
P /OS System Reference Manual

Order No. AD-N620A-T1

P /OS System Reference Manual

Order No. AD-N620A-T1

September 1983

This manual describes the Professional Operating System (P/OS). It allows
system and application programmers to use the operating system resources
to optimize the performance of applications written for the Professional.

DEVELOPMENT SYSTEM: VAX/VMS V3.2 or later
RSX-11 M V4.1 or later
RSX-11 M-PLUS V2.1 or later
P/OS V1.7

SOFTWARE: Professional Host Tool Kit V1 .7
PRO/Tool Kit V1 .0

DIGIT AL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing, December 1982
Updated, September 1983

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may ap­
pear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGIT AL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of items without written permission.

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS
DEC
DECmate
DECsystem-10
DECSYSTEM-20
DEC US
DECwriter
DIBOL
mamaama

MASSBUS
PDP
P/OS
PRO/BASIC
Professional
PRO/FMS
PRO/RMS
PROSE
Rainbow

RSTS
RSX
Tool Kit
UNIBUS
VAX
VMS
VT
Work Processor

5184-15

Update Notice Number 1

P/OS System Reference Manual
AD-N620A-T1

September 1983

Insert this page in the P/OS System Reference
Manual to maintain an up-to-date record of
changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in P/OS Version
1.7. Also included are additional corrections to the documentation.

Copyright © 1983 Digital Equipment Corporation

INSTRUCTIONS

Add the following pages to the P/OS System Reference Manual as replace­
ment for or additions to current pages. The technical changes made on
replacement pages are indicated in the outside margin by change bars.
Changes of an editorial nature are not marked. A date at the bottom of the
new pages denotes revised or new information for this update.

OLD PAGE

Title page/copyright page
iii through xi/blank
8-1 through 8-16
9-25/9-26, 9/-27 /9-28
9-149/9-150
9-153/9-154
9-155/9-156
9-163/9-164, 9-165/166
11-1 through 11-5/blank
12-1 through 12-26
13-1 through 13-13/blank
C-1 through C-6
Index 1-1 through 1-6
Reader's Comments/Mailer

NEW PAGE

Title page/copyright page
iii through xi/blank
8-1 through 8-26
9-25/9-26, 9/-27 /9-28
9-149/9-150, 9-150.1 /9-150.2
9-153/9-154
9-155/9-156
9-163/9-164, 9-165/166
11-1 through 11-7 /blank
12-1 through 12-26
13-1 through 13-12
C-1 through C-6
Index 1-1 through 1-6
Reader's Comments/Mailer

CONTENTS

CHAPTER 1 P/OS SYSTEM OVERVIEW

1.1 WHATISP/OS? .. 1-1
1.2 THE APPLICATION ENVIRONMENT .. 1-2
1.3 PHYSICAL, VIRTUAL, AND LOGICAL ADDRESSING 1-3
1.4 APPLICATION DESIGN SUGGESTIONS .. 1-3
1.4.1 Use Cooperating Tasks .. 1-3
1.4.2 Use Shared Libraries .. 1-4
1.4.3 Use Disk-Resident Overlays ... 1-4
1.4.4 Use Memory-Resident Overlays ... 1-4
1.4.5 Use Cluster Libraries .. 1-4
1.5 CHECKPOINTING .. 1-5

CHAPTER 2 FILE SYSTEM OVERVIEW

2.1 WHAT IS RMS? ... ; 2-1
2.1.1 Data Storage ... 2-1
2.1 .2 File Structure ... 2-3
2.1 .2.1 Record Formats .. 2-3
2.1.2.2 File Organizations •....................... ~ 2-3
2.1.2.3 Access Modes ···································'··················'··············2-4
2.2 ASSOCIATED DOCUMENTS .. 2-5

CHAPTER 3 USING SYSTEM DIRECTIVES

3.1
3.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.1.4
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.6
3.7
3.7.1
3.7.2

DIRECTIVE PROCESSING .. 3-2
ERROR RETURNS .. 3-3
USING THE DIRECTIVE MACROS ... 3-4,

Macro Name Conventions .. 3-6
$ Form ... 3-6
$C Form .. 3-7
$S Form .. 3-7

DIR$ Macro ... 3-8
Optional Error Routine Address ... 3-8
Symbolic Offsets ... 3-8
Examples of Macro Calls , 3-9

FORTRAN SUBROUTINES•.............................. 3-10
Using Subroutines ... 3-1 O

Optional Arguments .. 3-11
Task Names .. 3-11
Integer Arguments .. 3-11
GETADR Subroutine .. 3-12

The Subroutine Calls , 3-12
Error Conditions ... , 3-15
AST Service Routines ... 3-15

TASK STATES ... 3-16
Task State Transitions .. 3-17

DIRECTIVE RESTRICTIONS,FOR NONPRIVILEGED TASKS 3-18
DIRECTIVE CATEGORIES .. 3-19

Task Execution Control Directives ... 3-19
Task Status Control Directives•... 3-20

iii

3.7.3 Informational Directives .. 3-20
3.7.4 Event-Associated Directives ... 3-20
3.7.5 Trap-Associated Directives ... 3-22
3.7.6 1/0- and Intertask Communications-Related Directives 3-22
3.7.7 Memory Management Directives .. 3-22
3.7.8 Parent/Offspring Tasking Directives .. 3-22
3.8 DIRECTIVE CONVENTIONS ... 3-24

CHAPTER 4 LOGICAL NAMES

4.1 LOGICAL NAMES AND EQUIVALENCE NAMES 4-1
4.1.1 The Logical Name Table ... 4-1
4.1.2 Duplicate Logical Name .. 4-2
4.2 RMS TRANSLATION OF LOGICAL NAMES 4-2
4.2.1 RMS and Default Directories4-2
4.3 FILES-11 ACP USE OF LOGICAL NAMES4-3
4.4 LOGICAL NAME CREATION .. 4-3
4.5 LOGICAL NAME TRANSLATION .. 4-3
4.6 LOGICAL NAME DELETION ... 4-3
4.7 SETTING UP A DEFAULT DIRECTORY STRING 4-4
4.8 RETRIEVING A DEFAULT DIRECTORY STRING 4-5

CHAPTER 5 SIGNIFICANT EVENTS, EVENT FLAGS,
SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION

5.1 SIGNIFICANT EVENTS .. 5-1
5.2 EVENT FLAGS ... 5-2
5.3 SYSTEM TRAPS .. 5-4
5.3.1 Synchronous System Traps (SSTs) ... 5-4
5.3.2 SST Service Routines ... 5-5
5.3.3 Asynchronous System Traps (ASTs) ... 5-6
5.3.4 AST Service Routines ... 5-7
5.4 STOP-BIT SYNCHRONIZATION ... 5-10

CHAPTER 6 PARENT/OFFSPRING TASKING

6.1 DIRECTIVE SUMMARY ... 6-1
6.1.1 Parent/Offspring Tasking Directives .. 6-1
6.1.2 Task Communication Directives ... 6-2
6.2 CONNECTING AND PASSING STATUS .. 6-3

CHAPTER 7 MEMORY MANAGEMENT DIRECTIVES

7.1 ADDRESSING CAPABILITY OF A SYSTEM TASK 7-1
7 .1.1 Address Mapping .. 7-2
7 .1.2 Virtual and Logical Address Space .. 7-2
7.2 VIRTUAL ADDRESS WINDOWS ... 7-2
7.3 REGIONS ... 7-3
7.3.1 Shared Regions ... 7-7
7.3.2 Attaching to Regions ... 7-7
7.3.3 Region Protection .. 7-7
7 .4 DI RE CTI VE SUM MARY ... 7-8
7 .4.1 Create Region Directive (CRRG$) .. 7-8

iv

7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.2
7.5.3
7.6

Attach Region Directive (ATRG$) ... 7-8
Detach Region Directive (DTRG$) .. 7-8
Create Address Window Directive (CRAW$) 7-8
Eliminate Address Window Directive (ELAW$) 7-8
Map Address Window Directive (MAP$) 7-9
Unmap Address Window Directive (UMAP$) 7-9
Send By Reference Directive (SREF$) ... 7-9
Receive By Reference Directive (RREF$) 7-9
Get Mapping Context Directive (GMCX$) 7-9
Get Region Parameters Directive (GREG$) 7-9

USER DATA STRUCTURES ... 7-9
Region Definition Block (ROB) ... 7-10

Using Macros to Generate an ROB 7-12
Using Fortran to Generate an ROB 7-13

Window Definition Block (WDB .. 7-15
Using Macros to Generate a WDB 7-16
Using Fortran to Generate a WDB 7-17

Assigned Values or Settings .. 7-18
PRIVILEGED TASKS ... 7-19

CHAPTER 8 CALLABLE SYSTEM ROUTINES

8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM
ROUTINES ... 8-2

8.1.1 PDP-11 RS Calling Sequence ... 8-2
8.1 .2 Conventions for Callable System Services 8-3
8.1.3 Status Control Block Format.. .. 8-3
8.2 PROATR ... 8-4
8.2.1 Status Codes Returned by PROA TR ... 8-6
8.3 PRODIR .. 8-6
8.3.1 Status Codes Returned by PRODIR .. 8-7
8.4 PROFBI .. 8-7
8.4.1 Status Codes Returned by PROFBI. .. 8-10
8.5 PRO LOG .. 8-11
8.5.1 Creating or Translating a Logical Name 8-12
8.5.2 Deleting a Logical name and Set/Show 8-13 ·
8.5.3 Status Codes Returned by PRO LOG ... 8-15
8.6 PROTSK ... 8-16
8.6.1 Install a Task ... 8-16
8.6.2 Remove a Task, Region, or Common 8-18
8.6.3 Fix a Task, Region, or Common in Memory 8-18
8.6.4 Install/Run/Remove an Offspring Task 8-19
8.6.5 Status Codes Returned by PROTSK ... 8-21
8.7 PROVOL ... 8-22
8.7.1 Status Codes Returned by PROVOL ... 8-26

CHAPTER 9 DIRECTIVE DESCRIPTIONS

9.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS 9-1
9.1.1 ABRT$-Abort Task ... 9-3
9.1.2 AL TP$-Alter Priority .. 9-5
9.1.3 ALUN$-Assign LUN .. 9-7
9.1.4 ASTX$S-AST Service Exit ($S form recommended) 9-9
9.1.5 ATRG$-Attach Region .. 9-12

v

9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13

9.1.14
9.1.15

9.1.16

9.1.17
9.1.18
9.1.19
9.1.20

9.1.21
9.1.22
9.1.23
9.1.24
9.1.25
9.1.26
9.1.27
9.1.28
9.1.29
9.1.30
9.1.31
9.1.32
9.1.33
9.1.34
9.1.35
9.1.36
9.1.37
9.1.38
9.1.39
9.1.40
9.1.41
9.1.42
9.1.43
9.1.44
9.1.45
9.1.46
9.1.47
9.1.48
9.1.49
9.1.50
9.1.51
9.1.52
9.1.53

CLEF$-Clear Event Flag ... 9-14
CLOG$-Create Logical Name String 9-17
CMKT$-Cancel Mark Time Requests 9-17
CNCT$-Connect. ... 9-19
CRAW$-Create Address Window .. 9-21
CRRG$-Create Region ... 9-25
CSRQ$-Cancel Time Based Initiation Requests 9-28
DECL$S-Declare Significant Event ($S Form
Recommended) ... 9-30
DLOG$-Delete Logical Name ... 9-31
DSAR$S or IHAR$S-Disable (or Inhibit)
AST Recognition ($S Form Recommended) 9-33
DSCP$S-Disable Checkpointing ($S Form
Recommended) ... 9-35
DTRG$-Detach Region ... 9-36
ELAW$-Eliminate Address Window ... 9-38
EMST$-Emit Status .. 9-40
ENAR$S-Enable AST Recognition ($S Form
Recommended) ... 9-42
ENCP$S-Enable Checkpointing ($S Form Recommended) ... 9-43
EXIF$-Exit If .. 9-44
EXIT$S-Task Exit ($S Form Recommended) 9-46
EX ST$-Exit With Status ... 9-48
EXTK$-Extend Task ... 9-50
FEAT$-Test for specified system feature 9-52
GDIR$-Get Default Directory ... 9-55
GLUN$-Get LUN Information ... 9-57
GMCR$-Get Command Line .. 9-60
GMCX$-Get Mapping Context ... 9-62
GPRT$-Get Partition Parameters .. 9-65
GREG$-Get Region Parameters .. 9-67
GTIM$-Get Time Parameters ... 9-69
GTSK$-Get Task Parameters .. 9-71
MAP$-Map Address Window ... 9-73
MRKT$-Mark Time ... 9-76
010$-Queue 1/0 Request... .. 9-80
QIOW$-Queue 1/0 Request and Wait 9-83
RCST$-Receive Data Or Stop ... 9-85
RCVD$-Receive Data ... 9-87
RCVX$-Receive Data Or Exit.. ... 9-89
RDAF$-Read All Event Flags ... 9-92
RDEF$-Read Event Flag .. 9-93
RDXF$-Read Extended Event Flags 9-94
RPOl$-Request and Pass Offspring Information 9-96
RQST$-Request Task .. 9-99
RREF$-Receive By Reference ... 9-101
RSUM$-Resume Task .. 9-104
RUN$-Run Task ... 9-105
SDAT$-Send Data .. 9-109
SDIR$-Setup Default Directory String 9-111
SDRC$-Send, Request and Connect 9-113
SDRP$-Send Data Request and Pass Offspring
Control Block ... 9-116

vi

9.1.54
9.1.55
9.1.56
9.1.57
9.1.58
9.1.59
9.1.60
9.1.61
9.1.62
9.1.63
9.1.64
9.1.65
9.1.66
9.1.67
9.1.68
9.1.68A
9.1.69
9.1.70
9.1.71
9.1.72
9.1.73
9.1.74
9.1.75
9.1.76
9.1.77

9.1.78
9.1.79

SETF$-Set Event Flag .. 9-119
SFPA$-Specify Floating Point Processor Exception AST 9-120
SPND$S-Suspend ($S Form Recommended) 9-122
SPWN$-Spawn ... 9-123
SRDA$-Specify Receive Data AST .. 9-127
SREX$-Specify Requested Exit AST Directive 9-129
SREF$-Send By Reference ... 9-132
SRRA$-Specify Receive-by-Reference AST 9-135
STIM$-Set System Time .. 9-137
STLO$-Stop For Logical OR Of Event Flags 9-140
STOP$S-Stop ($S Form Recommended) 9-142
STSE$-Stop For Single Event Flag 9-143
SVDB$-Specify SST Vector Table For Debugging Aid 9-144
SVTK$-Specify SST Vector Table For Task 9-146
SWST$-Switch State .. 9-148
TLOG$-Translate Logical Name .. 9-150
UMAP$-Unmap Address Window 9-150.2
USTP$-Unstop Task ... 9-152
VRCD$-Variable Receive Data ... 9-153
VRCS$-Variable Receive Data Or Stop 9-155
VRCX$-Variable Receive Data Or Exit 9-157
VSDA$-Variable Send Data ... 9-159
VSRC$-Variable Send, Request and Connect 9-161
WIMP$-What's In My Professional .. 9-163
WSIG$-Wait For Significant Event ($S Form
Recommended) ... 9-167
WTLO$-Wait For Logical OR Of Event Flags 9-169
WTSE$-Wait For Single Event Flag 9-171

CHAPTER 10 SYSTEM INPUT/OUTPUT CONVENTIONS

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6
10.6.1
10.6.2

10.6.3
10.6.4
10.6.5
10.6.5.1
10.6.5.2
10.6.6
10.6.7

PHYSICAL, LOGICAL, AND VIRTUAL 1/0 10-2
SUPPORTED DEVICES ... 10-2
LOGICAL UNITS .. 10-3

Logical Unit Number ... 10-3
Logical Unit Table ... 10-3
Changing LUN Assignments ... 10-4

ISSUING AN 1/0 REQUEST .. 10-4
QIO Macro Format .. 10-6
Significant Events .. 10-8
System Traps .. 10-9

DIRECTIVE PARAMETER BLOCKS ... 10-10
1/0-RELATED MACROS .. 10-11

The 010$ Macro: Issuing an 1/0 Request 10-12
The QIOW$ Macro: Issuing an 1/0 Request
and Waiting for an Event Flag .. 10-13
The DIR$ Macro: Executing a Directive 10-13
The .MCALL Directive: Retrieving System Macros 10-13
The ALUN$ Macro: Assigning a LUN 10-14

Physical Device Names .. 10-15
Pseudo-Device Names ... 10-15

The GLUN$ Macro: Retrieving LUN lnformation 10-16
The ASTX$S Macro: Terminating AST Service 10-18

vii

10.6.8 The WTSE$ Macro: Waiting for an Event Flag 10-18
10.7 STANDARD 1/0 FUNCTIONS ... 10-19
10.7.1 10.ATT: Attaching to an 1/0 Device .. 10-20
10.7.2 10.DET: Detaching from an 1/0 Device 10-21
10.7.3 IQ.KIL: Canceling 1/0 Requests ... 10-21
10.7.4 10.RLB: Reading a Logical Block ... 10-22
10.7.5 10.RVB: Reading a Virtual Block .. 10-22
10.7.6 10.WLB: Writing a Logical Block .. 10-22
10.7.7 10.WVB: Writing a Virtual Block ... 10-23
10.8 1/0 COMPLETION .. 10-23
10.9 RETURN CODES ... 10-24
10.9.1 Directive Conditions .. 10-25
10.9.2 1/0 Status Conditions .. 10-26

CHAPTER 11 DISK DRIVERS

11.1 RX50 DESCRIPTION ... 11-1
11.2 ROSO AND RD51 DESCRIPTION .. 11-1
11.3 GET LUN INFORMATION MACR0 ... 11-2
11.4 OVERVIEW OF 1/0 OPERATIONS .. 11-2
11.4.1 Physical 1/0 Operations .. 11-3
11.4.2 Logical 1/0 Operations .. 11-3
11.4.3 Virtual 1/0 Operations ... 11-4
11.5 QIO MACRO .. 11-4
11.5.1 Standard QIO Functions ... 11-4
11.6 STATUS RETURNS ... 11-6

CHAPTER 12 THE TERMINAL DRIVER

12.1 INTRODUCTION .. 12-1
12.2 GET LUN INFORMATION MACR0 ... 12-2
12.3 QIO MACRO .. 12-3
12.3.1 Su bf unction Bits .. 12-4
12.3.2 Device-Specific QIO Functions ... 12-5
12.3.2.1 IO.ATA ... 12-7
12.3.2.2 IO.ATT!TF.ESQ ... 12-8
12.3.2.3 IO.CC0 .. 12-8
12.3.2.4 SF.GMC ... 12-8
12.3.2.5 10.GTS .. 12-11
12.3.2.6 IO.RAL ... 12-12
12.3.2.7 10.RNE .. 12-13
12.3.2.8 10.RPR .. 12-13
12.3.2.9 IO.RPR!TF.BIN .. 12-13
12.3.2.10 IO.RST ... 12-13
12.3.2.11 SF.SMC ... 12-14
12.3.2.12 IO.RTT ... 12-14
12.3.2.13 IO.WAL .. 12-15
12.3.2.14 IO.WBT .. 12-15
12.3.2.15 10.WSD ... 12-15
12.3.2.16 10.RSD .. 12-15
12.4 STATUS RETURNS ... 12-16
12.5 CONTROL CHARACTERS AND SPECIAL KEYS 12-18
12.5.1 Control Characters .. 12-18
12.5.2 INTERRUPT/DO AST lnformation .. 12-19

viii

12.5.3 Special Keys .. 12-20
12.6 ESCAPE SEOUENCES .. 12-21
12.6.1 Definition .. 12-21
12.6.2 Prerequisites .. 12-22
12.6.3 Characteristics ... 12-22
12.6.4 Escape Sequence Syntax Violations .. 12-22
12.6.4.1 DEL (177) .. 12-22
12.6.4.2 Control Characters (0-037) ... 12-22
12.6.4.3 Full Buffer ... 12-22
12.7 VERTICAL FORMAT CONTROL. .. 12-23
12.8 TYPE-AHEAD BUFFERING ... 12-24
12.9 FULL-DUPLEX OPERATION ... 12-25
12.10 INTERMEDIATE INPUT AND OUTPUT BUFFERING 12-25
12.11 TERMINAL-INDEPENDENT CURSOR CONTROL.. 12-25
12.12 PROGRAMMING HINTS ... 12-26

CHAPTER 13 THE XK COMMUNICATIONS DRIVER

13.1 INTRODUCTION .. 13-1
13.2 GET LUN INFORMATION MACR0 ... 13-1
13.3 010 MACRO .. 13-2
13.3.1 Device-Specific 010 Functions ... 13-4
13.3.1.1 10.ANS .. 13-4
13.3.1.2 IO.ATA ... 13-4
13.3.1.3 IO.BRK .. 13-4
13.3.1.4 IO.CON .. 13-4
13.3.1.5 SF.GMC ... 13-5
13.3.1.6 IO.HNG .. 13-8
13.3.1.7 IO.LTl .. 13-8
13.3.1.8 IO.ORG .. 13-9
13.3.1.9 10.RAL ... 13-9
13.3.1.10 IO.RNE .. 13-9
13.3.1.11 SF.SMC ... 13-9
13.3.1.12 IO.TRM .. 13-9
13.3.1.13 IO.UTl .. 13-9
13.3.1.14 IO.WAL .. 13-9
13.4 STATUS RETURNS ... 13-10
13.5 FULL-DUPLEX OPERATION ... 13-11
13.6 UNSOLICITED EVENT PROCESSING .. 13-11
13.6.1 XTU.UI ... 13-11
13.7 TIME-OUT .. 13-11
13.7.1 Read requests ... 13-12
13.7.2 IO.CON ... 13-12
13.7.3 10.0RG .. 13-12
13.8 XON/XOFF SUPPORT ... 13-12

APPENDIX A STANDARD ERROR CODES

APPENDIX B SUMMARY OF 1/0 FUNCTIONS

B.1 DISK DRIVER .. B-1
B.2 TERMINAL DRIVER .. B-2
B.2.1 Subfunction Bits for Terminal-Driver Functions B-2

ix

APPENDIX C 1/0 FUNCTION AND STATUS CODES

C.1 1/0 STATUS CODES .. C-1
C.1.1 1/0 Status Error Codes .. C-2
C.1.2 1/0 Status Success Codes .. C-3
C.2 DIRECTIVE CODES .. C-4
C.2.1 Directive Error Codes .. C-4
C.2.2 Directive Success Codes ... C-4
C.3 1/0 FUNCTION CODES .. C-4
C.3.1 Standard 1/0 Function Codes .. C-4
C.3.2 Specific Terminal 1/0 Function Codes .. C-5
C.3.3 Subfunction Bits ... C-6

APPENDIX D FACILITY AND ERROR CODES

D.1 SUB-FACILITY CODES .. D-1
D.2 FATAL ERROR CODES ... D-2
0.3 BUGCHECK .. D-2

INDEX

FIGURES

3-1 Directive Parameter Block (DPB) Pointer on the Stack 3-4
3-2 Directive Parameter Block (DPB) on the Stack 3-5
7-1 Virtual Address Windows .. 7-4
7-2 Region Definition Block ... 7-5
7-3 Mapping Windows to Regions .. 7-6
7-4 Region Definition Block ... 7-11
7-5 Window Definition Block ... 7-14
10-1 QIO Directive Parameter Block ... 10-11

TABLES

3-1 Fortran Subroutines and Corresponding Macro Calls 3-13
3-2 Directives Not Available as Subroutines .. 3-15
3-3 System Directives that can be Issued by Nonprivileged Tasks 3-19
3-4 Task Execution Control Directives ... 3-20
3-5 Task Status Control Directives ... 3-21
3-6 Informational Directives ... 3-21
3-7 Event Associated Directives ... , 3-21
3-8 Trap Associated Directives ... 3-22
3-9 1/0- and Intertask Communications Related Directives 3-23
3-1 O Memory Management Directives .. 3-23
3-11 Parent/offspring Tasking Directives ... 3-24
5-1 Trap Vector Table .. 5-5
6-1 Directive Examples For Intertask Synchronization 6-4
7-1 Bits of the Region Status Word .. 7-11
7-2 ROB Array Format ... 7-14
7-3 WDB Format .. 7-15
7-4 WDB Array Format .. 7-18
8-1 Accessible File Attributes .. 8-5
8-2 PROFBI Status Codes ... 8-10
8-3 RROLOG status Codes ... 8-16

x

8-4 PROTSK Status Codes ... 8-21
8-5 PROVOL Status Codes ... 8-26
9-1 Region Definition Block Parameters ... 9-13
9-2 Window Definition Block Parameters ... 9-22
9-3 Region Definition Block Parameters ... 9-26
9-4 Region Definition Block Parameters ... 9-37
9-5 Window Definition Block Parameters ... 9-38
9-6 System Feature Symbols .. 9-53
9-7 Window Definition Block Parameters ... 9-63
9-8 Window Definition Block Parameters ... 9-7 4
9-9 Window Definition Block Parameters ... 9-102
9-10 Window Definition Block Parameters ... 9-133
9-11 Window Definition Block Parameters .. 9-150.2
9-12 The Configuration Table Output Buffer Format.. 9-165
10-1 Physical Device Names ... 10-15
10-2 Pseudo Device Names .. 10-15
10-3 Get LUN Information ... 10-17
10-4 Binary Status Codes ... 10-25
10-5 Directive Conditions ... 10-25
10-6 1/0 Status Conditions .. 10-27
11-1 Standard Disk Devices .. 11-1
11-2 Buffer Get LUN Information for Disks .. 11-2
11-3 Standard QIO Functions for Disks ... 11-4
11-4 Disk Status Returns .. 11-6
12-1 Buffer Get LUN Information For Terminals 12-2
12-2 Standard and Device-Specific 010 Functions for Terminals 12-3
12-3 Definition of Subfunction Bit .. 12-5
12-4 Summary of Subfunction Bits ... 12-6
12-5 Driver-Terminal Characteristics

for SF.GMC and SF.SMC Functions .. 12-9
12-6 TC.TTP (Terminal Type) Values Set

by SF.SMC and Returned by SF.GMC ... 12-10
12-7 Receiver and Transmitter Speed

Values (TC.ASP, TC.XSP) ... 12-11
12-8 Information Returned by Get

Terminal Support (10.GTS) QIO .. 12-12
12-9 Terminal Status Returns ... 12-17
12-10 Terminal Control Characters ... 12-19
12-11 Special Terminal Keys ... 12-21
12-12 Vertical Format Control Characters .. 12-23
13-1 Buffer Get LUN Information for XK Driver 13-2
13-2 Standard and Device Specific QIO Functions 13-2
13-3 XK Driver Characteristics for SF.GMC and SF.SMC

Functions .. 13-5
13-4 TC.FSZ and TC.PAR Relationship .. 13-6
13-5 Receiver and Transmitter Speed Values (TC.ASP, TC.XSP) 13-7
13-6 XK Driver Status Returns .. 13-1 0
13-7 Unsolicited Event Types .. 13-11

xi

CHAPTER 8
CALLABLE SYSTEM ROUTINES

P/OS provides a set of callable routines in a resident library called POSSUM.
The POSSUM routines and their functions are:

D PROATR-gets or sets a file's attributes (Section 8.2)

D PRODIR-creates or deletes a directory (Section 8.3)

D PROFBl-formats, initializes, and checks for bad blocks on a disk or
diskette (Section 8.4)

D PROLOG-translates, creates, and deletes a logical name (Section
8.5)

D PROTSK-installs, removes, or fixes a task (Section 8.6)

D PROVOL-mounts, dismounts, bootstraps, and/or writes the boot-
block on a volume (Section 8.7)

To use the routines, you must task build your program against the POSSUM
resident library. A program calls a POSSUM routine by the PDP-11 standard
R5 calling sequence (see Section 8.1.1). Some of the routines use a separate
task in the system called a server. This chapter describes each callable routine
as well as the name of any server that a particular routine may require.

