
PRO/DECnet Tool Kit
Programmer's Reference Manual

Order No. AA-AV69A- TK

PRO/DECnet Tool Kit
Programmer's Reference Manual

Order No. AA-AV69A-TK

March 1984

This manual reviews software design conventions which are critical to the early stages
of program development. It also details network programming calls used in the crea­
tion of PRO/DECnet applications.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

RSX-11M V4.1
RSX-11 M-PLUS V2.1
VAX/VMS V3.4
P/OS V2.0

PRO/DECnet Tool Kit V1 .0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of items without written permission.

Copyright© 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASS BUS RSTS
DEC PDP RSX
DEC mate P/OS Tool Kit
DECsystem-10 PRO/BASIC UNIBUS
DECSYSTEM-20 Professional VAX
DEC US PRO/FMS VMS
DECwriter PRO/RMS VT
DIBOL PROSE Work Processor
Digital Rainbow

Distributed Systems Publications typeset this manual using DIGITAL's
TMS-11 Text Management System.

CONTENTS

PREFACE

CHAPTER 1 GETTING STARTED WITH PRO/DECnet

1.1
1.2
1.3
1.3.1
1.4
1.4.1
1.5
1.6
1.7
1.8
1.8.1
1.8.2
1.8.3
1.9

Overview
PRO/DECnet Application Development Cycle
Required Libraries for Building PRO/DECnet Tasks

Programming in PASCAL
Creating PRO/DECnet Application and Object Installation Files

Formatting an Installation File
PRO/DECnet Application Installation Files
PRO/DECnet Object Installation Files
Combined PRO/DECnet Application/Object Installation Files.
PRO/DECnet Object Description Files .

OBJECT Command . . .
RUN/INSTALL Command
RUN/REMOVE Command

PRO/DECnet Programming Considerations

CHAPTER 2 HIGH LEVEL LANGUAGE COMMUNICATION
CALLS

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Task Building
Assigning Logical Unit Numbers. . . .
Establishing an Active Network Task .
Terminating Network Task Operations.
Examining 1/0 Status Blocks
Access Control Information
Flow Control

iii

. 1-1

. 1-2

. 1-3

. 1-3

. 1-3

. 1-4

. 1-4

. 1-5

. 1-7

. 1-8

. 1-8
1-10
1-10
1-12

. 2-1

. 2-2

. 2-2

. 2-2

. 2-3

. 2-3

. 2-3

2.8
2.9
2.9.1
2.9.2
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.10.13
2.10.14
2.10.15
2.10.16
2.10.17

Conventions Used in This Chapter
Optional Arguments in High Level Language Calls.

Using Paired Optional Arguments ..
Using Single Optional Arguments . .

High Level Language Communication Calls
Common Argument Definitions. . . .
ABTNT - Abort a Logical Link
ACCNT - Accept Logical Link Connect Request
BACC - Build Access Control Information Area.
BFMTO - Build a Format O Destination Descriptor
BFMT1 - Build a Format 1 Destination Descriptor
CLSNT - End Network Task Operations . .
CONNT - Request Logical Link Connection.
DSCNT - Disconnect a Logical Link .
GLNNT - Get Local Node Information
GNDNT - Get Network Data
OPNNT - Access the Network
RECNT - Receive Data over a Logical Link.
REJNT - Reject Logical Link Connect Request .
SNDNT - Send Data over a Logical Link .
WAITNT - Suspend the Calling Task.
XMINT - Send Interrupt Message

CHAPTER 3 MACR0-11 COMMUNICATION CALLS

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.10.1
3.10.2
3.10.3
3.10.4
3.10.5
3.10.6
3.10.7
3.10.8
3.10.9
3.10.10
3.10.11
3.10.12
3.10.13
3.10.14
3.10.15

MACRO Types
BUILD Type Macro. . .
EXECUTE Type Macro .
ST ACK Type Macro . .
Macro Call Format Examples.
Macro Failures.

Using the Wait Option.
Using Asynchronous System Traps and Event Flags .
Examining 1/0 Status Blocks
Assigning Logical Unit Numbers. . .
Establishing an Active Network Task
Access Control Information
Flow Control
Conventions Used in This Chapter.
MACR0-11 Communication Calls .

Common Argument Definitions.
ABT$ - Abort a Logical Link . .
ACC$ - Accept Logical Link Connect Request
CLS$ - End Network Task Operations . . .
CON$ - Request a Logical Link Connection
CONB$$ - Build Connect Block . .
DSC$ - Disconnect a Logical Link .
GLN$ - Get Local Node Information
GND$ - Get Network Data
OPN$ - Access the Network
REC$ - Receive Data over a Logical Link.
REJ$ - Reject Logical Link Connect Request.
SND$ - Send Data over a Logical Link .
SPA$ - Specify User AST Routine .
XMI$ - Send Interrupt Message

iv

. 2-4

. 2-5

. 2-5

. 2-6

. 2-7

. 2-8
2-10
2-13
2-16
2-20
2-23
2-26
2-28
2-31
2-34
2-37
2-43
2-47
2-50
2-53
2-56
2-58

. 3-1

. 3-2

. 3-3

. 3-4

. 3-5

. 3-5

. 3-6

. 3-6

. 3-7

. 3-7

. 3-8

. 3-8

. 3-8

. 3-9
3-10
3-10
3-12
3-14
3-16
3-17
3-20
3-23
3-25
3-28
3-37
3-39
3-41
3-43
3-45
3-47

CHAPTER 4 DLX: DIRECT LINE ACCESS CONTROLLER

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5
4.5.1
4.5.2
4.6
4.6.1
4.7

Special Considerations for Ethernet Users.
DLX QIOs
10.XOP - Open the Ethernet Channel . .
10.XSC - Set Characteristics

Setting up Protocol/ Address Pairs .
Setting up a Multicast Address. . .

10.XTM - Transmit a Message on the Ethernet
Setting up the Ethernet Address
Setting the Protocol Type

10.XRC - Receive a Message on the Ethernet .
Optional Auxiliary Buffer for Receive Messages.

10.XCL - Close the Ethernet Channel

CHAPTER 5 REMOTE FILE ACCESS

5.1
5.2
5.3
5.4
5.5

Introduction.
Using PRO/DECnet for Remote File Access .
Formatting Remote Node Specifications .
Remote Access Environments
Remote Access Pool Considerations. . .

APPENDIX A BASIC DECnet CONCEPTS

A.1
A.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.4
A.5
A.6
A.7
A.8
A.8.1
A.8.2
A.9
A.10
A.11
A.11.1
A.11.2
A.12
A.13

Task-to-task Communication
Establishing an Active Network Task
Building a Connect Block

Destination Descriptor . . .
Source Descriptor
Access Control Information.
Optional Data Message . .

Assigning Logical Unit Numbers.
Establishing a Logical Link . . .
Getting Data from the Network Data Queue .
Accepting or Rejecting a Logical Link Connection Request.
Transmitting Data Messages over a Logical Link.

Sending Data Messages .
Receiving Data Messages

Sending Interrupt Messages.
Using the 1/0 Status Block
Terminating Activity on a Logical Link.

Disconnecting a Logical Link. . .
Aborting a Logical Link

Closing the Network Connection
DECnet Task-to-task Communication Calls

. 4-2

. 4-3

. 4-4

. 4-6

. 4-8

. 4-9
4-10
4-11
4-11
4-13
4-14
4-16

. 5-1

. 5-2

. 5-3

. 5-4

. 5-4

.A-1

.A-2

.A-2

.A-2

.A-3

.A-3

.A-3

.A-3

.A-4

.A-5

.A-5

.A-7

.A-7

.A-7

.A-8

.A-8

.A-9

.A-9

.A-9
. A-10
. A-10

APPENDIX B DISCONNECT OR REJECT REASON CODES

APPENDIX C

APPENDIX D

APPENDIX E

OBJECT TYPES

MACR0-11 CONNECT BLOCK OFFSETS AND
CODE DEFINITIONS

ERROR/COMPLETION CODES FOR HIGH LEVEL
LANGUAGES

v

APPENDIX F MACR0-11 ERROR/COMPLETION CODES

APPENDIX G SUMMARY OF REMOTE FILE ACCESS
ERROR/COMPLETION CODES

G.1
G.2
G.2.1
G.2.2

1/0 Status Block Error Returns
Data Access Protocol (OAP) Error Messages

Maccode Field
Miccode Field

.G-1

.G-4

.G-5

.G-6

APPENDIX H TASK-TO-TASK PROGRAMMING EXAMPLES

H.1
H.1.1
H.1.2
H.2
H.2.1
H.2.2
H.3
H.3.1
H.3.2
H.4
H.4.1
H.4.2
H.5
H.5.1
H.5.2
H.6
H.6.1
H.6.2

FORTRAN Programming Examples
FORTRAN Transmit Program.
FORTRAN Receive Program .

COBOL Programming Examples. .
COBOL Transmit Program . .
COBOL Receive Program . .

BASIC-PLUS-2 Programming Examples.
BASIC-PLUS-2 Transmit Program .
BASIC-PLUS-2 Receive Program

PASCAL Programming Examples ..
PASCAL Transmit Program ..
PASCAL Receive Program ...

MACR0-11 Programming Examples.
MACR0-11 Transmit Program .
MACR0-11 Receive Program

DLX 010 Programming Examples .
DLX Transmit Program.
DLX Receive Program

FIGURES

1-1 Connecting PRO/DECnet Nodes to an Ethernet
3-1 Sample Connect Block Built by CONS$$.
3-2 Sample Connect Block Returned by GND$
A-1 Establishing a Logical Link

TABLES

2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
4-1
A-1
G-1
G-2
G-3
G-4

G-5

G-6

High Level Language Communication Calls
BACC Connect Block Symbolic Offsets . .
BFMTO Connect Block Symbolic Offsets. .
BFMT1 Connect Block Symbolic Offsets. .
Contents of Second Status Word Using GNDNT .
MACR0-11 Communication Calls
CONS$$ Connect Block Symbolic Offsets .
GND$ Connect Block Symbolic Offsets .
Summary of DLX Ethernet Calls.
DECnet Communication Calls Summary .
First Word 1/0 Status Block Error Codes
NSP Error Codes
OAP Maccode Field Values
OAP Miccode Values for Use with Maccode Values of 2, 10,
11 .
OAP Miccode Values for Use with Maccode Values 0, 1, 4,
5, 6, 7
OAP Miccode Values for Use with Maccode Value 12

vi

.H-1

.H-2

.H-4

.H-6

.H-6
. H-11
. H-15
. H-15
. H-17
. H-19
. H-19
. H-23
. H-26
. H-26
. H-28
. H-31
. H-31
. H-40

. 1-1
3-22
3-36
.A-6

. 2-7
2-19
2-22
2-25
2-38
3-10
3-21
3-34
. 4-3

. A-11
.G-2
.G-4
.G-5

.G-6

. G-15

. G-24

PREFACE

PRO/DECnet software, coupled with the appropriate hardware, allows a Pro­
fessional 350 personal computer to connect to an Ethernet and to act as a
DECnet Phase IV end node.

MANUAL OBJECTIVES

The PRO/DECnet Tool Kit Programmer's Reference Manual discusses soft­
ware requirements for creating PRO/DECnet applications. It provides detailed
information on the use of FORTRAN, COBOL, BASIC, PASCAL and
MACR0-11 programming calls supported by PRO/DECnet.

It also assumes that you have a working knowledge of networking concepts.

INTENDED AUDIENCE

This manual is designed for application developers who are responsible for
creating PRO/DECnet applications.

STRUCTURE OF THE MANUAL

This manual consists of 5 chapters and 8 appendices.

D Chapter 1 discusses special software considerations when developing
PRO/DECnet applications.

D Chapter 2 details high level languages supported by PRO/DECnet.
The programming calls for each language (FORTRAN, COBOL, BASIC,
and PASCAL) are described in alphabetical order. Each description
includes the call's format, argument(s) and associated error/comple­
tion status codes.

vii

D Chapter 3 discusses the use of MACR0-11 for PRO/DECnet task-to­
task communication. The relevant MACR0-11 programming calls are
described in a manner similar to the calls in Chapter 2.

o Chapter 4 discusses the use of the Direct Line Access Controller (DLX)
within an Ethernet networking environment. DLX calls are described in
a manner similar to the calls in Chapters 2 and 3.

D Chapter 5 discusses remote file access capabilities available to
PRO/DECnet users.

NOTE

All references to FORTRAN imply FORTRAN-77, and all references to
BASIC imply BASIC-PLUS-2 throughout this manual. In addition, all
numbers supplied for the various arguments are decimal values un­
less otherwise noted.

This manual also contains 8 appendices:

D Appendix A discusses in greater detail DECnet terms and concepts
which appear throughout this manual.

D Appendix B discusses error codes which are returned to the 1/0 status
block for a rejected connect request or an aborted logical link.

D Appendix C lists values for specific network object types.

D Appendix D provides information on MACR0-11 connect block offsets
used in network connects and accepts.

D Appendix E lists error/completion status codes tor FORTRAN, CO­
BOL, and BASIC programming calls.

D Appendix F lists error/completion status codes for MACR0-11 pro­
gramming calls.

D Appendix G summarizes remote file access error/completion status
codes.

D Appendix H contains programming examples for FORTRAN, COBOL,
BASIC, PASCAL, MACR0-11 and DLX calls.

viii

ASSOCIATED DOCUMENTS

Users of this manual should have one of the following Digital documents avail­
able for reference:

PROIRMS-11 Macro Programmer's Guide,
Order No. AA-P099A-TK

RSX-11 MIM-PLUS Executive Reference Manual,
Order No. AA-L675A-TC

Tool Kit User's Guide,
Order No. AA-N617 A-TK

VAX-11 Record Management Services Reference Manual,
Order No. AA-00310-TE

GRAPHIC CONVENTIONS

UPPERCASE LETTERS

lowercase italic type

commas, periods,
parentheses ()

square brackets []

angle brackets < >
and commas

braces { l

represent actual characters that you must enter
as shown.

indicates variables whose value you must specify.

must be included when shown as part of the call
syntax. They are not documentation conventions.

enclose optional arguments. You must specify
any argument not enclosed by brackets. Do not
type the brackets when you code a call. They are
documentation conventions and are not part of
the call syntax.

must be included when shown as part of a macro
format. To omit an optional argument, do not
specify a value for it but include its delineating
coma only if there are no trailing arguments.

enclose several keywords or arguments of which
only one can be selected for a particular com­
mand or call. Do not include them as part of a
command or call.

ix

INTRODUCTION

DECnet is the name given to a family of software and hardware communica­
tions products that provide a network interface for Digital operating systems.
The relationships between the various network components are governed by a
set of standards called the Digital Network Architecture (DNA). Enhanced net­
work capabilities and functions are incorporated into the different DECnet
phases.

DECnet enables multiple computer systems to participate in communications
and resource sharing within a specific network. The individual computer sys­
tems, called nodes, are connected by physical communications paths. Tasks
that run on different nodes and exchange data are connected together by
logical links. Logical links are temporary software information paths estab­
lished between two communicating tasks in a DECnet network.

This manual describes the following network activities for Phase IV DECnet:

D Task-to-task communication - DECnet enables two programs to ex­
change data. These programs can reside in the same or in different
nodes.

D Remote file access - DECnet provides both user and program access
to files that reside on remote nodes. Remote file access subroutines
allow you to transfer files between nodes, and to manipulate files resid­
ing on the remote nodes.

D Distributed data base access - Any network node can access informa­
tion stored on any other network node. This feature enables you to use
information stored in multiple data bases across the network.

x

CHAPTER 1
GETTING STARTED WITH PRO/DECnet

1.1 OVERVIEW

PRO/DECnet software allows Professional 350 computers to connect to other
DECnet systems on the Ethernet. PRO/DECnet is an end node only implemen­
tation of the Phase IV Digital Network Architecture. It is compatible with other
Phase Ill and Phase IV DECnet products.

Figure 1-1 shows several Professional 350 systems with DECNAs connected
directly to an Ethernet network via H4000 Ethernet transceivers. This network
topology also illustrates the compatibility of Professional 350s with remote
VAX-11 host systems.

PR0-350 VAX 11/730

DECNA DE UNA

ETHERNET

DEC NA
DELNI

PR0-350

DECNA DEUNA

PR0-350 VAX 11/780

DEC NA

PR0-350

Figure 1-1
Connecting PRO/DECnet Nodes to an Ethernet

1-1

1-2 GETTING STARTED WITH PRO/DECnet

The PRO/DECnet software features:

D Supports multiple, simultaneous logical links between a Professional
350 and any other Phase Ill or Phase IV DECnet system.

D Supports task-to-task communication between a Professional 350 and
any other Phase Ill or Phase IV DECnet system.

D Provides for high speed resource sharing within a local area network.

D Offers various network management and maintenance functions.

D Provides the transport facilities that permit programs utilizing RMS-11
V2.0 to access remote files.

NOTE

When the Professional Tool Kit resides on a Professional 350 com­
puter, it is called the PRO/Tool Kit; when it resides on a host - either
VAX/VMS or a PDP- f 1 running RSX-11 M/M-PLUS - it is referred to
as the Professional Host Tool Kit or, more commonly, the Host Tool
Kit, for short.

1.2 PRO/DECnet APPLICATION DEVELOPMENT CYCLE

There are several steps involved in the development of a PRO/DECnet appli­
cation. They include:

1. Writing the application and the application user interface

2. Compiling and task building the application (either on a host system or
on a Professional)

3. Writing the application installation file

4. Transferring the application to the Professional (when developing pro­
grams on a Professional Host Tool Kit system)

5. Installing, executing and debugging the application

6. Copying the application to a diskette with the Application Diskette
Builder

This chapter focuses on the libraries used by the Professional Application
Builder (PAB) when you are building PRO/DECnet tasks - Step 2. It details the
format and contents of PRO/DECnet application and object installation files -
Step 3.

However, it does not discuss the complete applications development cycle.
This information is documented in separate manuals or manual sets written
specifically for the Host Tool Kit and the PRO/Tool Kit.

GETTING STARTED WITH PRO/DECnet 1-3

1.3 REQUIRED LIBRARIES FOR BUILDING PRO/DECnet TASKS

PRO/DECnet tasks are built with the Professional Application Builder (PAB).
Before creating a PRO/DECnet task with PAB, you must create a command file
(.CMD) and an overlay descriptor file (.ODL). In some cases, you can simply
edit a command file automatically produced by certain Tool Kit language com­
pilers.

PAB uses the command and descriptor files to define how libraries are refer­
enced, and to specify special purpose buffers, logical unit numbers (LUNs)
and event flags. (For instructions on how to invoke PAB, refer to the Tool Kit
manual specific to your programming language.)

The following language libraries are required by PAB at task build time:

LB:[1,5]NETSUB.OLB

The NETSUB.OLB library contains a set of DECnet communication sub­
routines. PRO/DECnet applications written in FORTRAN, COBOL, and BA­
SIC requiring task-to-task communication must be linked to this library.

LB:[1,S]NETLIB.MLB

The NETLIB.MLB library provides MACR0-11 macro definitions used by
PRO/DECnet applications which require task-to-task communications.

LB:[1,5]NETDEF.PAS

The NETDEF.PAS library is a PASCAL file. It defines the various communi­
cation calls used by network programs written in PASCAL.

1.3.1 Programming In PASCAL

In order to use the DECnet communications calls for PASCAL programs, the
PASCAL library must be referenced at the beginning of your source file. The
command line should always be written as follows:

'J..INCLUDE 'LB:[115JNETDEF.PAS'

1.4 CREATING PRO/DECnet APPLICATION AND OBJECT
INSTALLATION FILES

PRO/DECnet applications allow you to access network functions like network
"phone" or "mail". They also enable you to access remote nodes for informa­
tion sharing and program development.

In comparison, PRO/DECnet object tasks perform specific network services.
They are automatically invoked whenever a request is issued from another
node. Each user installed object task has a menu item. This menu line is
required for the proper removal of the object from the system.

1-4 GETTING STARTED WITH PRO/DECnet

Some object tasks inform you of any remote requests which may require a
personal response. For example, the phone listener tells you that someone is
calling you from another Professional. Other object tasks place status mes­
sages on your system message board. For example, the mail listener tells you
when new mail has been delivered to your Professional.

Sometimes, the application and object task are combined into one application.
Whenever you install or remove a "combined" application, you are actually
installing or removing both the application and the object. The PRO/DECnet
Phone utility is an example of a combined package. Only the phone applica­
tion is presented as an application menu item. The phone object simply runs
as a background task when you select this particular application.

Application and object installation files identify all files and task images that
are part of an application or object task. These files are needed for both the
installation and removal of PRO/DECnet applications and objects.

You should use the disk/diskette services menu for installing and removing
applications and objects. See the Professional 300 User's Guide: Hard Disk
System, AA-N603A-TH, for details.

1.4.1 Formatting an Installation File

An application or object installation file must have an .INS file type and the
following command format:

!This is the installation file
NAME "menu name"
FI LE file name/value
INSTALL file name/value
RUN task name

You should refer to the Tool Kit User's Guide for additional details.

1.5 PRO/DECnet APPLICATION INSTALLATION FILES

The standard installation file is used for all PRO/DECnet applications which
are not combined with PRO/DECnet objects. You should follow the syntax
rules documented in the Tool Kit User's Guide.

GETTING STARTED WITH PRO/DECnet 1-5

Example

Here is a sample .INS file for a network virtual terminal application:

1 Network Virtual TerMinal

Nar11e "l.Jirtual Terr11inal"
I

! SPecifY all necessary files

File NVT.TSK/Delete
File NVTMENU,MNU/Delete
File NVTMESS.MSG/Delete
File NVTHELP.HLP/Delete

! Specify what tasks and libraries Must be installed

Install NVT.TSK/Task

1 SPecifY what to run when this aPPlication is selected
I

Run Nt.JT

1.6 PRO/DECnet OBJECT INSTALLATION FILES

A PRO/DECnet object uses the standard application .INS file with some modi­
fications. The differences include:

D a standard "application" task

D two executable tasks for each object task

D a description file for each object task

A network object task traditionally has no real application task to be installed
or run whenever it is selected by the user. However, the Professional Opera­
ting System (P/OS) requires that an "application" task be supplied for each
object task. These application tasks are used to install and later remove an
object from the system. For this reason, PRO/DECnet supplies an application
task called LB:[ZZDECNET]DAX.TSK. When this task is run, it tells you that the
selected application is actually a PRO/DECnet object and should not be se­
lected on its own.

1-6 GETTING STARTED WITH PRO/DECnet

Two executable tasks are provided for each object task. The DECnet applica­
tion installation task, LB:[ZZDECNET]DAl.TSK, performs all needed functions
to add the object to the network. The second task named the DECnet applica­
tion removal task, LB:[ZZDECNET]DAR.TSK, performs the necessary steps to
remove the task from the network.

Both tasks must be "executed" during the installation and removal of a
PRO/DECnet object. A special "EXECUTE" directive defines the object to the
network and must be issued with both procedures. The system requires that
these tasks are executed in the proper order. The DAR task must be executed
before any files are deleted during removal. The DAI task must be executed
after all files are copied during installation. This specific requirement is illus­
trated in a later example.

As noted earlier, information must be provided about the object. The
PRO/DECnet object description file, DECNET.ODS, contains the required de­
scription. This file is included on the installation diskette and must be copied to
the application directory on the hard disk. The contents of DECNET.ODS are
described in Section 1.8.

Example

Here is a sample .INS file for a network File Access Listener:

NetworK File Access Listener

Name "File Access Listener"

Remove the obJect from the networK data base if
Performin• the REMOVE operation. This must come

! before the "FILE" directives.
!
Execute CZZDECNETJDAR.TSK/Rem
!
! Specify all necessary files to copy/delete

File FAL.TSK/Delete
File DECNET.ODS/Delete

Insert the obJect in the networK data base if
Performin• an INSTALL operation. This must
come after the "FILE" d~rectives.

Execute [ZZDECNETJDAI.TSK/Ins

Specify what tasKs and libraries must be
installed and run. Since the onlY tasK is
an obJectt install and run DAX to in~erm

the user that this aPPlication should not
be selected,

Note that installation of the FAL tasK is
specified usin• the DECNET.ODS file.

nstall CZZDECNETJDAX.TSK/TasK
Run DAX

GETTING STARTED WITH PRO/DECnet 1-7

1.7 COMBINED PRO/DECnet APPLICATION/OBJECT INSTALLATION
FILES

The installation file for a combined PRO/DECnet application/object extracts
information from both types of .INS files. The resultant file resembles an object
.INS file with some exceptions. The application task [ZZDECNETJDAX.TSK
should not be referenced in any command line. Instead, you should specify
command lines for installing and running the appropriate application task.

Example

Here is a sample .INS file for the network Phone utility:

Network Phone utilitY1 aPPlication and listener
!
NaMe "PRO/DECnet Phone"

ReMoue the obJect f roM the network data base if
PerforMins REMOVE operation. This Must coMe
before the "FILE" directives.

Execute [ZZDECNETJDAR.TSK/ReM
!
! Specify all necessary aPPlication files to copy/delete
!
File PHONE+TSK/Delete
File SETUP+TSK/Delete
File PHONE.MNU/Delete
File PHONE.HLP/Delete
File PHONE.MSG/Delete
!
! Specify all necessary obJect files to copy/delete

File PHONET+TSK/Delete
File SETNET+TSK/Delete
File DECNET.ODS/Delete

Insert the obJect in the network data base if
PerforMins an INSTALL operation+ This Must
coMe after the "FILE" directives.

Execute [ZZDECNETJDAI,TSK/Ins

Specify what tasks and libraries Must be
installed and run. Since there is a real
aPPlication1 use that.

Note that installation of the PHONET and SETNET
tasks are specified usins the DECNET.ODS file.

Install SETUP.TSK/Task
Install PHONE+TSK/Task
Run SETUP

1-8 GETTING STARTED WITH PRO/DECnet

1.8 PRO/DECnet OBJECT DESCRIPTION FILES

The DECNET.ODS file defines a PRO/DECnet object task. It is used by the DAI
and DAR tasks during the installation and removal of applications. This file is
included along with the .INS file in a common directory on the installation
diskette. It must also be copied to the hard disk. This is done by specifying the
file name with a FILE directive in an .INS file.

There are several commands and qualifying switches which can be placed in
an object descriptor file. These commands can be abbreviated to three alpha­
betic characters.

NOTE

The file name argument, used in a DECNET.ODS command, adheres
to the standard RSX-11 M/M-PLUS conventions for file specifications.
A file name contains up to 9 alphanumeric characters. It is followed by
a 3 character alphanumeric file type.

An optional directory is also accepted in the file name. Only include it
when a task is placed in a special directory by the .INS file. Otherwise,
P/OS uses a default directory.

You can include comment lines anywhere in the command sequence.
You begin a comment line with an exclamation point (!)and terminate
it with a carriage return tBm. All text between this delimiter is a com­
ment.

1.8.1 OBJECT Command

The OBJECT command indicates that the specified file is a PRO/DECnet ob­
ject task file. This command requires the file.ext argument and the /TASK­
NAME switch.

Format

OBJECT [dir]fi/e.ext /TASKNAME=tsknam /COPIES=copnum
/NUMBER=objnum
/VERIFICATION=vertyp

tNSPECT}
OFF
ON

GETTING STARTED WITH PRO/DECnet 1-9

Qualifying Switches

/TASKNAME=tsknam

specifies the task name to use when installing and defining the object. A task
name consists of 1 to 6 alphanumeric characters. It can also contain periods(.)
and dollar signs ($).

/COPI ES=copnum

specifies the number of copies of an object task to be simultaneously started
by PRO/DECnet. This switch can only be used for numbered objects.

If specified, a new copy of an object is started up for each new connect
request. The total number of copies can range from 1 to 8.

If you omit the /COPY switch, a single copy of the object task must be able to
handle multiple connects.

NOTE

When you use the /TASKNAME switch for naming a "multi-copy ob­
ject", the task name must contain 3 alphanumeric characters followed
by 3 dollar signs ($). You must also use the /NUMBER switch to
specify an object type number from 1 to 255.

/NUMBER=objnum

specifies the object type number used by the source task when connecting to
the object. This number can range from 0 to 255.

A named object is only referenced by its task name. As a result, its object type
number is always 0. Do not include a /NUMBER switch when specifying a
named object.

A numbered object has an object type number ranging from 1 to 255. Object
type numbers 1 to 127 are reserved for DECnet-specific tasks. Numbers 128 to
255 are reserved for user-written tasks. (Refer to Chapters 2 and 3 for a
discussion of named and numbered objects.)

1-10 GETTING STARTED WITH PRO/DECnet

/VERIFICATION=vertyp

specifies the degree to which you want access to a network object. There are
three different options available for verifying incoming connect requests. If no
switch is supplied, a default value of OFF is assumed.

INSPECT verifies the user ID and password supplied by the source pro­
gram. The connect request is automatically forwarded to the
object task regardless of the outcome.

OFF allows connect requests to be passed along to the object with­
out checking access authorization. This option is always used
for named objects.

ON verifies the user ID and password supplied by the source pro­
gram. If there is no exact match, the connection request is
rejected, and the object task does not receive the request.

1.8.2 RUN/INSTALL Command

The RUN/INSTALL command causes the specified set-up task to run prior to
installation of an application or at system startup. Before running an object
task, certain initialization operations must be performed such as setting sys­
tem parameters or defining system logical names.

This command requires the file.ext argument, and the /INSTALL and /TASK­
NAM E switches.

Format

RUN [dir]fi/e.ext/INSTALL/TASKNAME=tsknam

Qualifying Switches

/INSTALL

directs the set-up task to run prior to installing an application.

IT ASK NAM E=tsknam

specifies the task name to use when running the set-up task. A task name
consists of 1 to 6 alphanumeric characters. It can also contain periods (.) and
dollar signs ($).

1.8.3 RUN/REMOVE Command

The RUN/REMOVE command causes a tear-down task to run when an object
application is removed from the system. This command enables required tear­
down procedures to take place such as deleting logical names.

This command requires the file.ext argument, the /REMOVE and /TASKNAME
switches.

GETTING STARTED WITH PRO/DECnet 1-11

Format

RUN [dir]fi/e.ext/REMOVE/TASKNAME=tsknam

Qualifying Switches

/REMOVE

directs the task file to run prior to removing an application.

/TASKNAME=tsknam

specifies the task name to use when running the tear-down task. A task name
consists of 1 to 6-alphanumeric characters. It can also contain periods (.) and
dollar signs ($).

Examples

Here is a sample DECNET.ODS file for a File Access Listener (FAL):

Network File Access utilitY• obJect definition

Define the FAL Listener as a PRO/DECnet obJect.
1 This obJect has a specific obJect tYPe number, and

re9uires access verification.

! There is no set-UP or tear-down task to run.

OBJECT CZZDECNETJFAL,TSK/TAS=FAL$$$/NUM=17/VER=ON/COP=5

Here is a sample DECNET.ODS file for a network Phone Listener:

! Network Phone utilitY• obJect defintion

Define the Phone Listener as a PRO/DECnet obJect.
1 This obJect is connected to by task name• so does not
1 re9uire an obJect number or verification definition.

OBJECT PHONET.TSK/TASKNAME=N,PHOL

Run the Phone Listener set-UP task at system startup
time. This task defines a series of lo•ical names to
be used by the Phone Listener when it is automatically

! run bY PRO/DECnet.

! No tear-down task is re9uired when the aPPlication is
removed. The lo•ical names will be deleted when the

! SYS~em is next powered down.

RUN SETNET.TSK/INSTALL/TASKNAME=N,PHOS

1-12 GETTING STARTED WITH PRO/DECnet

1.9 PRO/DECnet PROGRAMMING CONSIDERATIONS

The following programming suggestions can assist you in writing and develop­
ing your PRO/DECnet applications:

1. Using a Trace Routine - You can add a trace routine to your
PRO/DECnet program. This routine can assist you in collecting spe­
cific packets of data or allow you to set breakpoints at selected loca­
tions for examining specific instructions.

2. Debugging an Object Task - When you use a Professional 350 to
debug an object task, you should select the PRO/Tool Kit from the
Applications Menu. If the program stops executing, having an active
PRO/Tool Kit will prevent your system from crashing.

3. Checking Software Compatibility - When creating PRO/DECnet pro­
grams, you should test them against a set of specific objectives. Is
your task compatible with other tasks on your network? Can your task
satisfy the requests of remote tasks?

4. Copying Files - Here are two cases when you should be careful about
the use of the COPY command:

D When copying either a Frame Development Tool (FDT) menu, a
HELP file or a message file from a VAX/VMS node to your Profes­
sional 350 node, you must execute the COPY command from the
Professional. The VMS COPY command does not use the block
copy mode which is required by Professional systems for these
transferring files. If the VMS command is used, you can expect a
"record too long" error message displayed on your screen.

D When you use P/OS DCL commands to access remote files, you
must be aware of any differences in system conventions. If the file
name syntax used on the remote system differs from the P/OS
format, you should place quotes around the complete file name
specification. The use of quotes is required for most VAX/VMS
device and directory specification strings.

For example:

COPY VMSNOD"HARDY DLLIE"::"USER$:CHARDY.MEMOJFILE1.MEM" *•*

Here, a VMS file from device USER$ and directory [HARDY.MEMO]
was copied to a Professional system.

Error messages reflect a condition that prevented a command from executing
properly. In most cases, the situation can be corrected and you can reissue the
command. Follow these simple rules when writing a PRO/DECnet object task:

GETTING STARTED WITH PRO/DECnet 1-13

Problem 1 - Duplicating Object Task Names

When duplicated task names are found, PRO/DECnet displays an error
message indicating the problem.

Solution

Assign task names to your application which are different from existing
system task names. For OBJECT and RUN command task names,
begin the names with the letter "N" followed by a period (.). For exam­
ple, use "N.PHOS" for a phone set-up task or "N.PHOR" for a phone
tear-down task. This solution does not apply to "multi-copy" objects.
(See Section 1.8.1 for more details.)

Problem 2 - Duplicating Object Type Numbers

PRO/DECnet does not install an object task using a number already
assigned to an installed task. An error message is displayed on the
system message board.

Solution

Whenever possible, you should write your object task as a named
object with object type number equal to 0.

NOTE

For named objects, the verification switch can only be set to
"OFF". If you want to define the setting as either "ON" or
"INSPECT", your object task must be numbered.

Problem 3 - DECNET.ODS File Errors

When an object task is installed, PRO/DECnet analyzes the DEC­
NET.ODS file format. If any errors are found, an error message is
displayed.

Solution

You should debug the file using the appropriate tools and repeat the
installation procedure.

CHAPTER 2

HIGH LEVEL LANGUAGE
COMMUNICATION CALLS

DECnet provides a set of subroutines for PRO/DECnet applications requiring
task-to-task communication. These applications can be written in FORTRAN,
COBOL, BASIC, and PASCAL. This chapter discusses the subroutine calls in
alphabetical order. A description of each subroutine call includes its function,
format, argument list, and associated error/completion codes. Unless other­
wise noted, decimal values are supplied for all arguments discussed in this
chapter.

If you encounter an unfamiliar DECnet concept or term, you should refer to
Appendix A for more details.

2.1 TASK BUILDING

When you build PRO/DECnet tasks on a host system, you must invoke the
Professional Application Builder (PAB). If you are building them on a Profes­
sional, you must invoke PAB by issuing a LINK command.

These types of tasks must also be linked to the library [1,5]NETSUB.OLB. To
do this, add LB:[1,5JNETSUB/LB either to the task build command file or the
overlay description file.

2-1

2-2 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.2 ASSIGNING LOGICAL UNIT NUMBERS

You can assign logical unit numbers (LUNs) for calls to the network (NS:) at
task-build time or at run time. These specified LUNs must be assigned to NS:
before they can be used in any network calls.

You may assign the LUN used to open the network (OPNNT) at task build time.
In this case, you should not specify it in an OPNNT call. The symbol .MBXLU
can define the LUN in a GBLDEF as shown below:

GBLDEF=. MB>(LLJ :x

This option instructs the task builder to define all global references to .MBXLU
as the value x.

NOTE

After identifying the correct number of LUNs required for P/OS and
language specific operations, you should include that number in the
UNITS command for PAB. COBOL tasks cannot use LUN 1. It is a
reserved number. In addition, PASCAL tasks should use LUNs from
25 through 40.

2.3 ESTABLISHING AN ACTIVE NETWORK TASK

The first DECnet call in your program must be an open call. An open call
allows your task to access the network. You can use one of these forms:

OPNNT

OPNNTW

Establishes your task as an active network task and creates a
network data queue for the task.

Performs the same functions as OPNNT. This version of the call
causes the issuing task to stop executing until the call has fin­
ished processing.

Once an open call has been issued, you can establish several logical link
connections for task-to-task communication.

2.4 TERMINATING NETWORK TASK OPERATIONS

A task can terminate network operations by issuing a close call in one of these
forms:

CLSNT

CLSNTW

Terminates a task's network activity, aborts its established logical
links, and frees all its network logical unit numbers.

Performs the same functions as CLSNT. This version of the call
causes the issuing task to stop executing until the call has fin­
ished processing.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-3

2.5 EXAMINING 1/0 STATUS BLOCKS

All high level language calls, except for WAITNT, specify the 1/0 status block in
their respective argument lists. This block contains completion status informa­
tion on return from the completed call. The 1/0 status block takes these forms:

FORTRAN: 1- or 2-word single-precision integer array

COBOL: 1- or 2-word elementary numeric data item

BASIC: 1- or 2-word integer array

PASCAL: 1- or 2-word single-precision integer array

BACC, BFMTO, and BFMT1 calls use one-word status blocks. For high level
language tasks, a value of -1 or .TRUE. indicates that the call completed
successfully; a value of 0 or .FALSE. indicates that the call contained an invalid
argument.

All other calls use 2-word 1/0 status blocks. The first word contains an
error/completion code for the call. The codes fall into three categories:

O A positive value means the successful completion of the call.

O A negative value means an improper execution of the call.

O A null value (0) indicates that the call has not finished processing.

When a call fails, you should examine the value of the code. A summary of
code values is provided in Appendix E. Applicable error/completion codes
can be found in each call description in this chapter.

The contents of the second status word vary with the call. Refer to the individ­
ual call descriptions for more information.

2.6 ACCESS CONTROL INFORMATION

Access control information is often required by a target system in order to
prohibit unauthorized access to its resources. This information can consist of
user ID, password, account numbers, device names and directory names for a
target node. The specific requirements are described in the target system's
user documentation. You can also define an alias for remote file access. An
alias is a permanent "nickname" that you can assign to a node. It contains
default access control information such as user ID, password and account
number.

2. 7 FLOW CONTROL

DECnet provides a flow control mechanism which prevents the overflow of
available buffer space. It forces synchronization between sending and receiv­
ing tasks. When the flow control is ON, data is sent from the source task only
after the target task has indicated adequate buffering capabilities, and has
issued a receive call. (See Section 3.8 for a description of flow control with
MACR0-11 tasks.)

2-4 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.8 CONVENTIONS USED IN THIS CHAPTER

The following conventions are used in the call and argument descriptions and
examples in this chapter:

UPPERCASE LETTERS

lowercase italic type

commas, periods,
and parentheses ()

square brackets []

represent actual characters that you must enter
as shown.

indicates variables whose value you must specify.

must be included when shown as part of the call
syntax. They are not documentation conventions.

enclose optional arguments. You must specify
any argument not enclosed by brackets. Do not
type the brackets when you code a call. They are
documentation conventions and are not part of
the call syntax.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-5

2.9 OPTIONAL ARGUMENTS IN HIGH LEVEL LANGUAGE CALLS

Many high level language calls contain both paired and single optional argu­
ments. The following sections detail formatting conventions specific to each
programming language.

2.9.1 Using Paired Optional Arguments

There are specific rules which you must follow when using paired optional
arguments. The differences are discussed below:

Sample Argument List

arg1,arg2,arg3,[arg4,arg5],[arg6,arg7]

where [arg4,arg5] and [arg6,arg7] are paired optional arguments.

1. Paired optional arguments cannot be separated from each other. You
must specify both or omit both from a call.

D When paired optional arguments are omitted from FORTRAN
and PASCAL calls, you must keep the arguments' positional
commas as part of the list.

FORTRAN and PASCAL

arg1 ,arg2,arg3,,,[arg6,arg7]

D When paired optional arguments are omitted from COBOL and
BASIC calls, you must specify O for each omitted argument.

COBOL

arg1 ,arg2,arg3,0,0,[arg6,arg7].

BASIC

arg1 ,arg2,arg3,0,0,[arg6,arg7]

2. An argument list can end with the last required argument contained in
the string. You can omit any paired optional arguments which trail it. In
the following example, arg3 is the last required argument in a list of
seven arguments. Paired optional arguments [arg4,arg5] and
[arg6,arg7] are omitted from the example.

FORTRAN

arg1 ,arg2,arg3

2-6 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.9.2 Using Single Optional Arguments

Single optional arguments can also be omitted from a call's argument list. You
should observe the same language conventions as previously discussed.

Sample Argument List

arg1 ,[arg2],arg3

where [arg2] is a single optional argument.

The following examples show the argument list without arg2.

FORTRAN

arg1,,arg3

COBOL

arg1 ,O,arg3.

BASIC

arg1 ,O,arg3

PASCAL

arg1 ,,arg3

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-7

2.10 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

The following sections describe the high level language calls and provide you
with specific guidelines. The calls are summarized in the table below:

Table 2-1
High Level Language Communication Calls

Call

ABTNT

A CC NT

BACC

BFMTO

BFMT1

CLSNT

CON NT

DSC NT

GLNNT

GNDNT

OPNNT

REC NT

REJNT

SNDNT

WAITNT

XMINT

Function

Abort a logical link.

Accept a logical link connect request.

Build access control information area.

Build a format 0 destination descriptor.

Build a format 1 destination descriptor.

End a task's network operations.

Request a logical link connection.

Disconnect a logical link.

Get local node information.

Get data from network data queue.

Access the network.

Receive data over a logical link.

Reject logical link connect request.

Send data over a logical link.

Suspend the execution of a calling task.

Send interrupt message over a logical link.

2-8 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.10.1 Common Argument Definitions

Commonly used arguments are defined in the following section. Each argu­
ment may have a general definition and three language-specific definitions.
The information is not repeated with each intertask communication call.

outsize, outmessage

define optional user data sent with a specific call. One argument cannot be
used or omitted without the other one.

outsize

outmessage

specifies the length of the optional message. The valid
range is 1- to 16-bytes/characters.

specifies the array or string containing the outgoing user
message.

