ON THE IMPLEMENTATION OF ALGOL 68
A Thesis
Submitted to the Faculty
in partial fulfillment of the requirements for the
degree of
Doctor of Philosophy
by
Sidney Marshall
Thayer School of Engineering
Dartmouth College
Hanover, New Hampshire
June 1972
This research was supported by the
Advanced Research Projects Agency
of the Department of Defense and was
monitored by the Air Force Office of

Scientific Research under Contract
No. F44620-68-C-0015.

Examining Committee:

Chairman

Director of Graduate Study

(SCHOOL) THAYER SCHOOL OF ENGINEERING

DARTMOUTH COLLEGE

(TITLE) On the Implementation of ALGOL 68
by
(NAME) - Sidney Marshall
(DEGREE) Doctor of Philcsophy
(DATE & YEAR) JUNE 1972
ABSTRACT

This thesis is concerned with implementing a compiler for
the computer language ALGOL 68. The conmnpiler contains two
passes that are syntax directed followed by a third code
generating pass.

Imbedded in the syntax for pass 1 and pass 2 are
"actions" that are subroutine calls that perform the actual
compilation. All declarations are analyzed in pass 1 and
stored in tables for use by pass 2. Pass 2 rereads the
source program and generates a modified Polish postfix
intermediate code. Pass 2 also determines the proper
sequence of "coercions" to apply. These coercions
transform one data type into another and an extensive set of
coercions is provided by ALGOL 68. Determining the proper
sequence of coercions to apply in a particular case is not
trivial and an algorithm that determines this sequence is
presented.

A garbage collector is described for use in ALGOL 68

ii

programs. This garbage collector cnllects all ALGOL 68
data types and requires no push-down stack.

The purpose of this thesis was to see if practical
compilers for ALGOL 68\could be written. It was found that
such a compiler could be written but that there were some
language features that could be modified to simplify the

compiler writing task.

iii

PREFACE

I wish to express my appreciation to Kiewit computation
center and especially Professors Thomas Kurtz and Robert
Hargraves for the facilities provided me to complete this
thesis.

I would also like to extend special thanks to Professor
Robert Hargraves for the many discussions regarding my
thesis.

I would like to thank Professor Miles Hayes, the chairman
of my dissertation committee, for his interest and
encouragement.

Of coursc, without my wife, Halina, who tolcrated my bad
moods and encouraged ny good modes, this thesis would never
have been completed. She deserves more thanks than I could

possibly give in this preface.

iv

TABLE OF CONTENTS

ABSTRACT
PREFACE
INTRODUCTION
BRIEF DESCRIPTION OF THE COMPILER

General overview

Source program scanher

Syntax analyzer

Tables used by the compiler
PASS 1
PASS 1.5

PASS 2

Page
ii

iv

12
17
22

27

Method of compiling constructions in ALGOL 68 29

The operator identification process
The coercion process
The PCDR (procedure) routine
PASS 3
Method of compiling the Polish opefators
THE LOADER
Cannonical modes
The garbage collector
USE OF THE COMPILER
CONCLUSIONS
APPENDIX
BIBLIOGRAPHY

LISTING OF THE COMPILER

51

76

78

87
113
115
119
130
134
136
196

Volume 2

INTRODUCTION

Summary
The computer language ALGOL 68 is defined by
[Wijngaarden, A. van (Ed.), Mailloux, B.J., Peck, J.E.L.,

Koster, C.H.A., Numerische Mathematik, 14, 79-218 (19€9)].

The purpose of this thesis is to develop a practical
compiler for the language.

The structure of the language inherently reguires that
the compiler be two-pass, since operators and identifiers
may be used before their declaration. This compiler is
essentially two-pass,

Both passes are syntax-directed. The syntax was derived
from the report and is an LR(1) production scheme which is
original in this thesis. The semantics for both passes are
embedded in the syntax in the form of actions. In pacs 1
the semantics (actions) are mainly concerned with
constructing the symbol table. In pass 2, the actions
generate an intermediate output code, which is a modified
Polish postfix form that is easily converted to the desired
machine code. The particular intermediate language is
original and was devised for this thesis. ‘(In this
implementation, pass 3 performs the conversion to HIS-G635
machine code.)

ALGOL-68 provides an elaborate set of ccercion rules for
converting values from one mode to another. Determining in
a specific instance the correct coercions to apply can be

1

2
quite complicated. In this thesis, an original and
elaborate three part algorithm performs this task, and
appears in pass 2 (a posteriori mode routine, coercion setup
routine, compile coercion routine).

Also original in this thesis is the garbage collector, a
part of both the compile time and run time storage
allocation functions. The garbage collector is interestiﬁg
in that only one bit per word is required for supplementary
storage in order to carry out the "collection" process (no

stack is required).

Brief description of ALGOL 68

ALGOL 68 is a new language developed from the experience
gained from ALGOL 60 and has many similar features
[Wigngaarden, A. van (Ed.), Mailloux, B.J., Peck, J.E.L.,
Koster, C.H.A., "Report on the Algorithmic Language ALGOL

68", Numerische Mathematik, 14, 79-218 (1969)]1]. The block

structure of ALGOL 60 is retained as well as most of the
other features. One difference is that statements in ALGOL
60 are generalized into clauses in ALGOL 68 and are defined
to have a value. It is therefore possible to enter a new
block or range in an arithmetic formula in ALGOL 68 while
this can be done in ALGOL 60 only with a procedure.

The 'for' loop in ALGOL 68 is a little more restrictive
but allows a more efficient implementation. The value of

the running variable or any of the loop parameters cannot be

3
modified, so the loop can be set up once and none of the
loop parameters will change.

ALGOL 68 defines all of the input/output conventidns
including formatted and formatless and binary input/output.
Even file opening and closing routines are defined.

One of the major additions in ALGOL 68 is its concept of
mode. Instead of a finite list of types for values that
can be manipulated by the program, there are an infinite
number of types called modes of data that a program could
manipulate. These data types or modes are defined in a
recursive fashion and include all of the data types found in
ALGOL 60. There are also modes specifying higher precision
than normal and modes specifying structures, procedures, and
unions.

A value whose mode is structured consists of an ordered
collection of values of various modes arranged in fields.
This collection of values can be manipulated as a unit, or
the individual constituent values can be manipulated by
specifying the tag associated with the field. By using
structured values complex numbers and general list
structures are handled by ALGOL 68 in a natural way.

Procedures are values that are actually algorithms or
routines. Procedure values may be used as elements of
arrays or structures or may invoke the routine which is
their value. This invocation may be recursive. Since

there is no label mode in ALGOL 68, the procedure mode is

4
used for this purpose. Such a procedure is a routine that
causes a jump to the specified label. In this way the
environment problems associated with labels are handled by
the procedure environment handling methods.

The prcocedure linkage has been improved in ALGOL 68.
Since the mode of all values is known at compile time and
the mode of all formal parameters is also known, all
necessary mode converting code can be compiled and no checks
at run time need to be performed. The concept of call by
name in ALGOIL 60 is not used in ALGOL 68, but any formal
paranetex can be declared to be a procedure. This causes
the actual parameter to be turned into a procedure (if it is
not already one) which is executed each time the procedurs
calls on it. This carrys out the effect of the ALGOL 69
call by name.

One important feature of ALGOL 68 is that the modes of
all run time values are known at compile time. However, it
is sometimes desirable to determine modes at run time. A
united mode is a mode that represents a value that can be
one of a list of modes. At run time tests can be made to
determine which mode a united value really is. This test
must be performed before using the value so the mode of all
values at run time is still known at compile time.

New operators can be declared in ALGOL 68 so vector
calculations can be written as compactly as numerical

calculations. Operators are similar to procedures with one

or two formal parameters.

ALGOL 68 allows the programmer to generate very general
list structures, but the programmer is given no way to free
a particular structure. Instead, a garbage collector is
used to free all memory that the program can no longer use.
This makes it impossible for the programmer to inadvertantly
free a structure that will be used again.

Arrays in ALGOL 68 are similar to those in ALGOL 60 and
allow arrays with elements of any mode. Arrays of
structures or procedures are allowed. By slicing an array
either an element of the array or a subarray can be
obtained.

ALGOIL 68 contains several constructions designed to make
the language more convenient to use. There is a 'case'
clause that is similar to a conditional clause except that
an integer selects one of several clauses to be executed.
The value of a case clause is the value of the clause
executed.

ALGOL 68 is careful to distinguish between the concepts
of declaring an identifier and allocating memory. In ALGOL
60 declarations accomplish both, and these two functions are
inseparable. In ALGOL 68 declarations assign meaning to an
identifi~r but do not allocate space for a value.

Generators allocate memory but are not associated with any
identifier. Of course a declaration can associate a

generator with an identifier but this is not necessary.

6
Generators can be used to generate new elements of a list
structure whose access is through other elements of the list

structure.

BRIEF DESCRIPTION OF THE COMPILER

General overview

The compiler is divided into several sections. There is
the input preprocessor that reads the source program
character by character and combines groups of characters
into useful syntactic units. This is the only routine that
manipulates source program characters. Both pass 1 and
pass 2 use the input preprocessor to read the source
programn.

Pass 1 reads the entire source program using the input
preprocessor and constructs tables containing all
declarations in the program. Pass 1 also constructs a
table with entries for every left parenthesis, vertical bar,
and left bracket in the program. This table will be used
by pass 2 to enable it to choose the proper syntax for a
closed clause.

At the end of pass 1 several of the tables constructed
during pass 1 are cleaned up. Mode indications are
replaced by the modes to which they refer in the mode table
and duplicate modes are combined. Some definitions in the
DEF table are spurious because of pass 1's limited context
sensitivity and these are deleted. The length of values of
all modes is calculated and stored in the mode table.
Patterns for all modes are also generated.

Pass 2 then rereads the entire source program via the
input preprocessor and generates intermediate compiled code

7

8
in table CODE. This intermediate code resembles Polish
code and contains pointers to the definition tables so that
the following pass is not ccncerned with any analysis.
Pass 2 contains all of the coercion routines that determine
all coercions to be applied to coercends and their order.

Both pass 1 and pass 2 are syntax directed by a syntax
written by the author. The syntax used for pass 1 and pass
2 are in the appendix together with a description of all the
actions contained in the syntax.

Pass 3 reads the intermediate code generated in pass 2
and compiles machine code. At the end of the compiled code
pass 3 adds loader information which contains patterns for
all values used by the program and all external symbol
definitions and references. Pass 3 also contains a mode
cannonizer that generates cannonical forms for modes so that
identical modes in different programs can be recognized by
the loader with a simple compare operation.

The loader then loads all necessary library programs,
binds them together, and executes the resulting code. When

the program exits the job is terminated.

Source program scannher

Since it would be cumbersome to use a syntax analyzer to
analyze each character of a program, a small input
preprocessor is used to buffer the analyzer from the source

program., It combines one to several characters of the

9
source program into a single syntactic unit which it
presents to the syntax analyzer. Thus, the analyzer can
deal with units such as identifiers or numbers without
having to construct these units out of characters. The
preprocessor operates as a finite state machine with its
next state determined from the current state and the curéent
source character. On the basis of its state the
preprocessor can cause the cource character to be added to
an internal string, skip a source character, back up the
source string one or two characters, or look up its internal
string in a symbol table and give a pointer to the entry to
the syntax analyzer to analyze.

Every time the preprocessor is called it returns a
pointer to an entry in the symbol table (STAB). This entry
contains a pointer to the string that was matched and a
pointer to a chain of definitions for the symbol. Routines
that call the preprocessor never have to deal with source
program characters as the pointer to the symbol table entry

contains all the information about the symbol.

The syntax analyzer

The syntax analyzer is a small routine that analyzes the
source program and calls the various routines necessary to
compile it. It does this by attempting to match the source
program to a production of 'PROG'. This is done by

matching the source program against the successive

10
alternatives of 'PROG'. As each alternative is composed of
names of other productions, the algorithm is recursive.
The syntax consists of a set of production rules. Each

production rule has a name and a list of alternatives.

Each alternative is a list of elements. An element can be
the name of a production rule or an action. All actions
are subroutines that return either 'OK' or 'FAIL'. The

action of the syntax analyzer can be described as a program

with the following steps:

1. Initialize S to be a pointer to the first element
of the first alternative of the production rule 'PROG'.

2. If S points to an action then transfer to it.

If the action returns 'OK' then go to step 4. If the
action returns 'FAIL' then go to stép 6.

3. If S points to the name of a production rule then
push the pointer S onto the control stack, make 5 point
to the first element of the first alternative of the
production rule pointed to by S, and go to step 2.

4, OK: If there are no more elements in the
alternative of the production pointed to by S then pop
the top of the control stack into S and repeat this step.

5. Step pointer S so that it points to the next
element in the current alternative and go to step 2.

6. FAIL: If the pointer S does not point to the

first element of an alternative then the syntax analyzer

11
fails and a terminal error message is printed.

7. If there is another alternative after the
alternative pointed to by S then make S point to the
first element of the next alternative and go to step 2.

8. Pop the toé of the control stack into S and go to

step 6.

There are two types of actions used in the syntax. One
type of action is a subroutine that performs some function
of the compiler and always returns with 'OX', The other
type of action is a match action and examines the next
syntactic unit from the input preprocessor to see if it
matches a syntactic unit specified by the match action. T
it does not match, the match action returns with 'FAIL'
otherwise the input preprocessor is advanced one syntactic
unit and the action returns with 'OK'.

Since the analyzer fails if a 'FAIL' return occurs
anywhere except at the first element of an alternative the
syntax is arranged with match type actions as the first
element of each alternative except possibly the last. The
other elements of an alternative are then made up of actions
that usualiy return 'OK' or names of production rules.

The syntax can be considered as a program with the first
element of an alternative being a conditional statement and
the rest of the elements of the alternative being a sequence

of statements to be executed. Actions correspond to normal

12
statements, and names of production rules correspond to
recursive subroutine calls. Since the control stack is
stacked and unstacked as production rules are entered and
exited, actions can use the control stack for temporary
storage provided that no such storage is left on the control
stack at the end of an alternative. Such storage
corresponds to local storage of a recursive procedure.
Another stack,; called the working stack, is provided for
temporary storage that does not appear and disappear as
preduction rules are entered and exited. The allocation in
this stack is under the sole control cf the actions. It is
mainly used to construct lists whose length is not known
initially. This is accomplished by storing a pointer to
the current top of the working stack in the control stack.
The elements of the list are then successively pushed on the
working stack. The pointer to the old top of the working
stack is retrieved and all of the words added after this
point are elements of the list. Structured and united

declarers are constructed in this manner.

Tables used by the compiler

There are several tables that are constructed and used by
the compiler. Since the size of these tables is unknown at
the start of compilation, these tables must be allocated
dynamically. There is a table allocation routine that will

allocate any specified number of words at the end of any

13
table, To do this it may have to move adjacent tables to
nmake room. Consequently, all program references to any
table must be relative to the base of the table as the table
may be moved at any time.

Two of the tables ére actually stacks and the allocator
maintains both a table control word and a top of stack
pointer for these tables. For the other tables, the
allocator maintains only a table control word. A table
control word consists of a pointer to the base of the table
and its current length.

The tables are used to store information accumulated
during each pass and pass it on to the next pass. Since
the compiler can be described in terms of how it constructs,
changes, and references the tables, a short description of

each table is now given:

WORK (working stack)

This is a étack which is used by actions during passes 1
and 2 and by some of the cleanup routines in pass 1.5 to
store temporary information. Its stacking and unstacking

is controlled by the actions.

STACK (control stack)
This stack is used by the syntax analyzer to remember the
state of the surrounding parse. It is also used as

temporary storage by some actions during pass 1 and 2 and by

14

some of the cleanup routines in pass 1.5.

MODE

This table contains entries that represent modecs. In
final form all modes ére pointers to an entry irn this table
and all constituent modes of a mode are also represented as

pointers to this table.

BOUND
This table contains entries that represent bound
information of array declarers. Declarers refer to both a

mode and a bound table entry.

DEF

Entries in this table represent declarations in the
source program. Entries in this table are chained together
and represent all possible definitions for a given
identifier or‘indicant. Entries representing declarations

in the same range are also chained together.

PROG

This table records the parenthesis structure of the
source program. It is used by pass 2 to anticipate to a
limited degree the structure of the source program. Every
left parenthesis, left bracket, and vertical bar in the

source program creates an entry in this table.

15
STAB
This is the symbol table. Each entry contains a pointer
to the external character representation of the symbol and a

pointer to its definition chain in the DEF table.

ITAB
This is the identifier table and contains the character

strings of all symbols in the source program.

CODE
The intermediate code generated during pass 2 is placed

in this table.

LBL

Internally generated labels are integers. During pass 3
this table is used to store the address of a label and a
pointer to a chain of addresses that should have this 1label

as a value.

GEN
The machine language object code and associated loader

information are put in this table during pass 3.

TYPE
A template for every value to be used by the object

program is stored in this table. These templates will form

16
part of the loader information generated at the end of pass

3.

227
This table contains instruction sequences for standard
prelude operators., It is used by pass 3 in generating code

for the standard operators.

SDEF

This table contains a list of symbols defined by the
program. This table is mainly used when creating a new
library procedure.

An advantage of organizing all dynamic memory together is
that no individual table will run out of space unless there
is no space for any table. There is also no problem of
guessing how much space should be allocated to a given
table. A possible disadvantage is that table references
are slower because all references are relative to a base
word requiring extra additions and subtractions to change
relative table references to absolute references and vice

versae.

PASS 1

It is the job of pass 1 to build the MODE, BOUND, DEF,
and PROG tables. Every time a left parenthesis, vertical
bar, or a left bracket is encountered in the source program
an entry is created in the PROG table. Encountering a left
parenthesis or a left bracket causes the routine SRNGE
(start range) to be entered. This routine stores several
words in the control stack including a pointer to the entry
just created. When the matching right parenthesis or
bracket is encountered these saved words will be restored
from the control stack by the routine ERNGE (end range). A
vertical bar is treated as a combination right parenthesis
and left parenthesis. ERNGE also stores in the table entry
the number of commas, colons, and semicolons since the last
left parenthesis, left bracket,; or bar not contained in any
nested set and a flag indicating whether or not the clause
is a procedure denotation. The PROG table is used by pass
2 to determine whether a left parenthésis is the start of a
procedure denotation, parallel clause, serial clause, etc.

Declarations can only occur after a semicolon, left
parenthesis, vertical bar, or comma following another
declaration. There are four types of declarations: mode,
priority, operation, and identity. Mode declarations have
three forms:

MODE X =
STRUCT X =

17

18

UNION X =
These forms can be recognized by the use of one of the
reserved words 'MODE'!, 'STRUCT', or 'UNICN' followed by an
unreserved word. When one of the above forms is
encountered, the mode following the equal sign is evaluated
and an entry in the DEF table is created defining X as a
mode indication whose definition is the mode and bound just
evaluated.

Priority declarations have only one form:

PRIORITY X =
This form can be recognized by the presence of the reserved
word '"PRIORITY'. When this form is iecognized an entry is
made in the DEF table defining X to have a priority equal tc
the digit following the equal sign.

Operation declarations have two forms:

OP X = <procedure denotation>

OP (<mode sequence>)<mode or empty> =
Both of these forms can be recognizedlby the presence of the
reserved word 'OP'. The two forms can be distinguished by
whether or not the symbol following 'OP' is a left
parenthesis. If it is the second form then an entry is
made in the DEF table defining X to be an operator with the
procedure mode specified by the symbols between the 'OP' and
the '='. If it is the first form then the entry is made in
the DEF table defining X to be an operator but no mode

specified. After the mode of the procedure denotation is

19
known then this procedure mode is inserted in the table
entry.
Identity declarations come in several forms:
<mode> X
<mode> X =

<mode> X :=

PROC X = <procedure denotation>
PROC X := <procedure denotation>
where <mode> is any mode declarer. Unfortunately it is

impossible in Pass 1 to distinguish identifiers, mode
indications, and operators from each other making it
impossible tc identify <mode>. hié problem is
circumvented by treating anything that could possibly be a
<mode> as one, This can result in some spurious
declaratiéns but these will be discovered in pass 1.5 and
deleted. <mode> can only start with one of the following
constructions:

[

REF

STRUCT (

UNION (

PROC

<unreserved word>
If it is any construction but the last two then the mode can
be evaluated with no problemn. In the last case an entry is

made in the MODE and BOUND tables defining the unreserved

20
word to be a mode indication. An entry can now be made in
the DEF table defining X to be an identifier whose mode and
bound have just been calculated. If an equal sign does not
immediately follow X then the mode has a reference inserted
in front of it.

When 'PROC' is the first symbol then the situation is
complicated. If the 'PROC' is followed by a left
parenthesis then it is a mode and can be handled like the
other modes. When there is a construction like "PROC X =",
then if a procedure denotation follows the 'PROC', it should
be considered to have the same mode as the procedure
denotation; otherwise, its mode is procedure void. There
is explicit syntax to handle all of the cases involving the
symbol 'PROC'. Also, if a closed clause is encountered
that is not a procedure denotation, it is arbitrarily
assigned the mode procedure void as an aid to this syntax.

Labels are declared as follows: if the construction "X:"
is encountered outside of a pair of bfackets, X is declared
to be a label. Label declarations are treated as identity
declarations whose mode is the pseudo mode MSLBL.

Except for potential declarations and constructions
entered in the PROG table pass 1 ignores all other symbols
in the source program. There is a production rule for
'JUNK' that skips all sequences of operators, identifiers,
and modes, and this production rule is used whenever a

declaration would be impossible.

21
It is possible in a sequence of declarations to omit the
reserved word or mode in the second and following
declarations if it is the same as in the first declaration.

For example:

PRIORITY + = 6, - = 6;
is the same as:
PRIORITY 4+ = 6, PRIORITY - = 6;

After processing a declaration a check is made to see if the
declaration is followed by a sequence like ", X =", If it
is then these symbols are processed as another declaration.
Otherwise, the production rule for DEC is used.

At the end of pass 1 all modes, priorities, operators,
and identifiers have been defined and for each an entry in
the DEF table has been made with the definition and the
range for which the definition is valid. Since every entry
in the PROG table contains a pointer to another entry in the
PROG table for the surrounding range, the proper definition
of any symbol can be found by looking for a definition in

the current range and working out from there.

PASS 1.5

———

After the declaration tables have been constructed in
pass 1 it is necessary to clean them up before pass 2 uses
them. This "cleanup" is accomplished by a set of routines
called "pass 1.5" which is not really a pass at all.

Since pass 1 puts an entry in the DEF table for anything
resembling a declaration all spurious declarations in the
DEF table must be removed. Mode, priority, and operation
declarations can be accurately recognized during pass 1 and
are correct. The problem arises with constructions like "X
Y" where 'X' may be a mocde indication. and "X Y" a
declaration declaring 'Y' to be an identifier of mode 'X' or
'REF X'. 'X' might also be a unary opérator in which case
'Y' is not declared to be anything. To discover which case
is true the routine looks up 'X' in the symbol table. If
'X' is a mede then the declaration is good. If 'X' is a
priority or an operator then the declaration is spurious.

If 'X' is an identifier then the declaration is spurious if
the declaration for 'X' is not spurious. In the last case
the routine calls itself recursively. If the declaration
for 'X' is not spurious then the declaration for 'Y' is
spurious. Otherwise, the spurious declaration for 'X' is
deleted and another definition for 'X' is sought. When all
of the identifier definitions have been checked all spurious
declarations have been eliminated. While this routine is
checking for spurious declarations it also checks for

22

23
symbols that are multiply defined in the same range. If
two definitions for the same symbol are found in the same
range, a message is printed and one of the definitions is
deleted.

Once the DEF table is corrected, the MODE and BOUND
tables can be corrected. This routine finds every entry in
the MODE or BOUND tables that is a mode indication. These
entries should be replaced by the definition of the mode
indication. When a mode indication entry is found the
indication is looked up in the DEF table and its definition
discovered. The entry in the MODE or BOUND table is then
replaced by an 'XFER' entry that has a pointer to the true
mode or bound. When this routine is completed all mode
indications have been replaced by an 'XFER' entry pointing
to an equivalent entry.

At this point the MODE table is correct although a single
mode may be represented by several entries in the MODE
table. It is necessary in pass 2 to be able to tell if two
modes are equivalent. This routine replaces all but one of
the entries referring to the same mode by 'XFER' entries.

An 'XFER' entry contains a pointer to another mode table
entry. A pointer to a mode table entry is made 'unique' by
examining the table entry to which it points. If the table
entry is an 'XFER' entry then the original pointer is
replaced by the pointer found in the mode table entry.

This process 1is repeated until the entry pointed to by the

24
mode pointer is not of type 'XFER'. Two pointers refer to
the same mode if they are both made unique and then refer to
the same mode table entry. The routine that changes
selected entries in the mode table tc type 'XFER' is based
on an algorithm by C. H. A. Koster who makes the
observation that two modes are equivalent if they cannot be

proved to be dissimilar. The algorithm works as follows:

1. If the two modes are of different types e.g.,
STRUCT and UNION, then the modes are not equivalent.

2. If the two modes are of the same type and length
(two STRUCTs with the same ﬂumber of fields) then the two
modes are postulated to be equivalent and the two modes
are equivalent if and only if all of the constituent
modes and tags are equivalent or postulated to be
equivalent.

3. If two modes are equivalent then all postulates

made to show the equivalence are true.

This equivalence algorithm is applied to every pair of modes
in the MODE table. If the two modes are discovered to be
equivalent then one of the modes is replaced by an 'XFER'
entry pointiné to the other mode. When this routine is
completed there is a unique entry associated with every mode
of the source program. This algorithm must terminate

because each step postulates two modes to be the same.

25

Since this can be done only a finite number of times before
all given modes are postulated equivalent, the algorithm
must terminate.

The next routine scans the DEF table for all label
definitions. It assigns a unique integer to each label.

The next routine scans the mode table and enters in every
valid entry the length of a value of the mode and a pointer
to a pattern (stored in the TYPE table) for the value. The

routine operates according to the following principles:

1. All primitive modes have their lengths and types
predefined.

2. All procedure modes have a length of 4 and a
pattern pointer 'PROCT'.

3. All structure modes have a length that is the sum
of the lengths of its fields and a pattern that is the
concatenation of the patterns for its fields.

4, All united modes have a length one more than the
length of the longest constituent mode and a pattern of
two words the first of which is 'UNT1' and the second is
minus the length of the longest constituent mode.

5. Reference modes that do not refer to row modes
have a length of 1 and a pattern of 'PTR', Reference
modes that do refer to row modes have the same length and
pattern as the‘row mode to which it refers.

6. Row modes have a length of 4n + 1 where n is the

26
number of dimensions of the row mode and a pattern of n +
1 words. The first word of the pattern is 'PTR' and all

the rest are 'QUAD'.

The next routine rewinds the source file and prepares the
input preprocessor to reread the source program.

This is the end of pass 1.5,

PASS 2
Pass 2 rereads the source program and, with the help of
tables constructed in pass 1, generates a Polish-like output
code that completely describes the computation indicated by

the source program. There are several constructions that
pass 2 must recognize in the source program and each will be
discussed separately. The constructions are:

identifiers

Labels

Primitive denotations

Slices

Calls

Selections

Generators

Monadic formulas

Dyadic formulas

Assignations

Conformity relations

Identity relations

Casts

Serial clauses

Conditional clauses

Case clauses

Conformity case clauses

Parallei clauses

Procedure denotations

27

28

Declarers

Declarations
Each of the above constructions produces appropriate Polish
code so pass 3 does not have to make any further reference
to the source program. The coercion process and the
operator identification routine are major parts of pass 2
and are described separately in their own section.

During pass 2 the control stack is used for temporary
storage during the interpretation of a syntax alternative.
The working stack is used during the compilation of
declarers to store partially constructed declarers in the
same manner as pass 1. The main use of the working stack
is to store five word blocks that describe a value in the
run time stack. The format of a five word value control
block is:

[type flag, number of parallel values]
[mode of valuel
[location and length of code calculating value]
[lexicographical level bit word]
[-5, 0]
The value control blocks stored in the working stack during
pass 2 mirror the values that will appear in the local run

time stack when the object program is executed.

29

Identifiers

Identifiers cause a 'O$IDENT' code word with a pointer to
the DEF table for the identifier to be added to the
intermediate code. A value control block is pushed onto

the working stack containing the mode of the identifier.

Labels
A label is compiled by adding a 'O$LBL' code to the
intermediate output with a parameter that is unique.

References to the label will use the same unique number.

Primitive denotations

Primitive denotations are all denotations except
procedure denotations. This includes integral, real, and
string denotations. The character string representing the
denotation is converted to an appropriate internal
representation (as converting a number to floating point)
and an entry in the DEF table is created for the denotation
containing the internal representation. Then a 'O$DENOT'
code is added to the intermediate code with a pointer to the
newly created DEF table entry. A value control block with

the mode of the denotation is pushed onto the control stack.

Slices
A slice is a ptimary followed by a left bracket followed

by a list of indexers separated by commas followed by a

30
right bracket as "A[B, I : J AT K]". A slice is compiled
by first compiling its primary and weakly coercing it to a
row or reference to row mode. Then a 'OSSUB' code is added
to the intermediate code followed by the code generated by
compiling the indexers in sequence followed by a 'O$BUS'
code with the mode of the resulting slice.

The code generated by each of the indexers depends on the
type of the indexer. If the indexer is empty (i.e.,
contains no bounds) a 'OS$VEPTY' code with the position
number of the indexer is added to the intermediate code.

If the indexer is a subscript then the subscript is compiled
and strongly coerced to integral and a 'O$VSBCT' code with
the index position added afterwards to the intermediate
code. The value control block for the coerced subscript is
then deleted from the working stack. If the index position
is a trimmer then each bound in the trimmer is compiled and
strongly coerced to integral. Then the intermediate code
for each bound is followed by 'O$VLWB"for a lower bound,
'O$VUPB' for an upper bound, and 'O$VNLWB' for a new lower
bound. The value control block for the bound is then
deleted from the working stack.

For example, the slice:

A[B,,:C,D:E AT F]
compiles as:
[primary A]

SUB Beginning of subscript expression

31
[tertiary B]
VSBCT 1 First indexer is subscript
VEPTY 2 Second indexer is empty
[tertiary C]
VUPB 3 Third indexer contains upper bound
[tertiary D]
VLWB 4 Fourth index contains lower bound
[tertiary E]
VUPB 4 Fourth index contains upper bound
[tertiary F]
VNLWB 4 Fourth index has new lower bound
BUS mode Mode of slice
Pass 3 actually calculates all of the bounds before starting

any indexing operations.

Calls

Calls consist of a primary followed by a list of units
surrounded by parentheses, The primary is supposed to be a
procedure and the units are its actual parameters. A call
is compiled by compiling its primary and firmly coercing it
to a procedure mode. A 'OSMSCW' code is then added to the
intermediate code. The list of units surrounded by
parentheses is compiled as a parallel clause which is a
structure display. This display is then strongly coerced
to a structured mode having the modes of its fields the same

as the modes of the parameters of the procedure. Both the

32
value control block for the display and the procedure are
deleted from the working stack. A value control block
having the mode of the result of the procedure is then
pushed onto the working stack and a 'OS$SENTER' code with the

result mode is added to the intermediate code.

Selections

A selection consists of a tag followed by the symbol 'OF'
followed by a secondary. A pointer to the tag symbol in
the STAB table is stored in the control stack. The
secondary is then compiled and weakly coerced. The tag is
recovered from the control stack and the mode of the coerced
secondary is examined. The mode must be either struct(...)
or ref struct(...). If it is not there is a source program
error. The structured mode is searched for a field whose
tag matches the given tag. If no such field is found it is
a source program error. If the mode~of the coerced
secondary is struct(...) then a 'OS$SSELCT' code is added to
the intermediate code. Otherwise a "OSRSLCT' code is
added. The field number of the desired field is also added
to the code. The top value control block in the working
stack which corresponds to the coerced secondary has its
mode changed to the mode of the selected field. If the
original mode was a referenced mode then the new mode is
changed to a reference to the mode of the field. The code

'OSETC' with the mode of the value control block is added to

33

the intermediate output.

Generators

Generators appear in the source program as declarers.
When a declarer in the source program is recognized by the
syntax as a generator, a value control block is pushed into
the working stack with a mode of the declarer. A code word
'OSLGEN' for a local generator or 'OSHGEN' for a heap
generator containing the mode of the generator is added to
the intermediate code. Then a 'O$BOUND' code with a
pointer to the BOUND table entry of the declarer is added to

the intermediate code.

Monadic formulas

A monadic formula is an operator followed by a secondary.
A pointer to the STAB table entry for the operator is stored
in the control stack. The secondary is then compiled.
The pointer to the STAB table entry for the operator is
retrieved from the control stack and the operator

identification routines are called.

Dyadic formulas

In the case of dyadic formulas the syntax does not parse
the source program into proper components. To parse a
program correctly would require the operator syntax to be

repeated ten times - one for every priority level possible

34

for an operator. It would also require matching "priority
five operator" which is not convenient. Instead the syntax
parses dyadic formulas from left to right and lets the
actions compile the proper code to group operands in the
proper sequence. Whenever the syntax recognizes a dyadic
operator it obtains the priority of the operator and calls
the operator identification routine to compile any previous
higher priority dyadic operators. Then a value control
block of type 'WSOP' is pushed onto the working stack.
This value control block refers to the previous 'WSOP' value
control block if any and contains the priority of the
operator and a pointer to the operator's STAB table entry.

Whenever the end of a dyadic formula is encountered in
the source program all dyadic operators in the working stack
are compiled by assuming a following priority zero operator
and calling the operator identification routine. This

assumed operator is never stored in the working stack.

Assignations

An assignation is a tertiary followed by a 'becomes'

symbol (':=') followed by a unit. The tertiary is compiled
and softly coerced. The mode of the coerced tertiary is
remembered in the control stack. The unit is then compiled

and strongly coerced to a mode that is the mode remembered
in the control stack dereferenced once. The top two value

control blocks in the working stack are combined into one

35
and a 'ASGN' code is inserted in front of all code for the
assignation and a 'ASGNE' is added after all code. Each
code has the mode of the assignation associated with it.
The mode of the assignation remembered in the control stack

is then deleted.

Conformity relations

Conformity relations allow the programmer to discover the
current mode of the value of a united value and make this
contained value available to the programmer. In the
conformity relation:

A ::=B
The tertiary B is to be evaluated first. If the current
mode of the value of B can be assigned to A (if the mode is
corrcct) then it is assigned to A and the value of the
conformity relation is true. Otherwise no assignation
takes place and the value is false. Notice that the
tertiary B is evaluated before the tertiary A and that A
might not be evaluated. This backwards elaboration
requires some branching back and forth to make the
elaboration order correct. If the '"::=' symbol is replaced
by a '::' symbol the meaning is the same except that the
assignation never takes place and the left tertiary is never
evaluated. The intermediate code generated for the above
code is:

TRA #1 Generated label

MREF

LBL #2
CONF mode
TF #3
MREF

[tertiary A]

CASGN ref mode

TRUE
TRA #4
LBL #1
MAX

[tertiary B]

CONE
TRA #2
LBL #3
FALSE
LBL #4

36

Allocate space

Generated label

Mode of tertiary

Generated label

Allocate space

Do assignation

Get true value

Generated label

Generated label

Protect temporary memory

Save pointer to B

Generated label

Generated label

Get false value

Generated label

Conformity relations are unique in that they require a run

time execution different from the order in the source

program.

Identity relations

An identity relation consists of a tertiary followed by

either a

:=:'" or a ':

/

followed by another tertiary.

The two tertiaries are compiled. A value control block of

type 'WS$BAL' with a count of two is then pushed onto the

37

working stack, The coercion routine is called to calculate
the a posteriori mode of a soft coercion applied to the top
value control block in the working stack. This is the mode
to which both tertiaries are to be coerced. Each tertiary
is then coerced separately to this mode. The working stack
now contains three value control blocks from the identity
relation: two value control blocks for the two tertiaries
and the 'W$BAL' value control block. These three value
control blocks are combined into one block and the mode is
set to boolean. For example, the identity relation

A :=: B
compiles as:

[tertiary A]

[tertiary B]

IS

Casts

Casts consist of a virtual mode declarer followed by a
colon followed by a unitary clause and surrounded by
parentheses, The unitary clause of the cast is compiled
and then strongly coerced to the mode specified by the

declarer.

Serial clauses

Serial clauses are made up of declarations, labels, and

clause trains. All of the declarations must occur before

38
the first label or end of a clause train. A clause train
is made up of a sequence of units. A serial clause is
compiled by compiling its constituents in sequence.
Whenever a unit that is not the last unit of a clause train
is compiled the value of the unit is strongly coerced to
void and all value control blocks associated with it are
deleted from the working stack. When a serial clause is
completely compiled, the working stack contains value
control blocks arising from the final units of the clause
trains. A value control block is now pushed onto the
working stack of type 'W$BAL' that contains a count of the
number of clause trains in the serial clause. When the
serial clause is coerced the collection of value control
blocks will be replaced by one value control block for the

serial clause.

Conditional clauses

A conditional clause has the form:

(A\NB\C)
where A, B, and C are serial clauses. The serial clause A
is compiled and strongly coerced to boolean. A transfer

false code is generated that transfers to a generated label.
All valu~ control blocks associated with the serial clause A
are deleted from the working stack. The serial clause B is
then compiled. it is followed by a code to unconditionally

transfer to a second generated label and a code to define

39

the first generafed label. The serial clause C is then
compiled followed by the defining of thé second generated
label. A value control block of type 'W$SBAL' with a count
of two is then pushed onto the working stack so that the
coercion routines will coerce B and C simultaneously. The
resulting intermediate code is as follows:

[serial clause A]

TF #1 Generated label

[serial clause B]

LBL #1 Generated label

[serial clause C]

If a conditional clause has its last clause missing then
an else clause consisting of 'SKIP' is assumed and the
conditional clause is compiled in the normal manner.

Conditional clauses can be extended by using 'thenf' or
'elsf' symbols ('\:'). These extensions are handled in an
identical manner as the basic conditional clause. In the
case of an 'elsf' symbol as in

(AN B\: c\D\E)
the serial clauses C, D, and E are a conditional clause that
is the else clause of another conditional clause. Both
conditional clauses are compiled in the same way. In the
case of thé 'thenf' symbol as in

(AN\:B\Nc\D)
the serial clauses B, C, and D form a conditional clause

that is the then clause of another conditional clause. The

40
B, C, and D clauses are compiled into a conditional clause
in the normal manner but the outer clause is missing an else
part. A 'SKIP' is compiled for the else part then the

outer conditional clause is compiled in the normal manner.

Case clauses

A case clause is similar to a conditional clause except
that the clause to be executed is selected by an integral
value rather than a boolean value. An example of a case
clause is:

(A\NB,c,D\E)
A and E are serial clauses and B, C, and D are unitary
clauses. The serial clause A is compiled and strongly
coerced to integral. A 'CASE' code with an argument of n
followed by n + 1 'TRA' codes are then generated where n is
the number of unitary clauses separated by commas in the
case clause, All value control blocks associated with the
A clause are then deleted from the working stack. The
unitary clauses B, C, and D are then compiled with labels
inserted in front of each unitary clause. A value control
block of type 'WS$BAL' with a count of n is then pushed onto
the working stack. Then the serial clause E is compiled
and a label inserted in front of this compiled code. A
value control block of type 'WSBAL' with a count of two is
then pushed onto the working stack.

The resulting intermediate code has the following form:

41

[serial clause A]

CASE 3 Number of unitary clauses
TRA #4 Generated label
TRA #1 Generated label
TRA #2 Generated label
TRA #3 Generated label
LBL #1 Generated label

[unitary clause B]
LBL $2 Generated label
[unitary clause C]
LBL #3 Generated label
[unitary clause D]
LBL #4 Generated label
[serial clause E]
If the last serial clause is missing then a SKIP is assumed

and compilation proceeds normally.

Conformity case clauses

A conformity case clause is a case clause except the
selection of the clause to be executed is determined by a
set of conformity relations. The format of a conditional
case clause is:

(A ,B,C::=D\E,F,G\H)
This is equivalent to the following clause:
(A ::=D\E

\: B::=D\F

42
\: C ::=D \ G
\H)
This example should execute by first evaluating the tertiary
D and then checking whether or not it conforms to A or B or
C and doing appropriate assignments and transfering to the
appropriate clause E, F, G, or H. The intermediate code

generated for the above example is:

TRA #1 Generated label
MREF Allocate space
LBL #2 Generated label
CONF mode Mode of tertiary
TF #3 Generated label
MREF Allocate'space

[tertiary A]

CASGN ref mode Do conformity

TRA #6 Generated label
MREF Allocate space
LBL #3 Generated label
CONF mode Mode of tertiary
TF #4 : Generated label
MREF Allocate space

[tertiary B]

CASGN ref mode Do conformity
TRA #7 Generated label
MREF Allocate space

LBL $#4 Generated label

CONF mode
TF #5
MREF
[tertiary

CASGN ref mode

TRA #8
MREF
LBL #5
TRA #9
LBL #1
MAX

[tertiary

CONE

TRA #2

LBL #6

[tertiary
TRA #10
LBL #7

[tertiary
TRA #10
LBL #8

[tertiary
LBL #10
TRA #11
LBL #9

[tertiary

Cl

D]

E]

F]

Gl

H]

43
Mode of tertiary
Generated label

Allocate space

Do conformity

Generated label
Allocate space
Generated label
Generated label
Generated label

Protect temporary memory

Save pointer to D
Generated label

Generated label

Generated label

Generated label

Generated label

Generated label

Generated label
Generated label

Generated label

44
LBL #11 Generated label
If the last clause is missing a SKIP is assumed and

compilation proceeds normally.

Parallel clauses

Parallel clauses consist of a list of unitary clauses
separated by commas and surrounded by parentheses.
Parallel clauses can be used as either row displays or
structure displays. In either case code is generated for
each of the constituent unitary clauses and a set of value
control blocks is pushed onto the working stack for each of
the unitary clauses. When all of the unitary clauses have
been compiled a 'WSPAR' type of value control block is
pushed onto the working stack that contains a count of the
numbexr of constituent unitary clauses in the parallel
clause. This collection of value control blocks will be
combined into a single value control block by the coercion
routines. |

The compiler considers the actual parameters pack in a
procedure call to be a parallel clause. This allows the
coercion required for the actual parameters to be done by

the same coercion routines as do the structure displays.

Procedure denotations

Procedure denotations consist of a list of formal

parameters surrounded by parentheses followed by a possible

45

mode and a colon and followed by its body. Each formal
parameter causes a 'OSFORMP' code to be generated with a
pointer to the DEF table entry of the formal parameter as
its argument. The modes of the formal parameters are
successively stored in the working stack. After the formal
parameters are scanned the mode of the result is scanned and
also stored in the working stack. The list of modes of the
formal parameters in the working stack and the mode of the
result are considered to represent a procedure mode whose
parameter modes are the same as the modes stored in the
working stack and having the same result mode. This mode
is found in the mode table and a pointer to the table entry
in the mode table representing this mode is stored on the
control stack. The list of modes representing the formal
parameters are then deleted from the working stack. The
body of the procedure is compiled causing value control
blocks to be stored in the working stack representing its
value. The mode of the body is recovered from the mode of
the procedure denotation stored in the control stack and the
body is strongly coerced to this mode. Then the mode of
the procedure is recovered from the control stack and the
routine PCDR is called to make a procedure value out of the
body. For example, the procedure denotation:

(REAL X) REAL : X
generates the foliowing Polish code:

TRA . #1 Generated 1label

46

EPDN #2 Generated label

LL L LL of scope of procedure

SRNGE R Range of‘procedure denotation
FORMP X Formal parameter

IDENT X Body of procedure

ERNGE R Range of procedure denotation
RETN REAL Mode of result

LLE L1 LL of surrounding range

LBL #1 Generated label

EPDV PROC (REAL) REAL Mode of procedure
EPDE #2 Generated label
The scope of a procedure is defined as the smallest scope

of any of the constituents of the procedure that are not
local. In order to calculate the scope of a procedure
every value in the working stack contains a bit word
indicating which nonlocal identifiers, operators, labels, or
declarers were used in calculating the value. Each bit
position corresponds to the level difference between the
current level and the level of the identifier etc.
Whenever a range is exited, all of the bit words in the
value control blocks belonging to the exited range are
shifted left one position. This makes the bit words
correct for the external range. The scope of a procedure
is calculated as the range corresponding to the first bit
that is on in the bit word of the value control block for

the procedure body.

47

Declarers

A declarer is generally used to specify a mode. The
ALGOL 68 report defines three types of declarers: virtual,
actual, and formal. Virtual declarers are used only to
specify a mode. This mode is used only at compile time and
generates no object code directly. Actual declarers appear
in mode declarations and in generators. Mode declarations
associate a source program symbol with a declarer for use in
other declarers. Generators cause the allocation of
storage at run time to contain a value of the specified
mode. The bounds of all constituent arrays must also be
specified and this is the major difference between virtual
and actual declarers., The run time form of an actual
declarer is a set of procedures that define the bounds and
states of all constituent arrays in the declarer. (Formal
declarers in the current implementation are treated as
virtual declarers. If they were not they would compile as
bound and state checking procedures. These procedures
would have no effect except the production of terminal error
messages when a bound or state was wrong.)

Since the definition of mode is recursive the evaluation
of a declarer is also recursive. During the analysis of a
declarer the working stack is used to hold the partial
development of the declarer. In the case of an actual
declarer intermediate code is generated for each set of

bound tertiaries enclosed in brackets as follows. When the

48

left bracket is encountered a transfer around the following
code is generated followed by three codes defining the start
of a procedure denotation. Each'tertiary that is a bound
is compiled and strongly coerced to an integral mode. The
value control block for the coerced tertiary is deleted from
the working stack and the intermediate code for the tertiary
is followed by a 'OSLWB' or 'O$UPB' with dimension number
for lower bound or upper bound respectively and a 'OS$FIX' or
'O$FLEX' code with dimension number for a fixed or flexible
bound respectively. When all bounds have been compiled and
the right bracket is encountered a 'O$DBUS' code with the
mode of an element is added to the intermediate code. Then
the codes 'OS$RETN', 'OSLLE', 'OS$SDLEN', and 'OSLBL' are added
to the intermediate code. Since a procedure value for the
procedure denotation compiled for arrays in declarers does
not exist, calling such a procedure is slightly different.
Two labels defined by the procedure denotation are stored in
the PROG table for the pseudo-range between brackets and
these labels are the starting address of the procedure and a
location containing the amount of static temporary storage
the procedure needs. With this information the caller can
construct a procedure value and use it in the normal way.
For example, the declarer:

[A : B FLEX, C FLEX : D] REAL
causes the following intermediate code for the array part of

the declarer to be generated:

Pass 3 will define the label of the

TRA #3
EPDN #1

LL range
DSUB
[tertiary A]
LWB 1

FIX 1
[tertiary B]
UPB 1
FLEX 1
[tertiafy Cl
LWB 2
FLEX 2

[tertiary D]

UPB 2

49
Generated label

Generated label

Range defined by brackets

Start procedure denotation

First lower bound

Bound is fixed

First upper bound

Bound is flexible

Second lower bound

Bound is flexible

Second upper bound
FIX 2 Bound is fixed
DBUS mode Mode of element
RETN void Value of resﬁlt is void
LLE range Range of procedure environment
DLEN #2 Generated label
LBL #3 Generated label

'O$DLEN'

code to be a

storage location containing the required length of static

temporary storage needed by the procedure. If a declarer
is a structure containing two arrays then two procedures are

compiled.

50

Declarations

There are four kinds of declarations: mode declarations,
priority declarations, operation declarations, and identity
declarations.

Mode declarations ére compiled by compiling the actual
declarer of the declaration and ignoring the rest of the
declaration. All table entries for the declaration were
created during pass 1 so pass 2 can skip entering the mode
in tables.

Priority declarations define the priority of an operator.
They result in no compiled codeland as pass 1 has created
the appropriate table entry for the declaration, pass 2 can
ignore the entire declaration.

Operation declarations associate a procedure with an
operator. Operation declarations are compiled exactly as
are identity declarations by assuming that the operator is
an identifier with the mode of the procedure associated with
it.

Identity declarations associate a value of a particular
mode with an identifier. There is an extension to the
language that permits constructions 1like

REF REAL X = LOC REAL
to be shortened to
REAL X
but the syntax treats both forms in an identical manner and

both forms result in exactly the same intermediate code.

51

An identity declaration consists of a formal declarer (but
this implementation requires a virtual declarer) followed by
an identifier followed by an equals symbol fcllowed by unit.
The mode of the declarer is evaluated and saved. A pointer
to the DEF table entry for the identifier is saved. The
unit is compiled and strongly coerced to the mode specified
by the declarer. A 'OSIDNTY' code with a pointer to the
identifier's DEF table entry is inserted in the intermediate
code before the code for the coerced unit and a 'OSIDNTE'

code is added after the code for the coerced unit.

The operator identification process

In ALGOL 68 several declarations for the same operator
nay be valid at the same time. It is up to the compiler to
determine which of the definitions is to be used at each
occurence of an operator. Conceptually, the process is
simple. If the operands of an operator can be firmly
coerced to the modes required by a declaration then that
declaration is the one to be used. Otherwise, other
definitions must be tried. Operators declared in the
innermost range are tried first and operators declared in
successiveiy larger enclosing ranges are tried if the
preceeding operators are inappropriate. Of course no
coercions are actually applied to the operands until it is
known which definition for the operator will be used.

In the present compiler, operators declared in the

52
standard prelude are applied even though strong coercions
are necessary for its operands. This is done to reduce the
number of declarations needed in the standard prelude for
operators such as '+' which is defined for all combinations
of the‘modes integer, real, and complex. This allows using
the definition for a (REAL, REAL) REAL '+' when one of the
operands is real and the other is integral. The integral
operand can be strongly coerced to the mode real before
applying the operator. The ability to use strong coercions
on the operands greatly reduces the number of operators that
need to be defined.

If the opcrator is identified as a user defined operator
then a standard procedure call to the operator procedure
with its operands as formal parameters is compiled.
Otherwise, if the operator is identified as a standard
prelude operator, code for the operands is compiled followed
by a "OSOPE' command with a pointer to the STAB table entry
for the operator as a parameter. Pass 3 will generate

inline code instead of a procedure call in this case.

The coercion process

One of the distinguishing characteristics of ALGOL 68 1is
its coercion process. Most computer languages have a set
of informal rules for automatically changing one type of
value to another. For example, a procedure without

parameters is called if it appears in an arithmetic formula

53

and the result of the procedure call is used. In ALGOL 68
there is an infinite number of possible automatic mode
changing operations and these have been formalized in the
coercion process. There are eight coercions:
deproceduring, dereferencing, proceduring, uniting,
widening, rowing, hipping, and voiding. Each coercion is
capable of converting a value of one class of modes into a
value of a related class of modes. Not all coercions are
allowed everywhere in the program. In some places all
coercions are allowed while in others only some of the
coercions are allowed. Every syntactic position in which a
valuc can be specified is given a "strength" indicating
which coercions are allowed. Strong positions (actual
parameters in procedure calls, the right hand side of an
assignation, the first secrial clause in a conditional or
case clause, subscripts) allow all of the coercions to be
used. Firm positions (operands in formulas, the procedure
in a procedure call) allow only deproceduring,
dereferencing, proceduring, and uniting coercions. Weak
positions (the array value in a slice, the secondary in a
selection) allow only deproceduring and dereferencing.
Soft positions (the left hand side of an assignation, one of
the sides of an identity relation) allow only deproceduring.

The coercion process is further complicated by
"balancing". If a conditional clause can return one of two

values then both values must have the same mode. However

54
coercion may be used to make the modes the same.
Furthermore, while only coercions allowed by the strength of
the position of the conditional clause may be applied to one
of the values, the other value is in a strong position and
any coercion can be used. It is not obvious which value is
strong so it is not obvious which value might determine the
mode of the conditional clause. A similar problem arises
in row displays where one of the elements in the display may
be firm and determine the mode of the row value and all of
the other elements may be strong.

The coercion routines are divided into several parts:
routines to determine the a posteriori mode in the coercion
process, routines to construct the actual coercicon seqguence,
and routines to use the coercion sequence list and actually
perform the coercion. By separating the coercion routines
in this way the individual routines can be simplified. For
strong coercions the a posteriori mode is known so the
coercion list can be set up and coercions performed. If
the coercion process fails then the source program is in
error. There are two types of firm positions: operands and
primaries in procedure calls. In the case of operands the
a posteriori mode is discovered by the operator
identification routine. In the case of a primary in a
procedure call the a posteriori mode is found by the a
posteriori mode routine. Weak positions are values that

are sliced or selected and the a posteriori mode is

55
discovered by the a posteriori mode routine. Soft
positions also use the a posteriori mode routine to discover
the a posteriori mode but in the case of an identity
relation the two sides are balanced before the coercion
routines are called. A short description of the coercion

routines follows.

The a posteriori mode routine

The a posteriori mode routine requires a pointer to where
in the working stack the value control block for the value

to be coerced is stored and the strength of the coercicn

(firm, weak, or soft). It returns the a posteriori mode
for the coercion process. Basically the discovery of the a
posteriori mode is simple. It is complicated by the

possibility of balanced expressions where any of the
constituent values may determine the a posteriori mode.
The algorithm used to determine the a posteriori mode is as

follows:

1. Set the depth counter to zero and set a pointer
to the value control block to be coerced and call it the
current value control block. Also clear the target mode
and zero out the saved mode count.

2. If the current value control block is of type
'WSPAR' then there is a source program error.

3. 'If the type of the current value control block is

56
of type 'WS$SKIP', 'WSNIL', or 'WSVAC' or if the mode of
the current value contrel block is "MSLBL' then go to
step 30.

4, If the current value control block is not of type
'WSBAL' then go to step 7.

5. Increment the depth counter by the count in the
value control block. This 1is a count of the number of
balanced values.

6. Go to step 30.

7. Clear target mode, zero mode count, clear temp 1
and temp 2.

8. Get the mode of the current value control block
and call it the current mode. Deprocedure this modec as
many times as possible.

9. If the rcsulting current mode is not reference to
something then go to step 14.

10. Store current mode (which is a reference mode)
in temp 1.

11. Store current mode in temp 2.

12. Dereference or deprocedure the current mode
(whichever is appropriate) and increment the mode count
by 1.

13. If the current mode can be dereferenced or
deprocedured then go to step 11.

4. If it is not a soft coercion then go to step 21.

15. - If temp 1 is clear then it is an error.

57

16. If the target is clear then go to step 18.

17. If the mode count is larger than the saved mode
count then go to step 30.

18. Store the mode saved in temp 1 in target mode.

19. Store the mode count in the saved ﬁode count.

20. Go to step 30.

21, If the target mode is not clear then go to step
28.

22, If this is a firm coercion then go to step 26.

23. If temp 2 is clear then go to step 26.

24, If temp 2 does not contain a reference mode then
go to step 26.

25, Store the contents of temp 2 in target mode and
go to step 30.

26. Store current mode in target mode.

27. Go to step 30.

28, If target mode is not a reference mode then go
to step 30.

29. Store current mode in target mode.

30. Step the pointer to the current value control
block back one block deeper in the working stack.

31. Decrement the depth counter by one.

32, If the depth counter is still positive then go
to step 2.

33. If the target mode is clear then there is a

source program error otherwise return the target mode as

58

the a posteriori mode.

The coercion setup routine

The coercion setup routine constructs a detailed list of
coercion instructions in the control stack for coercing the
value specified by a given value control block in the
working stack (the a priori mode) to a given a posteriori
mode. The algorithm is recursive and handles balanced
expressions and displayed values. As the algorithm is
rather complicated a simplified explanation is given first.

Of the eight coercions only dereferencing and
deproceduring make a mode "simpler" while all of the others
make a mode "more complicated". Therefore, a coercion
sequence will start with deproceduring and dereferencing and
end with other coercions. The basic scheme is to
deprocedure and dereference the a priori and a posteriori
modes as much as possible and check if the results are the
same., If so, a coercion sequence can be constructed by
coercing the a priori mode tco its reduced mode and then
reversing the coercion sequence from the a posteriori mode
to its reduced mode. Of course referencing is not allowed
and deproceduring followed by proceduring and dereferencing
followed by referencing must be deleted from the sequence.
If the two reduced modes are not the same then the reduced
mode of the a pribri mode must be united, widened, or rowed.

What is actually done is to "unwiden", "unrow", or "ununite"
14 14

59
the reduced mode of the a posteriori mode and again find the
reduced mode of the resulting mode. (In the case of
ununiting all of the alternative modes must be tried in
succession until successful.) If the a priori and a
posteriori reduced modes ever match then a coercion sequence
can he constructed. In the case of a skip, nil, vacuum, or
label the coercion can be deduced immediately from the a
posteriori mode.

Balancing is trivial if the a posteriori mode is known.
The component values (which may also be balanced) are
individually coerced to the a posteriori mode and balance
instruction is added to the coercion sequence. If any
component value cannot be coerced to the a posteriori mode
then the entire balancing fails. This failure may cause
the coercion setup routine to try another alternative in a
united mode or the entire coercion process may fail.

Row or structure displays are coerced by finding the basé
mode of the a posteriori mode. If it is a row mode then
the component values of the parallel expression are coerced
to the mode of an element of the row mode. If the base
mode 1is a structure then the component modes are coerced to
the modes of the fields of the structured mode. If the
base mode is a united mode then each alternative of the
united mode is tried until the parallel expression can be
coerced.,

One complicating factor is that the strength of the

60
coercion can change when a united mode is encountered.
This is handled by a flag indicating whether or not strong
coercions are allowed.

The complete coercion setup algorithm is:

1. Save return address; assume VALP points to value
control block to be coerced, BMODE is a posteriori mode.

2. Set CF and FF to -1; these flags mean no strong
coercions performed yet and strong coercions are allowed
respectively.

3. If the current value control block has the type
'WSBAL', 'WSPAR', 'W$SKIP', 'WSNIL', 'WSVAC', or the mode
of the value control block is 'MSLBL' then go to the BAL,
PAR, SKIP, NIL, VAC, or LBL routine respectively.

4, Push a zero in the working stack.

5. Push into the working stack the coercion sequence
required to reduce the mode of the current value control
block to its reduced mode. Set AﬁODE equal to this
reduced mode,

6. Push a pointer to the current top of the control
stack in the working stack. Set a count in this pushed
word to minus one.

7. Push into the control stack the coercion sequence
required to reduce the mode in BMODE to its reduced mode.
Then set BMODE to this reduced mode.

8. If AMODE does not contain the same mode as BMODE

61
then go to step 16.

9. Delete words from the working stack until a word
with a count of minus one is deleted. This word was
pushed in the working stack in step 6.

10. If the top word of the working stack equals the
top word of the control stack and the words are not zero
then delete both words from their respective stacks and
repeat this step (10).

11. If the top of the working stack is a REF
coercion and the top coercions in the control stack are a
series of ROW or ROWE coercions preceeded by a ref
coercion then delete all of these words and push a REFRW
(reference row) coercion onto the control stack.

12. Remove the top word from the working stack. If
this word is a zero then continue on to step 13.
Otherwise, the word is either a REF or PROC coercion.
Change it to a DEREF or DEPR (deprocedure) coercion and
push it onto the control stack and fepeat this step (12).

13. Push onto the control stack a VALP command with
a pointer to the current value contrel block pointed to
by VALP.

14, Decrement the value control block pointer so
that it points to the previous value control block in the
working stack.

15. Return successfully. The control stack

contains the complete coercion sequence for coercing the

62
given value control block to the a posteriori mode.

16. If BMODE contains the void mode and strong
coercions are allowed (FF # 0) then go to the VOID
routine.

17. If BMODE contains either a primitive mode or a
row mode and strong coercions are allowed (FF # 0) then
go to step 23.

18. If BMODE does not contain a united mode then go
to step 33.

19. If AMODE does not contain a united mode then go
to step 24.

20. If there is any mode from which the mode in
AMODE is united that is not among the modes from which
the mode in BMODE is united then go to step 33.

21. Push into the control stack the coercion UNION
with the mode contained in BMODE.

22, Go to step 9.

23. Set CF to zero to indicaté strong coercions are
being used.

24, Push into the control stack a coercion command
that is the type of the mode contained in BMODE with the
mode contained in BMODE.

25, Push into the working stack a pointer to the
current top of the control stack with a count of zero.

26. Remove top word in working stack which is a

pointer to the control stack and a count. If the count

63
is minus one then go tc step 35.

27. Using the pointer to the control stack popped
from the working stack in step 26 get the mode that was
stored on the control stack when the pointer was stored
in the working stack.

28, Increment the count in the word popped from the
working stack. If the count now exceeds the number of
modes contained in the mode recovered from the control
stack then go to step 35.

29, Push back into the working stack the pointer to
the control stack with an incremented count.

30. Store the mode selected by the incremented count
and the control stack mode in BMODE. This is either a
component mode of a united mode,; element mode of a rowed
mode, or a mode that can be widened.

31. If the mode in BMODE was selected from a united
mode then set FF equal to zero (allow only firm
coercions) . Otherwise set FF not'equal to zero.

32, Go to step 7.

33. Remove the top word in the working stack which
is a pointer to the control stack and successively delete
words from the control stack until it is the same length
as when it was marked. If any words were deleted from
the control stack set BMODE to the mode contained in the
last word deleted.

34, Go to step 26.

64
35. Delete words from the working stack until a zero
word is deleted. This will delete all words stored in
the working stack by the coercion routine.
36. Return with failure. There is no coercion that
can be applied to the given value to give a value with

the given a posteriori mode.

VOID ROUTINE

V1. Delete words from the working stack until a word
with a count of minus one is deleted.

V2. Delete words from the working stack that
indicate a reference coercion.

V3. Get the mode contained in the top word in the
working stack and store this mode together with a VOID
coercion command in the control stack.

V4, Go to step 10 in the main coercion setup

routine.

SKIP ROUTINE

S1. Set CF equal to zero to indicate strong
coercion,
s2. Push into the control stack a SKIP coercion

command with the mode saved in BMODE.

S3. Go to step 13 in the main coercion setup

65

routine.

NIL ROUTINE

N1. Set CF equal to zero to indicate strong
coercion.

N2. If the mode contained in BMODE is not a
reference mode then go to step 36 in the main coercion
setup routine.

N3. Push into the control stack a NIL coercion
command with the mode saved in BMODE,.

N4. Go to step 13 in the main coercion setup

routine.

LBL ROUTINE

L1, Set CF equal to zero to indicate strong
coercion.
L2, Push into the control stack the coercion

sequence required to deprocedure the mode contained in
BMODE as far as possible.

L3. Push into the control stack a HIP command with
the resulting deprocedured mod=s.

L4, Go to step 13 in the main coercion setup

routine,

66

VAC ROUTINE

E1. Set CF equal to zero to indicate strong
coercion.

EZ. Remember the length of the control stack in VACT
in the case of failure.

E3. Push into the control stack the coercion
sequence required to deprocedure the mode contained in
BMODE as far as possible.

E4, Push into the control stack a ROW command with
the resulting deprocedured mode.

E5. If the resulting mode was a rowed mode then go
to step 13 in the main coercion setup routine.

E6. Using the contents of VACT delete all words that
were added to the control stack by this routine.

E7. Go to step 36 in the main coercion setup

routine.

BAL ROUTINE

B1. Push into the working stack the return address
from the main coercion setup routine; a zero that will
turn into the strength of the balanced coercion; the mode
stored in BMODE; the current length of the control stack;
the current value control block pointer; and the count

stored in the current value control block (which is a

67
'"WSBAL' value control block).

B2, Push into the control stack a BAL command with a
count equal to the count in the current value control
block.

B3. Push into the control stack a MODE command with
the mode stored in BMODE.

B4, Push into the control stack a VALP command with
a pointer to the current value control block which is
stored in VALP.

B5. Decrement the contents of VALP so that it points
to the previous value control block stored in the working
stack.

B6. Recursively call the main coercion setup routine
with the value controcl block pointer in VALP and the a
posteriori mode in BMODE as parameters.

B7. If the coercion attempt fails then go to step
B14.

BS8. Get the coercion strengthvrequired from CF and
or this into the coercion strength saved in the working
stack.

BY. Restore the mode in BMODE to its previous value
from the saved mode stored in the working stack.

B10. Decrement the count stored in the working
stack. If the count is still nonzero go to step B6.
Otherwise continue in sequence.

B11, Store in CF the strength saved in the working

68
stack.

B12. ' Recover the saved return address in the working
stack. Then delete all of the words pushed into the
working stack by the BAL routine,

B13. Give a successful return to the entire coercion
process.

B14. Restore VALP from the copy saved in the working
stack.

B15. Restore BMODE from the copy saved in the
working stack.

B16. Using the saved length of the control stack in
the working stack delete all words added to the control
stack by the BAL routine.

B17. Recover the saved return address in the working
stack. Then delete all of the words pushed into the
working stack by the BAL routine.

B18. Give a failure return to the entire coercion

process.
PAR ROUTINE

P1. Push into the working stack the return address
from the main coercion setup routine; a zero that will
turn into the strength of the parallel expression
coercion; the mode stored in BMODE; the current length of

the control stack; the current wvalue control block

69
pointer; and the count stored in the current value
control block.

P2, Push into the control stack the coercion
sequence required to deprocedure the mode contained in
BMODE as far as possible.

P3. Store the mode resulting from the deproceduring
in BMODE and also store as target mode in the saved state
in the working stack.

P4. If the mode contained in BMODE is not a united
nmode then go to step P16.

P5. Store the number of modes contained in the
united mode in the saved state in the working stack.

P6. Push into the contrcl stack a UNION command with
the mcde contained in BMODE.

P7. Using the index and the target mode saved in the
control stack get the mode in the united mode referred to
and store it in BMODE.

P8, Recursively call the main'coercion setup routine
with the value control block pointer in VALP and the a
posteriori mode in BMODE as parameters.

P9. If the coercion attempt fails then go to step
P13.

P10. If the coercion streagth required was strong
(if CF is zero) then go to step P13.

P11. Store the strength required (always firm) in

the saved state in the working stack.

70

P12. Go to step B11 in the BAL routine.

P13. Decrement the index saved in the working stack
so that it points to the next mode in the unicn to try.

P14, If there are more modes to try go to step P7.

P15. Go to step B14 in the BAL routine.

P16. Store in the control stack a PAR command with a
count equal to the count in the current value control
block (whcse type is 'WS$SPAR').

P17. Store in the control stack a MODE command with
the mode in BMODE.

P18, Store in the control stack a VALP command with
the current contents of VALP,

P19. Decrement the pointer in VALP so that it pointsg
to the previous value control block stored in the working
stack.

P20. If the mode contained in BMODE is a rowed mode
then go to step P24,

P21, If the mode contained in BMODE is neither a
procedure with parameters mode or a structured mode then
go to step B14 in the BAL routine.

P22, If the number of parameters in the procedure
mode or the number of fields in the structured mode does
not equal the count in the original 'W$PAR' value control
block then go to step B14 in the BAL routine.

P23. Save the number of parameters in the procedure

mode or the number of fields in the structured mode in

71
the saved state in the working stack as an index.

P24, Get the target mcde saved in the working stack
and if it is not a rowed mode go to step P27.

P25, Cet mode of element of rowed mode and store it
in BMODE for coercion setup routine.

P26. Go to step P28.

p27. Using the index and the target mode saved in
the working stack get the current target mode and store
it in BMODE.

P28, Recursively call the main coercion setup
routine with the wvalue control block pointer in VALP and
the a posteriori mode in BMODE as parameters.

P29, If the coercion attempt fails then go to step
B14 in the BAL routine.

P30. Decrement the index saved in the working stack
by one.

P31. If the index is still not zero then go to step

P24 to process the remaining fields or parameters.

P32, Recover the saved target mode from the working
stack.
P33, If this target mode is not a rowed mode then

set the coercion strength required that is saved in the
working stack to strong.

P34, Go to step B11 in the BAL routine.

72

The compile ccercion routine

The coercion setup routine makes a list of all the
coercions to apply to coerce the given value to the a
posteriori mode. These coercions are not applied until the
compilé coercion routine is called. Every value control
block in the working stack contains a pointer to the start
of code generated for the value and the length of the code.
This makes it possible to place code before or after the
code for the value, depending on the coercion to be applied.
Balanced and displayed values have their constituent values
coerced, and then all of the constituent value control
blocks are combined into a single value control block for
the entire balanced or dispiayed value. At the end of the
coercion all of the value control blocks of the coerced
value will be combined into a single value control block of
type 'WSVALUE'. Except for balanced and displayed values
the compile coercion routine is straight forward.

If the coercion command is DEPR, DEREF, REFRW, UNION,
PRIM, ROW, or VOID the command with its mode is inserted in
the output code after the code compiled for the current
value control block. This added word is to be considered
as part of the code for the current value control block.

If the coercion command is SKIP, NIL, or VAC then the
current value control block has a single word of code
associated with it. The type of the value control bloék is

changed to 'WSVALUE' and the mode in the coercion command is

stored in

If the
called to
procedure

If the

73
the associated code word.
coercion command is PROC then the PCDR routine is
make the current value control block refer to a
mode.

coercion command is HIP then the current value

control block refers to a IDENT code word. This is changed

to a 0OSGOTO code word and a OS$HIP code word is inserted in

the compiled code after the OS$HIP code word. The current

value control block is then made to refer to both of these

code words.

If the

coercion command is VALP then the associated value

control block pointer is stored in the current value control

block pointer.

If the
with this
block.

If the

coercion command is MODE then the mode associated

command is stored in the current value control

coercion command is BAL then the following steps

are performed:

1.

Remember the position of the current value

control block whose type is 'W$SBAL' and generate a unique

label for use by this routine.

2,

Make the current value control block pointer

point to the preceeding value control block.

3.

For N - 1 times where N is the count stored in

the 'W$BAL' value control block remembered in step 1

74
repeat step 4.

4, Make the current value control block pointer
point to the preceeding value control block. After the
code for the now current value control block add the
comﬁands 'OSMA', 'OSDELV', and 'O$JUMP' with the
generated label as parameter.

5. Combine the 'WSBAL' wvalue control block and the N
value control blocks preceeding it into one value control
block that refers to all of the code that was referred to
in the individual value control blocks. This step may
require moving value control blocks that were stacked on
top of the 'WSBAL' value control block to keep the
working stack compact.

. 6. Add to the code for the combined value control
block the commands 'OS$MA' and 'OSLBL' with the generated
label as parameter. These commands are to be considered
as part of the code for the value control block.

7. If there was range information in the "WSBAL'
value control block in the form of a range number then
insert a 'O$SRNGE' with this range number as parameter in
front of the code for the combined value control block

and a 'OS$ERNGE' with the range number after the code.

An important point to remember is that all of the components
of a balanced expression are coerced before they are

balanced. This means that all of the component value

75
control blocks will always be of type 'WSVALUE'.
If the coercion command is PAR then the following steps

are performed:

1. Remember the position of the current value
contrcl block whose type is 'WSPAR',

2. Make the current value control block pointer
point to the preceeding value control block.

3. For N times where N is the count stored in the
'WSPAR' value control block remembered in step 1 repeat
step 4.

4, After the code for the current value control
block add a 'OS$SFS' command. Then make the current value
control block pointer point to the preceeding value
control block.

5. Combine the 'W$PAR' value control block and the N
value control blocks preceeding it into a single value
control block that refers to all of the code that was
referred to in the individual value control blocks.

This step may require moving value control blocks that
were stacked on top of the 'WSPAR' value control block to
keep the working stack compact.

6. Insert a 'O$DISP' command in front of the code
for the new value control block and add a 'O$EDISP'

command after the code.

76
Notice that the component value control blocks are also
coerced before the PAR command is encountered so all of the

component value control blocks will be of type 'OSVALUE'.

The PCDR routine

The PCDR routine inserts and adds the appropriate code so
pass 3 can compile procedures. It is called by the
coercion routines for a proceduring coercion and by the
procedure denotation routine. (It is interesting to note
that ALGOL 68 provides no denotation for a procedure without
parameters, All such procedures arise from the proceduring
coercion.) This routine takes one argument which is the mode
of the resulting procedure. It operates on the current
value control block.

In ALGOL 68 the scope of a procedure is defined as the
largest scope that does not exceed the scope of any mode
indication, operator, or identifier in the procedure body.
This does not include any mode indicafion, operator, or
identifier that is defined within the procedure itself.
Therefore, to determine the scope of a procedure, it is
necessary to know the scopes of all mode indications,
operators, and identifiers in the procedure. This is
accomplished by storing in every value control block a bit
word whose bits are associated with the various scopes an
identifier, etc. could have at that point in the program.

The first bit is associated with the current range, the next

77

bit with the next outer range, and so on. Whenever value
control blocks are combined into a single value control
block the bit word for the new value control block is
calculated by oring together all of the bit words from the
original value controi blocks. Whenever a range is exited,
the bit words associated with value control blocks from that
range are all shifted one place to the left. In this
manner the scope of a value can be determined by examining
the bit word in its associated value control block.

The PCDR routine inserts in front of the code for the

current value control block

JUMP #1 Generated label
EPDN #2 Generated label
LL range Procedure scope

and adds after the code for the current value control block

ﬁETN mode Result mode of procedure
LLE range Current range

LBL #1 Generated label

EPDV mode Mode of procedure

EPDE #2 Generated label

The value control block is then made to refer to all of

these added code words.

PASS 3

In order to understand the operation of pass 3, it is
necessary to understand the run time environment in which
the compiled code will execute. At all times symbolic
index register D contains a pocinter to the base of the stack
for the current environment. A new level of environment is
created whenever a procedure is entered. At this time the
contents of index register D are changed to point to the new
environment stack. The contents of index register D are
restored when the procedure is exited normally. At the
base of the stack for a given environment are stored
pointers to the surrounding environments stack and to the
last environment before the last procedure was entered.
These two pointers are distinct. The surrounding
environment pointer is a pointer to the environment stack
when the procedure was declared and the last environment is
the environment that will become the current environment
when the procedure exits normally.

Pass 3 reads the Polish code generated during pass 2 and
converts it to machine code. During pass 3 the working
stack contains 'blocks' that will mirror the run time value
stack. Each block represents a value stored in the run
time value stack. When a range is entered, a block for
each operator or identifier declared in that range 1is pushed
onto the working stack. Every appearance of an identifier
in the source program also gives rise to a block on the

78

79
working stack. The assignation 'X := Y' would cause blocks
for X and Y to be pushed onto the working stack. Then,
when the assignation itself is compiled, these two blocks
would be deleted from the working stack and a block for the
value of the assignation would be pushed onto the working
stack. In this way the compiler always has a record of the
state of the run time value stack.

Whenever a block is created on the working stack, space
in the run time value stack is allocated and the address of
this space is stored in the block. This means that all
values that exist at run time have a place to be stored in
the stack even though this value is never actually stored.

A block contains the information as to how the
corresponding value can be accessed. Values may be in a
register, in the stack, relative to a display register, or
relative to an index register. There is a subroutine in
pass 3 called MVA (make value available) that will make the
value referred to by a given block avéilable for processing.
It compiles the necessary code to either bring the value to
a register or bring a pointer to the value to an index
register. In the latter case the index register may point
to a location a known distance away from the value.

The language ALGOL 68 implies a fairly specific
organization of memory at run time. This organization is
implied by the types of values required at run time and the

manipulations allowed on these values. First, a run time

80
representation of values of the various modes must be
determined. A void value requires no memory space and its
representation is immaterial. A real value requires one
word of memory and its representation is the representation
required by the floating point hardware of the Honeywell
635. An integral value requires one word of memory and its
representation is the 2's complement representation required
by the fixed point hardware. A boolean value requires one
word of memory and is a word of all zeros for a boolean
'false' and a word of the least significant bit one and all
the rest zero for a boolean value of 'true'. A character
value requires one word of memory and is a word with the
value of the character in the least significant nine bits.

A structured value is made up of one to several fields.
The memory representation of a structured value is the
memory representations of its component fields in
consecutive memory locations in the same order as the order
of the fields in the structure.

A united value is a value can contain a value of cne of
several modes. At run time it must be possible to
determine the mode of the current value contained in the
united value. The memory representation fcr a united value
consists of a word that contains a pointer indicating the
mode of the contained value followed by as many consecutive
words as necessary to contain the longest possible value.

The leftmost of these words contains the memory

81
representation of the contained value.

A reference value is a value that refers to another
value. Except in the case of references to row values, the
representation of a reference value requires one word. It
contains a pointer to the referred value in the upper half
and a pointer indicating the mode of the value in the lower
half.

A row value or a reference to a row value presents
several problems in its representation. This is because
there are two types of row values: flexible and fixed.
Also, a row value consists of a descriptor and a set of
values accessed through the descriptor. Since only the
mode of a row value is known at compile time and not its
dimension, the amount of space required by a row value
cannot be known at compile time. However the length of the
descriptor which is a function of the dimensionality of the
row value is known at compile time. A row value can
therefore be assumed to consist of twd parts: a descriptor
which is considered to be the value of the array and its
elements which are allocated in memory somewhere else. A
row value can be manipulated by only manipulating its
descriptor thereby making the length of row valﬁes known at
compile time. Of course, the allocation of memory for the
elements of a row value has not been considered but this
problem can be considered separately.

A separate problem arises with references to row values.

82

ALGOL 68 allows the programmer to slice a reference to a row
value to obtain a reference to a part of the row value.
This operation requires the construction of a new descriptor
to reference the slice. However, memory space must be
found for the new descriptor. Since the scope of the slice
is the same as the scope of the original reference to row
value, a logical place for the new descriptor is with the
reference to row value. This means that the descriptor for
a reference to row value is associated with the name part of
the value rather than with the element part of the value.

Another problem arises with references to flexible row
values, These values can dynamically change their size
during the execution of the program and in particular their
size can increase. If the elements of a flexible array are
to be stored in consecutive memory locations then all of the
elements of the array must be moved when the number of
elements increases. However, moving the elements of the
array cannot result in any effect discérnable by the program
so there must be a unique descriptor associated with a
flexible array so that when this descriptor is changed to
reflect the changed location of the elements all references
to the array will be through this descriptor. In other
words, the descriptor must be associated with the element
part of the value and not the name part. This is just the
opposite to the fixed array situation. Since the bounds

are not in general known at compile time, a general

83
reference to row value must be able to handle both the fixed
and flexible case.

The memory representation of a reference to row value
consists of a flag word followed by a descriptor. If the
row value is flexible then the flag word points to the
descriptor for the row value and the descriptor in the
reference to row value is not used. If the row value is
fixed then the flag word is zero and the descriptor for the
array is stored in the following memory locations. This
representation will require a run time check of the flag
word whenever a reference to row value is used. The memory
representation for a descriptor is a one word pointer that
points to the first element of the array followed by as many
quadruples of words as there are dimensions in the row
value. Each quadruple contains in order an integral lower
bound, an integral upper bound, a stride, and a wecrd in
which the states are stored.

Procedure values are unusual values}in that they are,
strictly speaking, executable code. The memory
representation for a procedure contains a pointer to this
code so that actual code is never manipulated. Procedure
values also contain an environment pointer that specifies
the environment of the procedure when its denotation was
encountered in the program. This environment may be
different from the environment where the procedure is

called. Also, a procedure value contains the amount of

84
temporary storage the procedure will require when executed
so that a new stack frame can be allocated when the
procedure is called. The memory representation for a
procedure value contains four words. The first word is
always zero and is included to make the procedure call
easier. The second word contains in its upper half the
amount of temporary storage needed by the procedure in the
new stack frame. The third word contains a pointer to the
environment of the procedure. This is actually a pointer
to the base of the stack frame allocated for the innermost
range that the procedure can reference nonlocally. The
fourth word contains a pointer to the code for the
procedure.

In ALGOL 68 as in ALGOL 60 there is the concept of a
program environment. At any point in the source program an
identifier, mode indication, or operator has a meaning.

This identifier, mode indication, or operator identifies a
declaration for the same identifier eisewhere in the
programnm. This declaration is found by first looking for an
appropriate declaration somewhere in the current range. If
this search fails then the range containing this range is
searched excluding contained ranges. This process is
repeated using bigger and bigger ranges until an appropriate
declaration is found. If no declaration is found then
there is an error in the source program. In this way all

identifiers etc. in a program are associated with a

85
specific declaration.

ALGOL 68 allows recursion or the ability of a procedure
to call itself. This means that a procedure can call
itself without exiting and therefore cause two copies of
itself to exist simultaneously. Since there are two copies
of the procedure there are two copies of all declarations
contained in the procedure. A question arises as to which
instance of a declaration is the one that a given identifier
identifies. This question is answered by defining the
proper declaration as the declaration that is in the same
copy as the identifier if the declaration was copied
otherwise the unique declaration that was not copied.

The identification problem can be solved at run time by
associating a stack frame with each activation of a range.

A stack frame is an area of memory that is allocated in the
run time value stack for use by a specific range. Memory
for all identifiers in a given range is allocated in the
corresponding stack frame. Every stack frame contains an
environment pointer which is a pointer to the stack frame
associated with the surrounding range. The memory
associated with an identifier can be accessed at run time by
following the chain of environment pointers through stack
frames associated with surroundiny ranges until the proper
stack frame is found. The memory associated with the
identifier is then at a known distance from the base of this

stack frame. Since it can be determined at compile time

86
how many environment pointers need to be followed and the
offset of the memory associated with the identifier,
accessing values at run time is reasonably straight forward.

A new stack frame is needed only when a procedure is
called because only procedures can be recursive. When a
procedure is entered, a stack frame is allocated on the
stack and the environment pointer for the procedure is
stored at the base of the new stack frame. This will allow
the procedure to access values nonlocal to the procedure
stack frame. Also stored in the new stack frame is a
pointer to the stack frame in use at the point of the
procedure call. This is needed to restore the environment
to this stack frame when the procedure exits normally. It
can be seen that an environment pointer is a pointer to an
active stack frame,

Since the running program must always be able to access
the local stack frame, an index register is reserved to
always point to the base of the local étack frame. The
contents of this index register is changed only when a
procedure is entered or exited or when a goto is executed
that jumps out of the current range. It is also necessary
for the running program to know the current extent of the
run time value stack. This is s» new stack frames can be
allocated as well as memory for local generators. A second
index register is reserved for this purpose and always

points to the next free location in the run time value

87
stack.
Here follows a list of the codes generated by pass 2 and

the action pass 3 takes with each.

op (DEé)

The DEF table entry is for a user defined operator. The
procedure value of this operator is to be pushed into the
run time value stack and the stack marked. This is
equivalent to the sequence:

IDENT (DEF)

MSCw

OPE (DEF)

The DEF table entry is for a predefined standard
operator. The operands for this operator have already been
pushed into the run time wvalue stack. The macro prototype
referred to by the DEF table entry is elaborated causing the
operand values to be removed from theArun time value stack
and the value of the formula to be pushed into the run time
value stack. The specific code generated comes from the
macro prototype. A typical macro for the '+' operator is
as follows:

INB *+2 JUMP IF SECOND OPERAND NOT IN REGISTER
ADQ. A A STANDS FOR FIRST OPERAND
IFA *42 JUMP IF FIRST OPERAND IS IN REGISTEﬁ

LDQ A A STANDS FOR FIRST OPERAND

88

ADQ. B B STANDS FOR SECOND OPERAND
The IFA and INB pseudo operations are used to test whether
the operands are in a register. A period ('.') after an
operation indicates the end of code generation. If neither
operand is in a register the above macro prototype will
generate the following code:

IDQ A

ADQ B

LBL (label number)
This code is used to define a label in the object code.
The value of the label is the current place in the generated

output. No object code is generated.

JUMP (label number)

This code is used to jump to a label defined by the LBL
code. A jump instruction is to be compiled to the given
label number at the current place in fhe object code. The
instruction

TRA [label]-*,IC

is generated.

DISP (MODE)
This code is used to signal the beginning of either a row
or structure display. It is immediately followed by codes

for the fields or elements of the display. This code is

89

currently ignored by the compiler.

EDISP (MODE)

This code is used to signal the end of either a row or
structure display. MODE is the mode of the display. The
run time value stack contains the values of the fields or
elements of the display. These values are to be removed
and replaced by the single value of the display. No object
code is generated but the control blocks representing the
fields of the structure are replaced by a single control
block representing the structured value. Row displays have

not yet been implemented.

ENTER (MODE)

This code is used to enter a procedure or call a user
defined operator. The run time value stack contains an
active procedure value followed by values of the actual
parameters. Code required to enter ﬁhe procedure is
compiled and the procedure value and all actual parameters
are deleted from the run time value stack. At run time a
procedure will return a value in the run time stack so the
compiler can assume that the a value whose mode is MODE is
pushed into the run time value stack. The object code
generated is (where M is the address of the MSCW):

EAX1 M,D Get address of MSCW in XR - 1

LDX2 M+2,D Get address of new stack frame

90

TSX0 RSENTER Call standard entry subroutine

GOTO (DEF)
This code is used to jump to a user label. The DEF
table entry corresponds to the user label. This code is

different from the JUMP code because the location of the
label and the location of the goto may be in different
environments. The object code generated depends on the
relative environments of the current environment and the
environment of the label. The instructicn

LbxX D,2,D Exit one procedure environment

is repeated as many times as the number of procedures

exited. If no procedures are exited then this instruction
is omitted. If there is any change of range then the
instruction

LDX S,[saved S],D Restore stack pointer

is generated. Finally, the instruction
TRA [labell-*,IC Jump to label
is generated. If the goto does not cross a range boundary

then the last instruction is the only instruction generated.

HIP (MODE)

A GOTO code is used in a place where a value is normally
expected. A HIP code follows a GOTO code and causes a
value of the specified MODE to be pushed into the run time

value stack. It is immaterial what value is pushed as the

91
preceeding jump will always take place and the value will

never be used. No object code is generated.

VOID (MODE)
The top value in the run time value stack is deleted and

a void value takes its place. No object code is generated.

LGEN (MODE)

This code is used to invoke a local generator of the

specified mode at run time. The value of the generator is
to be pushed into the run time value stack. First, the
stack is marked with a MSCW. This is so the garbage

collector, if called, will be able to mark the current stack
framne. Then the following instructions are added to the
object code (where M is the address of the MSCW word):

EAX1 M,D Get pointer to MSCW word in XR - 1

EAX2 [len] Get length of value in XR - 2

TSX0 RS$SLGEN Call local geﬁerator routine

ADA type,DL Add type field to pointer to value
The A register then contains a pointer to the generated

value.

HGEN (lMODE)
This code is used to invoke a heap generator of the
specified mode at run time. The value of the generator is

to be pushed into the run time value stack. First, the

92

stack is marked with a MSCW. This is so the garbage
collector, if called, will be able o mark the current stack
frame. Then the following instructions are added to the
object code (where M is the address of the MSCW word):

EAX1 M,D Get pointer to MSCW word in XR - 1

EAX2 [len] Get length of value in XR - 2

TSX0 RS$SHGEN Call heap generator routine

ADA type,DL Add type field to pointer to value
The A register then contains a pointer to the generated

value.

CONF (MODE)

This code is used in conformity relations to check the
mode of the right hand side of a conformity. The mode of
the value of the right hand side of a conformity (which is
stored in a special way) is to be checked against MODE. If
the modes match a boolean true value otherwise a Boolean
false value is to be pushed into the fun time value stack.
The type of the right hand side is in XR - 0. The
following code is generated:

CMPX(C type,DU See if type matches

TNZ 3,1IC Jump if type does not match
LDQ 1,DL Get a true in Q register
TRA 2,IC And jump to end of sequence
LDQ 0,DL Get a false in Q register

This code leaves the result in the Q register.

93
TF (LBL)

The top value in the run time value stack is of mode
boolean. This value is deleted and code is compiled to
jump to the given label only if the boolean value was false.
Otherwise the compiled code does nothing. The object code
generated is:

SZN [bool] Sense boolean value

T

TZE [label]l-*,IC Conditionally jump to label

Some optimization is done if the boolean value was just

generated.
CASE (N)

The CASE code is followed by N+1 1RA codes. The top
value in the run time value stack is of mode integer. This
value is deleted from the run time wvalue stack. Code is

compiled so that if the integer valuve was less than zero or
greater than N the immediately following TRA code will be
executed. Otherwise, the I+1'th TRAVcode will be executed
where I was the value of the integer. The code generated’
is:

CMPQ MAX+1,DL MAX is the maximum allowed value

TRC 3,IC Too big so jump to zeroth TRA
sTc2 1,I1C Store address of zeroth TRA
TRA [1,0L Jump to proper TRA

Notice that the third instruction modifies the fourth

instruction.

94
CASGN (MODE)

The top value in the run time value stack is the left
hand side of a conformity relation and the second from the
top value in the run time value stack is a pointer to the
value of the right hand side of the conformity relation.
MODE is the mode of the left hand side value. The value of
the right hand side without the union prefix is to be
assigned to the left hand side name and both value deleted
from the run time value stack. First the instruction

LDX0 ptr,D Get pointer to RHS in XR - 0
is added to the object code. XR - 0 then points to the
united value and the value (ununited) starts in the
following location. The move routine is then called to
move the ununited value at [1,0] to the location specified

by the left hand side control block.

SELCT (N)

The top value in the run time valué stack is a structured
value. It is to be replaced by the Nth field of the
structured value. The offset for the selected field is
calculated and the move routine is called to compile object
code to move the selected field to the run time stack. The
control block for the structured value is replaced by a

control block for the selected value.

95
RSLCT (N)

The top value of the run time value stack is a reference
to structure value. It is to be replaced by a reference to
the Nth field of the structured value. No object code is
compiled but the control block for the reference to
structured value is replaced by a control block for the
selected field. This is accomplished by adding the field

offset to the saved address of the structure.

ETC (MODE)

This code always follows either a SELCT or RSLCT code.
The MODE is the mode of the selected field and is the mode
of the result of the selection. This code generates no
object code but is used to set the mode of the selection in

the control block.

SKIP (MODE)

This code causes code to be generaﬁed that pushes a value
of the given mode into the run time value stack. Any such
value is acceptable for a SKIP. The object code generated
for a skip (where A is the address of the skip and N is the
length of the value) is:

STZ A,D Zero out wvalue
STZ A+1,D Zero out value

STZ A+2,D Zero out value

96
STZ A+N-1,D ZERO out value
If the mode of the value is void then no instructions are

generated because the length of a void is zero.

NIL (MODE)

This code causes code to be generated that pushes the
name 'nil' into the run time value stack. The given mode
is the mode of the nil. The object code generated for a
nil (where A is the address of the nil and N is the length

of the value) 1is:

STZ A,D Zero out wvalue
sTZ A+1,D Zero out value
STZ A+2,D Zero out value

o e 0 ® o 0 e * e o0 e s e s o =

STZ A+N-1,D Zero out value

Generally, only a single instruction will be generated.

IS (MODE)

The top two values in the run time value stack are
operands in an identity relation. These two values are
deleted from the run time value stack and replaced by the
result of the identity relation. The object code generated
(where N1 is the first name and R2 is the second name) is:

EAXO N1 Get first name in XR - 0
sSTX0 2,IC Store in fourth instruction

EAXO N2 Get second name in XR = 0

97

CMPXO0 [] See if names are equal

TNZ 3,IC Transfer if not equal

LDQ 1,DL Get a true in Q register
TRA 2,IC Transfer to end of sequence
LDQ 0,DL Get a false in Q register

N1 and N2 in the above code are actually more complicated

addresses and generally involve index modification.

ISNT (MODE)

The top two values in the run time value stack are
operands in an identity relation. These two values are
deleted from the run time value stack and replaced by the
result of the identity relation. The object code generated

(where N1 is the first name and N2 is the second name) is:

EAX0 N1 Get first name in XR - 0
STX0 2,IC Store in fourth instruction
EAX0 N2 Get second name in XR - 0
CMPXO0 [] See if names ére equal

TZE 3,1IC Transfer if equal

LDQ 1,DL Get a true in Q register
TRA 2,IC Transfer to end of sequence
LDQ 0,DL Get a false in Q register

N1 and N2 in the above code are antually more complicated

addresses and generally involve index modification.

98
TRUE (MODE)

This code causes the generation of code that pushes the

boolean value 'true' into the run time value stack. The
instruction
LDQ 1,DL Get a true in @ register

is added to the object code.

FALSE (MODE)

This code causes the generation of code that pushes the

boolean value 'false' into the run time value stack. The
instruction
LDQ 0,br, Get a false in Q register

is added to the ocbject code.

MSCW

The top value in the run time value stack is a procedure.

Code is generated to change this procedure value into an
active procedure value by allocating épace needed by the
procedure and linking this wvalue to the last active

procedure value in the run time value stack. First the

stack is marked in the first word of the procedure value.

Then the following instructions are added to the object code

(where M is the address of the procedure value):
STX S,LSTMK,D Save the current stack pointer
EAX1T M,D Get pointer to MSCW in XR - 1

LDX2 M+1,D Get length needed in XRa- 2

99
TSX0 RSPLGEN Allocate space for procedure
EAXO O0,AU Get address of space in XR - 0
EAA M,D Get address of MSCW in A
ADA TSMSCWT ,DL Get type for pointer also in A
STA 0,0 Store at base of new space
STZ 1,0 Zexro stack save word in new space

LDA M+2,D Get environment pointer for proc

STA 2,0 And store in new space
EAA 0,D Get base of current stack
STA 3,0 And store in new space

STX0 M+2,D Store pointer to new space in MSCW

LXLO M+1,D Get type of new space

SXL0 M+2,D And move it

STZ M+1,D Zero out old len/type word
When these instructions are executed a new stack frame will
be allocated and a pointer to this new stack frame is kept
in the old procedure value. When the procedure is entered

the new stack frame will point to the current stack frame.

IDNTY (DEF)

The given DEF table entry is for an identifier ox
operator. Code is compiled to bring a reference to this
value to the run time value stack in preparation for an
identity declaration or operator declaration. Actually, no
code is generated but a control block that references the

location the identifier is assigned is created.

100

IDNTE

The second from the top value in the run time value stack
is a reference to an identifier or an operator stored there
by a IDNTY code. The top value in the run time value stack
is the value the identifier or operator should be identical
to. Code is generated to assign the top value to the
location specified by the reference that is second from the
top. Then both values are deleted from the run time value
stack. The object code generated is identical to the

object code generated for the code 'ASGNE'.

FORMP (DEF)

The given DEF table entry refers to a formal parameter in
a procedure denotation. Space for the value of the formal
paramcter is allocated in the run time value stack and
object code is generated to move the actual parameter to the
location assigned to the formal parameter. The object code

generated has the form:

LDQ 4,1 Get actual parameter
STQ 6,2 And store in formal parameter
LDQ 5,1 Get actual parameter
STQ 7,2 And store in formal parameter
LDQ 6,1 Get actual parameter
STQ 8,2 And store in formal parameter

e e o LA] ® @ & 085 00 00 6 s 00820 00

The number of pairs of instructions generated equals the

101
length of the value of the formal parameter. Successive
parameters continue at the address where the preceeding

parameter left off.

IDENT (DEF)
The given DEF table entry is for an identifier or
opérator. A control block for this value is created in the

run time value stack but no object code is generated.

DENOT (DEF)
The given DEF table entry is for a denotation value.
Code is compiled to bring the value of the denotation to the
run time value stack. A typical object code sequence for
an integral denotation is:
TRA 2,1IC Transfer around value
[actual integer here]
LDQ -1,1IC Load integer in Q
The only denotations currently implemented are real,

integral, boolean, and character.

ASGN (MODE)
The given mode is the mode of an assignation that
immediately follows this code. No code needs to be

generated for this code.

102
ASGNE (MODE)

The second from the top value in the run time value stack
is the left hand side of an assignation. The top value is
the right hand side of the assignation. Code is compiled
to assign the right hand side value to the place specified
by the left hand side value. Then the right hand side
value which is the top value is del§£ed from the run time
value stack leaving the left hand side value on the stack as
the value of the assignation. The code generated for an
assignation merely moves each word of the source to the
location specified by the destination. If an array value
is moved, code is generated to move each element of the

array by means of a loop.

LL (PROG)

The given pointer to the PROG table indicates a new
environment in the object program. The o0ld environment is
pushed into a compiler stack (the control stack) and the
compiler is set for the new environment. No object code is

generated.

LLE (PROG)
The environment that was saved by the LL code is restored
and the compiler is set for the old environment. No object

code is generated.

103
DELV (MODE)
The top value in the run time value stack whose mode is
the given mode is deleted from the stack. No object code

is generated.

SRNGE (PROG)

The old environment is pushed into a compiler stack (the
control stack) and the compiler is set for the new
environment. Code is generated to store a mark in the run
time value stack and link it to the previous mark or active
procedure. Then the instruction

STX S,LSTMK,D Save stack pointer in Jlast MSCW+1
is generated to save the current value of the local stack

pointer.

ERNGE (PROG)

The environment that was saved by the SRNGE code is
restored and the compiler is set for the old environment.
The value of the range just exited is made available and
pushed into the run time value stack. Thep the instruction

LDX S,LSTMK,D Restore stack pointer
is generatéd to restore the local stack pointer to the value

it had when the range was entered.

EPDN (LBL)

This code is used to define the entry point to a

104
procedure, The LBL is defined at the current place in the
generated code. Then the instruction
EAX D,0,2 Set new environment for procedure

is generated to set XR - D to point to the new stack frame.

RETN (MODE)
This code is used to return the result of a procedure to
the caller and return control. The two instructions
LDX0O 0,D Save pointer to current stack frame
LDX s,3,0 Save pointer to old stack frame
are added to the object code. Then the value of the
procedure is moved to address [0,0]. This is the address
of the calling MSCW. Then the instruction
TSX0 RSRET Return to caller
is added to the object code. The routine RS$SRET restores

the caller's environment and returns control.

EPDV (MODE)

The given mode is the mode of a procedure denotation.
Code is generated to push a value of this mode in the run
time'value stack. Other information required for the
creation of the procedure value has been accumulated during
the compilation of the procedure denotation such as the
environment of the procedure and the storage required by it.
The following instructions are added to the object code:

STZ P,D Zero out first word of wvalue

105
EAA MAXST Get size of stack frame needed
ADA type,DL Add type of stack frame
STA P+1,D Store in second word of value
get environment pointer in A register
STA P+2,D Store in third word of wvalue
The environment pointer is obtained by compiling as many of

the following instructions as necessary to reach the proper

environment:
LDA 2,D Get surrounding environment
LDA 2,AU Get surrounding environment

If the environments are the same then the instruction
EAA 0,D Get current environment in A

is compiled.

EPDE (LBL)

The given entry is the entry point of a procedure
denotation. This entry point is inserted in the procedure
value created by the code EPDV, The following instructions
are added to the object code:

EAA ENTRY-*,IC get entry to proc in A
STA P+3,D Store in fourth word of value
This stores the entry point to the procedure in the

procedur~ value.

DLEN (LBL)

This code is used for bound procedures. The maximum

106
length of the run time value stack in the preceeding
procedure is added as code to the generated output. Then
the given label is defined to be the address of the word

just added to the generated output.

VSBCT (N)
This code indicates that the top value in the run time

value stack is an integral subscript for the Nth subscript

position of an array. This fact is noted in a word pushed
onto the control stack. No object code is generated.
VLWB (N)

This code indicates that the top value in the run time

value stack is a lower bound trimmer for the Nth subscript

position of an array. This fact is noted in a word pushed
onto the control stack. No object code is generated.
VUPB (N)

This code indicates that the top value in the run time
value stack is an upper bound trimmer for the Nth subscript
position of an array. This fact is noted in a word pushed

onto the control stack. No object code is generated.

VNLWB (N)
This code indicates that the top value in the run time

value stack is a new lower bound trimmer for the Nth

107

subscript position of an array. This fact is noted in a
word pushed onto the control stack. No object code is
generated.

VEPTY (N)

This code indicates that the Nth subscript position in a

trimmer is empty. This fact is noted in a word pushed onto
the control stack. No object code is generated.
LWB (N)

This code indicates that the top value in the run time
value stack is the Nth lower bound in a declarer. Code 1is
generated to store this value in the appropriate location of

the declarer being constructed.

UPB (N)

This code indicates that the top value in the run time
value stack is the Nth upper bound in a declarer. Code is
generated to store this value in the appropriate location of

the declarer being constructed.

FIX (N)
This code indicates that the last bound calculated is
fixed. Code is generated to store this state in the

declarer being constructed.

108
FLEX (N)
This code indicates that the last bound calculated is
flexible. Code is generated to store this state in the

declarer being constructed.

SUB
This code indicates that a slice is about to be compiled.

The compiler is set to evaluate the following trimscript.

BUS (MODE)
This code indicates that the top values in the run time

value stack are subscripts and trimmers to an array value

below them in the run time value stack. Code is compiled
to do the indicated trimming and subscripting. The given
mode is the resulting mode of the slice. All trimmer and

subscript values are deleted from the run time value stack
and the array value now on top of the stack is replaced with

the slice value,

BOUND (BOUND)

This code always follows either a LGEN or a HGEN code and
specifies bounds for generated values that require them.
Code is -~ompiled that will insert the required bounds by

calling appropriate bound procedures.

109
RBUS (MODE)
This code indicates that the top values in the run time

value stack are subscripts and trimmers to an array value

below them in the run time value stack. Code is compiled
to do the indicated trimming and subscripting. The given
mode is the resulting mode of the slice. All trimmer and

subscript values are deleted from the run time value stack
and the array value now on top of the stack is replaced with

the value of the slice.

DSUB
Code is generated for the header of a bound procedure.
This involves the fetching of the actual parameter which is

a pointer to the descriptor.

DBUS (BOUND)

Ccde is generated for the trailer of a bound procedure.
This involves generating code to calculate the length of the
array and return to the caller and calculate the strides in

the descriptor.

PRIM (MODE)
The top value in the run time value stack is an integer
or a long integer. Code is compiled to change this value

to a real or long real value.

DEREF (MODE)
The top value in the run time value stack is a reference
mode. Code is compiled to dereference this value whose

mode is the given mode.

ROW (MODE)
Code is generated to row the value on top of the run time
value stack to the given mode. This is not currently

implemented.

DEPR (MODE)

The top value in the run time value stack is a procedure
without parameters. Code is generated to deprocedure this
value by calling the procedure and the resulting value
replaces the procedure value in the run time value stack.
This code is equivalent to the code 'MSCW' followed by the

code 'ENTER'.

UNION (MODE)

Code is generated to unite the value on top of the run
time value stack to a value of the given mode. This value
replaces the original value on the run time value stack.
The generated code merely inserts a type word in front of

the value that contains the type of the value.

111
MREF
Space is allocated on top of the run time value stack by

the compiler for a pointer. No code needs to be generated.

CONE

The second from the top value in the run time value stack
is space for a pointer and the top value is the right hand
side of a»conformity relation. Code is compiled to store a
pointer in the space provided to the right hand side value.
Then both values are deleted from the run time value stack.
(The value of the pointer is not really lost because a
transfer instruction will be compiled to code to pick up the

value.)

MAX
The compiler's stack pointer is set to the maximum value

that it has attained in the current range.

Code is compiled if necessary to convert the top value in
the run time value stack to standard form. This is
necessary in balanced expressions where a value may be
generated in several places and must have the same form from

all places.

112
FS
Code is compiled if necessary to store the top value in
the run time stack in the stack in standard form. This 1is
necessary when constructing a display where all values of

the display must be in memory.

THE LOADER

A compiled program consists of a body of code that is
absolutely relocatable (i.e., code that does not have to be
altered if it is moved in memory) followed by a list of
modes with their associated patterns followed by a list of
SYMDEF's and SYMREF's followed by one word containing the
global environment length required by the program. Each
pattern contains a pointer to a chain of addresses that
should point to the pattern.

The main program is compiled as a declaration of a
procedure whose name is all blanks with no arguments and no
result that when called causes execution of the program.

If a program makes a reference to an identifier declared
in an independently compiled program, the compiler assumes
that the identifier is declared in a global environment and
assigns space in the global environment. Conversely, if a
program declares an identifier that will be used by another
program, space is also assigned in the global environment.
When there are several programs to be bound into a single
program each program has its own global environment.

The loader maintains several tables for its use. The
program table contains an entry for each program segment
loaded and contains the base address of the segment and
space for the location and length of the global environment
for this segment. Entries in the type table contain a
pattern and a link to a chain of addresses in the program

113

114
segment that refer to the pattern and an optional cannonical
mode. When constructing the type table the loader will
combine entries having the same mode so that there is a
unique pattern associated with each mode. This is so
conformity relations will work properly with values from
different program segments. There is a SYMDEF/SYMREF table
that contains an entry for each symbol that is used by more
than one program segment. This table contains for each
symbol a chain of definitions and references of the symbol
with the address associated with the symbol in the various
program environments.

The loader first constructs appropriate table entries for
the main program. It then searches for a symbol in the
SYMDEF/SYMREF table that has no definition. If it finds
one it loads a program segment of this name and makes
further entries in the various tables. When there are no
more symbols without definitions it constructs patterns for
all entries in the type table and fills in all addresses
that reference these patterns. The loader then allocates
space for the global environments and inserts their
addresses in front of the corresponding program segment.

All of the global declarations in the segments are then
executed causing values for all the global symbols to appear
in their respective global environments. Then, using
entries in the SYMDEF/SYMREF table the value for each

defined symbol is moved to all locations in other global

115
environments where it is used. Finally the value of the
symbol consisting of all blanks (which is the procedure
value of the main program) is used for an ordinary procedure

call and the program starts execution.

Cannonical modes

One of the problems associated with the loader is the
unique representation of modes in precompiled programs.
During compilation, modes are represented by list structure
in the MODE table. Unfortunately, different programs may
result in different internal representations for the same
mode because of a different order of appearance of modes in
the program. This different representation does not bother
the compiler but it means that the internal representation
of modes is not a suitable external representation for use
by the loader.

One method for generating a cannonical form for a mode is
to use a list copying routine and copy the list structure
that is the internal representation for the mode. This
will create a list structure that represents the mode and
that is unique for a given mode [Cheney, C.J., "A

nonrecursive list compacting algorithm", Communications of

the ACM,13, 677-678 (1970)]. One disadvantage of this
technique is that every mode specified must include all
component modes even though these modes are specified

elsewhere. This means that the memory required for a list

116

of cannonical modes will consume much more space than a
single list structure that specifies the same list of modes.

The above method works for all modes except united modes.
United modes are considered to be equivalent even though
their component modes are in a different order or some modes
are repeated. The cannonization process described above
will not necessarily cannonize two united modes into
identical list structures. If, however, a cannonical
ordering is imposed on all modes and the cannonical form for
a united mode is defined to be with each component mode
occuring once and in cannonical order then united modes will
be cannonized properly. This solution requires a
cannonical ordering on all modes to be defined. A set of

rules for a cannonical ordering of modes is as follows:

1. A primitive mode (real, int, bool, char, bits,
bytes, sema etc.) comes before a row mode which comes
before a reference mode which comes before a structured
mode which comes before a procedufe mode which comes
before a united mode.

2, A primitive mode comes before a long primitive
mode which comes before a long long primitive mode etc.
Since there are only a finite number of non-long
primitive modes they are ordered in alphabetical order.

3. Two reference modes are ordered in the same order

as their dereference