TOPS-10/TOPS-20
FORTRAN Language Manual

AA-N383B-TK

May 1985

This document describes the language elements of
FORTRAN-10 and FORTRAN-20.

This manual supersedes the TOPS—-10/20 FORTRAN Language
Manual, order number AA-N383A-TK.

OPERATING SYSTEM: TOPS-10 V7.02
TOPS—-20 V4.1, V5.1

SOFTWARE: FORTRAN-10 V10
FORTRAN-20 V10

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. order: should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accesscries and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone:(312)640--5612 Telephone (408)734-4915

digital equipment corporation e marlboro. massachusetts

First Printing, February 1983
Revised, May 1985

© Digital Equipment Corporation 1983, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

lilgliltialt o

DEC MASSBUS RSX

DECmate PDP RT
DECsystem-10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX

DECUS Q-BUS VMS

DECwriter Rainbow VT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

CONTENTS

CHAPTER 1 INTRODUCTION

OVERVIEW e o o o o o s s e o o
MANUAL ORGANIZATION « . . « o
1 FORTRAN Language Elements (Part I) . v .
2 FORTRAN Statements (Part II)« . o
3 FORTRAN Language Usage (Part III) e .
4 APPENDIXES .« ¢ ¢ ¢ ¢ o o o o o o o o o o

e s e o o
o o e o o
e o e ¢ o

[8]

CHAPTER CHARACTERS AND LINES

CHARACTER SET e e o o e & o e o o o o o o o
STATEMENT DEFINITION AND FORMAT « e . o« .
1 Statement Label Field and Statement Numbers
2 Line Continuation Field .
3 Statement Field
4 .

Remark Field
LINE TYPES . . ¢« « « « o & .
.1 Initial and Continuation Line
.2 Multi-Statement Lines . . .
.3 Comment Lines and Remarks .
.4 Debug Lines . . . +« ¢« « .+ &
.5 .

o e o o o o o

Blank Lines . .
LINE-SEQUENCED SOURCE FILES

NDNRONDNNODNONDNODNDNDND
BWWWWWWNOHNNDNDN -

* e o o o o e o @
e 6 e o e s o o o o
¢ o & o e o o e s o
s & o & o o o o o o
e o o ° e e o o o @
o ¢ o o o o o e o o
e e o o 8 o e o e o

CHAPTER CONSTANTS
INTRODUCTION . ¢ & o o o o o o o o o o o
INTEGER CONSTANTS . ¢ ¢ « o o o o o o o
REAL CONSTANTS . &+ o ¢ o o o o o o o o o«
DOUBLE-PRECISION CONSTANTS . . ¢ ¢« o o =
Comparison of Real, D-~floating, and G-f
COMPLEX CONSTANTS e s s s e o e
CHARACTER CONSTANTS
OCTAL AND DOUBLE-OCTAL CONSTANTS
LOGICAL CONSTANTS . ¢« &« o« o o o
HOLLERITH CONSTANTS . ¢« ¢ « « o
STATEMENT LABEL CONSTANTS o o+ o

o o o o
e o o o
D e o o o
o+

Heeo o o o
=

Qe o o o

(o]

[} . (] .
HOONAUT D B WK

.

—

WWwWwwwwwwwww w
o

e e o o o o
¢ e o o o 0
e o o o o
* & o ¢ o o
e o o o e o
e o o o o o
¢ o o o o o
e o o o o o

=3

CHAPTER SYMBOLIC NAMES, VARIABLES, AND ARRAYS
SYMBOLIC NAMES . v &« ¢« « o s o o o o o o o o
VARIABLES . . ¢ ¢ o« ¢ o o o o o
ARRAYS e e
Array Element Subsbrlpts « e .
Dimensioning Arrays
Order of Stored Array Elements
CHARACTER SUBSTRINGS . « & & « o

[S-S S SN Y

« ¢ o o o

B wWWwwwN -
« o o
wN -

o e o o

e o o o o

« o e o o

s e o o o

s e o o o

« o o o o

e o o o o

« e e s e

w

CHAPTER EXPRESSIONS
ARITHMETIC EXPRESSIONS . . « ¢ ¢ o o o o &
Rules for Writing Arithmetic Expressions
Arithmetic Constant Expressions
.1 Integer Constant Expression
CHARACTER EXPRESSIONS e o o e e & e o s o & o

.
e o
NN
e o o o
* o o o
e o o o

N

oo,

iii

® & & e & o & & o e o 9
LI T T T T T N R O T |

NN OB D WWN

NNONDNNDNDNDNNONNDNDND

.
| L I S A T T O I |
NOA U DD WN N

WWwWwwwwwwww

® o o o o ° s * o o

5.2.1 Character Constant Expression « .« .
5.3 LOGICAL EXPRESSIONS e 4 o s e e e o e o o o o
5.3.1 Logical Constant Expression . . . + « « .« .
5.4 RELATIONAL EXPRESSIONS . . ¢ ¢ ¢ ¢ o o o o o &«
5.5 EVALUATION OF EXPRESSIONS . . .+ ¢ ¢ o o o o« =«
5.5.1 Parenthetical Subexpressions . . . « « . . .
5.5.2 Hierarchy of Operators . .« « ¢ « o o o o o =
5.5.3 Mixed-Mode EXpPressions . . . « « o« o « o « &
5.5.4 Use of Logical Operands in Mixed-Mode
Expressions . . ¢ ¢ ¢« ¢« ¢« 4 4 4 4 4 e e e
5.6 CONSTANT EXPRESSIONS . ¢ o v ¢ o o o o o o o =
CHAPTER 6 EXECUTABLE AND NONEXECUTABLE STATEMENTS
6.1 EXECUTABLE STATEMENTS . ¢ &« ¢ ¢ o o o o o o @
6.2 NONEXECUTABLE STATEMENTS . . . « &« @« o o o o
6.3 ORDERING OF FORTRAN STATEMENTS . . . « ¢« « + &
6.4 COMPILATION CONTROL STATEMENTS . ¢« + o ¢ o« o o«
6.4.1 PROGRAM Statement ¢ ¢ o ¢ « ¢ o o &
6.4.2 INCLUDE Statement ¢« ¢ ¢ & ¢« & « « &
CHAPTER 7 SPECIFICATION AND DATA STATEMENTS
7.1 DIMENSION STATEMENT . ¢ « ¢« ¢ o o o o o o o =«
7.1.1 Adjustable Dimensions . . . « « + 4 ¢ + . .
7.1.2 Assumed-size ArraysS .« o« « o o o o o o o o &
7.2 TYPE SPECIFICATION STATEMENTS e o e s s s e
7.2.1 Numeric Type Specification Statements . . .
7.2.2 Character Type Specification Statements . .
7.3 IMPLICIT STATEMENTS e o o s o o & 8 e o = e =
7.4 COMMON STATEMENT . o ¢ o ¢ o o o o o o o o o
7.4.1 Dimensioning Arrays in COMMON Statements . .
7.4.2 Character Data in COMMON « + .+ &
7.5 EQUIVALENCE STATEMENT . . ¢ ¢ o o o o o o o o«
7.5.1 EQUIVALENCE and Extended Addressing
7.6 EXTERNAL STATEMENT . . ¢ ¢ ¢« ¢« ¢ ¢ o o o o o o
7.7 INTRINSIC STATEMENT . . ¢ ¢ ¢ o o o o o o o =
7.8 PARAMETER STATEMENT . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o =«
7.9 DATA STATEMENT . . ¢ o o o o o o o o o o o o =
7.10 SAVE STATEMENT . . . o ¢ o o o o ¢ o o o o o o
CHAPTER 8 ASSIGNMENT STATEMENTS
8.1 ARITHMETIC ASSIGNMENT STATEMENT
8.2 LOGICAL ASSIGNMENT STATEMENTS e+ e e s e o =
8.3 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT
8.4 CHARACTER ASSIGNMENT STATEMENT+ .+ « .+ .
CHAPTER 9 CONTROL STATEMENTS

GO TO STATEMENTS . . . ¢ « ¢ ¢ ¢ o o o o o o &
Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements « « . .

IF STATEMENTS c e e e e e e e e e e e e e e .
Arithmetic IF Statements + . .
Logical IF Statements . . . + ¢« ¢« ¢« o « + &
Logical Two-Branch IF Statements
Block IF Statements « ¢« « + o« &

.1 Statement Blocks . . . ¢« . 4 4 4 e 4 e . .

« .
Y
w N~

OO O W WYY\
.

NNMNNDNONNDNEF -
.

B W N

.
.

iv

\lTl\l\l\l\l\l\!
OO OWIOUI b d WH

| S N A T O I |
0O Ul i W W W NN

W OO WOWOWWYWWY YWY

CHAPTER

.
Lo~

o o o
.
.

e e v e s s e 4 e
* s e e e o o
AU WNDHRE R

WWOWWOWWOWOWOWOUWYWYOWWYWYWOOY VY

.

RNV WWWWWWWwWwWwN N

10

10.1

10.2

10.2.
10.2.
10.3

10.3.
10.3.
10.3.
10.3.
10.4

10.4.
10.4.
10.4.
10.4.
10.4.
10.4.

Block IF Examples . . & & ¢ o o« o o o &
Nested Block IF Constructs . . . « « « &
DO STATEMENT e o o o s e o o o o
Indexed DO Statement . e . . .
Executing an Indexed DO Statement .

DO Iteration Control . . .

DO WHILE Statement

The Range of a DO Statement

Nested DO Statements

Extended Range
Permitted Transfer Operations
END DO STATEMENT . . .
CONTINUE STATEMENT . .
STOP STATEMENT
PAUSE STATEMENT . . .
END STATEMENT . . . & o o o o o o o o o

.
w N

. .
N
e o o o
* e o 0
.
.
. o e s e o
e o e o o+ s e s e
® o o 4 o o s o »
e o & o o o e o
e o o o s o e e
e e ¢ o o o o o e o & o o
® o o o o & e o o & o o o

DATA TRANSFER STATEMENTS

DATA TRANSFER OPERATIONS
DATA ACCESS e o o o o s e o s o o
1 Sequential Access 4 . .
2 Direct Access e o o o o
FORMATTED AND UNFORMATTED DATA TRANSFERS .
1 Formatted Data Transfers . . o o o o « &
1.1 Internal Files . ¢ ¢« o ¢ o o o « o o @
2 Unformatted Data Transfers . . . « « « o &
3 Unformatted Data Transfer to ASCII Devices
DATA TRANSFER STATEMENT FORMS e e o o o o o
1 Data Transfer Statement Names . . . « .« &
2 Data Transfer Control-Information List . .
3 Unit References in Data Transfer Statements
3.1 FORTRAN Lojical Unit Identifier
3.2 Internal File Identifier . . . ¢« . ¢« «
4 Record Number References In Data Transfer
Statements . . ¢ . ¢ e e e o e e o o o o =

. . . .

Format References in Data Transfer Statements

5
5.1 FORMAT-Statement Formatting
5.2 List-Directed Formatting . . . + + « + &
5.3 NAMELIST-Statement Formatting
6 Optional End-of-File Transfer of Control
(END=)
Optional Data Transfer Error Control (ERR)

7
.8 Optional Error Variable For Error Reporting

(IOSTAT=) e o e e . . e e s e e o o
Data Transfer Statement Input/Output Lists
.1 Simple List Elements . . .
.2 Implied DO Lists
READ STATEMENT o .
Formatted READ Transfers . .
1 Sequential FORMAT-Statement READ . .
2 Direct-Accass FORMAT-Statement READ
3 Sequential List-Directed READ . . .
4 Sequential NAMELIST-Statement READ
Unformatted READ Transfers
.1 Sequential Unformatted READ . . .
.2 Direct-Access Unformatted READ . .
WRITE STATEMENT . . o ¢ ¢ o o o o o o
Formatted WRITE Transfers
1 Sequential FORMAT-Statement WRITE .
2 Direct-Accass FORMAT-Statement WRITE
.3 Sequential List-Directed WRITE . . .
4 Sequential NAMELIST-Statement WRITE

. . . . - .

. - .

* o o o
e ¢ o o o o ¢ o e * o o+ e o

.

.

® o ® o o o s e © o+ e

O
i
-

9-12
9-12
9-13
9-14
9-14
9-15
9-16
9-17
9-17
9-18
9-19
9-20

10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-8
10-8
10-8
10-9
10-9
10-10
10-11
10-13

10-13
10-13
10-14
10-16
10-16

10-17
10-18

10-19
10-20
10-21
10-22
10-24
10-26
10-26
10-27
10-27
10-28
10-29
10-29
10-30
10-30
10-31
10-32
10-33
10-34
10-35

10.6.2 Unformatted WRITE Transfers « o+ « 10-35
10.6.2.1 Sequential Unformatted WRITE 10-36
10.6.2.2 Direct-Access Unformatted WRITE 10-36
10.7 REREAD STATEMENT e o « & o« o 10-37
10.7.1 Sequential FORMAT- Statement REREAD e « « o o« o 10-38
10.7.2 Sequential List-Directed REREAD 10-39
10.8 ACCEPT STATEMENT . .« . + o o o e« « « « o« 10-40
10.8.1 Sequential FORMAT-Statement ACCEPT e e o o« o o 10-40
10.8.2 Sequential List-Directed ACCEPT 10-41
10.9 TYPE STATEMENT . « o « o« o o o o o o o o o o o« o« 10-42
10.9.1 Sequential FORMAT-Statement TYPE ., 10-43
10.9.2 Sequential List-Directed TYPE 10-44
10.10 PRINT STATEMENT . . . « . « « & e o o s o « o 10-45
10.10.1 Sequential FORMAT-Statement PRINT e + o « s o 10-45
10.10.2 Sequential List-Directed PRINT 10-46
10.11 PUNCH STATEMENT . . . « ¢ o o = e« « o o« o 10-47
10.11.1 Sequential FORMAT-Statement PUNCH e « o « o o 10-48
10.11.2 Sequential List-Directed PUNCH . . . « « « « o 10-48
10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS . « 10-49
10.12.1 Internal READ and WRITE Statements 10-50
10.12,2 ENCODE and DECODE Statements . . . «. +« o+ + « » 10-51
CHAPTER 11 FILE-CONTROL AND DEVICE-CONTROL STATEMENTS
11.1 FILE-CONTROL STATEMENTS . . & ¢ ¢ o o ¢ o o o 11-1
11.2 OPEN STATEMENT . . ¢ « o ¢ o o o o o s o o o o o 11-1
11.2.1 Implicit OPEN e o e ¢ o o o o e & o 11-3
11.2.2 OPEN on a Connected Un1t e e s s s s s e s o o 11-4
11.3 OPEN STATEMENT SPECIFIERS . . &« « o o o o & o 11-4
11.3.1 ACCESS Specifier . . . e e 4 e e s s e o o o 11-6
11.3.2 ASSOCIATEVARIABLE Spec1fler e o o o o o e o o 11-8
11.3.3 BLANK Specifier . . ¢« ¢ ¢ ¢ &« ¢ ¢ ¢ o o o« o« » 11-9
11.3.4 BLOCKSIZE Specifier . . + ¢« ¢« &+ ¢ o« &« « « « o 11-10
11.3.5 BUFFERCOUNT Specifier . . . +« ¢« 4+ « o« « o« o« » 11-10
11.3.6 CARRIAGECONTROL Specifier e e e e s s s e & & 11-11
11.3.7 DENSITY Specifier . . ¢ ¢« ¢« + ¢ o ¢ o o o o« » 11-12
11.3.8 DEVICE Specifier . . ¢ &« o ¢ o o ¢ s o o o o o+ 11-13
11.3.9 DIALOG Specifier . . e o & o o e e o » e o s 11-13
11.3.10 DIALOG= Specifier . . + & ¢ o o ¢ o « o & « » 11-14
11.3.11 DIRECTORY Specifier (TOPS-10) . « « « « o+ .« .« 11-14
11.3.12 DIRECTORY Specifier (TOPS-20) 11-16
11.3.13 DISPOSE Specifier . . +« & o« ¢« o o o o« « o « o 11-16
11.3.14 ERR Specifier « ¢ o ¢ ¢ o o o o o o o o o o o 11-17
11.3.15 FILE Specifier« . e e s s o s+ o o 11-18
11.3.16 FILESIZE (INITIALIZE) Spe01f1er (TOPS-10 Only) 11-18
11.3.17 FORM Specifier . . o o o ¢ o o o o o o o o o o 11-19
11.3.18 IOSTAT Specifier « « ¢ o o o o o o o o o o « o« 11-20
11.3.19 LIMIT Specifier . ¢ & ¢ o o o o o o o o o o » 11=-21
11.3.20 MODE Specifier . ¢« o« o o o o o o o o o o o o o« 11-21
11.3.21 NAME Specifier . o« « o+ ¢ & o o o o o o o « o o 11-23
11.3.22 PADCHAR Specifier . . . v ¢ & o « o o o o o+ » 11-24
11.3.23 PARITY Specifier . . e e & e e s s o s o 11-24
11.3.24 PROTECTION Specifier (TOPS 10) & & ¢ ¢ o o o o 11-25
11.3.25 PROTECTION Specifier (TOPS-20) .« « o« ¢ & o o o 11-27
11.3.26 READONLY Specifier . « « o ¢ o o « o o o o o « 11-28
11.3.27 RECL (RECORDSIZE) Specifier « . « . 11-28
11.3.28 RECORDTYPE Specifier . . . e e s s+ e+ e s o o 11-29
11.3.29 STATUS (TYPE) Specifier . e o« e o o o e e o 11=-30
11.3.30 TAPEFORMAT SPECIFIER . « + ¢ ¢ o o o« o« o o « o« 11-32
11.3.31 UNIT Specifier (Required) . . .« . ¢« ¢« « « o« o« 11-33
11.3.32 VERSION Specifier (TOPS-10) e o o o o o o o o 11-34
11.4 CLOSE STATEMENT + & ¢ « &4 o « o s o o o o » o » 11-34
11.4.1 Implicit CLOSE + & « & « o o o o o o o o« o » » 11-34

vi

CHAPTER

11.5 CLOSE STATEMENT SPECIFIERS . . .

11.5.1 DEVICE, DIRECTORY, FILE, NAME, and PROTECTION
Specifiers o o o ¢ v ¢ o 4 4 4 e e s e s 0 e e
11.5.2 DIALOG Specifier . . o & o v 4 4 4 o o o o s =
11.5.3 DIALOG= Specifier 6 o o o o e o o o s s o @
11.5.4 DISPOSE Specifier . . . ¢ & v & o v o o o o &
11.5.5 ERR Specifier e e e e s e e e e e
11.5.6 IOSTAT Specifier . . ¢ ¢« ¢ ¢« v ¢« v o o o o o &
11.5.7 LIMIT Specifier . ¢« v ¢ 4 & ¢« o ¢ o o« o o o« =
11.5.8 STATUS Specifier . . . e e e o e o s o e o
11.5.9 UNIT Specifier (Requlred) e 4 e e e e o o o
11.6 OPEN AND CLOSE STATEMENT EXAMPLES . . « ¢« + « &
11.7 INQUIRE STATEMENT . o ¢ o ¢ ¢ o o o o o o o o «
11.7.1 INQUIRE by File v v v v o o o o o o o o o o o
11.7.2 INQUIRE by Unit e o o o o e o o s o e o o
11.7.3 Inquiry Specifiers . . ¢« ¢« ¢ ¢« ¢« ¢« o « o « o
11.7.3.1 ACCESS Specifier . o ¢ o o ¢ o o o o o o« o =
11.7.3.2 BLANK Specifier &« ¢ ¢« ¢« o o« o o« .
11.7.3.3 CARRIAGECONTROL Specifier . . + ¢ o & o o
11.7.3.4 DIRECT Specifier . . . ¢« ¢« ¢ ¢« o o o« o o o &
11.7.3.5 ERR Specifier . . « ¢ & o o o o o o o o« o o
11.7.3.6 EXIST Specifier . . ¢ ¢« ¢« ¢ ¢« o o« o o o« o« &
11.7.3.7 FORM Specifier . . . e e s s e e e e e e
11.7.3.8 FORMATTED Specifier e & o e s s e s e e o »
11.7.3.9 IOSTAT Specifier e s o s e e & s+ e o o o @
11.7.3.10 NAME Specifler .« . ¢ v v o o o o« o o o « s
11.7.3.11 NAMED Specifier e e e s e
11.7.3.12 NEXTREC Specifier . . ¢ ¢ ¢ ¢ ¢ o« ¢ o o o &
11.7.3.13 NUMBER Specifier . o o« o o o o o o« o o o o &
11.7.3.14 OPENED Specifier . « ¢ ¢ ¢« ¢ o o o o o o o
11.7.3.15 RECL (RECORDSIZE) Specifier e s e o & » e
11.7.3.16 RECORDTYPE Specifier s e e e e e e e & o
11.7.3.17 SEQUENTIAL Specifier . . . o ¢ ¢ o« &« o o + =
11.7.3.18 UNFORMATTED Specifier . o o« o o o o o o o &
11.8 DEVICE CONTROIL STATEMENTS e o s s o e o o 8 s o
11.8.1 FIND Statement . . . ¢ & ¢ ¢ ¢ o ¢ o o« o o o =
11.8.2 REWIND Statement . . « « « ¢ o o o o o o o o &
11.8.3 UNLOAD Statement + ¢ v ¢ 4 o o o o & o
11.8.4 BACKSPACE Statement . . ¢ ¢ ¢ ¢ « o « o o o &«
11.8.5 ENDFILE Statement e o o e o e e o o o e s o o
11.8.6 SKIPRECORD Statement . . o & ¢ ¢ o« o o o o o &
11.8.7 SKIPFILE Statement . . ¢« ¢ ¢ ¢ ¢« o o o o o o o«
11.8.8 BACKFILE Statement . . . ¢« ¢ ¢ ¢« ¢ ¢ & ¢ « o &
12 FORMATTED DATZ TRANSFERS
12.1 FORMAT-STATEMENT FORMATTING e o s e « o e e
12,1.1 Specifying & Format List in a FORMAT Statement
12.1.2 Specifying a Format Specification as a
Character Expression « ¢ & o o o« o o &
12.1.3 Specifying a Format Specification in a Numeric
Array . « « o« . . e o e e s » e s » o
12.1.4 Specifying a FORMAT Statement U51ng an ASSIGNed
Variable . . ¢ 4 ¢ o ¢ ¢ o ¢ ¢ ¢ o o o o o o
12.1.5 The Ordering and Interpretation of Format List
Items .« . e e e s e e s e e e o e o o o o
12.2 EDIT DESCRIPTORS e e o o o o o o e e o o o e o o
12.2.1 Repeatable Edit Descriptors « o« o +
12.2.2 Nonrepeatable Edit Descriptors . . . « « « + &
12,2.3 Carriage-Control Specifiers+ & .
12.3 INTERACTION OF INPUT/OUTPUT LIST AND FORMAT LIST
12.3.1 General Description . . + ¢ ¢« o o o o o o « &
12.3.2 Formatted Input . . ¢ & ¢ & ¢« o« o o o o o o =

vii

11-34

11-36
11-36
11-37
11-37
11-39
11-39
11-39
11-40
11-41
11-41
11-42
11-42
11-43
11-43
11-43
11-44
11-44
11-44
11-45
11-45
11-45
11-45
11-46
11-46
11-47
11-47
11-47
11-48
11-48
11-48
11-49
11-49
11-52
11-53
11-54
11-54
11-55
11-55
11-56
11-57
11-57

12-4

12-5
12-6
12-7
12-8
12-9
12-11
12-11
12-14

CHAPTER

12.3.3 Formatted Output .« « o« « ¢ ¢ o « o« o o o o
12.3.4 Embedded Format Specifications
12.4 FORMAT EDITING e e e e e s e e s
12.4.1 Apostrophe (') Edltlng e e s e e e e e e e
12.4.2 H BEAditing .« ¢ ¢ ¢« o ¢« ¢ ¢ o o o o o o o o
12.4.3 Positional Editing . . . « « ¢ ¢ o & o o &
12.4.3.1 T, TL, and TR Editing « « « o« .
12.4.3.2 X EAiting .« v ¢ ¢ ¢ o o« o o o 4 o e« s
12.4.4 $ (Dollar Sign) Editing « ¢« .« « .
12.4.5 / (Slash) Editing . ¢ ¢ ¢ ¢ « o ¢ o o o &
12.4.6 : (Colon) Editing . « ¢ « o o o o o o o &
12.4.7 S, SP,and SS Editing e s e s e e e

12.4.8 P Editing e o s e s e

12.4.9 BN and BZ Editing e o e o o o

e o e & o
e o o o o
¢ e o e o

12.4.10 Q Editing
12.4.11 Numeric Editing . .
12.4.11.1 I Editing . . .
12.4.11.2 F Editing . . .
12.4.11.3 E and D Editing
12.4.11.4 G Editing . . .
12.4.11.5 Complex Editing
12.4.11.6 0 (Octal) Editing
12.4.11.7 Z Editing
12.4.12 L Editing . . . « « « « .
12.4.13 A Editing

12.4.14 R Editing

s o e o
. .
o o o o
. e
.
.
.
.
.
.
" ¢ o o ¢ o e »

.
.
.
.

¢ o & o
.
.
.

¢ o e o o
.

e o e o s o

¢ e o

e o o o
* e o o o

12.5 LIST-DIRECTED FORMATTING . o o e
12.6 NAMELIST-STATEMENT FORMATTING . e . e
12.7 NAMELIST STATEMENT e e e e e e e
12.7.1 NAMELIST-Controlled Data Input Transfer .
12.7.2 NAMELIST-Controlled Data Output Transfers
13 FUNCTIONS AND SUBROUTINES

13.1 INTRINSIC FUNCTIONS e e e s e e e e e e e
13.1.1 Using an Intrinsic Function . . . « . . .
13.1.2 Character Intrinsic Functions
13.1.3 Character Comparison Functions
13.1.4 Bit Manipulation Functions
13.2 STATEMENT FUNCTIONS e o s o s o e o e s o e
13.2.1 Defining a Statement Function
13.2.2 Using a Statement Function « . .
13.2.3 Statement Function Restrictions
13.3 EXTERNAL FUNCTIONS o o o s e
13.3.1 FORTRAN-Supplied External Functlon . . .
13.3.2 User-Defined External Functions
13.3.3 Function Subprogram Restrictions
13.3.4 Using a Function Subprogram
13.4 SUBROUTINES e e s e e s s e e s e o o e o =
13.4.1 FORTRAN-Supplied Subroutines
13.4.1.1 ALCCHR Subroutine . . . « « & « « « + &
13,4.1.2 CDABS Function . . « ¢ ¢« ¢ ¢ o o o o o &
13.4.1.3 CDCOS Subroutine . « « & o & o« « o o o &
13.4.1.4 CDEXP Subroutine ¢ + ¢« « o + o &
13.4.1.5 CDLOG Subroutine . . « +« ¢ & ¢ o o o « &
13.4.1.6 CDSIN Subroutine . « + + o « o o« o o o &
13.4.1.7 CDSQRT Subroutine . . . + ¢« ¢ o« « « « &
13.4.1.8 CHKDIV Subroutine « . . .
13.4.1.9 CLRFMT Subroutine e o s e s e o e e
13.4.1.10 DATE Subroutine

13.4.1.11 DIVERT Subroutine
13.4.1.12 DTOGA . . . e e e e e e
13.4.1.13 DUMP Subroutlne e e e e

.

e o o o
.
.
.
.

¢« o o o
.

viii

o o

* e ® o @

12-15
12-15
12-16
12-16
12~-17
12-18
12-19
12-21
12-22
12-23
12-24
12-24
12-25
12-28
12-29
12-29
12-31
12-32
12-32
12-33
12-36
12-36
12-37
12-38
12-39
12-40
12-41
12-44
12-44
12-45
12-46

13-1

13-2
13-12
13-14
13-14
13-15
13-16
13-16
13-17
13-18
13-18
13-20
13-21
13-21
13-22
13-24
13-24
13-25
13-25
13-26
13-26
13-27
13-28
13-28
13-29
13-29
13-30
13-30
13-30

HAPTER

HAPTER

13.4.1.14 ERRSET Sukroutine ¢ + ¢« ¢« ¢« o « &
13.4.1.15 ERRSNS Sukiroutine « ¢ o o + o .« .
13.4.1.16 EXIT Subrcutine . . + &+ ¢« & &« o &« o o o o &
13.4.1.17 FFUNIT Subroutine &+ & o« ¢ o o « + &
13.4.1.18 GTODA Subroutine . . ¢ ¢ & ¢ ¢ ¢« & o « o o« &
13.4.1.19 ILL Subroutine . .« + ¢ ¢ o o o o o o o o o &
13.4.1.20 LEGAL Subroutine . . . & « v ¢ + ¢« « « « o .
13.4.1.21 MVBITS Sukroutine + & ¢ o o o o « &
13.4.1.22 OVERFL Sukroutine« .« « + . .
13.4.1.23 PDUMP Subroutine . . . « ¢ ¢ ¢« o« ¢« o o o o &
13.4.1.24 QUIETX Sukroutine . « ¢ v o ¢ ¢ o o o o o
13.4.1.25 SAVFMT Sukroutine e e e e e e e e e e e e
13.4.1.26 SAVRAN Sukroutine« « +
13.4.1.27 SETRAN Sukroutine + ¢« ¢« « « o « &
13.4.1,28 SORT Subrcutine . + ¢« ¢« & o ¢ ¢ o o o o« o« &
13.4.1.29 SRTINI Sukroutine . . e e e e e e e s e W
13.4.1.30 TIME Subrcutine . . « « « + &« o o« o o & o &
13.4.1.31 TOPMEM Sukroutine . . + « v o & o o « o + &
13.4.1.32 TRACE Subroutine . . o s e e e s s e e e .
13.4.2 User—-Defined Subroutlnes e o o o s s s o s s =
13.4.2.1 SUBROUTINE Statement . . + ¢ ¢ o o « o « « o
13.4.2.2 CALL Statement . . . e e e e e e e .
13.4.2.3 Execution of a CALL Statement e e e e e e
13.4.2.4 Actual Arguments for a Subroutine
13.4.3 ENTRY Statement e o o e o o s e o o e e o o
13.4.4 RETURN Statement & ¢ ¢« &+ o ¢ « o &
13.4.5 Dummy and Actual Arguments « e e .
13.4.5.1 Length of Character Dummy and Actual
Arguments . . . e e e e e e e e e e s
13.4.5.2 Character and Hollerith Constants as Actual
Arguments e e e e s e s e o e e s s e e e
14 BLOCK DATA SUBPROGRAMS
14.1 BLOCK DATA STATEMENT . « ¢ « o o o o o o « o« o
15 WRITING USER FROGRAMS
15.1 GENERAL PROGRAMMING CONSIDERATIONS &
15.1.1 Accuracy and Range of Double-Precision Numbers
15.1.2 Writing FORTRAN Programs for Use on Other
Computers e o s s e e e e .
15.1.3 Using Floating-Point DO Loops e e e e e e e .
15.1.4 Computation of DO Loop Iterations
15.1.5 Subroutines - Programming Considerations . . .
15.1.6 Reordering of Computations
15.1.7 Dimensioning of Dummy ArraysS . . « o« o o o o+ &
15.2 FORTRAN GLOBAL OPTIMIZATION e e o e s s e e e
15.2.1 Optimization Techniques« ¢« « « + « &
15.2.1.1 Elimination of Redundant Computations . . .
15.2.1.2 Reduction of Operator Strength
15.2.1.3 Removal of Constant Computation from Loops .
15.2.1.4 Constant Folding and Propagation
15.2.1.5 Removal of Inaccessible Code+ .+ &
15.2.1.6 Global Register Allocation
15.2.1.7 I/0 Optimization . .« ¢ o« & &« o o o o o « & &
15.2.1.8 Uninitialized Variable Detection
15.2.1.9 Test Replacement e e e e e . .
15.2.2 Programming Techniques for Effectlve
Optimization . . . ¢ & ¢« ¢ o v ¢ o o ¢« o o o @
15.3 FUNCTION SIDE EFFECTS e o e e e e . e e
15.4 INTERACTING WITH NON-FORTRAN PROGRAMS AND FILES

ix

13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-3
13-4
13-4
13-4
13-4
13-4
13-4
13-4
13-4
13-4
13-4

13-5

13-5

14-

15~
15-

15-
15~
15-
15-
15-
15-
15-
15-
15-
15-
15-
15~
15-
15-
15~
15-
15-

15-1
15-1
15-1

1
2
3
3
4
4
4
5
5
6
6
7
7
8
8
9
9
0
1
2
3
4
4
5
5
7
9

1

1

1

1
1

2
2
2
3
4
5
6
6
6
7
7
8
9
9
9
9
9

0
0
0

CHAPTER

CHAPTER

15.4.1 Using The Sharable High-Segment FOROTS
15.4.2 Calling Sequences . . ¢ & o & o o o o o o o &
15.4.3 Accumulator USage .« o o & & o o o o o o o o
15.4.4 Argument ListS . ¢ ¢ o ¢ ¢ o ¢ o o o o o o o o
15.4.5 Argument TYPES « ¢ o o o o o o o o o o o o o o
15.4.6 Description of Arguments . « « « o « o « o« &
15.4.7 Interaction with COBOL . . . e e e e e .
15.4.7.1 Calling FORTRAN Subprograms from COBOL
Programs . . . « o . o . . « .
15.4.7.2 Calling COBOL Subroutlnes from FORTRAN
Programs . « o« ¢ o ¢ o o o o o o o o o o o o
15.4.8 Interaction with BLISS-36« .
15.4.8.1 Calling FORTRAN Subprograms From BLISS—36
Programs . . . + « « & . e o s e o o e
15.4.8.2 Calling BLISS-36 Routlnes From FORTRAN . . .
15.4.9 LINK Overlay Facilities

15.4.10 FOROTS and Overlay Memory Management
15.4.11 Extended Addressing Memory Layout (TOPS-20

only) e e e e s e e e e e e e e e e e e e e
16 USING THE FORTRAN COMPILER
16.1 USING THE FORTRAN-10 COMPILER . . « ¢« o & « o &
16.1.1 TOPS-10 COMPILE-Class Commands . . « « o« o o &
16.1.2 RUNNING THE FORTRAN-10 COMPILER . .« ¢ « & o &
16.1.3 TOPS-10 Compiler Command Switches
16.2 USING THE FORTRAN-20 COMPILER . ¢ ¢ « o o « o
16.2.1 TOPS-20 COMPILE-Class Commands . « « o« + « « o«
16.2.2 RUNNING THE FORTRAN-20 COMPILER . . +. « + « =
16.2.3 TOPS-20 Compiler Commands Switches e e e e
16.3 THE /DEBUG SWITCH . ¢ « &« o o « o o o o o« o o &
16.4 THE /NOWARN SWITCH . . . e o e e e o s
16.5 THE /EXTEND SWITCH (TOPS 20 ONLY) o o . . .
16.5.1 /EXTEND and Applications with Large Arrays .
16.5.2 /EXTEND and Applications with Large Executable
Code v v &« 4 o 4 o o s o o s+ 4 e o o 4 e o o
16.5.2.1 /EXTEND PSECT Placement e e o o s o o o o o
16.5.2.2 Building Large-Code Applications
16.5.3 Arguments to /EXTEND . ¢ o ¢ ¢ o o ¢ o o o o o
16.5.4 Linking With TWOSEG REL Files . . o o e e .
16.6 THE /FLAG (/FLAG-NON-STANDARD) SWITCH e o o s e
16.7 READING A FORTRAN COMPILER LISTING . . . « « « &
16.7.1 Compiler-Generated Variables
16.8 ERROR REPORTING . . & ¢« o o o o o o o o o o o =
16.8.1 Fatal Errors and Warning Messages« . .
16.8.2 Message SUMMALY .+« & « o o o o o o o o o o o
16.9 CREATING A SHARABLE HIGH SEGMENT FOR A FORTRAN
PROGRAM . . & & v ¢« ¢ o o o o o o o o o o o o =
17 USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT)
17.1 INPUT FORMAT . o & ¢ o o o o o o o o o o o o o o
17.1.1 Variables and Arrays . .« o« o o o o o o o o o &
17.1.2 Constant Conventions . . ¢« +« ¢ & « o o o o « =
17.1.3 Statement Labels and Source Line Numbers . . .
17.2 FORDDT AND THE FORTRAN /DEBUG SWITCH . . . « « «
17.3 LOADING AND STARTING FORDDT . . &« o« ¢ o« o o o
17.4 SCOPE OF NAME AND LABEL REFERENCES
17.5 FORDDT COMMANDS . . o ¢ & o o o o o o o o o o @
17.6 ENVIRONMENT CONTROL . & & ¢ o o o o o o o o o @
17.7 FORTRAN /OPTIMIZE SWITCH . ¢ ¢« ¢ ¢ o o o« o o o &
17.8 CALLING FORDDT . . ¢ ¢ o 4 o o o o o o o o o o o«

15-10
15-11
15-11
15-12
15-14
15-14
15-16

15-16

15-18
15-18

15-18
15-19
15-19
15-20

15-22

16-1
16-1
16-2
16-2
16-5
16-5
16-6
16-8
16-11
16-14
16-15
16-16

16-17
16-17
16-18
16-19
16-21
16-21
16-22
16-24
16-33
16-34
16-34

16-35

17-2
17-2
17-3
17-4
17-4
17-5
17-6
17-7
17-16
17-17
17-17

CHAPTER

CHAPTER

17.9

18

18.1
18.2
18.3
18.3.1

18.3.2
18.3.3
18.3.3.1
18.3.3.2
18.4
18.4.1
18.4.2
18.4.2.1
18.5
18.5.1
18.5.2
18.5.3
18.5.3

19

19.1
19.2
19.2.1
19.2.2
19.2.3
19.2.4
19.3
19.3.1
19.3.2
19.3.3
19.3.4
19.3.5
19.3.6
19.3.7
19.3.8
19.3.9
19.3.10
19.3.11
19.3.12
19.3.13

FORDDT AND FORTRAN-20 EXTENDED ADDRESSING . . .

USING THE FORTRAN OBJECT TIME SYSTEM (FOROTS)

FEATURES OF FOROTS . & « o ¢ o s o o o o o o o &
ERROR PROCESSING . &+ & o o o o o o o o o o o o «
INPUT/OUTPUT FACILITIES . . . e o+ o o
Input/Output Channels Used By FOROTS (TOPS- 10
ON1Y) & ¢« 4 o o o o o o o o o o o s s e s o
File Access o o e e o
Closing Files After Non-standard Termination
Sequential Access
Direct (Random) Access Mode
ACCEPTABLE TYPES OF DATA FILES
ASCII Data riles
FORTRAN Binary Data Flles
Format of Binary Files .
USING FOROTS . &« &« o o o &
FOROTS Entry Points o o o
Calling Sequences . . .
MACRO Calls for FOROTS Functlons « o
Sequential-Access Calling Sequences
Internal File Calling Sequences . . .
NAMELIST [/0, Sequential-Access Calling
Sequences . . e o e e o o o o o o o o o @
Array Offsets and Factoring
I/0 Statenents, Direct-Access Calling
SEQUENCES & ¢ ¢ o o o o o o o o o o o e o
Default Devices Statements, Calling
SequUeNCeS . + 4 . e s o o o s o e o o
Statements to Position Files . . . o o
List-Directed Input/Output Statements .
Input/Output Data Lists
0 OPEN and CLOSE Statements, Calllng Sequences
1 Memory Allocation Routines« .« .
2 Channel Allocation and Deallocation Routines
FUNCTIONS TO FACILITATE OVERLAYS . . « « « « o =
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS
FOROTS AND INQUIRE BY FILE STATEMENT« .

>
z
e e e o 0o e

® o v o o o Fle e
jan

* o o o o o Mo o
L]
D o

* e o o e o

e o o o ¢ e ¢ Tl
o

* 8 o e e o+ o o e De o

=
e s e e e s e s De e
]
® e o o o o o o UNe o o o

17-17

18-1
18-2
18-2

18-2
18-3
18-3
18-3
18-4
18-4
18-4
18-4
18-4
18-14
18-15
18-16
18-17
18-18
18-19

18-20
18-20

18-22

18-23
18-24
18-24
18-25
18-28
18-29
18-30
18-31
18-36
18-36

USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-10 ONLY)

INTRODUCTION .

USING FORRTF
Memory . .
Modes . .
Priority- Inte
Masks . .

SUBROUTINES
LOCK ., .
RTINIT
CONECT
RTSTRT
BLKRW
RTREAD
RTWRIT
STATO
STATI
RTSLP
RTWAKE
DISMIS
DISCON

[

® e o o o o ¢ 0 0 s 2 s s e 0 e s e o

@

® 8 & s e & & o 0 e o s o o o e o e o

7]

p

e ¢ o e &+ » o o o
® & o o o o+ & o o
e e o o o » e & o
o % & ® o s e o o

® ¢ 4 o o o & o o

e & a a2 a a a
o.oooooo-oocoool'{o.oo

.

.

.

.

ru

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

® o © 8 o o o+ . * e e * o . ot e . . -
® e & s s s o e+ e % s s e o "te o o o
® e o s e e o & 6 s+ & o o s e o e e & o
® o * e & e & o & e & e * s e & ¢ e o o
® e & o o o 8 4 ¢ e % e 0+ o e o e & e o
® o e & o s 4 e e o o e e e s e s e e @
® e e e o e 4 e e+ s % & * e s s 6 e s o

e o o e o o & e+ o e s o @
.

® s e o e e e e o e o

e e * o o s & o o e o

® o ° o e+ 4 e s e e o

® e & o s s o s e e o

* s o o e 4 * o+ e s o

xi

19-1
19-2
19-2
19-2
19-2
19-2
19-3
19-3
19-3
19-4
19-4
19-4
19-5
19-5
19-5
19-6
19-6
19-6
19-6
19-7

19.3.14 UNLOCK & v 4 s o o o s o s o o s o o o o o o « 19-7
19.3.15 Error MessSages . « o« « o o o o o o o o o o o o 19-7

APPENDIX A SUMMARY OF FORTRAN STATEMENTS

APPENDIX B ASCII-1968 CHARACTER CODE SET

APPENDIX C COMPILER MESSAGES

APPENDIX D FOROTS ERROR MESSAGES
D.1 ALPHABETICAL DESCRIPTION OF FOROTS MESSAGES « « o D=9

APPENDIX E INTERACTIVE DEBUGGER (FORDDT) ERROR MESSAGES

APPENDIX F FORTRAN-SUPPLIED PLOTTER SUBROUTINES
F.l PLOTS SUBROUTINE . . ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o F=2
F.2 AXIS SUBROUTINE e e 4 s s e s s s e e a4 s e e o o F=2
F.3 CAXIS SUBROUTINE . . . &« & ¢« « o o o o o o o o o« o F-3
F.4 LINE SUBROUTINE . & 4 « + « o o o o s o o o o o o« F-4
F.5 MKTBL SUBROUTINE . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ « o o « o« « F=-5
F.5.1 Character Tables . . . « ¢« ¢ ¢ o« &+ o o o o » « o« F-5
F.5.1.1 Creating a Character Table F-6
F.5.1.2 Creating a Stroke Table . . . ¢« « +. ¢« + « o+ « F-6
F.5.1.3 Sample Character Stroke Table F=7
F.5.1.4 FORTRAN- and User-Defined Character Sets . . . F-9
F.6 NUMBER SUBROUTINE e e o o o s s s o s o o e s o « F=9
F.7 PLOT SUBROUTINE s e e e e o o o o e o o o o o F-10
F.8 SCALE SUBROUTINE . . . & ¢ 4+ ¢ o o o o « s « o » F-=10
F.9 SETABL SUBROUTINE e o o o o o o e o o o o e o o F-11
F.1l0 SYMBOL SUBROUTINE . . ¢ ¢ o ¢ o o o o o o o o o F-12
F.11 WHERE SUBROUTINE . . . ¢ & o o ¢ o o o o o o o F-12

INDEX

FIGURES
2-1 Fields Within a FORTRAN Line . . . +« ¢« « &« &« « « 4 2-3
4-1 A 3 x 3 X 2 Array .+ . o o . e e e e e e e e« o . 4-4
6-1 Ordering of FORTRAN Statements e s s s o s e s & . 6-3
7-1 Shared Storage using EQUIVALENCE Statement . . . 7-12
7-2 Equivalence of Substrings 7-13
7-3 Equivalence of Character Arrays . « « « » o o . 71-14
7-4 Valid Equivalencing . .+ .+ ¢ o & o o o o s o « o 1-16
7-5 Invalid Equivalencing . . . e s s+ s+ s s e« o . 1-16
9-1 Examples of Block IF Constructs e e e e e e s e o 9-7
10-1 Components of Data Transfer Statements 10-8
11-1 TOPS-10 File Protection Number 11-25
11-2 TOPS-20 Protection Number + . « . .« . 11=-27
15-1 Run-time Memory Layout for Section Zero 15-21
F-1 Plotter Character Table Entry « « . . F-6
F-2 Character Stroke Table Entry « +« « . . . F-6
F-3 Sample Character Stroke Table « . . F-8

xii

TABLES

w N
[
—

(S2 =Y
|
[N o) W, BNy V) N

HeEHRRROOUMIOO WL
o<??>?<31 L I |
G WK

10-6
10-7
10-8
10-9
10-10
10-11

11-1

11-2
11-3
11-4
11-5

11-6
12-1
12-2
12-3
12-4
12-5

12-6

13-1
13-2
15-1
15-2
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
17-1
18-1
18-2
19-1

D-1

FORTRAN Character Set e e e e . .
Comparison of Real, D- floatlng, and G- floatlng

Numbers . . . v e e e e s e e e e e e e e
Use of Symbol1c Names e e e e e e s e e e e e .
Arithmetic Operations and Operators . . « o .

Type of the Result Obtained from Mixed- Mode

Operations o ¢« v & 4+ 4 4 o ¢ ¢ e e e e s e e 4
Permitted Base/Exponent Type Combinations . . .
Logical OperaLors .« . e o o s s e s s o
Logical Opera:ions Truth Table o & o o s+ & o o
Relational Operators and Operations
Hierarchy of FORTRAN Operators . . . « + « « « &
Rules for Conversion in Mixed-Mode Assignments .
FORTRAN I/O Statement Categories « . . .
Summary of Data Transfer Statement Forms
FORTRAN Logical Device Assignments
Summary of READ Statement Forms « + . .
Summary of WRITE Statement Forms
Summary of REREAD Statement Forms
Summary of ACCEPT Statement Forms
Summary of TYPE Statement Forms . . « « « « o« o
Summary of PRINT Statement Forms
Summary of PUNCH Statement Forms
Summary of Internal READ/WRITE and ENCODE/DECODE

Statement FOIMS . o ¢ ¢ ¢ o & & o o o o o o o @
Summary of OPEN Statement Specifiers and
Arguments . . . e e e e e e e e e e e e e

DEVICE and MODE Cross Table « « . . .
TOPS-10 Protection Code Values« . . .
TOPS-20 Protection Code Values « . . .
Summary of CLOSE Statement Specifiers and
Arguments e e e e e e e e e
Summary of Device-Control Statements e o e e e s

lepeatable FORTRAN Edit Descriptors
Nonrepeatable FORTRAN Edit Descriptors
Carriage-Control Specifiers
FRecord, Format List, and I/0 List Interaction .
Default Field Widths for Numeric Edit

Descriptors . . . « . . e e e s e e e e e e
Effect of Data Magnitude on G-Format Output
Conversion . . . v v v ¢ 4 4 o ¢ o o o o o 4 e W

FORTRAN Instrinsic Functions « . « . .« .
FORTRAN-Supplied Subroutines
Argument Types and Types Codes . . . + o « o . .
Memory Allocations for /EXTEND and /NOEXTEND . .
FORTRAN-10 Compiler Switches « . + . .
FORTRAN-20 Compiler Switches « + . . .
Arguments to /DEBUG Switch
Legal Dummy and Actual Argument Associations . .
Arguments to /NOWARN Switch
/EXTEND Default Memory Layout . . ¢ « & o « o« &
Arguments to /EXTEND Switch « + . . .
Arguments to /FLAG Switch « & . .
FORDDT Commands « &« & « o o o o o o o o o o o &
FOROTS Entry Points ¢« & ¢« ¢« + « o « &

Function Numbers and Function Codes . o .
Error Messages — Code Format and Full Message
Format e e e e e e e e e e e e e e

FOROTS Error Codes e e e s e 4 e s e s e e e e

xiii

PREFACE

The FORTRAN-10/20 Language Manual reflects the software as of Version
10 of the FORTRAN-10/20 compiler, the FORTRAN-10/20 Object Time System
(FOROTS), and the FORTRAN-10/20 debugging program (FORDDT).

This manual describes the FORTRAN language as implemented for the
TOPS~10 operating system (FORTRAN-10) and the TOPS-20 operating system
(FORTRAN-20). Any differences between FORTRAN-10 and FORTRAN-20 are

noted in this manual.

Since this is a reference manuval, we assume that you have used FORTRAN
before. If you haven't, you should read one of the many introductory
FORTRAN texts.

CONVENTIONS

The following conventions are used throughout the manual:

Braces { } indicate that a choice must be made from one
of the enclosed lines.

Brackets {] indicate an optional feature.
Ellipsis ... or . indicate the omission of information from a
. programming example or that items in a
. command line can be optionally repeated.
Lowercase letters indicate variable information you supply in a

command string.

UPPERCASE LETTERS indicate fixed (or literal) information that
you must enter as shown in a command string.

y/ indicates a blank.
The standard for FORTRAN is the American National Standards Institute

(ANSI) FORTRAN, X3.9-1978 (also known as FORTRAN-77). FORTRAN-10/20
extensions and additions to ANSI FORTRAN are in blue print in this

manual.

XV

MANUALS REFERENCED

The following manuals are referenced from TOPS-10 publications:

TOPS-10

Operating System Commands Manual

S0S Reference Manual

TOPS-10

Monitor Calls Manual

TOPS-10

Hardware Reference Manual

TOPS-10

LINK Reference Manual

TOPS-10

SORT/MERGE User's Guide

TOPS-10

FORTRAN Installation Guide

The following manuals are referenced from TOPS-20 publications:

TOPS-20

Commands Reference Manual

TOPS-20

EDIT Reference Manual

TOPS-20

User's Guide

TOPS-20

Monitor Calls Manual

TOPS-20

Link Reference Manual

TOPS-20

SORT/MERGE User's Guide

TOPS-20

FORTRAN Installation Guide

The following TOPS-10/TOPS-20 manual are referenced:

FORTRAN-

10/20 and VAX-11 FORTRAN Compatibility Manual

TOPS-10/TOPS-20 FORTRAN Pocket Guide

TOPS-10/TOPS-20 COBOL-74 Language Manual

TOPS-10/20 BLISS Language Guide

TOPS-10/20 Common Math Library Manual

xvi

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The FORTRAN language, as implemented on the TOPS-10 and TOPS-20
operating systems, is compatible with and encompasses the standard
described in "American National Standard FORTRAN, X3.9-1978" (referred
to as the FORTRAN-77 standard:; at the full-language level.

FORTRAN-10/20 provides many extensions and additions to the FORTRAN-77
standard that greatly enhance the usefulness of FORTRAN and increase
its compatibility with FORTRAN languages implemented by other computer
manufacturers. The extensions and additions to the standard
FORTRAN-77 are printed in this manual in blue print.

A FORTRAN source program cons:ists of a set of statements constructed
using the language elements and the syntax described in this manual.
A given FORTRAN statement performs any one of the following functions:

1. It causes operations such as multiplication, division, and
branching to be carr:ed out.

2., It specifies the type and format of the data being processed.
3. It specifies the characteristics of the source program.

FORTRAN statements are composed of keywords (words that are recognized
by the compiler) used with elements of the language set: constants,
variables, and expressions. There are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements spec fy the actions of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable code in
the object program. Nonexecutable statements provide information only
to the compiler; they do not create executable code.

1.2 MANUAL ORGANIZATION

This manual is divided 1into three parts: Language Elements,
State~ 2nts, and Language Usage. Sections 1.2.1 through 1.2.3 contain
general descriptions for each of these three parts. Section 1.2.4

contains a general description of the appendixes.

INTRODUCTION

1.2.1 FORTRAN Language Elements (Part I)

Part I of this manual describes the fundamental elements of FORTRAN
programs, including (by chapter):

Chapter 2, CHARACTERS AND LINES, describes FORTRAN source program

characters and lines. The FORTRAN compiler interprets your
source program and translates it into machine code (executable
code) .

Chapter 3, CONSTANTS, describes FORTRAN data types and constants.
FORTRAN enables you to manipulate information (data) in a variety
of ways. This chapter describes the techniques for defining
FORTRAN constants of various data types.

Chapter 4, SYMBOLIC NAMES, VARIABLES, AND ARRAYS, describes
symbolic names, variables, and arrays in FORTRAN. The symbolic
name is used in a variety of ways 1in a source program; this
chapter describes the conventions for using symbolic names to
define both variables and arrays.

Chapter 5, EXPRESSIONS, introduces and describes FORTRAN
operators, Expressions in FORTRAN are formed using variables,
constants, and operators.

1.2.2 FORTRAN Statements (Part II)

Part II of this manual describes all the statements in the FORTRAN
language. The following list describes (by chapter) the information
presented in Part II:

Chapter 6, EXECUTABLE AND NONEXECUTABLE STATEMENTS, defines the
term "FORTRAN Statement", and describes the "Compilation Control
Statements".

Chapter 7, SPECIFICATION AND DATA STATEMENTS, describes all the
statements within the category "Specification and Data
Statements". The specification statements enable you to
explicitly define the data types of variables used within your
program; the DATA statement enables vyou to create initially
defined constants within your program.

Chapter 8, ASSIGNMENT STATEMENTS, describes all the statements
within the category "Assignment Statements". FORTRAN assignment
statements enable you to assign values to variables, and to
assign statement labels to symbolic names.

Chapter 9, CONTROL STATEMENTS, describes all the statements
within the category "Control Statements". The default execution
sequence of 1lines 1in a FORTRAN program 1is each 1line from
left-to-right, and all 1lines from top-to-bottom. You use the
FORTRAN control statements to alter the default execution
sequence, to stop or pause during program execution, or to mark
the end of an executabhle program.

Chapter 10, DATA TRANSFER STATEMENTS, describes the data transfer
category of "FORTRAN Input/Output (I/O) Statements". As the term
implies, a data transfer statement moves data from one place to
another.

INTRODUCTION

Chapter 11, FILE-CONTROL AND DEVICE-CONTROL STATEMENTS, describes
file-control and device-control categories of "“FORTRAN 1I/0
Statements”, The file-control statements enable you to associate
a unit number with a file. Device-control statements enable you
to position a storage medium (for example, magnetic tape) on a
connected unit.

Chapter 12, FORMATTED DATA TRANSFERS, describes three types of

data formatting. During certain types of data transfer
operations, you must specify the format of the data being
transferred., FORTRAN provides three techniques for specifying

the format of data: FORMAT-Statement, List-Directed, and
NAMELIST-Statement formatting.

Chapter 13, FUNCTIONS AND SUBROUTINES, describes FORTRAN
functions and subprograms. Functions and subprograms provide a
technique for producing clear and concise FORTRAN programs.
FORTRAN-10/20 provides both predefined functions and subprograms,
and the statements for defining your own functions and
subprograms.

Chapter 14, BLOCK DATA SUBPROGRAMS, describes the block-data
subprogram. This type of subprogram enables you to define
initial values for variables in COMMON.

1.2.3 FORTRAN Language Usage (Part III)

Parts I and II of the manual contain complete descriptions of FORTRAN
elements and statements. Part III of the manual contains explanations
of how you use FORTRAN-10/20. The following usage topics are covered
in Part III:

Chapter 15, WRITING USER PROGRAMS, presents some general
considerations that you should follow when you are creating
FORTRAN source programs. In addition, this chapter contains a
description of the FORTRAN optimizer.

Chapter 16, USING THE FORTRAN COMPILER, describes how to use the
FORTRAN compiler and contains descriptions on how to compile,
load, and execute a FORTRAN program. In addition, this chapter
contains descriptions of how to read a compiler-generated program
listing, and how to create a reentrant FORTRAN program. This
Chapter also describes how to use FORTRAN-20 extended addressing.

Chapter 17, USING THE FORTRAN INTERACTIVE DEBUGGER (FORDDT) ,
describes how to use the FORTRAN interactive debugging program
(FORDDT) to test and debug a running program. This chapter also
contains a brief explanation of how to debug a running FORTRAN
program using DDT, the system debugger.

Chapter 18, USING THE FORTRAN OBJECT-TIME SYSTEM (FOROTS) ,
describes the FORTRAN Object-Time System (FOROTS). This chapter
also contains descriptions of how you can use the FOROTS
software.

Chapter 19, USING THE FORTRAN REAL-TIME SOFTWARE (TOPS-10 ONLY),
describes how to wuse the FORTRAN real-time software. This
chapter is for TOPS-10 installations only.

INTRODUCTION

1.2.4 APPENDIXES

The appendixes describe various wuseful information. The following
topics are covered in the appendixes:

Appendix A, SUMMARY OF FORTRAN STATEMENTS, summarizes the forms
of all FORTRAN statements and provides a section reference where
each statement is described in detail.

Appendix B, ASCII-1968 CHARACTER CODE SET, 1lists the character
code set defined 1in the X3.4-1968 version of the American
National Standard Code for Information Interchange (ASCII).

Appendix C, COMPILER MESSAGES, describes the FORTRAN compiler
messages.

Appendix D, FOROTS ERROR MESSAGES, describes the FOROTS error
messages.

Appendix E, FORDDT ERROR MESSAGES, describes the FORDDT error
messages.

Appendix F, FORTRAN-SUPPLIED PLOTTER SUBROUTINES, describes the
FORTRAN-supplied plotter subroutines.

CHAPTER 2

CHARACTERS AND LINES

The basic elements of the FORTRAN source program are 1its characters
and lines. Characters are used to form statements, expressions, and
comments in FORTRAN source programs. Lines, and fields within 1lines,
are used to define the context in which characters are interpreted by
the FORTRAN compiler.

This chapter describes the relationships among source program
characters, lines, and fields within source program lines.

2.1 CHARACTER SET

Table 2-1 1lists the digits, 1letters, and symbols recognized by
FORTRAN. The remainder of the ASCII-1968 character set is acceptable
within character or Hollerith constants or comment text, but these
characters cause fatal errors in other contexts.

NOTE

The complete ASCII character set is defined 1in the
X3.4-1968 version of the "American National Standard
Code for Information Interchange”™. A summary of the
standard ASCII set i3 also contained in Appendix B of
this manual.

NOTE
Lowercase alphabetic characters are treated as
upper-case outside the context of Hollerith or

character constants.

CHARACTERS AND LINES

Table 2-1: FORTRAN Character Set

Letters

Uppercase:

Lowercase: abcde faghi

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

jklmnopgrs¢tuvwxyz

Quotation Mark

Digits
01234567829
Symbols
! Exclamation point , Comma

Hyphen (Minus)

Number Sign . Period (Decimal Point)
$ Dollar Sign / Slant (Slash)

& Ampersand ¢ Colon

' Apostrophe ; Semicolon

(Left Parenthesis < Less Than

) Right Parenthesis = Equal To

* Asterisk > Greater Than

+ Plus " Circumflex

Line Termination Characters

Line Feed (LF), Form Feed (FF), Vertical Tab (VT)

Line Formatting Characters

Carriage Return (RET), Horizontal Tab (TAB), Blank

Note that horizontal tabs normally advance the character position
pointer to the next position that 1is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
either includes or starts in character position 6. (Refer to Section
2.3.1 for a description of initial and continuation line types.) Tabs
within character specifications count as one character, even though
they may advance the character position as many as eight places.

2.2 STATEMENT DEFINITION AND FORMAT

Source program statements are divided into physical lines. A line 1is
defined as a string of adjacent character positions, terminated by the
first occurrence of a 1line termination character, regardless of
context. As shown in Figure 2-1, each source program line is divided
into four fields.

CHARACTERS AND LINES

]

X

Line Character Positions

J 2 3 456,7877 7”7. ..
Statement Continuation Statement Field Remarks

Label Field Field

MR-S-1761 81

Figure 2-1: Fields Within a FORTRAN Line

2.2.1 Statement Label Field and Statement Numbers

You can place a number ranging from 1 to 99999 in the statement label
field of an initial 1line to identify the statement. Any source
program statement that is referenced by another statement must have a
statement number. Leading zeros and all blanks in the label field are
ignored; for example, the numbers 00105 and 105 are both accepted as
statement number 105.

You can assign the statement numbers in a source program in any order;
however, each statement number must be unique with respect to all
other statements in the program or subprogram.

A main program and a subprogram can contain identical statement
numbers. In this case, references to these numbers are understood to
mean the numbers in the same program unit in which the reference Iis
made. An example follows:

Assume that main module MAINMD and subprogram SUBl1 both
contain statement number 105. A GO TO 105 statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
not to 105 in SUB1l. A GO TO 105 in SUBl will transfer
control to 105 in SUB1l.

An initial tab may be used to skip all or part of the label field. If
an initial tab is encountered during compilation, FORTRAN-10/20
examines the character immediately following the tab to determine the
type of line being entered. If this character is one of the digits 1
through 9, FORTRAN-10/20 cons:.ders the line as a continuation line and
uses the second character after the tab as the first character of the
statement field.

If the character following the tab is not one of the digits 1 through
9, FORTRAN-10/20 considers the 1line to be an initial line and the
character following the tab is considered to be the first character of
the statement field. The character following the initial tab is
considered to be in character position 6 for a continuation line, and
in character position 7 for an initial line.

2.2.2 Line Continuation Field

Any character of the FORTRAN character set (except a blank, a zero, or
an exclamation point) placed in the line continuation field (position
6) identifies the line as a continuation 1line (see Section 2.3.1).
Whenever you use an initial tab to skip all or part of the label field
of a continuation line, the next character you enter must be one of
the digits 1 through 9 tc¢ identify the line as a continuation line.

CHARACTERS AND LINES

2,2.3 Statement Field

Any FORTRAN statement can appear in the statement field. Blanks
(spaces) and tabs do not affect compilation of the statement. Blanks
and tabs may be used freely in this field for appearance purpcses,
with the exception of textual data given within either a character or

Hollerith specification, where blanks and tabs are significant
characters,

2,2.,4 Remark Field

In lines consisting of 73 or more character positions, only the first
72 character positions are interpreted by FORTRAN. Note that tabs
generally occupy more than one character position, wusually advancing
the cursor to the next character position that is an even multiple of
8., The excephtion is the tab in a label field, which advances the
ursor either to column 6 or 7, depvending on the character following
the tab (see Section 2.2.1).

All other characters after character ©position 72 are treated as
remarks and do not affect compilation.

dore that remarks may also be added to a line in character positions 1

.nrough 72, provided the text of the remark is preceded by the symbol
"M (see Section 2.3.3).

2.3 LINE TYPES
A line in a FORTRAN source program may be:
1. An initial line
2. A continuation line
A multi-statement line
4., A comment line
A debua line
6. A blank line

These lines are described in Sections 2.3.1 through 2.3.5.

2.3.1 1Initial and Continuation Lines

A FORTRAN statement may occupy the statement fields of wup to 20

consecutive lines. The first 1line in a multi-line statement is
referred to as the initial line; the succeeding lines are referred to
as continuation lines. Initial 1lines may be assigned a statement

number and must have either a bhlank or a zero in character position 6.

o n1t1Aal tab may be used to skip all or part of the label field. If

tRse an ini1tial tab for this purpose, you must immediately follow
i+ aonnumerlc character; that is, the first character of the
ciemeant field must be nonnumeric.

CHARACTERS AND LINES

You cannot assign a statement label to a continuation line. Instead,
you 1identify a continuation 1line by placing a character from the
FORTRAN character set (except blank, zero, or exclamation point) in
character position 6 of that 1line. This position is the line
continuation field. The label field of a continuation 1line must be
blank.

Note that blank lines, comments, and debug lines that are treated like
comments (that is, debug lines that are not compiled with the rest of
the program) are legal continuation 1lines and do not terminate a
continuation sequence (see Section 2.3.4).

The following is an example of a 3-line FORTRAN FORMAT statement with
two continuation lines:

105 FORMAT (1X,'This example shows how continuation lines ',
1

2 'are used to accommodate FORTRAN statements that do not ',
3 'entirely fit on a single line.')

In this example the characters 2 and 3 in position 6 identify those
lines as continuation lines.

2.3.2 Multi-Statement Lines

You may write more than one FORTRAN statement in the statement field
of one line. The rules for structuring a multi-statement line are:

1. Successive statements must be separated by a semicolon (;).

2. Only the first statem2nt in the series can have a statement
number.

3. The last statement in a line is continued to the next line if
that next line is mad2 a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME; TIME=TIME+0.05; CALL PRIME (TIME,DIST)
NOTE
If a statemant sequence in a
multi-statement line consists of a

logical IF (see Section 9.2.2) followed
by any other executable statement, then
the statement following the IF will be
executed in all cases, even if the IF
expression evaliates as false.

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are called comment lines.
Comment lines commonly 1identify and introduce a source program,
describe the purpose of a particular set of statements, and introduce
subprograms.

CHARACTERS AND LINES

To structure a comment line:

1. You must place one of the characters C (or c), *, $, /, or !
in character position 1 of the 1line to identify it as a
comment line.

2. You place the text of the comment in the remainder of the
line.

3. You may place comment lines anywhere in the source program,
including preceding a continuation line.

4, You may write a large comment as a sequence of any number of
lines; however, each 1line must carry the identifying
character (C (or ¢), *, $, /, or !) in its first character
position.

The following is an example of a comment that occupies more than one
line:

SUBROUTINE - Al2

This subroutine formats
and stores the results of
the HEAT-TEST program

[P e Ke!

Comment lines are printed on all listings, but are otherwise ignored
by the compiler.

You may add a remark to any statement field, in character positions 7

through 72, provided the symbol ! precedes the text. For example, in
the line

IF(N.EQ.0)STOP ! Stop if card is blank
the text "Stop if card is blank”™ is identified as a remark by the
preceding ! symbol. The compiler ignores all characters from the
exclamation point to the end of the line. The characters follcwing

the exclamation point, however, appear in the source program listing.
To be treated as a remark symbol, the exclamation point must not
appear in a Hollerith or character constant.

Note that characters appearing in character positions 73 and beyond
are automatically treated as remarks, so that you need not use the
symbol ! (see Section 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging, a D (or d) in character position 1 of
any line causes the line to be interpreted as a comment line; that is,
not compiled with the rest of the program unless the /INCLUDE switch
is present in the compiler command string. (See Chapter 16 for a
description of the compiler switches.)

When the /INCLUDE switch is present in the compiler command string,
the D (or d) in character position 1 is treated as a blank so that the
remainder of the line is compiled as an ordinary (noncomment) line. A
debug line can have a label following the D (or d4). Note that if the
debug statement is an initial line, all of its continuation lines must
contain a D (or d) in character position 1.

CHARACTERS AND LINES

2.3.5 Blank Lines

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN source program. Blank lines that contain
remarks only, are considered as blank lines. Blank lines are used for
formatting purposes only; they cause blank lines to appear in their
corresponding positions in source program listings; otherwise, they
are ignored by the compiler.

2.4 LINE-SEQUENCED SOURCE FILES

FORTRAN-10/20 accepts line--sequenced files as produced by
line-oriented text editors (for example, SOS on TOPS-10 or EDIT on
TOPS-20). These sequence numbers are used in place of the 1listing

line numbers normally generated by FORTRAN. The listing line numbers
are not the same as FORTRAN statement numbers.

CHAPTER 3

CONSTANTS

3.1 INTRODUCTION
Constants are quantities that do not change value during the execution
of the object program. The data types you can use for constants in
FORTRAN-10/20 source programs are:

1. Integer

2. Real

3. Double-precision

4, Complex

5. Character

6. Logical

7. Octal

8. Double-octal

9. Hollerith

10. Statement label

The use and format of each of these data types are discussed in
Sections 3.2 through 3.10.

3.2 INTEGER CONSTANTS

An integer constant is a string of one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of -(2*%¥*35-1) to
(+2**35)-1 (-34359738367 to +34359738367). Positive integer constants
may optionally be signed; negative integer constants must always be
signed. You cannot use decimal points, commas, or other symbols in
integer constants (except for a preceding sign, + or -).

Examples of valid integer constants are:
345

+345
-345

CONSTANTS

Examples of invalid integer constants are:

+345. (use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

3.3 REAL CONSTANTS
A real constant can have any of the following forms:

l. A basic real constant: a string of decimal digits followed
by a decimal point, followed optionally by a decimal
fraction, for example, 1557.42.

2. A basic real constant followed by a decimal integer exponent
written in E notation (exponential notation) form, for
example, 1559.E2 or 1559.e2. The number following the E (or
e) specifies a power of ten by which the basic real constant
will be multiplied.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, for example, 1559E2
or 1559%e2.

Real constants may be of any size; however, each will be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real constant written in E notation cannot be
empty (blank); it must be either a zero or an integer constant. The
range of magnitude permitted a real constant is from approximately
1.47 * 10**(-39) to 1,70 * 10**(+38),

The following are examples of valid real constants:

-98.765

7.0E+0 (= 7.)
.7E-3 (= .0007)
S5E+5 (= 500000.)
50115.

50.E1 (= 500.)

The following are examples of invalid real constants:

72.6E512 (exponent is too large)
.375E (exponent incorrectly written)
500 (no decimal point given)

3.4 DOUBLE-PRECISION CONSTANTS

Double-precision constants are similar to real constants written in E
notation form; the differences between these two constants are:

1. Double-precision constants, depending on their magnitude,
have precision from 16 to 18 places, rather than the 8-digit
precision obtained for real constants.

CONSTANTS

2. Each double-precision constant occupies two storage
locations.

3. The 1letter D (or d), instead of E, is used in
double-precision constants to identify a decimal exponent.

On KL model B systems, there are two forms of double-precision number
formats. If the /GFLOATING compiler switch is specified (see Chapter
16), the double-precision number format is called G-floating. If the
/DFLOATING compiler switch (the default) is specified (see Chapter
16), the double-precision number format is called D-floating. See
Section 3.4.1 for a comparison of the different double-precision
number formats.

On KS systems, only the D-floaing double-precision number format is
provided.

You must use both the letter D and an exponent (including zero) in
writing a double-precision constant. The range of magnitude permitted
a double-precision constant is from approximately:
1.47 * 10**(-39) to 1.70 * 10**(+38) for D-floating
or

2,78 * 10**(-309) to 8.99 * 10**(+307) for G-floating

The following are examples of valid double-precision constants:

7.9D03 (= 7900.)
7.9D+03 (= 7900.)
7.9D-3 (= .0079)
79D03 (= 79000.)
79D0 (= 79.)

The following are examples of invalid double-precision constants:

7.9D999 (exponent is too large)
7.9E5 ("E" denotes single precision; "D" denotes double
precision)

3.4.1 Comparison of Real, D-floating, and G-floating

For KL model B systems, G-floal:ing double-precision is provided as an
alternative double-precision number format. You must specify the
/GFLOATING compiler switch (see Chapter 16) to invoke the G-floating
double-precision format. If you specify the /DFLOATING compiler
switch (the default), the D-rloating format is used. Table 3-1
summarizes the comparisons among real, D-floating, and G-floating.

CONSTANTS

Table 3-1: Comparison of Real, D-floating, and G-floating Numbers

Bits of Bits of Digits of
Exponent | Mantissa Range Precision
Real 8 27 1.47 * 10**(-39) 8.1

to 1.70 * 10**(+38)

D-floating 8 62 1.47 * 10** (=39) 18.7
to 1.70 * 10**(+38)

G-floating 11 59 2,78 * 10**(-309) 17.8
to 8.99 * 10**(+307)

3.5 COMPLEX CONSTANTS

You can represent a complex constant by an ordered pair of 1integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant, the first (leftmost) constant of the pair
represents the real part of the number; the second constant represents
the imaginary part of the number. Both the recal and imaginary parts
of a complex constant can be signed.

The constants that represent the real and imaginary parts of a complex
constant occupy two consecutive storage locations in the object
program.

3.6 CHARACTER CONSTANTS

A character constant 1is a string of printable ASCII characters
enclosed by apostrophes. Both delimiting apostrophes must be present,
and the string must be at least one character in length. The compiler
accepts control characters in character constants with the following
exceptions:

Character Octal Value
“@ - NUL "0

~J - LF "i2

“K - VT "13

“L - FF "l4

“M - CR "15

NOTE

The CHAR function (see Chapter 13) can be used to
build variables that contain these control characters.

The value of a character constant is the string of characters between
the delimiting apostrophes. The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the
apostrophes.

Within a character constant, the apostrophe character is represented
by two consecutive apostrophes (with no space or other character
between them).

3-4

CONSTANTS

The length of the character constant 1is the number of characters
between the apostrophes, except that two consecutive apostrophes count
as a single apostrophe.

Each character in the string has a character position that is numbered
consecutively starting at one. The number indicates the sequential
position of a character in a string, from left to right. There is one
character storage location for each character in the string.

If a character constant appears in a numeric context (for example, as
the expression on the right side of an arithmetic assignment
statement), it is considered a Hollerith constant (see Section 3.9).

Examples of valid character constants and their lengths are:

Length Value
'WHAT?' 5 WHAT?
'TODAYS''S DATE IS: ' 18 TODAY'S DATE 1IS:
'He said, "hello"' 16 He said, "hello"
EER 1 '

Examples of invalid character constants are:
'"HEADINGS (no trailing apostrophe)

" (a character constant must contain at least
one character)

"Now or Never" (quotation marks cannot be used in place of
apostrophes)

3.7 OCTAL AND DOUBLE-OCTAL CONSTANTS

You may use octal numbers (radix 8) as constants in arithmetic
expressions, logical expressions, and data statements. Octal numbers
up to 12 digits in length are considered standard octal constants;
they are stored right-justified 1in one storage location. When
necessary, standard octal constants are padded with leading zeros to
fill their storage location.

I1f you specify more than 12 digits in an octal number, it 1is
considered a double-octal constant. Double-octal constants occupy two
storage locations and may contain up to 24 right-justified octal
digits; leading zeros are added to fill any unused digits.

If you assign a single-octal constant to a double-precision or complex
variable, it 1is stored right-justified in the high-order word of the
variable. The low-order porti>n of the variable is set to =zero. If

you assign a double-octal constant to a double-precision or complex
variable, it is stored right-jistified in the two words.

All octal constants must:

1. Be preceded by a double guote (") to identify the digits as
octal, for example, "777

2. Be signed if negative, but optionally signed if positive
3, Contain one or more of the digits 0 through 7, but not 8 or 9

3-5

CONSTANTS

The following are examples of valid octal constants:

"123456700007

+"12345 (optional sign)
-"7777

"-7777

The following are examples of invalid octal coastants:

"12368 (contains an 8)
7777 (no identifying double quote)

When you use an octal constant as an operand 1in an expression, its
form (bit pattern) is not converted to accommodate it to the type of
any other operand. For example, the subexpression (A + "202400000000)
has as its result the sum of A with the floating point number 2.0;
while the subexpression (I + "202400000000) has as its result the sum
of I with a large integer.

You cannot use octal constants as stand-alone arguments for library
functions that require non-octal arguments. MINO, for instance,
requires integer arguments and cannot accept octal arguments.

When you combine a double-octal constant in an expression with (or
assign it to) either an integer or real variable, only the contents of
the high order location (leftmost) are used.

3.8 LOGICAL CONSTANTS

The Boolean values of truth and falsehood are represented in FORTRAN
source programs as the logical constants .TRUE, and .FALSE.. Always
write logical constants enclosed by periods, as in the preceding
sentence.

You may use logical quantities in arithmetic and logical statements.
Only the sign of a numeric value used in a logical IF statement is
tested to determine if it is true (negative) or false (nonnegative).

3.9 HOLLERITH CONSTANTS

B Hollerith constant 1is a string of alphanumeric and/or special
characters preceded by nH (for example, nHstring). In the prefix nH,
the letter n represents a number that specifies the exact number of
characters (including blanks) that follow the letter H.

NOTE
I1f a character constant appears in a numeric context
it 1is «considered a Hollerith constant (see Section
3.6) .
The following are examples of Hollerith constants:
2HAB

14HLOAD TEST #124
6H#124-A

CONSTANTS

NOTE

A tab in a Hollerithk constant is counted as one
character; for example, 3H AB.

You may enter Hollerith constents into DATA statements as a string of:

1. Up to ten 7-bit ASCII characters for complex or
double-precision type variables

2. Up to five 7-bit ASCII <characters for all other type
variables

The 7-bit ASCII characters that comprise a Hollerith constant are
stored left-justified (sterting in the first word of a
double-precision constant (the high-order word) or the real part of a
complex constant) with blarks placed in empty character positions.
Hollerith constants that occupy more than one variable are stored as
successive variables in the list. The following example illustrates
how the string of characters is stored in a six-element array called
A:

DIMENSION A(6)
DATA A/27HA string c¢f mary characters/

A(l) is set to 'A str'
A(2) is set to 'ing o'
A(3) is set to 'f man'
A(4) is set to 'y cha'
A(5) is set to 'racte'
A(6) is set to ‘'rs !

3.10 STATEMENT LABEL CONSTANTS

Statement labels are numeric identifiers that represent program
statement numbers.

You write statement label constants as strings of one to five decimal
digits, that are preceded by either an asterisk (*), a dollar sign
($), or an ampersand (&) . For example, *11992, $11992, and &l1992 are
all valid statement 1label constants. You use statement label
constants only in the argument. list of CALL statements to identify the
number of the executable statement to return to in a multiple RETURN
statement (see Chapter 13).

CHAPTER 4

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4,1 SYMBOLIC NAMES

Symbolic names consist of any alphanumeric combination of one to six

characters, the first of which must be a letter. ! vou use more than
six characters in a symbolic name, the compiler prints a warning
message and ignores all bu: the first six characters. The compiler

interprets lowercase letters in symbolic names as uppercase letters.
The following are examples of legal symbolic names:

Al2345

IAMBIC

ABLE
C

The following are examples of illegal symbolic names:

.AMBIC (first character is not a letter)
8AB (first character is not a letter)

You use symbolic names to identify specific items of a FORTRAN source

program; Table 4-1 1lists these items, together with an example of a
symbolic name and text reference for each.

Table 4-1: Use of Symbolic Names

For a Detailed
Symbolic Names Description
Can Identify For Example See Section
1. Variables PI, CONST, LIMIT 4.2
2, Arrays TAX 4.3
3. Array elements TAX (3,5) 4.3.1
4. Substrings FOO (1:N) 4.4
5. Functions MYFUNC, VALFUN 13.2
6. Subroutines CALCSB, SUB2, LOOKUP 13.4
7. Intrinsic functions SIN, ATAN, COSH 13.1
8. PROGRAM Statement TEST 6.4.1
9. PARAMETER Statement vl1l,C2,K 7.8
10. COMMON block names DATAR, COMDAT 7.4
11. NAMELIST list DATA3 [

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.2 VARIABLES

A variable is a data storage location identified by a symbolic name; a
variable 1is not a constant, an array, or an array element. Variables
specify values that are assigned to them in such ways as assignment
statements (Chapter 8), DATA statements (Chapter 7), or at run time
through I/0 data transfers (Chapter 10). Before you assign a value to
a variable, 1its value is undefined; and you should not reference it
except to assign a value to it.

The value you assign to a variable can be either a constant or the
result of a calculation that is performed during the execution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable IAB. 1In the statement IAB=5+IB, however, the value
assigned IAB depends on the value of variable IB at the time the
statement is executed.

The type of a variable determines the interpretation of its contents.
Variables can be:

1. Integer

2, Real

3. Logical

4, Double-precision

5. Complex

6. Character
The type of a variable is determined either implicitly, by the first
letter of the variable name (described below), or explicitly, by
declaring the variable type in a type declaration statement (see

Chapter 7).

FORTRAN uses the following default conventions for variables whose
types are not explicitly declared:

1. Variable names that begin with the letters I, J, K, L, M, or
N are integer variables.

2, Variable names that begin with any letter other than I, J, K,
L, M, or N are real variables.

NOTE
These default conventions can be altered by
use of the IMPLICIT statement, which is

described in Section 7.3.

The following are examples of determining the type of a variable
according to the preceding conventions:

Variable Beginning Letter Assumed Data Type
ITEMP I Integer
OTEMP (o] Real
KAl123 K Integer
AABLE A Real

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.3 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules for writing

symbolic names (see Section 4.1).

Arrays are made up of smaller units of data called array elements. As
with variables, you may assign a value to an array element. Before
you assign a value to an array element it has an undefined value. You
should not reference an array element until you have assigned it a
value.

An array element is referenced by using the array name together with
some number of subscripts that describe the position of the element
within the array.

4.3.1 Array Element Subscripts

The general form of an array element name is AN (S1, S2,...Sn), where
AN is the array name and S1 through Sn represent 1 through n subscript
expressions. You may use any number of subscript gquantities in an
element name; however, the number used must always equal the number of
dimensions (see Section 4.3.2) specified for the array.

A subscript can be any constant or expression (see Chapter 5), for
example:

1. Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (A+B,C*5,D/2) and
(A**3,(B/4+C) *E,3) are valid subscripts.

2. Arithmetic expressions (see Chapter 5) wused in array
subscripts may be of any type, but noninteger expressions
(including complex) are converted to integer when the

subscript is evaluated.

3. A subscript may contain function references (see Chapter 13).
For example, TABLE (SIN(A)*B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, in the subscript
(I(J(K(L))),A+B,C) the first subscript expression given is a
nested 3-level array reference.

Some examples of valid array elements are:

1. 1aB(1,5,3)

2. ABLE(A)

3. TABLEl(10/C+K**2,A,B)

4, MAT(A,AE(2*L),.3*TAB‘'A,M+1,D),55)

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

4.3.2 Dimensioning Arrays

You must declare the size (number of elements) of an array to enable
FORTRAN to reserve the number of locations needed to store the array.
Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single
or multi-dimensional, rectilinear matrices dimensioned on a row,
column, and plane basis. For example, Figure 4-1 represents a 3-row,
3-column, 2-plane array.

3 ROWS

3 COLUMNS

MR S 175581

Figure 4-1: A 3 x 3 x 2 Array

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator each subscript
quantity is a dimension of the array and must be either an integer
expression, an integer variable, or an asterisk (*).

Only the upper bound in the last dimension declarator in a 1list of
dimension declarators can be an asterisk. An asterisk marks the
declarators as an assumed-size array declarator (see Section 7.1,2).

NOTE
Variable array dimensions are only allowed in
subprograms. See adjustable dimension statements,

Section 7.1.1.

For example, TABLE(I,J,K) and MATRIX(10,7,3,4) are valid array
declarators.

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array IAB dimensioned as IAB(2,3,4) has 24 elements (2 * 3 * 4 =
24).

You dimension arrays only in the specification statements DIMENSION,
COMMON, and type declaration (see Chapter 7). Subscripted array names
appearing in any of the these statements are array declarators;
subscripted array names appearing in any other statements are always
array element identifiers.

SYMBOLIC NAMES,

In array declarators,
particular
that it

determines the
column,
positions
comprise

specifies

the

previously defined sets.

The Dimension Declarator

or plane)

specify
named
a set comprised of n-number
For example:

the

the
array;

VARIABLES, AND ARRAYS

position

number of
each

Specifies the Array(s)

of

given

The

subscript
¢imension of the array (for example, row,

represents. first

columns,

following

subscript

three

quantity

subscript
and planes that
given

(value of the subscript)
7T 1122 | 12,22
= 21,22 | 22272
1,1,1,2 1,2,1,2 =
2,1,1,2 | 2,2,1,2 P

MI-S 1762-81

FORTRAN-10/20 permits up to 127 dimensions in an array

TAB(2) 1)
TAB(2,2) 1,1 1,2
2,1 2,2
TAB(2,2,2) Pt 1,1,2 1,2,2
e 2,1,2 2,22
1,1,1 1,2,1 =
// -
2,1,1 221 | -7
TAB(2,2,2,2) - 11,20 | 1,221
= 21,21 | 2,221
1,1,1,1 | 1,2,1,1 —
2,1,1,1 | 2,2,1,1 _-7
|~
NOTE
declarator.
of 7 dimensions.)
4.3.3 Order of Stored Array FElements

The elements of an array are stored in ascending order.
first (leftmost) subscript varies between its minimum and maximum
The value of
value

array dimensioned

the

values most rapidly.
its
the

increases to
elements of
following order:

I(1,1)

In the following list,
stored

(B(3,3,3))
bottom.

are

I1(2,1)

max imum

I1(1,2) 1

(2,2)

the elements

least

I1(1,3)

last

rapidly.

I1(2,3)

the

are

I1(2,3)

(The FORTRAN-77 Standard allows a maximum

The value

(rightmost)

three-dimensional
row by row from left to right and from top to

subscript
For example,
stored

in

then
of the

array

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

B(1,1,1) B@1,1) B@3,1,1)--

L.B(1,33) B(2,3,3) B(3,3,3)

MR-S-1756-81

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

Character array elements are stored in successive character positions,

and do not necessarily start on a word boundary. Character array

elements are stored five characters per word (seven bits per

character), and the low order bit is never used, for example:
CHARACTER*3 A (4)

The array A will be stored in the following way:

A(1) A(2) A(3) A(4) Unused
4 A N - N/ A N % N/ -A A Y
A M T 4 I R,

0 7 14 21 28 3 0 7 14 21 28 35 0 7 14 21 28 35

MA-5-2528-83

where:

X means bits are not used. The value in bit 35 is zero.

4.4 CHARACTER SUBSTRINGS

A character substring is a contiguous segment of a character variable

or character array element. A character substring is identified by a

substring name and can be assigned values and referenced.

A character substring reference has one of the following forms:
v(lel]l:[e2])

or

a(s[,s]...) (lel]:[e2])

SYMBOLIC NAMES, VARIABLES, AND ARRAYS

where:
% is a character variable name.
a is a character array name.
s is a subscript expression.
el is an optional nuneric expression that specifies the
leftmost character position of the substring.
e2 is an optional nuneric expression that specifies the

rightmost character position of the substring.

Character positions within a character variable or array element are
numbered from left to right, beginning at 1. For example, LABEL (2:7)
specifies the substring beginning with the second character position
and ending with the seventh character position of the character
variable LABEL,

If the value of the numeric expression el or e2 1is not of type
integer, FORTRAN converts it to an integer value by truncating any
fractional part before use.

The values of the numeric expression el and e2 must meet the following
conditions:

l .LE. el .LE. e2 .LE, len
where:
len is the length of the character variable or array element.

If el is omitted, FORTRAN assumes that el is 1. If e2 1is omitted,
FORTRAN assumes that e2 equals 1len.

For example, NAMES(1,3) (:7) specifies the substring starting with the
first character position and ending with the seventh character
position of the character array element NAMES(1,3).

CHAPTER 5

EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

An arithmetic expression is formed with arithmetic operands and
arithmetic operators. The evaluation of such an expression produces a
numeric value.

Arithmetic expressions may be either simple or compound. A simple
arithmetic expression consists of an operand that can be:

1. A numeric constant

2. A numeric variable

3. A numeric array element

4, An arithmetic function reference (see Chapter 13)

5. An arithmetic or logical expression written within
parentheses

Operands may be of integer, real, double-precision, complex, 1logical,
octal, double-octal, or Hollerith type.

The following are examples of valid simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)

TABLE (3,4,5) (array element)

SIN (X) (function reference)

(A+B) (a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 5-1 lists the arithmetic
operations permitted in FORTRAN and the operator recognized for each
operation.

EXPRESSIONS

Table 5-1: Arithmetic Operations and Operators

Operation Binary Operator Example
Addition + A+B
Subtraction - A-B
Multiplication * A*B
Division / A/B
Exponentiation **x or A**B or A"B

Operation Unary Operator Example
Identity + +A
Negation - -B

5.1.1

Rules for Writing Arithmetic Expressions

Observe the following rules in structuring arithmetic expressions:

1.

The operands comprising an arithmetic expression c¢an be of
different types. Tables 5-2 and 5-3 illustrate all permitted

combinations of data types and the type assigned to the
result of each.

NOTE

All combinations of numeric data types except
double-precision with complex are allowed in
FORTRAN.

If you specify two adjacent operators, and the second 1is a
minus or a plus, the second operator is considered a unary
operator and acts only on the term immediately following it.
Thus, in the example (A*X4B)*+C, the subexpression, *+C, is
interpreted as the binary operator * and the unary +.

You cannot, however, have two adjacent binary operators in an
expression. For example, the expression A*/B 1is not
permitted.

All operators must be included; no operation is implied. For
example, the expression A(B) does not specify multiplication,
although this is implied in standard algebraic notation. The

expression A*(B) 1is required to specify a multiplication of
the operands.

Type of Argument 1

Table 5-2: Type of the Result Obtained from Mixed-Mode Operations

Type of Argument 2

For operators Doubie Double
+,7% Integer Real Precision Complex Logical Octal Octal Literal
1. Type of operation 1. Integer 1 EH 1. Double ¥recisio: LU nsiey 1. Inteqsr 1 imeaer 1. imeger Voodneey o
used
2. Type assoclated 2. Integer 2 Rea 2. Uouble Precsiu: Lemicx 2. Intecer 2. inteder 2. inteqrr 2. Integer
with resuit
3. Conversion on 3. None 3. From ineger 3. From Inteqer ¢ . From Inteaer to 3. Nose 3. Ngna2 3. Nore 3. Nons
Integer Argument 1 to fieai Doubie Precision comoltex v
us :d as Heal oo
4. Conversion on 4. None 4. Nore 4. None NC e 4. None 4. Nong 4. Hign orader word 4. Hian ordei wor.
Argument 2 is used directly: 1S used girectiy
fow oraer word further worgs are
1S Iqroies agnnres
1. Type of operation i. Heai 1. Real 1. Double Precision 1 Compies 1t Hea! 1. Heai 1 Meal 1. Rea
used
2. Type assoclated 2. Hew 2. Real 2. Doubie Precision < Comp'e 2 Hea 2. Hea £ iea 7. Hex
with result
3. Conversion on 3 3. None 3. Used directly as 3 Lsed directly as 3 Nom 3. Mo 4. None 3. Nonw
Real Argument 1 the high oraer the Reai part.
wora: low orde iiagmnat y nart
wOora is zero i
4. Conversion on q. 4. None 4. None 4. hone 4. Nonse 4. Not- 4. High order word 4. High order worri
Argument 2 1S used directly is used dirertly
10w oraer wor turther word:
is ignorea. are ignorca

1. Type of operation 1. Doubie Precisicr: i. Doubie Prec: 1. Double Precision 1. Doukle Precision 1. Doubie Precisien 1. Double Precision 1. Doubie Precision

used

2. Type associated 2. Double Precisicn 2. Double Precisio: 2. Double Precision 2. Doubie Precision 2. Double Precision 2. Doubie Precisio: 2. Doubie Precision

with result

3. Conversion on 3 Nong BV 3. None 3. Nomie 3. Noms 3. Nuta 3. Noi

Double Argument 1
Precision 4. Conversion on 4. From intecer 1w 4. Used direct 4. None 4. Used airectly 4. nNone 4. First two woras
Argument 2 Double Frecise o the hian ¢ the hian orel are used diro-t
worga: io: i wora: iow order further woru=
weig s e worQ is zero are ignorert
1. Type of operation 1. Lompres 1Lompes 1. Complex 1 Comnlex i. compiex 1. Cotnples 1. Compi=-
used
2. Type assoclated 2. Compies 2. Corpics 2. Complex 2. Complex 2. Complex 2. Cormnplex ¢, Comuiva
with result
3. Conversion on 3 Nane 3 3. None 3. No: 3. Nape 3. Non» 3. Nene
Complex Argument 1
4. Conversion on 4. From Integer to 1. Used au : 4. None 4. Used directly as 4. Use arectiv o 4. NG 4. First two woras
Argument 2 Complay vat- tne Heai wa the Heai part: are used airectly
used as Heal oot mmaginary i unagnary vart HMaginaty vian Further worsis
oo IS s6101 LA are 1gnu, -
1. Type of operation 1. Intege: I He 1. Doubie Precisiur TR PITE 1. Integer 1. Integer 1. inteaer 1 inteaor
used
2. Type assoclated 2 Arteae e He 2. Double vrecizins: KT 2. Octal 2. Octas 2. Octal 2. Octai
with result
3. Conversion on 4. None [S 3. Used directly -« 3 Used directty 3. None 3. None 3. None 3. None
Logical Argument 1 the h!gh oraer tt e Heat .mu")
word: iow order Iriaqinaiv par
wora is zero FL T
4. Conversion on 4 None 4. Nene 4 iNonse 4. None 4. None 4 High order word 4. Hiah order worg
Argument 2 T R
10w uirter v i further wesss
1S 1gNocea are sgioren
1. 1YDe o1 operanne 1 miege 1. Reai 1. Double rrecisius. (WS THTSTEN 1 1.inteasr 1. 1. intege:
2. 1ype as50CialeG 2. mteqer 2. Reai 2. Double Precisisi: 2L e 2. Gceai 2. e Vi 2 e
PYETI
3 LOVersion i 3 dvont G4 Neoe 3. Used directily as 3 4. Moy 3. Nomw 3. None 4 HNere
the high ordet
word: low orcler
word s zero.

4 4 " G 4 WNons 4 bhuores 4. No d i 4 High order wvord 4. High order w:
1S used di¢Liiv. 1s used dircc
iow oirder wore turther wor.

15 1gnatent are 1Qnoyerl
V. 1voe 0f aoeranon tineae 1 RO 1. Doupie rrecision (RS TLER i mteoer [T 1o Hieaer foontenes
£ 1¥yDe ASSOciaTed 4. Inteaer 4. Hest 2. Louble rrecision PR VARG 2 Z ol SR
witr. ra i
3 Conver s ane 3. hiah it won . thigh gras ¢ Non: HH 3. Hign orver worit 3. High order word 3. mah order vora 3. High ordes we
Araumen: ! 1S US€Ed iy, IS uSen (e IS used directiy 1S used diry 1S used dis oy 1S used ooy
low oraer fow vraor wioed HOW OTQET Wik i4 10W Order vty tow order x
151G o IS oG 15 1gliored 1s 1anored 1S qQnoren are gnorert
a \ TR e a. . . Neens B 3 4. NG 4. Notw 4. Hiah order worsd 4.
ae - 18 used directly.
low orer o
IS naen
1 Tune of aneratinn boomege: o 1 Lounhie Preamsien e 1.t T Pogeeg Nt
G 2 anees 4o 2. Unuble Fres s - PRt A S R 72 ekl 2
it - o 3. 3. Hiigh ordar woi:: d. First two words K 3. Man oraer word 3. han oraer wes S rian oraei wo: ! S HIAn OrGed veen:
P . Broemest © s T (L T are usee QIretiy are used direciiv 15 used directiy 1S Used airect: 'S used dres
e turiner wors: turther weies further woros further worsls turiner worus furiner worti
¥ are nures are iancred & @ ng ! are 1anRo- e dre wunureq are 1Knoreo are 1ane e
4 4. Reory R 4. pdont R 4 pors 4. None 4. High order wos-t 4. High order wora

CONversin g

1S used directiv

low o der word

1S used dizeotiy
turiner
are i

MR-5-1751-81

EEEE

EXPRESSIONS

Table 5-3: Permitted Base/Exponent Type Combinations

Base Operand Exponent Operand

Double-
Integer Real Precision Complex

Integer Integer Real Double- Complex
Precision

Real Real Real Double- Complex
Precision

Double- Double- Double- Double-

Precision Precision Precision Precision (Illegal)

Complex Complex Complex (Illegal) Complex

5.1.2 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in which
each operand is one of the following:

1. A numeric constant
2. A symbolic name of a numeric constant
3. An arithmetic constant expression enclosed in parentheses

4. A call to the function ICHAR (see Chapter
argument is a character constant expression

12) where the

The exponentiation operator is not permitted unless the exponent is of
type integer. Note that wvariables, array elements, and function
references are not allowed.

Example:

5+6* (ICHAR('Z')-ICHAR('A"')+1)*4,1**3

expression
constant or

5.1.2.1 1Integer Constant Expression - An integer constant
is an arithmetic constant expression in which each
symbolic name of a constant is of type integer.

Example:

3+4*%%6+2

EXPRESSIONS

5.2 CHARACTER EXPRESSIONS
Character expressions consist of character operands and character
operators. The evaluation of a character expression yields a single
value of character data type.
A character operand can be any one of the following:

1. A character constant

2. A symbolic name of a character constant

3. A character variable

4. A character array element

5. A character substring

6. A character expression, optionally enclosed in parentheses

7. A character function reference
The only character operator is the concatenation operator (//).
A character expression has the form:

character operand [//character operand]...
The value of a character expression is a character string formed by
successive left-to-right concatenations of the value of the elements
of the character expression. The length of a character expression is
the sum of the lengths of the character elements. For example, the
value of the character expression 'AB'//'CDE' is 'ABCDE', which has a
length of 5.
Note that the expression:

A=A//B

has no effect on A, since the concatenation result is truncated to the
length of A,

Parentheses do not affect the value of a character expression. For
example, the following character expressions are equivalent:

('ABC'//'DE')//'F"
"ABC'//('DE'//'F")
lABCI//IDE!//IFI

Each of these character expressions has the value 'ABCDEF',

If a character element in a character expression contains spaces, the
spaces are included in the value of the character expression. For
example, 'ABC '//'D E'//'F' has a value of 'ABC D EF'.

EXPRESSIONS

5.2.1 Character Constant Expression

A character constant expression is a character expression 1in which
each operand is one of the following:

l. A character constant
2, The symbolic name of a character constant
3. A character constant expression enclosed in parentheses

4. A call to the function CHAR (see Chapter 13) where the
argument is an integer constant expression

Variables, array elements, substrings, and function references are not
allowed.

Example:

"HELLO'//CHAR(13)//CHAR(10)//'GOODBYE"'

5.3 LOGICAL EXPRESSIONS
Logical expressions can be either simple or compound. Simple 1logical
expressions consist of a 1logical operand, which can be one of the
following: :

1. A constant

2, A variable

3. An array element

4., A function reference (see Chapter 13)

5. An expression written within parentheses
Compound logical expressions consist of two or more logical or numeric
operands combined by logical operators. The evaluation of a logical
expression produces a truth value (type logical, true or false) as

determined by the resulting bit pattern.

Table 5-4 gives the logical c¢perators permitted by FORTRAN and a
description of the operation each provides.

EXPRESSIONS

Table 5-4: Logical Operators

Operator Description

.AND, AND operator. Both of the logical operands combined by
this operator must be true to produce a true result.

.OR. Inclusive OR operator. If either or both of the logical
operands combined by .OR. are true, the result will be
true.

. NEQV, Exclusive OR operator {also .XOR.). If either but not

both of the 1logical operands combined by .NEQV. is
true, the result will be true.

.EQV. Equivalence operator. If the 1logical operands being
combined by .EQV. are both the same (both are true or
both are false), the result will be true.

«NOT. Complement operator, This operator specifies
complementation (inversion) of the item (operand or
expression) that it modifies. The original item, if

true by itself, becomes false, and vice versa.

Logical expressions are of the general form P .op. Q, where P and Q
are logical operands and .op. 1is any logical operator except ".NOT.".
The .NOT. operator complements the value of an operand; it must
appear 1immediately before the operand that it modifies, for example,
.NOT.P.

Table 5-5 1is a truth table illustrating all possible logical
combinations of two logical operands (P and Q) and the result of each
combination.

EXPRESSIONS

Table 5-5: Logical Operations Truth Table

When P is And Q is: Then the Expression: Is:
True | =——— .NOT, P False
False | —====- .NOT. P True
True True P .AND. Q True
True False P .AND. Q False
False True P .AND. Q False
False False P .AND. Q False
True True P .OR. Q True
True False P .OR. Q True
False True P .OR. Q True
False False P .OR. Q False
True True P .NEQV. Q False
True False P .NEQV. Q True
False True P .NEQV. Q True
False False P .NEQV. Q False
True True P .EQV. Q True
True False P .EQV. Q False
False True P. EQV. Q False
False False P .EQV. Q True

For example, consider the following variables:

Variables

PHETT, RUN

Type

Real

Integer
Double-Precision
Logical

Complex

EXPRESSIONS

Examples of valid logical expressions consisting of the preceding
variables are:

L.AND.B
(PHETT*I) .NEQV. (DP+K)
L.AND.A.OR..NOT. (I-K)

Logical operations are performed on the full 36-bit binary
representation of the operands involved. However, when an operand of
a logical expression is double-precision or complex, only the first
word of a double-precision operand (the high-order word) or the real
vart of the complex operand is used in the specified 1logical
operation.

The result of a logical operation is found by performing the specified
operation simultaneously for each of the corresponding bits in each
operand. For example, consider the expression A=C.OR.D, where C="456

and D="201. The operation performed by the processor and the result
is:
Word
RBits 0 1——24 25 26 27 28 29 30 31 32 33 34 35
Operand C 0 0 ————»0 0 0 1 0 0 1 0 1 1 1 o0
Operand D 0 00—+ o 0 0 1 0 0 0 0 O 0 1
Result A0 O0———»0 0 0 1 1 0 1 0 1 1 1 1

Table 5-5 also illustrates all possible logical combinations of two
one-bit binary operands (P and Q) and gives the result of each
combination. Simply read 1 for true and 0 for false.

If a logical expression 1is wused as an operand in an arithmetic

expression, 1its value is not converted to accommodate it to the type
of any other operand.

5.3.1 Logical Constant Expression

A logical constant expression is a logical expression in which each
operand is one of the following:

1. A logical constant
2, The symbolic name of a logical constant

3. A relational expression in which each operand is a constant
expression :

4., A logical constant expression enclosed in parentheses
Variables, array elements, and function references are not allowed.
Example:

.NOT. (PARML1,NE,PARML2)

where PARML1 and PARML2 are specified in a PARAMETER statement (see
Section 7.8).

EXPRESSIONS

5.4 RELATIONAL EXPRESSIONS

Relational expressions consist of two arithmetic expressions or two
character expressions combined by a relational operator. The
relational operator allows you to test the relationship between two
arithmetic or two character expressions.

The result of a relational expression is always a logically true or
false value.

You can write relational operators either as a 2-letter mnemonic
enclosed within periods (for example, .GT.) or use the symbolic
equivalent, for example, >, instead of .GT.

Table 5-6 lists the mnemonic and symbolic forms of the FORTRAN-10/20
relational operators and specifies the type of test performed by each.

Table 5-6: Relational Operators and Operations

Operators Relation Tested

Mnemonic Symbolic

.GT. > Greater than

.GE. >z Greater than or egqual to

LT, < Less than

.LE., <5 Less than or equal to

.EQ. =:z Equal to

.NE, # Not equal to

Relational expressions are of the general form A .op. B, where A and B
represent arithmetic or character operands, and .op. is a relational
operator.

You can mix arithmetic operands of type integer, real, and
double-precision in relational expressions.

A relational expression cannot be used to compare the value of an
arithmetic expression with the value of a character expression.
However, you can compare a numaeric expression to a character constant.
In this case, the character constant is considered to be a Hollerith
(see Section 3.9).

You can compare complex operands using only the operators .EQ. (==
and L.NE. (#) . Complex quantities are equal if the corresponding
parts of both words are equal.

For example, assume the following variables:

Variables Type
PHETT, RON Real

I,J,K Integer

DP,D Double-Precision
L,A,B Logical

CPX,C Complex

CHR,RA Character

EXPRESSIONS

Examples of valid relational expressions consisting of the above
variables are:

(PHETT) .GT. 10
[== 5
C.EQ.CPX
CHR.LT.RA

Examples of invalid relational expressions consisting of the above
variables are:

(PHETT) .GT 10 (closing period missing from operator)

C.GT.CPX (complex operands can only be compared by .EQ.
and .NE. operators)

RA.EQ.RON (you cannot compare arithmetic operands and
character operands)

Examples of valid expressions that use both 1logical and relational
operators to combine the preceding variables are:

(I.GT. 10) .AND. (J.LE.K)
((I*RON).EQ.(I/J)).OR.L
(1.AND.K)# ((PHETT) .OR. (RON))
$CPX.OR.RON

.t a1 logical expression is wused as an operand in an arithmetic
=¥pression, its value is not converted to accommodate it to the type
of any other operand.

In character relational expressions "less than" means "precedes in the
ASCII collating sequence,”" and "greater than" means "follows in the
ASCII collating sequence", for example:

'AB'//'272Z' .LT. ‘Ccccc'

This expression tests whether 'ABZZZ' is 1less than 'CCCCC'. Since
that relationship does exist, the value of the expression is true. If
the relationship stated does not exist, the value of the expression is
false.

If the two character expressions in a relational expression are not
the same length, the comparison is performed as if the shorter one is
padded on the right with spaces wuntil the lengths are equal, for
example:

'ABC' .EQ. 'ABC '
'AB' .LT. 'C’
The first relational expression has a value of true even though the

lengths of the expressions are not equal, and the second has a value
of true even though 'AB' is longer than 'C’'.

EXPRESSIONS

NOTE

The rule that character relationals extend the shorter
operand with spaces to match the length of the longer
operand has an interesting effect when the longer
string ends with characters in the range CHAR(0) to
CHAR (31) (ASCII control characters such as 'bell' and
line feed).

Since space is CHAR(32), the trailing spaces supplied
as filler by FORTRAN compare being greater than

trailing control characters. Thus, the string 'FOO'
is .GT. 'FOO"G' (FOO followed by a bell).

5.5 EVALUATION OF EXPRESSIONS

The following considerations determine the order of computation of a
FORTRAN expression:

1. The use of parentheses

2. An established hierarchy for the execution of arithmetic
relational, and logical operations

3. The location of operators within an expression

5.5.1 Parenthetical Subexpressions

In an expression, all subexpressions enclosed within parentheses are

evaluated first. When parenthetical subexpressions are nested (one
contained within another), the most deeply nested subexpression is
evaluated first; the next most deeply nested subexpression 1is
evaluated second; and so c¢n, until the wvalue of the final

parenthetical expression is cocmputed.

When more than one operatcr 1is contained in a parenthetical
subexpression, the required computations are performed according to
the hierarchy assigned to operators by FORTRAN (see Section 5.5.2).

For example, the separate computations performed in evaluating the
expression A+B/((A/B)+C)-C are:

1. R1=A/B

2. R2=R1+C

3. R3=B/R2

4. R4=A+R3

5. R5=R4-C
where:

R1 through R5 represent the interim and final results of the
computations performed.

EXPRESSIONS

5.5.2 Hierarchy of Operators

The following hierarchy (order of execution) is assigned to the
classes of FORTRAN operators:

first, arithmetic operators
second, relational operators
thirg, logical operators
Table 5-7 specifies the precedence assigned to the individual

operators of the above classes.

With the exception of exponentiation and integer division, all
operations on expressions or subexpressions involving operators of
equal precedence are computed in any order that 1is algebraically
correct.

A subexpression of a given expression may be computed in any order.

For example, in the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Table 5-7: Hierarchy of FORTRAN Operators

Class Level Symbol or Mnemonic
EXPONENTIAL |First ** or ©
Second - (negation) and + (identity)
ARITHMETIC Third *,/
Fourth t,-
RELATIONAL Fifth .GT.,.GE,,.LT.,.LE.,.EQ.,.NE.
or

>,>=,<,<=,==,#

Sixth .NOT.

Seventh .AND.
LOGICAL Eighth .OR.

Ninth .EQV., .NEQV.

Operations specifying integer division are evaluated from left to
right. For example, the expression I/J*K is evaluated as if it had
been written as (I/J)*K), but this left-to-right evaluation process
can be overridden by parentheses. I/J*K (evaluated as(I/J) *K) does
not equal I/(J*K).

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the expression
A**2%**B js evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**R]1 (final result).

As with other expressions, parentheses alter the evaluation of the
above expression. The expression (A**2)**B is evaluated in these two
steps:

first Rl = A**2 (intermediate result)
second R2 = R1**B (final result)

EXPRESSIONS

5.5.3 Mixed-Mode Expressions

Mixed-mode expressions are evaluated on a basis of
subexpression-by-subexpression, with the type of the results obtained
converted and combined with other results or terms according to the
conversion procedures described in Table 5-2.

For example, assume the following variables and data types:

Variables Type
D Double-Precision
X Real
I,J Integer

The mixed-mode expression D+X*(I/J) 1is evaluated in the following
manner:

1. Rl = 1/3 Rl is integer

2, R2 = X*R1l Rl is converted to type real and is multiplied by X
to produce R2

3. R3 = D+R2 R2 is converted to type double-precision and is
added to D fo produce R3

where:

R1 and R2, and R3 represent the interim and final results
respectively of the computations performed.

5.5.4 Use of Logical Operands in Mixed-Mode Expressions

When you use logical operands .n mixed-mode expressions, the value of
the 1logical operand is not converted in any way to accommodate it to
the type of the other operands in the expression. For example, 1in
L*R, where L is type logical and R is type real, the expression is
evaluated without converting L to type real.

5.6 CONSTANT EXPRESSIONS
A constant expression is an arithmetic «constant expression (sce

Section 5.1.2), a character constant expression (see Section 5.2.1),
or a logical constant expression (see Section 5.3.1).

5-15

CHAPTER 6

EXECUTABLE AND NONEXECUTABLE STATEMENTS

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution sequence
in a program. Nonexecutable statements do the following:

1. Specify characteristics, arrangement, and initial values of
data

2, Contain editing information
3. Specify statement functions
4. Classify program units
5. Specify entry points within subprograms
Nonexecutable statements are not part of the execution sequence.

Nonexecutable statements may be labeled, but such statement labels
must not be used to control the execution sequence.

6.1 EXECUTABLE STATEMENTS
The following statements are classified as executable:

1. Arithmetic, logical, statement label (ASSIGN), and character
assignment statements

2. Unconditional GO TO, assigned GO TO, and computed GO TO
statements

3. Arithmetic IF, logical IF statements, and two-branch logical
IF statements, IF THEN, ELSE, and ELSE IF THEN statements

4. CONTINUE statement

5. STOP and PAUSE statements

6. DO and DO WHILE statements

7. READ, REREAD, WRITE, and PRINT statements
8. OPEN and CLOSE statements

9. REWIND, BACKSPACE, ENDFILE, BACKFILE, SKIPRECORD, SKIPFILE,
FFIND and UNLOAD statements

10. CALL and RETURN statements

EXECUTABLE AND NONEXECUTABLE STATEMENTS

11. END, END IF, and END DO statements
12. DECODE and ENCODE statements
13. ACCEPT, PUNCH, and TYPE statements

14. INQUIRE statement

6.2 NONEXECUTABLE STATEMENTS
The following statements are classified as nonexecutable:

1. PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA
statements

2, DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER,
INTRINSIC, EXTERNAL, and SAVE statements

3. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-specification statements

4. DATA statement

5. FORMAT statement

6. Statement function statement
7. INCLUDE statement

8. NAMELIST statement

6.3 ORDERING OF FORTRAN STATEMENTS

The order in which you place FORTRAN statements in a program unit is
important. Certain types of statements must be processed before
others to guarantee that compilation takes place as you expect.

Figure 6-1 shows the required order of statements and comment lines
within a program unit. Horizontal lines indicate (from the top of the
diagram to the bottom) the order in which statements and comment lines
must appear in a program. For example, a PROGRAM statement must occur
before FORMAT statements. FORMAT statements, in turn, must occur
before an END statement.

Vertical 1lines in the diagram indicate how comment 1lines and
statements may be interspersed in the program. For example, PARAMETER
statements must be placed after all PROGRAM, FUNCTION, or SUBROUTINE
statements, and before all statement function and executable
statements. PARAMETER statements can be placed before, after, or
between all IMPLICIT and other specification statements. Comment
lines may be interspersed anywhere in a program.

Generally if FORTRAN encounters statements that are out of place, it
prints warning messages and continues compilation. In some cases,
however, out-of-place statements cause the compiler to terminate
compilation or generate unexpected results.

EXECUTABLE AND NONEXECUTABLE STATEMENTS

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA' Statements
IMPLICIT
Statements
PARAMETER
Statements
Other
Comment Specification
Lines Statements
and
INCLUDE"® FORMAT
Statements and .
Entry? NAMELIST Hatement
Statements g'x’T A Definitions
Statements
Executable
Statements

END Statement

BLOCK DATA subroutines cannot contain any executable statements, statement

functions, FORMAT statements, EXTERNAL statements, INTRINSIC statements,
or NAMELIST statements (See Section 14.1).

The ENTRY statement is allowed only in functions or subroutines. All executable
statements which reference any dummy parameters must physically follow the
ENTRY statement unless the references appear in the FUNCTION statement, the
SUBROUTINE statement, or in a preceding ENTRY statement.

The placement of an INCLUDE :;tatement is dictated by the types of statements to
be included.
MR-S-3822-85

Figure 6-1: Ordering of FORTRAN Statements

NOTE

In FORTRAN-10/20, a
PARAMETER statement
statement.

DATA
or

statement
another

can precede a
specification

EXECUTABLE AND NONEXECUTABLE STATEMENTS

6.4 COMPILATION CONTROL STATEMENTS

You use compilation control statements to identify FORTRAN programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program, or the
manner in which the object program is executed. The three compilation
control statements are:

1. PROGRAM statement
2. INCLUDE statement
3. END statement

The PROGRAM statement and the INCLUDE statement are described in the
following sections. The END statement is described in Section 9.8.

6.4.1 PROGRAM Statement

This statement allows you to give the main program a name other than
the compiler-assumed name "MAIN." The general form of a PROGRAM
statement is:

PROGRAM name
where:

name is a symbolic name that begins with an alphabetic
character and contains a maximum of six characters.
(See Section 4.1 for a description of symbolic names.)

The PROGRAM statement must be the first statement in a program unit.
(see Section 6.3 for a discussion of the ordering of FORTRAN
statements.)

6.4.2 INCLUDE Statement

This statement allows you to include code segments or external
declarations in a program unit without having them in the same file as
the primary program unit. When an INCLUDE statement 1is encountered
during compilation, the compiler replaces the INCLUDE statement with
the contents of the specified file. The general form of the INCLUDE
statement is:

INCLUDE 'filespec [/switch]'

where:
filespec is a TOPS-10 or TOPS-20 file specification (refer
to the TOPS-10 or TOPS-20 Operating System
Commands manual). The only restriction is that
under TOPS-10 vyou cannot specify subdirectory
information.
switch is one of the following optional switches:

/CREF indicates the included statements
are to be used to augment the
cross-reference listing (default).

EXECUTABLE AND NONEXECUTABLE STATEMENTS

A/LIST indicates that the statement in the
gspecified file is to be listed in
the compilation source listing. A
namber indicating the deptn of

nesting of include files precedes
each statement listed (default).

ASNOLIST indicates that the included
statements are not to be printed in
the compilation listina.

/NOCREF indicates that the included
statements are not to be used to
aqugment the cross-reference
listing.

The following rules govern the use of the INCLUDE statement:

1. The INCLUDEdQ file can contain any legal FORTRAN statement
except a statement that terminates the current program unit,
such as the END, PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statements.

The INCLUDEd file can contain other INCLUDE statements. This
is called nesting INCLUDE statements. The number of nested
levels is restricted to 12.

2. The proper placement of the INCLUDE statement within a
program unit depends upon the types of statements to be
INCLUDEAd. (See Section 6.3 for information on the ordering
of FORTRAN statements.)

3. The file to be INCLUDEd must be on disk.
Note that an asterisk (*) is appended to the 1line numbers of the

INCLUDEd statements on the compilation listing. The level of nesting
is indicated following the asterisk.

CHAPTER 7

SPECIFICATION AND DATA STATEMENTS

Specification statements are used to specify type characteristics,
storage allocation, and data arrangement. There are ten types of
specification statements:

1. DIMENSION

2, Statements that explicitly specify type, including INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or CHARACTER

3. IMPLICIT

4. COMMON

5. EQUIVALENCE
6. EXTERNAL

7. INTRINSIC
8. PARAMETER
9. DATA
10. SAVE

Specification statements are nonexecutable and must conform to the
ordering guidelines described in Section 6.3.

7.1 DIMENSION STATEMENT

The DIMENSION statement provides FORTRAN with information needed to
identify and allocate the space required for arrays. You may specify
any number of subscripted array names as array declarators in a
DIMENSION statement. The general form of a DIMENSION statement is:

DIMENSION a(d) [,a(d)...]
where:
each a(d) is an array declarator. An array declarator
provides the name and dimension(s) of an array.
An array declarator is written 1in the following

form:

a(d [,4...])

SPECIFICATION AND DATA STATEMENTS

where:
a is the symbolic name of the array.
4 is the array dimension declarator. The form of a dimension

declarator is as follows:

[d1:] 42
where:
dl is an optional integer expression or integer

variable specifying the 1lower dimension bound.
The lower dimension bound is the first element in
that dimension of the array. If d1 1is not
specified the default is 1.

42 is an integer expression or integer variable that
specifies the wupper dimension bound. The upper
dimension bound is the greatest element in that
dimension of the array. You must have at least
one d2 specification in each array declaration.

If both d1 and d2 are specified, 41 cannot have a
value greater than d2. The values dl and d2 can,
however, be the same.

An asterisk (*) can also occur as an upper bound,
but only as the last dimension. An asterisk marks
the declarator as an assumed-size array declarator
(see Section 7.1.2).

NOTE

A dimension bound expression must not contain a
function or array element reference.

If the array is a dummy argument to a subprogram, then dl and d2 can
be integer dummy arguments and 42 can be an asterisk; otherwise, they
must be constants.

If the symbolic name of a constant or variable that appears in a
dimension bound expression 1is not of implicit default integer type
(see Section 4.2), it must be specified integer by an IMPLICIT
statement or a type-statement.

Examples:

DIMENSION EDGE (-1:1,4:8), NET (5,10,4), TABLE (567)
DIMENSION TABLE (IAB:J,K,M,10:20)

where:

IAB, J, K, and M are of type integer.

SPECIFICATION AND DATA STATEMENTS

7.1.1 Adjustable Dimensions

When used within a subprogram, a declarator for an array that is a
dummy argument can use intejer dummy arguments as dimension bounds.
The following rules govern the wuse of adjustable dimensions in a
subprogram:

1. The array name must be a dummy argument. FEach variable that
is used as a dimension bound must be either a dummy argument
or in COMMON (see Section 7.4).

2. For multiple entry suoprograms, if any variables that specify
dimension bounds ar= dummy arguments which do not occur in
the formal argument list of the entry point used, the value
of the variables as passed for a previous call are used.
However, this is only permitted if the subprogram has not
changed those dummy arguments. Futhermore, when overlays are
used, a SAVE statement that preserves the local variables of
the subprogram is needed.

3. If the value of an array dimension variable is altered within
the program, the dimensionality of the array is not affected.

4. The size of an array within a subprogram cannot exceed the
size of the original array, as defined in the calling
program.

Example 1:

SUBROUTINE SBR (ARRAY,M1,M2,M3,M4)
DIMENSION ARRAY (M1:M2,M3:M4)
DO 27 L=M3,M4
DO 27 K=M1,M2
ARRAY (K,L)=VALUE
27 CONTINUE
END

In the example above, the dimensions of ARRAY will be re-specified
each time the subroutine SBR is entered.

Example 2:

SUBROUTINE SB1l (ARR1,M,N)
DIMENSION ARR1 (M,N)

ARR1 (M, N)=VALUE

ENTRY SB2(ARRI1,M)

ENTRY SB3(ARR1,N)

ENTRY SB4 (ARR1)

END

In the example above, the first call made to the subroutine must be
made to SB1l so that all of the dimension bounds have defined values.
If a call is made to SBl with the values M=11 and N=13, a succeeding
call to SB2 will use the value N=13, but will give M a new value. If
a succeeding call is made to SB4, the 1last values passed through
entries SB1l, SB2, or SB3 are used for M and N.

SPECIFICATION AND DATA STATEMENTS

7.1.2 Assumed-size Arrays

An assumed-size array is a dummy array for which the upper bound of
the last dimension is specified as an asterisk(*), for example:

SUBROUTINE SUB(A,N)
DIMENSION A(1:N,1:*)

Since storage for array A is allocated in the calling routine, the
upper bound of the rightmost dimension of A does not affect the
subscript calculations or storage allocation for A.

Therefore, subroutine SUB can be written to handle arguments with any
rightmost dimension (the 1last subscript is never range checked for
being too large, even when the /DEBUG:BOUNDS compiler switch is
specified). Such a subroutine can declare assumed-size arrays.

The size of an assumed-size array, and the number of elements that can
be referenced, are determined as follows:

1. If the actual argument corresponding to the dummy array is a
noncharacter array name, the size of the dummy array is the
size of the actual-argument array.

2, If the actual argument corresponding to the dummy argument is
a noncharacter array element name, with a subscript value of
s in an array of size a, the size of the dummy array is:
at+l-s.

3. If the actual argument is a character-array name,
character-array element name, or character-array element
substring name, and begins at character storage unit b of an
array with n character storage units, the size of the dummy
array is INT((n+l-b)/y). Where y is the length of an element
of the dummy array.

Because the actual size of an assumed-size array 1is not known, an
assumed-size array name cannot be used as:

1. An array name in the list of an I/0 statement
2. A unit identifier for an internal file in an I1/0 statement
3. A format specifier in an I/0 statement

4. A NAMELIST statement element

7.2 TYPE SPECIFICATION STATEMENTS

Type specification statements explicitly declare the data type of
variables, arrays, or function names. You can give an array name in a
type specification statement, either alone (unsubscripted) to declare
the type of all 1its elements, or with dimension bounds, to specify
both its type and dimensions.

There are two forms of type specification statements: numeric type
specification (see Section 7.2.1) and character type specification
(see Section 7.2.2).

SPECIFICATION AND DATA STATEMENTS

7.2.1 Numeric Type Specification Statements
The general form of numeric type specification statements is:

type v[,v...]

where:

type can be any one of the following declarators:
1. INTEGER
2. REAL
3. DOUBLE PRECISION
4. COMPLEX
5. LOGICAL

v is a variable, array, or function name to be declared

the specified type. The names listed must be separated
by commas and can appear in only one type statement
within a program unit.

Examples:

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY(5:10,10:20,5)

If a name that is the same as an intrinsic FORTRAN function name
appears in a conflicting type statement, it is assumed that the name
refers to a user-defined routine, variable, or array of the given
type. If you place a generic FORTRAN function name in an explicit
type statement, it loses its generic properties.

NOTE

The data type size modifier, *n, 1is accepted by
FORTRAN-10/20 to be compatible with the type
statements used by other manufacturers. You may
append this size mod:fier to the declarators, causing
some to elicit messages warning users of the form of
the variable specified by FORTRAN-10/20:

Declarator Forn of Variable Specified
INTEGER*2 Full word integer with warning message
INTEGER*4 Full word integer

LOGICAL*1 Full word logical with warning message
LOGICAL*2 Full word logical with warning message
LOGICAL*4 Full word logical

REAL*4 Full word real

REAL*8 Double-precision real

COMPLEX*8 Complex

COMPLEX*16 Complex with warning message

REAL*16 Double-precision real with warning message
COMPLEX*32 Complex with warning message

SPECIFICATION AND DATA STATEMENTS

in addition, you can append the data
Lype size modifier to individual
variables, arrays, or function names.
its effect 1is to override, for the
particular element, the size modifier
ftexplicit or implicit) of the primary
type, For example,

REAL*4 A, B*8, C*8(10), D
A and D are single-precision (one word)

real, and B and C are double-precision
ftwo words for each element) real.

7.2.2 Character Type Specification Statements
The form of the character type specification statement is:

CHARACTER [*1len([,]] v[*len] [,v[*len]]...

where:
v is one of the following:
e The name of a symbolic constant, variable, array, or
function subprogram
® An array declarator
len is the length of the character data item and is one of the

following:
® An unsigned, nonzero integer constant

e An integer constant expression enclosed in parentheses
and with a positive value

® An asterisk enclosed in parentheses

If you specify CHARACTER*len, len is the default length specification
for that 1list. If an item in that 1list does not have a length
specification, the item's length is len. But if an item does have a
length specification, it overrides the default length specified in
CHARACTER*1len.

A length specification of asterisk (for example, CHARACTER*(*))
specifies that a dummy argument or function name assumes the length
specification of the corresponding actual argument or function
reference (see Chapter 13). A length specification of asterisk for
the symbolic name of a constant specifies that the symbolic constant
assumes the actual length of the constant that it represents.

If you do not specify a length, a length of one is assumed. Note that
a length specification of zero is invalid. You can use a character
type declaration statement to define arrays by including array
declarators (see Section 4.3.2) in the list. If you specify both an
array declarator and a length, the array bounds precede the length,
the form is:

al(d)][*len]

SPECIFICATION AND DATA STATEMENTS

where:
a is an array name, and a(d) is an array declarator.
Examples of character type specification statements follow:
CHARACTER*32 SOCSEC(100)*9, NAMES(100)
The above statement specifies an array SOCSEC comprising one hundred
9-character elements, and an array NAMES comprising one hundred

32-character elements.

PARAMETER (LENGTH=4)
CHARACTER* (4+LENGTH) LAS7T, FIRST

The above statements specify two 8-character variables, LAST and
FIRST. (The PARAMETER statement is described in Section 7.8.)

SUBROUTINE S1 (BUBBLE)
CHARACTER LETTER (26), BUBBLEX (*)

The above statements specify an array LETTER comprising twenty-six
l-character elements and a dummy argument, BUBBLE, which has a length
defined by the calling program.

CHARACTER*16 QUEST* (5*INT (A))

The above statement is invalid. The length specifier for QUEST is not
an integer constant expression.

7.3 IMPLICIT STATEMENTS
IMPLICIT statements declare the data type of variables and functions
according to the first 1letter of each symbolic name. The IMPLICIT
statement has two forms:
IMPLICIT type (al,al...),type (al[,al...)]...
IMPLICIT NONE
As shown in the statement above, an IMPLICIT statement consists of one
or more type declarators separated by commas. Each type declarator
has the form:
type (al,al...)
where:
type can be any one of the following declarators:
1. INTEGER
2. REAL
3. DOUBLE PRECISION
4, COMPLEX
5. LOGICAL

6. CHARACTER[*1len]

SPECIFICATION AND DATA STATEMENTS

a is an alphabetic specification in either of the general
forms: ¢ or cl-c2, where c, cl, or c2 is an alphabetic
character. The latter form specifies a range of
letters, from ¢l through ¢2, which must occur in
alphabetical order.

When you specify type as CHARACTER*len, len specifies the 1length for
character data type. Len is an unsigned, nonzero integer constant or
an integer constant expression enclosed in parentheses and with a
positive wvalue. If you do not specify a length, a length of one is
assumed.

Each letter in a type declarator list specifies that each symbolic
name (not declared in an explicit type specification statement)
starting with that letter is assigned the data type named in the
declarator. For example, the statement:

IMPLICIT REAL (R,M,N,O0)

declares that all names that begin with the letters R, M, N, or O are
type REAL names, unless declared otherwise 1in an explicit type
statement.

NOTE

Type declarations given in an explicit type
specification override those also given in an IMPLICIT
statement. IMPLICIT declarations do not affect
intrinsic functions. The 1length is also overridden
when a particular name appears in a CHARACTER or
CHARACTER FUNCTION statement (see Chapter 13).

You may specify a range of letters within the alphabet by writing the
first and last letters of the desired range separated by a dash, for
example, A-E for A,B,C,D,E.

Thus, the statement:
IMPLICIT INTEGER (I,L-P)

declares that all symbolic names that begin with the letters
I,L,M,N,0, and P are of type INTEGER.

You may use more than one IMPLICIT statement, but they must appear
before any other declaration statement in the program unit. (See
Section 6.3 for a discussion on ordering FORTRAN statements.)

The same letter must not appear as a single letter, or be included in
a range of letters, more than once in all of the IMPLICIT statements
in a program unit.

You can use an IMPLICIT NONE statement to provide warning messages for
variables not explicitly declared, including variables implicitly
declared by other IMPLICIT statements. If you specify IMPLICIT NONE,
no other IMPLICIT statement should be included in the program unit.

7.4 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms, and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to reference
the same data in different subprograms without passing arguments.

7-8

SPECIFICATION AND DATA STATEMENTS

COMMON statements have the fo’lowing form:

COMMON [/cb/] nlist([[,]/{cb]l/nlist]...

where:
cb is an optional common block name. (See Section 4.1 for
the rules for symbolic names.)
nlist is a list of variable names, array names, and array

declarators that are to occupy the common area. The
items specified for a common area (block) are ordered
within storage as they are 1listed in the COMMON
statement.

The items in nlist must be eeither all numeric data type or all
character data type. A common block cannot contain both numeric and
character data.

A symbolic name can be used to identify each block. However, you can
omit the symbolic name for one block in a program unit. This
unlabeled block is called the blank common block.

The elements of a named common block can be assigned initial values by
DATA statements appearing in the BLOCK DATA subprograms (see Chapter
l4). 1In standard-conforming programs, the elements of the blank
common block may not be assigned 1initial wvalues. However,
FORTRAN-10/20 allows any common block elements to be defined in a DATA
statement in any program unit,

A given common block name may appear more than once in the same COMMON
statement, and in more than one COMMON statement within the same
program or subprogram.
When extended addressing is in effect, COMMON blocks reside in the
large data area by default. However, the /EXTEND:COMMON or
/EXTEND:NOCOMMON switches can be used to explicitly allocate COMMON
blocks in the large data area or small data area (see Section 16.5).
During compilation of a sourca program, FORTRAN strings together all
items 1listed for each common block in the order in which they appear
in the source program. For example:

COMMON X,Y,7/ST1/A,B

COMMON/ST1/TST (3,4)/ST2/TAB(2,2)

COMMON/ST2/C,D,E//P,Q

COMMON W
has the same effect as the single statement:

COMMON X,Y,Z,P,Q,W/ST1l/A,B,TST(3,4)/ST2/TAB(2,2),C,D,E
All elements specified for a common block are placed into one area.

Common block names must be unique with respect to all subroutine,
function, and entry point names.

SPECIFICATION AND DATA STATEMENTS

NOTE

If you use overlays, you can use the SAVE statement to
retain the value of variables in a named common across
overlays (see Section 7.10). (Blank common is always
saved.)

For example:

Main Program Subprogram
COMMON DELTA,LENGTH SUBROUTINE CALC
COMMON /COM1/KILOS,PRICE COMMON/COM1 /N, A

. COMMON Z,KOUNT
CALL CALC .

The COMMON statements in the main program put DELTA and LENGTH into
the blank common block, and put KILOS and PRICE into a common block
named COM1.

The COMMON statements in the subroutine make Z correspond to DELTA in
the main program, KOUNT correspond to LENGTH, N correspond to KILOS,
and A correspond to PRICE.

To prevent conflict with other COMMON blocks, LINK requires that the
largest definition for each common block be loaded first.

7.4.1 Dimensioning Arrays in COMMON Statements

Array names with dimension bounds can be given in COMMON statements.
However, variables cannot be used as dimension bounds in a declarator
appearing in a COMMON statement; adjustable dimensioning is not
permitted in COMMON,

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement, but not
both.

For examples,

COMMON /A/B(100), C(10,10)
COMMON X (5,15),Y(5)

7.4.2 Character Data in COMMON

Each character variable in a COMMON block is allocated to start at the
first available character position.

For example,

CHARACTER B*3,C*3,D(3)*2
COMMON B,C,D

SPECIFICATION AND DATA STATEMENTS

The COMMON block will be allocated in the following way:

C D(1) D(2) D(3) Unused
I Y \f““‘"‘\ﬁ“*“\ e 7 A

A
Y
| | I | lxl I | | | | |x| I | I x I x | x |x|

0 7 14 21 28 35 0 7 14 21 28 35 0 7 14 21 28 35

MR-5-2527-83

)

where x means the bits are not used.

7.5 EQUIVALENCE STATEMENT

The EQUIVALENCE statement associates two or more variables with the
same storage location.

The format of the EQUIVALENCE statement is:
EQUIVALENCE (nlist) [, (nlist...)]
where:

nlist is a list of variable names, array elements, array
names, and character substring references separated by
commas and enclosed in parentheses. You must specify
two or more of i{-hese items in each list.

In an EQUIVALENCE statement, each expression 1in a subscript or a
substring reference must be an integer constant expression.

The EQUIVALENCE statement allocates all of the items in one
parenthesized 1list Dbeginning at the same storage 1location. For
example, the statements:

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE (3))

specify that the variables A; B, and C are to share the same storage
location, and that the variable LOC and the array element SHARE (3) are
to share the same location.

The relationship of equivalence 1is transitive. For example, the
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

The following EQUIVALENCE statement makes the first character of the
character variables KEY and STAR share the same storage location. The
character variable STAR is equivalent to the substring KEY (1:10):

CHARACTER KEY*16, STAR*10
EQUIVALENCE (KEY,STAR)

You can equivalence variables of different numeric data types.
Character variables must not be equivalenced to numeric variables.
For example, you can equivalence a real variable equivalent to a
complex variable. In this case, since each complex variable occupies

SPECIFICATION AND DATA STATEMENTS

two words of storage, and each single-precision variable occupies one
word of storage, if you equivalence a real and a complex variable, the
real variable shares storage with the real part of the complex
variable. Figure 7-1 depicts the shared storage when a complex
variable is equivalenced with a real variable.

Source Program Statements:

COMPLEX A
REAL B
EQUIVALENCE (A,B)

1. Memory Location Stores: Real Part of Complex A
AorB or Entire Real B

2. Second Part of Stores: Imaginary Part of
Memory Location A Complex A

{+———36-Bit Word —————

MR-S-1764-81

Figure 7-1: Shared Storage using EQUIVALENCE Statement

The EQUIVALENCE statement does not 1imply (or perform) any type
conversions. If vyou equivalence a real variable and an integer
variable, the data within the equivalenced location will be treated as
a real or integer number, depending on whether it is referenced by the
real or integer variable.

If you equivalence a real variable with a double-precision variable,
the data in the high-order word of the double-precision variable will
be used by the real variable. For positive D-floating
double-precision numbers (see Section 3.4), the high-order word is in
the same format as a single-precision number.

For G-floating double-precision numbers (KL model B only - see Section
3.4), the high-order word is not in the format of a single-precision
number. Thus, equivalencing a real variable and a G-floating

double-precision variable will produce incorrect results.

Equivalencing a negative D-floating number and a real variable may not
produce correct results either, for example the number:

577000000000 000000000001 (the negative of 2007777777177
777777777777, almost 1.0)

does not have a valid single-precision number in its high-order word.

If you equivalence an array and a variable, the array does not assume
any of the properties of the variable, and the variable does not
assume any of the properties of the array.

When you use an array element in EQUIVALENCE statements, it must have
either as many subscripts as dimensions of the array, or only one
subscript. In either case, the subscripts must be integer constants.
Note that the single subscript case treats the array as a
one-dimensional array of the given type.

SPECIFICATION AND DATA STATEMENTS

The following example shows the effect of equivalencing a
l-dimensional and a 2-dimensional array:

DIMENSION A(3,2),B(6)

EQUIVALENCE (A(1l,1),B(1))
or

EQUIVALENCE (A(l),B(l))

In this example, each array element of array A shares the same storage
area with an element of array B:

A(l,1) B(1)
A(2,1) B(2)
A(3,1) B(3)
A(l,2) B(4)
A(2,2) B(5)
A(3,2) B(6)

Specifying an array name without subscripts in an EQUIVALENCE
statement is the same as specifying the first element of the array.

When you make one character substring equivalent to another character
substring, the EQUIVALENCE statement also sets equivalences between
the other corresponding characters in the character strings, for
example,

CHARACTER NAME*16, ID*9
EQUIVALENCE (NAME (10:13), ID(2:5))

As a result of these statements, the character variables NAME and 1ID
share space as illustrated in Figure 7-2.

NAME

Character

Position
1
2
3
4
5
6
7 ID

Character
8 Position
9 1
10 2
11 3
12 4
13 5
14 6
1% 7
16 8
9

MR-8-2523-83

Figure 7-2: Equivalence of Substrings

SPECIFICATION AND DATA STATEMENTS
The following statement also aligns the variables as shown in Figure
7-2:
EQUIVALENCE (NAME(9:9),ID(1:1))
If the character substring references are array elements, the
EQUIVALENCE statement sets equivalences between the other

corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character position,
for example:

CHARACTER FIELDS (6)*4, STAR(5)*5
EQUIVALENCE (FIELDS(l) (2:4), STAR(2) (3:5))

As a result of these statements, the character arrays FIELDS and STAR
share storage space as shown in Figure 7-3.

STAR
Character
Position Subscript
1 1
2
3
FIELDS 4
Character 5
Subscript Position 1 2
1 1 2
2 3
3 4
4 5
2 1 1 3
2 2
3 3
4 4
3 1 5
2 1 4
3 2
4 3
4 1 4
2 5
3 1 5
4 2
5 1 3
2 4
3 5
4
6 1
2
3
4

MR-5-2524-83

Figure 7-3: Equivalence of Character Arrays

General

1.

SPECIFICATION AND DATA STATEMENTS

EQUIVALENCE Restrictions:

You cannot cause two different elements of an array to become
equivalenced to each other. Thus, the following statement
sequence is prohibited because it specifies the same storage
location (B) for A(l) and A(2):

DIMENSION A(2)
EQUIVALENCE (A(l),B),(A(2),B)

An EQUIVALENCE statement must not specify that two
consecutive locations are nonconsecutive. For example, the
following statement sequence is prohibited because B(l) takes
two storage locations, the second of which would make A(2)
nonconsecutive to A(l):

INTEGER A(2)
DOUBLE PRECISION B(2)
EQUIVALENCE (A(l),B(l)), (A(2),B(2))

An EQUIVALENCE statement in a SUBROUTINE or FUNCTION
subprogram must not refer to an argument of the subprogram.
For example, the following statement sequence is prohibited:

SUBROUTINE A(B,C)
EQUIVALENCE (B,X)

You cannot cause two different substrings of the same
character variables or arrays to become equivalenced to each
other. For example, the following statement sequence is
prohibited because it specifies the same substring B(l:3) for
A(l:3) and A(2:4):

CHARACTER A (3)*4,B*4
EQUIVALENCE (A(1)(1:3),B(1:3)), (A(l)(2:4),B(1:3))

You also cannot use the EQUIVALENCE statement to assign
memory locations in a way that is inconsistent with the
normal linear storage of character variables and arrays. For
example, the following statement sequence is prohibited
because it would require the character variable B(2:2) to be
equivalent to both A(l) (2:2) and A(l) (l:1):

CHARACTER A (2) *10,B*10
EQUIVALENCE (A(1)(1:3),B(1:3)), (A(l)(4:6),B(5:7))

Restrictions on EQUIVALENCE and COMMON:

1.

You cannot use the EQUIVALENCE statement to equivalence two
elements in different common blocks. Thus, the following
statement sequence is prohibited:

COMMON /BLOCK1/A,B,F/BLOCK2/C,D,E
EQUIVALENCE (A,C)

You cannot set two quantities declared in a COMMON block to
be equivalent to one another. Thus, the following statement
sequence is prohibited:

COMMON A,B,C
EQUIVALENCE (A,C)

SPECIFICATION AND DATA STATEMENTS

Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the end of the common area
forward. For example, the statements:

COMMON/R/X, Y, 2
DIMENSION A (4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
shown in Figure 7-4.

Location X

Location Y and A(1)

Shared Locations
Location Z and A(2)

Location A(3)

Location A(4)

MR-S-1746-81

Figure 7-4: Valid Equivalencing

You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For example, the
invalid sequence:

COMMON/R/X, Y, Z
DIMENSION A(4)
EQUIVALENCE (X,A(3))

would require A(l) and A(2) to extend the starting location

of block R in a backwards direction as illustrated in Figure
7-5.

Location A(1)

Location A(2)

Location X and A(3)

Causes COMMON R to Extend Backward
Location Y and A(4)

Location Z

MR-§-1747-81

Figure 7-5: Invalid Equivalencing

SPECIFICATION AND DATA STATEMENTS

7.5.1 EQUIVALENCE and Extended Addressing

When extended addressing is in effect, and an EQUIVALENCE statement
causes a variable to be in COMMON, that variable resides in the same
psect as the rest of the COMMON block.

For variables not in COMMON, 1if vyou equivalence a large variable
(default 10,000 or more words) with other variables (including
scalars), all these variables will reside in the large data psect.
For example,

REAL A(20000) ,X
EQUIVALENCE (A (1) ,X)

causes variable X to be placed in the large data psect, since it is
equivalenced with a large array.

Conversely, if each equivalence variable is small (default 1less than
10,000 words), they will reside in the small data psect, even if the
total size of the equivalence class is over the small variable 1limit.
For example,

REAL A(8000),B(8000)
EQUIVALENCE (A (8000), B(1l))

The arrays will reside in the small data psect, because each one is
smaller than 10,000 words.

See Sections 15.4.11 and 16.5 for more information on extended
addressing.

7.6 EXTERNAL STATEMENT

Any user subprogram name to be used as an argument to another
subprogram must appear in an EXTERNAL statement in the calling
subprogram. The EXTERNAL statement declares names to be subprogram
names to distinguish them from other variable or array names.

The subprograms mentioned in the EXTERNAL statement cannot be FORTRAN
intrinsic functions; they <can be only user-supplied functions,
subroutines, or block data subprograms. (The INTRINSIC statement
discussed in Section 7.7 allows intrinsic function names to be used as
arguments.) The EXTERNAL statement has the following form:

EXTERNAL proc[,proc...]
where:

proc is the symbolic name of a user-supplied subprogram, the
name of a dummy argument associated with the name of a
subprogram, or a block data subprogram.

The EXTERNAL statement declares each symbolic name included in it to
be the name of an external procedure, even if a name is the same as
that of an intrinsic function. For example, if SIN is specified in an
EXTERNAL statement (EXTERNAL SIN), all subsequent references to SIN
are to a user-supplied function name SIN, not to the intrinsic
function of the same name.

The name specified in an EXTERNAL statement can be used as an actual

argument to a subprogram, which can then use the corresponding dummy
argument in a function reference or a CALL statement.

7-17

SPECIFICATION AND DATA STATEMENTS

NOTE

Note that a complete function reference used as an
argument, for instance, FUNC (B) in CALL SUBR
(A(FUNC(B) ,C)), represents a value, not a subprogram.
A complete function reference 1is not, therefore,
defined in an EXTERNAL statement.

The interpretation of the EXTERNAL statement described above is
different from that of earlier versions of FORTRAN-10/20. If the
ANOF77 compiler switch is specified (see Sections 16.1.3 and 16.2.3),
the subprogram names can be intrinsic functions.

For compatibility with previous versions of FORTRAN-10/20, the names
of external subprograms can be preceded by an asterisk (*) or an
ampersand (&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

declares SIN and COS to be user subprograms. (If a prefixed name is
not an intrinsic function, then the prefix is ignored.)

Note that specifying an intrinsic function in an EXTERNAL statement
without a prefix (that is, EXTERNAL SIN) has no effect upon the usage
aof the function name outside of actual argument lists. If the name
nas generic properties, they are retained outside the actual argument
list. (The name has no generic properties within an argument list.)

The names declared in a program EXTERNAL statement are reserved

throughout the compilation of the program, and cannot be used in any
declarator statement other than a type statement.

7.7 INTRINSIC STATEMENT
The INTRINSIC statement allows you to use intrinsic function names as
arguments to subprograms. See Section 13.1 for further information on
intrinsic functions,
The INTRINSIC statement has the form:

INTRINSIC fun{,fun]...
where:

fun is the symbolic name of an intrinsic function.
The INTRINSIC statement declares each symbolic name included in it to
be the name of an intrinsic procedure. This name can then be used as
an actual argument to a subprogram, which can use the corresponding

dummy argument in a function reference or a CALL statement.

The appearance of a generic function name in an INTRINSIC statement
does not cause that name to lose its generic property.

SPECIFICATION AND DATA STATEMENTS

NOTE

You cannot use a generic-only name in an INTRINSIC
statement. The generic name must be the same as an

instrinic function name. For example,
INTRINSIC LOG

is illegal because there is no function named 'LOG'.
LOG is the generic name that selects between functions
such as ALOG, DLOG, or CLOG.

Only one appearance of a symbolic name is permitted in all of the
INTRINSIC statements of a program unit. Also, a symbolic name must
not appear in both an EXTERNAL and an INTRINSIC statement in a program

unit.

An example of the use of the EXTERNAL and INTRINSIC statements
follows:

Main Program

EXTERNAL CTN
INTRINSIC SIN, COS

CALL TRIG(ANGLE,SIN,SINE)

.

CALL TRIG (ANGLE,COS,COSINE)

CALL TRIG(ANGLE,CTN,COTANT)

Subprograms

SUBROUTINE TRIG(X,F,Y)
Y = F(X)

RETURN

END

FUNCTION CTN (X)
CTN = COS (X) /SIN (X)
RETURN

END

In this example, when TRIG is called with a second argument of SIN or
COS, the function reference F(X) references the math library functions
SIN and COS; but when TRIG is called with a second argument of CTN,
F(X) references the user function CTN.

SPECIFICATION AND DATA STATEMENTS

7.8 PARAMETER STATEMENT

The PARAMETER statement allows you to define constants symbolically
during compilation.

The general form of the PARAMETER Statement is:

PARAMETER (p=cl,p=cl...)

where:
p is a symbolic name.
c is a constant expression (except for expressions involving

multiplication, division, or exponentiation of complex
numbers) . (See Chapter 3 for a description of FORTRAN
constants.)

The constant acquires the same data type as the symbolic name. If the
symbolic name is of type integer, real, double precision, or complex,
the corresponding expression (¢) must be an arithmetic constant
expression (see Section 5.1.2). If the symbolic name is of type
character or logical, the corresponding expression (¢) must be a
character constant expression (see Section 5.2.1) or a 1logical
constant expression (see Section 5.3.1), respectively.

The data type of a symbolic name defined to be a constant is specified
by a type-statement or IMPLICIT statement preceding the defining
PARAMETER statement. Also, if the length specified for the symbolic
name of a character constant is not the default length of one, its
length must be specified by a type-statement or IMPLICIT statement
preceding the symbolic name of the constant.

NOTE

The form and the interpretation to the PARAMETER
statement described above are different from those of
the PARAMETER statement provided in earlier versions
of FORTRAN-10/20. The earlier version is described
below. This form and interpretation can still be
used, however a warning message will be issued. This
form of the PARAMETER statement is:

PARAMETER p=c{,p=c...]

The symbolic name acquires the same data type as the
constant.

During compilation, the symbolic names are replaced by their
associated constants, provided the following rules are observed:

1. Symbolic names may appear only where FORTRAN constants are
acceptable.

2, Symbolic name references must appear after the PARAMETER
statement definition.

3. Symbolic names must be unique with respect to all other names
in the program unit.

SPECIFICATION AND DATA STATEMENTS

4. Symbolic names must rnot be redefined in subsequent PARAMETER
statements.

5. Symbolic names must not be used as part of another constant,
such as within a character constant or as the count for a
Hollerith constant.

6. Symbolic names must not be used as part of a format
specification.

7.9 DATA STATEMENT

DATA statements are used to supply the initial values of variables,
arrays, array elements, substrings, and COMMON areas.

The form of the data statement is:

DATA nlist/clist/ [[,]nlist/clist/]...

where:
nlist identifies a set of items to be initialized.
clist contains the set of values to be assigned the items in

nlist.
For example, the statement:
DATA I1A/5/,1B/10/,1C/15/

initializes variable IA to the value 5, variable IB to the value 10,
and variable IC to the value 15. The number of storage locations you
specify in the 1list of variables must be equal to the number of
storage locations you specify in its associated list of values. If
not, a warning message is output.

When the value list specifies more storage locations than the variable
list, the excess values are ignored. When the value list specifies
fewer storage locations than the variable list, the excess variables
are not initialized.

The nlist portion of each nlist/clist/ set can contain the names of
one or more variables, array names, array elements, character
substring names, or labeled COMMON variables. You may specify an
entire array (unsubscripted array name) or a portion of an array in a
DATA statement nlist as an implied DO loop construct. (See Section
10.4.9.2 for a description of implied DO loops.)

The form of an implied-DO 1list in a DATA statement is:

(dlist,i=nl,n2(,n3])

where:
dlist is a list of array element names, character substring
names, or implied-DO lists.
i ig the name of an integer variable, called the 1loop
index variable.
nl,n2,n3 are integer e¢xpressions that can contain integer

constants and loop index variables.

7-21

SPECIFICATION AND DATA STATEMENTS

For example, the statement:
DATA (NARY(I),I=1,5)/1,2,3,4,5/

initializes the first five elements of array NARY as NARY(l)=1,
NARY (2)=2, NARY(3)=3, NARY(4)=4, and NARY(5)=5.

When you use an implied DO loop in a DATA statement, the loop index
variable must be of type INTEGER, and the Initial, Terminal, and
Increment parameters of the loop must be of type INTEGER.

In a DATA statement, references to an array element or substring must
be integer expressions in which all terms are either integer constants
or indices of embracing implied DO 1loops. These types of integer
expressions can include the exponentiation operator.

The clist portion of each nlist/clist/ set can contain one or more
numeric, logical, Hollerith, octal, hexadecimal, or character
constants., You may specify 1literal data as either a Hollerith
specification, for example, S5HABCDE, or a string enclosed in single
quotes, for example, 'Abcde’. Each ASCII data 1item 1is stored
left-justified and is padded with blanks if necessary.

When you assign the same value to more than one item in nlist, a
repeat specification may be used. The repeat specification has the
form:

n*d
where:

n is an integer that specifies how many times the value d is
to be used. For example, a clist specification of /3*20/
specifies that the value 20 is to be assigned to the first
three items named in the preceding list. The statement:

DATA M,N,L/3*20/
assigns the value 20 to the variables M, N, and L.

When the specified data type is not the same as that of the variable
to which it is assigned, FORTRAN converts the data item to the type of
the variable. The type conversion is performed using the rules given
for type «conversion in arithmetic assignments, (See Table 8-1.)
Octal, logical, Hollerith, hexadecimal, and character constants are
not converted.

Sample Statement Result

DATA PRINT,I,O0/'TEST',30,"77/,(TAB(J),J=1,30)/30*5/ The first 30
elements of
array TAB are
initialized to
5.0.

DATA((A(I,J),I=1,5),d=1,6)/30*1.0/ No conversion
required.

DATA((A(I1,J),1=5,10),J3=6,15)/60*2.0/ No conversion
required.

SPECIFICATION AND DATA STATEMENTS

When character variables are initialized, length conversions are made.
The conversion is based on the following rules:

1. 1If the constant contains fewer characters than the length of
the element 1in nlist, the rightmost character positions of
the element are initialized with spaces.

2, If the constant contains more characters than the length of
the element in nlist, the character constant is truncated to

the right.
Character constants and Hollerith constants can also be used to
initialize numeric wvariables. The character string is stored left
justified in the numeric variable. When the character string

specified 1is longer than one numeric variable can hold, the string is
stored left justified across s many variables as are needed to hold
it. If necessary, the last variable used is padded with blanks up to
its right boundary.

For character variables, each variable or array element must have
exactly one character constant in the data list.

For example, assuming that X, Y, and Z are single-precision, the
statement:

DATA X,Y,Z/'abcdefghijkl'/
causes:
to be initialized to 'ebcde'

X
Y to be initialized to 'fghij'
7 to be initialized to 'klbbb'

When a character string is to be stored in double-precision and/or
complex variables, and the specified string is only one word long, the
second word of the variable i< padded with blanks.

For example, assuming that the variable C is complex, the statement:

DATA C/'ABCDE','FGHIJ'/

causes the first word of C to be initialized to 'ABCDE' and its second
word to be initialized to 'bbbbb'. The string 'FGHIJ' is ignored.
The first word contains the real part of the ‘complex variable; the
second word contains the imaginary part.

In addition, the following twc forms of bit data constants are allowed
in DATA statements:

0'di...dn"

Z2'hi...hn'
where di are octal digits and hi are hexadecimal digits with A-F
representing the decimal ecuivalent of 10-15. These constants are

right-justified. Note that you can also use the double quote (") form
of octal constants as described in Section 3.7.

SPECIFICATION AND DATA STATEMENTS

7.10 SAVE STATEMENT

The SAVE statement retains the values stored in a variable, array, or
common block after execution of a RETURN or END statement in a

subprogram.

The SAVE statement has the following form:
SAVE [a[,al...]

where:

a is a named common block name (preceded and followed by a
slash), a variable name, or an array name.

NOTE

Ordinarily, the values of all variables are retained
after execution of a RETURN or END statement.
However, when overlays are used, the SAVE statement
must be used to ensure retention of values.

An entity specified by a SAVE statement within a program unit does not
become undefined upon execution of a RETURN or END statement in that
unit. If the entity is in a common block, however, it may be
redefined in another program unit that references that common.

Procedure names, the names of variables and arrays in a common block,
and dummy argument names cannot be used in a SAVE statement.

A SAVE statement that does not explicitly contain a list is treated as
though it contained a list of all allowable items in the program unit
that contains the SAVE statement.

If a particular common block name is specified by a SAVE statement in
a subprogram of an executable program, it must be specified by a SAVE
statement in every subprogram in which that common block appears.

NOTE

It is not necessary to use the SAVE statement to
retain the wvalue of a blank common block; the
definition status of blank common is automatically
retained after a RETURN or END statement.

Also, when the SAVE statement is wused, it 1is not
necessary to specify the LINK switch /OVERLAY:WRITABLE
when loading a program.

CHAPTER 8

ASSIGNMENT STATEMENTS

Assignment statements assign values to variables, array elements, or
character substrings. There zre four kinds of assignment statements:

1. Arithmetic assignment statements (see Section 8.1)
2. Logical assignment statements (see Section 8.2)

3. Statement Label assignment (ASSIGN) statements (see Section
803)

4. Character assignment statements (see Section 8.4)

8.1 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign numeric values to numeric
variables or array elements. Arithmetic assignment statements have
the form:

v=e
where:
v is the name of the numeric variable or array element that is
to receive the specified value.
e is an arithmetic expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would in algebraic expressions; it implies replacement. For
example, the expression v=e is interpreted as "the contents of the
location identified as v are to be replaced by the value of expression
e; the previous contents of v are lost."

When the type of the specified variable or array element name differs
from that of its assigned value, FORTRAN converts the value to the
type of its assigned variable or array element. Table 8-1 describes
the type conversion operations performed by FORTRAN for each possible
combination of variable and value types.

ASSIGNMENT STATEMENTS

Table 8-1: Rules for Conversion in Mixed-Mode Assignments
Expression Variable Type (v)
Type (e)
REAL INTEGER COMPLEX DOUBLE- LOGICAL CHARACTER
PRECISION
Real D C R, I H,L D X
Integer F D R,F,I M D X
Complex R C,R D R,L R X
Double- o} N H,I D H X
precision
Logical D D R,I H,L D X
Octal D D R,I H,L D X
Hollerith D% D% D& D& D% X
Character X X X X X D
Double- H H D# D H X
Octal*
Legend
D = Direct replacement
C = Conversion from real to integer with truncation, overflow is
possible
F = Conversion from integer to real with rounding
R = Real part only
I = Set imaginary part to O
H = High-order only
L = Set low-order part to O
M = Convert with no truncation and no rounding
N = Convert with rounding; truncation can occur and overflow is
possible
0 = Round to one word of precision, overflow is possible
X = Not allowed

* Octal numbers with 13 to 24

require
and

Double-octals
right-justified
locations.

are

Notes
digits are termed double-octal.
two storage locations. They are stored
padded with zeros to fill the

ASSIGNMENT STATEMENTS

& Use the first two words of the Hollerith constant. If the
Hollerith constant 1is only one word long, the second word is
padded with blanks.

o0

Use the first word of the Hollerith constant.

To convert double-octal numbers to complex, the low-order octal
digits are assumed to be the imaginary part, and the high-order
digits are assumed to be the real part of the complex value.

8.2 LOGICAL ASSIGNMENT STATEMENTS

Statements of this type are used to assign values to variables and
array elements of type logical. Logical assignment statements have
the following form:

v=e
where:

v is the name of a variable or array element

e is a logical expression

For example, assuming that the variables L, F, M, and G are of type
logical, the following statements are valid:

Sample Statement Results

L=.TRUE. The contents of L are replaced by
logical truth.

F=,NOT.G The contents of F are replaced by
the complement of the contents of
G.

M=A,.GT.T

or
M=A>T If A is greater than T, the

contents of M are replaced by
logical truth; if A is less than or
equal to T, the contents of M are
replaced by logical false. This
can also be read: If A is greater
than T, then M is true, otherwise,
M is false.

L=((I.GT.H).AND. (J<=K)) The contents of L are replaced by

either the true or false resultant
of the expression.

8.3 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (a 1
to 5 digit statement number) to a variable name. The form of the
ASSIGN statement is:

ASSIGN s TO i

ASSIGNMENT STATEMENTS

where:
s is a statement number in the current program unit.
i is a variable name.

For example, the statement:
ASSIGN 2000 TO LABEL

specifies that the variable LABEL references the statement number
2000.

With the exception of complex, double-precision, or character, you can
use any type of variable in an ASSIGN statement.

Use the ASSIGN statement in conjunction with assigned GO TO control
statements (see Chapter 9), or as a format identifier in an I/O
statement (See Chapter 10). The ASSIGN statement sets wup statement
label variables that are then referenced in subsequent GO TO control
statements, or in format specifiers in I/O statements. The following
sequence illustrates the use of the ASSIGN statement:

555 TAX=(A+B+C)*,05

ASSIGN 555 TO LABEL

GO TO LABEL

8.4 CHARACTER ASSIGNMENT STATEMENT

The character assignment statement assigns the value of the character
expression on the right of the equal sign to the character variable,
array element, or substring on the left of the equal sign.

The form of the character assignment statement is:

v=e

where:
v is a character variable, array element, or substring.
e is a character expression,

If the length of the expression on the right side of the assignment is
greater than the 1length of the variable on the 1left side, the
character expression is truncated on the right.

If the length of the expression on the right side of the assignment is
less than the length of the variable on the left side, the character
expression is filled on the right with blanks.

ASSIGNMENT STATEMENTS

FORTRAN-10/20 allows overlap between the character expression and the
character variable, array element, or substring. (That 1is, the
character positions defined in the character variable, array element,
or substring can be referenced in the character expression.) For
example, the following assignments are allowed:

CHARACTER *4 A,B
DATA A/'abcd'/,B/'efgh'/

A(l:3)
B(2:4)

A(2:4)
B(1l:3)

After the above assignment statements, A is 'bcdd', and B is 'eefqg'.

The expression must be of character data type. You cannot assign a
numeric value to a character variable, array element, or substring.

Note that assigning a value to a character substring does not affect
character positions in the character variable or array element not
included in the substring. If a character position outside of the
substring has a value previously assigned, it remains unchanged. If
the character position is undefined, it remains undefined.

Examples of valid and invalid character assignment statements follow.
All variables and arrays 1in the examples are assumed to be of
character data type.

Valid
FILE = 'PROG2'
REVOL (1) = 'MAR'//'CIA'
LOCA(3:8) = 'PLANTS'

TEXT (I,J+1) (2:N-1) = NAME//X

Invalid
'ABC' = CHARS (the left side must be a character variable,
array element, or substring reference)
CHARS = 25 (expréssion on the right must be of character
data type)

CHAPTER 9

CONTROL STATEMENTS

FORTRAN object programs normally execute statement by statement in the
order in which they were presented to the compiler. The following
control statements, however, enable you to alter the normal sequence
of statement execution:
1. CALL (Section 13.4.2.2)
2. CONTINUE (Section 9.5:
3. DO (Section 9.3)
4. DO WHILE (Section 9.3.2)
5. ELSE (Section 9.2.4)
6. ELSE IF THEN (Section 9.2.4)
7. END (Section 9.8)
8. END DO (Section 92.4)
9. END IF (Section 9.2.4)
10. GO TO (Section 9.1)
11, 1IF (Section 9.2)
12. IF THEN (Section 9.2.4%)
13. STOP (Section 9.6)
14. PAUSE (Section 9.7)
15. RETURN (Section 13.4.4%)
The CALL and RETURN statements are described in Sections 13.4.2.2 and

13.4.4, respectively. The remaining statements are described in this
chapter.

9.1 GO TO STATEMENTS

A GO TO statement causes the statement that it identifies to bhe
executed next, regardless of ics position within the program.

There are three kinds of GO TO statements: Unconditional (see Section
9.1.1), Computed (see Section 9.1.2), and Assigned (see Section
9.1.3).

CONTROL STATEMENTS

9.1.1 Unconditional GO TO Statements

An unconditional GO TO statement transfers program control to the
specified statement label.

The form of the unconditional GO TO statement is:

GO TO s
where:
s is a statement label of an executable statement.

For example:
GO TO 300

You can position an unconditional GO TO statement anywhere in the
source program, except as the terminating statement of a DO loop.

9.1,2 Computed GO TO Statements
The form of a computed GO TO statement is:

GO TO (s [,s]...)[,] e

where:
(sl,s]l...) is a list of statement labels.
e is an integer expression.

You may include any number of statement 1labels in the 1list of a
computed GO TO statement. However, each statement label must appear
within the program unit containing the GO TO statement. The same
statement label can appear more than once in the list.

The value of the expression must be an integer value (it will be
truncated 1if necessary) that is greater than 0 and less than or equal
to the number of statement labels given in the list. If the value of
the expression is not within this range, the next sequential statement
is executed.

When a computed GO TO statement 1is executed, the value of the
expression is computed first. The value of the expression specifies
the position of the label (within the given list of statement labels)
that identifies the statement to be executed next. For example, in
the statement sequence:

GO TO (20, 10, 5)K
CALL XRANGE (K)

the variable K acts as a switch, causing a transfer to statement 20 if
K=1, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

CONTROL STATEMENTS

9.1.3 Assigned GO TO Statements
The form of an assigned GO TO statement is:
Go T0 i [[,) (s [,s)...)]
where:
i is a variable name and the optional parenthesized list is a
list of statement 1labels. The statement labels specified

must appear within the program unit containing the GO TO
statement.

Assigned GO TO statements must be logically preceded by an ASSIGN
statement (see Section 8.3) that assigns a statement label value to
the variable 1i. The assigned GO TO statement transfers program
control to the label that has been ASSIGNed.

The statement label value assigned must appear within the same program
unit as the GO TO statement that uses that value. In statements with
a specified list, if i is not assigned one of the statement label
values given in the list, the next sequential statement is executed.

Examples:
ASSIGN 300 TO STAT1

GO TO STAT1
GO TO STAT1,(177,300,777)

9.2 IF STATEMENTS
There are four kinds of IF statements: arithmetic (see Section

9.2.1), 1logical (see Section 9.2.2), logical two-branch (see Section
9.2.3), and block IF (see Section 9.2.4).

9.2.1 Arithmetic IF Statements
The form of the arithmetic IF statement is:

IF (e) sl, s2, s3

where:

e is an expression enclosed within parentheses and sl, s2, and
s3 are statement labels of three executable statements
appearing within the program unit containing the IF
statement. The expression e must not be of type complex.

The same statement label can appear more than once in the IF
statement.,

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expression. If the value of the expression is:

1, Less than 0, control 1is transferred to the statement
identified by label sl.

2. Equal to 0, control 1is transferred to the statement
identified by label s2.

CONTROL STATEMENTS

3. Greater than 0, control 1is transferred to the statement
identified by label s3.

Examples:

IF(ETA)4, 7, 12 Transfers control to statement 4 if
ETA is negative, to statement 7 if
ETA is 0, and to statement 12 if
ETA is greater than 0.

IF (KAPPA-L (10))20, 14, 14 Transfers control to statement 20
if KAPPA 1is 1less than the 10th
element of array L and to statement
14 if KAPPA 1is greater than or
equal to the 10th element of array
L.

9.2.2 Logical IF Statements

The form of the logical IF statement is:

IF (e) st
where:
e is any expression. The expression must not be of type
complex.
st is an executable statement.

If the value of the expression 1is true (negative), control is
transferred to the executable statement within the IF statement. If
the value of the expression is false (nonnegative), control is
transferred to the next sequential executable statement. The
statement you give in a logical IF statement may be any executable
statement except a DO statement, an END statement, or another logical
IF statement.

Examples:
IF(T.OR.S) X=Y+1 Performs an arithmetic
assignment operation if the

result of the IF is true.

IF(Z.GT.X(K)) CALL SWITCH(S,Y) Performs a subroutine call if
the result of the IF is true.

IF(K.EQ.INDEX) GO TO 15 Performs an unconditional

transfer if the result of the
IF is true.

9.2.3 Logical Two-Branch IF Statements
The format of a logical two-branch IF statement is:

(¥ (e) sl, s2

CONTROL STATEMENTS

where:

e is any expression, and sl and s2 are statement labels
appearing within the program unit containing the IF
statement. The expression must not be of type complex.

Logical two-branch IF statements transfer control to either statement
sl or s2, depending on the computed value of the given expression. It
the value of the given logical .expression is true (negative), control
is transferred to statement sl. If the value of the expression is
false (nonnegative), control is transferred to statement s2.

Examples:

IF (LOGl) 10,20 Transfers control to statement 10
it LOG1 is true (negative);
ntherwise transfers control to

statement 20.

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31
if A 1is 1less than both B and C;
transfers control to statement 32

if A 1is greater than or equal to
~ither B or C.

9.2.4 Block IF Statements

Block IF statements conditicnally execute blocks (or groups) of
statements. The four block IF statements are:

e IF THEN

e ELSE IF THEN

® ELSE
® END IF
These statements are used in block IF constructs. The block IF

construct has the following form, where the ELSE IF THEN and ELSE
statements are optional:

IF (e) THEN

block
ELSE IF (e) THEN
block
ELSE
block
END IF
where:
e is a logical expression.

block 1is a sequence of zero or more complete FORTRAN statements.
This sequence is called a statement block.

9-5

CONTROL STATEMENTS

Each block IF statement, except the END IF statement, has an
associated statement block. The statement block consists of all the
statements following the block IF statement up to (but not including)
the next block IF statement in the block IF construct. The statement
block is conditionally executed based on the values of logical
expressions in the preceding block IF statements. A statement block
can be empty.

The IF THEN statement begins a block IF construct. The block
following it is executed if the value of the logical expression in the
IF THEN statement is true. The first statement of the block cannot
directly follow the THEN on the same line. For example, the following
is illegal:

IF (T.LT.X) THEN T = X
The correct form is:

IF (T.LT.X) THEN
T = X

The ELSE statement specifies a statement block to be executed if no
preceding statement block in the block IF construct was executed. The
ELSE statement is optional.

The ELSE IF THEN statement is similar to the ELSE statement, except it
requires an additional condition for execution., The ELSE IF THEN
statement specifies a statement block to be executed if both the value
of the 1logical expression in the ELSE IF THEN statement is true, and
no preceding statement block in the block IF construct was executed.
A block 1IF construct can contain any number of ELSE IF THEN
statements. The ELSE IF THEN statement is optional.

The END IF statement terminates the block IF construct.

Figure 9-1 describes the flow of control for four examples of block IF
constructs.

CONTROL STATEMENTS

CONTROL STATEMENTS

Construct Flow of Control
False
IF (e) THEN
block True
END IF
Execute
block

“_

IF (e) THEN False
block,

ELSE True
block,
END IF Execute Execute
block, block,

I

)

IF (e,) THEN
block;,

ELSE IF (e,) THEN
block,

END IF Execute Execute
block;, block,

. Y

v

IF (e,) THEN
block,

ELSE IF (e;) THEN
block,

ELSE IF (e;) THEN

block, Execute Execute Execute Execute
ELSE block, block, block, block,
block,

END IF - * ‘ J

True

MR-$-2525-83

Figure 9-1: Examples of Block IF Constructs

After the last statement in a statement Dblock 1is executed, control
passes to the next executable statement following the END IF
statement. Consequently, at most one statement block in a block IF
construct is executed each time the IF THEN statement is executed.

9-7

CONTROL STATEMENTS

ELSE IF THEN and ELSE statements can have statement labels, but these
labels cannot be referenced. The END IF statement can have a
statement label to which control can be transferred, but only from
within the block IF construct.

Section 9.2.4.1 describes restrictions on statements in a statement
block. Section 9.2.4.2 describes examples of block IF constructs.
Section 9.2.4.3 describes nested block IF constructs.

9.2.4.1 Statement Blocks - A statement block can contain any
executable FORTRAN statement except an END statement (see Section
9.8). You can transfer control out of a statement Dblock, but you
cannot transfer control back into the block. Note that you cannot
transfer control from one statement block into another.

DO loops cannot overlap statement blocks. When a statement Dblock
contains a DO statement (see Section 9.3), it must also contain the DO
loop's terminal statement or END DO statement. Conversely, if a block
IF construct appears within the range of a DO loop, the corresponding
END IF statement must also appear within the range of that DO loop.

9.2.4.2 Block IF Examples - The simplest block IF construct consists
of the IF THEN and END IF statements; this construct conditionally
executes one statement block.

Form Example

IF (e) THEN IF (LOWER.LE.UPPER) THEN
block MIDDLE= (LOWER+UPPER) /2

END IF END IF

The statement block consists of all the statements between the IF THEN
and END IF statements.

The IF THEN statement first evaluates the 1logical expression (e),
(LOWER.LE.UPPER). If the value of e is true, the statement block is
executed. If the value of e is false, control transfers to the next
executable statement after the END 1IF statement; the block is not
executed.

The following example contains a block IF construct with an ELSE IF
THEN statement:

Form Example

IF (el) THEN IF (ITEM.LT.A(MIDDLE)) THEN
blockl UPPER=MIDDLE-1

ELSE IF (e2) THEN ELSE IF (ITEM.GT.A(MIDDLE)) THEN
block?2 LOWER=MIDDLE+1

END IF END IF

Blockl consists of all statements between the IF THEN and the ELSE IF
THEN statements; block2 consists of all the statements between the
ELSE IF THEN and the END IF statements.

If ITEM is less than A(MIDDLE), blockl is executed.

If ITEM 1is not 1less than A(MIDDLE), but ITEM 1is greater than
A(MIDDLE), block2 is executed.

CONTROL STATEMENTS

If ITEM is not less than A(MIDDLE) and ITEM 1is not greater than
A (MIDDLE), neither blockl nor block2 is executed; control transfers
directly to the next executable statement after the END IF statement.

The following example contains a block IF construct with an ELSE
statement:

Form Example
IF (e) THEN IF (ITEM.GT.A(MIDDLE)) THEN
blockl LOWER=MIDDLE+1
ELSE ELSE
block?2 SEARCH=MIDDLE
RETURN
END IF END IF

Blockl consists of all the statements between the IF THEN and the ELSE
statements; block2 consists of all the statements between the ELSE and
the END IF statements.

If ITEM is greater than A(MIDDLE), blockl is executed.

If ITEM is not greater than A(MIDDLE), block2 is executed.

9.2.4.3 Nested Block IF Constructs - A block IF construct can be
included in a statement block of another block IF construct. But the
nested block IF construct must be completely contained within a
statement block; it must not overlap statement blocks.

The following example contains a nested block IF construct.
Form Example

FUNCTION SEARCH(A,N, ITEM)
CHARACTER* (*) A(N),ITEM
INTEGER SEARCH,N,LOWER,MIDDLE,UPPER

LOWER=1
UPPER=N

IF (e) THEN IF (LOWER.LE.UPPER) THEN
MIDDLE= (LOWER+UPPER) /2

IF (e) THEN 10 IF (ITEM.LT.A(MIDDLE)) THEN

blocka UPPER=MIDDLE-1
blockl ELSE IF (e) THEN ELSE IF (ITEM.GT.A(MIDDLE)) THEN

blockb LOWER=MIDDLE+1

ELSE ELSE
blockc SEARCH=MIDDLE

RETURN
END IF END IF

GOTO10

END IF END IF
20 SEARCH=0

RETURN

END

CONTROL STATEMENTS

If LOWER is less than or equal to UPPER, blockl is executed. Blockl
contains a nested block IF construct. If ITEM is less than A(MIDDLE),
blocka is executed. If ITEM 1is greater than A(MIDDLE) blockb is
executed. 1If ITEM is equal to A(MIDDLE), blockc is executed.

If LOWER is greater than UPPER, control is transferred to the first

executable statement after the last END IF statement. The nested IF
construct is not executed.

9.3 DO STATEMENT

The two types of DO statements are:

1. Indexed DO (DO statement)
2. Pretested indefinite DO (DO WHILE statement)

The indexed DO statement is described in Section 9.3.1, =and the DO
WHILE statement is described in Section 9.3.2.

9.3.1 1Indexed DO Statement

DO statements simplify the coding of iterative procedures; that |is,
the statements in the DO statement range are executed repeatedly a
specified number of times.

The form of an indexed DO statement is:

Indexing Parameters
DO(s [,]]i = etl, €2 [,ed]

TERMINAL INCREMENT
STATEMENT (OPTIONAL)
INDEX PARAMETER
VARIABLE
INITIAL
PARAMETER

M-S 1760-81

where:

s Terminal statement label s identifies the last statement of
the DO statement range. The statement must follow the DO
statement in the same program unit. 1° s is omitted, then
the 1loop must be terminated by an END DO statement (sce
Section 9.4).

The terminal statement can be any executable statement other
than one of the following:

® Unconditional or assigned GO TO statement
@ Arithmetic IF or loagical two-branch IF statement

e Block IF, ELSE IF, ELSE, or END IF statement

el

e2

e3

CONTROL STATEMENTS

® RETURN statement
e STOP statement

® END statement

e DO statement

If the terminal statement is a logical IF, it can contain any
executable statement except one of the following:

e DO statement

e Block IF, ELSE IF, ELSE, or END IF statement
e END statement

® Another logical IF statement

Index variable i is an unsubscripted numeric variable whose
value is defined at the start of the DO statement operations.
The index variable must not be of type complex.

The index variable 1is available for wuse throughout each
execution of the range of the DO statement, but altering its
value within the DO loop does not change the number of times
the DO loop will execute. The DO loop index variable is also
available for use in the program when:

a. Control is transferred outside the range of the DO loop
by a GO TO, IF, cr RETURN statement located within the DO
range

b. Control is transferred outside the range of the DO 1loop
by an I/0 statement with either or both the options END=
or ERR= (see Chapter 10)

c. A subprogram is executed from within the DO statement
range having the index variable as an argument or in
COMMON

Initial parameter el assigns the index variable i its initial
value. This parameter can be any expression, but cannot be
of type complex.

Terminal parameter eZ provides the value used to determine
how many repetitions of the DO statement range are performed.
This parameter can be any expression, but cannot be of type
complex.

Increment parameter e3 specifies the value to be added to the
initial parameter (el) on completion of each cycle of the DO
loop. The increment parameter is optional. If e3 and 1its
preceding comma are omitted, e3 is assumed to be equal to 1.
This parameter can be any expression, but cannot be of type
complex.

CONTROL STATEMENTS

9.3.1.1 Executing an Indexed DO Statement - The indexing parameters
el, e2 or e3 can be any expressions. Their values are calculated only
once, at the start of each DO loop operation, to determine the values
for the 1initial, terminal, and increment parameters. If necessary,
the initial, terminal, and increment parameters are converted, before
use, to the data type of the index variable.

The number of times that a DO loop will execute, called the iteration
count, is specified by the formula:

MAX (INT ((e2-el+e3) /e3),0)

If the iteration count is less than or equal to zero, the body of the
loop 1is not executed. The index variable retains its assigned value
(el).

NOTE

The interpretation of the iteration count described
above 1is different from that of earlier versions of
FORTRAN-10/20. If the /NOF77 compiler switch 1is
specified (see Sections 16.1.3 or 16.2.3), and the
iteration count is less than or equal to =zero, the
body of the loop is executed once.

Since the iteration count is computed at the start of a DO loop
operation, changing the value of the loop index variable within the
loop cannot affect the number of times that the loop is executed.

At the start of a DO loop operation, the index value is set to the
value of the 1initial parameter (el); and the iteration count is
established.

9.3.1.2 DO Iteration Control - At the end of each DO loop cycle, the
following steps are executed:

1. The value of the increment parameter (e3) 1is added to the
index variable.

2. The iteration count is decremented.

3. If the iteration count 1is greater than =zero, control
transfers to the first executable statement after the DO
statement for another iteration of the 1loop.

4. If the iteration count 1is 1less than or -equal to zero,
execution of the DO loop terminates.

Exit from a DO loop upon completion of the number of iterations
specified by the 1loop count is referred to as a normal exit. If no
other DO loop shares the terminal statement, or if this DO 1loop
statement 1is outermost, control passes to the first executable
statement after the terminal statement of the DO loop.

The final value of the index variable is the value determined by step
1.

CONTROL STATEMENTS

NOTE
The interpretation of the index variable described
above 1is different from that of earlier versions of
FORTRAN-1(C/20. if the /NOF77 compiler switch is
specified (see Sections 16.1.3 or 16.2.3), the final
value of the index var:able of the DO statement is

undefined after a normal loop exit.

Exit from a DO loop may also be accomplished by a transfer of

control

by a statement within the DO loop range to a statement outside the
range of the DO statement. This is called an extended range DO 1loop
(sce Section 9.3.%5).
When execution of a DO loop terminates, and other DO loops share its
terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (see Section 9.3.4).
Examples of DO Iteration Control:
DO 100 I = 1,10
100 J=I
After execution of these statements, I=11 and J=10. (Yf the /NOF77
switch is specified, I is undefined and J=10).
L=0
DO 200 K = 5,1
200 L=K
After execution of these statements, K=5 and L=0. (If the /NOF77
switch is specified, K is undefiined and L=5).
9.3.2 DO WHILE Statement
The DO WHILE statement is similar to the DO statement described in
Section 9.3.1. Irnstead of executing a fixed number of iterations, the

DO WHILE statement executes for as
contained in the statement continues

The form of the DO WHILE statement

DO [s{,]] WHILE (e)

where:

follow in the same program

€2

is a logical express:on.

The DO WHILE statement tests the logical expression at

of each execution of the loop, incl
the expression is true,
executed; if the expression

statement following the loop.

is

1f no label appears in a DO WHILE sta
terminated with ar END DO statement |

the statement
f

long as
to be true.

a logical expression

is:

is the label of an executable statement that must physically

unit.

the Dbeginning
uding the first. 1If the value of
s in the body of the 1loop are
alse, control transfers to the

tement, the DO WHILE loop must be
see Section 9.4).

CONTROL STATEMENTS

The following example demonstrates the use of the DO WHILE statement:

CHARACTER*132 LINE

I1=1

LINE(132:) = 'X'

DO WHILE (LINE(I:I) .EQ. ' ')
I =1 +1

END DO

9.3.3 The Range of a DO Statement

The range of a DO statement is defined as the series of statements
that follows the DO statement, up to and including the specified
terminal statement or END DO statement.

If another DO statement appears within the range of a DO statement,
the range of that statement must be entirely contained within the
range of the first DO statement. More than one DO statement may have
the same labeled terminal statement but not wunlabeled END DO
statement. (See Section 9.3.4, Nested DO Statements.)

If a DO statement appears within an IF block, ELSE IF block, or ELSE
block (see Section 9.2.4), the range of the DO statement must be
contained entirely within that block.

If a block IF statement appears within the range of a DO statement,
the corresponding END IF statement must also appear within the range
of the DO statement.

9.3.4 Nested DO Statements

One or more DO statements can be contained within the range of another
DO statement. This is called nesting. The following rules govern the
nesting of DO statements:

1. The number of nested levels (DO 1loop within DO 1loop) is
restricted to 79 DO loops.

2. The range of each nested DO statement must be entirely within
the range of the containing DO statement (such as, they
cannot overlap).

For example:

Valid Invalid
DO 1 DO 1
DO 2 DO 2
DO 3 DO 3 The ranges of
[—-— loop DO 2 and
DO 3 overlap

MR-S-1758-81

CONTROL STATEMENTS

3. More than one DO loop within a nest of labeled DO 1loops can
end on the same statement. When this occurs, the terminal
statement is considered to belong to the innermost DO
statement that ends on that statement. Only a statement that
occurs within the range of the innermost DO statement can use
the statement label of the shared terminal statement for
transfer of control.

For example:

D04 -e+— Qutermost DO Loop
DO 4
DO 4
F04_ <-s— Innermost DO Loop

<% Terminal Statement

MR-S§-1759-81

Although all four DO loops share the same terminal statement,
the terminal statement "belongs" to the innermost DO loop.

4. Nested loops cannot share an unlabeled END DO statement.
Each unlabeled END DO terminates exactly one DO loop.

I'or example:

Correctly Nested Incorrectly Nested
DO Loops DO Loops
- DO 101=1,20 ’ DO 101=15
- DOJ=14 DO J=1,10
DO K=1,10 10 CONTINUE
END DO END DO
L END DO
L. 10 CONTINUE

9.3.5 Extended Range

By following certain rules, it is possible to transfer out of a DO
loop, perform a series of statements elsewhere in the program, and
then transfer back into the DO loop. The statements that are executed
after a transfer out of a DO loop and before a transfer back into the
same DO loop are collectively known as the "extended range."™ A DO loop
that permits transfer in and out of its range is called an extended
range DO loop.

!

CONTROL STATEMENTS

NOTE

'his feature makes the flow of a program difficult to

"nllow, does not conform to the FORTRAN-77 standard,

a2nd 1s therefore discouraged.

The following rules govern the use of extended range DO loops:

-

BN

=
e

The statement that causes the transfer out of the DO loop
must be contained within the most deeply nested DO (innermost
loop having the same terminal statement). This loop must

Aalso contain the statement to which the extended range
returns.

A transfer into the ranage of a DO statement is permitted only

if the transfer 1is made from the extended range of that DO
statement.

The extended range of a DO statement must not contain another
D0 statement.

The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

You can call a subprogram within an extended range.

The following example illustrates the use of an extended range DO

toop:
200
500
1000
2000
2100
9.3.6 Pe
The follo
a DO stat
1.

DIMENSION TABLE (10,5), VALUE(10)
LOGICAL LOGARR(10)

o 1000 1= 1, 10 ! An extended range DO loop
IF (LOGARR(I)) GOTO 500 ! Test logical array item
I=K

CALL SUBROT (K) ! Invoke subroutine using

current index value

Ho 200 J= 1, 5 ! Nonextended range loop
TABLE(I,J) = 0
CONTINUE
GOTO 2000 ! Extended range invocation
VALUE (I) = GETVAL (K) ! Invoke function GETVAL with
! current index
CONTINUE ! Terminal statement for outer
i loop
STOP
TYPE 2100, I ! Extended range starts
FORMAT (' I = ',12)
LOGARR(I) = .TRUE.
GOTO 500 ! Extended range ends and
I returns
END

rmitted Transfer Operations

wing rules govern the transfer of program control from within
ement range or the ranges of nested DO statements:

A transfer out of the range of any DO loop 1is permitted at
any time. When such a transfer occurs, the value of the
controlling DO 1loop's 1index variable 1is defined as the
current value.

CONTROL STATEMENTS

2, A transfer into the range of a DO statement is permitted 1if
it is made from the ettended range of the DO statement.

3. You can call a subprogram from within the range of any:

a. DO loop

b. nested DO loop

c. extended range loop (in which you leave the loop through
a GO TO, execu:e statements in the extended range, and
return to the original loop)

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

Valid Invalid
Transfers Transfers
D1 ‘ D1
-
D2 Di)
———-
———————**1 D3
extended range
L

MR-S-1757-81

9.4 END DO STATEMENT

The END DO statement terminates the range of a DO or DO WHILE
statement. The END DO statement must be used to terminate a DO block
if the DO or DO WHILE statemen! defining the block does not contain a
terminal-statement label. The END DO statement may also be used as a
labeled terminal statement if the DO or DO WHILE statement does
contain a terminal-statement label.

The form of the END DO statement is:

END DO

9.5 CONTINUE STATEMENT
The form of the CONTINUE statement is:
CONTINUE

Execution of the CONTINUE statement has no effect. It may be used as
the terminating statement of a DO loop.

CONTROL STATEMENTS

In the following example, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DIMENSION STOCK (100)

DO 20 I=1,100

STOCK (I) =0

CALL UPDATE (STOCK(I))

IF (STOCK (I).EQ. 0) GO TO 30
20 CONTINUE

STOP
30 TYPE 35
35 FORMAT (' UPDATE ERROR')

END

9.6 STOP STATEMENT

Execution of the STOP statement causes program execution to be
terminated. A descriptive message may optionally be included in the
STOP statement to be output to vyour terminal immediately before
program execution is terminated.

The form of the STOP statement is:

STOP [n]
where:
n is an optional decimal integer constant of up to 6 digits,
or a character constant. The constant is printed at the

terminal when the STOP statement is executed.

You can have any number of characters in the character
constant. You can use continuation lines to accommodate
large character strings. The constant 1is printed without
leading zeroes, unless they are specified in the statement.

NOTE

The word STOP is not printed when the STOP statement
is executed unless the word STOP is included in the
statement as a character constant.

The following examples show the results of executing STOP statements
that contain a 6-digit decimal string and a character constant.

PROGRAM TEST
10 STOP 123456
END

EXECUTE STOP1l.FOR

FORTRAN: STOP1

TEST

LINK: Loading

[LNKXCT TEST execution]

123456

CPU time 0.1 Elapsed time 0.3

CONTROL STATEMENTS

PROGRAM TEST
10 STOP 'The program has stopped’
END

EXECUTE STOP2.FOR

FORTRAN: STOP2

TEST

LINK: Loading

[LNKXCT TEST execution]

The program has stopped

CPU time 0.1 Elapsed time 0.3

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option of continuing execution of the
program, exiting from the program, or beginning a TRACE operation.

The form of the PAUSE statement is:
PAUSE [n]
where:

n is an optional integer constant of up to 6 digits, or a
character constant. The constant is printed at the terminal
when the PAUSE statement is executed.

You can have any number of characters in the character
constant. You can wuse continuation lines to accommodate
large character strings. The constant 1is printed without
leading zeros, unless they are specified in the statement.

If execution of the program is resumed after a PAUSE, program control
continues as if a CONTINUE had been executed. Execution of the PAUSE
statement causes the word PAUSE, the optionally specified constant,
and the following prompt to be printed at the terminal:

Type G to Continue, X to Exit, T to Trace
The responses to this prompt are:

G continues program execution at the statement immediately
following the PAUSE statement.

X causes program termination.,

T produces a trace back 1list at the terminal. This 1list
consists of 1invoked routine names and locations, plus the
location and module names of the callers of those routines.
Using this information you <can track the active path of
execution from the main program to the PAUSE trace routine.
(See Section 13.4.1.32 for a detailed description of this
feature.)

9.8

CONTROL STATEMENTS

PROGRAM PTEST

PAUSE

PAUSE 234

PAUSE 'Character String'
END

EXECUTE PTEST.FOR

FORTRAN: PTEST

PTEST

LINK: Loading

[LNKXCT PTEST execution]

PAUSE

Type G to Continue, X to Exit, T to Trace.
G

PAUSE

234

Type G to Continue, X to Exit, T to Trace.
G

PAUSE ,
Character String

Type G to Continue, X to Exit, T to Trace.
X

CPU time 0.3 Elapsed time 18.8

END STATEMENT

This statement signals FORTRAN that the physical end of a program unit

has

been reached. END is an executable statement. The general

of an END statement is:

END

The following rules govern the use of the END statement:

1. This statement must be the 1last physical statement o
source program unit (main program or subprogram).

2. When executed in a main program, the END statement has
effect of a STOP statement; in a subprogram, END has
effect of a RETURN statement.

3. An END statement may be labeled, but it must not be conti
(that is, it must appear only on an initial line).

form

f a

the
the

nued

CHAPTER 10

DATA TRANSFER STATEMENTS

FORTRAN I1/0 statements are divided into three categories by function,
as follows:

1. Data Transfer Statements - transfer data between memory and
files. The "files" can be devices such as TTY: or MTA:.
Internal files and ENCODE/DECODE statements are used for
memory-to-memory data transfers. ’

2, File Control Statements - associate and disassociate files
and FORTRAN logical unit numbers, and can specify
characteristics of such an association.

3. Device Control Statements - position files. For example,
using the device control statements you can position magnetic
tape to a particular file or record.

This chapter describes data transfer statements. Chapter 11 describes
file-control and device-control statements.

Table 10-1 1lists the three categories of I/0 statements, the

statements within each category, and the sections in which each I/0
statement is further described.

10-1

Table 10-1: FORTRAN I/O Statement Categories

DATA TRANSFER STATEMENTS

Categories Statements Sections
Data Transfer READ 10.5
WRITE 10.6
REREAD 10.7
ACCEPT 10.8
TYPE 10.9
PRINT 10.10
PUNCH 10.11
ENCODE 10.12
DECODE 10.12
Internal READ 10.12
Internal WRITE 10.12
File Control OPEN 11.2
CLOSE 114
INQUIRE 11.7
Device Control FIND 11.8.1
REWIND 11.8.2
UNLOAD 11.8.3
BACKSPACE 11.84
ENDFILE 11.85
SKIPRECORD 11.8.6
SKIPFILE 11.8.7
BACKFILE 11.8.8

Table 10-2, on the

statement forms.

tab-divider,

summarizes

10-2

all

the

data

transfer

DATA TRANSFER STATEMENTS

Table 10-2: Summary of Data Transfer Statement Forms

Data Access Statement Construct Section
Sequential Formatted READ(UNIT - un,FMT - {[,END =s|,ERR =s]|,IOSTAT - ios])liolist] 10.5.1.1
(FORMAT Statement) READ(un,FMT - f|,END —s||,ERR =5s][,IOSTAT = ios)| iolist|

READ(un, fI,END - sl|,ERR = 51|, JOSTAT = ios])|iolist|
READ f|,iolist|
READ(UNIT - *FMT- f1,END - s}l ERR -sll,IOSTAT - iosDliolist|
WRITE(UNIT - un,FMT -f].ERR - s]||,JOSTAT =ios|)liolist} 10.6.1.1
WRITE(un,FMT — fl. ERR —s|| JOSTAT =ios])[iolist|
WRITE(un, fl ERR—s]I,JOSTAT - ios]liolist]
WRITE flaolist |
WRITE(UNIT - *FMT -f],ERR -s]|,JOSTAT =ios)iolist]
REREADIFMT 11 END sLERR sIHJOSTAT ioshliolist] T
REREAD flolist|
ACCEPTIEMT 1 END -5 ERR sILIOSTAT doshliolist] .51
ACCEPT f]iolist |
TYPE(MT - 11.ERR <IILIOSTAT - iosblhiolist] I
TYPE fliolist]
FRINTHEMT (T.ERR <L 1OSTAT 1osDliolist]]
PRINT f] iolist|
PUNCHIFMT f1.ERR sHLIOSTAT - doshliolist) ISR
PUNCH fl.iohst]|
ENCODE(@fal KRR sILICSTAT ioshliolist] o2
DECODE e fal.LRR <ILIUSTAT iosDhiolist]
Sequential Formatted REAID(UNIT —un,FMT = *| ,END —s|{,ERR =s][,JOSTAT =ios)iolist] 10.5.1.3
(List Directed) REATX un, FMT = *|_.END - s}{,LERR = s]|,JOSTAT = ios]){iolist]
READ(un, *.END —=s]|,ERR = s]{,IOSTAT =ios|)iolist|
READ #[iolist|
READ(UNIT - *,FMT - *[L END - s||,LERR —s]|,IOSTAT —ios|)fiolist|
WRITE(UNIT —un,FMT = *|,LERR - s][,JOSTAT =ios})|iolist| 10.6.1.3
WRITE(un,FMT - *|LERR - s|[,JOSTAT =ios])|iolist]
WRITE(un, *|,ERR =s]|,IOSTAT =ios|)|iolist]
WRITE “liolist]
WRITE(UNIT =*FMT - *[,ERR - s|[LIOSTAT = ios})|iolist]
REREADIFMT %P END s [LERR <[TOSTAT doshiohst] 1072
RERIEAD ¥ aohst|
ANCCEPTRMT END - SLERR SILTOSTAT dosPliolist| 82
ANCCEPT #liohst]
TYPEGEMT GLERR O SILIODSTAT 1oshiiolistl 10.9.2
TY P #liolist]
MNTHEMT "TERR sl LOSTAT j0sDiiolist] 10.10.2
PRINT *[,iolist|
PUNCHEMT “J ERR O sE 1OSTAT 1oshiiolist] 1112

PUNCH “Laolist |

10-3

DATA TRANSFER STATEMENTS

Table 10-2: Summary of Data Transfer Statement Forms (Cont.)

Data Access Statement Construct Section
sequential Formatted READ(UNIT unFMT - namel . KND siLLERR - sILIOSTAT iosh 10.5.1.4
NAMELIST Statement) | READ(UNIT un.NML - namel END sllLERR - s JOSTAT - 10sh
RIEAD(un FMT namel END sILERR O sILIOSTAT - iosh
READ un. NMI. namel [KND sILERR sIJOSTAT iosh
READ nn. namel KND slELERR sILTOSTAT - tosh
WRITEUNIT un.FMT namel ERR s IOSTAT iosh 10.6 1.4
WRITE(UNIT un.NML namel . ERR sl IOSTAT - iosh
WRITE! un. FMT namel. KRR s IOSTAT dosh
WRITHES un.NMIL. name|. KRR <ILIOSTAT josh
WRITE! un, namel KRR s IOSTAT iosh

Sequential Unformatted | READ(UNIT —un|,END —sj[,ERR = s{| ,JOSTAT = ios|)[iolist] 10.5.2.1
READ(un|,END =s]],ERR - s|[, IOSTAT —iosDliolist|
WRITE(UNIT = un|,ERR =s]| ,JOSTAT - ios |}l iolist] 10.6.2.1
WRITE(unl,ERR -s||,IOSTAT =iosDliolist|

Direct Formatted READ(UNIT —un,FMT = f,REC = rn| ,ERR - ||, JOSTAT = ios])|iolist] 10.5.1.2
REAIX un, FMT = f,REC — rn[,ERR - s|[,IOSTAT = ios|)[iolist]
READ(un, f,REC — rn|,ERR - s|[,IOSTAT - ios) 1iolist]
READt un'm. FMT f [.LERR sILIOSTAT - ioshliolist]
REATDX un’rn. f LERR sILIOSTAT ioshliolist]
WRITE(UNIT = un,FMT {.REC - rn| ,ERR -s]|[,IOSTAT - ios])liolist] 10.6.1.2
WRITE(un . FMT - {,REC - rn| ,ERR - s|[,IOSTAT - ios|)liolist|
WRITE(un, f,REC =rn|,ERR s|[,IOSTAT - ios))|iolist]
WRITI un'tn.KMT f ILERR <ILTOSTAT 1oshliolist]
WRITE un'rn, f' [.ERR s IOSTAT ieshliolist]

Direct Unformatted READ(UNIT —un,REC = rn| ,ERR = s|[,IOSTAT — ios)]iolist| 10.5.2.2
READ(un,REC —rn| ,ERR —s][,IOSTAT =ios|liolist]
REATD un’'rn KRR sILIOSTAT osiiolist]
WRITE(UNIT - un,REC — rn|,ERR =][, JOSTAT = ios|)|iolist | 10.6.2.2
WRITE(un,REC = rn|,ERR - sJ|,IOSTAT = ios])liolist]
WRITHE! un'rn [LERR sHIOSTAT -ioshliolist]

Key:
UNIT - un
UNIT—*

REC=rn

un rn

FMT-f
FMT =*
FMT name
NMI. -
END~=s
ERR- s
IOSTAT =ios

iolist

is a FORTRAN logical unit number or internal file specifier (Section 10.4.3).

is a default unit specification used with the READ Statement to read from CDR:, and with
the WRITE Statement to write to LPT: (sce Section 10.4.3).

is a direct-access record number (Section 10.4.4).

1< an alternate wav of speeitving Logical Unit Number and record number of a direct-
aceess transfer (Section 1044,

is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

is list-directed formatting; iolist is optional (Section 10.4.5.2).

is NAMELIST-statement formatting: iolist is prohibited Section 10.4.5.3).

is the alternative form of the NAMELIST statement format specifier (Section 10.4.5.3),
is an optional end-of-file transfer specifier (Section 10.4.6).

is an optional error transfer specifier (Section 10.4.7).

is an optional I/O status specifier (Scction 10.4.8).

is a data transfer I/O list (Section 10.4.9).

10-4

DATA TRANSFER STATEMENTS

10.1 DATA TRANSFER OPERATIONS

Data transfer statements are used to transfer data between memory and
files or between memory and memory. Data can be transferred
sequentially (sequential access) or randomly (direct access). The
areas in memory from which data is to be taken during output (write)
operations, and into which data 1is stored during input (read)
operations are specified by:

1. A list in the data transfer statement
2. A list defined by a VJAMELIST statement

3. FORMAT specifications referenced in the data transfer
statement

The appearance and arrangement of transferred data can be specified
by:

1. Format specifications located in either a FORMAT statement or
an array (FORMAT-statement I/O)

2. The contents of an I/0 list (list-directed I1I/0)
3. An I/0 list defined in a NAMELIST statement (NAMELIST 1/0)
These three methods are known collectively as formatted I/O.

In contrast to formatted I/0 transfers, FORTRAN has several methods
for transferring data without regard for the type and arrangement of
the data being transferred. These methods are known collectively as
unformatted 1I/0. Unformatted 1I/0 transfers are particularly useful
when you want the internal (memory) representation of the data being
transferred to be the same as the external (file) representation of
the data.

In addition, unformatted data transfers are generally faster than
formatted transfers. This 1is because unformatted data transfers do
not convert the data to or from its ASCII representation during the
transfer.

The following sections describe the types of access available, the
types of data transfers available, and the statements used for I/0
transfer operations.

10.2 DATA ACCESS

There are two forms of access available - sequential and direct.
These forms are described in the following sections.

10.2.1 Sequential Access

If the data access is sequential, the data records are transferred in
a serial fashion toc or from the external data file. Each
sequential-access input statement transfers the next record(s) from
the accessed data file, such that data records are transferred in the
same order that they appear in the file.

10--5

DATA TRANSFER STATEMENTS

10.2.2 Direct Access

If the data access is direct, the data records are transferred to or
from a file in any desired order, as specified by a record number in
the data transfer statement. (Section 10.4.4 describes specifying
records in data transfer statements.)

Direct-access transfers, however, can be made only to files residing
on disk that have been previously set up (using an OPEN statement) for
direct access. Direct-access files must contain identically sized
records that are accessed by a record number.

You must use the OPEN statement to establish direct access (see
Section 11.2). Execution of the OPEN statement must precede the first
data transfer statement for the specified logical unit.

10.3 FORMATTED AND UNFORMATTED DATA TRANSFERS

The term "formatted data transfer" describes an intermediate step that
occurs during a data transfer. This intermediate step, which does not
occur in an unformatted data transfer, converts the data from 1its
internal (memory) representation to a different external (file)
representation. (Formatted data transfers are described 1in Section
10.3.1.)

An unformatted data transfer refers to the transfer of data with no
change to the data during the transfer. In an unformatted data
transfer, the internal (memory) representation of the data and the
external (file) representation of the data are the same. (Unformatted
data transfers are described in Section 10.3.2.)

10.3.1 Formatted Data Transfers

In a formatted data transfer, the internal and external format of the
data is controlled during the data transfer in one of three ways:

1. FORMAT-Statement Formatting - The data transfer statement
contains a statement number, a numeric array name, a
character expression, or an integer, real, or logical

variable as a format identifier.

The statement number references a line that contains a FORMAT
statement. The array name references an array that contains
a format specification. The value of the character
expression 1is a format specification. The integer, real, or
logical variable references a FORMAT statement number that
was assigned with an ASSIGN statement.

In the following example, the data transfer statement
contains a statement number of a FORMAT statement. The
FORMAT statement, in turn, contains edit descriptors that
control the formatting of the data during the transfer:

WRITE (22,101)X,J,2
101 FORMAT (1X,F10.5,I15,F6.4)

See Section 10.4.5.1 for more information on FORMAT-statement
formatting.

10-6

DATA TRANSFER STATEMENTS

2. List-Directed Format:ing - The data transfer statement
contains an asterisk as the format identifier. The asterisk
signifies that the transfer is controlled by the data type of
the variables in the data transfer statement I/O list.

In the following example, the data transfer is controlled by
the I/0 list items X, J, and Z:

WRITE (22,*)X,J,%

In this example, unless the data types of X, J, and 2Z have
been set explicitly to a type other than the default data
type, the transferred values of X and Z appear in
floating-point form, and the transferred value of J appears
in integer form.

See Section 10.4.5.2 for more information on 1list-directed
formatting.

3. NAMELIST-Statement Formatting - The data transfer statement
contains a NAMELIST name as the format identifier. This
NAMELIST name associates the data transfer statement with a
NAMELIST I/0 list defined in the NAMELIST statement elsewhere
in the same program unit. Elements in the NAMELIST I/0 list,
in turn, dictate th=2 formatting of the data during the data
transfer.

In the following example, the data transfer is controlled by
the NAMELIST.

PROGRAM NAMLST
NAMELIST/VAR/X,Y, 7%
READ (22, VAR)
WRITE (5, VAR)

END

See Section 10.4.5.3 for nore information on NAMELIST-statement
formatting.

10.3.1.1 1Internal Files - Internal files provide the capability to
perform formatted data transfers between character variables and the
elements of an I/0 list. Their use with formatted sequential READ and
WRITE statements reduces the need to use the ENCODE and DECODE
statements for internal I/0 (s=2e Section 10.12).

An internal file consists of a character variable, a character array
element, a character array, or a character substring; a record in an
internal file consists of any of the above except a character array.

If an internal file 1is a character variable, array element, or
substring, that file comprises a single record whose length is the
same as the length of the variable, array element, or substring.

If an internal file is a character array, that file comprises a
sequence of records, with 2ach record consisting of a single array
element. The sequence of records in an internal file is determined by
the order of subscript progression (see Section 4.3.2). Every record
of the file has the same length, which is the 1length of an array
element in the array.

10-7

DATA TRANSFER STATEMENTS

The character variable, array element, or substring that is the record
of the internal file becomes defined by writing the record. If the
number of characters written in a record is less than the 1length of
the record, the remaining portion of the record is left-justified and
filled with blanks.

A record in an internal file can be read only 1if the character
variable, array element, or substring comprising the record has been
defined (that is, a value has heen assigned to the record). Prior to
data transfer, an internal file is always positioned at the beginning
of the first record.

10.3.2 Unformatted Data Transfers

Unformatted data is transferred in two forms on TOPS-20 (BINARY or
IMAGE), and three forms on TOPS-10 (BINARY, TMAGE, or DUMP). 1In an
explicit OPEN statement (Section 11.2.1), you can specify one of these
forms as an argument to the MODE specifier. (Section 11.3.20
describes the MODE specifier and its arguments.)

On disk devices and CORE-DUMP tapes, numeric data items are
transferred directly as 36-bit words. Character data items are
transferred as 7-bit bytes. Numeric and character items can be

interpersed in the same I/0 list. Numeric data items and, for BINARY
files, record markers (LSCWs) are always word-aligned (see Section
13.4.2). On INDUSTRY tapes, numeric data items should not be used.
Character data items are transferred one character per frame (see
Section 11.3.30).

10.3.3 Unformatted Data Transfer to ASCII Devices

Unformatted data transfer can be done to and from ASCII devices (such
as line printer, plotter, or terminal). Character data is transferred
exactly as it appears in the input/output list, with no formatting or
carriage control.

The method for transferring numeric data items depends on the device.
For non-terminal devices (such as, line printer or plotter), numeric
data 1is treated as if it were packed (Hollerith) data,
left-justifited, five characters per word. For the terminal, the data
is treated as if it were right-justified, one character per word.

10.4 DATA TRANSFER STATEMENT FORMS

Table 10-2, on the tab divider, summarizes the forms of all the
FORTRAN data transfer statements. Figure 10-1 shows the three major
components of data transfer statements,

Sta&taem:nt (Control-Information List) /0 List
L ~ /\ J\. — J
(See Section 10.4.1) T (See Section 10.4.9)

(See Section 10.4.2 — 10.4.8)

MR-$-1750-81

Figure 10-1: Components of Data Transfer Statements

10-8

DATA TRANSFER STATEMENTS

10.4.1 Data Transfer Statement Names

In a data transfer statement, the statement name indicates whether the
operation is an input (read) or output (write) operation.

The FORTRAN data transfer statements described in this chapter are:
1. READ (See Section 10.5)
2. WRITE (See Section 10.6)
3. REREAD (See Section 10.7)
4. ACCEPT (See Section 10.8)
5. TYPE (See Section 10.9)
6. PRINT (See Section 10.10)
7. PUNCH (See Section 10.11)
8. ENCODE (See Section 10.12)
9. DECODE (See Section 10.12)
10. Internal READ (See Section 10.12)

11. 1Internal WRITE (See Section 10.12)

10.4.2 Data Transfer Control-Information List
A control-information 1list 1is included in every data transfer
statement. Each control-information list (including those having an
implicit definition of device) can contain:

1. One unit specifier (see Section 10.4.3)

2. One format specifier (see Section 10.4.5)

3. One record specifier (see Section 10.4.4)

4., One I/0 status specifier (see Section 10.4.8)

5. One error specifier (see Section 10.4.7)

6. One end-of-file specifier (see Section 10.4.6)

The following rules govern the placement and inclusion of items in a
control-information list:

1. If the keyword UNIT= is omitted from the unit specifier, the

unit specifier must be the first item in the
control-information list.

10-9

DATA TRANSFER STATEMENTS

2. If the control-information list contains a format specifier
(FMT= or NML=), the statement is a formatted data transfer
statement. Otherwise, it is an unformatted data transfer
statement. The NML= keyword is used for NAMELIST formatting
only, although you can also use the FMT= keyword for NAMELIST
formatting.

1f the keywords FMT= or NML= 1is omitted from the format
specifier, the format specifier must be the second item in
the control-information list, and the first item must be the
unit specifier without the keyword UNIT=,

3. If the control-information list contains a record specifier
(REC=), the statement 1s a direct-access data transfer
statement. Otherwise, it 1is a sequential-access data
transfer statement.

if the keyword REC= is omitted from the record specifier, the
unit specifier (without the keyword UNIT=) must appear first
in the control-information list, followed by a single quote
("), and then the record specifier.

4. A control-information 1list cannot contain both a record
specifier and an end-of-file specifier.

5. If the format specifier is an asterisk or a NAMELIST name, a
record specifier must not De included in the
control-information list.

5. A control-information list in an internal file or ENCODE or

CECODE statement must contain a format specifier other than

an asterisk or NAMELIST name, and must not contain a record
specifier.

10.4.3 Unit References in Data Transfer Statements

The unit specifier is used to refer to a file or device. The form of
a unit specifier is:

UNIT = un
where:

un 1is a logical unit identifier or an internal file identifier.
A logical unit identifier (see Section 10.4.3.1) is used to refer to
an external file. An internal file identifier (see Section 10.4.3.2)

is used to refer to an internal file.

The keyword UNIT= is optional if the unit specifier is the first item
in the control-information list.

10-10

DATA TRANSFER STATEMENTS

10.4.3.1 FORTRAN Logical Unit Identifier - The FORTRAN logical unit
identifier 1is associated with the file to or from which data is being
transferred. This identifier is an integer expression whose value Iis
in the range of 0 to 99, or an asterisk.

For example, the following WRITE statement contains the reference to
logical wunit number 22 as the first item in the control-information
list:

WRITE (22,101)

Table 10-3 lists the default logical unit number assignments, Note
that 1logical wunit number 22 identifies the file as DSK:FOR22.DAT.
Thus, the sample WRITE statement references a disk. The unit

identifier asterisk corresponds to the card reader for the READ
statement, and to the line printer for the WRITE statement.

The compiler automatically assigns default logical unit numbers for
the REREAD, READ, ACCEPT, PRINT, PUNCH, TYPE, and WRITE statements.
Default unit numbers are negative integers that cannot be accessed.
For example:

1. OPEN(UNIT=n) or READ/WRITE(UNIT=n) where n is a negative
integer is illegal.

2. Assigning a negative decimal number to a device at command
level is illegal.

You can, however, from monitor command level, assign a
default device to another device. For example, using the
TOPS-20 DEFINE command (or TOPS-10 ASSIGN command), you can
assign LPT: (line printer) to DSK: (disk) . If you do this,
then any I/0 statements that reference the 1line printer
actually reference the disk.

You can optionally make the logical device assignments at runtime, or
you can use the default assignments contained by the FORTRAN Object
Time System (FOROTS). Table 10-3 lists the default logical device
assignments. You should specify the device explicitly in an OPEN
statement (see Section 11.2) if vyou wish to override the default
assignment.

10-11

DATA TRANSFER STATEMENTS

Table 10=3: FORTRAN Logical Device Assignments

evice

kK

Default Devices (inaccessible to the user)

g Default Filename

i FORPLT.DAT

Logical Unit Number

-1

Use

For use by FORPLT
REREAD statement
READ statement
ACCEPT statement
PRINT statement
PUNCH statement
TYPE statement

Standard Devices*

Loviee iast read File last read

SR FORCDR.DAT

Ry FORTTY DAT

AT FORLPT.DAT

FORPTP.DAT
Y FORTTY DAT
© Device Default Filename

VR FOROO.DAT

LK FOROL.DAT

DR

Cprp

Y !

FOR25.DAT

FOR9Y.DAT

Logical Unit Number

00
01
02
03
04
05
06
07
0%
09
i 10
11
12
13
14
15
16
17
15
I 19

[N RV SV R ()
E e ™

[T o~
for N

Lo-1

S (VI O]
z x

(ISR
- =

99

Use

Disk

Disk

Card Reader

Line Printer
Console Teletype
User’s Teletype
Paper Tape Reader
Paper Tape Punch
Display -~
DECtape

Magnetic Tape

Assignable Device
Disk

Assignable Devices

Disk

Disk

i device table can be altered when FOROTS is installed or by the system administrator. The supplied

s ians are either values in the default table pictured above. or all positive logical unit numbers default to disk.
neck 1o see which deviee table is being used at vour installation,

10-12

DATA TRANSFER STATEMENTS

10.4.3.2 Internal File Identifier - The internal file identifier
specifies the internal file to be used. This identifier is the name
of a character variable, character array, character array element, or
character substring.

Example:

CHARACTER*132 LINE
WRITE (UNIT=LINE,FMT="'(F) ')3.14159

10.4.4 Record Number References In Data Transfer Statements

All direct-access data transfer statements must contain a record

specifier, which is used in the transfer to identify the number of the

record to be accessed.

The form of the record specifier in the control-information list is:
REC=rn

where:

rn is a positive integer expression that indicates the
record number.

When you use the REC=rn form to specify the record number, you can
place the record specifier anywhere in the control-information list.

An alternative way for including the record specifier is:

un'rn
where:

un is a positive integer constant, variable, or array
element that represents the logical unit number of the
device to or from which the data transfer is being
made. When vyou wuse this form for specifying the
logical unit number, you cannot use the UNIT= keyword.

! is an apostrophe delimiting the 1logical wunit number
from the record number.

rn is a positive integer constant, variable, or array

element that represents the record number.

When you use the alternative form for specifying the record number,
you cannot use the keyword REC=.

10.4.5 Format References in LCata Transfer Statements
All formatted data transfer statements must contain a format specifier
in the control-information 1list. The general form of the format
specifier is:

FMT=f

or

NML= a NAMELIST name

10-13

DATA TRANSFER STATEMENTS

where:

FMT= is the keyword used in the keyword form of the format
specifier. Using the keyword form of the format
specifier makes it positionally independent in the
control-information list.

NML= is the keyword that can be used instead of FMT= for
NAMELIST formatting. Either FMT= or NML= can be used
for NAMELIST formatting.

f is a format identifier. Depending on the type of

formatting chosen, £ can be one of the following:

1. A statement number

2. A numeric array name

3. A character expression

4. An integer, real, or logical variable
5. An asterisk

6. A NAMELIST name

If you do not use the keyword form of the format specifier, you must
place the format specifier as the second item of the
control-information 1list (immediately following the 1logical unit
number specifier) (see Section 10.4.2).

Sections 10.4.5.1 through 10.4.5.3 describe all forms of the format
specifier.

10.4.5.1 FORMAT-Statement Formatting - The FORMAT-statement format
specifier has the following form:

FMT=f

where:
FMT= is the optional keyword in the format specifier.
f is one of the following:

1. The statement number of a FORMAT statement
appearing in the same program unit as the data
transfer statement

2. The name of a numeric array

3. A character expression

4. An integer, real, or logical variable that has been
assigned a FORMAT statement number with an ASSIGN
statement (see Section 8.3)

(See Section 12.1 for more information on

FORMAT-statement formatting.)

10-14

DATA TRANSFER STATEMENTS

The following examples show all forms of the FORMAT-statement format
specifier. In the first example, the format specifier (FMT=101)
references the FORMAT statement 101 in the same program unit.

PROGRAM TEST
I=67
P=90.8
WRITE (UNIT=22,FMT=1)1) I,P
101 FORMAT (1X,'FIRST VALUE IS: ',I,' SECOND VALUE IS: ',F)
END

In the second example, the same format list used in the first example
is stored in an l0-element array. Note that the word "FORMAT" is not
included in the array.

PROGRAM TESTB
DIMENSION MYARAY(10)

MYARAY (1) =" (1X,'""’
MYARAY (2)='FIRST'
MYARAY (3)=' VALU'
MYARAY (4)='E IS:'
MYARAY (5)=' '',I,"
MYARAY (6)="'"'" SEC'
MYARAY (7)='OND V'
MYARAY (8)="'ALUE '
MYARAY (9)='IS: ''!
MYARAY (10)="',F) "'

I=67
P=90.8

WRITE (UNIT=22,FMT=MYARAY)I,P
END

In the third example, the same format 1list used in the first two
examples is stored in a character expression.

PROGRAM TESTC

INTEGER 1

REAL P

CHARACTER WORD1*5,WORD2*6

I=67

P=90.8
WORD1='FIRST'
WORD2="'SECOND'

WRITE (UNIT=22,FMT="'(1X,'''//WORD1//' VALUE IS: '',I,'' '//
1 WORD2//' VALUE IS: '',F)y') I,P
END

In the fourth example, the format specifier (FMT=IFORMT) references a
variable that has been assigned a statement number.

PROGRAM TESTD
ASSIGN 101 TO IFORMT
I1=67
P=90.8
WRITE (UNIT=22,FMT=IFORMT) I,P
101 FORMAT (1X,'FIRST VALUE IS: ',I, 'SECOND VALUE IS: ',F)
END

For more information on FORMAT-statement formatting, see Section 12.1.

10-15

DATA TRANSFER STATEMENTS

10.4.5.2 List-Directed Formatting - In list-directed formatting, the
variables in the I/0 list of the data transfer statement dictate the
formatting of the data during the transfer.

The form of the list-directed format specifier is:
FMT=*

where:

FMT= is the optional keyword part of the format specifier.
Including this keyword in the format specification
makes the specification positionally independent in the
control-information list. If you omit the FMT=
keyword, the format specifier must be the second
specifier (the unit specifier must be first).

is an asterisk that indicates that the formatting is
list-directed.

In the following example, the variables I and P are formatted by
list-directed formatting.

PROGRAM TESTLD

1=67

P=90.8

WRITE (UNIT=22,FMT=%*) I,P
END

List-directed formatting is further described in Section 12.5.

19.4.5.3 NAMELIST-Statement Formatting - If the formatting is

NAMELIST, the format specifier in the control-information 1list
contains a reference to a NAMELIST name defined in a NAMELIST
sratement in the same program unit. Since the NAMELIST name

definition contains an I/0 1list, a data transfer statement that

contains a NAMELIST name in the format specifier cannot also contain
an 1/0 list.

The form of the NAMELIST format specifier is:

FMT=name

or

NML=name

rvhere:

FMT= is the optional keyword part of the format specifier.
Including the keyword in the format specification makes
it positionally independent in the control-information
list. If you do not include the keyword part of the
format specifier, you must place the format specifier
second (after the logical unit aumber specifier) in the

control-information list.

NME = is an alternative keyword that can be used in place of
TMT.

name is the NAMELIST name. The NAMELIST name is defined in
a NAMELIST statement in the same2 program unit.

10-16

DATA TRANSFER STATEMENTS

In the following example, the data transfer statement uses a NAMELIST
name in its format reference:

PROGRAM TESTNL
NAMELIST/MYIOLT/I,P

READ (UNIT=5,NML=MYIOLT)
WRITE (UNIT=5,FMT=MYIOLT)
END

The execution of this sample program is as follows:

EXECUTE TEST.FOR

LINK: Loading

[LNKXCT TESTNL execution)
SMYIOLT I=675,P=34,71S

SMYIOLT
I= 675, P= 34.71000
SEND

CPU time 0.2 Elapsed t:me 32.0

For further information on the NAMELIST statement, see Section 12.7.

10.4.6 Optional End-of-File Transfer of Control (END=)

The optional end-of-file transfer specifier (END=) specifies a
statement number to which conft:rol passes if this statement attempts to
read past the last data record of a file.

If you include an ERR= specifier (Section 10.4.7) and no END=
specifier, control passes o the statement indicated in the ERR=
specifier whenever an end-of-file condition occurs. Note that an END=
specifier on any output statement and on an input statement of a
direct-access file is ignored.

If no END= specifier, IOSTAT= specifier, or ERR= specifier is included
in the data transfer statement, and an end-of-file condition is
encountered, an error message is displayed on the controlling
terminal, and program execution is terminated.

The form of the END specifier is:

END=gs
where:
END= is the keyword part of the END= specifier, The END=
portion of the END= specifier is required.
s is the statement number of an executable statement in

the current program unit,
In the following example, the end-of-file specifier causes a transfer

of control to statement 50 after the data transfer statement
encounters an end-of-file on unit 22.

10-17

DATA TRANSFER STATEMENTS

PROGRAM TESTEN
READ (UNIT=22,FMT=30,END=50) A,B,C
30 FORMAT (F/F/F)
GO TO 100
50 WRITE (UNIT=5,FMT=75)
75 FORMAT (1X,'END-OF-FILE HAS BEEN ENCOUNTERED')
100 WRITE (UNIT=5,FMT=105)
105 FORMAT (1X,'EXECUTION HAS ENDED')
END

The following shows the sample program being executed and the
end-of-file branch being taken. In this example, the READ statement
reads from the default filename, FOR22.DAT. To demonstrate the
end-of-file Dbranch, FOR22.DAT is an empty file. Thus, when the READ
statement attempts to read records from FOR22.DAT, an immediate
end-of-file condition is detected.

EXECUTE TEST.FOR

FORTRAN: TESTEN

TESTEN

LINK: Loading

[LNKXCT TESTEN execution]

END-OF-FILE HAS BEEN ENCOUNTERED
EXECUTION HAS ENDED
CPU time 0.2 Elapsed time 0.5

10.4.7 Optional Data Transfer Error Control (ERR=)

The optional error specifier (ERR=) enables you to specify a statement
to which control passes if an error occurs during the data transfer.
If an error occurs other than for end-of-file, the file is positioned
after the record containing the error.

NOTE

If the program attempts to read from the same unit
after an ERR= branch occurs, the record following the
record containing the error will be read. To read a
record containing the error, the program must execute
either a REREAD statement (Section 10.7) or a
BACKSPACE (Section 11.8.4) followed by a READ
statement.

If no ERR= specifier or IOSTAT= specifier 1is present and an error
occurs during the data transfer, the program is aborted.

The form of the error specifier is:

ERR=s
where:
ERR= is the keyword portion of the error specifier.
s is the statement number of an executable statement in

the same program unit.

10-18

DATA TRANSFER STATEMENTS

The following example shows the error specifier being used to pass
control to the statement at line 85 if an error occurs during the data
transfer.

PROGRAM TESTEN
READ (UNIT=22,FMT=30,END=50,ERR=85) A,B,C
30 FORMAT (F/F/F)
GO TO 100
50 WRITE (UNIT=5,FMT=7%)
75 FORMAT (1X,'END-OF-FILE HAS BEEN ENCOUNTERED')
GO TO 100
85 WRITE (UNIT=5,FMT=8¢)
86 FORMAT (1X,'THE TRANSFER ENCOUNTERED AN ERROR')
100 WRITE (5,105)
105 FORMAT (' EXECUTION HAS ENDED')
END

TYPE FOR22.DAT

100.

200.

AAAA BBBB CCCC DDDD

EXECUTE TESTEN,FOR
FORTRAN: TESTEN

TESTEN

LINK: Loading

[LNKXCT TESTEN execution:

THE TRANSFEER ENCOUNTERED AN ERROR
EXECUTION HAS ENDED
CPU time 0.2 Elapsed t:me 2.8

In this example, the error branch is taken when the input routine
detects a nonnumeric dat:a item while attempting to read a
floating-point number into variable C, If the file FOR22.DAT contains
more than three records, the next READ accesses record 4 in the file.

10.4.8 Optional Error Variable For Error Reporting (IOSTAT=)

The optional I/0 status specifier enables you to designate an integer
variable which receives a value indicating the success or failure of
the data transfer.

When the data transfer statement 1is successfully executed, the
variable 1is assigned a value of zero. If an error occurs during the
data transfer, the variable is assigned a positive wvalue indicating
which error occured (see Appendix D). In this case, if there is no
ERR= specifier, the program proceeds to the statement after the data
transfer statement.

If an end-of-file occurs during the data transfer, the variable is set
to -1. In this case, 1if there is no END= or ERR= specifier, the
program proceeds to the statement after the data transfer statement.
The form of the error variable specifier is:

IOSTAT=ios
where:

ios is an integer variable that 1is the 1/0 status

specifier.

10-19

DATA TRANSFER STATEMENTS

The following example shows the I/0O status specifier being wused to
report the number of the error on default unit 5 if the error branch
is taken.

PROGRAM TESTEN
10 READ (UNIT=22,FMT=30,END=50,ERR=85,I0STAT=J)A,B,C
30 FORMAT (F4.1/F4.1/F4.1)
WRITE (UNIT=5,FMT=40)A,B,C
40 FORMAT (1X,'THE VALUES ARE: ',3F6.1)
GO TO 100
50 WRITE (UNIT=5,FMT=75)
75 FORMAT (1X,'END-OF-FILE HAS BEEN ENCOUNTERED')
GO TO 100
85 WRITE (UNIT=5,FMT=86)J
86 FORMAT (1X,'THE TRANSFER ENCOUNTERED AN ERROR; STATUS: ',I5)
IF(J.GT.0) GO TO 10
100 WRITE (5,105)
105 FORMAT (' EXECUTION HAS ENDED')
END

TYPE FOR22.DAT

100.

200,

AAAA BBBB CCCC DDDD
80.

90.

95.

EXECUTE TESTEN.FOR

FORTRAN: TESTEN

TESTEN

LINK: Loading

[LNKXCT TESTEN execution]

THE TRANSFER ENCOUNTERED AN ERROR; STATUS: 307
THE VALUES ARE: 80.0 90.0 95.0

EXECUTION HAS ENDED

CPU time 0.2 Elapsed time 1.5

In this example, the IOSTAT variable J is set when the first READ
detects a nonnumeric data item while trying to input the data for
variable C. In this case, the value of IOSTAT represents the
processor specific error number (the second value listed in the FOROTS
error messages in Section D.1l), and indicates that an illegal
character has been detected in the data. After the error status has
been printed, the second READ successfully executes using records 4,
5, and 6 from the file.

10.4.9 Data Transfer Statement Input/Output Lists

The I/0 list in an input or output statement contains the names of
variables, arrays, array elements, or character substrings. The I/0
list in an output statement can also contain expressions, function
references, or constants.

An I/O list has the following form:

el,e]...

10-20

DATA TRANSFER STATEMENTS

The variable i and the parameters el, e2, and e3 have the same forms
and the same functions that they have in the DO statement (see Section
9.3). The list immediately preceding the DO loop control variable 1is
the range of the implied DO loop. Elements in that list can reference
the index, but they must not alter it. Some examples are:

WRITE (3,200) (A,B,C, I=1,3)
The statement in this example functions as though you had written:
WRITE (3,200) A,B,C,A,B,C,A,B,C
The following two statements are the same:
WRITE (3,200) (X(I),I=1,3)
WRITE (3,200) X (l),X(2),%X(3)
Another example is:
WRITE (6) (1,(J,P(I),Q(I,J),J=1,L),I=1,M)
The I/0 list in this example consists of an implied DO list containing
another implied DO 1list nested with it., The implied DO lists together
write a total of (1+3*L) *M fields, varying values of J for each value
of I,
In a series of nested implied DO lists, the parentheses indicate the
nesting (see Section 9.3.4). Execution of the innermost list is

repeated most often. For example:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)
Because the inner DO loop is executed 10 times for each iteration of
the outer 1loop, the second subscript, L, advances from 1 through 10
for each increment of the first subscript. This is the reverse of the
order of subscript progression. In addition, K is incremented by 2,
so only the odd-numbered rows of the array are output.

The entire list of an implied DO 1list 1is transmitted Dbefore the
control variable is incremented, for example:

READ (5,999) (pP(1), (Q(I,J), J=1,10), I=1,5)

In this example, P(l), Q(1,1), 0(1,2),...,0(1,10) are read before I is
incremented to 2.

When processing multidimensional arvays, you can use a combination of
fixed subscripts and subscripts that vary according to an implied DO
list, for example:

READ (3,5555) (BOX(1,J), J=1,10)

This statement assigns input values to BOX(1l,1) through BOX(1l,10) and
then terminates without affecting any other element of the array.

The value of the control variable can also be output directly. For
example:

WRITE (6,1111) (I, I=1,29)

This statement simply outputs the integers 1 through 20.

10-23

DATA TRANSFER STATEMENTS

READ
Statement

10.5 READ STATEMENT

The READ statement transfers data from a file into memory. There are
two categories of READ statements: formatted (see Section 10.5.1) and
unformatted (see Section 10.5.2).

Table 10-4 summarizes the various forms of the READ statement.

10-24

DATA TRANSFER STATEMENTS

Table 104: Summary of READ Statement Forms

Data Access

Statement Construct

Sequential Formatted
(FORMAT Statement)

READ(UNIT =un,FMT = f|, END =s][,LERR = s][,IOSTAT = ios])l iolist]
READ(un,FMT ={[,END =s],LERR = s][,IOSTAT = ios])iolist]
READ(un, fl,END =s][,LERR =s]|,IOSTAT = ios)| iolist]

Sequential Formatted
(List Directed)

READ(UNIT = un,FMT =*,END =s]|, ERR = s][,IOSTAT =ios])[iolist|
READ(un,FMT =*[,END =s],ERR = s]|,LIOSTAT =ios])|iolist]
READ(un, *[LEND =s]|,ERR =s]{,JOSTAT = ios])[iolist]

Sequential Formatted
{(NAMELIST Statement)

READ(UNIT —un.FMT — name| END - s || [ERR - sl JOSTAT - iosl)
READ(UNIT =un.NML - namel.END 5|l .LERR- s|[,IOSTAT -ios))

READ(un FMT name] END—s][.ERR - || JOSTAT -iosh
REAIX un.NML = namel . END = sl .LERR s|[.IOSTAT - ios})
READ un. name| END = sll.LERR - s{[,IOSTAT : ios]

Sequential Formatted
(Default Unit)

READ f],iolist]
READ *l,iolist]
READ(UNIT = * FMT = f[LEND =s][,ERR = s][,LJOSTAT = ios))[iolist |
READ(UNIT =* FMT = *[,END = s]|,ERR =], JIOSTAT = ios])iolist]

Sequential Unformatted

READ(UNIT = un{,END = s][,ERR =s][,IOSTAT =ios])[iolist]

READ(un|,END =s]|,ERR =][, IOSTAT =ios])[iolist|

Direct Formatted READ(UNIT =un,FMT ={REC =rn[,ERR =s]| , JOSTAT =ios])iolist|
READ(un,FMT=fREC =rn[,ERR =s],JOSTAT =ios])iolist]
READ(un, f,REC = rn[,ERR =5s]|,IOSTAT = ios]iolist|
READ un'rn. FMT - f [.ERR s}.IOSTAT - iosiliolist]
RIEAD(un'rn, f I.ERR - sil.IOSTAT -ios|liolist]

Direct Unformatted READ(UNIT =un,REC =rn[,ERR =5][,LIOSTAT =ios])|iolist]
READ(un,REC =rn[,ERR = s][,IOSTAT = ios])[iolist]
READ un'rn ILERR - sil.IOSTAT - ioshliolist|

Key:

UNIT=un is a FORTRAN logical unit nuinber (Section 10.4.3).

UNIT =* is a default unit specification ($ection 10.4.3).

REC=rn is a direct-access record number (Section 10.4.4).

un'rn is an alternate way of specifving Logical Unit Number and record number for a direct-access

transfer (Section 10.4.4).
FMT=f is FORMAT-statement formatt:ng; iolist is optional (Section 10.4.5.1).
FMT —* is list-directed formatting; iolist is optional (Section 10.4.5.2).

FMT - name
NML -~ name
END=s
ERR=s
IOSTAT =ios

iolist

is NAMELIST-statement forme tting; iolist is prohibited (Section 10.4.5.3).

is the alternative form of the N AMELIST-statement format specifier (Section 10.4.5.3)
is an optional end-of-file transfor specifier (Section 10.4.6).

is an optional error transfer specifier (Section 10.4.7).

is an optional I/O status specifier (Section 10.4.8).

is a data transfer 1/0 list (Section 10.4.9).

10-25

DATA TRANSFER STATEMENTS

10.5.1 Formatted READ Transfers

A formatted READ transfer uses a READ statement that specifies that
the transferred data 1is edited during the transfer, such that the
external and internal representation of the data are different. The
three types of formatted READ statements are: FORMAT-statement,
list-directed, and NAMELIST-statement,

There are two types of access to the device from which the READ

statement transfers data. They are sequential and direct. If you
want to perform a direct-access formatted READ from a device, you must
use FORMAT-statement formatting. List-directed and NAMELIST

formatting can only be wused with sequential-access formatted READ
statements.

10.5.1.1 Sequential FORMAT-Statement READ - This section describes
the sequential-access (FORMAT-statement) formatted READ statement.

This statement has the following forms:

READ (UNIT=un,FMT=f[,END=s][,ERR=s][,IOSTAT=ios]) [iolist]

READ (un,FMT=f[,END=s][,ERR=s][,I0STAT=ios])[iolist]

READ (un,f[,END=s] [,ERR=s]}[,IOSTAT=ios]) [iolist]
If an I/0 list is included in these forms, it specifies that data |is
transferred from logical wunit un, formatted according to the
specification given by f, and transferred into the elements of the
specified I/0 list.
If an I/0 list is not included, the input record is skipped. (If the
FORMAT statement specifies slash editing, more than one record can be
skipped. H or apostrophe editing can cause data transfers to occur to

the FORMAT statement itself. See Section 12.4.)

The following example contains two READ statements: the first
contains an I1/0 list; the second does not:

READ (22,5) A,Z,J

5 FORMAT (2F10.2,1I5)
READ (22,5)
END

In this example, the first READ statement reads one record from
logical wunit 22, formats the data according to the FORMAT statement,
and assigns the values to the variables A, Z, and J. The second READ
statement skips one input record on logical unit 22,
The default unit forms of this READ statement operates in the same way
as the first forms, except that data transfers reference the card
reader, which is the default logical unit for these forms.
The default unit forms of this statement are:

READ f[,iolist]

READ (UNIT=*,FMT=f[,END=s][,ERR=s][,I0STAT=ios])[iolist]

10-26

DATA TRANSFER STATEMENTS

10.5.1.2 Direct-Access FORMAT-Statement READ - This section describes
the direct-access (FORMAT-statement) formatted READ statement.

The forms of this statement are:

READ (UNIT=un,FMT=f,REC=ra[,ERR=s][,I0OSTAT=ios]) [iolist]

READ (un,FMT=f,REC=rn{,ERR=s][,I0STAT=ios]) [iolist]

READ (un,f,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]
If an I/0 list is included in these forms, the data specified by
record rn is transferred, according to the format specifications given
in f, into the elements of the I/0 list. These forms can be used only
with disk files that have been opened by an OPEN statement that
specifies ACCESS='DIRECT', ACCESS='RANDOM', or ACCESS='RANDIN' (see
Section 11.3.1).

If the record specified by rn has not been written, an error results
(except for IMAGE mode files).

The following example shows this form of the READ statement.
OPEN (22 ,RECORDSIZE=25,ACCESS="'DIRECT"')
READ (22,5,REC=10)A,Z,J
5 FORMAT (2F10.2,15)
END
In this example, the READ statement reads record 10 from logical unit
22, formats the data according to the FORMAT statement, and assigns
the values to variables A, Z, and J.
The alternative forms of this READ statement operate in the same way
as the first forms. The only difference between the forms is the way
in which the unit and record s9Decifications are expressed.
The alternative forms for this statement are:
READ (un'rn,FMT=f{[,ERR=s][,I0OSTAT=ios]) [iolist]
READ (un'rn,f[,ERR=s][,I03TAT=ios])[iolist]
In the alternative forms, the unit and record references do not
contain the keywords UNIT= and REC=. Instead the unit number is

specified first; a single quote (') is specified next; followed by a
record number, a comma, and finally the format reference.

10.5.1.3 Sequential List-Directed READ - This section describes the
sequential-access (list-directed) formatted READ statement.

This statement has the following forms:
READ (UNIT=un,FMT=*[,END=3][,ERR=s][,I0STAT=ios]) [iolist]
READ (un,FMT=*][,END=gs] {,ERR=s] [,IOSTAT=ios]) [iolist]
READ (un,*[,END=s] [,ERR=s][,IOSTAT=ios])[iolist]
With these forms, the data is =“ransferred from logical device un and

is formatted according to the data types of the elements of the I/O
list. If the I/0 list is not included, a record is skipped.

10-27

DATA TRANSFER STATEMENTS

The default unit forms of this statement are:
READ *[,iolist]
READ (UNIT=*,FMT=*[,END=S][,ERR=s][,IOSTAT=ios])[i01iSt]

With these forms, the data is transferred from the card reader (the
default device), and is formatted according to the data types of the
elements in the specified I/0O list.

The following example shows this form of the READ statement:

CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B
END

The external record to be read contains the following:
4 6.3 (3.4,4.2), (3,2) , T,F,,3*14.6 ,'ABC,DEF/GHI''JK'/

Upon execution of the program unit, the following values are assigned
to the I/0 list elements:

4

6.3

(3.4,4.2)
(3.0,2.0)

. TRUE.

.FALSE.

14

14.6

14.6D0
ABC,DEF/GHI 'JK

ORNXICEOTH

A, B, and J are unchanged.

i3.5.1.4 Sequential NAMELIST-Statement READ - This section describes
12 sequential-access (NAMELIST-statement) formatted READ statement.

This statement has the following forms:

READ (UNIT=un,FMT=name|,END=s]|[,ERR=s][,IOSTAT=ios])

READ (UNIT=un,NML=namel,END=s][,ERR=s][,I0STAT=ios])

READ (un,FMT=name|,END=s]{,ERR=s]{,IOSTAT=ios])

READ (un,NML=name[,END=s}[,ERR=s] [,IOSTAT=ios])

READ (un,namel,END=s] [,ERR=s][,I0STAT=ios])
With these forms, the data is transferred from the specified unit into
the locations specified by the NAMELIST 1list. The formatting is
~untrolled by the implicit data types of the NAMELIST list items. We
suggest that you use the NAMELIST form of the READ statement to

*ransfer data from files created by the NAMELIST form of the WRITE
~tatement (Section 10.6.1.4).

10-28

DATA TRANSFER STATEMENTS

where:

e is a simple input or output item (see Section 10.4.9.1) or
an implied DO list !see Section 10.4.9.2).

The I/0 statement assigns values to, or transfers values from, the
list elements in the order in which they appear (from left to right).

10.4.9.1 Simple List Elements - A simple input list item can be one
of the following:

1. A variable name
2. An array element name
3. A character substring name
4, An array name
For example:
READ (5,10) J,K(3),CH(l:3)

A simple output list item can be one of the above, or it can be one of
the following:

1. A constant
2. A function reference
3. An expression
For example:
WRITE (5,10) J,K(3),(L+4}/2,CH(1:3)

An input list item cannot be an expression. However, it can contain
expressions as subscripts or substring bounds.

I1/0 list items can be of the following types:
1. Integer
2. Real
3. Double-precision
4. Complex
5. Logical
6. Character
7. Octal
8. Double Octal

9. Hollerith

10-21

DATA TRANSFER STATEMENTS

When you use an unsubscripted array name in an I/0 1list, an input
statement reads enough data to fill every element of the array; an
output statement writes all the values in the array. Data transfer
begins with the initial element of the array and proceeds in the order
of subscript progression, with the 1leftmost subscript varying most
rapidly from lower to upper bound. For example, the following defines
a two-dimensional array:

DIMENSION ARRAY (3, 3)
If the name ARRAY with no subscripts appears in a READ statement, that

statement assigns values from the input record(s) to ARRAY(1l,1l),
ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on through ARRAY(3,3).

In an input statement, variables in the I/0 list can be used in array
subscripts later in the list, for example:

READ (1,1250) J,K,ARRAY (J,K)
1250 FORMAT (I1,1X,I1,1X,F6.2)

The input record contains the following values:

1,3,721.73
When the READ statement is executed, the first input value is assigned
to J and the second to K, thereby establishing the actual subscript
values for ARRAY(J,K). Then the wvalue 721.73 1is assigned to
ARRAY (1,3). Variables that are to be used as subscripts in this way

must appear before (to the left of) their use as the array subscripts
in the 1/0 list.

10.4.9.2 Implied DO Lists - An implied DO list is an I/0 list element
that functions as though it were part of an I/0 statement within a DO
loop. Implied DO lists can be used to:

1. Specify iteration of part of an I/O list

2. Transfer part of an array

3. Transfer array elements in a sequence different from the
order of subscript progression

As in explicit DO loops, zero-trip implied DO loops are possible (see
Section 9.3).

An implied DO list has the form:

(dlist,i=el,e2[,e3])

where:

dlist is an I/0 list. Dlist can also contain other
implied DO lists.

i is the index control variable that can represent a
subscript appearing in a preceding subscript list.

el,e2,e3 are the indexing parameters that specify,
respectively, the initial, terminal, and increment
values that control the range of 1i. If e3 |is

omitted (with 1its preceding comma), a value of 1
is assumed.

10-22

DATA TRANSFER STATEMENTS

The following example shows this form of the READ statement:

NAMELIST /DATA/A,Z,J
READ (22,DATA)
END

In this example, the NAMELIST statement associates the NAMELIST name
DATA with a 1list of three items. The corresponding READ statement
reads input data and assigns values to the specified namelist items.

10.5.2 Unformatted READ Transfers

Unformatted READ transfers move data from a specified file to
locations in memory. Unlike formatted READ transfers, unformatted
transfers do not involve any editing of the data.

The two types of unformatted data transfers enable you to access a
specified file either sequentially or directly.

NOTE

The OPEN statement MIDE specifier enables vyou to
specify in which form the unformatted data file exists
(see Section 11.3,20). If you execute an unformatted
READ statement without having first specified the MODE
in an OPEN statement, the data file is assumed to be
BINARY. (For additional information on unformatted
data file forms, see Saction 11.2.)

10.5.2.1 Sequential Unformatted READ - This section describes the
sequential-access unformatted READ statement.

This statement has the following forms:

READ (UNIT=un|[,END=s][,ERR=s][,I0STAT=ios]) [iolist]

READ (un|[,END=s][,ERR=s] [,I0OSTAT=ios]) [iolist]
If the I/0 list is present, the data is transferred as one logical
record from the specified logical unit. This type of read should only
be used to read files that have been created by unformatted WRITE

statements.

If you omit the I/0 list portion of the statement, the statement skips
one logical record on input from the specified unit.

The following example shows this type of READ statement used both with
and without the I/0 list:

READ (22)A,Z2,J
READ (22)
END

In this example, the first READ statement reads one record from

logical wunit 22 and assigns values to variables A, Z, and J. The
second READ statement skip one record from logical unit 22,

10-29

DATA TRANSFER STATEMENTS

10.5.2.2 Direct-Access Unformatted READ - This section describes the
direct-access unformatted READ statement.

This statement has the following forms:
READ (UNIT=un,REC=rn([,ERR=s][,IO0STAT=ios])[iolist])
READ (un,REC=rn[,ERR=s][,I0STAT=ios]){iolist]

If an I/0 list is included in these forms, the data, in the form of
one logical record, 1is transferred from the specified unit into the
elements of the I/0 list. Only files that have been output by an
unformatted WRITE statement should be transferred by this form of the
READ statement. In addition, for FORTRAN binary files, if the record
specified by rn has not been written, an error results.

These forms can be used only with disk files that have been opened by
an OPEN statement that specifies ACCESS='DIRECT', 2CCESS='RANDOM', or
ACCESS='RANDIN' (see Section 11.3.1).

The alternative form of this READ statement fuactions the same as the
first forms. The only difference between the forms is in the way that
the unit and record are specified.

The alternative form of this statement is:
READ (un'rn[,ERR=s]}[,I0STAT=ios])[iolist]

In this form, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;
a single quote (') is specified next; then the record number is
specified last.

The following example demonstrates the use of the unformatted READ
statement:

OPEN (22,ACCESS='DIRECT', :ECORDSIZE=3)
READ (22,REC=10)A,Z,J

READ (22'12)B,X,K

END

In this example, the first READ statement reads record 10 from logical
unit 22 and assigns values to the variables A, 2, and J. The second
READ statement reads record 12 from logical unit 22 and assigns values
to the variables B, X, and K.

WRITE
Statement

10.6 WRITE STATEMENT

WRITE statements transfer data from memory to a file, The various
forms of the WRITE statement enable it to be used in sequential,
append, and direct-access transfer modes for formatted, unformatted,
list-directed, ind NAMELIST-controlled data transfers.

10-30

DATA TRANSFER STATEMENTS

Table 10~5 summarizes all forms of the WRITE statement.

Table 10-5: Summary of WRITE Statement Forms

Data Access Statement Construct

Sequential Formatted WRITE(UNIT = un,FMT ={| ERR =]|, JOSTAT = ios]){iolist]

(FORMAT Statement) WRITE(un,FMT = f| ,ERR =], JOSTAT = iosDliolist]
WRITE(un, fI,ERR =s][,IOSTAT =ios)Dliolist]

Sequential Formatted WRITE(UNIT = un,FMT = *|,ERR = s][, JOSTAT =ios])|iolist]

(List Directed) WRITE(un,FMT = *[LERR = s){, IOSTAT =ios]liolist|
WRITE(un, *[LERR = s][,LIOSTAT =ios)liolist]

Sequential Formatted WRITE(UNIT - un FMT - namel .ERR -s||.IOSTAT - iosh

{(NAMELIST Statement? WRITE(UNIT - un, NML - namel . ERR - s|| IOSTAT - ios]
WRITES un.FMT - name| ERR s][.JOSTAT - iosi
WRITE(un.NML namel ERR - s|| JOSTAT - 10s])
WRITE un. namel KRR s|l.LIOSTAT iosh

Sequential Formatted WRITE fl.islist]

(Default Unit) WRITE #l.iolist!

WRITE(UNIT ~* FMT =f|, ERR = s1, JOSTAT =ios])l iolist]
WRITE(UNIT = * FMT = *|, ERR =s|| , IOSTAT = ios])l iolist]

Sequential Unformatted WRITE(UNIT = un|,ERR =s}[, JOSTAT =ios]){iolist |
WRITE(un[,ERR =], IOSTAT =ios])[iolist]

Direct Formatted WRITE(UNIT = un,FMT = f, REC =rn|,ERR = s]{,IOSTAT — ios|) iolist]
WRITE(un,FMT = f,REC =rn|, ERR =s]|,IOSTAT - ios])liolist]
WRITE(un, f,REC =rn[,ERR =s|[,IOSTAT =ios])|iolist]
WRITEK: un’'rn, FMT - f I.LERR - sl IOSTAT -ios)iiolist}
WRITE un'rn. i [.LERR - sl JOSTAT iosliliolist]

Direct Unformatted WRITE(UNIT = un,REC = rn[,ERR == s]|,IOSTAT =ios])[iolist]
WRITE(un,REC =rn|,ERR =]|, IOSTAT —ios])liolist]
WRITE(un'rn ILERR - s}l LIOSTAT - ios)liolist}

Key:

UNIT =un is a FORTRAN logical unit number (Section 10.4.3).

UNIT=* is a default unit specification (Section 10.4.3).

REC=rn is a direct-access record number (Section 10.4.4).

un’'rn is an alternate wav of specifving Logical Unit Number and record number for a direct-access

transfer (Scction 10.4.4).

FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).

FMT=* is list-directed formatting; iolist is optional (Section 10.4.5.2).

FMT -~ name is NAMELIST-statement forriatting; iolist is prohibited (Section 10.4.5.3).

NML - name is the alternative form of the NAMELIST-statement format specifier (Scction 10.4.5.3)
ERR=s is an optional error transfer specifier (Section 10.4.7).

IOSTAT =ios is an optional 1/O status spec: fier (Section 10.4.8).

iolist is a data transfer IO list (Section 10.4.9).

10.6.1 Formatted WRITE Transfers

A formatted WRITE transfer uses a WRITE statement that specifies that
the transferred data 1is edited during the transfer, such that the
external and internal representations of the data are different. The
three types of formatted WRITE statements are: FORMAT-statement,
list-directed, and NAMELIST-statement.

10-31

DATA TRANSFER STATEMENTS

There are two types of access to the device to which the WRITE
statement transfers data. They are sequential and direct. If you
want to perform a direct-access formatted WRITE to a device, you must
use FORMAT-statement formatting. List-directed and NAMELIST-statement
formatting can only be used for sequential-access formatted WRITE
statements.

10.6.1.1 Sequential FORMAT-Statement WRITE - This section describes
the sequential-access (FORMAT-statement) formatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,FMT=f[,ERR=s][,I0OSTAT=ios])[iolist]

WRITE (un,FMT=f[,ERR=s][,I0STAT=ios])[iolist]

WRITE (un,f[,ERR=s][,IOSTAT=ios])[iolist]
If the I/0 list is included in these forms, the data specified by the
elements of the I/0O list are output to a file on logical unit un. The
output data 1is formatted in this file according to the FORMAT

specifications given in f.

A blank record is written if the I/0 list is not specified, and one of
the following is true:

1., The FORMAT statement is empty.
2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptors.

See Section 12.4.

The following example contains a sequential formatted WRITE that
contains an I/0 list, and one that does not:

aA=11.4
2=13.9
J=5
WRITE (22,5)A,Z,J

5 FORMAT (1X,2F10.2,I5)
WRITE (22,15)

15 FORMAT (' PAGE NO. 1')
END

The following is written to logical unit 22:

11.40 13.90 5
PAGE NO, 1

The default unit forms of this statement are:

WRITE f[,iolist]

WRITE (UNIT=*,FMT=f[,ERR=s][,IOSTAT=ios])[iolist]

10-32

DATA TR2ANSFER STATEMENTS

If an I/0 list is included in these forms, the data, specified by the
elements within the 1I/0 list, are transferred to the default device
(line printer). The transferred data are formatted according to the
FORMAT specification given by f.

The following example shows both forms of this WRITE transfer:

A=11.4
7Z=13.9
J=5
WRITE 5,A,Z,J

5 FORMAT (1X,2F10.2,I5%)
WRITE 15

15 FORMAT (' PAGE NO. 1')
END

The following is written to the default device (line printer):

11.40 13.90 5
PAGE NO. 1

10.6.1.2 Direct-Access FORMAT-Statement WRITE - The direct-access
(FORMAT-statement) formatted WRITE statement is described in this
section.

This statement has the follow:ng forms:
WRITE (UNIT=un,FMT=f,REC=1n{,ERR=s] [,I0OSTAT=ios]) [iolist]
WRITE (un,FMT=f ,REC=rn[,ERR=s]) [,IOSTAT=ios]}) [iolist]
WRITE (un,f,REC=rn[,ERR=s] [,IOSTAT=ios]) [iolist])

If you include an I/0 list in these forms, the data in the I/O list is
written starting at record rn to a file on logical unit un. The
formatting is controlled by the FORMAT specifications given at f.

Only disk files that have been opened by an OPEN statement that
specifies ACCESS='DIRECT' or ACCESS='RANDOM' (see Section 11.3.1) can
be accessed by a WRITE statement of this form.

If you omit the I/0 list portion of this statement, at least one blank
record (specified by REC=rn) is written to logical unit un.

The following example shows a direct-access formatted WRITE statement
that contains an I/0 list, and one that does not:

A=11.4
Z=13,9
J=5
OPEN (22, RECORDSIZE=2%5, ACCESS="RANDOM")
WRITE (22,5,REC=10)A,%,J
5 FORMAT (2F10.2,15)
WRITE (22,15,REC=11)
15 FORMAT (' PAGE NO. 1')
END

10-33

DATA TRANSFER STATEMENTS

The following is written to logical unit 22:

11.40 13.90 5
PAGE NO. 1

The alternative forms of this WRITE statement operate the same way as
the first forms. The only difference between the forms is in the way
that the logical unit and the record number are expressed.
The alternative.forms of this statement are:

WRITE (un'rn,FMT=f{[,ERR=s][,I0STAT=ios])[iolist]

WRITE (un'rn,f[,ERR=s][,I0OSTAT=ios])[iolist]
In these forms, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;

a single-quote (') is specified next, followed by a record number, a
comma, and finally the format reference.

10.6.1.3 Sequential List-Directed WRITE - This section describes the
sequential-access (list-directed) formatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,FMT=*[,ERR=s]}[,I0OSTAT=1ios])[iolist]

WRITE (un,FMT=*[,ERR=s][,IOSTAT=ios]) [iolist]

WRITE (un,*[,ERR=s][,IOSTAT=1ios]) [iolist]
These forms of the WRITE statement specify that the data identified in
the I/0 1list is written to logical unit un. Because the transfer is
list-directed (FMT=*), the data is formatted according to the implicit
data types of the variables in the I/0 list. If the I/0 list is not
included, a blank record is written.
The default unit forms of this statement are:

WRITE *[,iolist]

WRITE (UNIT=*,FMT=*[,ERR=s] [,IOSTAT=ios]) [iolist]
The default unit forms function in the same way as the first forms,
except that the output is written to the default device (line
printer).
The following example shows the list-directed WRITE statement:

DIMENSION A (4)

DATA A/4*3,4/

WRITE (1,*) 'ARRAY VALUES FOLLOW'

WRITE (1,*) A,4

END

The following is written to logical unit 1:

ARRAY VALUES FOLLOW
4*3,400000, 4

10-34

DATA TRANSFER STATEMENTS

10.6.1.4 Sequential NAMELIST-Statement WRITE - This section describes
the sequential-access (NAMELIST-statement) formatted WRITE statement.

This statement has the fcllowing forms:
WRITE (UNIT=un,FMT=name|,ERR=s][,I0OSTAT=i0s])
WRITE (UNIT=un,NML=name]|,ERR=s]|,I0OSTAT=i0s])
WRITE (un,FMT=name|,ERR=4)[,I0STAT=i0s])
WRITE (un,NML=name],ERR=g]|,I0STAT=1i0s])
WRITE (un,namef,ERR=s||,]O0STAT=io0s])

These forms of the WRITE statement transfer data defined 1in the
reterenced NAMELIST statement (FMT=name or NML=name) to the file on
the logical unit specified by un.

The following example demonstrates the NAMELIST form of the WRITE
statement:

CHARACTER*1$ NAME (2)

DATA NAME/2*' '/

2EAL PITCH, ROLL, YAW, POSIT(3)

{,OGICAL DIAGNO

INTEGER ITERAT

NAMELIST /PARAM/ NAME, P TCH, ROLL, YAW, POSIT, DIAGNO, ITERAT
ACCEPT (FMT=PARAM)

WRITE (UNIT=1l,FMT=PARAM)

“ND

The input contawns the fcllow . ng:

b$SPARAM NAME (2) (10:)='HE SENBERG',
bPITCH=5.0, YAW=0.0, ROLL=5.0,
ODDIAGNO=.TRUE.

bITERAT=10SEND

The WRITE statement writes the following:

SPARAM

NAME= ' v, ! HEISENBERG', PITCH=

5.000000, ROLL= 5.000000, YAW:= 0.0000000E+00, POSIT= 3*0.0000000E+00,
DIAGNO= T, ITERAT= 10

SEND

10.6.2 Unformatted WRITE Transfers

Unformatted WRITE transfers move data from memory to a file. Unlike
formatted WRITE transfers, unformatted WRITE transfers do not involve
any editing of the data.

The two types of unformatted data transfers enable you to write to a
file either sequentially or directly.

10-35

DATA TRANSFER STATEMENTS

NOTE

The MODE specifier of the OPEN statement enables vyou
o spvecify the type of unformatted data file you want
Lo create (see Section 11.3.20). If vyou execute an
nnformatted WRITE statement without having first
speci1fied the MODE in an OPEN statement, the data file
is by default BINARY. For additional information on
unformatted data file forms, see Section 11.2.

10.6.2.1 Sequential Unformatted WRITE - This section describes the
sequential-access unformatted WRITE statement.

This statement has the following forms:
WRITE (UNIT=un[,ERR=s][,IOSTAT=ios]){iolist]
WRITE (un{,ERR=s][,I0OSTAT=ios]))[iolist]

If the I/0 list is present in these forms, the data is written as one
logical record to the file contained on the specified logical unit un.

If you omit the I/0 list in this statement, the statement writes one
blank 1logical record to the file contained on the specified logical
unit un.

The following example shows this form of the WRITE statement with the
I/0 list and without the I/0 list:

WRITE (22)A,Z,K
WRITE (22)
END

In this example, the first WRITE statement writes a record to the file
connected to logical unit 22 containing the values of the variables A,
Z, and K. The second WRITE statement writes one blank record to the
file connected to logical unit 22,

10.6.2.2 Direct-Access Unformatted WRITE - This section describes the
direct-access unformatted WRITE statement.

This statement has the following forms:

WRITE (UNIT=un,REC=rn[,ERR=s][,IOSTAT=ios]) [iolist]

WRITE (un,REC=rn[,ERR=s][,I0STAT=ios])[iolist]
These forms can be used only with disk files which have been opened by
an OPEN statement that specifies ACCESS='DIRECT' or ACCESS='RANDOM®
(see Section 11.3.1]). If an I/0 list is included in these forms, the
data, in the form of one 1logical record, is transferred from the

memory to record rn of the file on the specified logical unit.

If the I/0 list is not specified, the statement outputs one logical
blank record.

10-36

DATA TRANSFER STATEMENTS

The following example shows this type of WRITE statement with an 1I/0
list and without an I/O list:

OPEN (22,ACCESS="'DIRECT' , KECORDSIZE=3)
WRITE (22,REC=10)A,Z,K
WRITE (22,REC=12)

In this example, the first WRITE statement writes the values of the
variables A, Z, and K to record 10 on logical unit 22. The second
WRITE statement writes one 1logical blank record to record 12 on
logical unit 22,

The alternative form of this =ype of WRITE statement operates in the
same way as the first forms. The difference between the forms is in
the way that the unit and the record are specified.

The alternative form of this statement is:

WRITE (un'rn{,ERR=s][,I053TAT=i0os]))[iolist]
In this form, the unit and record references do not contain the
keywords UNIT= and REC=. Instead the unit number is specified first;

a single quote (') is specified next; then the record number is
specified last.

REREAD
Statement

S —

10.7 REREAD STATEMENT

The REREAD statement causes the 1last record read from the 1last
sequential formatted READ or ACCEPT statement to again be accessed and
processed. You cannot use the REREAD feature until an input (READ)
transfer has been accomplished. You can use the REREAD statement only
for sequential-access formatta2d data transfers. The REREAD statement
can be wused with both FORMAT-statement formatting and list-directed
formatting.

Once a record has been access2d by a formatted READ statement, the
record transferred can be reread as many times as desired. You can
use the same or a new format specification for each successive REREAD
statement.

Table 10-6 summarizes all the forms of the REREAD statement.

10-37

DATA TRANSFER STATEMENTS

‘Table 10-6: Summary of REREAD Statement Forms

Pata Access : Swutement onstruct !
" Sequential Formatted | REREAD EMT END <BERR sIIOSTAT dosllwlist! |
FORMAT Statementi i KERPAD T ohist l
" Sequential Formatted |REKEAD M1 GEND - <ILERK - sIJOSTAT - ioshliolistl |
Jlast Directed) I REREAD 1 qalist |
FMT O s FORMAT-statement formatting: ohist s ophional (Section 10405 1, i
FMT ¥ is list-directed formatime: ohst s ontional (Seetion 1045, 20,
[END s is an optionai end-of-ilie transier speciiier (Section 103,60, i
: CHRO s toan optionai erros tronster specibier Secton T,
“ TOSTAT - o= s an optionai [O status spectfier sSection 1O 415 ,‘1
‘ olist 15 a data transter 1O List «Section (089 i

in.7.1 Seguential FORMAT-Statement REREAD

This section describes the secuentlal-access (IFORMAT-statement) REREAD
statement.

The first form of this statement 1s:
REREAD (FMT=f1|,END=s!!.,kERR=s!|],10STAT=10s})[1olist]

[¥* the I/0 list is sveciflied in this torm, tne previous record is
transterred trom the loaicat unit (specitied 1n the previous formatted
READ statement) to the memory locations specitied by the elements in
the I/0 1list. The transterred record 1s tormatted according to the
“ORMAT specifications aiven In f.

[t you omit the I/0 list from this statement, the 1nput record Iis
skipved. (If the FORMAT statemeant specifies s3lash editing, more than
one record can be skipped. H or apostrophe edliting can cause data
transfers to occur to the PFURMAT statement 1tselt. See Section 12.4.)

I'ne second form ot this REREAD statement operates 1n the same way as
the first form. The difterence belween the two Lcrms 1S 1n the way

.

e PORMAT specitiers are expressed.
TMe second form of tihis slabtement 1s:
REREAD t{,10llist]
In this form, the kevword form of the FORMAT soecitier (FMT=) 1s not

in the FORMAT refterence. Whenever vou use tne Keyword form of
specifier, you must enclose the kevword fist in parentheses.

10-38

DATA TRANSFER STATEMENTS

The following example shows tte formatted REREAD being used:

CHARACTER J*5
DIMENSION J(5)
1 READ (20,5)A,X,1I
5 FORMAT (2F10.2,1I5)
L0 REREAD 15,J
15 FORMAT (5A5)
EEND

In the above sequence, statement | reads the two real variables A and
X, and the integer I. Statement 10 rereads the last record input from
unit 5 as a character string cf 25 characters, five per word, and puts
five characters per element irto the array J.

10.7.2 Sequential List-Directed REREAD

This section describes the sequential-access (list-directed) REREAD
statement.

The first form of this statement is:
REREAD (FMT=*[,END=s]{,EFR=s][,IOSTAT=jos])[iolist]

In this form, the last record read by a formatted READ statement is
transferred from the logicel wunit (specified in the formatted READ
statement) into the memory locations identified by the elements of the
1/0 1list. Since the formatting is list-directed, the format of the
data is controlled by the data types of the elements in the I/0 1list.
If no I1/0 list is included, no data is transferred.

The second form cf this statement operates in the same way as the
first form. The difference bhetween the two forms is the way in which
the formatting is specified.

The second form of this statement is:

REREAD *[,iclist])

The following example shows +the list-directed form of the REREAD
statement:

READ (20,*) A
REREAD *,B
IEND

[n this example, the READ staiement reads data from logical wunit 20

into variable A. The REREAD statement rereads the data from logical
uanit 20 into variable B.

10-39

DATA TRANSFER STATEMENTS

ACCEPT
Statement

10.8 ACCEPT STATEMENT

The ACCEPT statement enables you to input data from your terminal into
memory. You <can use the ACCEPT statement orlyv for sequential-access
formatted data transfers. This statement can be used with Dboth
FORMAT-statement and list-directed formattina.

Table 10-~7 summarizes all forms of the ACCEPT statement.

Table 10-7: Summary of ACCEPT Statement Forms

Data Access Statement Construct
Scquential Formatted ACCEPTMT (LEND <HERR <IIOSTAT ioshliolist!
(FORMAT Statement) ACCEPT fl.olist)
Sequential Formatted ACCEPTIFMT “LEND sILERR - sILIOSTAT - tosliolist|
(List Directed: ACCEPT #|.1olist]
Key: - -
FMT--f is FORMAT-statement formatting: iolist is optional (Section 10.4.5.1)
FMT = ¢ is list-directed formatting; iolist is optional (Section 10.4.5.2).
END s is an optional end-of-file transfer specifier iSection 10.4.6).
ERR . = is an optional error transfer specifier (Section 10.4.7)
[OSTAT = ios is an optional 1O status specifier (Section 10.4.8).

10list is a data transfer I:0 list (Section 10.4.9).
10.8.1 Sequential FORMAT-Statement ACCEPT

This section describes the sequential-access (FORMAT-statement) ACCEPT
statement.

The first form of this statement is:

ACCEPT (FMT=f[,END=s][,ERR=s][,I0STAT=ios])}[iolist]
If you include the I/0 list in this form, the data is taken from the
terminal and stored in the memorv locations identified in the 1/0

list. The transferred data is formatted accordina to the FORMAT
specifications given in f.

10-40

DATA TRANSFER STATEMENTS

it vou omit the 170 list from this form, the input record is skipped.
(ff the FORMAT statement svecifies slash editing, more than one record
can be skipped. H or apostropne editing can cause data transfers to

occur to the FORMAT statement itself. See Section 12.4.)

The second form of this statemant operates in the same way as the
first form. The difference between the two forms is in how the FORMAT
reference 1s expressed.

""he second form ol this statem2nt is:

NCCEPT fl,i0list]

‘n this form, the keyword portion of the FORMAT specifier (FMT=) is
omltted.

"he following example shows both forms of the FORMAT-statement ACCEPT.

ACCEPT (FMT=35)A,%,J
FORMAT (2F10.2,15)
ACCEPT 15,B
15 FORMAT (F10.2)

PN

In this example, the first ACCEPI statement accepts the values of the
variables A, 2, and J from the terminal in the form of FORMAT
statement 35. The second ACZEPT statement accepts the value of
variable B from the terminal i1 the form of FORMAT statement 15.

10.8.2 Sequential List-Direct=d ACCEPT

The list-~directed ACCEPT statement transfers data entered from the
terminal into variables svecified in the I/0 list. The formatting of
the transferred data is controlled by the data types of the items in
the I1,/0 list.

The first form of this statemeat is:

ACCEPT (FMT=*[,END=s][,ERR=s][,I0STAT=ios]) [iolist]
in rthis form, the data is traisferred from the terminal into the
memory locations identified in the I/0 list. Since the transfer is
list-directed, the data is formatted according to the data types of
the items 1in the 1/0 list. If no I/0 list is included, a line is
skippea.
The second form of this statemant operates in the same way as the
first form. The differenc> in the two forms 1is in how the
list-directed formattina refer=nce is specified.

The second form of this statem=nt is:

ACCEPT *|,iolist]

10-41

DATA TRANSFER STATEMENTS

In the following example, both forms of the 1list-directed ACCEPT
statement are used to take information, character-by-character, from
the terminal. This example additionally shows the list-directed TYPE
statement being used to print the ACCEPTed data at the terminal:

PROGRAM ACCTST
ACCEPT *,I1,J,K

TYPE *,K,I,J

ACCEPT (FMT=*)G,H,F
TYPE *,H,F,G

END

EXECUTE ACCEPT.FOR

FORTRAN: ACCEPT

ACCTST

LINK: Loading

[LNKXCT ACCTST execution]

23456 9876 12

12, 23456, 9876

12.34 98.16 789.67

98.16000, 789.6700, 12.34000

CPU time 0.2 Elapsed time 40.4

TYPE
Statement

10.9 TYPE STATEMENT

The TYPE statement enables you to output data to your terminal. Use
the TYPE statement only for sequential-access formatted data
transfers. This statement can be used with both FORMAT-statement and

list-directed formatting.

Table 10-8 summarizes all the forms of the TYPE statement.

10-42

DATA TRANSFER STATEMENTS

Table 10-8: Summary of TYPE Statement Ferms

Bata Access f Ntatement Construct i
"?.nquomml Formatted ! DYV CEATT 0 ERR S TOSTAT Snchiindist] i
HORMAT Statement FIVPE ol !

N;{l‘-*q.lv;(*rnizlii F()r.nmﬁv(i ‘ TYPK RN FICRR -<sITOSTAT Gashlinhist] I
st Divected) FEY PR Tl o
‘k(;v: ‘ ' A l
N is FORMAT-statement formzt inos iolist is ontional 1Seetion 1045 11 |
: EMT is Hist-direciod formatime: 1aii 4 ontional (Section 1045 2) |
i FHR O~ is an opnanal error trapsior s ecdior (Seetinn 10 4 7 i
! FOSTAT os is an optional O staius cpectl e cseetion 10 4 S), |
kst 1A data transter LO st iSection 1004 9) i

!

10,901 Sequential FORMAT-Statement TYPE

T™is section describes the secusntial-—-access (FORMAT-statement) TYPE
statement.

The first form ot this statomenr i1s:
TYPE O (FMT=t1] ,FRR=s!{,108TAT=10s])]10l1st]

t{ you include the 1/0 list in this torm, the data 1s transferred from
the 1/0 1list to vour terminal. The transferred data is formatted
qocording to the tORMAT specitircations ailven in t.

A hlank record is written if the 1/0 Tist is not svecified, and one of
the foilowlnag 1s true:

[The FORMAT statement 15 emptwv.

. Ho siash., H, or avostrophe editina descriptors occur alone.

slash. H, or apostrophe editina descriptors precede the
firvst rercatable edit descriptors.

ee Beciron LZ2.4 tor more mformation on iormat editina).
The second form ot this statement operates in the same wav as the
ifirst form. The diflference between the two forms is in how the FORMAT
ryererence 1S exoyprassed.
The second form of this statement is:
YPE), 10list

i

in this form, the keyword portion of the FORMAT specifier (FMT=) is
omitted.

10-43

DATA TRANSFER STATEMENTS

The following example shows both forms of the FORMAT-statement TYPE:

A=11.4

72=13.9

J=5

K=10

TYPE (FMT=5)A,%,J
FORMAT (1X,2F10.2,15)

G2}

TYPE 15,K
15 FORMAT (1X.I10)
END

The following is typed on your terminal upon execution:

LINK: Loading
TLNKXCT TEST40 execution]
11.40 13.90 5
10

CPU time 0.22 Elapsed time 2.00

19.9.2 Sequential List-Directed TYPE

The list-directed TYPE statement transfers data from a program to the
terminal. The formatting of the transferred data is controlled by the
data types of the items in the I/0 list.

The first form of this statement is:

TYPE (FMT=* [,ERR=s] [, I0STAT=ios]) [iolist]
[n this form, the data 1is transferred from the program to the
Lerminal. Since the transfer is list-directed, the data is formatted

according to the data types of the items in the I/0 list. If no 1I/0
list is included, a blank record is written.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the
list-directed formatting reference is specified.

The second form of the statement is:

PYPE *[,iolist]

The following example shows both forms of the 1list-directed TYPE
statement:

A

1.4
3.9

o

3

= e

K=10
TYPE (FMT=*),A,Z,J
TYPE *,K

END

The following is typed on the terminal upon execution:

LINK: Loading

"LNKXCT TEST41 execution]
11.40000, 13,90000, 5

]

CPU time 0.20 Elapsed time 0.87

10-44

DATA TRANSFER STATEMENTS

PRINT
Statement

10.10 PRINT STATEMENT

The PRINT statement transfers data from memory to the 1line printer.
You can wuse the PRINT statement only for sequential-access formatted
data transfers. This statement can be used with both FORMAT-statement
formatting and list-directed formatting.

Table 10-9 summarizes all forms of the PRINT statement.

Table 10-9: Summary of PRINT Statement Forms

Data Access Statement Construct
Sequential Formatted PRINT(FMT - 11.ERR - slt.IOSTAT - joshliolist|
(FORMAT Statement) PRINT f[,iolist]
Sequential Formatted PRINTMT - “LERR «ILIOSTAT - toshliolist]
(List Directed) PRINT *|,iol:st]
Key:
FMT=f is FORMAT-statement formatting; iolist is optional (Section 10.4.5.1).
FMT=* is list-directed formatting; iolis: is optional (Section 10.4.5.2).
ERR=s is an optional error transfer specifier (Section 10.4.7).
IOSTAT —ios is an optional I/O status specifizr (Section 10.4.8).
iolist is a data transfer 1/0 list (Section 10.4.9).

10.10.1 Sequential FORMAT-Statement PRINT

This section describes the sequential-access (FORMAT-statement) PRINT
statement.

The first form of this statement is:

PRINT (FMT=f[,ERR=s]|,I0STAT=10s))[1i0olist]
If the I/0 list is included in this form, the data identified by the
I/0 1list 1is transferred from memory to the 1line printer. The

formatting of the transferred data 1is controlled by the FORMAT
specifications given in f.

10-45

DATA TRANSFER STATEMENTS

A blank record is written if the I/0 list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.
2., No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
first repeatable edit descriptor.

See Section 12.4.

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in how the FORMAT
specifier is expressed.

The second form of this statement is:
PRINT f[,iolist]

The following example shows two PRINT statements; one with an I/C list
and one without:

A=7.6

B=12.5

C=20.9

PRINT 10

PRINT 20,A,B,C
10 FORMAT (' Beginning of test')
20 FORMAT (' Values are:',3F)

END

The following is printed to the line printer upon execution:

Beginning of test
Values are: 7.6000000 12.5000000 20.9000001

10.10.2 Sequential List-Directed PRINT

This section describes the sequential-access (list-directed) PRINT
statement.

The first form of this statement is:

PRINT (FMT=*[,ERR=s][,IO0STAT=ios]) [iolist]
This form of the PRINT statement specifies that the data identified by
the elements of the I/0 list is output on the line printer. The data
is formatted according to the data types of the elements in the 1I/0
list. If no I/0 list is included, a blank record is written.
The second form of the list-directed PRINT statement operates in the
same way as the first form. The difference between the two forms is
in the way that the formatting is expressed.

The second form of this statement is:

PRINT *[,iolist]

10-46

DATA TRANSFER STATEMENTS

The following example shows the wuse of the 1list-directed PRINT
statement:

D=1

E=40

F=23.3

PRINT *,D,E,F
END

The following is printed to the line printer upon execution:

1.000000, 40.00000, 23.30000

PUNCH
Statement

10.11 PUNCH STATEMENT

The PUNCH statement transfers data from memory to the paper tape
punch. You <can use the PUNCH statement only for sequential-access
formatted data transfers. This statement can be wused with both
FORMAT-statement formatting and iist-directed formatting.

Table 10-10 summarizes all forms of the PUNCH statement.

Table 10-10: Summary of PUNCH Statement Forms

Data Access Statementi Construct
Sequential Formatted PUNCH(FMT - flLERR - s|[JOSTAT = iosDliolist]
(FORMAT Statement) PUNCH fl.iolist]
Sequential Formatted PUNCH(FMT = =[,ERR = ||, JOSTAT —ios)liolist|
(List Directed) PUNCH *[. olist]
Key: o
FMT—-{ is FORMAT-statement formatting: iolist is optional (Section 10.4.5.1).
FMT - * is list-directed formatting; iolist 1s optional (Section 10.4.5.2).
ERR=s is an optional error transter soecifier (Section 10.4.7).
IOSTAT = ios is an optional 'O status =peci‘ier 1Section 10.4.8).
iolist is a data transfer 1O list (Section 10.4.9).

10-47

DATA TRANSFER STATEMENTS

10.11.1 Segquential FORMAT-Statement PUNCH

This section describes the seaquential-access (FORMAT-statement) PUNCH
stbatement.,

The first form of this statement is:
PUNCH (FMT=f[,FERR=s][,I10STAT=io0os]) {iolist]
the I/0 list is specified in this form, the data identified by the
items 1in the I/0 list are transferred to the paper tape punch. The
formatting of the data is controlled by the FORMAT specifications

gqiven in .

A blank record is written if the I/0 list is not specified, and one of
thie following is true:

1. The FORMAT statement is empty.
2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors precede the
First reoeatable edit descriptor.

see Section 12.4.
The second form of this statement operates in the same way as the
first form. The difference between the two forms is in the way that
the format specification is referenced.
'he second form of this statement is:
PIUUNCH f[,iolist]
The following example shows the formatted PUNCH statement:

PUNCH 10,A,B,C
) FORMAT (3F)

10.11.2 Sequential List-Directed PUNCH

This section describes the seqguential-access (list-directed) PUNCH
statement.

The first form of this statement is:

PUNCH (FMT=*[,ERR=s][,lOSTAT=ios])) [iolist]
This form of the PUNCH statement transfers the data identified by the
2lements of the I1/0 list to the paper tape punch. Since the transfer
i list-directed, the formatting of the data is controlled by the data

rynes of the items within the 1/0 list., If no I/0 list is included, a
blank record is wriltten.

10-48

DATA TRANSFER STATEMENTS

The second form of this statement operates in the same way as the
first form. The difference between the two forms is in the way that
the list-directed format reference is written.
The second form of this statement is:

PUNCH *[,iolist]

The following example shows the list-directed PUNCH statement:

PUNCH *,D,E,F

INTERNAL FILES anND
FNCODE/DECODE
Statements

10.12 INTERNAL FILES AND ENCODE/DECODE STATEMENTS

Internal READ/WRITE statements and ENCODE/DECODE statements are used
for internal I/O.

Table 10-11 summarizes all the forms of the internal READ/WRITE and
ENCODE/DECODE statements.

Table 10-11: Summary of Internal READ/WRITE and
ENCODE'DECODE Statement. Forms

Data Access Statement Construct
Sequential Formatted ENCODE(fal.ERR =s|[[JOSTAT ioshliolist]
(FORMAT Statement) DECODE(c.f.al ERR —s!LIOSTAT - 1osliolist]

READ(UNIT =un,FMT=fl,END =s][,LERR = s][,JOSTAT = ios])[iolist]
READ(un,FMT =f[,END = s][,ERR =s}{, IOSTAT = ios])[iolist]
READ(un,{{,END =s}{,ERR =s][,JIOSTAT = ios])(iolist]

WRITE(UNIT = un,FMT ={[,LERR = s]{,IOSTAT =ios))[iolist]
WRITE(un, FMT = f[,LERR =s][, IOSTAT = ios))[iolist]
WRITE(un,f[,ERR = s][,LIOSTAT =ios])[iolist]

Key:

UNIT =un is an Internal File identifier : Section 10.4.3.2).

c is the total number of characiers being transferred.

f is a FORMAT-statement formatting reference.

a is the name of the array from which or to which data is being transferred.
END=s is an optional END-of-file specifier.

ERR=s is an optional error transfer specifier (Section 10.4.7).

JOSTAT —ios is an optional /O status specifier (Section 10.4.8).

iolist is a data transfer I/O list (Section 10.4.9).

10-49

DATA TRANSFER STATEMENTS

10.12.1 Internal READ and WRITE Statements

The internal READ statement transfers data from an internal file to
I/O 1list elements. The internal WRITE statement transfers data from
1/0 list elements to an internal file. Internal READ and WRITE
statements are always formatted.

NOTE

The DECODE statement can be used as an alternative to
the internal READ statement, and the ENCODE statement
can be used as an alternative to the internal WRITE
statement. (See Section 10.3.1.1 for more information
on internal files.)

The internal READ statement has the following forms:
READ (UNIT=un,FMT=f[,END=s][,ERR=s][,I0STAT=ios])[iolist]
READ (un,FMT=f[,END=s][,ERR=s] [,IOSTAT=ios]) [iolist]
READ (un,f[,END=s][,ERR=s][,IO0OSTAT=ios]) [iolist]

In the above forms, un is an internal file identifier (see Section
10.4.3.2).

If an I/0 list is included in these forms, it specifies that data is
transferred from internal file identifier, un, formatted according to
the specification given by f, and transferred into the elements of the
specified I/0 list.

If an I/0 list is not included, the input record is skipped. (If the
FORMAT statement specifies slash editing, more than one record can be
skipped. Apostrophe or H editing can cause data transfers to occur to
the FORMAT statement itself. See Section 12.4.)

The following example demonstrates the wuse of the internal READ
statement:

CHARACTER*9 STRING
STRING = '3.14 6.02°'
READ (STRING,10) PI, A
10 FORMAT(F4.2, 1X, F4.2)
WRITE(5,20) PI, A, PI+A
20 FORMAT(' PI=', F6.3, 5X, 'A=', F6.3, 5X, 'PI+A=', F6.3)
STOP
END

The READ statement in this example is an internal file read. It
extracts the two numbers that are encoded in the character variable
STRING, converts the numbers to floating point, and then stores them
into the two variables PI and A. The following is printed at the
terminal when the above program is executed:

EXECUTE IR.FOR
LINK: Loading
[LNKXCT IR execution]

PI= 3.140 A= 6,020 PI+A= 9,160
CPU time 0.19 Elapsed time 0.40

10-50

DATA TRANSFER STATEMENTS

The internal WRITE statement has the following forms:

WRITE (UNIT=un,FMT=f[,ERR=s][,IOSTAT=ios])[iolist]

WRITE (un,FMT=f[,ERR=s][,IOSTAT=ios]) [iolist]

WRITE (un,f[,ERR=s] [,IOSTAT=ios]) [iolist]
If the I/0 list is included in these forms, the data specified by the
elements of the I/0 1list are output to a file on internal file
identifier un. The output data is formatted in this file according to

the FORMAT specifications given in £,

A blank record is written if the I/0 list is not specified, and one of
the following is true:

1. The FORMAT statement is empty.
2. No slash, H, or apostrophe editing descriptors occur alone.

3. No slash, H, or apostrophe editing descriptors preceded the
first repeatable edit descriptors.

See Section 12,4.
The following example demonstrates the wuse of the internal WRITE
statement:

CHARACTER*20 CHARS (3)
INTEGER PHNE (3)

PHNE (1) = 617
PHNE (2) = 481
PHNE (3) = 4054

WRITE (CHARS,10) (I, PHNE(I), I=1,3)
10 FORMAT('PHNE(', I1, ')=', I4)
WRITE (5,20) (I, CHARS(I), I=1,3)

20 FORMAT (' Record ', 11, ' of CHARS is "', A20, '"")
STOP
END
The first WRITE statement in the above program 1is an internal file
write, Since the character variable being written to is a three
element array, the internal file is a file of three records. When

this program is executed, the following is output to the terminal:

EXECUTE IW.FOR
LINK: Loading
[LNKXCT IW execution]

Record 1 of CHARS is "PHNE(l)= 617 "
Record 2 of CHARS is "PHNE (2)= 481 "
Record 3 of CHARS is "PHNE (3)=4054 "
CPU time 0.24 Elapsed time 0.82

10.12.2 ENCODE and DECODE Statements
The DECODE statement can be used as an alternative to an internal

READ, and the ENCODE statement can be used as an alternative to the
internal WRITE.

10-51

DATA TRANSFER STATEMENTS

The ENCODE statement transfers data from the variables of a specified
1/0 1list into a specified array. ENCODE operations are similar to
rhose performed by a WRITE statement.
The DECODE statement transfers data from a specified array into the
variables of an I/0 1list. DECODE operations are similar to those
performed by a READ statement.
ENCODE and DECODE statements have the following forms:

4NCODE (c,f,al,ERR=s][,10STAT=ios]) [iolist]

JECODE (c,f,a[,ERR=s][,I0OSTAT=ios])[iolist]

where:

c specifies the number of characters in each internal
record of the array. This argument can be any integer
expression, and must be the first specification in the
statement.

NOTE
*ive characters per word are stored 1in the
Aarray without regard to the type of the array.

£ specifies either a FORMAT-statement or a numeric array
that contains format specifications. This must be the
second specification.

a specifies the array, array element, variable, or
character substring reference that is to be used in the
transfer opberations, and it must contain at least ¢
characters. More than one element of the array can be
1sed by the ENCODE/DECODE.

iolist specifies an I/0 list of the standard form.

Wwhen multiple records are stored by ENCODE or read by DECODE, each new
record starts ¢ characters after the ©previous record; no CR/LF

{carriage return/line feed) is inserted between records.
NOTE

[f the array contains fewer characters than required
by the format and the 1I/0 1list, the variables
following the array in memory are used. If the
nrocessing of the I/0 list requires more characters in
1 single record than are specified by the character
count c, blanks are used.

The following example shows how the ENCODE and DECODE statements are
ised:

DIMENSION B(4),A(2)
A(1)=300.45

A(2)=3.0
C="'12345"
no 2 J=1,2

“NCODE (16,10,B)J,A(J)
) FORMAT (1X,'A(',I1,") = ', F8.2)

10-52

DATA TRANSFER STATEMENTS

5 TYPE 11,B
‘1 FORMAT (4A5)
2 CONTINUE

DECOLDE (5,12,C)B

12 FORMAT (3F1.0,1X,F...0)
TYPE 13,B

i3 FORMAT (4F5.2)
END

During the first iteration of the DO loop, the ENCODE statement has
transferred the contents o7 variable J and array element A(l) into
array B. The formatting of the data being transferred is specified by
the FORMAT statement at line .0.

After the first iteration of :he DO loop, the contents ot array B are:

B(l) = ' a(l)"
B(2) = ' = '
B(3) = '300.4°"

3(4)

1 5 L}

The TYPE statement at line 5 :types array B on the terminal during the
first iteration of the DO loop.

During the second iteration of the DO loop, the data 1is transferred
from variable J and array element A(2) into array B. Atter the second
iteration, the contents of array B are:

B(L) = ' A(2)"'
B(2) = ' = '
B(3) = ' 3,0°'
B(4) = '0 '

The TYPE statement at line 5 types array B on the terminal during the
second iteration of the DO loop.

The DECODE statement:
1. Extracts the digits 1, 2, and 3 from C
2. Converts them to floating-point values
3. Stores them in B(l), B{(2), and B(3)
4. Skips the next character (the digit 4)
5. Extracts the digit 5 from C
6. Converts it to a floating-point value

7. Stores the value in B(4)

10-53

DATA TRANSFER STATEMENTS

EXECUTE T.FOR

LINK: Loading
[LNKXCT T execution]
A(l) = 300.45
A(2) = 3.00

1.00 2.00 3.00 5.00

The following shows what is printed at the
program is executed:

CPU time 0.1 Elapsed time 0.8

10-54

terminal

when

the

above

CHAPTER 11

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.1 FILE-CONTROL STATEMENTS

Prior to transferring any data using one of the forms of data transfer
statements, vyou can establish a connection between a logical unit and
a file by using the OPEN statement. After the completion of a data
transfer, you can terminate the connection between the logical unit
and the file before ending the program by using the CLOSE statement.

The OPEN statement enables you to explicitly connect a logical unit to
a file prior to the first data transfer, and also to specify a variety
of characteristics about the file and the data transfers.

After the last data transfer is completed, the CLOSE statement enables
you to explicitly disconnect the 1logical wunit from the file and,
optionally, to specify a variety of characteristics about the CLOSE.

If you do not precede an I/0 statement with an OPEN statement, FOROTS
automatically performs an "implicit OPEN" (see Section 11.2.1).

Similarly, if you do not specify a CLOSE statement to explicitly
disconnect a file from a logical unit, FOROTS performs an "implicit
CLOSE" (see Section 11.4.1) when your program terminates.

You need not specify the OPEN and CLOSE statements if the actions
performed by the implicit OPEN or CLOSE are satisfactory.

OPEN
Statement

11.2 OPEN STATEMENT

The OPEN statement is used to specify characteristics of a file that
you wish to read or write. An example of an OPEN statement is:

OPEN (UNIT=20,FILE='MYDATA.DAT')

The specifiers inside the parentheses give information about the file
and determine how the file is opened.

11-1

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The UNIT specifier (in the example above, "UNIT=20") is required in an
OPEN statement. All other specifiers are optional, including the FILE
specifier in the example shown above. You <can supply many other
optional specifiers (see Section 11.3 for a description of OPEN
statement specifiers). The order in which the specifiers appear does
not affect the execution of the OPEN statement.

By wusing the OPEN specifiers, you are able to define certain
characteristics of each data transfer, including:

1. The name of the data file

2. The type of access required

3. The data format of the file

4, The disposition of the data file

5. The data file record and block sizes

In addition, a DIALOG argument permits you to establish a dialog mode
of operation when the OPEN statement containing it is executed. 1In a
dialog mode, interactive terminal/program communication is
established, enabling the user to define or redefine the values of the
OPEN statement specifiers.

When a file is open for output (STATUS='NEW' or ACCESS='SEQOUT'), a
null file 1is created on the device specified by FILE= DEVICE=, or
if none, the first structure in the job's search list.

An OPEN statement is referred to as a "deferred" OPEN statement 1if
both of the following are true:

e The OPEN statement specifies STATUS='UNKNOWN' (or does not
specify a STATUS value).

e The OPEN statement specifies ACCESS="'SEQINOUT' or
'SEQUENTIAL' (or does not specify an ACCESS value).

The actual opening of the file 1is deferred until the first data
transfer statement (READ, WRITE, PRINT, PUNCH, or SKIPRECORD). The
actual opening of the file means the determination of the physical
device, and for TOPS-20, the generation number (if not explicitly
specified).

If the first data transfer statement is a READ or SKIPRECORD the
first file that matches the file specification given in the OPEN
statement is opened. If no file exists that matches the file
specification given, a null file is created on the device specified by
FILE= or DEVICE=, or if none, the first structure in the job's search
list. The file is positioned as if a READ or SKIPRECORD statement had
been executed, and an end-of-file error will be generated (see END=,
Section 10.4.6).

If the first data transfer statement is a WRITE, PRINT, or PUNCH
statement, a new file (with a new generation on TOPS-20) will be
created on the device specified by FILE= or DEVICE=, or if none, the
first structure in the job's search list.

If the file specified in the OPEN statement does not exist, and either
a CLOSE statement is executed or the program runs to completion, a
null file is created on the device specified by FILE= or DEVICE=, or
if none, the first structure in the Jjob's search list.

11-2

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.2.,1 Implicit OPEN

When the OPEN statement has not been executed before a data transfer
that references the unit number, an implicit OPEN is performed.

An implicit OPEN has almost exactly the same effect as i1f you had put
an OPEN statement with the following format in the program just before
the data transfer statement:

OPEN (UNIT=un,STATUS='UNKNOWN',6 FORM=£fm)

where:
un is the unit number specified 1in the data transfer
statement.
fm is 'UNFORMATTED' if the data transfer statement 1is an

unformatted READ or WRITE statement; otherwise fm is
'FORMATTED' .

In addition, if the data transfer statement has an ERR specifier, the
implicit OPEN has this same qualifier included. This is also true of
the IOSTAT specifier.
NOTE
The default for the BLANK specifier 1is different

depending on whether the OPEN is implicit or explicit
(see Section 11.3.3).

11-3

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.2.2 OPEN on a Connected Unit

If the OPEN statement contains a STATUS=OLD specifier (see Section
11.3.29), then its action depends on whether a file is already OPEN on
the unit, and whether the file specified by the OPEN is the same file
that 1is currently on the unit. 1If the file specified by the OPEN is
different from the OPEN file, the connected file is closed and the new
file 1is opened. If the file specified by the OPEN is the same as the
connected file, the file is not closed, and the file pointer 1is not
moved. This action 1is not affected by the /F66 compiler switch
(described in Chapter 16).

11.3 OPEN STATEMENT SPECIFIERS

All of the OPEN statement specifiers are optional, except the UNIT
specifier, which 1is required. Some specifiers have default values
that can depend on the unit number or the values of other specifiers.

Table 11-1 summarizes the specifiers in the OPEN statement and the
type of value required by each. A section number is provided to refer
to detailed descriptions of each specifier. The CLOSE statement
specifiers are summarized in Table 11-5.

11-4

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-1: Summary of OPEN Statement Specifiers and Arguments

Argument Possible Value Section
ACCESS = Character expression with one of the following values: 11.3.1
HEQIN. SEQOUT', "'SEQINOUT'., 'SEQUENTIAL',
"DIRECT’, RANDOM’' 'RANDIN". "APPEND’
ASSOCIATEVARIABLE friiteger variabie or intcger array element 11.3.2
BLANK - Character expression with one of the following values: 11.3.3
'NULL', "ZERO’
BLOCKSIZE Integer expression 11.3.1
BUFFERCOUNT - Integer expression 11.3.5
CARRIAGECONTROL (haracter expression with one of the following values: 11.3.6
ORTRAN'. 'LIST. 'DEVICE"
NDENSITY Character expression with one of the following values: 1137
007 5567, 8007, 16007, '6250". 'SYSTEM'
DEVICE Character expression 11.3.8
DIALOG 11.39
DIALOG Character expression 30
DIRECTORY Character expression 1
CPOPS 100
DIRECTORY Character expression Th3a2
CTOPS-200
DISPOSE Character expression with one of the following values: 1S
SAVE U DELETE . PRINT . 'KEEP' . 'LIST', 'PUNCIL".
EXPUNGE
ERR = Statement number 11.3.14
FILE - Character expression 11.3.15
111 KSIZE Integer expression 113316
INITIALIZI
FORM - Character expression with one of the following values: 11.3.17
'FORMATTED’, 'UNFORMATTED"’
[OSTAT - Integer variable or integer array element 11.3.18
LIMIT Integer expression (RIS
MODE (‘haracter expression with onc of the following values: LE20
ASCH ULINED L 'BINARY . 'IMAGE'. 'DUMP”
NAML Character expression Pt
PADCIIAR A character expression 1n which the first character is P12
used
PARITY Character expression viith one of the following values: V5238
DD EVENS
PROTECTION [nteger expression 112

rops 1

11-5

Table 11-1:

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Summary of OPEN Statement Specifiers and Arguments (Cont.)

Argument Possible Value Section
PROTECTION Integer expression FEa2s
STOPS 200
REEADONLY e
RECL - Integer expression 11.3.27
RECORDSIZE
RECORDTYPE Character vartable, array element, or substring reference i1.3.28
STATUS— Character expression with one of the following values: 11.3.29
TYPE "OLD". ‘NEW’, 'SCRATCH", EXPUNGE".

"UNKNOWN', KEEP. "DELETK
TAPEFORMAT Character expression with one of the following values: 11.3.30
CORIE DUMP or INDUSTRY
UNIT - Integer expression 11.3.31
VERSION Octal constant. integer variable, or integer array clement 1i.3.32
NOTE
For compatibility with previous versions of

FORTRAN-10/20, you can specify a numeric array name as
the value of each of the following specifiers:

DIALOG=
DIRECTORY
NAME

When a numeric array name is used, FOROTS assumes that
it contains a string of characters terminated by a
null character.

In addition, you can specify a numeric variable as the
value of the DEVICE and FILE specifiers. If the
variable is single precision, FOROTS assumes that it
contains 5 characters; if it 1is double precision,
FOROTS assumes that is contains 10 characters.

The use of numeric array names and numeric variables
in place of <character wvariables 1is a nonstandard
feature.

ACCESS
Specifier

11.3.1

ACCESS Specifier

The ACCESS specifier describes the type of
allowed. Records within files can be accessed directly (randomly) and

sequentially.

The form of the ACCESS specifier is:

ACCESS = acc

11-6

data

transfer

statements

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

acc is a character expression having a value equal to one of
the following:

'SEQIN'
'SEQOUT!
'SEQINOUT'
'"SEQUENTIAL'
'DIRECT'
'RANDOM'
*RANDIN"
'APPEND"'

ACCESS has a number of arguments, each of which specifies a method of
data access. SEQUENTIAL 1is the default access unless the device
(UNIT) opened is a read-only device, in which case the default is
SEQIN. If the device opened 1is a write-only device, the default
access is SEQOUT.

The arguments to the ACCESS specifier are:

SEQIN (Implies STATUS='OLD') The specified data file 1is
opened tor read-only sequential access. When
ACCESS='SEQIN' is specified, it 1is equivalent to
specifying ACCESS='SEQUENTIAL' and READONLY (see
Section 11.3.26).

SEQOUT The specifi=d data file is opened for output and
sequential access,. If the specified file already
exists, it 1is superseded (TOPS-10), or a new

generation is created (TOPS-20).

SEQUENTIAL The specifizd data file 1is opened for sequential
access. Racords can be read from or written to the
file in sequential order. However, when a record is
written to the file, it becomes the last record of
the file. Any data following that record becomes
inaccessiblea,

Records can also be written to the file and then
read, as long as a device-positioning statement
(BACKSPACE or REWIND, Section 11.8) is used before
the READ statement.

SEQINOUT Same as SEQJENTIAL

DIRECT The specifi=2d data file may be read from and/or
written to in units of fixed-length records. The
record to b2 accessed next is specified in the data
transfer statement by a record number.

The relativa position of each record is independent
of the previous READ or WRITE statement. The RECL
specifier (see Section 11.3.27) is required for
random—-access operations, You must specify a disk
device when the DIRECT argument is used.

11-7

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

RANDIN flmplies STATUS='OLD') The specified data file |is
‘wueneu tor read-only direct access. More than one
user can read the same file at the same time with

1S5='RANDIN'. When ACCESS='RANDIN' is specified,

i 18 cguivalent to specifying ACCESS='RANDOM' and

LADONLY (see Section 11.3.26).

*ANDOM sSame as DIRECT

APPEND The specitied filie 1s opened for sequential
srife=oniv access. APPEND 1is the same as SEQOUT
.xuept tnat the tile is positioned at its end after
e PKEN statement. Readina an APPEND mode file is
iieaal. REWIND and BACKSPACE are illegal for files
cpened witn APPEND access.

o e e bt s 1 1. ot 4 o .

ASSOCIATEVARIABLE |
Specifier |

|

!

i

P

HER N 4

.2 ASSOCIATEVARIABLE Specitier

This specifier enables vou to declare a variabie whose wvalue 1is the
number of the next record that will be read from or written to the
file.

“or example, atter the execution of an OPEN statement and prior to the
iirst data transfer, the associate variable is set to 1.

in a data transfer arfter the first record is transferred, the value of
he associate variable is 2.

The form of the ASSOCIATEVARIABLE specitier is:
ASSOCIATEVARIABLE= Integer variable or 1integer array element

{¢ you are using the ASSOCIATEVARIABLE specitier 1in a program that
makes use of the LINK overlay tftacility, please read the paragraphs
~nat tollow.

the variable vou specify as the ASSOCIATEVARIABLE is declared in a
*ORTRAN subroutine, then that subroutine must be loaded in the root
iink of the overlav structure. It the subroutine cannot be loaded in
:he root link of the overlay structure, declare your ASSOCIATEVARIABLE
inn a COMMON statement so that the ASSOCIATEVARIABLE will operate
nroperiy.

The reasons IOr these steps are:

. wWhen the overlay facility is used to load FORTRAN modules,
“ne locair variables 1n the modules are grouped with the
~surine 1n which they are declared.

#nhen FURTRAN subroutines are loaded bv the overlay facility,
hev are adivided into sets called overlay links.

e wveriay link, the one specified to be the root 1ink,
resident in memory. The other overlay links are
ory as reauired.

11-8

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Accessing a file opened with an ASSOCIATEVARIABLE changes the value of
the specified variable. If this variable is in a nonresident overlay
link when the access is made, program execution produces unpredictable
results. Moreover, this wvariable 1is reset to zero each time its
overlay link is removed from memory.

Only variables declared in routines loaded 1into the root 1link are
always resident. Variables declared in COMMON statements and those
declared in the main program are alwavys resident and can always be
nsed as an assoclate variabile.

NOTE

For more information on the LINK overlay facility., see
the LINK Programmer's Reference Manual, and Chapter 15

of this manual.

BLANK
Specifier
11.3.3 BLANK Specifier
The BLANK specifier applies only when reading formatted

(FORMAT-statement) numeric fields that have a field width specified.
BLANK enables you to specify how blanks in formatted numeric fields
are treated in a read transfer (either as zero or ignored).

The form of the BLANK specifier is:
BLANK = blnk

where: '

blnk 1is a character expression having a value equal to either
'NULL' or 'ZERO'.

The arguments to the BLANK specifier are:

NULL specifies that all blank characters within numeric
formatted input. fields are ignored. The exception is
that a field of all blanks has a value of zero.

ZERO specifies that all blanks are treated as zeros.

If an OPEN statement is executed and the BLANK specifier is not given,
the default is BLANK='NULL'.

If no explicit OPEN statement is executed before a data transfer on a
unit, the default 1is BLANK='ZERO' for all devices except terminals.
For terminals, the default 1is always BLANK='NULL' regardless of
whether or not the OPEN statement is given.

The BLANK specifier is overridden if a corresponding data transfer
statement references a format list that contains either the BN or BZ
descriptor. 1In this case, the BN or BZ descriptor in the format 1list
overrides the setting 1in the OPEN statement until the end of the
format list, or until the setting is changed within the format 1list.
(The BN or BZ descriptors are described in Section 12.4.9.)

11-9

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Example:

OPEN (UNIT=1,DEVICE="'DSK',FILE='FO0O.DAT',BLANK="ZERO")
READ(1,10)K

10 FORMAT(I5)
CLOSE (UNIT=1)

OPEN (UNIT=1,DEVICE='DSK',FILE="'FOO.DAT',BLANK="NULL"')
READ(1,10)L

CLOSE (UNIT=1)

END

In the above example, if FOO.DAT contains 123bb, K has the value 12300
and L has the value 123.

BLOCKSIZE
Specifier

11.3.4 BLOCKSIZE Specifier

The BLOCKSIZE specifier enables you to specify a physical storage
i»lock size for magnetic tape files.

NOTE

BLOCKSIZE specifies the physical record 1length, and
RECL(RECORDSIZE) specifies the logical record length.

The argument is an integer expression, and for CORE-DUMP tape format,
the wvalue assigned represents the number of words in the physical
slock. For INDUSTRY tape tormat, the value represents the number of
hytes in the physical block. (See the TAPEFORMAT specifier, Section
11.3.30.)

tThe torm of the BLOCKSIZE specifier is:

ALOCKSIZE= Integer expression

BUFFERCOUNT
Specifier

L A

11.3.5 BUFFERCOUNT Specifier

‘he BUFFERCOUNT specifier enables you to define the number of 1I/0
cuifters used in the data transfer.

11-10

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS
The BUFFERCOUNT is the number of pages used in disk transfers, and 1is
ignored for nondisk transfers.
The form of the BUFFERCOUNT specifier is:
BUFFERCOUNT= Integer expression

If a BUFFERCOUNT is not specified, or is assigned a value ot zero, the
buffercount is four pages.

NOTE
If MODE='DUMP' is specified, BUFFERCOUNT is ignored.
The BUFFERCOUNT specifier dces not aftfect the operation ot the
program, but it can affect execution time and memory regnirements.
For random 1I/0, the buffercount specifies the maximum number ot
buffers which are 1in memory (not vyet written to disk) during I/0
operations.

NOTE

For TOPS-20 extended eddressing, all 1I/0 buffers must
fit in FOROTS's secticn.

i CARRIAGECONTROL
Specifier

i
Mee e e e am s mmia e ——

11.3.6 CARRIAGECONTROL Specifier
The CARRIAGECONTROL specifier enables you to decide how the first
character of each record ercountered during an output data transter
operation is treated. (Section 12.2.3 describes carriage-control
specifiers.)
The form of the CARRIAGECONTROL specifier is:

CARRIAGECONTROL = cc

where:

cc is a character expression having a value equal to one of
the following:

'FORTRAN'
'LIST!
'TRANSLATED'
‘DEVICE'

11-11

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

he arguments to the CARRIAGECONTROL specifier are:
FORTRAN specilties that the FORTRAN data file attribute is

r tn the file's access information, so that when

‘e Lile 1s printed, the first character of each

r=cord 1s replaced with a carriage return and the

yrresponding printer—-control vertical motion
haracter (s) (see Table 12-3). The record
irminator at the end of the record will be

racarded.

LIST specifies that the first character is output with no
Tepiacement.

TRANSLATED specities that the first character of each record 1is

rapracea with a carrilage return and the

‘orresponding printer—control vertical motion

caraclier (s8] {see Table 12-3). No record terminator
written at the end of the record.

“ste that the last data record in the file has no
'ndinaga carriaae return/line feed sequence unless a
~tank record is written.

or ii1xXed-ienath tiies, TRANSLATED 1is treated as

- o
:.S)i.

DEVICE specitfies that the first character will only be
replacea for a carriage-control device (such as LPT
o TTYS .

The default value is CARRIAGECONTROL='DEVICE',
NOTHE
the line orinter software assumes that the first
character of all data files 1s a carriage-control

chiaracter 1t the file has the extension .DAT or if the
SPTLE:FORTRAN switch is specified.

e e S e 2 i e

f DENSITY
: Specifier

SO —— |

i1.3.7 DENSITY Specifier

“he DENSITY svecifier is iagnored except when used with magnetic tape;
it permits vyou to specify the tape density. If you do not specify a
pe density, FORTRAN assumes that you have set the density at monitor

=vel or that vou are satisfied with the system default for the
vice.

[{W]

)
U

“he torm ot the DENSITY specifier is:

SENSITTY = dens

11-12

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

dens 1is a character expression having a value equai to one ot
the following:

200!
556"
800"
1600°
6250
"SYSTEM®

SYSTEM specifies that the density :s the detault density for the
magnetic tape device being used.

11.3.8 DEVICE Specifier

The DEVICE specifier enables you to specity tne name oL cwne device
involved in the data transter. A loglcal name always takes precedence
over a physical name. The DEVICE arguments can specity 1/0 devices
located at remote stations, as well as loglical devices.

The form of the DEVICE specitier is:
DEVICE= Character express3icn
If you omit this option, tne logical name un (wnere un 1s the decimal

unit number) is tried. It this 1s not successtul, the standard
(default) device associated with the unit 1s used (see Tavle 10-3).

JALOG
siacifier

11.3.9 DIALOG Specifier

The DIALOG specifier enables you to type 1n additlonal UPEN specifiers
when the OPEN statement 1s actually executed.

If the DIALOG specifier is found 1n an OPEN l1st, tnen eacnh time the
OPEN statement 1s executed FOROUIS suspends execution and prompts the
terminal with an asterisk.

The form of the DIALOG specitier is:

DIALOG

11-13

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Yeu can respond to the asterisk prompt by entering a file
wpecification, DIALOG switches (see below), or a file specification
followed bv DIALOG switches. The file specification may be a full
file specification including the device, directory name, and so on.

NOTE

A DIALOG switch is anv OPEN specifier (except DIALOG,
DIALOG=, UNIT, NAME, FILE, IOSTAT, or ERR) preceded by
3 slash (/).

wnr example, when FOROTS enters DIALOG mode, you can type a string
such as:

*DSK:FOO.BAR/MODE:BINARY/ACCESS:DIRECT

DIALOG =
Specifier

}1.3.10 DIALOG= Specifier

“he DIALOG= specifier enables you to include all or a portion of the
LPEN specifiers 1in a character expression. The contents of the
cnaracter expression are interpreted as if you had given the DIALOG
ipecifier (see above); and, when the asterisk prompt was given, you
itad typed in the same string as 1is contained 1in the character
crxpression, followed by a carriage return.

The form of the DIALOG= specifier is:
DIALOG= Character expression
Lxample:
OPEN(UNIT=1,DIALOG="'DSK:F0O0O.BAR/ACCESS:SEQOUT/MODE:ASCII")
&;;;E(l,lOO)I

190 FORMAT(I5)
~ND

DIRECTORY (TOPS-10)
Specifier

11.3.11 DIRECTORY Specifier (TOPS-10)

n TOPS-10, the DIRECTORY specifier is ignored except for disk files.
it specifies the location of the User File Directory (UFD) and,
sprionally, the Sub File Directory (SFD), either of which can contain
"hhe file gnecified in the OPEN statement.

11-14

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

"he torm of the DIRECTORY specitier is:
U1 RECTORY= Character expression

The UFD is the directory in which a user's files are stored; the SFD
cxists within the UFD. An SFD 1is often used to group files into
weparate subdirectories.

The following is & sample of the UFD and SFD specification:
10,7,SFDA,SFDB

in the sample specification, 10,7 is the project-programmer number.
This 1is an adequate directory specification if the file is in the UFD
specified by 10,7. The SFDA and SFDB specify two levels of subfile
directories. The complete directory specification indicates that the
file is located in subfile directory SFDB. As indicated, the path to
SFDB 1s through the UFD 10,7 and through the SFD SFDA.

NOTE

Refer to the TOPS-10 Monitor Calls Manual for a
complete description of directories and multilevel
directory structures.

The following 1s an example of a character expression specification:

DNTRECTORY='10,7,SFD1,SFD2,SFD3"
s e St T
Project SubFile
vrogrammer Directory
Number Path

The following is an example ot how to assemble a specitication from
individual elements:

CHARACTER*10 PROJ,PROG,PATHIL,PATH2
(CHARACTER*1 COMM

PROJ= '10"'

PROG= '7°"

JATH= 'SFDA'

PATH= 'SFDB'

COMM= ',
OPEN(UNIT=1,DIRECTORY=PRC(J//COMM//PROG//COMM//PATH1l//COMM//PATH2)

Thre above specification 1is equivalent to the following character
axXpression:

'L38,7,SFDA,SFDB’

11-15

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

DIRECTORY (TOPS-20)
Specifier

11.3.12 DIRECTORY Specifier (TOPS-20)
On TOPS-20, the DIRECTORY specifier is ignored except for disk files.

The DIRECTORY specifier enables you to define the path through the
directory structure to a file specified in the OPEN statement.

The form of the DIRECTORY specifier is:

DIRECTORY= Character expression

The argument to the DIRECTORY specifier 1is a character expression
whose elements comprise the directory path specification, for example:

OPEN(UNIT=22,DIRECTORY= 'GUEST')
!Looks for DSK:<GUEST>FOR22.DAT

or
CHARACTER*12 ID
iD= 'GUEST.CLASS3'

OPEN (UNIT=22,DIRECTORY=1ID)
t{Looks for DSK:<GUEST.CLASS3>FOR22.DAT

DISPOSE
Specifier

i1.3.13 DISPOSE Specifier

The DISPOSE specifier enables you to specify an action to occur when
the file is closed.

The form of the DISPOSE specifier is:
DISPOSE = dis

where:

dis is a character expression having a value equal to one of
the following:

'KEEP'
'SAVE'
'DELETE"
*IXPUNGE'
"PRINT'
'LIST!
'PUNCH'

11-16

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The DISPOSE specifier must have one of the following values:

KEEP Specifies that the file is to be left where the OPEN
statement specifies. DISPOSE='KEEP' is the default.

SAVE Same as KEEP.

DELETE Specifies on TOPS-10 that, if the device 1is either a
DECtape or disk, delete the file; otherwise, take no
action.

On TOPS-20, if the device involved is a disk, delete
the file; otherwise, take no action.

EXPUNGE On TOPS-10, same as DELETE. On TOPS-20, if the device
involved 1is a1 disk, expunge the file; otherwise, take
ne action.

PRINT Specifies that the file will be printed and kept. The
file must be on disk.

LIST Specifies that the file will be printed and deleted.
The file must »e on disk.

PUNCH Specifies that the file will be punched on the paper
tape punch and kept. The file must be on disk.

ERR
Specifier

11.3.14 ERR Specifier

The ERR specifier enables you to designate a statement number of an
executable statement, in the current program unit, to which control
passes if an error occurs during the execution of an I/O statement.

If an error occurs and no ERR specifier or IOSTAT specifier (see
Section 11.3.18) is supplied, the program types an error message. If
the program is running under hatch, it is aborted.

If the program is not running under batch, it enters DIALOG mode after
processing all of the other specifiers, as if you had supplied the
DIALOG specifier (see Section 11.3.9). This is true regardless of
whether or not the OPEN statement was explicitly executed or implied
by the execution of the first data transfer statement for a unit.

The form of the ERR specifier is:

ERR= s
where:
s is the number of an executable statement to which program

control passes 1if an error occurs during the execution of
the statement that includes the ERR specifier.

The subroutine ERRSNS can be called to pinpoint the error. See
Appendix D for FOROTS error values returned by ERRSNS.

11-17

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

FILE
Specifier

11.3.15 FILE Specifier

The FILE specifier enables you to name the file involved in the data
transfer operation. You can specify a full file specification.

The form of the FILE specifier is:
FILE= Character expression
The value of the character expression is any legal TOPS-10 or TOPS-20

file specification. (See the TOPS-10 Operating System Commands Manual
or the TOPS-20 User's Guide.)

If you omit the period and extension, the extension .DAT 1is assumed.
If Jjust the extension is omitted, a null extension is assumed. Thus,
if you want a filename without an extension, remember to use the
period.

If a filename is not specified, a default name is generated that has
the form:

FORxx .DAT
where:
XX is the FORTRAN logical unit number (decimal) or the 1logical

unit name for the default statements ACCEPT, PRINT, PUNCH,
READ, WRITE, or TYPE.

FILESIZE
(INITIALIZE)
Specifier
(TOPS-10 only)

11.3.16 FILESIZE (INITIALIZE) Specifier (TOPS-10 Only)
The FILESIZE (or INITIALIZE) specifier is wused¢ for disk operations
only. It enables you to estimate the number of words that an output
file is going to contain.
The form of the FILESIZE specifier is:

FILESIZE= Integer expression

The value assigned as a FILESIZE argument can ke a integer expression,
and is rounded up to the next higher block boundary (multiple of 128).

11-18

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The value specified by FILESIZE= is used as an estimate only. The
effect of FILESIZE= 1is to help the monitor try to choose the best
place on the disk to put the file.

FORM
Specifier

11.3.17 FORM Specifier

The FORM specifier designates whether the records in a data transfer
operation are formatted or unformatted. You should not mix formatted
(character) and unformatted (binary) records in the same file.

The form of the FORM specifier is:
FORM = ft
where:

ft is a <character expression having a value equal to
'FORMATTED' or 'UNFORMATTED'.

The arguments to the FORM specifier are:

FORMATTED specifies that the records being transferred
contain character (formatted) data.

UNFORMATTED specifies that the records being transferred
contain binary (unformatted) data.

If FORM is not specified and MODE is 'ASCII' or 'LINED', the default
value for FORM is 'FORMATTED'. Otherwise, if MODE is 'BINARY',
'IMAGE', or 'DUMP' (TOPS-10 only), the default value for FORM is
'UNFORMATTED'.

If both FORM and MODE are specified and they are incompatible, then
DIALOG mode is entered, and you are asked to <correct the
incompatibility. In the following example, MODE="'BINARY"' and
FORM="'FORMATTED' are specified in the same OPEN statement. As shown
below, when the program 1is executed, interactive DIALOG mode is
automatically entered to enable the user to correct the
incompatibility.

PROGRAM TRIMP
OPEN (UNIT=1,MODE="'BINARY' ,FORM='FORMATTED')
WRITE (UNIT=1,FMT=10".)
101 FORMAT(1X,'This is a test.')
END

EXECUTE TRIMP

LINK: Loading

[LNKXCT TRIMP execution]

?0PEN unit 1 DSK:FOROl.DAT at MAIN.+4 in TRIMP (PC 165)
?Incompatible attributes /MODE:BINARY /FORM:FORMATTED

11-19

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

[Enter correct file specs]

* /MODE:ASCII

CPU time 0.3 Elapsed time 11.4
TYPE FOROL1.DAT

This is a test.

If neither FORM nor MODE is specified the default value for FORM
depends on the access. If the access is SEQUENTIAL (or is defaulted),
the default for FORM is FORMATTED. If the access is DIRECT or RANDOM,
the default for FORM is UNFORMATTED.

NOTE

For ASCII devices (line printer, plotter, terminal,
industry magnetic tape), the FORM= specifier has no
meaning and is ignored; both formatted and unformatted
data transfers are legal (see Section 10.3.3).

I0STAT
Specifier

11.3.18 IOSTAT Specifier

The IOSTAT specifier identifies an integer variable that is wused to
store the I/0 status code during the execution of a statement.

The form of the IOSTAT specifier is:
IOSTAT= Integer variable or integer array element

If no error occurs during the execution of the statement, the defined
variable is set to zero.

If an error does occur during the execution of the statement, the
defined variable is assigned a positive integer value that corresponds
to the number of the FOROTS error that occurred (see Appendix D for
FOROTS error codes).

When an error occurs, no error message is typed; instead, the program
either continues at the ERR= statement number (if the ERR specifier is
included), or continues at the statement immediately following the
OPEN statement (if no ERR specifier is included).

11-20

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

G U ——

LIMIT
Specifier

11.3.19 LIMIT Specifier

The LIMIT specifier designates the number of output units (such as
pages) for spooled print or punch requests, which result from using
DISPOSE='PRINT', DISPOSE='PUNCH', or DISPOSE='LIST' (see Section
11.3.13).

The form of the LIMIT specifier is:

LIMIT= Integer expression

MODE
Specifier

11.3.20 MODE Specifier

The MODE specifier defines the data mode of an external file or
record.

The form of the MODE specifier is:
MODE = mod
where:

mod is a character expression having a value equal to one of
the following:

'ASCIT"
'LINED’
'BINARY'
' IMAGE'
'DUMP'

After a MODE has been assigned (either explicitly or by default), it
cannot be changed until the file is closed and then reopened.

The default value of MODE depends on the values of FORM and ACCESS.
If FORM 1is FORMATTED, then the default MODE is ASCIT. If FORM is
UNFORMATTED, then the default MODE is BINARY. If ACCESS is SEQUENTIAL
and no FORM= is specified, then the default MODE is ASCII; if ACCESS
is DIRECT or RANDOM, and no FORM= is specified, then the default MODE
is BINARY. (See2 Section 11.3.17 for details on FORM, and Section
11.3.1 for details on ACCESS.)

11-21

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Character data is supported in formatted BINARY and IMAGE mode files;
it is not supported in DUMP mode files.

The possible values of MODE are:

ASCII specities the data to be 7-bit ASCII characters.
kecords are terminated with a line feed, form teed, or
vertical tab.

LINED Takes effect on input only. For output, this mode
defaults to ASCII. LINED specifies the data to be
7-bit ASCII characters with optional 1line seguence
numbers. FORTRAN removes the line sequence numbers, if
wresent, before supplying the cata to the user. (The
line sequence number can be obtained by using the
function LSNGET, see Section 13%.3.1.)

Note that a page mark in a file <containing 1line
:equence numbers 1s a separate record. FORTRAN removes
the blank sequence number, and the carriage return/form
feed sequence 1is read as a blank record.

BINARY Specifies that data is formatted as a FORTRAN binary
data tile. A BINARY file is composed of 36-bit words
‘sce Section 10.3.2). The first word of each record is
written by FOROTS and specifies the beginning of the
binary record; this 36-bit value is called a type 1
fogical Segment Control Word (LSCW).

“ach binary record can contain one or more type 2
iL5CWs . The type 2 LSCW, written by FOROTS under
certain conditions, is used to mark a record that spans
internal buffer boundaries.

A third FOROTS-written word, the type 3 LSCW, is always
wrltten as the last 36-bit value in each BINARY record.

All data in a "BINARY" transfer remains equivalent in
its external form with 1ts internal representation.

IMAGE Specifies an unformatted binary mode. Like the BINARY
form of unformatted transfers, IMAGE specifies that
Jata 1is transferred as 36-bit values, with the internal
and external representation of the data remaining the
same.

iInlike BINARY files, IMAGE files do not contain record
Information (LSCWs) ; they contain only the data
*ransterred. IMAGE files can be backspaced if a record
slze 1s specified.

DUMP Corresponds to TOPS-10 DUMP mode I/O. (See the TOPS-10
TOPS-10 Monitor Calls Manual.) Record size is ignored.
Character data cannot be written into or read from DUMP
mode files. Note that there |is little or no
performance advantage to using DUMP, as FOROTS uses

DUMP mode internally for all disk files.
NOTE
For ASCII devices (line printer, plotter, terminal,
industry magnetic tape), the MODE= specifier has no

meaning and is ignored; both formatted and unformatted
data transfers are legal (see Section 10.3.3).

11-22

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

"able 11-2 summarizes the different MODE arguments that are supported
nn aifferent devices.

Table 11-2: DEVICE and MODE Cross-Table

,
; MODE = |
| [, e e e e e e e e e
: (TOPS-10)
i Device "ASCI "LINIDYY ‘BINARY’ 'IMAGE’ ‘DUMP’
i Pk (sequential) X X X X X
Disk (direct) X X X
DECLape X X X X
Terminal X
Magrtape X X X X
Line Printer X) A
Card Reader X X X
¢rd Punch X X X |
Paper Tape Reader X X X |
Ziper Tape Punch X X N i
oo e s s S e
|
i NaME
: soncifier |
; i
; i
i1i.3.21 NAME Specifier
The NAME specifier is used to specity a full tile specification. You

~an use this specitier instead ot the DEVICE, FILE, and/or DI1IRECTORY
specifiers.

The form of the NAME specifier 1s:
MIAME= Character expressicn

mxamples of the NAME specitier are:
JTOPS~10) : NAME='DSK:FOC.BAR|10,34]"
TTOPS-20) ¢ NAME="'PS:<SMITH>BILLING.DAT"®

The NAME specitier can not be given in DIALOG mode. Also, the OPEN
statement cannot have both a I'IALOG= specirier and a NAME specitier.

11-23

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

[U UONP VN

! PADCHAR i
; Specifier |

L

11.3.22 PADCHAR Specitier

The PADCHAR specifier is used only with formatted output data transfer
aperations. PADCHAR enables vou to specify a character that will be
ased to pad fixed-lenath formatted records, on output only, to their
specified record 1lenath (see the RECL(RECORDSIZE) specitler, Section
11.3.27).

The form tor the PADCHAR specitfler is:

*ADCHAR= A character expresslon in which the tirst character 1is
1sed

The default pad character 1s space. The pad character 1s ignored 1if
fixed-lenath records are not pbelng used (that 1is, 1if the
RECL(RECORDSIZE) specifier is absent), or 1if formatted I/0 1is not
neing done.
SO

To specity a null character tor the pad character, you

must use the function CHAR (see Chapter 13), since the

comoiler does not ailow null character constants, for

cxample:

CPEN (UNIT=1,PADCHAR=CHAR(0})

PARITY |
Specifier |

11.3.23 PARITY Specifier
The PARITY specitier 1s only used for magnetic tape operations. It
Dermits vou to specity paritv to be observed (odd or even) during the
.ransfer of aata.
The form ot the PARITY specifier 1s:

CARITY = par
where:

nar 1§ 4 cnaracter exwpression naving a value equal to f0DD' or
TEVENT .

11-24

FILE-CONTROL ANL DEVICE-CONTROL STATEMENTS

| PROTECTION (TOPS-10)
' ~pecifier

11.3.24 PROTECTION Specifier (TOPS-10)

This option specifies a prctection code to be assigned to the data
file being transferred. The protection code is a 3-digit octal value
indicating the level of access to the tile.

Each of tne three numbers in the protection code has a specitic
meaning. The number in tle leftmost position designates the file
owner's protection; the middle number designates the project member's
protection; and the rightmost number designates the protection tor all
others wusers on the system. The system default 1tor the file
protection is assigned if a protection is not specitied.

On TOPS-10, the form of the PROTECTION specitier is:
PROTECTION= Integer exprc¢ssion

Figure 11-1 illustrates the 17T0PS-10 3-digit octal tile ©protectilon
code.

NOTE

When setting the protection code for a file open tor
output, be sure not. to set the protection such that
the file is protected against writing by the program;
if you should do this,. the OPEN statement will fail.

To protect the file against writing by the owner, vyou
should give the PROTECTION specitier 1in the CLOSE
statement.

———-—File Owner
PROTECTION = nnn -«——Other Users

-—-—-—~Project Members.

File owner An octal digit in the tirst position specities the file access for the tile owner. 1 he tile owner
i5 the user whose programmer numper maiches the directory n which the file is
con:amned.

Project Members An octal digit in the second position specities the tile access tor the project members.
Proiect members are users whose project number matches the directory in which the tile
IS contamed.

Other Users An octal value 1n the third position specities the file access tor all users other than the tile
owner or a proleci member.

ERRTE

Figure 11-1: TOPS-10 File Protection Number

11-25

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

"aple 11-3 lists all the possible values for each field of the
rotection code. keter to the TOPS-10 Monitor Calls Manual for more

information.

HOTE

: Daemon referred to in Table
i ¢ woprovides extended file protection.
i i"yiie Daemon allows any user to
“ev iy who can and who cannot access
w17 riles (i1f applicable). (Refer to
= wvubs—10 Operating System Commands

intal.)

Table 11-3: TOPS~10 Protection Code Values

yetal l
Yalue | Meaning in Owner Field
- - o T e K N
i {Uhe fle owner can execute. read. append to, update. write, rename, or change the protection of
\

He
|

i i ihe e The File Daemon 1s not called on a protection failure.

| Vhe file owner can execute. read. append to, update. write. or rename the file. The File Daemon
i~ not cailed on a protection fatture.

The fle owner can execute, read. append Lo, update. or write the file. The File Daemon is not

vled ana protection talure,

fhe file owner cannot access the tile. However, the owner can use the RENAME monitor call to
shange the sice protection. The File Daemon 1s not called on a protection failure.

the file. The monitor calls the File Daemon on a protection taiiure.

The tlie owner can excecute. read. append to. update. or write the file. The monitor calls the File
Vhieinon on o protection ladure.

i | The file owner can execute or vead the file. The monitor calls the File Daemon on a protection
| fatfure,
"he file owner cannot access the file. However, the owner can use the RENAME monitor call to
fange vhe lite protection. The monitor calls the File Daemon on a protection failure.

i The file owner can execute. read. append to. update. write, rename, or change the protection of

ietal &
Value i Meaning in Project Member and Other User Fields

I ¢ Uhe arojeet member tor otier ' can execute. read. append to. update, write, rename, or change the

srietechion o the frie,
Che proweel miember ior others can execute. read. append to. update, write, or rename the file.
the oreect member tor others can execute, read. append to, update. or write the file.
i'he prawect inember tor otheri can execute. read. append to. or update the file.
1 toHhe prowect member (or others can execute. read, or append to the file.
) C il project member wr other: can execule or read the tiie.
CThe prowet member tor othery can onlv execute the file.

i e prowet member wr othiers has no access to the tile.

PROTECTLON can be an integer expression. If the argument

1II1ned a4 zero value or 1s not specified, the default protection

e oesiabiiishied (o Libe TOPS-10 1nstallation is used.

11-26

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

PROTECTION (TOPS-20)
* ; r-ecifier

11.3.25 PROTECTION Specifier (TOPS—-20)
The PROTECTION specifier enabl.es you to designate an octal protection
code for the file. The protection code is a 6~digit octal value that
designates the access to the iile of the owner, group members, and
other system users.
On TOPS-20, the form of the PROTECTION specitier 1isS:

PROTECTION= Integer expression

Figure 11-2 illustrates a TOP$-20 protection code.

—————File Owner
Group Memkter
Other Users

PROTECTION =nnnnnn

File Owner The leftmost two digits designate the file access tor the file owner. Ihe tile owner is the
user who is cornected 1o the directory in which the tile resides.

Group Member The middle two digits d:2signate the file access tor group members. tiroup members are
established by the systam administrator. A group membership enat:les a user 10 share
files among other users in the same group.

Other Users The rightmost two digite: designate the file access for all users on the system. olher than
the file owner or a group member.

Figure 11-2: TOPS-20 Protection Number

Table 11-4 lists the possible protection values and their meanings 1n
the TOPS-20 file protection code.

Table 11-4: TOPS-20 Protection Code Values

Octal - B
Value Meaning in Owner, Group Member, or Other User Fields |
77 Permits full access to the file. |
40 Permits read-only access to the tle. '
20 Permits write and delete aceess 1o the file. |
10 Permits execute-only access to tl e file. |
04 Permits append-only access to the 1ile. |
02 Permits listing of the file specification using the DIRECTORY command. |
00 Permits nc access to the file. |

11-27

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

on TOPS-20, PROTECTION specilties a protection code to be assigned to
“he data tile beina transferred. The protection code determines the
iovel of access tnat three ciasses of users have to the file.

DROTECTION takes an 1nteger expression as an argument. If PROTECTION

assignea a zero vaiue or 1s not specified., the default protection
>wde established for vour connected directorv 1s used.

| READONLY |
Specifier |

11.3.26 READONLY Specifier

"2 READONLY specitler 1s used to specify that the program will only

s~ad from the ftile. Output to the file is illegal and will cause an
rror at execution time.

“he form of the READONLY specitier 1s:

CWADONLY

RECL
{RECORDSIZE)
Specifier

11.3.27 RECL = 0RDS1ZE) Specifier

The RECL {or xXKECORDSIZE) specifier enables you to specify the number
of characters or words in each record transferred. RECL is required
for all files opened for direct access (ACCESS='DIRECT', *RANDOM', or
"RANDIN'). (See Section 11.3.1.)

The form of the RECL specifier is:
RECL= Integer expression

an ASCII transter (MODE='ASCII' or ‘LINED'"), the value assigned to
i“HCL svecifies the number of characters in each record.

For output to disk or CORE-DUMP tape files, 1in addition to these
characters, FOROTS adds a carriage return/line feed to each record,
followed by enough null characters to fill the current word, so that
records are word-aligned. RECL is enforced on output by padding short
records with the padding character for formatted records. Long
records are truncated.

FORTRAN enforces a specified RECL for all input operations. If the
RECL specified in an OPEN statement is different from the actual size
of the records, FOROTS reads the number of <characters specified by
RECL.

11-28

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

For input to disk or CORE-DUMP tape files, specifying a record size
directs FOROTS to read records that are word-aligned. The calculation
of the actual recordsize is the size specified, plus two for the
carriage return/line feed, plus the number of nulls necessary to
word-align the record.

For INDUSTRY tapes, with RECORDTYPE='FIXED', RECL specities the exact
number of characters 1n each record; there are no terminators or
madding characters. PFor INDUSTRY tapes with RECORDTYPE='VARIABLE',
RECL specifies the maximum record size in the file, excluding the RCW.

When the record is read, regardless of the contents of the record, it
is interpreted as specified by the rules above; there are RECL
characters of data, and the rest are ignored. No interpretation |is
done of the <characters in the data part of the record. These
characters appear in the FOROTS line buffer exactly as they appear in
the file, including nulls and control characters.

In the case of MODE='LINED', the value ot RECL exciudes the tive
cnaracters and tab in each line-seguence number.

in a binarv transter (MODE='B_ NARY', or 'IMAGE'), the value assigned
to RBECL specifies the number of 36-bit words in each record. For
MODE='"BINARY', the value 1in RLCL excludes the LSCWs written by FOROTS.

$OTE

it MODE='DUMP' 1s speclified, RECL 1s 1ignored.

RECORDTYPE
Suecifier

11.3.28 RECORDTYPE Specitier

The RECORDTYPE specitier detlines the rormat of the records 1n a
magnetic tape file.

The torm of the RECORDTYPE specitfier 1is:
RCORDTYPE = rtype
shere:

Flype 1% a cnaracLel expresslion

11-29

FILE-

[SEVIE

Ty

z

tler s

i< onern aerined for 3e—-bit format

CONTROL AND DEVICE-CONTROL STATEMENTS

Yot RECURDTYPRE AaAre-

{CORE-DUMP) . For

Conl VY mAdGher 10 Lave, t+18 1s the standard ANSI
recoad forman. Thus, the record data is

Y wrgi e Terminaiors or carriaage control

. - e reoora alracrTiy arter another, to
ixivdd=ienagin 310CKS. For this record

.o HToUKI AR MUSt ne specitiled 1n tne OPEN

nhvsical blocks on the
for the last block.

~mat . Al

e HAe S ve extenr

A snore ook,

format svecifies
standard stream record
at Fhe end of each
StAandarg STream rerminaror is
e b1mlr records. For
T eTAavIor idgentical to that

=1l taope taormats. this racord

i85, 4

S184

v

15

ssi v

5iCa

tor the

H

blocks on ithe
iasc nlock.

T I

2 X leran

in the
. . < of data wilit
formans, 1f a RECORDSIZE 1s
fne actnai record
“ne darta,. CRLF. and the
wara-—aillan the record.

vies

-t

3
x D
1T

ar
Tar

C e : ' FENE A TS B TS]

format (CORR=DIIMP) .
this is the standard
a . Thus, records are
record data 1s written

NPT Yoy ~naracrerg

3H—-bit

raagnear o

for tane

+ 3D
T3IDe,

e B

sy give fratarred to oag

Varianio natn. to exceed the block

PRI . [IERREETE! 1 hies PN statement . Tt &

[ERR AN I anocttrad in rhe OPEN sratement, this

Vx L Soti i o f Gvres speoiried in the

Foab nireceodes aach record., The record

Bt 0w Tateici o OF Wi Qi e LS FOiir CNAracters jess
ey T bW

STATUS

Ty k)
Specifier

11.3.29 STATUS
The STATUS

file being opened
it is closed.

Specifier

specifier lets you specify whether or not the
must exist, or what to do with the opened file when

11-30

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The form of the STATUS specifier is:
STATUS = sta
where:

sta is a character expression whose value is equal to one of
the following:

‘RXPUNGE'
'OLD!
'NEW'
'"SCRATCH'
'UNKNOWN'
'KEEP'
‘DELETE’

The arguments to STATUS are:

inXPUNGE On TOPS-10, this specifies that the file 1is deleted
when it is closed. On TOPS-20, this specifies that the
f1le is deletec¢ and expunged when it is closed.

NOTE

On TOPS-10, any delete also expunges a fti1le
from storage. On TOPS-20, a DELETE operation
marks the file as deleted; an EXPUNGE operation
immediately erases the file from storaqge.

OLD Specifies that the file being opened must already
exist., If the file does not exist, an error results.

NEW On TOPS-10, STATUS='NEW' specifies that the file must
not exist. 1f the file does exist, an error results.
An error also occurs if you specify STATUS='NEW' with
ACCESS=" ©{fN"',"SEQUENTIAL', O INQUTP® (to a read-only
device), .r *RANDIN' (see Section 11.3.1).
On TOPS-20, the STATUS="'NEW' specifier acts

differently, depending on what vyou have in the
directory before STATUS='NEW' is executed.

Also, the way you specify the file in the OPEN
statement which contains the STATUS='NEW' specifier
influences the way the STATUS='NEW' specifier operates.
The following 1list describes the ways that this
specifier can operate when used on TOPS-20. ’

1. If the file specified in the OPEN statement does
not currently exist in the directory, and no
generation number is specified, then the
STATUS='NEW' specifier creates the specified file
and gives it a generation number of 1.

2. If the file specified in the OPEN statement
contains a name, extension, and generation number
that does not exist, the specified file is used.

3. If the file specified in the OPEN or CLOSE
statement contains a name, extension, and
generation number that is exactly the same as an
existing file in your directory, then STATUS='NEW'
causes an error, and no file is created.

11-31

SCRATCH

UNKNOWN

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

4, 1If you did not specify a generation number, but the
file specified has the same name and extension as
an existing file in your directory, then the file
with the same name and extension and the next
highest generation will be created.

Specifies that the file will be automatically deleted
when the file 1is <closed. STATUS='"'SCRATCH' implies

A SCRATCH file is always given a name by FOROTS. The
name of the file 1is 1inaccessible to the FORTRAN
program.

If STATUS= 'SCRATCH' is used, you must not specify FILE,

i Yy GYCROTViION, or VERSION. If your program is
wr1t1ng a flle with STATUS='SCRATCH', and the file is
being written to disk, you can retain it by executing a
CLOSE statement that renames the file to a specified
name.

If a file is opened with STATUS='SCRATCH' the access
must be ACCESS='SEQUENTIAL' i SIHELE! or
ACCESS='DIRECT' : vty (see Section 11 3 l).

Specifies that a file opened for an input operation
must exist. When a file 1is opened for output with
STATUS='UNKNOWN', if the file exists, it is superseded;
if it does not exist, it is created.

UNKNOWN is the default for STATUS. This value is wused
unless you specify STATUS or unless the value of STATUS
is otherwise determined by the ACCESS specifier.

Do the rtile 1s not deleted. Specifying
G B corivaient to specifyinag
AV st SIPATUS= " UNKNOWN' .

TOPS-10. sveciiies that the tile will be erased when

COPL o SD . sueciiaes thalb the frile will be deleted

i logsed. The tile 1s erased when a
net 18 alven. o undelete a
{ UNDELETE command.

TAPEFORMAT

J1.3.30

'ne

ES RS I

Corm

L I R Y

Soectfier i

TAPEFORMAT SPECIFIER

O

TAPKFORMAT

rne

specliter delblnes the phivsical format ol tne maanetic

TAFEFURMAT specitier 1S:

11-32

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

tmode is a character expression having a value -equal to
'CORE-DUMP' or 'INDUSTRY'.

The values for the TAPEFORMAT specifier are:

CORE-DUMP specifies the "DIGITAL-compatible" tape format, which
is 36-bits stored 1in five frames on a 9-track tape.
The SET TAPE RECORDSIZE (TOPS-20) or SET BLOCKSIZE
(TOPS-10) command 1is interpreted to be the number of
36~-bit words in the magnetic tape blocks on the tape,
and 1is wused if no BLOCKSIZE specifier is given in the
OPEN statement. If a BLOCKSIZE specifier is given 1in
the OPEN statement, it is interpreted to be the number
of 36-bit words for both formatted and unformatted
files.

INDUSTRY specifies characters are read or written 1in standard
industry tape format, one character per tape frame.

UNIT
Specifier
(required)

11.3.31 UNIT Specifier (Required)
The UNIT specifier defines the FORTRAN logical unit number to be used.
FORTRAN devices are identified by assigned decimal numbers within the
range 0-99 (see Table 10-3). UNIT must be an integer expression.
The form of the UNIT specifier is:
UNIT= Integer expression
If the unit specifier 1is the first specifier given in the OPEN
statement, the keyword UNIT= is optional. For example the following
statement opens a file on unit 20:
OPEN (20,FILE='MYFILE')
NOTE
The FORTRAN standard 1logical wunit assignments are
described in Section 10.4.3.1. Although the range of
logical unit numbers shown in Table 10-3 is 0-99, the

range of UNIT numbers 1is an installation-defined
parameter.

11-33

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

VERSION (TOPS-10)
Specifier

11.3.32 VERSION Specifier (TOPS-10)

Use the VERSION specifier for disk operations only; it enables you to
assign a 12-digit octal version number to an output file.

The form of the VERSION specifier is:

VERSION=Integer expression

11.4 CLOSE STATEMENT

The CLOSE statement disassociates an active file from a logical unit
and releases the memory occupied by I/0 buffers and other unit-related
data. The CLOSE statement <can also change some of the file
characteristics that were assigned during the OPEN, such as the name,
protection, directory, and disposition of the file.

Once a CLOSE statement has been executed, you must use another OPEN
statement (or implicit OPEN) to regain access to the closed file.

The form of the CLOSE statement is:

CLOSE (closelist)

where:
closelist is a 1list of CLOSE statement specifiers. This
list must contain the UNIT specifier (see Section
11.5.9) and can optionally contain other

specifiers.

11.4.1 Implicit CLOSE

An implicit CLOSE occurs when FOROTS automatically closes a 1logical
unit without execution of a CLOSE statement. This can happen when a
program terminates, or when you execute an OPEN for a wunit that is
already connected to another file.

11.5 CLOSE STATEMENT SPECIFIERS

All of the CLOSE statement specifiers are optional, except the UNIT
specifier which is required. Some CLOSE statement specifiers have the
same formats as the corresponding specifiers in the OPEN statement.

Table 11-5 summarizes the specifiers in the CLOSE statement, and the

type of value required by each. A section number is provided to refer
to detailed descriptions of each specifier.

11-34

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-5: Summary of CLOSE Statement Specifiers and Arguments

Argument Pessible Value Section
DEVICE - Character expression IR
DIALOG
DIALOG Character expression [
DIRECTORY Uharacter expression P01
DISPOSE tharacter expression vath one of the following values: 1154

SAVE L DELETE PRINT O KEEP, "LIST, PUNCII,
EXPUNGE’

ERR- Statement number 11.5.5
LK tharacter expression [
IOSTAT = Integer variable or integer array element 11.5.6
LIMIT integer expression [N
NAME {haracter expression Pl
PROTECTION integer expression 10l
STATUS - Character expression with one of the following values: 11.5.8
TYPE 'KEEP’, 'DELETE’, XPUNGK’
UNIT - Integer expression 11.5.9
HOTE
For compat:bility with previous versions of

FORTRAN-10/20, you can spaecify a numeric array name as
the value of each of the following specifiers:

DIALOG=
DIRECTORY
NAME

When a numeric array name is used, FOROTS assumes that
it contains a string »5f characters terminated by a
null character.

In addition, you can specify a numeric variable as the
value of the DEVICE and FILE specifiers. 1If the
variable is single precision, FOROTS assumes that it
contains 5 characters; if it 1is double precision,
FOROTS assumes that is contains 10 characters.

The use of numeric array names and numeric variables

in place of character wvariables 1is a nonstandard
feature.

11-35

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

DEVICE, DIRECTORY,
FILE, NAME, and
PROTECTION
Specifiers

11.5.1 DEVICE, DIRECTORY, FILE, NAME, and PROTECTION Specifiers

The CLOSE statement file identification specifiers can be used when
you want to rename the output file when it is closed. Their formats
are the same as the corresponding specifiers in the OPEN statement.

If any of these specifiers are given in the CLOSE statement, the file
is renamed when it 1is <closed. If some, but not all of the file
identification parameters are specified on a CLOSE statement, only the
specified parameters are changed when the file is renamed.

Example:

OPEN (20 ,ACCESS='SEQOUT' ,FILE="FOO.BAR")

-

CLOéE(ZO,FILE='NEWFIL')
The above sequence renames the output file to DKSB:NEWFIL.BAR.
Refer to the following sections under the OPEN statement:

FILE - see Section 11.3.15

NAME - see Section 11.3.21

DEVICE - see Section 11.3.8
DIRECTORY (TOPS-10) - see Section 11.3.11

DIRECTORY (TOPS-20) - see Section 11.3.12
PROTECTION (TOPS-10) - see Section 11.3.24
PROTECTION (TOPS-20) - see Section 11.3.25
DIALOG
Specifier

11.5.2 DIALOG Specifier

The DIALOG specifier enables you to type 1in additional CLOSE
specifiers when the CLOSE statement 1s actually executed.

If the DIALOG specifier is found in the CLOSE list, then each time the
CLOSE statement is executed, FOROTS suspends execution and prompts the
terminal with an asterisk.

The form of the DIALOG specifier is:

DIALOG

11-36

FILE-CONTROL ANL DEVICE-CONTROL STATEMENTS

.

i Can respond to the asterisk prompt by enter ing a tile
speclilcation, DIALOG swiltclres (see below), or a tile specification
followed by DIALOG switches. The file specitfication car. be a tull
iile specitication i1ncludina the device, directorv name, and So on.

You enter a tlle speclrication that 1s dirfterent rrom the file
cilLicartlion currentliv asslcned to thne riite, PURULS rRENAMES the tile

rier iF 1e cioged to tile new name.

FNERTIE A

DEALOUG switch s any CLOSE specltler (except DIALOG,
PPALOG=, UNIT. NAME, BFILE, LOSTAT, or ERR) preceded by
Llrasn (/).

.3 DIALOG= Specitilier
“he DTALOG= specitier enables vou to include all or a portion ot the
LOSE specitlers 1n a character expression. The contents of the
fiaracter expresslion are lnterpreted as 1f you had given the DIALOG
pocirler {see above) ; and, when the asterisk prompt was given, you
had tywed in the same strirg as 1s c¢ontalned 1n the character
'wpression, followed by a carriage return.
e form of the DIALOG= specifier 1s:

PALOG= Character exprescsion
sxample:

L1081 (UNIT=20,ERR=10,DIALOG="/DISPOSE:DELETE")

Ahen DIALOG= 1s agiven in the CLOSE list, it 1s processed atter all
rther specifiers except LIALOC.

S OSE |
Doocifier i

}

i ..5.4 DISPOSE Specifier

"he DIsPOBE speciltiler enablies vou to specliy an action t¢ occur when
he tile 1s closed.

'me form of the DISPOSE specilier 1s:

CTSPOSE = dis

11-37

ne

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

4 character expression having a value equal to

ihe ol lowlng:

FAPUMGE!
i INT!

Foerimd

FOUNCH!

DISPOSE speciltier must have one ot the following values:

A Epecities that the file is to be left on the

one

oL

connected

anat. DISPOSE='KEEP' is the default. You can not
sprecairy DISPOSE='KEEP' if in the corresponding
sratement vou specified STATUS='SCRATCH' (see Section

[
v Came as KeEbEP.

specifies on TOPS-10 that, if the device is

Clarn.

o TOPS--20, 1E the device involved i1s a disk,

“fic tile; otherwise, take no action.

TPUNGE Oon TOPS-10, same as DELETE. On TOPS-20, if the

tape or disk, delete the file; otherwise,

elther

OPEN

a

take no

delete

device

involved 1s a disk, expunge the file; otherwise,

GO actlon.

CHINT Specifies that the file will be printed and
File will not be kept if you specify

He on disk.

kept

take

(the

CLOSE
statement STATUS='DELETE' or 'EXPUNGE'). The file must

Pest specities that the file will be printed, deleted,
«oiunaed {the file will not be deleted if you specify

“he CLOSE statement STATUS='KEEP'). The file
11SK .

specities that the file will be punched on
fate puncn and kept. The file must be

NOTE

ine value ot the CLOSE statement DISPOSE specifier
ey sedes the value of the OPEN statement DISPOSE

.wecifier and the OPEN statement STATUS specifier
TATUS='EXPUNGE', 'KEEP', and 'DELETE'.

11-38

must

and

be

paper

on disk.

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

ERR
Specifier

11.5.5 ERR Specifier

The ERR specifier enables you to designate a statement 1label of an
executable statement, in the current program unit, to which control
passes if an error occurs during the execution of an I/0 statement.

The form of the ERR specifier is:
ERR= s
where:

S is the number of an executable statement to which program
control passes 1if an error occurs during the execution of
the statement in which the ERR specifier is included.

The ERR specifier works the same way when it is given in a CLOSE as it
does when given in an OPEN statement (see Section 11.3.14).

IOSTAT
Specifier

11.5.6 IOSTAT Specifier

The IOSTAT specifier identifies an integer variable that is used to
store the I/0 status code during the execution of a statement.

The form of the IOSTAT specifier is:

IOSTAT= Integer variable or integer array element

LIMIT
Specifier
11.5.7 LIMIT Specifier
The LIMIT specifier designates the number of output wunits (such as
pages) for spooled print or punch requests, which result from using
DISPOSE="'PRINT', DISPOSE='PUNCH', or DISPOSE='LIST' (see Section

11.5.4).

11-39

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

The form of the LIMIT specifier is:

LIMIT= Integer expression

STATUS
Specifier

11.5.8 STATUS Specifier
The STATUS specifier tells FOROTS what to do with a file when it |is
closed. In the CLOSE statement, STATUS values are a subset of the
DISPOSE specifier (see Section 11.5.4) values.

NOTE

The ANSI-77 standard does not have DISPOSE and only
allows STATUS='KEEP' or STATUS='DELETE'.

The form of the STATUS specifier is:
STATUS = sta
where:

sta is a character expression having a value equal to one of
the following:

'KEEP'
'DELETE"
'EXPUNGE"
The arguments to STATUS are:
KEEP Specifies that the file is not deleted.
DELETE On TOPS-10, specifies that the file is deleted.
On TOPS-20, specifies that the file 1s marked for
deletion when the file is closed. The file is erased
when a TOPS-20 EXPUNGE command is given. To undelete a
deleted file, use the TOPS-20 UNDELETE command.

EXPUNGE On TOPS-10, the same as delete. On TOPS-20, this
specifies that the file 1s deleted and expunged.

NOTE
The value of the CLOSE statement STATUS specifier
supersedes the value of the OPEN statement DISPOSE

specifier and OPEN statement STATUS specifier 1if
STATUS='EXPUNGE', 'KEEP', and 'DELETE'.

11-40

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

UNIT
Specifier
(Required)

11.5.9 UNIT Specifier (Required)
The UNIT specifier tells FOROTS which logical unit number 1is to be
closed. This specifier corresponds to the UNIT specifier in the OPEN
statement (see Section 11.3.31) and to the UNIT specifiers in the data
transfer statements (see Section 10.4.3).
The form of the UNIT specifier is:

UNIT= Integer expression
If the unit specifier is the first specifier given 1in the CLOSE
statement, the keyword UNIT= 1is optional. For example, to close a
file on unit 20, you can use the following command:

CLOSE (20)

11.6 OPEN AND CLOSE STATEMENT EXAMPLES
The following are examples of OPEN and CLOSE statements:
OPEN (UNIT=1,DEVICE='DSK',ACCESS="'SEQIN',6MODE='BINARY"')

causes a disk file named FORO0l1.DAT (since no FILE= option was
specified) to be opened on unit 1 for sequential input in binary mode.

OPEN (UNIT=3,DEVICE='DSK',FILE='PAYROL.DAT',
1 ACCESS='RANDOM' ,MODE="'ASCII',RECORDSIZE= 80,
2 ASSOCIATEVARIABLE=I,ERR=240)

Causes a disk file named PAYROL.DAT to be opened on unit 3 for random
I/0 operations in ASCII wmode. The records in PAYROL.DAT are 80
characters long; the ASSOCIATE VARIABLE for this file 1is 1I. If an
error occurs during the execution of this OPEN statement, the OPEN
terminates, and control is transferred to the statement labeled 240.

CLOSE (UNIT=3,DISPOSE='DELETE")

The above statement causes the file associated with unit 3 to be
closed and deleted.

11-41

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.7 INQUIRE STATEMENT
The INQUIRE statement inquires about specific properties of a file
name or of a logical unit number on which a file might be opened. The

INQUIRE statement has two forms: one inquires by file, and the c¢ther
inquires by unit.

11.7.1 INQUIRE by File

An INQUIRE by file is an INQUIRE statement containing the following:
e A FILE= keyword
® An associated file specification
e No UNIT= keyword

It is used to obtain information about a file based on the file name.
INQUIRE by file can be used to get information on the following files:

e Files that are "connected"; meaning files for which an OPEN
statement has been executed or for which a data transfer
statement has been executed.

e Files that are not "connected."
INQUIRE by file has the following form:
INQUIRE (FILE=fi[,flist])
where:

fi is a character expression whose value specifies the name
of the file to be inquired about.

flist is a list that can contain at most one of each of the
inquiry specifiers (see Section 11.7.3).

INQUIRE by file may be wused any time during the execution of a
program. It can be used before a file is opened to find out about the
existence of the file, or after the file is opened to find out other
attributes of the file. It can also be used to find the unit number
on which the file is opened. If the same file is opened on more than
one unit, the smallest number on which the file is opened is returned.

The determination of whether a file specified in an INQUIRE statement
is opened on a unit is the following:

1. The file specification given in the INQUIRE statement is used
to lookup the file.

2. If the file exists, the file specification, expanded with the
physical device name and generation (TOPS-20 only), 1is
compared with the file specification for each open unit, in
ascending order, until there is an exact string match.

11-42

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

3. If the file does not exist, the specification given 1in the
INQUIRE statement (with a default of DSK: added if necessary
for the device name), is compared with the file specification
for each open unit, in ascending order, until there is an
exact string match. Note that this match will only be
successful for 'deferred' OPEN files, since non-deferred OPEN
files are always established in the specified directory
immediately. Therefore, the file exists (see item 2 above).

NOTE

If a file exists, INQUIRE by file will not generally
match the file with a unit for which a 'deferred' OPEN
has been done, since the file specification for the
unit has not been expanded. For example, the file's
logical device name has not been replaced by a
physical device name.

(See Section 18.8 for information on FOROTS and INQUIRE by file.)

11.7.2 INQUIRE by Unit

INQUIRE by unit is an INQUIRE statement containing a UNIT= keyword and
no FILE= keyword. It is used to find out information about the file
that may be "connected" to the specified unit.

INQUIRE by unit has the following form:
INQUIRE ([UNIT=]u,ulist)
where:

u is the number of the logical unit to be inquired about.
The unit need not exist, nor need it be connected to a
file. 1If the unit is connected to a file, the inquiry
encompasses both the connection and the file.

ulist is a list that can contain at most one of each of the
inquiry specifiers (see Section 11.7.3).

If the optional UNIT= keyword if omitted, u must be the first item in
the list.

INQUIRE by unit can be used at any time during the execution of a
program. It can be used before a file is opened to find out if there

is another file open on the unit, or after the file is opened to find
out other attributes of the file.

11.7.3 Inquiry Specifiers

The specifiers described in the following sections may be wused in
either form of the INQUIRE statement.

11.7.3.1 ACCESS Specifier - The ACCESS specifier has the following
form:

ACCESS = acc

11-43

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

acc is a character wvariable, array element, or

substring

reterence. It 1is assigned the value 'SEQUENTIAL' if the
file is connected for sequential access, or 'DIRECT' if
the file 1is connected for direct access. If there is no

connection, acc is 'UNKNOWN'.

11.7.3.2 BLANK Specifier - The BLANK specifier has the
form:

BLANK = blk

where:

blk is a character wvariable, array element, or
reference. It is assigned the value 'NULL'

following

substring

if the file

was last opened with BLANK='NULL', and 1is assigned the
value 'ZERO' if the file was opened with BLANK='ZERO', If

the file is not open, blk is 'UNKNOWN',

11.7.3.3 CARRIAGECONTROL Specifier - The CARRIAGECONTROL
has the following form:

CARRIAGECONTROL = cc
where:

ac is a character variable, array element, or

reterence. It 1s assigned the following values:

attribute

Specifier

substring

1 'FORTRAN' if the file has the FORTRAN carriage-control

2. 'LIST' if the file has the implied <carriage-control

attribute

3. '"NONE' if the file has no carriage-control attribute

4. '"TRANSLATED' if the file has FORTRAN carriage-control
characters being translated directly into vertical

motion characters.

5. UNKNOWN if the CARRIAGECONTROL value
determined, or the file is not open.

11.7.3.4 DIRECT Specifier - The DIRECT specifier has the
form:

DIRECT = dir

11-44

cannot be

following

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

dir is a character wvariable, array element, or substring
reference. It is assigned the following values:

1. 'YES'" if DIRECT is an allowed access method for the

file

2. 'NO' if DIRECT is not an allowed access method for the
file

3. 'UNKNOWN' if the processor 1is unable to determine

whether DIRECT is an allowed access method

11.7.3.5 ERR Specifier - The ERR specifier has the following form:
ERR = s
where:

s is the label of an executable statement. ERR is a control
specifier; 1if an error occurs during execution of the
INQUIRE statement, control is transferred to the statement
whose label is s.

11.7.3.6 EXIST Specifier - The EXIST specifier has the following
form:

EXIST = ex

where:

ex is a logical variable or logical array element. It is
assigned the wvalue .TRUE. if the specified file or unit
exists, and the value .FALSE. if the specified file or
unit does not exist.

11.7.3.7 FORM Specifier - The FORM specifier has the following form:
FORM = fm

where:

fm is a character variable, array element, or substring
reference. It 1is assigned the value 'FORMATTED' if the
file is connected for formatted 1/0, and 'UNFORMATTED' if
the file is connected for unformatted I/0. If there is no
connection, fm is 'UNKNOWN'.

11.7.3.8 FORMATTED Specifier - The FORMATTED specifier has the
following form:

FORMATTED = £fmd

11-45

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:

fmd is a <character wvariable, array element, or substring
reference. It is assigned the value 'YES' if formatted is
an allowed form for the file. It is assigned the wvalue
'NO' if formatted is not an allowed form of the file, and
the value 'UNKNOWN' if the form cannot be determined.

11.7.3.9 IOSTAT Specifier - The IOSTAT specifier has the following
form:

IOSTAT = ios

where:

ios is an integer variable or integer array element. It is
assigned a processor-dependent positive integer value if
an error occurs during execution of the INQUIRE statement,
or assigned the value zero if there is no error condition.

11.7.3.10 NAME Specifier - The NAME specifier has the following form:
NAME = nme

where:

nme is a character variable, array element, or substring
reference. It 1is assigned the name of the file being

inquired about.

The value assigned to nme is not necessarily identical to
the wvalue specified with FILE=. For example, the value
that the processor returns may contain a directory name or
generation number (TOPS-20 only). However, the value that
is assigned is always valid for use with FILE= in an OPEN

statement.
NOTE

FILE and NAME are synonyms when used with the OPEN
statement, but not when wused with the INQUIRE
statement.

For INQUIRE by unit, FOROTS returns the full, expanded
file specification if any of the following is true:

e If there is a file open on the specified unit with
STATUS other than UNKNOWN or SCRATCH.

e If there is a file open on the specified wunit with
ACCESS other than SEQUENTIAL.

e An I/0 transfer statement has been executed using the
specified unit and the unit has not been closed.

11-46

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

FOROTS returns the string given in the OPEN for NAME= with
defaults applied if both of the following are true:

e If the file is open on the specified unit as a result
cf an OPEN statement in which STATUS='UNKNOWN' and
ACCESS="SEQUENTIAL' are specified or implied.

e No I/0 transfer statement has been executed using the
specified unit.

If STATUS='SCRATCH', FOROTS returns blanks for NAME=.

If there has been no OPEN statement, and no I/O transfer
statement has been executed wusing the specified unit,
FOROTS returns for NAME= the default file specification
for that unit.

For INQUIRE by file, FOROTS returns the full, expanded
file specification 1if the file exists in the specified
directory. If the file does not vyet exist on the
specified directory, but has been opened by a 'deferred'
OPEN, FOROTS returns the string given in the INQUIRE
statement, with defaults applied for the device and
generation number (TOPS-20 only). Otherwise, blanks are
returned.

11.7.3.11 NAMED Specifier - The NAMED specifier has the following
form:

NAMED = nmd

where:

nmd is a logical variable or logical array element. It is
assigned the wvalue .TRUE, if the specified file has a
name, and the value .FALSE. if the file does not have a
name.,

11.7.3.12 NEXTREC Specifier - The NEXTREC specifier has the following
form:

NEXTREC = nr

where:

nr is an integer variable or integer array element. It 1is
assigned an integer value that is one more than the last
record number read or written on the specified direct
access file. If no records have been read or written, the
value of nr is one. If the file 1is not connected for
direct access, or if the position is indeterminate because
of an error condition, nr is zero.

11.7.3.13 NUMBER Specifier - The NUMBER specifier has the following
form:

NUMBER = num

11-47

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

where:
num is an integer variable or integer array element. It |is
assigned the number of a logical unit currently connected
to the specified file. If there 1is no 1logical unit

connected to the file, num is not defined. 1If more than
one unit is connected to the file, the smallest unit
number is returned.

11.7.3.14 OPENED Specifier - The OPENED specifier has the following
form:

OPENED = od
where:

od is a logical variable or logical array element. It is
assigned the value .TRUE. if the specified file is opened
on a unit or if the specified wunit 1is opened; it Iis
assigned the wvalue L(FALSE. 1if the file or unit is not
open.

11.7.3.15 RECL (RECORDSIZE) Specifier - The RECL (RECORDSIZE)
specifier has the following form:

RECL = rcl
where:

rcl is an integer variable or integer array element. If the
file (or unit) is opened, rcl is the record length for
fixed-length record files. 1In all other «cases, rcl |is
zero. If the file 1is opened for formatted I/0, rcl is
expressed in characters, and 1in words if the file is
unformatted.

11.7.3.16 RECORDTYPE Specifier - The RECORDTYPE specifier has the
following form:

RECORDTYPE = rtype
where:

rtype is a character wvariable, array element, or substring
reference. It 1s assigned the value 'FIXED' if the file
has fixed-length records, assigned the value 'VARIABLE" if
the file has wvariable-length records, and assigned the
value 'STREAM' if the file is a stream file (default for

disk and magnetic tape). If the processor cannot
Jdetermine the record type, rtype 1is assigned the value
'UNKNOWN"' .

11-48

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS
11.7.3.17 SEQUENTIAL Specifier - The SEQUENTIAL specifier has the
following form:
SEQUENTIAL = seq
where:

seq is a <character variable, array element, or substring
reference, It is assigned the following values:

1. 'YES' if SEQUENTIAL is an allowed access method for
the specified file

2. 'NO' if SEQUENTIAL is not an allowed access method

3. 'UNKNOWN' if the processor cannot determine whether
SEQUENTIAL is an allowed access method

11.7.3.18 UNFORMATTED Specifier - The UNFORMATTED specifier has the
following form:

UNFORMATTED = unf
where:
unf is a <character wvariable, array element, or substring
reference, It is assigned the value 'YES' if unformatted
is an allowed form for the file. It is assigned the value

'NO' if wunformatt:ed 1is not an allowed form of the file,
and the value 'UNKNOWN' if the form cannot be determined.

11-49

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

Table 11-6 summarizes the form and use

statements.

of the FORTRAN device

Table 11-6: Summary of FORTRAN Device Control Statements

Statement Form

Section

FIND (UNIT un.REC rn| . ERR <[IOSTAT iosh
FIND cun’rnl KRR s||,IOSTAT josh

11.8.1

REWIND un
REWIND (UNIT —unf,ERR —s||,JOSTAT = ios|)
REWIND (un[,ERR - ||, IOSTAT - ios|)

11.8.2

UNLOAD un
UNLOAD (UNIT unl .ERR sll.IOSTAT ios|:
UNLOAD (unf . ERR sIEIOSTAT josh

11.8.3

BACKSPACE un
BACKSPACE (UNIT - un|,ERR si[,JIOSTAT —ios|
BACKSPACE (un|,ERR=s][,JOSTAT - ios])

11.8.4

ENDFILE un
ENDFILE (UNIT =un|,ERR =s][,IOSTAT —ios)
ENDFILE (un},ERR == s][,IOSTAT —ios])

11.8.5

SKIPRECORD un

SKIPRECORD tun[LEND sl ERR sILIOSTAT iosh

SKIPRECORD tUNIT unl.END sl .ERR sl JOSTA"”

10s]1

11.8.6

SKIPFILE un
SKIPFILE (UNIT unl,ERR ={l.IOSTAT -iosh
SKIPFILE tunl . ERR sIIOSTAT iosh

11.8.7

BACKFILE un
BACKFILE (UNIT unl.ERR sl IOSTAT iosh
BACKFILE tunl.ERR sl.IOSTAT iosh

11.8.8

11-51

control

FILE-CONTROL AND DEVICE-CONTROL STATEMENTS

11.8 DEVICE CONTROL STATEMENTS

Device control statements enable you to position external devices.
For example, when performing data transfers with magnetic tape, you
use device control statements to position the tape. The device
control statements may be used for both formatted and unformatted
files.

The following list contains all of the device control statements, and
the section in which each statement is described.

1. FIND (Section 11.8.1)

2. REWIND (Section 11.8.2)

3. UNLOAD (Section 11.8.3)

4. BACKSPACE (Section 11.8.4)

5. ENDFILE (Section 11.8.5)

6. SKIPRECORD (Section 11.8.6)

7. SKIPFILE (Section 11.8.7)

8. BACKFILE (Section 11.8.8)

NOTE
The results of the BACKSPACE and SKIPRECORD statements
are unpredictable when used on 1list-directed and
NAMELIST formatted data.
The general form of eve