POSSUM can be included as part of a cluster of libraries with RMSRES and
other libraries. See the RSX-11 M/M-PLUS Task Builder Manual for details on
cluster libraries.

Note: When you link programs to run on the Professional, invoke the Task
Builder using the name PAB (Professional Applications Builder) rather than
TKB.

8-1

8-2 CALLABLE SYSTEM ROUTINES

You can provide one of two options in your task build command file to include
the POSSUM library in your task:

Use the following Task Builder format to link a task to the POSSUM resident
library: ·

LIBR=POSSUM:RO

Use this Task Builder format to link a task to a cluster library which includes the
POSSUM resident library:

CLSTR=POSSUM,OTHER:RO

8.1 GENERAL CONVENTIONS FOR ALL CALLABLE SYSTEM ROUTINES

This section defines the general mechanism used for calling all the defined
system routines in the POSSUM resident library.

8.1.1 PDP-11 RS Calling Sequence

Your program must use register S (RS) to pass the address of an argument list
that resides in your task's data space. The argument list itself is of variable
length, so that only the necessary arguments are passed.

The general MACR0-11 coding sequence of the call follows.

Instruction space coding sequence:

MOV 11ARGLST,RS

JSR PC,SUB

Data space coding sequence:

ARGLST: .BYTE HUMBER,O

.WORD ADDR1

.WORD ADDRn

address of"-the argument list to pass

call the subroutine

HUMBER is the number of arguments
following in the list

address of first argument

other arguments

the nth argument

For higher level languages that support the RS calling sequence (such as
BASIC-PLUS-2 or FORTRAN-77), see your language reference manual or user
guide for correct syntax. The examples in this chapter assume BASIC-PLUS-2
(BP2) as the high level language being used. All examples assume a higher
level language call.

CALLABLE SYSTEM ROUTINES 8-3

In BP2, you can invoke the previous MACR0-11 call as follows:

120 CALL SUB BY REF CADDR1%, ... ,ADDRn%>

BP2 internally formats an R5 calling block and issues the call to the system
routine for you.

8.1.2 Conventions for Callable System Services

All of the routines documented in this chapter have specific conventions that
you must follow:

D All arguments passed to the system routines are by reference. This
means that you are passing the address of the value in your pro­
gram to the routine in POSSUM.

D Every routine shares a common format in that the first argument
(STATUS) is the address of an 8-word Status Control Block found in
your program to which the routines return completion status. The
Status Control Block is always eight words in length, so care must
be taken to allocate the proper amount of space in your program.

D Every routine requires a REQUEST parameter. All of the routines are
multipurpose and this 1-word REQUEST parameter is the method for
specifying which option(s) to execute.

D When specifying either a device or file name string as a required
element in an argument list, always specify the accompanying size
field in bytes. (A byte corresponds to one ASCII character.)

D The system services preserve registers RO-R4. This is of no concern
to higher level language programmers since the languages preserve
internal registers around the call.

8.1.3 Status Control Block Format

The 8-word Status Control Block has the following format:

word 0

word 1

is the count of the number of status parameters passed back to
the Status Control Block upon completion of the routine.

is the overall call status. This is a 1-word value defined as
follows:

+1 =Success

-1 =Directive Status Error. The actual $DSW error is in word
2.

-2 =A QIO error. The contents of the 2-word QIO status block
are in words 2 and 3.

-3 =An RMS-11 error. The RMS-11 STS and STV fields are
returned in words 2 and 3.

-4 =Server specific error. The contents of words 2 through 7
are defined for each routine in Sections 8.2 through 8. 7.

I

I

8-4 CALLABLE SYSTEM ROUTINES

word 2 - 7

-5 =Interface error. An error occured when trying to interpret
the argument block. Currently, one of the following values
would be in word 2:

-1 =Feature not supported. The code is not yet complete
to execute the documented feature.

-2 = Impure area is invalid, or missing. Usually indicates
that you have not correctly taskbuilt your program.

-3 =Invalid number of parameters (too few or too many).

-4 = Server not installed.

-5 = Illegal device specification.

-6 = User buffer too small for returned data.

-7 = Incompatibility between POSSUM library and task.
Relink task to resolve the incompatibility.

as defined above

Note: Words 2 through 7, depending on their use, may represent integers
(e.g. error codes) or ASCII strings (e.g. volume labels in the case of the
PROFBI and PROVOL routines).

The following sections describe each callable routine in detail.

8.2 PROATR

The PROATR routine provides two forms of accessing file attributes. You can
use PROATR to:

D Get attributes of a file

D Set attributes of a file

Given a file ID and an attribute list, the GET function uses the attribute list to
determine which attributes to read and where to store the associated informa­
tion. Conversely, the SET function writes the attribute information specified in
the attribute list to the file header.

The PROATR routine does not require a server to execute.

To get or set file attributes, invoke the PROATR routine with the following
arguments:

STATUS, REQUEST, ATTRIBUTE_LIST, FILE_ID, LUN •
where:

STATUS

REQUEST

The address of the 8-word Status Control Block

The address of a word containing the decimal value of the
operation to be performed. The values are:

0 = Get file attributes

1 = Set file attributes

CALLABLE SYSTEM ROUTINES 8-5

ATTRIBUTE_LIST The address of the attribute list. The attribute list contains
a variable number of two-word entries terminated by a
byte containing the value 0. Each entry is associated with
an accessible file attribute as defined in Table 8-1. The
maximum number of entries in the attribute list is six.

An entry in the attribute list has the following format:

.BYTE Attribute code

.BYTE Size of attribute buffer

.WORD Address of attribute buffer

The attribute code and the size of the attribute buffer
(derived from Table 8-1) are in the low and high bytes,
respectively, of the first word of each entry. For GET: The
attribute buffer is initially empty and receives attribute
information from the file header. For SET: The contents of
the attribute buffer are transferred to the file header.

FILE_ID The address of a word containing a 3-word Files-11 File
ID (FID). The file identification block is a 3-word block
containing the file number, the file sequence number, and
a reserved word.

LUN

FID: File number
+2: File sequence number
+4: Reserved

The values in the file identification block can be obtained
from the FID field in the NAM block used by RMS-11.

The address of a buffer containing the LUN number used
to obtain the file ID. The LUN number can be obtained
from the LCH field in the FAB block used by RMS-11.

Table 8-1
Accessible File Attributes

Attribute Size in Octal Bytes of
Code (Octal) Attribute Type Attribute Buffer

2

3

4

5

6

7

11

16

File owner 6

Protection 4

File characteristics 2

Record 1/0 area 40

File name, type, version number 12

File type 4

Version number 2

Statistics block 12

Placement control 16

Note: The file name contained in the header is not associated with the
name in a directory entry except by convention. Therefore, you cannot use
the file ID to get the file name as specified in the directory; the name that the
ACP returns is the name contained in the header.

I
I

I

I

I

8-6 CALLABLE SYSTEM ROUTINES

8.2.1 Status Codes Returned by PROATR

PROATR does not use a server and, therefore, does not return any server­
specific status codes. For other status codes, refer to Section 8.1.3 (Status
Control Block Format).

8.3 PRODIR

The PRODIR routine provides two forms of directory manipulation. You can
use PRODIR to:

D Create a directory on a device

D Delete a directory on a device

The name of the server used to execute PRODIR is CREDEL. This server must
be installed in your system to perform any of indicated services. Otherwise,
PRODIR returns a directive error in the Status Control Block (see Section
8.1.3). To create or delete a directory, invoke the PRODIR routine with the
following arguments:

STATUS, REQUEST, DIRECTORY_NAME, DIRECTORY_SIZE

where:

STATUS

REQUEST

DIRECTORY _NAME

The address of the 8-word Status Control Block

The address of a word containing the decimal value
indicating the operation to be performed. The values
are:

1 = ,Create directory

2 = Delete directory

The address of a buffer containing an ASCII device
and directory specification

The device specification takes the form ddn:

where:

dd = the device name

n = the device unit number

(For example, DZ1 :)

The directory specification takes one of the following
forms:

[ggg,mmm] such as [301,3]
or

[gggmmm] such as [301003]

or

[name] such as [WI LEY]

DIRECTORY _SIZE

where:

ggg = group

mmm =member

CALLABLE SYSTEM ROUTINES 8-7

The address of a byte value containing the number
of characters in FILE-NAME

The following BASIC-PLUS-2 example shows the use of PRODIR to create and
delete directories.

10 Program to Create/Delete directories
DIM Status%C7> Set up B word status array
DIM Req$C2)

20 Req$C1> • "Create"
Req$C2> • "Delete"
PRINT "Create or Delete CC/D) :";
LINPUT #O,Req$! enter request operation
Request% • 1 ! set default request to create
IF LEFT$CReq$,1) • "C" THEN GOTO 100 ! determine if request was default
ELSE IF LEFT$CReq$,1) <> "D" THEN GOTO 20
ELSE Request% • 2

100 PRINT "Name of Directory to"; Req$CRequest%>; "Cddn:Cdirspecl> :'';
LINPUT #O,Dfile$! enter dir name to create/delete
CALL Prodir BY REF CStatus%C>, Reque~t%, Dfile$, LENCDfileS>>
FOR K • 0 TO 7 ! check status array after call
PRINT "Status"; K, Status%CK>
NEXT K

999 END

8.3.1 Status Codes Returned by PRODIR

PRODIR does not return any server-specific status codes. For other status
codes, refer to Section 8.1.3 (Status Control Block Format).

8.4 PROFBI

The PROFBI routine provides the mechanism for preparing media for use on
the system. The PROFBI routine allows you to:

D Format a volume

D Check a volume for bad blocks

D Initialize a volume

To format or initialize a volume or check it for bad blocks invoke the PROFBI
routine with the following arguments:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE, ATTRIBUTE_LIST,
ATIRIBUTE_SIZE

I

I

8-8 CALLABLE SYSTEM ROUTINES

where:

STATUS The address of the 8-word Status Control Block. When a
volume is successfully initialized (STATUS = + 1), the last
six words of the Status Control Block contain the volume
label expressed as ASCII code (1 byte/character).

REQUEST The address of a word containing the decimal value indi­
cating the operation to be performed. The values are:

1 = Format a volume (only works for the hard disk)

2 = Check a volume for bad blocks

4 = Initialize a volume

Note: When preparing the hard disk, specify the REQUEST code to either
format or check for bad blocks, but not for both. Either code will perform
both functions on RD50-type devices in the same operation.

DEVICE_SPEC

DEVICE_SIZE

The address of a buffer containing a character string
which is the device specification of the volume to be
formatted, initialized, or checked for bad blocks (1
byte/character).

The address of a word containing the number of charac­
ters in DEVICE_SPEC.

ATTRIBUTE_LIST The address of the attribute list. The attribute list is a
buffer of legal attributes (see Notes). Legal attributes in
PROFBI are:

1 = Volume label

2 = ACS buffer (allocate checkpoint space)

ATTRIBUTE_SIZE The address of a word containing the total size of the
attribute list.

Notes:

Note: The contents of the buffer for the ATTRIBUTE_LIST argument are
optional. That is, you must specifiy the argument but the buffer need not
contain a volume label or an ACS specification.

1. The minimum length of DEVICE_SPEC is four characters-the three­
character device mnemonic followed by a colon (such as DW1 :). The
device portion of DEVICE_SPEC must end with a colon.

If you are initializing a volume, part of the device specification can be
the volume label which may be up to 12 characters (in the form
DW1 :SPECTROSCOPY). You may also specify the volume label in
the attribute list instead. If you specify the volume label in both the
DEVICE_SPEC argument and the ATTRIBUTE_LIST argument, the
DEVICE_SPEC argument overrides the ATTRIBUTE_LIST argument.

2. If you omit the volume label when initializing a volume, PROFBI cre­
ates a default volume label using the date and time the volume was
initialized. The default volume label format is:

DDMMMYYHHMMS

10

CALLABLE SYSTEM ROUTINES 8-9

3. DEVICE_SPEC may also be a logical name string. The logical name
string must end with a colon. The number of logical name transla­
tions cannot exceed eight. A ninth translation results in an error
condition.

4. PROFBI requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when initializing a volume or checking it
for bad blocks. The DEVICE_SPEC argument is necessary when
formatting a volume.

5. The ATIRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROFBI is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the attribute list
buffer in bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC
argument and specify it in the ATTRIBUTE_LIST. However, if you
specify the volume label in both arguments, PROFBI overrides the
ATIRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

6. The attribute list for PROFBI also contains two additional, contiguous
words as the Allocate Checkpoint Space (ACS) buffer. The high byte
in the first word of the ACS buffer (2) identifies it as the ACS buffer.
The low byte in the buffer specifies the number of bytes in that
buffer. The second word in the ACS block identifies the number of
blocks in the checkpoint file.

7. You must badblock a volume before you can initialize it.

The following BASIC-PLUS-2 example shows the use of PROFBI to check a
volume for bad blocks and then initialize the volume.

REM Sample program for te5ting PROFBI bad
MAP CSarray> INTEGER StatC7>
MAP CSarray> BYTE VolnameC15)
PRINT "Load floppy into DZ1. Pre55 RESUME
CALL Wtre5 BY REFC>

blocking and initialization
! Setup 8 word 5tatu5 block
! Setup BYTE mapping of Statu5

to continue."

70 CALL Profbi BY REFC State>, 2%, "DZ1 :", 4%, "", OX>

GOSUB 1000 ! print 5tatu5 returned

110 CALL Profbi BY REFC State>, 4%, "DZ1:APPLDATA", 12%, "", OX>

GOSUB 1000 ! print 5tatu5 returned
Volumelabel$ = ""
FOR 1% • 4% TO 15% ! tran5late ASCII volume label

Volumelabel$ s Volumelabel$ + CHR$CVolnameCIX>>
NEXT 1%
GOTO 9999

1000 REM Subroutine to print 5tatu~ returned from PROFBI
FOR 1% • 0% TO 7%

PRINT "Statu5"; 1%; StatCIX>
NEXT 1%

RETURN

9999 END

8-10 CALLABLE SYSTEM ROUTINES

8.4.1 Status Codes Returned by PROFBI

The server-specific status codes returned by PROFBI are listed in Table 8-2.

Section 8.3.1 describes the Status Control Block format.

D A success status code (+1) is returned in word 1 (second word) of
the Status Control Block. In that case, for PROFBI, words 2 through
7 of the Status Control Block contain the volume label expressed as
ASCII code.

D A server-specific error is indicated with the value -4 being returned in
word 1 of the Status Control block. In addition, the particular error
code value (see Table 8-2) is returned in word 2.

D The location of status codes from other sources is as specified in
Section 8.1 .3.

Table 8-2
PROFBI Status Codes (Server Specific)

Status
Code Comment

+1 SUCCESS

-1 ILLEGAL DEVICE

-2 DEVICE NOT IN SYSTEM

-3 FAILED TO ATIACH DEVICE

-4 BLOCK ZERO BAD-DISK UNUSABLE

-5 AT LEAST ONE LBN (0 THROUGH 25) IS BAD. CANNOT INITIALIZE-DISK
UNUSABLE

-6 BAD BLOCK FILE OVERFLOW

-7 UNRECOVERABLE ERROR

-8. DEVICE WRITE-LOCKED

-9. DEVICE NOT READY

-10. FAILED TO WRITE BAD BLOCK FILE

-11. PRIVILEGE VIOLATION

-12. DEVICE IS AN ALIGNMENT CARTRIDGE

-13. FATAL HARDWARE ERROR

-14. ALLOCATION FAILURE

-15. 1/0 ERROR SIZING DEVICE

-16. ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT

-17. HOMEBLOCK ALLOCATE WRITE ERROR

-18. BOOTBLOCK WRITE ERROR-DISK UNUSABLE

-19. INDEX FILE BITMAP 1/0 ERROR

-20. BAD BLOCK HEADER 1/0 ERROR

-21. MFD FILE HEADER 1/0 ERROR

-22. NULL FILE HEADER 1/0 ERROR

-23. CHECKPOINT FILE HEADER 1/0 ERROR

CALLABLE SYSTEM ROUTINES 8-11

Table 8-2 (Cont)
PROFBI Status Codes (Server Specific)

Status
Code Comment

-24. MFD WRITE ERROR

-25. STORAGE BITMAP FILE HEADER 1/0 ERROR

-26. FAILED TO READ BAD BLOCK DESCRIPTOR FILE

-27. VOLUME NAME TOO LONG

-28. UNRECOGNIZED DISK TYPE

-29. PREALLOCATION INSUFFICIENT TO FILL FIRST INDEX FILE HEADER

-30. PREALLOCATED TOO MANY HEADERS FOR SINGLE HEADER INDEX FILE

-31. PREALLOCATION INSUFFICIENT TO FILL FIRST AND SECOND INDEX FILE
HEADERS

-32. BAD BLOCK LIMIT EXCEEDED FOR DEVICE

-33. DRIVER NOT RESIDENT

-34. BITMAP TOO LARGE-INCREASE CLUSTER FACTOR

-35. STORAGE BITMAP 1/0 ERROR

-36. HOMEBLOCK 1/0 ERROR

-37. INDEX FILE HEADER 1/0 ERROR

-38. DISMOUNT OF DEVICE FAILED

-39. CANNOT MOUNT DEVICE FOREIGN

-40. CANNOT MOUNT DEVICE FILES-11

-41. CANNOT FORMAT DZ-PREFORMATTED

-42. CANNOT DETACH DEVICE

-43. CHECKPOINT FILE HEADER OVERFLOW-SPECIFY SMALLER CHECKPOINT
FILE

-44. NON-ALPHANUMERIC CHARACTER(S) IN VOLUME NAME-ILLEGAL

8.5 PROLOG

The PROLOG routine provides five forms of logical name manipulation. You
can use PROLOG as follows:

D Create a logical name for a device specification

D Delete a logical name for a device specification

D Translate a logical name to a device specification

D Set the default directory and/or device

D Show the default directory and device

I

I

8-12 CALLABLE SYSTEM ROUTINES

The name of the server used to execute PROLOG is SUMLOG. This server
must be installed in your system to perform any of indicated services. Other­
wise, PROLOG returns a directive error in the Status Control Block (see Sec­
tion 8.1.3)

Caution: Do not use logical or directory names with this routine that are
used by the P/OS system. (see the Tool Kit User's Guide)

8.5.1 Creating or Translating a Logical Name

To create or translate a logical name, invoke the PROLOG routine with the
following arguments:

STATUS, REQUEST, LOGICALNAME, LOGICALNAME__SIZE,
EQUIVALENCE, EQUIVALENCE_SIZE

where:

STATUS

REQUEST

LOGICALNAME

LOGICALNAME_SIZE

EQUIVALENCE

EQUIVALENCE_SIZE

The address of the 8-word Status Control block

The address of a word containing the decimal
value indicating the operation to be performed.
The values are:

3 =Create logical

4 = Translate logical

The address of a buffer containing an ASCII
string (which can contain alphanumeric charac­
ters only, 1 byte/character). Refer to the Tool
Kit User's Guide for P/OS conventions regard­
ing logical names, device names, and reserved
names.

The address of a byte value containing the
number of characters in LOGICALNAME

The address of a buffer containing an ASCII
device specification (1 byte/character).

The device specification takes the form ddn:

where:

dd the device name
n the device unit number

(for example, DZ1 :)

For CREATE: The address of a byte value con­
taining the number of characters in EQUIVA­
LENCE. For TRANSLATE: The address of a
byte value containing the maximum number of
characters in the EQUIVALENCE buffer.

CALLABLE SYSTEM ROUTINES 8-13

For the TRANSLATE function, the EQUIVALENCE argument is an output argu­
ment returned by PROLOG. The length of the string returned in the EQUIVA­
LENCE buffer is returned in the third word of STATUS.

The following BASIC-PLUS-2 example shows the use of PROLOG to create
and then translate a logical name.

10 REM Sample program to create and then tran5late a logical

DIM StaUC7%>
ReqX • 3%
Logicalname$ • 'Applicdi5k'
Logical5izeX • LENCLogicalname$)
Device$ • 'DZ1:'
Length% = LENCDevice$)

5et up 5tatu5 array
5et reque5t to create
logical name for create
length of logical name
device to create logical on
length of device 5pecification

90 CALL Prolog BY REFCStatXC>, ReqX,Logicalname$,Logical5izeX,Device$,LengthX>

GOSUB 400
ReqX = 4%
Eqv$ • SPACE$C40X>

print returned 5tatu5
! 5et reque5t to tran5late
! buffer for tran5lated logical

140 CALL Prolog BY REFCStatXC>, ReqX, Logicalname$,Logical5izeX,Eqv$,LENCEqv$))

400

999

GOSUB 400 print returned 5tatu5
Eqv$ • TRM$CEqv$) get rid of 5pace5 from buffer

print tran5lated logical PRINT 'Tran5lated logical • '; Eqv$
GOTO 999

REM
FOR IX =

PRINT
NEXT IX
RETURN
END

Subroutine to print 5tatu5 returned from PROLOG call5
OX TO 7%

'Statu5'; IX; ' '; StaUCIX>

8.5.2 Deleting a Logical name and Set/Show

To delete a logical name or to set or show the default device and/or directory,
invoke the PROLOG routine with the following arguments:

STATUS, REQUEST, LOGICALNAME, LOGICALNAME_SIZE,

where:

STATUS

REQUEST

The address of the 8-word Status Control block

The address of a word containing the decimal
value indicating the operation to be performed.
The values are:

1 = Set default
2 = Show default
5 = Delete logical I

8-14 CALLABLE SYSTEM ROUTINES

LOGICALNAME The address of a buffer containing an ASCII
string (1 byte/character) which can contain
alphanumeric characters only. The user must
have already created the LOGICALNAME.