EXCEPTION

To omit these arguments from the CONNT call in COBOL and BASIC,
you must also omit the insize and inmessage arguments. Despite this,
you can still use insize and inmessage and simply specify a null value
(0) for outsize and outmessage.

status

specifies the array or string containing completion status information on return
from a call. The status values for FORTRAN, COBOL, BASIC and PASCAL
tasks are listed below:

FORTRAN

status(1) returns an error/completion code

status(2) contains 0 or a value which is DECnet call-dependent

COBOL

status(1) returns an error/completion code

status(2) contains 0 or a value which is DECnet call-dependent

BASIC

status%(0) returns an error/completion code

status%(1) contains 0 or a value which is DECnet call-dependent

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-9

PASCAL

status(1) returns an error completion code

status(2) contains O or a value which is DECnet call-dependent

tgtblk

EXCEPTION

For COBOL and BASIC tasks, the status argument cannot be omitted
from a call. However, you can specify Oto prevent status information
from being returned from a call.

specifies the array or string where the access control information and destina­
tion descriptor are defined by the BACC and BFMTO or BFMT1 calls. This
array is passed to a target task by the CONNT call.

NOTE

A FORTRAN tgtblk array must start on an even byte (word) boundary.

2-10 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

ABTNT
Abort a Logical Link

2.10.2 ABTNT - Abort a Logical Link

The ABTNT call causes the immediate disconnection of a specified logical link.
The associated LUN can be reassigned to another logical link. Along with the
abort message, the issuing task can transmit an optional 1- to 16-bytes/char­
acters message to the other task.

Formats

FORTRAN

CALL ABTNT[W] (lun,[status],[outsize,outmessage])

COBOL

CALL "ABTNT[W]" USING lun,[status],[outsize,outmessage].

BASIC

CALL ABTNT[W] BY REF (lun%,[status%()],[outsize%,outmessage$])

PASCAL

ABTNT[W] (Jun,[status],[outsize,outmessage])

Arguments

fun

identifies the logical link to abort. If the task initiated the connection, specify
the LUN used in the CONNT call. If the task accepted a connect request,
specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from ABTNT. (See Section 2.10.1.)

outsize ,outmessage

specify an optional message to be sent by a task. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-11

Argument Data Type Summary

FORTRAN

fun
status
outsize
outmessage

COBOL

fun
status
outsize
outmessage

BASIC

fun%
status%()
outsize%
outmessage$

PASCAL

fun
status
outsize
outmessage

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.

-2 No logical link established for the specified LUN.

-9 The task is not a network task. OPNNT did not execute successfully.

-13 An invalid buffer argument; the outmessage buffer is outside the user
task's address space. For FORTRAN, it is not word aligned.

-40 A directive error occurred. See the RSX-11 MIM-Plus Executive Refer­
ence Manual.

2-12 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples

FORTRAN

CALL ABTNTW (CONLUN,IOST,OUTSIZ,OUTMSG)

COBOL

CALL "ABTNTW" USING CONLUN,IOST,OUTSIZ,OUTMSG.

BASIC

CALL ABTNTW BY REF (CONLUN%,IOSP/o(),OUTSIZ%,OUTMSG$)

PASCAL

ABTNTW (CONLUN,IOST,OUTSIZ,OUTMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-13

A CC NT

Accept Logical Link
Connect Request

2.10.3 ACCNT - Accept Logical Link Connect Request

The ACCNT call establishes a logical link between the target task and the
source task. Before calling ACCNT, the source task must call GNDNT and
remove the connect request from the network data queue. The target task can
return an optional 1- to 16-bytes/characters message to the source task.

Formats

FORTRAN

CA LL ACCNT[W] (tun, [status].mail but, [outsize ,outmessage])

COBOL

CALL "ACCNT[W]" USING lun,[status],mailbuf,
[outsize,outmessage].

BASIC

CALL ACCNT[W] BY REF (lun%,[status%()],mailbuf$,
[outsize%, outmessage$])

PASCAL

ACCNT[W] (lun,[status],mailbul',[outsize,outmessage])

Arguments

fun

assigns the logical unit number for the logical link. Use this LUN in succeeding
RECNT, SNDNT, XMINT, ABTNT, and DSCNT calls.

status

specifies the array which will contain the completion status information on
return from ACCNT. (See Section 2.10.1.)

mailbuf

specifies the connect block needed to establish the connection. The connect
block was placed in mailbuf by a preceding GNDNT call. (See Section 2.10.11.)
In FORTRAN, the mail buffer must start on an even byte (word) boundary.

outsize, outmessage

specify an optional message to be sent by a task. (See Section 2.10.1.)

2-14 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

fun
status
mail but
outsize
outmessage

COBOL

fun
status
mail but
outsize
outmessage

BASIC

fun%
status%()
mail but$
outsize%
outmessage$

PASCAL

fun
status
mail but
outsize
outmessage

1-word integer variable or constant
2-word integer array
1- to 114-byte array
1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
1- to 114-element character string
integer variable or constant
1- to 16-element character string

integer variable or constant
2-element integer array
1- to 114-element character string
integer variable or constant
1- to 16-element character string

1-word integer variable or constant
2-word integer array
1- to 114-byte array
1-word integer variable or constant
1- to 16-byte array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.

-1 System resources needed for the logical link are not available.

-3 The task that originally requested the connection has aborted or has
requested a disconnect before the connection could complete.

-5 The temporary link address in the mail buffer is not valid.

-8 A logical link has already been established on the specified LUN.

-9 The issuing task is not a network task. OPNNT did not execute success­
fully.

-13 An invalid buffer argument. Either the mailbuf or outmessage buffer is
outside the user task address space. For FORTRAN, mailbuf is not word
aligned.

-40 A directive error occurred. See the RSX-11 MIM-Plus Executive Refer­
ence Manual.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-15

Examples

FORTRAN

CALL ACCNTW (ACCLUN,IOST,MLBX,OUTSIZ,OUTMSG)

COBOL

CALL "ACCNTW" USING ACCLUN,IOST,MLBX,OUTSIZ,OUTMSG.

BASIC

CALL ACCNTW BY REF (ACCLUN%,IOST%(),MBLX$,OUTSIZ%,
OUTMSG$)

PASCAL

ACCNTW (ACCLUN,IOST,MBLX,OUTSIZ,OUTMSG)

2-16 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

BACC

Build Access Control
Information Area

2.10.4 BACC - Build Access Control Information Area

The BACC call specifies the access control information for a connect block.
For accessing files or performing privileged functions on other PRO/DECnet
nodes, a user ID and a password are required access control information.
Nodes with other system software may also require an account number.

You should use BACC only when the access control information is required for
remote access of systems. Before calling BACC, the task must define a 72-
element array or string in which the DECnet software will build the connect
block.

If an alias contains the required access control information, the task need not
call BACC. Instead, the program will use the access control information speci­
fied by the alias. The alias must be specified in a subsequent BFMTO or
BFMT1 call. (See Section 2.10.5 or 2.10.6.)

DECnet on the target system will check the validity of the access control
information. If it checks out, the results are passed to the target task when the
connect request is retrieved via the GNDNT call. (The GNDNT call only applies
to RSX DECnet and PRO/DECnet systems.)

Formats

FORTRAN

CALL BACC ([status],tgtblk,[usersz,user],
[passwdsz ,passwd], [accnosz,accno])

COBOL

CALL "BACC" USING [status],tgtb/k,[usersz,user],
[passwdsz,passwd],[accnosz,accno].

BASIC

CALL BACC BY REF ([status%],tgtblk$,[usersz%,user$],
[passwdsz%,passwd$], [accnosz%,accno$])

PASCAL

BACC ([status],tgtblk,[usersz,user],
[passwdsz,passwd],[accnosz,accno])

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-17

Arguments

status

specifies the array which will contain the completion status on return from
BACC. When BACC completes successfully, status is set to .TRUE. for FOR­
TRAN or to -1 for COBOL, BASIC and PASCAL. If there is an invalid BACC
argument, status is set to .FALSE. for FORTRAN or to 0 for COBOL, BASIC
and PASCAL. (See Section 2.10.1.)

tgtblk

specifies an array where the connect block is built. (See Section 2.10.1.)

usersz, user

specify the user ID. They are paired optional arguments. (See Section 2.9.1 for
rules on omitting them from PRO/DECnet calls.)

usersz specifies the user ID length in bytes/characters.

user specifies the 1- to 16-element array or string containing the user
ID.

passwdsz,passwd

specify the password associated with the user ID. They are paired optional
arguments. (See Section 2.9.1 for rules on omitting them from PRO/DECnet
calls.)

passwdsz specifies the password length in bytes/characters.

passwd specifies the 1- to 8-element array or string containing the
password.

accnosz,accno

specify the account number. They are paired optional arguments. (See Section
2.9.1 for rules on omitting them from PRO/DECnet calls.)

accnosz specifies the account number length in bytes/characters.

accno specifies the 1- to 16-element array or string containing the
account number.

2-18 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

status
tgtblk
usersz
user
passwdsz
passwd
accnosz
accno

COBOL

status
tgtblk
usersz
user
passwdsz
passwd
accno$z
accno

BASIC

status%
tgtblk$
userszo/o
user$
passwdsz%
passwd$
accnosz%
accno$

PASCAL

status
tgtblk
usersz
user
passwdsz
passwd
accnosz
accno

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 16-byte array
1-word integer variable or constant
1- to 8-byte array
1-word integer variable or constant
1- to 16-byte array

integer variable
72-element character string
integer variable or constant
1- to 16-element character string
integer variable or constant
1- to 8-element character string
integer variable or constant
1- to 16-element character string

integer variable
72-element character string
integer variable or constant
1- to 16-element character string
integer variable or constant
1- to 8-element character string
integer variable or constant
1- to 16-element character string

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 16-byte array
1-word integer variable or constant
1- to 8-byte array
1-word integer variable or constant
1- to 16-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-19

Table 2-2
BACC Connect Block Symbolic Offsets

Length in
bytes/characters Destination Descriptor

26

2

16

2

8

2

16

Built by BFMTO or BFMT1 call

Access Control

User ID length
(equal to or less than 16-bytes/characters)

User ID

Password length
(equal to or less than 8-bytes/characters)

Password

Account number length
(equal to or less than 16-bytes/characters)

Account number

Examples

FORTRAN

CALL BACC (STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,PASWRD,
ACCSIZ,ACCNUM)

COBOL

CALL "BACC" USING STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,
PASWRD,ACCSIZ,ACCNUM.

BASIC

CALL BACC BY REF (STAT%,CONBLK$,USRSIZ%,USRNAM$,PASSIZ%,
PASWRD$,ACCSIZ%,ACCNUM$)

PASCAL

BACC (STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,PASWRD,ACCSIZ,
ACCNUM)

2-20 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

BFMTO

Build a Format 0
Destination Descriptor

2.10.5 BFMTO - Build a Format O Destination Descriptor

Use the BFMTO call if the target task is installed as a numbered object. The
BFMTO call fills in the connect block with the destination node name and the
target task's object type code. An object type code identifies a particular
DECnet program by its function and not by its task name. See Appendix C for
a list of object type codes.

Before calling BFMTO, the task must define a 72-element array or string which
will contain the connect block. Specify its location in the tgtblk argument.

Formats

FORTRAN

CALL BFMTO ([status],tgtblk,ndsz,ndname,objtype)

COBOL

CALL "BFMTO" USING [status],tgtblk,ndsz,ndname,objtype.

BASIC

CALL BFMTO BY REF ([status%],tgtblk$,ndsz%,ndname$,objtype%)

PASCAL

BFMTO ([status],tgtblk,ndsz,ndname,objtype)

Arguments

status

specifies the variable which will contain completion status information on re­
turn from BFMTO. When BFMTO completes successfully, status is set to .TRUE.
for FORTRAN or to -1 for COBOL, BASIC and PASCAL. For an invalid BFMTO
argument, status is set to .FALSE. for FORTRAN or to 0 for COBOL, BASIC
and PASCAL. (See Section 2.10.1.)

tgtblk

specifies the starting location of the connect block. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-21

ndsz

specifies the length of the target node name in bytes/characters.

ndname

specifies the location of the target node name. This name is either a node
name or an alias.

objtype

specifies the target task's object type code. The valid range is 1 to 255. See
Appendix C for a list of object type codes.

Argument Data Type Summary

FORTRAN

status
tgtblk
ndsz
ndname
objtype

COBOL

status
tgtblk
ndsz
ndname
objtype

BASIC

status%
tgtblk$
ndsz%
ndname$
objtype%

PASCAL

status
tgtblk
ndsz
ndname
objtype

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 6-byte array
1-word integer variable or constant

integer variable
72-element character string
integer variable or constant
1- to 6-element character string
integer variable or constant

integer variable
72-element character string
integer variable or constant
1- to 6-element character string
integer variable or constant

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 6-byte array
1-word integer variable or constant

2-22 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Table 2-3
BFMTO Connect Block Symbolic Offsets

Length in decimal
bytes/characters

6

18

46

Examples

FORTRAN

Destination Descriptor

Destination node name with trailing blanks

Descriptor format type, which is 0 for BFMTO

Destination object type (1 to 255)

Descriptor Field for Format O

Not used

Access Control

Built by a BACC subroutine

CALL BFMTO (STAT,CONBLK,NDLEN,NDNAM,OBJECT)

COBOL

CALL "BFMTO" USING STAT,CONBLK,NDLEN,NDNAM,OBJECT.

BASIC

CALL BFMTO BY REF (STAT%,CONBLK$,NDLEN%,NDNAM$,OBJECT%)

PASCAL

BFMTO (STAT,CONBLK,NDLEN,NDNAM,OBJECT)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-23

BFMT1

Build a Format 1
Destination Descriptor

2.10.6 BFMT1 - Build a Format 1 Destination Descriptor

Use the BFMT1 call if the target task is installed as a named object. The
BFMT1 call specifies the target node name and the target task name for the
connect block. This call does not identify the target task by its function.

Formats

FORTRAN

CALL BFMT1 ([status],tgtblk,ndsz,ndname,objtype,namesz,name)

COBOL

CALL "BFMT1" USING [status],tgtblk,ndsz,ndname,objtype,
namesz,name

BASIC

CALL BFMT1 BY REF ([status%],tgtblk$,ndsz%,ndname$,objtype%,
namesz%,name$)

PASCAL

BFMT1 ([status],tgtblk,ndsz,ndname,objtype,namesz,name)

Arguments

status

specifies the variable which will contain completion status information on re­
turn from BFMT1. If the BFMT1 call completes successfully, status is set to
.TRUE. for FORTRAN or to -1 for COBOL, BASIC and PASCAL. If there is an
invalid BFMT1 argument, status is set to .FALSE. for FORTRAN or to 0 for
COBOL, BASIC and PASCAL. (See Section 2.10.1.)

tgtblk

specifies the starting location of the connect block. (See Section 2.10.1.)

ndsz

specifies the length of the target node name in bytes/characters.

2-24 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

ndname

specifies the location of the target node name. This name is either a node
name or an alias.

objtype

specifies the object type. It must be 0.

namesz

specifies the length of the target task name in bytes/characters.

name

specifies the location of the target task name.

Argument Data Type Summary

FORTRAN

status
tgtblk
ndsz
ndname
obj type
namesz
name

COBOL

status
tgtblk
ndsz
ndname
objtype
namesz
name

BASIC

status%
tgtblk$
ndsz%
ndname$
objtype%
namesz%
name$

PASCAL

status
tgtblk
ndsz
ndname
obj type
namesz
name

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 6-byte array
1-word integer variable or constant
1-word integer variable or constant
1- to 16-byte array

integer variable
72-element character string
integer variable or constant
1- to 6-element character string
integer variable or constant
integer variable or constant
1- to 16-element character string

integer variable
72-element character string
integer variable or constant
1- to 6-element character string
integer variable or constant
integer variable or constant
1- to 16-element character string

1-word integer variable
72-byte array
1-word integer variable or constant
1- to 6-byte array
1-word integer variable or constant
1-word in_teger variable or constant
1- to 16-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-25

Table 2-4
BFMT1 Connect Block Symbolic Offsets

Length in decimal
bytes/characters

6

2

16

46

Examples

FORTRAN

Destination Descriptor

Destination node name with trailing blanks

Descriptor format type, which is 1 for BFMT1

Destination object type, which is O for BFMT1

Descriptor Fields for Format 1

Destination task name length
(equal to or less than 16-bytes/characters)

Destination task name

Access Control

Built by a BACC subroutine

CALL BFMT1 (STAT,CONBLK,NDLEN,NDNAM,OBJTYP,TSKLEN,
TSKNAM)

COBOL

CALL "BFMT1" USING STAT,CONBLK,NDLEN,NDNAM,OBJTYP,
TSKLEN,TSKNAM.

BASIC

CALL BFMT1 BY REF (STAT%,CONBLK$,NDLEN%,NDNAM$,OBJTYP%,
TSKLEN%,TSKNAM$)

PASCAL

BFMT1 (STAT,CONBLK,NDLEN,NDNAM,OBJTYP,TSKLEN,TSKNAM)

2-26 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

CLSNT

End Network Task
Operations

2.10. 7 CLSNT - End Network Task Operations

Before issuing CLSNT a task should disconnect all logical links and remove
and process all messages on its network data queue. The CLSNT call discon­
nects the task from the network and aborts any active logical links. Any mes­
sages, except for connect requests, in the task's network data queue are
discarded by this operation.

PRO/DECnet will save in a general delivery queue any connect requests
received during CLSNT processing. After the task exits, the system software
restarts it automatically. After restart, the task may issue an OPNNT call which
establishes a network data queue. PRO/DECnet then places any connect re­
quests on the task's network data queue.

Formats

FORTRAN

CALL CLSNT[W] [(status)]

COBOL

CALL "CLSNT[W]" [USING status].

BASIC

CALL CLSNT[W] [BY REF (status%())]

PASCAL

CLSNT[W] [(status)]

Arguments

status

specifies the array which will contain completion status information on return
from CLSNT. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-27

Argument Data Type Summary

FORTRAN

status 2-word integer array

COBOL

status 2-element integer array

BASIC

status%() 2-element integer array

PASCAL

status 2-word integer array

Error/Completion Codes

O Call has not completed.

Call completed successfully.

-9 The task is not a network task. OPNNT did not execute successfully.

-10 The network is not accessed on the specified LUN.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive Refer­
ence Manual.

Examples

FORTRAN

CALL CLSNTW (IOST)

COBOL

CALL "CLSNTW" USING IOST.

BASIC

CALL CLSNTW BY REF (IOST)

PASCAL

CLSNTW (IOST)

2-28 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

CON NT

Request Logical
Link Connection

2.10.8 CONNT - Request Logical Link Connection

The CONNT call requests a logical link between a source task and a target
task. Before a CONNT call is issued, you must build a connect block using the
BACC and BFMTO or BFMT1 calls. A target task can return an optional 1- to
16-bytes/characters message when it accepts or rejects the connect request.

Formats

FORTRAN

CALL CONNT[W] (lun,[status],tgtblk,
[outsize ,outmessage], [insize,inmessage])

COBOL

CALL "CONNT[W]" USING lun,[status],tgtblk,
[outsize,outmessage],[insize,inmessage].

BASIC

CALL CONNT[W] BY REF (lun%,[status%()],tgtblk%,
[outsize%,outmessage$],
[insize%,inmessage$])

PASCAL

CONNT[W] (lun,[status],tgtblk,
[outsize,outmessage],[insize,inmessage])

Arguments

fun

assigns the logical unit number for the logical link. Use this LUN in any
succeeding RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

status

specifies the array which will contain completion status information on return
from CON NT. (See Section 2.10.1.)

tgtblk

specifies the array or string containing the connect block. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-29

outsize, out message

define a buffer containing an optional outgoing message. They are paired
optional arguments. (See Section 2.10.1 and note exception for BASIC and
COBOL calls.)

insize,inmessage

specify a buffer containing an optional message sent by the target task. They
are paired optional arguments. (See Section 2.10.1 and note exception for
BASIC and COBOL calls.)

insize specifies the length of the optional message in bytes/charac­
ters.

inmessage specifies the 1- to 16-element/array or string which will store
the incoming message.

Argument Data Type Summary

FORTRAN

fun
status
tgtbf k
outsize
outmessage
in size
in message

COBOL

fun
status
tgtbfk
outsize
outmessage
insize
in message

BASIC

fun%
status%()
tgtbfk$
outsize%
outmessage$
insize%
in message$

PASCAL

fun
status
tgtbfk
outsize
outmessage
insize
in message

1-word integer variable or constant
2-word integer array
72-byte array
1-word integer variable or constant
1- to 16-byte array
1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
72-element character string
integer variable or constant
1- to 16-element character string
integer variable or constant
1- to 16-element character string

integer variable or constant
2-element integer array
72-element character string
integer variable or constant
1- to 16-element character string
integer variable or constant
1- to 16-element character string

1-word integer variable or constant
2-word integer array
72-byte array
1-word integer variable or constant
1- to 16-byte array
1-word integer variable or constant
1- to 16-byte array

2-30 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Error/Completion Codes

O Call has not completed.

1 Target task accepted the connection.

2 Target task accepted the connection and some returned data was lost.

-1 Required system resources are not available for the logical link.

-4 Target task rejected the connection and some returned data was lost.

-5 The value of outsize is greater than 16 bytes.

-7 Connection rejected by DECnet software on the target node. (See Ap­
pendix B.)

-8 A logical link is already established on the specified LUN.

-9 The source task was not a network task. CONNT did not execute prop­
erly.

-12 The target task rejected the connection.

-13 An invalid buffer argument. Either tgtb/k, inmessage or outmessage
buffer is outside the source task address space. For FORTRAN, the
buffer is not word aligned.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive
Reference Manual.

Examples

FORTRAN

CALL CONNTW (CONLUN,IOST,CONBLK,,,INSIZ,INMSG)

COBOL

CALL "CONNTW" USING CONLUN,IOST,CONBLK,0,0,INSIZ,INMSG.

BASIC

CALL CONNTW BY REF (CONLUN%,IOST%(),CONBLK$,O,O,INSIZ%,INMSG$)

PASCAL

CONNTW (CONLUN,IOST,CONBLK,0,0,INSIZ,INMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-31

DSC NT

Disconnect a Logical Link

2.10.9 DSCNT- Disconnect a Logical Link

The DSCNT call disconnects the logical link and frees the LUN associated with
the logical link. Unlike ABTNT (see Section 2.10.2), all pending send data calls
(SNDNT) will complete before you have a completely disconnected link.

The issuing task continues to receive outstanding data messages (RECNT
calls) during processing time. Once the logical link disconnects, PRO/DECnet
will reject any pending receive calls for the target task. These RECNT calls
complete with an abort code (-3) in the 1/0 status block.

The task issuing DSCNT can send a 1- to 16-byte/character message to the
target task.

Formats

FORTRAN

CALL DSCNT[W] (lun,[status],[outsize,outmessage])

COBOL

CALL "DSCNT[W]" USING lun,[status],[outsize,outmessage].

BASIC

CALL DSCNT[W] BY REF (lun%,[status%()],[outsize%,outmessage$])

PASCAL

DSCNT[W] (lun,[status],[outsize,outmessage])

Arguments

fun

specifies the logical unit number that you want to disconnect. If the task initi­
ated the connection, specify the LUN used in the CONNT call. If the task
accepted the connection, specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from DSC NT. (See Section 2.10.1.)

outsize, outmessage

specify a buffer containing the optional outgoing message. (See Section
2.10.1.)

2-32 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

fun
status
outsize
outmessage

COBOL

fun
status
outsize
outmessage

BASIC

fun%
status%()
outsize%
outmessage$

PASCAL

fun
status
outsize
outmessage

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

Error/Completion Codes

O Call has not completed.

1 The call completed successfully.

-1 No logical link established on the specified LUN.

-5 The value of outsize is greater than 16 bytes.

-9 The task is not a network task. CONNT did not execute properly.

-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for outmessage is outside the
user task address space. For FORTRAN, the buffer is not word aligned.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive Refer­
ence Manual.

Examples

FORTRAN

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-33

CALL DSCNTW (CONLUN,IOST,OUTSIZ,OUTMSG)

COBOL

CALL "DSCNTW" USING CONLUN,IOST,OUTSIZ,OUTMSG.

BASIC

CALL DSCNTW BY REF (CONLUN%,IOST%(),OUTSIZ%,OUTMSG$)

PASCAL

DSCNTW (CONLUN,IOST,OUTSIZ,OUTMSG)

2-34 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

GLNNT

Get Local Node
Information

2.10.10 GLNNT - Get Local Node Information

The GLNNT call returns the local node name, node number and the default
segment buffer size to be used on the logical link. The actual size is deter­
mined by comparing the default local segment size to the remote segment size
as returned in the connect block. The smaller value becomes the value of the
actual buffer size. For efficient message transmission, you should try to use a
multiple of that number.

Formats

FORTRAN

CALL GLNNT[W] {[status),buflen,buf)

COBOL

CALL "GLNNT(WJ" USING [status),buflen,buf.

BASIC

CALL GLNNT[W] BY REF ([status%()],buflen%,buf$)

PASCAL

GLNNT(WJ ([status],buflen,buf)

Arguments

status

specifies an array which will contain completion status information on return
from GLNNT. (See Section 2.10.1.)

but/en

specifies the length of the array which will contain the received data. The
returned data varies for each array length as summarized below:

Array length

6-bytes/characters

8-bytes/characters

10-bytes/ characters

Returned data

local node name

local node name, default segment buffer size

local node name, node number, default seg­
ment buffer size

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-35

The first six bytes contain the local node name. The next two bytes contain the
default segment buffer size. The last two bytes contain the local node number
in the lower 10 bits and a value of 1 for the higher 6 bits.

but

specifies the array or string containing the requested data.

Argument Data Type Summary

FORTRAN

status
but/en
but

COBOL

status
but/en
but

BASIC

status%()
but/en%
but$

PASCAL

status
but/en
but

2-word integer array
1-word integer variable or constant
6-, 8- or 10-byte array

2-element integer array
integer variable or constant
6-, 8- or 10-element character string

2-element integer array
integer variable or constant
6-, 8-, 10-element character string

2-word integer array
1-word integer variable or constant
6-, 8-, or 10-byte array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.

-4 Data overrun. The network data was longer than but. The buffer is filled
and any remaining data is lost.

-9 The task is not a network task. OPNNT did not execute properly.

-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for but is outside the user task
address space. For FORTRAN, the buffer is not word aligned.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive Refer­
ence Manual.

2-36 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples

FORTRAN

CALL GLNNTW (IOST,BUFSIZ,BUFFER)

COBOL

CALL "GLNNTW" USING IOST,BUFSIZ,BUFFER.

BASIC

CALL GLNNTW BY REF (IOST%(),BUFSIZ%,BUFFER$)

PASCAL

GLNNTW (IOST,BUFSIZ,BUFFER)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-37

GNDNT

Get Network Data

2.10.11 GNDNT - Get Network Data

The GNDNT call is used to retrieve information from the task's network data
queue. There are five different types of messages which can be stored in a
task's network data queue. Each message has an assigned type code as listed
below:

Code Message Type

1 Connect request
2 Interrupt
3 User disconnect
4 User abort
5 Network abort

A GNDNT call can check the queue or remove an entire message from the
queue in one of these ways:

1. Retrieves the oldest message's type code, length, and associated LUN
without removing it from the queue.

For message types 2 through 5, the associated LUN is returned to the
high-order byte of the second status word. (Message type 1 has no
associated LUN). Message type is returned to the type variable and
message length is returned to the low-order byte of the second status
word.

2. Removes the oldest message regardless of its type, length, or associ­
ated LUN. The message is placed in a mail buffer. The type code,
message length, and associated LUN are returned in the status words
as described in option 1.

3. Removes the first message for a particular type code, specified in
typmsk, regardless of its associated LUN. The message is placed in
the mail buffer. The type code, message length, and associated LUN
are returned in the status words as described in option 1.

4. Removes the first message for a particular LUN, specified in typmsk,
regardless of its type. The message is placed in the mail buffer. The
type code, message length, and associated LUN are returned in the
status words as described in option 1.

5. Removes the first message for a particular type for a specific LUN.
Message type and LUN are specified in typmsk. The message is
placed in the mail buffer. The type code, message length, and associ­
ated LUN are returned in the status words as described in option 1.

A GNDNT call must complete before you can issue a second GNDNT call. If
not, the call will complete with an error (-14) in the low-order byte of the first
word of the 1/0 status block.

2-38 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Formats

FORTRAN

CALL GNDNT[W] ([status],type,[mailsz],[mailbuf],
[ltonly],[immed],[typmsk])

COBOL

CALL "GNDNT[W]" USING [status],type,[mailsz],[mailbuf],
[ltonly],[immed],[typmsk].

BASIC

CALL GNDNT[W] BY REF ([status%()],type%,[mailsz%],[mailbuf$],
[ltonly%],[immed%],[typmsk%])

PASCAL

GNDNT[W] ([status],type,[mailsz],[mailbuf],
[lton/y],[immed],[typmsk])

Arguments

status

specifies an array which will contain completion status information on return
from GNDNT. See Section 2.10.1 for contents of first status word and Table
2-5 for contents of the second status word.

Table 2-5
Contents of Second Status Word Using GNDNT

Message
Type Code

2

3

4

5

Low-order byte High-order byte

Number of bytes/characters in con- Access code:
nect request.

2 = nonprivileged user

1 = privileged user

O = no verification done

-1 =verification failed

Number of bytes/characters in Associated LUN
interrupt message.

Number of bytes/characters in user Associated LUN.
disconnect message.

Number of bytes/characters in user Associated LUN.
abort message.

Reason for network abort (See Associated LUN.
Appendix 8.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-39

type

specifies a variable which will contain the message type code on return from
GNDNT.

mailsz

is required to retrieve a connect request message. It must also be used when­
ever typmsk or lton/y are specified in this call. It specifies the size of the task's
mail buffer.

For a connect request, the connect block normally has a maximum of 98-
bytes/characters without an optional data message. An optional data message
can have 1- to 16-bytes/characters. If the two data items are added together,
the resulting mail buffer cannot exceed a maximum length of 114-bytes/char­
acters.

For message types 2 through 5, the mail buffer should be 1- to 16-bytes/char­
acters to accommodate the optional data message.

mail but

is required if ltonly or typmsk is specified for retrieving a connect request
message off the queue. It specifies a 1- to n-element array or string which will
contain the message on return from GNDNT. In FORTRAN, the array must
begin on an even byte (word) boundary.

ltonly

if ltonly is .TRUE. for FORTRAN or -1 for COBOL, BASIC or PASCAL, the
oldest message on the network data queue is removed and placed in mailbut.
The type code is returned to the type variable. The message length is returned
to the low-order byte of the second status word. The associated LUN is re­
turned to the high-order byte of the second status word.

If typmsk is specified, either omit ltonly in FORTRAN, or specify 0 for ltonly in
COBOL, BASIC and PASCAL.

immed

specifies the completion process for GNDNT. If there is at least one message
on the queue, GNDNT will complete normally regardless of the value of
immed.

If the queue is empty and the value of immed is .TRUE. in FORTRAN or -1 in
COBOL, BASIC or PASCAL, GNDNT completes with error code (-6) in the low­
order byte of the first status word.

If the queue is empty and the value of immed is .FALSE. in FORTRAN or 0 in
COBOL, BASIC or PASCAL, GNDNT does not complete until the DECnet soft­
ware places an incoming message on the queue.

2-40 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

typmsk

specifies the LUN and message type to be removed from the queue. (A mes­
sage type of O implies any message type. A LUN at 0 implies any LUN.) The
data is placed in mailbuf as follows:

Low-order byte High-order byte

0 (any message type) LUN

1 (connect request) LUN or 0

2 (interrupt message) LUN or 0

3 (user disconnect) LUN or 0

4 (user abort) LUN or 0

5 (network abort) LUN or 0

Argument Data Type Summary

FORTRAN

status
type
mai/sz
mail but
/tonly
immed
typmsk

COBOL

status
type
mai/sz
mail but
ltonly
immed
typmsk

BASIC

status%()
type%
mailsz%
mailbuf$
lton/y%
immed%
typmsk%

PASCAL

status
type
mailsz
mailbuf
ltonly
immed
typmsk

2-word integer array
1-word integer variable
1-word integer variable or constant
1- to n-byte array
1-word integer variable
1-word integer variable
1-word integer variable or constant

2-element integer array
integer variable
integer variable or constant
1- to n-element character string
integer variable
integer variable
integer variable or constant

2-element integer array
integer variable
integer variable or constant
1- to n-element character string
integer variable
integer variable
integer variable or constant

2-word integer array
1-word integer variable
1-word integer variable or constant
1- to n-byte array
1-word integer variable
1-word integer variable
1-word integer variable or constant

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-41

Argument Usage Summary

Argument String

ltonly and typmsk

status and type

status, type, ltonly

typmsk, status, type

Usage

use only one in a GNDNT call

retrieve the oldest message's code, length, and LUN
without removing the entire message from the queue;
omit the remaining arguments.

remove the oldest message from the queue regard­
less of its type, length or LUN; omit typmsk. A con­
nect request message also requires mailsz and mail­
buf. They are optional for interrupts, user discon­
nects, or aborts. You must specify them when a
message length is greater than 0.

remove a message for a desired type and/or LUN;
omit ltonly. A connect request message also requires
mailsz and mailbuf. They are optional for interrupts,
user disconnects, or aborts. You must specify them
when a message length is greater than 0.

Error/Completion Codes

0 The call has not completed.

The call completed successfully.

2 The call completed successfully with some optional data loss. This oc­
curs for a connect request when the source task includes an optional
data message. This message is appended to the connect block.

-4 Data overrun with some loss. The message removed from the queue
was longer than mailbuf.

-6 The task's network data queue was empty.

-9 The task is not a network task. OPNNT did not execute successfully or a
CLSNT call was issued during GNDNT processing. The latter can occur
if the queue is empty and immed is .FALSE. for FORTRAN, or O for
COBOL, BASIC or PASCAL.

-10 The network is not accessed on the LUN specified in typmsk.

-13 An invalid buffer argument. The value for mailbuf is outside the user
task address space. For FORTRAN, the buffer is not word aligned.

-14 A previously issued GNDNT is still bein_g processed.

-40 A directive error has occurred. See the RSX-11 MIM-PLUS Executive
Reference Manual.

2-42 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples

FORTRAN

CALL GNDNTW (IOST,MSGTYP)

CALL GNDNTW (IOST,MSGTYP,SIZE,BUFFR,.TRUE.)

CALL GNDNTW (IOST,MSGTYP,SIZE,BUFFR,,,MASK)

COBOL

CALL "GNDNTW" USING IOST,MSGTYP.

CALL "GNDNTW" USING IOST,MSGTYP,SIZE,BUFFR,-1.

CALL "GNDNTW" USING IOST,MSGTYP,SIZE,BUFFR,0,0,MASK.

BASIC

CALL GNDNTW BY REF (IOST%(),MSGTYP%)

CALL GNDNTW BY REF (IOST%(),MSGTYP%,SIZE%,BUFFR$,-1%)

CALL GNDNTW BY REF (IOST%(),MSGTYP%,SIZE%,BUFFR$,O,O,
MASK%)

PASCAL

GNDNTW (IOST,MSGTYP)

GNDNTW (IOST,MSGTYP,SIZE,BUFFR,-1)

GNDNTW (IOST,MSGTYP,SIZE,BUFFR,,,MASK)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-43

OPNNT

Access the Network

2.10.12 OPNNT - Access the Network

The OPNNT call establishes the task as an active network task and creates the
task's network data queue. The task must call OPNNT before calling any other
network subroutine.

Formats

FORTRAN

CALL OPNNT[W] ([fun],[status],[mstat],
[count], [frp])

COBOL

CALL "OPNNT[W]" USING [fun],[status],[mstat],
[count], [frp]] .

BASIC

CALL OPNNT[W] BY REF ([lun%],[status%()],[mstat%()],
[count%],[frp%])]

PASCAL

OPNNT[W] ([fun],[status],[mstat],
[count],[frp])

Arguments

fun

specifies the logical unit number for the task's network data queue. It can be
omitted if a LUN was assigned to NS: during the task build operation by
defining the symbol .MBXLU in a GBLDEF. (See Section 2.2). You must omit all
trailing arguments when the fun argument is omitted in COBOL or BASIC. (See
Section 2.9.)

status

specifies an array which will contain completion status information on return
from OPNNT. (See Section 2.10.1.)

2-44 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

mstat

specifies an array which will contain information on the current status of the
task's network data queue. The system continually updates' the array as mes­
sages enter and leave the queue. Values returned in this array are:

mstat(1) number of messages on the queue

mstat(2) type of oldest message

mstat(3)

1 (connect request)
2 (interrupt message)
3 (user disconnect message)
4 (user abort message)
5 (network abort message)

length of oldest message

count

assigns the maximum number of active logical links that a task can accept on
the network. Once the number of active logical links equals the count value,
the network will reject any pending connect requests. The valid range is 0 to
255, with O being the default value. A value of 0 implies that there is no limit to
the number of links.

The count argument does not affect the number of logical links resulting from
CONNT calls.

lrp

specifies the link recovery period. It defines the number of seconds that can
elapse between a physical path failure and the disconnect of a logical link. The
valid range is O through 32767. The default value is 0.

As long as the cooperating task remains connected and the physical path
recovers before lrp elapses, the logical link will continue without any visible
interruption. If the link does not recover in time, the system will abort the
logical link.

If the recovery time is set to 0, and an alternate physical path cannot be
immediately found, the system will immediately abort the logical link.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-45

Argument Data Type Summary

FORTRAN

fun
status
mstat
count
lrp

COBOL

fun
status
mstat
count
lrp

BASIC

fun%
status%()
mstat<'lo()
count%
lrp%

PASCAL

fun
status
mstat
count
lrp

1-word integer variable or constant
2-word integer array
3-word integer array
1-word integer variable or constant
1-word integer variable or constant

integer variable or constant
2-element integer array
3-element integer array
integer variable or constant
integer variable or constant

integer variable or constant
2-element integer array
3-element integer array
integer variable or constant
integer variable or constant

1-word integer variable or constant
2-word integer array
3-word integer array
1-word integer variable or constant
1-word integer variable or constant

Error/Completion Codes

O Call has not completed.

1 Call completed successfully.

-1 Required system resources were not available.

-10 The network is being dismounted or the task has already issued a suc­
cessful OPNNT call.

-40 A directive error has occurred. See the RSX-11 MIM-PLUS Executive
Reference Manual.

2-46 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples

FORTRAN

CALL OPNNTW (OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP)

COBOL

CALL "OPNNTW" USING OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP.

BASIC

CALL OPNNTW BY REF (OPNLUN%,IOSTAT%(),MSTAT%,MAXLNK%,
LNKRP%)

PASCAL

OPNNTW (OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-47

REC NT

Receive Data over a
Logical Link

2.10.13 RECNT - Receive Data over a Logical Link

The RECNT call receives a data message over a logical link and stores it in a
specified buffer. PRO/DECnet does not send a data message from one task to
another until the intended receiver has issued a receive call. If the indata
buffer is too small, the call completes with a data overrun condition (-4) in the
first status word.

NOTE

The indata buffer should always align on an even byte boundary.

Formats

FORTRAN

CALL RECNT[W] (lun,[status],insize,indata)

COBOL

CALL "RECNT[W]" USING lun,[status],insize,indata.

BASIC

CALL RECNT[W] BY REF (lun%,[status%()],insize%,indata$)

PASCAL

RECNT[W] (lun,[status],insize,indata)

Arguments

fun

specifies the logical unit number to be used for message transmission. If the
task initiated the connection, specify the LUN used in the CONNT call. If the
task accepted the connection, specify the LUN used in the ACCNT call.

status

specifies an array which will contain completion status information on return
from RECNT. (See Section 2.10.1.)

2-48 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

insize

specifies the receive buffer length. The receive buffer can have a maximum
length of 8128 bytes/characters.

indata

specifies the array or string which will contain the received message.

Argument Data Type Summary

FORTRAN

tun
status
insize
in data

COBOL

tun
status
in size
in data

BASIC

tun%
status%()
insize%
in data$

PASCAL

tun
status
insize
in data

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 8128-byte array

integer variable or constant
2-element integer array
integer variable or constant
1- to 8128-element character string

integer variable or constant
2-element integer array
integer variable or constant
1- to 8128-element character string

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 8128-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-49

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.

-2 No logical link established on the specified LUN.

-3 The logical link was disconnected during an 1/0 operation.

-4 Data overrun. More data was transmitted than requested.

-9 Task is not a network task. OPNNT did not execute successfully.

-13 An invalid buffer argument. The value for indata is outside the user task
address space. For FORTRAN, the buffer is not word aligned, or insize
specifies a value greater than 8128.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive Refer­
ence Manual.

Examples

FORTRAN

CALL RECNTW (CONLUN,IOSTAT,RECSIZ,RECBUF)

COBOL

CALL "RECNTW" USING CONLUN,IOSTAT,RECSIZ,RECBUF.

BASIC

CALL RECNTW BY REF (CONLUN%,IOSTAT%(),RECSIZ%,RECBUF$)

PASCAL

RECNTW (CONLUN,IOSTAT,RECSIZ,RECBUF)

2-50 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

REJNT

Reject Logical Link
Connect Request

2.10.14 REJNT - Reject Logical Link Connect Request

The REJNT call rejects a logical link connect request. Along with a reject
message, the task can send 1- to 16-bytes/characters of optional data to the
requesting task.

Formats

FORTRAN

CALL REJNT[W] ([status],mailbuf,[outsize,outmessage])

COBOL

CALL "REJNT[W]" USING [status],mailbuf,[outsize,outmessage].

BASIC

CALL REJNT[W] BY REF ([status%()],mailbuf$,[outsize%,outmessage$])

PASCAL

REJ NT[W] ([status] ,mailbuf, [outsize ,outmessage])

Arguments

status

specifies the array which will contain completion status information on return
from REJNT. (See Section 2.10.1.)

mail but

specifies the array or string containing the connect request message from the
GNDNT call.

outsize, outmessage

specify an optional user message. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-51

Argument Data Type Summary

FORTRAN

status
mail but
outsize
outmessage

COBOL

status
mail but
outsize
outmessage

BASIC

status%()
mail but$
outsize%
outmessage$

PASCAL

status
mai/buf
outsize
outmessage

2-word integer array
1- to n-byte array
1-word integer variable or constant
1- to 16-byte array

2-element integer array
1- to n-element character string
integer variable or constant
1- to 16-element character string

2-element integer array
1- to n-element character string
integer variable or constant
1- to 16-element character string

2-word integer array
1- to n-byte array
1-word integer variable or constant
1- to 16-byte array

Error/Completion Codes

0 Call has not completed.

Call completed successfully.

