scrolling through an area line by line can then be used until the
terminator received is one of the exit scrolled area terminators. At that point,
control returns to the previous loop, with the ENTER key terminator sig­
nalling that the form is complete.

7 .2.2 Normal and Display-Only Fields

The second programming method for scrolled areas employs scrolled lines
containing both normal and display-only fields. In this method, the applica­
tion task uses calls to get a field (FGET) to accept data from the operator.
The task then validates fields individually. Using data that the operator en­
tered, the task also computes, or finds in a data base, new values for display­
only fields. These new values are then output to the form by means of the call
to put a field (FPUT).

Form Driver Programming Techniques and Examples 7-3

Under the second method, the task must build scrolled lines from the indi­
vidual fields so that the call to process a field terminator (FPFT) can be used
and so that data can be output to the top and bottom lines of the area when
scrolling takes place. The algorithm employed for scrolling itself is essentially
the same as in the first method described above.

7 .2.3 Reviewing a Data List

A third method of scrolling is useful for reviewing a list of data. In this
method, a task provides access to a long list of data or other information and
allows the operator to review the data or read the information. It is not
possible, however, to get a scrolled line (FINLN) in a scrolled area whose
fields are all display-only. To circumvent this difficulty, you can use a single
character field with the no-echo attribute to obtain a field terminator, thus
allowing the task to scroll lines of data. The cursor appears on the line in the
no-echo field to mark the point of interest for the operator.

7.3 Simultaneous Display of Multiple Forms

You can, if you wish, display more than one form at the same time. If you
specify a line number other than zero as the beginning of a form and use
FSHOW rather than FCLRSH, the Form Driver offsets the form dynamically
at run-time to overlay the form that is currently displayed. Keep in mind,
however, that unless you provide a separate impure area for each form on the
screen, the Form Driver knows about only the last form displayed, and your
task can reference only that form.

In designing an application which is to display multiple forms simultaneously,
it is important to define the help forms correctly. When the Form Driver
restores the screen after a help form has been displayed, only the form for
which the Form Driver currently has the impure area pointer can be restored.
If for example, two forms were displayed and the help form cleared the entire
screen, only one form would be restored. To avoid this, each help form should
only clear the area of the screen cleared by the form it is associated with (as
defined by the first and last line numbers).

The screen refresh function~ redisplays only the current form. Any help
or other forms that are also on the screen are not refreshed and are therefore
erased from the screen.

7.3.1 Impure Areas

Separate impure areas are required only if several forms are to be accessed
interchangeably by calls to the Form Driver to get or put fields. If your
application program is going to display one form, complete the processing for
it, and then display the next form without erasing the first. Only one impure
area is required as long as your application makes no attempt to access the
first form again. In this manner, any number of forms can be displayed simul­
taneously using only one impure area.

7-4 Form Driver Programming Techniques and Examples

When you use more than one impure area to display multiple forms simulta­
neously, control may be switched freely between the two forms by the task.
The forms themselves and any help forms that they call upon must be defined
with line numbers that do not interfere with each other.

7 .3.2 Help Forms

Displaying multiple forms simultaneously is particularly useful for help
forms. It is possible to define help forms so that when displayed they leave the
current form intact on the screen. Only the portion of the screen that is
specified in the help form definition is cleared. Thus, if the help form is
defined to be displayed between lines 15 and 23, the Form Driver clears only
that portion of the screen. The original form occupies the remainder of the
screen.

Note, however, that if the Form Driver displayed the initial form with a line
offset it will use the same number to offset the help form. If the help form does
not fit on the screen after the offset is applied, the Form Driver returns an
error to your task.

If you define a help form or any other form in its form description as being
displayed between lines 1 and 23, the Form Driver clears the entire screen
and, ignoring the starting line number in a call, displays the form as defined.

When a help form and a current form are displayed simultaneously, the Form
Driver completely redisplays the current form when the terminal operator
signals that he or she is finished with the help form. All or any part of the help
form that does not overlap the current form remains on the screen.

7 .4 Emulating the FGETAL Call by Combining the FGET and
FPFT Calls

The principal advantage of the call to get all fields in a form (FGETAL) is
that the Form Driver takes charge of all input at the terminal. An FGETAL
call returns to your task only when the terminal operator signals completion
by pressing the ENTER or RETURN key. The disadvantage of FGETAL,
however, is that your task cannot respond to and edit input on a field basis as
it is entered by the operator.

You can, however, emulate an FGETAL call with a combination of the get­
field (FGET) and process-field-terminator (FPFT) calls. A similar emulation
can be done with the get-any-field (FGETAF) and FPFT calls. See the ex­
ample in Section 7.2.1.

The call to return all fields (FRETAL) may be used to obtain the entire record
for processing after the form has been entered by the terminal operator.

7.5 Using the FGETAF Call

If a form contains a number of fields any one of which would be sufficient
input for the form, the call to get any field (FGETAF) is particularly useful.

Form Driver Programming Techniques and Examples 7-5

For example, a form may contain fields for an account number and a name.
Your task needs one of these to locate a customer's record in a data base. The
call to get any field allows the terminal operator to enter data in either of the
two fields. The operator can choose the one for which information is available.
The Form Driver returns only the data for the chosen field to the task.

In a form that contains a menu from which the operator is to select one item,
FGETAF may be used to allow him or her to position the cursor in the chosen
field and press the ENTER key.

7.6 Using Indexed Fields

Identical fields on consecutive lines of a form may be defined as indexed.
Indexed fields make it possible to design smaller forms with smaller impure
area requirements. If a form has many fields, indexing can be an important
advantage. ·

Your task can reference any field in a form, whether indexed or not indexed,
by specifying the field name and index value (the index is an integer from 1 to
N where N is the repeat count for the field). If the field is not indexed, the
Form Driver ignores the index value.

The order in which the Form Driver moves through indexed fields depends on
whether the fields are defined as a vertical or horizontal array. If the array is
defined as vertical, the Form Driver moves down the form through each ele­
ment of the array before moving to the field after the first element.

You can define multiple fields as a horizontal array, if:

1. the first occurrence of each field is on the same line of the form

2. the repeat count is the same for all fields

3. there are no intervening fields on the first line of the array.

Fields defined as horizontal arrays that do not meet all these requirements
default to vertical arrays.

In a horizontal array, the Form Driver moves across each line of the array,
through each field, before going on to the next line. Thus, horizontally in­
dexed fields allow grouping of related fields together, not only in the order in
which data is entered on the screen but also in the order of the data returned
by a call to get all fields (FGETAL).

7.7 Examples of Programming Techniques

This section contains several code segments written in FORTRAN IV. The
techniques for programming are the same for all languages. If you are familiar
with MACR0-11, the last part of this section is a series of MACR0-11 pro­
gram examples.

7-6 Form Driver Programming Techniques and Examples

2

10

7.7.1 Emulating FGETAL with FGET and FPFT

The FGET and FPFT calls may be used to emulate a call to get all fields yet
still allow the calling program to validate responses immediately on entry,
before proceeding to the next field in the form.

CALL FCLRSH CFORM>

CALL FGET CRESP, TERM, "*")
CALL FGCF <FIELD>
GOTO 2

DisPla}' the form

Get first field in form
Get the name of the field
Validate response if

1 necessar}'

CALL FGET CRESP, TERM, FIELD> ! Get a field

, Validate the user's response,
, Follo1.1ins <.ialidation, the <.iariable "ERRl.JAL' is zero
, if the response is valid1 non-zero if invalid+

IF CERRVAL +NE, 0) GOTO 1
IF CTERM ,EQ, Ol GOTO 10

CALL FPFT
CALL FGCF <FIELD>
GOTO 1

CALL FRETAL <DATA>

7.7.2 Table Lookup

1 Get field aSain on error
! Branch if terminator was

"ENTER'
I Else Process field terminator

Get name of field to set
Get next field

Return responses for all
fields

Get the response for a field and validate it against a table of valid responses.
The list of valid responses is contained in the form as named data (the data
name is the same as the field name).

As an example, consider the field 'MONTH' defined as picture AAA. The
corresponding named data 'MONTH' contains the table of valid responses for
the field in the form.

Note that the named data is returned as an ASCII string terminated with a
null.

CALL FGET (l,IALUE 1 TERM 1 FIELD I ! Get the field

CALL FLEN (LENGTH1 FIELD) Get the field lensth

CALL FNDATA <FIELD1 VALID> Get corresPondinS named data

PTR = 1 1 Initialize index

2 DO 3 I = 11LENGTH Check for valid response
IF IVALID(PTR+I-11 ,EQ, Ol GOTO 5 ! Error if not
IF <VALID<PTR+I-11 .NE, l.JALUE<Ill GOTO 4

Form Driver Programming Techniques and Examples 7-7

3

LI

5

G

2

3

CONTINUE
GOTO G

PTR = PTR + LENGTH ! UPdate index
GOTO 2

CALL FPUTL C"Illesal response to field") ! DisPla)' error
1t1essase

GOTO ! Get field asain

7.7.3 Form Linkage

Named data may be used to provide automatic form linkage independent of
the application program.

CALL FCLRSH C"FIRST"l

CALL FGET CRESP, TERM1 11*11)

CALL FGCF <FIELD>
GOTO 3

CALL FGET CRESP1 TERM, FIELD)

Process response

IF <ERRVAL +NE+ Ol GOTO 2
IF <TERM .EQ, Ol GOTO LI
CALL FPFT
CALL FGCF CFIELDl
GOTO 2

DisPla)' forfTI

Get first fie 1 d in for r11
Get the nariie of the fie 1 d
Process response

Get a fie 1 d

Get field asain on error
Branch if ter1t1inator "ENTER'
Else Process field ter1t1inator
Get na1t1e of field to Set
Get next field

LI IF <FNDATA C"NXTFRM 11 1 FORMl +LT+ Ol GOTO 5 ! Get nar11e of

5

CALL FCLRSH <FORMl

STOP

next forfTI
DisPlaY it if there is one

Else exit

7. 7 .4 Menus and Application Data

Named data can be used to facilitate development of menu driven applica­
tions and to store form specific information.

As an example consider the menu form named FIRST, Figure B-1. The
named data contains the name of the appropriate form to display for each of
the possible functions and the name of the corresponding file to be written.

CALL FCLRSH C"MENU"l DisPlaY 1t1enu forfTI

CALL FGET CRESP, TERM, "FIELD") Get response

IF <FNDATA CRESP1 FORM> .GT. Ol GOTO 2 ! Get corresPondins
! na1t1ed data

CALL FPUTL C"Illesal choice") ! If none1 invalid response
GOTO 1 ! Get the field asain

7-8 Form Driver Programming Techniques and Examples

2

c

CALL CONCAT <RESP, "F", DNAMl
CALL FNDATA <DNAM1 FILE)

CALL FCLRSH (FORM)

Get naMed data naMe for file
1 Get naMe of corresPondind
I f i 1 e

! DisPlaY forM and Process

7.7.5 Initializing a Scrolled Area

This example illustrates how to initialize a 5 line scrolled area in a form.

CALL FCLRSH <"FORM"l 1 DisPla)' forr11

C Initialize the first line in the scrolled area
c

CALL FOUTLN ("FIELD", A<l till ! Initialize first line

c
C Now scroll forward and initialize the next line until the
C screen is initialized.
c

c

DO 1 I = 2 TO 5
CALL FPFT (8, "FIELD" l
CALL FOUTLN (II FI ELD II ' A (1 'I))
CONTINUE

! Scroll forward to next line
Initialize line

C Now Moue back to the first line of the scrolled area to
C solicit inPut.
c

DO 2 I = 1 TO 4
CALL FPFT (81 "FIELD")

2 CONTINUE

Scroll backward to Previous
1 in e

7. 7 .6 MACR0-11 Programming Examples

This section contains MACR0-11 examples. Each of the following examples
assumes that the initialization code precedes it .

• MCALL $FDV1$FDVDF1$EXIT
SFDVDF DEFINE ARGUMENT LIST SIZES

<FSASIZ AND FSRSIZl

ISIZ = 1024, IMPURE AREA SIZE IN BYTES
ALLOCATE SPACE FOR ARGUMENT
LIST

ARGLST: , ElLKEl F$AS I Z

Form Driver Programming Techniques and Examples 7-9

REQLST: .BLKB F$RSIZ ALLOCATE SPACE FOR REQUIRED
ARG LI ST

IMPURE: .WORD ISIZ SIZE OF IMPURE AREA IN BYTES
IN FIRST WORD

.BLKB ISIZ-2 THE IMPURE AREA
STAT: .BLKW 2 2 WO RD STATUS BLOCK REQUIRED

Initialize the required ar~uments list

MDV #REQLST1RO REQUIRED ARGUMENTS LIST
POINTER

MDV #STAT1F$STSIROI STATUS BLOCK POINTER
MDV #11F$CHNIROI LIBRARY CHANNEL NUMBER
MDV #IMPURE1F$IMPIROI IMPURE AREA POINTER
$FDV ARG=#ARGLST1REQ=#REQLST ; !NIT REQ ARG LIST

i PO INTER

In each of the following examples, the argument list pointer is specified in the
first call to the Form Driver only. The pointer does not have to be specified in
succeeding calls unless RO (which contains the argument list pointer) is modi­
fied.

The following examples also assume a debugged application. In such an appli­
cation, no errors returned from the Form Driver are possible, except for 1/0
errors resulting from reading forms. For this reason, the examples below check
for errors only on return from calls to display forms or to solicit input from the
terminal operator. An 1/0 error can result if the terminal operator requests a
help form or screen refresh.

7.7.6.1 Example 1: FGET/FPFT in Place of FGETAL- This example emulates
a call to get all fields by using successive calls to get a specified field and
process a field terminator.

FIELD1: .ASCII I* I FIRST CHARACTER OF FIELD
NAME '*'

FORM:

10$:

.ASCII /FORM I
TO GET FIRST FIELD IN FORM
FORM NAME

$FDV

BCS

$FDV

ARG=#ARGLST1FNC=CSH1NAM=#FORM1NUM=#O
FORM

ERROR BR IF I/O ERROR

DISPLAY

NAM=#FIELD1 INITIALIZE ARGUMENT LIST FOR
FIRST
F !ELD TO GET

Get a sPecif ied field

7-10 Form Driver Programming Techniques and Examples

20$: $FDl..I
BCS
MOt,1

FNC=GET
ERROR
F$NAM<R0) .R1
PRSFLD

GET THE SPECIFIED FIELD
Br~ IF I/O ERROR

CALL

BCC 30$

GET POINTER TO FIELD NAME
CALL ROUTINE TO PROCESS
FIELD
ON RETURN C-CLR IF VALID
INPUT
ELSE R1 POINTS TO ASCIZ
ERROR MESSAGE

$FDV FNC=LST ,1.JAL==R1 .LEN=ti-1
OUTPUT ERROR MESSAGE TO
LAST LINE

BR 20$ GET SAME FIELD AGAIN

; 1.1alid inPut

30$: $FO\.I FNC=TRM PROCESS FIELD TERMINATOR
CMP t1FT$NTR.F$TRM(RO) FIELD TERMINATOR = ENTER?
BNE 20$ BR IF NOT
CMP t1FS$INC,STAT ELSE CHECK FOR INCOMPLETE

FORM
BEQ 20$ GET FIELD IF FORM INCOMPLETE

; Done '•'it h f 0 r Ill • re-initialize to set as a in

ll0$: $FDt,1 FNC=PAL•LEN=t10 RESTORE DEFAULT VALUES TO
ALL FIELDS

BR 10$

ERRMSG: .ASCIZ *Fatal I/O Error*
, El,IEN

GET FORM AGAIN

ERROR: $FDV FNC=LST, VAL=t1ERRMSG, LEN=ti-1
$E)<I T

MENU:

7.7.6.2 Example 2: Named Data - This example illustrates a possible use of
the named data feature .

• ASCII /MENU I i FORM NAME

SELERR: , ASCII /ERROR - SELECT ANOTHER FORM/
i ERROR MESSAGE
ERRLEN .-ERRMSG

.EVEN

DisPlaY Menu forM - a forM with a list of functions with a
nuMber froM 1-5 associated with each. The forM contains onlY
one field - a 1-bYte nuMeric field+ Therefore the data returned
froM a call to set all fields is suaranteed to be a 1-bYte
ASCII disit froM 0-8,

Form Driver Programming Techniques and Examples 7-11

$FDV ARG=#ARGLST1FNC=CSH1NAM=#MENU1NUM=#O DISPLAY FORM
EICS ERROR BR IF I/O ERROR

10$: $FDV FNC=ALL GET ALL FIELDS
BCS ERROR BR IF I/O ERROR
MOlJB @F$\1AL<RO> 1R1 GET 1 BYTE RESPONSE
SUB #'01R1 CONl..JERT DECIMAL TO BINARY l.JALUE

Get naMed data by nuMber (usins nuMber entered in Menu forM)

$FD0 FNC=OAT1NAM=#01NUM=R1
GET NAMED DATA

BCC 20$ IF C-CLR1 NAMED DATA FOUND
ELSE INVALID NUMBER !INVALID
INPUT)

; Invalid inPut in Menu forM

$FOV FNC=LST1VAL=#SELERR1LEN=#ERRLEN ; OUTPUT MESSAGE TO LAST
LINE

BR 10$; GET FIELD AGAIN

; Valid inPut - disPlaY re9uested forM·

20$: $FDV
BCS

FNC=CSH 1NAM=F$l.lAL I RO) 1NUM=#O ; DI SPLAY FORM
ERROR ; BR IF I/O ERROR

ERRMSG: ,ASCIZ *Fatal I/O Error*
.EVEN

ERROR: $FDV FNC=LST1 VAL=#ERRMSG1 LEN=#-1
$E){ IT

7.7.6.3 Example 3: Combining the FGETAL and FRETN Calls - This example
illustrates use of the get-all-fields and return-field calls.