LOGICALNAME_SIZE For SET and DELETE: The address of a byte
value containing the number of characters in
LOGICALNAME. For SHOW: The address of
a byte value containing the maximum number
of characters in the LOGICALNAME buffer.

For the SET DEFAULT function, the LOGICALNAME string may contain a
directory specification of the form

USERDISK:[DIRECTORY]

Where USERDISK: is the logical name with the directory specification
appended to it.

The directory specification takes one of the following forms:

[ggg,mmm] such as [301,3)

or

[gggmmm] such as [301003]

or

[name) such as [WILEY]

where:

ggg group

mmm number

Note: When issuing a call for the SET DEFAULT function, note that the
user can specify either the logical name or the directory. If you specify both,
then both the default device and directory are changed. If you specify only
one, the other does not change.

For both the DELETE and SET DEFAULT functions, there is no output argu­
ment; PROLOG returns the call status in the Status Control Block. For SET
DEFAULT, PROLOG does not check whether the device or directory does in
fact exist. No error status code is returned if the device or directory does not
exist. PROLOG uses the SDIR$ directive, which also does not check whether
the directory exists.

For the SHOW DEFAULT function, LOGICALNAME is an output argument
returned by PROLOG. The LOGICALNAME also contains the default directory
string. The length of the string returned in LOGICALNAME is returned in the
third word of STATUS.

CALLABLE SYSTEM ROUTINES 8-15

The following BASIC-PLUS-2 example shows the use of PROLOG to delete a
logical, show the default directory, and set a current directory.

10 REM Sample program to delete a logical, show default directory, and set
REM current directory.
DIM Stat%C7%> set up status array
Logicalname$ = 'Applicdisk' delete an existing logical
Req% • 5% set request to delete

200 CALL Prolog BY REFCStatXC>, Req%, Logicalname$, LENCLogicalname$))

GDSUB 400
Req% = 2%

print returned status

Showdir$ = SPACE$C40%>
Length% = LENCShowdir$)

set request to show default
buffer for default directory
length of buffer

250 CALL Prolog BY REFCStatXC>, Req%, Showdir$, Length%)

GOSUB 400 print returned status
PRINT 'Default directory= ';TRM$CShowdir$)
PRINT 'Directory name length = '; Stat%C2%)
Req% = 1 %

get rid of spaces from buffer
dir length stored in StatC2%)
set request to set default
default directory Dirname$ = 'USERDISK:CUSERFILESl'

320 CALL Prolog BY REFCStat%C), Req%, Dirname$, LENCDirname$))

GOSUB 400
GOTO 999

! print status returned

400 REM Subroutine to print status returned from PROLOG
FOR 1% = 0% TO 7%

PRINT 'Status'; 1%; '';Stat%(!%)
NEXT 1%
RETURN

999 END

8.5.3 Status Codes Returned by PROLOG

Most error returns from PROLOG are Directive Status errors (see CLOG$,
DLOG$, and TLOG$ logical name directives in Chapter 9. The numerical I
equivalents of the status codes are in the appendices).

The server-specific status codes returned by PROLOG are listed in Table 8-3.

Section 8.3.1 describes the Status Control Block format.

D A success status code (+ 1) is returned in word 1 (second word) of
the Status Control Block.

D A server-specific error is indicated with the value -4 being returned in
word 1 of the Status Control block. In addition, the particular error
code value (see Table 8-3) is returned in word 2.

D The location of status codes from other sources is as specified in
Section 8.1.3.

8-16 CALLABLE SYSTEM ROUTINES

Table 8-3
PROLOG Status Codes (Server Specific)

Status
Code Comment

+1

-1

-2

SUCCESS

ERROR IN PARSING THE SET DEFAULT STRING. EITHER A BADLY FORMED
SPECIFICATION WAS PASSED OR SOMETHING OTHER THAN A DEVICE OR
DIRECTORY WAS FOUND IN STRING.

CANNOT DETERMINE TYPE OF SERVICE REQUESTED.

8.6 PROTSK

The PROTSK routine provides four forms of task manipulation. You can use
PROTSK to:

D Install a task, region, or common

D Remove a task, region, or common

D Fix an installed task, region, or common in memory

D Install, run, and remove an offspring task through a parent task

In addition, you can specify that an installed task not be aborted or removed if
the application exits or if the user presses INTERRUPT/DO at the terminal.
This feature, called NOREMOVE, may be used, for example, to ensure that a
non interactive "background" task, such as a file transfer, is not aborted
inadvertently.

Caution: Use care with the NOREMOVE option. If the name of the task is
the same as that used by another application which is to be run subse­
quently, the second task of that name will not be installed unless the first is
removed. Also, unless the install/run/remove option is specified, the only
means of removing a task installed with the NOREMOVE option is either by
powering down the system or by running an application that, knowing the
task's name, can remove it. For example you can remove the task with the
DCL REMOVE command on the PRO/Tool Kit (Tool Kit running on the Pro­
fessional). See the descriptions of the REQUEST argument for Install a Task
and for Install/Run/Remove a Task.

The name of the server used to execute PROTSK is INSREM. This server must
be installed in your system to perform any of indicated services. Otherwise,
PROTSK returns a directive error in the Status Control Block (see Section
8.1.3)

8.6.1 Install a Task

To install a task, call the routine PROTSK with all the following arguments:

STATUS, REQUEST, TASK_NAME, FILE_NAME, FILE._SIZE

where:

STATUS

REQUEST

TASl<-.NAME

FILE_NAME

FILE_SIZE

CALLABLE SYSTEM ROUTINES 8-17

The address of the 8-word Status Control block

The address of a word containing the decimal value
indicating the type of task manipulation to be
performed:

1 = Install a task

4 = Fix a task

8 = Common, library, or region is read only

32 = Install task with name supplied in the
TASl<-.NAME argument

64 = NO REMOVE. The task will not be
aborted or removed if the application
exits or if the user presses INTER­
RUPT/DO. In addition the task will not
be removed upon exit. (see CAUTION at
beginning of PROTSK section).

If you require more than one task manipulation func­
tion, add the decimal values of each function
together to produce a single decimal value.

For example, to install a task and fix it in memory
with your Radix-50 task name, specify the
REQUEST value as 37. Obtain the REQUEST value
by adding the values for install (1), fix (4), and name
supplied in the TASK_NAME argument (32).

The address of a 2-word Radix-50 task name. Upon
completion, PROTSK returns the 2-word Radix-50
installed task name at this location.

If you selected value 32 as the REQUEST option
(install task with name supplied in TASl<-.NAME),
then supply the Radix-50 task name in the two
words at the address before calling PROTSK.

The address of the buffer containing an ASCII file
specification of the task image to be installed.

The address of value describing the number of char­
acters in FILE_NAME.

Caution: If you want to checkpoint a task, you must use the /CP Task
Builder switch when building that task. In addition, you must have previously
created a checkpoint file on your system disk.

8-18 CALLABLE SYSTEM ROUTINES

The following BASIC-PLUS-2 example shows the use of PROTSK to install a
task.

10 DIM STATUSXC7>,TASKNXC1)
TYPE% • 1
TFILE$,."DZ1:CMYTASKSJPAYROLL1.TSK"
CALL PROTSK BY REF CSTATUSXC>,TYPEX,
GOTO 100 IF STATUSXC1> • 1
PRINT "Error -- ta5k did not in5tall

100 TOTAL% • 0

999 END

!Set up STATUS block (array>
!REQUEST value Cin5tall>
!FILLNAME
TASKNXC>,TFILE$,LENCTFILE$))
!Check for proper in5tall
properly" \ STOP

8.6.2 Remove a Task, Region, or Common

To remove a task, region, or common, call the routine PROTSK with all of the
following arguments:

STATUS,REQUEST,TASK_NAME

where:

STATUS

REQUEST

TASK_NAME

The address of the 8-word Status Control block

indicating the type of task manipulation to be
performed:

2 = Remove a task

16 = Task is a region or a common

If you require more than one task manipulation func­
tion, add the decimal values of each function
together to produce a single decimal value.

The address of a 2-word Radix-SO task name that
identifies the task, region, or common to be
removed.

8.6.3 Fix a Task, Region, or Common in Memory

To fix a task, region, or common in memory, call the routine PROTSK with the
following arguments:

STATUS,REQUEST,TASK_NAME

where:

STATUS The address of the 8-word Status Control Block

REQUEST

TASILNAME

CALLABLE SYSTEM ROUTINES 8-19

The address of a word containing the decimal value
indicating the type of task manipulation to be
performed:

4 = Fix a task in memory

16 = Task is a region or common

If you require more than one task manipulation func­
tion, add the decimal values of each function
together to produce a single decimal value.

The address of a 2-word Radix-50 task name that
identifies the task, region, or common to be fixed in
memory

8.6.4 Install/Run/Remove an Offspring Task

By requesting install/run/remove, a parent task can install an offspring task,
have it run immediately, and have it removed upon exit. Install/run/remove can
be executed in two ways, which may be compared to either "calling" the
offspring task or "chaining" to the offspring task. The distinction between
"Call" and "Chain" install/run/remove is as follows:

D With "Call'', the parent task initiates execution of the offspring task
and still continues its own execution. While the offspring is being
installed and started, the parent is stopped. After the
install/run/remove request has been completed, the parent is able to
continue its own execution.

D With "Chain", the parent task initiates execution of the offspring
task, passes offspring information, and then exits. If the offspring
has been installed and initiated successfully, the parent exits. Other­
wise, an error condition is returned to the parent, and the parent
does not exit. The parent must perform any necessary cleanups,
such as closing files, before chaining to the offspring.

To use install/run/remove, call the routine PROTSK with the following
arguments:

STATUS, REQUEST, TASILNAME, FILE._NAME, FILE_SIZE
[,COMMAND_LINE, COMMAND_SIZE] [,EVENT _FLAG]
[,EXIT _STATUS]

The arguments are defined below. Use all of the arguments that are not
enclosed in brackets. The arguments enclosed in brackets are optional, with
the following provisions:

D If none of the optional arguments are used, they may all be omitted.

D EVENT_FLAG and EXIT_STATUS are used only with the "Call"
install/run/remove option.

D The optional arguments are positional. If EVENT _FLAG and/or
EXIT_STATUS is used but COMMAND_LINE is not used, then the
word in COMMAND_SIZE must have the value 0.

8-20 CALLABLE SYSTEM ROUTINES

The arguments are defined as follows:

STATUS

REQUEST

TASK_NAME

FILE_NAME

FILE_SIZE

COMMAND_LINE

The address of the 8-word Status Control block

indicating the type of task manipulation to be
performed:

3 = Install/run/remove a task

32 = Install task with name supplied in the
TASK_NAME argument

64 = NO REMOVE. The task will not be
aborted or removed if the application
exits or the user presses INTER­
RUPT/DO. However, the task will be
removed upon exit (see CAUTION at
beginning of PROTSK section).

128 = To select the "Call" install/run/remove
option, add 128. to the decimal value
in the REQUEST word. To select
"Chain", diregard this value ("Chain"
is the default option).

If you require more than one task manipulation func­
tion, add the decimal values of each function
together to produce a single decimal value.

For example, to select install/run/remove with the
"Call" option and your Radix-50 task name, specify
the REQUEST value as 163. Obtain the REQUEST
value by adding the values for install/run/remove (3),
name supplied in the TASK_NAME argument (32),
and the "Call" option (128).

When specifying install/run/remove, it is illegal to
also specify "Fix a task in memory" or "Install a
common or library".

The address of a 2-word Radix-50 (offspring) task
name. Upon completion, PROTSK returns the 2-
word Radix-50 installed task name at this location.

If you selected value 32 as the REQUEST option
(install task with name supplied in TASILNAME),
then supply the Radix-50 task name in the two
words at the address before calling PROTSK.

The address of the buffer containing an ASCII file
specification of the (offspring) task image to be
installed.

The address of value describing the number of char­
acters in FILE_NAME.

(Optional). The address of a buffer containing a com­
mand line to be queued to the offspring task.

CALLABLE SYSTEM ROUTINES 8-21

COMMAND_SIZE The address of a value describing the number of
characters in COMMAND_LINE. The maximum
number of characters is 255 (decimal). If COM­
MAND_LINE is not specified, then the word in COM­
MAND_SIZE must have the value 0.

EVENT_FLAG (For "Call" option only). The event flag to be cleared
on issuance and set when the offspring task exits or
emits status.

EXIT_STATUS (For "Call" option only). The address of an 8-word
status block to be written when the offspring task
exits or emits status.

Word 0
Word 1
Word 2-7

Offspring task exit status
System abort code
Reserved

Note: The exit status block defaults to one word. To use the 8-word exit
status block, you must specify the logical OR of the symbol SP.WX8 and the
event flag number in the EVENT_FLAG parameter above.

Caution: If you want to checkpoint a task, you must use the /CP Task
Builder switch when building that task. In addition, you must have previously
created a checkpoint file on your system disk.

8.6.5 Status Codes Returned by PROTSK

The server-specific status codes returned by PROTSK are listed in Table 8-4.

Section 8.3.1 describes the Status Control Block format.

D A success status code (+ 1) is returned in word 1 (second word) of
the Status Control Block.

D A server-specific error is indicated with the value -4 being returned
in word 1 of the Status Control block. In addition, the particular error
code value (see Table 8-4) is returned in word 2.

D The location of status codes from other sources is as specified in
Section 8.1.3.

Table 8-4
PROTSK Status Codes (Server Specific)

Status Code Comment

+1 SUCCESS

-1 TASK NAME IN USE

-2 FILE NOT FOUND

-3 SPECIFIED PARTITION TOO SMALL

-4 TASK AND PARTITION BASE MISMATCH

-7 LENGTH MISMATCH COMMON BLOCK

-8. BASE MISMATCH COMMON BLOCK

8-22 CALLABLE SYSTEM ROUTINES

Table 8-4 (Cont.)

Status Code Comment

-9. TOO MANY COMMON BLOCK REQUESTS

-11. CHECKPOINT AREA TOO SMALL

-13. NOT ENOUGH APRS FOR TASK IMAGE

-14. FILE NOT A TASK IMAGE

-15. BASE ADDRESS MUST BE ON 4K BOUNDARY

-16. ILLEGAL FIRST APR

-18. COMMON BLOCK PARAMETER MISMATCH

-20. COMMON BLOCK NOT LOADED

-22. TASK IMAGE VIRTUAL ADDRESS OVERLAPS COMMON BLOCK

-23. TASK IMAGE ALREADY INSTALLED

-24. ADDRESS EXTENSIONS NOT SUPPORTED

-26. CHECKPOINT SPACE TOO SMALL, USING CHECKPOINTflLE

-27. NO CHECKPOINT SPACE, ASSUMING NOT CHECKPOINTABLE

-29. ILLEGAL UIC

-30. NO POOL SPACE

-31. ILLEGAL USE OF PARTITION OR REGION

-32. ACCESS TO COMMON BLOCK DENIED

-33. TASK IMAGE 1/0 ERROR

-34. TOO MANY LUNS

-35. ILLEGAL DEVICE

-36. TASK MAY NOT BE RUN

-37. TASK ACTIVE

-39. TASK FIXED

-40. TASK BEING FIXED

-41. PARTITION BUSY

-43. COMMON/TASK NOT IN SYSTEM

-44. REGION OR COMMON FIXED

-45. CANNOT DO RECEIVE FROM REQUESTOR

-46. CANNOT ATIACH TO REQUESTOR

-47. INVALID REQUEST

-48. CANNOT RETURN STATUS

-49. ERROR ENCOUNTERED ON FILE OPEN OPERATION

-50. ERROR ENCOUNTERED ON FILE CLOSE OPERATION

-51. CANNOT GET FILE LBN TO PROCESS LABEL BLOCKS

CALLABLE SYSTEM ROUTINES 8-23

8.7 PROVOL

The PROVOL routine provides a twofold service. You can use PROVOL to:

D Mount or dismount a disk volume

D Write a bootblack on a volume and/or bootstrap a volume

To mount or dismount a volume, write a bootblack on a volume, or bootstrap a
volume, invoke the PROVOL routine with the following arguments:

STATUS, REQUEST, DEVICE_SPEC, DEVICE_SIZE, ATTRIBUTE_LIST,
A TTRI BUTE__SIZE

where:

STATUS

REQUEST

DEVICE__SPEC

DEVICE__SIZE

ATTRIBUTE__LIST

A TTRIBUTE__SIZE

The address of the 8-word Status Control Block.
When mounting a non-foreign volume, the last six
words of the Status Control Block contain the vol­
ume label expressed as ASCII code (1
byte/character), provided that the operation is suc­
cessful (STATUS = + 1).

The address of a word containing the decimal value
indicating the operation to be performed. The values
are:

0 = Mount a volume

1 = Mount a foreign volume

2 = Dismount a volume

8 = Bootstrap a volume

9 = Write a bootblack on a volume

10 = Write a bootblock on a volume and bootstrap
it

The address of a buffer containing a character string
(1 byte/character) which is the device specification
of the volume to be mounted, dismounted, boot­
strapped, or on which a bootblock is to be written.

The address of a word containing the number of
characters in DEVICE__SPEC.

The address of the attribute list. The attribute list is a
buffer of legal attributes (see Notes). Legal attributes
in PROVOL are:

1 = Volume label

The address of a word containing the size of the
attribute list.

Note: The contents of the buffer for the ATTRIBUTE_LIST argument are
optional. That is, you must specifiy the argument but the buffer need not
contain a volume label.

I

I

8-24 CALLABLE SYSTEM ROUTINES

Notes:

1. The minimum length of DEVICE_SPEC is four characters-the three­
character device mnemonic followed by a colon (such as DW1 :). The
device portion of DEVICE_SPEC must end with a colon.

Part of the device specification can be the volume label which may
be up to 12 characters. If you omit the volume label from
DEVICE_SPEC, PROVOL gets the label from the specified disk by
default. Whenever you specify a volume label in a DEVICE_SPEC
argument (when mounting a volume, for example), the specified label
must match the label on the volume; otherwise, the operation fails.

2. DEVICE_SPEC may also be a logical name string. In this case, the
logical name string must end with a colon. The number of logical
name translations cannot exceed eight. A ninth translation results in
an error condition.

3. PROVOL requires the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments when mounting or dismounting a volume.
The specified volume label must match the label on the volume for
the operation to be successful. PROVOL ignores the volume label if
mounting or dismounting a "foreign" volume.

4. PROVOL uses the string supplied in the DEVICE_SPEC and
DEVICE_SIZE arguments to bootstrap a volume. The DEVICE_SPEC
string may be a logical name. The number of logical name transla­
tions cannot exceed eight. A ninth translation results in an error
condition.

5. When writing a bootblock to a volume, PROVOL requires a complete
device, directory and file name specification. If you omit the file
name, PROVOL uses the default directory and file name of
[1,54]RSX11 M.SYS.

6. The ATTRIBUTE_LIST argument is the means of specifying optional
parameters. The attribute list for PROVOL is simply a buffer of legal
attributes. The high byte in the first word of the attribute list specifies
the attribute type. The low byte specifies the size of the buffer in
bytes.

You can use the attribute list as an alternate way to specify a volume
label. That is, you can omit the volume label in the DEVICE_SPEC
argument and supply it in the ATTRIBUTE_LIST argument. However,
if you specify the volume label in both arguments, PROVOL overrides
the ATTRIBUTE_LIST specification with the label specified in
DEVICE_SPEC.

The following BASIC-PLUS-2 example shows the use of PROVOL to mount
and dismount a volume.

CALLABLE SYSTEM ROUTINES 8-25

10 REM Sample program to te5t PROVOL reque5t5.
MAP <Sarray> INTEGER Stat<7>
MAP <Sarray> BYTE Volname(15)
Device$ • 'DZ1:' ! 5etup device-5pec parameter
Devlen% • LEN<Device$) ! 5etup device_5ize
PRINT 'Insert floppy into DZ1:. Pre55 RESUME to continue.•
CALL Wtre5 BY REF<>
Req% = 2% ! di5mount reque5t 5ince closing door

! cau5e5 mount to automatically happen
76 CALL Provo! BY REFCStat<>, Req%, Device$, Devlen%, 11 ,0%>

GOSUB 2000
Req% • 1%

print return 5tatu5 from dismount
mount foreign request

90 CALL Provo! BY REF<Stat<>, Req%, Device$, Devlen%, '',0%>

GOSUB 2000 ! print returned 5tatus from mount foreign

Req% • 2%
Device$ = 11DZ1: 11

Devlen% • LENCDevice$)

di5mount request
5etup device_5pec parameter
setup device_size parameter

230 CALL Provo! BY REFCStat<>, Req%, Device$, Devlen%, 11 ,0%>

GOSUB 2000
Req% • 0%

print returned 5tatu5 from dismount
mount reque5t

290 CALL Provo! BY REF<Stat(), Req%, Device$, Devlen%, '',0%)

GOSUB 2000 print returned statu5 from mount
Volumelabel$ • 1111

FOR 1% = 4% TO 15% translate ASCII volume label in Stat
Volumelabel$ = Volumelabel$ + CHR$CVolname(1%))

NEXT 1%

Req% = 9%
Device$ 11 DZ1:[ZZSYSlBOOT.SYS 11

Devlen% = LEN<Device$)

write bootblock request
setup device-spec NOTE: This file
must already exist. The volume
setup device_size

420 CALL Provo! BY REFCStatC>, Req%, Device$, Devlen%, 11 0%)

GOSUB 2000
IF StatC1> <> 1% THEN GOTO 9999
Req% • 8%
Device$ • 11 DZ1: 11

Devlen% • LEN<Device$)

print returned status
If write bootblock not successful end
bootstrap volume request
setup device_spec
setup device_size

490 CALL Provo! BY REF<Stat<>, Req%, Device$, Devlen%, 11 0%)

GOTO 9999

2000 REM Subroutine for printing status returned from PROVOL calls
FOR 1% • 0% TO 7%

PRINT 1 Statu5'; 1%; 1 '; Stat<U>
NEXT 1%
RETURN

9999 EHD

8-26 CALLABLE SYSTEM ROUTINES

8.7.1 Status Codes Returned by PROVOL

The server-specific status codes returned by PROVOL are listed in Table 8-5.

Section 8.3.1 describes the Status Control Block format.

D A success status code (+1) is returned in word 1 (second word) of
the Status Control Block. In that case, for PROVOL, words 2 through
7 of the Status Control Block contain the volume label expressed as
ASCII code.

D A server-specific error is indicated with the value -4 being returned in
word 1 of the Status Control block. In addition, the particular error
code value (see Table 8-5) is returned in word 2.

D The location of status codes from other sources is as specified in
Section 8.1.3.

Table 8-5
PROVOL Status Codes (Server Specific)

Status Code Comment

+1 SUCCESS

-1 FILE IS NOT A SYSTEM IMAGE

-2 INVALID BOOT DEVICE

DIRECTIVE DESCRIPTIONS 9-25

CRRG$

9.1.11 CRRG$-Create Region

The Create Region directive creates a dynamic region in a system-controlled
partition and optionally attaches it to the issuing task.

If RS.ATT is set in the region status word, the Executive attempts to attach the
task to the newly created region. If no region name has been specified, the
user's program must set RS.ATT (see the description of the Attach Region
directive).

By default, the Executive marks a dynamically created region for deletion when
the last task detaches from it. To override this default condition, set RS.NOL in
the region status word as an input parameter. Be careful in considering to
override the delete-on-last-detach option. An error within a program can cause
the system to lock by leaving no free space in a system-controlled partition.

If the region is not given a name, the Executive ignores the state of RS.NOL. All
unnamed regions are deleted when the last task detaches from them.

Named regions are put in the Common Block Directory (CBD). However, mem­
ory is not allocated until the Executive maps a task to the region.

The Executive returns an error if there is not enough space to accommodate
the region in the specified partition. (See Notes.)

Fortran Call

CALL CRRG (irdb[,ids])

irdb An 8-word integer array containing a Region Definition Block (see Sec­
tion 7 .5.1.2)

ids Directive status

Macro Call

CRRG$ rdb

rdb Region Definition Block address

Macro Expansion

CRRG$ RDBADR
.BYTE 55., 2
.WORD RDBADR

;CRRG$ MACRO DIC, DPB SIZE 2 WORDS
;RDB ADDRESS

I

I

I

I

I

9-26 DIRECTIVE DESCRIPTIONS

Table 9-3
Region Definition Block Parameters

Input Parameters

Array
Element Offset

irdb(2) R.GSIZ

irdb(3)(4) R.GNAM

irdb(5)(6) R.GPAR

irdb(7) R.GSTS

irdb(B) R.GPRO

Output Parameters

irdb(1)

irdb(2)

irdb(7)

R.GID

R.GSIZ

R.GSTS

Description

Size, in 32-word blocks, of the region to be created

Name of the region to be created, or 0 for no name

Name of the system-controlled partition in which the region
is to be allocated, or 0 for the partition in which the task is
running

Bit settings* in the region status word:

Bit

RS.CAR

RS.UNM

RS.MDL

RS.NOL

RS.ATT

RS.NEX

RS.RED

RS.WAT

RS.EXT

RS.DEL

Definition (if bit=1)

Region was successfully created.

At least one window was unmapped on a
detach.

Mark region for deletion on last detach.

The region should not be deleted on last
detach.

Created region should be attached.

Created region is not extendible.

Read access is desired on attach.

Write access is desired on attach.

Extend access is desired on attach.

Delete access is desired on attach.

Protection word for the region (DEWR,DEWR,DEWR,DEWR)

ID assigned to the created region (returned if RS.ATT=1)

Size in 32-word blocks of the attached region (returned if
RS.ATT=1)

Bit settings* in the region status word:

Bit

RS.CAR

Definition

1 if the region was successfully created

• If you are a Fortran programmer, refer to Section 7.5.1 to determine the bit values repre­
sented by the symbolic names described.

Local Symbol Definitions

C.RRBA Region Definition Block address (2)

DIRECTIVE DESCRIPTIONS 9-27

DSW Return Codes

is.sue
IE.UPN

IE.HWA

IE.PAI

IE.PNS

IE.ADP

IE.SOP

Notes

Successful completion.

A Partition Control Block (PCB) or an attachment descriptor
could not be allocated, or the partition was not large enough to
accommodate the region, or there is currently not enough con­
tinuous space in the partition to accommodate the region.

The directive failed in the attachment stage because a region
parity error was detected.

Attach failed because desired access was not allowed.

Specified partition in which the region was to be allocated does
not exist; or no region name was specified and RS.ATT = 0.

Part of the DPB or ROB is out of issuing task's address space.

DIC or ROB size is invalid.

1. The Executive does not return an error if the named region already
exists. In this case, the Executive clears the RS.CAR bit in the status
word R.GSTS. If RS.A TT has been set, the Executive attempts to
attach the already existing named region to the issuing task.

2. The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four categories,
and the access for each category is coded into four bits. From low
order to high order, the categories follow this order: system, owner,
group, world. The access code bits within each category are
arranged (from low order to high order) as follows: read, write,
extend, delete. A bit that is set indicates that the corresponding
access is denied.

The issuing task's UIC is the created region's owner UIC.

In 1xder to prevent the creation of common blocks that are not easily
deleted, the system and owner categories are always forced to have
delete access, regardless of the value actually specified in the pro­
tection word.

9-28 DIRECTIVE DESCRIPTIONS

CSRQ$

9.1.12 CSRQ$-Cancel Time Based Initiation Requests

The Cancel Time Based Initiation Requests directive instructs the system to
cancel all time-synchronized initiation requests for a specified task, regardless
of the source of each request. These requests result from a Run directive.

Fortran Call

CALL CANALL (tsk[,ids])

tsk task name

ids directive status

Macro Call

CSRQ$tsk

tsk scheduled (target) task name

Macro Expansion

CSRQ$ ALPHA
.BYTE 25., 3
.RADSO /ALPHA/

Local Symbol Definitions

C.SRTN target task name (4)

DSW Return Codes

;CSRQ$ MACRO DIC, DPB SIZE=3 WORDS
;TASK ''ALPHA''

is.sue
IE.INS

IE.PRI

successful completion

task is not installed

IE.ADP

IE.SOP

the issuing task is not privileged and is attempting to cancel
requests made by another task

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

IE.MAP

IE.ADP

IE.SOP

Notes

DIRECTIVE DESCRIPTIONS 9-149

the specified system state routine is greater than 4K words
from the specified base

part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

1. User mode register contents are preserved across the execution of the
kernel mode subroutine. Contents of the user mode registers are
passed into the kernel mode registers. Contents of the kernel mode
registers are discarded when the subroutine has completed execution.

2. User mode registers appear at the following octal stack offsets when
executing the specified subroutine in kernel mode:

User mode RO at S.WSRO Offset on kernal stack
User mode R1 at S.WSR1 Offset on kernal stack
User mode R2 at S.WSR2 Offset on kernal stack
User mode R3 at S.WSR3 Offset on kernal stack
User mode R4 at S.WSR4 Offset on kernal stack
User mode RS at S.WSRS Offset on kernal stack

If you wish to return any register values to the user mode registers, you
must store the desired values on the stack using the above offsets.

3. Virtual address values passed to system state in a register must be
realigned through kernal APRS. For example, if RS contains address n,
and the base virtual address in the DPB is 1000(8), the value in RS must
be aligned using the formula:

n+ 120000+base virtual address
Therefore, the resultant value is n+ 121000.

4. The system state subroutine should exit by issuing an RTS PC
instruction. This causes a successful directive status to be returned as
the directive is terminated.

Caution: Keep in mind that the memory management unit rounds the base
address to the nearest 32-word boundary.

9-150 DIRECTIVE DESCRIPTIONS

TLOG$

9.1.68A TLOG$-Translate Logical Name

The Translate Logical Name directive translates a logical name to its equiva­
lence name, returning the equivalence name string to a specified buffer.

Fortran Call

mod

itbmsk

dummy

Ins

lnssz

iens

ienssz

irsize

irtbmo

idsw

CALL TRALOG (mode,[itbmsk],[dummy],lns,lnssz,iens,ienssz,
[i rsize] ,[i rtbmo], [idsw])

The modifier of the logical name within a table

Reserved for future use

Reserved for future use

Character array containing the logical name string

Size (in bytes) of the logical name string

Character array containing the equivalence name string

Size (in bytes) of the equivalence name string

Address of the word to which the size of the resulting equiva­
lence name string is returned

Address of the word to which the table number (low byte) and
mode (high byte) of the resulting equivalence string is returned

Integer to receive the Directive Status Word

Macro Call

mod

tbmask

Ins

lnssz

iens

ienssz

rsize

rtbmod

TLOG$ mod,tbmask,O,lns,lnssz,ens,enssz,rsize,rtbmod

The modifier of the logical name within a table

Reserved for future use

Character array containing the logical name string

Size (in bytes) of the logical name string

Character array containing the equivalence name string

Size (in bytes) of the equivalence name string

Address of the word to which the size of the resulting equiva­
lence name string is returned

Address of the word to which the table number (low byte) and
mode (high byte) of the resulting equivalence string is returned

DIRECTIVE DESCRIPTIONS 9-150.1

Macro Expansion

TLOG$
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

.WORD

MOD,TBMASK,O,LHS,LHSSZ,EHS,EHSSZ,RSIZE,RTBMOD
207.,9 ;TLOG$ MACRO DIC, DPB SIZE= 9 WORDS
1 ;SUBFUHCTIOH CODE FOR TRANSLATION
MOD ;LOGICAL NAME MODIFIER
TBMASK ;RESERVED FOR FUTURE USE
0 ;RESERVED FOR FUTURE USE
LHS ;ADDRESS OF LOGICAL NAME BUFFER
LHSSZ ;BYTE COUNT OF LOGICAL NAME STRING
ENS ;ADDRESS OF EQUIVALENCE NAME BUFFER
ENSSZ ;BYTE COUNT OF EQUIVALENCE NAME STRING
RSIZE ;ADDRESS OF BUFFER INTO WHICH EQUIVALENCE

;NAME STRING IS TO BE RETURNED
RTBMOD ;ADDRESS OF BUFFER INTO WHICH TABLE HUMBER

;AND MODIFIER ARE TO BE RETURNED

Local Symbol Definitions

T.LENS

T.LESZ

T.LFUN

T.LLNS

T.LLSZ

T.LMOD

T.LRSZ

T.LRTM

T.LTBL

Address of equivalence name string (2)

Byte count of equivalence name string (2)

Subfunction (1)

Address of logical name string (2)

Byte count of logical name string (2)

Logical name modifier (1)

Buffer address for returned equivalence string

Buffer address for returned table number and modifier

Logical table number

DSW Return Codes

is.sue
IE.RBS

IE.LNF

IE.IBS

IE.ADP

IE.SOP

Successful completion.

The resulting equivalence name string is too large for the buffer
to receive it.

The specified logical name string was not found.

The length of the logical or equivalence string is invalid. Each
string length must be greater than 0 but not greater than 25510

characters.

Part of the DPB or user buffer is out of the issuing task's
address space, or the user does not have proper access to that
region.

DIC or DPB size is invalid.

9-150.2 DIRECTIVE DESCRIPTIONS

UMAP$

9.1.69 UMAP$-Unmap Address Window

The Unmap Address Window directive unmaps a specified window. After the
window has been unmapped, references to the corresponding virtual ad­
dresses are invalid and cause a processor trap to occur.

Fortran Call

CALL UNMAP (iwdb[,ids])

iwdb an 8-word integer array containing a Window Definition Block (see
Section 7.5.2.2)

ids directive status

Macro Call

UMAP$wdb

wdb Window Definition Block address

Macro Expansion

UMAPS
.BYTE

.WORD

Table 9-11

WDBADR
123. ,2

WDBADR
;UMAPS MACRO DIC, DPB SIZE•2 WORDS
;WDB ADDRESS

Window Definition Block Parameters

Input Parameters

Array
Element

iwdb(1)
bits 0-7

Offset

W.NID

Output Parameters

iwdb(7) W.NSTS

Description

ID of the window to be unmapped

Bit settings 17 in the window status word:

Bit Definition

WS.UNM 1 if the window was successfully unmapped

17. If you are a higher-level language programmer, refer to Section 7 .5.2 to determine the bit values represented
by the symbolic names described.

DIRECTIVE DESCRIPTIONS 9-153

VRCD$

9.1.71 VRCD$-Variable Receive Data

The Variable Receive Data directive instructs the system to dequeue a variable­
length data block for the issuing task; the data block has been queued (FIFO)
for the task by a Variable Send Data directive. When a sender task is specified,
only data sent by the specified task is received.

Buffer size can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an
IE.IBS error is returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned
in the specified buffer, with the task name in the first two words. For this
reason, the storage you allocate within the buffer should be two words greater
than the size of the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by means of buffers in the secondary pool.

Fortran Call

CALL VRCD ([task],bufadr,[buflen](,ids])

task

buf

buflen

ids

Sender task name

Address of buffer to receive the sender task name and data

Length of buffer

Integer to receive the Directive Status Word.

If the directive was successful, it returns the number of words transferred into
the user buffer. If the directive encounters an error during execution, it returns
the error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is
positive, the value of the status word is the number of words transferred
including the task name. For example, if you specify a buffer size of 13 in the
VRCD$ call, the value returned in the Directive Status Word is 15 (13 words of
data plus the two words needed to return the task name).

Macro Call

VRCD$ [task],bufadr[,buflen]

task

bufadr

buflen

Sender task name

Buffer address

Buffer size in words

I

I

9-154 DIRECTIVE DESCRIPTIONS

Macro Expansion

VRCD$
.BYTE
.RADSO
.WORD

SNDTSK,DATBUF,BUFSIZ,TI
75.,6 ;VRCD$ MACRO DIC, DPB SIZE•6 WORDS
/SNDTSK/ ;SENDER TASK NAME
DATBUF ;ADDRESS OF DATA BUFFER

Note: Tl is ignored.

Local Symbol Definitions

R.VDTN

R.VDBA

R.VDBL

Sender task name (4)

Buffer address (2)

Buffer length (2)

DSW Return Codes

is.sue
IE.INS

IE.ITS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

Successful completion.

Specified task not installed.

No data in task's receive queue.

Receive buffer is too small.

Invalid buffer size specified (greater than 255.)

Part of the DPB or buffer is out of the issuing task's address
space

DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS 9-155

VRCS$

9.1.72 VRCS$-Variable Receive Data Or Stop

The Variable Receive Data Or Stop directive instructs the system to dequeue a
variable-length data block for the issuing task; the data block has been queued
(FIFO) for the task by a Variable Send Data directive. If there is no such packet
to be dequeued, the issuing task is stopped. In this case, another task (the
sender task) is expected to issue an Unstop directive after sending the data.
When stopped in this manner, the directive status returned is IS.SET, indicating
that the task was stopped and that no data has been received; however, since
the task must be unstopped in order to see this status, the task can now
reissue the Variable Receive Data Or Stop directive to actually receive the data
packet.

When a sender task is specified, only data sent by the specified task is
received.

I

Buffer siz·e can be 25610 words maximum. If no buffer size is specified, the
buffer size is 1310 words. If a buffer size greater than 25610 is specified, an I
IE.IBS error is returned.

A 2-word sender task name (in Radix-50 form) and the data block are returned
in the specified buffer, with the task name in the first 2 words. For this reason,
the storage you allocate within the buffer should be two words greater than the
size of the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task to the receiv­
ing task by means of buffers in the secondary pool.

FORTRAN Call

CALL VRCS ([task],bufadr,[buflen][;ids])

task

buf

buflen

ids

Sender task name

Address of buffer to receive the sender task name and data

Length of buffer

Integer to receive the directive status word

If the directive was successful, it returns the number of words transferred into
the user buffer. If the directive execution encountered an error, it returns the
error code in the ids parameter.

Any error return of the form IE.XXX is a negative word value. If the status is
positive, the value of the status word is the number of words transferred
including the taskname. For example, if you specify a buffer size of 13 in the
VRCS$ call, the value returned in the directive status word is 15 (13 words of
data plus the two words needed to return the taskname).

I

9-156 DIRECTIVE DESCRIPTIONS

Macro Call

VRCS$ [task],bufadr[,buflen]

task

bufadr

buflen

Sender task name

Buffer address

Buffer size in words

Macro Expansion

VRCS$
.BYTE
.RADSO
.WORD
.WORD

SHDTSK,DATBUF,BUFSIZ
139.,6 ;VRCS$ MACRO DIC, DPB SIZE=6 WORDS
/SHDTSK/ ;SEHDER TASK HAME
DATBUF ;ADDRESS OF DATA BUFFER
BUFSIZ ;BUFFER SIZE

Local Symbol Definitions

R.VSTN

R.VSBA

R.VSBL

R.VSTI

Sender task name (4)

Buffer address (2)

Buffer length (2)

Reserved (2)

DSW Return Codes

is.sue
IS.SET

IE.INS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

Successful completion.

Task was stopped and no data was received.

Specified task not installed.

Receive buffer is too small.

Invalid buffer size specified (greater than 255.).

Part of the DPB or buffer is out of the issuing task's address
space.

DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS 9-163

WIMP$

9.1.76 WIMP$-What's In My Professional

The What's In My Professional directive is a general purpose system informa­
tion retrieval mechanism. The directive allows a nonprivileged task to retrieve
specific information stored by the system without requiring the task to be
mapped to the Executive. In all forms, the WIMP$ directive requires a subfunc­
tion, a return buffer, and the return buffer size.

A subfunction specifies the type of information to be returned. The return
buffer is space allocated within your task and must be large enough to contain
the information that is to be returned. Refer to the descriptions of the imple­
mented subfunction for the specific size of the return buffer.

FORTRAN Call

CALL WIMP (SFCN,P1 ,P2,P3,P4,P5,P6,IDS)

MACRO Call

WIMP$ SFCN,P1 ,P2,P3,P4,P5,P6

where:

SFCN subfunction code

P1 parameter 1

P2 parameter 2

P3 parameter 3

P4 parameter 4

PS parameter 5

P6 parameter 6

IDS directive status

Macro Expansion

WIMP$ SFCN,P1 ,P2,P3,P4,P5,P6

.BYTE 169. ,variable

.WORD SFCN ;SUBFUNCTION CODE

.WORD P1 ;PARAMETER 1

.WORD P2 ;PARAMETER 2

.WORD Pn ;PARAMETER n

9-164 DIRECTIVE DESCRIPTIONS

Local Symbol Definitions

G.INSF SUBFUNCTION CODE (2)

G.IP01 PARAMETER 1 (2)

G.IP02 PARAMETER 2 (2)

G.IP03 PARAMETER 3 (2)

G.IP04 PARAMETER 4 (2)

G.IPOS PARAMETER 5 (2)

G.IP06 PARAMETER 6 (2)

DSW Return Codes

is.sue
IE.IOU

IE.SOP

Successful completion

Invalid hardware for requested operation

DIC, DPB size, or subfunction is invalid

Implemented Subfunctions

Gl.SSN Get system serial number

WIMP$ Gl.SSN,BUF,SIZ

BUF Return buffer address

SIZ Size in words of return buffer (size = 3.)

Output Buffer Format

word O

word 1

word 2

Gl.CFG

high word of system serial number

middle word

low word

Get configuration table

WIMP$ Gl.CFG,BUF,SIZ

BUF

SIZ

Return buffer address

Size in words of return buffer (size= 96.)

Table 9-12 lists the offsets in the configuration table as displayed in the user's
return buffer. The information contained in the return buffer reflects the current
system configuration including hardware and hardware status. Any changes
made to the information in the return buffer are not reflected in the system
configuration table.

DIRECTIVE DESCRIPTIONS 9-165

Table 9-12
The Configuration Table Output Buffer Format

Description

Table length in bytes

Serial number ROM ID

High word of serial number

Middle word of serial number

Low word of serial number

Number of option slots

Data length of table

Slot 0 ID

Status/error of slot 0

Slot 1 ID

Status/error of slot 1

Slot 2 ID

Status/error of slot 2

Slot 3 ID

Status/error of slot 3

Slot 4 ID

Status/error of slot 4

Slot 5 ID

Status/error of slot 5

Slot 6 ID (not used)

Status/error of slot 6 (not used)

Slot 7 ID (not used)

Status/error of slot 7 (not used)

Keyboard ID (supplied by the keyboard, this could be some other input
device)

Keyboard status/error

Base processor type

Base processor status

Primary memory ID

Total system memory size (memory size is value in high order byte in units
of 32K words)

Diagnostic ROM version number

Diagnostic ROM error status

Video monitor present

Video monitor status

Audio device ID (not on PRO 325/350)

Audio device status

Keyboard interface ID (2661)

Keyboard interface status/error

Offset

0

2

4

6

8.

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

38.

40.

42.

44.

46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

66.

68.

70.

72.

I

9-166 DIRECTIVE DESCRIPTIONS

Table 9-12 (Cont.)

Description Offset

Printer port interface ID (2661) 74.

Printer port interface status/error 76.

Maintenance port ID 78.

Maintenance port status 80.

Serial comm interface ID 82.

Serial comm interface status/error 84.

Time of day device ID 86.

Time of day status/error 88.

NVR RAM ID 90.

NVR RAM status/error 92.

Floating point ID 94.

Floating point status/error 96.

Interrupt controller ID 98.

Interrupt controller status/error 100.

Reserved locations 102.

Reserved locations 104.

Reserved locations 106.

Reserved locations 108.

Reserved locations 110.

Reserved locations 112.

Reserved locations 114.

Reserved locations 116.

Reserved locations 118.

Reserved locations 120.

Reserved locations 122.

Reserved locations 124.

Reserved locations 126.

Reserved locations 128.

Reserved locations 130.

Reserved locations 132.

Soft restart address 134.

Offset value into boot code 136.

Booted device ID number 138.

Unit number of booted device 140.

Current boot sequence return address 142.

Error flag for ROM diagnostics 144.

Additional information length 146.

CHAPTER 11
DISK DRIVERS

The system's disk drivers support the disks summarized in Table 11-1. Subse­
quent sections describe these devices and their access in greater detail.

Table 11-1
Standard Disk Devices

Bytes/ Blocks/
Drive RPM Sectors Heads Cylinders Drive Drive

RX50 300 10 2 BO/diskette 819,200 800

RD50 3600 16 4 153/surface 5MB 9727

RD51 3600 16 4 306/surface 10MB 19519

11.1 RX50 DESCRIPTION

The RXSO (diskette) subsystem consists of a S.2S-inch dual flexible diskette
drive and a separate single-board controller module. The module enables a
data processing system to store or retrieve information from any location on
one side of each front-loadable diskette.

11.2 ROSO AND RD51 DESCRIPTION

The ROSO and ROS1 are Winchester hard disk, multiplatter, random-access
devices. They store data in fixed-length blocks on 130mm rigid disk media.
Winchester technology uses moving head, noncontact recording. As opposed
to the RXSO, the ROSO and ROS1 storage media cannot be removed from the
drive.

11-1

I
I

I

I

11-2 DISK DRIVES

11.3 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information listed in Table 11-2 for disks. A
bit setting of 1 indicates that the described characteristic is true for disks.

Table 11-2
Buffer Get LUN Information for Disks

Bit Setting Meaning

0 0 Record-oriented device

0 Carriage-control device

2 0 Terminal device

3 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 Mass storage device

7 x User-mode diagnostics supported (devic dependent)

8 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications channel

14 Device mountable as a Files-11 volume

15 .Device mountable

Words 3 and 4 of the buffer contain the maximum logical block number. Note
that the high byte of U.CW2 is undefined. The user should clear the high byte in
the buffer before using the block number. Word 5 indicates the default buffer
size, which is 512 bytes for all disks.

11.4 OVERVIEW OF 1/0 OPERATIONS

The RXSO and ROSO-type disks used on the Professional are Files-11 struc­
tured and, therefore, compatible with RMS-11. RMS-11 lets you transfer data
between your task and Files-11 structured volumes without having to be con­
cerned with the physical organization of the data on the volume. When trans­
ferring data to and from Files-11 volumes, always use the RMS-11 MACRO or
high-level language facilities.

The information in this chapter is intended primarily for those cases where you
may not want to be restricted to a Files-11 data format and thus cannot use
RMS-11. For example,

D perform 1/0 with CP/M-strructured RXSO diskettes

D create a special utility, such as for data backup

DISK DRIVES 11-3

The QIO's documented in this chapter let you bypass RMS-11 to handle such
cases. Be aware that using QIO's instead of RMS-11 makes program develop­
ment more complex and increases the chances of error.

Note: Refer to PRO/RMS-11: An Introduction for definitions of physical,
logical, and virtual blocks, as well as a generic description of disk geometry
(sectors, tracks, cylinders).

With some exceptions, the disks supported on the Professional can be
accessed in essentially the same manner. Any differences are pointed out in
the discussion.

Disks are divided into a series of 2S6-word blocks, and data is transferred in
blocks to and from disks. These transfers may be performed in three possible
modes: physical, logical, or virtual. The difference between theses modes is
the manner in which the disk is addressed.

11.4.1 Physical 1/0 Operations

Note: Physical 1/0 operations are allowed to the RX50 but not to the RD50
or RD51.

In physical 1/0 operations, data is read or written to the actual sectors (physical
blocks) of the disk. No consideration is given to factors such as the interleave
of blocks or the track skew, which may be introduced to compensate for any
lag of the read/write head. So, physical blocks are numbered consecutively on
any one track. Physical blocks are numbered starting with 0.

The RXSO is a single head device. On the RXSO, the address of a physical block
is expressed as a track and sector address. The first physical block is on track
0, sector 1.

The ROSO and RDS1 are multiplatter devices. On these, the address of a
physical block is derived by first obtaining the sector number within a track,
then the track number within a cylinder, and then the cylinder number. The first
physical block is on track O, sector 0.

11.4.2 Logical 1/0 Operations

Logical 1/0 operations transfer data to or from the logically addressable blocks
of the disk. Unlike physical blocks, logical blocks are not necessarily contigu­
ous. For the RXSO disk, the sector interleave and track skew are automatically
taken into account when a logical READ or WRITE is performed.

Logical blocks are numbered starting with 0.

For the RXSO, the first logical block is on track 1, sector 1. The highest­
numbered logical block is on track 0, on the highest sector for that track. For
the ROSO and RDS1, the first logical block is track 0, sector 1.

I

I

I

I
I

11-4 DISK DRIVES

11.4.3 Virtual 1/0 Operations

Virtual 1/0 operations have meaning only within the context of a file. The virtual
blocks of a file are numbered consecutively, starting with virtual block 1 which
is the start of the file. The consecutively numbered virtual blocks of a file map
to logical blocks which may or may not be contiguous. Virtual 1/0 operations
are converted by the file processor in to logical READS and WRITES.

11.5 QIO MACRO

This section summarizes the standard and the device-specific QIO functions
for disk drivers.

Note: If your task is transferring data to a Files-11 structured volume, use
RMS-11 to perform 1/0 operations.

11.5.1 Standard QIO Functions

Table 11-3 lists the standard functions of the QIO macro that are valid for disks.

Table 11-3
Standard 010 Functions for Disks

Format

QIO$C 10.ATT, ...

QIO$C 10.DET, ...

QIO$C 10.KIL,. ..

010$C 10.RLB,. . .,<stadd,size,,blkh,blkl>

QIO$C 10.RPB,. . .,<stadd,size,,blkh,blkl>

QIO$C 10.RVB,. . .,<stadd,size,,blkh,blkl>

Ql0$C 10.WLB,. . .,<stadd,size,,blkh,blkl>

QIO$C 10.WPB, ... ,<stadd,size,,blkh,blkl>

QIO$C 10.WVB,. . .,<stadd,size,,blkh,blkl>

Functions

Attach device*

Detach device

Kill 1/0**

READ logical block

READ physical block***

READ virtual block

WRITE logical block

WRITE physical block***

WRITE virtual block

* Only volumes mounted foreign may be attached. Any other attempt to attach a mounted volume
will result in an IE.PAI status being returned in the 1/0 status doubleword. It is highly recommended
that you do not attach any volumes as this will prevent the mount/dismount mechanisms from
working and possibly lead to either a program "hang" or a system "hang".

* *In-progress disk operations are allowed to complete when 10.KIL is received, because they take
such a short time. 1/0 requests that are queued when 10.KIL is received are killed immediately. An
IE.ABO status is returned in the 1/0 status doubleword.

• **Not supported for ROSO or RD51. Supported only for RX50.

stadd

size

DISK DRIVES 11-5

The starting address of the data buffer (must be on a word
boundary).

blkh/blkl

The data buffer size in bytes (must be even and greater than 0).

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address
on
the disk where the transfer starts; blkh represents the high 8
bits of the address, and blkl the low 16 bits.

To perform physical or logical 1/0 operations with OIO's, your task must be
privileged.

10.RVB and 10.WVB are associated with file operations. For these functions to
be executed, a file must be open on the specified LUN if the volume associated
with the LUN is mounted. Otherwise, the virtual 1/0 request is converted to a
logical 1/0 request using the specified block numbers.

Use of the 010 virtual 1/0 operations requires caution as it is possible to
quickly exhaust system ressources. Simply writing and reading files with OIO's
is not sufficient. The file must be extended with $EXTEND calls to RMS-11 or
the end of file pointer will not be moved. Reading and writing a file via OIO's
without properly setting the FB$SHR field in the RMS-11 FAB block may cause
system hangs when system free space is exhausted.

Note: If you are using FCS instead of RMS-11, when writing a new file
using QIOs, the task must explicitly issue .EXTND File Control System library
routine calls as necessary to reserve enough blocks for the file, or the file
must be initially created with enough blocks allocated for the file. In addition,
the task must put an appropriate value in the FDB for the end-of-file block
number (F.EFBK) before closing the file.

Each disk driver supports the subfunction bit 10.X: inhibit retry attempts for
error recovery. The subfunction bit is used by ORing it into the desired 010; for
example:

010$C 10.WLB!IO.X, ... ,<stadd,size,,blkh,blkl>

The 10.X subfunction permits user-specified retry algorithms for applications in
which data reliability must be high.

I

I

11-6 DISK DRIVES

11.6 STATUS RETURNS

The error and status conditions listed in Table 11-4 are returned by the disk
drivers described in this chapter.

Table 11-4
Disk Status Returns

Code

is.sue

IS.PND

IE.ABO

IE.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNR

IE.FHE

IE.IFC

IE.Mii

IE.NLN

IE.NOD

Reason

Successful completion
The operation specified in the 010 directive was completed successfully. The
second word of the 1/0 status block can be examined to determine the number
of bytes processed, if the operation involved reading or writing.

1/0 request pending
The operation specified in the 010 directive has not yet been executed. The 1/0
status block is filled with Os.

Request aborted
An 1/0 request was queued (not yet acted upon by the driver) when an IQ.KIL
was issued.

File already open
The task attempted to open a file on the physical device unit associated with
specified LUN, but a file has already been opened by the issuing task on that
LUN.

Illegal block number
An illegal logical block number was specified.

Bad block error
The disk sector (block) being read was marked as a bad block in the header
word.

Byte-aligned buffer specifiedql; Byte alignment was specified for a buffer, but
only word alignment is legal for disk. Alternatively, the length of a buffer is not
an appropriate number of bytes.

Device not ready
The physical device unit specified in the QIO directive was not ready to perform
the desired 1/0 operation.

Fatal hardware error
The controller is physically unable to reach the location where input/output op­
eration is to be performed. The operation cannot be completed.

Illegal function
A function code was specified in an 1/0 request that is illegal for disks.

Media inserted incorrectly
The controller has detected that the media (such as a floppy diskette) was not
inserted correctly. To correct the problem, reinsert the media properly.

File not open
The task attempted to close a file on the physical device unit associated with
the specified LUN, but no file was currently open on that LUN.

Insufficient buffer space
Dynamic storage space has been depleted, and there was insufficient buffer
space available to allocate a secondary control block. For example, if a task
attempts to open a file, buffer space for the window and file control block must
be supplied by the Executive. This code is returned when there is not enough
space for this operation.

DISK DRIVES 11-7

Table 11-4 (Cont.)
Disk Status Returns

Code

IE.OFL

IE.OVA

IE.PAI

IE.SPC

IE.VER

IE.WCK

IE.WLK

Reason

Device off line
The physical device unit associated with the LUN specified in the QIO directive
was not on line. When the system was booted, a device check indicated that
this physical device unit was not in the configuration.

Illegal read overlay request
A read overlay was requested, and the physical device unit specified in the 010
directive was not the physical device unit from which the task was installed. The
read overlay function can only be executed on the physical device unit from
which the task image containing the overlays was installed.

Privilege violation
The task that issued the request was not privileged to execute that request. For
disk, this code is returned if a nonprivileged task attempts to read or write a
mounted volume directly (that is, using 10.RLB or 10.WLB). Also, this code is
returned if any task attempts to attach a mounted volume.

Illegal address space
The buffer specified for a read or write request was partially or totally outside
the address space of the issuing task. Alternately, a byte count of 0 was speci­
fied.

Unrecoverable error
After the system's standard number of retries has been attempted upon en­
countering an error, the operation still could not be completed. For disk, unre­
coverable errors are usually parity errors.

Write check error
An error was detected during the write check portion of an operation.

Write-locked device
The task attempted to write on a disk that was write-locked.

When a disk 1/0 error condition is detected, an error is usually not returned
immediately. Instead, the system attempts to recover from most errors by
retrying the function as many as eight times. Unrecoverable errors are gener­
ally parity, timing, or other errors caused by a hardware malfunction.

CHAPTER 12
THE TERMINAL DRIVER

12.1 INTRODUCTION

The system supports a single full-duplex terminal driver which includes the
following features:

D Full-duplex operation

D Type-ahead buffering

D Eight-bit characters

D Transparent read and write

D Formatted read and write

D Read after prompt

D Read with no echo

D Read with special terminator

D Optional time-out on solicited input

D Device-independent cursor control

12-1

I

12-2 THE TERMINAL DRIVER

12.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information noted in Table 12-1 for termi­
nals. A setting of 1 indicates that the described characteristic is true for
terminals.

Table 12-1
Buffer Get LUN Information for Terminals

Bit Setting Meaning

0 Record-oriented device

Carriage-control device

2 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a Files-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the default buffer
size (the width of the terminal carriage or display screen).

THE TERMINAL DRIVER 12-3

12.3 QIO MACRO

Table 12-2 lists the standard and device-specific functions of the QIO macro
that are valid for terminals.

Table 12-2
Standard and Device-Specific 010 Functions for Terminals

Format

Standard Functions:

QIO$C 10.ATT, .. .

QIO$C 10.DET, .. .

QIO$C 10.KIL, .. .

QIO$C 10.RLB, ... ,<stadd,size[,tmo]>

Ql0$C 10. RVB, ... , <stadd,size[, tmo]>

QIO$C 10.WLB, ... ,<stadd,size,vfc>

QIO$C 10.WVB, ... ,<stadd,size,vfc>

Device-Specific Functions:

QIO$C 10.ATA, ... ,<ast, [parameter2][,ast2]>

QIO$C 10.CCO, ... ,<stadd,size,vfc>

QIO$C SF.GMC, ... ,<stadd,size>

QIO$C 10.GTS, ... ,<stadd,size>

QIO$C 10.RAL, ... ,<stadd,size[,tmo]>

QIO$C 10.RNE, ... ,<stadd,size[,tmo]>

QIO$C 10.RPR, ... ,<stadd,size, [tmo],pradd,prsize,vfc>

QIO$C 10.RST, ... ,<stadd,size[,tmo]>

QIO$C 10.RTT, ... ,<stadd,size, [tmo],table>

QIO$C SF.SMC, ... ,<stadd,size>

QIO$C 10.WAL, ... ,<stadd,size,vfc>

QIO$C 10.WBT, ... ,<stadd,size,vfc>

QIO$C 10.WSD, ... ,<stadd,size.,type>

QIO$C 10.RSD, ... ,<stadd,size,tmo,type>

Function

Attach device

Detach device

Cancel 1/0 requests

READ logical block (read typed
input into buffer).

READ virtual block (read typed
input into buffer).

WRITE logical block (print buff­
er contents).

WRITE virtual block (print buffer
contents).

ATTACH device, specify unso­
licited-input-character AST

CANCEL CTRL/O (if in effect),
then write logical block

GET multiple characteristics

GET terminal support

READ logical block, pass all
bits

READ logical block, do not
echo

READ logical block after prompt

READ logical block ended by
special terminators

READ logical block ended by
specified special terminator

SET multiple characteristics.

WRITE logical block, pass all
bits

WRITE logical block, break
through most 1/0 conditions at
terminal

WRITE special data

READ special data

I

12-4 THE TERMINAL DRIVER

ast The entry point for an unsolicited- input-character AST.

parameter 2 A number that can be used to identify this terminal as the
input source upon entry to an unsolicited character AST rou­
tine.

ast2 The entry point for an INTERRUPT/DO sequence AST. (See
Section 12.5.2)

pradd The starting address of the byte buffer where the prompt is
stored.

prsize The size of the pradd prompt buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128.
The buffer must be within the task's address space.

size The size of the stadd data buffer in bytes. The specified size
must be greater than 0 and less than or equal to 8128. The
buffer must be within the task's address space. For SF.GMC,
10.GTS, and SF.SMC functions, size must be an even value.

stadd The starting address of the data buffer. The address must be
word aligned for SF.GMC, 10.GTS, and SF.SMC, 10.RSD,
10.WSD ; otherwise, stadd may be on a byte boundary.

table The address of the 16-word special terminator table.

tmo An optional time-out count in 10-second intervals. If 0 is
specified, no time-out can occur. Time-out is the maximum
time allowed between two input characters before the read is
aborted.

type The data type of the buffer contents.

vfc A character for vertical format control from Table 12-12 (Ver­
tical Format Control Characters)

12.3.1 Subfunction Bits

Most device-specified functions supported by terminal drivers described in this
section are selected using "subfunction bits." One or more functions can be
selected by ORing their relative bits in a QIO function. Table 12-4 contains a
listing of QIO functions and relative subfunction bits that can be issued.

Each subfunction bit and subfunction selected when it is included in a QIO
function is listed in Table 12-3.

THE TERMINAL DRIVER 12-5

Table 12-3
Definition of Subfunction Bits

Symbolic
Name

TF.AST

TF.BIN

TF.CCO

TF.ESQ

TF.NOT

TF.RAL

TF.RCU

TF.RNE

TF.RST

TF.TMO

TF.WBT

TF.WAL

TF.XCC

Sub function

Unsolicited-input-character AST

Binary prompt

Cancel CTRL/O

Recognize escape sequences

Unsolicited input AST notification; unsolicited characters are stored in the type­
ahead buffer until they are read by the task

Read all bits

Restore cursor position

Read with no echo

Read with special terminators

Read with time-out

Break through write

Write all bits

Send an INTERRUPT/DO sequence to the P/OS Dispatcher.

Table 12-4 lists subfunction bits that can be ORed with QIO functions. Addi­
tional details for using subfunction bits are included in Section 12.3.2.

If a task invokes a subfunction bit that is not supported on the system, the
subfunction bit is ignored, but the QIO request is not rejected.

The following example is a QIO request using more than one subfunction bit: a
nonechoed (TF.RNE) read, terminated by a special terminator character
(TF.RST) and preceded by a prompt.

QIO$C 10.RPR!TF.RNE!TF.RST, ... ,<stadd,size,,pradd,prsize,vfc>

12.3.2 Device-Specific QIO Functions

All functions except SF.GMC, 10.RPR, SF.SMC, 10.RTT, and 10.GTS can be
issued by ORing a particular subfunction bit with another QIO function. These
subfunction bits are specified in the following descriptions; subfunction bits are
described in general in Section 12.3.1.

In addition to the device-specific QIO functions, this section also describes the
use of subfunction bits TF.ESQ and TF.BIN.

I

I

Table · 12-4
Summary of Subfunction Bits

Function
Equivalent
Subfunctions

Standard Functions

10.ATT
10.DET
10.KIL
10.RLB
10.RVB
10.WLB
10.WVB

Device-Specific Functions

10.ATA
10.CCO
SF.GMC
10.GTS
10.RAL
10.RNE
10.RPR
10.RST
10.RTT
SF.SMC
10.WAL
10.WBT
10.WSD
10.RSD

Notes:

10.A TT!TF .AST
10. WLB!TF .CCO

10.RLB!TF.RAL
10.RLB!TF.RNE

10.RLB!TF.RST

10.WLB!TF.WAL
10.WLB!TF .WBT

TF.AST TF.BIN

x

x

Allowed Subfunction Bits

TF.CCO TF.ESQ TF.NOT TF.RAL TF.RCU

x

1 x
2

x x
2 2

x x

1

x

3 3
x x

1. Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result.

TF.RNE TF.RST TF.TMO TF.WAL TF.XCC

1 x
2 2

2

x
3

x 1 x
x

x 1 x
x x

x x

3

x

2. These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is converted to a read or write logical operation.
3. During a write-pass-all operation (10.WAL or 10.WLB!TF.WAL) the terminal driver outputs characters without interpretation; it does not keep track of cursor position.

......
I\:>
I

CJ>

-I
:I:
m
-I
m
::0
s::
z
)>
I""'
0
::0
< m
::0

THE TERMINAL DRIVER 12-7

12.3.2.1 10.ATA-IO.ATA is a variation of the Attach function. The use of this
function is eased by the addition of TF.NOT and TF.XCC subfunction bits,
described later in this section. 10.ATA specifies asynchronous system traps
(ASTs) to process unsolicited input characters. When called as follows:

QIO$C 10.ATA, ... ,<[AST],[PARAMETER2][,AST2]>

Note: A minimum of one AST parameter (ast or ast2) is required.

This function attaches the terminal and identifies "ast" and "ast2" as entry
points for an unsolicited-input-character AST. Control passes toast whenever
an unsolicited character (other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/O) is
input. If the ast2 parameter is specified, an INTERRUPT/DO sequence results
in the specified AST being entered in that parameter. If ast2 is not specified, an
INTERRUPT/DO sequence results in the specified AST being entered in the ast
parameter.

Unless the TF.XCC subfunction is specified, the INTERRUPT/DO sequence is
trapped by the task and does not reach the P/OS Dispatcher. Thus, any task
that uses 10.ATA without the TF.XCC subfunction should recognize some input
sequence as a request to terminate; otherwise, the P/OS Dispatcher cannot be
invoked to abort the task in case of difficulty.

Note that either ast2 or TF.XCC can be used, but not both in the same QIO
request. If both are specified in the request, an IE.SPC error is returned.

Upon entry to the AST routines, the unsolicited character and parameter 2 are
in the top word on the stack, as shown below. That word must be removed
from the stack before exiting the AST.

SP+10

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's directive status word

Unsolicited character in lew byte; parameter 2, in the
high byte, is a user-specified value that can be used
to identify individual terminals in a multiterminal envi­
ronment

The processing of unsolicited input ASTs is eased through the use of TF.NOT
and TF.XCC subfunction bits. When TF.XCC is included in the 10.ATA function,
all characters (except INTERRUPT/DO sequences) are handled in the manner
previously described. INTERRUPT/DO sequences cause the P/OS Dispatcher
to abort the application.

12-8 THE TERMINAL DRIVER

When unsolicited terminal input (except an INTERRUPT/DO sequence) is
received by the terminal driver and the TF.NOT subfunction is used, the result­
ing AST serves only as notification of unsolicited terminal input; the terminal
driver does not pass the character to the task. Upon entry to the AST service
routine, the high byte of the first word on the stack identifies the terminal
causing the AST (parameter 2). After the AST has been effected, the AST
becomes "disarmed" until a read request is issued by the task. If multiple
characters are received before the read request is issued, they are stored in
the type-ahead buffer. Once the. read request is received, the contents of the
type-ahead buffer, including the character causing the AST, is ·returned to the
task;. the AST is then "armed" again for new unsolicited input characters.
Thus, using the TF.NOT subfunction allows a task to monitor more than one
terminal for unsolicited input without the need to continuously read each termi­
nal for possible unsolicited input.

See Chapter 5 for further details on ASTs.

10.ATA is equivalent to 10.ATT ORed with the subfunction bit TF.AST.

12.3.2.2 10.ATTITF.ESQ-The task issuing this function attaches a terminal
and notifies the driver that it recognizes escape sequences input from that
terminal. Escape sequences are recognized only for solicited input. (See Sec­
tion 12.6 for a discussion of escape sequences.)

If the terminal has not been declared capable of generating escape sequences,
10.ATT!TF.ESQ has no effect other than attaching the terminal. No escape
sequences are returned to the task because any ESC sent by the terminal acts
as a line terminator. The SF.SMC function is used to declare the terminal
capable of generating escape sequences (see Table 12-5 Driver-Terminal
Characteristics for SF.GMC and SF.SMC Functions).

12.3.2.3 10.CCO-This write function directs the driver to write to the terminal
regardless of a CTRL/0 condition that may be in effect. If CTRL/O is in effect, it
is cancelled before the write is done.

10.CCO is equivalent to 10.WLB!TF.CCO.

12.3.2.4 SF.GMC-The Get Multiple Characteristics function returns terminal
characteristics information, as follows:

QIO$C SF.GMC, ... ,<stadd,size>

stadd

characteristic-name

The starting address of a data buffer of length
"size" bytes. Each word in the buffer has the form

.BYTE characteristic-name

.BYTE 0

One of the bit names given in Table 12-5. The value
returned in the high byte of each byte-pair is 1 if the
characteristic is true for the terminal and 0 if it is not
true.

THE TERMINAL DRIVER 12-9

Table 12-5
Driver-Terminal Characteristics for SF.GMC and SF.SMC Functions

Bit Name Octal Value Meaning (if asserted)

TC.ACR 24 Wrap-around mode

TC.BIN 65 Binary input mode (read-pass-all) no characters are interpreted
as control characters.

TC.CTS 72 Suspend output to terminal
0 =resume
1 =suspend

TC.EPA* 40 Parity sense, valid only when TC.PAR is enabled
0 = odd parity
1 = even parity

TC.ESQ 35 Input escape sequence recognition

TC.FOX 64 Full-duplex mode

TC.HFF 17 Hardware form-feed capability (If 0, form-feeds are simulated
using TC.LPP.)

TC.HFL 13 Number of fill characters to insert after a RETURN (0-7=x)

TC.HHT 21 Horizontal tab capability (if 0, horizontal tabs are simulated us-
ing spaces.)

TC.LPP 2 Page length (1-255.=x)

TC.NEC 47 Echo suppressed

TC.PAR* 37 Enable and disable parity
1 =enabled
0 =disabled

TC.ASP* 3 Receiver speed (bits-per-second) (see Table 12-7)

TC.SCP 12 Terminal is a scope (CRT)

TC.SMR 25 Upper-case convers)on disabled

TC.TBF 71 Type-ahead buffer count (read), or flush (write)

TC.TTP 10 Terminal type (=0-255.=x) (see Table 12-6)

TC.VFL 14 Send four fill characters after line feed

TC.WID ** Page width (=1-255.=x)

TC.XSP * 4 Transmitter speed (bits-per-second) (see Table 12-7)

TC.SBC 67 Pass eight bits on input, even if not binary input mode (TC.BIN)

•Applies to TT2: only. TT1: cannot set this attribute.

• *Unsolicited input that fills the buffer before a terminator is received is likely invalid. When this
happens, the driver discards the input by simulating a CTRL/U and echoing AU.

For the TC.TTP characteristic (terminal type), one of the values shown in Table
12-6 is returned in the high byte.

The TC.TIP characteristic, when read by the terminal driver, sets implicit val­
ues for terminal characteristics TC.LPP, TC.WID, TC.HFF, TC.HHT, TC.VFL,
and TC.SCP as shown in Table 12-6. These values can be changed (overrid­
den) by subsequent Set Multiple Characteristics requests. In addition, TC.TTP
is used by the terminal driver to determine cursor positioning commands, as
appropriate.

I

I

I

12-10 THE TERMINAL DRIVER

Table 12-6
TC.TIP (Terminal Type) Values Set by SF.SMC and Returned by SF.GMC

Implicit Characteristics *

Terminal
Symbolic Type TC.LPP TC.WID TC.HFF TC.HHT TC.HFL

T.UNKO Unknown
T.V100 VT100 24 80
T.L120 LA120 66 132
T.LA12 LA12 66 132
T.L100 LA100 66 132
T.V101 VT101 24 80
T.V102 VT102 24 80
T.V105 VT105 24 80
T.V125 VT125 24 80
T.LQP2 LQP02 66 80
T.LASO LASO 66 80
T.BMP1 PC3oo** 24 80

*Implicit characteristics are shown as supported by the driver. Values not shown are not automati­
cally set by the driver. An "unknown" terminal type has no implicit characteristics.

**The PC300 Series Bitmap Display is the default terminal for the Professional.

The TC.CTS characteristic returns the present suspend (CTRL/S), resume
(CTRL/Q), or suppress (CTRL/O) state set via the SF.SMC function. Values
returned are as follows:

Value Returned

0

1

2

3

State

Resume (CTRL/Q)

Suspend (CTRL/S)

Suppress (CTRL/O)

Both suppress and suspend

When a value of 0 is used with the SF.SMC function, the suspend state is
cleared; a value of 1 selects the suspend state.

Note: If you stop output to the terminal screen by pressing the HOLD key
on a PC300, TC.CTS does not indicate that output has stopped. In addition,
if you stop output to the terminal screen by pressing the NO SCROLL key
on a VT100 series terminal or the HOLD key on a PC300 series terminal,
output cannot be resumed with TC.CTS.

The TC.TBF characteristic returns the number of unprocessed characters in
the type-ahead buffer for the specified terminal. This allows tasks to determine
if any characters were typed that did not require AST processing. In addition,
the value returned can be used to read the exact number of characters typed,
rather than a typical value of 8010 or 13210 characters for the terminal.

Note:

1. The maximum capacity of the type-ahead buffer is 36. characters.

2. Using TC.TBF in an SF.SMC function flushes the type-ahead buffer.

TC.VFL TC.SCP

THE TERMINAL DRIVER 12-11

Table 12-7 lists the values for terminal receiver and transmitter speeds
(TC.ASP and TC.XSP).

Table 12-7
Receiver and Transmitter Speed Values (TC.ASP, TC.XSP)

TC.RSPor
TC.XSP Value Actual Baud Rate
value (bits per second)

s.o = 1.

S.50 2. 50

S.75 3. 75

S.100 = 4. 100

S.110 = 5. 110

S.134 6. 134

S.150 = 7. 150

S.200 8. 200

S.300 9. 300

S.600 = 10. 600

S.1200 = 11. 1200

S.1800 = 12. 1800

S.2000 = 13. 2000

S.2400 = 14. 2400

S.3600 = 15. 3600

S.4800 = 16. 4800

S.7200 = 17. 7200

S.9600 = 18. 9600

S.19.2 = 21. 19200

12.3.2.5 10.GTS-This function is a Get Terminal Support request that
returns information to a 4-word buffer specifying which features are part of the
terminal driver. Only two of these words are currently defined.

The various symbols used by the 10.GTS, SF.GMC, and SF.SMC functions are
defined in a system module, TISYM. These symbols include:

F1 .xxx and F2.xxx (Table 12-8)

T.xxxx (Table 12-6)

TC.xxx (Table 12-5)

The SE.xxx error returns described in Table 12-9.

12-12 THE TERMINAL DRIVER

These symbols may be defined locally within a code module by using:

.MCALL TTSYM$

TTSYM$

Symbols that are not defined locally are automatically defined by the Task
Builder.

Table 12-8
Information Returned by Get Terminal Support (10.GTS) 010

Mnemonic

Word 0 of Buffer:

F1.ACR

F1.BUF

F1.UIA

F1.CCO

F1.ESO

F1.LWC

F1.RNE

F1.RPR

F1 .RST

F1.RUB

F1.TRW

F1.UTB

F1.VBF

Word 1 of Buffer:

F2.SCH

F2.GCH

F2.SFF

F2.CUP

F2.FDX

Meaning When Set to 1

Automatic CR/LF on long lines

Checkpointing during terminal input

Unsolicited-input-character AST

Cancel CTRL/O before writing

Recognize escape sequences in solicited input

Lower- to uppercase conversion

Read with no echo

Read after prompting

Read with special terminators

CRT rubout

Read all and write all

Input characters buffered in task's address space

Variable-length terminal buffers

Set characteristics 010 (SF.SMC)

Get characteristics 010 (SF.GMC)

Formfeed can be simulated

Cursor positioning

Full Duplex Terminal Driver

12.3.2.6 10.RAL-The Read All function causes the driver to pass all bits to
the requesting task. The driver does not intercept control characters or mask
out the high-order bit. For example, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z
and INTERRRUPT/DO sequences are passed to the program and are not
interpreted by the driver.

Note: 10.RAL echoes the characters that are read. To read all bits without
echoing, use 10.RAL!TF.RNE.

THE TERMINAL DRIVER 12-13

10.RAL is equivalent to 10.RLB ORed with the subfunction bit TF.RAL. The
10.RAL function can be terminated only by a full character count (input buffer
full).

12.3.2.7 10.RNE-The 10.RNE function reads terminal input characters
without echoing the characters back to the terminal for immediate display. This
feature can be used when typing sensitive information (for example, a pass­
word or combination).

(Note that the no-echo mode can also be selected with the SF.SMC function;
see Table 12-5, bit TC.NEC.)

The 10.RNE function is equivalent to 10.RLB ORed with the subfunction bit
TF.RNE.

12.3.2.8 10.RPR-The 10.RPR Read After Prompt functions as an 10.WLB (to
write a prompt to the terminal) followed by 10.RLB. However, 10.RPR differs
from this combination of functions as follows:

D System overhead is lower with the 10.RPR because only one QIO is
processed.

D When using the 10.RPR function, there is no "window" during which
a response to the prompt may be ignored. Such a window occurs if
10.WAL/IO.RLB is used, because no read may be posted at the time
the response is received.

D If the issuing task is checkpointable, it can be checkpointed during
both the prompt and the read requested by the 10.RPR.

D A CTRL/O that may be in effect prior to issuing the 10.RPR is can-
celed before the prompt is written.

Subfunction bits may be ORed with 10.RPR to write the prompt as a Write All
(TF.BIN). In addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can
be used with 10.RPR.

12.3.2.9 10.RPR!TF.BIN-This function results in a read after a "binary"
prompt; that is, a prompt is written by the driver with no character interpreta­
tion (as if it were issued as an IQ.WAL).

12.3.2.10 10.RST-This function is similar to an 10.RLB, except certain spe­
cial characters terminate the read. These characters are in the ranges 0-037
and 175-177. The driver does not interpret the terminating character, with
certain exceptions.· For example, a horizontal TAB (011) is not expanded, a
RUBOUT (or DEL, 177) does not erase.

•If upper- to lowercase conversion is disabled, characters 175 and 176 do not act as terminators.
CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023, respectively) are not special terminators. The
driver interprets them as output control characters in a normal manner.

12-14 THE TERMINAL DRIVER

Upon successful completion of an 10.RST request that was not terminated by
filling the input buffer, the first word of the 1/0 status block contains the
terminating character in the high byte and the IS.SUC status code in the low
byte. The second word contains the number of bytes contained in a buffer. The
terminating character is not put in the buffer.

10.RST is equivalent to 10.RLB!TF.RST.

12.3.2.11 SF.SMC-This function enables a task to set and reset the charac­
teristics of a terminal. Set Multiple Characteristics is the inverse function of
SF.GMC. Like SF.GMC, it is called in the following way:

QIO$C SF.SMC, ... ,<stadd,size>

stadd

characteristic-name

value

The starting address of a buffer of length "size"
bytes. Each word in the buffer has the form

.BYTE characteristic-name

.BYTE value

One of the symbolic bit names given in Table 12-5.

Either 0 (to clear a given characteristic) or 1 (to set a
characteristic).

Table 12-8 notes the restrictions that apply to these characteristics.

If the characteristic-name is TC.TTP (terminal type), value can have any of the
values listed in Table 12-6.

Specifying any value for TC.TBF flushes (clears) the type-ahead buffer (forces
the type-ahead buffer count to 0).

12.3.2.12 10.RTT-This 010 function reads characters in a manner like the
10.RLB function, except a user-specified character terminates the read opera­
tion. The specified character's code can range from 0-377. It is user desig­
nated by setting the appropriate bit in a 16-word table that corresponds to the
desired character. Multiple characters can be specified by setting their corre­
sponding bits.

The 16-word table starts at the address specified by the table parameter. The
first word contains bits that represent the first 16 ASCII character codes (0-17);
similarly, the second word contains bits that represent the next 16 character
codes (20-37), and so forth, through the sixteenth word, bit 15, which repre­
sents character code 377. For example, to specify the% symbol (code 045) as
a read terminator character, set bit 05 in the third word, since the third word of
the table contains bits representing character codes 40-57.

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes are
greater than 177 are desired as the terminator character(s), the terminal must
be set to read-pass-all operation (TC.BIN=1), or read-pass 8-bits (TC.SBC), as
listed in Table 12-5.

The optional time-out count parameter can be included, as desired.

THE TERMINAL DRIVER 12-15

12.3.2.13 10. WAL-The Write All function causes the driver to pass all output
from the buffer without interpretation. It does not intercept control characters.
Long lines are not wrapped around if input/output wrap-around has been
selected.

10.WAL is equivalent to the 10.WLB!TF.WAL function.

12.3.2.14 10.WBT-The 10.WBT function instructs the driver to write the
buffer regardless of the 1/0 status of the receiving terminal. If an 10.WBT
function is issued on a system that does not support 10.WBT, it is treated as an
10.WLB function.

D If another write function is currently in progress, it finishes the cur­
rent request and the 10.WBT is the next write issued. The effect of
this is that a CTRL/S can stop 10.WBT functions. Therefore, it may
be desirable for tasks to time out on 10.WBT operations.

D If a read is currently posted, the 10.WBT proceeds, and an automatic
CTRL/R is performed to redisplay any input that was received before
the break-through write was effected (if the terminal is not in the full­
duplex mode).

D CTL/0, if in effect, is canceled.

D An escape sequence that was interrupted is rubbed out.

An 10.WBT function cannot break through another 10.WBT that is in progress.
Break-through write may only be issued by a privileged task.

12.3.2.15 10.WSD-The Write Special Data function is used to communicate
nontext information to the terminal task. The buffer address and length are the
same as for 10.WLB. The data type parameter indicates to the terminal task
what type of data is contained in the buffer. The data type is:

SD.GOS PRO/GIDIS output

Note: This 010 implements a data path to the terminal subsystem that is
also used by the CORE Graphics Library and by the VT125 (ReGIS) terminal
emulator within the PRO/Communications application.

12.3.2.16 10.RSD-The Read Special Data function is also used in communi­
cating nontext information to the terminal subsystem. The buffer address,
length, and timeout are the same as for 10.RLB. The data type parameter
indicates to the terminal what type of data is to be read.

Note: This QIO implements a data path to the terminal subsystem that is
also used by the CORE Graphics Library and by the VT125 (ReGIS) terminal
emulator within the PRO/Communications application.

The following restrictions apply to the use of 10.RSD:

1. In some ways, 10.RSD is the same as a normal read. One result of
this is that if there is a read currently oustanding to the keyboard,
the 10.RSD does not take effect until the read to the keyboard is
complete.

12-16 THE TERMINAL DRIVER

2. While an 10.RSD is pending, no input processing takes place until it
completes. So any characters that come in from the keyboard go
directly to the typeahead buffer, no ASTs take place, and no charac­
ters are echoed.

3. When special data comes into the terminal driver from the terminal
task (for example, a PRO/GIDIS report) and no 10.RSD is outstand­
ing, the special data goes into a special typeahead buffer. That
typeahead buffer is capable of holding a maximum of 36 bytes. If
more characters are input than the buffer can hold, those characters
are discarded and no error message is returned.

If there is an 10.RSD pending when special data comes into the
terminal driver from the terminal task, the data goes directly into a
read buffer. However, the length of one report may not exceed 36
bytes.

As a result of these restrictions, the recommended way to get a special data
report is to first issue the 10.WSD to cause the report to occur and then to
issue an 10.RSD for the exact length of the request. This causes 10.RSD to
complete immediately, preventing it from blocking the keyboard input.

12.4 STATUS RETURNS

Table 12-9 lists error and status conditions that are returned by the terminal
driver to the 1/0 status block.

Most error and status codes returned are byte values. For example, the value
for IS.SUC is 1. However, IS.CC, IS.CR, IS.ESC, and IS.ESQ are word values.
When any of these codes are returned, the low byte indicates successful
completion, and the high byte shows what type of completion occurred.

To test for one of these word-value return codes, first test the low byte of the
first word of the 1/0 status block for the value IS.sue. Then, test the full word
for IS.CC, IS.CR, IS.ESC, IS.ESQ, or IS.CSQ. (If the full word tests equal to
IS.SUC, then its high byte is 0, indicating byte-count termination of the read.) .

The "error" return IE.EOF may be considered a successful read since charac­
ters returned to the task's buffer can be terminated by a CTRL/Z character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as
described in Sections 12.3.2.4 and 12.3.2.11. When any of these codes are
returned, the low byte in the first word in the 1/0 status block contains IE.ABO.
The second IOSB word contains an offset (starting from 0) to the byte in error
in the QIO's stadd buffer.

THE TERMINAL DRIVER 12-17

Table 12-9 ·
Terminal Status Returns

Code

IE.EDF

is.sue

IS.CC

IS.CR

IS.ESC

IS.ESQ

IS.PND

IS.TMO

IE.ABO

IE.BAD

IE.DAA

IE.DNA

Reason

Successful completion on a read with end-of-file
The line of input read from the terminal was terminated with the end-of-file charac­
ter CTRL/Z. The second word of the 1/0 status block contains the number of bytes
read before CTRL/Z was seen. The input buffer contains those bytes.

Successful completion
The operation specified in the 010 directive was completed successfully. If the op­
eration involved reading or writing, you can examine the second word of the 1/0
status block to determine the number of bytes processed. The input buffer con­
tains those bytes.

Successful completion on a read
The line of input read from the terminal was terminated by an INTERRUPT/DO se­
quence. The input buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by a RETURN. The input
buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by an Escape character.
The input buffer contains the bytes read.

Successful completion on a read
The line of input read from the terminal was terminated by an escape sequence.
The input buffer contains the bytes read and the escape sequence.

1/0 request pending
The operation specified in the 010 directive has not yet been executed. The 1/0
status block is filled with zeroes.

Successful completion on a read
The line of input read from the terminal was terminated by a time-out (TF.TMO was
set and the specified time interval was exceeded). The input buffer contains the
bytes read.

Operation aborted
The specified 1/0 operation was cancelled by 10.KIL while in progress or while in
the 1/0 queue. The second word of the 1/0 status block indicates the number of
bytes that were put in the buffer before the kill was effected.

Bad parameter
The size of the buffer exceeds 8128 bytes.

Deviceaffeadyattached
The physical device unit specified in an 10.A TT function was already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device unit, not that the unit was attached by another task. If the
attach specified TF.AST or TF.ESQ, these subfunction bits have no effect.

Device not attached
The physical device unit specified in an 10.DET function was not attached by the
issuing task. This code has no bearing on the attachment status of other tasks.

12-18 THE TERMINAL DRIVER

Table 12-9 (Cont.)

Code

IE.DNA

IE.IES

IE.IFC

IE.NOD

IE.PES

IE.SPC

SE.NIH

SE.FIX

SE.VAL

Reason

Device not ready
The physical device unit specified in the 010 directive was not ready to perform the
desired 1/0 operation. This code is returned to indicate that a time-out occurred on
the physical device unit (that is, an interrupt was lost).

Invalid escape sequence
An escape sequence was started but escape-sequence syntax was violated before
the sequence was completed. (See Section 12.6.4.) The character causing the vio­
lation is the last character in the buffer.

Illegal function
A function code specified in an 1/0 request was illegal for terminals.

Buffer allocation failure
System dynamic storage has been depleted resulting in insufficient space available
to allocate an intermediate buffer for an input request or an AST block for an attach
request.

Partial escape sequence
An escape sequence was started, but read-buffer space was exhausted before the
sequence was completed. See Section 12.6.4.3.

Illegal address space
The buffer specified for a read or write request was partially or totally outside the
address space of the issuing task, a byte count of 0 was specified, or an odd or 0
AST address was specified.

A terminal characteristic other than those in Table 12-5 was named in an SF .GMC
or SF .SMC request, or a task attempted to assert TC.PAI.

An attempt was made to change a fixed characteristic in a SF.SMC subfunction
request (for example, an attempt was made to change the unit number).

The new value specified in an SF.SMC request for the TC.TIP terminal characteris­
tic was not one of those listed in Table 12-6.

12.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of the system's special terminal control
characters and keys. Note that the driver does not recognize control charac­
ters and special keys during a Read All request (10.RAL), and recognizes only
some of them during a Read with Special Terminators (10.RST).

12.5.1 Control Characters

A control character is input from a terminal by holding the control key (CTRL)
down while typing one other key. Three of the control characters described in
Table 12-10, CTRL/R, CTRL/U, and CTRL/Z, are echoed on the terminal as AR,
AU, and AZ, respectively.

Note: The use of control characters on PC 300 Series machines is not
recommended except when the PC 300s are connected to another system
as a terminal. In normal circumstances use the function keys on the PC300s.

THE TERMINAL DRIVER 12-19

Table 12-10
Terminal Control Characters

Character

CTRL/O

CTRL/Q

CTRL/S

CTRL/R

CTRL/U

CTRL/X

CTRL/Z

Meaning

CTRL/O suppresses terminal output. For attached terminals, CTRL/O remains in
effect (output is suppressed) until one of the following occurs:

The terminal is detached.
Another CTRL/0 character is typed.
An 10.CCO or 10.WBT function is issued.
Input is entered.

For unattached terminals, CTRL/0 suppresses output for only the current output
buffer (typically one line).

CTRL/Q resumes terminal output previously suspended by means of CTRL/S.

CTRL/S suspends terminal output. (Output can be resumed by typing CTRL/Q.)

Typing CTRL/R results in a RETURN and line feed being echoed, followed by the
incomplete (unprocessed) input line. Any tabs that were input are expanded and
the effect of any rubouts is shown. On hardcopy terminals, CTRL/R allows verify­
ing the effect of tabs and/or rubouts in an input line. CTRL/R is also useful for CRT
terminals for the CRT rubout. For example, after rubbing out the left-most charac­
ter on the second displayed line of a wrapped input line, the cursor does not move
to the right of the first displayed line. In this case, CTRL/R brings the input line and
the cursor back together again.

Typing CTRL/U before typing a line terminator deletes previously typed characters
back to the beginning of the line. The system echoes this character as "u followed
by a RETURN and a line feed.

This character clears the type-ahead buffer.

CTRL/Z indicates an end-of-file for the current terminal input.

Note: On the PC300 series systems, the Hold Screen key should be used instead
of CTRL/S and CRTL/Q.

Note: On the PC300 series systems, the HOLD key should be used instead
of CTRL/S and CRTL/Q.

12.5.2 INTERRUPT/DO AST Information

If the application has done an 10.ATA QIO without specifying the TF.XCC
subfunction, the following will happen:

Key One

non Interrupt key

Interrupt key

Key Two

Do key

non Do key

Result

The non-Interrupt key is han­
dled as usual and the applica­
tion gets the escape sequence
for the Do key

The Interrupt key is discarded
and the non Do key is handled
as if Interrupt had not been
pressed

12-20 THE TERMINAL DRIVER

Interrupt key Do key

CTRL/C

Applications AST routine is ac­
tivated just as if a CTRL/C
was typed

Applications AST routine is ac­
tivated as for RSX-11 M-PLUS

If the application has not done an 10.AT A QIO or if it has done one with the
TF.XCC subfunction bit set, the following will happen:

Key One

non Interrupt key

Interrupt key

Interrupt key

CTRL/C

Key Two

Do key

non Do key

Do key

Result

The non-Interrupt key is han­
dled as usual and the applica­
tion gets the escape sequence
for the Do key

The Interrupt key is discarded
and the non Do key is handled
as if Interrupt had not been
pressed

The PRO/Dispatcher is noti­
fied; aborts all application
tasks. The application gets no
indication that anything hap­
pened

The PRO/Dispatcher is noti­
fied; the application gets no
indication that anything hap­
pened

If an application puts the terminal in Read Pass All mode or if it specifies
TF.RAL on a read, all keys, except for Hold Screen and Print Screen, will go
into the type-ahead buffer unprocessed. The Interrupt and Do keys will go in as
the escape sequences that they represent.

Any characters for which there is no read or AST request outstanding will be
put into the type-ahead buffer. The buffer is 36 bytes long. If the buffer is full,
and if a characer is typed that would go into the type-ahead buffer, a bell is
echoed and the character is discarded. When either CTRL/C or the INTER­
RUPT/DO sequence is entered, the type-ahead buffer is flushed.

12.5.3 Special Keys

The RETURN, and DELETE keys have special significance for terminal input,
as described in Table 12-11. A line can be terminated by a RETURN, or
CTRL/Z characters, or by completely filling the input buffer-that is, by
exhausting the byte count before a line terminator is typed. The standard buffer
size for a terminal can be determined for a task by issuing a Get LUN Informa­
tion system directive and examining Word 5 of the buffer.

THE TERMINAL DRIVER 12-21

12.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with an
ESC (033) character.

Escape sequences provide a way to pass input to a task without interpretation
by the operating system. This could be done with a number 1-character Read
All functions, but escape sequences allow them to be read with 10.RLB
requests.

Table 12-11
Special Terminal Keys

Key

RETURN

DELETE

Meaning

Typing RETURN terminates the current line and causes the carriage or cursor to
return to the first column on the line.

Typing DELETE deletes the last character typed on an input line. Only characters
typed since the last line terminator may be deleted. Several characters can be de­
leted in sequence by typing successive DELETES.

DELETE causes the last typed character (if any) to be removed from the incomplete
input line and a backspace-space-backspace sequence of characters for that ter­
minal are echoed. If the last typed character was a tab, enough backspaces are
issued to move the cursor to the character position before the tab was typed. If a
long input line was split, or "wrapped," by the automatic-return option, and a DE­
LETE erases the last character of a previous line, the cursor is not moved to the
previous line.

12.6.1 Definition

The format of an escape sequence as defined in American National Standard X
3.41 - 197 4 and used in the VT100 is:

ESC ... F

ESC The introducer control character (33(8)) that is named escape.

The intermediate bit combinations that may or may not be present. I
characters are bit combination 40(8) to 57(8) inclusive in both 7- and 8-
bit environments.

F The final character. F characters are bit combinations 60(8) to 176(8)
inclusive in escape sequences in both 7- and 8-bit environments.

The occurrence of characters in the inclusive ranges 0(8) to 37(8) is technically
an error condition whose recovery is to execute immediately the function speci­
fied by the character and then continue with the escape sequence execution.
The exceptions are: if the character ESC occurs, the current escape sequence
is aborted, and a new one commences, beginning with the ESC just received; if
the character CAN (30(8)) or the character SUB (32(8)) occurs, the current
escape sequence is aborted, as is the case with any control character.

12-22 THE TERMINAL DRIVER

12.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be received
by a task.

1. The task must "ask" for them by issuing an 10.ATT function and
invoking the subfunction bit TF.ESQ.

2. The terminal must be declared capable of generating escape
sequences. A way to tell the driver that the terminal can generate
escape sequences is by issuing the Set Multiple Characteristics
request. (See Section 12.3.2.11).

If these prerequisites are not satisfied, the ESC character is treated as a line
terminator.

12.6.3 Characteristics

Escape sequences always act as line terminators. That is, an input buffer may
contain other characters that are not part of an escape sequence, but an
escape sequence always comprises the last characters in the buffer.

Escape sequences are not echoed. However, if a non-CRT DELETE sequence
is in progress, it is closed with a backslash when an escape sequence is
begun.

Escape sequences are not recognized in unsolicited input streams. Neither are
they recognized in a Read with Special Terminators (subfunction bit TF.RST)
nor in a Read All (subfunction bit TF.RAL).

12.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 12.6.1 causes the driver to abandon
the escape sequence and to return an error (IE.IES).

12.6.4.1 DEL (177)-The character DELETE is not legal within an escape
sequence. If it occurs at any point within an escape sequence, the entire
sequence is abandoned and deleted from the input buffer.

12.6.4.2 Control Characters (0-037)-The reception of any character in the
range 0 to 037 (with four exceptions is a syntax violation that terminates the
read with an error (IE.IES). Four control characters are allowed: CTRL/Q,
CTRL/S, CTRL/X, and CTRL/O. These characters are handled normally by the
operating system even when an escape sequence is in progress.

12.6.4.3 Full Buffer-A syntax error results when an escape sequence is
terminated by running out of read-buffer space, rather than by receipt of a final
character. The error IE.PES is returned. For example, after a task issues an
10.RLB with a buffer length of 2, and the following characters are entered:

ESC ! A

THE TERMINAL DRIVER 12-23

the buffer contains "ESC !", and the 1/0 status block contains:

IOSB IE.PES
2

The "A" is treated as unsolicited input.

12. 7 VERTICAL FORMAT CONTROL

Table 12-12 is a summary of all characters used for vertical format control on
the terminal. Any one of these characters can be specified as the value of the
vfc parameter in 10.WLB, 10.WVB, 10.WBT, 10.CCO, or 10.RPR functions. I

Table 12-12
Vertical Format Control Characters

Octal
Value

040

060

061

053

044

000

Character

blank

0

+

$

null

Meaning

SINGLE SPACE-Output one line feed, print the contents of the
buffer, and output a RETURN. Normally, printing immediately fol­
lows the previously printed line.

DOUBLE SPACE-Output two line feeds, print the contents of the
buffer, and output a RETURN. Normally, the buffer contents are
printed two lines below the previously printed line.

PAGE EJECT -If the terminal supports FORM FEEDs, output a
form feed, print the contents of the buffer, and output a RETURN.
If the terminal does not support FORM FEEDS, the driver simu­
lates the FORM FEED character by either outputting four line
feeds to a crt terminal, or by outputting enough line feeds to ad­
vance the paper to the top of the next page on a printing terminal.

OVERPRINT -Print the contents of the buffer and output a RE­
TURN, normally overprinting the previous line.

PROMPTING OUTPUT -Output one line feed and print the con­
tents of the buffer. This mode of output is intended for use with a
terminal on which a prompting message is output, and input is
then read on the same line.

INTERNAL VERTICAL FORMAT -Print the buffer contents with­
out addition of vertical format control characters.

All other vertical format control characters are interpreted as blanks (040).

A task can determine the buffer width by issuing a Get LUN Information direc­
tive and examining word 5 returned in the buffer.

It is possible to lose track of where you are in the input buffer if wrap-around is
enabled for your terminal. For example, while deleting text on a wrapped line,
the cursor will not back up to the previous line.

12-24 THE TERMINAL DRIVER

12.8 TYPE-AHEAD BUFFERING

Characters received by the terminal driver are either processed immediately or
stored in the type-ahead buffer. The type-ahead buffer allows characters to be
temporarily stored and retrieved FIFO. The type-ahead buffer is used as
follows:

1 . Store in buffer:

An input character is stored in the type-ahead buffer if one or more
of the following conditions are true:

D There is at least one character presently in the type-ahead
buffer.

D The character input requires echo and the output line to the
terminal is presently busy outputting a character.

D No read request is in progress, no unsolicited input AST is
specified, and the terminal is attached. A character is not
echoed when it is stored in the buffer. Echoing a character is
deferred until it is retrieved from the buffer, since the read
mode (for example, read-without-echo) is not known by the
driver until then.

Note: Depending on the terminal mode and the presence of a read func­
tion, read subfunctions and an unsolicited input AST, the INTERRUPT/DO,
CTRL/O, CTRL/Q, CTRL/S, and CTRL/X characters may be processed
immediately and not stored in the type-ahead buffer.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a task
issues a read request, an attempt is made to retrieve a character
from the buffer. If this attempt is successful, the character is
processed and echoed, if required. The driver then loops, retrieving
and processing characters until either the buffer is empty, the driver
becomes unable to process another character, or a read request is
finished with the terminal attached or slaved.

3. Flush the buffer:

The buffer is flushed (cleared) when:

D CTRL/X is received.

D INTERRUPT/DO is received.

Note:
Exceptions: CTRL/X does not flush the buffer if read-pass-all. or read-with­
special-terminators is in effect.

If the buffer becomes full, each character that cannot be entered causes a
BELL character to be echoed to the terminal.

If a character is input and echo is required, but the transmitter section is busy
with an output request, the input character is held in the type-ahead buffer until
output (transmitter) completion occurs.

THE TERMINAL DRIVER 12-25

12.9 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex driver attempts
to simultaneously service one read request and one write request. The Attach,
Detach and Set Multiple Characteristics functions are only performed with the
line in an idle state (not executing a read or a write request).

12.10 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is pro­
vided in the terminal driver private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer. The Execu­
tive then transfers characters from these buffers to the task buffer and the
terminal driver deallocates the buffers once the transfer has been completed.

If the driver fails to allocate the first input buffer, the characters are transferred
directly into the task buffer. If the first buffer is successfully allocated, but a
subsequent buffer allocation fails, the input request terminates with the error
code IE.NOD. In this case, the 1/0 status block contains the number of charac­
ters actually transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest of the
data. The type-ahead buffer ensures that no input data is lost as long as the
type-ahead buffer is not full.

All terminal output is buffered. As many buffers as required are allocated by the
terminal driver and linked to a list. If not enough buffers can be obtained for all
output data, the transfer is done as a number of partial transfers, using availa­
ble buffers for each partial transfer. This is transparent to the requesting task.
If no buffers can be allocated, the request terminates with the error code
IE.NOD.

The unconditional output buffering serves two purposes:

1. It reduces time spent at system state.

2. It enables task checkpointing during the transfer to the terminal (if all
output fits in one buffer list).

12.11 TERMINAL-INDEPENDENT CURSOR CONTROL

The terminal driver responds to task 1/0 requests for cursor positioning without
the task requiring information about the type of terminal in use. 1/0 functions
associated with cursor positioning are described as follows.

12-26 THE TERMINAL DRIVER

Cursor position is specified in the vfc parameter of the 10.WLB or 10.RPR
function. The parameter is interpreted simply as a vfc parameter if the high
byte of the parameter is 0. However, if the parameter is used to define cursor
position, the high byte must be nonzero, the low byte is interpreted as column
number (x-coordinate), and the high byte is interpreted as line number (y­
coordinate). Home position, the upper left corner of the display, is defined as
1, 1. Depending upon terminal type, the driver outputs appropriate cursor-posi­
tioning commands appropriate for the terminal in use that will move the cursor
to the specified position. If the most significant bit of the line number is set, the
driver clears the display before positioning the cursor.

When defining cursor position in an 10.WLB function, the TF.RCU subfunction
can be used to save the current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor position, then posi­
tion the cursor and output the specified buffer, and, finally, restore the cursor
to the original (saved) position once the output transfer has been completed.

12.12 PROGRAMMING HINTS

Using 10.WVB instead of 10.WLB is recommended when writing to a terminal. If
the write actually goes to a terminal, the Executive converts the 10.WVB to an
10.WLB request. However, if the LUN has been redirected to an appropriate
device-a disk, for example-the use of an 10.WVB function will be rejected
because a file is not open on the LUN. This prevents privileged tasks from
overwriting block zero of the disk.

Note that any subfunction bits specified in the 10.WVB request (for example,
TF.CCO, TF.WAL, TF.WBT) are stripped when the 10.WVB is converted to
10.WLB.

CHAPTER 13
THE XK COMMUNICATIONS DRIVER I

13.1 INTRODUCTION

The Professional 300 XK communications driver (XK driver) permits use of the I
XK communication port in asynchronous mode. The XK driver provides the
following features:

0 Full duplex operation

0 Input buffering

0 Unsolicited event AST's

0 Transfer length of up to 8128 bytes

0 Optional time-out on solicited input

0 Optional XON/XOFF support

0 Modem support

13.2 GET LUN INFORMATION MACRO

· Word 2 of the buffer filled by the Get LUN Information system directive (the first
characteristics word) contains the information noted in Table 13-1 for the XK
driver. A setting of 1 indicates that the described characteristic is true.

13-1

I

I

13-2 THE XK COMMUNICATIONS DRIVER

Table 13-1
Buffer Get LUN Information for XK Driver

Bit Setting Meaning

0 0 Record-oriented device

0 Carriage-control device

2 0 Terminal device

3 0 File structured device

4 0 Single-directory device

5 Sequential device

6 0 Mass storage device

7 0 User-mode diagnostics supported, device dependent

8 0 Device supports 22-bit direct addressing

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as communications channel

14 0 Device mountable as a FILES-11 volume

15 0 Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates size of the internal
input ring buffer.

13.3 QIO MACRO

Table 13-2 lists the standard and device-specific functions of the QIO macro
that are valid for the XK driver.

Table 13-2
Standard and Device-Specific QIO Functions

Format Function

Standard Functions

QIO$C 10.ATT, ... Attach device.

QIO$C 10.DET,. .. Detach device.

QIO$C 10.KIL,. .. Cancel 1/0 requests.

QIO$C 10.RLB, ... ,<stadd,size[,tmo]> Read logical block (read input into buffer).

QIO$C 10.RVB, ... ,<stadd,size[,tmo]> Read virtual block (read input into buffer).

Ql0$C 10.WLB, ... ,<stadd,size,vfc> Write logical block (send contents of buffer).

QIO$C 10.WVB, ... ,<stadd,size,vfc> Write virtual block (send contents of buffer).

THE XK COMMUNICATIONS DRIVER 13-3

Table 13-2 (Cont.)

Format Function

Device-Specific Functions

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

Ql0$C

QIO$C

QIO$C

QIO$C

QIO$C

QIO$C

ast

par2
par3

size

stadd

type

tmo

10.ANS, ... ,<stadd,size> Initiate a connection in answer mode, either in
response to a ringing line, or if a connection
already exists.

10.ATA, ... ,<ast[,par2]> Attach device, specify unsolicited event AST.

10.BRK,. .. ,<type> Send a BREAK.

10.CON, .. .,<stadd,size[,tmo]> Dial and connect.

SF.GMC,. . .,<stadd,size> Get multiple characteristics.

10.HNG,... Hang up a line.

10.L Tl, ... ,<stadd,size[,par3]> Connect for unsolicited event AST's while de­
tached.

10.0RG, .. .,<stadd,size[,tmo]> Initiate a connection in originate mode, assum-
ing the line has already been connected.

10.RAL, ... ,<stadd,size[,tmo]> Read logical block, pass all bits.

10.RNE, ... ,<stadd,size[,tmo]> Read logical block, do not echo.

SF.SMC, ... ,<stadd,size> Set multiple characteristics.

10.TRM, ... ,<stadd,1> Unload driver.

10.UTI, .. . Disable unsolicited event AST's while detached.

10.WAL, ... ,<stadd,size> Write logical block, pass all bits.

The entry point for an unsolicited event AST.

A number that can be used to identify this line as the input
source upon entry to an unsolicited event AST routine

The size of the stadd data buffer in bytes. The specified size
must be greater than zero and less than or equal to 8128. The
buffer must be within the task's address space.

'The starting address of the data buffer. The address may be
byte aligned.

Either 0 or 1 to indicate either a break or a long space.

An optional time-out count when used in conjunction with
TF.TMO on read requests, 10.CON, and 10.0RG requests.

I

I

13-4 THE XK COMMUNICATIONS DRIVER

vf c

The time-out is specified as follows:

.BYTE x,y

where xis the number of ten-second intervals, up to 255., and y
is the number of one-second interval, also up to 255. The
longest possible time-out interval that can be specified is 255.
seconds. If the time-out value is larger than 255 seconds, 255
seconds is used. Section 13.7 describes the effect of the time­
out parameters on specific requests.

A character for vertical format control from Table 12-12 (Verti­
cal Format Control Characters).

13.3.1 Device-Specific QIO Functions

Several of the device-specific functions described in this section can be issued
by ORing a particular subfunction bit with another QIO function. These sub­
function bits are specified in the following descriptions.

13.3.1.1 10.ANS-The Answer function establishes a connection in answer
mode, either in response to a ringing line, or if connection already exists. If a
connection is not complete within 30 seconds, an IE.DNA error will be returned.
The buffer address is required but is not used.

I 13.3.1.2 IO.ATA-10.ATA is a variation of the Attach function. 10.ATA speci­
fies an asynchronous system trap (AST) to process unsolicited events when
called as follows:

I

QIO$C IO.ATA, ... ,<ast[,par2]>

When an unsolicited event occurs, the resulting AST serves as notification of
the unsolicited event. Upon entry to the AST, the high byte of the top word on
the stack contains par2, if it was specified. The low byte contains the event
type. This word must be removed from the stack before exitting the AST. See
section 13.6 for more information on unsolicited events.

10.ATA is equivalent to 10.ATT ORed with the subfunction bit TF.AST.

13.3.1.3 10.BRK-When issued, the 10.BRK function causes either a break or
a long space to be sent. If parameter 1 is zero, a break is sent. If parameter 1 is
one, a long space is sent.

On the XK communication port, a break will last for approximately 235 millisec­
onds, and a long space approximately 3.5 seconds.

13.3.1.4 10.CON-The 10.CON function dials and connects a line in originate
mode, as follows:

QIO$C 10.CON, ... ,<stadd,size[,tmo]>

where stadd is the address of the telephone number to dial.

THE XK COMMUNICATIONS DRIVER 13-5

If TF.TMO is not specified, the request will complete when a connection is
established or after 60 seconds.

13.3.1.5 SF.GMC-The Get Multiple Characteristics function returns driver
characteristics information, as follows:

QIO$C SF.GMC, ... ,<stadd,size>

where stadd is the starting address of a data buffer of length "size" bytes.
Each word in the buffer has the form:

.BYTE

.BYTE
characteristic-name
0

where characteristic-name is one the bit names given in Table 13-3. The value
returned in the high byte of each byte-pair is value of that characteristic.

Table 13-3
XK Driver Characteristics for SF.GMC and SF.SMC Functions

Bit Valid
Name Values Meaning

TC.ARC 0-9. Auto-answer ring count (0 =>don't answer)

TC.BIN 0,1 Enable or disable XON/XOFF support

TC.CTS 0,1 Resume or suspend output

TC.EPA 0,1 Odd or Even parity (if TC.PAR is specified)

TC.FSZ Note 1 Character width including parity (if any)

TC.PAR 0,1 Enable parity checking and generation
Note 1

TC.ASP Note2 Receiver speed (bits-per-second)

TC.STB 1,2 Number of stop bits

TC.TBF Note3 Input ring buffer count or flush

TC.TAN Note4 Set translate table

TC.XMM 0,1 Disable or enable Maintenance mode

TC.XSP Note 2 Transmitter speed (bits-per-second)

TC.BBC 0,1 Pass 8-bit characters on input and output
Note 1

XT.MTP Note 5 Modem type

13-6 THE XK COMMUNICATIONS DRIVER

1. TC.FSZ is the frame size of a character. It is the number of data bits
per character, plus 1 if parity is enabled.

TC.FSZ and TC.PAR interact with each other to determine the num­
ber of data bits returned to the task. Table 13-4 shows the relation­
ship of these characteristics.

Two combinations do not appear in Table 13-4; TC.FSZ=9 with
TC.PAR=O, and TC.FSZ=5 with TC.PAR=1. These two combinations
are invalid, and the driver will return an error. To avoid this problem,
always set the value of TC.FSZ first. The driver will automatically
enable or disable parity if the value of TC.FSZ is 9 or 5.

If the value of TC.FSZ is Sor 9, the number of data bits returned to
the task is further modified by the value of TC.SBC. If TC.SBC is set
to 1, all S data bits will be returned to the task. If TC.SBC is set to 0,
only 7 data bits will be returned to the task. Setting TC.BIN to a
value of 1 or using the 10.RAL function will override the value of
TC.SBC.

Table 13-4
TC.FSZ and TC.PAR Relationship

TC.FSZ

9

8

8

7

7

6

6

5

Number of Data Bits
TC.PAR Returned to the Task

8

0 8

0

0

0

7

7

6

6

5

5

THE XK COMMUNICATIONS DRIVER 13-7

2. TC.ASP and TC.XSP values and corresponding baud rates are:

Table 13-5
Receiver and Transmitter Speed Values (TC.ASP, TC.XSP)

TC.RSPor
TC.XSP
Value Actual Baud Rate (in bits-per-second)

S.50 50

S.75 75

S.110 110

S.134 134.5

S.150 150

S.200 200

S.300 300

S.600 600

S.1200 1200

S.1800 1800

S.2000 2000

S.2400 2400

S.3600 3600

S.4800 4800

S.7200 7200

S.9600 ·9600

S.19.2 19200

3. The TC.TBF characteristic returns the number of unprocessed char­
acters in the input buffer when used with SF.GMC. If there are more
than 255 characters in the buffer, the value 255 will be returned.
When used with SF.SMC, TC.TBF causes the input buffer to be
flushed.

4. The translate table allows translation for either non-standard pulsing
arrangements or for modems other than the DF03 which may be
connected to the XK Communications port. The translate table is I
made up of three sections; a dial translation table, a start sequence
string, and an end sequence string. Any or all sections of the trans-
late table may be empty.

The format of this characteristic is:

.BYTE

.BYTE

.BYTE

.BYTE

.EVEN

TC.TRN,count1 ,count2,count3
<diaLtranslate_table>
<starLsequence>
<end_sequence>

where count1 is the length of the dial translate table, count2 is the
length of the start sequence, and count3 is the length of the end
sequence.

I

13-8 THE XK COMMUNICATIONS DRIVER

The dial translate table is a string of character pairs, input character
followed by output character. This translate table is used to convert
a telephone number, typically to remove format effectors such as
"(", ")", " -", and " ". If a character in the telephone number match­
es a character in the input section of the dial translate table, the
character is converted to the character from the output section. If the
character from the output section is 0, the character from the tele­
phone number will be ignored.

The start sequence string, if specified, will be sent to the autodialer
before the phone number.

The end sequence string, if specified, will be sent to the autodialer
after the phone number.

Note:

1. The next characteristic must begin on a word boundary.
2. This is a write-only parameter, and will return an SE.NIH error if used

with the SF.GMC function.

5. The XT.MTP characteristic has the following values:

XTM.NO No modem, hard-wired line
XTM.FS USFSK - 0 .. 300 baud Bell 103J
XTM.21 CCITTV.21 - 0 .. 300 baud European
XTM.M1 CCITTV.23 Mode 1 - 75/0 .. 300 split baud
XTM.M2 CCITIV.23 Mode 2 - 75/0 .. 1200 split baud
XTM.PS DPSK - 1200 baud Bell 212

13.3.1.6 10.HNG-The 10.HNG function causes a line to be hung up.

13.3.1.7 10.LTl-The 10.LTI function causes the driver to deliver unsolicited
event notification AST's to a specified task, if the driver is not attached by
another task. It is called as follows:

QIO$C 10.L Tl, ... ,<stadd,size[,par3]>

where stadd is the address of a three word buffer of the form:

.WORD

.RAD50

.RAD50

AST _address
/firsLhalLoLtaslLname/
/second_halLoLtaslLname/

When an unsolicited event occurs, the resulting AST serves as_ notification of
the unsolicited event. Upon entry to the AST, the high byte of the top word on
the stack contains par3, if it was specified. The low byte contains the event
type. This word must be removed from the stack before exitting the AST. See
section 13.6 for more information on unsolicited events.

THE XK COMMUNICATIONS DRIVER 13-9

13.3.1.8 10.0RG-The 10.0RG function initiates a connection in originate
mode, assuming the line has already been connected. The buffer address is
required but is not used.

13.3.1.9 10.RAL-The Read All function causes the driver to pass all bits to
the requesting task, when the value of TC.FSZ is 8 or 9. The driver does not
mask out the high-order bit. This function is used to temporarily bypass the
setting of the TC.SBC characteristic. Note that unlike the RSX-11 M/M-PLUS
terminal driver, this function does not pass CTRL/Q or CTRL/S to the request­
ing task. The TC.BIN must be set for these characters to be returned to the
task.

10.RAL is equivalent to 10.RLB ORed with the subfunction bit TF.RAL.

13.3.1.10 10.RNE-The Read with No Echo function is accepted by the driver
and the subfunction bit is ignored.

10.RNE is equivalent to 10.RLB ORed with the subfunction bit TF.RNE.

13.3.1.11 SF.SMC-This function enables a task to set and reset the charac­
teristics of the XK driver. Set Multiple Characteristics is the inverse function of
SF.GMC. Like SF.GMC, is is called in the following way:

QIO$C SF.SMC, ... ,<stadd,size>

where stadd is the starting address of a data buffer of length "size" bytes. I
Each word in the buffer has the form: ·

.BYTE characteristic-name

.BYTE value

where characteristic-name is one of the bit names given in Table 13-3. The
value returned in the high byte of each byte-pair is value of that characteristic.

13.3.1.12 10.TRM-The 10.TRM function causes the driver to be unloaded.
The task must be attached to issue this function. The driver will not unload
unless the device is detache.d. This function requires a buffer address and
count. The buffer is not modified.

13.3.1.13 10.UTI-The 10.UTI function disables unsolicited event notification
while the driver is not attached.

13.3.1.14 10.WAL-The Write All function is accepted by the driver and the
subfunction bit is ignored. The driver transmits all data bits in all cases.

10.WAL is equivalent to 10.WLB ORed with the subfunction bit TF.WAL.

I

13-10 THE XK COMMUNICATIONS DRIVER

13.4 STATUS RETURNS

Table 13-6 lists error and status conditions that are returned by the communi­
cations driver to the 1/0 status block.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as
described in Sections· 13.3.1 .5 and 13.3.1.11 . When any of these codes are
returned, the low byte in the first word of the 1/0 status block will contain
IE.ABO. The second IOSB word contains an offset (starting from 0) to the byte
in error in the QIO's stadd buffer.

Table 13-6
XK Driver Status Returns

Code

is.sue

IS.PND

IS.TMO

IE.ABO

IE.ALC

IE.CNR

IE.DAA

IE.DNA

IE.DNA

IE.IFC

Reason

Successful completion
The operation specified in the 010 directive was completed successfully. If the op­
eration involved reading or writing, you can examine the second word of the 1/0
status block to determine the number of bytes processed. The input buffer con­
tains those bytes.

1/0 request pending
The operations specified in the QIO directive has not yet been executed. The 1/0
status block is filled with zeros.

Successful completion on a read
The input from the communications port was terminated by a time-out (non-zero
value specified for the tmo parameter). The input buffer contains the bytes read.

Operation aborted
The specified 1/0 operation was cancelled by 10.KIL while in progress or while in
the 1/0 queue. The second word of the 1/0 status block indicates the number of
bytes that were put in the buffer before the kill was effected.

Allocation failure
The total size of the phone number specified by an 10.CON request plus the start
and end sequences was larger than the driver's internal buffer.

Connection rejected
Carrier was already present when an 10.CON request was issued.

Device already attached
The physical device-unit specified in the 10.ATT function wal already attached by
the issuing task. This code indicates that the issuing task has already attached the
desired physical device-unit, not that the unit was attached by another task. If the
attach specified TF.AST, the subfuilction bit has no effect.

Device not attached
The physical device-unit specified in an 10.DET or 10.TRM function was not at­
tached by the issuing task. This code has no bearing on the attachment status of
other tasks.

Device not ready
The physical device-unit specified in the 010 directive was not ready to perform the
desired 1/0 operation. This code is returned to indicate that an attempt was made
to perform a function on a line connected to a modem without carrier present, or to
indicate that a connection was not established within the time-out period specified
by an 10.CON, 10.ANS, or 10.0RG request.

Illegal function
A function code specified in an 1/0 request was illegal for the communications port.

THE XK COMMUNICATIONS DRIVER 13-11

Table 13-6 (Cont.)

Code

IE.OFL

SE.NIH

SE.VAL

Reason

Device off-line
The physical device-unit associated with the LUN specified in the QIO directive was
notonline.

Characteristic not implemented
A characteristic other than those specified in Table 13-3 was named in an SF.GMC
or SF.SMC request.

Illegal characteristic value
The new value specified in an SF.SMC request was not one of those listed in Table
13-3.

13.5 FULL-DUPLEX OPERATION

The XK driver attempts to simultaneously service one read request and one
write request. Note that unlike the RSX-11 M/M-PLUS full-duplex terminal
driver, the SF.SMC function is NOT blocked until the line is idle. Resetting
characteristics during 1/0 operations may cause unpredictable results.

13.6 UNSOLICITED EVENT PROCESSING

If a task attaches for unsolicited event AST's (10.ATA), an AST will be dis­
patched whenever any of the events listed in Table 13-7 occur. When the AST I
is entered, the event type will be in the low byte of the top word of the stack,
and par2 (10.ATA) or par3 (10.L Tl) will be in the high byte. Note that the XTU.UI
event is processed differently from the rest.

Table 13-7
Unsolicited Event Types

XTU.CD Carrier detect

XTU.CL Carrier loss

XTU.OF XOFF received

XTU.ON XON received

XTU.RI Ring

XTU.UI Unsolicited input

13.6.1 XTU.UI

If the event type is XTU.UI (unsolicited input), the AST becomes "disarmed"
until a read request is issued by the task. Once the read request has com­
pleted, the AST is "armed" again for new unsolicited events.

13.7 TIME-OUT

The optional time-out parameter on read, IC.CON, and 10.0RG requests
effects the action of the request. The following sections describe those effects.

13-12 THE XK COMMUNICATIONS DRIVER

13.7.1 Read Requests

tmo = O

tmo <> 0

The request completes immediately after transferring as many
characters as are available, less than or equal to the size
parameter. The number of bytes transferred is returned in the
second 1/0 status word.

The request completes after the time-out period or the
requested number of bytes has been transferred. The number
of bytes transferred will be returned in the second word of the
1/0 status block.

13.7.2 10.CON

tmo = O

tmo <> O

The request completes immediately. If carrier is not present
after 60 seconds, DTR and RTS are dropped.

The request completes after the time-out period, or after a
connection is established. If the time-out period expires, DTR
and RTS will be dropped, and an IE.DNR error will be returned
in the first word of the 1/0 status block. If carrier comes up
before the time-out period expires IS.SUC will be returned in
the first word of the 1/0 status block.

13.7.3 10.0RG

tmo = 0

tmo <> O

The request completes immediately. If carrier is down, DTR
and RTS will be dropped and an IE.DNR error will be returned
in the first word of the 1/0 status block. If carrier is up, IS.sue
will be returned in the first word of the 1/0 status block.

The request completes after the time-out period, or after a
connection is established. If the time-out period expires, DTR
and RTS will be dropped, and an IE.DNR error will be returned
in the first word of the 1/0 status block. If carrier is up (or
comes up before the time-out period expires), IS.SUC will be
returned in the first word of the 1/0 status block.

13.8 XON/XOFF SUPPORT

If XON/XOFF support is requested (TC.BIN = 0), the driver will transmit an
XOFF whenever the ring buffer is three-quarters filled, and an XON whenever
the buffer is then emptied below the one-quarter point. Because of this, tasks
should not pass XON/XOFF control characters to the driver for transmission.

If an XOFF is received, transmission will be blocked. If the task is attached for
unsolicited event AST's, an XTU.OF event will be dispatched. In any case, the
TC.CTS parameter will reflect the XON/XOFF state of the line.

If XON/XOFF support is not requested (TC.BIN= 1), and the value of XT.MTP
is XTM.NO (no modem), the Clear to Send line will be used in place of
XON/XOFF control characters. State changes of this line will cause unsolicited
event AST's, and modify the value of TC.CTS.

APPENDIX C
1/0 FUNCTION AND ST A TUS CODES

This appendix lists the numeric codes for all 1/0 functions, directive status
returns, and 1/0 completion status returns. Sections are organized in the fol­
lowing sequence:

D 1/0 status codes

D Directive status codes

D Device-independent 1/0 function codes

D Device-dependent 1/0 function codes

Device-dependent function codes are listed by device. Both devices and codes
are organized in alphabetical order.

For each code, the symbolic name is listed in form 10.xxx, IE.xxx, or IS.xxx. A
brief description of the error or function is also included. Both decimal and
octal values are provided for all codes.

C.1 1/0 STATUS CODES

This section lists error and success codes that can be returned in the 1/0 status
block on completion of an 1/0 function. The codes may be referenced symboli­
cally by invoking the system macro IOERR$.

C-1

C-2 1/0 FUNCTION AND STATUS CODES

C.1.1 1/0 Status Error Codes

The octal number listed is the low-order byte of the complete word value (2's
complement of the decimal number).

Name Decimal Octal Meaning

IE.ABO -15 361 Operation aborted

IE.ALN -34 336 File already open

IE.BAD -01 377 Bad parameter

IE.BBE -56 310 Bad block

IE.BCC -66 276 Block check error or framing error

IE.BLK -20 354 Illegal block number

IE.BYT -19 355 Byte-ligned buffer specified

IE.CNR -73 267 Connection rejected

IE.CON -22 352 UDC connect error

IE.DAA -08 370 Device already attached

IE.DAO -13 363 Data overrun

IE.DNA -07 371 Device not attached

IE.DNA -03 375 Device not ready

IE.DUN -09 367 Device not attachable

IE.EOF -10 366 End-of-file encountered

IE.EOT -62 302 End-of-tape encountered

IE.EOV -11 365 End-of-volume encountered

IE.FHE -59 305 Fatal hardware error

IE.FLG -89 247 Event flag already specified

IE.FLN -81 257 ICS/ICR controller already offline

IE.IEF -97 237 Invalid event flag

IE.IES -82 256 Invalid escape sequence

IE.IFC -2 376 Illegal function

IE.MOD -21 353 Invalid UDC or ICS/ICR module

IE.NLK -79 261 Task not linked to specified
ICS/ICR interrupts

IE.NLN -37 333 File not open

IE.NOD -23 351 No dynamic memory available to al-
locate a secondary control block

IE.NST -80 260 Task specified in ICS/ICR Link or
Unlink request not installed

1/0 FUNCTION AND STATUS CODES C-3

Name Decimal Octal Meaning

IE.NTR -87 251 Task not triggered

IE.OFL -65 277 Device off line

IE.CNP -05 373 Illegal subfunction

IE.OVA -18 356 Illegal read overlay request

IE.PES -83 255 Partial escape sequence

IE.PAI -16 360 Privilege violation

IE.REJ -88 250 Transfer rejected

IE.RSU -17 357 Nonsharable resource in use

IE.SPC -06 372 Illegal address space

IE.TMO -74 266 Time-out error

IE.VER -04 374 Unrecoverable error

IE.WCK -86 252 Write check error

IE.WLK -12 364 Write-locked device

C.1.2 1/0 Status Success Codes

Decimal Octal
Name Bytes Word Meaning

IS.CC Byte 0: 1 001401 Successful completion on read
Byte 1: 3 terminated by CTRL/C

IS.CR Byte 0: 1 006401 Successful completion with
Byte 1: 15 RETURN

IS.ESC Byte 0: 1 015401 Successful completion with ESCape
Byte 1: 33

IS.ESQ Byte 0: 1 115401 Successful completion with an
Byte 1: escape sequence
233

IS.PND +00 000000 1/0 request pending

IS.ROD +02 000002 Deleted data mark read

is.sue +01 000001 Successful completion

IS.TMO +02 000002 Successful completion on read
terminated by time-out

IS.TNC +02 000002 Successful transfer but message
truncated (receiver buffer too small)

C-4 1/0 FUNCTION AND STATUS CODES

C.2 DIRECTIVE CODES

This section lists error and success codes that can be returned in the Directive
Status Word at symbolic location $DSW when a 010 directive is issued.

C.2.1 Directive Error Codes

Name Decimal Octal

IE.ADP -98 177636

IE.IEF -97 177637

IE.ILU -96 177640

IE.SOP -99 177635

IE.ULN -05 177773

IE.UPN -01 177777

C.2.2 Directive Success Codes

Name

is.sue
Decimal

+01

C.3 1/0 FUNCTION CODES

Octal

000001

Meaning

Invalid address

Invalid event flag number

Invalid logical unit number

Invalid DIC number or DPB size

Unassigned logical unit number

Insufficient dynamic storage

Meaning

Directive accepted

This section lists octal codes for all standard and device-dependent 1/0
functions.

C.3.1 Standard 1/0 Function Codes

Octal Octal
Code Subcode

Symbolic Word (High (Low
Name Equivalent Byte) Byte) Meaning

10.ATT 001400 3 0 Attach device

10.DET 002000 4 0 Detach device

10.KIL 000012 0 12 Cancel 1/0 requests

10.RLB 001000 2 0 Read logical block

10.RVB 010400 21 0 Read virtual block

10.WLB 000400 1 0 Write logical block

10.WVB 011000 22 0 Write virtual block

1/0 FUNCTION AND STATUS CODES C-5

C.3.2 Specific Terminal 1/0 Function Codes

Octal Octal
Code Subcode

Slymbolic Word (High (Low
Name Equivalent Byte) Byte) Meaning

10.ATA 001410 3 10 Attach device, specify
unsolicited-input-
character AST

10.CCO 000440 1 40 Write logical block and
cancel CTRL/O

SF.GMC 002560 5 160 Get multiple
characteristics

10.GTS 002400 5 00 Get terminal support

10.RAL 001010 2 10 Read logical block and
pass all bits

10.RNE 001020 2 20 Read with no echo

10.RPR 004400 11 00 Read after prompt

10.RST 001001 2 1 Read with special
terminators

10.RTT 005001 12 1 Read logical block
ended by specified
special terminator

SF.SMC 002440 5 40 Set multiple
characteristics

IQ.WAL 000410 1 10 Write logical block and
pass all bits

10.WBT 000500 1 100 Write logical block and
break through on-
going 1/0

10.RSD 006030 14 30 Read special data I 10.WSD 005410 13 10 Write special data

C-6 1/0 FUNCTION AND STATUS CODES

C.3.3 Subfunction Bits

With 10.RLB, 10.RPR:

TF.RST 1

TF.BIN 2

TF.RAL 10

TF.RNE 20

TF.XOF 100

TF.TMO 200

With 10.WLB:

TF.WAL 10

TF.CCO 40

TF.WBT 100

With 10.ATT:

TF.AST 10

TF.ESQ 20

INDEX

$ Macro form, 3-6
$C Macro form, 3-7
$S Macro form, 3-7
.MCALL assembler directive, 10-13

arguments, 3-6
example, 10-14

ABRT$ (Abort Task), 9-3
Access mode, 2-4

block, 2-5
record, 2-4

ACS
buffer, 8-8

Active Page Register
See APR

Active task state
blocked, 3-17
ready-to-run, 3-17
stopped, 3-17

Address mapping, 7-2
Address space

logical, 1-3, 7-2
physical, 1-3, 7-2
virtual, 1-3, 7-2

Address window
creating, 9-21

Addressing
virtual, 7-2

Allocate Checkpoint Space
See ACS

AL TP$ (Alter Priority), 9-5
ALUN$ (Assign LUN), 9-7, 10-14
Application program

design suggestions, 1-3
APR, 7-16
APRO

restriction, 7-19
Assign LUN

See ALUN$
AST, 3-3, 5-6

characteristics, 5-7
disable or inhibit, 9-33
service routines, 3-15, 5-7

ASTOX, 10-5
ASTX$S (AST Service Exit), 9-9, 10-18
Asynchronous System Trap

See AST
ATRG$ (Attach Region), 9-12

definition, 7-8
Attribute list, 8-5

Bad block checking, 8-7
Block access mode

sequential, 2-5
VBN, 2-5

Bootblock, 8-23
Bootstrap, 8-23

Call
high-level language, 3-1

CALL ABORT, 9-3
CALL AL TPRI, 9-5
CALL ASNLUN, 9-7
CALL ATRG, 9-12
CALL CANALL, 9-28
CALL CANMT, 9-17
CALL CLREF, 9-14
CALL CNCT, 9-19
CALL CRAW, 9-21
CALL CRELOG, 9-15
CALL CRAG, 9-25
CALL DECLAR, 9-30
CALL DELLOG, 9-31
CALL DISCKP, 9-35
CALL DSASTR, 9-33
CALL DTRG, 9-36
CALL ELAW, 9-38
CALL EMST, 9-40
CALL ENACKP, 9-43
CALL ENASTR, 9-42
CALL EXITIF, 9-44
CALL EXST, 9-48
CALL EXTTSK, 9-50
CALL FEAT, 9-52
CALL GETDDS, 9-55
CALL GETLUN, 9-57
CALL GETMCR, 9-60
CALL GETPAR, 9-65
CALL GETREG, 9-67
CALL GETTIM, 9-69
CALL GETTSK, 9-71
CALL GMCX, 9-62
CALL INASTR, 9-33
CALL MAP, 9-73
CALL MARK, 9-76
CALL 010, 9-80
CALL RCST, 9-85
CALL READEF, 9-92
CALL RECEIV, 9-87
CALL RECOEX, 9-89
CALL REQUES, 9-99
CALL RESUME, 9-104
CALL RPOI, 9-96
CALL RAEF, 9-101
CALL RUN, 9-105
CALL SDRC, 9-113
CALL SDRP, 9-116
CALL SEND, 9-109
CALL SETDDS, 9-111
CALL SETEF, 9-119
CALL SETTIM, 9-137
CALL SPAWN, 9-123
CALL SREF, 9-132
CALL SREX, 9-129
CALL STLOR, 9-140
CALL STOP, 9-142
CALL STOPFR, 9-143
CALL SUSPND, 9-122
CALL TRALOG, 9-149
CALL UNMAP, 9-150
CALL USTP, 9-152
CALL VRCD, 9-153

1-2 INDEX

CALL VRCS, 9-155
CALL VRCX, 9-157
CALL VSDA, 9-159
CALL VSRC, 9-161
CALL WAITFR, 9-171
CALL WFLOR, 9-169
CALL WFSNE, 9-167
CALL WIMP, 9-163
CALL WTQIO, 9-83
Callable system routines, 8-1

general conventions, 8-3
Cancel Mark Time

See CMKT$
Cancel Time Based Requests

See CSRQ$
CBD, 9-25
Checkpointing

affected task states, 1-5
definition, 1-5
disabled, 9-35 .
enable, 9-43

CLEF$ (Clear Event Flag), 9-14
CLOG$ (Create Logical Name String) 4-3, 9-

15
example, 4-3

CMKT$ (Cancel Mark Time), 9-17
CNCT$ (Connect), 9-19
Command line

passing, 9-96
Common

see Memory common
Common Block Directory

See CBD
Common event flag

definition, 5-2
examples, 5-2

Communications driver
full-duplex operation, 13-11
passing XON/XOFF, 13-12
QIO macro functions for, 13-2

Communications driver, XK, 13-1
Configuration table, 9-165
Connect, 6-2

See CNCT$
CRAW$ (Create Address Window), 7-8, 9-21
Create Address Window

See CRAW$
Create Logical Name

See CLOG$, PROLOG
Create Region

See CRRG$
CR EDEL

server task, 8-6
CRRG$ (Create Region), 9-25

definition, 7-8
CSRQ$ (Cancel Time Based Requests) 9-28

DECL$S (Declare Significant Event) 9-30
Default directories, 4-2
Default directory string

retrieving, 4-5
setting up, 4-4

Delete Logical Name
See DLOG$, PROLOG

Detach Region
See DTRG$

Device
physical device names, 10-15
pseudo-device names, 10-15
standard devices, 11-1
supported devices, 10-2

DIC, 3-2
DIR$ macro, 10-13

·definition, 3-8
Directive

conventions, 3-22
description format, 9-1
event-associated, 3-20
informational, 3-20
memory management, 3-21
parent/offspring tasking, 3-21
task status control directives, 3-20
trap-associated, 3-20

Directive Identification Code
See DIC

Directive macros, 3-4
Directive Parameter Block

See DPB
Directive Status Word

See DSW
Directory

creating a, 8-6
deleting a, 8-6
setting up default, 9-111

Directory manipulation
See PRODIR

Disable AST Recognition
See DHAR$

Disk driver
1/0 functions, B-1
QIO macro functions for, 11-4

Disk drivers, 11-1
DLOG$ (Delete Logical Name), 4-3, 9-31

example, 4-4
DPB, 3-2

created at assembly time, 3-7
created at run time, 3-6
creation of, 3-4
definition, 10-10
sample layout, 10-11

Driver
communications, 13-1
disk, 11-1
terminal, 12-1

DSAR$S (Disable AST Recognition), 9-33
DSCP$S (Disable Checkpointing), 9-35
DSW, 3-2
DTRG$ (Detach Region), 7-8, 9-36
Dynamic region, 7-3

EFN, 5-2
ELAW$ (Eliminate Address Window), 7-8, 9-

38
EMST$ (Emit Status), 6-2, 9-40
EMT 377 instruction, 3-1
ENAR$S (Enable AST Recognition), 9-42
ENCP$S (Enable Checkpointing), 9-43
Equivalence name, 4-1
Error codes, A-1
Error returns, 3-3
Error routine address, 3-8
Event flag

definition, 5-2
setting, 9-119
testing for, 5-4

Event Flag Number
See EFN

EXIF$ (Exit If), 9-44
Exit With Status directive

See EXST$
EXIT$S (Task Exit), 9-46
EXST$ (Exit With Status), 9-48
EXTK$ (Extend Task), 9-50

FCP
See Files-11 ACP

FCS, 11-5
FEAT$ (Test Extended Feature), 9-52
File

access modes, 2-4
accessing file attributes, 8-4
directory manipulation, 8-6
identification block, 8-5
indexed, 2-4
list of accessible attributes, 8-5
organization, 2-3
record formats, 2-3
relative, 2-4
sequential, 2-3
structure, 2-3

File system, 2-1
data storage, 2-1
overview, 2-1
See also RMS

Files-11 ACP (FCP)
description, 2-2
logical name use, 4-3

Floating Point Processor
exception ASTs, 9-120

Fortran, 3-1
use of AST service routines, 3-15

Fortran Object Time System
See OTS

Fortran subroutines
calls, 3-12
corresponding macro calls, 3-13
error conditions, 3-15
GETADR subroutine, 3-12
integer arguments, 3-11
optional arguments, 3-11
system directive operations, 3-10
use of, 3-10

GDIR$ (Get Default Directory), 4-5, 9-55
example, 4-5

GET file attributes
function of PROATR, 8-4

Get Mapping Context
See GMCX$

Get Partition Parameters
See GPRT$

Get Region Parameters
See GREG$

Get Task Parameters
See GTSK$

Get Time Parameters
See GTIM$

Global symbols, 3-9
GLUN$ (Get LUN Info), 9-57, 10-16
GMCR$ (Get Command Line), 9-60
GMCX$ (Get Mapping Context), 7-9, 9-62
GPRT$ (Get Partition Parameters), 9-65
GREG$ (Get Region Parameters), 7-9, 9-67
GTIM$ (Get Time), 9-69
GTSK$ (Get Task Parameters), 9-71

1/0
attaching devices

See 10.ATT
canceling requests

See 10.KIL
detaching devices

See 10.DET
general functions, 10-1
logical, 10-2
physical, 10-2
standard functions, 10-19
virtual, 10-2

1/0 completion
Executive actions, 10-23

1/0 request
acceptance of, 10-4
issuing, 10-4
rejection of, 10-4

INDEX 1-3

IHAR$S (Inhibit AST Recognition), 9-33
Initialization

volume, 8-7
INSREM

server task, 8-16
Install/run/remove

offspring task, 8-19
Instrument Society of America

SeelSA
Integer array, 3-12
Intertask synchronization

examples, 6-4
10.ATT, 10-5, 10-20
10.DET, 10-21
10.KIL, 10-21
10.RVB, 10-22
10.WVB, 10-23
ISA

and AST service routines, 9-9
Fortran calls, 3-3

LBN (Logical Block Number), 2-2
Library

cluster, 1-4, 8-1
POSSUM, 8-1
shared, 1-4

Local event flag
definition, 5-2
examples of use, 5-3

Local symbolic offset, 3-8
Logical address space, 7-2
Logical Block Number

See LBN
Logical name

create, 4-3, 8-12
definition, 4-1
delete, 4-3, 8-13, 9-31
duplicate, 4-2
Files-11 use, 4-3
logical name table, 4-1
RMS conventions, 4-2
RMS translation, 4-2
translate, 4-3, 8-12, 9-149

Logical Unit Table
LUN (Logical Unit Number)

changing the assignment, 10-4
definition, 10-3
reassignment, 10-3

LUT (Logical Unit Table), 10-3

1-4 INDEX

Macro call
examples, 3-9

Macro expansion
$form, 3-6
$C form, 3-7
$S form, 3-7

Macro name conventions, 3-6
MACR0-11, 3-1

use of system directives, 3-2
MAP$ (Map Address Window), 7-9, 9-73
Mapping, 7-2
Mark Time

See MRKT$
Memory common

fixing in memory, 8-18
installation of, 8-16
removal of, 8-18

Memory Management directives, 7-1
MRKT$ (Mark Time), 9-76

OCB (Offspring Control Block), 6-2, 9-19
Offspring Control Block

See OCB
Offspring task, 6-1

exit status, 6-3
OTS

diagnostic messages, 3-1 S
Overlay

disk-resident, 1-4
memory-resident, 1-4

Parent task, 6-1
Parent/offspring tasking

chaining, 6-1
definition, 6-1
install/run/remove, 8-19
spawning, 6-1
use of, 6-1

Partition Control Block
See PCB

PC, S-S
PCB, 9-27
PDP-11 RS Calling Sequence

for high level-level languages, 8-2
Physical Address Space, 7-2
POSSUM library, 8-1

included in a task, 8-2
linking a task to POSSUM, 8-2

Privileged tasks
remapping APRs to regions, 7-19

PROATR, 8-4
Processor Status

See PS
Processor Status Word

See PSW
PRODIR, 8-6
PROFBI, 8-7
Program Counter

See PC
PROLOG, 8-11
PROTSK, 8-16
PROVOL, 8-22
PS, S-S
PSW, 3-3

010
macro expansion, 10-S
macro format, 10-6
macro functions for disk drivers 11-4
macro functions for terminal driver 12-3
macro functions for XK driver, 13-2
typical parameters, 10-S

010$ (Queue 1/0 Request), 9-80, 10-12
QIOW$, 9-83, 10-13

RS calling sequence, 8-2
RCST$ (Receive Data Or Stop), 9-8S
RCVD$ (Receive Data), 9-87
RCVX$ (Receive Data Or Exit), 9-89
ROSO, RDS1, 11-1
ROAF$ (Read All Event Flags), 9-92
ROB, 7-10

definition, 7-10
field values, 7-18
generating with Fortran, 7-13
generating with macros, 7-12

ROB array format, 7-13
RDBBK$, 7-12
RDBDF$, 7-12
RDEF$ (Read Event Flag), 9-93
RDXF$ (Read Extended Event Flags) 9-94
Read All Event Flags

See ROAF$
Read Event Flag

See RDEF$
Read Extended Event Flags

See RDXF$
Receive By Reference

See RREF$
Receive by Reference

See RAEF$
Receive Data

See RCVD$
Receive Data Or Exit

See RCVX$
Receive Data Or Stop

See RCST$
Record access mode

key, 2-S
record file access (RFA), 2-4
sequential, 2-4

Record formats
fixed length, 2-3
stream, 2-3
undefined, 2-3
variable length, 2-3
variable length with VFC, 2-3

Record Management System
See RMS

Region, 9-12
attaching to, 7-7
creation, 9-2S
definition, 7-3
dynamic, 7-3
fixing in memory, 8-18
ID, 7-4
installation of, 8-16
protecting, 7-7
removal of, 8-18
shareable, 7-3, 7-7
static common region, 7-3

Region Definition Block
See ROB

Request
issuing, 9-100

Request Task
See ROST$

Resume Task
See RSUM$

RMS
and default directories, 4-2
and disk 1/0, 11-2
and PROATR, 8-5
associated reading, 2-5
data storage, 2-1
errors, status control block, 8-3
overview, 2-1

RPOI$, 9-96
and Spawn directive, 6-2
when to use, 1-3

ROST$
when to use, 1-3

ROST$ (Request Task), 9-99
RREF$

definition, 7-9
RREF$ (Receive By Reference), 9-101
RSUM$ (Resume Task), 9-104
RSXMAC.SML

See System macro library
RUN$ (Run Task), 9-105
RX50, 11-1

SDAT$ (Send Data), 9-109
SDIR$ (Setup Default Directory), 4-4, 9-111

example, 4-4
SDRC$ (Send, Request and Connect) 9-113

when to use, 1-3
SDRP$, 9-116
Send By Reference

See SREF$
Send Data

See SDAT$
Send, Request and Connect, 6-2

See SDRC$
Set Event Flag

See SETF$
SET file attributes

function of PROATR, 8-4
Set System Time

See STIM$
SETF$ (Set Event Flag), 9-119
Setup Default Directory String

See SDIR$
SFPA$, 9-120
Shareable region, 7-3
Shared regions, 7-7
Significant event, 9-101 , 10-8

declaration, 9-30
definition, 5-1
example, 10-9
wait for, 9-167

Spawn
See SPWN$

Spawning, 6-1
Specify Receive Data AST

See SRDA$
Specify Requested Exit AST

See SREX$
SPND$S (Suspend), 9-122
SPWN$ (Spawn), 9-123

when to use, 1-3
SRDA$ (Specify Receive Data AST), 9-127

INDEX 1-5

SREF$
definition, 7-9

SREF$ (Send By Reference), 9-132
SREX$ (Specify Requested Exit AST) 9-129
SRRA$, 9-135
SST, 3-18, 5-4

definition, 5-4
service routines, 5-5
vector table, 5-4
vector table format, 5-5

Stack Pointer, 3-7
Static common region

definition, 7-3
Status control block

format, 8-3
STD, 3-16
STIM$ (Set System Time), 9-137
STLO$, 9-140
Stop

See STOP$S
Stop For Single Event Flag

See STSE$
STOP$S, 9-142
Stop-bit synchronization, 5-10
STSE$, 9-143
SUM LOG

server task, 8-12
Suspend

See SPND$S
SVOB$, 9-144
SVTK$, 9-146
SWST$ (Switch State), 9-148
Synchronous System Trap

See SST
System directive, 3-1

definition, 3-1
nonprivileged tasks, 3-18
processing, 3-2

System library account
system macros, 10-5

System Macro Library, 3-1
RSXMAC.SML, 3-6

System object module library, 3-1
System Task Directory

See STD
System trap, 5-4

Table
dial translate, 13-8

Task
addressing capability, 7-1
changing priority, 9-5
cooperating tasks, 1-3
extending size of, 9-50
fixing in memory, 8-18
install/run/remove, 8-19
installation of, 8-16
noremove attribute, 8-16
offspring task, 6-1
overlaying, 7-1
parent task, 6-1
removal of, 8-18
resuming suspended, 9-104
server task, 8-1
spawning, 6-1, 9-123
stopping, 5-10, 9-142
suspension of, 9-122
unstopping, 5-10, 9-152

1-6 INDEX

Task Communication, 6-2
Task Control Block

See TCB
Task names

defining, 3-11
length, 3"11

Task naming
in Executive-level dispatching, 3-22

Task region, 7-3
Task state, 3-16

active, 3-16
dormant, 3-16

Task state transitions
active to dormant, 3-18
blocked to ready-to-run, 3-18
blocked to stopped, 3-18
dormant to active, 3-17
ready-to-run to blocked, 3-17
ready-to-run to stopped, 3-17
stopped to blocked, 3-18
stopped to ready-to-run, 3-18

TCB, 5-7, 5-10
Terminal driver

features, 12-1
QIO macro functions for, 12-3
subfunction bits, B-2
valid 1/0 functions, B-2

Test Extended Feature
See FEAT$

Tick
definition, 9-78

TLOG$ (Translate Logical Name), 4-3, 9-149
example, 4-3

Translate Logical Name
See TLOG$, PROLOG

Trap
asynchronous, 10-9
synchronous, 10-9
system, 10-9

UIC, 9-71
UMAP$ (Unmap Address Window), 7-9, 9-

150
User data structures, 7-9
User Identification Code

See UIC
USTP$ (Unstop Task), 9-152

Variable Receive Data
See VRCD$

Variable Receive Data Or Exit
See VRCX$

Variable Receive Data Or Stop
See VRCS$

Variable Send Data
See VSDA$

Variable Send, Request and Connect
See VSRC$

VBN (Virtual Block Number), 2-2
Virtual address space, 7-2
Virtual address window

definition, 7-2
Virtual block

reading, 10-22
writing, 10-23

Virtual "Block Number
See VBN

Volume
bad block checking, 8-7
bootstrap, 8-23
dismounting, 8-22
foreign, 8-23
formatting, 8-7
initialization, 8-7
label, 8-8
mounting, 8-22
write bootblack, 8-23

VRCD$ (Variable Receive Data), 9-153
VRCS$, 9-155
VRCX$, 9-157
VSDA$ (Variable Send Data), 9-159
VSRC$, 9-161

when to use, 1-3

Wait For Significant Event
See WSIG$

Wait For Single Event Flag
See WTSE$

WDB, 7-10, 7-15
field values, 7-18
generating with Fortran, 7-17

WDBBK$, 7-16
WDBDF$, 7-16
WIMP$, 9-163
Window Definition Block

See WDB
WSIG$, 9-167
WTLO$, 9-169
WTSE$, 9-171, 10-18

XK communications driver, 13-1
QIO macro functions for, 13-2

Qi
§
I/)

£
O> c
0
(ti

:;
(,)

Q)
I/)

"' Q)

0:

READER'S COMMENTS

P/OS System Reference Manual
Order No. AA-N620-TK
and Update Notice Number 1

Order No. AD-N620A-T1

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPA) service, submit your comments
on an SPA form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.
D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)-------------------------

Name _______________________ Date __________ ~

Organization----------------------------------­

Street------------------~------------------
City _______________ State _______ Zip Code ______ _

or

Country

I
I
I
I
I
I

Do Not Tear - Fold Here and Tape --1

digital 111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

if Mailed in the
United States

----Do Not Tear - Fold Here---

I
I
I
I
I
I
I
I
I
I
I
I
I