-3 The task requesting the connection has either aborted or requested a
disconnect before the reject call could complete.

-5 Either an invalid temporary link address in the connect block or the
optional user data buffer exceeds 16-bytes/characters.

-9 Task is not a network task. OPNNT did not execute successfully.

-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for mai/buf or outmessage is
outside the user task address space. For FORTRAN, mailbuf is not word
aligned.

-40 A directive error occurred. See the RSX-11 MIM-PLUS Executive Refer­
ence Manual.

2-52 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples

FORTRAN

CALL REJNTW (IOSTAT,BUFFR,OUTSIZ,OUTMSG)

COBOL

CALL "REJNTW" USING IOSTAT,BUFFR,OUTSIZ,OUTMSG.

BASIC

CALL REJNTW BY REF (IOSTAT%(),BUFFR$,OUTSIZ%,OUTMSG$)

PASCAL

REJNTW (IOSTAT,BUFFR,OUTSIZ,OUTMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-53

SNDNT

Send Data over a
Logical Link

2.10.15 SNDNT- Send Data over a Logical Link

The SNDNT sends a data message over a particular logical link. The sending
task does not actually transmit the message until the receiving task has issued
a receive call. The sending task cannot reuse the outdata buffer specified in
SNDNT until it receives a completion/error code from the system.

NOTE

The outdata buffer should always align on an even byte boundary.

Formats

FORTRAN

CALL SNDNT[W] (lun,[status],outsize,outdata)

COBOL

CALL "SNDNT[W]" USING /un,[status],outsize,outdata.

BASIC

CALL SNDNT[W] BY REF (lun%,[status%()],outsize%,outdata$)

PASCAL

SNDNT[W] (lun,[status],outsize,outdata)

Arguments

fun

specifies the logical unit number to be used for message transmission. If the
task initiated the connection, specify the LUN used in the CONNT call. If the
task accepted the connect request, specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from SNDNT. (See Section 2.10.1.)

outsize

specifies the length of the outgoing message. The maximum length is 8128-
bytes/ characters.

outdata

specifies the array or string containing the outgoing data message.

2-54 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

fun
status
outsize
outdata

COBOL

fun
status
outsize
outdata

BASIC

fun%
status%()
outsize%
outdata$

PASCAL

fun
status
outsize
outdata

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 8128-byte array

integer variable or constant
2-element integer array
integer variable or constant
1- to 8128-element character string

integer variable or constant
2-element integer array
integer variable or constant
1- to 8128-element character string

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 8128-byte array

Error/Completion Codes

O Call has not completed.

1 Call completed successfully.

-2 No logical link established on the specified LUN.

-3 The logical link was disconnected during 1/0 operation.

-9 The task is not a network task. OPNNT did not execute successfully.

-13 An invalid buffer argument. Either outdata is outside user task address
space or the value of outsize exceeds 8128-bytes/characters.

-40 A directive error occurred. See the RSX-11MIM-PLUS Executive Refer­
ence Manual.

Examples

FORTRAN

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-55

CALL SNDNTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

COBOL

CALL "SNDNTW" USING CONLUN,IOSTAT,MSGLEN,MSGBUF.

BASIC

CALL SNDNTW BY REF (CONLUN%,IOSTAT%(),MSGLEN%,MSGBUF$)

PASCAL

SNDNTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

2-56 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

WAITNT

Suspend the Calling Task

2.10.16 WAITNT - Suspend the Calling Task

The WAITNT call suspends task operation until a pending call, specified in an
associated status block, has finished processing.

Formats

FORTRAN

CALL WAITNT (index,status1 , ... ,statusn)

COBOL

CALL "WAITNT" USING index,status1 , ... ,statusn.

BASIC

CALL WAITNT BY REF (index%,status1%(), ... ,statusn%())

PASCAL

WAITNT (index,status1 , ... ,statusn)

Arguments

index

specifies the variable which will contain the positional number of the status
block associated with the completed call.

status1 , ... ,statusn

specifies one or more status blocks associated with pending calls. For PAS­
CAL calls, you can specify a maximum of 8 status blocks. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-57

Argument Data Type Summary

FORTRAN

index
status1
statusn

COBOL

index
status1
statusn

BASIC

index%
status1%()
statusn%()

PASCAL

index
status1
statusn

Examples

FORTRAN

1-word integer variable
2-word integer array
2-word integer array

integer variable
2-element integer array
2-element integer array

integer variable
2-element integer array
2-element integer array

1-word integer variable
2-word integer array
2-word integer array

CALL WAITNT (INDEX,IOST1 ,IOST2,IOST3)

COBOL

CALL "WAITNT" USING INDEX,IOST1 ,IOST2,IOST3.

BASIC

CALL WAITNT BY REF (INDEX%,IOST1%(),IOST2%(),IOST3%())

PASCAL

WAITNT (INDEX,IOST1 ,IOST2,IOST3)

2-58 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

XMINT

Send Interrupt Message

2.10.17 XMINT - Send Interrupt Message

The XMINT call sends an interrupt message to a cooperating task over a
logical link. The call completes when the source task is informed that the
interrupt message was placed on the target task's network data queue.

The target task must remove the interrupt message from its network data
queue before the source task can send another interrupt message over the
same logical link.

NOTE

DECnet flow control does not apply to interrupt messages. These
messages are delivered to a target task's buffer even if it has out­
standing receive calls.

Formats

FORTRAN

CALL XMINT[W] (lun,[status],intsize,intmsg)

COBOL

CALL "XMINT[W]" USING lun,[status],intsize,intmsg.

BASIC

CALL XMINT[W] BY REF (lun%,[status%()],intsize%,intmsg$)

PASCAL

XM I NT[W] (lun, [status] ,intsize,intmsg)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-59

Arguments

fun

specifies the logical unit number to be used for sending the interrupt message.
If the task initiated the connection, specify the LUN that was used in the
CONNT call. If the task accepted the connection, specify the LUN that was
used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from XMINT. (See Section 2.10.1.)

intsize

specifies the length of the interrupt message. The length can range from 1- to
16-bytes/characters.

intmsg

specifies the array or string containing the interrupt message.

Argument Data Type Summary

FORTRAN

Jun
status
intsize
intmsg

COBOL

fun
status
intsize
intmsg

BASIC

fun%
status%()
intsize%
intmsg$

PASCAL

Jun
status
intsize
intmsg

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

integer variable or constant
2-element integer array
integer variable or constant
1- to 16-element character string

1-word integer variable or constant
2-word integer array
1-word integer variable or constant
1- to 16-byte array

2-60 HIGH LEVEL LANGUAGE COMMUNICATIONS CALLS

Error/Completion Codes

O The call has not completed.

1 The call completed successfully.

-2 No logical link established for the specified LUN.

-3 The logical link was disconnected during 1/0 operations.

-5 The interrupt message exceeds 16-bytes/characters.

-9 The task is not a network task. OPNNT did not execute successfully.

-11 An interrupt message was transmitted before a previously issued one
was actually received by the remote task.

-13 An invalid buffer argument. The value for intmsg is outside the user task
address space. For FORTRAN, intmsg is not word aligned.

-40 A directive error occurred. See the RSX-11MIM-PLUS Executive Refer­
ence Manual.

Examples

FORTRAN

CALL XMINTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

COBOL

CALL "XMINTW" USING CONLUN,IOSTAT,MSGLEN,MSGBUF.

/BASIC

CALL XMINTW BY REF (CONLUN%,IOSTAT%(),MSGLEN%,MSGBUF$)

PASCAL

XMINTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

CHAPTER 3
MACR0-11 COMMUNICATION CALLS

DECnet provides a library of MACR0-11 macros for PRO/DECnet applications
that require task-to-task communication. The macro library [1,5]NETLIB.MLB
is referenced by the Professional Macro Assembler (PMA) during assembly.

This chapter discusses the macro calls in alphabetical order. A section is
devoted to each macro and its usage.

If you encounter any unfamiliar DECnet concept or term, refer to Appendix A
for more details.

3.1 MACRO TYPES

There are three types of task-to-task communication macros:

D BUILD type macro. Creates an argument block at assembly time con­
taining values for a specific network operation. It is used in conjunction
with a DIR$ directive or an EXECUTE type macro.

D EXECUTE type macro. References the argument block created by a
BUILD type macro and executes the requested network function. An
EXECUTE type macro gives you the option of overriding values speci-
fied by the BUILD type macro. ·

D STACK type macro. Creates an argument block on the processor
stack and executes the requested function. The argument block con­
tains values specified in the macro call.

3-1

3-2 MACR0-11 COMMUNICATION CALLS

3.1.1 BUILD Type Macro

An argument block is built containing values specified in the argument list. The
argument block is then used by a DIR$ directive or an EXECUTE type macro
during task execution. A DIR$ directive will generate less code than a corre­
sponding EXECUTE type macro.

A DIR$ directive pushes the address of the argument block onto the stack and
issues an EMT 377. This action causes the executive to execute the macro.
The format for a DIR$ directive is:

DIR$ adr,[err]

where

adr

specifies the address of the argument block as the source operand of a MOV
instruction.

err

specifies the address of an optional, user-written error handling routine.

When a task uses both the BUILD and EXECUTE type macros, standard oper­
ations can be specified in the BUILD type macro and unique operations can be
specified in the EXECUTE type macro. In this case, all arguments (required
and optional) must be specified in a BUILD type macro argument block. If
optional values are omitted, their positional commas must be included in the
argument list.

For example, a send operation could have these standard functions specified
in a BUILD type macro:

D the assigned LUN for a logical link

D an event flag number

O the location of the 1/0 status block containing completion status infor­
mation upon return from a macro

D the starting address for a user-written AST routine

A corresponding EXECUTE type macro could specify these unique functions:

D the length of the outgoing message

D the location of the buffer containing the outgoing message

MACR0-11 COMMUNICATION CALLS 3-3

Format

label: XXX[W]$ argument-list[,tlag]

Arguments

label

specifies the location of the argument block.

xxx

specifies the name of a MACR0-11 call.

w

specifies that the issuing task will stop executing until the macro has finished
processing. In order for the wait version to work properly, an event flag num­
ber (EFN) must also be specified in the argument list.

argument-list

defines one or more arguments separated by commas. Each specified value
must be a valid argument for a .WORD or a .BYTE directive.

flag

specifies a call-dependent macro argument.

3.1.2 EXECUTE Type Macro

The EXECUTE type macro references arguments created by a BUILD type
macro at task assembly time. An EXECUTE type macro enables you to over­
ride the argument block contained in the BUILD type macro. New arguments
can either redefine values contained in the BUILD type macro or define miss­
ing values.

Format

XXX[W]$E labelargument-list[,tlag]

Arguments

xxx

specifies the name of a MACR0-11 call.

w

specifies that the issuing task will stop execution until the macro has finished
processing. In order for the wait version to work properly, an event flag num­
ber (EFN) must be part of the argument list or previously specified in the
BUILD type macro.

3-4 MACR0-11 COMMUNICATION CALLS

E

specifies an EXECUTE type macro call.

label

specifies the location of an argument block created by a BUILD macro. This
argument must be valid for a .WORD directive.

argument-list

defines one or more arguments separated by commas. Each specified value
must be a valid source operand for a MOV instruction.

flag

specifies a call-dependent macro argument.

3.1.3 ST ACK Type Macro

The STACK type macro creates the argument block on the processor stack
and then executes the requested network function. All required arguments
must be specified when you issue this macro. If not, the macro call will gen­
erate assembly errors.

Format

XXX[W]$S argument-list[,flag]

Arguments

xxx

specifies the name of a MACR0-11 call.

w

specifies that the issuing task will stop executing until the macro has finished
processing.

s

specifies a ST ACK type macro call.

argument-list

defines one or more arguments separated by commas. Each specified value
must be a valid source operand for a MOV instruction.

flag

specifies a call-dependent macro argument.

MACR0-11 COMMUNICATION CALLS 3-5

3.1.4 Macro Call Format Examples

The following examples illustrate an interrupt message macro (XM1$) coded in
the three different call formats.

BUILD type macro call format

INTRPT: XMIW$ 1,FLAG,IOSTAT,,<MSGBUF, 16.>

A BUILD type macro is assembled into an argument block referenced by
INTRPT.

EXECUTE type macro call formats

XMIW$E INTRPT

The EXECUTE type macro references the argument block built by the
corresponding BUILD type macro and executes the requested network
operation.

XMIW$E INTRPT,,,,,<,#12.>

The EXECUTE type macro references the BUILD argument block,
changes the buffer length from 16- to 12-bytes, and then executes the
requested network operation.

XMIW$E IMSG,#1,#FLAG,#IOSTAT,,<#MSGBUF,#16.>

This EXECUTE type macro builds the required values into an empty
argument block at the address label IMSG. It then executes the re­
quested network operation. In this case, a BUILD type macro was not
issued at the address label IMSG. However, a sufficient block of mem­
ory was reserved at that specific address.

STACK type macro call format

XMIW$S #1,#FLAG,#IOSTAT,,<#MSGBUF,#16.>

This STACK type macro creates the argument block on the processor
stack using specified argument values and then executes the re­
quested network operation.

3.1.5 Macro Failures

At assembly time, the assembler expands each EXECUTE and STACK type
macro to include a system directive. When the DIR$ directive executes, it is
possible that it can fail in the P/OS executive before DECnet can examine the
request. If the system directive fails, the carry bit (C-bit) fn the processor status
word (PSW) is set when control returns to the instruction following the DIR$
directive. If the C-bit is set, the directive status word ($DSW) will contain an
error code. After issuing a DIR$ directive, the task should check the C-bit to
insure that the P/OS executive accepted it.

3-6 MACR0-11 COMMUNICATION CALLS

3.2 USING THE WAIT OPTION

MACR0-11 calls can come in two forms - no wait and wait. The no wait
version allows task operations to continue during the execution of a macro
call. Here, one action does not depend on the completion of another action.
The macro completes in an asynchronous manner.

The wait version causes an issuing task to stop running until the macro has
finished processing. Once the macro completes, the issuing task proceeds at
the instruction immediately following the macro call. All macros except for the
CONB$$ macro allow you to use the wait option. The wait version is denoted
by the letter W in the macro name and the inclusion of an event flag number
in the macro call argument list. An event flag must always be specified for all
macro calls that use the wait option. (See the following section for more de­
tails.)

3.3 USING ASYNCHRONOUS SYSTEM TRAPS AND EVENT FLAGS

An asynchronous system trap (AST) acts as a software interrupt and provides
a task with a way of monitoring and reacting to certain events. When an event
occurs, like a completed 1/0 operation, control passes to a user-written AST
service routine. The starting address for the AST routine is specified in the
macro call.

The corresponding address for the macro's status block is the first word on the
processor stack. The AST routine must remove this word from the stack prior
to its exit. ASTs can be specified in both wait and no wait type macros.

The task can use an event flag to recognize the same types of events. The
event flag is cleared when the task issues a macro call. When the call com­
pletes, the system will set the event flag.

If P/OS rejects a call before DECnet can examine the request, the state of an
event flag cannot be guaranteed. A task should therefore check the C-bit after
issuing a request to insure that P/OS accepted it. (See Section 3.1.5)

NOTE

An event flag can be used in both wait and no wait macros as well as
macros which do not specify AST routines. An event flag must always
be specified for all macro calls that use the wait option ([W]). If not,
the call completes in an asynchronous fashion as if the no wait option
was specified with the call. FORTRAN, COBOL, BASIC and PASCAL
programs use event flags 17 through 22. These flag numbers should
not be assigned when a program also uses high level language task­
to-task communication subroutine calls.

MACR0-11 COMMUNICATION CALLS 3-7

3.4 EXAMINING 1/0 STATUS BLOCKS

All MACR0-11 calls, except for CONB$$, can specify the 1/0 status block in
their respective argument lists. The 2-word status block contains completion
status information on return from the called macro. Byte 0 of word 0 will give
you the following data:

D A zero indicates that a macro call has not finished processing.

D A positive value means the successful completion of a macro call.

D A negative value means improper execution of a macro call.

You can determine the reason for a macro's success or failure by comparing
the value of byte 0, word 0 with a collection of symbolic values defined by the
NSSYM$ macro.

The symbolic values generally take one of these forms:

IS.xxx for a successful completion
IE.xxx for an error completion

where xxx is a specific value for the macro call. The remaining bytes in the 2-
word status block are specific to each call. They are described in the following
macro call descriptions.

You can invoke the NSSYM$ macro by typing:

+MCALL NSSYM$

NSSYM$

3.5 ASSIGNING LOGICAL UNIT NUMBERS

All LUNs used in network macros must be assigned to the network device
before you can issue any calls. You can assign LUNs by invoking the ALUN$
system macro. For example, you can type:

ALUN$S #/Un 1# 11 NS 1#0

3-8 MACR0-11 COMMUNICATION CALLS

3.6 ESTABLISHING AN ACTIVE NETWORK TASK

Before any task can exchange data using intertask communication calls, it
must be a network task. As a result, the task must first issue the open macro
call (OPN$). The open macro call establishes the task as a network task and
provides it with a network data queue. A task also requires a logical unit
number (LUN) to identify its network data queue and act as a reference point
for other macro calls.

The task's mailbox LUN can be defined during task execution by specifying it
in the fun argument of the OPN$ macro call. It can also be defined either
during the assembly or the task build process. During the assembly process,
the LUN can be locally defined in each source module by including the follow­
ing:

• MB:<LU==x

where the variable x is an integer greater than 0. The value of x must be the
same in each source module.

In order to simplify your coding, you can also use a global definition in the task
build command file as follows:

GLBDEF=.MBXLU:x

where the variable x is an integer greater than 0.

NOTE

You can define the network data queue LUN in only one place. You
should use either .MBXLU or specify the LUN in the OPN$ macro call.
.MBXLU is referenced only if the fun argument is omitted from the
OPN$ macro call.

3.7 ACCESS CONTROL INFORMATION

Access control information is specified in the CONS$$ macro call. You should
refer to the target system's user documentation for specific access require­
ments. See Section 2.6 for more information on access control information.

3.8 FLOW CONTROL

DECnet provides a flow control mechanism which prevents the overflow of
available buffer space. It forces synchronization between sending and receiv­
ing tasks. When flow control is ON, data is sent from the source task only after
the target task has indicated adequate buffering capabilities, and has issued a
receive call.

MACR0-11 COMMUNICATION CALLS 3-9

MACR0-11 tasks also offer a special NOFLOW option which disables the flow
control mechanism. The source task can disable its incoming flow control by
specifying the NOFLOW flag in its connect request (CON$). Likewise, the tar­
get task can disable its incoming flow control by specifying the NOFLOW flag
in its accept call (ACC$). This feature can be beneficial when a higher level of
network performance is desired for a specific application. However, it should
be used with caution.

When a source task disables flow control, data messages are sent from the
target task regardless of buffering capabilities. This arrangement implies that
a source task will manage its own resources and provide a buffer capable of
handling the incoming data messages. If not, DECnet will be forced to discard
some segments of the data messages. After a timeout, DECnet must request
retransmission of each discarded data segment. This process could therefore
significantly degrade network performance unless both tasks properly coordi­
nate their resources.

3.9 CONVENTIONS USED IN THIS CHAPTER

The following conventions are used in the macro call descriptions:

UPPERCASE LETTERS

lowercase italic type

square brackets []

braces { l

commas and
angle brackets < >

represent actual characters that must be speci­
fied as shown.

indicates variables for which a value must be
supplied.

enclose optional data. You should specify all ar­
guments not enclosed by square brackets. Do
not include the brackets when coding a macro
call.

enclose several arguments of which only one can
be selected for a particular call. Do not include
the braces when coding a macro call.

must be included when shown as part of a macro
format. To omit an optional argument, do not
specify a value for it but include its delineating
comma. You can omit the trailing commas if
there are no trailing arguments.

3-10 MACR0-11 COMMUNICATION CALLS

3.10 MACR0-11 COMMUNICATION CALLS

The following sections describe the use and format of the marcos listed in
Table 3-1. The macro calls appear in alphabetical order in this chapter.

Table 3-1
MACR0-11 Communication Calls

Macro

ABT$

ACC$

CLS$

CON$

CONB$$

DSC$

GLN$

GND$

OPN$

REC$

REJ$

SND$

SPA$

XMI$

Function

Abort a logical link.

Accept a logical link connect request.

End a task's network operations.

Request a logical link connection.

Build a connect block for the CON$ macro.

Disconnect a logical link.

Get local node information.

Get data from the network data queue.

Access the network.

Receive data over a logical link.

Reject a logical link connect request.

Send data over a logical link.

Specify a user-written AST routine.

Send an interrupt message over a logical link.

3.10.1 Common Argument Definitions

Commonly used arguments are defined in the following section. Specific de­
tails about each argument are not repeated with each macro call.

status

specifies the address of the 2-word status block containing completion status
information on return from a macro call. If specified, the status block can have
one of the following values when the macro call completes:

Word 0: Byte 0 = Error/completion code
Byte 1 = 0

Word 1: Content depends on macro call

MACR0-11 COMMUNICATION CALLS 3-11

out, out/en

define optional user data to be sent with certain macro calls. One argument
cannot be used or omitted without the other one.

out defines the starting address of a buffer containing optional user
data.

out/en specifies the length of the optional outgoing message. The valid
range is 1- to 16-bytes.

3-12 MACR0-11 COMMUNICATION CALLS

ABT$

Abort a Logical Link

3.10.2 ABT$ - Abort a Logical Link

The ABT$ call immediately aborts all pending data transmission on a logical
link. The link is disconnected and the task can subsequently reuse the associ­
ated LUN for another logical link. The task can send a 1- to 16-byte optional
message with the abort notification to the other task.

Formats

label: ABT[W]$ lun,[efn],[status],[ast],[<Out, out/en>]

ABT[W]$E label,[lun],[efn],[status],[ast],[<out,outlen>]

ABT[W]$S /un,[efn],[status],[ast],[<out,outlen>]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

Jun

identifies the logical link to be aborted. If the task initiated the connection,
specify the LUN that was used in the CON$ call. If the task accepted the
connect request, specify the LUN that was used in the ACC$ call.

efn

specifies the event flag to be set when a ABT$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from ABT$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after the ABT$
call completes processing.

out, out/en

specify an optional outgoing user data message. (See Section 3.10.1.)

MACR0-11 COMMUNICATION CALLS 3-13

Error/Completion Codes

is.sue

IE.ABO

IE.BAD

IE.NLN

IE.NNT

IE.SPC

Examples

The macro completed successfully.

The specified logical link has already been disconnected.

The data message exceeds 16-bytes.

A logical link has not been established for the specified LUN.

The task is not a network task. OPN$ did not execute successfully.

An invalid buffer argument. The message buffer out is outside the
user task address space.

ABORT: ABTW$ CONLUN,FLAG,IOSTAT,,<MSG,MSGLEN>

ABTW$E ABORT

ABTW$S #CONLUN,#FLAG,#IOST AT,, <#MSG,#MSGLEN>

3-14 MACR0-11 COMMUNICATION CALLS

ACC$

Accept Logical Link
Connect Request

3.10.3 ACC$ - Accept Logical Link Connect Request

The ACC$ call establishes a logical link between two tasks. The task issuing
the request is the target task. Before calling ACC$, this task must call GND$ to
remove the connect request from its queue, and place the connect block in a
mail buffer. The target task can send a 1- to 16-byte optional message with the
accept message to the source task.

Formats

label: ACC[W]$ lun,[efn],[status),[ast],<mail,
[mai/en],[out,outlen]>[,NOFLOW]

ACC[W]$E labe/,[lun],[efn],[status],[ast],<[mail],
[mai/en],[out,outlen)>[,NOFLOW]

ACC[W]$S /un,[efn],[status],[ast],<mai/,[mai/en],
[out,out/en]>[,NOFLOW]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

assigns the logical unit number for the logical link connection. Specify this
LUN in succeeding REC$, SND$, XM1$, ABT$, and DSC$ macro calls.

efn

specifies the event flag to be set when an ACC$ call completes processing.

status

specifies the address of the two-word block containing completion status in­
formation on return from ACC$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after the ACC$
call completes processing.

MACR0-11 COMMUNICATION CALLS 3-15

mail

specifies the address of the connect block sent by the source task and re­
trieved by a GND$ call. This address is identical to the one used in the GND$
call. (See Section 3.10.9.) The connect block contains information needed to
establish the connection. (See Table 3-2.)

mailen

specifies the length of the connect block. The length can range from 98- to
114-bytes. The length can exceed 98 bytes when the source task sends an
optional data message. If omitted, the connect block defaults to 98 bytes.

out, out/en

define an optional outgoing user data message. (See Section 3.10.1.)

Flag

NO FLOW

disables flow control for incoming messages when specified. Flow control is
the default condition.

Error/Completion Codes

is.sue

IE.ABO

IE.ALN

IE.BAD

IE.NNT

IE.RSU

IE.SPC

Examples

The macro completed successfully.

The issuing task has aborted or has requested a disconnect prior
to a completed connection.

A logical link has already been established on the specified LUN.

Either an invalid temporary link address in the connect block or
the optional user data out/en exceeds 16-bytes.

The issuing task is not a network task. OPN$ did not execute
successfully.

No system resources available for a logical link.

An invalid buffer argument. Either the connect block (mail) or the
optional data buffer (out) is not word aligned, or is outside the user
task address space.

ACCPT: ACCW$ CONLUN,FLAG,IOSTAT,,<MBUFFR>

ACCW$E ACCPT

ACCW$S #CONLUN,#FLAG,#IOSTAT,,<#MBUFFR>

3-16 MACR0-11 COMMUNICATION CALLS

CLS$

End Network Task
Operations

3.10.4 CLS$ - End Network Task Operations

Before issuing CLS$, a task should disconnect all logical links and remove and
process all messages on its network data queue. The CLS$ call disconnects
the task from the network and aborts any logical links. Any messages, except
for connect requests, in the task's network data queue are then discarded by
this operation.

PRO/DECnet will save in a general delivery queue any connect requests
received during CLS$ processing. When connect requests are found in the
queue, DECnet will automatically restart the inactive task. After restart, the
task issues an OPN$ call which establishes a network data queue. PRO/DEC­
net then places any connect requests on the task's network data queue.

Formats

label: CLS[W]$ [lun],[efn],[status],[ast]

CLS[W]$E label, [fun], [efn], [status], [a st]

CLS[W]$S [lun],[efn],[status],[ast]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

efn

specifies the event flag to be set when a CLS$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from CLS$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after a CLS$
call completes processing.

Error/Completion Codes

is.sue

IE.NNT

IE.PRI

Examples

The macro completed successfully.

The task is not a network task. OPN$ did not execute successfully.

The network is not accessed on the specified LUN.

CLOSE: CLSW$ CONLUN,FLAG,IOSTAT

CLSW$E CLOSE

CLSW$S #CONLUN,#FLAG,#IOST AT

MACR0-11 COMMUNICATION CALLS 3-17

CON$

Request a Logical Link
Connection

3.10.5 CON$ - Request a Logical Link Connection

The CON$ call requests a logical link between two tasks. The target task and
node are identified in the connect block.

A 1- to 16-byte optional message can be sent with the connect request to the
target task.

Formats

label: CON[W]$ lun,[efn],[status],[ast],<conbl,
[conblen] ,[out,outlen], [in ,in/en]> ,[NOFLOW]

CON[W]$E label,[lun],[efn],[status], [ast], <con bf,
[conblen],[out,outlen],[in,inlen]>,[NOFLOW]

CON[W]$S /un,[efn],[status],[ast],<conbl,[conblen],
[out,outlen], [in ,in/en]>, [NO FLOW]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

specifies the logical unit number assigned to the logical link connection. Use
this LUN in succeeding REC$, SND$, XMI$, DSC$, and ABT$ calls.

efn

specifies the event flag to be set when a CON$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from CON$. If specified, the block is set to one of these
values:

Word 0: Byte 0 = Error/completion code
Byte 1 = 0

Word 1: Byte 0 = Content depends on error completion code
Byte 1 = 0

3-18 MACR0-11 COMMUNICATION CALLS

ast

specifies the starting address of an AST routine to be executed after the CON$
call completes processing.

con bl

specifies the location of the connect block built by CONB$$.

conblen

specifies the length of the connect block. If this argument is omitted, the
default length is 72-bytes.

out, out/en

define an optional outgoing message. (See Section 3.10.1.)

in,inlen

define the buffer which will receive the optional accept or reject message from
the target task. They are paired optional arguments. You cannot use one
without the other.

in is the address of the buffer.

in/en specifies the length of the incoming message. The valid range is 1-
to 16-bytes.

Flag

NO FLOW

disables flow control for incoming messages when specified. Flow control is
the default condition.

MACR0-11 COMMUNICATION CALLS 3-19

Error/Completion Codes

is.sue

IS.DAO

IE.ALN

IE.BAD

IE.DAO

IE.NNT

IE.NRJ

IE.PAI

IE.RSU

IE.SPC

IE.URJ

Examples

The macro completed successfully.

The macro completed successfully. The in block was not large
enough for the optional user data sent by the target task.

A logical link has already been established on the specified LUN.

Either the in or out block exceeds 16-bytes, or the connect block
length is too large.

The target task issued a REJ$ or REJNT call with optional user
data which resulted in some data loss.

The task is not a network task; OPN$ did not execute successfully.

The network rejected the connection (see Appendix B).

The local node is shutting down. No logical link can be established.

No system resources are available for the logical link.

An invalid buffer argument. Either the connect block (conbl) is not
word aligned or the optional user data buffers (in or out) are out­
side the user task address space.

The target task rejected the connection.

CONECT: CONW$ CONLUN,FLAG,IOSTAT,,CONBLK

CONW$E CONECT

CONW$S #CONLUN,#FLAG,#IOSTAT,,#CONBLK

3-20 MACR0-11 COMMUNICATION CALLS

CONB$$

Build Connect Block

3.10.6 CONB$$ - Build Connect Block

This call builds a data area which is used as a connect block in a CON$ macro
call. A connect block must include the following data specified in the CONB$$
call:

D the target node name

D destination descriptor information (the target task object type, the de­
scriptor format type, and, possibly, the target task name)

D access control information (the task's user ID and password on the
target node, and if required, the task's account number). If an alias
defines required access control information, it is unnecessary to define
the information in the connect block.

Format

CONB$$ [node],[obi],[fmt,<descrip>],[rgid],[<pass>],[accno]

Arguments

node

NOTE

The following arguments can be defined in the CRBDF$ call using a
72-byte block, N.RQL, with symbolic offsets. (See Table 3-2.)

The task can specify some values in N.RQL and then issue the
CONB$$ call for only the remaining values. For specifying non-ASCII
data for a field, you should create the field in N.RQL using the
CRBDF$ call, and omit the corresponding argument from the
CONB$$ call.

specifies the target node name. It consists of 1- to 6-alphanumeric characters
with at least one alphabetic character.

obj

specifies the target task's object type code. Object type codes range from 0 to
255. For a named object task, specify O as the object type code. For a
numbered object task, specify a value from 1 to 255.

fmt

specifies the descriptor format type. If the value of obj is o, specify 1 for the
format type. Otherwise, specify 0.

descrip

specifies the target task name (1- to 16-ASCll characters) for a named object.
Omit this argument for a numbered object.

NOTE

The obj, tmt, and descrip arguments comprise the destination de­
scriptor.

MACR0-11 COMMUNICATION CALLS 3-21

rqid

specifies a legal user ID on the target node. It consists of 1- to 16- ASCII
characters.

pass

specifies a legal password on the target node. It consists of 1- to 8-bytes. To
specify a password using ASCII characters, precede each character with an
apostrophe (') and separate them with commas. For example, the password
PAS is specified as 'P,'A,'S.

ace no

specifies a legal account number on the target node. It consists of 1- to 16-
ASCll characters.

NOTE

The rqid, pass, and accno arguments specify access control informa­
tion.

Examples

CONB$$ BOSTON,O, 1,<32W>,SMITH,<'T,'O,'M>

CONB$$ BOSTON,129,0,,SMITH,<'T,'O,'M>

Table 3-2
CONS$$ Connect Block Symbolic Offsets

Symbolic
Offset

N.RND*

N.RFM

N.ROT

N.RDEC

N.RDE

N.RIDC

N.RID

N.RPSC

N.RPS

N.RACC

N.RAC

N.RQL = 72

Length
in bytes

6

18

2

16

2

16

2

8

2

16

Contents

DESTINATION DESCRIPTOR

Remote node name with trailing blanks

Destination descriptor format type: 0 or 1

Destination object type: 0-255

Descriptor Field for Format 0

Not used

Descriptor Fields for Format 1

Destination task name length
(equal to or less than 16-bytes)

Destination task name

ACCESS CONTROL INFORMATION

User ID length
(equal to or less than 16-bytes)

User ID

Password length
(equal to or less than 8-bytes)

Password

Account number length
(equal to or less than 16-bytes)

Account number

* These symbolic offsets are guaranteed to be even (word aligned) when the connect
block is built by the DECnet software. They can be defined using the CRBDF macro.
(See Appendix D.)

3-22 MACR0-11 COMMUNICATION CALLS

DESTINATION
DESCRIPTOR
FIELDS

ACCESS
CONTROL
INFORMATION

Figure 3-1

L

0

D

0

E

v

L

G

s

A

5

6

3

E

R

N

1

R

c
R

B

0

G

p

s

Symbolic Offset

N.RND: ELROND

N.RFM: 1, N.ROT: 0

N.RDEC: 5

N.RDE: RECVR

N.RIDC: 6

N.RID: BLOGGS

N.RPSC: 3

N.RPS: PAS

N.RACC: (not used by P/OS)

N.RAC: (not used by P/OS)

Sample Connect Block Built by CONB$$

Figure 3-1 illustrates a connect block which was built as a result of this call:

CONB$$ ELRDND101l1<RECVR>1BLDGGS1<'P1'A1'S>

This connect block is directed to a task named RECVR on remote P/OS node
ELROND. The object type is O (named object) and the descriptor format type is
1. The user ID is BLOGGS and the password is PAS. No account number is
required for the P/OS target system.

MACR0-11 COMMUNICATION CALLS 3-23

DSC$

Disconnect a Logical Link

3.1O.7 DSC$ - Disconnect a Logical Link

The DSC$ call disconnects a logical link and frees its associated LUN. Unlike
ABT$ (see Section 3.10.2), DSC$ causes all previously issued transmit calls
(SND$) to complete prior to disconnect.

When flow control is in effect, the task continues to receive outstanding data
messages during the DSC$ processing. When DSC$ completes, the logical
link is disconnected and PRO/DECnet rejects any pending incoming calls.
These calls complete with an abort code (IE.ABO).

A task issuing DSC$ can transmit a 1- to 16-byte optional message with the
disconnect notification.

Formats

label: DSC[W]$ lun,[efn],[status],[ast],[<Out, out/en>]

DSC[W]$ E label, [tun], [efn], [status], [ast], [<out, out/en>]

DSC[W]$S lun,[efn],[status],[ast],[<Out,outlen>]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE
macro calls.

fun

specifies the logical unit number for the link to be disconnected from the
network. If the task initiated the connection, specify the LUN used in the CON$
macro call. If the task accepted the connection, specify the LUN used in the
ACC$ macro call.

efn

specifies the event flag to be set when a DSC$ call completes processing.

status

specifies the location of the 2-word block containing completion status infor­
mation on return from DSC$. (See Section 3.10.1.)

3-24 MACR0-11 COMMUNICATION CALLS

ast

specifies the starting address of an AST routine to be executed after the DSC$
call completes processing.

out, out/en

define optional outgoing user data. (See Section 3.10.1.)

Error/Completion Codes

IS.sue The macro completed successfully.

IE.ABO The specified logical link has already been aborted or disconnected.

IE.BAD The optional user data exceeds 16-bytes.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task. OPN$ did not execute suc­
cessfully.

IE.PRI The network is not accessible on the specified LUN.

IE.SPC An invalid buffer argument. The optional user data buffer out is
outside the user task address space.

Examples

'DISCON: DSCW$ CONLUN,FLAG,IOSTAT

DSCW$E DISCON

DSCW$S #CONLUN,#FLAG,#IOSTAT

MACR0-11 COMMUNICATION CALLS 3-25

GLN$

Get Local Node
Information

3.10.8 GLN$ - Get Local Node Information

The GLN$ call returns the local node name, the node number and the default
segment buffer size to be used on the logical link. The actual segment size is
determined by comparing the default local segment size to the remote seg­
ment size returned in the connect block. The smaller value becomes the value
of the actual buffer size. For efficient message transmission, you should try to
use a multiple of that number.

Formats

label: GLN[W]$ [/un],[efn],(status],[ast],<buf,buflen>

GLN[W]$E label,[lun],[efn],[status],[ast],<buf,buflen>

GLN[W]$S [lun],[efn],[status],[ast],<buf,buf/en>

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

specifies the logical unit number used to access the task's network data
queue. This LUN is identical to the one specified in the OPN$ call.

efn

specifies the event flag to be set when a GLN$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from GLN$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after the GLN$
call completes processing.

3-26 MACR0-11 COMMUNICATION CALLS

but

specifies the block which will contain the requested data. The block must start
on an even byte (word) boundary.

buf/en

specifies the length of the array which will contain the received data. The
returned data varies for each array length as summarized below:

Array length Returned data

6-bytes/ characters local node name

8-bytes/ characters local node name, default segment buffer size

10-bytes/ characters local node name, node number, default seg­
ment buffer size

The first six bytes contain the local node name. The next two bytes contain the
default segment buffer size. The last two bytes contain the local node number
in the lower 10 bits and a value of 1 for the higher 6 bits.

Error/Completion Codes

is.sue

IE.DAO

IE.NNT

IE.PRI

IE.SPe

The macro completed successfully.

Data overrun. The network data exceeded the specified buffer size
which resulted in some data loss.

The issuing task is not a network task. OPN$ did not execute
successfully.

The network is not accessible on the specified LUN.

An invalid buffer argument. The receiving buffer (but) is outside
the user task address space.

Byte 0 of word 1 in the 1/0 status block will contain the number of bytes
transferred to but if the call completed with IS.sue or IE.DAO.

MACR0-11 COMMUNICATION CALLS 3-27

Examples

LOCNOD: GLNW$ NTELUN,FLAG,IOSTAT,,BUFFR,BUFSIZ

GLNW$E LOCNOD

GLNW$S #NETLUN,#FLAG,#IOSTAT,,#BUFFR,#BUFSIZ

3-28 MACR0-11 COMMUNICATION CALLS

GND$

Get Network Data

3.10.9 GND$ - Get Network Data

The GND$ call gets data from the task's network data queue and stores it in
the specified mail buffer. If GND$ completes successfully, word 0, byte 1 of the
status block identifies which of the following messages have been stored:

D Type 1 - Connect request (NT.CON)

D Type 2 - Interrupt message (NT.INT)

D Type 3 - User disconnect notice (NT.DSC)

D Type 4 - User abort notice (NT.ABT)

D Type 5 - Network abort notice (NT.ABO)

You can use the SPA$ macro to determine the number of data items in the
network data queue. If you issue GND$ or GND[W]$ when the queue is empty,
the call completes with an error code (IE.NOA).

GND$ can receive data from a task's network data queue in these ways:

1. Retrieves the type code, message length and associated LUN for the
oldest message without removing it from the queue. The call's status
block returns the following information: The type code is returned to
word 0, byte 1. The message length is returned to word 1, byte 0. For
all messages except connect requests, the associated LUN is returned
to word 1, byte 1.

You should specify these arguments:

... ,status, ... ,NT.LON

2. Retrieves the length of the message specified in mask and returns it to
word 1, byte 0 without removing the message from the queue. The
message type and LUN are returned as described for option 1.

You should specify these arguments:

... ,status, ... ,<,,mask>,NT.LON

NOTE

The mask argument can specify (1) a specific message type
for a specific LUN, (2) a specific message type regardless of
the associated LUN, or (3) a specific LUN regardless of the
message type.

MACR0-11 COMMUNICATION CALLS 3-29

3. Removes the oldest message from the queue and places it in a mail
buffer. The message type code, length, and LUN are returned as de­
scribed for option 1.

You should specify these arguments:

... ,status,. . ., <mail, mien>

4. Removes the message specified by mask and places it in a mail buffer.
The message type code, length, and LUN are returned as described
in option 1. The mask argument can be specified as described in
option 2.

You should specify these arguments:

... ,status,. .. ,<mail,mlen,mask>,NT.TYP

Formats

label: GND[W]$ [lun],[efn],[status],[ast],

[
<mail,mlen> }~
<mai/,m/en,mask>,NT.TYP
,NT.LON
<,,mask>, NT.LON

G N D[W]$E label, [fun], [efn], [status], [a st],

ffi mail,mlen>]
<mai/,m/en,mask>,NT.TYP
,NT.LON
<,,mask>,NT.LON

GN D[W]$S [lun],[efn],[status],[ast],

[
mail, mien>]

<mai/,m/en,mask>,NT.TYP
,NT.LON
<,,mask>,NT.LON

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

identifies the logical unit number assigned to the network data queue. Use the
LUN specified in the OPN$ call.

efn

specifies the event flag to be set when a GND$ call completes processing.

3-30 MACR0-11 COMMUNICATION CALLS

status

specifies the address of the 2-word block containing completion status infor­
mation on return from GND$. (See Section 3.10.1.) The content of the status
block is summarized below:

If GND$ completes successfully and NT.LON is not specified:

Example 1

Status Word 0
Byte 0 =IS.sue or IS.DAO or IE.DAO
Byte 1 = NT.CON (Connect request)

Status Word 1
Byte 0 = Connect block length
Byte 1 = Access/privilege code:

VS.NPV = Nonprivileged user
VS.PRV = Privileged user
VZ.NVD = No verification

VZ.NVD is returned to the status block whenever:
1) The target task was a named object with an ob­
ject type code of 0. 2) The target task was a
numbered object and did not require remote ac­
cess verification.

VE.FA! = Verification failure

Example 2

No account found in system file or password did
not match the one found in the system file.

Status Word 0
Byte 0 =IS.sue or IS.DAO or IE.DAO
Byte 1 = NT.INT (Interrupt)

NT.DSC (User disconnect)
NT.ABT (User abort)

Status Word 1
Byte 0 = Optional message length.

If 0, no message was received over LUN.
Byte 1 = LUN used either for the interrupt or disconnect message

or the aborted logical link.

