Professional ™

9@

PRO/DECnet Tool Kit

Programmer’s Reference Manual

Order No. AA-AVB9A-TK

PRO/DECnet Tool Kit

Programmer’s Reference Manual

Order No. AA-AVB9A-TK

March 1984

This manual reviews software design conventions which are critical to the early stages
of program development. It also details network programming calls used in the crea-

tion of PRO/DECnet applications.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

RSX-11M V4.1
RSX-11M-PLUS V2.1
VAX/VMS V3.4
P/0OS V2.0

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION: PRO/DECnet Tool Kit V1.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of items without written permission.

Copyright © 1984 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS RSTS

DEC PDP RSX

DECmate P/0S Tool Kit
DECsystem-10 PRO/BASIC UNIBUS
DECSYSTEM-20 Professional VAX

DECUS PRO/FMS VMS

DECwriter PRO/RMS VT

DIBOL PROSE Work Processor
Digital Rainbow

Distributed Systems Publications typeset this manual using DIGITAL’s
TMS-11 Text Management System.

CONTENTS

PREFACE
CHAPTER 1 GETTING STARTED WITH PRO/DECnet
1.1 Overview e e e e e e e e 1-1
1.2 PRO/DECnet Application Development Cycle 1-2
1.3 Required Libraries for Building PRO/DECnet Tasks 1-3
1.3.1 Programming in PASCAL 1-3
1.4 Creating PRO/DECnet Application and Object Installation Files . 1-3
1.4.1 Formatting an Installation File 1-4
1.5 PRO/DECnet Application Installation Files. 1-4
1.6 PRO/DECnet Object Installation Files 1-5
1.7 Combined PRO/DECnet Application/Object Installation Files. . . 1-7
1.8 PRO/DECnet Object Description Files. 1-8
1.8.1 OBJECT Command 1-8
1.8.2 RUN/INSTALL Command 1-10
1.8.3 RUN/REMOVE Command 1-10
1.9 PRO/DECnet Programming Considerations 1-12
CHAPTER 2 HIGH LEVEL LANGUAGE COMMUNICATION
CALLS
2.1 Task Building. 2-1
2.2 Assigning Logical Unit Numbers. 2-2
2.3 Establishing an Active Network Task 2-2
2.4 Terminating Network Task Operations. 2-2
2.5 Examining I/0 Status Blocks 2-3
2.6 Access Control Information 2-3
2.7 Flow Control 2-3

2.8 Conventions Used in This Chapter. 2-4

2.9 Optional Arguments in High Level Language Calls. 2-5
291 Using Paired Optional Arguments 2-5
29.2 Using Single Optional Arguments 2-6
2.10 High Level Language Communication Calls 2-7
2.10.1 Common Argument Definitions. 2-8
2.10.2 ABTNT - Abort a Logical Link 2-10
2.10.3 ACCNT - Accept Logical Link Connect Request 2-13
2.10.4 BACC - Build Access Control Information Area. 2-16
2.10.5 BFMTO - Build a Format 0 Destination Descriptor 2-20
2.10.6 BFMT1 - Build a Format 1 Destination Descriptor 2-23
2.10.7 CLSNT - End Network Task Operations 2-26
2.10.8 CONNT - Request Logical Link Connection. 2-28
2.10.9 DSCNT - Disconnect a Logical Link 2-31
2.10.10 GLNNT - Get Local Node Information 2-34
2.10.11 GNDNT - Get Network Data 2-37
2.10.12 OPNNT - Access the Network 2-43
2.10.13 RECNT - Receive Data over a Logical Link. 2-47
2.10.14 REJNT - Reject Logical Link Connect Request 2-50
2.10.15 SNDNT - Send Data over a Logical Link 2-53
2.10.16 WAITNT - Suspend the Calling Task 2-56
2.10.17 XMINT - Send Interrupt Message 2-58
CHAPTER 3 MACRO-11 COMMUNICATION CALLS

3.1 MACRO Types i i e e e e e s e e e e 3-1
3.1.1 BUILD Type Macro. 3-2
3.1.2 EXECUTE Type Macro. 3-3
3.1.3 STACK Type Macro 3-4
3.1.4 Macro Call Format Examples. 3-5
3.1.5 Macro Failures.o 3-5
3.2 Using the Wait Option. 3-6
3.3 Using Asynchronous System Traps and Event Flags. 3-6
3.4 Examining I/0 Status Blocks 3-7
3.5 Assigning Logical Unit Numbers. 3-7
3.6 Establishing an Active Network Task 3-8
3.7 Access Control Information 3-8
3.8 FlowControl s 3-8
3.9 Conventions Used in This Chapter. 3-9
3.10 MACRO-11 CommunicationCalls 3-10
3.10.1 Common Argument Definitions. 3-10
3.10.2 ABT$ - Abort a Logical Link 3-12
3.10.3 ACC$ - Accept Logical Link Connect Request 3-14
3.104 CLS$ - End Network Task Operations 3-16
3.10.5 CONS$ - Request a Logical Link Connection 3-17
3.10.6 CONB$$ - Build ConnectBlock 3-20
3.10.7 DSCS$ - Disconnect a Logical Link 3-23
3.10.8 GLN$ - Get Local Node Information 3-25
3.10.9 GND$ - Get Network Data 3-28
3.10.10 OPNS$ - Access the Network 3-37
3.10.11 REC$ - Receive Data over a Logical Link. 3-39
3.10.12 REJ$ - Reject Logical Link Connect Request. 3-41
3.10.13 SND$ - Send Data over a Logical Link. 3-43
3.10.14 SPA$ - Specify User AST Routine 3-45
3.10.15 XMI$ - Send Interrupt Message 3-47

CHAPTER 4 DLX: DIRECT LINE ACCESS CONTROLLER

41 Special Considerations for Ethernet Users. 4-2
4.2 DLX QIOs. e 4-3
4.3 10.XOP - Open the Ethernet Channel 4-4
44 I0.XSC - Set Characteristics 4-6
4.41 Setting up Protocol/Address Pairs 4-8
4.4.2 Setting up a Multicast Address. 4-9
4.5 I0.XTM - Transmit a Message on the Ethernet 4-10
4.51 Setting up the Ethernet Address 4-11
45.2 Setting the Protocol Type 4-11
4.6 I0.XRC - Receive a Message on the Ethernet 4-13
4.6.1 Optional Auxiliary Buffer for Receive Messages. 4-14
4.7 I0.XCL - Close the Ethernet Channel 4-16
CHAPTER 5 REMOTE FILE ACCESS

5.1 Introduction.o Lo 5-1
5.2 Using PRO/DECnet for Remote File Access 5-2
5.3 Formatting Remote Node Specifications. 5-3
54 Remote Access Environments. 5-4
5.5 Remote Access Pool Considerations. 5-4

APPENDIX A BASIC DECnet CONCEPTS

A1
A2
A3
A.3.1
A3.2
A3.3
A3.4
A4
A5
A.6
A7
A8
A.8.1
A.8.2
A9
A.10
A.11
A11.1
A.11.2
AA12
A.13

Task-to-task Communication A-
Establishing an Active Network Task A-
Building a ConnectBlock A
Destination Descriptor A
Source Descriptoro Lo o 0oL A
Access Control Information. A
Optional Data Message A
Assigning Logical Unit Numbers. A
Establishing a Logical Link A
Getting Data from the Network Data Queue A
Accepting or Rejecting a Logical Link Connection Request. . . .A-
Transmitting Data Messages over a Logical Link. A
Sending DataMessages A
Receiving Data Messages A
Sending Interrupt Messages. A
Using the IO Status Block A
Terminating Activity on a Logical Link A
Disconnecting a Logical Link. A
Aborting a Logical Link A
Closing the Network Connection. A-10
DECnet Task-to-task Communication Calls A-10

APPENDIX B DISCONNECT OR REJECT REASON CODES

APPENDIX C OBJECT TYPES

APPENDIX D MACRO-11 CONNECT BLOCK OFFSETS AND

CODE DEFINITIONS

APPENDIX E ERROR/COMPLETION CODES FOR HIGH LEVEL

LANGUAGES

APPENDIX F MACRO-11 ERROR/COMPLETION CODES

APPENDIX G SUMMARY OF REMOTE FILE ACCESS
ERROR/COMPLETION CODES

G.1 I/0 Status Block Error Returns G-1
G.2 Data Access Protocol (DAP) Error Messages G-4
G.2.1 Maccode Field. G-5
G.2.2 Miccode Field G-6

APPENDIX H TASK-TO-TASK PROGRAMMING EXAMPLES

H.1 FORTRAN Programming Examples H-1
H.1.1 FORTRAN Transmit Program. H-2
H.1.2 FORTRAN Receive Program H-4
H.2 COBOL Programming Examples. H-6
H.2.1 COBOL Transmit Program H-6
H.2.2 COBOL Receive Program H-11
H.3 BASIC-PLUS-2 Programming Examples. H-15
H.3.1 BASIC-PLUS-2 Transmit Program H-15
H.3.2 BASIC-PLUS-2 Receive Program H-17
H.4 PASCAL Programming Examples H-19
H.4.1 PASCAL Transmit Program H-19
H.4.2 PASCAL Receive Program H-23
H.5 MACRO-11 Programming Examples. H-26
H.5.1 MACRO-11 Transmit Program H-26
H.5.2 MACRO-11 Receive Program H-28
H.6 DLX QIO Programming Examples H-31
H.6.1 DLX Transmit Program. H-31
H.6.2 DLX Receive Program H-40
FIGURES
1-1 Connecting PRO/DECnet Nodes to an Ethernet 1-1
3-1 Sample Connect Block Built by CONB$$ 3-22
3-2 Sample Connect Block Returned by GND$ 3-36
A-1 Establishing a Logical Link A-6
TABLES
2-1 High Level Language Communication Calls 2-7
2-2 BACC Connect Block Symbolic Offsets 2-19
2-3 BFMTO Connect Block Symbolic Offsets. 2-22
2-4 BFMT1 Connect Block Symbolic Offsets. 2-25
2-5 Contents of Second Status Word Using GNDNT 2-38
3-1 MACRO-11 CommunicationCalls 3-10
3-2 CONB$$ Connect Block Symbolic Offsets 3-21
3-3 GND$ Connect Block Symbolic Offsets 3-34
4-1 Summary of DLX EthernetCalls. 4-3
A-1 DECnet Communication Calls Summary A-11
G-1 First Word 1/0O Status Block Error Codes G-2
G-2 NSPErrorCodes G-4
G-3 DAP Maccode Field Values G-5
G-4 DAP Miccode Values for Use with Maccode Values of 2, 10,

2 G-6
G-5 DAP Miccode Values for Use with Maccode Values 0, 1, 4,

5,6,7. e e e e e G-15
G-6 DAP Miccode Values for Use with Maccode Value 12 G-24

vi

PREFACE

PRO/DECnet software, coupled with the appropriate hardware, allows a Pro-
fessional 350 personal computer to connect to an Ethernet and to act as a
DECnet Phase IV end node.

MANUAL OBJECTIVES

The PRO/DECnet Tool Kit Programmer’s Reference Manual discusses soft-
ware requirements for creating PRO/DECnet applications. It provides detailed
information on the use of FORTRAN, COBOL, BASIC, PASCAL and
MACRO-11 programming calls supported by PRO/DECnet.

It also assumes that you have a working knowledge of networking concepts.

INTENDED AUDIENCE

This manual is designed for application developers who are responsible for
creating PRO/DECnet applications.

STRUCTURE OF THE MANUAL

This manual consists of 5 chapters and 8 appendices.

[0 Chapter 1 discusses special software considerations when developing
PRO/DECnet applications.

