
PROGRAM:

DATE:

BY:

PROGRAM BULLETIN #68-004

FORTRAN IV

February 21, 1968

L. G. Settle

AL/COM is a direct access computing service from APPLIED LOGIC CORPORATION

•

•

•

FOREWORD

This is a reference manual describing the

specific statements and features in the FORTRAN IV

language for the ALC Time Sharing system. Familiarity

with the basic concepts of FORTRAN programming on the

part of the reader is assumed. This system conforms

to the requirements of ASA Standard FORTRAN .

ACKNOWLEDGEMENT

This manual is based on the PDP-10 FORTRAN IV

manual published by Digital Equipment Corporation

Maynard, Massachusetts. Copyright 1967 .

Chapter

•

2

•
3

•
4

CONTENTS

li\ITRODUCTION ...•.•••••.••..•••••••••••.•.••••••.••.•••.•••.••..•.•

Line Format••.....•..•..•••..••.•••.•.••.•..•••.••..•...•..•..

Statement Number Field ••••••.•.•••.••••••••.••.•.•••.•...••.•.

Line Continuation Field •••••••••••••••••••••••.••••••.•••..••...

Use of Tabs •.•.••••••••.••.•..••.•.•.•.•.•.....

Statement Field

Comment Lines ..•.••••••••••••••••••••••.•.•••.•••••••.••••...

Character· Set .•.••.•.•.••.•••.••••••.••••••••.••••••••••.•••••.•.•

CONSTANTS, VARIABLES, AND EXPRESSIONS •••••••••••••••••••••••••••

Constants•..•.........•.•..•••...•..........•.......

Integer Constants••..•...•....••......•.•...........

Rea I Constants••.•..••....•••.•.•.••••.••.•..•.•.•.......•.

Double Precision Constants ••••••••••••••••••••••••••••••••••••••

Octal Constants ••••..•••.•••.••••••...•.••.•••..•.•....••••.•.

Complex Constants •••

Logical Constants ••

Literal Constants •.•••••••••••••• 1 ~ •••••• • •••

Variables•.............•...... ,•.......................

Scalar Variables•....................

Array Variables•...............

Expressions••.•••...••....•••. ~ .•.•..•.••••••.•••...••.....•..

Numeric Expressions ••••••••••••••••••••••••.••••••••••••••••.•.

1

1

1

2

2
2

2

3

4

4

4

4

5

5

5

6

6

i

7

7

8

8

Logical Expressions • • • 11

Logica I Operators •••••••.•••••••••••••••••••••••••••.••••••••..

Relational Operators ••••.••.•••.•••••••••••••••••.••.•..•..•.•.

THE ARITHMETIC STATEMENT •••••••••••••••••••••••••••••••••••••••....

... CONTROL STATEMENTS

GO TO Statement ...

11

12

14

16

16

Unconditiona I GO TO Statements • • • • • . • • . . • . . • . • . • . • • . • . • . • . . . • . 16

Computed GO TO Statements • . • • • . • • • • . • . • . • • . • • . • • • • . . . • • • . • . . . 16

Assigned GO TO Statement . • • • • . • • • • . • • • • . • . • • . • • . . . • • • • • • • 1 7

IF Statement .•..•••....••..•.•.•.•..•...••••....•.•.•••..••••••... 17

i

Chapter

4 (cont)

5

6

C 0 NT E NT S {continued)

Numerical IF Statements•......•.................•.....

Page

17

Log ica I IF Statements • . • 18

DO Statement . 18

CONTINUE Statement . • . 2 0

PAUSE Statement . 2 0

STOP Statement . . . • • • . . . • • . • . • • . . • • • • • • • . . • • • • . • • • • . • • • • . . • 21

END Statement .••..•••.••••••••.•••••••••••••••••.••••.•.•....•....

INPUT/OUTPUT STATEMENTS AND SUBROU'!'I~ES

Nonexecutable Statements •••.•••••.••••••••••••••.•.•.••••.•.••..•.••

FORMAT Statement ••••••••••••••••••••.••••••••••••.••.••••.•.•.

NAME LIST Statement ••..••

Data Transmission Statements .••••••••••••••••••••••••••••••.•••••••••

Input/Output Lists •••••••••••••••••••••••••••••••••••.••.••.•••••

Input/Output Records ••.•••••.••••.•••••••••••••••••.••.••......•

PRINT Statement •••.••

PUNCH Statement ••••••••••••••••••••.•••••••••••.•.••••..•.....

TYPE Statement .•.•.••••••••••.••••••••••••••••••••••...•••.•...

WRITE Statement .•.•.•.•••..••.•.••••••••.•.•.••••.•.•••....•.••

READ Statement .•..•.•.•...•••.••.•.•.••...••.••...•............

ACCEPT Statement•..•.......................

DEVICE CONTROL STATEMENTS AND SUBROUTINES

SPECIFICATION STATEMENTS•..........•......•.....•.....•........

Storage Specification Statements•••.....................

DIMENSION Statement ..•......•...••...•.•.•...........•.......

COMMON Statement•...........................

EQUIVALENCE Statement

EQUIVALENCE and COMMON•............................

Data Specification Statements .. .

DATA Statement

BLOCK DATA SUBPROGRAM

i i

21

22

22

22

32

33

34

34

35

36

36

36

37

38

39

I') "+ ~

42

42

4 5

47

47

48

•

•

Chapter

6 (cont)

7

•

" Aependix

1

2

3

4

5

6

7
~

• Figure

C 0 N l ENT S (continued)

Type Declaration Statements •••••.••••.•..•.•.•••.•••...••••.••.......

Page

50

IMPLICIT Statement . . • • • • • . . • • • • • • . • • . • • . • • • • • • • • • • • • • • • S 0

SUBPROGRAM STATEMENTS•.•.••.••.••..•••••.•.••..•••..•..•....•.

Dummy Identifiers ...•••••••••.....•.••••••..•••••••.•....•...•••

Library Subprograms .••••••.••••..•......•..•••••••.........••.••

S2

S2

52

Arithmetic Function Definition Statement . . • • • • • • • • • • • • • • . • • . . . • . . • . • • . • S 2

53 Fun ct ion Subprograms .•••••••.••.••••.••••••••••••••.•••..•..•.••••••

FUl\ICTION Statement .•••••••..•..•.••••••..•..•••••....•••.••..

Fu net ion Type ..•.••••••••••••..•••••.•••••••••••••.•.•...••••.•

Subroutine Subprograms ..•.•.•.•...•.•.•.•.••••••.•.•.•••••...•.•.••.

SUBROUTINE Statement .•••••••••••.•••••••••••••.••••.••••..•.•

CALL Statement •••••••••••••••.••••••••••••••••.••.•..•••••.•••

RETURN Statement ••••••.••••.••.•••••••••.••••••••.••.•••.••••.

EXTERNAL Statement ••.•.••••••.•••••••••••••••.••.•.•.•••••••••

SUMMARY OF ALC FORTRAN IV STATEMENTS .••••••••••••••••••••

FORTRAN IV LIBRARY FUNCTION_~

FORTRAN IV LIBRARY SUBROUTINES .••••••.•••••••••••••.•.•....•.•.•.••

ALC FORTRAN IV OPERATING SYSTEM.

BASIC DIFFERENCES BETWEEN FORTRAN II AND ALC FORTRAN IV •••••••.

ALC FORTRAN IV COMPILER DIAGNOSTICS

SAMPLE PROGRAM

ILLUSTRATIONS

53

54

SS

SS

S6

56

57

58

62

66

67

7i

74

76

Device Table for FORTRAN IV ••••• •• ••••• .• • • . • • . • . •• . •• . • • . • • . 69

iii

Tobie

2

3

4

5

TABLES

Types of Resultant Subexpressions •.••••.••••..••••••••.•••••.•••••.•..•••..

Al lowed Assignment Statements .•.•.••••••••••••••••••.••••••••••....•....•

Numeric Fi.e Id Codes ...•..•••...•.••••.•••••••••••••••••••••••••.•••••.••

Device Control Statements .•.••...•••••••••••••••••••••••••.••••.•.•.•••.•

Defined Operation Codes ••••••••••••••••••••••••••••••

iv

Page

10
15

24

39

68

•

I

..

,.

i

•

CHAPTER 1

INTRODUCTION

The term FORTRAN IV (FORmula TRANslation) is used interchangeably to designate both the FORTRAN IV

language and the FORTRAN IV translator or compiler. - The FORTRAN IV language is composed of

mathematical-form statements constructed in accordance with precisely formulated rules. FORTRAN IV

programs consist of meaningful sequences of FORTRAN statements intended to direct the computer to

perform the specified operations and computations.

The FORTRAN IV compiler is itself a computer program that examines FORTRAN IV statements and tells

the computer how to translate the statements into machine language. The compiler runs in a minimum of

9K of core. The program written in FORTRAN IV language is called the source program. The resultant

machine language program is called the object program.

FORTRAN IV includes such advanced features as logical operators, type declaration statements, double

precision and complex arithmetic, named COMMON, and DATA statements.

FORTRAN IV language elements are discussed in Chapter 2 of thls manual, followed by separate chapters

on the five categories of FORTRAN IV statements (arithmetic, control, input/output, specification, and

subprogram). The appendices contain a list of FORTRAN statements and summary descriptions of library

functions and subroutines.

LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field,

and statement field .

Statement Number Field

A statement number consists of from one to five digits. Leading zeros and all blanks in

this field are ignored. Statement numbers may be in any order and must be unique. Any statement ref­

erenced by another statement must·hove a statement number.

- 1 -

Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently

fit into one statement field, the statement fields of up to 19

additional lines may be used to specify the complete statement.

Any line which is not continued or the first line of a continued

statement must have a blank or zero in Column 6 fsee "use of tab").

•
Continuation lines must have a character other than blank or zero

in Column 6.
•

Use of Tab

A horizontal tab may be used in any of the following 3 ways:

1. <TAB> "statement field"

2. "statement number" <TAB> "statement field"

3. <TAB> "number" "statement field"

"number" = digits 1 thru 9 used to denote line continuation.

Statement Field

Any FORTRAN statement, as described in later sections, may appear in

the statement field (columns 7-72). Except within the literal

descriptor of a FORMAT statement, blanks (or spaces) are ignored and

may be used freely for appearance purposes.

I
Comment Lines

Any line which starts with the letter C in column 1 is interpreted

as a line of comments. Comment lines are printed onto any listings

requested but are otherwise ignored by the compiler. Columns 2-72

may be used in any format for comment purposes.

- 2 -

CHARACTER SET

The fol lowing characters are used in the FORTRAN IV language:

Blank 0 @ p
1 A Q

II 2 B R
I 3 c s ..
$ 4 D T
% 5 E u
& 6 F v

• 7 G w
8 H x
9 I y

* J z
+ K t

< L
= M
> N

I ? 0

"" The following characters are not used: C'"J+

!

-3-

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for forming expressions to evaluate functions are described

in this chapter.

CONSTANTS

Seven types of constants ore permitted in a FORTRAN IV source program: integer or fixed point, real or

single-precision floating point, double-precision floating point, octal, complex, logical, and I iteral.

Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point.

EXAMPLES: 3

-528

8085

An integer constant must fall within the range - 2
35

+ l to 2
35

-1 • When used for the value of a subscript

or as an index in a DO statement, the value of the integer is taken as modulo 2
18

•

Real Constants

Real constants ore written as a string of decimal digits including a decimal point. Any number of digits,

of which nine are significant, may be written. Real constants may be given a decimal scale factor by

appending an E followed by an integer constant. The field following the letter E must not be blank, but

may be zero.

EXAMPLES: 15.

. 579

5.0E3(i.e., 5000.)

A real constant has precision to eight digits. The magnitude must lie approximately within the range

0.14E-38 to 1.7E38.

- 4 -

•

•

I

•

•

•

Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which

are followed by the letter D and the decimal scale factor. The field following the letter 0 must not be

blank, but may be zero.

EXAMPLES: 24.67132598213400

3 .602 (i.e., 360.)

3.60-2 (i.e., .036)

Double precision constants have precision to 16 digits. The magnitude of a double precision constant

must lie approximately between 0.14E-38 and 1 .7E3S .

Octal Constants

A number preceded by a double quote represent.s an octal constant. An octal constant may appear in an

arithmetic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the first

twelve digits are significant.

EXAMPLES: "7777

"-31563

Complex Constants

FORTRAN IV provides for direct operations on complex numbers. Complex constants are written as an

ordered pair of real constants separated by a comma and enclosed in parentheses.

EXAMPLES: (. 70712, - . 70712)

(8. 763E3 I 2. 297)

The first constant of the pair represents the real part of the complex number, and the second constant

represents the imaginary port. The real and imaginary parts may each be signed. The enclosing paren­

theses are port of the constant and always appear, regardless of context.

If A= a 1+ia
2

and B = b1+ib2 (where i = J:l), FORTRAN IV arithmetic operations on complex numbers

become:

- 5 -

A±B = a
1
±bti(a

2
±b

2
)

A•B = (a
1
b

1
-a

2
b

2
)+i (a

2
b

1
+o

1
b

2
)

(al bl +a2b2) (a2bl-al b2)
A/8= +i~---~~

b 2+b 2 b 2~b 2
1 2 1 2

Logical Constants

The two logical constants, . TRUE. and . FALSE., have the internal values -1 and 0, respectively. The

enclosing periods are part of the constant and always appear.

Logical constants may be entered in DAT A or input statements as signed octal integers (-1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to de­

termine the truth value of a logical variable.

Li tera I Constants

A literal constant may be in either of two forms:

1 • A string of characters enclosed in single quotes; two adiacent single quotes within

the constant are treated as one single quote.

2. A string of the form:

nHx1x
2
.•. xn

where x
1
x

2
... xn is the constant, and n is the number of characters following the H.

EXAMPLES: 'LITERAL CONST ANT'

'DON''T'

SH DON'T

VARIABLES

A variable is a quantity whose value may change during the execution of a program. Variables are speci­

fied by name and type. The name of a variable consists of one or more alphanumeric characters, the first

one of which must be alphabetic. Only the first six characters are interpreted as defining the variable

name. The type of variable (integer, real, logical, double precision, or complex) may be specified by

a type declaration statement, described in Chapter 6. Variables of any type may be either scalar or

array variables.

- 6 -

•

•

•

•

'

SCALAR VARIABLES

A scalar variable represents a single quantity.

EXAMPLES: A

G2

POPULATION

ARRAY VARIABLES

An array variable represents a single element of a one-to-n dimerisional array of quantities. The variable

is denoted by the array name followed by a subscript list enclosed in parentheses. The subscript list is a

sequence of integer expressions, separated by commas. The expression may be arithmetic combinations

of integer variables or integer constants. Each expression represents a subscript, and the values of the

expressions determine the array element referred to. For example, the row vector A. would be represented
I

by the subscripted variable A(J), and the element, in the second column of the first row of the square ma-

trix A, would be represented by A(l ,2). Arrays may have any number of dimensions.

EXAMPLES: Y(1)

STATION (K)

A (3* K+2, I, J-1)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COM­

MON, or type declaration statement prior to their first appearance in on executable statement or in a

DATA or NAMELIST statement. (Array dimensioning is discussed in chapter 6.)

Arrays ore stored in increasing storage locations with the first subscript varying most rapidly and the last

subscript varying least rapidly. For example, the 2-dimensional array B(I, J) is stored in the fol lowing

order: 8 (1 , l) , B (2, 1), ... , B (I, l) , B (1 , 2), B (2, 2), ..• , B (I, 2), •.. , B (I , J) .

- 7 -

EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs

the calculations specified by the quantities and operators within the expression.

Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators ore +, - , *, /, **, denoting, respectively, addition, subtraction, multiplication,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the evaluation

of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more

quantities, called arguments, to produce a single quantity called the function value. Function references

are denoted by the identifier, which names the function {such as SIN, COS, etc.), followed by on argu­

ment I ist enclosed in parentheses:

identifier{argument, argument, ••• , argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subpro­

gram identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the function

is independent of the types of its arguments.

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828

Z(N)

TAN(THETA)

Compound numeric expressions may be formed by using numeric operators to combine basic elements:

X+3.

TOTAL/A

TAN(Pl*M)

- 8 -

•

f

•

" Compound numeric expressions must be constructed according to the following rules:

•

1 . With respect to the numeric operators +, - , *, /, ony type of quantity (logical,

octal, integer, real, double precision, complex or litercl) may be combined with any

other, with one exception: a complex quantity cannot be t.ombined with a double

precision quantity.

The resultant type of the combination of any two types may be found in Table 1. The

conversions between data types will occur as follows:

(a) A literal constant will be combined with any other integer constant as on

integer and with a real or double word as a real or double word quantity.

(Double word refers to both double precision and complex.)

(b) An integer quantity {constant, variable, or function reference) combined

with a real or double word quantity results in on expression of the type real

or double word respectively; e.g., an integer variable plus a complex variable

will result in o complex subexpression. The integer is converted to floating

point and then added to the real port of the complex number. The imaginary

part is unchanged.

(c) A real quantity {constant, variable, or function reference combined with

a double word quantity results in an expression that is of the same type as the

double word quantity.

(d) A logical or octal quantity is combined with an integer, real, or double

word quantity as if it were on integer quantity in the integer case, or a real

quantity in the real or double word case (i.e., no conversion takes place).

2. Any numeric expression may be enclosed in parentheses and considered to be a basic

element.

(X+Y)/2

(ZETA)

(C OS(S IN (P l*M }~· X))

- 9 -

>-.
~ ...
c:
0
::::>

0
"""" 0

QJ
Q.
>-.

TABLE 1 TYPES OF RESULTANT SUBEXPRESSIONS

Type of Quantity

Double
Logical,

+,-,•,/ Real Integer Complex
Precision

Octal, or
Literal

Real Real Real Complex Double Real
Precision

Integer Real Integer Complex Double Integer
Precision

Complex Complex Complex Complex Not Complex
Allowed

Double Double Double Not Double Double
Precision Precision Precision Allowed Precision Precision

Logical, Real Integer Complex Double Logical,
Octal, or Precision Octal, or
Literal Literal

3. Numeric expressions which are preceded by a+ or - sign are also numeric expressions:

+X

-(ALPHA•BETA)

-SQRT (-GAMMA)

4. If the precedence of numeric operations is not given explicitly by parentheses, it

is understood to be the fol lowing (in order of decreasing precedence):t

Operator

**
•and/

+and-

numeric exponentiation

numeric multiplication and division

numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left

to right. This is also true for exponentiation.

t See also page 14

- 10 -

•

•

•

•

•

5. No two numeric operators may appear in sequence. For instance:

is improper. Use of parentheses yields the correct form:

By use of the foregoing rules, al I permissible numeric expressions may be formed. As

an example of a typical numeric expression using numeric operators and a function

reference, the expression for the largest root of the general quadratic equation:

would be coded as:

-b+ j b
2

- 4ac
2a

(-B+SQRT(B••2-4. •A•C))/(2 ·*A)

Logical Expressions

A logical expression consists of logical constants, logical variables, logical function references, and

arithmetic expressions, separated by logical operators or relational operators. Logical expressions are

provided in FORTRAN IV to permit the implementation of various forms of symbolic logic. Logical con­

stants are defined by arithmetic statements, which are described in Chapter 3. Logical variables and

functions are defined by the LOGICAL statement, described in Chapter 6. Binary variables may be rep­

resented by the logical constants . TRUE. and . FALSE., which must always be written with enclosing periods.

Logical Operators

The logical operators, which include the enclosing periods and their definitions, are as follows, where P

and Q ore logical expressions:

.NOT.P

P.AND.Q

P.OR.Q

Hos the value . TRUE. only if P is . FALSE., and hos the value

. FALSE. only if P is . TRUE.

Hos the value . TRUE. only if P and Q are both . TRUE., and

hos the value . FALSE. if either P or Q is . FALSE.

(Inclusive OR) Hos the value . TRUE. if either P or Q is . TRUE.,

and hos the value . FALSE. only if both P and Q are . FALSE.

- 11 -

P.XOR.Q

P.EQV.Q

(Exclusive OR) Has the value . TRUE. if either P or Q but not

both are .TRUE., and hos the value .FALSE. otherwise.

(Equivalence) Has the value . TRUE. if P and Qare both

. TRUE. or both . FALSE., and has the value . FALSE. otherwise.

Relational Operators

The relational operators are as fol lows:

Operator

.GT.

.GE.

.LT.

.LE.

.EQ.

.NE.

Relation

greater than

greater than or equal to

less than

less than or equal to

equal to

not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.

The value (.TRUE. or .FALSE.) of such relations will be calculated by subtraction; i.e.,

expression
1

"relation" expression
2

wlll be calculated as though:

expression
1

- expression
2

"relation" zero

hod been written.

The relational operators .EQ. and .NE. may also be used with COMPLEX expressions. (Double word

quantities are equal if the corresponding parts are equal.)

A logical expression may consist of a single element (constant, variable, function reference, or relation):

• TRUE.

X . GE. 3 . 1 41 59

- 12 -

•

•

•

•

..

•

•

Single elements may be combined through use of logical oper~tors to form compound logical expressions,

such as:

TVAL. AND. INDEX

BOOL(M).OR. K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T .XOR. S) .,A.NO. (R. EQV. Q)

PARITY ((2.GT .Y .OR.X.GE.Y).AND.NEVER)

Any logical expression may be preceded by the unary operator. NOT. as in:

.NOT.T

.NOT.X+7.GR.Y+Z

BOOL(K).AND •• NOT. (lVAL .OR.R)

No two logical operators may appear in sequence, except in the case where • NOT. appears as the second

of two logical operators, as in the example above.

Two decimal points may appear in sequence, as in the example above, or when one belongs to an operator

and the other to a constant .

When the precedence of operators is not given explicitly by parentheses, it is understood to be as fol lows

(in order of decreasing precedence):

**
.,/
+,-

. GT. I • GE. I • LT. I • LE. I • EQ. I • NE.

.NOT .

. AND .

.OR .

. EQV. I .XOR.

For example, the logical expression

.NOT .ZETA••2+Y•MASS. GT. K-2.0R.PARITY .AND.X.EQ. Y

" is interpreted as

(.NOT. (((ZET A**2)+(Y•MASS)). GT. (K-2))).0R. (PARITY .AND. (X .EQ. Y))

- 13 -

CHAPTER 3

THE ARITHMETIC STATEMENT

One of the key features of FORTRAN IV is the ease with which arithmetical computations can be coded.

Computations to be performed by FORTRAN IV ore ind· ;oted by arithmetic statements, which have the

general form:

A=B

where A is o variable, B is on expression, and= is a replacement operator. The arithmetic statement

causes the FORTRAN IV object program to evaluate the expression B and assign the resultant value to the

variable A. Note that the= sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and

A=A•B

are quite meaningful and indicate that the value of the variable A is to be changed.

EXAMPLES: Y=l•Y

P=. TRUE.

X(N)=N•ZET A (ALPHA•M/Pl)+{l. ,-1.)

Table 2 indicates which type of expression may be equated to each type of variable in an arithmetic state­

ment. D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates

that only the real part of the variable is set to the value of the expression (the imaginary part is set to zero};.

C means that the expression is converted to the type of the variable; and H means that only the high-order

port ion of evaluated expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs.

For example, in the statement:

THET A=W•(ABET A+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer before

assignment to THETA.

- 14 -

•

•

•

II

•

TABLE 2 ALLOWED ASSIGNMENT STATEMENTS

Variable Real lnte,er

Real D c

Integer c D

Complex D,R, I C,R, I

Double
D, H,L C,H,L

Precision

Logical D D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0

H - High order only

L - Set I ow order part to 0

Expression

Complex

R,D

R,C

D

R,D,H,L

R,D

- 15 -

Double
Precision

H,D

H,C

H,D,R,I

D

H,D

logical,
Octal, or

Literal
Constant

D

D

D, R, I

D, H,L

D

CHAPTER 4

CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were

presented to the compiler. However, the following control statements are available to alter the normal

sequence of statement execution: GOTO, IF, DO, PAUSE, STOP, END, CALL, RETURN.

RETURN are used to enter and return from subroutines.

GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

Unconditional GO TO Statements

UnconditionaJ GO TO statements are of the form:

GOTO n

CALL and

where n is the number of an executable statement. Control is transferred to the statement numbered n.

Computed GO TO Statements

Computed GO TO statements have the form:

where n
1
, n

2
, ••. , nk are statement numbers, and i is an integer expression.

This statement transfers control to the statement numbered n1 ,n2, •.. ,nk if it has the value 1, 2, ... ,k,

respectively. If i exceeds the size of the I ist, or is zero, execution will proceed to the next executable

statement.

For example, in the statement:

GO TO (20, 10, 5), K

the variable K acts as a switch, causing a transfer to statement 20 if K=l, to statement 10 if K.::2, or to

statement 5 if K=:3.

- 16 -

•

•

•

•

'

•

Assigned GO TO Statement

Assigned GO TO statements have two forms:

GOTOk

and

GO TO k,(n
1
,n

2
,n

3
, .••)

where k is a nonsubscri pted integer variable and n1 , n2
, ••• nk are statement numbers. Both forms of the

assigned GO TO have the effect of transferring control to the statement whose number is currently asso­

ciated with the variable k. This association is established through the use of the ASSIGN statement, the

general form of which is:

ASSIGN i TO k

If more than one ASSIGN statement refers to the same integer variable name, the value assigned by the

last executed statement is the current value.

EXAMPLES: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT I (2, 21, 1000, 310)

IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) n
1
,n

2
,n

3

where n
1
, n

2
, n

3
are statement numbers.

This statement transfers control to the statement numbered n
1

, n
2

, n
3

if the value of the numeric expression

is less than, equal to, or greater than zero, respectively. The expression may not be complex .

EXAMPLES: I F (ET A)4 I 7, 1 2

IF (KAPPA-L(10))20, 14, 14

- 17 -

Logical IF Statements

Logical IF statements hove the form:

IF (expressions)S

where S is a complete statement.

The expression must be logical. S may be any executable statement other than a DO statement or another

logical IF statement.

If the value of the expre~sion is . FALSE., control passes to the next sequential statement.

If the value of the expression is . TRUE., statement S is executed. After execution of S, control passes

to the next sequential statement unless S is a numerical IF statement or a GO TO statement; in these

cases, control is transferred as indicated.

If the expression is . TRUE. and S is a CALL statement, control is transferred to the next sequential state­

ment upon return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X.SIN(Z)

W=Y**2

lf the value of B is . TRUE., the statements Y=X•SI N(Z) and W=Y **2 are executed in that order. If the

value of 8 is . FALSE., the statement Y=X•SIN(Z) is not executed.

EXAMPLES: IF (T.OR.S)X=Y+l

IF (Z. GT. X(K)) CALL SWITCH (S, Y)

IF (K.EQ.INDEX)GO TO 15

NOTE: Care should be token in testing floating point numbers for equality in
IF statements as rounding errors may cause unexpected results.

DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

where n is a statement number, i is a nonsubscripted integer variable, and m
1

, m
2

, m
3

are any integer

expressions. If m
3

is not specified, it is understood to be l.

- 18 -

•

•

•

•

•

The DO statement causes the statements which follow, up to and inciuding the statement numbered n, to

be executed repeatedly. This group of statements is called the range of the DO statement. The integer

variable i of the DO statement is called the index. The values of m1, m
2

, and.m
3

are called, respectively,

the initial, limit, and increment values of the index.

A zero increment (m
3

) is not al lowed. The increment may be negative if m 1~m2" If m 1 ~ m2
, the increment

m
3

must be positive. The parameters m
1

and m
2

may have I ike or uni ike signs as long as m2 is always

larger than m
3

, or m
3

is always larger than m
2

.

EXAMPLES: Form

DO 1 0 I= 1 I 5 I 2

DO 10 1=5, 1 I -1

DO 10 l=J, K, 5

DOlOl=J,K,-5

DO 10 L=l,J,-K

DO 10 L=l,J,K

J< K

J>K

Restriction

l<J,K<O or l~J,K>O

l~J,K>O or l~J,K<O

Initially, the statements of the range are executed with the initial value assigned to the index. This

initial execution is always performed, regardless of the values of the limit and increment. After each

" execution of the range, the increment value is added to the value of the index and the result is compared

with the limit value. If the value of the index is not greater than the limit value, the range is executed

again using the new value of the index. When the increment value is negative, another execution will

be performed if the new value of the index is not less than the I imit value ..

•

•

After the lost execution of the range, control passes to the statement immediately fol lowing the range.

This exit from the range is called the normal exit. Exit may also be accomplished by a transfer from within

the range. The value of the index after normal exit is indeterminate
since the compiler stores and increments the index in index register
15 whenever possible. DDT users should note that they may have to
examine register 15 at a breakpoint inside a DO loop to determine the
current value of the index.

The range of a DO statement may include other DO statements, provided that the range of each contained

DO statement is entirely within the range of the containing DO statement. That is, the ranges of two DO

statements must intersect completely or not at all. A transfer into the range of a DO statement from out­

side the range is not al lowed.

Within the range of a DO statement, the index is available for use as an ordinary variable. After a trans­

fer from within the range, the index retains its current value and is available for use as a variable. The

" values of the initial, limit, and increment variables for the index and the value of the index
itself, may not be altered within the range of the DO statement.

- 19 -

The range of a DO statement must not end with a GO TO type statement or a numerical IF statement. A

logical IF statement is allowed as the last statement of the range. In this case, control is transferred as

fol lows. The range is considered ended when, and if, control would normally pass to the statement follow­

ing the entire logical IF statement.

As an example, consider the sequences:

D05K=l,4

5 IF(X(K). GT. Y(K))Y(K)=X(K)

6 ...

Statement 5 is executed four times whether the statement Y(K)=X(K) is executed or not.

Statement 6 is not executed until statement 5 hos been executed four times.

EXAMPLES:

The CONTINUE statement hos the form:

DO 22 L=l, 30

DO 45 K=2, LIMIT I -3

DO 7 X=T ,MAX, L

CONTINUE STATEMENT

CONTINUE

This statement is a dummy statement, used primarily as a target for transfers, particularly as the last state­

ment in the range of a DO statement. For example, in the sequence:

DO 7 K:::START I END

IF (X(K))22, 13, 7

7 CONTINUE

a positive value of X(K) begins another execution of the range. The CONTINUE provides a target address

for the IF statement and ends the range of the DO statement.

PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic

events. The PAUSE statement assumes.one of three forms:

- 20 -

•

'

•

•

'

-~

•

PAUSE

PAUSE n

PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a I iteral message.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the

user's teletypewriter. Program execution may be resumed (at the next executable FORTRAN statement)

from the console by typing 11 G, 11 followed by a carriage return. Program execution may be terminated by

typjng "X, 11 followed by carriage return •

EXAMPLE: PAUSE 167

PAUSE 'NOW IS THE TIME'

STOP STATEMENT

The STOP statement has the form:

STOP

The STOP statement terminates the program and returns control to the monitor system. {Termination of a

program may also be accomplished by a CALL to the EXIT or DUMP subroutines.)

END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement

of the program.

- 21 -

CHAPTER 5

INPUT/OUTPUT STATEMENTS AND SUBROUTINES

Input/output statements ore used to control the transfer of data between computer memory and peripheral

devices and to specify the format of the output data. Input/output statements may be divided into three

categories, as follows:

1 . Nonexecutcible statements that enable conversions between internal form data

within core memory and external form data (FORMAT), or specify lists of arrays and

variables for input/output transfer (NAMELIST). These statements are compiled

"in line" with jumps around the body of the statement. Therefore,,
attempts to execut~ these statements will simply result in transfer
to the next statement.

2. Statements that specify transmission of data between computer memory and 1/0

devices: READ, WRITE, PRINT, PUNCH, TYPE, ACCEPT.

3. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE,

END FILE, UNLOAD, SKIP RECORD.

4. Statements and subroutines that control directory devices:
REWIND, BACKSPACE, END FILE, SKIP RECORD, CALL !FILE, CALL OFILE,
CALL RREAD, CALL RWRI.

NONEXECUTABLE STATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected ex­

ternal medium. The NAMEL IST statement provides for conversion and input/output transmission of data

without reference to a FORMAT statement.

FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium. FORMAT statements are of

the form:

1 1 l
n FORMAT (S

1
,s

2
, ... S/S

1
,S

2
, ..• ,S/ ...)

where n is a statement number, and each S is a data field specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement con­

tains only alphanumeric data for direct input/output transmission, it will be used in conjunction with the .

I ist of a data transmission statement. .

Sloshes are used to specify unit records .

- 22 -

•

•

-·
•

There are no restrictions on record lengths. The programmer

is responsible for restricting output line length for devices

which have a fixed line length.

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present {see "Input/Output Lists" p 35) and the data transmission statement contains

items remaining to be transmitted; transmission takes place according to the specification. This process

ceases and execution of the data transmission statement is terminated as soon as all specified items have

been transmitted. Thus, the FORMAT statement may contain specifications for more items than are speci­

fied by the data transmission statement. Conversely, the FORMAT statement may contain specifications

for fewer items than are specified by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with

scale factors, logical, alphanumeric. The FORMAT statement also provides for hand I ing multiple record

formats, formats stored as data, carriage control, skipping characters, blank insertion, and repetition.

If an input list requires more characters than the input device supplies for a given unit record, blanks

are supplied.

Numeric Fields

Numeric field specification codes and the corresponding internal and external forms of the numbers are

listed in Table 3.

The conversions of Table 3 are specified by the forms:

l. Dw.d

2. Ew.d

3. Fw.d

4. lw

5. Ow

6. Gw.d (for rea I)

Gw (for integer or logica I)

Gw.d,Gw.d (for complex)

respectively. The letter D, E, F, I, 0, or G designates the conversion type; w is an integer specifying

the field width, which may be greater than required to provide for blank columns between numbers; d is

- 23 -

on integer specifying the number of decimal places to the right of the decimal point or, for G conversion,

the number of significant digits. (For D, E, F, and G input, the position of the decimal point in the

external field tokes precedence over the value of d in the format.)

For example,

FORMAT (15 I F 1 0. 2 I D 1 8 . 1 0)

could be used to output the I ine,

bbb32bbbb-17.60bbb.59625476810+03

on the output I isting.

The field width w should always be large enough to include spaces for the decimal point, sign, and expo­

nent. In all numeric field conversions if w is not large enough to accommodate the converted number, the

excess digits on the left will be lost; if the number is less than w spaces in length, the number is right­

adjusted in the field.

Conversion
Code

D

E

F

0

G

TABLE 3 NUMERIC FIELD CODES

Internal Form

Binary floating point
double-precision

Binary floating point

Binary floating point

Bi nary integer

Binary integer

One of the following:
single precision
binary floating point,
binary integer,
binary logical, or
binary complex

- 24 -

External Form

Decimal floating point
with D exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octal Integer

Single precision
decimal floating point,
integer, logical (T or
F), or complex (two
decimal floating point
numbers), depending
upon the internal form

•

•

'
•

Numeric Fields with Scale Factors

Scale factors may be specified for D, E, F, and G conversions. A scale factor is written nP where Pis

the identifying character and n is a signed or unsigned integer that specifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed point), the scale factor specifies

a power of ten so that

(.) (sea le factor) external number = internal number * 10

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the

number by a power of ten, but the exponent is changed accordingly leaving the number unchanged except

in form. For example, if the statement:

FORMAT (F8.3, E16.5)

corresponds to the Ii ne

bb26 .451 bbbb-0.41321 E-01

then the statement

FORMAT (-1PF8.3,2PE16.5)

might correspond to the Ii ne

bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the

only types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified,

it holds for all subsequent D, E, F, and G type conversions within the same format unless another scale

factor is encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors

have no effect on I and 0 type conversions .

logical Fields

logical data can be transmitted in a manner similar to numeric data by use of the specification:

lw

where l is the control character and w is a- :nh.g- .. specifying the field width. The data is transmitted

as the value of a logical variable in the input/output list.

- 25 -

If on input, the first nonblank character in the data field is T or F, the value of the logical variable wil I

be stored as true or false, respectively. If the entire data field is blank, a value of false will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true

or fol se, respectively.

Variable Field Width

Th~ D, E, F, G, I, and 0 conversion types may appear without the specification of the field width w.

In the case of input, omitting the w implies that the numeric field is delimited by any character which

would otherwise be illegal in the field in addition to the characters blank and carriage return

provided they follow the numeric field. For example, input according to
the format:

10 FORMAT(21,F,E,O)

might appear as:
-10,3,15.621,.0016E-10,777

On output, omitting thew has the following effect:

Alphanumeric Fields

Format

D

E

F

G

0

Becomes

025.16

E15.7

F15.7

G15.7 or G25.16

115

015

Alphanumeric data can be transmitted in a manner similar to numeric data by use of the form Aw, where

A is the control character and w is the number of characters in the field. The alphanumeric characters

are transmitted as the value of a variable in an input/output list. The variable may be of any type. For

the sequence:

READ 5, V

5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

- 26 -

•

•

Although w may have any value, the number of characters transmitted is limited by the maximum number

of characters which can be stored in the space allotted for the variable. This maximum depends upon the

variable type. For an integer or real variable the maximum is five characters; for a double precision or

complex variable, the maximum is ten characters. If w exceeds the maximum, the leftmost characters are

lost on input and replaced with blanks on output. If, on input, w is less than the maximum, blanks ore

filled in to the right of the given characters until the maximum is reached. If, on output, w is less than

the maximum, the leftmost w characters are transmitted to the external medium.

Alphanumeric Data Within Format Statements

Alphanumeric data may be transmitted directly into or from the format statement by two different methods:

H-conversion, or the use of single quotes.

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is

the number of characters in the string counting blanks. For example, the format in the statement below

con be used to print PROGRAM COMPLETE on the output listing.

FORMAT (l 7H PROGRAM COMPLETE)

" Referring to this format in a READ statement would cause the 17 characters to be replaced with a new

string of characters.

•

•

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same

as in H-conversion; on input, the characters between the quotes are replaced by input characters, and,

on output, the characters between the quotes (including blanks) are written as part of the output data. A

quote character within the data is represented by two successive quote marks. For example, referring to:

FORMAT ('DON' 'T')

with an output statement would cause DON'T to be printed .

Mixed Fields

An alphanumeric format field may be placed among other fields of the format. For example, the statement:

FORMAT (15, 7H FORCE=Fl 0. 5)

can be used to output the Ii ne:

bbb22bFORCE=bb 17 .68901

" The separating comma may be omitted after an alphanumeric format field, as shown above.

- 27 -

Complex Fields

Complex quantities are transmitted as two independent real quantities. The format specification consists

of two successive real speci ficotions or one repeated real specification. For instance, the statement:

FORMAT (2E15.4,2(F8.3,F8.5))

could be used in the transmission of three complex quantities.

Repetition of Field Specifications

Repetition of a field specification may be specified by preceding the control character D, E, F, I, 0, G,

L, or A by an unsigned integer giving the number of repetitions desired. For example:

FORMAT (2El2.4,315)

is equivalent to:

FORMAT (El 2 .4, El 2.4,15, 15, 15)

Repetition of Groups

A group of field specifications may be repeated by enclosing the group in parentheses and preceding the

whole with the repetition number. For example:

FORMAT (218,2(El5.5,2F8.3))

is equivalent to:

FORMAT (218, El 5. 5, 2F8. 3, El 5. 5, 2F8 .3)

Multiple Record Formats

To handle a group of input/output records where different records hove different field specifications, a

slosh is used to indicate a new record. For example, the statement:

FORMAT (308/15,2F8.4}

is equivalent to:

FORMAT (308)

for the first record and

FORMAT (15,2F8.4)

for the second record.

- 28 -

(~ -

..

•

•

Ci.I The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning

of a format, n blank records may be written on output or records skipped on input. When n slashes appear

in the middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record.

If the list of an input/output statement dictates that transmission of data is to continue after the closing

parenthesis of the format is reached, the format is repeated from the last open parenthesis of level one or

zero. Thus, the statement:

causes the format:

FORMAT (F7. 2, (2(E15. 5, El 5.4), 17))

1eve1o~ei 1 J level 1JL1eve1 o

F7.2,2(El5.5,El5.4),17

to be used on the first record, and the format:

2(El 5.5, El 5.4), 17

to be used on succeeding records.

As a further example, consider the statement:

FORMAT (F7. 2/(2(El 5. 5, El 5.4),17))

The first record has the format:

F7.2

and successive records have the format:

2(E15.5, E15.4), 17

Formats Stored as Data

The ASCII character string comprising a format specification may be stored as the values of on array.

Input/output statements may refer to the format by giving the array name, rather than the statement number

of a FORMAT statement. The stored format hos the same form as a FORMAT statement excluding the word

11 FORMAT. 11 The enclosing parentheses are included.

- 29 -

As an example, consider the sequence:

DIMENSION ARRAY (2)

READ l I (ARRA y (I) ' I= 1, 2)

FORMAT (2A4)

READ ARRAY, K, X

The first READ statement enters an ASCII string into the array ARRAY. . In the second READ statement,

ARRAY is referred to as the format governing conversion of Kand)(.

Carriage Control

The first character of each ASCII record controls the spacing of the line printer or Teletype. This character

is usually set by beginning a FORMAT statement for an ASCII record with 1Ha, where a is the desired con­

trol character. The I ine spacing actions, I isted below, occur before printing:

Character

space

0

+

Effect

skip to next line

skip a I ine

form feed - go to top of next page • This is s i mu 1 a t e d
on user consoles which do not have hardware
form feeds.

suppress skipping - wil I overprint I ine

skip 2 I ines

Characters not in the table will act as spaces.
will be added to the table from time to time.

However, characters

A $ (dollar sign) as a format field specification code suppresses the
carriage-return at the end of the line.

Input and output can be made to skip forward to any position within a
FORTRAN record by use of the format code:

Tw

where Tis the control character and w is on unsigned integer constant specifying the position in a FORTRAN

record where the transfer of data is to begin.

- 30 -

..

•

•

•

"' For example,

2FORMAT(T30,'BLACK'T50,'WHITE')

would cause the following line to be printed:

Print Position 30 Print Position 50

For input, the statements:

~
BLACK

~
WHITE

FORMAT(T35, 'MONTH')

READ (3, 1)

would cause the first 34 characters of the input data to be skipped, and the next 5 characters would re­

place the characters M, 0, N, T, and H in storage.

Blank or Skip Fields

Blanks may be introduced into an output record or characters skipped on an input record by use of the

specification nX. The control character is X; n is the number of blanks or characters skipped and must

be greater than zero. For example, the statement:

FORMAT (SH STEPl5, l OX2HY=F7 .3)

may be used to output the I ine:

bSTEPbbb28bbbbbbbbbbY=b-3.872

NAM EL IST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and WRITE statements,

provides a method for transmitting and converting data without using a FORMAT statement or on 1/0 list .

The NAMEL IST statement hos the form:

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each I ist or variable mentioned in the NAMELIST statement is given the NAMELIST name immediately

preceding the I ist. Thereafter, on 1/0 statement may refer to an entire I ist by mentioning its NAMELIST

name. For example:

NAMEL !ST/FRED/ A, B, C/MARTHA/D, E

- 31 -

states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA.

The use of NAMELIST statements must obey the following rules:

1 . A NAMEL IST name may not be longer than six characters; it must start with an

alphabetic character; it must be enclosed in slashes; it must precede the I ist of entries

to which it refers; and it must be unique within the program.

2. A NAMELIST name may be defined only once and must be defined by a NAMELIST

statement. After a NAMELIST name has been defined, it may only appear in READ or

WRITE statements. The NAMELIST name must be defined in advance of the READ or

WRITE statement.

3. A variable used in a NAMELIST statement cannot be used as a dummy argument in

a subroutine definition.

4. Any dimensioned variable contained in NAMELIST statement must have been de­

fined in a DIMENSION statement preceding the NAMELIST statement.

Input Data for NAMELIST Statements

When a READ statement refers to a NAMELIST name, the first character of all input records is ignored.

Records are searched until one is found with a$ or & as the second character immediately followed by the

NAMELI ST name specified. Data is then converted and placed in memory until the end of a data group is

signaled by a $ or & either in the same record as the NAMELIST name, or in any succeeding record as

long as the $ or & is the second character of the record. Data items must be separated by commas and be

of the following form:

where V may be a variable name or on array name, with or without subscripts. The K's ore constants

which may be integer, real, double precision, complex {written as (A, B) where A and Bare real), or

logical (written as T or . TRUE., and For . FALSE). A series of J identical constants may be represented

by J* K where J is an unsigned integer and K is the repeated constant l_ogical and complex constants

must be equated to logical and complex variables, respectively. The other types of constants (real, double

precision, and integers) may be equated to any other type of variable (except logical or comp I ex), and

will be converted to the variable type. For example, assume A is a two-dimensional real array, Bis a

one-dimensional integer array, C is an integer variable, and that the input data is as fol lows:

- 32 -

•

..

•

•

•

$FRED A(7,2)=4,B=3,6*2.8, C=3.32$

i
Column 2

A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 wil I

be converted to floating point and placed in A(7,2). The integer 3 will be converted to floating point

and placed in B(l) and the floating point number 2.8 will be placed in B(2), 8(3), ... , 8(7). The floating

point number 3. 32 w be converted to the integer 3 and placed in C.

Output Data for NAMELIST Statements

When a WRITE statement refers to a NAMELIST name, all variables and arrays and their values belonging

to the NAMELIST name will be written out, each according to its type. The complete array is written

out by columns. The output data wil I be written so that:

l . The fields for the data wil I be large enough to contain all the significant digits.

2. The output con be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statements:

NAMELIST/NAMl/JOE, Kl ,ALPHA

WRITE (u, NAMl)

wil I generate the following form of output:

Column 2
i
$NAME1

JOE= -6. 75,

-17.8,

K1=73. 1,

.234E-04,

0.0,

ALPHA=3

68.0,

- . l 97E+07,

DATA TRANSMISSION STATEMENTS

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMELIST

statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the

data transmission statement must contain a list of the quantities to be transmitted. The data appears on the

external media in the form of records.

- 3 3 -

Input/Output lists ~

The list of an input/output statement specifies the order of transmission of the variable values. Duri.19

input, the new values of listed variables may be used in subscript or control expressions for variables

appearir later in the I ist. For example:

READ l 3, l , A (L) , B (L + 1)

reads a new value of l and uses this value in the subscripts of A and ~.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement.

The I ist of controlled variables, followed by the index control, is enclosed in parentheses. For example,

READ 7, (X(K),K=l,4),A

is equivalent to:

READ 7,X(l),X(2),X(3),X(4),A

As in the DO statement, the initial, I imit, and increment values may be given as integer expressions:

READ 5, N, (GAIN(K), K=l ,M/2, N)

The indexing may be compounded as in the fol lowing:

READ ll,((MASS(K,L),K=l,4),L=l,5)

The above statement reads in the elements of array MASS in the following order:

MASS(l ,l), MASS(2, l), ••• I MASS(4, l), MASS(l, 2), •.• I MASS(4, 5)

If an entire array is to be transmitted, the indexing may be omitted and only the array identifier written.

The array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus,

the example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAMELIST name (see description of

NAMELIST statement).

Input/Output Records

Al I information appearing on external media is grouped into records. The maximum amount of information

in one record and the manner of separation between records depends upon the medium. For punched cards,

- 14 -

..

each card constitutes one record; on a teletypewriter a record is one I ine, and so forth. The amount of

information contained in each ASCII record is specified by the FORMAT reference and the 1/0 list. For

magnetic tape binary records, the amount of information is specified by the 1/0 I ist.

Each execution of on input or output statement initiates the transmission of a new data record. Thus, the

statement:

READ 2, FIRST,SECOND, THIRD

is not necessarily equivalent to the statements:

READ 2, FIRST

READ 2, SECOND

READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement:

READ 2, FIRST,SECOND, THIRD

may require one, two, three, or more records depending upon FORMAT 2.

If an input/output statement requests less than a ful I record of information, the unrequested part of the

record is lost and cannot be recovered by another input/output statement without repositioning the record.

" If an input/output list requires more than one ASCII record of information, successive records are read.

•

•

PRINT Statement

PRINT refers to a logical device named "PRINT." If a physical device
is not assigned the logical name "PRINT" before execution, the error
message "DEVICE PRINT NOT AVAILABLE" will be given by the FORTRAN
operating system. There are two forms for the print statement:

where f is a format reference .

PRINT f, list

PRINT f

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

EXAMPLES: PRINT 16,T,(B(K),K=l,M)

PRINT F106,SPEED,MISS

In the second example, the format is stored in array F106.

- 35 -

PUNCH Statement

PUNCH refers to a logical device named "PUNCH." If a physical device
is not assigned the logical name "PUNCH" before execution, the error
message "DEVICE PUNCH NOT AVAILABLE" will be given by the FORTRAN
Operating System. There are two forms for the PUNCH statements:

where f is a format reference.

PUNCH f, list

PUNCH f

Conversion from internal to external data forms is specified by the format reference. If the data to be

transmitted is contained in the designated FORMAT statement, the second form of the statement is used.

EXAMPLES: PUNCH 12,A,B(A),C(B(A))

PUNCH 7

TYPE Statement

The TYPE statement assumes one of two forms:

where f is a format reference.

TYPE f, list

TYPE f

This statement causes the values of the variables in the list to be read from memory and listed on the user's

teletypewriter. The data is converted from internal to external form according to the designated format.

If the data to be transmitted is contained in the designated FORMAT statement, the second form of the

statement is used:

EXAMPLES: TYPE 14, K, (A(L), L=l, K)

TYPE FMT

WRITE Statement

The WRITE statement assumes one of the following forms:

WRITE(u,f) list

WRITE(u, f)

WRITE(u, N)

WRITE(u) list

- 36 -

•

'-' where u is a unit designation, f is a format reference, and N is a NAMELIST name.

•

The first form of the WRITE statement causes the values of the variables in the I ist to be read from memory

and written on the unit designated in ASCII form. The data is converted to external form as specified by

the designated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format

and written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging

to the NAMELIST name, N, to be read from memory and written on the unit designated. The data is

converted to external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from mem­

ory and written on the unit designated in binary form.

READ Statement

The READ statement assumes one of the following forms:

' READ f, list L .
READf ~·
READ(u,f) list

READ(u, f)

READ(u, N)

READ(u) list

These forms require
that a physical device be
assigned the logical name
"CARD" before execution.

where f is a format reference, u is a unit designation, and N is a NAMELIST name.

The first form of the READ statement causes information to be read from cards and put in memory as values

of the variables in the I ist. The data is converted from external to internal form as specified by the ref­

erenced FORMAT statement.

EXAMPLE: READ 28, Zl I Z2, Z3

The second form of the READ statement is used if the data read from cards is to be transmitted directly into

the specified format.

EXAMPLE: READ 10

- 37 -

The third form of the READ statement causes ASCII information to be read from the unit designated and

stored in memory as values of the variables in the I ist. The data is converted to internal form as specified

by the referenced FORMAT statement.

EXAMPLE: READ(l, l 5)ET A, Pl

The fourth form of the READ statement causes ASCII information to be read from the unit designated and

rransmitted directly into the specified format.

EXAMPLE: READ(N, l 05)

The fifth form of the READ statement causes data of the form described in the discussion of input data for

NAMELIST statements to be read from the unit designated and stored in memory as values of the variables

or arrays specified.

EXAMPLE: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and

stored in memory as values of the variables in the I ist.

EXAMPLE: READ(M)GAIN, Z, Al

ACCEPT Statement

The ACCEPT statement assumes one of two forms:

where f is a format reference.

ACCEPT f, list

ACCEPT f

This statement causes information to be input from the user's teletypewriter and put in memory as values

of the variables in the I ist. The data is converted to internal form as specified by the format. If the

transmission of data is directly into the designated format, the second form of the statement is used.

EXAMPLES: ACCEPT 12,ALPHA,BETA

ACCEPT 27

- 38 -

•

..

•

DEVICE CONTROL STATEMENTS AND SUBROUTINES

TABLE 4 DEVICE CONTROL STATEMENTS

Statement Effect

BACKSPACE unit

END FILE unit

REWIND unit

Backspaces one logical record for either
ASCII or binary files. A single back­
space is legal for any device that does
input. Repeated backspaces are only
permitted on directory devices and mag­
netic tapes. Backspace is a read
operation only.

Closes the current file for input and
output. If output is active, a physical
end-of-file record is written for mag­
netic tape. For directory devices,
END FILE is identical to REWIND.

Does an END FILE for any device and then
rewinds if the device is a magnetic tape.

SKIP RECORD unit Skips one logical record for ASCII or
binary files.

UNLOAD unit Same as REWIND except that if the device
is a magnetic tape, it will unload.

TABLE 4A DEVICE CONTROL SUBROUTINES

Statement Effect

!FILE (unit, name, ext)

OFILE (unit, name, ext)

Opens file "NAME.EXT" for input on a
directory device. Name is an ASCII
variable consisting of one to five alpha­
numeric characters. EXT is an ASCII
variable consisting of one to three char­
acters. EXT is an optional argument with
DAT as tne default argument.

Opens a new file "NAME.EXT" for output
on a directory device. Arguments are
the same as for !FILE.

- 39 -

RREAD (unit, record, count) Positions the read pointer so that the
next READ stat~ment will read record
number "RECORD" each of which are of
length "COUNT". This is only appli­
cable for binary files of constant
record length. (See Appendix 7)

RWRI (unit, record, count) Converse of RREAD, i.e. positions write
pointer so that the next WRITE state­
ment will write record number "RECORD"
of length "COUNT". The file can only
be extended one record at a time, e.g.
if the file is of length 20 records,
record 21 can be written, but record 22
cannot. (See Appendix 7)

The following calls set or clear flags defining conditions for the
file associated with unit "UNIT". These calls are made available
to allow the programmer to have maximum control over the I/O.

SETBIN (unit)

SETASC (unit)

SETRAN (unit)

CLRRAN (unit)

SETEFT (unit)

CLREFT (unit)

Sets a flag defining file to be in
binary format. This flag is automati­
cally set by a binary read or write
operation. It is only needed if an
operation such as SKIP RECORD is the
first operation on a binary file.

Sets a flag defining the file to be
ASCII. Since any file is assumed to
be ASCII until a binary operation is
done, the only application of this
call would be in switching modes
within a file.

Sets a flag defining the file to be a
random access binary file of constant
record length. This flag is automati­
cally set by a random read or write
operation. It is only needed if an
operation such as SKIP RE~ORD is the
first operation on a file.

This clears the random file flag.

Sets flag for end-of-file testing.
This flag is also set by a call to
EOFC.

Clears end-of-file test flag.

- 1. 0 -

•

•

SETSEQ (unit) Sets flag to allow sequence numbers to
be read as ASCII data. A sequence num­
ber consists of six characters (five
digits followed by a tab). (See Appen­
dix 7)

CLRSEQ (unit) Clears fla6 and causes sequence numbers
to be skipp~d on input.

TABLE 4B DEVICE CONTROL FUNCTIONS

Statement Effect

EOFC (unit) Returns a true (-1) [false (0)) if an
end-of-file has [has not] been read on
unit "UNIT". EOFC calls SETEFT.
(See Appendix 7)

- 41 -

CHAPTER 6

SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the·

compiler. Specification statements may be divided into three categories, as follows:

l. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.

2. Data specification statements: DATA and BLOCK DATA.

3. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,

LOGICAL, SUBSCRIPT INTEGER, and IMPLICIT.

The following specification statements, if used, appear in the program prior to any executable ~!atemer1!_:

DIMENSION statement

EXTERNAL statement t

COMM ON statement

EQUIVALENCE statement

Type dee larat ion statements

Arithmetic function definition statements t

DAT A statements

IMPLICIT statements

In addition, arrays must be dimensioned before being referenced in a NAMELIST or DATA staternt.~nt.

STORAGE SPECIFICATION STATEMENTS

DIMENSION Statement

The DIME NS! ON statement is used to dee lore identifiers to be array identifiers and to specify the r11 .. rnbt·1

and bounds of the array subscripts. The information supplied in a DIMENSION statement is r€'qu i1 ed fl)r

the allocation of memory for arrays. Any number of arrays may be declared in a single DIMENSION

statement. The DIMENSION statement has the form:

DIMENSION 51 I S2, ... I 5n

where S is on array specification.

· EXTERNAL and arithmetic function definition stateml'nts ar1' descr ilwd in Cl1apt1•r 7.

- !+ 2 -

•

•

•

•

•

•

Each array variable appearing in the program must represent an element of an array declared in a

DIMENSION statement, unless the dimension information is given in a COMMON or TYPE statement.

Dimension information may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its

subscripts may assume in the following form:

identifier{min/max,min/max, ••. ,min/max)

The minima and maxima must be integers. The minimum must not exceed the maximum.

For example, the statement:

DIMENSION EDGE(-1/1,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and

the second from 4 to 8 inclusive •

Minimum values of 1 may be omitted. For example,

is interpreted as:

EXAMPLES:

NET(S, 10)

NET(l/5, 1/10)

DIMENSION FORCE(-1/1, 0/3, 2, 2, -7 /3)

DIMENSION PLACE(3, 3, 3), Jl(2, 2/4), K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

Adjustable Dimensions

COMMON X(l0,4), Y,Z

INTEGER A(7,32),B

DOUBLE PRECISION K(-2/6, 10)

Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION statements may use integer vari­

ables in an array specification, provided that the array name and variable dimensions are dummy arguments

of the subprogram. The actual array name and values for the dummy variables ore given by the calling

"' program when the subprogram is cal led. The variable dimensions may not be altered within the subprogram

and must be less than or equal to the explicit dimensions declared in the calling program.

- 43 -

EXAMPLE: SUBROUTINE SBR(ARRAY I Ml I M2, M3, M4)

DIMENSION ARRAY (Ml/M2,M3/M4)

DO 27 L=M3,M4

DO 27 K=Ml ,M2

27 ARRAY(K, L)=VALUE

END

The calling program for SBR might be:

DIMENSION Al (10, 20), A2(1000, 4)

CALL SBR(A 1, 5, 10, 10, 20)

CALL SBR(A2, 100, 250, 2, 4)

END

ALLOCATING ARRAYS AT EXECUTION TIME

Arrays that are not stored in common can be defined at execution
time. This enables a programmer to vary the size of his core image­
as the size of his problem changes, instead of having to allow for
the largest possible problem. In addition, space used by the loader
at lead time can be recovered and used if the user is near the limit
for core. To use this feature, the user writes his main program as
a subroutine and uses variable dimensioning for the arrays to be de­
fined at execution. A new main program is written which inputs the
array sizes from the console and calls the subroutine "ALLOT". The
call to "ALLOT" is:

CALL ALLOT(NAME,Nl,N2, •... ,-I,Pl,P2, ..•• P(l-l))

where name is the subroutine name of the old main program, the "N's"
are array sizes, "I" is the number of additional arguments (includ­
ing itself), and the "P's" are additional parameters to be passed.

- 44 -

{~ ...

"

•

•

•

•

Example:

900

SUBROUTINE OLDM(ARAY1,ARAY2,ARAY3,Kl,K2,K3)
DIMENSION ARAYl(Kl),ARAY2(K2,K2),ARAY3(K2,K3)

The new main program to call ALLOT might be as follows:

EXTERNAL OLDM
ACCEPT 900,Kl,K2,K3
Nl=Kl
N2=K2*K2
N3=K2*K3
CALL ALLOT(OLDM,Nl,N2,N3,-4,Kl,K2,K3)
FORMAT(61)
END

When the new main program is run, ALLOT will calculate the start­
ing address of each array from free storage and pass control to
the program "OLDM".

COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other

programs. By means of COMMON statements, the data of a main program and/or the data of its subpro­

grams may share a common storage area .

The common area may be divided into separate blocks which are identified by block names. A block is

specified as follows:

/block identifier/identifier, identifier, •.• , identifier

The identifier enclosed in sloshes is the block name. The identifiers which follow are the names of the

variables or arrays assigned to the block and ore placed in the block in the order in which they appear

in the block specification. A common block may have the same name as a variable in the same program

or as any subroutine or function name in the same job.

The COMMON statement has the general form:

COMMON/BLOC Kl/A, B,C/8LOCK2/D, E, F/ ...

- 45 -

where BLOC Kl, BLOC K2, ... ore the block names, and A, B, C, ... are the variables to be

assigned to each block. F o r ex a rn p l 'e , t he s t a t e rn en t :

COMMON/R/X, Y, T/C/U, V, W,Z

indicates that the elements X, Y, and T are to be placed in block R in that order, and that U, V, W, and Z

ore to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement.

For example, the statements:

COMMON/D/ ALPHA/R/ A, B/C/S

COMMON/C/X, Y/R/U, V, W

have the same effect as the statement:

COMMON/DI ALPHA/RI A, B, U, v I W/C/S, X, y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is

indicated by two consecutive slashes. For example,

COMMON/R/X, Y//B,C, D

indicates that B, C, and Dare placed in blank common. The slashes may be omitted when blank common

is the first block of the statement:

COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed to­

gether. For example, if a program contains

COMMON A, B/R/X, y I z

as its first COMMON statement, and a subprogram has

COMMON/R/U, V, W//D, E, F

as its first COMMON statement, the quantities represented by X and U are stored in the same location.

A similar correspondence holds for A and Din blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block

dee lared by a previously loaded program.

- 46 -

r

•

•

•

•

•

Array names appearing in COMMON statements may have dimension information appended if the arrays

ore not declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA, T(l 5, 10, 5), GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array

identifiers may not appear in a COMMON statement, nor may other dummy identifiers.

Each array name appearing in a COMMON statement must be dimensioned somewhere in the program con­

taining the COMMON statement.

EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share the same

storage location. The EQUIVALENCE statement has the form:

EQUIVALENCE(V 1, V
2

, ...), (Vk, Vk+ l' ...), ...

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the I ist are

to share the same memory location. For example,

EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same place.

The relation of equivalence is transitive; e.g., the two statements,

have the same effect.

EQUIVALENCE(A, B), (B, C)

EQUIVALENCE(A, B,C)

The subscripts of array variables must be integer constants .

EXAMPLE: EQUIVALENCE(X, A(3), Y(2, 1, 4)), (BET A(2, 2), ALPHA)

EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are

observed.

1 . No two quantities in common may be set equivalent to one another.

- 47 -

2. Quantities placed in a common block by means of EQUIVALENCE statements may

cause the end of the common block to be extended·.

For example, the statements:

COMMON/R/X, Y, Z

DIMENSION A(4)

EQUIVALENCE(A, Y)

causes the common block R to extend from X to A(4), arranged as follows:

x
Y A(l)

Z A(2)

A(3)

A(4)

(same location)

(same location)

3. EQUIVALENCE statements which cause extension of the start of a common block

ore not allowed. For example, the sequence:

COMMON/R/X, Y,Z

DIMENSION A(4)

EQUIVALENCE(X,A(3))

is not permitted, since it would require A(l) and A(2) to extend the starting location

of block R.

DATA SPECIFICATION STATEMENTS

The DAT A statement is used to specify initial or constant values for variables. The specified values ore

compiled into the object program, and become the values assumed by the variables when program execution

begins.

DAT A Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA statement

has the form:

DATA list/d 1,d2, .. ./,list/dk,dk+l' ... /, ...

where each I ist is in the same form as an input/output I ist I and the d's ore data items for each I ist.

- 48 -

•

•

•

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as C')nstants.

41.; Expressions used as subscripts must have the form:

•

•

•

where c 1 and c
2

are integer constants and i is the induction variable. If an entire array is to be defined,

only the array identifier need be listed. Variables in common may appea ':>r" the I ists only if the DAT A

statement occurs in a BLOCK DATA subprogram.

The data items following each list correspond one-to-one with the variables of the list. Each item of the

data specifies the value given to its corresponding variable.

Data items may be numeric constants, alphanumeric strings, octal constants, or logical constants. For

exampl~,

DATA ALPHA, BETA/5, 16.E-2/

specifies the value 5 for ALPHA and the value • 16 for BET A.

Alphanumeric data is packed into words according to the data word size in the manner of A conversion;

however, excess characters are not permitted. The specification is written as nH fol lowed by n characters

or is imbedded in single quotes.

Octal data is specified by the letter 0 or the character ", followed by a signed or unsigned octal integer

of one to twelve digits.

Logical constants are written as • TRUE., . FALSE., T, or F.

EXAMPLE: DATA NOTE, K/7HRADIANS, 0-7712/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the

number of times the item is to be repeated. For example:

DATA(A(K), K=l, 20)/61E2,19•32El/

specifies 20 values for the array A; the value 6100 for A(l); the value 320 for A(2) through A(20) .

BLOCK DATA SUBPROGRAM

The BLOCK DATA statement has the form:

BLOCK DATA

- 49 -

This statement declares the program which follows to be a data specification subprogram. Data may be

entered into common only.

The first iuatement of the subprogram must be the BLOCK DATA statement. The subprogram may contain

only the declarative statements associated with the dc..ta being defined.

EXAMPLE: BLOCK DATA

COMMON/R/S, Y/C/Z, W, V

DIMENSION Y(3)

COMPLEX Z

DATA Y /1E-1,2•3E2/, X, Z/11 .877DO, (-1 .41421, 1 .41421)/

END

Data may be entered into more than one block of common in one subprogram.

TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT,

and SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier

may appear in only one type statement. Type statements may be used to give dimension specifications

for arrays.

The explicit type declaration statements have the general form:

type identifier, identifier, identifier ••.

where type is one of the following:

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,

SUBSCRIPT INTEGER

The I isted identifiers ore declared by the statement to be of the stated type. Fixed-point variables in a

SUBSCRIPT INTEGER statement must fol I between -2-
27

and 2
27

.

IMPLICIT Statement

The IMPLICIT statement hos the form:

- so -

•

•

•

where type represents one of the following: INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION;

and a
1
a

2
, •.. represent single alphabetic characters, each separated by commas, or a range of characters

(in alphabetic sequence} denoted by the first and last characters of the range separated by a minus sign

(e.g., (A-0)).

This statement causes any program variable which is not mentioned in a type statement, and whose first

character is one of those listed, to be typed according to the type appearing before the list in which the

character appears. As an example, the statement:

IMPLICIT REAL(A-D,L, N-P)

causes all variables starting with the letters A through D, L, and N through P to be typed as real, unless

they are explicitly declared otherwise.

The initial st-ate of the compiler is set as if the statement

IMPLICIT REAL(A-H, 0-Z), INTEGER(l-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the

above interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows:

1 • Identifiers beginning with I, J, K, L, M, or N are assigned integer type.

2. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout .the program the

implicit state initially set by the compiler. No program may contain more than one IMPLICIT declaration

for the same letter .

- 51 -

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may bt:>

used only within the program containing the definition. The arithmetic function definition statement is

used to define internal fun.ct ions.

External subprograms are defined separately from (i.e., external to) the programs that call them, and or<.·

complete programs which conform to all the rules of FORTRAN programs. They are compiled as closed

subroutines; i.e., they appear only once in the object program regardless of the number of times they an·

used. External subprograms ore defined by means of the statements FUNCTION and SUBROUTINE.
i

Dummy Identifiers

Subprogram definition statements contain dummy identifiers, representing the arguments of the subp1 ogrom.

They are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments

that may appear and how the arguments are used. The dummy identifiers are replaced by the actual arqu­

ments when the subprogram is executed.

Library Subprograms

The standard FORTRAN IV library for the PDP-10 includes built-in functions, FUNCTION subprograms,

and SUBROUTINE subprograms, listed and described in Appendixes 1, 2, and 3, respectively. Built-in

functions are open subroutines; that is, they are incorporated into the object program each time they ore

referred to by the source program. FUNCTION and SUBROUTINE subprograms are closed subroutines;

their names derive from the types of subprogram statements used to define them.

ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement hos the form:

identifier(identifier, identifier, ...)=expression

This statement defines an internal subprogram. The entire definition is contained in the single statement.

The first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of tht·

function is determined by the type of the function identifier.

S2 -

•

•

•

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;

they may appear onl_y as scalar variables in the defining expression. · Dummy identifiers have meaning and

must be unique only within the defining statement. Dummy identifiers must agree in order, number, and

type with the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary

variables. The defining expression may include external functions or other previously defined arithmetic

statement functions. .

Al I arithmetic function definition statements must precede the first executable statement of the program.

EXAMPLES: SSQR(K)=K•(K+l)•(2•K+1)/6

ACOSH(X)=(EXP(X/ A)i-EXP(-X/ A))/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function

name in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that eval­

uates the corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION

statement and ends with an end statement. It returns control to the calling program by means of one or

more RETURN statements.

FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifer(argument ,argument, ••.)

This statement declares the program which follows to be a function subprogram. The identifier is the name

of the function being defined. This identifier must appear as a scalar variable and be assigned a value dur­

ing execution of the subprogram which is the function value.

Arguments appearing in the I ist enclosed in parentheses are dummy arguments representing the function

argument. The arguments must agree in number, order, and type with the actual arguments used in the

calling program. Function subprogram arguments may be expressions, alphanumeric strings, array names,

or subprogram names.

- 53 -

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, or subprogram

identifiers. A function must hove at least one dummy argument. Dummy arguments representing array names

must appear within the subprogram in a DIMENSION statement, or one of the type statements that provide

dimension information. Dimensions given as constants must equal the dimensions of the corresponding arrays

in the calling program. In a DIMENSION statement, dummy identifiers may be used to specify adjustable

dimensions for array name arguments. For example, in the statement sequence:

FUNCTION TA8LE(A,M, N,8,X, Y)

DIMENSION A(M, N), 8(1 O), C(50)

The dimensions of array A ore specified by the dummies Mand N, while the dimension of array B is given

as a constant. The various values given for M and N by the calling program must be those of the actual

arrays which the dummy A represents. T'ie arrays may each be of different size but must have two dimen­

sions. The arrays ore dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given

absolute dimensions, since C is not a dummy identifier. A dummy identifer may not appear in an EQUIV­

ALENCE statement in the function subprogram.

A function must not modify any arguments which appear in the FORTRAN arithmetic expression col I ing the

function. Modification of implicit arguments from the calling program, such as variables in common and

DO loop indexes, is not allowed. The only FORTRAN statements not allowed in a function subprogram are

SUBROUTINE, BLOCK DATA, and another FUNCTION statement.

Function Type

The type of the function is the type of identifier used to name the function. This identifier may be typed,

implicitly or explicitly, in the same way as any other identifier. Alternatively, the function may be ex­

plicitly typed in the FUNCTION statement itself by replacing the word FUNCTION with one of the

fol lowing:

INTEGER FUNCTION

REAL FUNCTION

COMPLEX FUNCTION

LOGICAL FUNCTION

DOUBLE PRECISION FUNCTION

- 54 -

;

•

For example, the statement:

is equivalent to the statements:

EXAMPLES:

•

COMPLEX FUNCTION HPRIME(S, N)

FUNCTION HPRIME(S, N)

COMPLEX HPRIME

FUNCTION MAY(RANGE, EP, YP,ZP)

COMPLEX FUNCTION COT(ARG)

DOUBLE PRECISION FUNCTION LIMIT(X, Y)

SUBROUTINE SUBPROGRAMS

A subroutine subprogram may be multivalued and can be referred to only by a CALL statement. A sub­

routine subprogram begins with a SUBROUTINE statement and returns control to the calling program by

means of one or more RETURN statements.

SUBROUTINE Statement

"" The SUBROUTINE statement has the form:

SUBROUTINE identifier{argument, argument, •.•)

This statement declares the program which follows to be a subroutine subprogram. The first identifier is

the subroutine name. The arguments in the I ist enclosed in parentheses are dummy arguments representing

the arguments of the subprogram. The dummy arguments must agree in number, order, and type with the

actual arguments used by the colling program.

Subroutine subprograms may have expressions, alphanumeric strings, array names, and subprogram names

as arguments. The dummy arguments may appear as scalar, array, or subprogram identifiers.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION

or type declaration statement. As in the case of a function subprogram, either constants or dummy identi­

fiers may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear

in an EQUIVALENCE or COMMON statement in the subroutine subprogram.

A subroutine subprogram may use one or more of its dummy identifiers to represent results. The subprogram

name is not used for the return of results. A subroutine subprogram need not have any argument at al I.

- 55 -

EXAMPLES: SUBROUTINE FACTOR(COEFF IN I ROOTS)

SUBROUTINE RESIDU(NUM, ~,DEN,M,RES)

SUBROUTINE SERIES

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA,

and another SUBROUTINE statement.

CALL Statement

The CALL statement assumes one of two forms:

CALL identifier

CALL identifier {argument ,argument, ••• ,argument)

The CALL statement is used to transfer control to subroutine subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings or subprogram identifiers; argu­

ments may be of any type, but must agree in number, order, type, and array size (except for adjustable

arrays, as discussed under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE

statement of the called subroutine. Uni ike a function, a subroutine may produce more than one value and

cannot be referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments

at all are required, the first form is used.

EXAMPLES: CALL EXIT

CALL SWITCH(SIN,2. LE.BETA,X**4, Y)

CALL TEST(VALUE, 123,275)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the

arguments. Arg~ments which are constants or formed as expressions must not be modified by the subroutine.

RETURN Statement

The RETURN statement has the form:

RETURN

This statement returns control from a subprogram to the calling program. Normally, the last statement

executed in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a

subprogram.

- 56 -

•

'

..

•

•

EXT ER NA L Statement

Function and subrou· ~ne subprogram names may be used as the actual arguments of subprograms. Such

subprogram na .. es must be distinguished from ordinary variables by their appearance in on EXTERNAL state­

ment. The EX-ER NA L statement has the form:

EXTERNAL identifier, identifier, ••• , identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an

argument to another subprogram must appear in on external declaration in the calling program .

EXAMPLE: EXTERNAL SIN, COS

CALL TRIGF(SIN, 1.5,ANSWER)

CALL TRIGF(COS, .87 ,ANSWER)

END

SUBROUTINE TRIGF(FUNC,ARG,ANSWER) .
ANSWER= FUNC(ARG)

RETURN

END

To reference external variables from a MACR0-10 program, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A, /B/B (13),/C/, C(6,7)

- 57 -

APPENDIX l

SUMMARY OF ALC FORTRAN IV STATEMENTS

CONTROL STATEMENTS

General Form Page References

ASSIGN i tom

CALL name (a
1
,a

2
, •••)

CONTINUE

DO i m=m 1 ,m2,m3 ...•......•.•.•....••..••••••.•.•..•••.....

GO TO i••..•.•...••.•.•..•••.•.••..••.•..•..

GOTOm

GOTOm,(i 1,i2, •••) •••••.•••••••••••••••••••••••••••••••••••

GOTO(i 1,i2, •••),m •.••.••••..•.•••••....•••.•••••.•••••••••

IF (e 1)i 1,i2,i3 .•..•..•..•••••••••••••••••••••••••••••••••••••

IF (e2)s •.....••..•••....•..•..••..•.•..••.••..•••••.••...•.•.

PAUSE .•..•.•.......••••.••...•••••••••.••.•••••.••.••••.•••

PAUSE j

PAUSE 'h'

RETURN

STOP

END

INPUT/OUTPUT STATEMENTS

17

56

20

18

16

17

17

16

17

18

20

21

21

21

21

21

Genera I Form Page References

ACCEPT f

ACCEPT f, list

BACKSPACE unit

END FILE unit

FORMAT (g)

PRINT f

PR I NT f, I is t

PUNCH f

- 58 -

38

38

39

39

22

35

15

16

•

I

~

•

•

General Form Page Reference

READ f ,
READf,list

READ (unit, f)

READ (unit, f)I ist

READ (unit)I ist

................... •

READ (unit,nome 1) .. •• · • • • • • • • • • · •. • · ·
R.E READ • •.••••• , ••••••••••••••••••••••••••••••••••
REWIND unit· .•...••.••••.••.••••.•••••••••••••••••••••••..•.

SKIP RECORD unit

TYPE f

TYPE f, I ist

WRITE (unit, f)

WRITE (unit,f)list

WRITE (unit)I ist

WRITE (unit,name1) •• • • • · · • · • •
UN LOAD unit •••••••••••••.•••••••••••••••••••••••••••••••••

INPUT/OUTPUT SUBROUTINES

General Form

!FILE (unit, name, extl ••.•••.•••••••••••••••••••••••
OFILE (unit, name, extl ••.••••.••.••••••••.••••••••••
RREAD (unit, record, count) •••••••••••.••••••••••••••
RWRI (unit, record, count) •••••••••••••••••••••••••••
SET BIN (unit) ••••••.•••••••••••••••••••••••••••••••.••
S ET AS C (u n_ i t). •
SE TRAN (unit) •--•
CLRRAN (unit)•.......
S ET E FT (u n i t).
CL REF T (uni t).
SETSEQ (unit)
CLRSEQ (unit)••..••..•.••..•..•.....

INPUT/OUTPUT FUNCTIONS

General Form

EOFC (unit) ...

- 59 -

37

37

37

37

37

37
71
39

39

36

36

36

36

36

~6
39

Page Reference

39
39
40
40
40
40
40
40
40
40
41
41

Page Reference

41

SPECIFICATION StATEMENTS

General Form

COMMON a(n1,n2, •.•),b(n3,n4, • ••), •• •

COMPLEX a(n1, n
2

, ..•), b(n
3

, n
4

, •..), .••

DATA t,u,. ~ ./k 1 ,k2
,k

3
, .• ./

v,w, ••. /k4,k5,k6, •.• / ...

DIMENSION a(n1,n2, •••),b(n1,n
2

, • ••), • ••.

DOUBLE PRECISION a(nl'n2, ...),b(n3,n4, • • .), • • •

EQUIVALENCE (a(n1, •••), b(n2, •••), • ·~·), • • •

(c(n3, •••),d(n4, ••.), •.•), •••

EXTERNAL y I z, •••

IMPLICIT type l (1 1-1 2), type
2

(1 3-1 4), • ••

INTEGER a(n1 ,n2, •••),b(n3,n4, • • .), • • •

LOGICAL a(n1 ,n2, •••),b(n3,n4, • • .), · • •

NAMELIST /namela,b, .• ./nametc,d, •••

REAL a (n 1 , n 2, •••) , b (n
3

, n
4

, .••) , . • •

SUBSCRIPT INTEGER a(nl'n
2

, ••.),b(n
3

, ...), •. •

- 60 -

Page Reference

45

50

48

42

50

47

57

50
50

50

31

50

50

'

•

•

ARITHMETIC STATEMENT FUNCTION DEFINITION

Genera I Form

name(a, b, •••)=e

NOTE:

a1,a2,···

a,b,c,d

e

9

'h'

m

ml ,m2,m3

"1 1 "2 1
•••

name

name
1

, name
2

s

t,u,v,w

type
1
, type

2
, •••

unit

y,z

Page Reference

are express ions

are variable names

is an expression

is a noncomplex expression

is a logical expression

is a format number

is a format specification

is an alphanumeric string

are statement numbers

is an integer constant

are constants of the general form i•k where
k is any constant

are letters

is an input/ output I ist

is an integer variable name

are integer expressions

are dimension specifications

is a subroutine or function name

are NAMELIST names

is a statement (not DO or logical IF)

are variable names or input/output I ists

are type specifications

51

is an integer variable or constant specifying a
logical device number

are external subprogram names

- 61 -

APPENDIX 2

FORTRAN IV LIBRARY FUNCTIONS

This appendix contains descriptions of all standard function subprograms provided with the FORTRAN IV

library for the PDP-10. These functions may be called by using the function mnemonic as a function name

in an arithmetic expression.

Function Definition
Number of

Name
Type of

Arguments Argument Function

Absolute value IArgl ABS Real Real

Absolute value IArgj IABS Integer Integer

Absolute value IArgl DABS Double Double

Truncation Sign of Arg times AINT Real Real
largest integer .$. IArg I

Truncation Sign of Arg times INT Real Integer
largest integer ~IArgl

Truncation Sign of Arg times IDINT Double Integer
largest integer slArgj

Remaindering Arg
1

(mod Arg
2

) t 2 AMOD Real Real

Remaindering 2 MOD Integer Integer

Choosing largest Max(Arg
1

,Arg
2

, ..•) ~2 AMAXO Integer Real
value AMAXl Real Real

MAXO Integer Integer
MAXl Real Integer
DMAXl Double Double

Choosing Min(Arg
1

,Arg
2

, ...) ~2 AMINO Integer Real
smallest value AMINl Real Real

MINO Integer Integer
MINl Real Integer
DMINl Double Double

i The function MOD or AMOD (a 1, a2) is defined as a 1 - [a 1/a2J a 2 , where [xJ is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

- 62 -

t

Q

..

~

Function Definition
Number of

Name
Type of

Arguments Argument Function

Transfer of sign Sgn(Arg
2
)• I Arg1 I 2 SIGN Real Real

Transfer of sign Sgn(Arg2)• I Arg1 I 2 ISIGN Integer Integer

Trans fer of sign Sgn(Arg2). I Arg1 I 2 DSIGN Double Double

Positive Arg
1
-Min(Arg

1
,Arg

2
) 2 DIM Real Real

difference

Positive Arg
1
-Min(Arg

1
,Arg

2
) 2 IDIM Integer Integer

• difference

Complex For Arg=X+iY, C=X-iY CONJG Complex Complex
conjugate

Conversion from FLOAT Integer Real
integer to real

Conversion from Result is largest IFIX Real Integer
rea I to integer integer .$. a

"' Express single DBLE Real Double
precision argu-
ment in double
precision form,
low order part= 0

Ex press two rea I C=Arg
1
+i*Arg2

2 CMPLX Real Complex
arguments in
complex form

Obtain most SNGL Double Real
significant part
of double pre-
cision argument

Obtain real REAL Complex Real
• part of complex

argument

Obtain AIMAG Complex Real
imaginary port
of complex
argument

"'
Exponentia I e

Arg
EXP Real Real

- 63 -

Function Definition
Number of

Name
Type of

Arguments Argument Function

Natural log (Arg) ALOG Real Real
logarithm

e

Common log
10

(Arg) ALOG10 Real Real
logarithm

Arc-sine asin(Arg) ASIN Real Real

Arc-cosine acos(Arg) ACOS Real Real

Arctangent atan(Arg) ATAN Real Real

Arctangent of atan(Arg/ Arg
2

) 2 ATAN2 Real Real
the quotient
of two
arguments

Sine (radians) sin(Arg) SIN Real Real

Sine (degees) sin(Arg) SINO Real Real

Cosine cos(Arg) cos Real Real
(radians)

Cosine cos(Arg) COSD Real Real
(degrees)

Hyperbolic tanh(Arg) TANH Real Real
tangent

Hyperbolic sinh{Arg) SINH Real Real
sine

Hyperbolic cosh{Arg) COSH Real Real
cosine

Square root {Arg) 1/2 SQRT Real Real

Remaindering t Arg
1

(mod Arg
2
) 2 DMOD Double Double

Exponential e
Arg

DEXP Double Double

Natural log (Arg) DLOG Double Double
logarithm

e

Common log
10

(Arg) DLOGlO Double Double
logarithm

7The function DMOD {01 1 a2) is defined as a1 - Ca1/02J a2, where Cxl is the integer whose magnitude ~
does not exceed the magnitude of x .and whose sign is the same as the sign of x.

- 64 -

Function Definition
Number of

Name
Type of

Arguments Argument Function

Arctangent atan(Arg) DA TAN Double Double

Arctangent atan(Argl Arg
2
) 2 DATAN2 Double Double

of two
arguments

Sine(radians) sin(Arg) DSIN Double Double

... Cosine cos(Arg) DCOS Double Double
(radians)

• Square root (Arg) 1/2
DSQRT Double Double

Absolute value C=(X2+Y2) 1/2 CABS Complex Real

Exponentia I e
Arg

CEXP Complex Complex

Natural log (Arg) CLOG Complex Complex
logarithm

e

" Complex sine sin(Arg) CSIN Complex Complex

Complex cos(Arg) ccos Complex Complex
cosine

Complex C=(X+iY) 1/2 CSQRT Complex Complex
square root

..

- 65 -

APPENDIX 3

F 0 R TR A N IV LI BR AR Y S U B R 0 U T I N E S

This appendix contains descrip.tions of all standard subroutine subprograms provided within the FORTRAN IV

libraryforthePDP-10. These subprograms are closed subroutines and may be called with a CALL statement.

Subroutine Name

EXIT

Subroutine Name

SLITE(i)

SLITET(i I j)

OVERFL(j)

Effect

Returns control to the monitor and, therefore, terminates the

execution of the program.

Effect

Where i is an integer expression, turns sense I ights on or off.

For 1~i~36 sense light i will be turned on. If i=O, all sense

lights will be turned off.

Checks the status of sense I ight i and sets the variable j ac­

cordingly and turns off sense light i. If i is on, j is set to l;

and if i is off, j. is set to 2.

Checks the status of the AR OV flag and sets the variable j

accordingly. If the AR OV flag is on, j is set to 1 . If the

flag is off, j is set to 2.

- 66 -

"

•

•

•

APPENDIX 4

ALC FORTRAN IV OPERATING SYSTEM

SUBPROGRAM CALLING SEQUENCES

FORTRAN Subroutines

FORTRAN subroutine calling sequences appear as follows:

JSA

ARG

ARG

16,NAME

CODE
1

,A
1

CODE
2

,A
2

where NAME is the name of the subroutine, ARG is a "pseudo-op" equivalent to a JUMP instruction

(a "no-op"), CODE
11

CODE
2

, etc. are 4-bit codes with the values:

0

2

3

4

5

6

7

and A
1

,A
2

, etc. are the argument addresses.

Integer argument

Unused

Rea I argument

Logi ca I argvment

Octal argument

Literal argument

Double precision argument

Complex argument

All accumulators are saved in subroutines except 0 for subroutines with single-word arguments and except

0 and 1 for subroutines with double-word arguments (high order or real part in 0 and low order or imaginary

part in 1). All scalar arguments in a subroutine call are transferred into and restored from the subroutine

by value.

FORTRAN Function Subprograms and Library Functions

The FORTRAN function calling sequence is the same as that for subroutines. The function value is returned

in accumulator 0 or accumulators 0 and 1. Scalar arguments ore not restored as their values may not be

modified within a function.

- 67 -

INPUT/OUTPUT

The ALC FORTRAN IV library contains a fortran operating systi~m
(FORSE.) which controls for tr an input'/output. Communicat~on be­
tween the program and the operating system is accomplished GY a
number of defined operation codes which are listed in Ta·,1e 5.
These codes can be used by a macro programmer or by a ~ortran
programmer wishing to make patches to his program.

Operation Code
(OCTAL)

15

16
17
20
21
22
23
24
25
26
27
31
32
33
34
35

TABLE 5 DEFINED OPERATION CODES

Name

RESET.

IN.
OUT.
DATA.
FIN.
RTB.
WTB.
MTOP.
SLIST.
INF.
OUTF.
NL!.
NLO.
RRB.
WRB.
GIO.

Function

Reinitializes all I/O. First instruc­
tion in a fortran program.
Set up to read ASCII records.
Set up to write ASCII records.
Transfer ASCII information in or out.
Finish binary or ASCII read or write.
Read binary records.
Write binary records.
Device control statements.
Short list I/O. (ARRAY I/O).
Open file for input.
Open file for output.
Name list input.
Name list output.
Read random access binary file.
Write ~andom access binary file.
Get I/O channel and buffer header.

FORTRAN U~IT - I/O D~VICE ASSIGNMENTS

Fortran unit numbers cori~spond to a logical or physical device
according to a table in t~e operat;ng system named DEVTB. (Fig.l)
Device TTY refers to the uc:er's console. FILE "N" logical de­
vices correspond to file dra~ers in Lhe ALC directory system.
FILE "N" devices are special in that a file name must be asso­
ciated with each one before it can be used. To explicitly assign
file names to file drawers the IFILE or OFILE statement is used.
If an explicit assignme~~ is not made~ a default file name of
FILE "N".DAT is used.

The other logical devices arP nam~,1 for the physical devices they
represent: READ (card reader), PUN~ .. ~. (card punch), PRINT (line
printer). These devices can be used by assigning the physical de­
vice the proper logical nam€.

- 68 -

•

••

.,

•

"

•

•

The monitor command:

.ASSIGN LPi PRINT

would cau~~ a subsequent f ortran PRINT statement to do output on
the line printer. Assignments can also be used to move output
around. If fortran unit three were used for output and it were
desirable to p~t the output temporarily on the user's console,
the monitor command

.ASSIGN TTY FILE3

would do it .

Unit

1
2
3
4
5
6
7

FIGURE 1 DEVICE TABLE

Device

FILEl
FILE2
FILE3
FILE4
TTY
TTY
FILE7

Comment

Directory system file drawers.

User console
User console·

18 FILE18

FORTRAN STATEMENT DEVICE

PRINT
PUNCH
TYPE
ACCEPT
READ

ASCII mode

PRINT
PUNCH
TTY
TTY
READ

On output, blocks are packed for every device. The block size
varies from 16 for the user console to 128 for directory devices
and magnetic tapes. The first character of every logical record
is a format control character which is interpreted for line
printers and user consoles and written out directly for other
devices. To list ASCII files which have been written with a for­
tran program, the format characters must be interpreted at the time
of listing. Line printers and user consoles also cause output at
the end of every WRITE statement.

- 69 -

On input, the carriage return character or altmode (ESC) is the
record mark.

RECORD FORMATING

BINARY MODE

In binary mode .records are packed in 128 word blocks on magnetic
tape and on directory devices. Record length is arbitrary. The
first word of each record (or piece of a record if the record
contains more than 126 data words) is a control word of the form:

W N

Where "W" is the word count of the data words in this block and
"N" is 0 in all but the last block, in which case "N" is the num­
ber of blocks in the record. (A record contains all the data
corresponding to one READ or WRITE statement.)

A constant overhead of one word per record (the control word)
plus one word per block (extra control word for split records)
is assured by inserting zero words when the two overhead words
coincide. This is to facilitate the implementation of random
access to binary files with fixed record length. Therefore, an
array of size 126 would fit exactly into one physical block.

REREAD

For every READ statement there is a corresponding REREAD statement
which will read the last record again.

BUFFERING

All I/O is double buffered including random access I/O. The sys­
tem is al~ays reading one physical block ahead of the program and
writing one physical block behind the program. When a fatal error
occurs in a program and the program is outputting to the user's
console, the output will be interrupted by the monitor error mes­
sage. Because of the overlapped output and computation, the loca­
tion of the error in the program usually has no relation to where
the output was interrupted.

All 1/0 is done by physical blocks which are a fixed size for each
device. The interesting sizes are 128 words for magnetic tapes,
drums, and disks, and 16 words for the user's console. There is
no relation between blocks (physical) and records (logical).

- 70 -

•

•

•

RANDOM ACCESS I/O

Random access
two calls:

is implemented for directory devices by means of the

RREAD(unit,record,size)
RWRI(unit,record,size)

random access read
rando~ access write

These calls position read and write pointers respectively within a
binary file of constant record length "SIZE". After moving the
pointers, the user may do any I/O operations which apply to binary
files. He can read or write a number of consecutive records start­
ing at the pointers without the overhead of resetting the pointers
for each record .

The sophisticated user can use these calls to move the pointers in
files of non-constant record length •

- 71 -

1 • Variable Type

APPENDIX 5

BASIC DIFFERENCES BETWEEN FORTRAN II
AND ALC FORTRAN IV

Variables may be declared by type through the use of the DOUBLE PRECISION, COMPLEX, INTEGER,

LOGICAL, and REAL ·type specifications. 1mplicit typing may be accomplished through the use of the

IMPLICIT specification statement.

2. Mixed Mode

Mixed mode expressions are permitted except for the combination of the double precision and complex

quantities.

3. Function Naming

The initial letter of functions is used to type the values of functions. Thus, the LOG, LOG10, and

FIX functions have been changed to ALOG, ALOGld, and lflX, etc. The terminal Fin function

names is no longer meaningful, and function names may have from one to six characters.

4. Arithmetic Function Statement Dummy Arguments

In FORTRAN IV if a variable appears both as a dummy argument in an arithmetic statement function

and as an ordinary variable in the same program, its type is the same in both contexts.

5. Hardware Tests

All hardware tests and settings such as IF ACCUMULATOR OVERFLOW and SENSE LIGHT i have been

changed to subroutine calls such as CALL OVERFL(i) and CALL SLITE(i).

6. Input/Output

The following input/output statements have been changed:

FORTRAN II

READ TAPE u, list

READ INPUT TAPE u,f,list

WR I TE TA PE u , Ii st

WRITE OUTPUT TAPE u,f,list

- 7 2 -

FORTRAN IV

READ (u)list

READ (u,f)list

WRITE (u,)list

WR I TE (u I f) Ii st

'

i

•

•

•

,,

7. COMMON and EQUIVALENCE

In FORTRAN IV, EQUIVALENCE does not affect the ordering within common blocks. EQUIVALENCE

may only have the effect of lengthening a common block. COMMON statements may contain dimen­

sion information.

8. EXTERNAL

Arguments of subprograms which are external subprograms are declared as such through the use of the

EXTERNAL statement .

- 73 -

APPENDIX 6

ALC FORTRAN IV COMPILER DIAGNOSTICS

Diagnostic Couse

1. ALLOCATION Illegal dimension specification, COMMON or

EQUIVALENCE statement with a dummy

argument subprogram name or on inconsisten~y

in storage assignments in a COMMON or

EQUIVALENCE statement. •
2. ALLOCATION ERRORS Inconsistent allocation of variables in COM-

MON and/or EQUIVALENCE statements.

3. CONST OVFLO Too many significant digits in the formation of

a constant.

4. CONTINUATION CARDS More than 19 continuation cards. ~
5. DATA CNT Incorrect number of constants supplied for a

DATA statement variable list.

6. ID CONFLICT Use of scalar where array is required, CALL to

a scalar or array, subprogram with a CALL to

itself, attempt to dimension an array more than

once in one DIMENSION statement.

7. ILLE GAL CONVERSION IMPLIED Attempt to mix double precision and complex

data in the some expression.

8. ILLE GAL DO CLOSE Illegal statement terminating a DO loop.

9. ILLEGAL IF ARG Logical IF or DO statement adjacent to a logical

IF or illegal expression within a logical IF.

10. LABEL 11 lega I statement lobe I fie Id.

(.t

- 74 -

" Diagnostic Cause

11. MULTIPLY DEFINED LBLS Two or more identical statement labels.

12. NO STATEMENT A statement label appears with an empty state-

rnent field.

13. NOT ENOUGH SUBSCRIPTS An array variable appears with too few subscripts.

• 14. NUMBER 11 lega I statement lobe I as in

GO TO 999999

·~ 15. OPEN DO LOOPS Terminating statement for DO loop(s) omitted or

improper nesting of DO loops.

16. ORDER Statements out of order such as COMMON,

DIMENSION, EQUIVALENCE, lYPE, DATA,

NAMELIST, SUBROUTINE, FUNCTION, or

BLOCK DATA appearing after an executable

" statement.

17. SYNTAX Compiler cannot recognize statement as a

properly constructed FORTRAN IV statement.

18. TYPE Use of noninteger subscript or DO parameter.

19. TOO MANY SUBSCRIPTS An array variable appears with too many subscripts.

20. UNDEFINED LBLS Statements .referenced by GO TO, IF, READ,

• WRITE, etc. have been omitted .

21. UNTERMINATED HOLLERITH STRING A missing single quote or fewer than n characters

following an "nH" specification.

- 75 -

10

900

20

APPENDIX 7

SAMPLE PROGRAM

THIS PROGRAM DOES NOT DO ANYTHING USEFUL
EXCEPT TO DEMONSTRATE USE OF MANY OF THE
I/O FEATURES OF THE ALC FORTRAN IV SYSTEM.

Statement

DIMENSION IRAY(lOO)

CALL IFILE(9,'DATA' ,'SEQ')

CALL SETSEQ(9)

READ(9,900)N,A

FORMAT(I,F)

IF(N-100)20,30,30

DO 40 I=0,24

DO 50 K=l,100

Comment

Open file "DATA.SEQ" for input
on Unit 9.

Set flag to read sequence numbers
on "DATA.SEQ" as ASCII data.

Read the sequence number into "N"
and a floating point number into
"A".

The horizontal tab in the sequence
number acts as the illegal char­
acter for the free field format.

Exit on sequence number 100.

Write 25 records of length 100.

Put consecutive integers in !RAY.

50 IRAY(K)=lOO*I+K

40 WRITE(3)IRAY Write in "FILE3.DAT".

REWIND 3 Close file.

60 SKIPRECORD 3 Skip to end of file.

IF(EOFC(3))70,60,60

70 CALL RREAD(J,12,100) Read pointer at record 12.

READ (3)IRAY Read record 12.

TYPE 970,IRAY(l) Ty~ first integer on user console.

970 FORMAT(lX,16)

CALL RWRI(J,26,100) Set write pointer at record 26.

- 76 -

,.

DO 80 1•1,3

80 WRITE (3) IRAY

30 END

..

•

Write record 12 on records 26,
27, and 28.

Enough.

- 77 -