MACR0-11 COMMUNICATION CALLS 3-31

Example 3

Status Word 0
Byte 0 = IS.sue or IS.DAO or IE.DAO
Byte 1 = NT.ABO (Network abort)

Status Word 1
Byte 0 = Network abort code (see Appendix F)
Byte 1 = LUN used for the aborted logical link.

If GND$ completes successfully and NT.LON is specified:

Status Word O
Byte 0 = IS.sue or IS.DAO or IE.DAO
Byte 1 = NT.XXX (Message type)

Status Word 1
Byte O = Message length
Byte 1 = Access/privilege code or the LUN associated with the

message.

If GND$ completes with an error other than IE.DAO (-13):

ast

Status Word 0
Byte 0 = IE.XXX
Byte 1 = 0

Status Word 1
Byte 0 = 0
Byte 1 = 0

specifies the starting address of an AST routine to be executed after the GND$
call completes processing.

mail

specifies the address of the mail buffer which receives the data. For a connect
request, mail is normally 98-bytes. If an optional user message was sent with
the connect request, the maximum size for mail is 114-bytes.

For all other messages, mail should be 1- to 16-bytes in order to accommo­
date the optional data message sent with interrupt, user disconnect, and user
abort messages. The value for mail must begin on a word boundary. See Table
3-3 for connect block symbolic offsets.

3-32 MACR0-11 COMMUNICATION CALLS

mien

specifies the mail buffer size.

mask

specifies the message type (byte 0) and the LUN (byte 1) to be removed from
the task's network data queue and placed in mail in one of these ways:

D If the specified message type equals 1, 2, 3, 4 or 5 and the associ­
ated LUN equals 0, then the first message for the specified mes­
sage type, regardless of its associated LUN, is removed from the
queue.

D If the LUN does not equal 0 and the message type equals 0, then
the first message for a particular LUN, regardless of message type,
is removed from the queue.

D If the specified message type and the LUN do not equal 0, then the
first message for the specified message type and particular LUN is
removed from the queue.

For example, to select the first disconnect message (NT.DSC) for LUN 3, code
mask as follows: 3*256+NT.DSC

Flags

NT.TYP

indicates that a specific message type and/or LUN has been requested in the
mask argument. Always specify NT.TYP when mask is specified with mail and
mien.

NT.LON

NOTE

If NT.TYP is used in a BUILD type macro GND$, it must also be
included in the associated EXECUTE type GND$.

indicates that the type and length of the message should be returned to the 1/0
status block. The message is not removed from the task's network data queue
or placed in the mail buffer.

NOTE

If NT.LON is used in a BUILD type GND$, it must also be included in
the associated EXECUTE type GND$.

MACR0-11 COMMUNICATION CALLS 3-33

Error/Completion Codes

is.sue

IS.DAO

IE.DAO

IE.NOA

IE.NNT

IE.PRI

IE.SPC

Examples

The macro completed successfully.

The macro completed successfully but some returned optional
data was lost in the process.

Data overrun. The network data was longer than the mail buffer. As
a result, some remaining data was lost in the transfer process.

There is no data to return from the network data queue.

The issuing task is not a network task. OPN$ did not execute
successfully.

The network is not accessed on the specified LUN.

An invalid buffer argument. The buffer assigned to receive network
data (mail) is not word aligned or is outside the user task address
space.

GETNET: GNDW$,FLAG,IOSTAT,,<,,MASK>,NT.LON

GNDW$E GETNET,,,,,,NT.LON

GNDW$S ,#FLAG,#IOSTAT,,<,,#MASK>,#NT.LON

3-34 MACR0-11 COMMUNICATION CALLS

Table 3-3
GND$ Connect Block Symbolic Offsets

Symbolic
Offset

N.CTL*

N.SEGZ*

N.DFM

N.DOT

N.DDEC*

N.DDE*

N.SND

N.SFM

N.SOT

N.SDEC

Bytes

2

2

18

2

16

6

18

2

Contents

Temporary logical link address
(required by the network; do not modify)

NSP segment size
(used by NSP to send message data)

DESTINATION DESCRIPTOR
(20-byte total)

Destination descriptor format type: O or 1

Destination object type: 0-255

Descriptor Field for Format O

Not used

Descriptor Fields for Format 1

Destination task name length
(equal to or less than 16-bytes)

Destination task name

SOURCE DESCRIPTOR
(26-bytes total)

Source node name
(name of node requesting the conn~ction, with trailing blanks)

Source descriptor format type
(must be either format O or format 1)

Source object type
(object type of task or process requesting the connection:
1-255 for format 0, or O for format 1)

Descriptor Field for Format O

Not used

Descriptor Fields for Format 1

Source task name length (equal to or less than 16-bytes)

* These symbolic offsets are guaranteed to be even (word aligned) when built by
DECnet software. They can be defined using the CNBDF$ macro. (See Appendix D.)

(continued on next page)

MACR0-11 COMMUNICATION CALLS 3-35

Table 3-3 (cont)
GND$ Connect Block Symbolic Offsets

Symbolic
Offset

N.SDE

N.CIDC

N.CID

N.CPSC

N.CPS

N.CACC

N.CAC

N.CDEV

N.CUNI

N.CUIC

N.CDAC

Bytes

16

2

16

2

8

2

16

2

2

Contents

Source task name

ACCESS CONTROL INFORMATION
(46-bytes total)

If no verification is performed

User ID length
(equal to or less than 16-bytes)

User ID

Password length
(equal to or less than 8-bytes)

Password

Account number length
(equal to or less than 16-bytes)

Account number

If verification is performed

Default device name

Default device unit number

Not used

Log-in UIC from account file

40 Not used

2

OPTIONAL DATA
(18-bytes total)

Length of optional user data
(equal to or less than 16-bytes; O if no optional data)

N.CDA 16 Optional user data sent by source task (0 to 16-bytes)

N.CBL = 98 (not including N.CDA)

* These symbolic offsets are guaranteed to be even (word aligned) when built by
DECnet software. They can be defined using the CNBDF$ macro. (See Appendix D.)

Figure 3-2 is an example of connect block information retrieved from the
network data queue by a GND$ call. This connect block was built by the
CONB$$ call as shown in Figure 3-1.

3-36 MACR0-11 COMMUNICATION CALLS

DESTINATION
DESCRIPTOR
FIELDS

SOURCE
DESCRIPTOR
FIELDS

ACCESS
CONTROL:
NO
VEl'llFICATION

Figure 3-2

0

E

v

0

T

N

0

E

D

l

G

s

A

420

1

5

R

c
R

B

s
0

1

5

s
N

R

6

B

0

G

3
p

s

~

Symbolic Offset

N.CTL: (not u·sed by user)

N.SEGZ: 420

N.DFM: 1, N.DOT: 0

N.DDEC: 5

N.DDE: RECVR

N.SND: BOSTON

N.SFM: 1, N.SOT: 0

N.SDEC: 5

N.SDE: SENOR

N.CIDC: 6

N.CID: BLOGGS

N.CPSC: 3

N.CPS: PAS

N.CACC: (not used by P/OS)

N.CAC: (not used by P/OS)

Sample Connect Block Returned by GND$

MACR0-11 COMMUNICATION CALLS 3-37

OPN$

Access the Network

3.10.1 O OPN$ - Access the Network

The OPN$ call establishes the task as an active network task and creates the
task's network data queue. The task must call OPN$ before calling any other
network macro.

Formats

label: OPN[W]$ [/un],[efn],[status],[ast]
[,<links[,/rp]>]

OPN[W]$E labe/,[/un],[efn],[status],[ast]
[,<links[,/rp]>]

OPN[W]$S [lun],[efn],[status],[ast][, <links[,/rp]>]

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

assigns a logical unit number to the task's network data queue. This argument
can be omitted if a LUN was assigned to NS: by defining the symbol .MBXLU in
the program or by using a GLBDEF during the task build operation.

Use the specified LUN in succeeding GND$, SPA$, GLN$, REJ$, and CLS$
calls.

efn

specifies the event flag to be set when an OPN$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from OPN$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after the GND$
call completes processing.

3-38 MACR0-11 COMMUNICATION CALLS

links

assigns the maximum number of active logical links that are allowed for a task.
Once the number of logical links, accepted via the ACC$ macro, equals the
link value, the network will automatically reject any pending connect requests.
The valid range is Oto 255 with Oas the default value. A value of O implies that
there is no limit to the number of logical links.

The link argument does not affect the number of logical links resulting from
CON$ calls.

lrp

specifies the link recovery period. It defines the number of seconds that can
elapse between a physical path failure and a disconnect of a logical link. The
valid range is 0 to 32767 with 0 as the default value.

As long as the cooperating task remains connected and the physical path
recovers before Jrp elapses, the logical link will continue without any visible
interruptions. If the link does not recover in time, the system will abort the link.

If the recovery period is set to 0, and an alternate physical path cannot be
immediately found, the system will immediately abort the logical link.

Error/Completion Codes

is.sue

IE.PRI

IE.RSU

Examples

The macro completed successfully.

The network is being dismounted or the user task has already
accessed the network.

System resources needed for the network data queue are unavail­
able.

OPNNET: OPNW$ 1,FLAG,IOSTAT

OPNW$E OPNNET

OPNW$S #1,#FLAG,#IOSTAT

MACR0-11 COMMUNICATION CALLS 3-39

REC$

Receive Data over a
Logical Link

3.10.11 REC$ - Receive Data over a Logical Link

The REC$ call receives a data message over the logical link and stores it in a
specified buffer. When flow control is in effect, a data message will not be sent
between tasks until the intended receiver has issued a REC$ call.

NOTE

The receive buffer but should always align on an even byte boundary.

Formats

label: REC[W]$ lun,[etn],[status],[ast],
<buf,buf/en>

REC[W]$E label, [fun], [efn], [status], [ast],
[<buf,buflen>]

REC[W]$S lun,[efn], [status],[ast], <buf,buflen>

Arguments

label

specifies the location of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

specifies the logical link to be used for sending the message. If the task
initiated the connection, specify the LUN used in the CON$ call. If the task
accepted the connection, specify the LUN used in the ACC$ call.

etn

specifies the event flag to be set when a REC$ call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from REC$. The second word of the status block contains the
actual number of received bytes. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed after the REC$
call completes processing.

3-40 MACR0-11 COMMUNICATION CALLS

buf

specifies the address of the buffer which will contain the incoming data mes­
sage.

buflen

specifies the length of the receive buffer in bytes. The valid range is 1- to 8128-
bytes.

Error/Completion Codes

is.sue

IE.ABO

IE.DAO

IE.NLN

IE.NNT

IE.SPC

Examples

The macro completed successfully.

The logical link was disconnected during 1/0 operations.

Data overrun. The incoming data was longer than the buffer. As a
result, some data was lost in the transfer process.

No logical link has been established on the specified LUN.

The issuing task is not a network task. OPN$ did not execute
successfully.

An invalid buffer argument. Either the data buffer (buf) is outside
the user task address space, or the buffer length (buflen) exceeds
8128 bytes.

RECDAT: REC 2,FLAG,IOSTAT,,<INBUF,BUFLEN>

REC$E RECDAT

REC$S #2,#FLAG,#IOSTAT,,<#INBUF,#BUFLEN>

MACR0-11 COMMUNICATION CALLS 3-41

REJ$

Reject Logical Link
Connect Request

3.10.12 REJ$ - Reject Logical Link Connect Request

The REJ$ call rejects a logical link request. The task can send 1- to 16-bytes of
optional data with the reject message to the requesting task.

Formats

label: REJ[W]$ [lun],[efn],[status],[ast],
<mail, [mailen] ,[out,outlen] >

REJ[W]$E label,[lun],[efn],[status],
[a st], <mail, [mailen], [out, out/en]>

REJ [W]$S [Jun], [efn], [status], [a st],
<mail, [mailen], [out,outlen] >

Arguments

label

specifies the address of the argument block for BUILD and/or EXECUTE type
macro calls.

Jun

specifies the logical unit number assigned to the task's network data queue.
Specify the LUN used in the OPN$ call.

etn

specifies the event flag number to be set when a REJ$ call completes process­
ing.

status

specifies the address of the two-word block that contains completion status
information on return from REJ$. (See Section 3.10.1.)

ast

specifies the starting address of an AST routine to be executed when the REJ$
call completes processing.

3-42 MACR0-11 COMMUNICATION CALLS

mail

specifies the address of the mail buffer that contains the connect block needed
to reject the connect request. The connect block was placed in mail by the
preceeding GND$ call.

mailen

specifies the length of the connect block in bytes. The connect block can be
98- to 114-bytes. If mailen is omitted, the length defaults to 98 bytes.

out, out/en

define an optional outgoing message. (See Section 3.10.1.)

Error/Completion Codes

is.sue

IE.ABO

IE.BAD

IE.NNT

IE.PRI

IE.SPC

Examples

The macro completed successfully.

The task that requested the connection has aborted or has re­
quested a disconnect before the rejection could complete.

Either the temporary link address in the connect block is not valid,
or the optional user data buffer exceeds 16 bytes.

The issuing task is not a network task. OPN$ did not execute
successfully.

The network is not accessed on the specified LUN.

An invalid buffer argument. Either the connect block (mail) or the
optional user data buffer (out) is outside the user task address
space, or the connect block is not word aligned.

REJECT: REJW$,LUN,FLAG,IOSTAT,,<MBUF,MLEN>

REJW$E REJECT

REJW$S ,#LUN,#FLAG,#IOSTAT,,<#MBUF,#MLEN>

MACR0-11 COMMUNICATION CALLS 3-43

3.10.13 SND$ - Send Data over a Logical Link

SND$

Send Data over a
Logical Link

The SND$ call sends a data message over a particular logical link. When flow
control is in effect, the network does not actually transmit the message until
the receiving task has issued a receive call. The sending task cannot reuse the
message buffer specified in SND$ until it receives an error/completion code
from the network.

NOTE

The receive buffer but should always align on an even byte boundary.

Formats

label: SND[W]$ lun,[etn],[status],[ast],
<buf,buf/en>

SND[W]$E label,lun,[efn],[status],[ast],
<but,buflen>

SND[W]$S lun,[efn],[status],[ast],
<but,buflen>

Arguments

label

specifies the address of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

specifies the logical unit number to be used for message transmission. If the
task initiated the connection, specify the LUN used in the CON$ call. If the task
accepted a connect request, specify the LUN used in ACC$ call.

efn

specifies the event flag to be set when a SND$ call completes processing.

status

specifies the address of the two-word block that contains completion status
information on return from SND$. The second word of the status block con­
tains the actual number of transmitted bytes. (See Section 3.10.1.)

3-44 MACR0-11 COMMUNICATION CALLS

ast

specifies the starting address of an AST routine to be executed when the
SND$ call completes processing.

but

specifies the address of the buffer containing the outgoing data message.

but/en

specifies the buffer length in bytes. The buffer can be 1- to 8128-bytes.

Error/Completion Codes

is.sue

IE.ABO

IE.NLN

IE.NNT

IE.SPC

Examples

The macro completed successfully.

The logical link was disconnected during 1/0 operations.

No logical link has been established on the specified LUN.

The issuing task is not a network task. OPN$ did not execute
successfully.

An invalid buffer argument. Either the message data buffer (but) is
outside the user task address space, or the buffer length (but/en)
exceeds 8128 bytes.

SEND: SNOW$ 1,FLAG,IOSTAT,,<DATBUF,BUFLEN>

SNDW$E SEND

SNDW$S #1,#FLAG,#IOSTAT,,<#DATBUF,#BUFLEN>

MACR0-11 COMMUNICATION CALLS 3-45

3.10.14 SPA$ - Specify User AST Routine

SPA$

Specify User AST
Routine

The SPA$ macro defines an AST routine which will execute whenever data
arrives in the network data queue. This AST routine will not be executed for
any pre-call data already in queue. This data can be processed by a different
AST routine specified in the ast argument of the SPA$ call. The AST routine is
executed after the SPA$ macro completes processing. See the example at the
end of this section.

Formats

label: SPA[W]$ lun,[efn],[status],[ast],
[<addr>]

SPA[W]$E label,[lun],[efn],[status],[ast],
[<addr>]

SPA[W]$S [lun],[efn],[status],[ast][,<addr>]

Arguments

label

specifies the address of the argument block for BUILD and/or EXECUTE type
macro calls.

fun

specifies the logical unit number assigned to the task's network data queue.
You should use the same LUN as specified in the OPN$ call.

efn

specifies the event flag to be set when a SPA$ call completes processing.

status

specifies the address of the 2-word block that contains completion status
information on return from SPA$. See definition in Section 3.10.1 and note this
exception:

Word 1: Contains the number of items in the network data queue.

ast

specifies the starting address of an AST routine to be executed when the SPA$
call completes processing.

3-46 MACR0-11 COMMUNICATION CALLS

addr

specifies the address of the user-written AST routine. The specified AST rou­
tine can be changed during execution by executing a different SPA$ with a
different starting address. It can be eliminated by using zero for the address. If
this argument is omitted, no AST routine will be executed during task opera­
tion.

NOTE

SPA$ executes whenever new data is placed in the network data
queue. In this case, there is no additional data to be removed by the
task from the stack.

Error/Completion Codes

is.sue

IE.NNT

IE.PAI

Example

The macro completed successfully.

The issuing task is not a network task. OPN$ did not execute
successfully.

The network is not accessed on the specified LUN.

This example illustrates the use of the SPA$ completion AST routine for pro­
cessing network data.

MAIN PROGRAM CODE:

OPN$S, ••
SPA$S.,, t#CMPAST 1<#SPAAST>

AST PROGRAM CODE:

.ENABLE LSB
CMPAST: MDV <SP>+1lOSB ;save SPA$ 1/0 stat1.1s blocK

MDV R01-(SP> save RO on stacK
MDV lOSB1RO ae t 1/0 status blocK addr
CMPB #ls. sue, mo> successful?
BNE 20$ if not eci ua 1 ' no - a'o exit

addr

AST
MDV 2<R0)1RO ae t current networK data count
BEQ 20$ if zero, a'o exit AST
BR 10$ continue "''it h COf!lfTIOn code

SPAAST: MDV R01-<SP> , save RO on stacK
MDV #1 1RO ;set neti,.10 rK data co 1.1n t

10$: GNDW$S , , , 1#GNDSB ; a et neti,.1orK data it e Ill
BCS 20$;if can't - a'o exit AST

;
;process neti,.•orK data it ern
;

SOB RO, 10$;I OOP till all it e fTIS P r'D c es s e d
20$: MDV <SP)+ 1RO ;recover RO fr OfTI stacK

ASTX$S iexit AST
.DSABL LSB

MACR0-11 COMMUNICATION CALLS 3-47

XMI$

Send Interrupt Message

3.10.15 XMI$ - Send Interrupt Message

The XMI$ call sends an interrupt message to a cooperating task over a logical
link. The call completes when the source task is informed that the interrupt
message was placed on the target task's network data queue. The target task
must remove the interrupt message from the queue before the source task can
issue another interrupt message over the same logical link.

Formats

label: XMl[W]$ lun,[efn],[status],[ast],
<int,intlen>

XMl[W]$E label,[lun],[efn],[status],[ast],
<int,intlen>]

XMl[W]$S lun,[efn],[status],[ast],
<int,intlen>

Arguments

label

specifies the logical unit number to be used for sending the interrupt message.
If the task initiated the connection, specify the LUN used in the CON$ call. If
the task accepted the connect request, specify the LUN used in the ACC$ call.

efn

specifies the event flag set when the XMI$ call completes processing.

status

specifies the address of the 2-word block that contains completion status
information on return from the XMI$ call. See definition in Section 3.10.1 and
note this exception:

Word 1: Contains the number of bytes in the outgoing message.

ast

specifies the starting address of an AST routine when the XMI$ call completes
processing.

int

specifies the address of the buffer containing the outgoing interrupt message.

int/en

specifies the buffer length in bytes. The buffer can be 1- to 16-bytes.

3-48 MACR0-11 COMMUNICATION CALLS

Error/Completion Codes

is.sue

IE.ABO

IE.BAD

IE.NLN

IE.NNT

IE.SPC

IE.WLK

Examples

The interrupt message was transmitted successfully.

The logical link was disconnected during 1/0 operations.

The interrupt message exceeds 16 bytes.

No logical link was established on the specified LUN.

The issuing task is not a network task. OPN$ did not execute
successfully.

An invalid buffer argument. The interrupt message buffer (int) is
outside the user task address space.

An interrupt message was transmitted before a previous interrupt
message was actually received by the target task.

INTRPT: XMIW$ 1,FLAG,IOSTAT,,<INTBUF,BUFLEN>

XMIW$E INTRPT

XMIW$S #1,#FLAG,#IOSTAT,,<#INTBUF,#BUFLEN>

CHAPTER 4
DLX: DIRECT LINE ACCESS
CONTROLLER

The DLX interface allows you to send messages to DLX programs residing on
other nodes without incurring the overhead of the higher level DECnet proto­
cols. DLX programs benefit from the same low level networking software used
for sending DECnet messages over the Ethernet.

A PRO/DECnet node can simultaneously run multiple DECnet and DLX tasks;
each task could be communicating with different nodes. The DLX interface is
automatically included tn PRO/DECnet systems. To invoke DLX, you issue
queued input/output (QIO) calls to the NX: device.

DLX can significantly improve network performance in terms of CPU utilization
and response time. It allows you to build personalized user-level protocols
which best suit your applications. By using DLX, your task loses s~rvices
provided by the h_igher DECnet levels. Specifically, servi_ces such as resource
management and checking for the occasional loss of packets must be pro­
vided in your user task to insure proper execution.

DLX programming requires a thorough knowledge of MACR0-11 assembly
language and experience in writing real-time application programs. DLX does
not support flow control for data transfer. As a result, you must write tasks that
synchronize with each other before transferring data. If these tasks are not
synchronized, the data can be lost during DLX communication. You must also
provide your own error-handling routines. The DLX software informs you of
any errors; but your task must include code for error recovery procedures.

4-1

4-2 DLX: DIRECT LINE ACCESS CONTROLLER

NOTE

You must use the /PR switch to task build your DLX programs.

All DLX messages, both sent and received, are buffered in the same
network buffer pool used by DECnet and other DLX tasks. Such shar­
ing can effect their throughput performance. Depending on the DLX
program, it may be advisable to increase the size and/or number of
network buffers.

The DECnet test tool helps you isolate possible hardware problems.
When a loopback test is initiated, a test message is sent from your
node to a loopback connector or loopback software. Once the mes­
sage reaches its destination, it is sent back to your node and com­
pared to the original message. If you perform loopback tests on a DLX
task containing multicast addresses, the task must be able to receive
its own transmitted messages.

4.1 SPECIAL CONSIDERATIONS FOR ETHERNET USERS

The DECNA is a single device which can handle multiple simultaneous users.
Externally, the DECNA appears as a single line point-to-point controller (for
example, CNA-0). Internally, it is implemented like a multipoint device with
each station representing an available port on the Ethernet.

All transmitted messages on the Ethernet must include a destination address
(48-bit) and a protocol type (16-bit). There are two modes that determine how
messages will be transmitted: physical address mode and multicast address
mode.

Physical addressing mode defines a unique address for a single node on any
Ethernet. Multicast addressing mode defines a multidestination address of one
or more nodes on a given Ethernet. Multicast addressing allows data to be
transmitted only once to a number of nodes using a group address.

Each user can define unique protocol/address pairs for selecting specific
messages for delivery. These pairs insure that messages will be delivered to
the intended recipients.

The Ethernet offers three different routing methods:

1. Exclusive
LF$EXC

2. Default
LF$DEF

3. Normal

The user has exclusive use of the specific protocol
and no other user may transmit or receive using this
protocol. (DECnet routing uses this mode.)

The user should receive messages on this protocol
that would otherwise be discarded because there
was no protocol/address pair set up by this task or
any other one.

The user must specify the protocol/address pairs
used for communications.

DLX: DIRECT LINE ACCESS CONTROLLER 4-3

NOTE

You should always select padding (LF$PAD) in order to prefix a mes­
sage with a 2-byte length field. This padding technique insures the
minimum Ethernet size for proper transmission. If not, the field will be
automatically added before the message is received at the destina­
tion. On receive, the length field will be used to indicate the amount of
data present.

4.2 DLX QIOs

DLX requests conform to normal RSX-11 QIO standards. They also observe
the standards for logical unit numbers (LUNs), event flags, 1/0 status blocks,
asynchronous system traps (ASTs), and parameter lists. You can use any one
of the three macro formats described in Section 3.1. The QIO WAIT option
(specified as QIOW$) can be used as versions of these macro calls.

The macros are defined in the DECnet macro library (NETLIB.MLB). The defi­
nitions and offsets used in the macros are contained in two definition macros:
DLXDF$ and EPMDF$.

It is necessary to issue .MCALL statements and explicitly invoke the macro in
your programs. For example,

.MCALL DLXDF$1EPMOF$

DLXOF$
EPMOF$

The DLX QIO calls and Ethernet functions are summarized in Table 4-1. Each
call's arguments and completion status codes are described in Sections 4.3
through 4.7.

Table 4-1
Summary of DLX Ethernet Calls

Code

10.XOP

10.XSC

10.XTM

10.XRC

10.XCL

Ethernet QIO

Open the Ethernet channel.

Set Ethernet characteristics.

Transmit a message on the Ethernet.

Receive a message on the Ethernet.

Close the Ethernet channel.

4-4 DLX: DIRECT LINE ACCESS CONTROLLER

10.XOP

Open the Ethernet
Channel

4.3 10.XOP - OPEN THE ETHERNET CHANNEL

This call opens a channel for direct message transfer and reception. It uses a
LUN assigned to NX: and sets the appropriate protocol/address pairs.

To open the Ethernet device from DLX, issue this call using CNA-0 as the
device-id string. DLX will scan the channel data base for an available channel
and assign it for your use.

Format

010$ 10.XOP,/un,[efn],,[status] ,[ast], <P 1,p2,p3>

Arguments

10.XOP

is the function code that opens the channel.

fun

specifies a logical unit number already assigned to NX:. This LUN will be used
in subsequent DLX calls.

efn

specifies an event flag set when the DLX call completes processing.

status

specifies the 2-word status block containing completion status information on
return from the call. It is found in the low-order byte of the first word.

ast

specifies the starting address of the user-written AST routine.

p1

specifies the address of an ASCII string identifying the device upon which a
channel will be opened for communication. The string is specified as dev-ctl
where dev is the device mnemonic and ct/ is the decimal value for the control­
ler number. For PRO/DECnet, the only valid string is "CNA-0".

DLX: DIRECT LINE ACCESS CONTROLLER 4-5

p2

specifies the length of the device identification field.

p3

specifies the time period which can elapse while the receiver waits for a mes­
sage to be sent over the channel. The low-order byte of the word designates
the receive timeout value as follows:

timeout = 0 for no receive timer.
timeout = <n>

where n is the timer value in seconds. (The timer value n causes the timeout to
have a range of n-1 to n.) The high-order byte of this word must equal 0.

If this timer elapses without data, the receive call will complete with an IE.TMO
error.

Completion Status Codes

is.sue
(1)

177646
IE.NSF
(-26)

177736
IE.ALN
(-34)

177757
IE.RSU
(-17)

177760
IE.PRI
(-16)

The channel has been opened successfully.

You have either entered an invalid device identification format or
the specified device is not in the system.

The specified LUN is already in use.

The specified channel is already in use.

The specified channel is not available for use by DLX.

4-6 DLX: DIRECT LINE ACCESS CONTROLLER

10.XSC

Set Characteristics

4.4 10.XSC - SET CHARACTERISTICS

This call sets up the protocol/address pairs and multicast addresses.

Format

010$ IO.XSC,lun,[efn],,[status],[ast],<P1,p2>

Arguments

10.XSC

is the function code that supplies a single characteristics buffer in arguments
p1 and p2. This buffer may contain multiple characteristics blocks.

fun

specifies the logical unit number already used in the DLX open call.

efn

specifies an event flag number set when the DLX call completes processing.

status

specifies the address of the 2-word block containing completion status infor­
mation on return from the call. The second word indicates how much of the
characteristics buffer was processed during the call.

ast

specifies the starting address of a user-written AST routine.

p1

specifies the address of the characteristics buffer.

p2

specifies the length of the characteristics buffer in bytes.

DLX: DIRECT LINE ACCESS CONTROLLER 4-7

Protocol Flag Codes

The following protocol flags are defined in EPMDF$ {LF$xxx). They are used
when you set up a characteristics buffer. The flags and their symbolic offsets
follow:

Protocol Flag Octal Value Meaning

LF$EXC 1 Exclusive access protocol

LF$DEF 2 Default user defined

LF$PAD 4 Protocol requires padding

LF$PRM 200 Permanent protocol

NOTE

The address field(s) should not be present if LF$EXC or LF$DEF is
specified in the flags.

Format of a Characteristics Buffer

The set characteristics buffer may contain multiple characteristics blocks. You
can append these blocks into one characteristics buffer. Its length is specified
in the p2 argument of the 10.XSC call.

Each characteristics block has the following general format:

+---------------+
I Characteristics type
1---------------
1 Size of data input
1---------------
1 Size of data output
1---------------
1 Characteristics status
1---------------
1 Characteristics data
I
I
I
I
+---------------+

Entry Symbolic Offset
(Octal Value)

C.TYP 0

C.DATI 2

C.DATO 4

C.STAT 6

C.CHRL 10

C.TYP

C.DATI ----+
I

C.DATO I
I

C.STAT I
--+ I

C.CHRL I I
I I
I - - - +
I
I

-------+

Meaning

Characteristics type code

Number of bytes of input data

Number of bytes of output data

1/0 completion status return

Minimum length of characteristics buffer

4-8 DLX: DIRECT LINE ACCESS CONTROLLER

C.STAT Error Codes

100001
CE.UDF An undefined function

100003
CE.RTL Request was too large (too much data supplied).

100004
CE.RTS Request was too small (not enough data supplied).

100010
CE.RES Resource allocation failure

4.4.1 Setting up Protocol/Address Pairs

When the C.TYP entry is set to CC.DST (200), messages having the specified
protocol type can be transmitted to and received from any address in the
specified list. The characteristics data block (C.CHRL) is shown below:

+---------------+
Characteristics type I

---------------I
Size of data input I

---------------I
Reserved I

---------------I
Characteristics status I
---------------I

Protocol type I
---------------I

Protocol flags I
---------------I

Address I

.
Address n

I
I
I
I
I

+---------------+

Notes

C.TYP

C.DATI

C.DATO

C.STAT
--------+
C.CHRL I

I
I
I
I
I
I
I
I
I

--------+

Characteristics
Data

4+6n
bytes

1. The protocol type entry is a one· word quantity which contains a user­
defined 16-bit protocol value.

2. The protocol flags entry is a one word quantity which contains specific
values as described in Section 4.4.

3. Each address entry is a three word quantity which contains the 48-bit
Ethernet address.

DLX: DIRECT LINE ACCESS CONTROLLER 4-9

C.STAT Error Codes

100011
CE.PCN Protocol usage conflict:

A. Another user has exclusive access to this protocol.

B. There is already a default user of this protocol. This request is
attempting to set up a new default user.

C. The padding status of this protocol does not match the re­
quested one.

100012
CE.ACN The protocol/address pair is already in use.

100013
CE.IUN An illegal use of multicast addressing. One of the specified ad­

dresses is multicast.

4.4.2 Setting up a Multicast Address

When the C.TYP entry is set to CC.MCT (201), messages are received at the
specified multicast address. The characteristics data block is shown below:

+---------------+
I Characteristics type , ______________ _
I Size of data input , ______________ _
I Reserved , ______________ _
I Characteristics status , ______________ _
I Multicast address
I
I
I
+---------------+

Note

C.TYP

C.DATI

C.DATO

C.STAT
- - + Characteristics

I Data
I
I
I

- - + 6 bytes

1. Each address entry is a three word quantity which contains the 48-bit
Ethernet address.

C.STAT Error Codes

100007
CE.MCE The specified multicast address is already enabled.

100014
CE.NMA The specified address is not a multicast address.

4-10 DLX: DIRECT LINE ACCESS CONTROLLER

10.XTM

Transmit a Message
on the Ethernet

4.5 10.XTM - TRANSMIT A MESSAGE ON THE ETHERNET

When you transmit a message on the Ethernet, you must specify its destination
multicast or physical address and protocol type. This information is specified
in the p3 and p4 arguments of an auxiliary characteristics buffer.

The auxiliary characteristics buffer has the same format as the set characteris­
tics buffer. See Section 4.6 for more information.

Format

010$ IO.XTM,/un,[etn],,[status],[ast],<P1,p2,p3,p4>

Arguments

10.XTM

is the function code for transmitting a message.

fun

specifies the logical unit number already used in the DLX set characteristics
call.

etn

specifies an event flag number set when the 10.XTM call completes process­
ing.

status

specifies the address of the 2-word status block containing completion status
information on return from the call. This information is contained in the low­
order byte of the first word.

ast

specifies the starting address of a user-written AST routine.

p1

specifies the address of the user buffer containing the outgoing message.

p2

specifies the length of the outgoing message.

DLX: DIRECT LINE ACCESS CONTROLLER 4-11

p3

specifies the address of the auxiliary characteristics buffer containing the mul­
ticast or physical addresses.

p4

specifies the length of the auxiliary characteristics buffer.

4.5.1 Setting up the Ethernet Address

You must define the protocol type by setting the C.TYP entry to CC.ADA (100)
before messages can be successfully transmitted over the Ethernet channel.
The individual characteristics are shown below:

+---------------+
Characteristics type

Size of data input

Size of data output

Characteristics status

Ethernet address

+---------------+

Note

C.TYP

C.DATI

C.DATO

C.STAT
--+

I
I
I
I

- - +

Characteristics
Data

6 bytes

1. Each address entry is a three word quantity which contains the 48-bit
Ethernet address.

4.5.2 Setting the Protocol Type

You must define the protocol type by setting the C.TYP entry to CC.PRO (101)
before you can successfully transmit messages over the Ethernet channel. The
individual characteristics are shown below:

+---------------+
I Characteristics type I
!---------------I
I Size of data input I
!---------------I
I Size of data output I
1--------------- I
I Characteristics status I
!---------------I
I Protocol type I
+---------------+

Note

C.TYP

C.DATI

C.DATO

C.STAT
--+

I
-- +

Characteristics
Data
2 bytes

1. The protocol type entry is a one word quantity which contains a user­
defined 16-bit protocol value.

4-12 DLX: DIRECT LINE ACCESS CONTROLLER

C.STAT Error Code

IE.BAD An attempt to transmit a message was rejected by the system. The
auxiliary characteristics buffer did not include the Ethernet ad­
dress and protocol type.

Completion Status Codes

is.sue
(1)

177733
IE.NLN
(-37)

177761
IE.ABO
(-15)

177775
IE.DNA
(-3)

The message was successfully transmitted to the remote node.

No channel has been opened with the specified LUN.

The transmission was aborted and the channel was disconnected.
An unrecoverable error occurred in the hardware device. You
must issue a QIO to close and then reopen the Ethernet channel
(see Sections 4.7 and 4.3, respectively) before you can use that
channel again.

The hardware device was not ready. The channel was discon­
nected and has not been reinitialized.

DLX: DIRECT LINE ACCESS CONTROLLER 4-13

10.XRC

Receive a Message
on the Ethernet

4.6 10.XRC - RECEIVE A MESSAGE ON THE ETHERNET

This macro call allows you to receive data from a sending task. When you
receive a message on the Ethernet, you must find out the source Ethernet
address for this message, the protocol type and the destination Ethernet ad­
dress. To do this, you should use arguments p3 and p4 which specify the
optional auxiliary characteristics buffer. You should then examine the C.DATO
entry located in this buffer for the length of the message address and protocol
information.

The auxiliary characteristics buffer has the same format as the set characteris­
tics buffer described in Section 4.4.

Format

010$ 10.XRC,lun,[efn],,[status],[ast],
<P 1,p2, [p3,p4] >

Arguments

10.XRC

is the function code for receiving a message.

Jun

specifies the logical unit number used in the DLX open call.

efn

specifies an event flag number set when an 10.XRC call completes processing.

status

specifies the address of the 2-word status block containing completion status
information on return from the call. This information is contained in the low­
order byte of the first word.

ast

specifies the starting address of a user-written AST routine.

p1

specifies the address of the buffer which will receive the message.

4-14 DLX: DIRECT LINE ACCESS CONTROLLER

p2

specifies the receive buffer length in bytes.

p3

specifies the address of the optional auxiliary characteristics buffer.

p4

specifies the length of the optional auxiliary characteristics buffer.

4.6.1 Optional Auxiliary Buffer for Receive Messages

The optional auxiliary buffer contains the following individual characteristics
blocks as shown below:

Read the Ethernet Address

C.TYP =CC.ADA (100)

+---------------+
I Characteristics type
1---------------
1 Size of data input
1---------------
1 Size of data output
1---------------
1 Characteristics status
1---------------
1 Ethernet address
I
I
I
+---------------+

Read the Protocol Type

C.TYP =CC.PRO (101)

+---------------+
I Characteristics type I
1--------------- I
I Size of data input I
1--------------- I
I Size of data output I
1--------------- I
I Characteristics status I
1--------------- I
I Protocol type I
+---------------+

C.TYP

C.DATI

C.DATO

C.STAT
- - + Characteristics

I Data
I
I
I

- - + 6 bytes

C.TYP

C.DATI

C.DATO

C.STAT
--+

I
--+

Characteristics
Data
2 bytes

DLX: DIRECT LINE ACCESS CONTROLLER 4-15

Read Destination Ethernet Address

C.TYP =CC.DAD (102)

+---------------+
I Characteristics type I C.TYP

C.DATI

C.DATO

C.STAT

1--------------- I
I Size of data input I
1--------------- I
I Size of data output I
1--------------- I
I Characteristics status I
1--------------- I - - + Characteristics
I Destination I I Data
I Ethernet address I I
I I I
+---------------+ - - + 6 bytes

C.STAT Completion Codes

is.sue
(1)

177666
IE.TMO
(-74)

177733
IE.NLN
(-37)

177761
IE.ABO
(-15)

177763
IE.DAO
(-13)

177774
IE.VER
(-4)

177775
IE.DNR
(-3)

You successfully received a message from the remote node. (The
second word of the 1/0 status block contains the number of bytes
received.)

A timeout condition has occurred. No message was received
within the specified timer interval when you opened or initialized
the Ethernet channel.

No line has been opened having the specified LUN.

The receive function was aborted and the Ethernet channel was
disconnected. An unrecoverable error occurred in the hardware
device. You must issue a QIO to close and then reopen the Ether­
net channel (see Sections 4. 7 and 4.3, respectively) before you can
use it again.

The user buffer was not large enough to receive all of the data or
the message was received before a receive QIO was issued by the
user. The message is truncated and some of the data is lost during
transmission. (The length of the user buffer is contained in the
second word of the 1/0 status block.)

An error has occurred on the channel. The second word of the 1/0
status block contains the error code. Possible error codes and
their meanings are:

100362

100363

100364

100370

Operation aborted

Message received without receive pending

Start received

General error

The hardware device was not ready. The channel was closed
and ,has not been reinitialized.

4-16 DLX: DIRECT LINE ACCESS CONTROLLER

10.XCL

Close the Ethernet
Channel

4.7 10.XCL - CLOSE THE ETHERNET CHANNEL

You should issue the 10.XCL call to close an open channel and stop the
protocol.

Format

010$ 10 .XCL,/un, [etn],, [status] ,[ast]

Arguments

10.XCL

is the function code that closes the channel.

fun

is the logical unit number associated with the channel that you are closing.

etn

specifies an event flag number set when the 10.XCL call completes processing.

status

specifies the address of the 2-word status block containing completion status
information in the low-order byte of the first word.

ast

specifies the starting address of a user-written AST routine.

Completion Status Codes

is.sue
(1)

177733
IE.NLN
(-37)

The channel has been successfully closed.

No channel has been opened with the specified LUN.

CHAPTER 5
REMOTE FILE ACCESS

Your Professional 350 computer is capable of storing large amounts of infor­
mation on the hard disk and diskettes. You can access this information
through RMS-11 which features data access capabilities.

PRO/DECnet supports extended RMS-11 capabilities which provide access to
remote DECnet and RMS-11 programs. PRO/DECnet applications can per­
form these remote operations:

D Open an existing file

D Create a new file and define the internal structure of the file (the size
and arrangement of records within the file)

D Read and write records within a file

D Close a file

D Delete a file

5.1 INTRODUCTION

Remote file access can only take place after a logical link is established be­
tween two cooperating network programs. When you open a file using
RMS-11, a logical link is established between RMS-11 and a File Access
Listener (FAL) program. FAL is responsible for performing all file operations
on the remote system.

5-1

5-2 REMOTE FILE ACCESS

5.2 USING PRO/DECnet FOR REMOTE FILE ACCESS

When you use PRO/DECnet, your program can perform remote file access to
different operating systems. RMS-11 offers an interface between any applica­
tion program and the remote system's FAL. Since other Digital systems (in­
cluding RSX and VMS systems) support RMS, your Professional 350 can share
information with larger systems.

For most purposes, differences between local and remote access are trans­
parent to the user. However, the following limitations apply:

D RMS-11 generally does not support remote functions (for example, to
a VMS node) that are not supported locally.

D Certain RMS-11 functions (wildcard support; the PARSE, SEARCH,
ENTER and REMOVE operations; and the use of default file specifica­
tions and file IDs) are not supported by the Data Access Protocol
(OAP). As a result, they cannot be executed remotely.

D High level languages may not allow expression of the file specification
required to establish contact with a remote node.

To operate upon a remote file, you must include the PRO/RMS-11 remote
access code when you build your task. Your program must also include a node
specification for the remote file. To include the remote access code, you must
link your program with the RMS OAP modules by referencing the DAPRES
resident library. You should include the entry DAPRES in the Professional
Application Builder CLSTR option and use LB:[1,5]DAPRLX.ODL instead of
RMSRLX.ODL. If you are using asynchronous RMS-11 operations, you must
select special RMS-11 modules as indicated in DAPRLX.ODL. Refer to the
Tool Kit User's Guide (AA-N617 A-TK) for additional information.

Here is a sample build file:

TASK= TASK
I
CLSTR=RMSRES,DAPRES:RO
II

NOTE

RMS-11 uses the file access block (FAB) logical channel number as
the link ID for remote access. Users performing remote access exter­
nal to RMS-11 should be careful not to use the same link IDs.

Each remote file access subroutine returns a 2-word 1/0 status block. The
contents of the second word depend on the contents of the first word.

If RMS returns an error code of ER$FAL, refer to Appendix G for an interpreta­
tion of the specific STV error code.