[J Chapter 2 details high level languages supported by PRO/DECnet.
The programming calls for each language (FORTRAN, COBOL, BASIC,
and PASCAL) are described in alphabetical order. Each description
includes the call's format, argument(s) and associated error/comple-
tion status codes.

vii

Chapter 3 discusses the use of MACRO-11 for PRO/DECnet task-to-
task communication. The relevant MACRO-11 programming calls are
described in a manner similar to the calls in Chapter 2.

Chapter 4 discusses the use of the Direct Line Access Controller (DLX)
within an Ethernet networking environment. DLX calls are described in
a manner similar to the calls in Chapters 2 and 3.

Chapter 5 discusses remote file access capabilities available to
PRO/DECnet users.

NOTE

All references to FORTRAN imply FORTRAN-77, and all references to
BASIC imply BASIC-PLUS-2 throughout this manual. In addition, all
numbers supplied for the various arguments are decimal values un-
less otherwise noted.

This manual also contains 8 appendices:

a

a

Appendix A discusses in greater detail DECnet terms and concepts
which appear throughout this manual.

Appendix B discusses error codes which are returned to the I/0 status
block for a rejected connect request or an aborted logical link.

Appendix C lists values for specific network object types.

Appendix D provides information on MACRO-11 connect block offsets
used in network connects and accepts.

Appendix E lists error/completion status codes for FORTRAN, CO-
BOL, and BASIC programming calls.

Appendix F lists error/completion status codes for MACRO-11 pro-
gramming calls.

Appendix G summarizes remote file access error/completion status
codes.

Appendix H contains programming examples for FORTRAN, COBOL,
BASIC, PASCAL, MACRO-11 and DLX calls.

viii

ASSOCIATED DOCUMENTS

Users of this manual should have one of the following Digital documents avail-

able for reference:

PRO/RMS-11 Macro Programmer’s Guide,

Order No. AA-P099A-TK

RSX-11M/M-PLUS Executive Reference Manual,

Order No. AA-L675A-TC

Tool Kit User’s Guide,
Order No. AA-N617A-TK

VAX-11 Record Management Services Reference Manual,

Order No. AA-D0O31D-TE
GRAPHIC CONVENTIONS

UPPERCASE LETTERS

lowercase italic type

commas, periods,
parentheses ()

square brackets []

angle brackets < >
and commas

braces { }

represent actual characters that you must enter
as shown.

indicates variables whose value you must specify.

must be included when shown as part of the call
syntax. They are not documentation conventions.

enclose optional arguments. You must specify
any argument not enclosed by brackets. Do not
type the brackets when you code a call. They are
documentation conventions and are not part of
the call syntax.

must be included when shown as part of a macro
format. To omit an optional argument, do not
specify a value for it but include its delineating
coma only if there are no trailing arguments.

enclose several keywords or arguments of which
only one can be selected for a particular com-
mand or call. Do not include them as part of a
command or call.

INTRODUCTION

DECnet is the name given to a family of software and hardware communica-
tions products that provide a network interface for Digital operating systems.
The relationships between the various network components are governed by a
set of standards called the Digital Network Architecture (DNA). Enhanced net-
work capabilities and functions are incorporated into the different DECnet
phases.

DECnet enables multiple computer systems to participate in communications
and resource sharing within a specific network. The individual computer sys-
tems, called nodes, are connected by physical communications paths. Tasks
that run on different nodes and exchange data are connected together by
logical links. Logical links are temporary software information paths estab-
lished between two communicating tasks in a DECnet network.

This manual describes the following network activities for Phase IV DECnet:

[J Task-to-task communication - DECnet enables two programs to ex-
change data. These programs can reside in the same or in different
nodes.

[J Remote file access - DECnet provides both user and program access
to files that reside on remote nodes. Remote file access subroutines
allow you to transfer files between nodes, and to manipulate files resid-
ing on the remote nodes.

[0 Distributed data base access - Any network node can access informa-
tion stored on any other network node. This feature enables you to use
information stored in multiple data bases across the network.

CHAPTER 1
GETTING STARTED WITH PRO/DECnet

1.1 OVERVIEW

PRO/DECnet software allows Professional 350 computers to connect to other
DECnet systems on the Ethernet. PRO/DECnet is an end node only implemen-
tation of the Phase IV Digital Network Architecture. It is compatible with other
Phase Il and Phase IV DECnet products.

Figure 1-1 shows several Professional 350 systems with DECNAs connected
directly to an Ethernet network via H4000 Ethernet transceivers. This network
topology also illustrates the compatibility of Professional 350s with remote
VAX-11 host systems.

PRO-350 VAX 11/730
DECNA DEUNA
ETHERNET
DECNA
DELNI
PRO-350 ‘\\q\\\\
DECNA DEUNA
PRO-350 VAX 11/780
DECNA
PRO-350
Figure 1-1

Connecting PRO/DECnet Nodes to an Ethernet

1-1

1-2 GETTING STARTED WITH PRO/DECnet

The PRO/DECnet software features:

O

O

Supports multiple, simultaneous logical links between a Professional
350 and any other Phase Ill or Phase |V DECnet system.

Supports task-to-task communication between a Professional 350 and
any other Phase lll or Phase IV DECnet system.

Provides for high speed resource sharing within a local area network.
Offers various network management and maintenance functions.

Provides the transport facilities that permit programs utilizing RMS-11
V2.0 to access remote files.

NOTE

When the Professional Tool Kit resides on a Professional 350 com-
puter, it is called the PRO/Tool Kit; when it resides on a host - either
VAX/VMS or a PDP-11 running RSX-11M/M-PLUS - it is referred to
as the Professional Host Tool Kit or, more commonly, the Host Tool
Kit, for short.

1.2 PRO/DECnet APPLICATION DEVELOPMENT CYCLE

There are several steps involved in the development of a PRO/DECnet appli-
cation. They include:

1.

2.

Writing the application and the application user interface

Compiling and task building the application (either on a host system or
on a Professional)

Writing the application installation file

Transferring the application to the Professional (when developing pro-
grams on a Professional Host Tool Kit system)

Installing, executing and debugging the application

Copying the application to a diskette with the Application Diskette
Builder

This chapter focuses on the libraries used by the Professional Application
Builder (PAB) when you are building PRO/DECnet tasks - Step 2. It details the
format and contents of PRO/DECnet application and object installation files -

Step 3.

However, it does not discuss the complete applications development cycle.
This information is documented in separate manuals or manual sets written
specifically for the Host Tool Kit and the PRO/Tool Kit.

GETTING STARTED WITH PRO/DECnet 1-3

1.3 REQUIRED LIBRARIES FOR BUILDING PRO/DECnet TASKS

PRO/DECnet tasks are built with the Professional Application Builder (PAB).
Before creating a PRO/DECnet task with PAB, you must create a command file
(.CMD) and an overlay descriptor file (.ODL). In some cases, you can simply
edit a command file automatically produced by certain Tool Kit language com-
pilers.

PAB uses the command and descriptor files to define how libraries are refer-
enced, and to specify special purpose buffers, logical unit numbers (LUNs)
and event flags. (For instructions on how to invoke PAB, refer to the Tool Kit
manual specific to your programming language.)

The following language libraries are required by PAB at task build time:
LB:[1,5]NETSUB.OLB

The NETSUB.OLB library contains a set of DECnet communication sub-
routines. PRO/DECnet applications written in FORTRAN, COBOL, and BA-
SIC requiring task-to-task communication must be linked to this library.

LB:[1,5]NETLIB.MLB

The NETLIB.MLB library provides MACRO-11 macro definitions used by
PRO/DECnet applications which require task-to-task communications.

LB:[1,5]NETDEF.PAS

The NETDEF.PAS library is a PASCAL file. It defines the various communi-
cation calls used by network programs written in PASCAL.

1.3.1 Programming In PASCAL

In order to use the DECnet communications calls for PASCAL programs, the
PASCAL library must be referenced at the beginning of your source file. The
command line should always be written as follows:

AINCLUDE ‘LB:[C1:3INETDEF.PAS’

1.4 CREATING PRO/DECnet APPLICATION AND OBJECT
INSTALLATION FILES

PRO/DECnet applications allow you to access network functions like network
“phone” or “mail”. They also enable you to access remote nodes for informa-
tion sharing and program development.

In comparison, PRO/DECnet object tasks perform specific network services.
They are automatically invoked whenever a request is issued from another
node. Each user installed object task has a menu item. This menu line is
required for the proper removal of the object from the system.

1-4 GETTING STARTED WITH PRO/DECnet

Some object tasks inform you of any remote requests which may require a
personal response. For example, the phone listener tells you that someone is
calling you from another Professional. Other object tasks place status mes-
sages on your system message board. For example, the mail listener tells you
when new mail has been delivered to your Professional.

Sometimes, the application and object task are combined into one application.
Whenever you install or remove a “combined” application, you are actually
installing or removing both the application and the object. The PRO/DECnet
Phone utility is an example of a combined package. Only the phone applica-
tion is presented as an application menu item. The phone object simply runs
as a background task when you select this particular application.

Application and object installation files identify all files and task images that
are part of an application or object task. These files are needed for both the
installation and removal of PRO/DECnet applications and objects.

You should use the disk/diskette services menu for installing and removing
applications and objects. See the Professional 300 User’s Guide: Hard Disk
System, AA-N603A-TH, for details.

1.4.1 Formatting an Installation File

An application or object installation file must have an .INS file type and the
following command format:

IThis is the installation file
NAME “menu name"

FILE file name/value

INSTALL file name/value

RUN task name

You should refer to the Tool Kit User’s Guide for additional details.

1.5 PRO/DECnet APPLICATION INSTALLATION FILES

The standard installation file is used for all PRO/DECnet applications which
are not combined with PRO/DECnet objects. You should follow the syntax
rules documented in the Tool Kit User’s Guide.

GETTING STARTED WITH PRO/DECnet 1-5

Example

Here is a sample .INS file for a network virtual terminal application:

I NetworK Virtual Terminal
|

Name "WYirtual Terminal"
|

I Specify all necessary files
|

File NUT.TSK/Delete
File NUTMENU.MNU/Delete
File NUTMESS.MS5G/Delete

File NUTHELP.HLP/Delete
!

! Specify what tasKs and libraries must be installed
1

install NUT,TSK/Task
!

I Specify what to run when this application is selected
|

Rurn NUT

1.6 PRO/DECnet OBJECT INSTALLATION FILES

A PRO/DECnet object uses the standard application .INS file with some modi-
fications. The differences include:

(0 a standard “application” task
[0 two executable tasks for each object task
[0 a description file for each object task

A network object task traditionally has no real application task to be installed
or run whenever it is selected by the user. However, the Professional Opera-
ting System (P/0S) requires that an “application” task be supplied for each
object task. These application tasks are used to install and later remove an
object from the system. For this reason, PRO/DECnet supplies an application
task called LB:[ZZDECNET]DAX.TSK. When this task is run, it tells you that the
selected application is actually a PRO/DECnet object and should not be se-
lected on its own.

1-6 GETTING STARTED WITH PRO/DECnet

Two executable tasks are provided for each object task. The DECnet applica-
tion installation task, LB:[ZZDECNET]DAI.TSK, performs all needed functions
to add the object to the network. The second task named the DECnet applica-
tion removal task, LB:[ZZDECNET]DAR.TSK, performs the necessary steps to
remove the task from the network.

Both tasks must be “executed” during the installation and removal of a
PRO/DECnet object. A special “EXECUTE” directive defines the object to the
network and must be issued with both procedures. The system requires that
these tasks are executed in the proper order. The DAR task must be executed
before any files are deleted during removal. The DAI task must be executed
after all files are copied during installation. This specific requirement is illus-
trated in a later example.

As noted earlier, information must be provided about the object. The
PRO/DECnet object description file, DECNET.ODS, contains the required de-
scription. This file is included on the installation diskette and must be copied to
the application directory on the hard disk. The contents of DECNET.ODS are
described in Section 1.8.

Example

Here is a sample .INS file for a network File Access Listener:

!

! Network File Access Listener

!