FORM: .ASCII /FORM01/ FORM NAME

FLDLST: .ASCII /FIELD1/ LIST OF FIELD NAMES
.WORD PRSF1 AND ROUTINE TO PROCESS EACH FIELD
+ASCII /FIELD2/
.WORD PRSF2
.ASCII /FIELD3/
.WORD PRSF3
.ASCII /FIELD4/
,WORD PRSF4

ENDLST = .

$FDV ARG=#ARGLST1FNC=CSH1NAM=#FORM1NUM=#O DISPLAY
FORM

BCS ERROR BR IF I/O ERROR
$FDV FNC=ALL GET ALL FIELDS
BCS ERROR BR IF I/O ERROR
MDV #FLDLST,R1 GET POINTER TO FIELD LIST

7-12 Form Driver Programming Techniques and Examples

10$: $FDtJ FNC=RTN tNAM=:Rl
ADD :t:161R1
CALL @(Ri)+

CMP Rl 1:t:1ENDLST
BLo 10$

ERRMSG: .ASCIZ *Fatal I/O Error*
, Et,IEN

GET RESPONSE FOR
SKIP Ot.JER FIELD
CALL ROUTINE TO
ALL FIELDS DONE?
REPEAT IF NOT

ERROR: $FDV FNC=LST, VAL=:t:1ERRMSG,LEN=:t:1-1
$E){ IT

FIELD
NAME
PROCESS FIELD

7.7.6.4 Example 4: Using FGET to Synchronize with Terminal Operator- This
example shows use of a "special get" call to synchronize the task with the
terminal operator.

FORM
FORM 2

FORM1: .ASCII /FORM01/
FORM2: .ASCII /FORM02/
FIELD: .ASCII /FLDNAM/ NAME OF DISPLAY-ONLY FIELD

FIELD

$FD\.I

BCS
$FDt.1
BCS

ARG=:t:1ARGLST1FNC=CSH1NAM=:t:1FORM11NUM=:t:10

ERROR
FNC=ALL
ERROR

FIRST FORM
BR IF I/O ERROR
GET ALL FIELDS
BR IF I/O ERROR

DISPLAY

Process data l•et Pointer to data to outPut in Rl,
len•th in R2)

FNC=PUT 1NAM=:t:1FIELD ,t.JAL=Rl 1LEN=R2 OUTPUT TO DISPLAY ONLY

$FDV FNC=GET1NAM=:t:10 DO GET WITH NO FIELD SPECIFIED TO
WAIT FOR USER ACKNOWLEDGMENT

BCS ERROR BR IF I/O ERROR
$FDV FNC=CSH1NAM=:t:1FORMZ ; DISPLAY NEXT FORM
BCS ERROR ; BR IF I/O ERROR

ERRMSG: .ASCIZ *Fatal I/O Error*
, Et.JEN

ERROR: $FDV FNC=LST1 VAL=:t:1ERRMSG1 LEN=:t:i-1
$E)<I T

Form Driver Programming Techniques and Examples 7-13

Chapter 8
Preparing Your System for FMS-11 Applications

This chapter describes how to install and prepare your system for your
FMS-11 application program. The three main topics are:

1. RSX system generation options

2. FMS installation procedures

3. FMS configuration procedures

8.1 RSX System Generation Options

With RSX-llM and RSX-llM-PLUS systems, the Form Driver depends on
terminal service and mapping features that you can select only when you
perform the system generation procedure.

8.1.1 Terminal Service Option

With RSX-llM V3.2, the full duplex terminal driver is the driver that is built
into your system by default. You can run all FMS software with the full
duplex terminal driver, and the Form Editor requires that driver. The full
duplex terminal driver must include support for get multiple characteristics
and set multiple characteristics. However, to provide support for FMS appli­
cations on RSX-118 systems and RSX-llM systems that are unmapped, you
can also build the Form Driver to run with the older, half duplex terminal
driver. If the half duplex terminal driver is used, it must provide support for
unsolicited input character AST and transparent read and write.

8.1.2 Mapping Options

Most FMS users build and use mapped RSX-llM and RSX-llM-PLUS
systems. Mapped systems are used because:

1. Mapped systems provide much more memory for applications than un­
mapped systems do.

2. The FMS Form Editor and Form Utility require a mapped system.

3. Using one system for all FMS-related work is more convenient than using
two systems for different parts of the work.

However, you can also build and use unmapped systems for your FMS appli­
cations. In general, the Form Driver modules and your programs will work

8-1

properly. Because the Form Driver requires approximately 7500. (decimal)
bytes of memory, you have to limit the size of your FMS program to the
amount of memory that remains free for applications.

8.2 RSX System Installation Procedures

To install all of the FMS components, including the Form Driver modules,
you have to:

1. Execute the indirect command file FMSINS.CMD to copy the distribu­
tion files from the distribution volumes to the system volumes.

2. Task build all FMS utilities.

3. Compile and task build the demonstration programs.

You must be logged in under a privileged account in order for the installation
to successfully complete. If you are installing FMS-11 on an
RSX-llM-PLUS system, your terminal must be set for MCR mode com­
mands. It is assumed that FMS-U is being installed on the system device. All
FMS-U files are moved into account [30,10]. A VTlOO is required to run the
Form Editor and the demonstration programs.

Approximately 3600 disk blocks are required to install FMX-11/RSX.

In the installation procedure detailed below, the parameter 'ddn' is the name
and unit number for the device FMS-U is being installed on. The parameter
'dev' is the name and unit number of the device on which the distribution
media is mounted on.

INSTALLATION PROCEDURE:

MCR>ASN ddn:=SY:

MCR >UFO ddn: [30 .10 J
MCR>SET /UIC=C30t10J

For magnetic tapes on RSX-UM:

MCR>ALL dev:
MCR > FLX SY: =deu:FMS I NS, CMD /DO

For magnetic tapes on RSX-UM-PLUS:

MCR>MOU dev:/FOR
MCR>FLX SY:=dev:FMSINS.CMD/DO

For disks on both systems:

MCR>MOU dev:FMSRSX
MCR>PIP SY:/NV=dev:FMSINS.CMD

8-2 Preparing Your System for FMS-11 Applications

Make the installation device
the default sYsteM device
Create the UFO for FMS-11
Set the default UIC

! Allocate the drive
COPY installation coMMand
f i 1 e

Mount tape as foreiSn device
Copy installation COMMand
f i 1 e

Mount the disk
COPY installation coMMand
f i 1 e

For all media:

MCR>@FMSINS 1 COPY files from distributior
1 media and build utilities
1 and demo Prolrams

The installation command file prompts for the distribution device. The
FMS-11 files are copied to account [30, 10] on the system device. The Form
Editor (FED) and the Form Utility (FUT) are task built. The MACRO ver­
sions of the demonstration program are built automatically. The COBOL,
BASIC-PLUS-2, FORTRAN IV, and FORTRAN IV-PLUS versions of the
demonstration program are built only if the corresponding compilers are in­
stalled in the system. If the FORTRAN IV-PLUS compiler is installed in the
system, it is assumed that the file LB:[l,1JF4POTS.OLB exists as the FOR­
TRAN IV-PLUS OTS. The installation command file asks the user if this is
the case. If not, the FORTRAN IV-PLUS versions of the programs cannot be
built.

8.3 Configuration Procedure for the Form Driver

The Form Driver has several features that you may want for some of your
applications but not for all of them. For example, if you are using forms that
include fixed decimal fields, you must use a version of the Form Driver that
provides fixed decimal field support. Otherwise, since fixed decimal field
support increases the size of the Form Driver by about 200 words, you may
want to use a smaller version of the Form Driver.

The configuration procedure for the Form Driver uses a straightforward in­
teractive dialogue that asks the following questions:

• Do you want to build the Form Driver without the SOB instruction?

• Do you want ONLY memory resident form support?

• Do you want to delete fixed decimal field support?

• Do you want to delete scrolled area support?

• Do you want debug error messages?

• Do you want support for the VT52 terminal instead of the VTlOO?

• Size of the directory buffers in blocks?

• Number of directory buffers?

• Number of libraries open at a time?

• Do you want support for other than full duplex terminal service?

To run the configuration procedure dialogue, the FMS software must have
been installed on your system. The following command invokes the procedure:

MCR >@FDl.lBLD~

Preparing Your System for FMS-11 Applications 8-3

8.3.1 Question Types and Defaults

The configuration dialogue uses two types of questions:

1. Yes-No questions.

2. Questions that ask you to type a number.

For any question, you can ask for a short explanation of the question by typing
the Escape key in response to the question. After an explanation, the system
displays the current question again.

Yes-No questions are in the following form:

> * Text of the 9uestion? [Y/NJ

You can respond as follows:

1. Type the Escape key if you want an explanation.

2. Type Y and press the Return key for YES.

3. Type N and press the Return key for NO.

4. For the default response, press the Return key without typing another key.
The default to all Yes-No questions is NO.

Questions that ask you to type a value are in the following form:

>*Text of the 9Uestion [D R:x-Y D:z]:

In the configuration dialogue, all numeric responses are in decimal. In the
model above, the first letter D in the brackets stands for decimal. The second
field within the brackets shows the range of valid answers. In the model
above, R: stands for range, x stands for the smallest valid answer, and y
stands for the largest valid answer. The third field within the brackets shows
the default value. In the model above, D: stands for default, and z stands for
the default value.

You can respond as follows:

1. Type the Escape key if you want an explanation.

2. Type a number that is within the specified range and press the Return
key.

3. For the default response, press the Return key without typing another key.

The following sections explain each of the configuration dialogue questions.
Each section begins by quoting the short explanation that the system displays
if you type the Escape key in response to the question.

8-4 Preparing Your System for FMS-11 Applications

8.3.2 Do You Want to Build the Form Driver without the SOB
Instruction? [Y /N]:

"Nor1r1allY the For1r1 Dri1.1er is built to taf~e ad<.iantase of
the hardware SOB instruction. However1 for those PDP-11
Processors which do not support the SOB instruction, the
Form Driver can be built to use a macro instead (addins
about 50 1,1ords to its size),"

8.3.3 Do You Want ONLY Memory Resident Form Support?
[YIN]:

"Nor1r1allY 1 the For1r1 Dri1.1er has support for both 1r1e1r1or\'
resident and media resident forms. For an aPPlication
ru.nnins under RSX-llS or which for other reasons mu.st
run in miminal memory, select ONLY memory resident form
SUPPort to sa<.1e space,"

Section 5.4 explains how to include memory resident forms with your pro­
grams.

8.3.4 Do You Want to Delete Fixed Decimal Field Support?
[Y/N]:

"If memory sPace is uerY critical and fixed decimal
fields are not needed, about 200 words can be saved by
deletins support for fixed deci;,1al fields,"

Chapter 2 explains fixed decimal fields. If you do not know whether fixed
decimal fields appear in any of the forms that you are using, use the Form
Utility to get a printable description of each form and check each field de­
scription. Chapter 3 describes how to use the Form Utility.

8.3.5 Do You Want to Delete Scrolled Area Support? (Y/N]:

"If 1r1e1r1orY sPace is '..!erY critical and scrolled areas are
not needed, about 500 words can be saued bY deletins
support for scrolled areas,"

Chapter 2 describes how to create a scrolled area within a form, and Chapter 7
illustrates how to use scrolled areas. If you do not know whether any of the
forms that you are using contain scrolled areas, use the Form Utility to get a
printable description of each form and check each field description. Chapter 3
describes how to use the Form Utility.

8.3.6 Do You Want Debug Error Messages? (Y/N]:

"While debu.ssins an aPPlication; it is '.!erY helpful to
have the Form Driver sisnal errors in the aPPlication

Preparing Your System for FMS-11 Applications 8-5

code at the terMinal. Once an aPPlication is debu••ed1 a
ForM Driver without this suPPort should be used to save
space and to avoid havin• these Messa•es aPPear to oper­
ators."

Chapter 5 describes the debug error message features. Appendix C includes all
of the messages.

8.3.7 Do You Want Support for the VT52[V/N]

"The ForM Driver was desi•ned to taKe advanta•e of the
features of the VTIOO terMinal. However1 it is Possible
to build a ForM Driver to suPPort the VT52 terMinal. A
sin•le ForM Driver library can SUPPort either the VT100
or the VT52 but not both. In order to support both tYPes
of terMinals1 YOU Must Maintain two ForM Driver li­
braries.

8.3.8 Size of the Directory Buffers in Blocks [D R:1.-2. D:1.]:

"One blocK buffers provide for forM libraries with about
GO forMs. Two blocK buffers Provide for libraries with
about 120 forrrlS+

Form library files and the directory buffers that they require are needed only
when you are using media resident forms. Therefore, if you select only
memory resident forms in the first configuration dialogue question, the system
does not ask you this question or the questions that are described in the next
two sections.

The size to use for directory buffers depends on several factors. A one block
directory buffer is large enough for a 60-form (decimal) form library and a two
block buffer is large enough for a 124-form (decimal) form library file. Each
form library file directory must reside in one directory buffer. When a direc­
tory is larger than the buffer size you have specified, only the forms for the
part of the directory that fits can be accessed. When the Form Driver at­
tempts to access a form for which there is no directory entry the Form Driver
signals that it cannot find the form.

The size of the directory buffer is also the size of the buffer for reading forms.
Larger buffers allow faster access to forms because fewer 1/0 requests are
required to read the form description. Space can be saved by allocating
smaller buffers. The default directory buffer size is one block.

8.3.9 Number of Directory Buffers [D R:1.-20. D:1.]:

"The tiMe re9Uired to access forM directories MBY be oP­
tiMized by KeePin• directories for More forM libraries
in MeMorY at the expense of MeMorY sPac•• OnlY one di­
rectory buffer is ever re9uired. Buffers are Made avail­
able on a least-recently-used basis.

8-6 Preparing Your System for FMS-11 Applications

The number of directory buffers depends on several factors. Space can be
reduced by allocating fewer buffers, but time to access form libraries is in­
creased. With only one directory buffer, you can use any number of form
library files simultaneously. The directories are read and reread as needed.
Time to access form libraries is decreased by allocating more directory
buffers, but the amount of space used is increased.

When you are using more form library files than the number of directory
buffers you have allocated, the directory buffers are reallocated on a least­
recently-used basis to optimize the directory buffer usage. When RMS sup­
port is selected, sufficient pool space is allocated for simultaneous use of as
many form library files as you have specified. The following section describes
how to specify the number of form library files that you will be using simulta­
neously. A one block buffer is also allocated for the open code of RMS to use.

8.3.10 Number of Libraries Open at a Time fD R:1.-20. D:1. l:

"Select the rr1axir11urr1 nur11ber of forr11 librarie<; 1,,1hich r11u;;t
be oPen at the sarne tir11e,"

Successive libraries are opened by changing the channel to the required argu­
ment block. This channel corresponds to the logical unit number (LUN) that
is assigned by the task.

8.3.11 Do You Want Support for Other than Full Duplex
Terminal Service? [V/N]:

"If the aPPlication is to run under RS/-11::> or in an un····
MaPPed RS/-11M sYsteM or is very space critical, MeMorY
can be saved by not usins the full duPiex terMinal
driver. If the aPPlication is usins another terMinal
driuer1 the ForM Driver Must be reconfisured to operate.
The terMinal driver used Must haue support far unsoli­
cited input AST's,

The RSX-llM/M-PLUS l/0 Drivers Reference Manual describes the full
duplex and half duplex terminal drivers in detail.

After you have answered this question, the system displays the following
notice.

"There are no r11Dre 9uestions. It 1A1ill tal·'.e a. fro•1A1 r11inute•c·
to asseMble the ForM Driver and build the obJect li-
b r a r i es + 11

At the end of the configuration procedure, the system produces the following
files in [30, 10]:

• FMSMAC.MLB, the FMS macro library.

Preparing Your System for FMS-11 Applications 8-7

For VT-100 support:

• FDVLIB.OLB, the Form Driver library for applications that use FCS sup­
port.

• FDVLRM.OLB, the Form Driver library for applications that use RMS
support.

For VT-52 support:

• F52LIB.OLB, the Form Driver library for applications that use FCS sup­
port.

• F52LRM.OLB, the Form Driver library for applications that use RMS sup­
port.

8.4 Building and Running Your Application Tasks

8.4.1 Building and Running Application Programs

Application programs written in supported languages are built using the task
builder in the normal way. In this chapter, the separate sections for each
supported language include examples of task build procedures.

The high level language interface object modules supplied are:

• HLLFOR.OBJ the interface for FORTRAN IV and FORTRAN IV-PLUS.

• HLLBP2.0BJ the interface for BASIC-PLUS-2.

• HLLCBL.OBJ the interface for COBOL-11.

8.4.2 Considerations When Using ODL

A few considerations must be followed when including the Form Driver in an
ODL structure.

The data module must always be in the root. To put it there, use a module
specification like:

FDVLIB/LB:FDVDAT

With the full duplex terminal driver, the Form Driver may be placed on any
branch of the ODL by using a module specification like:

FDVLIB/LB:FDV-FDVLIB/LB

With the half duplex terminal driver, such as may be used in applications
running under RSX-118, the following Form Driver factor must be included
in the root:

FDVLIB/LB:FDVTIO

8-8 Preparing Your System for FMS-11 Applications

The language interface modules should be placed with the Form Driver li­
brary by using a specification like:

FORM: .FCTR HLLCBL-FDVLIB/LB:FDV-FDVLIB/L6

Preparing Your System for FMS-11 Applications 8-9

Appendix A
The FMS System MACRO Library

.NLIST

.LIST

.TITLE

.SBTTL

.SBTTL

.SBTTL

.SBTTL

.SBTTL

.SB'llTL

.SBTTL

. !DENT

MODULE:

.ENABLE LC

FMSMAC - FMS Macro Library

*
*
*
*

FMSMAC
. !DENT /VOL 00/

*
*
*
*

/VOl.00/

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

FMSMAC.MAC

VERSION: VOl.00

;

AUTHOR: Larry Pearson

DATE: 20-0ct-78

MODIFIED BY:

DARRELL DUFFY (DJD)

17-NOV-78
4-APR-79
10-APR-79
l-MAY-79

Cheryl Vedoe

DJD
DJD
DJD
DJD

MOVE TO RSX-llM AND NAME FMSMAC
CHANGE $PRINT ROUTINE TO $FMSPR
CHANGE $FLUSH ROUTINE TO $FMSFL
CHANGE $FLUSH MACRO TO $TTFLS TO
AVOID CONFLICT WITH RMS-11

5-Nov-79 CAV Change NEWC$P references to support
SOB instruction.

;
;+

$ARTS

. -
'
.MACRO

• !IF
• !IF
.ENDM

Issues a .MCALL for other commonly used MACROS •

$ARTS
.MCALL $SAV20, $SAV30, $SAV50, BSECT
.MCALL ORIGIN, PSECT, FSYM$, NEGCOD
.MCALL $TTYIN, $TTINR, $PRINT, $TTFLS
.MCALL $TTYOUT
NDF,NEWC$P, NEWC$P = 0
NE,NEWC$P, .MCALL SOB
$ARTS

;CAV
;CAV

A-1

:+
$SAV20

. -I

.MACRO

.ENDM

:+
$SAV30

·-'
.MACRO

.ENDM

:+
$SAV50

. -I

.MACRO

.ENDM

:+
SOB

:-

.MACRO

.ENDM

:++

SAVE REGISTERS 2-0

$SAV20
JSR R2,$SAV20
$SAV20

SAVE REGISTERS 3-0

$SAV30
JSR R3,$SAV30
$SAV30

SAVE REGISTERS RS-RO

$SAVSO
JSR R5,$SAV50
$SAVSO

A software substitute for the SOB instruction for old PDP-lls.

SOB
DEC
BNE
SOB

R,A
R
A

Documentation of use of ORIGIN and PSECT

ORIGIN Section_name,List_of_Attributes

This defines the default .PSECT

PSECT Section name,List_of_Attributes

This changes to a .PSECT (perhaps unnecessary)

PSECT *
This reverts back to the last .PSECT referenced with
the ORIGIN macro.

;--

A-2 The FMS System MACRO Library

;+
UNORG

For internal use only. Normally defined by ORIGIN and invoked by
PSECT.

;-

.MACRO

.ENDM

;+
ORIGIN

UNORG
UNORG

Defines the PSECT to revert back to with PSECT *

.MACRO

.MACRO

.LIST

.ENDM

.NLIST

.ENDM

;+
PSECT

ORIGIN SECT,LIST
UNORG
BEX
PSECT SECT,<LIST>
UNORG
PSECT <SECT>,<LIST>
BEX
ORIGIN

Changes to a specified .PSECT or reverts back to the one defined
by ORIGIN when PSECT * is used .

. MACRO

.LIST

.IF

.NLIST

.!FF

PSECT SECT,LIST
BEX
IDN SECT,<*>
UNORG
BEX
.MEXIT

.IF NB <LIST>
.PSECT SECT,LIST

.IFF
.PSECT SECT
.ENDC
.ENDC
.NLIST BEX
.ENDM PSECT

The FMS System MACRO Library A-3

;+
$ERROR

;-

; .MACRO

,
; •• A

; . ENDM
,
·+ , .

BSECT

;-
;+

BS

;-

.MACRO

.MACRO

.IF
.IF

.IFF

.ENDC
.ENDC

.ENDM

.IIF

. IIF

.IF
.IF

.ENDC
.ENDC

Print error message.

$ERROR
.GLOBL
PSECT

.ASCIZ
PSECT
JSR

.WORD
$ERROR

LVL,TXT
$ARTER
.TEXT. ,<D>

\'LVL'-'TXT'\

*
R4,$ARTER
•.A

Define bit or1g1n for bit definitions. This MACRO is normally used
in conjuntion with the BS MACRO.

Defines the specified symbol as equivalent to the current bit position
and increments the bit counter to the next position.

BSECT

BS
NB
B
.LIST
ARGl =
.NL I ST

.LIST

SECTNM,ARG,INIT

ARGl,GBL
<ARGl>
<GBL>

SECTNM

ARGl == SECTNM
.NLIST

SECTNM
BS

SECTNM * 2

NDF,SECTNM, SECTNM = 0
NB <INIT>, SECTNM
NB <ARG>

NE <ARG>
.REPT ARG
BS
.ENDR

1

.ENDM BSECT
;+

NEGCOD

Define negative codes for symbols. Normally used in conjuction
with the NC macro.

A-4 The FMS System MACRO Library

;+
NC

. MACRO

.MACRO

.IF
.IF

.IFF

.ENDC
.ENDC
SECTNM
.ENDM

. !IF

. !IF

. !IF

.ENDM
;
;+

;-

FSYM$

.MACRO
TE$XT
FI$ELD
NA$MED
EF$0RM
.ENDM

;+
$TTFLS

.MACRO

.ENDM

Defines a specfied symbol as equivalent to the current value
of the section name .

NEGCOD SECTNM,ARG,INIT

NC ARGl,GBL
NB, <ARGl>
B,<GBL>
.LIST
ARGl = SECTNM
.NLIST

.LIST
ARGl == SECTNM
.NLIST

= SECTNM - 1
NC

NDF,SECTNM, SECTNM = 0
NB,<INIT>, SECTNM = -1
NB,<ARG>, SECTNM = -<ARG>

NEG COD

This macro defines some form definition symbols.

FSYM$
-2
-3
-4
-s

FSYM$

Clear the input ring buffer of characters.

$TTFLS
CALL $FMSF~
$TTFLS

The FMS System MACRO Library A_.:5

;+
$PRINT

,

.MACRO

.IF

.IF

.ENDC

.ENDC

.ENDM

;+
$TTYIN

;-

.MACRO

.IF

.IF

.ENDC

.ENDC

.ENDM
;+

$TTINR

,

.MACRO

.IF

.IF

.ENDC

.ENDC

.ENDM

;+
$TTYOUT

,

.MACRO

.IF

.IF

.ENDC

.ENDC

.ENDM

Print a string of text.

$PRINT ADDR
.GLOBL $FMSPR
NB <ADDR>
DIF <ADDR>,RO
MOV ADDR,RO

CALL $FMSPR
$PRINT

Input a character from the terminal.

$TTYIN CHAR
CALL $CHRIN
NB <CHAR>
DIF <CHAR>,RO
MOVB RO,CHAR

$TTYIN

Input a character from the terminal without waiting

$TTINR CHAR
CALL $TTINR
NB <CHAR>
DIF <CHAR>,RO
MOVB RO,CHAR

$TTINR

Output a character to the terminal.

$TTYOUT CHAR
NB <CHAR>
DIF <CHAR>,RO
MOVB CHAR,RO

CALL $CHROU
$TTYOUT

A-6 The FMS System MACRO Library

;+
FORM DRIVER CALL MACRO

$FDV ARGLST,FNC,REQ,NAM,NUM,TRM,VAL,LEN

ARGLST OPTIONAL POINTER TO ARGUMENT LIST
FNC REQUIRED COMMAND FUNCTION CODE (LAST 3 LETTERS)
REQ - LEN OPTIONAL KEYWORD ARGUMENTS TO SUPPLY ARGUMENTS

.MACRO $FDV ARG,FNC,REQ,NAM,NUM,TRM,VAL,LEN

.MACRO $$FA KWD,THG

.IF NB,THG

.ENDC

.ENDM

MOV THG,KWD(RO)

. IF NB ,ARG
MOV ARG,RO

.ENDC
$$FA F$REQ,<REQ>
$$FA F$NAM,<NAM>
$$FA F$NUM,<NUM>
$$FA F$TRM,<TRM>
$$FA F$VAL,<VAL>
$$FA F$LEN,<LEN>
.IF NB,FNC

MOV #FC$'FNC,F$FNC(R0)

.ENDC

.ENDM

;+
$CSPON

.MACRO

.ENDM

;+
$CSPOF

.MACRO

.ENDM

.END

CALL $FDV

DEFINE THE SIZES OF THE ARGUMENT BLOCKS FOR FORM DRIVER

.MACRO
F$ASIZ
F$RSIZ
.ENDM

$FDVDF
16

= 6

This macro call CNSPON to put the terminal in special mode and
lower case.

$CSPON
$CSPON

This macro calls CNSPOF to put the terminal in normal mode and
upper case.

$CSPOF
$CSPOF

;End of FMSMAC.MAC

The FMS System MACRO Library A-7

Appendix B
FMS Extended Examples

This appendix lists four extended examples of FMS applications. The FMS
distribution kit contains the sources of these examples. They are built auto­
matically as part of the FMS-11/RSX installation procedure. You can experi­
ment with them while you are learning to use the FMS features.

Section B.1 contains listings of an FMS application that has been written in
BASIC-PLUS-2, COBOL-11, FORTRAN IV, and MACR0-11. All versions
of the application use the same form library file, DEMLIB.FLB. This file is
also in the FMS distribution kit.

The file names for the extended examples as stored on the FMS distribution
kit are:

DEMLIB.FLB

CBLDEM.CBL

BASDEM.B2S

FORDEM.FTN

MACDEM.MAC

The form library file for BASDEM, FORDEM,
CBLDEM and MACDEM.

The COBOL version of the program.

The BASIC-PLUS-2 version of the program.

The FORTRAN IV and FORTRAN IV-PLUS version of
the program.

The MACR0-11 version of the program.

For each version of the program, instructions about building a running appli­
cation are included as comments at the beginning of the listing. Chapter 8,
"Building and Running FMS Application Systems," explains the building
procedures in detail.

B.1 A Typical Application Written in BASIC-PLUS-2, COBOL-11,
FORTRAN IV, FORTRAN IV-PLUS, and MACR0-11

This section lists BASIC-PLUS-2, COBOL-11, FORTRAN IV, FORTRAN
IV-PLUS, and MACR0-11 versions of a simple user program that supports a
multi-purpose data-entry application. The form library file DEMLIB.FLB
contains six sample forms for the application and any version of the applica­
tion can use them. For a full printed description of a form in DEMLIB.FLB,
you can use the FMS Form Utility (FUT). Chapter 3 describes how to run the
Form Utility.

The application supports different data-entry processes by using form de­
scriptions that provide the details for each process. The program itself shows

B-1

only the appropriate forms, depending on the process the operator chooses,
and collects the operator's responses to each form. The application supports
the following data-entry processes:

1. Create a customer file.

2. Create a part description file.

3. Create an employee file.

4. Exit.

As an example of how the application uses the forms, the following sketch
traces the major processing steps in creating a customer file.

Starting the Process

Initially, each version of the application displays a menu form named 'FIRST'
to ask what process is to be done. Figure B-1 shows the form named 'FIRST'
with the named data associated with that form as a circled insert.

The operator chooses to create a customer file by typing '1' in response to the
field prompt Do in the menu form.

The application uses the operator's response to find out the next form to
display by checking the named data associated with the menu form. The
application finds that the string 'CUSTO' corresponds to the operator's re­
sponse in this case. The application then creates a new named data reference
('IF') from the operator's response, checks for it in the menu form's named
data, and finds the corresponding string 'SY:NEWCUS.DAT.'

FMS-11 Demonstration Menu

Do

1 Create a customer file
2 Create a part description file
3 Create an employee file
4 Exit

Name
1
2
3
TF
2F

Data
GUSTO
PARTS
EMPLOY
SY:NEWCUS.DAT
SY:PARTS.DAT
SY: EMPLOY.DAT.
.EXIT.

~ot actually displayed

Figure B-1: The Extended Example Form Named 'FIRST'

B-2 FMS Extended Examples

Collecting the Customer Data

The application continues processing by loading and displaying a form in
DEMLIB.FLB that is named 'CUSTO.' Figure B-2 shows that form and the
named data associated with it. The application also opens a customer data
output file named NEWCUS.DAT on the system volume.

New Customer Form

Customer Name:

Address:

~ot actually displayed Account Rep:

Phone: (617)-00000000

Figure B-2: The Extended Example Form Named 'CUSTO'

When the operator has completed the form named 'CUSTO,' the application
writes the customer data to the output file. The application then uses the
named data reference 'NXTFRM' to check for another form that is part of the
customer data process. In the named data associated with the form named
'CUSTO,' the string 'CUSTPR' is associated with 'NXTFRM.'

Completing the Customer Data

The application continues processing by loading and displaying the form
named 'CUSTPR.' Figure B-3 shows that form and the named data associ­
ated with it. The file NEWCUS.DAT remains open.
When the operator has completed the form named 'CUSTPR,' the application
adds the responses to the customer data output file and checks the current
named data for another form name associated with the reference 'NXTFRM.'
The application gets the string '.NONE.'

Finishing the Customer Data Entry Process

The application program and forms have been prepared so that the program
gets the string '.NONE.' after the last form in each data-entry process has
been completed. The application then displays another menu form named

FMS Extended Examples B-3

CUSTOMER PROFILE

Annual Income in Thousands
Expected purchases
Number of employees

$000000
$000000

000000

(vot actually displayed

Figure B-3: The Extended Example Form Named 'CUSTPR'

'LAST.' Figure B-4 shows that form and the named data associated with it.
The file NEWCUS.DAT remains open until the operator switches to another
data entry process or stops the application.

In the form named 'LAST,' the default response in the field header is '1,'
indicating that the operator wants to enter more customer data. The operator

Do

Collect additional data
2 Return to menu
3 Exit

Name
1

2
3

Data

FIRST

~ot actually displayed

Figure B-4: The Extended Example Form Named 'LAST'

B-4 FMS Extended Examples

can type a different response and either stop the application or return to the
first menu form ('FIRST') and choose another data entry process.

Figures B-5 and B-6 show the other two forms in the form library file
DEMLIB.FLB and the named data associated with each form. Refer to those
figures while you trace the data entry processes for creating a part description
file and an employee file.

EMPLOYEE DATA

Employee Name: Phone: (

Home address: Date hired:

Work address

Plant: Phone:
Loe: Ext:
Mail stop:

C:ot actually displayed

Figure B-5: The Extended Example Form Named 'EMPLOY'

PART DESCRIPTION

Part Number

Description

Supplier

(Not actually displayed Address

Salesperson Phone ()- Ext

Salesperson Phone ()- Ext

Salesperson Phone ()- Ext

Price $ per

Figure B-6: The Extended Example Form Named 'PARTS'

FMS Extended Examples B-5

You can also experiment with your own applications by using the Form Editor
to create your own forms and to add them to DEMLIB.FLB. If you do that,
remember to modify the form named 'FIRST' so that you can access your new
form(s) from it.

B.2 Running the Programs

Before running any of the demo programs, you must have the form library
DEMLIB.FLB in the system account you are running under. The demo pro­
grams are built as part of the FMS-11/RSX installation procedure.

B.2.1 Running the BASIC-PLUS-2 Version

RUN BASDEM.TSK tB@

B.2.2 Running the COBOL Version

RUN CBLDEM.TSK tB@

B.2.3 Running the FORTRAN IV Version

RUN FDRDEM.TSK tB@

B.2.4 Running the FORTRAN IV-PLUS Version

RUN F4PDEM+TSK tB@

B.2.5 Running the MACR0-11 Version

RUN MACDEM.TSK tB@

B-6 FMS Extended Examples

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
292
294
296
298
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490

BASDEM.B2S

COPYRIGHT <C> 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: BAS DEM

VERSION: VOl.00

AUTHOR: Megan

DATE: 10-APRIL-79

BASIC demonstration program for FMS illustrating a
simple form-driven, data entry application.

Below is an example of a TKB command file to build
this demonstration program.

I

BASDEM.CMD

TKB command file to build BASDEM

Underlined items are changes from file built with
BASIC+2 BUILD command.

SY:BASDEM/CP,BASDEM/-SP=SY:BASDEM/MP
, ----------- Add map file if desired.
UNITS = 14
ASG TI: 13: 5

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM I

REM //
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

.
I Assign LUN 5 as terminal for FDV.
ASG SY:6:7:8:9:10:11:12

Remove LUN 5 from this line.

BASDEM.ODL

TKB overlay Description File for BASDEM

Underlined items are changes from file built by
BASIC+2 BUILD command.

.ROOT BIROTl-USER,RMS
USER: .FCTR SY:BASDEM-LIBR-FORM
I

LIBR:
FORM:

.FCTR LB:[l,l]BASIC2/LB

.FCTR HLLBP2-FRM1
·--------------------------------,
FRMl: .FCTR FDVLRM/LB-(1,l]RMSLIB/LB:RMSSYM

Add FMS factor to root

Add HLL

;-- Add FDV and
; define RMS symbols
RMS: .FCTR BI0017
@LB:[l,l]BASICl
.END

FMS Extended Examples B-7

500 REM Defined variables.
C:f\1 T"\TU TQ.f11::AA\
J v .J. u .J. .r1 .L 'b \ .J. J v v J

502 C$=STRING$(2%,65%)
503 Fl$=STRING$(6%,32%)
504 F2$=STRING$(13%,32%)
505 A$=STRING$(255%,32%)
510 REM VARIABLE DESCRIPTION
520 REM
530 REM
550 REM
560 REM
570 REM
580 REM
590 REM
600 REM
610 REM
620 REM
625 CALL
630 CALL
635 CALL
640 CALL
650 REM
660 REM
670 REM
680 REM
690 REM
700 CALL
710 CALL
720 CALL
730 CALL
740 REM

C$
S%
T%
Fl$
F2$
F3$

Choice specified by the user
FDV status
Terminator code
The initial form name of the series
The output file name
The current form name

Initialize Form driver and open library.

WTQI0(768%,5%,5%)
FINIT (I%() ,1500%)
FLCHAN(6%) \ GOSUB 2000
FLOPEN("SY:DEMLIB") \ GOSUB 2000

Show the menu form for operator to select the data
collection series. Get the first form name from
named data.

FCLRSH("FIRST") \ GOSUB 2000
FGET(C$,T%,"CHOICE") \ GOSUB 2000
FNDATA(C$,Fl$) \CALL FSTAT(S%) \ IF
FPUTL("Illegal choice") \ GO TO 710

S%>0% GO TO 770

750 REM If form name is ".EXIT.", terminal operator is done.
760 REM
770 IF Fl$=".EXIT." GO TO 1290
780 REM
790 REM
800 REM

Get the output file name from named data and open it.

810 CALL FNDATA(TRM$(C$)+"F",F2$)
820 OPEN F2$ FOR OUTPUT AS FILE #1%,FILESIZE 10%
830 REM
840 REM
850 REM
860 REM
870 REM

THIS IS THE DATA COLLECTION LOOP

Set current form = first form in series.

880 F3$=Fl$
890 REM
900 REM Show the form.
910 REM
920 CALL FCLRSH(F3$) \ GOSUB 2000
930 REM
940 REM
950 REM

Get data for current form and output it.

960 CALL FGETAL(A$) \ GOSUB 2000
970 PRINT #1%,TRM$(A$)
980 REM
990 REM
1000 REM

Get name of next form. If found, loop for more data.

1010 CALL FNDATA("NXTFRM",F3$)
1020 IF F3$<>".NONE." GO TO 920
1030 REM

B-8 FMS Extended Examples

1040 REM End of the form series. Show LAST to determine if
1050 REM we're done or not.
1060 REM
1070 CALL FCLRSH("LAST") \ GOSUB 2000
1080 CALL FGET(C$,T%,"CHOICE") \ GOSUB 2000
1090 REM
1100 REM If response= "l", repeat data collection loop.
1110 REM
1120 IF C$="1" GO TO 880
1130 REM
1140 REM Get named data corresponding to response.
1150 REM Get field again if illegal response.
1160 REM Close output file for valid response other than 1.
1170 REM
1180 CALL FNDATA(C$,F3$) \CALL FSTAT(S%) \ IF S%>0% GO TO 1200
1190 CALL FPUTL("Illegal choice") \GO TO 1080
1200 CLOSE #1%
1210 REM
1220 REM If named data is ".EXIT.", terminal operator is done, else
1230 REM display menu form again.
1240 REM
1250 IF F3$<>".EXIT." GO TO 700
1260 REM Close form library and exit.
1270 REM
1280 REM
1290 CALL FLCLOS \ GO TO 9999
2000 REM
2010 REM Output message and exit if I/O error returned from
2020 REM Form Driver. This is the only error expected in a
2030 REM debugged application.
2040 REM
2050 CALL FSTAT(S%)
2060 IF S%>0% THEN RETURN
2070 CALL FPUTL("Fatal I/O Error") \ STOP
9999 END

FMS Extended Examples B-9

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CBLDEM.CBL

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: CBLDEM

VERSION: VOL 00

AUTHOR: MEGAN

DATE: l-APRIL-79

COBOL demonstration program for FMS illustrating a
simple form-driven, data entry application.

The following is a brief description on compiling and
building CBLDEM.

The command to compile the program is:

CBL CBLDEM,CBLDEM=CBLDEMIERR:l

where: IERR:l suppresses diagnostic error logging.

Below is an example of a TKB command file to build
this demonstration program.

CBLDEM.CMD

TKB command file to build CBLDEM
,
CBLDEM,CBLDEMl-SP=CBLDEM

HLLCBL -> COBOL interface.
i FDVLRM -> Form Driver library.
HLLCBL,FDVLRMILB
[l,l]COBLIBILB,RMSLIBILB
I
UNITS=9

LUN 1 will be the
ASG TI:l

terminal.

LUN 3 will be the output file unit.
ASG SY:3

Reassign the logical unit in the Form
GBLDEF = T$LUN:l
II

Driver.

B-10 FMS Extended Examples

*
*
*
*
*
*

*

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDEM.

TEST PROGRAM

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OUTPUT-FILE ASSIGN TO "SY:".
DATA DIVISION.
FILE SECTION.

*
*

Create a sequential file for output of form data.

FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ANSWER2.

01 POOL PIC X(256).
*
*
*

*

Data follows.

WORKING-STORAGE SECTION.
System form library.

01 DEMLIB PIC X(lS) VALUE
* Logical unit number for

PIC 99 COMP VALUE 3.

"#SY:DEMLIB.FLB#".
attaching the terminal.

01 LON
* Impure area.
01 IMPURE PIC X(2000).
*
01 !SIZE
01 INUM
01 UN
*

Size of impure area.
PIC 9999 COMP VALUE 2000.

PIC 999 COMP VALUE
PIC 9 COMP VALUE 1.

Special work area.

768.

*
*
*
*
*

ANSWERl -> The initial form name of the series.
ANSWER2 -> The output file name.
ANSWER3 -> The current form name.

01 ANSWERl.
02 PART PIC X(6).
02 FILLER PIC X(7).

01 ANSWER2 PIC X(l3).
01 ANSWER3.

02 PART PIC X(6).
02 FILLER PIC X(7).

*
*
*

Fieldf used to create a field name.

01 FIELDF.
02 DAT PIC X.
02 FILLER PIC X(S) VALUE "F

01 FIELD PIC X(6).
*
*
*

Status

01 STAT PIC 99 COMP.
01 STAT2 PIC 99 COMP.

"

FMS Extended Examples B-11

*
*
*

Error message on program errors.

01 ERRl.
02 PARTl PIC X(23) VALUE "#FATAL I/O ERROR, STAT=".

PIC ZZ9- DISPL~Y. 02 ERR-STAT
02 PART2
02 ERR-STAT2
02 PART3

PIC X(8) VALUE ", STAT2=".
PIC ZZ9- DISPLAY.

PIC X(l) VALUE "#"
01 ILL-CHOICE PIC X(l6) VALUE "#ILLEGAL CHOICE#".
*
*
*

FORM DESCRIPTION STARTS HERE

COPY "SY:DEMLIB.LIB".
*
*
*
PROCEDURE DIVISION.
MAIN-CONTROL SECTION.
Pl.
*

*

*
P6.

*
*
*
*
P2.

*
*
*

*
*
*

Attach the terminal.
CALL "WTQIO" USING INUM,UN,UN.

Initialize and open the library.
CALL "FINIT" USING IMPURE,ISIZE.
CALL "FLCHAN" USING LUN.
PERFORM STATUS-CHECK.
CALL "FLOPEN" USING DEMLIB.
PERFORM STATUS-CHECK.

Display first form.

CALL "FCLRSH" USING FORM-FIRST.
PERFORM STATUS-CHECK.

Show the menu form for operator to select the data
collection series. Get the first form name from
named data.

CALL "FGET" USING
D-FIRST-CHOICE,STAT,N-FIRST-CHOICE.

PERFORM STATUS-CHECK.
MOVE D-FIRST-CHOICE TO FIELD.
MOVE SPACES TO ANSWERl.
CALL "FNDATA" USING

FIELD,ANSWERl.
CALL "FSTAT" USING STAT.
IF STAT NOT > 0

CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK
GO TO P2.

If form name is ".EXIT.", terminal operator is done.

IF PART OF ANSWERl = ".EXIT." GO TO LIB-CLOSE.

Get the output file name from nemed data and open it.

MOVE D-FIRST-CHOICE TO DAT OF FIELDF.
MOVE SPACES TO ANSWER2.
CALL "FNDATA" USING

DAT OF FIELDF,ANSWER2.
PERFORM STATUS-CHECK.
OPEN OUTPUT OUTPUT-FILE.

B-12 FMS Extended Examples

*
*
*
P4.

*
P3.

*
*
*

*
*
*

*
*
*
*

*
PS.

*
*
*

*
*
*
*
*

*
*
*
*

This is the data collection loop.

MOVE ANSWER! TO ANSWER3.
Show the form.

CALL "FCLRSH" USING ANSWER3.
PERFORM STATUS-CHECK.

Get data for current form and output it.

MOVE SPACES TO POOL.
CALL "FGETAL" USING POOL.
PERFORM STATUS-CHECK.
WRITE POOL.

Get name of next form. If found, loop for more data.

MOVE "NXTFRM" TO FIELD.
CALL "FNDATA" USING
FIELD,ANSWER3.
PERFORM STATUS-CHECK.
IF PART OF ANSWER3 NOT= ".NONE." GO TO P3.

End of the form series. Show last to determine if
we're done or not.

CALL "FCLRSH" USING FORM-LAST.
PERFORM STATUS-CHECK.

CALL "FGET" USING
D-LAST-CHOICE,STAT,N-LAST-CHOICE.

PERFORM STATUS-CHECK.
MOVE D-LAST-CHOICE TO FIELD.

If response = "l", repeat data collection loop.

IF FIELD = "l" GO TO P4.

Get named data corresponding to response.
Get field again if illegal response.
Close output file for valid response other than 1.

CALL "FNDATA" USING FIELD,ANSWER3.
CALL "FSTAT" USING STAT.
IF STAT NOT > 0

CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK
GO TO PS.

CLOSE OUTPUT-FILE.

If named data is ".EXIT.", terminal operator
is done, else display menu form again.

IF PART OF ANSWER3 NOT= ".EXIT." GO TO P6.

FMS Extended Examples . B-rn

*
*
*

Close form library and exit.

LIB-CLOSE.

*
*
*
*
*

CALL "FLCLOS".
PERFORM STATUS-CHECK.
STOP RUN.

Output message and exit if I.O error returned from
Form Driver. This is the only error expected in a
debugged application.

STATUS-CHECK SECTION.
SCl.

SC2.

CALL "FSTAT" USING STAT,STAT2.
IF STAT > 0 GO TO SC2.
MOVE STAT TO ERR-STAT.
MOVE STAT2 TO ERR-STAT2.
CALL "FPUTL" USING ERRl.
STOP RUN.

EXIT.

8-14 FMS Extended Examples

c
C FORDEM.FTN
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: FORD EM

VERSION: VOL 00

AUTHOR: Megan

DATE: l-APRIL-79

FORTRAN demonstration program for FMS illustrating a
simple form-driven, data entry application.

This module is compiled as follows:

FOR FORDEM,FORDEM=FORDEM (F4)

or

F4P F4PDEM,F4PDEM=FORDEM (F4+)

The tasks are built as shown below:

Build the demo for FORTRAN IV

' FORDEM,FORDEMICRl-SP=FORDEM
: FORTRAN interface and Form
HLLFOR,FDVLIBILB
[l,l]FOROTSILB

Driver library next

II

Build the demo for FORTRAN IV+ with FCS support
:
F4PDEMIFP,F4PDEMICRl-SP=F4PDEM
: FORTRAN interface and Form Driver
HLLFOR,FDVLIBILB
: FORTRAN IV+ OTS with FCS support
[1, l] F4POTSILB
II

library next

Build the demo for FORTRAN IV+ with RMS support
:
F4PDEMIFP,F4PDEMICRl-SP=F4PDEM
: FORTRAN interface and Form Driver
HLLFOR,FDVLRMILB
: FORTRAN IV+ OTS with RMS support
[l,l]F4POTSILB
II

library (with RMS) next

FMS Extended Examples B-15

c
IMPLICIT INTEGER (A-Z)
DIMENSION IMPURE (1000)
BYTE RESP(3), FORM(7), FORM1(7), DNAM(3), FILE(30), DATA(255)

c
C Initialize impure area for Form Driver and open form library.
c

CALL WTQIO (768,5,5) !ATTACH THE TERMINAL
CALL FINIT (IMPURE, 1000)
CHAN=2
CALL FLCHAN(CHAN)
CALL ERROR (FLOPEN ('DEMLIB'))

c
C Display menu form.
c

10
c

CALL ERROR (FCLRSH ('FIRST '))

C Get input from terminal. Get named data (name of first form in
C series or .EXIT.) corresponding to user's choice. If named data
C doesn't exist, input invalid.
c

20

c

CALL ERROR
IF (FNDATA
CALL FPUTL
GOTO 20

(FGET (RESP, TERM, 'CHOICE'))
(RESP, FORMl) .GT. 0) GOTO 30
('Illegal choice')

C Check for exit. If choice not exit, get name of corresponding
C file and open it for output.
c

30

40

c

IF (SCOMP (FORMl, I .EXIT. I) .NE. 0) GOTO 40
CALL FLCLOS ! CLOSE FORM LIBRARY
STOP
CALL
CALL
OPEN

CONCAT (RESP, 'F', DNAM)
FNDATA (DNAM, FILE)
(NAME=FILE,UNIT=l,INITIALSIZE=lO)

C Display form and collect data; write data to output file.
c

50
60

70
c

CALL SCOPY (FORMl, FORM, 6)
CALL ERROR (FCLRSH (FORM))
CALL ERROR (FGETAL (DATA))
WRITE (l,70) (DATA(!), I=l,LEN(DATA))
FORMAT (78Al) !DATA IS BROKEN INTO SEGMENTS

C Get name of next form in series. Check for none.
c

CALL FNDATA ('NXTFRM', FORM)
IF (SCOMP (FORM, I .NONE. I) .NE. 0) GOTO 60

c
C If last form in series done, display a menu form.

FOR OUTPUT

C Get input from terminal. Get named data corresponding
C to user's choice. If no named data, invalid input.
c

CALL ERROR (FCLRSH ('LAST'))
80 CALL ERROR (FGET (RESP, TERM, 'CHOICE'))

IF (FNDATA (RESP, FORM) .GT. 0) GOTO 90
CALL FPUTL ('Illegal choice')
GOTO 80

B-16 FMS Extended Examples

c
C If choice = 1, repeat series.
C Else close output file~ check for exit or go back to
C initial menu form.
c

c

c

90 IF (RESP(l) .EQ. 'l') GOTO 50
CLOSE (UNIT=l)
IF (SCOMP(FORM, I .EXIT. I) .NE. 0) GOTO 10
CALL FLCLOS ! CLOSE FORM LIBRARY
STOP
END

SUBROUTINE ERROR (RESULT)

C Output message and exit if I/O error returned from
C Form Driver. This is the only error expected in a
C debugged application.
c

c

c

c

IMPLICI~ INTEGER (A-Z)

IF (RESULT .GT. 0) RETURN
CALL FPUTL ('Fatal I/O Error')
STOP
END

SUBROUTINE SCOPY (SRC, DST, LEN)

C Copy a string of a specified length

source byte string
c
c
c
c
c

SRC
DST
LEN

destination byte string to be ended by a zero
number of characters to copy

c

BYTE SRC(l), DST(l)
INTEGER LEN

C Copy source to destination for length
c

DO 10 I = 1, LEN
DST (I) = SRC (I)

10 CONTINUE
c
C End destination string with zero byte
c

DST (LEN+l) = 0
RETURN
END

FMS Extended Examples B-17

c
INTEGER FUNCTION SCOMP (SRCl, SRC2)

c
C Compare two strings
c
C SRCl = first comparand byte string ended by a zero
C SRC2 = second comparand byte string ended by a zero
c
C Value of function is zero for equal, nonzero for not equal
C Compare returns failure if string lengths are not the same
c

BYTE SRCl(l), SRC2(1)
c
C Compare until either string ends in zero byte or does not match
c

I = 1
10 IF (SRCl (I) .EQ. 0 .AND. SRC2 (I) .EQ. 0) GOTO 20

IF (SRCl(I) .NE. SRC2(I)) GOTO 30
I = I + 1
GOTO 10

c
c Return success
c
20 SCOMP = 0

RETURN
c
C Return failure
c
30 SCOMP = 1

RETURN
c

END
c

SUBROUTINE CONCAT (SRCl, SRC2, DST)
c
C Concatenate two string into a third
c
C SRCl = first source string ended by a zero
C SRC2 = second source string ended by a zero
C DST = destination string ended by a zero
c

BYTE SRCl(l), SRC2(1), DST(l)
c
C Copy the first string into destination
c

J = 1
I = 1

10 IF (SRCl (I) .EQ. 0) GOTO 20
DST(J) = SRCl(I)
J = J + 1
I = I + 1
GOTO 10

c
C Now for second string to destination
c
20
30

I = 1
DST(J) = SRC2(I)
IF (SRC2(I) .EQ.
J = J + 1
I = I + 1
GOTO 30

B-18 FMS Extended Examples

0) GOTO 40

c
C Return
c
40 RETURN

END
c

SUBROUTINE INSERT (SRC, DST, POS)
c
C Replace a portion of one string with another

source string ended by a zero
destination string ended by a zero

c
c
c
c
c

SRC
DST
POS position in destination for source string contents

c

BYTE SRC(l), DST(l)
INTEGER POS

C Scan the destination string for its end
c

J = 1
10 IF (DST(J) .EQ. 0) GOTO 20

J = J + 1
GOTO 10

c
C Copy source into destination at position given
c
20
30

c

I = 1
IF (SRC (I) .EQ. 0) GOTO 40
DST(I+POS-1) = SRC(I)
I = I + 1
GOTO 30

C End destination string if source extends it and return
c
40 IF (I .GT. J) DST(J) = 0

RETURN
END

c
INTEGER FUNCTION INDEX (SRC, STR)

c
C Find position of one string in another
c
C SRC source string
C STR = target string
c
C Value of function is zero if not found,
C or position of first character of STR in SRC if found
c

BYTE SRC(l), STR(l)
c
C Look for STR in SRC until end of SRC
c

J = 0
10 J J + 1

I 0
IF (SRC(J) .EQ. 0) GOTO 30

FMS Extended Examples B-19

c
c If
c IE
c
20

c

end of STR then success
not match look at next position in SRC

IF (STR(I+l) .EQ. 0) GOTO 40
IF (SRC(J+I) .NE. STR(I+l)) GOTO 10
I = I + 1
GOTO 20

C Return failure
c
30 INDEX = 0

RETURN
c
C Return success, position of string
c
40 INDEX = J

RETURN
c

END
c

INTEGER FUNCTION LEN (STR)
c
C Return length of string ended by a zero
c
C STR = string ended by a zero
c
C Value of the function is the length of the string without the zero
c

BYTE STR(l)
c
C Scan for the zero byte
c

I = 1
10 IF (STR(I) .EQ. 0) GOTO 20

I = I + 1
GOTO 10

c
C Return the length of the string
c
20 LEN = I - 1

RETURN
END

c

B-20 FMS Extended Examples

.TITLE MACDEM - FMS DEMONSTRATION SUBROUTINE

MACDEM.MAC

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: MAC DEM

VERSION: VOL 00

AUTHOR:

DATE:

MEGAN

19-NOVEMBER-79

.ENABL LC Allow lower case source text

.MCALL

.MCALL

.MCALL

.MCALL

.MCALL

$FDV,$FDVDF Identify Form Driver macro calls
QIOW$S,EXIT$S RSX I/O related macros
FINIT$,FSRSZ$; FCS macros
FDBDF$,FDRC$A,FDOP$A,NMBLK$
FDAT$A,OPEN$W,PUT$,CLOSE$

FSRSZ$ l Set the file storage region

$FDVDF !nit the Form Driver definitions

Equated symbols

EXTNAM:
NONNAM:
FSTNAM:
LSTNAM:
CHCNAM:
NXTNAM:
LIBNAM:
MSGl:
MSG2:

ISIZ=l024.
IN$CHN=l
OU$CHN=2

.SBTTL Local data

.ASCII

.ASCII

.ASCII

.ASCII

.ASCII

.ASCII

.ASCIZ

.ASCIZ

.ASCIZ

.EVEN

/.EXIT./
/.NONE./
/FIRST I
/LAST I
/CHOICE/
/NXTFRM/
/DEMLIB/
/Illegal choice/
Fatal I/O error

Size of FDV impure area
Input channel number (Form Library)
Output channel number (Output File)

Exit name
No more forms in series
ASCII form name
ASCII form name
ASCII field name
ASCII named data field name
ASCIZ library name
Message for illegal menu choice
Message with embedded '/'

FMS Extended Examples B-21

Argument lists and data area

ARGLST: .BLKB F$ASIZ
REQLST: .BLKB F$RSIZ

STAT: .BLKW 2

VARl: .BLKB 6

OUTFIL: .BLKW 5
FRMNAM: .BLKW 3
SAVNAM: .BLKW 3
FILBLK: .BLKW 1
BUFADR: .BLKW 1
BUFFER: . BLKW 256 .
ENDBUF=.
FILNAM: .BLKB 20
IMPURE: .WORD ISIZ

.BLKB ISIZ-2

I/O section

OUTFDB:

NMBLK:

DSDS:

FDBDF$
FDAT$A
FDRC$A
FDOP$A

R.VAR,FD.CR
,BUFFER
OU$CHN,DSDS,NMBLK

NMBLK$,DAT,,SY,0

.WORD 0,0

.WORD 0,0

.WORD 0,0

.EVEN

Form Driver argument list
Form Driver required list

Form Driver status block

Variable 6-byte block for gen'l use

Output file name
Area for form names
Save area for a form name
Length of file in blocks
Length of data in buffer
Length of output buffer

16 bytes for ASCII file name
Form Driver impure area

Define the FDB
Variable length records with CR/LF
Allow read, write and modify
File descriptors

Default for file

Default the device name
and file directory

This is the file name length
and file name

.SBTTL MACDEM - FMS Demonstration Subroutine

;++
FUNCTIONAL DESCRIPTION:

DEMO:

This is the MACRO demonstration program for FMS
illustrating a simple form-driven, data-entry
application .

. PSECT MACDEM

FIN IT$

QIOW$S
BCC
CALL

#IO.ATT,#T$LUN,#T$EFN
1$
LEAVE

Initialize for FCS I/O

Attach the terminal
If error then just leave
Done for now

B-22 FMS Extended Examples

1$:

FIRST:

10$:

20$:

30$:

60$:

MOV

MOV
MOV
MOV
MOV

$FDV
$FDV
CALL

$FDV
CALL

$FDV
CALL

MOV
CALL
MOVB
$FDV

CMP
BEQ
$FDV
BR

MOV
MOV
CALL
BNE
JMP

CALL
MOV
MOV
.REPT

MOV
.ENDR
CLR
MOV
MOVB
MOV
$FDV

CALL
OPEN$W
BCC
CALL

$FDV
CALL

$FDV
CALL

CALL

$FDV

#ARGLST,RO

#REQLST,Rl
#STAT,F$STS(Rl)
#INCHN,FCHN(Rl)
#IMPURE,F$IMP(Rl)

REQ=Rl
FNC=OPN,NAM=#LIBNAM
ERREX

FNC=CSH,NAM=#FSTNAM
ERREX

FNC=GET,NAM=#CHCNAM
ERREX

#VARl,Rl
BLKNAM
@F$VAL(R0) ,VAR!
FNC=DAT,NAM=#VARl

STAT,#FS$SUC
20$;
FNC=LST,VAL=#MSGl,LEN=#-1
10$

F$VAL(R0) ,Rl
#EXTNAM,R2
CMPNAM
30$
LIBCLS

MOVNAM
#FRMNAM,Rl
#SAVNAM,R2
3

(Rl)+, (R2)+

FILBLK
#BUFFER,BUFADR
#'F,VARl+l
#VARl,Rl
FNC=DAT,NAM=Rl

DAT SET
#OUTFDB
60$
LEAVE

RO = addr of FDV arg list

Rl = addr of FDV required arg list
Set addr of status block
Set I/O channel for FDV
Set addr of FDV impure area

!nit required arg list pointer
Open form library
Exit with error

Show menu form
Exit if error

Get field 'CHOICE'
Exit if error

Rl = ptr to 6-byte block
Blank out VAR!
VAR! = menu choice
Get named data with the name being

the response to 'CHOICE'
Was get successful?
Continue if ok
; Else print message on line 24
Try again

Rl = addr of name from named data
R2 = addr of exit name
Zero set on match
Continue on match
Else close form library and exit

Save named data
Rl'= adr of source name
Adr to save form name

Save form name

I nit file length
!nit buffer adr
Make 2nd letter = F
Rl = addr of 6-byte block
Get named data at VAR!

Go set up a data set descriptor
Open the file
Continue if ok
Leave on I/O error

ARG=#ARGLST,FNC=CSH,NAM=#FRMNAM
ERREX Exit with error

FNC=ALL
ERREX

SAVDAT

Get all data from form
Exit with error

Put data in file

ARG=#ARGLST,FNC=DAT,NAM=#NXTNAM ; Get name of next form

FMS Extended Examples B-23

70$:

80$:

90$:

CALL
MOV
MOV
CALL
BEQ
BR

$FDV
CALL

$FDV
CALL

MOV
CMPB
BNE
MOV
MOV
.REPT

MOV
.ENDR
BR

MOVB
MOVB
$FDV
TST
BGT

$FDV
BR

MOVNAM
#NONNAM,Rl
#FRMNAM,R2
CMPNAM
70$
60$

FNC=CSH,NAM=#LSTNAM
ERREX

FNC=GET,NAM=#CHCNAM
ERREX

F$VAL(R0),Rl
(Rl) , # I 1
90$
#SAVNAM,Rl
#FRMNAM,R2
3

(Rl) +, (R2) +

60$

(Rl),VARl
#40,VARl+l
FNC=DAT,NAM=#VARl
STAT
CHKCLS

Put form name in FRMNAM
Rl = adr of ASCII .NONE.
R2 = adr of returned name
zero set on match
Display last form on match
Else get data from next form

Exit with error

Exit with error

Rl adr of answer
Is it = 1

Rl source name
R2 dest name

Move name

Get more data

Move into variable for name
Make 2nd char blank
Get named data
Check status
If ok then close file

FNC=LST,VAL=#MSGl,LEN=#-1 ; Print message on line 24
80$ Try again

Close the output file

CHKCLS: CLOSE$ #OUTFDB Close output file
MOV #EXTNAM,Rl Name of exit named data
MOV #ARGLST,RO Get ARGLST
MOV F$VAL(RO) ,R2 R2 = adr of named data
CALL CMPNAM zero set if match
BEQ LIBCLS Exit on match
JMP FIRST Back to start on no match

LIBCLS: $FDV FNC=CLS Close form
BR EXIT And exit

Routine to check for error return from Form Driver.
Print message and exit on error.

library

ERREX: CMP
BNE
RETURN
$FDV
$FDV
EXIT$S

STAT,#FS$SUC Was call ok?
LEAVE

LEAVE: ARG=#ARGLST
FNC=LST,VAL=#MSG2,LEN=#-l Print message on line 24

EXIT:

B-24 FMS Extended Examples

Subroutine to store data in output file

SAVDAT:

10$:

MOV
MOV
TST
BLE
PUT$
RETURN

F$VAL(R0) ,R2
F$LEN(R0) ,R3
R3
10$
#OUTFDB,R2,R3

R2 = adr of data returned
R3 = length of data returned
Was data returned?
If not return
Store away the string of data

Subroutine to move name and blank fill to 6 chars
F$VAL(R0) = Addr of source name
F$LEN(R0) = Length of source name
FRMNAM = Addr of destination of name

MOVNAM:
MOV #FRMNAM,Rl
CALL BLKNAM
MOV F$VAL(R0) ,Rl
MOV #FRMNAM,R2
MOV F$LEN (RO) ,R3

10$: MOVB (Rl)+,(R2)+
DEC R3
BNE 10$
RETURN

Subroutine to blank 6 bytes

BLKNAM:

5$:

Rl = Addr of name to blank

MOV
MOVB
DEC
BNE
RETURN

#6,R2
#40, (Rl) +
R2
5$

Subroutine to compare two 6-byt€ names
Rl,R2 point to names

CMPNAM:

10$:

20$:

R3 = 0 if match on return

MOV
CMPB
BNE
DEC
BNE
RETURN

#6,R3
(Rl) + , (R2) +
20$
R3
10$

Rl = addr to store form
Blank out name
Rl = addr of named data
R2 = addr to store form
Length of named data
Move named data to form
Dec char ctr

R2 = 6
Init name with blanks
Dec byte ctr

6 char compare
Compare 2 bytes
Leave loop if no match
Dec char ctr

name

name

name

FMS Extended Examples B-25

WE ARE GOING TO BUILD THE DATASET DESCRIPTOR BY HAND

DATSET:

30$:

40$:

50$:

60$:

70$:

MOV
MOV
.REPT
CLR
.ENDM
MOV
MOV
MOV
TST
BEQ
CMPB
BEQ
DEC
CMPB
BNE
DEC
ASR
ASR
INC
ASL
ASL
ADD
MOV
SUB
MOV
TST
BEQ
BR
RETURN

F$LEN+ARGLST,R4
#DSDS,R3
6
(R3)+

F$VAL+ARGLST,Rl
Rl,R2
#2,R3
R4
60$
(Rl) ,jf' J
50$
R4
(Rl) +,#I:
40$
Rl
R3
R3
Rl
R3
R3
#DSDS,R3
Rl, (R3)
R2,(R3)+
R2, (R3)
R4
70$
30$

.END DEMO

B-26 FMS Extended Examples

Set string size in R4
Clear the dataset descriptor
So we don't imply any defaults

-> f ilespec
Save -> start of substring
Assume its a filename (offset/4)
End of filespec??
Yes - save filename string
Directory spec?
Yes
Decrement the string count
Device spec?
Nope
Backup to take
Adjust for device
Adjust for directory
Adjust for trailing character (:))
Adjust offset in range (0-10)
Into dataset descriptor
Make address
Make count
As end-start
Save address next
See if done?
Yes
Nope back for next segment
Return to caller

Appendix C
FMS-11 Software Messages

This appendix provides general information about FMS-11 software messages
and lists all of the diagnostic messages that FMS software can produce.

Section C.2 describes the order of messages.

Section C.3 summarizes the types of messages each FMS software component
can produce.

Section C.4 explains the procedure to follow if FMS software malfunctions.

Section C.5 includes messages for the Form Editor (FED), the Form Utility
(FUT), the Form Driver (FDV). The messages, arranged alphabetically, are
printed in the same form that is displayed on your terminal.

C.1 How to Use This Appendix

When you receive an FMS message, look it up in Section C.5, read the expla­
nation about the reason for the message, and apply the remedies that are
described. Message explanations are in the left column and remedies are in
the right column.

The Form Editor and the Form Driver signal you with the bell on your ter­
minal in many cases. In some cases, a message is displayed with the bell
signal, and in some cases no explicit message is available. Section C.3 sum­
marizes the ways the Form Editor and Form Driver use bell signals. Refer to
that section when you hear a bell signal and no message is displayed.

C.2 Order of Messages and Special Features

The messages in Section C.5 have been alphabetized according to the fol­
lowing convention:

If the first character in a message is not a digit and not a letter, the second
character has been used for alphabetizing.

This appendix uses three general references in messages to stand for specific
names or values that are copied directly from the work you are doing. They
are:

AAAAAA A name, such as a form name, that FMS software copies into
messages.

C-1

NNNNNN A specific value, such as a number of blocks or bytes, that FMS
software reports.

n A single digit, such as a message code, that FMS provides to
distinguish different causes or contexts for a message.

If you have trouble finding a message in Section C.5, review the following
procedure:

1. Identify the message's origin. This appendix documents only the messages
for FMS software.

2. If the first character in a message is a special character, such as a question
mark (?), ignore it.

3. Ignore any number or name in a message that is specific to your program
or files.

4. Look up the message under the characters that remain.

C.3 Types of FMS Messages

Each FMS software component uses a special set of conventions in the mes­
sages it can produce. This section summarizes those conventions.

C.3.1 Types of Form Editor Messages

The Form Editor can produce the following types of messages:

• Messages that follow your response to the Form Editor's prompt are one line
long and are followed by the prompt.

• Messages while you are editing a form appear on the bottom screen line.
Pressing the Return key removes the message from the screen. You can then
continue editing.

• Messages after you finish editing a form appear on the bottom screen line
and are followed by the prompt.

While you are completing any of the Form Editor's questionnaires, such as the
field attribute questionnaire, the following types of Form Driver messages can
also appear:

• Messages about invalid field entries appear on the bottom screen line. You
can continue editing when the cursor reappears within the form.

• Messages one line long appear on the bottom screen line when you press the
HELP key to ask for help about a field in a questionnaire. HELP for the
entire questionnaire is displayed if you press the HELP key again.

• The Form Driver signals you by ringing the bell on your terminal when you

C-2 FMS-11 Software Messages

use an invalid cursor control function but no message is printed. The bell
message signals are summarized later in this section.

C.3.2 Types of Form Utility Messages

Form Utility messages follow your response to the prompt using the following
form:

?FUT

C.3.3 Types of Form Driver Messages

When you are running the Form Driver without debug mode support, the
Form Driver can produce only the following types of messages:

• Messages about invalid field entries appear on the bottom screen line, and
you can immediately continue editing when the cursor reappears within the
form.

• Messages that are one line long appear on the bottom screen line when you
press the HELP key to ask for help about a field in a form. HELP for the
entire form is displayed if you press the HELP key again.

• The Form Driver signals you by ringing the bell on your terminal when you
use an invalid cursor control function but no message is printed. Bell mes­
sage signals are summarized later in this section.

When you are running the Form Driver with debug mode support, each of the
preceding types of messages can also appear, as well as special debug mode
messages in the following forms:

• ?FDl.J-F-Text (for fatal errors).

• ?FDl,l_W-Text (for warnings).

Each of the Form Driver's debug mode messages has a corresponding status
code that is returned to the calling task. The documentation for each debug
message includes both the MACR0-11 form and high-level language form of
the status code. For example, documentation for the message 11 ? FD 1.1 - F -·
I Nl,IAL ID FI ELD SPECIF I CAT I ON 11 includes the following information:

Return code: FE$FLD Value: (-11)

When you have debugged a task and are running it without debug mode
support, the task should include code to test for an error on each Form Driver
call by checking the status code. MACR0-11 tasks should test for the return
code, FE$FLD in the preceding example. BASIC PLUS-2 and FORTRAN IV
tasks should test for the value returned by the FSTAT call, -11 in the pre­
ceding example.

The Form Driver can also return five additional status codes that have no
corresponding debug mode messages. The codes and their meanings are:

FMS-11 Software Messages C-3

Code Value Meaning

FS$SUC (1) Successful completion.

FS$INC (2) Current form incomplete.

(none) (-20) Wrong number of arguments for a FORTRAN call.

(none) (-21) Impure area not initialized for a FORTRAN call.

(none) (-22) Output string length too short for BASIC+2 call.

C.3.4 Bell Message Signals

The Form Editor and the Form Driver use the bell on your terminal in slightly
different ways.

C.3.4.1 Bell Message Signals from the Form Driver - In the debug mode, the
Form Driver displays each debug mode message, rings the bell, and then waits
for you to press the Enter key or the Return key before continuing. In the run
mode, the Form Driver does not display the debug mode messages, does not
wait, and does not use the bell signal; it returns directly to the calling task.

In the normal run mode (when the debug mode is disabled), the Form Driver
uses the bell to warn the terminal operator about two kinds of input errors,
errors within fields and errors in moving the cursor or in terminating fields.

For typing errors within fields, the Form Driver also displays a short message
on the bottom line of the screen. For example, when a field description re­
quires numeric characters and the operator types a letter, the Form Driver
rings the bell and displays the message NU MER I C RE Q U I RED on the bottom
line of the screen.

For errors in moving the cursor or in terminating fields, the Form Driver
warns the operator only with the bell. The eight conditions that cause the
Form Driver to ring th~ bell are:

1. When the Form Driver cannot echo a character at the current position.

2. When cursor-left is illegal.

3. When cursor-right is illegal.

4. When delete character is illegal.

5. When changing the current input mode is illegal.

6. When previous field is illegal as a terminator because the current field is
the first field in the form that can accept input.

7. When next field is illegal as a terminator because the current field is the
last field in the form that can accept input.

8. When scroll forward, scroll backward, exit scrolled area downward, and
exit scrolled area upward are illegal because the current field is not in a
scrolled area.

C-4 FMS-11 Software Messages

C.3.4.2 Bell Message Signals from the Form Editor - When you are com­
pleting any of the questionnaires that the Form Editor uses, the Form Driver
displays the questionnaire forms and handles all terminal 1/0. Therefore, bell
message signals have the same meanings as for the Form Driver when you are
completing a questionnaire. Refer to the preceding section for Form Driver
message signals in the Form Driver's normal run mode.

The bell is also used when the Form Driver is not in control. The Form Editor,
in edit mode, uses the bell to signal illegal input.

C.4 Suggestions to Follow If FMS Software Malfunctions

If you think that FMS software has malfunctioned, use the following proce­
dure.

1. As accurately as possible, write down the functions, commands, terminal
input, and user program processes that you used before the messages
indicating a malfunction appeared.

2. Save any programs and files that you were using.

3. Obtain new copies of the FMS components that are involved, and try to
duplicate the malfunction.

4. If you still think that FMS software has malfunctioned, check your hard­
ware or find someone to check. it for you.

5. If the problem persists, consult someone in your area who is very familiar
with FMS software.

6. If you qualify to receive a written reply under DIGITAL's Software Per­
formance Report (SPR) service, follow the directions on the SPR form.

C.5 FMS Software Messages

Alphabetic Required

FDV An alphabetic character is required
in the current position. The alpha­
betic characters are the letters A -
Z and a - z, and a space.

Alphanumeric Required

FDV An alphabetic or numeric character
is required in the current position.

Arrays not allowed in scrolled area

FED This message indicates that the
user has assigned the indexed at­
tribute to a field on a scrolled line.
This is not allowed.

Application documentation should in­
clude instructions for completing the
field.

The cursor is immediately reposi­
tioned in the field and you may con­
tinue typing.

Application documentation should in­
clude instructions for completing the
field.

Press the Return key to remove the
message from the screen; the Form
Editor then places the cursor in the
first field of the questionnaire. Answer

FMS-11 Software Messages C-5

Cannot overwrite left margin

FED This message indicates that the
user has done a delete left of cursor
to the beginning of the line. The
user is attempting to undelete-left
such that the undelete string would
go beyond the left hand screen
boundary.

Cannot overwrite non-blanks at left

FED This message indicates that the
user has done a delete left of the
cursor to the beginning of the line.
The user is attempting to undelete­
left on top of non-blank characters.

Cannot overwrite non-blanks at right

FED This message indicates that the
user has done a delete right of the
cursor to the end of the line. The
user is attempting to undelete-right
on top of non-blank characters.

Cannot overwrite right margin

FED This message indicates that the
user has done a delete right of the
cursor to the end of the line. The
u~er is attempting to undelete right
so the undelete string would go be­
yond the right hand screen
boundary.

N for the indexed attribute for each
field in the scrolled line. If the
scrolling attribute is correct, continue
assigning attributes. If any field in the
scrolled line is to be an indexed field,
exit from the questionnaire, use the
NORMAL function to remove the
scrolling attribute from the line, and
use an ASSIGN command to re-enter
and complete the questionnaire. An­
swer H for the indexed attribute when
a field is part of a horizontal array,
and answer V when the field is part of
a vertical array.

Before trying the UNDELLINE func­
tion again, move the cursor to a char­
acter position that has enough blank
space to the left for the string you
erased.

Before trying the UNDELLINE func­
tion again, move the cursor to a char­
acter position that has enough blank
space to the left for the string you
erased.

Before trying the UNDELLINE func­
tion again, move the cursor to a char­
acter position that is blank and has
enough blank space to the right for the
string you erased.

Before trying the UNDELLINE func­
tion again, move the cursor to a char­
acter position that has enough blank
space to the right for the string you
deleted.

Cannot paste over margins or non-blanks or in scrolled area

FED This message indicates that the
PASTE operation just attempted
by the user has failed. The user
must move the cursor to another
position in order to complete the
PASTE.

C-6 FMS-11 Software Messages

Press the Return key to remove the
message from the screen and to restore
the area that has a reversed back­
ground, if there is one. Then move the
cursor to an area that is entirely blank
and is large enough for the selection
that you want to move.

Clear character 'O' required

FED

COMMAND:

FED

This message indicates that the
user assigned the Zero Fill attribute
to a field with a non-zero clear
character. This is not allowed.

This message is the Form Editor
command prompt which solicits the
user for a command.

Default too long for field

FED This message indicates that the
user has assigned a default value to
the field which is longer than the
field itself. This is not allowed.

Embedded spaces illegal in form name

FED The form name specified contained
embedded spaces. This is not al­
lowed.

?FED-F-Full Duplex terminal driver required

The Form Editor will not work un­
less the system has the full duplex
terminal driver.

?FED-F-FED Requires VTIOO terminal

The user's terminal must be a
VTlOO and have been made known
to the system as a VTlOO.

?FDV-F-ERROR OPENING FORM LIBRARY

Return Code: FE$IOL Value: (-4)
An error was encountered opening
the form library. The VO error code
is returned in the second word of
the status block. An error code of

If the Zero Fill attribute is correct,
change your answer for the Clear Char
attribute to 'O'. If the clear character
you assigned is correct, change your
answer for the Zero Fill attribute to N.

The Form Editor commands are:
EDIT, ASSIGN ALL, ASSIGN NEW,
ASSIGN FIELD fldnam, FORM,
NAME, SAVE, QUIT, and HELP.
They are detailed in Chapter 2.

Press the Return key to remove the
message from the screen; then the
Form Editor places the cursor in the
first field of the questionnaire. Shorten
the default value to match the field
length. If the length of the field is cor­
rect, continue assigning attributes. If
the field is too short, exit from the
questionnaire, lengthen the field, and
use an ASSIGN command to re-enter
and complete the questionnaire.

The user must enter a valid form name
in the Form-Wide Attributes Ques­
tionnaire.

RSX-llM+ supports only the full du­
plex terminal driver; RSX-llM V3.2
offers the option of the full duplex ter­
minal driver.

Use the SET command to tell the
system the terminal is a VTlOO:

SET /~IT100=TI:
or

SET /TERM=TI :\.JT100

The MCR Operation Manual for RSX
has a full description of the SET com­
mand.

Check that the form library file speci­
fication is correct and that the file ex­
ists on the specified volume. Check
that the proper volume is installed and
that its device is on-line. If the device

FMS-11 Software Messages C-7

zero means that no FDB was avail­
able for the library. Otherwise the
code is as follows:

For FCS: The code follows the
standard for FCS errors as a result
of open requests. If the high byte of
the word is zero the code is an FCS
error code. If the high byte of the
word is non-zero the low byte is a
directive status code error. The
word returned is from F.ERR of the
FDB.

For RMS: The error code is the
RMS error code returned in the
STS word of the F AB after the
$OPEN call. ER$LBY is returned if
a form library is active on the
channel (LUN).

?FDV-F-ERROR READING FORM LIBRARY

Return Code: FE$IOR Value: (-18)
An error was encountered reading
the form library. The I/0 error code
is returned in the second word of
the status block.

For FCS: The error code returned is
the I/O status block code from a
$READ or $CLOSE request on the
FDB.

For RMS: This is the STS word of
the RAB or FAB. The call was a
$READ or $CLOSE to RMS.

?FDV-F-FILE NOT FORM LIBRARY

directory is corrupt, use a copy of the
form library file that is on a working
volume. Check that the specified
channel number is not currently in
use.

Check that the volume is installed and
that its device is on-line. If the mes­
sage continues to appear, try another­
copy of the form library file. If the new
copy works, the original copy or its
form name directory are corrupt and
should be replaced. If the message still
continues to appear, refer to the proce­
dures in Section C.5 in this Appendix.

The file specified to open is not a Check that the file specification is cor­
form library. The first word was not rect.
RAD50 FLB.

?FDV-F-FORM LIBRARY IS NOT OPEN ON CHANNEL

Return Code: FE$FCH Value: (-7)
For a call to the Form Driver, a
form library is not open
on the specified channel.

?FDV-F-ILLEGAL FOR DISPLAY ONLY FIELD

Return Code: FE$DSP Value: (-13)
Input is not allowed in a display
only field. This error is returned for
a call to get a field if the specified
field is display only, for a call to get
any or all fields if all fields in the

C-8 FMS-11 Software Messages

Check that an FLOPEN call precedes
the request to display a form. If the
form library was properly opened,
check that the correct channel number
was specified to the Form Driver (in
the last FLCHAN call for high level
languages and in the F$CHN argu­
ment of the required arguments list for
MACRO).

Check that the field attributes are cor­
rect and that the latest FSHOW or
FCLRSH call displayed the correct
form. If the call that caused the mes­
sage is an FGET call, check that the
call uses the correct field identifier.

form are display only, and for a call
to get any field if the current field is
display only.

?FDV-F-ILLEGAL CALL TO FORM DRIVER

Return Code: FE$IFN Value: (-19)
The specified function is illegal in
the current context. The calls to get
all fields, put all fields is only
illegal for a form with a scrolled
area if data is specified. With no
data, it's legal, and to get any field
are illegal if the current form con­
tains a scrolled area. Only the calls
to open a form library, close a form
library, display a form, and to dis­
play data on the last line are legal if
a form is not currently displayed.

?FDV-F-ILLEGAL FILE SPECIFICATION

If the current form contains a scrolled
area, correct the program logic so that
illegal Form Driver calls are not exe­
cuted. If no form has been referenced,
check for proper use of the FLOPEN,
FSHOW, FCLOSE, FPUTL and
FCLRSH calls and for improper flow
of control that skips those calls.

Return Code: FE$FSP Value: (-3) Correct the file specification.
The file name specified for the form
library is not a legal file specifica-
tion.

For FCS: .PARSE returned an error
of some type.

For RMS: $OPEN returned one of
the following error codes: ER$DEV,
ERDIR, ERFNM, ER$VER.

?FDV-F-IMPURE AREA TOO SMALL

Return Code: FE$IMP Value: (-2)
The impure area specified is not
large enough to allocate the data
structures required by the Form
Driver to display the form.

?FDV-F-INVALID CALL TO GET NAMED DATA

Return Code: FE$DMN Value:
(-15) A call to get named data is
invalid for one of the following rea­
sons:

• no named data exists for the cur­
rent form.

• the data name specified does not
exist.

• the index specified does not exist.

If the message appears for a FOR­
TRAN IV, BASIC+2, COBOL, or
FORTRAN IV PLUS task, check that
the impure area is at least 64 bytes
larger than the largest form the task
uses. If the message appears for a
MACR0-11 task, check that the
F$IMP pointer in the Required Argu­
ments List points to an impure area
that is at least as large as the largest
form the task uses. For MACR0-11
tasks the first word in the impure area
must contain the size of the impure
area.

Check for a program error that causes
the call to be executed when the cur­
rent form is the wrong form. Check for
the correct name in an FNDAT A call
and the correct index value in an FI­
DATA call.

FMS-11 Software Messages C-9

?FDV-F-INVALID CHANNEL NUMBER SPECIFIED

Return Code: FE$ICH Value: (-6)
The channel number specified in a
call to the Form Driver is not a
valid channel number for the task.
Second word of status block con­
tains the I/0 status code from
system in the event of an error.

For FCS: The error code is from the
F.ERR offset of the FDB.

For RMS: The error code is from
the STS word of the FAB.

?FDV-F-INVALID FIELD SPECIFICATION

Return Code: FE$FLD Value: (-11)
The field specified does not exist.
An invalid field name or an invalid
index for the field was specified.

Correct the channel number the task
is using or specify a different range of
channels for your application.

Check the field name or array index.
Also check for a program error that
causes the call to .be executed at the
wrong time or for the wrong form.

?FDV-F-INVALID FIRST LINE TO DISPLAY FORM

Return Code: FE$LIN Value: (-10)
The entire form will not fit on the
screen if displayed starting at the
line number specified in the call to
the Form Driver or the line number
is not from 1 to 23 inclusive.

?FDV-F-INVALID FORM DEFINITION

Return Code: FE$FRM Value: (-8)
The format of the form description
is not valid.

?FDV-F-INVALID FUNCTION CODE

Return Code: FE$FCD Value: (-1)
The function code specified for a
call to the Form Driver does not
exist.

?FDV-F-NO FIELDS DEFINED FOR FORM

Return Code: FE$NOF Value:
(-12) Calls pertaining to fields are
illegal if no fields are defined for the
current form.

C-10 FMS-11 Software Messages

Check that the terminal has the fea­
tures you need and is set properly for
the form you want to use. Check for a
program error that causes the wrong
starting screen line number. For forms
that are to be offset on the screen,
check that the associated help forms
are properly designed for the full range
of offset positions.

Refer to the procedures in Section C.5
of this Appendix.

If a MACR0-11 task caused the mes­
sage to appear, check for a typing error
in the function code. If the function
code is correct or if a FORTRAN IV or
a BASIC PLUS-2, COBOL, FOR­
TRAN IV-PLUS task caused the mes­
sage to appear, refer to the procedures
in Section C.5 in this Appendix.

Check that the form has been designed
properly. Also check for a program
error that causes the field processing
call to be executed for the wrong form.
For example, check for consecutive
FSHOW calls that display more than
one form on the terminal screen simul­
taneously but display a form that has
only constant text last.

?FDV-F-SPECIFIED FIELD NOT IN SCROLLED AREA

Return Code: FE$NSC Value:
(-14) The name of a field is re­
quired to identify the scrolled area
the call pertains to. The specified
field is not in a scrolled area.

?FDV-F-UNDEFINED FIELD TERMINATOR

Check the current form. If the form is
correct and if it has been designed
properly, check for a typing error in
the field name.

Return Code: FE$UTR Value: Correct the field terminator code.
(-17) The field terminator code
specified in a call to process a field
is less than 0 or greater than 9.

?FDV-F-UNDEFINED FORM

Return Code: FE$FNM Value: (-9)
The specified form is not defined.

?FED-F-Error reading input form file

An I/O error was returned from a
call to read the input file.

?FED-Form being saved

FED This message indicates to the user
that the form has begun the process
of being written to the output de­
vice.

Form is not in proper format

FED The specified form is not in the
proper format and therefore cannot
be edited.

?FED-Form not saved on QUIT

Check that the correct form library file
is open and that the channel number
specified to the Form Driver is the one
specified when the form library file
was opened and that the call specifies
the correct form name.

Check that the form library volume is
installed and that its device is on-line.
If the message continues to appear, try
another copy of the form library file. If
the new copy works, the original copy
should be replaced. If the message still
continues to appear, refer to the proce­
dures in Section C.5 in this Appendix.

The message is for information only.
RT only.

Check that your input file specifica­
tion is correct and check for a bad
block in the file. Also try using a copy
of the file that does work with the
Form Editor or Form Driver. If the
message continues to appear, refer to
the procedures in Section C.5 in this
Appendix.

FED This message indicates to the user The message is for information only.
that when a QUIT operation has
been executed the form that was
being edited was not saved.

Full Field Required

FDV The current field must be com­
pletely filled and contain no fill
characters.

Application documentation should in­
clude instructions for completing the
field.

FMS-11 Software Messages C-11

?FED-Illegal command line

FED The syntax of the command line
entered in response to the 11 FE D > 11

prompt was invalid.

?FED-Input file is not form file or form library

Retype the command line correctly.
Use /IO to get the version number;
/CR to create a new form.

FED The specified input file is not a Check the input file specification.
valid form file or form library.

?FED-F-Insufficient Memory

This message indicates there is not
enough memory to create a new
form or to edit the specified form.

?FED-F-Invalid form name

The form name was longer than 6
characters or was all spaces.

?FED-F-Unable to attach terminal

The Form Editor is unable to at­
tach the user's terminal, therefore
cannot proceed.

?FED-F-Unable to create output file

The specified output file cannot be
created.

?FED-Unable to open input file

FED The specified input file does not
exist or cannot be opened for
editing.

?FED-Write error - output file not saved

FED This message indicates that there
was an error writing to the output
file and that the form was lost.

?FDV-W-DATA TOO LONG

Return Code: FE$DLN Value:
(-16) The data specified to output
is too long. The Form Driver trun­
cates the data and proceeds.

There must be at least twice the
memory required for a form descrip­
tion for any editing to take place.

The form named specifed in response
to the F o r 111 n a ftl e? prompt (after a
form library file was specified as the
input file) was not valid as a form
name.

Check to see if there are too many ter­
minals attached, or too many pro­
grams running or if some other task
has your terminal attached.

File can't be created for many possible
reasons: not enough disk space, a pro­
tection violation, hard error.

Check that the output volume is prop­
erly installed and that its device is on­
line and write-enabled. If a hardware
problem has caused the message to ap­
pear, contact your DIGITAL service
representative.

Check for program errors that cause
the data string to be too long. Check
that the form has been designed prop­
erly.

?FUT - Clear character invalid Field name == AAAAAA

The named field has the Zero Fill See "FUT - Invalid form header
attribute, but "O' is not the as- format."
signed clear character.

?FUT - Command file depth exceeded

A third-level indirect command file Combine two of the indirect command

C-12 FMS-11 Software Messages

specifies another indirect command
file. Indirect command files for the
Form Utility may be nested to a
depth of three.

?FUT - Command file error unrecognized

The indirect command file proc­
essor has returned an error code
that the Form Utility cannot un­
derstand and handle.

?FUT - Command file 1/0 error

An 1/0 error occurred when reading
an indirect command file. Two
causes for this message are:

• A bad 1/0 device.

• A bad block on an 1/0 volume.

?FUT - Command file illegal file specification

The specification for an indirect
command file is invalid.

?FUT - Command file line too long

A line in an indirect command file
is longer than 132-character max­
imum length. A cause for this mes­
sage is a line that is longer than 132
characters, although each part may
be shorter than that.

?FUT - Command file open error

The Form Utility could not find a
specified indirect command file or
found it but could not open it. If
the system has locked the indirect
command file, the Form Utility dis­
~lays this message.

files that you tried to use, or revise the
set of indirect command files so that
no more than three are executing at
one time.

Confirm that each line in the indirect
command files that you are using is
valid. If the message appears for a file
that you are sure is correct, complete
the procedure in Section C.4.

Follow the procedures that have been
established to cover possible hardware
errors on your system.

Examine all indirect command file
specifications, including those in
nested indirected command files.
Check for typing errors and for specifi­
cations that are correct on another op­
erating system but not legal on the
system that you are using.

Break the overlength line by repeating
its command in separate lines. Or
reorganize the indirect command file.

Check that all indirect command file
specifications are correct and com­
plete, and check that the default or
explicit volumes are installed and on­
line. Use PIP to check for an indirect
command file that is locked.

?FUT - Default text too long Field Name= AAAAAA

The named field has a default value See "FUT - Invalid form header
that is longer than the field can dis- format."
play.

?FUT - Display-Only field is full or required Field name = AAAAAA

The named field has the Display- See "FUT - Invalid form header
Only attribute and also the Must- format."
Fill attribute or the Response Re-
quired attribute, a combination of
attributes that is invalid.

FMS-11 Software Messages C-13

?FUT - Error closing input file

The file 1/0 routines that support
the Form Utility detected an error
while closing an input file. Two
causes for this message are:

• A bad input file device.

• A bad block on an input volume.

?FUT - Error closing or spooling output file

The file 1/0 routines that support
the Form Utility detected an error
while closing or spooling an output
file. Two causes for this message
are:

• A bad output or spooling device.

• A bad block on an output
volume.

?FUT - Error reading input file

The file 1/0 routines that support
the Form Utility detected an error
while reading an input file.

?FUT - Error writing output file block

The file 1/0 routines that support
the Form Utility detected an error
while writing an output file block.

?FUT - Error writing record to output file

The file 1/0 routines that support
the Form Utility detected an error
while writing an output file record.

For each input file, check the directory
entry for information about the file
being locked or unusable. Also try to
make a copy of each input file. If all
input files can be copied, retry the
Form Utility operation that originally
failed. If the Form Utility operation
still fails, check the procedure in Sec­
tion C.4.

Try using a different output device
and volume. If the message continues
to appear, follow the procedures that
have been established to cover pos­
sible hardware errors on your system.

See the causes and suggestions for
"FUT - Error closing input file."

See the causes and suggestions for
"FUT - Error closing or spooling
output file."

See the causes and suggestions for
"FUT - Error closing or spooling
output file."

?FUT - Field beyond screen Field name = AAAAAA

The named field extends beyond See "FUT - Invalid form header
column 80 and the form has the 80- format."
column attribute.

?FUT - Form not in library

The input form library file specified
in the Form Utility prompt does
not contain the form you requested.

?FUT - Form AAAAAA replaced

The description for the named form
has been replaced in the named
form library file.

C-14 FMS-11 Software Messages

Use the /LI option with the input form
library file name to list the names of
all forms in the form library file. Then
type another form name.

The message is only for your informa­
tion.

?FUT - Illegal command

The command line syntax is incor- Correct the command line.
rect. Some causes for this message
are:

• More than one output file speci­
fied.

• No characters in command line.

• Command line includes both a
file specification and the /ID or
/HE option.

• Command line with the /FF op­
tion includes an output file speci­
fication.

• No output file specified for /CR,
/DE, /EX, /OB, or /RP options.

?FUT - Illegal file specification

An input or output file specification
is incomplete or contains illegal
characters. Wildcard characters in
a file specification cause this mes­
sage.

?FUT - Illegal input file specification or option

An input file specification is in­
valid, or an option is invalid.

?FUT - Illegal output file or option

The output file specification is in­
valid, or an option is invalid. Some
causes for this message are:

• The /SP option is included with
another option that produces no
printable output.

• The /BA option is included with
another option that produces no
form library files.

• Options such as /CR and /DE
conflict.

?FUT - Illegal replacement of form, use /RP

The Form Utility command does
not include the /RP option but tries
to replace a form description that is
in the form library file specified in
the Form Utility prompt. One
cause for this message is combining
two form library files that contain a
form description with the same
name.

Remove any wildcards that are in the
file specifications, and check the file
specifications for the file names and
types that are required for the options
that you are using.

Check the input file specifications and
options for typing errors.

Check the output file specification for
typing errors. Check that the options
are consistent with one another.

Use the /LI option to check the names
of all forms in the input files. Use the
/DE option to delete individual form
descriptions. Or use the /RP option to
combine form library files, and pre­
serve only the last form description
processed for each duplicate.

FMS-11 Software Messages C-15

?FUT - In form library = AAAAAA, Form name = AAAAAA

This message appears only as the
first line of a two-line message.

?FUT - Insufficient memory

Although the Form Utility can run,
there is too little memory to process
any form descriptions. In addition
to the Form Utility's basic require­
ments, it requires enough memory
for a form library file directory and
one form description.

?FUT - Insufficient space for output buffer

See "FUT - Insufficient memory."

?FUT - Invalid field descriptor

See "FUT - Invalid form header
format."

See the description for the other mes­
sage that the Form Utility has dis­
played.

Ask your system manager to check
whether the Form Utility has been in­
stalled as a check-pointable task. The
Form Utility should always be check­
pointable. Install or run the Form
Utility with a larger memory incre­
ment.

?FUT - Invalid fixed decimal picture Field name = AAAAAA

The named field has the Fixed Dec- See "FUT - Invalid form header
imal attribute but the field picture format."
is improper for one of the following
reasons:

• There is no decimal point.

• There are two or more decimal
points.

• The first and last picture charac­
ters are not '9'.

?FUT - Invalid form description

See "FUT - Invalid form header
format."

?FUT - Invalid form header format

The Form Utility has detected an
error in the form description format
and stopped processing the form
description. The form with the
error may have been corrupted by
1/0 or device errors and cannot be
used with an FMS application.

?FUT - Invalid form name

First, try to recover the form descrip­
tion by using an earlier version of a
form description file or form library
file.

If all versions of the form description
cause this message or similar ones, use
the following procedure:

1. Retype the form completely with
the Form Editor. Do not try to edit
a version that causes the message.

2. If problems persist, refer to Section
C.4.

The last form name you typed con- Type a valid form name.

C-16 FMS-11 Software Messages

tains characters that are not valid.
Examples of causes of this message
are:

• Including a non-Radix-50 char­
acter.

• Responding with an asterisk (*)
after using the /FF option.

?FUT - Invalid index value Field name = AAAAAA

The two causes for this message See "FUT - Ivalid form header
are: format."

• The named field has the vertical
(indexed) attribute and the
lowest element of the array is
below the last line that is cur­
rently assigned for the form.

• The named field is in a line that
has the scrolling attribute and
the scrolled area is only one line
long.

?FUT - Invalid named data section

See "FUT - Invalid form header
format."

?FUT - Invalid number of fields

See "FUT - Invalid form header
format."

?FUT - Invalid text section

See "FUT - Invalid form header
format."

?FUT - Logic error - Exception stack overflow

Follow the procedure in Section
C.4.

?FUT - Logic error - Exception stack underflow

Follow the procedure in Section
C.4.

?FUT - Logic error - pass 2 illegal file number

Follow the procedure in Section
C.4.

?FUT - Logic error - pass 2 too few input files

Follow the procedure in Section
C.4.

?FUT - Not a valid form file or library

An input file does not contain the Check each input file specification for

FMS-11 Software Messages C-17

proper code words that identify
form description files and form li­
brary files.

?FUT - No forms in library

typing errors, and check for acciden­
tally having typed the wrong file
name.

After specifying the /CR, /DE, /EX, Type a command.
or /RP option to create a form li-
brary file, you extracted no forms
for the output form library file or
deleted all forms from the input
form library files. The message is a
warning that your specified output
form library file has not been cre-
ated.

?FUT - Right-justified field with mixed picture Field name = AAAAAA

The named field has both the right- See "FUT - Invalid form header
justified attribute and a mixed pie- format."
ture. The combination is invalid.

?FUT - Scrolled and array field Field name = AAAAAA

The named field has the horizontal See "FUT - Invalid form header
or vertical (indexed) attribute and format."
is also located in a line that has the
scrolling attribute.

?FUT - Unable to delete output file

When a Form Utility process fails,
the Form Utility usually deletes the
partially complete output file be­
cause it is faulty. This message ap­
pears when the delete action cannot
be completed.

?FUT - Unable to open input file

See "FUT - Error reading input
file."

?FUT - Unable to open output file

See "FUT - Error closing or
spooling output file."

?FUT - Unable to reopen input file

Follow the procedure in Section
C.4.

?FUT - Zero length field field name = AAAAAA

See the causes and suggestions for
"FUT - Error closing or spooling
output file."

The named field is zero characters See "FUT - Invalid form header
long. format."

Illegal Command

FED

This message indicates that the
user has typed an illegal command
in response to a COMMAND:
prompt.

C-18 FMS-11 Software Messages

Press the Return key to remove the
message from the screen. The Form
Editor then redisplays the
COMMAND: prompt. Type in any of

Input Required

FDV

the Form Editor commands.

Type HELP to get a list of the valid
commands.

At least one non-fill character must Application documentation should in­
be entered in the current field. elude instructions for completing the

field. Press the Return key to remove
the message from the screen; the Form
Editor then displays the cursor in the
field you must complete.

Insert line not allowed

FED This message indicates that the
user attempted either an Undelete­
Line or an Openline when the last
line was non-blank.

Insert not allowed

FED This message indicates that the
user attempted to insert a character
when the last character on the line
was not blank.

Invalid picture for a fixed decimal field

FED This message indicates that the
user has assigned the fixed decimal
attribute to a field whose picture
does not meet the requirements for
this attribute.

Press the Return key to remove the
message from the screen; then the
Form Editor places the cursor where
the function failed. The way you
should continue depends on your form.
For example, you may erase part of
the form below the current line, or
raise the text and fields in the form by
erasing part of the form above the cur­
rent line.

Press the Return key to remove the
message from the screen; then the
Form Editor places the cursor where
the insertion failed. The way you
should continue depends on your form.
For example, you may switch to the
OVERSTRIKE mode, or continue in
the INSERT mode and erase part of
the current line.

Press the Return key to remove the
message from the screen; then the
Form Editor places the cursor at the
first field in the questionnaire. Change
the answer to the Fixed Dec question
to N. If the field is not a fixed decimal
field, continue assigning attributes. If
the field should be a fixed decimal
field, exit from the questionnaire, cor­
rect the field picture, and use an AS­
SIGN command to re-enter and com­
plete the questionnaire.

The requirements for a fixed decimal
field are:

• A numeric field.

• Exactly one embedded decimal
point - the decimal point cannot be
in either the first or last character
position in the field.

FMS-11 Software Messages C-19

Logic error - bad field data character

FED This message indicates that an un­
known field character was found in
a field. If this occurs it means that
the screen image was probably al­
tered by some external disturbance.

New form exceeds available memory - form lost

Run the memory diagnostics and no­
tify your DIGITAL service representa­
tive.

FED You created a form that was too There is no way to recover the form.
large for the Form Editor to process
with the memory available. The
form is lost.

NO HELP AVAILABLE

FDV No further HELP is available for Application documentation should in-
the current form. elude instructions for the operator.

Non-Displayable Character

FDV No validation is required in the cur­
rent position. However the char­
acter entered cannot be displayed
and is therefore invalid.

Numeric Required

FDV A numeric character (0-9) is re­
quired in the current position.

Application documentation should in­
clude instructions for completing the
field.

Application documentation should in­
clude instructions for completing the
field.

Only NNNNNN memory blocks left. Continue (Y ,N) ?

FED

Repeat

FED

This message indicates that only a
small amount of memory (the spec­
ified number of 512 byte blocks) is
available to increase the size of the
form. The user is given the option
of continuing.

This is the Form Editor REPEAT
prompt, which indicates that the
user has typed GOLD/" digit".

Right justified is illegal for a mixed picture field

FED This message indicates that the
user has assigned the right justified
attribute to a mixed picture field.
This is not allowed. The user must
type a character to continue and
the field attributes will be redis­
played and the user must enter
"N" to the right justified attribute.

C-20 FMS-11 Software Messages

Type N to cancel the file specification
string. The Form Editor then prompts
you for another file specification
string. Type Y to proceed with the
Form Editor session. However, if your
editing increases the form size by too
much, the Form Editor will not warn
you and your editing work will be lost.

All the following digits will be saved
and the first command key typed after
the digits will be repeated that
number of times.

Press the Return key to remove the
message from the screen; then the
Form Editor places the cursor at the
first field in the questionnaire. Answer
the Right Just question N. If the field
should have a mixed picture, continue
assigning attributes. If the field should
not have a mixed picture, exit from
the questionnaire, change the field
picture (perhaps by dividing the field
into separate fields), and use an AS­
SIGN command to re-enter and com­
plete the questionnaire.

Signed Numeric Required

FDV

VIDEO

FED

A valid signed numeric character
(0-9, ".", "-", "+") is required in
the current position.

This is the Form Editor video at­
tribute prompt.

Application documentation should in­
clude instructions for completing the
field.

The user must respond with either a
video attribute or press the ENTER
key to return to editing.

FMS-11 Software Messages C-21

Index

$FDVDF macro, 5-34
9 picture-validation character, 2-18

A picture-validation character, 2-18
Abbreviations,

for video attributes, 2-16
Form Editor commands, 2-4

ADVANCE operation and mode, 2-11
Alternate keypad mode

terminators for, 6-7
using, 4-12,5-9

Argument list,
Fqrm Driver, 5-34
initializing length of, 5-34

ASSIGN commands, 2-7
Assigning,

field attributes, 2-7
form-wide attributes, 2-7
video attributes, 2-16

Asterisk, with Form Utility, 3-4
Attributes,

autotab, 4-6
clear character, 4-6
default field value, 4-6
display only, 4-8
echo off, 4-8
effects on cursor, 4-12
effects on erasing, 4-12
field, assigning, 2-7,2-21
fixed decimal. 4-7
Form Driver processing of, 4-5
form-wide. assigning, 2-7 ,2-20
horizontal indexed, 4-7
left justified, 4-5
must fill, 4-6
response required, 4-6
right justified, 4-5
scrolled, 4-8
supervisor only, 4-8
vertical indexed, 4-7
video, 2-17 ,6-23
zero fill, 4-6

Autotab attribute,
assigning, 2-23
Form Driver processing of, 4-6

BACKSPACE function, 4-16
BACKUP operation and mode, 2-11

BASIC-PLUS-2,
building applications, 5-21
Form Driver arguments, 5-18
Form Driver call syntax, 5-16,5-18
summary of arguments, 5-13
summary of Form Driver calls, 5-21

BLINE operation, 2-12
Blinking fields, 2-16
Block aligned form descriptions, 3-7
BOTTOM operation, 2-12
Bottom screen line, use by

Form Driver, 6-2:3
Building FMS applications, 8-8

C picture-validation character, 2-18
Canceling,

a Form Editor session, 2-8
scrolled areas, 2-17
video attributes, 2-17

Channels,
form library, 6-11 to 6-12,6-14

Channels - also see 11LUN 11 , 5-36
Clear character attribute,

assigning, 2-22
Form Driver processing of, 4-6

Clear screen and display a form, 6-1
Clearing video attributes, 2-17
Close a form library, 6-12
COBOL,

building applications, 5-27
default form library channel, 6-14
descriptions for forms, 3-12
field name requirements, 3-13
Form Driver arguments, 5-23
Form Driver call syntax, 5-16,5-24
summary of arguments, 5-13
summary of Form Driver calls, 5-24
using memory resident forms with, 3-12

COBOL, descriptions for forms, 5-23
Combining form library files, 3-8
Commands, Form Editor, 2-4
Completing fields, 4-12
Concatenation of field values, 4-4
Conditionals set for FMS, 5-44
Configuration procedure, 8-3
Controling operator responses, 4-3
Converting form descriptions, 3-10
Creating,

form library files, 3-7

Index-I

Creating (Cont.),
memory resident forms, 3-11
scrolled areas, 2-17

CTRL/U operation, 2-14
CTRL/W operation,

Form Driver, 4-11
Form Editor, 2-14

Current screen, as a form-wide
attribute, 2-20

Cursor,
initial position of, 4-12
moving with Form Driver, 4-13,4-15 to 4-16

CUT operation, 2-15

Data,
overlength, 6-16,6-21
validating, 6-16,6-21

Data declarations COBOL, 3-12,5-23
Data length, 5-38
Data types for Form Driver arguments, 5-15
Data value pointer, 5-37
Debug mode,

choosing, 8-5
error status, 5-3
Form Driver, 4-10
using, 5-3

Default attribute, assigning, 2-23
Default field values,

Form Driver, 4-6
Defaults,

displaying, 6-20,6-21
Form Editor, 2-6
form library file type, 6-14
Form Utility, 3-2
supervisor only mode, 6-27 to 6-28

Definitions,
field, 2-2
form description, 2-2
form description file, 2-2
Form Editor, 2-2
form library file, 2-2
screen form, 2-2

DELCHAR operation, 2-14
DELEOL operation, 2-14
Delete Key, 4-12
Deleting - also see "erasing", 2-14
Deleting form descriptions, 3-8
DELLINE operation, 2-15
Directories of form library contents, 3-6
Display a field value, 6-20
Display a form, 6-26
Display a form with clear screen, 6-1
Display all field values, 6-21

lndex-2

Display in a scrolled area, 6-16
Display in the last screen line, 6-23
Display only attribute,

assigning, 2-24
Form Driver processing of, 4-8

Downarrow key,
Form Driver, 4-17
Form Editor, 2-12

Echo off attribute,
assigning, 2-24
Form Driver processing of, 4-8

EDIT command (Form Editor), 2-7
Edit status display, 2-8
Editing forms, 2-7
Ending line, assigning, 2-21
ENTER function, 4-14
EOL operation, 2-12
Erasing,

characters, 2-14,4-12
field values, 4-13
lines, 2-14 to 2-15
restoring after, 2-15

Error messages,
complete listing, C-1
display by Form Driver, 6-23

Errors,
FCS, 6-29
Form Driver processing of, 4-9
form library files, 6-29
Form Utility, 3-3
RMS, 6-29
signaling operators about, 5-4
with debug mode, 5-3

Event flags,
conditionals, 5-44
terminal, 5-45

Examples,
data entry application, B-1
extended, B-1
Form Editor, 2-25
of forms, B-1

EXIT SCROLLED AREA BACKWARD
function, 4-17

EXIT SCROLLED AREA FORWARD
function, 4-18

Extracting form descriptions, 3-9

FCS,
error codes, 5-2;6-29
initializing for Form Driver, 5-42
support for Form Driver resident library, 5-12

FCS (Cont.),
support requirements, 5-11

FGETAF call,
techniques, 7-5

Field attributes,
assigning, 2-7 ,2-21
Form Driver processing of, 4-5

Field descriptions, listing, 3-17
Field editing, Form Driver, 4-11
Field Index, 5-37
Field length, getting, 6-13
Field marker characters, Form Driver

processing, 4-5
Field names,

assigning, 2-22
beginning with "*", 6-4
COBOL requirements, 3-13
Form Driver use of, 4-2
returning, 6-2
unspecified, 6-4

FIELD operation and mode, 2-10
Field pictures,

Form Driver processing of, 4-5
mixed, 2-18

Field terminators,
autotab, 2-23
codes, 5-38
in scrolled areas, 7-1
processing, 6-18
summary, 5-7
use of, 5-5
validating, 6-7
with Form Driver, 4-14

Field values,
and lengths, 5-15
default, 2-23,4-6
inserting, 4-12
validating, 4-6,4-10

Field, definition of, 2-2
Field-marker characters, 2-19
Fields,

11 * 11 names, 6-4
completing with Form Driver, 4-12
display all values, 6-21
displaying default values, 6-20,6-21
for passwords, 2-24
getting impure area values, 6-25
getting lengths of, 6-13
getting values from, 6-4,6-7
help, 6-23
indexed, creating, 2-24
left-justified, display in, 6-20
length returned, 4-4
moving to with Form Driver, 4-15 to 4-16

Fields (Cont.),
names, 6-2
order of processing, 4-4,6-4,6-7
order of responses, 4-3
right-justified, display in, 6-20
unspecified names, 6-4
validating with Form Driver, 4-5

File specifications for form libraries, 6-14
File types,

defaults, 3-2
form library default, 6-14

Fill character, assigning, 2-23
Fixed decimal attribute,

assigning, 2-23
choosing support for, 8-5
Form Driver processing of, 4-7,4-18

Flashing fields, 2-16
FMS-11 messages, C-1
FMSMAC system macro library, A-1
Form,

definition, 2-2
FORM command, 2-7
Form description file, definition, 2-2
Form descriptions,

block aligned, 3-7
converting, 3-10
definition, 2-2
deleting, 3-8
extracting, 3-9
for COBOL programs, 3-12
Form Driver processing, 4-1
image map, 3-15
listing, 3-13
processing, 3-1
storing in separate files, 3-10
updating in form library files, 3-9

Form Driver,
$FDV macro, 5-34
$FDVDF macro, 5-34
and fixed decimal fields, 4-18
and form descriptions, 4-1
call status, 5-1
calling with MACR0-11, 5-34
configuration options, 5-3
configuration procedure, 8-3
control of cursor by, 4-12
debug mode, 4-10,5-3
debug mode, choosing, 8-5
debug mode, error status, 5-3
erasure operations, 4-12
field editing operations, 4-11
field terminating functions, 4-14
form display procedure, 4-2
function dependent arguments, 5-37

Index-3

Form Driver (Cont.),
HELP function, 4-3
high level language interface, 5-13
impure area requirements, 5-10
keypad operations, 4-9
limitation on insertion modes, 4-5
necessary arguments in calls, 5-34
omitting the SOB instruction, 8-5
operator interaction with, 4-9
order of fields, 4-4
processing default field values, 4-6
processing of autotab attribute, 4-6
processing of field attributes, 4-5
processing of field markers, 4-5
processing of form text, 4-5
processing of video attributes, 4-5
processing operator errors, 4-9
repainting the screen, 4-11
required argument list summary, 5-36
scrolled area moves, 4-16
status code, 5-34
summary of alternate keypad

terminators, 5-9
summary ofBASIC-PLUS-2 arguments, 5-18
summary of COBOL arguments, 5-23
summary of FCS and RMS

requirements, 5-11
summary of field terminators, 5-7
summary of Form Driver

arguments, 5-13
summary of FORTRAN IV

arguments, 5-30
summary of FORTRAN IV-PLUS

arguments, 5-30
summary of MACR0-11 offsets, 5-34
summary of status codes, 5-2
switching insertion modes, 4-13
syntax of BASIC-PLUS-2 calls, 5-18
syntax of COBOL calls, 5-24
syntax of FORTRAN IV calls, 5-30
syntax of FORTRAN IV-PLUS calls, 5-30
use of form and field names, 4-2
use of impure area, 4-3
using as a resident library, 5-12
validating· field values, 4-5 to 4-6
with memory resident forms, 4-1

Form Driver,
messages, 6-23

Form Editor,
assigning field attributes with, 2-21
assigning form-wide attributes, 2-20
command summary, 2-4
creating scrolled areas with, 2-17
cursor direction with, 2-11

Index-4

Form Editor (Cont.),
cursor movement with, 2-11
edit status line, 2-8
erasing with, 2-14
example for, 2-25
field pictures, 2-18
field-marker characters, 2-19
form size report, 2-21
impure area report, 2-21
inserting with, 2-11,2-13
keypad functions, 2-5
mode-changing operations, 2-10
moving fields, 2-15
operations, 2-15
prompts, 2-5
size with RSX systems, 2-3
starting with RSX systems, 2-3
text modifying operations, 2-13
using the Return key, 2-12
video attributes with, 2"16

Form library directories, size, 8-6
Form library directory buffers, number, 8-6
Form library file,

channels for, 6-14
closing, 6-12
creating, 3-7
definition, 2-2
directory of forms in, 3-6
errors with, 5-2,6-29
examining, 3-1
file specifications for, 6-14
LUN, 5-36
number in use, 8-7
opening, 6-14
setting channels for, 6-11
sharing, 6-11
using, 6-11

Form name,
assigning, 2-20
Form Driver use of, 4-2

Form size, report, 2-21
Form Utility,

defaults, 3-2
errors, 3-3
options, 3-4
prompts, 3-1,3-3
spooling files, 3-6
starting and stopping, 3-1

Form-wide attributes,
assigning, 2-7 ,2-20

Forms,
adding to form library files, 3-9
creating object modules for, 3-11
date processed, 3-7 ·

Forms (Cont.),
displaying, 6-1,6-26
editing, 2-7
examples, B-1
for COBOL programs, 3-12
listing of, 3-7
memory resident, 3-11
re-initializing, 6-21
simultaneous display, 7-4
size, 3-7
storing, 2-8

FORTRAN IV,
building applications, 5-33
Form Driver arguments, 5-29
Form Driver call syntax, 5-16,5-30
impure area structure, 6-9
summary of arguments, 5-13
summary of Form Driver calls, 5-30

FORTRAN IV-PLUS,
building applications, 5-33
Form Driver arguments, 5-30
Form Driver call syntax, 5-16,5-30
summary of arguments, 5-13
summary of Form Driver calls, 5-30

Function dependent arguments, 5-37

Get a scrolled area line, 6-10
Get all field values, 6-7
Get all field values from impure area, 6-24
Get any field value, 6-5
Get current field name, 6-2
Get field value, 6-4
Get field value from impure area, 6-25,
Get named data by index, 6-8
Get named data by name, 6-15
Get status of the last call, 6-29
Get the length of a field, 6-13
Global offsets, Form Driver, 5-34

Help,
at the field level, 4-3
display, 6-23
for the application operator, 4-3
form library files, 6-11
Form Utility, 3-5
form_-wide, 4-3
messages, 4-10

Help for a field, assigning, 2-23
Help form name, assigning, 2-20
Help forms,

requirements, 7-5
HELP function,

Form Driver, 4-3

High level language calls,
FCLRSH, 6-1
FGCF, 6-2
FGET, 6-4
FGETAF, 6-5
FGETAL, 6-7
FIDATA, 6-8
FINIT, 6-9
FINLN, 6-10
FLCHAN, 6-11
FLCLOS, 6-12
FLEN, 6-13
FLOPEN, 6-14
FNDATA, 6-15
FOUTLN, 6-16
FPFT, 6-18
FPUT, 6-20
FPUTAL, 6-21
FPUTL, 6-23
FRET AL, 6-24
FRETN, 6-25
FSHOW, 6-26
FSPOFF, 6-27
FSPON, 6-28
FSTAT, 6-29

High level language interface, 5-13
Horizontal indexed attribute,

assigning, 2-24
Form Driver processing of, 4-7

Image map, 3-15
Impure area,

definition, 5-10
for simultaneous forms, 7-4
getting values from, 6-24 to 6-25
initializing, 6-9
pointer, 5-39
size, 2-21,3-7 ,3-14,4-3
structure, 6-9
use by application, 4-3
use by Form Driver, 4-3

Indexed attributes, processing of, 4-7
Indexed fields,

creating, 2-24
order of, 4-4
techniques, 7 -6

Initialize the impure area, 6-9
Initializing FCS and RMS, 5-42
Input a field value, 6-4
Input all field values, 6-7
Input any field value, 6-5
INSERT mode,

Form Driver, 4-5
Form Editor, 2-13

lndex-5

INSERT operation and mode, 2-11
INSERT/OVERSTRIKE function,

Form Driver, 4-14
Inserting blank lines, 2-14
Inserting characters with the Form Editor, 2-13
Inserting field values, 4-12
Insertion modes, switching, 4-13
Installation procedures, 8-2

Justification attributes, processing of, 4-5

Keypad operations,
Form Driver, 4-9
Form Editor, 2-5

Keywords MACR0-11 Form Driver calls, 5-38

Left justified attribute, processing of, 4-5
Leftarrow key,

Form Editor, 2-12
use with Form Driver, 4-13

Length of fields returned, 4-4
Line number,

specifying, 6-26
Line number, specifying, 5-37
Linefeed key, Form Driver, 4-13
Listing field descriptions, 3-17
Listing form descriptions, 3-13
Listing named data, 3-18
LUN - also see "channels", 6-14
LUN for form library, 5-36

MACR0-11,
building applications, 5-45
calling the Form Driver, 5-34
Form Driver call arguments, 5-38
Form Driver calls,

FC$ALL, 6-7
FC$ANY, 6-5
FC$CLS, 6-12
FC$CSH, 6-1
FC$DAT, 6-8,6-15
FC$GET, 6-4
FC$GSC, 6-10
FC$LST, 6-23
FC$0PN, 6-14
FC$PAL, 6-21
FC$PSC, 6-16
FC$PUT, 6-20
FC$RAL, 6-24
FC$RTN, 6-25

Index-6

MACR0-11 (Cont.),
FC$SHO, 6-26
FC$SPF, 6-27
FC$SPN, 6-28
FC$TRM, 6-18

Macros, keyword encoded, 5-38
Mapping options, 8-1
Maps,

image, 3-15
named data, 3-18
video attributes, 3-16

Media resident forms,
display procedures, 4-2
Form Driver processing, 4-1

Memory resident forms,
choosing support for, 8-5
creating, 3-11
display procedures, 4-2
Form Driver processing, 4-1
in COBOL programs, 3-12
PSECTS used, 5-43
requirements, 5-43
task building for, 5-11

Messages,
Form Driver, 4-9 to 4-10,6-23
full listing, C-1
with debug mode, 5-3

Mixed pictures, 2-18
Modes,

supervisor only, 6-28
Moving the cursor,

with Form Driver, 4-13
Must fill attribute,

assigning, 2-23
Form Driver processing of, 4-6
limitations, 4-6

Must-fill fields, 6-18

N picture-validation character, 2-18
NAME command, 2-7
Name pointer, 5-37
Named data,

creating, 2-24
getting by index, 6-8
getting by name, 6-15
map, 3-18
specifying, 2-7

Nine as picture-validation character, 2-18
NORMAL operation, 2-17

Object modules, creating, 3-11
ODL, using, 8-8

Open a form library, 6-14
OPENLINE operation, 2-14
Operator errors, processing, 4-9
Operator responses, in must-fill fields, 6-18

in response-required fields, 6-18
synchronizing, 4-3
to the FGET call, 6-4
to the FGETAL call, 6-7

Operator responses, synchronizing, 6-4
Options, Form Utility, 3-4
Order of fields returned, 4-4
Order of operator responses, 4-3
Order of processing fields, 6-4,6-7
Overlaying FMS applications, 5-43
OVERSTRIKE mode,

Form Driver, 4-5
Form Editor, 2-13

OVERSTRIKE mode, Form Editor, 2-11
OVERSTRIKE operation, 2-11

Passwords, fields for, 2-24
PASTE operation, 2-16
Picture-validation characters, 2-18
Pictures,

mixed, 2-18
processed by Form Driver, 4-5

Pointers,
data value, 5-37
impure area, 5-36
names, 5-37
required arguments list, 5-34
status block, 5-36

Printing field descriptions, 3-17
Printing form descriptions, 3-13
Printing named data, 3-18
Processing field terminators, 6-18
Processing scrolled areas, 7-1
Program sections used by FMS, 5-43
Programs, examples, B-1
Prompts,

Form Editor, 2-5
Form Utility, 3-1,3-3

PSECTS used by FMS, 5-43

Questionnaires,
field attributes, 2-21
form-wide attributes, 2-20
named data, 2-25

QUIT command, 2-8

Re-initializing a form, 6-22

Re-initializing scrolled areas, 6-16
Repainting the screen,

Form Editor, 2-14
Form Driver, 4-11

REPEAT operation, 2-15
Replacing forms in libraries, 3-9
Required argument list,

offsets, 5-36
pointer, 5-34

Requiring operator responses, 2-23
Response required attribute,

assigning, 2-23
Form Driver processing of, 4-6
limitations, 4-6

Response-required fields, 6-18
Restoring erased Jines, 2-15
Return all fields, 6-24
RETURN function, 4-14
Return key, using with the Form Editor, 2-12
Return the specified field, 6-25
Reverse screen, as a form-wide attribute, 2-20
Reversed video fields, 2-16
Right justified attribute,

assigning, 2-22
Form Driver processing of, 4-5

Rightarrow key,
Form Editor, 2-12
use with Form Driver, 4-13

RMS,
error codes, 5-2,6-29
initializing for Form Driver, 5-42
support requirements, 5-11

SA VE command, 2-8
Screen, repainting, 2-14
SCROLL operation, 2-17
Scrolled area,

canceling, 2-17
choosing support for, 8-5
creating, 2-17
cursor motion in, 4-16
defaults, 6-16
display in, 6-16
Form Driver processing of, 4-8
getting values from, 6-10
processing, 6-2,6-18,7-1
re-initializing, 6-16
requirements for, 4-8
techniques for, 7-2
valid Form Driver calls for, 7-2

SELECT operation, 2-15
Setting a form library channel, 6-11
Sharing form library files, 6-11

Index-7

Size,
field, 6-13
form library directories, 8-6
impure area, 3-7,3-14,4-3,5-10

SOB instruction, omitting from
Form Driver, 8-5

Spooling, with Form Utility, 3-6
Starting line number, 6-26
Starting line, assigning, 2-21
Status block pointer, 5-36
Storing form descriptions, 2-8
Summaries,

alternate keypad terminators, 5-9
BASIC-PLUS-2 calls, 5-21
BASIC-PLUS-2 Form Driver

arguments, 5-18
COBOL calls, 5-24
COBOL Form Driver arguments, 5-23
FCS and RMS requirements, 5-11
field terminators, 5-7
field-marker characters, 2-19
form display procedures, 4-2
Form Driver arguments, 5-13
Form Driver call status codes, 5-2
Form Driver field editing operations, 4-11
Form Editor commands, 2-4
Form Editor operations, 2-11
Form Utility defaults, 3-2
Form Utility options, 3-4
FORTRAN IV calls, 5-30
FORTRAN IV Form Driver arguments, 5-30
FORTRAN IV-PLUS calls, 5-30
FORTRAN IV-PLUS Form Driver

arguments, 5-30
high. level language arguments, 5-38
MACR0-11 Form Driver arguments, 5-38
MACR0-11 Form Driver function codes, 5-35
MACR0-11 offsets for Form Driver, 5-34
picture-validation characters, 2-18
required argument list, 5-36
video attributes, 2-16,3-16

Supervisor only attribute,
assigning, 2-24
Form Driver processing of, 4-8

Supervisor only mode,
turning off, 6-27
turning on, 6-28

Switches - see options, 3-4
Switching form library channels, 6-11

Index-8

Synchronizing task and operator, 6-4
System generation options, 8-1
System macro library (FMSMAC), A-1

TAB function, 4-15
Terminal service,

choosing support for, 8-7
conditionals for, 5-44
options, 8-1

Terminating,
a form, 4-14
scrolled areas, 4-17

Terminating scrolled areas,
Form Driver, 4-18

Terminators,
fields, 4-14,5-5,6-19
MACR0-11 codes, 5-38

TEXT operation and mode, 2-10
Text,

Form Driver processing, 4-5
TOP operation, 2-13
Turn off supervisor only mode, 6-27
Turn on supervisor only mode, 6-28
Typeahead, preserving, 5-42

UIC in form library specifications, 6-14
Underline operation, 2-15
Underlined fields, 2-16
Uparrow key,

Form Driver, 4-16
Form Editor, 2-11

Updating forms in libraries, 3-9

Validating field values, 4-6
Validation,

field values, 4-10
of output data, 6-16,6-21

Vertical indexed attribute,
assigning, 2-24
Form Driver processing of, 4-7

Video attributes,
assigning, 2-16
clearing, 2-17
codes, 3-16
Form Driver processing of, 4-5
map, 3-16
use by the Form Driver, 6-23

VIDEO operation, 2-16
VTlOO alternate keypad mode, 4-12,5-9
VT52 terminals, using, 8-6

Wide screen, as a form-wide
attribute, 2-20

X picture-validation
character, 2-18

Zero fill attribute,
assigning, 2-23
Form Driver processing of, 4-6

Index-9

READER'S COMMENTS

FMS-11/RSX
Software Reference Manual
AA-H8SSA-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify) _________________________ _

Organization ___________________________________ _

Street---------------------------------------

CitY------------------- State------ Zip Code-------­
or

Country

- - Do Not Tear· Fold Here and Tape

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

if Mai led in the
United States

- - Do Not Tear· Fold Here -