REMOTE FILE ACCESS 5-3

5.3 FORMATTING REMOTE NODE SPECIFICATIONS

You must include a remote node specification as the first element of the file
name string or the default name string specified for an OPEN, CREATE or
ERASE operation. Your file name and default name strings must conform to
the rules for Digital Command Language (DCL) file specification. In addition,
the file specification which results from merging the file name and default
name strings must conform to the conventions of the target node.

A full remote file specification normally has this format:

node::device:[directory]name.type;version

Elements beyond the node name must conform to DCL syntax and the con­
ventions of the target node. If the file name string does not provide all six
elements, RMS-11 obtains missing elements from the default name string.
After the two strings have merged, any elements still unspecified are defaulted
according to the conventions of the target system.

An alternative remote file specification format is:

node::"quotedstring"

where quotedstring is any file specification that conforms to target system
conventions. For example, this format provides a means of passing certain
RSTS/E logical names ($,%, etc.) that do not conform to DCL conventions.

If the quoted string contains any quotation mark(") characters, you must insert
an additional quotation mark before each one. These extra quotation marks
will be stripped away when the string is passed to the target system. Any
elements not present in the quoted string will be defaulted according to the
target system conventions.

RMS-11 treats specifications of this format as complete indivisible specifica­
tions. If one occurs in the file name string, no elements from the default name
string will be used; if one occurs in the default name string, it will be ignored
unless the file name string is empty.

The node element takes this form:

node"user password"

where node is the destination node name and user password is an optional
access control string containing log-in information (user ID and password,
separated by a space character) that meets target system log-in conventions.

If log-in information is provided, the device and directory default and the
access privileges of the remote account are used by FAL. Otherwise, the
device and directory defaults and access privileges of the default DECnet
account on the target system are used by FAL. If the alias contains the re­
quired access control information, you do not have to specify the node ele­
ment.

5-4 REMOTE FILE ACCESS

5.4 REMOTE ACCESS ENVIRONMENTS

The PRO/RMS-11 DAP routines only support access to RMS-based FALs.
These FALs are currently available on VAX/VMS, RSTS/E, and
RSX-11 M/M-PLUS systems. The version of DAP supported by the remote
FAL must be at least Version 5.6 or later. This particular FAL version also
requires at least DECnet/E Version 2.0, DECnet for RSX-11 M Version 3.1,
DECnet for RSX-11 M/M-PLUS Version 1.1, or DECnet VAX Version 2.0.

5.5 REMOTE ACCESS POOL CONSIDERATIONS

Remote block access, unlike local block access, requires an internal 1/0 buffer
for both record operations and the initial OPEN or CREATE operation. This 1/0
buffer is reserved for the file while it is open, and must be 548 bytes in size.

Similarly, for a sequential file with a maximum record size (or actual largest
record) greater than 476 bytes, an internal 1/0 buffer must exceed this size by
36 bytes while the sequential file is open. For record access relative and
indexed files, an internal 1/0 buffer equal to the bucket size is required while
the file is open. Other pool requirements are equal to or less than those for
local access.

See the PRO!RMS-11 Macro Programmer's Guide for details on file structure.

APPENDIX A
BASIC DECnet CONCEPTS

A.1 TASK-TO-TASK COMMUNICATION

DECnet enables two programs within a network to perform task-to-task com­
munication - that is, to exchange data over a logical link. DECnet calls are
written into cooperating task programs on different nodes. The cooperating
tasks can be written in MACR0-11, FORTRAN, COBOL, BASIC, or PASCAL.

PRO/DECnet tasks support the same task-to-task 1/0 calls used by DEC­
net-RSX tasks. As a result, an RSX network program could easily be con­
verted to run on your Professional 350.

DECnet communication calls activate routines which request a local DECnet
node to perform certain network functions. Every DECnet task-to-task pro­
gram can issue calls to perform these functions:

D Establish an active network task

D Build a connect block

D Establish a logical link

D Retrieve data from a task's network data queue

D Send and receive data messages

D Check completion status information

D Terminate activity on a logical link

D Close a network connection

A-1

A-2 BASIC DECnet CONCEPTS

A.2 ESTABLISHING AN ACTIVE NETWORK TASK

Before a task can exchange data over the network using DECnet communica­
tion calls, it must become active by first issuing a DECnet open call (OPN$ or
OPNNT). This step provides the task with a network data queue and connects
the task to the DECnet communications facilities. The DECnet software passes
any connect requests and interrupt, disconnect, and abort messages from
other tasks to the task's network data queue.

It is possible for you to limit the number of connect requests that the task will
accept and pass along to its network data queue. The DECnet software will
automatically reject any additional connect requests. The number of connect
requests can range from O to 255, with 0 set as the default value. A value of 0
implies an unlimited number of incoming connect requests which can be
placed on the task's network data queue. In this situation, the task is responsi­
ble for accepting or rejecting the incoming connect requests.

A.3 BUILDING A CONNECT BLOCK

Before a task can issue a connect request, it must first build a connect block.
You should reserve a 72 byte area of memory for the connect block informa­
tion. This area must begin on a word or even byte boundary. The connect
block contains specific parameters which identify the source and target tasks.
A connect block contains a destination descriptor, a source descriptor, access
control information for remote file access, and optional user data. MACR0-11
tasks use the DECnet macro call CONB$$ to build connect blocks. The high
level languages use a pair of DECnet subroutine calls: the build access control
area call (BACC) with either the build format O descriptor (BFMTO) or the build
format 1 descriptor (BFMT1) call.

A.3.1 Destination Descriptor

Network object is another name for a network program which is only responsi­
ble for accepting incoming connect requests. This program does not issue any
connect requests. A network program or object has a special identifier for use
in DECnet connect requests. This identifier can be an object name or an object
type code. The destination descriptor identifies the target task by its object
name or by its object type code.

Named objects are user-written tasks which are referenced by a name during
a connect request. The object type code for such tasks is 0.

D High level language tasks specify O for a named object and the task
name as the descriptor in the BFMT1 call.

D MACR0-11 tasks specify O for a named object, 1 as the descriptor
format type and the task name in the CONS$ call.

BASIC DECnet CONCEPTS A-3

Numbered objects are installed tasks which are referenced by an object type
code. The object type numbers range from 1 to 255. Numbers 1 to 127 are
reserved for DECnet-specific tasks. Numbers 128 to 255 are reserved for user­
written tasks. (See Appendix C for more.information on object type codes.)

D High level language tasks specify the object type codes in the BFMTO
call.

D MACR0-11 tasks specify the object type codes along with 0 as the
descriptor format type in the CONB$ call.

A.3.2 Source Descriptor

The source descriptor contains the source node name and either the source
task's object name or its object number type. The contents of the source
descriptor are supplied by the DECnet software on the source node.

A.3.3 Access Control Information

Access control information contains arguments that define your access rights
at the remote node. Access control verification is performed according to the
conventions of the target system. For some target systems, the access control
information is verified before a connect request is passed to the target task.

Access control information consists of a user ID and password, and some­
times an account number on the target node. Other information may be re­
quired such as directory names and device names for remote file access. You
should always review the appropriate documentation for each target system's
requirements.

A.3.4 Optional Data Message

When the source task issues a connect request, you have the option of includ­
ing a data message up to 16 bytes long in the connect block. If the connect call
contains the optional data message, the source node's DECnet software will
append the message to the connect block. An optional data message can also
be sent with a DECnet disconnect or a reject request.

A.4 ASSIGNING LOGICAL UNIT NUMBERS

A logical link identifier is used by the source task whenever it accesses the
network, and establishes a temporary logical link with a target task. It is also
used for all task-to-task communication between the two tasks. This identifier
can be specified in a DECnet open call (OPN$ or OPNNT), a connect call
(CON$ or CONNT), and an accept call (ACC$ or ACCNT), or during task build

A-4 BASIC DECnet CONCEPTS

time. For PRO/DECnet applications, the logical link identifier is known as a
logical unit number (LUN). When you assign LUNs for a COBOL DECnet call,
do not use LUN 1. It is a reserved number. Likewise, for a PASCAL DECnet
call, you should assign LUNs 25 to 40 for DECnet-specific operations and
reserve 50 to n for file operations.

Assigned LUNs can be found in these DECnet calls:

D OPN$ or OPNNT (Access the network)

D CON$ or CONNT (Request a logical link connection)

D ACC$ or ACCNT (Accept a logical link request)

D REJ$ or REJNT (Reject a logical link request)

D GND$ or GNDNT (Get network data)

D GLN$ or GLNNT (Get local node information)

D SND$ or SNDNT (Send a message over a logical link)

D REC$ or RECNT (Receive a message over a logical link)

D SPA$ (Specify a user-written AST routine)

D ABT$ or ABTNT (Abort a logical link)

D DSC$ or DSCNT (Disconnect a logical link)

D CLS$ or CLSNT (End a task's network operation)

A.5 ESTABLISHING A LOGICAL LINK

The creation of a logical link is a cooperative venture. Two tasks must agree to
communicate before you can have an established logical link. The task re­
questing a logical link is called the source task. The task that accepts or
rejects the request is called the target task or network object. The process
begins when a source task issues a DECnet connect call (CON$ or CONNT).
This call includes the connect block which specifies the target node name and
target task, and the assigned LUN.

A task can attempt to establish as many logical links as required for a specific
application. The number of logical links is limited only by the amount of avail­
able system resources. However, the logical link count can never exceed a
maximum of 255.

When a target system receives a connect request, it checks to see if the target
task is installed on the network. If it is, the target task is automatically loaded
and activated by the DECnet software. The incoming connect block is placed
on the target task's network data queue.

The maximum size of a connect block is normally 98 bytes. If an optional data
message is included with a connect request, the connect block's maximum
size cannot exceed 114 bytes. (An optional data message has a maximum size
of 16 bytes.)

BASIC DECnet CONCEPTS A-5

The target system examines the access control information in the connect
block and checks the validity of the object type code. If everything checks out,
the connect block is passed along to the target task.

Figure A-1 illustrates the flowchart process for establishing a logical link.

A.6 GETTING DATA FROM THE NETWORK DATA QUEUE

Once a task is connected to the network using the DECnet open call (OPNNT
or OPN$), it becomes an active network task with its own network data queue.
A task should begin to monitor its network data queue immediately following a
successful open call. When a target task issues a get network data call
(GNDNT or GND$), the incoming connect block is made available to it.

The target task places the connect request in its buffer. It then evaluates the
connect request and decides to either accept or reject it. If the target task's
buffer cannot hold an optional data message, the get network data call com­
pletes with a data overflow condition.

The DECnet software also places interrupts, user disconnects, user aborts,
and network aborts on the task's network data queue. The same DECnet call
(GND$ or GNDNT) is used to retrieve and examine these messages.

The get network data call usually returns the oldest message on a first-in, first­
out basis. However, there are other options available for removing these mes­
sages. (See Sections 2.10.11 and 3.9.9.)

A.7 ACCEPTING OR REJECTING A LOGICAL LINK CONNECTION
REQUEST

When a get network data call returns a connect request, the target task either
accepts or rejects the connect request before issuing another call.

The target task follows one of these procedures for accepting or rejecting the
connect request:

1. The target task accepts the connect request by issuing a DECnet ac­
cept call (ACC$ or ACCNT). This call includes the assigned LUN for the
logical link and the location of the buffer containing the connect block
information.

2. If the target chooses to reject the connect request, it must issue a
DECnet reject call (REJ$ or REJNT). The buffer containing the connect
block is also specified in this call.

NOTE

You can specify the location and length of an optional data
message for the source task in both the accept and reject
calls. This message can be up to 16 bytes long. If the source
task's buffer is not large enough to handle the message, the
operation will result in a data overflow condition.

A-6 BASIC DECnet CONCEPTS

START

TARGET TASK
ISSUES
OPEN CALL

TARGET TASK

ISSUES GET
NETWORK DATA

CALL

TASK EXAMINES
INFORMATION

IN INCOMING
CONNECT BLOCK

TASK
ISSUES
ACCEPT

CALL

LOGICAL
LINK
ESTABLISHED

END

Figure A-1
Establishing a Logical Link

NO

NO

YES

NETWORK
REJECTS
REQUEST

START
TARGET
TASK

TASK
ISSUES

REJECT

CALL

NO
NETWORK

ISSUES
REJECT

CALL

BASIC DECnet CONCEPTS A-7

3. The accepted or rejected connect request is passed over the tempo­
rary logical link via DECnet to the source task. If the source task ac­
cepts the connection, the temporary logical link becomes permanent.
If it rejects the connection, the temporary logical link is disconnected.

Once a logical link has been established between two tasks, both tasks can
send and receive data and unsolicited, high priority messages over it. DECnet
distinguishes between data and high priority messages. It delivers the latter to
a task's network data queue. It delivers data messages directly to a buffer
provided by the receiving task.

A.8 TRANSMITTING DATA MESSAGES OVER A LOGICAL LINK

When messages are transmitted over a logical link, the LUN assigned during
an accept or connect sequence is referenced with each send and receive call.
The DECnet software allows tasks to send and receive data at the same time.
This capability is known as logical full duplex transmission.

Before issuing its first send or receive call, a task can issue a get local node
data call (GLN$ or GLNDT). This call returns the arbitrated segment buffer size
which allows DECnet to transmit messages in the most efficient way.

A.8.1 Sending Data Messages

A task must issue a DECnet send call (SND$ or SNDNT) in order to send a
data message. This call specifies the assigned LUN used for transmitting the
message and the buffer containing the outgoing messsage.

At any time, a task can have several send calls awaiting completion. A send
call completes when DECnet on the receiving node informs DECnet on the
sending node that it received the data. For most cases, this completion notice
means that DECnet received the message and not the target task.

A.8.2 Receiving Data Messages

A task must issue a DECnet receive call (REC$ or REC NT) before it can receive
any data messages. The receive call specifies the logical link which will receive
the message, and allocates the required buffer space to store the incoming
message.

A task can issue multiple receive calls before any messages are sent by the
other task. This procedure helps insure continuous data flow between the two
tasks. A receive call completes when the DECnet software moves the message
into the specified buffer. You can verify message reception by periodically
checking the contents of word 0 of the 1/0 status block (see Sections 2.5 and
3.4); by using WAITNT (see Section 2.10.16) or via synchronous or asynchro­
nous completions (see Section 3.3).

A-8 BASIC DECnet CONCEPTS

A.9 SENDING INTERRUPT MESSAGES

Interrupt messages are unsolicited, high priority messages sent between tasks
over a logical link. An interrupt message usually informs the receiving task of
an unusual or abnormal event in the sending task. Special interrupt messages
are issued directly by DECnet. For example, if a physical connection breaks
between two nodes, and no alternate physical path is available, an abort mes­
sage is sent to all tasks having logical links over that physical connection.

Normal data messages are always received in the order sent by the sending
task. However, interrupt messages may be delivered to a receiving task's
network data queue ahead of normal data messages.

Several logical links may exist between a source task and one or more target
tasks. It is also possible for a receiving task to send many interrupt messages
over different logical links. A target task can also have many interrupt mes­
sages contained in its network data queue. However, it cannot have more than
one interrupt message for any single logical link. For this reason, an interrupt
message must be removed from the queue before a second interrupt message
is sent over the same logical link.

DECnet flow control does not apply to interrupt messages. These messages
are delivered to a task's buffer even if it has no outstanding receive calls.

A task must issue a DECnet interrupt call (XMI$ or XMINT) before it can send
an interrupt message. This call specifies the logical link used for sending the
message and the buffer containing the interrupt message. The size of the
interrupt message cannot exceed 16 bytes.

An interrupt call completes when DECnet on the receiving node informs DEC­
net on the sending node that it rec~ived the message. The completion notice
means only that DECnet, not the task, has received the message.

The interrupt message is then placed on the receiving task's network data
queue. A get network data call (GND$ or GNDNT) is issued to remove the
message from the queue and place it in the task's buffer. At this point, a new
interrupt message can be issued to the receiving task on the same logical link.

A.10 USING THE 1/0 STATUS BLOCK

Most calls pass an 1/0 status block as an argument to the DECnet call. Even
though status is considered to be an optional argument, it is the only way for
checking the status of a returned call. Moreover, each active macro and sub­
routine should have its own 1/0 status block. Using the same 110 status block
for several concurrent calls can produce unpredictable results during task
execution.

BASIC DECnet CONCEPTS A-9

The 1/0 status block consists of two words. The low-order byte of the first word
(word 0) contains the error completion code. This byte can have three different
values:

D A null value (0) indicates an incomplete macro or subroutine call.

D A positive value indicates a successfully completed macro or subrou­
tine call.

D A negative value shows that the macro or subroutine call did not pro­
duce the desired results.

The second word of the 1/0 status block contains more completion informa­
tion. For example, the number of bytes received in a successful data transmis­
sion is contained in the second word.

A.11 TERMINATING ACTIVITY ON A LOGICAL LINK

A task can issue either a disconnect or an abort call for terminating activity on
a logical link. An optional message having up to 16 bytes of data can be sent
along with either message. All disconnect and abort messages are placed on
the other task's network data queue. This task must issue a get network data
call (GND$ or GNDNT) in order to retrieve them.

A.11.1 Disconnecting a Logical Link

A task must issue a disconnect call (DSC$ or DSCNT) before it can dissolve a
logical link. A disconnect call causes an orderly termination of transmissions
over the logical link. All pending transmits from the issuing task are completed
before DECnet actually disconnects the logical link. The issuing task continues
to receive incoming messages for a predetermined period of time. Once this
time period elapses, any remaining receive calls are aborted by the system.
DECnet then dissolves the logical link and releases the assigned LUN for use
in a subsequent connect or accept call.

A.11.2 Aborting a Logical Link

A task must issue a DECnet abort call (ABT$ or ABTNT) before it can abort a
logical link. This call immediately aborts all pending transmits and receives,
and disconnects the logical link. The assigned LUN is also released and made
available for use in a subsequent connect or accept call.

A-10 BASIC DECnet CONCEPTS

A.12 CLOSING THE NETWORK CONNECTION

The DECnet close call (CLS$ or CLSNT) is issued when a task no longer
requires network services. This call informs DECnet to purge the task's net­
work data queue. Any active LUNs are deactivated and ready for use in a
subsequent DECnet open call.

If the task's network data queue contains data when the close call is issued,
one of these events can occur:

1. The task becomes reactivated whenever there are pending connect
requests in the queue. It can receive the new requests by subsequently
issuing a DECnet open call (OPN$ or OPNNT).

2. All interrupt, disconnect, and abort messages will be ignored by the
system.

A.13 DECnet TASK-TO-TASK COMMUNICATION CALLS

DECnet task-to-task communication calls are used with high level language
tasks as well as MACR0-11 tasks. The format of a DECnet call is determined
by the programming language.

Certain DECnet calls are only used with MACR0-11 tasks. As a result, these
calls have only one version. Table A-1 lists the calls and describes their func­
tions.

NOTE

All MACR0-11 calls described in this table and in the following sec­
tions include the dollar symbol ($) as part of the call's syntax. High
level language calls do not use the dollar symbol ($) as part of their
syntax.

BASIC DECnet CONCEPTS A-11

Table A-1
DECnet Communication Calls Summary

ABT$ or ABTNT

An abort is a high priority message transmitted over the logical link. It is delivered
to the target task's network data queue. It completes any pending send or receive
calls with an immediate abort error and dissolves the logical link.

ACC$ or ACCNT

A target task issues this call in order to accept a logical link connect request from
another task. When this call is issued, a notification is sent to the source task.

BACC

The BACC call specifies access control information for a connect block. In a
succeeding CONNT call, the target task determines if the access control string
contains all the necessary specifications for remote file access.

BFMTO

This call specifies the descriptor block for a target task installed as a numbered
object. This block identifies the task by its object type and not by its name.

BFMT1

The BFMT1 call specifies the descriptor block for a target task installed as a
named object. The block identifies the task by its name and not by its function.

CLS$ or CLSNT

A close request is used to terminate an issuing task's connection with the network.
This call completes any pending send or receive calls with an immediate abort and
dissolves all logical links.

CON$ or CONNT

A task issues this call to request a connection to a target task. The initial connec­
tion is set up via a temporary logical link. If the target task is inactive, it is automati­
cally started by the network. The connect request is then delivered to the target
task's network data queue. The target task issues a get network data call (GND$ or
GNDNT) and the connect block is moved from the queue to a buffer.

If the target task accepts the connect request, the temporary logical link becomes
permanent.

CONB$$

This call builds a data area which is used as a connect block in a succeeding CON$
macro call.

(continued on next page)

A-12 BASIC DECnet CONCEPTS

Table A-1 (cont)
DECnet Communication Calls Summary

DSC$ or DSCNT

This call causes an orderly disconnect of a logical link. The disconnect call can be
used by either the source or target task. The logical link disconnects after all
pending messages are delivered to the cooperating task.

GLN$ or GLNNT

This call allows your programs to retrieve three data items: the local node name
and address, and the default segment buffer size used by the network.

GND$ or GNDNT

This call is used by both the source and target tasks to retrieve any messages on
their network data queues. The target task will usually make this call after issuing
an open call in order to retrieve the source task's connect call.

OPN$ or OPNNT

This call informs the network that the issuing task requires network services, and
causes the network to create the task's network data queue. Both the source and
target tasks must issue this call prior to making any other DECnet calls.

REC$ or RECNT

This call requests reception of a message sent by the cooperating task. It identifies
a task buffer used for storing incoming data messages.

REJ$ or REJNT

This call rejects a connect request from the source task. The rejection message is
returned to the 1/0 status block of the source task's CON$ or CONNT call.

SND$ or SNDNT

This call sends a data buffer to a receiving task over an established logical link.
Once the data is received by the other system, a completion status message is
returned to the 110 status block of the send call.

SPA$

This call provides a task with a way of monitoring and reacting to network events. It
specifies a user-written asynchronous system trap (AST) routine which will execute
whenever data arrives on a task's network data queue.

WAITNT

This call suspends the execution of a task until a previously issued call has com­
pleted processing. It signals the completion of another call in no-wait form.

XMI$ or XMINT

This call allows you to transmit an interrupt message to a receiving task. The
interrupt message is sent over the logical link to the receiving task's network data
queue.

APPENDIX B
DISCONNECT OR REJECT REASON
CODES

The following list contains the error codes available at the logical link user
interface. These codes can be returned in the third byte of the status block
after one of these events occurs:

O A connect request was rejected by the network (IE.NRJ). (See Section
3.10.5.)

O A connected logical link was aborted by the network (NT.ABO). (See
Section 3.10.2.)

The symbols in column one are defined in the macro NSSYM$. NSSYM$ is
located in NETLIB.MLB and is provided on the Tool Kit. The events in column
five indicate the error results. "C" refers to a connect request and "A" refers to '
a network abort.

8-1

B-2 DISCONNECT OR REJECT REASON CODES

Symbol Decimal Octal
Name Value Value Standard Message/Explanation Event

NE$RES Insufficient network resources c

The logical link could not be con-
nected because either the local or the
remote node had insufficient network
resources (for example, insufficient
logical links, remote node counters,
or dynamic storage region (DSR) on
RSX systems).

NE$NOD 2 2 Unrecognized node name c

The logical link could not be con-
nected because the destination node
name did not correspond to any
known node address.

NE$NSR 3 3 Remote node shutting down c

The logical link could not be con-
nected because the network on the
remote node was in the process of
shutting down and would accept no
more logical link connections.

NE$UOB 4 4 Unrecognized object c

The logical link could not be con-
nected because the specified object
number or name did not exist at the
remote node.

NE$FMT 5 5 Invalid object name format c

The logical link could not be con-
nected because the node did not un-
derstand the object name format.

NE$MLB 6 6 Object too busy c

The logical link could not be con-
nected because the remote object
was too busy handling other logical
links.

NE$ABM 8 10 Abort by network management A

The logical link was aborted by an
operator or a program using network
management.

(continued on next page)

Symbol
Name

NE$NNF

NE$NSL

NE$ACC

NE$ABO

NE$ABO

NE$COM

DISCONNECT OR REJECT REASON CODES 8-3

Decimal Octal
Value Value Standard Message/Explanation

10 12 Invalid node name format

11 13

34 42

38 46

38 46

39 47

The logical link could not be con­
nected because the remote node
name format was invalid. For exam­
ple, the name was too long or con­
tained illegal characters.

Local node shutting down

The logical link could not be con­
nected because the network on the
local node was in the process of shut­
ting down.

Access control rejected

The logical link could not be con­
nected because the remote node or
object could not understand or would
not accept the access control infor­
mation.

No response from object

The logical link could not be con­
nected because the object did not re­
spond. For example, the object re­
sponded too slowly or terminated ab­
normally.

Remote node or object failed

The connected logical link was
aborted because the remote node or
the object terminated abnormally.

Node unreachable

Either the logical link could not be
connected or the connected logical
link was aborted because no path ex­
isted to the remote node.

Event

c

c

c

c

A

C/A

APPENDIX C
OBJECT TYPES

The following object type code values have been defined by Digital. They are
expressed as octal and decimal byte values. Digital reserves the right to add
object types and to make changes to the descriptor formats used by the object
types. At present, a descriptor format of 1 indicates a named object (object
type 000). All other listed object types have a descriptor format of 0, requiring
definition by the object type codes given in the first two columns below.

Object Type Process Type
Octal Decimal

000 000 General task or user process connected to by task name

001 001 File Access Listener (FAL/DAP - Version 1)

002 002 Unit Record Services (URDS)

003 003 Application Terminal Services (ATS)

004 004 Command Terminal Services (CTS)

005 005 RSX-11 M Remote Task Control utility (TCL) - Version 1

006 006 Operator services interface

007 007 Node resource manager

010 008 IBM 3270-BSC Gateway

011 009 IBM 2780-BSC Gateway

(continued on next page)

C-1

C-2 OBJECT TYPES

Object Type Process Type (cont)
Octal Decimal

012 010 IBM 3790-SDLC Gateway

013 011 TPS application

014 012 RT-11 DIBOL application

015 013 TOPS-20 terminal handler

016 014 TOPS-20 remote spooler

017 015 RSX-11 M Remote Task Control utility (TCL) - Version 2

020 016 Network Talk utility (LSN)

021 017 File Access Listener (FAL/DAP - Version 4 and later)

022 018 RSX-11S Host Loader utility (HLD)

023 019 Network Information and Control Exchange (NICE)

024 020 RSTS/E media transfer program (NETCPY)

025 021 RSTS/E to RSTS/E network command terminal handler

026 022 Mail Listener (DECnet-based electronic mail system)

027 023 Network command terminal handler - Host side

030 024 Network command terminal handler - Terminal side

031 025 Loopback mirror (MIR)

032 026 Event receiver (EVR)

033 027 VAX/VMS Personal Message utility

034 028 File Transfer Spooler (FTS)

035 029 Phone utility

036 030 Distributed Data Management Facility (DDMF)

037 031 X.25 Gateway access

040-076 032-062 Reserved for DECnet use

077 063 DECnet test tool (DTR)

100-177 064-127 Reserved for DECnet use

200-377 128-255 Reserved for customer use

APPENDIX D
MACR0-11 CONNECT BLOCK OFFSETS
AND CODE DEFINITIONS

The following MACR0-11 connect block offsets are used in network connects
and accepts .

• TITLE NETDEF - DECNET USER INTERFACE DEFINITIONS

.MACRO NETDF$tL•B

.MCALL CRBDF$
CRBDF$ L1B ;REQUEST DESCRIPTOR BLOCK
.MCALL CNBDF$
CNBDF$ LtB ;REQUEST PENDING BLOCK
.MCALL NSSYM$
NSSYM$ B ;RETURN SYMBOLS

.MACRO NETDF$,){ , Y

.ENDM NETDF$

+ENDM NETDF$

(continued on next page)

D-1

D-2 MACR0-11 CONNECT BLOCK OFFSETS AND CODE DEFINITIONS

;+
REQUEST DESCRIPTOR BLOCK OFFSET DEFINITIONS FOR CONNECTS.

N.RND {
ooo

004

N.ROT N.RFM OOG

FORMAT 0

(UNUSED) {
010

030

FORMAT 1

N.RDEC 010

N.RDE {
012

030

N. RIDC 032

N.RID {
034

052

N.RPSC 054

N.RPS {
05G

OG4

N.RACC OGG

N.RAC {
070

10G

; -

(continued on next page)

.=O
N.RNO: 'L'
N.RFM: 'L'
N.ROT:'L'

• = +

• =. -18.
N. RDEC: IL,. I
N+RDE: 'L'

• =. - 18.
N.RGP: 'L'
N.RUS: 'L'
N.RNMC: 'L'
N.RNM: 'L'

N.RIDC: 'L'
N+RID: 'L'
N.RPSC: 'L'
N.RPS: 'L'
N. RACC: 'LI
N+RAC: 'L'

N,RQL='B',-N,RND

MACR0-11 CONNECT BLOCK OFFSETS AND CODE DEFINITIONS D-3

.MACRO
• if n b
.ASECT

.BLKB
+BLKB
+BLKB

+BLKB

+BLKW
.BLKB

,BLKW
+BLKW
,BLKW
+BLKB

.BLKW
,BLKB
,BLKW
+BLKB
.BLKW
+BLKB

,PSECT

CRBOF$1L1B1LST
LST .List

6
1
1

18.

16+

1
1
1·
12.

16.
1
8.
1
16.

;

Destination node name
Destination descriPtor format
Destination obJect tYPe

Format 0
Unused

For111at
Destination Process bYte count
Destination Process

For1t1at 2
Destination srouP
Destination user
Destination name bYte count
Destination name

Re9uestins Process ID byte count
Re9uestins Process ID
Re9uestins Password byte count
Re9uestins Password
Accountins information byte count
Accountins information

i Lensth of blocK

,if nb LST
• if

.Nlist

, MACRO·
,ENDM
.ENDC

CRBDF$ 1,){ ,y ,z
CRBDF$

(continued on next page)

D-4 MACR0-11 CONNECT BLOCK OFFSETS AND CODE DEFINITIONS

i+
CONNECT BLOCK OFFSET DEFINITIONS FOR RECEIVED COUNT
REQUESTS.

N.CTL

N.SEGZ

N.DOT]
FORMAT 0

<UNUSEDl

FORMAT 1

N.DDEC

N.DDE

N.SND

N.SOT

N.DFM

N.SFM

000

002

005/00l!

{
008

028

008

f:i10

~)28

{
030

03£!

037/038

(continued on next page)

MACR0-11 CONNECT BLOCK OFFSETS ANO CODE DEFINITIONS D-5

FORMAT 0

<UNUSED> {
040

060

FORMAT 1

N,SDEC 040

N.SDE {
042

060

No verification Performed

N.CIDC 062

N, CID {
064

102

N.CPSC 104

N+CPS {
106

114

N.CACC 116

N.CAC {
120

136

N.CDAC 140

Verification Performed

N, CDEl,J 062

I N.CUNI 064

N+CUIC 066

140

N.CDA 142

; -

(continued on next page)

D-6 MACR0-11 CONNECT BLOCK OFFSETS AND CODE DEFINITIONS

• = 0
N.CTL: 'LI

N.SEGZ: 'L'
N+DFM: 'LI
N.DOT: 'LI

. ::: .
• =. - 18.
N.DDEC: 'LI
N. DDE: IL I

• =. - 18.
N.DGP: 'L'
N. DUS: IL I

N.DNMC: 'L'
N.DNM: 'L'

N.SND: 'LI
N.SFM: 'LI
N.SOT: 'LI

.. ::: +

• =. - 18.
N.SDEC: 'LI
N.SDE: 'L'

• =. -18.
N.SGP: 'L'
N •. SUS: 'L'
N. SNMC: IL I

N.SNM: 'LI

$$$=,
N.CIDC: 'LI
N.CID: 'L'
N. CPSC: IL I

N.CPS: 'L'
N.CACC: 'L'
N.CAC: 'L'
N.CDAC: 'L'
N.CDA: 'L'

.PSECT

.ENDM

.MACRO
• if n b
.ASECT

.BLKW

+BLKW
.BLKB
.BLKB

.BLKB

.BLKW

.BLKB

.BLKW

.BLKW

.BLKW

.BLKB

.BLKB

.BLKB

.BLKB

• BLKB

.BLKW

.BLKB

.BLKW

.BLKW

.BLKW

.BLKB

.BLKW

.BLKB

.BLKW

.BLKB

.BLKW

.BLKB

.BLKW

N.CBL='B'.-N.CTL

CRBDF$
CNBDF$1L161LST
LST .List

18.

1 G,

1
1
1
12'

G
1
1

18 •

1 G,

12 +

1 G,
1
8.
1
1 G,
1

TeMPorarY linK address

Ses111ent size
Destination descriPtor forMat
Destination obJect tYPe

For111at O
Unused

For111at
Destination Process byte count
Destination Process

For111at 2
Destination srouP
Destination user
Destination naMe bYte count
Destination na111e

S o u r c ·e n o d e n a 111 e
Source descriptor forMat
Source obJect tYPe

Fa r111a t 0
Unused

For111at
Source Process n a Me bYte
Source Process na111e

For111at 2
Source sroup
Source user
Source na111e bYte count
Source n a111e

Source tasK ID bYte count
Source tasK ID byte count

; Password bYte count
Pass1,1ord

count

Accountins inforMation brte count
Accountins inforMation
Optional data bYte count
0Ptional data

Lensth of CNB (without any data)

(continued on next page)

.=$$$
N+CDEl,!: 'L'
N+CUNI:'L'

N+CUIC: 'L'

MACR0-11 CONNECT BLOCK OFFSETS AND CODE DEFINITIONS D-7

+BLKW
+BLKB
.EVEN
+BLKW

.PSECT
+if nb LST
+if f

Default device name (from account file)
Default device unit number

Lod in UIC (from account file)

+Nlist

+MACRO CNBDF$1X1Y1Z
+ENDM CNBDF$
.endc
+ENDM CNBDF$

/

APPENDIX E
ERROR/COMPLETION CODES FOR
HIGH LEVEL LANGUAGES

The following error/completion codes are returned in the first word of a 2-
word 1/0 status block.

The request was successful.

2 The request was successful, but some optional data was lost.

-1 The required system resources are not available.

-2 A request was issued for a LUN having no established logical link.

-3 The link was disconnected with an outstanding request.

-4 The received data was truncated due to an insufficient receive buffer length.

-5 An argument specified in the call is incorrect.

-6 No network data was found in the user's network data queue.

-7 The network rejected an attempted connect.

-8 The specified logical unit number is already in use on another logical link. The
user was unable to connect to the link using the same LUN.

-9 The issuing task is not a network task. OPNNT did not execute successfully.

-10 The network has already been opened using an OPNNT call.

-11 Transmission of an interrupt message was attempted before the last one fin­
ished.

-12 A connect/reject was issued by the user task for an attempted connection.

-13 Either a buffer is outside the user task address space or is not word aligned.

-14 The user is attempting to issue a GNDNT[W] when one is already pending.

-40 A directive error has occurred. The second word of the 1/0 status block con­
tains the actual directive error code.

E-1

APPENDIX F
MACR0-11 ERROR/COMPLETION
CODES

This appendix contains only those MACR0-11 error/completion codes de­
scribed in this manual.

Mnemonic

is.sue
IS.DAO

IE.BAD

IE.SPC

IE.WLK

IE.DAO

IE.ABO

IE.PAI

IE.RSU

IE.ALN

Decimal
Value

2

-1

-6

-12

-13

-15

-16

-17

-34

Octal
Value Meaning

The request was successful.

2 The request was successful, but some data was
lost.

377 Either an invalid buffer parameter or the data
length exceeds 16-bytes.

372 Invalid buffer parameters: buffer may not be word
aligned; buffer may be outside user task address
space; or buffer may exceed 8128-bytes.

364 Transmission of an interrupt message was at-
tempted before the last one finished.

363 Data overrun; unstored data is lost.

361 The link was aborted or disconnected. (See Ap-
pendix B.)

360 The network is not accessed on this LUN.

357 The required system resources are not available.

336 The specified LUN is already in use.

(continued on next page)

F-1

F-2 MACR0-11 ERROR/COMPLETION CODES

Decimal Octal
Mnemonic Value Value Meaning

IE.NLN -37 333 There is no established logical link on the speci-
fied LUN.

IE.URJ -73 267 The remote task rejected an attempted connec-
ti on.

IE.NRJ -74 266 The network rejected an attempted connection.
(See Appendix 8.)

IE.NDA -78 262 There is no data to return.

IE.NNT -94 242 The issuing task is not a network task. OPN$ did
not execute successfully.

APPENDIX G

SUMMARY OF REMOTE FILE ACCESS
ERROR/COMPLETION CODES

G.1 1/0 STATUS BLOCK ERROR RETURNS

Each remote file access subroutine returns a 2-word 1/0 status block. The
contents of the second word depend on the contents of the first word.

Table G-1 describes each code that can be returned in the first word of the
status block. The description of the code tells you where to look up the de­
scription of the value returned in the second word.

G-1

G-2 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-1
First Word 1/0 Status Block Error Codes

Error Code

177777 (-1)

177776 (-2)

177775 (-3)

177774 (-4)

177773 (-5)

177772 (-6)

Description

CHANNEL ALREADY ACTIVE

An attempt has been made to open a file on an active channel.
Either another channel must be used or the active channel must be
released via a close prior to reusing it.

The second word of the 1/0 status block is not applicable.

CHANNEL NOT ACTIVE

A file operation request has been made on an inactive channel.
Either a file open has not been issued on this channel or the network
link for this channel has been lost.

The second word of the 1/0 status block is not applicable.

DAT A ACCESS PROTOCOL ERROR

An error has been detected by the remote file system or by the
remote server task. The error is then returned to the user by DAP.

The second word of the 1/0 status block contains the file access
error code. Look up this code in Table G-3.

NSP ERROR (See Table G-2)

The Data Access Protocol (DAP) utilities depend on Network Ser­
vices Protocol (NSP) as a vehicle for accessing remote files. This
code indicates that a problem has been encountered at the NSP
level.

The low-order byte of the second word of the 1/0 status block con­
tains one of the NSP error codes listed in Table G-2. If this error is
network rejection (-7), the high-order byte of the second word of the
1/0 status block contains the reject reason code (see Appendix B).

INVALID ATTRIBUTES

An invalid character has been found in the attributes array (ichar) of
an open command.

DATA OVERRUN

A message or block of messages was received that did not fit into
the user-specified buffer.

The second word of the 1/0 status block contains the total number
of bytes read.

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-3

Table G-1 (cont)
First Word 1/0 Status Block Error Codes

177771 (-7)

177770 (-8)

177767 (-9)

177766 (-10)

177765 (-11)

TASKS OUT OF SYNC

The requesting task and its server (FAL) have lost Data Access
Protocol (DAP) message synchronization. This indicates a serious
internal software problem that should be reported to your system
manager.

The second word of the 1/0 status block is not applicable.

INVALID DAP CHANNEL (LUN)

DAP channel numbers must fall in the range of 1 to 255. AO channel
or a channel value greater than 255 is invalid.

The second word of the 1/0 status block is not applicable.

BUFFER ALLOCATION ERROR FOR DAP CHANNELS

There is no more buffer space available for the DAP channel control
blocks. To extend the buffer size, the FORTRAN program must be
rebuilt, increasing the size of $FSR1 in the task build.

The second word of the 1/0 status block is not applicable.

DIRECTIVE ERROR

Directive error from the executive.

The second word of the 1/0 status block contains the DSW value.

ILLEGAL REQUEST

An illegal request was made (for example, an attempt to read from a
file that was open for write).

The second word of the 1/0 status block is not applicable.

Table G-2 contains the NSP error codes that pertain to the NSP ERROR in
Table G-1 (177774). NSP error codes occupy the low-order byte of the second
word of the 1/0 status block. With the exception of the network rejection (-7),
the high-order byte is undefined.

G-4 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-2
NSP Error Codes

Error Code

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

Description

Required system resources are not available.

A request was issued for a LUN on which there is no established logical
link.

The link was disconnected with the request outstanding.

The data message to be received was truncated because the receive
buffer was too small.

An argument specified in the call was incorrect.

No network data was found in the user's mailbox.

The network (NSP) rejected an attempted connect. The high-order byte
contains the reject reason code (see Appendix B).

A logical link has already been established on the LUN to which the
user attempted to connect.

The issuing task is not part of the network. OPNNT was never called.

The user is attempting to access the network for a second time.

A transmission of an interrupt message was attempted before the last
one had finished.

A connect reject was issued by the user task to which the connection
was attempted.

A buffer is either outside the user address space or is not word aligned.

The user is attempting to issue a GNDNT[W] when one is already pend­
ing.

G.2 DATA ACCESS PROTOCOL {OAP) ERROR MESSAGES

The DAP status code is used to return status from the remote file system or
from the operation of the cooperating process using DAP. The 2-byte status
field (16 bits) occupies the second word of the 1/0 status block and is divided
into two fields:

D Maccode (bits 12-15): Contains the error type code (see Table G-3
in Section G.2.1)

D Miccode (bits 0-11): Contains the specified error reason code (see
Tables G-4, G-5, and G-6, depending on er­
ror type, as described in Section G.2.2)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-5

G.2.1 Maccode Field

The maccode field is located in the high-order byte of the second word in an
1/0 status block. The value returned in the maccode field describes the func­
tional type of the error that has occurred. The specific reason for the error is
given in the miccode field (the low-order byte of the same word that contains
the maccode field). Miccode values correlating to each maccode value listed in
Table G-3 are found in the table referenced in the last column of Table G-3.

Table G-3
OAP Maccode Field Values

Field
Value

0

2

3

4

5

6

7

10

11

12

13-15

16-17

Error Type

Pending

Successful

Unsup-
ported

Reserved

File open

Transfer
error

Transfer
warning

Access
termination

Format

Invalid

Sync

Reserved

User-de-
fined status
maccodes

Meaning,

The operation is in progress.

Returns information that indicates success.

This implementation of OAP does not support
specified request.

Errors that occur before a file is successfully
opened.

Errors that occur after a file is opened and be-
fore it is closed.

For operations on open files, indicates that the
operation completed, but not with complete
success.

Errors associated with terminating access to a
file.

Error in parsing a message. Format is not cor-
rect.

Field of message is invalid (that is, bits that are
meant to be mutually exclusive are set, an un-
defined bit is set, a field value is out of range, or
an illegal string is in a field).

OAP message received out of synchronization.