Name "File Access Listener"

!

! Remove the obdect from the networK data base if
! performing the REMOVE operation. This must come
! before the "FILE" directives.

|

Execute [ZZDECMNETIDAR.TSK/Rem
!
I Specify all necessary files to copv/delete
!
File FAL.TSK/Delete
File DECNET.O0DS/Delete
|

Insert the obdect in the network data base if
! performing an INSTALL orperation. This must
! come after the "FILE" directives.
!
Execute [ZZDECNETIDAI.TSK/Ins
|
I Specifyvy what tasKs and libraries must be
I installed and run. Since the only task is
' an obdects install and run DAX to inferm
! the user that this application should not
! be selected.
1
1
1

Note that installation of the FAL task is
! specified using the DECNET.ODS file.

!
Install [ZZDECNETIDAX.TSK/Task
Run DAX

GETTING STARTED WITH PRO/DECnet 1-7

1.7 COMBINED PRO/DECnet APPLICATION/OBJECT INSTALLATION
FILES

The installation file for a combined PRO/DECnet application/object extracts
information from both types of .INS files. The resultant file resembles an object’
INS file with some exceptions. The application task [ZZDECNET]DAX.TSK
should not be referenced in any command line. Instead, you should specify
command lines for installing and running the appropriate application task.

Example

Here is a sample .INS file for the network Phone utility:

[

! NetworKk Phone utilitys application and listener
1

Name "PRO/DECnet Phone"

!

! Remove the obdect from the network data base if
I performing REMOVE oreration, This must come

! before the "FILE" directives.

I

Execute [ZZDECNETIDAR.TSK/Rem
!
! Specify all necessary application files to copv/delete
!
File PHONE.TSK/Delete
File SETUP.TSK/Delete
File PHONE.MNU/Delete
File PHONE.HLP/Delete
File PHONE.MS8G/Delete
!
I Specify all necessary obJect files to corpv/delete
!
File PHONET.TSK/Delete
File SETNET.TSK/Delete
File DECNET.ODS/Delete
1
Insert the obdect in the network data base if
rperforming an INSTALL oreration, This must
come after the "FILE" directives.

Specify what tasKs and libraries must hbe
installed and run, Since there is a real
applications use that.

!

!

!

!

Execute [ZZDECNETIDAI.TSK/Ins

|

|

1

|

1

! Note that installation of the PHONET and SETNET
! tasKs are specified using the DECNET.ODS file.

!

Install SETUP.TSK/Task
Install PHONE.TSK/Task
Run SETUP

1-8 GETTING STARTED WITH PRO/DECnhet

1.8 PRO/DECnet OBJECT DESCRIPTION FILES

The DECNET.ODS file defines a PRO/DECnet object task. It is used by the DAI
and DAR tasks during the installation and removal of applications. This file is
included along with the .INS file in a common directory on the installation
diskette. It must also be copied to the hard disk. This is done by specifying the
file name with a FILE directive in an .INS file.

There are several commands and qualifying switches which can be placed in
an object descriptor file. These commands can be abbreviated to three alpha-
betic characters.

NOTE

The file name argument, used in a DECNET.ODS command, adheres
to the standard RSX-11M/M-PLUS conventions for file specifications.
A file name contains up to 9 alphanumeric characters. It is followed by
a 3 character alphanumeric file type.

An optional directory is also accepted in the file name. Only include it
when a task is placed in a special directory by the .INS file. Otherwise,
P/OS uses a default directory.

You can include comment lines anywhere in the command sequence.
You begin a comment line with an exclamation point (!) and terminate
it with a carriage return GED. All text between this delimiter is a com-
ment.

1.8.1 OBJECT Command

The OBJECT command indicates that the specified file is a PRO/DECnet ob-
ject task file. This command requires the file.ext argument and the /TASK-
NAME switch.

Format
OBJECT [dir]file.ext /TASKNAME=tsknam /COPIES=copnum

/NUMBER=0bjnum
/VERIFICATION=vertyp

INSPECT
OFF
ON

GETTING STARTED WITH PRO/DECnet 1-9

Qualifying Switches
/TASKNAME=tsknam

specifies the task name to use when installing and defining the object. A task
name consists of 1to 6 alphanumeric characters. It can also contain periods (.)
and dollar signs ($).

/COPIES=copnum

specifies the number of copies of an object task to be simultaneously started
by PRO/DECnet. This switch can only be used for numbered objects.

If specified, a new copy of an object is started up for each new connect
request. The total number of copies can range from 1 to 8.

If you omit the /COPY switch, a single copy of the object task must be able to
handle multiple connects.

NOTE

When you use the /TASKNAME switch for naming a “multi-copy ob-
ject”, the task name must contain 3 alphanumeric characters followed
by 3 dollar signs ($). You must also use the /NUMBER switch to
specify an object type number from 1 to 255.

/NUMBER=0bjnum

specifies the object type number used by the source task when connecting to
the object. This number can range from 0 to 255.

A named object is only referenced by its task name. As a result, its object type
number is always 0. Do not include a /NUMBER switch when specifying a
named object.

A numbered object has an object type number ranging from 1 to 255. Object
type numbers 1 to 127 are reserved for DECnet-specific tasks. Numbers 128 to
255 are reserved for user-written tasks. (Refer to Chapters 2 and 3 for a
discussion of named and numbered objects.)

1-10 GETTING STARTED WITH PRO/DECnet

/VERIFICATION=vertyp

specifies the degree to which you want access to a network object. There are
three different options available for verifying incoming connect requests. If no
switch is supplied, a default value of OFF is assumed.

INSPECT verifies the user ID and password supplied by the source pro-
gram. The connect request is automatically forwarded to the
object task regardless of the outcome.

OFF allows connect requests to be passed along to the object with-
out checking access authorization. This option is always used
for named objects.

ON verifies the user ID and password supplied by the source pro-

gram. If there is no exact match, the connection request is
rejected, and the object task does not receive the request.

1.8.2 RUN/INSTALL Command

The RUN/INSTALL command causes the specified set-up task to run prior to
installation of an application or at system startup. Before running an object
task, certain initialization operations must be performed such as setting sys-
tem parameters or defining system logical names.

This command requires the file.ext argument, and the /INSTALL and /TASK-
NAME switches.

Format
RUN [dir]file.ext/INSTALL/TASKNAME=tsknam
Qualifying Switches
/INSTALL
directs the set-up task to run prior to installing an application.
/TASKNAME=tsknam
specifies the task name to use when running the set-up task. A task name

consists of 1 to 6 alphanumeric characters. It can also contain periods (.) and
dollar signs ($).

1.8.3 RUN/REMOVE Command

The RUN/REMOVE command causes a tear-down task to run when an object
application is removed from the system. This command enables required tear-
down procedures to take place such as deleting logical names.

This command requires the file.ext argument, the /REMOVE and /TASKNAME
switches.

GETTING STARTED WITH PRO/DECnet 1-11

Format

RUN [dir]file.ext/REMOVE/TASKNAME=tsknam
Qualifying Switches
/REMOVE
directs the task file to run prior to removing an application.
/TASKNAME=tsknam

specifies the task name to use when running the tear-down task. A task name
consists of 1 to 6-alphanumeric characters. It can also contain periods (.) and
dollar signs ($).

Examples

Here is a sample DECNET.ODS file for a File Access Listener (FAL):

NetworK File Access utilitvy» obdect definition

Define the FAL Listener as a PRO/DECnet obdect.
This obdect has a specific obdect tvrpe number,» and
requires access verification.

There is no set-upP or tear-down task to run.

I
I
|
I
I
1
I
I
|
OBJECT [ZZDECNETIFAL.TSK/TAS=FAL$%$$/NUM=17/VER=0N/COP=5

Here is a sample DECNET.ODS file for a network Phone Listener:

NetworKk Phone utilitys obdect defintion

This obJdect is connected to by tasK name» so does not

1
i

!

I Define the Phone Listener as a PRO/DECnet obJdect.

i

I require an obdect number or verification definition.
1

OBJECT PHONET.TSK/TASKNAME=N.PHOL

i
I' Run the Phone Listener set-urp tasK at svystem startup

I time., This task defines a series of lodical names to

I he used by the Phone Listener when it is automaticallvy
' run by PRO/DECnet.
|
i
|
i
|

No tear-down tasK is reauired when the aprlication is
removed, The lodical names will be deleted when the

system 1is next powered down.

RUN SETNET.TSK/INSTALL/TASKNAME=N.PHOS

1-12 GETTING STARTED WITH PRO/DECnet

1.9 PRO/DECnet PROGRAMMING CONSIDERATIONS

The following programming suggestions can assist you in writing and develop-
ing your PRO/DECnet applications:

1.

COopY

Using a Trace Routine - You can add a trace routine to your
PRO/DECnet program. This routine can assist you in collecting spe-
cific packets of data or allow you to set breakpoints at selected loca-
tions for examining specific instructions.

Debugging an Object Task - When you use a Professional 350 to
debug an object task, you should select the PRO/Tool Kit from the
Applications Menu. If the program stops executing, having an active
PRO/Tool Kit will prevent your system from crashing.

Checking Software Compatibility - When creating PRO/DECnet pro-
grams, you should test them against a set of specific objectives. Is
your task compatible with other tasks on your network? Can your task
satisfy the requests of remote tasks?

Copying Files - Here are two cases when you should be careful about
the use of the COPY command:

[0 When copying either a Frame Development Tool (FDT) menu, a
HELP file or a message file from a VAX/VMS node to your Profes-
sional 350 node, you must execute the COPY command from the
Professional. The VMS COPY command does not use the block
copy mode which is required by Professional systems for these
transferring files. If the VMS command is used, you can expect a
“record too long” error message displayed on your screen.

[0 When you use P/OS DCL commands to access remote files, you
must be aware of any differences in system conventions. If the file
name syntax used on the remote system differs from the P/OS
format, you should place quotes around the complete file name
specification. The use of quotes is required for most VAX/VMS
device and directory specification strings.

For example:
UMSNOD"HARDY OLLIE"::"USER$:[HARDY.MEMOIFILEL ,MEM" *.%

Here, a VMS file from device USER$ and directory [HARDY.MEMO)]
was copied to a Professional system.

Error messages reflect a condition that prevented a command from executing
properly. In most cases, the situation can be corrected and you can reissue the
command. Follow these simple rules when writing a PRO/DECnet object task:

GETTING STARTED WITH PRO/DECnet 1-13

Problem 1 — Duplicating Object Task Names

When duplicated task names are found, PRO/DECnet displays an error
message indicating the problem.

Solution

Assign task names to your application which are different from existing
system task names. For OBJECT and RUN command task names,
begin the names with the letter “N” followed by a period (.). For exam-
ple, use “N.PHOS” for a phone set-up task or “N.PHOR” for a phone
tear-down task. This solution does not apply to “multi-copy” objects.
(See Section 1.8.1 for more details.)

Problem 2 - Duplicating Object Type Numbers
PRO/DECnet does not install an object task using a number already
assigned to an installed task. An error message is displayed on the

system message board.

Solution

Whenever possible, you should write your object task as a named
object with object type number equal to 0.

NOTE

For named objects, the verification switch can only be set to
“OFF”. If you want to define the setting as either “ON” or
“INSPECT"”, your object task must be numbered.

Problem 3 - DECNET.ODS File Errors
When an object task is installed, PRO/DECnet analyzes the DEC-
NET.ODS file format. If any errors are found, an error message is
displayed.

Solution

You should debug the file using the appropriate tools and repeat the
installation procedure.

CHAPTER 2

HIGH LEVEL LANGUAGE
COMMUNICATION CALLS

DECnet provides a set of subroutines for PRO/DECnet applications requiring
task-to-task communication. These applications can be written in FORTRAN,
COBOL, BASIC, and PASCAL. This chapter discusses the subroutine calls in
alphabetical order. A description of each subroutine call includes its function,
format, argument list, and associated error/completion codes. Unless other-
wise noted, decimal values are supplied for all arguments discussed in this
chapter.

If you encounter an unfamiliar DECnet concept or term, you should refer to
Appendix A for more details.

2.1 TASK BUILDING

When you build PRO/DECnet tasks on a host system, you must invoke the
Professional Application Builder (PAB). If you are building them on a Profes-
sional, you must invoke PAB by issuing a LINK command.

These types of tasks must also be linked to the library [1,5]NETSUB.OLB. To

do this, add LB:[1,5]NETSUB/LB either to the task build command file or the
overlay description file.

2-1

2-2 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.2 ASSIGNING LOGICAL UNIT NUMBERS

You can assign logical unit numbers (LUNSs) for calls to the network (NS:) at
task-build time or at run time. These specified LUNs must be assigned to NS:
before they can be used in any network calls.

You may assign the LUN used to open the network (OPNNT) at task build time.
In this case, you should not specify it in an OPNNT call. The symbol .MBXLU
can define the LUN in a GBLDEF as shown below:

GBLDEF=.MBXLUzx

This option instructs the task builder to define all global references to .MBXLU
as the value x.

NOTE

After identifying the correct number of LUNs required for P/OS and
language specific operations, you should include that number in the
UNITS command for PAB. COBOL tasks cannot use LUN 1. it is a
reserved number. In addition, PASCAL tasks should use LUNs from
25 through 40.

2.3 ESTABLISHING AN ACTIVE NETWORK TASK

The first DECnet call in your program must be an open call. An open call
allows your task to access the network. You can use one of these forms:

OPNNT Establishes your task as an active network task and creates a
network data queue for the task.

OPNNTW Performs the same functions as OPNNT. This version of the call
causes the issuing task to stop executing until the call has fin-
ished processing.

Once an open call has been issued, you can establish several logical link
connections for task-to-task communication.

2.4 TERMINATING NETWORK TASK OPERATIONS

A task can terminate network operations by issuing a close call in one of these
forms:

CLSNT Terminates a task’s network activity, aborts its established logical
links, and frees all its network logical unit numbers.

CLSNTW Performs the same functions as CLSNT. This version of the call
causes the issuing task to stop executing until the call has fin-
ished processing.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-3

2.5 EXAMINING 1/0 STATUS BLOCKS

All high level language calls, except for WAITNT, specify the I/0 status block in
their respective argument lists. This block contains completion status informa-
tion on return from the completed call. The I/0 status block takes these forms:

FORTRAN: 1- or 2-word single-precision integer array

COBOL: 1- or 2-word elementary numeric data item
BASIC: 1- or 2-word integer array
PASCAL: 1- or 2-word single-precision integer array

BACC, BFMTO, and BFMT1 calls use one-word status blocks. For high level
language tasks, a value of -1 or .TRUE. indicates that the call completed
successfully; a value of 0 or .FALSE. indicates that the call contained an invalid
argument.

All other calls use 2-word /0O status blocks. The first word contains an
error/completion code for the call. The codes fall into three categories:

(0 A positive value means the successful completion of the call.
O A negative value means an improper execution of the call.

[0 A null value (0) indicates that the call has not finished processing.

When a call fails, you should examine the value of the code. A summary of
code values is provided in Appendix E. Applicable error/completion codes
can be found in each call description in this chapter.

The contents of the second status word vary with the call. Refer to the individ-
ual call descriptions for more information.

2.6 ACCESS CONTROL INFORMATION

Access control information is often required by a target system in order to
prohibit unauthorized access to its resources. This information can consist of
user ID, password, account numbers, device names and directory names for a
target node. The specific requirements are described in the target system’s
user documentation. You can also define an alias for remote file access. An
alias is a permanent “nickname” that you can assign to a node. It contains
default access control information such as user ID, password and account
number.

2.7 FLOW CONTROL

DECnet provides a flow control mechanism which prevents the overflow of
available buffer space. It forces synchronization between sending and receiv-
ing tasks. When the flow control is ON, data is sent from the source task only
after the target task has indicated adequate buffering capabilities, and has
issued a receive call. (See Section 3.8 for a description of flow control with
MACRO-11 tasks.)

2-4 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.8 CONVENTIONS USED IN THIS CHAPTER

The following conventions are used in the call and argument descriptions and
examples in this chapter:

UPPERCASE LETTERS represent actual characters that you must enter

as shown. - -
lowercase italic type indicates variables whose value you must specify.
commas, periods, must be included when shown as part of the call
and parentheses () syntax. They are not documentation conventions.
square brackets [] enclose optional arguments. You must specify

any argument not enclosed by brackets. Do not
type the brackets when you code a call. They are
documentation conventions and are not part of
the call syntax.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-5

2.9 OPTIONAL ARGUMENTS IN HIGH LEVEL LANGUAGE CALLS

Many high level language calls contain both paired and single optional argu-
ments. The following sections detail formatting conventions specific to each
programming language.

2.9.1 Using Paired Optional Arguments

There are specific rules which you must follow when using paired optional
arguments. The differences are discussed below:

Sample Argument List

arg1,arg2,arg3,[larg4,arg5),[arg6,arg7]

where [arg4,arg5] and [arg6,arg7] are paired optional arguments.

1. Paired optional arguments cannot be separated from each other. You
must specify both or omit both from a call.

O

When paired optional arguments are omitted from FORTRAN
and PASCAL calls, you must keep the arguments’ positional
commas as part of the list.

FORTRAN and PASCAL

argl,arg2,arg3,,[arg6,arg7]

When paired optional arguments are omitted from COBOL and
BASIC calls, you must specify 0 for each omitted argument.

COBOL
argi,arg2,arg3,0,0,[arg6,arg7].
BASIC

argl,arg2,arg3,0,0,[arg6,arg7]

2. An argument list can end with the last required argument contained in
the string. You can omit any paired optional arguments which trail it. In
the following example, arg3 is the last required argument in a list of
seven arguments. Paired optional arguments [arg4,argb] and
[arg6,arg7] are omitted from the example.

FORTRAN

argi,arg2,arg3

2-6 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.9.2 Using Single Optional Arguments

Single optional arguments can also be omitted from a call’s argument list. You
should observe the same language conventions as previously discussed.

Sample Argument List
argi,larg2],arg3
where [arg2] is a single optional argument.
The following examples show the argument list without arg2.
FORTRAN
arg1,,arg3
COBOL
arg1,0,arg3.
BASIC
arg1,0,arg3
PASCAL

arg1,,arg3

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-7

2.10 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

The following sections describe the high level language calls and provide you
with specific guidelines. The calls are summarized in the table below:

Table 2-1
High Level Language Communication Calls

Call Function

ABTNT Abort a logical link.

ACCNT Accept a logical link connect request.
BACC Build access control information area.
BFMTO Build a format 0 destination descriptor.
BFMT1 Build a format 1 destination descriptor.
CLSNT End a task’s network operations.
CONNT Request a logical link connection.

DSCNT Disconnect a logical link.

GLNNT Get local node information.

GNDNT Get data from network data queue.
OPNNT Access the network.

RECNT Receive data over a logical link.

REJNT Reject logical link connect request.
SNDNT Send data over a logical link.

WAITNT Suspend the execution of a calling task.

XMINT Send interrupt message over a logical link.

2-8 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

2.10.1 Common Argument Definitions

Commonly used arguments are defined in the following section. Each argu-
ment may have a general definition and three language-specific definitions.
The information is not repeated with each intertask communication call.

outsize, outmessage

define optional user data sent with a specific call. One argument cannot be
used or omitted without the other one.

outsize specifies the length of the optional message. The valid
range is 1- to 16-bytes/characters.

outmessage specifies the array or string containing the outgoing user
message.

EXCEPTION

To omit these arguments from the CONNT call in COBOL and BASIC,
you must also omit the insize and inmessage arguments. Despite this,
you can still use insize and inmessage and simply specify a null value
(0) for outsize and outmessage.

status

specifies the array or string containing completion status information on return
from a call. The status values for FORTRAN, COBOL, BASIC and PASCAL
tasks are listed below:

FORTRAN

status(1) returns an error/completion code

status(2) contains 0 or a value which is DECnet call-dependent
coBOL

status(1) returns an error/completion code

status(2) contains 0 or a value which is DECnet call-dependent
BASIC

status%(0) returns an error/completion code

status%(1) contains 0 or a value which is DECnet call-dependent

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-9

PASCAL
status(1) returns an error completion code
status(2) contains 0 or a value which is DECnet call-dependent

EXCEPTION

For COBOL and BASIC tasks, the status argument cannot be omitted
from a call. However, you can specify 0 to prevent status information
from being returned from a call.

tgtblk

specifies the array or string where the access control information and destina-
tion descriptor are defined by the BACC and BFMTO or BFMT1 calis. This
array is passed to a target task by the CONNT call.

NOTE

A FORTRAN tgtblk array must start on an even byte (word) boundary.

2-10 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

ABTNT
Abort a Logical Link

2,10.2 ABTNT - Abort a Logical Link

The ABTNT call causes the immediate disconnection of a specified logical link.
The associated LUN can be reassigned to another logical link. Along with the
abort message, the issuing task can transmit an optional 1- to 16-bytes/char-
acters message to the other task.
Formats
FORTRAN

CALL ABTNT[W] (lun,[status],[outsize,outmessage])
COBOL

CALL “ABTNT[W]” USING lun,[status],[outsize,outmessage].
BASIC

CALL ABTNT[W] BY REF (lun%,[status%()],[outsize%,outmessage$])
PASCAL

ABTNT[W] (lun,[status],[outsize,outmessage])
Arguments
lun
identifies the logical link to abort. If the task initiated the connection, specify
the LUN used in the CONNT call. If the task accepted a connect request,
specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from ABTNT. (See Section 2.10.1.)

outsize,outmessage

specify an optional message to be sent by a task. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-11

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

COBOL

lun integer variable or constant

status 2-element integer array

outsize integer variable or constant
outmessage 1- to 16-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

outsize% integer variable or constant
outmessage$ 1- to 16-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.
-2 No logical link established for the specified LUN.
-9 The task is not a network task. OPNNT did not execute successfully.

-13 An invalid buffer argument; the outmessage buffer is outside the user
task’s address space. For FORTRAN, it is not word aligned.

-40 A directive error occurred. See the RSX-11M/M-Plus Executive Refer-
ence Manual.

2-12 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples
FORTRAN
CALL ABTNTW (CONLUN,IOST,OUTSIZ,0UTMSG)
CcoBOL
CALL “ABTNTW” USING CONLUN,IOST,0UTSIZ,0UTMSG.
BASIC
CALL ABTNTW BY REF (CONLUN%,I0ST%(),0UTSIZ%,0UTMSG$)
PASCAL

ABTNTW (CONLUN,IOST,OUTSIZ,0UTMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-13

ACCNT

Accept Logical Link
Connect Request

2.10.3 ACCNT - Accept Logical Link Connect Request

The ACCNT cali establishes a logical link between the target task and the
source task. Before calling ACCNT, the source task must call GNDNT and
remove the connect request from the network data queue. The target task can
return an optional 1- to 16-bytes/characters message to the source task.
Formats
FORTRAN

CALL ACCNTIW] (lun,[status],mailbuf,[outsize,outmessage])
COBOL

CALL “ACCNT[W]” USING lun,[status],mailbuf,
[outsize,outmessage].

BASIC

CALL ACCNT[W] BY REF (lun%,[status%()],mailbuf$,
[outsize%,outmessage$])

PASCAL

ACCNTI[W] (lun,[status],mailbuf,[outsize,outmessage])
Arguments
lun

assigns the logical unit number for the logical link. Use this LUN in succeeding
RECNT, SNDNT, XMINT, ABTNT, and DSCNT calls.

status

specifies the array which will contain the completion status information on
return from ACCNT. (See Section 2.10.1.)

mailbuf

specifies the connect block needed to establish the connection. The connect
block was placed in mailbuf by a preceding GNDNT call. (See Section 2.10.11.)
In FORTRAN, the mail buffer must start on an even byte (word) boundary.

outsize,outmessage

specify an optional message to be sent by a task. (See Section 2.10.1.)

2-14 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

mailbuf 1- to 114-byte array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

COBOL

lun integer variable or constant

status 2-element integer array

mailbuf 1- to 114-element character string
outsize integer variable or constant
outmessage 1- to 16-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

mailbuf$ 1- to 114-element character string
outsize% integer variable or constant
outmessage$ 1- to 16-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

mailbuf 1- to 114-byte array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

Error/Completion Codes

0 Call has not completed.
1 Call completed successfully.
-1 System resources needed for the logical link are not available.

-3 The task that originally requested the connection has aborted or has
requested a disconnect before the connection could complete.

-5 The temporary link address in the mail buffer is not valid.
-8 A logical link has already been established on the specified LUN.

-9 The issuing task is not a network task. OPNNT did not execute success-
fully.

-13 An invalid buffer argument. Either the mailbuf or outmessage buffer is
outside the user task address space. For FORTRAN, mailbuf is not word
aligned.

-40 A directive error occurred. See the RSX-11M/M-Plus Executive Refer-
ence Manual.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-15

Examples
FORTRAN

CALL ACCNTW (ACCLUN,IOST,MLBX,0UTSIZ,0UTMSG)
coBOL

CALL “ACCNTW” USING ACCLUN,IOST,MLBX,0UTSIZ,0UTMSG.
BASIC

CALL ACCNTW BY REF (ACCLUN%,I0ST%(),MBLX$,0UTSIZ%,
OUTMSGS$)

PASCAL

ACCNTW (ACCLUN,IOST,MBLX,0UTSIZ,0UTMSG)

2-16 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

BACC

Build Access Control
Information Area

2.10.4 BACC - Build Access Control Information Area

The BACC call specifies the access control information for a connect block.
For accessing files or performing privileged functions on other PRO/DECnet
nodes, a user ID and a password are required access control information.
Nodes with other system software may also require an account number.

You should use BACC only when the access control information is required for
remote access of systems. Before calling BACC, the task must define a 72-
element array or string in which the DECnet software will build the connect
block.

If an alias contains the required access control information, the task need not
call BACC. Instead, the program will use the access control information speci-
fied by the alias. The alias must be specified in a subsequent BFMTO or
BFMT1 call. (See Section 2.10.5 or 2.10.6.)

DECnet on the target system will check the validity of the access control
information. If it checks out, the results are passed to the target task when the
connect request is retrieved via the GNDNT call. (The GNDNT call only applies
to RSX DECnet and PRO/DECnet systems.)

Formats
FORTRAN

CALL BACC ([status],tgtblk,[usersz,user],
[passwdsz,passwd],[accnosz,accno])

COBOL

CALL “BACC” USING [status],tgtblk,[usersz,user],
[passwdsz,passwd],[accnosz,accno].

BASIC

CALL BACC BY REF ([status%],tgtblk$,[usersz%,user$],
[passwdsz%,passwd$),[accnosz%,accno$])

PASCAL

BACC ([status],tgtblk,[usersz,user],
[passwdsz,passwd],[accnosz,accnol)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-17

Arguments

status

specifies the array which will contain the completion status on return from
BACC. When BACC completes successfully, status is set to .TRUE. for FOR-
TRAN or to -1 for COBOL, BASIC and PASCAL. If there is an invalid BACC
argument, status is set to .FALSE. for FORTRAN or to 0 for COBOL, BASIC
and PASCAL. (See Section 2.10.1.)

tgtblk

specifies an array where the connect block is built. (See Section 2.10.1.)

usersz,user

specify the user ID. They are paired optional arguments. (See Section 2.9.1 for
rules on omitting them from PRO/DECnet calls.)

usersz specifies the user ID length in bytes/characters.

user specifies the 1- to 16-element array or string containing the user
ID.
passwdsz,passwd

specify the password associated with the user ID. They are paired optional
arguments. (See Section 2.9.1 for rules on omitting them from PRO/DECnet
calls.)

passwdsz specifies the password length in bytes/characters.

passwd specifies the 1- to 8-element array or string containing the
password.

accnosz,accno

specify the account number. They are paired optional arguments. (See Section
2.9.1 for rules on omitting them from PRO/DECnet calls.)

accnosz specifies the account number length in bytes/characters.

accno specifies the 1- to 16-element array or string containing the
account number.

2-18 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

status
tgtblk
usersz
user
passwdsz
passwd
accnosz
accno

CoBOL

status
tgtblk
usersz
user
passwdsz
passwd
accnosz
accno

BASIC

status%
tgtblk$
usersz%
user$
passwdsz%
passwd$
accnosz%
accno$

PASCAL

status
tgtblk
usersz
user
passwdsz
passwd
accnosz
accno

1-word integer variable

72-byte array

1-word integer variable or constant
1- to 16-byte array

1-word integer variable or constant
1- to 8-byte array .

1-word integer variable or constant
1- to 16-byte array

integer variable

72-element character string
integer variable or constant

1- to 16-element character string
integer variable or constant

1- to 8-element character string
integer variable or constant

1- to 16-element character string

integer variable

72-element character string
integer variable or constant

1- to 16-element character string
integer variable or constant

1- to 8-element character string
integer variable or constant

1- to 16-element character string

1-word integer variable

72-byte array

1-word integer variable or constant
1- to 16-byte array

1-word integer variable or constant
1- to 8-byte array

1-word integer variable or constant
1- to 16-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-19

Table 2-2
BACC Connect Block Symbolic Offsets

Length in
bytes/characters Destination Descriptor

26 Built by BFMTO or BFMT1 call

Access Control
2 User ID length

(equal to or less than 16-bytes/characters)
16 User ID
2 Password length

(equal to or less than 8-bytes/characters)
8 Password
2 Account number length

(equal to or less than 16-bytes/characters)
16 Account number
Examples
FORTRAN

CALL BACC (STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,PASWRD,
ACCSIZ,ACCNUM)

COBOL

CALL “BACC” USING STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,
PASWRD,ACCSIZ,ACCNUM.

BASIC

CALL BACC BY REF (STAT%,CONBLK$,USRSIZ%,USRNAM$,PASSIZ%,
PASWRDS$,ACCSIZ%,ACCNUMS$)

PASCAL

BACC (STAT,CONBLK,USRSIZ,USRNAM,PASSIZ,PASWRD,ACCSIZ,
ACCNUM)

2-20 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

BFMTO

Build a Format 0
Destination Descriptor

2.10.5 BFMTO - Build a Format 0 Destination Descriptor

Use the BFMTO call if the target task is installed as a numbered object. The
BFMTO call fills in the connect block with the destination node name and the
target task’s object type code. An object type code identifies a particular
DECnet program by its function and not by its task name. See Appendix C for
a list of object type codes.

Before cailing BFMTO, the task must define a 72-element array or string which
will contain the connect block. Specify its location in the tgtblk argument.

Formats
FORTRAN

CALL BFMTO ([status],tgtblk,ndsz,ndname,objtype)
coBOL

CALL “BFMTO” USING [status],tgtblk,ndsz,ndname,objtype.
BASIC

CALL BFMTO BY REF ([status%],tgtblk$,ndsz%,ndname$,0bjtype%)
PASCAL

BFMTO ([status],tgtblk,ndsz,ndname,objtype)
Arguments
status
specifies the variable which will contain completion status information on re-
turn from BFMTO0. When BFMTO completes successfully, status is set to .TRUE.
for FORTRAN or to -1 for COBOL, BASIC and PASCAL. For an invalid BFMTO
argument, status is set to .FALSE. for FORTRAN or to 0 for COBOL, BASIC
and PASCAL. (See Section 2.10.1.)
tgtblk

specifies the starting location of the connect block. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-21

ndsz
specifies the length of the target node name in bytes/characters.
ndname

specifies the location of the target node name. This name is either a node
name or an alias.

objtype

specifies the target task’'s object type code. The valid range is 1 to 255. See
Appendix C for a list of object type codes.

Argument Data Type Summary

FORTRAN

Status 1-word integer variable

tgtblk 72-byte array

ndsz 1-word integer variable or constant
ndname 1- to 6-byte array

objtype 1-word integer variable or constant
COBOL

status integer variable

tgtblk 72-element character string

ndsz integer variable or constant
ndname 1- to 6-element character string
objtype integer variable or constant

BASIC

status% integer variable

tgtblk$ 72-element character string

ndsz% integer variable or constant
ndname$ 1- to 6-element character string
objtype% integer variable or constant
PASCAL

status 1-word integer variable

tgtblk 72-byte array

ndsz 1-word integer variable or constant
ndname 1- to 6-byte array

objtype 1-word integer variable or constant

2-22 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Table 2-3
BFMTO Connect Block Symbolic Offsets

Length in decimal

bytes/characters Destination Descriptor
6 Destination node name with trailing blanks
1 Descriptor format type, which is 0 for BFMTO
1 Destination object type (1 to 255)
Descriptor Field for Format 0
18 Not used
Access Control
46 Built by a BACC subroutine
Examples
FORTRAN

CALL BFMTO (STAT,CONBLK,NDLEN,NDNAM,OBJECT)
coBOL

CALL “BFMTO” USING STAT,CONBLK,NDLEN,NDNAM,OBJECT.
BASIC

CALL BFMTO BY REF (STAT%,CONBLKS$,NDLEN%,NDNAMS$,0BJECT%)
PASCAL

BFMTO (STAT,CONBLK,NDLEN,NDNAM,OBJECT)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-23

BFMT1

Build a Format 1
Destination Descriptor

2.10.6 BFMT1 - Build a Format 1 Destination Descriptor

Use the BFMT1 call if the target task is installed as a named object. The
BFMT1 call specifies the target node name and the target task name for the
connect block. This call does not identify the target task by its function.
Formats
FORTRAN

CALL BFMT1 ([status],tgtblk,ndsz,ndname,objtype,namesz,name)
COBOL

CALL “BFMT1” USING [status],tgtblk,ndsz,ndname,objtype,
namesz,name

BASIC

CALL BFMT1 BY REF ([status%],tgtblk$,ndsz%,ndname$,objtype%,
namesz%,name$)

PASCAL

BFMT1 ([status],tgtblk,ndsz,ndname,objtype,namesz,name)
Arguments
status
specifies the variable which will contain completion status information on re-
turn from BFMT1. If the BFMT1 call completes successfully, status is set to
.TRUE. for FORTRAN or to -1 for COBOL, BASIC and PASCAL. If there is an
invalid BFMT1 argument, status is set to .FALSE. for FORTRAN or to 0 for
COBOL, BASIC and PASCAL. (See Section 2.10.1.)
tgtblk
specifies the starting location of the connect block. (See Section 2.10.1.)

ndsz

specifies the length of the target node name in bytes/characters.

2-24 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

ndname

specifies the location of the target node name. This name is either a node
name or an alias.

objtype

specifies the object type. It must be 0.

namesz

specifies the length of the target task name in bytes/characters.

name

specifies the location of the target task name.

Argument Data Type Summary

FORTRAN

status 1-word integer variable

tgtblk 72-byte array

ndsz 1-word integer variable or constant
ndname 1- to 6-byte array

objtype 1-word integer variable or constant
namesz 1-word integer variable or constant
name 1- to 16-byte array

COBOL

status integer variable

tgtblk 72-element character string

ndsz integer variable or constant
ndname 1- to 6-element character string
objtype integer variable or constant
namesz integer variable or constant

name 1- to 16-element character string
BASIC

status% integer variable

tgtblk$ 72-element character string

ndsz% integer variable or constant
ndname$ 1- to 6-element character string
objtype% integer variable or constant
namesz% integer variable or constant

name$ 1- to 16-element character string
PASCAL

status 1-word integer variable

tgtblk 72-byte array

ndsz 1-word integer variable or constant
ndname 1- to 6-byte array

objtype 1-word integer variable or constant
namesz 1-word integer variable or constant

name 1- to 16-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-25

Table 2-4
BFMT1 Connect Block Symbolic Offsets

Length in decimal

bytes/characters Destination Descriptor

6 Destination node name with trailing blanks

1 Descriptor format type, which is 1 for BFMT1
1 Destination object type, which is 0 for BFMT1

Descriptor Fields for Format 1

2 Destination task name length
(equal to or less than 16-bytes/characters)

16 Destination task name
Access Control
46 Built by a BACC subroutine

Examples
FORTRAN

CALL BFMT1 (STAT,CONBLK,NDLEN,NDNAM,OBJTYP,TSKLEN,
TSKNAM)

COBOL

CALL “BFMT1” USING STAT,CONBLK,NDLEN,NDNAM,OBJTYP,
TSKLEN,TSKNAM.

BASIC

CALL BFMT1 BY REF (STAT%,CONBLKS$,NDLEN%,NDNAM$,0BJTYP%,
TSKLEN%, TSKNAMS$)

PASCAL

BFMT1 (STAT,CONBLK,NDLEN,NDNAM,OBJTYP,TSKLEN,TSKNAM)

2-26 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

CLSNT

End Network Task
Operations

2.10.7 CLSNT - End Network Task Operations

Before issuing CLSNT a task should disconnect all logical links and remove
and process all messages on its network data queue. The CLSNT call discon-
nects the task from the network and aborts any active logical links. Any mes-
sages, except for connect requests, in the task’s network data queue are
discarded by this operation.
PRO/DECnet will save in a general delivery queue any connect requests
received during CLSNT processing. After the task exits, the system software
restarts it automatically. After restart, the task may issue an OPNNT call which
establishes a network data queue. PRO/DECnet then places any connect re-
quests on the task’s network data queue.
Formats
FORTRAN

CALL CLSNT[W] [(status)]
CcoBOL

CALL “CLSNT[W]” [USING status].
BASIC

CALL CLSNT[W] [BY REF (status%())]
PASCAL

CLSNT[W] [(status)]
Arguments

status

specifies the array which will contain completion status information on return
from CLSNT. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-27

Argument Data Type Summary

FORTRAN

status 2-word integer array
COBOL

status 2-element integer array
BASIC

status%() 2-element integer array
PASCAL

status 2-word integer array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfuily.
-9 The task is not a network task. OPNNT did not execute successfully.
-10 The network is not accessed on the specified LUN.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

Examples
FORTRAN

CALL CLSNTW (IOST)
COBOL

CALL “CLSNTW” USING IOST.
BASIC

CALL CLSNTW BY REF (IOST)
PASCAL

CLSNTW (IOST)

2-28 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

CONNT

Request Logical
Link Connection

2.10.8 CONNT - Request Logical Link Connection

The CONNT call requests a logical link between a source task and a target
task. Before a CONNT call is issued, you must build a connect block using the
BACC and BFMTO or BFMT1 calls. A target task can return an optional 1- to
16-bytes/characters message when it accepts or rejects the connect request.
Formats

FORTRAN

CALL CONNTI[W] (lun,[status],tgtblk,
[outsize,outmessagel,[insize,inmessage])

COBOL

CALL “CONNT[W]” USING lun,[status],tgtblk,
[outsize,outmessagel,linsize,inmessage].

BASIC
CALL CONNT[W] BY REF (lun%,[status%()],tgtblk%,
[outsize%,outmessage$],
linsize%,inmessage$])

PASCAL

CONNT[W] (lun,[status],tgtblk,
[outsize,outmessagel,[insize,inmessage])

Arguments
lun

assigns the logical unit number for the logical link. Use this LUN in any
succeeding RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

status

specifies the array which will contain completion status information on return
from CONNT. (See Section 2.10.1.)

tgtblk

specifies the array or string containing the connect block. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-29

outsize,outmessage

define a buffer containing an optional outgoing message. They are paired
optional arguments. (See Section 2.10.1 and note exception for BASIC and

COBOL calls.)

insize,inmessage

specify a buffer containing an optional message sent by the target task. They
are paired optional arguments. (See Section 2.10.1 and note exception for
BASIC and COBOL calls.)

insize

inmessage

specifies the length of the optional message in bytes/charac-
ters.

specifies the 1- to 16-element/array or string which will store
the incoming message.

Argument Data Type Summary

FORTRAN

lun

status
tgtblk
outsize
outmessage
insize
inmessage

coBOL

lun

status
tgtblk
outsize
outmessage
insize
inmessage

BASIC

lun%
status%()
tgtblk$
outsize%
outmessage$
insize%
inmessage$

PASCAL

lun

status
tgtblk
outsize
outmessage
insize
inmessage

1-word integer variable or constant
2-word integer array

72-byte array

1-word integer variable or constant
1- to 16-byte array

1-word integer variable or constant
1- to 16-byte array

integer variable or constant
2-element integer array
72-element character string
integer variable or constant

1- to 16-element character string
integer variable or constant

1- to 16-element character string

integer variable or constant
2-element integer array
72-element character string
integer variable or constant

1- to 16-element character string
integer variable or constant

1- to 16-element character string

1-word integer variable or constant
2-word integer array

72-byte array

1-word integer variable or constant
1- to 16-byte array

1-word integer variable or constant
1- to 16-byte array

2-30 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Error/Completion Codes

0 Call has not completed.

1 Target task accepted the connection.

2 Target task accepted the connection and some returned data was lost.
-1 Required system resources are not available for the logical link.
-4 Target task rejected the connection and some returned data was lost.
-5 The value of outsize is greater than 16 bytes.

-7 Connection rejected by DECnet software on the target node. (See Ap-
pendix B.)

-8 Alogical link is already established on the specified LUN.

-9 The source task was not a network task. CONNT did not execute prop-
erly.

-12 The target task rejected the connection.

-13 An invalid buffer argument. Either tgtblk, inmessage or outmessage
buffer is outside the source task address space. For FORTRAN, the
buffer is not word aligned.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive
Reference Manual.

Examples
FORTRAN

CALL CONNTW (CONLUN,IOST,CONBLK,,,INSIZ,INMSG)
CoBOL

CALL “CONNTW” USING CONLUN,IOST,CONBLK,0,0,INSIZ,INMSG.
BASIC
CALL CONNTW BY REF (CONLUN%,I0ST%(),CONBLK$,0,0,INS1Z%,INMSG$)
PASCAL

CONNTW (CONLUN,IOST,CONBLK,0,0,INSIZ,INMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-31

DSCNT

DisconnectalogicalLink

2.10.9 DSCNT - Disconnect a Logical Link

The DSCNT call disconnects the logical link and frees the LUN associated with
the logical link. Unlike ABTNT (see Section 2.10.2), all pending send data calls
(SNDNT) will complete before you have a completely disconnected link.

The issuing task continues to receive outstanding data messages (RECNT
calls) during processing time. Once the logical link disconnects, PRO/DECnet
will reject any pending receive calls for the target task. These RECNT calls
complete with an abort code (-3) in the 1/0 status block.

The task issuing DSCNT can send a 1- to 16-byte/character message to the
target task.

Formats
FORTRAN
CALL DSCNT[W] (lun,[status],[outsize,outmessage])
coBOL
CALL “DSCNT[W]” USING /un,[status],[outsize,outmessage].
BASIC
CALL DSCNT[W] BY REF (lun%,[status%()],[outsize%,outmessage$])
PASCAL
DSCNT[W] (lun,[status],[outsize,outmessage])
Arguments
lun
specifies the logical unit number that you want to disconnect. If the task initi-
ated the connection, specify the LUN used in the CONNT call. If the task
accepted the connection, specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from DSCNT. (See Section 2.10.1.)

outsize,outmessage

specify a buffer containing the optional outgoing message. (See Section
2.10.1.)

2-32 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

COBOL

lun integer variable or constant

status 2-element integer array

outsize integer variable or constant
outmessage 1- to 16-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

outsize% integer variable or constant
outmessage$ 1- to 16-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

Error/Completion Codes
0 Call has not completed.
1 The call completed successfully.
-1 No logical link established on the specified LUN.
-5 The value of outsize is greater than 16 bytes.
-9 The task is not a network task. CONNT did not execute properly.
-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for outmessage is outside the
user task address space. For FORTRAN, the buffer is not word aligned.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-33

Examples
FORTRAN
CALL DSCNTW (CONLUN,IOST,OUTSIZ,0UTMSG)
COBOL
CALL “DSCNTW” USING CONLUN,IOST,0UTSIZ,0UTMSG.
BASIC
CALL DSCNTW BY REF (CONLUN%,I0ST%(),0UTSIZ2%,0UTMSGS$)
PASCAL

DSCNTW (CONLUN,IOST,OUTSIZ,0UTMSG)

2-34 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

GLNNT

Get Local Node
Information

2.10.10 GLNNT - Get Local Node Information

The GLNNT call returns the local node name, node number and the default
segment buffer size to be used on the logical link. The actual size is deter-
mined by comparing the default local segment size to the remote segment size
as returned in the connect block. The smaller value becomes the value of the
actual buffer size. For efficient message transmission, you should try to use a
muitiple of that number.
Formats
FORTRAN

CALL GLNNT[W] ([status],butlen,buf)
COBOL

CALL “GLNNT[W]” USING [status],bufien,buf.
BASIC

CALL GLNNT[W] BY REF ([status%()},buflen%,buf$)
PASCAL

GLNNT[W] ([status],buflen,puf)
Arguments

status

specifies an array which will contain completion status information on return
from GLNNT. (See Section 2.10.1.)

buflen

specifies the length of the array which will contain the received data. The
returned data varies for each array length as summarized below:

Array length Returned data

6-bytes/characters local node name

8-bytes/characters local node name, default segment buffer size
10-bytes/characters local node name, node number, default seg-

ment buffer size

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-35

The first six bytes contain the local node name. The next two bytes contain the
default segment buffer size. The last two bytes contain the local node number
in the lower 10 bits and a value of 1 for the higher 6 bits.

buf

specifies the array or string containing the requested data.

Argument Data Type Summary

FORTRAN

status 2-word integer array

buflen 1-word integer variable or constant
buf 6-, 8- or 10-byte array

COBOL

status 2-element integer array

buflen integer variable or constant

buf 6-, 8- or 10-element character string
BASIC

status%() 2-element integer array

buflen% integer variable or constant

buf$ 6-, 8-, 10-element character string
PASCAL

status 2-word integer array

buflen 1-word integer variable or constant
buf 6-, 8-, or 10-byte array

Error/Completion Codes
0 Call has not completed.
1 Call completed successfully.

-4 Data overrun. The network data was longer than buf. The buffer is filled
and any remaining data is lost.

-9 The task is not a network task. OPNNT did not execute properly.
-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for buf is outside the user task
address space. For FORTRAN, the buffer is not word aligned.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

2-36 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples
FORTRAN

CALL GLNNTW (IOST,BUFSIZ,BUFFER)
CcOBOL

CALL “GLNNTW” USING I0OST,BUFSIZ,BUFFER.
BASIC

CALL GLNNTW BY REF (I0ST%(),BUFSIZ%,BUFFER$)
PASCAL

GLNNTW (I0ST,BUFSIZ,BUFFER)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-37

GNDNT
Get Network Data

2.10.11 GNDNT - Get Network Data

The GNDNT call is used to retrieve information from the task’s network data

queue.

There are five different types of messages which can be stored in a

task’s network data queue. Each message has an assigned type code as listed

below:

Code

AWM=

Message Type

Connect request
Interrupt

User disconnect
User abort
Network abort

A GNDNT call can check the queue or remove an entire message from the
queue in one of these ways:

1.

Retrieves the oldest message’s type code, length, and associated LUN
without removing it from the queue.

For message types 2 through 5, the associated LUN is returned to the
high-order byte of the second status word. (Message type 1 has no
associated LUN). Message type is returned to the type variable and
message length is returned to the low-order byte of the second status
word.

Removes the oldest message regardless of its type, length, or associ-
ated LUN. The message is placed in a mail buffer. The type code,
message length, and associated LUN are returned in the status words
as described in option 1.

Removes the first message for a particular type code, specified in
typmsk, regardless of its associated LUN. The message is placed in
the mail buffer. The type code, message length, and associated LUN
are returned in the status words as described in option 1.

Removes the first message for a particular LUN, specified in typmsk,
regardless of its type. The message is placed in the mail buffer. The
type code, message length, and associated LUN are returned in the
status words as described in option 1.

Removes the first message for a particular type for a specific LUN.
Message type and LUN are specified in typmsk. The message is
placed in the mail buffer. The type code, message length, and associ-
ated LUN are returned in the status words as described in option 1.

A GNDNT call must complete before you can issue a second GNDNT call. If
not, the call will complete with an error (-14) in the low-order byte of the first
word of the I/0 status block.

2-38 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Formats
FORTRAN

CALL GNDNT[W] ([status],type,[mailsz],[mailbuf],
[itonly],[immed],[typmsk])

COBOL

CALL “GNDNT[W]” USING [status],type,[mailsz],[mailbuf],
[ltonly],[immed)],[typmsk].

BASIC

CALL GNDNT[W] BY REF ([status%()],type%,[mailsz%],[mailbuf$],
[tonly%],[immed%),[typmsk%))

PASCAL

GNDNT[W] ([status],type,[mailsz],[mailbuf],
[ltonly],[immed],[typmsk])

Arguments
status
specifies an array which will contain completion status information on return

from GNDNT. See Section 2.10.1 for contents of first status word and Table
2-5 for contents of the second status word.

Table 2-5
Contents of Second Status Word Using GNDNT
Message
Type Code Low-order byte High-order byte
1 Number of bytes/characters in con- Access code:
nect request.
2 = nonprivileged user
1 = privileged user
0 = no verification done
-1 = verification failed
2 Number of bytes/characters in Associated LUN
interrupt message.
3 Number of bytes/characters in user Associated LUN.
disconnect message.
4 Number of bytes/characters in user Associated LUN.
abort message.
S Reason for network abort (See Associated LUN.

Appendix B.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-39

type

specifies a variable which will contain the message type code on return from
GNDNT.

mailsz

is required to retrieve a connect request message. It must also be used when-
ever typmsk or Itonly are specified in this call. It specifies the size of the task’s
mail buffer.

For a connect request, the connect block normally has a maximum of 98-
bytes/characters without an optional data message. An optional data message
can have 1- to 16-bytes/characters. If the two data items are added together,
the resulting mail buffer cannot exceed a maximum length of 114-bytes/char-
acters.

For message types 2 through 5, the mail buffer should be 1- to 16-bytes/char-
acters to accommodate the optional data message.

mailbuf

is required if /tonly or typmsk is specified for retrieving a connect request
message off the queue. It specifies a 1- to n-element array or string which will
contain the message on return from GNDNT. In FORTRAN, the array must
begin on an even byte (word) boundary.

Itonly

if Itonly is .TRUE. for FORTRAN or -1 for COBOL, BASIC or PASCAL, the
oldest message on the network data queue is removed and placed in mailbuf.
The type code is returned to the type variable. The message length is returned
to the low-order byte of the second status word. The associated LUN is re-
turned to the high-order byte of the second status word.

If typmsk is specified, either omit /tonly in FORTRAN, or specify 0 for /tonly in
COBOL, BASIC and PASCAL.

immed

specifies the completion process for GNDNT. If there is at least one message
on the queue, GNDNT will complete normally regardless of the value of
immed.

If the queue is empty and the value of immed is .TRUE. in FORTRAN or -1 in
COBOL, BASIC or PASCAL, GNDNT completes with error code (-6) in the low-
order byte of the first status word.

If the queue is empty and the value of immed is .FALSE. in FORTRAN or 0 in
COBOL, BASIC or PASCAL, GNDNT does not complete until the DECnet soft-
ware places an incoming message on the queue.

2-40 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

typmsk

specifies the LUN and message type to be removed from the queue. (A mes-
sage type of 0 implies any message type. A LUN at 0 implies any LUN.) The
data is placed in mailbuf as follows:

Low-order byte High-order byte
0 (any message type) LUN

1 (connect request) LUNor O
2 (interrupt message) LUNor O
3 (user disconnect) LUNor O
4 (user abort) LUN or O
5 (network abort) LUNor 0

Argument Data Type Summary

FORTRAN

status 2-word integer array

type 1-word integer variable

mailsz 1-word integer variable or constant
mailbuf 1- to n-byte array

Itonly 1-word integer variable

immed 1-word integer variable

typmsk 1-word integer variable or constant
COBOL

status 2-element integer array

type integer variable

mailsz integer variable or constant
mailbuf 1- to n-element character string
Itonly integer variable

immed integer variable

typmsk integer variable or constant
BASIC

status¥%() 2-element integer array

type% integer variable

mailsz% integer variable or constant
mailbuf$ 1- to n-element character string
Itonly“% integer variable

immed% integer variable

typmsk% integer variable or constant
PASCAL

status 2-word integer array

type 1-word integer variable

mailsz 1-word integer variable or constant
mailbuf 1- to n-byte array

Itonly 1-word integer variable

immed 1-word integer variable

typmsk 1-word integer variable or constant

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-41

Argument Usage Summary

Argument String Usage
Itonly and typmsk use only one in a GNDNT call
status and type retrieve the oldest message’s code, length, and LUN

without removing the entire message from the queue;
omit the remaining arguments.

status, type,ltonly remove the oldest message from the queue regard-

less of its type, length or LUN; omit typmsk. A con-
nect request message also requires mailsz and mail-
buf. They are optional for interrupts, user discon-
nects, or aborts. You must specify them when a
message length is greater than 0.

typmsk,status, type remove a message for a desired type and/or LUN;

omit /tonly. A connect request message also requires
mailsz and mailbuf. They are optional for interrupts,
user disconnects, or aborts. You must specify them
when a message length is greater than 0.

Error/Completion Codes

0

1

-10

-13

-14

The call has not completed.

The call completed successfully.

The call completed successfully with some optional data loss. This oc-
curs for a connect request when the source task includes an optional

data message. This message is appended to the connect block.

Data overrun with some loss. The message removed from the queue
was longer than mailbuf.

The task’s network data queue was empty.

The task is not a network task. OPNNT did not execute successfully or a
CLSNT call was issued during GNDNT processing. The latter can occur
if the queue is empty and immed is .FALSE. for FORTRAN, or O for
COBOL, BASIC or PASCAL.

The network is not accessed on the LUN specified in typmsk.

An invalid buffer argument. The value for mailbuf is outside the user
task address space. For FORTRAN, the buffer is not word aligned.

A previously issued GNDNT is still being processed.

A directive error has occurred. See the RSX-11M/M-PLUS Executive
Reference Manual.

2-42 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples
FORTRAN
CALL GNDNTW (IOST,MSGTYP)
CALL GNDNTW (IOST,MSGTYP,SIZE,BUFFR,.TRUE.)
CALL GNDNTW (IOST,MSGTYP,SIZE,BUFFR,,,MASK)
COBOL
CALL “GNDNTW” USING IOST,MSGTYP.
CALL “GNDNTW” USING I0ST,MSGTYP,SIZE,BUFFR,-1.
CALL “GNDNTW” USING I0ST,MSGTYP,SIZE,BUFFR,0,0,MASK.
BASIC
CALL GNDNTW BY REF (I0ST%(),MSGTYP%)
CALL GNDNTW BY REF (I0ST%(),MSGTYP%,SIZE%,BUFFR$,-1%)

CALL GNDNTW BY REF (I0ST%(),MSGTYP%,SIZE%,BUFFR$,0,0,
MASK%)

PASCAL
GNDNTW (IOST,MSGTYP)
GNDNTW (IOST,MSGTYP,SIZE,BUFFR,-1)

GNDNTW (I0ST,MSGTYP,SIZE,BUFFR,,,MASK)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-43

OPNNT

Access the Network

2.10.12 OPNNT - Access the Network

The OPNNT call establishes the task as an active network task and creates the
task’s network data queue. The task must call OPNNT before calling any other
network subroutine.

Formats

FORTRAN

CALL OPNNT[W] ([/lun],[status],[mstat],
[count),[Irp])

COBOL

CALL “OPNNT[W]” USING [/un],[status],[mstat],
[count],[Irp]].

BASIC

CALL OPNNT[W] BY REF ([lun%)],[status%()],[mstat%()],
[count%],[Irp%])]

PASCAL

OPNNTI[W] ([lun],[status],[mstat],
[count],[Irp])

Arguments

lun

specifies the logical unit number for the task’s network data queue. It can be
omitted if a LUN was assigned to NS: during the task build operation by
defining the symbol .MBXLU in a GBLDEF. (See Section 2.2). You must omit all
trailing arguments when the /un argument is omitted in COBOL or BASIC. (See
Section 2.9.)

status

specifies an array which will contain completion status information on return
from OPNNT. (See Section 2.10.1.)

2-44 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

mstat

specifies an array which will contain information on the current status of the
task’s network data queue. The system continually updates the array as mes-
sages enter and leave the queue. Values returned in this array are:

mstat(1) number of messages on the queue
mstat(2) type of oldest message

1 (connect request)

2 (interrupt message)

3 (user disconnect message)
4 (user abort message)

5 (network abort message)

mstat(3) length of oldest message
count

assigns the maximum number of active logical links that a task can accept on
the network. Once the number of active logical links equals the count value,
the network will reject any pending connect requests. The valid range is 0 to
255, with 0 being the default value. A value of 0 implies that there is no limit to
the number of links.

The count argument does not affect the number of logical links resulting from
CONNT calls.

Irp

specifies the link recovery period. It defines the number of seconds that can
elapse between a physical path failure and the disconnect of a logical link. The
valid range is 0 through 32767. The default value is 0.

As long as the cooperating task remains connected and the physical path
recovers before Irp elapses, the logical link will continue without any visible
interruption. If the link does not recover in time, the system will abort the
logical link.

If the recovery time is set to 0, and an alternate physical path cannot be
immediately found, the system will immediately abort the logical link.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-45

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

mstat 3-word integer array

count 1-word integer variable or constant
Irp 1-word integer variable or constant
coBOL

lun integer variable or constant

status 2-element integer array

mstat 3-element integer array

count integer variable or constant

Irp integer variable or constant

BASIC

lun% integer variable or constant
status%() 2-element integer array

mstat%() 3-element integer array

count% integer variable or constant

Irp% integer variable or constant
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

mstat 3-word integer array

count 1-word integer variable or constant
Irp 1-word integer variable or constant

Error/Completion Codes
0 Call has not completed.
1 Call completed successfully.
-1 Required system resources were not available.

-10 The network is being dismounted or the task has already issued a suc-
cessful OPNNT call.

-40 A directive error has occurred. See the RSX-11M/M-PLUS Executive
Reference Manual.

2-46 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples
FORTRAN
CALL OPNNTW (OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP)
COBOL
CALL “OPNNTW” USING OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP.
BASIC

CALL OPNNTW BY REF (OPNLUN%,IOSTAT%(),MSTAT%,MAXLNK%,
LNKRP%)

PASCAL

OPNNTW (OPNLUN,IOSTAT,MSTAT,MAXLNK,LNKRP)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-47

RECNT

Receive Data over a
Logical Link

2.10.13 RECNT - Receive Data over a Logical Link

The RECNT call receives a data message over a logical link and stores it in a
specified buffer. PRO/DECnet does not send a data message from one task to
another until the intended receiver has issued a receive call. If the indata
buffer is too small, the call completes with a data overrun condition (-4) in the
first status word.

NOTE
The indata buffer should always align oﬁ an even byte boundary.

Formats
FORTRAN

CALL RECNT[W] (lun,[status],insize,indata)
COBOL

CALL “RECNT[W]” USING /un,[status],insize,indata.
BASIC

CALL RECNT[W] BY REF (lun%,[status%()],insize%,indata$)
PASCAL

RECNT[W] (lun,[status],insize,indata)
Arguments
lun
specifies the logical unit number to be used for message transmission. If the
task initiated the connection, specify the LUN used in the CONNT call. If the
task accepted the connection, specify the LUN used in the ACCNT call.
status

specifies an array which will contain completion status information on return
from RECNT. (See Section 2.10.1.)

2-48 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

insize

specifies the receive buffer length. The receive buffer can have a maximum
length of 8128 bytes/characters.

indata
specifies the array or string which will contain the received message.

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

insize 1-word integer variable or constant
indata 1- to 8128-byte array

coBOL

lun integer variable or constant

status 2-element integer array

insize integer variable or constant

indata 1- to 8128-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

insize% integer variable or constant
indata$ 1- to 8128-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

insize 1-word integer variable or constant

indata 1- to 8128-byte array

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-49

Error/Completion Codes
0 Call has not completed.
1 Call completed successfully.

-2 No logical link established on the specified LUN.

-3 The logical link was disconnected during an I/O operation.

-4 Data overrun. More data was transmitted than requested.

-9 Task is not a network task. OPNNT did not execute successfully.
-13 An invalid buffer argument. The value for indata is outside the user task

address space. For FORTRAN, the buffer is not word aligned, or insize

specifies a value greater than 8128.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

Examples
FORTRAN
CALL RECNTW (CONLUN,IOSTAT,RECSIZ,RECBUF)
coBOL
CALL “RECNTW” USING CONLUN,IOSTAT,RECSIZ,RECBUF.
BASIC
CALL RECNTW BY REF (CONLUN%,IOSTAT%(),RECSIZ%,RECBUF$)
PASCAL

RECNTW (CONLUN,IOSTAT,RECSIZ,RECBUF)

2-50 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

REJNT

Reject Logical Link
Connect Request

2.10.14 REJNT - Reject Logical Link Connect Request

The REJNT call rejects a logical link connect request. Along with a reject
message, the task can send 1- to 16-bytes/characters of optional data to the
requesting task.
Formats
FORTRAN

CALL REJNT[W] ([status],mailbuf,[outsize,outmessage])
coBoOL

CALL “REJNT[W]” USING [status],mailbuf,[outsize,outmessage].
BASIC

CALL REJNT[W] BY REF ([status%()],mailbuf$,[outsize%,outmessage$])
PASCAL

REJNT[W] ([status],mailbuf,[outsize,outmessage])
Arguments

status

specifies the array which will contain completion status information on return
from REJNT. (See Section 2.10.1.)

mailbuf

specifies the array or string containing the connect request message from the
GNDNT call.

outsize,outmessage

specify an optional user message. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-51

Argument Data Type Summary

FORTRAN

status 2-word integer array

mailbuf 1- to n-byte array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

COBOL

status 2-element integer array

mailbuf 1- to n-element character string
outsize integer variable or constant
outmessage 1- to 16-element character string
BASIC

status%() 2-element integer array

mailbuf$ 1- to n-element character string
outsize% integer variable or constant
outmessage$ 1- to 16-element character string
PASCAL

status 2-word integer array

mailbuf 1- to n-byte array

outsize 1-word integer variable or constant
outmessage 1- to 16-byte array

Error/Completion Codes

0 Call has not completed.

1 Call completed successfully.

-3 The task requesting the connection has either aborted or requested a

disconnect before the reject call could complete.

-5 Either an invalid temporary link address in the connect block or the
optional user data buffer exceeds 16-bytes/characters.

-9 Task is not a network task. OPNNT did not execute successfully.

-10 The network is not accessed on the specified LUN.

-13 An invalid buffer argument. The value for mailbuf or outmessage is
outside the user task address space. For FORTRAN, mailbuf is not word

aligned.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

2-52 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Examples
FORTRAN

CALL REJNTW (IOSTAT,BUFFR,0OUTSIZ,0UTMSG)
COBOL

CALL “REJNTW” USING IOSTAT,BUFFR,OUTSIZ,0UTMSG.
BASIC

CALL REIJNTW BY REF (IOSTAT%(),BUFFR$,0UTSIZ%,0UTMSGS$)
PASCAL

REJNTW (IOSTAT,BUFFR,0UTSIZ,0UTMSG)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-53

SNDNT

Send Data over a
Logical Link

2.10.15 SNDNT - Send Data over a Logical Link

The SNDNT sends a data message over a particular logical link. The sending
task does not actually transmit the message until the receiving task has issued
a receive call. The sending task cannot reuse the outdata buffer specified in
SNDNT until it receives a completion/error code from the system.

NOTE

The outdata buffer should always align on an even byte boundary.
Formats

FORTRAN
CALL SNDNT[W] (/un,[status],outsize,outdata)

coBOL
CALL “SNDNT[W]” USING lun,[status],outsize,outdata.

BASIC
CALL SNDNT[W] BY REF (lun%,[status%()],outsize%,outdata$)

PASCAL

SNDNT[W] (lun,[status],outsize,outdata)
Arguments
lun
specifies the logical unit number to be used for message transmission. If the
task initiated the connection, specify the LUN used in the CONNT call. If the
task accepted the connect request, specify the LUN used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from SNDNT. (See Section 2.10.1.)

outsize

specifies the length of the outgoing message. The maximum length is 8128-
bytes/characters.

outdata

specifies the array or string containing the outgoing data message.

2-54 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outdata 1- to 8128-byte array

COBOL

lun integer variable or constant

status 2-element integer array

outsize integer variable or constant
outdata 1- to 8128-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

outsize% integer variable or constant
outdata$ 1- to 8128-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

outsize 1-word integer variable or constant
outdata 1- to 8128-byte array

Error/Completion Codes
0 Call has not completed.
1 Call completed successfully.
-2 No logical link established on the specified LUN. .
-3 The logical link was disconnected during 1/0 operation.
-9 The task is not a network task. OPNNT did not execute successfully.

-13 An invalid buffer argument. Either outdata is outside user task address
space or the value of outsize exceeds 8128-bytes/characters.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-55

Examples

FORTRAN

CALL SNDNTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)
COBOL

CALL “SNDNTW” USING CONLUN,IOSTAT,MSGLEN,MSGBUF.
BASIC

CALL SNDNTW BY REF (CONLUN%,IOSTAT%(),MSGLEN%,MSGBUF$)
PASCAL

SNDNTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

2-56 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

WAITNT
Suspend the Calling Task

2.10.16 WAITNT - Suspend the Calling Task

The WAITNT call suspends task operation until a pending call, specified in an
associated status block, has finished processing.

Formats
FORTRAN
CALL WAITNT (index,status1,...,statusn)
CcoBOL
CALL “WAITNT” USING index,status1,...,statusn.
BASIC
CALL WAITNT BY REF (index%,status1%(),...,statusn%())
PASCAL
WAITNT (index,status1,...,statusn)
Arguments
index

specifies the variable which will contain the positional number of the status
block associated with the completed call.

status1,...,statusn

specifies one or more status blocks associated with pending calls. For PAS-
CAL calls, you can specify a maximum of 8 status blocks. (See Section 2.10.1.)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-57

Argument Data Type Summary

FORTRAN

index 1-word integer variable
status1 2-word integer array
statusn 2-word integer array
COBOL

index integer variable

status1 2-element integer array
statusn 2-element integer array
BASIC

index% integer variable
status1%() 2-element integer array
statusn%() 2-element integer array
PASCAL

index 1-word integer variable
statusi 2-word integer array
statusn 2-word integer array
Examples

FORTRAN

CALL WAITNT (INDEX,IOST1,10ST2,10ST3)
COBOL
CALL “WAITNT” USING INDEX,I0ST1,I0ST2,I0ST3.
BASIC
CALL WAITNT BY REF (INDEX%,I0ST1%(),|0ST2%(),10ST3%())
PASCAL

WAITNT (INDEX,IOST1,lI0ST2,I0ST3)

2-58 HIGH LEVEL LANGUAGE COMMUNICATION CALLS

XMINT

Send Interrupt Message

2.10.17 XMINT - Send Interrupt Message

The XMINT call sends an interrupt message to a cooperating task over a
logical link. The call completes when the source task is informed that the
interrupt message was placed on the target task’s network data queue.

The target task must remove the interrupt message from its network data

queue before the source task can send another interrupt message over the
same logical link.

NOTE

DECnet flow control does not apply to interrupt messages. These
messages are delivered to a target task’s buffer even if it has out-
standing receive calls.

Formats
FORTRAN
CALL XMINT[W] (lun,[status],intsize,intmsg)
coBOL
CALL “XMINT[W]” USING /lun,[status],intsize,intmsg.
BASIC
CALL XMINT[W] BY REF (lun%,[status%()],intsize%,intmsg$)
PASCAL

XMINT[W] (lun,[status],intsize,intmsg)

HIGH LEVEL LANGUAGE COMMUNICATION CALLS 2-59

Arguments

lun

specifies the logical unit number to be used for sending the interrupt message.
If the task initiated the connection, specify the LUN that was used in the
CONNT call. If the task accepted the connection, specify the LUN that was
used in the ACCNT call.

status

specifies the array which will contain completion status information on return
from XMINT. (See Section 2.10.1.)

intsize

specifies the length of the interrupt message. The length can range from 1- to
16-bytes/characters.

intmsg
specifies the array or string containing the interrupt message.

Argument Data Type Summary

FORTRAN

lun 1-word integer variable or constant
status 2-word integer array

intsize 1-word integer variable or constant
intmsg 1- to 16-byte array

COBOL

lun integer variable or constant

status 2-element integer array

intsize integer variable or constant

intmsg 1- to 16-element character string
BASIC

lun% integer variable or constant
status%() 2-element integer array

intsize% integer variable or constant
intmsg$ 1- to 16-element character string
PASCAL

lun 1-word integer variable or constant
status 2-word integer array

intsize 1-word integer variable or constant

intmsg 1- to 16-byte array

2-60 HIGH LEVEL LANGUAGE COMMUNICATIONS CALLS

Error/Completion Codes
0 The call has not completed.
1 The call completed successfully.
-2 No logical link established for the specified LUN.
-3 The logical link was disconnected during I/0 operations.
-5 The interrupt message exceeds 16-bytes/characters.
-9 The task is not a network task. OPNNT did not execute successfully.

-11 An interrupt message was transmitted before a previously issued one
was actually received by the remote task.

-13 Aninvalid buffer argument. The value for intmsg is outside the user task
address space. For FORTRAN, intmsg is not word aligned.

-40 A directive error occurred. See the RSX-11M/M-PLUS Executive Refer-
ence Manual.

Examples
FORTRAN
CALL XMINTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)
CcoBOL
CALL “XMINTW” USING CONLUN,IOSTAT,MSGLEN,MSGBUF.
BASIC
CALL XMINTW BY REF (CONLUN%,IOSTAT%(),MSGLEN%,MSGBUF$)
PASCAL

XMINTW (CONLUN,IOSTAT,MSGLEN,MSGBUF)

CHAPTER 3
MACRO-11 COMMUNICATION CALLS

DECnet provides a library of MACRO-11 macros for PRO/DECnet applications
that require task-to-task communication. The macro library [1,5]NETLIB.MLB
is referenced by the Professional Macro Assembler (PMA) during assembly.

Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>