Miccode
Table

G-5

G-5

G-4

G-5

G-5

G-5

G-5

G-4

G-4

G-6

G-6 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

G.2.2 Miccode Field

The miccode field is located in the low-order byte of the second word in an 1/0
status block. The value returned in this field identifies the specific reason for
the error type defined in the maccode field (see Section G.2.1). Miccode field
values are defined in three different tables, each table associated with certain
maccode values, as outlined below:

O Table G-4: For use with maccode values 2, 10, 11

O Table G-5: For use with maccode values 0, 1, 4, 5, 6, 7

O Table G-6: For use with maccode value 12

Table G-4 follows. The OAP message type number (column 1) is specified in
bits 6-11, and the OAP message field number (column 2) is specified in bits
0-5. The field where the error is located is described in the third column.

Table G-4
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Miscellaneous message errors

00 00

10

Configuration message errors

01 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

Field Description

Unspecified OAP message error

OAP message type field (TYPE) error

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Buffer size field (BUFSIZ)

Operating system type field (OSTYPE)

File system type field (FILESYS)

OAP version number (VERNUM)

ECO version number field (ECONUM)

USER protocol version number field (USRNUM)

DEC software release number field (DECVER)

User software release number field (USRVER)

System capabilities field (SYSCAP)

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-7

Table G-4 (cont)
DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Attributes message errors

02 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification (STREAMID)

Length field (LENGTH)

Length extension field (LEN 256)

Bit count field (BITCNT)

Attributes menu field (ATTMENU)

Data type field (DAT A TYPE)

File organization field (ORG)

Record format field (RFM)

Record attributes field (RAT)

Block size field (BLS)

Maximum record size field (MRS)

Allocation quantity field (ALQ)

Bucket size field (BKS)

Fixed control area size field (FSZ)

Maximum record number field (MRN)

Run-time system field (RUNSYS)

Default extension quantity field (DEQ)

File options field (FOP)

Byte size field (BSZ)

Device characteristics field (DEV)

Spooling device characteristics field (SDC); re-
served

Longest record length field (LRL)

Highest virtual block allocated field (HBK)

End-of-file block field (EBK)

First free byte field (FFB)

Starting LBN for contiguous file field (SBN)

(continued on next page)

G-8 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-4 (cont)
DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Access message errors

03 00

10

11

12

13

14

20

21

22

23

24

25

26

Control message errors

04 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Access function field (ACCFUNC)

Access options field (ACCOPT)

File specification field (FILESPEC)

File access field (FAC)

File-sharing field (SHR)

Display attributes request field (DISPLAY)

File password field (PASSWORD)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Control function field (CTLFUNC)

Control menu field (CTLMENU)

Record access field (RAC)

Key field (KEY)

Key of reference field (KRF)

Record options field (ROP)

Hash code field (HSH); reserved for future use

Display attributes request field (DISPLAY)

Block count (BLKCNT)

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-9

Table G-4 (cont)
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Continue message errors

05 00

10

11

12

13

14

20

Acknowledge message errors

06 00

10

11

12

13

14

15

Access complete message errors

07 00

10

11

12

13

14

20

21

22

Field Description

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Continue transfer function field (CONFUNC)

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

System-specific field (SYSPEC)

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Access complete function field (CMPFUNC)

File options field (FOP)

Checksum field (CHECK)

(continued on next page)

G-10 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-4 (cont)
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Data message errors

10 00

10

11

12

13

14

20

21

Status message errors

11 00

10

11

12

13

14

20

21

22

23

24

25

Field Description

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Record number field (RECNUM)

File data field (FILEDATA)

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Macro status code field (MACCODE)

Micro status code field (MICCODE)

Record file address field (RFA)

Record number field (RECNUM)

Secondary status field (STV)

Secondary status text (STX)

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-11

Table G-4 (cont)
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Key definition message errors

12 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

Field Description

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Key definition menu field (KEYMENU)

Key option flags field (FLG)

Data bucket fill quantity field (DFL)

Index bucket fill quantity field (IFL)

Key segment repeat count field (SEGCNT)

Key segment position field (POS)

Key segment size field (SIZ)

Key of reference field (REF)

Key name field (KNM)

Null key character field (NUL)

Index area number field (IAN)

Lowest level area number field (LAN)

Data level area number field (DAN)

Key data type field (DTP)

Root VBN for this key field (RVB)

Hash algorithm value field (HAL)

First data bucket VBN field (DVB)

Data bucket size field (DBS)

Index bucket size field (IBS)

Level of root bucket fiel.d (LVL)

Total key size field (TKS)

Minimum record size field (MRL)

(continued on next page)

•

G-12 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-4 (cont)
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Allocation message errors

13 00

10

11

12

13

14

20

21

22

23
24

25

26

27

30

31

Summary message errors

14 00

10

11

12

13

14

20

21

22

23

24

Field Description

Unknown field

OAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Allocation menu field (ALLMENU)

Relative volume number field (VOL)

Alignment options field (ALN)

Allocation options field (AOP)

Starting location field (LOC)

Related file identification field (RFI)

Allocation quantity field (ALQ)

Area identification field (AID)

Bucket size field (BKZ)

Default extension quantity field (DEQ)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Summary menu field (SUMENU)

Number of keys field (NOK)

Number of areas field (NOA)

Number of record descriptors field (NOR)

Prologue version number (PVN)

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-13

Table G-4 (conO
DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5) Field Description

Data and time message errors

15 00

10

11

12

13

14

20

21

22

23

24

25

26

27

Protection message errors

16 00

10

11

12

13

14

20

21

22

23

24

25

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Date and time menu field (DATMENU)

Creation date and time field (CDT)

Last update date and time field (RDT)

Deletion date and time field (EDT)

Revision number field (RVN)

Backup date and time field (BDT)

Physical creation date and time field (PDT)

Accessed date and time field (ADT)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Protection menu.field (PROTMENU)

File owner field (OWNER)

System protection field (PROTSYS)

Owner protection field (PROTOWN)

Group protection field (PROTGRP)

World protection field (PROWLD)

(continued on next page)

G-14 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-4 (cont)
OAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Number
(bits 6-11)

Field Number
(bits 0-5)

Name message errors

17 00

10

11

12

13

14

20

21

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Name type field (NAMETYPE)

Name field (NAMESPEC)

Access control list message errors (reserved for future use)

20 00 Unknown field

10 DAP message flags field (FLAGS)

11 Data stream identification field (STREAMID)

12 Length field (LENGTH)

13 Length extension field (LEN256)

14 Bit count field (BITCNT)

15 System-specific field (SYSPEC)

20 Access control list repeat count field (ACLCNT)

21 Access control list entry field (AGL)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-15

Table G-5 follows. The error code number (column 1) is contained in bits 0-11.
Symbolic status codes (column 2, when shown) refer to the corresponding
RMS or FCS status codes. They are included here for ease of reference only,
as they have no meaning for DAP.

Table G-5
DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

0 Unspecified error

ER$ABO Operation aborted

2 ER$ACC F11-ACP could not access file

3 ER$ACT File activity precludes operation

4 ER$AID Bad area ID

5 ER$ALN Alignment options error

6 ER$ALQ Allocation quantity too large or O value

7 ER$ANI Not ANSI D format

10 ER$AOP Allocation options error

11 ER$AST Invalid (that is, synchronous) operation at AST
level

12 ER$ATR Attribute read error

13 ER$ATW Attribute write error

14 ER$BKS Bucket size too large

15 ER$BKZ Bucket size too large

16 ER$BLN BLN length error

17 ER$BOF Beginning of file detected

20 ER$BPA Private pool address

21 ER$BPS Private pool size

22 ER$BUG Internal RMS error condition detected

23 ER$CCR Cannot connect RAB

24 ER$CHG $UPDATE changed a key without having attribute
of XB$CHG set

25 ER$CHK Bucket format check-byte failure

26 ER$CLS RSTS/E close function failed

27 ER$COD Invalid or unsupported COD field

(continued on next page)

G-16 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-5 (cont)
OAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

30 ER$CRE F11-ACP could not create file (STV = system error
code)

31 ER$CUR No current record (operation not preceded by
get/find)

32 ER$DAC F11-ACP deaccess error during close

33 ER$DAN Data area number invalid

34 ER$DEL RFA-accessed record was deleted

35 ER$DEV Bad device, or inappropriate device type

36 ER$DIR Error in directory name

37 ER$DME Dynamic memory exhausted

40 ER$DNF Directory not found

41 ER$DNR Device not ready

42 ER$DPE Device has positioning error

43 ER$DTP DTP field invalid

44 ER$DUP Duplicate key detected; XB$DUP not set

45 ER$ENT F11-ACP enter function failed

46 ER$ENV Operation not selected in ORG$ macro

47 ER$EOF End of file

50 ER$ESS Expanded string area too short

51 ER$EXP File expiration date not yet reached

52 ER$EXT File extend failure

53 ER$FAB Not a valid FAB (BID does not = FB$BID)

54 ER$FAC Illegal FAC for record operation, or FB$PUT not
set for create

55 ER$FEX File already exists

56 ER$FID Invalid file ID

57 ER$FLG Invalid flag-bits combination

60 ER$FLK File is locked by other user

61 ER$FND F11-ACP find function failed

62 ER$FNF File not found

63 ER$FNM Error in file name

64 ER$FOP Invalid file options

65 ER$FUL Device/file full

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-17

Table G-5 (cont)
OAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

66 ER$1AN Index area number invalid

67 ER$1FI Invalid IFI value or unopened file

70 ER$1MX Maximum NUM (254) areas/key XABS exceeded

71 ER$1NI $1NIT macro never issued

72 ER$10P Operation illegal or invalid for file organization

73 ER$1RC Illegal record encountered (with sequential files
only)

74 ER$1SI Invalid ISi value on unconnected RAB

75 ER$KBF Bad key buffer address (KBF = 0)

76 ER$KEY Invalid key field (KEY = 0 or negative)

77 ER$KRF Invalid key of reference ($GET/$FIND)

100 ER$KSZ Key size too large

101 ER$LAN Lowest level index area number invalid

102 ER$LBL Not ANSI-labeled tape

103 ER$LBY Logical channel busy

104 ER$LCH Logical channel number too large

105 E8$LEX Logical extend error; prior extend still valid

106 ER$LOC LOC field invalid

107 ER$MAP Buffer-mapping error

110 ER$MKD F11-ACP could not mark file for deletion

111 ER$MRN MRN value= negative or relative key> MRN

112 ER$MRS MRS value= 0 for fixed length records and/or rel-
ative files

113 ER$NAM NAM block address invalid (NAM = O or is not
accessible)

114 ER$NEF Not positioned to EOF (with sequential files only)

115 ER$NID Cannot allocate internal index descriptor

116 ER$NPK Indexed file; no primary key defined

117 ER$0PN RSTS/E open function failed

120 ER$0RD XABs not in correct order

121 ER$0RG Invalid file organization value

122 ER$PLG Error in file's prologue (reconstruct file)

123 ER$POS POS field invalid (POS > MRS; STV = XAB indica-
tor)

(continued on next page)

G-18 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-5 (cont)
DAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

124 ER$PRM Bad file date field retrieved

125 ER$PRV Privilege violation (OS denies access)

126 ER$RAB Not a valid RAB (BID does not= RB$BID)

127 ER$RAC Illegal RAC value

130 ER$RAT Illegal record attributes

131 ER$RBF Invalid record buffer address (either odd or not
word aligned if BLK-10)

132 ER$RER File read error

133 ER$REX Record already exists

134 ER$RFA Bad RFA value (RFA=O)

135 ER$RFM Invalid record format

136 ER$RLK Target bucket locked by another stream

137 ER$RMV F11-ACP remove function failed

140 ER$RNF Record not found

141 ER$RNL Record not locked

142 ER$ROP Invalid record options

143 ER$RPL Error while reading prologue

144 ER$RRV Invalid ARV record encountered

145 ER$RSA RAB stream currently active

146 ER$RSZ Bad record size (RSZ > MRS or NOT = MRS if
fixed length records)

147 ER$RTB Record too big for user's buffer

150 ER$SEQ Primary key out of sequence (RAC = RB$SEQ for
$PUT)

151 ER$SHR SHR field invalid for file (cannot share sequential
files)

152 ER$SIZ SIZ field invalid

153 ER$STK Stack too big for save area

154 ER$SYS System directive error

155 ER$TRE Index tree error

156 ER$TYP Error in file type extension on FNS is too big

157 ER$UBF Invalid user buffer address (0, odd, or not word
aligned if BLK-10)

160 ER$USZ Invalid user buffer size (USZ=O)

161 ER$VER Error in version number

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-19

Table G-5 (cont)
OAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

162 ER$VOL Invalid volume number

163 ER$WER File write error (STV = system error code)

164 ER$WLK Device is write locked

165 ER$WPL Error while writing prologue

166 ER$XAB Not a valid XAB (@XAB =odd; STV = XAB indica-
tor)

167 BUGDDI Default directory invalid

170 CAA Cannot access argument list

171 CCF Cannot close file

172 CDA Cannot deliver AST

173 CHN Channel assignment failure (STV = system error
code)

174 CNTRLO Terminal output ignored due to ~

175 CNTRLY Terminal input aborted due to ~

176 DNA Default file name string address error

177 DVI Invalid device ID field

200 ESA Expanded string address error

201 FNA File name string address error

202 FSZ FSZ field invalid

203 IAL Invalid argument list

204 KFF Known file found

205 LNE Logical name error

206 NOD Node name error

207 NORMAL Operation successful

210 OK_DUP Inserted record had duplicate key

211 OK_IDX Index update error occurred; record inserted

212 OK_RLK Record locked, but read anyway

213 OK_RRV Record inserted in primary key is okay; may not be
accessible by secondary keys or RFA

214 CREATE File was created, but not opened

215 PBF Bad prompt buffer address

216 PNDING Asynchronous operation pending completion

217 QUO Quoted string error

220 RHB Record header buffer invalid

221 RLF Invalid related file

(continued on next page)

G-20 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-5 (cont)
DAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

222 RSS Invalid resultant string size

223 RST Invalid resultant string address

224 SQO Operation not sequential

225 sue Operation successful

226 SPRSED Created file superseded existing version

227 SYN File name syntax error

230 TMO Timeout period expired

231 ER$BLK FB$BLK record attribute not supported

232 ER$BSZ Bad byte size

233 ER$CDR Cannot disconnect RAB

234 ER$CGJ Cannot get JFN for file

235 ER$COF Cannot open file

236 ER$JFN Bad JFN value

237 ER$PEF Cannot position to end of file

240 ER$TRU Cannot truncate file

241 ER$UDF File currently in an undefined state; access is de-
nied

242 ER$XCL File must be opened for exclusive access

243 Directory full

244 IE.HWA Handler not in system

245 IE.FHE Fatal hardware error

246 Attempt to write beyond EOF

247 IE.ONP Hardware option not present

250 IE.DNA Device not attached

251 IE.DAA Device already attached

252 IE.DUN Device not attachable

253 IE.RSU Sharable resource in use

254 IE.OVA Illegal overlay request

255 IE.BCC Block check or CRC error

256 IE.NOD Caller's nodes exhausted

257 IE.IFU Index file full

260 IE.HFU File header full

261 IE.WAC Accessed for write

262 IE.CKS File header checksum failure

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-21

Table G-5 (cont)
DAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

263 IE.WAT Attribute control list error

264 IE.ALN File already accessed on LUN

265 IE.BTF Bad tape format

266 IE.ILL Illegal operation on file descriptor block

267 IE.2DV Rename; two different devices

270 IE.FEX Rename; new file name already in use

271 IE.RNM Cannot rename old file system

272 IE.FOP File already open

273 IE.VER Parity error on device

274 IE.EOV End of volume detected

275 IE.DAO Data overrun

276 IE.SSE Bad block on device

277 IE.EQT End of tape detected

300 IE.NSF No buffer space for file

301 IE.NSK File exceeds allocated space; no blocks left

302 IE.NST Specified task not installed

303 IE.ULK Unlock error

304 IE.NLN No file accessed on LUN

305 IE.SAE Send/receive failure

306 SPL Spool or submit command file failure

307 NMF No more files

310 CRC DAP file transfer checksum error

311 Quota exceeded

312 BUGDAP Internal network error condition detected

313 CNTRLC Terminal input aborted due to (CTRL/Cl

314 DFL Data bucket fill size > bucket size in XAB

315 ESL Invalid expanded string length

316 IBF Illegal bucket format

317 IBK Bucket size of LAN does not = IAN in XAB

320 IDX Index not initialized

321 IFA Illegal file attributes (corrupt file header)

322 IFL Index bucket fill size > bucket size in XAB

323 KNM Key name buffer not readable or writeable in XAB

(continued on next page)

G-22 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-5 (cont)
DAP Miccode Values for Use with Maccode Values of 0, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

324

325

326

327

330

331

332

333

334

335

336

337

340

341

342

343

344

345

346

347

350

351

352

353

354

355

356

357

Corresponding
Symbolic
Status Code

KSI

MBC

NET

OK_ALK

OK_DEL

OK_LIM

OK_NOP

OK_RNF

PLV

REF

RSL

RVU

SEG

SUP

WBE

WLD

WSF

SNE

SPE

UPI

ACS

Error Description

Index bucket will not hold two keys for key of refer­
ence

Multibuffer count invalid (negative value)

Network operation failed at remote node

Record is already locked

Deleted record successfully accessed

Retrieved record exceeds specified key value

Key XAB not filled in

Nonexistent record successfully accessed

Unsupported prologue version

Illegal key of reference in XAB

Invalid resultant string length

Error updating RRVs; some paths to data may be
lost

Data types other than string limited to one seg­
ment in XAB

Reserved

Operation not supported over network

Error on write behind

Invalid wildcard operation

Working set full (cannot lock buffers in working
set)

Directory listing: error in reading volume set name,
directory name, or file name

Directory listing: error in reading file attributes

Directory listing: protection violation in trying to
read the volume set, directory, or file name

Directory listing: protection violation in trying to
read file attributes

Directory listing: file attributes do not exist

Directory listing: unable to recover directory list af­
ter continue transfer (skip)

Sharing not enabled

Sharing page count exceeded

UPI bit not set when sharing with BRO set

Error in access control string

(continued on next page)

SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES G-23

Table G-5 (cont)
DAP Miccode Values for Use with Maccode Values O, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

360

361

362

363

364

365

366

6000 to 7777

Corresponding
Symbolic
Status Code

TNS

BES

PES

wee

IDR

STR

FTM

Error Description

Terminator not seen

Bad escape sequence

Partial escape sequence

Invalid wildcard context value

Invalid directory rename operation

User structure (FAB/RAB) became invalid during
operation

Network file transfer mode precludes operation

User-defined errors

Table G-6 follows. The message type number is contained in bits 0-11.

G-24 SUMMARY OF REMOTE FILE ACCESS ERROR/COMPLETION CODES

Table G-6
DAP Miccode Values for Use with Maccode Value 12

Type Number
(bits 0-11)

0

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

Message Type

Unknown message type

Configuration message

Attributes message

Access message

Control message

Continue transfer message

Acknowledge message

Access complete message

Data message

Status message

Key definition attributes extension message

Allocation attributes extension message

Summary attributes extension message

Date and time attributes extension message

Protection attributes extension message

Name message

Access control list extended attributes message

APPENDIX H
TASK-TO-TASK PROGRAMMING
EXAMPLES

The following sections illustrate task-to-task communication for FORTRAN,
COBOL, BASIC-PLUS-2, PASCAL, MACR0-11 and DLX. There are two exam­
ples for each language - a transmit and a receive program. Each program
describes the activities of two cooperating tasks.

NOTE

The programming examples are also included on your installation
diskette.

H.1 FORTRAN PROGRAMMING EXAMPLES

For both FORTRAN examples, FTNTRN is the transmit task and FTNREC is the
receiver task. In the first example, FTNTRN accesses the network, connects to
FTNREC, transmits inquiries to FTNREC, and finally receives responses from
FTNREC. In the second example, FTNTRN completes sending inquiries to
FTNREC, disconnects the link, deaccesses the network and then exits. Any
error found by FTNREC is transmitted to FTNTRN as an interrupt message.
FTNTRN then displays the interrupt message on the user's terminal.

H-1

H-2 TASK-TO-TASK PROGRAMMING EXAMPLES

H.1.1 FORTRAN Transmit Program

c
C TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
c
C FTNTRN,FTNTRN=FTNTRN,[l,5]NETSUBILB,F4POTSILB,RMSLIBILB
c I
C UNITS=lO
C ACTFIL=4
C EXTTSK=lOOO (if RMS included)
c II
c

c
c
c

c
c
c

INTEGER*2 MLTYP,RECSIZ,SNDSIZ,OPNLUN,CONLUN,MESNUM,XMITS,NDLEN,TSKLEN
INTEGER*2 IOST(2),MSTAT(3)
BYTE ERRMES(2),TSKNAM(6),CONBLK(72),NDNAM(6),DEFNOD(6),DEFTSK(6)
BYTE SNDBUF(50),RECBUF(l0)
LOGICAL*! STAT,IMMED
DATA DEFNODl'M' ,'A' ,'S' ,'T' ,'E' ,'R'I
DATA DEFTSKl'R', 'E', 'C', 'V' ,'E' ,'R'I

INITIALIZE CONSTANTS

IMMED=.TRUE.
OPNLUN=l
CONLUN=2

XMITS=20

SNDSIZ=50

RECSIZ=lO

GET THE NODE AND TASK NAMES

!*
!*
!*
!*
!*
!*
!*
!*
!*
!*

SET IMMED TO TRUE FOR GNDNTW
NETWORK OPNNT LUN
COUNT LUN FOR THE
LOGICAL LINK
THE NUMBER OF INQUIRIES
TO BE SENT TO THE REMOTE NODE
THE SIZE OF THE MESSAGES TO
BE SENT TO THE REMOTE NODE
THE SIZE OF THE MESSAGES TO
BE RECEIVED

4 TYPE 3 0 0 ! * ASK FOR NODE NAME
READ(5,310) (NDNAM(NDLEN),NDLEN=l,6) !*GET THE NAME
DO 5 NDLEN=6,l,-l !* LOOP TO FIND LENGTH OF NAME
IF (NDNAM(NDLEN).NE. I I) GOTO 6 !*IF NOT A SPACE, GET TASK NAME

5 CONTINUE
DO 50 I=l,6

50 NDNAM(I)=DEFNOD(I) !*DEFAULT NODE NAME 'MASTER'
NDLEN=6 !* LENGTH OF DEFAULT NAME

6 TYPE 320 !* ASK FOR THE TASK NAME
READ(5,310) (TSKNAM(TSKLEN),TSKLEN=l,6) !*GET IT
DO 7 TSKLEN=6,l,-l !* TSKLEN IS LENGTH OF TASK NAME
IF (TSKNAM(TSKLEN).NE.' ')GOTO 8 !*IF NOT SPACE, ACCESS NETWORK

7 CONTINUE
DO 60 I=l,6

60 TSKNAM(I)=DEFTSK(I) !* DEFAULT TASK NAME 'RECVER'

c
c
c
8

c

TSKLEN=6 !* LENGTH OF DEFAULT NAME

ACCESS NETWORK

CALL OPNNTW(OPNLUN,IOST,MSTAT)
IF (IOST(l).NE.l)GOTO 100 !* IF FAILURE JUST EXIT

C BUILD A FORMAT 2 CONNECT BLOCK
c

CALL BFMTl(STAT,CONBLK,NDLEN,NDNAM,,TSKLEN,TSKNAM)
IF (STAT)GOTO 10 !* IF SUCCESS GO ON
TYPE 200 !* ELSE TYPE OUT A FAILURE

!*NOTIFICATION
GOTO 90 !*AND EXIT

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-3

FORTRAN Transmit Program (cont.)

c
c
c
10

15

c
c
c

c
c
c

c
c
c
20

c
c
c
30

40
c
c
c

c
c
c
90
100
c
c
c
200
210
220
230
240
300
310
320

CONNECT TO THE TASK ON THE REMOTE NODE

CALL CONNTW(CONLUN,IOST,CONBLK)
IF (IOST(l).EQ.l)GOTO 15 !* IF SUCCESS TELL HIM
TYPE 240,IOST !*ELSE PRINT STATUS BLOCK
GOTO 90 !* DEACCESS THE NETWORK

!*AND EXIT
TYPE 220 !*PRINT CONNECT CONFIRMATION

!*NETWORK AND EXIT

SEND AND RECEIVE MESSAGES TO AND FROM THE REMOTE NODE

DO 40 MESNUM=l,XMITS

FIRST GET ANY ERROR MESSAGES SENT FROM THE OTHER SIDE VIA
INTERRUPT MESSAGES

IF (MSTAT(l).EQ.O)GOTO 20 !* IF MSTAT(l)=O NO MESSAGES

CALL
IF

!* ARE THERE
GNDNTW(IOST,MLTYP,2,ERRMES,,IMMED,2) !*GET THE MESSAGE
(IOST(l).NE.l)GOTO 20 !* IF WE COULDN'T GET THE MESSAGE

!*JUST IGNORE IT
TYPE 210, ERRMES (1) !*PRINT OUT THE MESSAGE

SEND THE INQUIRY

CALL SNDNTW(CONLUN,IOST,SNDSIZ,SNDBUF)
IF (IOST(l).EQ.l)GOTO 30 !* IF SUCCESS CONTINUE
TYPE 210,MESNUM !*OTHERWISE TYPE OUT AN

!*ERROR MESSAGE
GOTO 40 !*AND START A NEW MESSAGE

RECEIVE THE RESPONSE FROM THE REMOTE NODE

CALL RECNTW(CONLUN,IOST,RECSIZ,RECBUF)
IF (IOST(l).EQ.l)GOTO 40 !*IF SUCCESS CONTINUE
TYPE 210,MESNUM !*OTHERWISE TYPE OUT AN

!* ERROR MESSAGE
CONTINUE

DISCONNECT THE LINK

TYPE
CALL

230
DSCNTW(CONLUN,IOST)

!* PRINT OUT DISCONNECT MESSAGE

COME HERE TO DEACCESS THE NETWORK AND EXIT

CALL CLSNTW
STOP 'END OF PROGRAM EXECUTION'

FORMAT STATEMENTS

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(' ERROR BUILDING CONNECT BLOCK')
(' ERROR ON INQUIRY I ,I3)
(' LINK ENABLED')
(' LINK DISABLED')
(I CONNECT FAIL: IOST= I, I3)
(' PLEASE ENTER NODE NAME <MASTER>:
(6Al)
(' PLEASE ENTER TASK NAME <RECVER>:

' , $)

' , $)

H-4 TASK-TO-TASK PROGRAMMING EXAMPLES

H.1.2 FORTRAN Receive Program

c
C TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
c
C FTNREC,FTNREC=FTNREC,[l,5]NETSUBILB,F4POTSILB,RMSLIBILB
c I
C UNITS=lO
C ACTFIL=4
C EXTTSK=lOOO (if RMS included)
c II
c

c

INTEGER*2 OPNLUN,MLTYP,INDEX,ACCLUN,NUMBER,NUMMES
INTEGER*2 RECSIZ,SNDSIZ,INTSIZ
INTEGER*2 MST AT (3) , IOST (2) , IOSTl (2) , IOST2 (2)
BYTE RECBUF(50),SNDDAT(l0),MLBX(98),INTMES(2)

C INITIALIZE CONSTANTS
c

c

OPNLUN=l
ACCLUN=2
RECSIZ=50
INTSIZ=2
NUMMES=O
SNDSIZ=lO

!*NETWORK OPNNT LUN
!* ACCNT LUN FOR THE LOGICAL LINK
!*SIZE OF DATA BUFFER TO BE RECEIVED
!* SIZE OF INTERRUPT DATA BUFFER TO SEND
!* NUMBER OF MESSAGES RECEIVED
!* NUMBER OF BYTES TO SEND BACK

C ACCESS NETWORK
c

10
20

c

CALL
IF
IF

CALL
CALL
IF

OPNNTW(OPNLUN,IOST,MSTAT)
(IOST(l).NE.l)GOTO 100
(MSTAT(l).EQ.O)GOTO 40

GNDNT(IOSTl,MLTYP,98,MLBX)
WAITNT(INDEX,IOST1,IOST2)
(INDEX.EQ.2)GOTO 50

C NETWORK DATA HAS BEEN RECEIVED
c

IF

IF

IF

c

(IOSTl(l).NE.l)GOTO 40

(MLTYP.GE.3)GOTO 40

(MLTYP.EQ.2)GOTO 10

!* IF FAILURE JUST EXIT
!* IF NOTHING ON MAILBOX
!*JUST CLOSE AND EXIT
!* ISSUE A GET NETWORK DATA
!*WAIT FOR A COMPLETION
!* IF INDEX=2 A RECEIVE HAS
!*BEEN COMPLETED

* IF GNDNT FAILED JUST
* CLOSE AND EXIT
* IF MULTYP>=3 THE LINK HAS
* BEEN BROKEN
* IF MLTYP=2 WE'VE RECEIVED
* AN INTERRUPT MESSAGE, JUST
* ISSUE A NEW GNDNT

C WE'VE RECEIVED A CONNECT REQUEST - ISSUE AN ACCEPT
c

CALL
IF

ACCNTW(ACCLUN,IOST,MLBX)
(IOST(l).NE.l)GOTO 10

ISSUE A RECEIVE TO PICK UP DATA

!* IF FAILURE ISSUE A NEW
!* GNDNT

c
c
c
30 CALL RECNT(ACCLUN,IOST2,RECSIZ,RECBUF)

GOTO 10 !* ISSUE A NEW GNDNT
!* AND WAIT FOR A COMPLETION

c
C WE COME HERE UPON RECEIVING A DISCONNECT OR ABORT
c
40

c

CALL

GOTO

CLSNTW

100

C WE COME HERE IF WE RECEIVE AN INQUIRY
c
50 NUMMES=NUMMES+l

!* DEACCESS THE NETWORK

!*AND EXIT

!* INCREMENT THE MESSAGE

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-5

FORTRAN Receive Program (cont.)

!*COUNT
IF (IOST2(1).EQ.l)GOTO 60 !* IF IOST2(1)-l ALL'S O.K.

c
C IF THERE WAS AN ERROR SEND BACK AN INTERRUPT MESSAGE WITH
C MESSAGE NUMBER
c

c
c
c
c
c
c
c
60
70

c

INTMES(l)=NUMMES !* SEND THE MESSAGE NUMBER
CALL XMINT(ACCLUN,IOST,INTSIZ,INTMES)
GOTO 70 !*GO ISSUE A NEW RECEIVE

HERE THE USER CAN LOOK AT THE DATA RECEIVED IN RECBUF AND RESPOND
BY PLACING THE REQUESTED INFORMATION INTO SNDDAT

SEND BACK THE DATA AND ISSUE A NEW RECNT

CALL SNDNTW(ACCLUN,IOST,SNDSIZ,SNDDAT)
CALL RECNT(ACCLUN,IOST2,RECSIZ,RECBUF)
GOTO 20 !*WAIT FOR A COMPLETION

C EXIT PROGRAM
c
100 STOP 'END OF PROGRAM EXECUTION'

END
!*HALT THE PROGRAM
!*AND EXIT

H-6 TASK-TO-TASK PROGRAMMING EXAMPLES

H.2 COBOL PROGRAMMING EXAMPLES

For both COBOL examples, COBTRN is the transmit task and COBREC is the
receiver task. In the first example, COBTRN accesses the network, connects to
COBREC, transmits inquiries to COBREC, and finally receives responses from
COBREC. In the second example, COBTRN completes sending inquiries to
COBREC, disconnects the link, deaccesses the network and then exits. Any
error found by COBREC is transmitted to COBTRN as an interrupt message.
COBTRN then displays the interrupt message on the user's terminal.

H.2.1 COBOL Transmit Program

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTRN.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS IS THE TRANSMIT PROGRAM OF THE DECNET COBOL
INTERFACE COMMUNICATION EXAMPLE PROGRAMS.

TO TASK BUILD, CREATE A FILE NAMED COBTRNBLD.CMD
CONTAINING THE FOLLOWING COMMAND STRING:

COBTRN,COBTRN=COBTRN,[l,5]NETSUBILB,C81LIBILB
I
L IBR=RMSRES: RO
UNITS= IO
ACTFIL=4
EXTTSK=lOOO (if RMS included)
II

* AND THEN TYPE THE FOLLOWING COMMAND STRING:
*
*
*

LINK @COBTRNBLD

*
11

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11.
OBJECT-COMPUTER. PDP-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBTRN.DUM".

DATA DIVISION.
FILE SECTION.
FD DUMMY-FILE

LABEL RECORD STANDARD.
01 DUMMY-FILE-REC.

02 FILLER PIC X(l32).

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-7

COBOL Transmit Program (cont.)

WORKING-STORAGE SECTION.
01 MSGS.

03 MSG!.
05 FILLER PIC X(32) VALUE " NETWORK OPEN FAILED,

"I OST (1) = " •
05 MSGl-STATl
05 FILLER
05 MSG1-STAT2

03 MSG2.
05 FILLER

05 MSG2-STAT1
05 FILLER
05 MSG2-STAT2

03 MSG3.
05 FILLER
05 MSG3-ERR1

03 MSG4.
05 FILLER

05 MSG4-NUM1
03 MSG5.

05 FILLER

05 MSG5-NUM1
01 ARRAYS.

03 IOST.

PIC -99999.
PIC X(ll) VALUE " IOST(2)
PIC -99999.

PIC X(25) VALUE " CONNECT FAIL, IOST(l)
" ::: "

PIC -99999.
PIC X(ll) VALUE " IOST(2)
PIC -99999.

PIC X(20) VALUE " ERROR ON INQUIRY # "
PICX(2).

PIC X(31) VALUE " ERROR ON INQUIRY DURI
"NG SEND: "

PIC 99.

PIC X(34) VALUE " ERROR ON INQUIRY DURI
"NG RECEIVE: "

PIC 99.

05 IOSTAT
03 MSTAT.

OCCURS 2 TIMES PIC S9999 USAGE COMP.

05 MSTATS
01 STORE-STUFF.

03 TEN
03 OPNLUN
03 RESULT-REC
03 IN-FILE
03 NODNAM
03 TSKNAM
03 FILLER
03 STAT
03 CONBLK
03 NLENG
03 TLENG
03 CONLUN
03 XMITS
03 MESNUM
03 MLTYP
03 FILLER
03 MLBXSZ
03 ERRMES
03 DUMMY
03 IMMED
03 TYPMSK
03 FILLER
03 SNDSIZ
03 SNDBUF
03 RECSIZ
03 RECBUF

PROCEDURE DIVISION.
AlOO-START.

OCCURS 3 TIMES PIC S9999 USAGE COMP.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

99
99
X(80).
X(6).
x (6) •
X(9).
x.
S999
X(72).
9
9
99
99
99.
9.
9.
99
X(2).
X(2).
S9
S99999.
9.
99
X(50).
99
x (10).

COMP VALUE 10.
COMP VALUE 2.

USAGE COMP.

USAGE COMP.
USAGE COMP.
COMP VALUE 3.
COMP VALUE 20.

COMP VALUE 2.

COMP VALUE -1.

COMP VALUE 50.

COMP VALUE 10.

(continued on next page)

H-8 TASK-TO-TASK PROGRAMMING EXAMPLES

COBOL Transmit Program (cont.)

**
*
*
*
*

INPUT NODE NAME AND RECEIVER TASK NAME FROM
TERMINAL.

*
*
*
*

**

DISPLAY "ENTER NODE-NAME <MASTER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO NODNAM.
DISPLAY "ENTER TASK-NAME <RECVER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO TSKNAM.

*
*
*
*

ACCESS THE NETWORK. IF THE ACCESS IS UNSUCCESSFUL,
PRINT AN ERROR MESSAGE AND EXIT.

*
*
*
*

CALL "OPNNTW" USING
OPNLUN
IOST
MST AT
TEN.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSGl-STATl
MOVE IOSTAT (2) TO MSG1-STAT2
DISPLAY MSG!
GO COOO-END.

*
*
*
*
*

BUILD A FORMAT 1 CONNECT BLOCK. IF THE CALL DID
NOT COMPLETE SUCCESSFULLY, PRINT AN ERROR MESSAGE
AND DEACCESS THE NETWORK.

*
*
*
*
*

MOVE 6 TO NLENG.
MOVE 6 TO TLENG.
CALL "BFMTl" USING

STAT
CONBLK
NLENG
NOD NAM
DUMMY
TLENG
TS KN AM

IF STAT NOT = 0

ELSE
NEXT SENTENCE

DISPLAY "ERROR BUILDING CONNECT BLOCK"
GO BlOO-CLOSE.

* *
* CONNECT TO THE TASK ON THE REMOTE NODE. IF THE *
* CALL COMPLETES UNSUCCESSFULLY, PRINT AN ERROR MESSAGE *
* AND CLOSE THE NETWORK. OTHERWISE, PRINT "LINK *
* ENABLED" MESSAGE. *
* *

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-9

COBOL Transmit Program (cont.)

CALL "CONNTW" USING
CONLUN
IOST
CONBLK.

IF IOSTAT(l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE IOSTAT(l) TO MSG2-STAT1
MOVE IOSTAT(2) TO MSG2-STAT2
MOVE MSG2 TO RESULT-REC
DISPLAY RESULT-REC
GO BlOO-CLOSE.

DISPLAY "LINK ENABLED".

* *
*
*
*
*

SEND AND RECEIVE MESSAGES FROM THE REMOTE NODE.
IF THERE IS SOMETHING ON THE NETWORK DATA QUEUE
(MSTATS (1) > 0), GET THE MESSAGE.

*
*
*
*

LOOP.
PERFORM LOOP VARYING MESNUM FROM 1 BY 1 UNTIL MESNUM = XMITS.

IF MSTATS(l) = 0

ELSE
NEXT SENTENCE

CALL "GNDNTW" USING
IOST
MLTYP
MLBXSZ
ERRMES
DUMMY
IMMED
TYPMSK

IF IOSTAT(l) l

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE ERRMES TO MSG3-ERR1
MOVE MSG3 TO RESULT-REC
DISPLAY RESULT-REC.

*
*
*
*
*

SEND A MESSAGE TO THE TASK ON THE REMOTE NODE. IF
UNSUCCESSFUL, PRINT AN ERROR MESSAGE AND START THE
NEXT TRANSMISSION.

*
*
*
*
*

CALL "SNDNTW" USING
CONLUN
IOST
SNDSIZ
SNDBUF.

IF IOSTAT(l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG4-NUM1
MOVE MSG4 TO RESULT-REC
DISPLAY RESULT-REC
GO LOOP.

(continued on next page)

H-10 TASK-TO-TASK PROGRAMMING EXAMPLES

COBOL Transmit Program (cont.)

* *
* RECEIVE A MESSAGE FROM THE REMOTE NODE. IF *
* UNSUCCESSFUL, PRINT AN ERROR MESSAGE AND START *
* THE NEXT TRANSMISSION. IF SUCCESSFUL, SIMPLY *
* START THE NEXT TRANSMISSION. *
* *

CALL "RECNTW" USING
CONLUN
IOST
RECSIZ
RECBUF.

IF IOSTAT(l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG5-NUM1
MOVE MSG5 TO RESULT-REC
DISPLAY RESULT-REC.

*
*
*

DEACCESS .THE NETWORK.
*
*
*

BOOO-ENDLOOP.
DISPLAY "LINK DISABLED".
CALL "DSCNTW" USING

CONLUN
IOST.

*
*
*

CLOSE THE NETWORK AND EXIT.
*
*
*

BlOO-CLOSE.
CALL "CLSNTW".
DISPLAY "END OF EXECUTION".

COOO-END.
STOP RUN.

TASK-TO-TASK PROGRAMMING EXAMPLES H-11

H.2.2 COBOL Receive Program

IDENTIFICATION DIVISION.
PROGRAM-ID. COBREC.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS IS THE RECEIVE PROGRAM OF THE DECNET COBOL
INTERFACE COMMUNICATION EXAMPLE PROGRAMS.

TO TASK BUILD, CREATE A FILE NAMED COBRECBLD.CMD
CONTAINING THE FOLLOWING COMMAND STRING:

COBREC,COBREC=COBREC,[l,5]NETSUBILB,C81LIBILB
I
L IBR=RMSRES: RO
UNITS=lO
ACTFIL=4
EXTTSK=lOOO (if RMS included)
II

* AND THEN TYPE THE FOLLOWING COMMAND STRING:
*
* LINK @COBRECBLD
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11.
OBJECT-COMPUTER. PDP-11.
~NPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBREC.DUM".

DATA
FILE
FD

01
02

DIVISION.
SECTION.

DUMMY-FILE
LABEL RECORD STANDARD.
DUMMY-FILE-REC.
FILLER PIC X(l32).

WORKING-STORAGE SECTION.
01 ARRAYS.

03 IOST.
05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMP.

03 MSTAT.
05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMP.

03 IOSTL
05 IOSTATl OCCURS 2 TIMES PIC S9999 USAGE COMP.

03 IOST2.
05 IOSTAT2 OCCURS 2 TIMES PIC S9999 USAGE COMP.

01 STORE-STUFF.
03 OPNLUN
03 MLTYP
03 MLSIZ
03 MLBOX
03 INDX
03 ACCLUN
03 RECSIZ
03 RECBUF
03 NUMMES

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

99
9
99
X(98).
99
99
99
X(50).
99

COMP VALUE 2.
USAGE COMP.
COMP VALUE 98.

USAGE COMP.
COMP VALUE 3 •
COMP VALUE 50.

COMP VALUE 0.

(continued on next page)

H-12 TASK-TO-TASK PROGRAMMING EXAMPLES

COBOL Receive Program (cont.)

03 INTSIZ
03 INTMES
03 SNDSIZ
03 SNDDAT

PROCEDURE DIVISION.

PIC 9
PIC X(6).
PIC 99
PIC X(lO).

COMP VALUE 6.

COMP VALUE 10.

*
*
*
*

ACCESS THE NETWORK. IF THE CALL COMPLETES
UNSUCCESSFULLY, EXIT.

*
*
*
*

AlOO-START.
CALL "OPNNTW" USING

OP NL UN
!OST
MSTAT.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
GO Gl00-END.

IF MSTATS (1) = 0 GO Cl00-CLOSNET.

*
*
*
*

CHECK TO SEE IF THERE IS ANYTHING ON THE TASK'S
DATA QUEUE.

*
*
*
*

Bl00-NETDAT.
CALL "GNDNT" USING

IOSTl
MLTYP
MLSIZ
MLBOX.

*
*
*
*
*
*
*
*
*
*

WAIT FOR COMPLETION OF A GNDNT OR RECNT CALL. IF A
RECNT CALL COMPLETES (INDEX= 2), PROCESS A RECEIVE.
IF A GNDNT CALL COMPLETES UNSUCCESSFULLY, CLOSE THE
NETWORK AND EXIT. IF THE TYPE OF DATA MESSAGE IN
THE MAILBOX IS NOT A CONNECT REQUEST OR AN INTERRUPT
MESSAGE, CLOSE THE NETWORK AND EXIT. IF AN INTERRUPT
MESSAGE IS IN THE MAILBOX (MLTYP = 2), SIMPLY ISSUE
A NEW GNDNT.

*
*
*
*
*
*
*
*
*
*

BllO-WAIT.
CALL "WAITNT" USING

INDX
IOSTl
IOST2.

IF INDX = 2 GO DlOO-INQREC.
IF IOSTATl (1) NOT = 1 GO ClOO-CLOSNET.
IF MLTYP NOT < 3 GO ClOO-CLOSNET.
IF MLTYP = 2 GO Bl00-NETDAT.

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-13

COBOL Receive Program (cont.)

* *
*
*
*
*

A CONNECT REQUEST IS IN THE MAILBOX. ACCEPT THE
REQUEST TO ESTABLISH A LOGICAL LINK. IF THE CALL
COMPLETES UNSUCCESSFULLY, ISSUE A NEW GNDNT.

*
*
*
*

***~*

CALL "ACCNTW" USING
ACCLUN
IOST
MLBOX.

IF IOSTAT (1) NOT = 1 GO BlOO-NETDAT.

*
*
*
*

PICK UP THE DATA FROM THE TRANSMITTING TASK.
A NEW GNDNT AND WAIT FOR COMPLETION.

ISSUE
*
*
*
*

CALL "RECNT" USING
ACCLUN
IOST2
RECSIZ
RECBUF.

GO BlOO-NETDAT.

*
*
*
*

A DISCONNECT OR ABORT WAS RECEIVED. DEACCESS THE
NETWORK AND EXIT.

*
*
*
*

ClOO-CLOSNET.
CALL "CLSNTW".
GO GlOO-END.

*
*
*
*
*
*

AN INQUIRY WAS RECEIVED. INCREMENT THE MESSAGE
COUNT. IF THE CALL COMPLETED UNSUCCESSFULLY, SEND
AN INTERRUPT MESSAGE CONTAINING THE MESSAGE NUMBER
IN WHICH THE ERROR OCCURRED.

*
*
*
*
*
*

DlOO-INQREC.
ADD 1 TO NUMMES.
IF IOSTAT2 (1) = 1 GO ElOO-SEND.
MOVE NUMMES TO INTMES.
CALL "XMINT" USING

ACCLUN
IOST
INTSIZ
INTMES.

GO FlOO-REC.

(continued on next page)

H-14 TASK-TO-TASK PROGRAMMING EXAMPLES

COBOL Receive Program (cont.)

*
*
*

SEND DATA TO THE TASK.
*
*
*

El00-SEND.
CALL "SNDNTW" USING

ACCLUN
!OST
SNDSIZ
SNDDAT.

*
*
*

ISSUE A NEW RECNT AND WAIT FOR COMPLETION.
*
*
*

FlOO-REC.
CALL "RECNT" USING

ACCLUN
IOST2
RECSIZ
RECBUF.

GO 8110-WAIT.
GlOO-END.

DISPLAY "COBREC -- END OF EXECUTION".
STOP RUN.

10

\
\
\
\

TASK-TO-TASK PROGRAMMING EXAMPLES H-15

H.3 BASIC-PLUS-2 PROGRAMMING EXAMPLES

For both BASIC-PLUS-2 examples, BASTRN is the transmit task and BASREC
is the receiver task. In the first example, BASTRN accesses the network, con­
nects to BASREC, transmits inquiries to BASREC, and finally receives re­
sponses from BASREC. In the second example, BASTRN completes sending
inquiries to BASREC, disconnects the link, deaccesses the network and then
exits. Any error found by BASREC is transmitted to BASTRN as an interrupt
message. BASTRN then displays the interrupt message on the user's terminal.

H.3.1 BASIC-PLUS-2 Transmit Program

! ! !
! ! !

To task build you must edit the task build conunand
file and the ODL file created by the build.

! ! ' >Add the line
! !
! ! ACTFIL=4
!! to the task build conunand file.
! !
!' >Append
!

-NETLIB
to the USER: line of the ODL file.

>Add the line

NETLIB: .FCTR LB:[l,5]NETSUB/LB
to the ODL file.

!!! DEFINE ARRAY CONSTANTS !!!
DIM IOST%(1%),MSTAT%(2%)
ERRMES$=STRING$(2%,0%)
CONBLK$=STRING$(72%,0%)
RECBUF$=STRING$(10%,0%)
SNDBUF$=STRING$(50%,0%)

!DEFINE ARRAY ELEMENTS
!DEFINE MAX STRING LENGTH
!STRING$(LENGTH,ASCII VALUE)
!

! ! ! &
! ! ! &

&
&
&
&
&
&
&
&
&
&
&

! ! &
! ! ! &
! !! &

&
&
&
&
&

20 INPUT "NODE-NAME <MASTER>";NDNAM$ \ IF NDNAM$="" THEN &
NDNAM$="MASTER" ELSE IF LEN(NDNAM$)>6% THEN
PRINT "NODE NAME TOO LONG, PLEASE REENTER"

&
&

\ PRINT \ GOTO 20

30

\

40

\
\
\

\

\

\
\

INPUT "RECEIVE TASK-NAME <RECVER>";TSKNAM$ \ IF TSKNAM$=""
THEN TSKNAM$="RECVER" ELSE IF LEN(TSKNAM$)>6% THEN
PRINT "TASK NAME TOO LONG, PLEASE REENTER"

&
&
&

PRINT \ GOTO 30

!!! DEFINE CONSTANTS !!!
IMMED%=-1%
OPNLUN%=1%
CONLUN%=2%
XMITS%=20%

SNDSIZ%=50%

RECSIZ%=10%

NDNAM.LEN%=LEN(NDNAM$)
TSKNAM.LEN%=LEN(TSKNAM$)

&
!SET IMMED TO TRUE FOR GNDNTW &
'NETWORK OPNNT LUN &
CONNT LUN FOR THE LOGICAL LINK &
THE NUMBER OF INQUIRIES &
TO BE SENT TO THE REMOTE NODE &
THE SIZE OF THE MESSAGES TO &
BE SENT TO THE REMOTE NODE &
THE SIZE OF THE MESSAGES TO &
BE RECEIVED &
LENGTH OF THE NODE NAME &
LENGTH OF THE TASK NAME

(continued on next page)

H-16 TASK-TO-TASK PROGRAMMING EXAMPLES

BASIC-PLUS-2 Transmit Program (cont.)

50 ! ! ! ACCESS THE NETWORK ! ! ! &
CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%()) &

\ IF IOST%(0%)=1% THEN 60 !IF SUCCESSFUL, BUILD THE &
!CONNECT BLOCK &

ELSE PRINT "NETWORK OPEN FAILED, IOST=";IOST%(0%);IOST%(1%) &
\ GOTO 160 !OPEN FAILED. PRINT THE STATUS &

!BLOCK AND EXIT

60 !!! BUILD A FORMAT 1 CONNECT BLOCK ! ! ! &
CALL BFMTl BY REF(STAT%,CONBLK$,NDNAM.LEN%,NDNAM$ &

,DUMMY%,TSKNAM.LEN%,TSKNAM$) &
\ IF STAT% THEN 70 ELSE !IF SUCCESS GO ON &

PRINT "ERROR BUILDING CONNECT BLOCK" &
!ELSE TYPE OUT AN ERROR MESSAGE &

\ GOTO 150 !AND EXIT

70

\

\

80

90

100

\

llO

\

\

120

\

130

140

\

150

160
\

!! ! CONNECT TO THE TASK ON THE REMOTE NODE ! ! ! &
&
&
&
&

CALL CONNTW BY REF(CONLUN%,IOST%(),CONBLK$)
IF IOST%(0%)=1% THEN 80 !IF SUCCESS TELL HIM
ELSE PRINT "CONNECT FAIL: IOST="; IOST% (0%); II, II; IOST% (1%)

!ELSE PRINT STATUS BLOCK
GOTO 150 !ELSE PRINT STATUS BLOCK AND EXIT

PRINT "LINK ENABLED" !PRINT CONNECT CONFIRMATION
!TO NETWORK

&

!! ! SEND AND RECEIVE MESSAGES TO AND FROM THE REMOTE NODE!!! &
FOR MESNUM%=1% TO XMITS%

NEXT

!!! FIRST GET ANY ERROR MESSAGES SENT FROM THE
!!! SIDE VIA INTERRUPT MESSAGES ! !!
IF MSTAT%(0%)=0% THEN 110 !IF MSTAT%(0%)=0% NO

!ARE THERE

OTHER ! ! ! &
&

MESSAGES &
&

ELSE CALL GNDNTW BY REF(IOST%(),MLTYP%,2%,ERRMES$
,DUMMY%,IMMED%,2%) !GET THE MESSAGE

IF IOST%(0%)<>1% THEN 110 !IF WE COULDN'T GET MESSAGE
!JUST IGNORE IT

ELSE PRINT "ERROR ON INQUIRY #";ASCII(LEFT(ERRMES$,1%))
!PRINT OUT THE MESSAGE

&
&
&
&

!!! SEND THE INQUIRY!!! &
CALL SNDNTW BY REF(CONLUN%,IOST%(),SNDSIZ%,SNDBUF$) &
IF IOST%(0%)=1% THEN 120!IF SUCCESS CONTINUE &
ELSE PRINT "ERROR ON INQUIRY DURING SEND: ";MESNUM% &

!OTHERWISE TYPE OUT AN ERROR &
GOTO 130 !MESSAGE AND START A NEW MESSAGE

! !! RECEIVE THE RESPONSE FROM THE REMOTE NODE!!! &
CALL RECNTW BY REF(CONLUN%,IOST%(),RECSIZ%,RECBUF$) &
IF IOST%(0%)=1% ·THEN 130!IF SUCCESS CONTINUE &
ELSE PRINT "ERROR ON INQUIRY DURING RECEIVE: ";MESNUM% &

!OTHERWISE TYPE OUT AN &
!ERROR MESSAGE

MESNUM% !END OF LOOP

!!! DISCONNECT THE LINK!!! &
& PRINT "LINK DISABLED" ! PRINT OUT DISCONNECT MESSAGE

CALL DSCNTW BY REF(CONLUN%,IOST%())

!!! COME HERE TO DEACCESS THE NETWORK AND EXIT!!!
CALL CLSNTW

PRINT
END

"END OF EXECUTION"

&

&

10

\
\
\
\

20

\
\

\

\
\
\

30

\

40

50

\

60

TASK-TO-TASK PROGRAMMING EXAMPLES H-17

H.3.2 BASIC-PLUS-2 Receive Program

! ! ! To task build you must edit the task build command ! ! !
! ! ! file and the ODL file created by the build. ! ! !

! ! ! >Add the line ! ! !
! ! ! ! ! !
! ! ! ACTFIL=4 ! ! !
! ! ! to the task build command file. ! ! !
! ! ! ! ! !
! ! ! >Append ! ! !
! ! ! ! ! !
! ! ! -NET LIB ! ! !
! ! ! to the USER: line of the ODL file. ! ! !
! ! ! ! ! !
! ! ! >Add the line ! ! !
! ! ! ! ! !
! ! ! NETLIB: .FCTR LB:[l,5)NETSUB/LB ! ! !
! ! ! to the ODL file. ! ! !

!! ! INITIALIZE CONSTANTS ! ! !
DIM MSTAT%(2%),IOST%(1%),IOST1%(1%),IOST2%(1%)
INTMES$=STRING$(2%,0%) !DEFINE MAX LENGTH OF STRINGS
MLBX$=STRING$(98%,0%) !STRING$(LENGTH,ASCII VALUE)
RECBUF$=STRING$(50%,0%)
SNDDAT$=STRING$(10%,0%)

&
&

&
&
&
&
&
&
&
&
&
&
&
&
&
&

&
&
&
&
&

! ! ! MORE CONSTANTS ! ! !
OPNLUN%=1%
ACCLUN%=2%

&
!NETWORK OPNNT LUN &
!ACCNT LUN FOR THE LOGICAL LINK &

RECSIZ%=50% !SIZE OF DATA BUFFER TO BE &
!RECEIVED &

INTSIZ%=2% !SIZE OF INTERRUPT DATA BUFFER &
!TO SEND &

NUMMES%=0%
INDEX=0%
SNDSIZ%=10%

!NUMBER OF MESSAGES RECEIVED &
!RECEIVE COMPLETION FLAG &
!NUMBER OF BYTES TO SEND BACK

!!! ACCESS NETWORK!!!
CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%())
IF IOST%(0%)<>1% THEN 140 !IF FAILURE JUST EXIT
ELSE IF MSTAT%(0%)=0% THEN 90!IF NOTHING ON MAILBOX

!JUST CLOSE AND EXIT

CALL GNDNT BY REF(IOST1%(),MLTYP%,98%,MLBX$)
!ISSUE A GET NETWORK DATA

CALL WAITNT BY REF(INDEX%,IOST1%(),IOST2%())
!WAIT FOR A COMPLETION

IF INDEX%=2% THEN 100 !IF INDEX%=2% THEN A RECEIVE
!HAS BEEN COMPLETED

!!! NETWORK DATA HAS BEEN RECEIVED !!!
IF IOST1%(0%)<>1% THEN 90 !IF GNDNT FAILED JUST

ELSE IF MLTYP%>=3% THEN 90

ELSE IF MLTYP%=2% THEN 40

!CLOSE AND EXIT
!IF MLTYP%>=3% THEN LINK HAS
!BEEN BROKEN
!IF MLTYP%=2% WE'VE RECEIVED
!AN INTERRUPT MESSAGE, JUST
! ISSUE A GNDNT

&
&
&
&

&

&
&
&

&
&
&
&
&
&
&

(continued on next page)

H-18 TASK-TO-TASK PROGRAMMING EXAMPLES

BASIC-PLUS-2 Receive Program (cont.)

70

\

80

\

90

\

100

\

!!! WE'VE RECEIVED A CONNECT REQUEST - ISSUE AN ACCEPT ! !!
CALL ACCNTW BY REF(ACCLUN%,IOST%(),MLBX$)
IF IOST%(0%)<>1% THEN 40 !IF FAILURE ISSUE A NEW GNDNT

!!! ISSUE A RECEIVE TO PICK UP DATA!!!
CALL RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
GOTO 40 !ISSUE A NEW GNDNT AND

!WAIT FOR THE COMPLETION

!!! WE COME HERE UPON RECEIVING A DISCONNECT OR ABORT!!!
CALL CLSNTW !DEACCESS THE NETWORK
GOTO 140 !AND EXIT

!!! WE COME HERE IF WE RECEIVE AN INQUIRY ! !!
NUMMES%=NUMMES%+1% !INCREMENT THE MESSAGE COUNT
IF IOST2%(0%)=1% THEN 120 !IF IOST2%(0%)=1 ALL'S O.K.

&
&

&
&
&

&
&

&
&

110 !!! IF THERE WAS AN ERROR, SEND BACK AN INTERRUPT MESSAGE ! !! &
!!! WITH MESSAGE NUMBER !!! &
INTMES$=CHR$(NUMMES%)+CHR$(0%) !SEND THE MESSAGE NUMBER &

\ CALL XMINT BY REF(ACCLUN%,IOST%(),INTSIZ%,INTMES$) &
\ GOTO 130 !GO ISSUE A NEW RECEIVE &

120 !!! HERE THE USER CAN LOOK AT THE DATA RECEIVED IN RECBUF$!!! &

130
\

140

\

!!! AND RESPOND BY REPLACING THE REQUESTED INFORMATION !!! &
! !! INTO SNDDAT$! ! ! &
! ! ! SEND BACK THE DATA AND ISSUE A RECNT ! ! ! &
CALL SNDNTW BY REF(ACCLUN%,IOST%(),SNDSIZ%,SNDDAT$)

CALL
GOTO

RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
50 !WAIT FOR A COMPLETION

! ! ! EXIT PROGRAM ! ! !
PRINT "END OF PROGRAM EXECUTION"
END

&

&
&

TASK-TO-TASK PROGRAMMING EXAMPLES H-19

H.4 PASCAL PROGRAMMING EXAMPLES

For both PASCAL examples, PASTRN is the transmit task and PASREC is the
receiver task. In the first example, PASTRN accesses the network, connects to
PASREC, transmits inquiries to PASREC, and finally receives responses from
PASREC. In the second example, PASTRN completes sending inquiries to
PASREC, disconnects the link, deaccesses the network and then exits. Any
error found by PASREC is transmitted to PASTRN as an interrupt message.
PASTRN then displays the interrupt message on the user's terminal.

H.4.1 PASCAL Transmit Program

PROGRAM PASTRN(INPUT, OUTPUT);

%INCLUDE 'LB:[l,5]NETDEFS.PAS/NOLIST'

LABEL
90;

VAR
MLTYP: INTEGER; (* Message type received by GNDNT *)
MESNUM: INTEGER; (* Inductive message number *)
IOST: NET BLOCK STATUS; (* Status block for network operations *)
MSTAT: ARRAY [l~.3] OF INTEGER; (*Message queue status *)
ERRMES: PACKED ARRAY [1 .. 2] OF BYTE; (*Buffer for receiver error

message *)
CONBLK: Connect Block; (* Connect block for logical link *)
NDNAME: PACKED ARRAY [1 .. 6] OF CHAR; (*Node name*)
NOLEN: INTEGER; (* Length of node name *)
TSKNAM: PACKED ARRAY [1 .. 6] OF CHAR; (*Task name*)
TSKLEN: INTEGER; (* Length of task name *)
SNDBUF: PACKED ARRAY [l .. 50] OF CHAR; (* Xmit data buffer*)
RECBUF: PACKED ARRAY [l .. 10) OF CHAR; (* Recv data buffer*)
STAT: INTEGER; (* Status info for BFMTl *)

CONST
DEFNOD = 'MASTER'; (*Default node name*)
DEFTSK = 'RECVER'; (*Default task name*)

IMMED = -1; (* set imrned to true for GNDNT *)

(* Use large numbers for LUNs as Pascal dynamically allocates them *)
(* starting at 1 for each open file. The likelihood of having 25 *)
(* concurrently open files is minimal. The system will have run *)
(* out of memory long before that level is reached. *)

OPNLUN = 25; (* network open lun *)
CONLUN = 26; (* count lun for the logical link *)

XMITS = 20; (* the number of inquiries to be sent to the remote node *)
SNDSIZ 50; (* the size of the message to be sent to the remote node *)
RECSIZ = 10; (* the size of the message to be received *)

(continued on next page)

H-20 TASK-TO-TASK PROGRAMMING EXAMPLES

PASCAL Transmit Program (cont.)

BEGIN

(* get the node and task names *)

(* Ask, and you shall receive the node name *)

WRITE('Please enter node name <MASTER>: ');
READLN(NDNAME);

(* Count down the trailing spaces to determine the actual name length *)

NOLEN · = 6 •
WHILE (NDNAME[NDLEN] = ' ') AND (NOLEN > 0) DO NOLEN := NOLEN - l;

(* If no name specified, use the default *)

IF NOLEN = 0

THEN
BEGIN

NDNAME := DEFNOD;
NOLEN := 6;

END;

(* Ask, and you shall receive the task name *)

WRITE('Please enter task name <RECVER>: ');
READLN (TSKNAM) ;

(* Count down the trailing spaces to determine the actual name length *)

TSKLEN := 6;
WHILE (TSKNAM[TSKLEN) = ' ') AND (TSKLEN > 0) DO TSKLEN := TSKLEN - l;

(* If no name specified, use the default *)

IF TSKLEN = 0
THEN

BEGIN
TSKNAM := DEFTSK;
TSKLEN := 6;

END;

(* Access the network *)

OPNNTW(OPNLUN, !OST, MSTAT);

(* Only continue on success *)

IF !OST [l) = 1
THEN

BEGIN

(* Build a format 1 conne·ct block *)

BFMTl(STAT, CONBLK, NOLEN, NDNAME, , TSKLEN, TSKNAM);
(* If unsuccessful, complain and quit *)

IF NOT ODD(STAT)

THEN
BEGIN

WRITELN('Error building connect block.');
GOTO 90;

END;

(* Connect to the task on the remote node *)

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-21

PASCAL Transmit Program (cont.)

CONNTW(CONLUN, IOST, CONBLK);

(* Again, if unsuccessful, complain and quit *)

IF IOST(l] <> 1
THEN

BEGIN
WRITELN('Connect fai 1, IOST= ' IOST[l], '
GOTO 90;

END;

(* Announce successful initialization *)

WRITELN('Link enabled.');

(* Loop for several transactions *)

FOR MESNUM := 1 TO XMITS DO
BEGIN

IOST[2]);

(* If no message in queue, don't get a message from queue *)

IF MSTAT[l] <> 0
THEN

BEGIN

(* Get a message from the network *)

GNDNTW(IOST, MLTYP, 2, ERRMES, , IMMED, 2);

(* Complain about errors *)

IF IOST(l] <> 1
THEN WRITELN('Error on inquiry ERRMES [l] : 3) ;

END;

(* Send a request for another message *)

SNDNTW(CONLUN, IOST, SNDSIZ, SNDBUF);

(* Complain about errors *)
(* If no error, receive a message *)

IF IOST(l] <> 1
THEN WRITELN('Error on inquiry I, MESNUM: 3)
ELSE

BEGIN

(* Receive a message *)

RECNTW(CONLUN, IOST, RECSIZ, RECBUF);

(* Complain about errors *)

IF IOST [l] < > 1
THEN WRITELN('Error on inquiry' MESNUM: 3);

END;
END;

(* Disconnect the network link *)

(continued on next page)

H-22 TASK-TO-TASK PROGRAMMING EXAMPLES

PASCAL Transmit Program (cont.)

DSCNTW(CONLUN, IOST);

(* Announce the link termination *)

WRITELN('Link disabled');
90:

(* Close the network session *)

CLSNTW;
END;

(* Announce termination and quit *)

WRITELN('End of program execution');
END.

TASK-TO-TASK PROGRAMMING EXAMPLES H-23

H.4.2 PASCAL Receive Program

PROGRAM PASREC(Input, Output);

%INCLUDE 'LB:[l,5]NETDEFS.PAS/NOLIST'

CONST

(* Use large numbers for LUNs as Pascal dynamically allocates them *)
(* starting at 1 for each open file. The likelihood of having 25 *)
(* concurrently open files is minimal. The system will have run *)
(* out of memory long before that level is reached. *)

OPNLUN
ACCLUN

25; (* Network OPNNT LUN *)
26; (* ACCNT LUN for the logical link *)

RECSIZ
INTSIZ
SNDSIZ

50; (* Size of data buffer to be received *)
2; (* Size of interrupt data buffer to send *)
10; (* Number of bytes to send back *)

VAR
MLTYP: INTEGER; (*Message type code *)
INDEX: INTEGER; (* Completion indicator for WAITNT *)
NUMMES: INTEGER; (* Received message counter *)
MSTAT: ARRAY [1 .. 3] OF INTEGER; (*Message queue status*)
!OST, IOSTl, IOST2: ARRAY [1 .. 2] OF INTEGER; (*Status blocks for network

operations *)
RECBUF: PACKED ARRAY [l •. 50] OF CHAR; (*Receive data buffer*)
SNDDAT: PACKED ARRAY [l •• 10] OF CHAR; (* Xmit data buffer*)
MLBX: GND Block; (* Mail box for GNDNT data *)
INTMES: PACKED ARRAY [l. .l] OF INTEGER; (* Interrupt message buffer *)
FLAG, DONE: BOOLEAN; (* Flags for control of program flow *)

BEGIN

(* init the message counter *)

NUMMES := 0;

(* Access the network *)

OPNNTW(OPNLUN, !OST, MSTAT);

(* If no errors, go on *)

IF I OST [l] = 1
THEN

BEGIN

(* Init some flags *)

FLAG := TRUE;
DONE := MSTAT[l] = 0;

(* Loop until error or disconnect *)

WHILE NOT DONE DO
BEGIN

(* If there is a message outstanding, read it *)

(continued on next page)

H-24 TASK-TO-TASK PROGRAMMING EXAMPLES

PASCAL Receive Program (cont.)

IF FLAG
THEN GNDNT(IOSTl, MLTYP, SIZE(GND_BLOCK), MLBX);

(* Wait for something to happen *)

WAITNT(INDEX, IOSTl, IOST2);

(* If it happened to IOST2, a receive has completed *)

IF (INDEX = 2)
THEN

BEGIN

(* Bump the message number *)

NUMMES := NUMMES + l;

IF IOST2 [l] = 1
THEN

BEGIN

(* if no error, send back the data *)

SNDNTW(ACCLUN, IOST, SNDSIZ, SNDDAT)

END
ELSE

BEGIN

(* If error, send an interrupt *)

INTMES(l] := NUMMES;
XMINT(ACCLUN, IOST, INTSIZ, INTMES);

END;

(* Issue another receive request *)

RECNT(ACCLUN, IOST, RECSIZ, RECBUF);

(* Set flag for no GNDNT *)

FLAG := FALSE;

END
ELSE IF (IOSTl[l]

THEN
1) AND (MLTYP < NT DSC)

BEGIN

(* If it happened to IOSTl, Network data has been
received *)

(* If it was a connect request, accept it *)

IF MLTYP = NT CON
THEN

BEGIN
ACCNTW(ACCLUN, IOST, MLBX);

(* If no errors, issue a receive data and wait

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-25

PASCAL Receive Program (cont.)

END;

some more *)

IF IOST [1] = 1
THEN RECNT(ACCLUN, IOST2, RECSIZ, RECBUF);

END;

(* We processed a GNDNT, set FLAG so another one will
be issued *)

FLAG := TRUE;
END

ELSE

(* An error occurred, set DONE and quit *)

DONE := TRUE;

(* Close the network prior to shutting down *)

CLSNTW;
END;

(* Announce the shut down, and quit *)

WRITELN('End of execution');
END.

H-26 TASK-TO-TASK PROGRAMMING EXAMPLES

NUM:

PRMPT:

IOSTN:
BUFF:
IOSTB:
CNT:
ERRCNT:
IOSB:

H.5 MACR0-11 PROGRAMMING EXAMPLES

For both MACR0-11 examples, SEN10 is the transmit task and REC10 is the
receiver task. In the first example, SEN10 successfully transmits 10 data mes­
sages to the cooperating program named REC10. Both programs disconnect
from the network once REC10 successfully receives all ten messages. In the
second example, each time that REC10 receives a message from SEN10,
"THIS IS MESSAGE n" is displayed on the console device. The actual data
message is immediately delivered to REC10 as an interrupt message.

H.5.1 MACR0-11 Transmit Program

.TITLE SENlO
·** ,

THIS EXAMPLE WILL :
SEND 10 DATA MESSAGES WITH THE FORMAT 'THIS IS MESSAGE N'
ACCEPT A SHORT MESSAGE FROM THE INITIATING TERMINAL
AND SEND THIS MESSAGE OUT AS AN 'INTERRUPT MESSAGE'.

To assemble using the Tool Kit, create a file named
SENlOASM.CMD containing the following command string:

SEN10,SEN10/-SP=[l,5]NETLIB/ML,SEN10

and then type the following command string:

MAC @SENlOASM

To task build using the Tool Kit, create a file named
SENlOBLD.CMD containing the following command string:

SEN10,SEN10/-SP=SEN10,[l,5]NETLIB/LB

and then type the following command string:

LINK @SENlOBLD
,
·** ,

.MCALL

.MCALL

.MCALL

DATA AREA

MESN: .ASCII
.ASCII IOI
NN=.-MESN
.ASCII /MSG:/
.EVEN
.BLKW 2
. BLKB 16 .
.BLKW 2
.WORD 0
.WORD 0
.BLKW 1

.EVEN

OPNW$S,CONW$S,SNDW$S,CONB$$,ALUN$C,QIOW$C
EXIT$S,MRKT$C,WTSE$C,CLEF$C,SETFC,QIOC
DSCW$S,XMIW$S,ASTX$S

/THIS IS MESSAGE I ; MESSAGE TO BE TRANSMITTED
MESSAGE NUMBER

PROMPT FOR INTERRUPT MESSAGE

COMPLETION STATUS FOR NETWORK
INTERRUPT MESSAGE BUFFER
COMPLETION STATUS FOR BUFFER
NUM OF CHAR IN INTERRUPT MESS
ERROR COUNT
I/0 STATUS

CONBL: CONS$$ ELROND,0,1,<REClO> CONNECT REQUEST BLOCK

CODE

.EVEN

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-27

MACR0-11 Transmit Program (cont.)

START:

OK!:

LOOP:

CLR
CLEF$C

MOVB
ALUN$C
ALUN$C
OPNW$S
TSTB

BGT
JMP
CONW$S
TSTB
BLE
QI0$C

TST
BLT
MOV
SNDW$S
TSTB
BLE
INCB
SOB

ERRCNT
5

#60,NUM
l,NS
2,NS
1, # 1, # IOSTN
IOSTN

OK!
ERR!

INITIALIZE ERROR COUNT TO ZERO
CLEAR EVENT FLAG USED TO MAKE SURE
INTERRUPT MESSAGE ACCEPTED PRIOR
TO EXIT
INITIALIZE MESSAGE NUM TO ZERO
ASSIGN LUN 1 FOR NETWORK DATA QUEUE
ASSIGN LUN 2 FOR LOGICAL LINK
CREATE THE NETWORK DATA QUEUE
TEST FOR ERRORS

#2,#2,#IOSTN,,<#CONBL> ; CREATE LOGICAL LINK TO "REClO"
IOSTN ; TEST FOR ERRORS
ERR2
IO.RPR,5,,,IOSTB,TRMAST,<BUFF,16.,,PRMPT,4>

INTERRUPT MESSAGE
ACCEPT

FROM TERMINAL
MAX]

$DSW
ERR3
#10. I RO
#2,#2,#IOSTN,
IOSTN
ERR4
NUM
RO,LOOP

(USE AST)[l6 CHAR
TEST FOR ERRORS

SET LOOP COUNTER TO 10
,<#MESN,#NN> ; SEND MESSAGE

TEST FOR ERRORS

UPDATE MESSAGE NUMBER
LOOP IF MORE TO SEND

WTSE$C 5 MAKE SURE TERMINAL MESSAGE
HAS BEEN ENTERED
BEFORE EXITING

DSCW$S #2,#2,#IOSTN DISCONNECT NETWORK

EXIT$S EXIT

TERMINAL AST ROUTINE

TRMAST: MOV (SP)+, IOSB
MOV IOSTB+2,CNT
XMIW$S #2, #3, #IOSTN,

TSTB IOSTN
BLE ERR5
SETF$C 5

ASTX$S

; POP STACK
; OBTAIN NUMBER OF CHARACTERS

,<#BUFF,CNT>; TRANSMIT INTERRUPT MESSAGE
(NOTE USE OF EF 3 INSTEAD OF
EF 2 - AVOID COMPETITION)
TEST FOR ERRORS

SET EVENT FLAGE TO INDICATE
INTERRUPT MESSAGE SENT
AST EXIT

ERROR HANDLING - A SAMPLE DEBUGGING TECHNIQUE

ERR5: INC ERRCNT DETERMINE
ERR4: INC ERRCNT WHICH
ERR3: INC ERRCNT ERROR
ERR2: INC ERRCNT OCCURRED
ERR!: INC ERRCNT

MOV ERRCNT,Rl Rl CONTAINS THE ERROR NUMBER
MOV $DSW,R2 R2 CONTAINS THE DIRECTIVE STATUS WORD
MOV IOSTN,R3 R3 CONTAINS THE FIRST I/0 STATUS WORD
MOV IOSTN+2, R4 R4 CONTAINS THE 2ND I/0 STATUS WORD
IOT ABORT - DUMP THE REGISTERS

.END START

H-28 TASK-TO-TASK PROGRAMMING EXAMPLES

H.5.2 MACR0-11 Receive Program

.TITLE REClO
·*** ,

THIS EXAMPLE WILL:
ACCEPT SHORT MESSAGES FROM THE SENDER TASK "SNDlO"
PRINT THE MESSAGES ON THE CONSOLE DEVICE (CO:)
DISCONNECT AND EXIT GRACEFULLY.

To assemble using the Tool Kit, create a file named
REClOASM.CMD containing the following command string:

REC10,REC10/-SP=[l,5]NETLIB/ML,REC10

and then type the following command string:

MAC @REC10ASM

To task build using the Tool Kit, create a file named
REClOBLD.CMD containing the following command string:

REC10,REC10/-SP=REC10,[l,5]NETLIB/LB

and then type the following command string:

LINK @REClOBLD
I

·*** I

.MCALL

.MCALL
NETDF$

DATA AREA

BUFl: .BLKB
.EVEN

BUF2: .BLKB
IOST: .BLKW
IOSTl: .BLKW
IOST2: .BLKW
IOSB: .BLKW
ERRCNT: .WORD
CNT: .WORD
CNTB: .BLKB
FLAG: .WORD

.EVEN

CODE

START: CLR
CLEF$C

ALUN$C
ALUN$C
OPNW$S
TSTB
BLE
SPAW$S
TSTB
BLE

OPNW$S,SPAW$S,RECW$S,GNDW$S,ACCW$S,CLSW$S,NETDF$
QIOW$S,ALUN$C,CLEF$C,WTSE$C,SETF$C,ASTX$S,EXIT$S

25.

N.CBL
2
2
2
1
0
0
2
0

BUFFER FOR USER MESSAGES

BUFFER FOR NETWORK MESSAGES
COMPLETION STATUS FOR NETWORK
COMP. STAT. FOR GET NET DATA
COMP. STAT. FOR ACCEPT CONNECT
I/0 STATUS
ERROR COUNT
USER MESSAGE CHAR COUNT
INTERRUPT MESSAGE CHAR COUNT
DISCONNECT FLAG

ERRCNT INITIALIZE ERROR COUNT TO ZERO
10. CLEAR EVENT FLAG USED TO MAKE

SURE CONNECT HAS OCCURRED
l,NS ASSIGN LUN 1 FOR NETWORK DATA QUEUE
2,NS ASSIGN LUN 2 FOR LOGICAL LINK
#1,#1,#IOST CREATE THE NETWORK DATA QUEUE
IOST TEST FOR ERRORS
ERR!
#1,#1,#IOST,#CMPAST,<#NETAST> ; SPECIFY AST HANDLING
IOST ; TEST FOR ERRORS
ERR2

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-29

MACR0-11 Receive Program (cont.)

LOOP:

WTSE$C

RECW$S
TSTB
BLE
MOV
QIOW$S

TST
BEQ
CLSW$S
TSTB
BLE
EXIT$S
BR

10. ; WAIT TO MAKE SURE CONNECT
; HAS OCCURRED

#2,#2,#IOST,,<#BUFl,#2S.>; RECEIVE UP TO 2S CHARS
IOST ; TEST FOR ERRORS
ERR3
IOST+2,CNT ; OBTAIN CHARACTER COUNT
#IO.WLB,#S,#S,,,,<#BUFl,CNT,#40>; TYPE MESSAGE

FLAG
LOOP
1, # 1, # IOST2
IOST2
ERRS

LOOP

ON TERMINAL
HAS DISCONNECT OCCURRED?
NO, POST ANOTHER RECEIVE
CLOSE NETWORK
TEST FOR ERRORS

PROGRAM EXIT

ERROR HANDLING - A SAMPLE DEBUGGING TECHNIQUE

ERR6: INC ERRCNT
ERRS: INC ERRCNT
ERR4: INC ERRCNT
ERR3: INC ERRCNT
ERR2: INC ERRCNT
ERR!: INC ERRCNT

MOV ERRCNT,Rl Rl ERROR NUMBER
MOV $DSW,R2 R2 DIRECTIVE STATUS WORD
MOV IOST,R3 R3 I/0 STATUS BLOCK (!ST WORD)
MOV IOST+2,R4 R4 I/0 STATUS BLOCK (2ND WORD)
IOT ABORT - DUMP REGISTERS

AST HANDLING FOR DATA IN NETWORK DATA QUEUE

CMPAST: MOV
MOV
MOV
CMPB
BEQ
JMP

OKA: MOV
BNE
JMP

OKB: BR
NETAST: MOV

MOV
GET: GNDW$S

BCS
CMPB
BNE
CMPB
BNE
ACCW$S
TSTB
BLE
SETF$C

BR
OTHER: CMPB

BNE
MOV
BR

(SP)+,IOSB
RO,-(SP)
IOSB, RO
#Is . sue, (RO l
OKA
OUT
2 (RO), RO
OKB
OUT
GET

SAVE SPA$ I/0 STATUS BLOCK ADDR
SAVE RO
GET I/0 STATUS BLOCK ADDRESS
SUCCESSFUL?

GET CURRENT NETWORK DATA COUNT

RO,-(SP) ; SAVE RO
#1,RO ; SET NETWORK DATA COUNT TO l
#l,#l,#IOSTl,,<#BUF2,#N.CBL>; GET NETWORK DATA
OUT CARRY BIT SET - ERROR
#IS.SUC,IOSTl SUCCESSFUL?
OUT
#NT. CON, IOSTl + l
OTHER
#2,#2,#IOST2,,<#BUF2>
IOST2
ERR4
10.

NEXT
#NT.DSC,IOSTl+l
OTHR2
#!,FLAG
NEXT

CHECK IF CONNECT REQUEST

ACCEPT CONNECTION
TEST FOR ERRORS

SET EVENT FLAG TO INDICATE
CONNECT HAS OCCURRED

CHECK IF DISCONNECT REQUEST

SET DISCONNECT FLAG
GO BACK TO MAIN ROUTINE

(continued on next page)

H-30 TASK-TO-TASK PROGRAMMING EXAMPLES

MACR0-11 Receive Program (cont.)

;
OTHR2: CMPB #NT. INT, IOSTl+l CHECK IF INTERRUPT MESSAGE

BEQ OKC
JMP ERR6 NOT A EXPECTED COMMAND

OKC: MOVB IOST1+2,CNTB ; OBTAIN CHARACTER COUNT
QIOW$S #IO.WLB,#5,#3, ,<#BUF2,CNTB,#40> ; TYPE INTERRUPT MESSAGE

; (NOTE USE OF EF 3
; INSTEAD OF EF 5)

NEXT: NOP
DEC RO CHECK IF MORE DATA
BEQ OUT
JMP GET

OUT: MOV (SP)+,RO RESTORE RO
ASTX$S AST EXIT

.END START

;+

TASK-TO-TASK PROGRAMMING EXAMPLES H-31

H.6 DLX QIO PROGRAMMING EXAMPLES

Both DLX examples use DLX QIOs to transmit and receive data over the
Ethernet. In the first example, the transmit task called XTS sends data across
the Ethernet. In the second example, the receiver task called XTR echoes back
the received data over the Ethernet.

H.6.1 DLX Transmit Program

.TITLE XTS - DLX TRANSMITTER

. IDENT /VOl. 00/

COPYRIGHT (C) 1983,1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

MODULE DESCRIPTION:

XTS - DLX TRANSMITTER

DISTRIBUTED SYSTEMS SOFTWARE ENGINEERING

IDENT HISTORY:

1.00 12-JAN-84
PRO/DECnet Vl.O

XTS - DLX SYSTEM EXERCISER (THIS TEST UTILITY IS UNSUPPORTED)

XTS IS A UITILITY WHICH ENABLES A USER TO TRANSMIT DATA READ IN FROM
A TERMINAL OR COMMAND FILE ACROSS THE ETHERNET TO A RECEIVER TASK WHICH
ECHOES THE RECEIVED DATA BACK OVER THE ETHERNET. XTS USES THE DLX INTERFACE
TO PROVIDE ACCESS TO THE ETHERNET.

TO ASSEMBLE USING THE TOOL KIT, USE THE FOLLOWING COMMAND STRING:

PMA XTS,XTS/-SP=LB:[l,5]NETLIB/ML,XTS

(continued on next page)

H-32 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Transmit Program (cont.)

TO TASK BUILD USING THE TOOL KIT, USE THE FOLLOWING COMMAND STRING:

XTSIPR:0,XTSl-SP=XTS,LB:[l,5]NETLIBILB:GCL
I
STACK=30
UNITS=4
ASG=TI:l:2:3:4
TASK= ... XTS
II

THE FOLLOWING IS AN EXAMPLE OF THE XTS DIALOG:

>XTS
LINE: CNA-0
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

XTS>TESTING
TESTING

XTS>"Z
>

IN ORDER FOR XTS TO RECEIVE AN ECHO OF THE MESSAGE, XTR MUST BE RUNNING.
IT IS INITIATED IN THE FOLLOWING MANNER:

>XTR
LINE: CNA-0

WHEN FINISHED WITH XTSIXTR, XTR MUST BE ABORTED. NOTE - YOU MUST BE IN
THE TOOL KIT/DCL IN ORDER TO ABORT XTR WITHOUT CAUSING YOUR PRO TO
BUGCHECK WITH A 300/6 ERROR!

.SBTTL

.MACRO
MOV
CALL
.ENDM

.SBTTL

LOCAL MACROS

EPRINT ERRMSG
#ERRMSG,RO
$EPRINT
EPRINT

MACRO CALLS

.MCALL

.MCALL
QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,FSRSZ$,ASTX$S
GCL$,GCLDF$,CALLR,DLXDF$,EPMDF$

DLXDF$
EPMDF$

.SBTTL CONSTANTS

LUN ASSIGNMENTS:

TILUN=l
CHNLUN=2
ERRLUN=3
CMDLUN=4

EVENT FLAG ASSIGNMENTS:

TIEFN=l
CHNEFN=2
ERREFN=3
CMDEFN=4

.SBTTL DATA

DEFINE DLX FUNCTION CODES
DEFINE ADDTIONAL VALUES FOR

ETHERNET

;LUN FOR TI
;LUN FOR ERROR FREE CHANNEL
;LUN FOR ERRORS
;LUN FOR COMMAND LINES

;EVENT FLAG FOR TERMINAL IIO
;EVENT FLAG FOR CHANNEL
;EVENT FLAG FOR ERROR MESSAGES
;EVENT FLAG FOR COMMAND LINES

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-33

DLX Transmit Program (cont.)

DEFINE GCL PARAMETERS

GCLDF$ CMDLUN,CMDEFN,<XTS>,CMDBUF,80.

DEFINE FSR SIZE

FSRSZ$ 1 ;ROOM FOR 1 FILE (GCL)

·**** ,
; DPB'S
·**** ,

WRITE: QIOW$ IO.WVB,TILUN,TIEFN,,,,<0,0,40>

ERDPB: QIOW$ IO.WVB,ERRLUN,ERREFN,,,,<0,0,40>

RECl: QI0$
REC2: QIO$

IO.XRC,CHNLUN,,,RlSB,RECAST,<RlBUF,80.>
IO.XRC,CHNLUN,,,R2SB,RECAST,<R2BUF,80.>

CLOSE: QIOW$ IO.XCL,CHNLUN,CHNEFN

; EXIT-WITH-STATUS WORD

EXSTAT: .BLKW 1

,
; CHANNEL I/0 STATUS BLOCK

CHNSB: .BLKW 2

; AST SAVED I/0 STATUS BLOCK

IOSB: .BLKW 1

;
; SET CHARACTERISTICS BUFFER

SETCHR: .WORD CC.DST
. WORD 10 .
.WORD 0
.WORD 0
.WORD 1
.WORD LF$PAD
.BYTE 252
.BYTE 0
.BYTE 4
.BYTE 0
.BYTE 231
.BYTE 20

SETLEN=.-SETCHR

,

;EXIT STATUS

;SETTING UP PROTOCOL TYPE/ADDRESS
;LENGTH OF BUFFER PAST STATUS WORD
; RESERVED FIELD
;STATUS WORD
;DEFINE PROTOCOL TYPE
;PAD MESSAGES TO MINIMUM LENGTH
;DEFINE XTR ADDRESS (DECNET ADDRESS)

;LENGTH OF SET CHAR BUFFER.

; PROTOCOL/ADDRESS BUFFER FOR TRANSMITTING

XMICHR: .WORD
.WORD
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

CC.ADR
6
0
0

252
0
4
0
231
20

;THIS PART DEFINES AN ADDRESS
;LENGTH OF BUFFER PAST STATUS WORD
;RESERVED FIELD
;STATUS WORD
;DEFINE XTR ADDRESS (DECNET ADDRESS)

(continued on next page)

H-34 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Transmit Program (cont.)

.WORD

.WORD

.WORD

.WORD

.WORD
XMILEN=.-XMICHR

CC.PRO
2
0
0
1

; CHANNEL RECEIVE I/0 STATUS BLOCKS

RlSB: .BLKW 2
.WORD RlBUF
.WORD HNGRCl

R2SB: .BLKW 2
.WORD R2BUF
.WORD HNGRC2

BUFFER FOR COMMAND LINE

CMDBUF: .BLKB 82 .
. EVEN

CHANNEL RECEIVE BUFFERS

RlBUF: . BLKB 80 .
R2BUF: .BLKB 80.

.EVEN

•**** ,
; TEXT STRINGS:
·**** ,

HEADER FOR ERROR MESSAGES

XTSEM: .ASCIZ /XTS -- I

; TEMPORARY PROMPT

PROMPT: .ASCIZ <15><12>/LINE: I

ERROR MESSAGES

.ENABL LC

.NL I ST BEX

;THIS PART DEFINES A PROTOCOL TYPE
;LENGTH OF BUFFER PAST STATUS WORD
;RESERVED WORD
;STATUS WORD
;PROTOCOL TYPE = 1
;LENGTH OF WHOLE XMICHR BUFFER

;STATUS OF FIRST RECEIVE
;ADDRESS OF BUFFER
;ADDRESS OF RECEIVE POSTING ROUTINE

;STATUS OF SECOND RECEIVE
;ADDRESS OF BUFFER
;ADDRESS OF RECEIVE POSTING ROUTINE

GCLERR: .ASCIZ /Command line read error/
NSFERR: .ASCIZ /No such command file/
DLXERR: .ASCIZ /DLX not loaded/
OPNERR: . ASCII /Unable to open line - - I
BUFOPN: .BLKB 7
Sfi:"1'ERR: . ASCII /Error Defining Protocol-Address -- I
BUFSET: .BLKB 7
XMTERR: .ASCII /Error transmitting data I
BUFXMT: .BLKB 7
RECERR: .ASCII /Error receiving data -- I
BUFREC: .BLKB 7

.LIST BEX

.EVEN

.SBTTL XTS - XTS MAIN LINE
; +
; XTS -- MAIN LINE OF XTS CODE

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-35

DLX Transmit Program (cont.)

XTSEP::

MOV #EX$SUC,EXSTAT ;ASSUME EXIT WITH STATUS

ASSIGN LUN TO CHANNEL

ALUN$S #CHNLUN,#"NX,#0
BCC 10$
EPRINT DLXERR
BR EXIT

;IF CC, ALL OKAY
;ELSE, ASSUME DLX NOT LOADED
;AND LEAVE

PROMPT USER FOR LINE ID

' 10$: MOV
MOV
CALL
MOV
BCS
TST
BEQ

$CLPMT,-(SP)
#PROMPT, $CLPMT
GCL
(SP)+,$CLPMT
EXIT
R5
10$

;SAVE CURRENT PROMPT
;PROMPT STRING
;GET A COMMAND LINE
;RESTORE PROMPT
;IF CS, ASSUME EOF
;BLANK LINE ?
;IF EQ, YES - TRY AGAIN

OPEN ACCESS TO THE LINE.

QIOW$S #IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
BCS 15$ IF CS, ERROR
MOVB CHNSB,Rl SUCCESSFUL ?
BPL 16$ IF PL, YES
MOV #BUFOPN,RO ELSE, GET BUFFER ADDRESS
CLR R2 ZERO SUPPRESSION
CALL $CBOMG CONVERT NUMBER
CLRB (RO) MAKE STRING ASCIZ

15$: EPRINT OPNERR OPEN ERROR
BR EXIT

DEFINE THE ETHERNET ADDRESS AND PROTOCOL TYPE OF THE XTR PROGRAM

' 16$:

17$:

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

#IO.XSC,#CHNLUN,#CHNEFN,,#CHNSB,,<#SETCHR,#SETLEN>
1 7 $ IF CS, ERROR
CHNSB,Rl SUCCESSFUL ?
20$ IF PL, YES
#BUFSET,RO ELSE, GET BUFFER ADDRESS
R2 ZERO SUPPRESSION
$CBOMG CONVERT NUMBER
(RO) MAKE STRING ASCIZ
SETERR OPEN ERROR
EXIT

HANG AN ASYNCHRONOUS READ ON LINE
;
20$: CALL HNGRCl

CALL HNGRC2
BCS EXIT

GET COMMAND LINE
;
30$: CALL GCL

BCS EXIT
TST R5
BEQ 30$

TRANSMIT THE BUFFER

CALL XMIT
BCC 30$

CLOSE THE LINE

EXIT: DIR$ #CLOSE

IF CS, ERROR

;GET COMMAND LINE
;IF CS, ASSUME EOF
; EMPTY LINE?
;IF EQ, YES - TRY AGAIN

;TRANSMIT THE BUFFER
;IF CC, GET NEXT MESSAGE

(continued on next page)

H-36 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Transmit Program (cont.)

;+

EXIT XTS

EXST$S EXSTAT
EXIT$S

.SBTTL GCL - GET COMMAND LINE

**-GCL-GET COMMAND LINE

;TRY TO EXIT-WITH-STATUS
;ELSE, JUST EXIT

THIS ROUTINE IS CALLED TO GET A COMMAND LINE FOR XTS. INPUT CAN BE
FROM TI: OR AN INDIRECT COMMAND FILE. RETURN WITH C-SET FOR ERROR OR EOF.

INPUTS:
NONE

OUTPUTS:
R4=ADDRESS OF COMMAND LINE
R5=SIZE OF COMMAND LINE IN BYTES
C-BIT SET/CLEARED

EFFECTS:

GCL:

10$:
20$:

30$:

; GET
,
40$:

50$:

R4 ,R5 MODIFIED.

GCL$
MOV
TSTB
BGT

CMPB
BEQ

CMPB
BEQ

CMPB
BNE

EPRINT
CALL
CLR
BR

EPRINT
TSTB
BNE
BR
SEC
BR

SIZE AND

MOV
MOV
CLC

RETURN

$CLIOS, R5
(R5)
40$

#IE.EOF,(R5)
30$

#IE.ABO, (R5)
30$

#IE.NSF, (R5)
10$

NS FERR
ECHO
R5
50$

GCLERR
$CLEVL
30$
GCL

50$

ADDRESS OF

$CLBUF,R4
2 (R5) , R5

COMMAND LINE.

;GET COMMAND LINE
; POINT TO I/0 STATUS BLOCK
;ERROR?
; IF GT, NO

;END OF FILE?
; IF EQ, YES - SET C AND RETURN

;WAS READ KILLED BY RECEIVE?
;IF EQ, YES - RETURN WITH C-SET

;NO SUCH FILE ERROR?
;IF NE, NO

;ELSE, SAY SO
;ECHO COMMAND LINE
;SET COMMAND LINE LENGTH TO 0
;AND RETURN EMPTY

;PRINT GET COMMAND LINE ERROR
;TERMINAL INPUT?
; IF NE, NO - FATAL ERROR
;ELSE, RE-PROMPT
;SET-C
;AND EXIT

;GET ADDRESS OF COMMAND LINE
;GET SIZE OF COMMAND LINE
;SET SUCCESS

;RETURN

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-37

DLX Transmit Program (cont.)

.SBTTL HNGRCl - HANG ASYNCHRONOUS READ ON LINE
; +

**-HNGRCl - HANG AN ASYNCHRONOUS READ ON THE CHANNEL
**-HNGRC2 -

INPUTS:
NONE.

OUTPUTS:
RECEIVE HUNG ON LINE

' .ENABL LSB
HNGRCl:

CALL $SAVAL ;SAVE ALL REGISTERS
DIR$ #REC! ;HANG RECEIVE
BCS 10$;IF CS, ERROR
BR 20$;AND CONTINUE IN COMMON

HNGRC2:
CALL $SAVAL ;SAVE ALL REGISTERS
DIR$ #REC2 ;HANG RECEIVE
BCC 20$; IF CC, SUCCESS

10$: EPRINT REC ERR ;RECEIVE ERROR
SEC ;INDICATE FAILURE

20$: RETURN ;RETURN
.DSABL LSB

.SBTTL XMIT - TRANSMIT DATA OVER LINE
;+

**-XMIT - TRANSMIT DATA OVER LINE

INPUTS:
R4
R5

OUTPUTS:

ADDRESS OF DATA
LENGTH OF DATA

DATA TRANSMITTED

XMIT:

CODE

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
SEC

#IO.XMT,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5,#XMICHR,#XMILEN>

10$:

20$: RETURN

10$;IF CS, ERROR
CHNSB,Rl ;SUCCESSFUL ?
20$; IF PL, YES
#BUFXMT,RO ;ELSE, GET BUFFER ADDRESS
R2 ;ZERO SUPPRESSION
$CBOMG ; CONVERT NUMBER
(RO) ;MAKE STRING ASCIZ
XMTERR ;TRANSMIT ERROR

;INDICATE FAILURE

.SBTTL RECAST - AST FOR CHANNEL READ COMPLETE

{continued on next page)

H-38 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Transmit Program (cont.)

; +
**-RECAST - AST FOR CHANNEL READ COMPLETE

INPUTS:
(SP) = ADDRESS OF I/0 STATUS BLOCK

OUTPUTS:
1. ANOTHER READ HUNG ON CHANNEL (IF LAST RECEIVE SUCEEDED)
2. BUFFER READ FROM CHANNEL IS ECHOED ON TERMINAL

RECAST:

10$:

MOV
MOV
MOV
TSTB
BPL
CAL LR
MOV
MOV
DIR$
CALL
MOV
ASTX$S

(SP), IOSB
Rl,(SP)
IOSB,Rl
(Rl)
10$
EXIT
2(Rl),WRITE+Q.IOPL+2
4(Rl),WRITE+Q.IOPL
#WRITE
@6(Rl)
(SP)+,Rl

SAVE I/0 STATUS BLOCK ADDRESS
SAVE Rl
GET I/0 STATUS BLOCK ADDRESS
SUCESSFUL COMPLETION ?
IF PL, YES - WRITE IT OUT
ELSE, CLOSE LINE AND EXIT
SET LENGTH OF BUFFER TO WRITE
SET BUFFER ADDRESS
WRITE BUFFER TO TERMINAL
HANG ANOTHER RECEIVE
RESTORE Rl

.SBTTL $EPRINT -- PRINT ERROR MESSAGE
; +

**-$EPRINT-PRINT ERROR MESSAGE

PRINTS THE SPECIFIED ERROR MESSAGE PREFIXED BY "XTS -- "
SETS THE EXIT-STATUS AS "EX$ERR".

INPUTS:
RO=ADDRESS OF MESSAGE.

OUTPUTS:
ERROR MESSAGE PRINTED ON TI:
EXSTAT = EX$ERR

EFFECTS:

;-

$EPRINT:

PRINT2:
5$:
10$:

NO REGISTERS MODIFIED.

.ENABL

MOV
MOV
MOV
MOV
CALL
MOV
MOV

MOV
TSTB
BNE
DEC
SUB
MOV
DIR$
MOV
RETURN
.DSABL

LSB

RO,-(SP)
#EX$ERR,EXSTAT
#44,ERDPB+Q.IOPL+4
#XTSEM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO

RO,ERDPB+Q.IOPL
(RO)+
10$
RO
ERDPB+Q.IOPL,RO
R0,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4

LSB

;SAVE RO
;SET EXIT STATUS TO "ERROR"
;SET VERTICAL FORMAT TO PROMPT
;GET PREFIX MESSAGE
;PRINT PREFIX •
;SET VERT. FORMAT TO OVERPRINT
;GET ADDRESS OF MESSAGE

;SET ADDRESS OF MESSAGE
;NULL BYTE?
;IF NE, NO - KEEP LOOKING
;DON'T COUNT NULL
;CALCULATE LENGTH OF STRING
;SET LENGTH OF STRING
;ISSUE DIRECTIVE
;RESTORE VERTICAL FORMAT TO NORMAL

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-39

DLX Transmit Program (cont.)

;+
.SBTTL ECHO - ECHO COMMAND LINE

**-ECHO-ECHO COMMAND LINE

THIS ROUTINE ECHOES THE CURRENT COMMAND LINE IF IT CAME FROM AN INDIRECT
COMMAND FILE.

INPUTS:
$CLEVL=INDICATES COMMAND FILE LEVEL
$CLBUF=POINTER TO START OF ASCIZ COMMAND LINE.

OUTPUTS:
LINE FEED APPENDED TO TO COMMAND LINE AND COMMAND LINE ECHOED ON TI:

EFFECTS:
RO, Rl MODIFIED.

ECHO:

10$:

TSTB
BEQ
MOV
CALL
RETURN

$CLEVL
10$
$CLBUF,RO
PRINT2

.END XTSEP

;COMMAND FROM TERMINAL?
;IF EQ, YES - DON'T ECHO
;POINT TO COMMAND LINE
;PRINT LINE ON ERROR LUN

H-40 TASK-TO-TASK PROGRAMMING EXAMPLES

H.6.2 DLX Receive Program

;+

.TITLE XTR - DLX RECEIVER
• IDENT /VOl. 00/

COPYRIGHT (C) 1983,1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

MODULE DESCRIPTION:

XTR - DLX RECEIVER

DISTRIBUTED SYSTEMS SOFTWARE ENGINEERING

IDENT HISTORY:

1. 00 12-JAN-84
PRO/DECnet Vl.O

XTR - DLX SYSTEM EXERCISER (THIS TEST UTILITY IS UNSUPPORTED)

XTR ECHOS RECEIVED DATA BACK OVER THE ETHERNET. XTR USES THE DLX UTILITY
TO PROVIDE THE ACCESS TO THE ETHERNET.

TO ASSEMBLE USING THE TOOL KIT, USE THE FOLLOWING COMMAND STRING:

PMA XTR,XTR/-SP=LB:[l,5]NETLIB/ML,XTR

TO TASK BUILD USING THE TOOL KIT, USE THE FOLLOWING COMMAND STRING:

XTR/PR:0,XTR/-SP=XTR,LB:[l,5]NETLIB/LB:GCL
I
STACK=30
UNITS=3
ASG=TI:l:2:3
TASK= ... XTR
II

THE FOLLOWING IS AN EXAMPLE OF THE XTS DIALOG:

(continued on next page)

DLX Receive Program (cont.)

>XTS
LINE: CNA-0
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

XTS>TESTING
TESTING

TASK-TO-TASK PROGRAMMING EXAMPLES H-41

IN ORDER FOR XTS TO RECEIVE AN ECHO OF THE MESSAGE, XTR MUST BE RUNNING.
IT IS INITIATED IN THE FOLLOWING MANNER:

>XTR
LINE: CNA-0

WHEN FINISHED WITH XTS/XTR, XTR MUST BE ABORTED. NOTE - YOU MUST BE
IN THE TOOL KIT/DCL IN ORDER TO ABORT XTR WITHOUT CAUSING YOUR PRO TO
BUGCHECK WITH A 300/6 ERROR!

.SBTTL

.MACRO
MOV
CALL
.ENDM

.SBTTL

LOCAL MACROS

EPRINT ERRMSG
#ERRMSG,RO
$EPRINT
EPRINT

MACRO CALLS

.MCALL

.MCALL
QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,ASTX$S,WTSE$S
GCL$,GCLDF$,DLXDF$,EPMDF$

DLXDF$
EPMDF$

.SBTTL CONSTANTS

RECEIVE BUFFER SIZE

BUFSIZ = 90.

LUN ASSIGNMENTS:

TILUN=l
CHNLUN=2
ERRLUN=3

EVENT FLAG ASSIGNMENTS:

TIEFN=l
CHNEFN=2
ERREFN=3
DONE=4

.SBTTL DATA

;DEFINE DLX FUNCTION CODES AND OVERHEAD
;DEFINE ADDITIONAL ETHERNET VALUES

;LUN FOR TI
;LUN FOR ERROR FREE CHANNEL
;LUN FOR ERRORS

;EVENT FLAG FOR TERMINAL I/0
;EVENT FLAG FOR CHANNEL
;EVENT FLAG FOR ERROR MESSAGES
;EVENT FLAG SIGNALING COMPLETION

(continued on next page)

H-42 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Receive Program (cont.)

DEFINE GCL PARAMETERS

GCLDF$ TILUN,TIEFN,<LINE>,RlBUF,BUFSIZ

•**** ,
; DPB'S
·**** ,

ERDPB:

RECl:
REC2:

XMT:

START:

CLOSE:

,

QIOW$

QIO$
QIO$

QIOW$

QIOW$

QIOW$

IO.WVB,ERRLUN,ERREFN,,,,<0,0,40>

IO.XRC,CHNLUN,,,RlSB,RECAST,<RlBUF,BUFSIZ>
IO.XRC,CHNLUN,,,R2SB,RECAST,<R2BUF,BUFSIZ>

IO.XTM,CHNLUN,CHNEFN,,CHNSB,,<0,0,XMICHR,XMILEN>

IO.XIN,CHNLUN,CHNEFN,,CHNSB

IO.XCL,CHNLUN,CHNEFN

; CHANNEL I/0 STATUS BLOCK

CHNSB: .BLKW 2

; TEMP LOCATION TO CONTAIN IOSB ADDRESS

IOSB:
TEMP:

,

.BLKW

.BLKW
1
1

; SET CHARACTERISTICS BUFFER
,
SETCHR: .WORD

. WORD

.WORD

.WORD

.WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE
SETLEN=.-SETCHR

,

CC.DST
10 •
0
0
1
LF$PAD
252
0
4
0
232
20

;SETTING UP PROTOCOL TYPE/ADDRESS
;LENGTH OF BUFFER PAST STATUS WORD
;RESERVED FIELD
;STATUS WORD
;DEFINE PROTOCOL TYPE
;PAD MESSAGES TO MINIMUM LENGTH
;DEFINE XTS ADDRESS (DECNET ADDRESS)

;LENGTH OF SET CHAR BUFFER.

; PROTOCOL/ADDRESS BUFFER FOR TRANSMITTING

XMICHR: .WORD
.WORD
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

XMILEN=.-XMICHR

CC.ADR
6
0
0
252
0
4
0
232
20
CC.PRO
2
0
0
1

;THIS PART DEFINES AN ADDRESS
;LENGTH OF BUFFER PAST STATUS WORD
;RESERVED FIELD
;STATUS WORD
;DEFINE XTS ADDRESS (DECNET ADDRESS)

;THIS PART DEFINES A PROTOCOL TYPE
;LENGTH OF BUFFER PAST STATUS WORD
;RESERVED WORD
;STATUS WORD
;PROTOCOL TYPE = 1
;LENGTH OF WHOLE XMICHR BUFFER

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-43

DLX Receive Program (cont.)

CHANNEL RECEIVE I/0 STATUS BLOCKS

RlSB: .BLKW
.WORD
.WORD

R2SB: .BLKW
.WORD
.WORD

2
RlBUF
HNGRCl

2
R2BUF
HNGRC2

;STATUS OF FIRST RECEIVE
;ADDRESS OF BUFFER
;ADDRESS OF RECEIVE POSTING ROUTINE

;STATUS OF SECOND RECEIVE
;ADDRESS OF BUFFER
;ADDRESS OF RECEIVE POSTING ROUTINE

CHANNEL RECEIVE BUFFERS

RlBUF: .BLKB
R2BUF: .BLKB

.EVEN

BUFSIZ
BUFSIZ

;FIRST BUFFER DESCRIPTOR
;SECOND BUFFER DESCRIPTOR

·**** ,
; TEXT STRINGS:
·**** ,

HEADER FOR ERROR MESSAGES

XTREM: .ASCIZ /XTR -- /

ERROR MESSAGES

.ENABL

.NL I ST
GCLERR: .ASCIZ
DLXERR: .ASCIZ
OPNERR: • ASC I I
BUFOPN: .BLKB
SETERR: • ASC I I
BUFSET: • BLKB
XMTERR: . ASC I I
BUFXMT: .BLKB
REC ERR: • ASC I I
BUFREC: . BLKB

.LIST

.EVEN

LC
BEX
/Command line read error/
/DLX not loaded/
/Unable to open line -- I
7
/Error Defining Protocol-Address -- I
7
/Error transmitting data I
7
/Error receiving data -- I
7
BEX

.SBTTL XTREP - XTR MAIN LINE
;+

XTREP -- MAIN LINE OF XTR CODE

PROMPT USER FOR LINE TO OPEN AND LOOP ALL MESSAGES RECEIVED OVER THE SAME
LINE

INPUTS:
NONE.

OUTPUTS:
LOOP ALL MESSAGES INDEFINITELY.

;-

XTREP::
CLR R3

ASSIGN LUN TO CHANNEL

ALUN$S
BCC
EPRINT
BR

#CHNLUN,#"NX,#0
10$
DLXERR
99$

;IF CC, ALL OKAY
;ELSE, ASSUME DLX NOT LOADED
;AND LEAVE

(continued on next page)

H-44 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Receive Program (cont.)

; PROMPT USER FOR LINE ID

' 10$: CALL
BCS
TST
BEQ

GCL
99$
R5
10$

;GET A COMMAND LINE
;IF CS, ASSUME EOF
; BLANK LINE ?
;IF EQ, YES - TRY AGAIN

OPEN ACCESS TO THE LINE.

#IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
15$ IF CS, ERROR
CHNSB,Rl SUCCESSFUL ?
16$ IF PL, YES
#BUFOPN,RO ELSE, GET BUFFER ADDRESS
R2 ZERO SUPPRESSION
$CBOMG CONVERT NUMBER
(RO) MAKE STRING ASCIZ

15$:

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

OPNERR OPEN ERROR
99$

DEFINE THE ETHERNET ADDRESS AND PROTOCOL TYPE OF THE XTS PROGRAM

' 16$: QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

#IO.XSC,#CHNLUN,#CHNEFN,,#CHNSB,,<#SETCHR,#SETLEN>
17$ IF CS, ERROR
CHNSB,Rl SUCCESSFUL ?
20$ IF PL, YES
#BUFSET,RO ELSE, GET BUFFER ADDRESS
R2 ZERO SUPPRESSION
$CBOMG CONVERT NUMBER
(RO) MAKE STRING ASCIZ

17$: SETERR OPEN ERROR
99$

HANG AN ASYNCHRONOUS READ ON LINE

' 20$: CALL
BCS

HNGRCl
99$

CALL
BCS

HNGRC2
99$

;IF CS, ERROR

HANG SECOND RECEIVE
IF CS, ERROR

THE REST IS AST DRIVEN. MAKE BELEIVE WE ARE WAITING FOR SOMETHING !!

WTSE$S #DONE ;WAIT FOR COMPLETION (NEVER HAPPENS!)

99$: DIR$ #CLOSE ;CLOSE DOWN THE LINE
;EXIT

;+

EXIT$S

.SBTTL GCL - GET COMMAND LINE

**-GCL-GET COMMAND LINE

THIS ROUTINE IS CALLED TO GET A COMMAND LINE FOR XTR. INPUT CAN BE
FROM TI: OR AN INDIRECT COMMAND FILE. RETURN WITH C-SET FOR ERROR OR EOF.

INPUTS:
NONE

OUTPUTS:
R4=ADDRESS OF COMMAND LINE
R5=SIZE OF COMMAND LINE IN BYTES
C-BIT SET/CLEARED

EFFECTS:
R4,R5 MODIFIED.

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-45

DLX Receive Program (cont.)

GCL:

10$:
20$:

30$:

GCL$
MOV
TSTB
BGT

CMPB
BEQ

CMPB
BEQ

EPRINT
TSTB
BNE
BR
SEC
BR

$CLIOS,R5
(R5)
40$

#IE.EOF, (R5)
30$

#IE.ABO, (R5)
30$

GCLERR
$CLEVL
30$
GCL

50$

; GET SIZE AND ADDRESS OF COMMAND LINE.

' 40$:

50$:

MOV
MOV
CLC

$CLBUF,R4
2(R5) ,R5

;GET COMMAND LINE
;POINT TO I/0 STATUS BLOCK
;ERROR?
; IF GT, NO

;END OF FILE?
;IF EQ, YES - SET C AND RETURN

;WAS READ KILLED BY RECEIVE?
;IF EQ, YES - RETURN WITH C-SET

;PRINT GET COMMAND LINE ERROR
;TERMINAL INPUT?
;IF NE, NO - FATAL ERROR
;ELSE, RE-PROMPT
;SET-C
;AND EXIT

;GET ADDRESS OF COMMAND LINE
;GET SIZE OF COMMAND LINE
;SET SUCCESS

RETURN ;GLOBAL RETURN

;+

.SBTTL HNGRCl - HANG ASYNCHRONOUS READ ON LINE

.SBTTL HNGRC2 - HANG SECOND ASYNCHRONOUS READ

**-HNGREC - HANG AN ASYNCHRONOUS READ ON THE CHANNEL
**-HNGRC2 - HANG SECOND ASYNCHRONOUS READ ON CHANNEL

INPUTS:
NONE.

OUTPUTS:

Rl, (SP)
TEMP,Rl
(Rl)
10$
R3
20$
R3
#START
5$

SAVE Rl
Rl -> IOSB
SUCESSFUL COMPLETION ?
IF PL, YES - XMIT THE MESSAGE
BEEN THRU THIS CODE LAST TIME ?
YES - POST RECEIVE AND RETURN
MARK
ELSE, RESTART THE LINE
IF SUCCESS, CONTINUE

5$:

MOV
MOV
TSTB
BPL
TST
BNE
INC
DIR$
BCC
IOT
TSTB
BPL
IOT
CLR
MOV
BEQ
MOV
CALL
CALL

CHNSB
20$

ELSE IOT
SUCCESS ?
YES - CONTINUE

10$: R3
2(Rl),XMT+Q.IOPL+2
20$

ELSE FATAL ERROR - IOT
CLEAR FLAG

4 (Rl), XMT+Q. IOPL
XMIT

SET LENGTH OF BUFFER TO XMIT
IF EQ, NO BUFFER TO XMIT ???
SET ADDRESS OF BUFFER

20$: @6(Rl)
ECHO MESSAGE BACK OVER LINE
HANG ANOTHER RECEIVE ON CHANNEL
IGNORE ANY ERRORS

;+

MOV
ASTX$S

(SP)+,Rl RESTORE Rl
EXIT AST

.SBTTL $EPRINT -- PRINT ERROR MESSAGE

**-$EPRINT-PRINT ERROR MESSAGE

PRINTS THE SPECIFIED ERROR MESSAGE PREFIXED BY "XTR -- "
SETS THE EXIT-STATUS AS "EX$ERR".

(continued on next page)

H-46 TASK-TO-TASK PROGRAMMING EXAMPLES

DLX Receive Program (cont.)

INPUTS:
RO=ADDRESS OF MESSAGE.

OUTPUTS:
ERROR MESSAGE PRINTED ON TI:

EFFECTS:

$EPRINT:

5$:
10$:

·-,
HNGRCl:

HNGRC2:

10$:

20$:

NO REGISTERS MODIFIED.

MOV
MOV
MOV
CALL
MOV
MOV
MOV
TSTB
BNE
DEC
SUB
MOV
DIR$
MOV
RETURN

RO,-(SP)
#44,ERDPB+Q.IOPL+4
#XTREM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO
RO,ERDPB+Q.IOPL
(RO)+
10$
RO
ERDPB+Q.IOPL,RO
R0,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4

.END XTREP

RECEIVE HUNG ON LINE

.ENABL LSB

DIR$ #RECl
BCS 10$
BR 20$

DIR$ #REC2
BCC 20$
EPRINT REC ERR
SEC
RETURN
.DSABL LSB

;SAVE RO
;SET VERTICAL FORMAT TO PROMPT
;GET PREFIX MESSAGE
; PRINT PREFIX
;SET VERT. FORMAT TO OVERPRINT
;GET ADDRESS OF MESSAGE
;SET ADDRESS OF MESSAGE
;NULL BYTE?
;IF NE, NO - KEEP LOOKING
;DON'T COUNT NULL
;CALCULATE LENGTH OF STRING
;SET LENGTH OF STRING
;ISSUE DIRECTIVE
;RESTORE VERTICAL FORMAT TO NORMAL

;HANG READ
;IF CS, ERROR
;AND CONTINUE IN COMMON CODE

;HANG READ
; IF CC RETURN
;RECEIVE ERROR
;INDICATE FAILURE

.SBTTL XMIT - TRANSMIT DATA OVER LINE
;+

**-XMIT - TRANSMIT DATA OVER LINE

INPUTS:
NONE.

OUTPUTS:
DATA TRANSMITTED

XMIT:
MOV
DIR$
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB

Rl,-(SP)
#XMT
10$
CHNSB,Rl
20$
#BUFXMT,RO
R2
$CBOMG
(RO)

;SAVE Rl
;TRANSMIT DATA
; IF cs I ERROR
;SUCCESSFUL ?
; IF PL, YES
;ELSE, GET BUFFER ADDRESS
;ZERO SUPPRESSION
;CONVERT NUMBER
;MAKE STRING ASCIZ

(continued on next page)

TASK-TO-TASK PROGRAMMING EXAMPLES H-47

DLX Receive Program (cont.)

10$:

20$:

;+

EPRINT XMTERR
SEC
MOV (SP) + , Rl
RETURN
.DSABL LSB

;TRANSMIT ERROR
;INDICATE FAILURE
;RESTORE Rl

.SBTTL RECAST - AST FOR CHANNEL READ COMPLETE

**-RECAST - AST FOR CHANNEL READ COMPLETE

INPUTS:
(SP) = ADDRESS OF I/0 STATUS BLOCK

OUTPUTS:
1. ANOTHER READ HUNG ON CHANNEL
2. BUFFER READ FROM CHANNEL IS ECHOED OVER LINE

RECAST:
MOV (SP) ,TEMP SAVE IOSB ADDRESS

INDEX

Aborting a logical link
see ABT$, ABTNT

ABT$, 3-12, A-9
ABTNT, 2-10, A-9
ACC$, 3-14, A-5
Accepting connect requests

see ACC$, ACCNT
Access control, 2-3, 2-19, 2-22, 2-25,

3-20, 3-21, 3-35
general discussion, A-3
MACR0-11 tasks, 3-8
using CONB$$, 3-8

Accessing a network
see OPN$, OPNNT

ACCNT, 2-13, A-5
ADB

see Application Diskette Builder
Addressing modes (Ethernet)

multicast, 4-2, 4-6, 4-9, 4-10
physical, 4-2
setting address pairs, 4-4, 4-8

Alias, 2-3, 2-16
Application Diskette Builder, 1-2
Application installation file, 1-3

format conventions, 1-4
sample, 1-5

Assigning a LUN, 2-2
using .MBXLU for MACR0-11 tasks,

2-2
AST

see asynchronous system trap
Asynchronous system trap

and the WAIT option [W], 3-6
MACR0-11 tasks, 3-6

BACC, 2-16
BFMTO, 2-20
BFMT1, 2-23
Buffer

determining segment size, 2-34, 3-25,
A-7

Buffer size
see GLN$, GLNNT

BUILD type macro, 3-1
format, 3-3, 3-5
general description, 3-2

Closing the network connection
see CLS$, CLSNT

CLS$, 3-16

1-1

CLSNT, 2-2, 2-26
CLSNTW (wait version), 2-2

Combined installation file
contents, 1-7
format conventions, 1-7
sample, 1-7

Completion status
see 1/0 status block

CON$, 3-17, A-4
CONB$$, 3-20
Connect block

see BACC, BFMTO, BFMT1, CONB$$
and connect requests, 3-14
building with DECnet calls, A-2
contents, A-2
retrieving incoming data, A-5
size, A-4

Connect block offsets
for BACC, 2-19
for BFMTO, 2-22
for BFMT1, 2-25
for CONB$$, 3-21
for GND$, 3-34

Connect requests, A-2
accepting, A-5
rejecting, A-5

CONNT, 2-28, A-4
Copying files

from a VMS node to a Professional 350,
1-12

using P/OS DCL command, 1-12
Creating a logical link

see CON$, CONNT

DAPRES resident library, 5-2
for remote file access, 5-2
overlay descriptor file, 5-2

Data
interrupt messages, A-8
normal messages, A-7
optional messages, 3-35, A-3
receiving, A-7
retrieving messages, 2-37, 3-28
sending, A-7
unsolicited messages, A-7
verifying message reception, A-7

DCL, 5-3
DECNA, 4-2
DECnet

defined, A-1
message types, 2-37

1-2 INDEX

Destination descriptor, 2-19, 2-22, 2-25,
3-20, 3-21, 3-34, A-2

Digital Command Language
see DCL

DIR$ directive, 3-2, 3-5
Direct line access controller

see DLX
Disconnect and abort messages

see GND$, GNDNT
retrieving, A-9

Disconnecting a logical link
see DSC$, DSCNT, A-9

DLX, 4-1
error codes, 4-9, 4-12
Ethernet calls summary, 4-3
NX: device, 4-1, 4-4
timeout periods, 4-5

DLX QIOs, 4-1, 4-3 to 4-16
software standards, 4-3

DLXDF$ macro, 4-3
DSC$, 3-23, A-9
DSCNT, 2-31, A-9

End network task operations, 3-16
Error conditions

duplicate object names, 1-13
duplicate object type numbers, 1-13
object description file error, 1-13

Error/completion codes
for high level languages, see Appendix

E
for MACR0-11, see Appendix F
categories, 2-3
for GND$, 3-28

Establishing a network task, A-2
MACR0-11 tasks, 3-8

Ethernet
auxiliary characteristics buffer, 4-10,

4-13, 4-14
characteristics buffer format, 4-7
closing the channel (10.XCL), 4-16
destination address, 4-2
opening the channel (10.XOP), 4-4
padding messages, 4-3
protocol type, 4-2, 4-4, 4-6, 4-8, 4-10,

4-13
receiving a message (10.XRC), 4-13
routing methods, 4-2
set characteristics (10.XSC), 4-6
setting destination address, 4-11
setting protocol type, 4-11
special considerations, 4-2
transmitting a message (10.XTM),

4-10

Event flag
and the WAIT option [W], 3-6
NOFLOW, 3-9, 3-18
NT.LON, 3-30, 3-32
NT.TYP, 3-32

EXECUTE type macro, 3-1
format, 3-3, 3-5
general description, 3-3

FAL, 5-1
File access

differences between local and remote,
5-2

File Access Listener
see FAL

Flow control, 3-23
and DLX, 4-1
DECnet response, 3-9
high level language tasks, 2-3
MACR0-11 tasks, 3-8
NOFLOW option, 3-9
REC$, 3-39
source and target tasks, 3-9

Full duplex transmission, A-7

GLN$, 3-25, A-7
GLNDT, A-7
GLNNT, 2-34
GND$, 3-14, 3-28, A-5, A-8, A-9
GNDNT, 2-37, A-5, A-8, A-9

High level language communication calls
summary, 2-7

110 status block
contents of second word using GNDNT,

2-38
general discussion, A-8
MACR0-11 values, 3-7
values for GND$, 3-30
word values, 2-3, A-9

INS file
different types, 1-3, 1-7
format conventions, 1-4
installing, 1-4
removing, 1-4

Interrupt messages
function, A-8
maximum number, A-8
retrieving, A-8
sending, A-8
size, A-8
using XMI$, 3-47

10.XCL, 4-16

10.XOP, 4-4
10.XRC, 4-13
10.XSC, 4-6
10.XTM, 4-10

Libraries
NETDEF.PAS, 1-3
NETLIB.MLB, 1-3, 3-1, 4-3
NETSUB.OLB, 1-3, 2-1

Link recovery period, 2-44, 3-38
Local node information

see GLN$, GLNDT
Local node name, 2-34, 3-25
Logical link

aborting, 3-12, A-9
accepting, A-5
closing the network connection, A-10
creating, 3-17, A-4
disconnecting, 3-23, A-9
general description, A-4
rejecting, A-5
sending data, A-7
terminating activity on, A-9

Logical unit number
see LUN

/rp
see link recovery period

LUN
assigning, A-4
assigning with .MBXLU macro, 3-8
specifying, A-4
used in DECnet calls, A-4

Macro failures, 3-5
MACR0-11

error/completion code format, 3-7
example call formats, 3-5
using AST routines, 3-6
using event flags, 3-6
using the WAIT option [W], 3-6

MACR0-11 communication calls
summary, 3-10

MACR0-11 connect block offsets
see Appendix D

Named object
defined, A-2
for a high level language task, A-2
for a MACR0-11 task, A-2

Network
accessing, A-5
efficient message transmission, 2-34,

3-25, A-7
Network data queue, 3-16, A-2

see GND$, GNDNT
closing status of pending DECnet calls,

A-10

creating, A-5
deleting, A-10

INDEX 1-3

ways to retrieve messages, 2-37, 3-28
Network disconnects and rejects

see Appendix 8
Network object

defined, A-2
Node number, 2-34, 3-25
NOFLOW option, 3-18
NT.LON

and GND$ 1/0 status blocks, 3-30
function, 3-32

NT.TYP
function, 3-32

Numbered object
defined, A-3
for a high level language task, A-3
for a MACR0-11 task, A-3

Object description file
/COPIES switch, 1-9
file specifications, 1-8
OBJECT command, 1-8
requirements, 1-8
RUN/INSTALL command, 1-10
RUN/REMOVE command, 1-10
samples, 1-11
/VERIFICATION switch, 1-10

Object installation file, 1-3
contents, 1-5
EXECUTE directive, 1-6
format conventions, 1-5
installing an object, 1-6
object description file, 1-6
removing an object, 1-6
sample, 1-6

Object task
debugging on a Professional 350, 1-12
setting verification level, 1-10, 3-30

Object type codes
see Appendix C

OPN$, 3-8, 3-16, 3-37, A-2, A-5
link recovery period, 3-38

OPNNT, 2-2, 2-43, A-2, A-5
link recovery period, 2-44
OPNNTW (wait version), 2-2

Optional arguments, 2-5
using paired arguments in DECnet

calls, 2-5
using single arguments in DECnet calls,

2-6
Optional data message, 3-35, A-3

part of other messages, A-9
size, A-9

1-4 INDEX

P/OS, 1-5
PAB, 1-3, 2-1

cluster library, 5-2
using libraries, 1-3

PMA, 3-1
PRO/DECnet, 1-1

and CLS$, 3-16
and DSC$, 3-23
application development cycle, 1-2
applications defined, 1-3
building tasks, 1-3
"combined" applications defined, 1-4
object tasks defined, 1-3
software features, 1-2
using a trace routine, 1-12
using the Ethernet device (DECNA),

4-4
PRO/Tool Kit, 1-2, 1-12
Professional 350 computer, 1-1
Professional Application Builder

see PAB
Professional Host Tool Kit, 1-2
Professional Macro Assembler

see PMA
Professional Operating System

see P/OS

Queue
see Network data queue

REC$, 3-39, A-7
Receiving data

see REC$, RECNT
RECNT, 2-31, 2-47, A-7
REJ$, 3-41, A-5
Rejecting connect requests

see REJ$, REJNT
REJNT, 2-50, A-5
Remote file access, 5-1

error/completion codes, see Appendix G
alias, 2-3
pool considerations, 5-4
target system conventions, 1-12
using PRO/DECnet for, 1-12, 5-2

Remote node
specification formats, 5-3

Retrieving connect blocks
see GND$, GNDNT

Retrieving interrupt messages
see GND$, GNDNT, A-8

RMS-11, 5-1

Sending data
see SND$, SNDNT

Sending interrupt messages
see XMI$, XMINT

SND$, 3-23, 3-43, A-7
SNDNT, 2-31, 2-53, A-7
Software compatibility, 1-12
Source descriptor, 3-34, A-3
Source task, A-8

defined, A-4
SPA$, 3-28, 3-45

programming example, 3-46
STACK type macro, 3-1

format, 3-4, 3-5
general description, 3-4

Symbolic offsets
see Connect block offsets

Target node name, 3-20
Target system

performing access verification, A-3
Target task, A-8

defined, A-4
Task building, 2-1

using BUILD and EXECUTE type
macros, 3-2

Task-to-task communication
capabilities, A-1
DECnet calls summary, A-11 to A-12
programming examples, H-1 to H-47
using DLX, 4-1

Trace routine
in a PRO/DECnet program, 1-12

WAIT option [W], 3-6
event flag, 3-6

WAITNT, 2-56

XMI$, 3-47, A-8
XMINT, 2-58, A-8

READER'S COMMENTS

PRO/DECnet Tool Kit
Programmer's Reference Manual
AA-AV69A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Other (please specify) ___________________________ _

Organization ______________________________________ _

Street ___ _

City ___________________ _
State------ Zip Code--------­

or
Country

- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

~amanmn 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS 01754

I

I
I

- ---1

No Postage

Necessary

if Mailed in the

United States

· - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - -

