R & D University

& Introduction to PowerPC —
Instruction Set

Introduction to PowerPC- Instruction Set: Rev 2, 2/93

Ty St o

TuTre o Powren P

PowsrPC Class -~ Architecture
PowerPC

PowerPC Architecture Overview < ‘

Book | - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book IV)

‘Ron Hochsprung 2/6/93

PowerPC Class - Architeciure
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book IV)

Ron Hochsprung 27693

PowerPC Class - Architecture
RISC History and Lineages

IBM 801 Branch Processor

-> RT -> POWER -> PowerPC

Berkeley RISC Register Windows
-> 29K, SPARC

Stanford MIPS
-> MIPS, 88K, Alpha, ARM

Ron Hochsprung 2/6/93

&

<

[‘[O CRI P ran
EC:'V_ IL-LJ = &é&%

(-
" ””;:i;:>

Fi rst rise maclo . cBC-bkoo

//;m i3

PowsrPC Class - Architecture
RISC Fundamentals

PipeLined Programming Model
Compiler has Substantial Effect on Performance

Simple, Fixed Instruction Formats
1-Cycle Decode, Large Number of Registers

Simple Semantics

1-Cycle Execution Stage
Provide “Primitives” to Compiler

Only Loads & Stores Reference Memory
Load/Store Architecture

Minimize Use of Critical Resources
e.g., Condition Codes

Caches

Ron Hocheprung 2/6/83

PowsrPC Class - Architecture
Instruction Execution Model

1. Fetch Next Instruction

2. Decode Instruction,
Calculate Addresses,
etch Operands, etc.)

3. Perform Operation

€ x O m

4. WriteBack Results
5. Goto Step 1.

Ron Hochsprung 2/683

PowasrPC Class - Architesture
Ideal Instruction Sequence
Instructions Require only 1 Clock per Stage

* We’'ll look at several
of these
characteristics with
real RISC examples.

1. Fetch Next Instruction F I - - r.- 12
2. Decode Instruction, e e 0 e R N
Calculate Addresses, D - . - .
Fetch Operands ...
3. Perform Operation X 1-11-tll-tl-
4. WriteBack Results W-11-tf-Hntl-
5. Goto Step 1. - —
P Clocks ->

Ron Hochsprung 2/6/93

A,

(

e

PowsrPC Class - Architecturs

PipeLining

Increase Throughput
by Keeping Resources Busy

Implement Each Instruction Stage
by a Separate Unit - Pipe Stage.

Each Pipe Stage Operates on a
Different Instruction
in a Cycle

Don’t Wait for An Instruction to Complete
before Starting the Next

Does Not Reduce Latency!!

Ron Hocheprung 2/693

PowsrPC Class - Archilscture
PipeLined Instruction Sequence
Instructions Require only 1 Clock per Stage

1. Fetch Next Instruction

2. Decode Instruction,
Calculate Addresses,
Fetch Operands

3. Perform Operation

4. WriteBack Results
5. Goto Step 1.

F
D
X |-
w

Ron Hochsprung 2/6/93
PowsrPC Class - Archiiscture
Instruction Formats
+orm |_OP | Disp24 23

nifleflnlfufls
- |1—|-2—?|4
Nw{e]fs
INEAE
=

b xz

Bform [OP [BO|BI | Disp14a pi ™

ptorm | OP | Rx [RA |

Imm16

xtorm [OP [RT [RA [RB] Xx0P [

Xo-lorml OP | RTIRA |RB El XOP E'

Adorm [OP |RS | RA | RB | RC |XOP]

Msorm [OP [RS [RA | RB] MB| ME [

Ron Hochsprung 2683

oddi r3,r4,123
Iw r3,20(r4)

and r3,r4,rS
and. r3,r4,rs
1w r3,r4,r5
add r3,r4,rsS
addeo. r3,r4,r5
fwodd f1,£2,f3,f1

riwam r3,r4,r5,20,31

&

e Cycle Time of each
Stage is the same.

PowerPC Class - Architecture

- Branches - The Problem
4 Branches Leave
"Bubbles" in PipeLine

opl
op2
B 12
op3 \12: oS Bubbles
op4 opé
F opilop2| B |op3 |opd opS
D opt jop2] B |op3| O | O foprs
X optjop2| B OO IO
w opljop2| B |O|O
Ron Hochsprung 2/693

PowarPC Class - Architecture
SuperScalar RISC
(Instructions/Clock > 1)

Super-Pipelining
PipeLine Stages Take Less Than One Clock
(R4000)

L Multi-Issue

Issue more than One Instruction
(to Multiple Units) per Clock

(88110,PowerPC,SuperSparc)

Ron Hochsprung 2/683

PowarPC Class - Architecturs
PowerPC - The Architecture

Derived from POWER
(Performance Optimized With Enhanced RISC)
Simpiified; Removed Inhibitors to MultiScalar implementations

Added F Where N y: 0.9. Sy zing Ops, Single-Precision Ops
Extended for 64-bit Data & Address, Little-Endian Support

Defined by 4 “Books”
Book | - User Instruction Set Architecture

Book Il - Virtual Environment
Book Ill - Operating Environment

Book IV - Implementation Features

(‘Ron Hochsprung 2/693

e

PowarPC Class - Architecturs
PowerPC - Unusual Features

Branch Processor
Branch “Foiding”

Mis-Aligned Loads/Stores
Supports 68K-Aligned Accesses
Load/Store Multiple
For Procedure Prolog/Epilog Code
Update Forms of Load/Store
Reduces Code In Loops
Move “Assist” Instructions
“String” Support
Synchronization Primitives
(LWARX / STWCX., EIEIO, SYNC)

Floating Mulitiply-Accumulate
Increased Floating Bandwidth

Ron Hocheprung 2/683

PowsrPC Class - Architecture
PowerPC
Architecture

vs
Implementation

Some Architectural Features
May Require Software Assist
in An Implementation

String Ops
Load/Store Multiple

Floating Point “Hard” Cases (e.g., NaN)
TLB Reload (Page Table Walk)

The Code is Supplied by Implementors
as Part of Book4

Possibly, by “Fast-Path” interrupts
with “Hidden"” Hardware Support

Ron Hocheprung 2/693

PowerPC Class - Architecture

PowerPC
Block Diagram

Unit(s)

I-Cache

(Non-Coherent) (Coherent)

Storage
(Memory)

Ron Hocheprung 2683

PowerPC Class - Architecturs
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book II - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book V)

Ron Hocheprung 2/6/93

PowsrPC Glass - Archilecture

Book | - User Instruction Set

Defines Basic Programming Model
for Compiler and/or Assembler Code

Instruction Set which MUST! be present
to be called a “PowerPC” Chip

Can NOT affect any Privileged Resources

Does NOT discuss Caches or Virtual Memory
(l.e., @ Simple Memory Model)

Ron Hocheprung 2/6/93

PowsrPC Class - Architecture
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book 1V)

Ron Hochsprung /693

PowerPC Class - Architecture
‘, Branch Unit Concepts

Branch Unit “Processes” Branches
Branches “Fold” Away

All The Information Necessarz’
is Contained Within the Branch Unit

(Condition, Link, Count Registers)

Fixed / Floating Units “See” Only
Fixed / Floating Instructions

Not Branches!

In Ideal Case, Branches are FREE!

Compiler Needs to “Schedule”
Conditions and Branches

Ron Hochsprung 2/6/93 é

PowsrPC Class - Arshilecture
Branch Unit Diagram

Instruction
Queue
| Instruction Pointe: |
Condition Register
B > 8 x 4-bit ConditionFields
'i Link Register
N Count Register
'I D[| |c
Fixed Pt Floating Pt

S— &

PowerPC Class - Architecture

Condition Register

8 Condition Flelds
32 Bits for Conditional Branches

Condition Fileld

\ / ,

L 1 1 1 1 1
:.R‘F: / .\ Any CRF
Fixed Flutlng Pt Set B
(Ro=1) (Re=1) CMP, FCYMP

Should be Considered “Registers” for
Scheduling of Branches

(&

PowesrPC Class - Architecture

‘ Link Register

Set by Branch w/ LK=1
or, Move from Fixed Pt Reg (MTSPR)

Can by Copied to Fixed Pt Reg (MFSPR)
Typically used for Subroutine Linkage

Count Register
Set by Move from Fixed Pt Reg (MTSPR)
Altered by Branch w/ Decrement
Can by Copied to Fixed Pt Reg (MFSPR)

Typically used for Loop Counting,
and Indirect Branching

‘Ron Hocheprung 24493

PowerPC Class - Architecturs
Branch Instructions

Unconditional, 24-bit Word Displacement
— Xz
Horm [o | Disp24 MY oosur

LK- 8ot Link Register to Next Insiruction’s Address
AA - Interpret Dispiscement as Absoiute Address

Conditional, 14-bit Word Displacement

- e
lﬁ Bfoom | oPp [BO [BI | Displd [H bl ’ﬁ:‘
Conditional, thru LR or CTR

Xttom [TOP |80 [&1 | XOP H ::;ctr

BO - Determines type of Branch (¢0.g., condition True/Faise)
BI - Condition Register Bit 1o be used ae “condition™

Ron Hochsprung 2/683

PowarPC Class - Architscture

System Call

Btorm [“op Jm | | LU 131

Condition Register Logical Instructions
Operate upon Bits within the Condition Register

Xidfom [Op J BT |BA |88] X0 [

Example: CROR 1,8, 11

(on LE%/} pi|]

Ron Hochsprung 2/693

PowerPC Class - Architesture

‘ Branch Folding
11:
opl
op2
op3 BDNZ
BONZ 11 BDNZ op3 | BDNZ
op3 | - op2 | op3 — | Branch
op2 | opa | opt | op2 | opa | Unit
D opl | op2 op3 | opt | op2
x op1 op2 | op3 opl Fixed Pt
w opt | op2 Unit
‘Ron Hocheprung 2/6193
PowarPC Class - Architecture
Branch Folding
Another Example
opl
op2 foo:
op3 opb
bl fo 4
op4 a8
opS — blr
: bi op8 | bir
{g op3} - JopTlop8l - fo Branch
N op2] op3] opb | op7 | op8] op4 | op5 Unit
D [Top1] op2] op3] opt | op7] opt | opd] ops
1] op2] op3 { ops | op7 | ops | Fixed Pt
w %wZowmoﬂ% Unit
The BL and BLR are Free!!
Ron Hocheprung 2/6/93

PowarPC Class - Archiieciure
Branch Prediction

Used When Branch Unit Does Not Yet
Know Direction of Branch

(e.g., Condition not Set Yet)

Uses Sign of Displacement to
“Predict” if Branch Will Be Taken
((1<6> & I<85) | I<165) A 10>

“Backwards” Branch Assumed Taken
(i.e., End-of-Loop Branches)

Software Can Invert Sense of Prediction
(e.g., Based on Tracing)
(Ron Hocheprung 2693

PowerPC Clags - Architecture
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book 1V)

S— &'

PowerPC Class - Architecture
Fixed Point Unit Concepts
Contains 32 General Purpose Registers (GPRs)
Conceptually, Performs all Loads/Stores
Executes all Fixed Point (Integer) Arithmetic
Executes all Logicals, Shifts and Rotates
Executes all Compares and Traps

Special Instructions to Move Between
GPRs and Branch Unit Registers

Ron Hochsprung 2/6/93 é

PowsrPC Class - Architecture

Fixed Point Unit
Branch Unit
| Dr Ac
XER
Fixed Pt
Registers
32 x 32(64)

Data Cache
(Ron Hocheprung 2/6/93 é

PowerPC Class - Architscturs
fiXed Exception Register
(XER)

Contains Fixed Pt Related
“Extra” Data

BEEL N

LCA - Carry (for Extended forms)
_OV - OverFlow (when OE=1)
SO - Summary Overflow

Ron Hochsprung 2/6/93
PowerPC Class - Arshitecturs
Endian-Ness
Big-Endian: 0 1 2 3
o)y [T T |] (x86,NuBus)
3 2 1 0 :Little-Endian
et 10 = 0x40414243;
short a4 x.64 = 0x2021;
cher 06,c7; x.c6 = Ox10; x.c7 = Ox11;
I x
0
Bio-End o, 4 2 . 4o |
M 20 , 21 | 10 | 1]
7
(]

40 41 42 4
'_I——l'—r————1 3 p 70 20 2 | :Little-Endian
7

Relative Location of Elements is Different

‘Ron Hochsprung 2/693

PowsrPGC Class - Architecture
Byte-Wise Ordering (e.g., to Disk)

Big-Endian: |(4o,¢1,42,uzo,21.1o,11) |
|(u.u,41,wz1,zo,1o,m :Little-Endian

[
8, & 4w
20, 20 | 1 | 0

4
Big-Endian reading Little-Endlan

pe— o
s, o a1
1o 10 | 2 | 2 |
4

Littie-Endian reading Big-Endlan

Individual Elements are “Byte Reversed”

Ron Hochsprung 2/6/3

PowsrPC Class - Architecture
Byte-Reverse Forms of Load/Store

Big-Endlan reading Little-Endian
memory
Iwbrx
register
\\ Ihbrx
[o0 00 3 20 21 | register

Byte-Reversal “Swaps” Bytes on Element Size

Ron Hooheprung 2693

PowsrPC Class - Architecture
Little-Endian Mode

4

~

G ERRLLY)
[0] 0N\ [20] ez
[0] 0]oo] 10] tzrosin

Little-Endian Mode “Swizzles” Address

Assumes thel Memory has besn Consistently Byte-Swapped
(on Double-Word Basis)

XOROb110

XOROb111

Ron Hochsprung 2/6/83
PowerPC Class - Architecture
Fixed Pt Loads & Stores
Base-Displacement & indexed Forms
{with optional Update of Base)
Dform [OfF JRx JRA | Disp16] wr3ar
Xform [~op Jrx JRA JRB] XOP J] wriries

Loads & Stores are Overlapped!!
(with Minimum of One Clock Latency)

Mis-Alignment is Auto-Magically Handled
(with possible performance penalty!)

Byte-Reversed Forms for Mixed-Endian

‘Ron Hocheprung 2/6/83

PowsrPC Class - Architecture

‘ Load Example
No Compiler Optimization
| +=123;
J = 567;
1 W 31 F |1 6
2 addi r3,r3,m23 —
3 stw r3,I D |5
4 v r3)
5 addi r3,r3,#-567 X ol K
6 st r3,) w 314
CPI=13
Ron Hocheprung 26793
PowsrPC Class - Architecture

Load Example

Compiler Optimization (Scheduling)

| += 123;
J -=567;
% 11w r3,1I F [1]2]3]4]5]¢ :
L 2w r4,) D 1|2]3]4a]s]s
3 addi r3,r3,#123
4 addi r4,r4,-567 X1.l1.1112]3]4]5]6
S stw r3,I
6 stw r4,) w 1|2]3]|4a]5]6
CPI=1
Ron Hochsprung /683
PowerPC Class - Architscture
Load & Store Multiple
LMW, STMW
Move fromito RS/RT through R31
Used for Subroutine Prolog/Epilog
Being “de-emphasized” In Archit
Move Assist (Strings)

LSWI, LSWX, STSWI, STSWX
Load/Store Consecutive Bytes to/from Registers
Length is in Instruction or XER
Partial Loads are Zero-Filled

Synchronization Instructions
SYNC, EIEIO, LWARX, STWCX.
(Described in Book il Section)

 [—

PowsrPC Clase - Architecture

Fixed Point Arithmetic
Dform | op JRT JRA | signedimmis | addir3,r4, 4
xoform [oF Ihx R | RB Pl xor] addr3,rars

Differ on use of Carry
(1.e., ADDI vs ADDIC)

(use Carry forms only when necessary!!)

Can set CR Field 0 (Rc bit)

Can detect Overflow (OE-bit in XO-form)

(use Overfow Enable forms only when necessary!!)

Ron Hocheprung 2683

PowsrPGC Class - Architecture

Carry Usage Example
MultiPrecision Arithmetic

adde r5,r5,r8 i sets QA
odde r4,r4,r7 ; uses, sets CA

Arithmetic Instructions Notes

Add immediate (ADDI) Can’t Add to RO!

Subtract From
Immediate form is Especially Useful

Mutiply High
Fast Divide for Small Constants

addis r4,0,8x5555 ™ = 1/3 (froction)
addic 4, r4,0x5556
millw r3,r3,™ B=rna

Ron Hochsprung 2/6/83

PowerPC Class - Architecture
Compares

Sets any CR Field with Compare Results

Dform [op [BF[/[RA | Signedimmis | ompi1,rd,t

X-form [op Ierf/JRA [mre | xop §| ompt 3,c4,r8

Traps

Compares, Traps if specified conditions (TO) are met

Dform | op JTo JRra | Signedimm16 | twnel r4,0

Xform |[OP J70 [RA J RB | X0 J] twne r4ss

Ron Hochsprung 27693 é

PowsrPC Class - Architecture
Logicals, Shifts, Rotates

RA field specifies Resuit Reg!
Logicals
Dform | op | Rrs |Rra]| unsignedimmic | endi. r0,r1,0x8
Xform [OoF JRs JRA] RB]| X0 J] xor r3,r4,rE

Shifts

Xform | OP |rs Jra [sh | xop Fl eniror3, e

Rotates
Mtorm |[[OF] Rs Jna J SH [Me | ME [riwiom r0,r3,027,51

Ron Hocheprung 2/6483 é

PowsrPC Class - Architecturs

Rotate Example e SEH S oe Good) L~

errnciing birUelds

riwinm rP, IR, 0,8,15

3N - —
- m‘/ﬂwimi P, rG, 24,16,23

» E:l::D‘/rlwlmi P, B, 16,24,31

Ron Hocheprung 2/683 é

PowerPC Class - Architecturs
“Special” Moves

Move To/From SPR - MTSPR/MFSPR

XFxfom [OF] Rx]| SPR [xoF _ J] mfsprro,LR

Move From Condition Reg - MFCR - pc -

xtoom [op JRT [m | W | Xop J] wtpexro

Move To CR Field - MTCRF

XFX-form l oP Im " EXM " XOP ” mterf 0x3, r3

Move To CR Field from XER - MCRXR

Xtoom [op PBFWW] W 1 W] Xop J] monc1

o \N«n PMRTQ‘W@‘“ .
xtorm [op Lmx i []\\\c:?\ YM

(- N

PowerPC Class - Architecture
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book IV)

S— &'

PowsrPC Class - Architscture
Floating Point Unit Concepts

Contains 32 Floating Point Regs (FPRs)
in Double-Precision (64-bit) Format

Sources & Sinks Floating Point Data
for FP Stores & Loads

e Single-Precision Operations Use SubSet
4 of Double-Precision Data

Performs all Floating Point
Arithmetic, Conversions & Compares

Multiply-Accumulate is Basic Arithmetic Element

No Direct Path Between Fixed Pt and Floating Pt

Ron Hocheprung /683 é

PowsrPC Class - Architecturs
Floating Pt Unit

Branch Unit
1 [
FPSCR
PipeLine
% : Floating Pt
Registers
32x64
MAC

4
Data Cache
(. Ron Hochsprung 2693 é

PowsrPC Class - Architecture
Floating Point Status and Control Register
(FPSCR)

Contains Bits Which
Control and Report
Floating Point Operations

Rounding Mode
Exception Enables

Exceptions

etc.

— &

PowerPC Class - Architecture
Floating Point Instructions

Multiply-Add
Aorm OF | FRT | FRA | FRB | FRC | XOP fmadd 10, 1, 12,13
FRT <-FRA * FRC + FRB

Misc Arithmetic

P X+orm OP | FRT| i | FRB XOP fotiw 10, £2
@ Note: Rec sets Summary Exception Bits from FPSCR
Floating Pt Compare

Xtorm [OP JBF JN] FRA] FRB] XOP /] fempuo,f1, 2

Ron Hochsprung 2/6/93 é

PowsrPC Class - Architecture
PowerPC

PowerPC Architecture Overview
Book | - User Instruction Set
Branch Unit

Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book Il - Operating Environment
The First PowerPC Chips (Book IV)

(,r “ Ron Hocheprung 2/6/3 é'

PowsrPC Class - Architecture

Book Il - Virtual Environment
Introduces Additional Programming Model Concepts

Ron Hocheprung 2683

General Concepts
Caches

Virtual Storage
Time Base (Real-Time Clock)

Multi-Processor Related
Atomicity
Globally Performed

Coherency

PowsrPC Class - Archilecture
PowerPC Cache Concepts

Model Assumes Separate | & D Caches

Size and Granularity can be Different for | & D

Typical Cache Block Size is 32-64 Bytes

4

Ron Hocheprung 2/6/83

i
Ron Hocheprung 276493

Coherency for Data Caches

Explicit Cache Management Instructions

PowarPC Class - Archiiscture
Storage Attributes (WIMG Bits)

W - Write-Through

W =1 -> All Stores MUST go to Memory
W =0 -> Store-In is Allowed

- Cache Inhibited

1-> All Loads/Stores MUST go to Memory
0 -> Data may be Cached

1
I=
I=
M - Memory Coherency Required

M = 1 -> Data MUST be Maintained Consistent
M = 0 -> Coherency is NOT Required

G - Guarded Storage

G = 1-> NO! Speculative access
G = 0 -> Speculative Loads allowed

PowsrPC Clase - Architecture
Cache Instructions

() I-Cache
Instruction Cache B lock Invalidate - ICBI
Instruction Sychronize - ISYNC

D-Cache
Data Cache Block Touch - DCBT
Data Cache Biock Touch for Store - DCBTST
Data Cache Block set to Zero - DCBZ
Data Cache Block Store - DCBST
Data Cache Block Flush - DCBF

Ron Hocheprung 2/6493

PowerPC Class - Archiiecture

Atomicity of Storage Accesses

Only “Aligned”, Scalar Accesses are Atomic
Move Assists, LWM/STWM, FP Doubles are NOT Atomic

Globally Performed

“Appears to be Complete”
With Respect to Other Processors & “Mechanisms”

ra
!
‘ﬁ SYNC Instruction Guerantees Global Performance

Coherency

After a Coherent Storage Access is Globally Performed,
All Processors (Mechanisms) “See” Latest Version

Coherency applies to Cache Blocks

Ron Hocheprung 2/6/93
PowsrPC Class - Architscture
MP Caching, Without Coherency
MPU A MPU B MEMORY
Betore: o——

Xee;
- Xas;

MPU A MPU B MEMORY

After:

C

PowerPC Class - Architsciure

(MP Caching, Without Coherency

MPU A MPU B MEMORY

Before: m

Xes;
- Vous
MPU A MPU B MEMORY
After:
Ron Hocheprung 2/6493
PowsrPC Clase - Architecture

Coherency Mechanism
Coherency is done on Cache Blocks (e.g., 32 Bytes)

Cache Blocks have 4 possible States:

M - Modified
E - Exclusive
S - Shared

1 - lavalid

Caches “Snoop” Bus Activity

Stores can only be done to Exclusive or Modifed Blocks

A change from Shared/Exclusive to Modified must be
indicated on the Bus (so that it can be Snooped)

e

A Cache which Snoops a Read to an Exclusive Block
changes the Block’s State to Shared (and, informs the Reader).

A Cache which Snoops a Read of a Block which it has Modified,
“Retries” the Reader, Writes its Modified Block to Memory
and changes its Biock’s state to invalid.

Subsequent re-Read will get latest copy from Memory

At most, One Cache has a Modified copy of a Block

‘Ron Hocheprung 2/683
PowerPC Class - Architecture
MP Caching, with Coherency
MPU A MPUB MEMORY
[L ooX I Loroy I I J

A 0,1 A 01

& o ot Lr——
L roXx AReads

E—— drir——

L r0,Y B Reads (A snoope)

e e—

ﬁTll] TS] y S
w T | T S—— |

A 101
STrOY B “Writes”, A Reiriee B, A Wrkes (and invaidates), B “Wrkes"

[—| [[t
(.=

&

&

PowsrPC Clase - Architscture
Synchronization Primitives

Synchronize - SYNC

Guarantees that All Prior Loads & Stores
Have Been Globally Performed.

1.e., can participate in Coherency Mechanism.

Enforce In-Order for /O - EIEIO
(Order Storage Access - OSA)

Used to Separate Cache-Inhibited
Loads & Stores to Ensure Program Order
(on the Bus)

Ron Hocheprung 2643

PowsrPC Class - Archiiecture
“Semaphore” Primitives

Load Word and Reserve (indeXed) - LWARX

Loads Word and Creates a “Reservation”
The Reservation is Associated with the Data Address of the LWARX

STore Word Conditional (indeXed) - STWCX.

it a Reservation Exists, Performs the Store.
Sets CRFO to indicate Success; EQs1 -> Store Made.
Unconditionally, Clears any Reservation.

vl

A

;'f A Reservation is “lost” When Coherency Detects Store
N to the Reservation’s Address

Lock:
lwarx r4,0,r3 ; fetch current value
oddi r0,0,-1 ; generate 1's
api 1,M4,0 ; check current = 0
stwex. r9,0,,.3 | store 1's (?)
bne Lock ; lost reservation?
beqlr 1 ; initial == @
b Lock ; try ogain

Ron Hocheprung 27693

PowarPC Class - Architecture
LWARX / STWCX. Example
Link List Update

Insert:
Iwarx ¢T, NXT(rCur)
stw T, NXT(rNew)

snc
stwex. riew, NXT(rCur)

beqlr
b Ingert

rCur = before

-7

rNew =9 -

PowsrPC Clase - Architscture
Time Base (PowerPC)

64-Bit Counter
Resolution is Implementation Dependent

User Instructions:

Move From Time Base - MFTB
Move From Time Base Upper - MFTBU

Real-Time Clock (601)
As Described in Book 11 0.04

S—— &

PowasrPC Class - Architecture
PowerPC

PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book Il - Virtual Environment
Book il - Operating Environment
The First PowerPC Chips (Book IV)

Ron Hochsprung 2/693 EI

PowerPG Class - Architesture
Book lll -Operating Environment

Defines “Privileged” Instructions & Facilities

Storage Control (Virtual Memory)
Interrupts

Timing Facilities

Ron Hocheprung /693 é

PowerPC Class - Archilecture
Branch Unit Additions

(B Registers

l]] | SRRO

1| shr1
C—— 1| msR

Save/Restore Reglster 0 - SRRO
Save/Restore Register 1 - SRR1
Machine State Reglster - MSR

Instruction
Return From Interrupt - RFI

Aon Hocheprung 2/6/93

PowsrPC Class - Architecturs
Machine State Register - MSR

l i] lllllllllllllll

Lmlo Endian Mode -LM
lecoverable interrupt - Rl

Dm Roloclu DR

) . IR
”{ un.rmpt Profix - IP
b Mode 1 - FE1
Br-\oh'l’neo Enable - BE
Single-Step Trace Enable - SE
FP Exception Mode 0 - FEO
Machine Check Enable - ME
FP Avallable - FP
——— PTOD IO State - PR

E | Enable - EE

Ron Hocheprung 2/6/93

PowsrPC Class - Architecture
When an Interrupt is Taken

Save “Current” Instruction Address in SRRO
Copy MSR to SRR1 (possibly, setting SRR1<0:15>)
Modify MSR (EE=DR=IR=PR=0)

Start Executing at Entry of Interrupt

Return From Interrupt (RFI)
Copy SRR1 to MSR
Start Execution at Address in SRRO

Interrupts are Precise
Except tor imprecise FP Exceptions

(e

PowsrPC Glass - Architecture
Fixed Point Unit Additions

‘ Registers
I l Use SPRs - SPRGn
 e—
| eossss——) 9 -DEC
Segment Registers (16x32)

[————————1 | storage Description Register 1 - SDR1
[] Data Storage interrupt Status Register - DSISR

% Instruction Block Address Translation Registers (BATs)
g Data Block Address Translation Registers (BATs)

S &

PowsrPC Class - Architecturs
Fixed Point Unit Additions

Instructions
Move To/From MSR - MTMSR, MFMSR
Data Cache Block Invalidate - DCBI

Move To/From Segment Register - MTSR/MFSR

s,

Move To/From Seg Reg Indirect - MTSRIN/MFSRIN
Translation Lookaside Buffer Entry Invalidate - TLBEI

(New SPRs for MTSPR/MFSPR)

— &

PowsrPC Class - Architecturse
PowerPC
Storage Addressing Model (32-bit)

}:l 32-bit Effective Address

] so | | 52-bit Virtual Address

Page Table Mapping

¥
1] 32-bit Real Address

(&

PowsrPC Class - Architecturs

- PowerPC
(Storage Addressing Model (64-bit)
[ESID |] e4-bit EA
[VE(|] s0-bit VA
Page Table Mapping

l] 64-bit RA

S— &

PowerPC Class - Architecture
PowerPC

PowerPC Architecture Overview

Book | - User Instruction Set
Branch Unit
Fixed Point Unit
Qf Floating Point Unit

Book Il - Virtual Environment
Book lll - Operating Environment
The First PowerPC Chips (Book IV)

Ron Hocheprung 2/6/93 EI

PowsrPC Class -~ Architecture
601 - The First (almost) PowerPC Chip

10-instruction instruction Queue,
| Branch Prediction,
f Branch Folding

1 FX and 1 FP instruction per Clock
xu g] FPu

32 KB Cache
8-way
64-Byte Line Size

32-Bit Address t 64-Bit Data

(- &

PowsrPC Class - Architecture

603 - The Cheapest PowerPC Chip
Static Design - Low Power

8 KB -Cache jqme Dispatch up to 2 instructions per Clock
[1 2w But, only one to each unit
+| sz8tne [- v

1
yal

LELELE

8 KB D-Cache

325 The

BIU

S— &

PowarPC Class - Architeciure
604 - The 601 Replacement

16 KB, 4-way

Dispatch up to 4 Instructions per Clock
But, only 1 to each unit.

IEEEE

I'_' 16 KB, 4-way

BIU

S— &

PowsrPC Class - Architecture
620 - The First 64-Bit PowerPC Chip

32 KB, 4-way

= Fetch

Disp up to 6 Instructi per Clock
But, only 1 to each unit.

H P

11
LS |Ls
}32 KB, .:-mry
4way Interleave
Ir__

LﬁJl

PowsrPC - Software Notes

PowerPC Programming Model

Table Of Contents (TOC)

Inter-Module Calls (Shared Libraries)

Comments on Optimization

Code Examples

Ron Hochsprung §/1092
PowerPC - Software Notes
Register Conventions
Branch Unit Regs
LR - volatile
QR - volatile
Q@ - Fields 2-5 non-volatile
Fixed Pt Regs

] - scratch/epilog/prolog
1 - Stack Pointer

& 2 - Table OF Contents (TOC) ptr

\‘33" 3:10 - Argument/scratch

X 11 - scratch/function ptr
12 - scratch/epilog/prolog
13:31 - locals (non-volatile)

Floating Pt Regs
o - scratch/epilog/prolog
1:13 - Argument.scratch
14:31 - locals (non-volatile)
Ron Hochsprung 61082

PowasrPC - Softwars Notes

Stack Frame

——l32yed TQQ)

reseryed
(saved LR)

SP (r1)———»]

SP BackChain

Red Zone

(Aon Hochsprung /1092

I Params >8

[p

"Shadow"
for
Params 1-8

Link Area

Space for Saving
This Proc’s Regs

&

owerPC Program

Porting &
Performance for
PowerPC

Apple Confidential — Need To Know

Porting & Performance for PowerPC

PowerPC - Software Notes

Proc Call
Back From BAR XYZ:
v r3,argl
t"d sp l‘; :0"‘"’2
_| o,

;;; s Eiii nflr ro

“{gize™ stow r30,-8(rl)

storage stw ro,8(r1)
stw rl,-fsize(rl)

SP (F1) amh bl B

PC ——a W rO,fsize+8(rl)
w r1,0(r1)
Red Zone mtlr ro
1mw r30,-8(r1)
btr
BAR:

bir

Ron Hochsprung 61092

PeowsrPC - Software Notss

Proc Call
Back From FOO

lw r3,argl
1w r4,arg2

d SP bl FOO

[ol —
SP — F00:

mnflr ro

stow r30,-8(r1)
Red Zone stw r0,8(rl)
stwu rl,-fsize(rl)

bl BAR

W ro,fsize+8(r1)
w ri,0(rl)
mtlr o

mw r30,-8(rl)
blr

BAR:

bir

Ron Hochsprung 61082

PowsrPC - Software Notes

Table Of Contents (TOC)

Each Module Has Its Own
in Data Area (RW)

Contains:

Module’s Statics
Procedure Descriptors

Created at Link Time
Filled In as Part of Program Loading

Saved/Restored Across
Inter-Module Calls

Used by Shared Library Mechanism

Ron Hochsprung §/1082

PowerPC - Softwars Notes
Procedure Descriptors

.
Used for “Pointer to Function”
and Inter-Module Calls

The Pointer is Address of Descriptor
(in Target's TOC)

Descriptor:

Code Address
TOC address
Environment Pointer

1w ri1,foo.descr(rT0C) $PTRGL:

bl $PTRGL W 1o, o(rll)

Iw rT0C, 20(rSP) stw rT0C, 20(rsP)
mtctr ro

lw rTOC, 4(r1l)
betr

Ron Hochsprung 61082

PowerPC - Software Notes

Intermodule Call
Before

n -.E

xyz: -

“PC" ——nlcall xyz - Toc
r2==d TOC | et
Code Data Code Data
Module A Module B

Aon Hochsprung 6/1082

PowerPC - Software Notas
Intermodule Call
After
Stack
r
saved r2

call xyz xyz: rem T0C
Toe Jure—2""

Code Data Code Data

Module A Module B
(Ron Hochsprung 8/1082

£

PowerPC - Sofftwars Notes
Comments on Code Optimization

4 “Well Known” Optimizations Are Applicable,
‘. And, Have More Affect
Than Instruction Scheduling

Global Optimization

Common Sub-Expressions
Strength Reduction

General Optimizations Which are
Especially Useful for RISC

Loop UnRolling
Register Allocation
Alignment Considerations

Optimization must be Tempered with
Code/Data Expansion “Hit”

Aon Hochsprung §/1082

PowerPC - Software Notes

PowerPC Specific Optimizations

Minimize Loads
(i.e., Keep Data in Registers)

Minimize Branches
(i.e., Large Basic Blocks, inLining)

Schedule Loads as Early as Possible from Their Use

— Schedule Condition Setting as Early as Possible from Its Use
/ (i.e., Conditions are like Branch Unit “Loads")

“Shuffle” Independent Code Sequences
(i.e., Inter-Schedule Dependencies)

Use MULT by Reciprocal in Place of DIV
(e.g., MULH on Fixed Pt)

Ron Hochsprung 61082

PowerPC - Software Notes
Shading Example (Inner Loop Only)

loop:
riwiam r?, R, 0,8,15 ; Red
add R, rR, rRd 3 Next Red
riwimi rP, rG, 24,16,23 ; Green
add rG, rG, rod ; next Green

H
riwimi rP, rB, 16,24,31 ; Blue
H

add rB, rB, réd ; next Blue
stw P, 4(rPptr) ; stash it
bdn loop ; around the loop

601/603: 7 clocks
604: 3 clocks
620: 2 clocks

s
‘ Ron Hochsprung §/1082

PowsrPC - Software Notes
N Compiler Listing - div3
‘ int div3(inti) { return i/3; }

GR's set/used: §--§ === === -=om

FPR's set/used: ---
QR's set/used: ---- ----
| 800000 POEF div3
| @08000 PROC i,r3
2| 000009 cou 3080 5555 1 LIV ro=21845
2| 000004 ai 30005556 1 Al rO=r0,21846
2| @00008 mul 7000 1806 S ML ré=ro,r3,mnq
2| 00000C rlinm 5403 OFFE 1 SRL r3=r9,31
2| 000010 a 7C60 1814 1 A r3=r0,r3
1! 000014 bcr 4E80 0020 O BA 1r
Straight-line exec time 9
Ron Hochsprung §/1082
PowerPC - Software Notss
Compiler Listing - bsf.c
double bsf(double *dp, double *cp) {
int i; double X = 0.0;
for(is@; i<64; i++)
X 4= *dpe+ * Scpts;
returmn(X);
}
1 000000 PDEF bsf
000000 PROC dp,cp,r3,rd

41 €00000 | 8042 6000 L r5=. +b5£(r2,0)

Ol 000004 ai 3084 FFFS AL rard, -8

41 @00008 1fd €825 0000 LFL Fplasbsf(rS,0)
rSm64

1
1
1
@] 00008C cal 3800040 1 LI
1
1

1 000010 mtspr 7CA9 O3A6 IR s
ol 000014 ai 3063 FFF8 Al r3=r3,-8

a.e
6) 000018 1fdu (030008 1 LFDU Fpd,r3=(double)(r3,8)
6l 00001C 1fdu CC44 0008 1 LFDU fp2,rd=(double)(r4,8)
61 000020 faa FCRO8BA 1 FM fpl=fpl, Fpo, Fp2
5| 000024 bc 4200 FFF4 @ BCT a.e

a.3:
11 000828 ber 4680 @020 @ BA ir

Aon Hochsprung 6/1082

£

PowerPC User Instruction Set Architecture
Book |

Version 1.02

January 8, 1993

Distribution for IBM: softcopy on KISS64

Owner: Jack Kemp
KEMP at AUSVM6
E64S/4A-015

IBM Corporation
Austin, TX 78758
Tele 512-838-1846
Tie Line 678-1846

Technical Content: Ed Silha
silha@austin.ibm.com
E22S/4F-019

IBM Corporation

Austin, TX 78758

Tele 512-838-1848

Tie Line 678-1848

IBM Confidential

NOTES:

= This is a controlled document.
(\ = Verify version and completeness prior to use.
= See the Preface for additional important information.

® Copyright International Business Machines Corporation, 1983. All rights reserved.

IBM Confidential

Preface

This document defines the PowerPC User Instruction
Set Architecture. It covers the base instruction set
and related facilities available to the application pro-
grammer.

Other related documents define the PowerPC Virtual
Environment Architecture, the PowerPC Operating
Environment Architecture, and PowerPC Implementa-
tion Features. The PowerPC Virtual Environment
Architecture defines the storage model and related
instructions and facilities available to the application
programmer, and the Time Base as seen by the appli-
cation programmer. The PowerPC Operating Environ-
ment Architecture defines the system (privileged)
instructions and related facilities. A PowerPC imple-
mentation Features document defines the
implementation-dependent aspects of a particular
implementation.

The PowerPC Architecture consists of the instructions
and facilities described in the PowerPC User Instruc-
tion Set Architecture, PowerPC Virtual Environment
Architecture, and PowerPC Operating Environment
Architecture documents. However, the complete
description of the PowerPC Architecture as
instantiated in a given implementation includes also
the material in the PowerPC Implementation Features
document for that implementation.

User Responsibilities

= Do not make any unauthorized alterations to the
document (user notes permitted).

= Verify the version prior to use. Version verifica-
tion procedure is described below.

s Verify completeness prior to use. The last page
is labeled ‘Last Page - End of Document’. The
end of the Table of Contents shows the last page
number. All pages are numbered sequentially.

= Report any deviations from these procedures to
the document owner.
Next Scheduled Review

The next review is expected to be approximately in
March, 1993. At least four weeks before this meeting,
a DRAFT version of this document will be distributed.

Version Verification for IBM

= Link to the KISS64 disk in Yorktown or a shadow
of this disk. In Yorktown, linking to KISS64 can
be done with the command “GIME KISS64.”

= Browse the newest file with a name of the form
“PPC2xxxx LIST3820,” by using the “browse”
command.

s Verify that your version matches this file.

If your version is not current, please contact the docu-
ment owner.

Version Verification for Other Firms

To be supplied.

Approval Process

The following procedure is followed for all changes to
the content of this document:

= The Power Open Architecture Work Group
(PAWG) meets quarterly or more frequently if
necessary.

= At least four weeks before a meeting, a version
of this document is distributed to the PAWG. It is
marked DRAFT. Proposed changes are included
and identified with change bars.

= The PAWG meets and decides each issue.
Final alterations to this document are made,
change bars are removed, and the entire docu-
ment is distributed with a new version number
and the word DRAFT removed.

= At the meeting or a subsequent one, new issues
are discussed.

= The resulting changes are described in a new
version of this document which is derived from
the last non-DRAFT version. Proposed changes
are identified with change bars, and the docu-
ment is distributed to the PAWG. This document
has a new version number and is marked DRAFT.

= The cycle repeats from the beginning.

Approvals

This version has been approved for user review by
the document owner.

Preface

IBM Confidential

iv PowerPC User Instruction Set Architecture .

IBM Confidential

Table of Contents

Chapter 1. Introduction 1 2.3.2 LinkRegister 17
11 Overview 1 2.3.3 Count Register 17
1.2 Computation Modes 1 2.4 Branch Processor Instructions 18
1.2.1 64-bit Implementations 1 2.4.1 Branch Instructions 18
1.2.2 32-bit Implementations 2 2.4.2 System Call Instruction 22
1.3 Instruction Mnemonics and 2.4.3 Condition Register Logical

Operands 2 Instructions 23
1.4 Compatibility with the Power 2.4.4 Condition Register Field

Architecture 2 Instruction 25
1.5 Document Conventions 2

1.5.1 Definitions and Notation 2 Chapter 3. Fixed-Point Processor .. 27
1.5.2 Reserved Fields 3 3.1 Fixed-Point Processor Overview .. 27
1.5.3 Description of Instruction Operation 3 3.2 Fixed-Point Processor Registers . . 27
1.6 Processor Overview 5 3.2.1 General Purpose Registers Y
1.7 Instruction Formats 6 3.2.2 Fixed-Point Exception Register . 28
171 lForm 7 3.3 Fixed-Point Processor Instructions 29
172 BForm 7 3.3.1 Storage Access Instructions .29
173 SCForm 7 3.3.2 Fixed-Point Load Instructions . 29
174 DForm 7 3.3.3 Fixed-Point Store Instructions . 36
175 DSForm 7 3.3.4 Fixed-Point Load and Store with
176 XForms 7 Byte Reversal Instructions 40
177 AForm 7 3.3.5 Fixed-Point Load and Store
178 MForm 8 Muttiple Instructions 42
178 MDForm 8 3.3.6 Fixed-Point Move Assist
1710 MDSForm 8 Instructions 43
1.7.11 Instruction Fields 8 3.3.7 Storage Synchronization
1.8 Classes of Instructions S Instructions 46
1.8.1 Defined Instruction Class 10 3.3.8 Other Fixed-Point Instructions . . 49
1.8.2 lllegal Instruction Class 10 3.3.8 Fixed-Point Arithmetic Instructions 50
1.8.3 Reserved InstructionClass 10 3.3.10 Fixed-Point Compare Instructions 59
1.8 Forms of Defined Instructions . .. 11 3.3.11 Fixed-Point Trap Instructions .. 61
1.9.1 Preferred Instruction Forms ... 11 3.3.12 Fixed-Point Logical Instructions 63
1.9.2 Invalid Instruction Forms 1 3.3.13 Fixed-Point Rotate and Shift
1.8.3 Optional Instructions 11 Instructions 69
1.10 Exceptions 11 3.3.14 Move To/From System Register
1.11 Storage Addressing 12 Instructions 79
1.11.1 Storage Operands 12
1.11.2 Effective Address Calculation .. 12 Chapter 4. Floating-Point Processor 83

4.1 Floating-Point Processor Overview 83

Chapter 2. Branch Processor 15 4.2 Floating-Point Processor Registers 84
2.1 Branch Processor Overview 15 4.2.1 Floating-Point Registers 84
2.2 Instruction Fetching 15 4.2.2 Floating-Point Status and Control
2.3 Branch Processor Registers 15 Register 85
2.3.1 Condition Register 15 4.3 Floating-PointData 87

Table of Contents v

IBM Confidential

431 DataFormat 87
4.3.2 Value Representation 87
433 SignofResult 89
4.3.4 Normalization and

Denormalization 89
4.3.5 Data Handling and Precision ... 90
436 Rounding 90
4.4 Floating-Point Exceptions 91
4.4.1 Invalid Operation Exception ... 93
4.4.2 Zero Divide Exception 94
443 Overflow Exception g5
444 Underflow Exception g5
445 Inexact Exception 96

4.5 Floating-Point Execution Models . . 96
4.5.1 Execution Model for IEEE

Operations 96
4.5.2 Execution Model for Multiply-Add

Type Instructions 98
4.6 Floating-Point Processor

Instructions g9
4.6.1 Floating-Point Storage Access

Instructions 100

4.6.2 Floating-Point Load Instructions 100
4.6.3 Floating-Point Store Instructions 103
4.6.4 Floating-Point Move Instructions 106
4.6.5 Floating-Point Arithmetic

Instructions 107
4.6.6 Floating-Point Multiply-Add

Instructions 109
4.6.7 Floating-Point Rounding and

Conversion Instructions 111
4.6.8 Floating-Point Compare

Instructions 115
4.6.9 Floating-Point Status and Control

Register Instructions 116

Appendix A. Optional Instructions . 119

A.1 Floating-Point Processor

Instructions 120
A.1.1 Floating-Point Store Instruction 120
A.1.2 Floating-Point Arithmetic

Instructions 120
A.1.3 Floating-Point Select Instruction 122

Appendix B. Suggested

Floating-Point Models 123
B.1 Floating-Point Round to
Single-Precision Model 123
B.2 Floating-Point Convert to Integer
Meodel 128
B.3 Floating-Point Convert from
Integer Model 131

Appendix C. Assembler Extended

Mnemonies 133
C.1 Branch mnemonics 133
C11 BOandBlfields 133
C.1.2 Simple branch mnemonics ... 134
C.1.3 Branch mnemonics

incorporating conditions 135
C.1.4 Branch prediction 136
C.2 Condition Register logical

mnemonics 137
C.3 Subtract mnemonics 138
C.3.1 Subtract Immediate 138
C32 Subtract 138
C.4 Compare mnemonics 138
C.4.1 Doubleword comparisons ... 139
C.42 Word comparisons 139
C.5 Trap mnemonics 140
C.6 Rotate and Shift mnemonics . .. 141
C.6.1 Operations on doublewords .. 141
C.6.2 Operationsonwords 142
C.7 Move To/From Special Purpose

Register mnemonics 143
C.8 Miscellaneous mnemonics 143

Appendix D. Littie-Endian Byte

Ordering 145
D.1 Byte Ordering 145
D.2 Structure Mapping Examples .. 145
D.2.1 Big-Endian mapping 146
D.2.2 Little-Endian mapping 146
D.3 PowerPC Byte Ordering 146
D.4 PowerPC Data Storage

Addressing with LM=1 146
D.4.2 Unaligned Scalars 148
D.43 Non-Scalars 148
D.5 PowerPC Instruction Storage

Addressing with LM=1 149
D.6 PowerPC Input/Output with LM=1 150
D.7 OriginofEndian 150

Appendix E. Programming

Examples 153
E.1 Synchronization 153
E.1.1 Synchronization Primitives .. 153
E.1.2 Listinsertion 154
E13 Notes 155
E.2 Multiple-Precision Shifts 156
E.3 Floating-Point Conversions 159
E.3.1 Conversion from Floating-Point

Number to Floating-Point Integer . . 159

E.3.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword 159

vi

PowerPC User Instruction Set Architecture

IBM Confidential

E.3.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword 159
E.3.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word 159
E.3.5 Conversion from Floating-Point
Number to Unsigned Fixed-Point
IntegerWord 160
E.3.6 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number 160
E.3.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number 160
E.3.8 Conversion from Signed
Fixed-Point integer Word to
Floating-Point Number 161
E.3.9 Conversion from Unsigned
Fixed-Point Integer Word to

Floating-Point Number 161
E.4 Floating-Point Selection 162
E.41 ComparisontoZero 162
E.4.2 Minimum and Maximum 162
E.4.3 Simple if-then-else

Constructions 162
E44 Notes 162

Appendix F. Cross-Reference for
Changed Power Mnemonics 163

Appendix G. Incompatibilities with

the Power Architecture 165

G.1 New Instructions, Formerly

Privileged Instructions 165
G.2 Newly Privileged Instructions . . 165
G.3 Reserved Bits in Instructions . . 165
G.4 Reserved Bits in Registers . .. 165
G.5 AlignmentCheck 165
G.6 Condition Register 166
G.7 Inappropriate use of LK and Rc

bits 166
G8 BOField 166
G.9 Branch Conditional to Count

Register 166
G.10 System Call 166
G.11 Fixed-Point Exception Register

(XER) 167
G.12 Update Forms of Storage Access 167
G.13 Multiple Register Loads 167
G.14 Alignment for Load/Store

Multiple o000 167

G.15 Load String Instructions 167
G.16 Synchronization 167
G.17 Move To/From SPR 167
G.18 Effects of Exceptions on FPSCR

Bits FRandFI 168
G.19 Floating-Point Store Instructions 168
G.20 Move From FPSCR 168

G.21 Zeroing Bytes in the Data Cache 168
G.22 Floating-Point Load/Store to .

Direct-Store Segment 168
G.23 Segment Register Instructions . 168
G.24 TLB Entry Invalidation 169
G.25 Floating-Point Interrupts 169
G.26 Timing Facilities 169
G.26.1 Real-Time Clock 169
G.26.2 Decrementer 169
G.27 Deleted Instructions 170
G.28 Discontinued Opcodes 170
G.29 Rios-2 Compatibility 171
G.29.1 Cross-Reference for Changed

Rios-2 Mnemonics 171
G.29.2 Floating-Point Conversion to

Integer, 171
G.29.3 Storage Ordering 171
G.29.4 Floating-Point Interrupts . . . 171
G.29.5 Trace interrupts 171
G.29.6 Deleted Instructions 172
G.29.7 Discontinued Opcodes 172

Appendix H. New Instructions 173
H.1 New Instructions for All

Implementations 173
H.2 New Instructions for 64-Bit

Implementations Only 173
H.3 New Instructions for 32-Bit

Implementations Only 174
H.4 Instructions with Different

Semantics 174

Appendix I. lllegal Instructions ... 175

Appendix J. Reserved Instructions 177

Appendix K. Opcode Maps 179
Appendix L. PowerPC Instruction

Set Sorted by Opcode 193
Appendix M. PowerPC Instruction

Set Sorted by Mnemonic 199
Index 205

Table of Contents vii

IBM Confidential

viii PowerPC User Instruction Set Architecture

IBM Confidential

Figures
1. Logical Processing Model 5 25. Floating-Point ResultFlags 86
2. PowerPC User Register Set 6 26. Floating-Point Single Format 87
3. llinstruction Format 7 27. Floating-Point Double Format 87
4. B Instruction Format 7 28. |EEE Floating-Point Fields 87
§. SCinstructionFormat 7 29. Approximation to Real Numbers 88
6. D linstruction Format 7 30. SelectionofZ1and22 91
7. DS Instruction Format (64-bit 31. |EEE 64-bit Execution Model 97
implementationsonly) 7 32. Interpretation of G, R, and X bits 97
8. Xlnstruction Format 7 33. Location of the Guard, Round and Sticky
9. XL Instruction Format 7 Bits 97
10. XFX Instruction Format 7 34. Multiply-Add Execution Model 98
11. XFL Instruction Format 7 35. Example of C structure, showing values of
12. XS Instruction Format (64-bit elements 146
implementationsonly) 7 36. Big-Endian mapping of structure ‘s’ 146
13. XO Instruction Format 7 37. Little-Endian mapping of structure ’s’ 146
14. A Instruction Format 7 38. PowerPC Little-Endian, structure ‘s’ in
15. M Instruction Format 8 storageorcache 147
16. MD Instruction Format (64-bit 39. PowerPC Little-Endian, structure ‘s” as
implementationsonly) 8 seen by processor 148
17. MDS Instruction Format (64-bit 40. PowerPC Little-Endian, word stored at
implementationsonly) 8 addressS 148
18. Condition Register 15 41. Word stored at Little-Endian address 5 as
19. LinkRegister 17 seen by Big-Endian addressing 148
20. CountRegister 17 42. PowerPC Big-Endian, instruction sequence
21. General Purpose Registers 27 asseenbyprocessor 149
22. Fixed-Point Exception Register 28 43. PowerPC Little-Endian, instruction
23. Floating-Point Registers 84 sequence as seen by processor 149
24. Floating-Point Status and Control Register 85
Figures ix

IBM Confidential

Incompilete as of 1993/01/08

topic reason page

Make documents easy to read by people who are |Agreed at several PowerPC meetings.
interested in 32-bit only machines.

Jan Stone’s complex programming examples 153, 159
should be added to Appendix E.1, Synchroniza-
tion.

Additional programming examples should be
added to Appendix E.3, Floating-Point Conver-
sions.

Changes as of 1993/01/08 Version 1.02

change . |reason page

Delete sentence “In 32-bit mode, the high-order |Redundant and possibly confusing. 12+1
32 bits of the next instruction address are set to
0”7 (four places).

Delete RTL that shows clearing of the high-order |Redundant and possibly confusing. 20, 21
32 bits of the NIA and LR for 64-bit implementa-
tions in 32-bit mode.

Change mull to muliw (Multiply Low Word), and |Was difficult to compute OV for mull when in 85
add mulid (Multiply Low Doubleword). Proposal |32-bit mode.

put in early.
Change xor to nor in example. Typo. 66
For disabled overflow exception, change Correction. 95

“FPSCRgR) are set to zero” to “FPSCRe, is set
to one if the result is incremented when rounded,
and otherwise to zero” and “FPSCRg, is set to

one.
Change Rios-2 mnemonics from fevir/fevirz to Tracking Rios-2 change. 113, 171
feir/feirz.

Remove the explicit grouping of the optional Agreed at Dec. 2 Power Open meeting. 118

instructions, and add a remark that there are
certain defined groups.

Change Architecture Note for stfiwx to say that it |Agreed at Dec. 2 Power Open meeting. 120

may eventually be a required instruction.

Change disabled exponent overflow case of frsp |Correction. 125

model regarding how FPSCR bits FR and Fl are

set.

Make floating-point convert to integer model Agreed at Dec. 2 Power Open meeting. 128 +1

show that VXSNAN is set if the operand is an

SNaN.

Delete references to lock, lockd, lockrel. These have been deleted from Rios-2. 172,
186+ 1

Add section “Instructions with Different Seman- |Agreed at Dec. 2 Power Open meeting. 173 +1

tics” (debz and tblie).

x PowerPC User Instruction Set Architecture

IBM Confidential

Changes as of 1992/10/28

change reason page
Add Little-Endian mode, done via a hack on the |Austin meeting, 20 October 1992. 145ff, and
low three bits of the EA rather than by actually others
reversing bytes. See Appendix D, “Little-Endian

Byte Ordering” on page 145 for details. Refer-

ences to this appendix placed at start of sections

containing load and store instructions.

Changes as of 1992/10/05 Version 1.01 DRAFT

change reason page
Clarify that sync need not discard prefetched This has confused people (sync is not context 48
instructions. synchronizing).

Add item to list of general synchronization notes |Suggested by Mike Yamamura at 8 Aug. 1992 155

in the Programming Examples appendix, warning |meeting at Apple. In some implementations such
against looping on a Iwarx that fails to return a |looping may flood the bus.

desired value.

Add a caveat to the discussion of instruction Truth. 15
completion in the “Instruction Fetching” section,

citing the “Synchronization Requirements for

Special Registers” appendix in Book Il
Changes as of 1992/09/29

change reason page
Show that FR and Fi are set to 0 by frsp of infin- |Requested by Barry Dorfman. These were the 123
ities and QNaNs, in the “Floating-Point Model” only cases in the appendix for which FR and Fi

appendix. settings were not specified. Setting them to 0 is

consistent with the definition of these bits.
Make floating-point terminology consistent as Previously we sometimes said “single/double- various

follows.

= Use “single/double format” for operand
formats.

s Use “single/double-precision” for operand
values.

These changes are not marked with change bars.

precision format.” |IEEE uses “single/double
format,” and these terms nicely suggest the
amount of storage the formats require. 1EEE also
uses “double operand,” etc., but that sounds
funny (does a double operand have two
instances?).

Changes Xxi

IBM Confidential

Changes as of 1992/09/28

change

reason

page

Make symbols cr0, cri, ..., cr7 (used with
extended mnemonics) always have values 0, 1,
R

Fix inconsistency, pointed out by Ron Hochsprung
and Mike Corrigan, in which the symbols some-
times had values 0, 4, ..., 28.

fetiwz.

Change basic mnemonic generated by the mr Suggested by Ron Hochsprung. Permits a 144, 65
extended mnemonic from ori to or. Show it as “recording” variant.

example with the or instruction.

Add extended mnemonics for sundry CR Logical |Suggested by Ron Hochsprung. 137, 144
operations and for complementing a GPR. Show

these as examples with the corresponding basic

instructions (cror, crxor, crnor, creqv, and nor).

Add examples, in the Extended Mnemonics- Omission was oversight. 141ff
appendix, for the Rotate and Shift and Move

To/From Special Purpose Register extended mne-

monics.

Clarify that the SO bit of the XER is cleared only |Suggested by Andy Wottreng. Previous wording |28
when software executes mtspr (to the XER) or confused some people.

merxr.

State that early implementations must implement | Needed for compatibility with Power, as pointed |28, 167
XER bits 16:23 and allow these bits to be read out by Ron Hochsprung.

and written by software in the normal manner.

Note incompatibilty with Power with respect to Omission was oversight. 169
use of MSR bit 20 to control floating-point inter-

rupts.

Explain the seeming discrepancy between the Some people were confused. 179
extended opcode shown for sradi in the instruc-

tion description (413) and that shown in the

opcode maps (826 and 827).

Eliminate from instruction descriptions unneces- |Such statements did not appear consistently. various
sary statements of the form “x is unchanged.” Moreover, they sometimes caused confusion

(Some of these changes are not flagged, because |(e.g., for mtfsfi the statement falsely implied that

they occur inside macros which may themselves |the FPSCR summary bits were not affected).

occur within flagged areas.)

Clarify what it means for a NaN to be represent- |Omission was oversight. 89
able in single format. .

Clarify which floating-point operations cause an | Requested by Andy Wottreng. 93
exception when an operand is an SNaN.

Show Rios-2 mnemonics for fetiw and fctiwz. Requested by Mark Rogers. 113
Note incompatibilities with Rios-2 for fctiw and Omission was oversight. 171

Xii

PowerPC User Instruction Set Architecture

IBM Confidential

Changes as of 1992/09/23

change reason page
Add section to Programming Examples appendix |It’s tricky to use if NaNs, infinities, or IEEE com- 162
showing uses of fsel. patibility are important.

Revise discussion of Real-Time Clock incompat- |Decided at 9-11 Sept. 1992 PowerPC architecture |165
ibilities with Power, to reflect the changes to the |meeting.

Time Base instructions.

Changes as of 1992/09/22

change reason page
Specify that the high-order 32 bits of instruction |Decided at 9-11 Sept. 1992 PowerPC architecture |12
addresses are always 0 in 32-bit mode. meeting.

Note as Power incompatibility the fact that isync |Decided at 8-11 Sept. 1992 PowerPC architecture |165
is now stronger than in Power (ics). meeting.
Changes as of 1992/09/21

change reason page
Eliminate Imd and stmd. Decided at 9-11 Sept. 1992 PowerPC architecture |42

meeting.

Add a subsection to Section 1.9, Forms of
Defined Instructions, describing the handling of
optional instructions that are not implemented.
Add a bullet to Section 1.10, Exceptions, doing
same.

Decided at 9-11 Sept. 1992 PowerPC architecture
meeting.

Changes xiii

IBM Confidential

Changes as of 1992/09/18

change reason page
For sync, cite Book lII’s discussion of TLB invali- |Decided at 8-11 Sept. 1992 PowerPC architecture |48
dates. ' meeting. ‘
Make fres and frsqrte set FPSCR bits FR and FI |Decided at 9-11 Sept. 1992 PowerPC architecture |121
to undefined values, rather than preserve them. |meeting. Ease of implementation.

Make the VXSQRT bit of the FPSCR defined even |Decided at 9-11 Sept. 1992 PowerPC architecture |85

if the implementation does not support either of |meeting. Provides uniform interface to software

the instructions that can set it (fsqrt[s] and for reflecting and handling square root

frsqrte). exceptions.

Move the discussion of Power compatibility for That's where Power compatibility considerations {42, 165
Imw and stmw to the “Incompatibilities with the |belong.

Power Architecture” appendix, and cite that ’

appendix in the Load/Store Multiple chapter.

Correct the discussion to permit the implementa-

tion to execute an unaligned Imw or stmw cor-

rectly, without causing Alignment interrupt.

Add RTCU and RTCL to the cases for which Omission was oversight. 165
mfspr must give an lilegal Instruction type

Program interrupt in early implementations for

Power compatibility.
Changes as of 1992/09/17

change reason page
Move the stfiwx instruction to Appendix A, Decided at 9-11 Sept. 1992 PowerPC architecture |120
“Optional Instructions” on page 119, and make it |meeting.

optional.

Move the fsel instruction to Appendix A, Decided at 9-11 Sept. 1992 PowerPC architecture |122
“Optional Instructions” on page 119, and make it {meeting.

optional. Revise the definition so that it selects

based on a comparison with 0.0, instead of on a

sign bit.

Changes as of 1992/09/16

change reason page
Eliminate PMR. Decided at 9-11 Sept. 1992 PowerPC architecture |various

meeting.

xiv PowerPC User Instruction Set Architecture

S b,

pe

IBM Confidential

Chapter 1. Introduction

1.1 Overview 1
1.2 ComputationModes 1
1.2.1 64-bit Implementations 1
1.2.2 32-bit Implementations 2
1.3 Instruction Mnemonics and
Operands 2
1.4 Compatibility with the Power
Architecture 2
1.5 Document Conventions 2
1.5.1 Definitions and Notation 2
1.5.2 Reserved Fields 3
1.5.3 Description of Instruction Operation 3
1.6 Processor Overview 5
1.7 Instruction Formats 6
171 lForm 7
172 BForm 7
173 SCForm 7
174 DForm 7
175 DSForm 7

176 XForms 7
177 AForm 7
178 MForm 8
179 MDForm 8
17140 MDSForm 8
1.7.11 Instruction Fields 8
1.8 Classes of Instructions 9
1.8.1 Defined Instruction Class 10
1.8.2 lllegal Instruction Class 10
1.8.3 Reserved Instruction Class 10
1.9 Forms of Defined Instructions . .. 11
1.9.1 Preferred Instruction Forms ... 11
1.9.2 Invalid Instruction Forms 11
1.9.3 Optional Instructions 11
110 Exceptions 1
1.11 Storage Addressing 12
1.11.1 Storage Operands 12

1.11.2 Effective Address Calculation .. 12

1.1 Overview

This chapter describes computation modes, compat-
ibility with the Power Architecture, document con-
ventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation Modes

The PowerPC Architecture allows for the following
types of implementation:

= 64-bit implementations, in which all registers
except some Special Purpose Registers are 64
bits long, and effective addresses are 64 bits
long. All 64-bit implementations have two modes
of operation: 64-bit mode and 32-bit mode. The
mode controls how the effective address is inter-
preted, how status bits are set, and how the
Count Register is tested by Branch Conditional

instructions. All instructions provided for 64-bit
implementations are available in both modes.

= 32-bit implementations, in which all registers
except Floating-Point Registers are 32 bits long,
and effective addresses are 32 bits long.

Instructions defined in this document are provided in
both 64-bit implementations and 32-bit implementa-
tions unless otherwise stated. Instructions that are
provided only for 64-bit implementations are illegal in
32-bit implementations, and vice versa.

1.2.1 64-bit Implementations

In both 64-bit mode and 32-bit mode of a 64-bit imple-
mentation, instructions that set a 64-bit register affect
all 64 bits, and the value placed into the register is
independent of mode. In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.), and produce a 64-bit resuit.
However, in 32-bit mode, the high-order 32 bits of the
computed effective address are ignored when

Chapter 1. Introduction 1

IBM Confidential

accessing data, and are set to 0 when fetching
instructions.

1.2.2 32-bit Implementations

For a 32-bit implementation, all references to 64-bit
mode in this document should be disregarded. The
semantics of instructions are as shown in this docu-
ment for 32-bit mode in a 64-bit implementation,
except that in a 32-bit implementation all registers
except Floating-Point Registers are 32 bits long. Bit
numbers for registers are shown in braces ({ }) when
they differ from the corresponding numbers for a
64-bit implementation, as described in Section 1.5.1,
“Definitions and Notation” on page 2.

1.3 Instruction Mnemonics and
Operands '

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

PowerPC-compliant assemblers will support the mne-
monics and operand lists exactly as shown. They will
also provide certain extended mnemonics, as
described in Appendix C, “Assembler Extended
Mnemonics” on page 133.

1.4 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat-
ibility for Power application programs, except as
described in Appendix G, “Incompatibilities with the
Power Architecture” on page 165.

Many of the PowerPC instructions are identical to
Power instructions. For some of these the PowerPC
instruction name and/or mnemonic differs from that in
Power. To assist readers familiar with the Power
Architecture, Power mnemonics are shown with the
individual instruction descriptions when they differ
from the PowerPC mnemonics. Also, Appendix F,
“Cross-Reference for Changed Power Mnemonics” on
page 163, provides a cross-reference from Power
mnemonics to PowerPC mnemonics for the
instructions in this document.

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used
throughout the PowerPC Architecture documents.

= A program is a sequence of related instructions.

= Quadwords are 128 bits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and
bytes are 8 bits.

s All numbers are decimal uniess specified in some
special way.

— Obnnnn means a number expressed in binary
format.

— Oxnnnn means a number expressed in
hexadecimal format.

Underscores may be used between digits.

= RT, RA, R1, ... refer to General Purpose Regis-
ters.

= FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

= (x) means the contents of register x, where x is
the name of an instruction field. For example,
(RA) means the contents of register RA, and
(FRA) means the contents of register FRA, where
RA and FRA are instruction fields. Names such
as LR and CTR denote registers, not fields, so
parentheses are not used with them. Also, when
register x is assigned to, parentheses are
omitted.

= (RA|0) means the contents of register RA if the
RA field has the value 1-31, or the value 0 if the
RA field is O.

= Bits in registers, instructions, and fields are spec-
ified as follows.

— Bits are numbered left to right, starting with
bit O.

— Ranges of bits are specified by two numbers
separated by a colon (). The range p:q con-
sists of bits p through q.

— For registers that are 64 bits long in 64-bit
implementations and 32 bits long in 32-bit
implementations, bit numbers and ranges are
specified with the values for 32-bit implemen-
tations enclosed in braces ({ }). {O means a
bit that does not exist in 32-bit implementa-
tions. {:} means a range that does not exist
in 32-bit implementations.

= X, means bit p of register/field X.
Xy(ry Means bit p of register/field X in a 64-bit
implementation, and bit r of register/field X in a
32-bit implementation.

= X;.q means bits p through q of register/field X

2 PowerPC User Instruction Set Architecture

IBM Confidentiai

Xp.q(rs) Means bits p through q of register/field X
in a 64-bit implementation, and bits r through s of
register/field X in a 32-bit implementation.

s X, q.. means bits p, q, - of register/field X.
X, q .. (rs..) Means bits p, q, ... of register/field X
in a 64-bit implementation, and bits r, s, ... of
register/field X in a 32-bit implementation.

= —(RA) means the one’s complement of the con-
tents of register RA.

= Field i refers to bits 4xi to 4xi+3 of a register.

= A period (.) as the last character of an instruction
mnemonic means that the instruction records
status information in certain fields of certain
Special Purpose Registers as a side effect of exe-
cution, as described in Chapter 2 through
Chapter 4.

= The symbol || is used to describe the concat-
enation of two values. For example, 010 || 111 is
the same as 010111.

= x" means x raised to the n'" power.

= "x means the replication of x, n times (i.e., x con-
catenated to itself n—1 times). "0 and "1 are
special cases:

— "0 means a field of n bits with each bit equal
to 0. Thus 50 is equivalent to 0b00000.

— " means a field of n bits with each bit equal
to 1. Thus 51 is equivalent to Ob11111.

= Positive means greater than zero.
= Negative means less than zero.

= A system library program is a component of the
system software that can be called by an applica-
tion program using a Branch instruction.

= A system service program is a component of the
system software that can be called by an applica-
tion program using a System Call instruction.

s The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are sat-
isfied.

= The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes
a component for each of the various kinds of
error. These error-specific components are
referred to as the system alignment error
handier, the system data storage error handler,
etc.

= Each bit and field in instructions, and in status
and control registers (XER and FPSCR) and
Special Purpose Registers, is either defined or
reserved.

= / /I, Ill, ... denotes a reserved field in an instruc-
tion.

= Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction.

= Unavailable refers to data or instruction storage
that an instruction cannot access for any reason.

1.5.2 Reserved Fields

All reserved fields in instructions should be zero. If
they are not, the instruction form is invalid: see
Section 1.9.2, “Invalid Instruction Forms” on page 11.

The handling of reserved bits in status and control
registers (XER and FPSCR) and in Special Purpose
Registers (and Segment Registers: see Book I,
PowerPC Operating Environment Architecture) is
implementation dependent. For each such reserved
bit, an implementation shall either:

= ignore the source value for the bit on write, and
return zero for it on read; or

= set the bit from the source value on write, and
return the value last set for it on read.

— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in status and control regis-
ters and in Special Purpose Registers (and
Segment Registers: see Book ill, PowerPC Oper-
ating Environment Architecture), as they may be
assigned a meaning in some future version of the
architecture or in Book IV, PowerPC implementa-
tion Features for some implementation. In order
to accomplish this preservation in implementation
independent fashion, software should do the fol-
lowing.

= |nitialize each such register supplying zeros
for all reserved bits.

= Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the “old behavior.”

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most
instructions is described by a semiformal language at
the register transfer level (RTL). This RTL uses the
notation given below, in addition to the definitions and
notation described in Section 1.5.1, “Definitions and

Chapter 1. Introduction 3

IBM Confidential

Notation” on page 2. RTL notation not summarized
here should be seif-explanatory.

The RTL descriptions do not imply any particular
implementation. v

The RTL descriptions do not cover the following:

= “Standard” setting of the Condition Register,
Fixed-Point Exception Register, and Floating-Point
Status and Control Register. “Non-standard”
setting of these registers (e.g., the setting of Con-
dition Register Field 0 by the stwex. instruction)
is shown.

s |nvalid instruction forms.

Meaning

Assignment

NOT logical operator

Muitiplication

Division (yielding quotient)
Two’s-complement addition
Two’s-complement subtraction, unary
minus

l+~l-><1t§
[=3
[-]
3

- # Equals and Not Equals relations

<, K,>, 2 Signed comparison relations

&5 Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

@ = Exclusive-OR, Equivalence logical
operators ((a=b) = (a@® —b))

CEIL(x) Least integer > x

DOUBLE(x) Result of converting x from floating-
point single format to floating-point
double format, using the model
shown on page 100

EXTS(x) Result of extending x on the left with
sign bits

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1’s in positions x
through y (wrapping if x > y) and 0’s
elsewhere

MEM(x, y) Contents of y bytes of memory
starting at address x

ROTLg4(x, ¥) Result of rotating the 64-bit value x
left y positions

ROTLzy(x, y) Result of rotating the 64-bit value x|jx
left y positions, where x is 32 bits
long

SINGLE(x) Result of converting x from floating-
point double format to floating-point
single format, using the model shown
on page 103

SPREG(x) Special Purpose Register x

TRAP Invoke the system trap handler

characterization Reference to the setting of status
bits, in a standard way that is
explained in the text

undefined An undefined value. The value may

vary from one implementation to

another, and from one execution to
another on the same implementa-
tion.

CIA Current Instruction Address, which is
the 64{32)-bit address of the instruc-
tion being described by a sequence
of RTL Used by relative branches
to set the Next Instruction Address
(NIA), and by Branch instructions
with LK=1 to set the Link Register.
In 32-bit mode of 64-bit implementa-
tions, the high-order 32 bits of CIA
are always set to 0. Does not corre-
spond to any architected register.

NIA Next Instruction Address, which is
the 64{32}-bit address of the next
instruction to be executed. For a
successful branch, the next instruc-
tion address is the branch target
address: in RTL, this indicated by
assigning a value to NIA. For other
instructions that cause non-
sequential instruction fetching (see
Book [ll, PowerPC Operating Envi-
ronment Architecture), the RTL is
similar. For instructions that do not
branch, and do not otherwise cause
instruction fetching to be non-
sequential, the next instruction
address is CIA+4. In 32-bit mode of
64-bit impiementations, the high-
order 32 bits of NIA are always set
to 0. Does not correspond to any
architected register.

if ... then ... else ... Conditional execution, indenting
shows range, else is optional

do Do loop, indenting shows range. “To”
and/or “by” clauses specify incre-
menting an iteration variable, and
“while” and/or “until” clauses give
termination conditions, in the usual

" manner.

leave Leave innermost do loop, or do loop

described in leave statement

The precedence rules for RTL operators are summa-
rized in Table 1 on page 5. Operators higher in the
table are applied before those lower in the table.
Operators at the same level in the table associate
from left to right, from right to left, or not at all, as
shown. (For example, — associates from left to right,
so a—b—-c = (a—b)-c.) Parentheses are used to
override the evaluation order implied by the table, or
to increase clarity: parenthesized expressions are
evaluated before serving as operands.

4 PowerPC User Instruction Set Architecture

IBM Confidential

Table 1. Operator Precedence
Operators

Associativity
left to right
right to left

subscript, function evaluation

pre-superscript (replication),
post-superscript (exponentiation)

unary —, - right to left
X, = left to right
+, - left to right
I left to right
-#<%5>2,45,? left to right
& ® = left to right
| left to right
: (range) none

- none

1.6 Processor Overview

The processor implements the instruction set, the
storage model, and other facilities defined in this doc-
ument. Instructions which the processor can execute
fall into the following classes.

s branch instructions,
= fixed-point instructions, and
= floating-point instructions.

Branch instructions are described in Section 2.4,
“Branch Processor Instructions” on page 18. Fixed-
point instructions are described in Section 3.3, “Fixed-
Point Processor Instructions” on page 29.
Floating-point instructions are described in Section
46, ‘“Floating-Point Processor Instructions” on
page 99.

Fixed-point instructions operate on byte, halfword,
word, and, in 64-bit implementations, doubleword
operands. Floating-point instructions operate on
single-precision and double-precision floating-point
operands. The PowerPC Architecture uses

instructions that are four bytes long and word-aligned.
It provides for byte, halfword, word, and, in 64-bit
implementations, doubleword operand fetches and
stores between storage and a set of 32 General
Purpose Registers (GPRs). It also provides for word
and doubleword operand fetches and stores between
storage and a set of 32 Floating-Point Registers
(FPRs).

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage
location, the content of storage must be loaded into a
register, modified, and then stored back to the target
location. Figure 1 is a logical representation of
instruction processing. Figure 2 on page 6 shows the
registers of the PowerPC User Instruction Set Archi-
tecture.

Branch
—————»| Processing
Fixed-Point and
Floating-Point
Instructions
Fixed-Pt Float-Pt
Processing Processing
Data to/from
Storage
Storage
Instructions

from Storage

Figure 1. Logical Processing Model

Chapter 1. Introduction 5

IBM Confidential

64-bit implementations 32-bit implementations
[CR | Condition Register (page 15) I CR I
0 31 .] 31
| LR I Link Register (page 17) [LR l
0 63 0 31
| CTR | Count Register (page 17) [cmr |
o 63 [31
GPR 00 GPR 00
GPR 01 GPR 01
General Purpose Registers (page 27)
GPR 31 GPR 31
0 63 0 31
I XER I Fixed-Point Exception Register (page 28) [XER J
0 31 [31
FPR 00 FPR 00
FPR 01 FPR 01
Floating-point
Registers (page 84)
FPR 31 FPR 31
0 63 0 63
[FPSCR | Floating-Point Status and { FPSCR
o 31 Control Register (page 85) 0 3

Figure 2. PowerPC User Register Set

1.7 Instruction Formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented
to the processor (as in Branch instructions) the two
low order bits are ignored. Similarly, whenever the
processor develops an instruction address its two low
order bits are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats. :

In some cases an instruction field is reserved, or
must contain a particular value. These cases are not
shown in the format diagrams given below, but are
shown in the individual instruction layouts as appro-
priate. If a reserved field does not have all bits set to
0, or if a field that must contain a particular value

does not contain that value, the instruction form is
invalid and the results are as described in Section
1.9.2, “Invalid Instruction Forms” on page 11.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits which are used in permuted
order. Such a field is called a “split field.” In the
format diagrams given below and in the individual
instruction layouts, the name of a split field is shown
in small letters, once for each of the contiguous
sequences. |In the RTL description of an instruction
having a split field, and in certain other places where
individual bits of a split field are identified, the name
of the field in small letters represents the concat-
enation of the sequences from left to right. In all
other places, the name of the field is capitalized, and
represents the concatenation of the sequences in
some order, which need not be left to right, as
described for each affected instruction.

6 PowerPC User Instruction Set Architecture

IBM Confidential

1.7.1 | Form

0 8 30 31

| opco | u [anjLK]

Figure 3. | Instruction Format

1.7.2 B Form

0 6 11 16 30 31
[orco | BO | B | BD [anlLi|

Figure 4. B Instruction Format

1.7.3 SC Form

0 6 11 16 30 31

[oeco | | | " ~ [xof /|

Figure 5. SC Instruction Format

1.7.4 D Form

0 6 11 16 31
| orco | RT | RA D

RS sl
FRT ul
FRS
TO
BF |/|u

Figure 6. D Instruction Format

1.7.5 DS Form

30 31

0 6 11 16
RA | DS [xo|

| opco | RT
RS

Figure 7. DS Instruction Format (64-bit implementa-
tions only)

1.7.6 X Forms

0 6 11 168 21 31
[orco | RT | RA | RB X0 |Rq

FRT | FRA | FRB
BF |/|UBFA| /| sH

RS NB
FRS u |/
TO
BT

Figure 8. X Instruction Format

0 6 1" 16 21 31
|orco | BT | BA | BB | xO |LK]
BO | Bl
BF | 1/ |BFA| I/

Figure 9. XL Instruction Format

[+] 6 1 21 31
| orco | RT spr X0 |Rel

RS || mPm |/

Figure 10. XFX Instruction Format

[} 67 1516 21 31
[orco || rm |/ FRB | XO |Ref

Figure 11. XFL Instruction Format

0 6 11 16 21 30 31

[oprco | Rs | RA | sh | x0 |[shRd

Figure 12. XS Instruction Format (64-bit implementa-
tions only)

0 6 11 16 21 22

31
[orco | RT | RA | RB [OE| x0 [Re|

Figure 13. XO Instruction Format

1.7.7 A Form

0 6 11 16 21 26 31
| orco | FRT | FRA | FRB | FRC | X0 |Re|

Figure 14. A Instruction Format

Chapter 1. Introduction 7

IBM Confidential

1.7.8 M Form

] 6 1 16 21 26 31

[opco | Rs | RA | RB | MB | ME [Re|
SH

Figure 15. M Instruction Format

1.7.9 MD Form

] 6 1 16 21 27 3031

| orco | Rs | RA | sh mb |XOshRd

me

Figure 16. MD Instruction Format (64-bit implementa-
tions only)

1.7.10 MDS Form

0 6 11 16 21 27 31
[opco | Rs | RA | RB | mb [xO|Re]

me

Figure 17. MDS Instruction Format (64-bit implemen-
tations only)

1.7.11 Instruction Fields

AA (30)
Absolute Address bit

0 The immediate field represents an address
relative to the current instruction address.
For I-form branches the effective address of
the branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruc-
tion.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form
branches the effective address of the branch
target is the BD field sign-extended to 64
bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field specifying a 14-bit signed two’s
complement branch displacement which is con-
catenated on the right with 0b00 and sign-
extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one
of the FPSCR fields as a target.

BFA (11:13)
Field used to specify one of the CR fields or one
of the FPSCR fields as a source.

Bl (11:15)
Field used to specify a bit in the CR to be used as
the condition of a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Con-
ditional instructions. The encoding is described in
Section 2.4, “Branch Processor Instructions” on
page 18.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR as the target of the result of an instruc-
tion.

D (16:31)
Immediate field specifying a 16-bit signed two’s
complement integer which is sign-extended to 64
bits.

DS (16:29)
Immediate field specifying a 14-bit signed two’s
complement integer which is concatenated on the
right with 0b00 and sign-extended to 64 bits. This
field is defined in 64-bit implementations only.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR as a source of an
operation.

FRB (16:20)
Field used to specify an FPR as a source of an
operation.

FRC (21:25) R
Field used to specify an FPR as a source of an
operation.

FRS (6:10) . v
Field used to specify an FPR as a source of an
operation. S ‘

FRT (6:10)
Field used to specify an FPR as the target of an
operation.

8 PowerPC User Instruction Set Architecture

IBM Confidential

FXM (12:19)
Field mask used to identify the CR fields that are
to be updated by the mterf instruction.

L (10)
Field used to specify whether a Fixed-Point
Compare instruction is to compare 64-bit
numbers or 32-bit numbers. This field is defined
in 64-bit implementations only.

LI (6:29)
Immediate field specifying a 24-bit signed two’s
complement integer which is concatenated on the
right with 0b00 and sign-extended to 64 bits.

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a
Branch instruction, the address of the
instruction following the Branch instruction is
placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+ 32
through bit ME+32 inclusive, and 0-bits else-
where, as described in Section 3.3.13, “Fixed-
Point Rotate and Shift Instructions” on page 69.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 69. This field is
defined in 64-bit implementations only.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 69. This field is
defined in 64-bit implementations only.

NB (16:20)
Field used to specify the number of bytes to
move in an immediate string load or store.

OPCD (0:5)
Primary opcode field.

OE (21)
Used for extended arithmetic to enable setting
OV and SO in the XER.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD bit

0 Do not set the Condition Register.

1 Set the Condition Register to reflect the
result of the operation.

For fixed-point instructions, CR bits 0:3 are
set to reflect the result as a signed quantity.
The result as an unsigned quantity or a bit
string can be deduced from the EQ bit.

For floating-point instructions, CR bits 4:7
are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating-
Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RT (6:10)
Field used to specify a GPR to be used as a
target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount. Location
16:20 and 30 pertains to 64-bit implementations
only.

Sl (16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions. The
encoding is described in Section 3.3.14, “Move
To/From System Register Instructions” on
page 79.

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
“Fixed-Point Trap Instructions” on page 61.

U (16:19)
Immediate field used as the data to be placed
into a field in the FPSCR.

Ul (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XO (21:29, 21:30, 22:30, 26:30, 27:29, 27:30, 30, or
30:31)
Extended opcode field. Locations 21:29, 27:29,
27:30, and 30:31 pertain to 64-bit implementations
only.

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined

lllegal
Reserved

Chapter 1. Introduction 9

IBM Confidential

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combi-
nation of opcode and extended opcode, is not that of
a defined instruction nor of a reserved instruction, the
instruction is illegal.

Some instructions are defined only for 64-bit imple-
mentations and a few are defined only for 32-bit
implementations (see 1.8.2, “lllegal Instruction
Class”). With the exception of these, a given instruc-
tion is in the same class for all implementations of the
PowerPC Architecture. In future versions of this
architecture, instructions that are now illegal may
become defined (by being added to the architecture)
or reserved (by being assigned to one of the special
purposes described in Appendix J, “Reserved
Instructions” on page 177). Similarly, instructions
that are now reserved may become defined.

The results of attempting to execute a given instruc-
tion are said to be boundedly undefined if they could
have been achieved by executing an arbitrary
sequence of defined instructions, in valid form (see
below), starting in the state the machine was in
before attempting to execute the given instruction.
Boundedly undefined results for a given instruction
may vary between implementations, and between
execution attempts in the same implementation, and
are not further defined in this document.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC User Instruction Set Architec-
ture, PowerPC Virtual Environment Architecture, and
PowerPC Operating Environment Architecture.

Defined instructions are guaranteed to be supported
in all implementations, except as stated in the instruc-
tion descriptions. (The exceptions are instructions
that are supported only in 64-bit implementations or
only in 32-bit implementations.)

A defined instruction can have preferred and/or
invalid forms, as described in Section 1.9.1, “Pre-
ferred Instruction Forms” on page 11, and Section
1.9.2, “Invalid Instruction Forms” on page 11.

1.8.2 lllegal Instruction Class

This class of instructions contains the set of
instructions described in Appendix I, “lliegal
Instructions” on page 175. For 64-bit implementa-
tions this class includes all instructions that are
defined only for 32-bit implementations. For 32-bit
implementations it includes all instructions that are
defined only for 64-bit implementations.

Excluding instructions that are defined for one type of
implementation but not the other, illegal instructions
are available for future extensions of the PowerPC
Architecture: that is, some future version of the
PowerPC Architecture may define any of these
instructions to perform new functions.

Any attempt to execute an illegal instruction will
cause the system illegal instruction error handler to
be invoked and will have no other effect.

An instruction consisting entirely of binary 0’s is guar-
anteed always to be an illegal instruction. This
increases the probability that an attempt to execute
data or uninitialized storage will result in the invoca-
tion of the system illegal instruction error handler.

—— Editors’ Note

Instructions in this class were formerly called
“invalid instructions.” The term was changed to
“illegal instructions” to reduce confusion between
these instructions and invalid forms of defined
instructions.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of
instructions described in Appendix J, “Reserved
Instructions” on page 177.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the PowerPC
Architecture.

Any attempt to execute a reserved instruction will
either cause the system illegal instruction error
handler to be invoked or will yield boundedly unde-
fined results.

—— Engineering Note

Causing the system illegal instruction error
handler to be invoked if attempt is made to
execute a reserved instruction, that is not defined
in Book IV, PowerPC Implementation Features for
the implementation, facilitates the debugging of
software.

10 PowerPC User Instruction Set Architecture RN

e N

IBM Confidential .

1.9 Forms of Defined
Instructions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred
forms. For such an instruction, the preferred form will
execute in an efficient manner, but any other form
may take significantly longer to execute than the pre-
ferred form.

Instructions having preferred forms are:

the Load/Store Multiple instructions

the Load/Store String instructions

the Or Immediate instruction (preferred form of
no-op)

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms.
An instruction form is invalid if one or more fields of
the instruction, excluding the opcode field(s), are
coded incorrectly.

Any attempt to execute an invalid form of an instruc-
tion will either cause the system illegal instruction
error handler to be invoked or will yield boundedly
undefined results. Exceptions to this rule are stated
in the instruction descriptions.

Some kinds of invalid form can be deduced from the
instruction layout. These are listed below.

Rc bit shown as ’/’ but coded as 1, or shown as 1
but coded as 0.

LK bit shown as ’/’ but coded as 1.
OE bit shown as ’/’ but coded as 1.
Other field shown as ‘/’(s) but coded as non-zero.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so
deduced are listed below. For these, the invalid
forms are identified in the instruction descriptions.

the Branch Conditional instructions

the Load/Store with Update instructions

the Load Multiple instructions

the Load String instructions

the Fixed-Point Compare instructions (invalid
form exists only in 32-bit implementations)

Move To/From Special Purpose Register (mtspr,
mfspr)

the Load/Store Floating-Point with Update
instructions

—— Assembler Note

To the extent possible, the Assembler should
report uses of invalid instruction forms as errors.

—— Engineering Note

Causing the system illegal instruction error
handler to be invoked if attempt is made to
execute an invalid form of an instruction facili-
tates the debugging of software.

1.9.3 Optional Instructions

Some of the defined instructions are optional.

Any attempt to execute an optional instruction that is
not provided by the impiementation will cause the
system illegal instruction error handler to be invoked.
Exceptions to this rule are stated in the instruction
descriptions.

1.10 Exceptions

There are two kinds of exception, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several components of
the system software to be invoked.

The exceptions that can be caused directly by the
execution of an instruction are the following.

an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book lll, PowerPC
Operating Environment Architecture) (system
illegal instruction error handier or system privi-
leged instruction error handier)

the execution of a defined instruction using an
invalid form (system illegal instruction error
handler or system privileged instruction error
handler)

the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

an attempt to access a storage location that is
unavailable (system data storage error handier or
system instruction storage error handler)

an attempt to access storage in a manner that
violates storage protection (system data storage
error handler or system instruction storage error
handler)

an attempt to access storage with an effective
address alignment that is invalid for the instruc-
tion (system alignment error handier)

Chapter 1. Introduction 11

IBM Confidential

= the execution of a System Call instruction
(system service program)

= the execution of a Trap instruction that traps
(system trap handler)

= the execution of a floating-point instruction when
floating-point instructions are unavailable (system
floating-point unavailable error handler)

= the execution of a floating-point instruction that
causes a floating-point exception that is enabled
(system floating-point enabled exception error
handler)

= the execution of a floating-point instruction that
requires system software assistance (system
floating-point assist error handler; the conditions
under which such software assistance is required
are implementation-dependent)

The exceptions that can be caused by an asynchro-
nous event are described in Book Ill, PowerPC Oper-
ating Environment Architecture.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error
handler is in effect (see page 92) then the invocation
of the system floating-point enabled exception error
handler may be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc-
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
system error handler, has not yet occurred).

Additional information about exception handling can
be found in Book Ill, PowerPC Operating Environment
Architecture.

1.11 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes
a Storage Access or Branch instruction (or certain
other instructions described in Book 1l, PowerPC
Virtual Environment Architecture, and Book I,
PowerPC Operating Environment Architecture), or
when it fetches the next sequential instruction.

1.11.1 Storage Operands

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the corre-
sponding byte.

Storage operands may be bytes, halfwords, words, or
doublewords, or, for the Load/Store Multiple and
Move Assist instructions, a sequence of bytes or
words. The address of a storage operand is the

address of its first byte (i.e., of its lowest-numbered
byte). Byte ordering is Big-Endian by default, but
PowerPC can be operated in a mode in which byte
ordering is Little-Endian. See Appendix D, “Little-
Endian Byte Ordering” on page 145.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction has a “natural” alignment boundary equai
to the operand length. In other words, the “natural”
address of an operand is an integral multiple of the
operand length. A storage operand is said to be
“aligned” if it is aligned at its natural boundary: other-
wise it is said to be “unaligned.”

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands,
quadwords are shown because quadword alignment is
desirable for certain storage operands.)

Operand Length Addrg ¢, if aligned
Byte 8 bits XXXX
Halfword 2 bytes xxx0
Word 4 bytes xx00
Doubleword 8 bytes x000
Quadword 16 bytes 0000

Note: An “x” in an address bit position indicates
that the bit can be 0 or 1 independent of the state of
other bits in the address.

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage
Access instructions the best performance is obtained
when storage operands are aligned. Additional
effects of data placement on performance are
described in Book |l, PowerPC Virtual Environment
Architecture.

Instructions are always four bytes long and word-
aligned.

1.11.2 Effective Address Calculation

The 64- or 32-bit address computed by the processor
when executing a Storage Access or Branch instruc-
tion (or certain other instructions described in Book I,
PowerPC Virtual Environment Architecture, and Book
1Ill, PowerPC Operating Environment Architecture), or
when fetching the next sequential instruction, is called
the “effective address,” and specifies a byte in
storage. For a Storage Access instruction, if the sum
of the effective address and the operand length

12 PowerPC User Instruction Set Architecture .

IBM Confidential

exceeds the maximum effective address, the storage
operand is considered to wrap around from the
maximum effective address to effective address 0, as
described below.

Effective address computations, for both data and
instruction accesses, use 64{32}-bit unsigned binary
arithmetic regardiess of mode. A carry from bit 0 is
ignored. In a 64-bit implementation, the 64-bit current
instruction address and next instruction address are
not affected by a change from 32-bit mode to 64-bit
mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to
0).

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
264_1, to address 0.

In 32-bit mode, the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose
of addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by Load with
Update and Store with Update instructions. The high-
order 32 bits of the 64-bit effective address are set to
0 for the purpose of fetching instructions, and when-
ever a 64-bit effective address is placed into the Link
Register by Branch instructions having LK=1. The
high-order 32 bits of the 64-bit effective address are
set to 0 in Special Purpose Registers when the
system error handler is invoked. As used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address, 232—1, to
address 0.

A zero in the RA field indicates the absence of the
corresponding address component. For the absent
component, a value of zero is used for the address.
This is shown in the instruction descriptions as (RA|0).

In both 64-bit and 32-bit modes, the calculated Effec-
tive Address may be modified in its three low-order
bits before accessing storage if the PowerPC system
is operating in Little-Endian mode. See Appendix D,
“Little-Endian Byte Ordering” on page 145.

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the

contents of a GPR” refers to the entire 64-bit con-
tents, independent of mode, but that in 32-bit mode,
only bits 32:63 of the 64-bit result of the computation
are used to address storage.

s With X-form instructions, in computing the effec-
tive address of a data element, the contents of
the GPR designated by RB is added to the con-
tents of the GPR designated by RA or to zero if
RA=0.

s With D-form instructions, the 16-bit D field is sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

s With DS-form instructions, the 14-bit DS field is
concatenated on the right with Ob00 and sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

= With |-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. If
AA =0, this address component is added to the
address of the branch instruction to form the
effective address of the next instruction. If
AA=1, this address component is the effective
address of the next instruction.

s With B-form Branch instructions, the 14-bit BD
field is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added
to the address of the branch instruction to form
the effective address of the next instruction. If
AA=1, this address component is the effective
address of the next instruction.

= With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat-
enated on the right with 0b00 to form the effec-
tive address of the next instruction.

s With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.

Chapter 1. Introduction 13

IBM Confidential

14 PowerPC User Instruction Set Architecture

==N

IBM Confidential

Chapter 2. Branch Processor

2.1 Branch Processor Overview 15
2.2 Instruction Fetching 15
2.3 Branch Processor Registers 15
2.3.1 Condition Register 15
2.3.2 LinkRegister 17
2.3.3 CountRegister 17
2.4 Branch Processor Instructions . . . 18

2.41 Branch Instructions 18
2.4.2 System Call instruction 22
2.4.3 Condition Register Logical
Instructions 23
2.4.4 Condition Register Field
Instruction 25

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facilities. Section

23,

“Branch Processor Registers” on page 15

describes the registers associated with the Branch
Processor. Section 24, “Branch Processor
Instructions” on page 18 describes the instructions
associated with the Branch Processor.

2.2 Instruction Fetching

In general, instructions appear to execute sequen-
tially, in the order in which they appear in storage.
The exceptions to this rule are listed below.

Branch instructions for which the branch is taken
cause execution to continue at the target address
generated by the Branch instruction. '

Trap and System Call instructions cause the
appropriate system handier to be invoked.

Exceptions can cause the system error handler to
be invoked, as described in Section 1.10,
“Exceptions” on page 11.

s The Return From Interrupt instruction, described

in Book [ll, PowerPC Operating Environment
Architecture, causes execution to continue at the
address contained in a Special Purpose Register.

In general, each instruction appears to complete
before the next instruction starts. The only
exceptions to this rule arise when the system error

handler is invoked imprecisely, as described in
Section 1.10, “Exceptions” on page 11, or when
certain special registers are altered, as described in
the appendix entitled “Synchronization Requirements
for Special Registers” in Book lll, PowerPC Operating
Environment Architecture (none of these special reg-
isters can be altered by an application program).

—— Programming Note

CAUTION

Implementations are allowed to prefetch any
number of instructions before the instructions are
actually executed. If a program modifies the
instructions it intends to execute, it should call a
system library program to ensure that the modifi-
cations have been made visible to the instruction
fetching mechanism prior to attempting to execute
the modified instructions.

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides
a mechanism for testing (and branching).

CR]
[} 31

Figure 18. Condition Register

Chapter 2. Branch Processor 15

IBM Confidential

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO), ..., CR Field
7 (CR7), which are set in one of the following ways:

= Specified fields of the CR can be set by a move
to the CR from a GPR (mterf).

s A specified field of the CR can be set by a move
to the CR from the another CR field (merf), from
the XER (mcrxr), or from the FPSCR (merfs).

= CR Field 0 can be set as the implicit resuit of a
fixed-point operation.

= CR Field 1 can be set as the implicit result of a
floating-point operation.

= A specified CR field can be set as the result of
either a fixed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical oper-
ations on individual CR bits, and to test individual CR
bits.

When Rc=1 in most fixed-point instructions, CR Field
0 (bits 0:3 of the Condition Register) is set by an alge-
braic comparison of the result (the low-order 32 bits
of the result in 32-bit mode) to zero. addic., andi., and
andis. set these four bits implicitly. These bits are
interpreted as follows. As used below, “result” refers
to the entire 64-bit value placed into the target reg-
ister in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode. If
any portion of the result is undefined, then the value
placed into CR Field 0 is undefined.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the final state of XERgq at the
completion of the instruction.

When Rc=1 in all floating-point instructions except
floating-point Compare, CR Field 1 (bits 4:7 of the
Condition Register) is set to the Floating-Point excep-

tion status, copied from bits 0:3 of the Floating-Point
Status and Control Register. These bits are inter-
preted as follows.

Bit Description

4 Floating-Point Exception (FX)
This is a copy of the final state of FPSCRgy at the
completion of the instruction.

§ Floating-Point Enabled Exception (FEX)
This is a copy of the final state of FPSCRggy at
the completion of the instruction.

6 Floating-Point Invalid Operation Exception (VX)
This is a copy of the final state of FPSCR,x at the
completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCROX at
the completion of the instruction.

When a specified CR field is set by a Compare
instruction, the bits of the specified field are inter-
preted as follows. :

Bit Description

0 Less Than, Floating-Point Less Than (LT, FL)
For fixed-point Compare instructions, (RA) < S|,
Ul, or (RB) (algebraic comparison) or (RA) & S,
Ul, or (RB) (logical comparison). For floating-
point Compare instructions, (FRA) < (FRB).

1 Greater Than, Floating-Point Greater Than (GT,
FG)
For fixed-point Compare instructions, (RA) > S,
Ul, or {RB) (algebraic comparison) or (RA) & SI,
Ul, or (RB) (logical comparison). For floating-
point Compare instructions, (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) = S|,
Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unordered
(SO, FU)
For fixed-point Compare instructions, this is a
copy of the final state of XERgq at the completion
of the instruction. For floating-point Compare
instructions, one or both of (FRA) and (FRB) is a
NaN.

16 PowerPC User Instruction Set Architecture

/7 "/:L\‘\“

IBM Confidential

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch and Link
instructions.

0 63

Figure 18. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can
be used to hold a loop count that can be decremented
during execution of Branch instructions that contain
an appropriately coded BO field. If the value in the
Count Register is 0 before being decremented, it is
—1 afterward. The Count Register.can also be used
to provide the branch target address for the Branch
Conditional to Count Register instruction.

| CTR

0 63

Figure 20. Count Register

Chapter 2. Branch Processor 17

IBM Confidential

2.4 Branch Processor Instructions
2.4.1 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions
are on word boundaries, bits 62 and 63 of the gener-
ated branch target address are ignored by the
processor in performing the branch.)

The Branch instructions compute the effective
address (EA) of the target in one of the following four
ways, as described in Section 1.11.2, “Effective
Address Calculation” on page 12.

1. Adding a displacement to the address of the
branch instruction (Branch or Branch Conditional
with AA =0).

2. Specifying an absolute address (Branch or
Branch Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Reg-
ister (Branch Conditional to Count Register).

In all four cases, in 32-bit mode of 64-bit implementa-
tions, the final step in the address computation is
setting the high-order 32 bits of the target address to
0.

For the first two methods, the target addresses can
be computed sufficiently ahead of the branch instruc-
tion that instructions can be prefetched along the
target path. For the third and fourth methods, pre-
fetching instructions along the target path is also pos-
sible provided the Link Register or the Count Register
is loaded sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and
the return address can optionally be provided. If the
return address is to be provided (LK=1), the effective
address of the instruction following the branch
instruction is placed into the Link Register after the
branch target address has been computed: this is
done whether or not the branch is taken.

In Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken.
The first four bits of the BO field specify how the
branch is affected by or affects the Condition Register
and the Count Register. The fifth bit, shown below as
having the value "y,” may be used by some imple-
mentations as described below.

The encoding for the BO field is as follows. Here
M =32 in 32-bit mode and M =0 in 64-bit mode. |f the
BO field specifies that the CTR is to be decremented,
the entire 64-bit CTR is decremented regardless of
the mode.

BO Description

0000y Decrement the CTR, then branch if the decre-
mented CTRy.e#0 and the condition is
FALSE.

0001y Decrement the CTR, then branch if the decre-
mented CTRy.e=0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decre-
mented CTRye#0 and the condition is
TRUE.

0101y Decrement the CTR, then branch if the decre-
mented CTRy.c3=0 and the condition is
TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decre-
mented CTRy.g3#0.

1201y Decrement the CTR, then branch if the decre-
mented CTRy.g3=0.

12z1zz Branch always.

Above, “2"” denotes a bit that must be zero: if it is not
zero the instruction form is invalid.

The “y” bit provides a hint about whether a condi-
tional branch is likely to be taken, and may be used
by some implementations to improve performance.

The “branch always” encoding of the BO field does
not have a “y” bit.

For Branch Conditional instructions that have a “y”
bit, using y=0 indicates that the following behavior is
likely.

s If the instruction is be[/][a] with a negative value
in the displacement field, the branch is taken.

= In all other cases (bc[[J[a] with a non-negative
value in the displacement field, belr[l], or
becetr[[]), the branch falls through (is not taken).

Using y=1 reverses the preceding indications.

The displacement field is used as described above
even if the target is an absolute address.

18 PowerPC User Instruction Set Architecture .

IBM Confidential

—— Programming Note

The default value for the “y” bit should be 0: the
value 1 should be used only if software has deter-
mined that the prediction corresponding to y=1 is
more likely to be correct than the prediction cor-
responding to y=0.

— Engineering Note

For all three Branch Conditional instructions, the
branch should be predicted to be taken if the
value of the following expression is 1, and to fall
through if the value is 0.

((BOy & BO,) | s) @ BO,

Here “s" is bit 16 of the instruction, which is the
sign bit of the displacement field if the instruction
has a displacement field and is 0 otherwise. BO,
is the “y” bit, or 0 for the “branch always”
encoding of the BO field. (Advantage is taken of
the fact that, for belr[/] and beetr[/], bit 16 of the
instruction is part of a reserved field and there-
fore must be 0.)

Programming Note

In some implementations the processor may keep
a stack of the Link Register values most recently
set by Branch and Link instructions, with the pos-
sible exception of the form shown below for
obtaining the address of the next instruction. To
benefit from this stack, the following programming
conventions should be used.

Let A, B, and Glue be programs.

» Obtaining the address of the next instruction:
Use the following form of Branch and Link.

bel 20,31,$+4

s Loop counts:
Keep them in the Count Register, and use
one of the Branch Conditional instructions to
decrement the count and to control branching
(e.g., branching back to the start of a loop if
the decremented counter value is non-zero).

s Computed goto’s, case statements, etc.:

Use the Count Register to hold the address to
branch to, and use the bcctr instruction

Extended mnemonics for branches (LK =0) to branch to the selected address.

= Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.

Many extended mnemonics are provided so that
\ Branch Conditional instructions can be coded with the
,g’ condition as part of the instruction mnemonic rather
k than as a numeric operand. Some of these are shown
as examples with the Branch instructions. See
Appendix C, “Assembler Extended Mnemonics” on — B returns to A: use the belr instruction
page 133 for additional extended mnemonics. (LK=0) (the return address is in, or can
be restored to, the Link Register).

— A calls B: use a Branch instruction that
sets the Link Register (LK=1).

s |ndirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns
to A rather than to Glue. (Such a calling
sequence is common in linkage code used
when the subroutine that the programmer
wants to call, here B, is in a different module
from the caller: the Binder inserts “glue”
code to mediate the branch.) The three
branches should be as follows.

— A calls Glue: use a Branch instruction
that sets the Link Register (LK =1).

— Glue calls B: place the address of B in
the Count Register, and use the bcctr
instruction (LK =0).

— B returns to A: use the bclr instruction
(LK=0) (the return address is in, or can
be restored to, the Link Register).

Chapter 2. Branch Processor 19

IBM Confidential

Branch I-form

Branch Conditional B-form

b target_addr (AA=0 LK=0) be BO,Bl,target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bltarget_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bel BO,Bl,target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl,target_addr (AA=1 LK=1)

18 u AA[LK 16 BO | Bl BD rA LK
0 6 30 31 0 6 11 16 30 31
if AA then NIA ¢ EXTS(LI || ebee) if (64-bit implementation) & (64-bit mode)
else NIA « CIA + EXTS(LI || 8be®) then M « 8
if LK then else M « 32

LR « CIA + 4 if -B0, then CTR « CTR - 1

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
Ll || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple-
mentations.

If AA=1 then the branch target address is the value
LI || Ob00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

ctr_ok « B0, | ((CTRyg3 # 8) @ BO,)
cond_ok « B0, | (CRg, = BO,)
if ctr_ok & cond_ok then

if AA then NIA « EXTS(BD || 6b68)

else NIA « CIA + EXTS(BD || 6b00)
if LK then
LR « CIA + 4

The Bl field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above. target_addr speci-
fies the branch target address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple-
mentations.

If AA=1 then the branch target address is the value
BD || Ob00 sign-extended, with the high-order 32 bits
of the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of .extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

blt target be 12,0,target
bne cr2,target be 4,10,target
bdnz target bec 16,0,target

20 PowerPC User Instruction Set Architecture

IBM Confidential

Branch Conditional to Link Register
XL-form

Branch Conditional to Count Register
XL-form

belr BO,BI (LK=0) beetr BO,BI (LK=0)
belrl BO,BI (LK=1) bectrl BO,BI (LK=1)
[Power mnemonics: ber, berl] [Power mnemonics: bee, becl]

19 BO Bi hn 16 LK 19 BO BI mn 528 LK
0 6 11 16 21 31 0 6 11 16 21) 31

if (64-bit implementation) & (64-bit mode)
then M « 0

else M « 32
if -BO, then CTR « CTR - 1
ctr_ok « BO, | ((CTRy.e3 # 6) @ BO)

cond_ok « B0y | (CRg, = BO,)
if ctr_ok & cond_ok then
NIA « LRy, Il 8088

if LK then

LR « CIA + 4

The Bl field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is LRy.g Il 0b00, with the high-order 32
bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional To Link Register:

Extended: Equivalent to:
bitir beclr 12,0
bneir cr2 beclr 4,10
bdnzir bclr 16,0

cond_ok « BO, | (CRg = BO,)
if cond_ok then

NIA « CTR°:61 “ 0boo
if LK then

LR « CIA + 4

The B! field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is CTRy.g¢ Il 0b00, with the high-order
32 bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)
Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional To Count Register:

Extended: Equivalent to:
bltctr becetr 12,0
bnectr cr2 beetr 4,10

Chapter 2. Branch Processor 21

IBM Confidential

2.4.2 System Call Instruction

This instruction provides the means by which a
program can call upon the system to perform a
service.

System Call SC-form

sC
[Power mnemonic: svca]

17 m mn m 117/
o 6 11 16 3031

— Compatibility Note

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
Appendix G, “Incompatibilities with the Power
Architecture” on page 165. For compatibility with
future versions of this architecture, these bits
should be coded as zero.

This instruction calls the system to perform a service.
A complete description of this instruction can be
found in Book lll, PowerPC Operating Environment
Architecture.

When control is returned to the program that exe-
cuted the System Call, the content of the registers will
depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing (see Book i,
PowerPC Operating Environment Architecture).

Special Registers Altered:
Dependent on the system service

22 PowerPC User instruction Set Architecture

=y

IBM Confidential

2.4.3 Condition Register Logical Instructions

Extended mnemonics for Condition .
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,

beyond those provided by the basic Condition Reg-
ister Logical instructions, to be coded easily. Some of
these are shown as examples with the CR. Logical
instructions. See Appendix C, “Assembler Extended
Mnemonics” on page 133 for additional extended
mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

Condition Register OR XL-form

cror BT,BA,BB

19 BT BA BB 257 /
[6 11 16 21 31

18 BT BA BB 449 /
0 6 11 16 21 31

CRBT « CRBA & CRBB

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR

Condition Register XOR XL-form

crxor BT,BA,BB

CRBT A CRBA l CRBB

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister OR:

Extended: Equivalent to:
crmove Bx,By cror Bx,By,By

Condition Register NAND XL-form

crnand BT,BA,BB

19 BT BA BB 193 /
0 6 11 16 21 31

19 BT BA BB 225 /
0 6 11 16 21 31

CRBT b CRBA @ CRBB

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con-
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister XOR:

Extended:
crcir Bx crxor Bx,Bx,Bx

Equivalent to:

CRBT € "(CRBA & CRBB)

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Chapter 2. Branch Processor 23

IBM Confidential

Condition Register NOR XL-form

crnor BT,BA,BB

Condition Register Equivalent XL-form

creqv BT,BA,BB

19 BT BA BB 33 /
0 6 11 16 21 31

CRBT € -'(CRBA I CRBB)

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the compiemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR
Extended Mnemonics:
Example of extended mnemonics for Condition .Reg-
ister NOR:

Extended:
crnot Bx,By

Equivalent to:
crnor Bx,By,By

Condition Register AND With
Complement XL-form

crandc BT,BA,BB

19 BT BA BB 289 /
0 6 11 16 21 31

CRBT € CRBA = CRBB

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister Equivalent.

Extended:
crset Bx

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR With Complement
XL-form

crorc BT,BA,BB

19 BT BA BB 129 /
0 6 11 16 21 31

19 BT BA BB a7 /
0 6 11 16 21 31

CRBT « CRBA & -'CRBB

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condi-
tion Register specified by BB and the result is placed
into the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

CRgr ¢ CRga | ~CRgg

The bit in the Condition Register specified by BA is
ORed with the complement of the bit in the Condition
Register specified by BB and the result is placed into
the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

24 PowerPC User Instruction Set Architecture .

=N

IBM Confidential

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

merf BF,BFA
19 BF |/ |BFA |} 0 /
0 6 9 {11 [14f16 21 31

CRaxpr4xBF+3 ¢ CR4xBFA4xBFA+3

The contents of Condition Register field BFA are
copied into Condition Register field BF. - - '

Special Registers Altered:
CR

Chapter 2. Branch Processor 25

IBM Confidential

26 PowerPC User Instruction Set Architecture

IBM Confidential

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview . . 27
3.2 Fixed-Point Processor Registers . . 27
3.2.1 General Purpose Registers 27

3.2.2 Fixed-Point Exception Register . 28
3.3 Fixed-Point Processor Instructions 29

3.3.1 Storage Access Instructions ... 29
3.3.1.1 Storage Access Exceptions . .. 29
3.3.2 Fixed-Point Load Instructions .. 29
3.3.3 Fixed-Point Store Instructions .. 36
3.3.4 Fixed-Point Load and Store with

Byte Reversal Instructions 40
3.3.5 Fixed-Point Load and Store

Multiple Instructions 42
3.3.6 Fixed-Point Move Assist

Instructions 43

3.3.7 Storage Synchronization

Instructions 46
3.3.8 Other Fixed-Point Instructions .. 49
3.3.9 Fixed-Point Arithmetic Instructions 50
3.3.10 Fixed-Point Compare Instructions 58
3.3.11 Fixed-Point Trap Instructions . . 61
3.3.12 Fixed-Point Logical Instructions . 63
3.3.13 Fixed-Point Rotate and Shift

Instructions 69
3.3.13.1 Fixed-Point Rotate Instructions 69
3.3.13.2 Fixed-Point Shift Instructions . 75
3.3.14 Move To/From System Register

Instructions 78

3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, “Fixed-Point Processor Registers” on
page 27 describes the registers associated with the
Fixed-Point Processor. Section 3.3, “Fixed-Point
Processor Instructions” on page 29 describes the
instructions associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set
of 32 general purpose registers (GPRs). See
Figure 21.

GPR 00
GPR 01

GPR 30
GPR 31
0 63

Figure 21. General Purpose Registers

Each GPR is a 64-bit register.

Chapter 3. Fixed-Point Processor 27

IBM Confidential

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 32-bit
register.

XER |
0 31

Figure 22. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Reg-
ister are as shown below. Here M =0 in 64-bit mode
and M =32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate
results (e.g., the Subtract From Carrying instruction,
the result of which is specified as the sum of three
values, sets bits in the Fixed-Point Exception Register
based on the entire operation, not on an intermediate
sum).

Bit(s) Description

0 Summary Overflow (SO)

The Summary Overflow bit is set to one
whenever an instruction sets the Overflow bit
to indicate overflow and remains set until it is
cleared by an mtspr instruction (specifying
the XER) or an merxr instruction. it is not
altered by Compare instructions, nor by other
instructions (except mtspr to the XER, and
merxr) that cannot overflow.

1 Overflow (OV)
The Overflow bit is set to indicate that an
overflow has occurred during execution of an
instruction. XO-form Add and Subtract

instructions having OE=1 set it to one if the
carry out of bit M is not equal to the carry
out of bit M+ 1, and set it to zero otherwise.
The OV bit is not altered by Compare
instructions, nor by other instructions (except
mtspr to the XER, and merxr) that cannot
overflow.

2 Carry (CA)

In general, the Carry bit is set to indicate that
a carry out of bit M has occurred during exe-
cution of an instruction. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended instructions set it to
one if there is a carry out of bit M, and set it
to zero otherwise. However, Shift Right Alge-
braic instructions set the CA bit to indicate
whether any "1’ bits have been shifted out of
a negative quantity. The CA bit is not altered
by Compare instructions, nor by other
instructions (except Shift Right Algebraic,
mtspr to the XER, and merxr) that cannot
carry. :

3:24 Reserved

25:31 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

—— Compatibility Note

For a discussion of Power compatibility with
respect to XER bits 16:23, please refer to
Appendix G, “Incompatibilities with the Power
Architecture” on page 165. For compatibility with
future versions of this architecture, these bits
should be set to zero.

28 PowerPC User Instruction Set Architecture

IBM Confidential

3.3 Fixed-Point Processor Instructions

This section describes the instructions executed by
the Fixed-Point processor.

3.3.1 Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, “Effective Address
Caiculation” on page 12.

The order of bytes accessed by halfword, word, and
doubleword loads and stores is Big-Endian, uniess
Little-Endian storage ordering is selected as
described in Appendix D, “Little-Endian Byte
Ordering” on page 145.

—— Programming Note

The “la” extended mnemonic permits computing
an Effective Address as a Load or Store instruc-
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in “Load Address” on page 144.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage

error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is una-
vailable to it.

When PowerPC is executing with Little-Endian byte
ordering, the system alignment error handler will be
invoked whenever a load or store instruction is exe-
cuted that specifies an unaligned operand. See
Appendix D, “Littte-Endian Byte Ordering” on
page 145.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, “Little-Endian Byte Ordering” on
page 145 for PowerPC systems operated with Little-
Endian byte ordering.

Many of the Load instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, if RA#0 and RA#RT, the
effective address is placed into register RA and the

storage element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Processor 29

IBM Confidential

Load Byte and Zero D-form

bz RT,D(RA)

Load Byte and Zero Indexed X-form

Ibzx RT,RA,RB

34 RT RA D

[6" 11 18 B 31

3 RT RA RB 87 /
o 6 11 16 21 31

if RA =0 then b « ©
else b « (RA)
EA « b + EXTS(D)

RT « 569 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+D.
The byte in storage addressed by EA is loaded into
RTse.62- RTg.s5 are set to 0.

Special Registers Altered: '
None

Load Byte and Zero with Update
D-form

Ibzu RT,D(RA)

if RA=0 thenb « @
else b « (RA)
EA ¢« b + (RB)

RT « 56 || MEM(EA, 1)

Let the effective address (EA) be the sum
{RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RTgg.g3. RTg.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update
Indexed X-form

lbzux RT,RA,RB

35 RT RA D
0 6 11 16 31

31 RT RA RB 118 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
RT « 56g | MEM(EA, 1)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The byte in storage addressed by EA is loaded into
RTss:ea. RT°:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 569 || MEM(EA, 1)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RTsg.63. RTo.s5 are set to 0.

EA is placed into register RA.

If RA =0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

30 PowerPC User Instruction Set Architecture .

,'&v e 2y

IBM Confidential

Load Halfword and Zero D-form

thz RT,D(RA)

40 RT RA D
0 6 11 16 31

if RA =0 then b ¢ 0
else - b e (RA)
EA « b + EXTS(D)

RT « %89 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+D.
The halfword in storage addressed by EA is loaded
into RT4g.63.- RTg.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
D-form

lhzu RT,D(RA)

Load Halfword and Zero Indexed
X-form

thzx RT,RA,RB

3N RT RA RB 279 /
0 6 11 16 21 31

if RA = 0 then b « 8
else b ¢« (RA)
EA « b + (RB)

RT « 98g || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA]0)+(RB). The halfword in storage addressed by
EA is loaded into RT4g.63. RTg.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

lhzux RT,RA,RB

41 RT RA D
o 6 11 16 31

31 RT RA RB 311 /
o 6 11 16 21 31

EA « (RA) + EXTS(D)
RT « 48g I MEM(EA, 2)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The halfword in storage addressed by EA is loaded
into RT,g63. RTg47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 98g || MEM(EA, 2)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded
into RT4g63. RTg.47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 31

IBM Confidential

Load Halfword Algebraic D-form

tha RT,D(RA)

42 RT RA D
0 6" 11 16 31

if RA =0 then b « ©
else b « (RA)
EA « b + EXTS(D)

RT « EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+D.
The halfword in storage addressed by EA is loaded
into RT4g.63. RTo47 are filled with a copy of bit 0 of
the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

lhau RT,D(RA)

Load Halfword Algebraic Indexed
X-form

lhax RT,RA,RB

AN RT RA RB 343 1
0 6 11 16 21 31

if RA =0 then b « 8
else b « (RA)
EA ¢« b + (RB)

RT & EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|0)+(RB). The halfword in storage addressed by
EA is loaded into RT.g.63. RTg.47 are filled with a copy
of bit 0 of the loaded halfword. .

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

lhaux RT,RA,RB

43 RT RA D
0 6 11 16 31

A RT RA RB 375 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
RT « EXTS(MEM(EA, 2))
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The halfword in storage addressed by EA is loaded
into RT4g.63. RTy.47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « EXTS(MEM(EA, 2))
RA « EA ,

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded
into RTs5.63. RTg47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

32 PowerPC User Instruction Set Architecture

IBM Confidential

Load Word and Zero D-form

Load Word and Zero Indexed X-form

lwzx RT,RA,RB
[Power mnemonic: 1x]

lwz RT,D(RA)
[Power mnemonic: 1]
32 RT RA D
0 6 11 16 31

31 RT RA RB 23 /

if RA = © then b « 0
else b « (RA)
EA « b + EXTS(D)

RT « 329 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+D.
The word in storage addressed by EA is loaded into
RT3;.63. RT3 are set to 0. ’

Special Registers Altered:
None

Load Word and Zero with Update
D-form

if RA=0 then b « ©
else b ¢ (RA)
EA « b + (RB)

RT « 32 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA
is loaded into RT3y.¢3. RT3 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update
Indexed X-form

lwzux RT,RA,RB
[Power mnemonic: lux]

lwzu RT,D(RA)
[Power mnemonic: 1u]
33 RT RA D
0 6 11 16 31

31 RT RA RB 55 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
RT « 329 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
The word in storage addressed by EA is loaded into
RT32:G3. RT°:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RT « 329 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT°:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 33

IBM Confidential

Load Word Algebraic DS-form

Iwa RT,DS(RA)

Load Word Algebraic Indexed X-form

lwax RT,RA,RB

58 RT RA DS 2
0 6 1 16 30 31

31 RT RA RB 341 /
0 6 1 16 21 31

if RA =0 thenb ¢« 6
else b « (RA)
EA « b + EXTS(DS||leboe)
RT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RAJ0) + (DS|I0b00). The word in storage addressed by
EA is loaded into RT3,.63. RT3y are filled with a copy
of bit 0 of the loaded word.

This instruction is defined only for 64-bit impiementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

if RA =0 thenb « @
else b « (RA)
EA ¢« b + (RB)

RT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA
is loaded into RTg;.63. RTg.3; are filled with a copy of
bit 0 of the loaded word.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Word Algebraic with Update
Indexed X-form

Iwaux RT,RA,RB

31 RT RA RB 373 /
0 6 11 16 21 31

EA « (RA) + (RB)
RT « EXTS(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT35.63- RTg3q are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit impiementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

34 PowerPC User Instruction Set Architecture

A

IBM Confidential

Load Doubleword DS-form

Id RT,DS(RA)

Load Doubleword Indexed X-form

ldx RT,RA,RB

58 RT RA DS 0
0 6 11 16 30 31

31 RT RA RB 21 /
0 6 11 16 21 31

if RA =0 thenb « 8
else b « (RA)
EA « b + EXTS(DS||eb68)
RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0) + (DSJi0b00). The doubleword in storage
addressed by EA is loaded into RT.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked. ‘

Special Registers Altered:
None

Load Doubleword with Update DS-form

idu RT.DS(RA)

58 RT RA Ds 1
0 6 11 16 30 31

EA « (RA) + EXTS(DS||obo8)
RT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum
(RA) + (DS]||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be

invoked.

Special Registers Altered:
None

if RA = 0 then b « 8
else b « (RA)
EA ¢« b + (RB)

RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+(RB). The doubleword in storage addressed
by EA is loaded into RT.

.- This instruction is defined only for 64-bit implementa-

tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update Indexed
X-form

Idux RT,RA,RB

31 RT RA RB 53 /
0 6 11 16 21 3

EA « (RA) + (RB)
RT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.
This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 35

IBM Confidential

3.3.3 Fixed-Point Store Instructions

The contents of register RS is stored into the byte,
halfword, word, or doubleword in storage addressed
by EA.

Byte order of PowerPC is Big-Endian by default; see
Appendix D, “Little-Endian Byte Ordering” on
page 145 for PowerPC systems operated with Little-
Endian byte ordering.

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

= |f RA#0, the effective address is placed into reg-
ister RA.

= |f RS=RA, the contents of register RS is copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte D-form

stb RS,D(RA)

Store Byte Indexed X-form

stbx RS,RA,RB

38 RS RA D
0 6 11 16 31

31 RS RA RB 215 /
0 6 11 16 21 31

if RA =0 then b ¢« @
else b « (RA)
EA « b + EXTS(D)

Let the effective address (EA) be the sum (RA|0)+D.
(RS)sg.63 is stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

if RA=0 then b ¢« @
else b « (RA)
EA « b + (RB)

MEM(EA, 1) € (RS)sg.63

Let the effective address (EA) be the sum
(RAJ0)+(RB). (RS)sg.e3 is stored into the byte in
storage addressed by EA.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

39 RS RA D
0 6 11 16 31

K] RS RA RB 247 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
MEM(EA, 1) « (RS)sg.63
RA « EA

Let the effective address (EA) be the sum (RA)+D.
(RS)sg.63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
MEM(EA, 1) « (RS)sge3
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)sq.63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 PowerPC User Instruction Set Architecture .

IBM Confidential

Store Halfword D-form

sth RS,D(RA)

Store Halfword Indexed X-form

sthx RS,RA,RB

44 RS RA D
0 6 111 16 31

31 RS RA RB 407 /
0 6 11 16 21 31

if RA =0 thenb « @
else b « (RA)
EA « b + EXTS(D)
MEM(EA, 2) ¢ (RS)4g.63

Let the effective address (EA) be the sum (RA|0)+D.
(RS)s5.62 is stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

45 RS RA D
0 6 11 16 31

EA « (RA) + EXTS(D)
RA « EA

Let the effective address (EA) be the sum (RA)+D.
(RS)sg63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 2) « (RS)qge3

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS),g.63 is stored into the halfword in
storage addressed by EA.

Special Registers Altered: -
None

Store Halfword with Update Indexed
X-form

sthux RS,RA,RB

31 RS RA RB 438 /
0 6 11 16 21 31

EA « (RA) + (RB)
MEM(EA, 2) « (RS)sge3
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)4g.63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 37

IBM Confidential

Store Word D-form

Store Word Indexed X-form

stwx RS,RA,RB
[Power mnemonic: stx]

stw RS,D(RA)
[Power mnemonic: st]
36 RS RA D
0 6 11 16 31

31 | RS RA RB 151 /
0 6 11 16 21 31

if RA =0 then b « ©
else b « (RA)
EA « b + EXTS(D)

Let the effective address (EA) be the sum (RA|0)+D.
(RS)30.¢3 is stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word with Update D-form

stwu RS,D(RA)
[Power mnemonic: stu]

if RA =8 then b « 8
else b « (RA)
EA « b + (RB)

MEM(EA, 4) « (RS)32.63

Let the effective address (EA) be the sum
(RA|0)+(RB). (RS)32.¢3 is stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update Indexed X-form

37 RS RA D
0 6 11 16 3t

stwux RS,RA,RB
[Power mnemonic: stux]
31 RS RA RB 183 /
0 6 11 16 21 31

EA « (RA) + EXTS(D)
MEM(EA, 4) « (RS)3233
RA « EA

Let the effective address (EA) be the sum (RA)+D.
(RS)3,.63 is stored into the word in storage addressed

by EA.
EA is placed into register RA.
If RA =0, the instruction form is invalid.

Special Registers Altered:
None

EA « (RA) + (RB)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)35.63 is stored into the word in storage addressed

by EA.
EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None .

38 PowerPC User Instruction Set Architecture

IBM Confidential

Store Doubleword DS-form

std RS,DS(RA)

Store Doubleword Indexed X-form

stdx RS,RA,RB

62 RS RA DS 0
0 6 11 16 30 31

31 RS RA RB 149 /
0 6 11 16 21 31

if RA =08 then b « @
else b « (RA)
EA « b + EXTS(DS||ebe6)
MEM(EA, 8) « (RS)

Let the effective address (EA) be the sum
(RA|0) + (DSII0b00). (RS) is stored into the
doubleword in storage addressed by EA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update DS-form

stdu RS,DS(RA)

62 RS RA Ds 1
0 6 11 16 30 31

EA « (RA) + EXTS(DS||ebee)
MEM(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum
(RA)+ (DS|I0b00). (RS) is stored into the doubleword
in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be

invoked.

Special Registers Altered:
None

if RA =0 thenb ¢ 0
else b ¢« (RA)
EA « b + (RB)

MEM(EA, 8) « (RS)

Let the effective address (EA) be the sum
(RA|0)+(RB). (RS) is stored into the doubleword in
storage addressed by EA.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handier to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

31 RS RA RB 181 /
0 6 11 16 21 : 31

EA « (RA) + (RB)
MEM(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be

invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 39

IBM Confidential

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

When used in a PowerPC system operating with Big-
Endian byte order (the default), these instructions
have the effect of loading and storing data in Little-
Endian order. Likewise, when used in a PowerPC
system operating with Little-Endian byte order, these
instructions have the effect of loading and storing
data in Big-Endian order. See Appendix D, “Little-

Endian Byte Ordering” on page 145 for a discussion
of byte order.

—— Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed
X-form

lhbrx RT,RA,RB

31 RT RA RB 790 /
0 6 11 16 21 31

if RA =06 then b ¢« ©

else b « (RA)

EA « b + (RB)

RT « %89 || MEM(EA+1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+(RB). Bits 0:7 of the halfword in storage
addressed by EA are loaded into RTsg.63. Bits 8:15 of
the halfword in storage addressed by EA are loaded
into RT4g.55. RTg.47 are set to 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed
X-form

iwbrx RT,RARB
[Power mnemonic: Ibrx]

-3 RT RA RB 534 !
0 € 11 16 21 31

if RA =0 thenb ¢« 0

else b « (RA)

EA « b + (RB)

RT « 329 || MEM(EA+3, 1) || MEM(EA+2, 1)
J| MEM(EA+1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA]0)+(RB). Bits 0:7 of the word in storage
addressed by EA are loaded into RTgg.63. Bits 8:15 of
the word in storage addressed by EA are loaded into
RTsg.55. Bits 16:23 of the word in storage addressed
by EA are loaded into RT4q.47. Bits 24:31 of the word
in storage addressed by EA are loaded into RT35.59.
RTy.q; are set to 0.

Special Registers Altered:
None

40 PowerPC User Instruction Set Architecture

IBM Confidential

Store Halfword Byte-Reverse Indexed
X-form

sthbrx RS,RA,RB

31 RS RA RB 918 /
0 € 11 16 21 31

if RA =8 then b « 8

else b « (RA)

EA « b + (RB)

MEM(EA, 2) « (RS)sges Il (RS)4g:s5

Let the effective address (EA) be the sum
(RA|0)+(RB). (RS)s6.63 are stored into bits 0:7 of the

halfword in storage addressed by EA. (RS)s.s5 are -

stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed
X-form

stwbrx RS,RA,RB
[Power mnemonic: stbrx]

31 RS RA RB 662 /
0 6 11 16 21 31

if RA =0 thenb « 8

else b « (RA)

EA « b + (RB)

MEM(EA, 4) « (RS)sg.e3 Il (RS)ag:ss Il (RS)ag.a7 Il (RS)22.39

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)sq.¢3 are stored into bits 0:7 of the
word in storage addressed by EA. (RS),g.55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)9.47 are stored into bits 16:23 of the word in
storage addressed by EA. (RS)3,39 are stored into
bits 24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 41

IBM Confidential

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction
Forms” on page 11. In the preferred forms, storage
alignment satisfies the following rule.

s The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

On PowerPC systems operating with Little-Endian byte
order, execution of a Load Muiltiple or Store Multiple
instruction causes the system alignment trap handier
to be invoked. See Appendix D, “Little-Endian Byte
Ordering” on page 145.

— Compatibility Note

For a discussion of Power compatibility with
respect to the alignment of the EA for the Load
Multiple Word and Store Multiple Word
instructions, please refer to Appendix G, “Incom-
patibilities with the Power Architecture” on
page 165. For compatibility with future versions
of this architecture, these EAs shouild be word-
aligned.

—— Engineering Note

Causing the system alignment error handler to be

" invoked if attempt is made to execute a Load Mul-
tiple or Store Multiple instruction having an incor-
rectly aligned effective address facilitates the
debugging of software.

Load Multiple Word D-form

Store Multiple Word D-form

stmw RS,D(RA)

[Power mnemonic: stm]

Imw RT,D(RA)
[Power mnemonic: Im]
46 RT RA D
o 6 11 16 31

47 RS RA D
0 6 11 16 31

if RA =0 thenb ¢« 0

else b « (RA)
EA « b + EXTS(D)
r «RT

do while r s 31
GPR(r) « 32p || MEM(EA, 4)
rer+1
EA « EA + 4

Let n = (32—RT). Let the effective address (EA) be
the sum (RA|0)+ D.

n consecutive words starting at EA are loaded into
the low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

EA must be a muitiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

If RA is in the range of registers to be loaded or
RT=RA =0, the instruction form is invalid.

Special Registers Altered:
None

if RA =6 thenb « @

else b « (RA)
EA € b + EXTS(D)
r « RS

do while r s 31
rer+1
EA « EA + 4

Let n = (32-RS).
the sum (RA|0)+ D.

Let the effective address (EA) be

n consecutive words starting at EA are stored from
the low-order 32 bits of GPRs RS through 31.

EA must be a multiple of 4. If it is not, the system
alignment error handier may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

42 PowerPC User Instruction Set Architecture .

IBM Confidential

3.3.6 Fixed-Point Move Assist Instructions

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

Load/Store String Indexed instructions of zero length
shall have no effect, except that Load String Indexed
instructions of zero length may set register RT to an
undefined value.

The Load/Store String instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction

Forms” on page 11. In the preferred forms, register
usage satisfies the following rules.

= RS =5
= RT=5
= |ast register loaded/stored < 12

On PowerPC systems operating with Little-Endian byte
order, execution of a Load/Store String instruction
causes the system alignment trap handler to be
invoked. See Appendix D, ‘“Little-Endian Byte
Ordering” on page 145.

Chapter 3. Fixed-Point Processor 43

IBM Confidential

Load String Word Immediate X-form

Iswi RT,RA,NB
[Power mnemonic: Isi]

31 RT RA NB 597 /
0 6 11 16 21 31

if RA = © then EA « ©
else EA « (RA)
if NB = 8 then n « 32
else n « NB
reRT -1
ie 32
do while n > 8
if 1 = 32 then
rer+ 1 (mod 32)
GPR(r) « 8
GPR(r);.i+7 « MEM(EA, 1)
iei+ 8
if i = 64 then i ¢ 32
EA ¢ EA +1
nen-1

Let the effective address (EA) be (RA|0). Letn = NB
if NB#0, n = 32 if NB=0: n is the number of bytes to
load. Let nr = CEIL(n<4): nr is the number of regis-
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr—1. Data is ioaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr—1 are only partially filled, the unfilled low-
order byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded or
RT=RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load String Word Indexed X-form

Iswx RT,RA,RB
[Power mnemonic: Isx]

-3 RT RA RB 533 /
0 6 11 16 21 31

if RA=0 thenb « 0
else b « (RA)
EA ¢« b + (RB)
n ¢ XERps:3¢
reRT -1
ie 32
RT « undefined
do while n > 0
if i = 32 then
rer+ 1 (mod 32)
GPR(r) ¢ 8
GPR(Y‘)H.’.7 A MEM(EA, 1)
iei+8
if i = 64 then i ¢ 32
EA ¢« EA + 1
nen-1

Let the effective address (EA) be the sum
(RA|0)+(RB). Let n = XERy53y: n is the number of
bytes to load. Let nr = CEIL(n=4): nr is the number
of registers to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr—1. Data is loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr—1 are only partially filled, the unfilled low-
order byte(s) of that register are set to 0.

If n=0, the content of register RT is undefined.

If RA or RB is in the range of registers to be loaded
or RT=RA =0, the instruction form is invalid.

Special Registers Altered:
None -

44 PowerPC User Instruction Set Architecture

IBM Confidential

Store String Word Immediate X-form

stswi RS,RA,NB
[Power mnemonic: stsi]

Store String Word Indexed X-form

stswx RS,RA,RB
[Power mnemonic: stsx]

31 RS RA NB 725 / 31 RS RA RB 661 /
] 6 11 16 21 31 0 6 11 16 21 31
if RA = @ then EA « © if RA = 8 thenb « 0
else EA « (RA) else b ¢ (RA)
if NB = 0 then n ¢ 32 EA « b + (RB)
else n « NB n ¢ XERps.31
reRS -1 reRS -1
i« 32 ie 32

do while n > ©
if i =32 thenr e r + 1 (mod 32)
MEM(EA, 1) ¢ GPR(Y')I:4+7
iei+8
if i = 64 then i « 32
EA « EA +1
nen-1

Let the effective address (EA) be (RA|0). Letn = NB
if NB#£0, n = 32 if NB=0: n is the number of bytes to
store. Let nr = CEIL(n+4): nr is the number of regis-
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS +nr—1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

do whilen> 9
if i =32 thenr e r + 1 (mod 32)
MEM(EA, 1) « GPR(r); 47
iei+8
if i = 64 then i « 32
EA ¢ EA+1
nen-1

Let the effective address (EA) be the sum
(RA|0)+(RB). Let n = XERy531: n is the number of
bytes to store. Let nr = CEIL(n<4): nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr—1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

IBM Confidential

3.3.7 Storage Synchronization Instructions

The Storage Synchronization instructions can be used
to control the order in which storage operations are
completed with respect to asynchronous events, and
the order in which storage operations are seen by
other processors and by other mechanisms that
access storage. Additional information about these
instructions, and about related aspects of storage
management, can be found in Book Il, PowerPC
Virtual Environment Architecture, and Book |,
PowerPC Operating Environment Architecture.

On a PowerPC system operating with Little-Endian
byte order the three low-order bits of the Effective
Address computed by Load Word And Reserve
Indexed and Store Word Conditional Indexed are
modified before accessing storage. See Appendix D,
“Little-Endian Byte Ordering” on page 145.

— Architecture Note

The Load and Reserve and Store Conditional
instructions require the EA to be aligned. Soft-
ware should not attempt to emulate an unaligned
Load and Reserve or Store Conditional instruc-
tion, because there is no correct way to define the
address associated with the reservation.

— Engineering Note

Causing the system alignment error handler to be
invoked if attempt is made to execute a Load and
Reserve or Store Conditional instruction having
an incorrectly ‘aligned effective address facilitates
the debugging of software.

Load Word And Reserve Indexed
X-form

lwarx RT,RA,RB

Load Doubleword And Reserve Indexed
X-form

Idarx RT,RA,RB

| RT RA RB 20 /
0 6 11 16 21 31

31 RT RA RB 84 /
0 [; 11 16 21 31

if RA =0 then b « ®

else b « (RA)
EA « b + (RB)
RESERVE « 1

RESERVE_ADDR « func(EA)
RT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+(RB). The word in storage addressed by EA
is loaded into RT35.63. RTg.3; are set to 0.

This instruction creates a reservation for use by a
Store Word Conditional instruction. An address com-
puted from the EA is associated with the reservation,
and replaces any address previously associated with
the reservation: the manner in which the address to
be associated with the reservation is computed from
the EA is described in Book Il, PowerPC Virtual Envi-
ronment Architecture.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

if RA=0 thenb « 8

else b « (RA)
EA « b + (RB)
RESERVE € 1

RESERVE_ADDR « func(EA)
RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction creates a reservation for use by a
Store Doubleword Conditional instruction. An
address computed from the EA is associated with the
reservation, and replaces any address previously
associated with the reservation: the manner in which
the address to be associated with the reservation is
computed from the EA is described in Book Ii,
PowerPC Virtual Environment Architecture.

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

46 PowerPC User Instruction Set Architecture

IBM Confidential

Store Word Conditional Indexed X-form

stwex. RS,RA,RB

31 RS RA RB 150 1
0 6 11 16 21 31

if RA = 0 then b « @
else b « (RA)
EA « b + (RB)
if RESERVE then
MEM(EA, 4) * (Rs)az:m
RESERVE ¢ ©
CR8 « 8086 || Bb1 || XERge
else
CRG « 6bOE || BbO || XERge

Let the effective address (EA) be the sum
(RA|0)+ (RB).

If a reservation exists, (RS)3y.¢3 is stored into the
word in storage addressed by EA and the reservation
is cleared.

If a reservation_ does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set to reflect whether the store opera-
tion was performed (i.e., whether a reservation
existed when the stwex. instruction commenced exe-
cution), as follows.

CROLT GTEQSO ™ 0b00 “ store.performed “ XERSO
EA must be a multiple of 4. If it is not, the system

alignment error handler may be invoked or the resuits
may be boundedly undefined.

Special Registers Altered:
CRO

Store Doubleword Conditional Indexed
X-form

stdex. RS,RA,RB

31 RS RA RB 214 1
0 6 11 16 21 31

if RA =0 then b « 8
else b « (RA)
EA « b + (RB)
if RESERVE then
MEM(EA, 8) « (RS)
RESERVE « 8
CRO « 8b8O || 8bl || XERgo
else
CR® « 6b0O || 608 || XERge ~

Let the effective address (EA) be the sum
(RA|0) + (RB).

If a reservation exists, (RS) is stored into the
doubleword in storage addressed by EA and the res-
ervation is cleared.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set to reflect whether the store opera-
tion was performed (i.e, whether a reservation
existed when the stdex. instruction commenced exe-
cution), as follows.

CROLT GT EQ SO = 0b00 " store_performed “ XERSO

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO

r— Programming Note

The granularity with which reservations are
managed is implementation-dependent. Therefore
the storage to be accessed by the Load And
Reserve and Store Conditional instructions should
be allocated by a system library program. Addi-
tional information can be found in Book i,
PowerPC Virtual Environment Architecture.

Chapter 3. Fixed-Point Processor 47

IBM Confidential

—— Programming Note

When correctly used, the Load And Reserve and
Store Conditional instructions can provide an
atomic update function for a single aligned word
(Load Word And Reserve and Store Word Condi-
tional) or doubleword (Load Doubleword And
Reserve and Store Doubleword Conditional) of
storage.

One of the requirements for correct use is that
Load Word And Reserve be paired with- Store
Word Conditional, and Load Doubleword And
Reserve with Store Doubleword Conditional, with
the same effective address used for both
instructions of the pair. Examples of correct uses
of these instructions, to emulate primitives such
as “Fetch and Add,” “Test and Set,” and

E.1, “Synchronization” on page 153. In general,
these instructions should be used only in system
programs, which can be invoked by application
programs as needed.

At most one reservation exists on any given
processor: there are not separate reservations for
words and for doublewords.

The address associated with the reservation can
be changed by a subsequent Load And Reserve
instruction.

The conditionality of the Store Conditional
instruction’s store is based only on whether a res-
ervation exists, not on a match between the
address associated with the reservation and the
address computed from the EA of the Store Con-
ditional instruction.

A reservation is cleared if any of the following
events occurs.

= the processor having the reservation exe-
cutes a Store Conditional instruction to any
address

= another processor executes any Store instruc-
tion to the address associated with the reser-
vation

= any mechanism, other than the processor
having the reservation, stores to the address
associated with the reservation

“Compare and Swap,” can be found in Appendix

Synchronize X-form

sync
[Power mnemonic: dcs]

31 m m n 598 /
o € 11 16 21 3

The sync instruction provides an ordering function for
the effects of all instructions executed by a given
processor. Executing a sync instruction ensures that
all instructions previously initiated by the given
processor appear to have completed before the sync
instruction completes, and that no subsequent
instructions are initiated by the given processor until
after the sync instruction completes. When the sync
instruction completes, all storage accesses initiated
by the given processor prior to the sync will have
been performed with respect to all other mechanisms
that access storage. (See Book Il, PowerPC Virtual
Environment Architecture, for a more complete
description. See also the section entitled “Table
Update Synchronization Requirements” in Book I,
PowerPC Operating Environment Architecture, for an
exception involving TLB invalidates.)

Special Registers Aitered:
None

—— Programming Note

The sync instruction can be used to ensure that
the results of all stores into a data structure, per-
formed in a “critical section” of a program, are
seen by other processors before the data struc-
ture is seen as unlocked.

The functions performed by the sync instruction
will normally take a significant amount of time to
complete, so indiscriminate use of this instruction
may adversely affect performance. In addition,
the time required to execute sync may vary from
one execution to another.

The Enforce In-order Execution of 1/O (eieio)
instruction, described in Book Il, PowerPC Virtual
Environment Architecture, may be more appro-
priate than sync for cases in which the only
requirement is to control the order in which
storage references are seen by /O devices.

r— Engineering Note

Unlike a context synchronizing operation, sync
need not discard prefetched instructions.

48 PowerPC User Instruction Set Architecture .

£

IBM Confidential

3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
content of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
fixed-point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
compare the contents of one GPR with a second GPR
or immediate data and, if the conditions are met,
invoke the system trap handler.

These instructions treat the source operands as
signed integers unless the instruction is explicitly
identified as performing an unsigned operation. ’

The X-form and XO-form instructions with Rc=1, and
the D-form instruction addic., andi., and andis., set CR
Field 0 to characterize the result of the operation. In
64-bit mode, CR Field 0 is set as if the 64-bit resuit
were compared algebraically to zero. In 32-bit mode,
this field is set as if the sign-extended low-order 32
bits of the result were compared algebraically to zero.

addic, addic., subfic, addc, subfc, adde, subfe, addmae,
subfme, addze, and subfze always set CA, to reflect
the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode. The XO-forms set SO and OV when
OE =1, to reflect overflow of the 64-bit result in 64-bit
mode and overflow of the low-order 32-bit result in
32-bit mode.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed in the target register.

r— Programming Note

Instructions with the OE bit set or. which set CA
may execute slowly or may prevent the execution
of subsequent instructions until the operation is
completed.

Chapter 3. Fixed-Point Processor 49

IBM Confidential

3.3.9 Fixed-Point Arithmetic Instructions

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use
the Add Immediate and Add Immediate Shifted
instructions to load an immediate value or an address
into a target register. Some of these are shown as
examples with the two instructions.

The PowerPC Architecture supplies Subtract From
instructions, which subtract the second operand from

the third. A set of extended mnemonics is provided
that use the more “normal” order, in which the third
operand is subtracted from the second, with the third
operand being either an immediate field or a register.
Some of these are shown as examples with the appro-
priate Add and Subtract From instructions.

See Appendix C, “Assembler Extended Mnemonics”
on page 133 for additional extended mnemonics.

Add Immediate D-form

Add Immediate Shifted D-form

addi RT,RA,SI addis RT,RA,SI
[Power mnemonic: cal] [Power mnemonic: cau]
14 RT RA Si 15 RT RA Sl
0 6 11 16 31 0 6 11 16 31

if RA = 0 then RT « EXTS(SI)
else RT « (RA) + EXTS(SI)

The sum (RA|0) + Sl is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

li Rx,value addi Rx,0,value

la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,—value

if RA = 8 then RT « EXTS(SI || '®0)
else RT « (RA) + EXTS(SI || '6@)

The sum (RA|0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add /mmediate
Shifted:

Equivalent to:

addis Rx,0,value
addis Rx,Ry,—value

Extended:

lis Rx,value
subis Rx,Ry,value

50 PowerPC User Instruction Set Architecture

IBM Confidential

Add XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: cax, cax., caxo, ¢axo.]

31 RT RA RB |OE| 266 Re
0 6 11 16 21 |22 31

RT « (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CRO (if Re=1)
SO oV (if OE=1)

Subtract From XO-form

subf RT,RA,RB (OE=0 Rc=0)
subf. RT,RA,RB (OE=0 Rc=1)
subfo RT,RA,RB (OE=1 Rc=0)
subfo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB |OE 40 Re
0 6 11 16 21 |22 31

RT « ~(RA) + (RB) + 1
The sum —(RA) + (RB) +1 is placed into register
RT.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)
Extended Mnemonics:
Example of extended mnemonics for Subtract From:

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

r—— Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

Add Immediate Carrying D-form

addic RT,RA,SI
[Power mnemonic: ai]

12 RT RA S|

RT « (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.
Special Registers Altered:
CA
Extended Mnemonics:
Exampie of extended mnemonics for Add Immediate

Carrying:

Extended: Equivalent to: _
subic Rx,Ry,value addic Rx,Ry,—value

Add Immediate Carrying and Record
D-form

addic. RT,RASI

[Power mnemonic: ai.]

13 RT RA Si
16 31

RT « (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended: Equivalent to:

subic. Rx,Ry,value addic. Rx,Ry,—value

Chapter 3. Fixed-Point Processor 51

IBM Confidentiat

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI
[Power mnemonic: sfi]

08 RT RA Si

RT ¢ =~(RA) + EXTS(SI) +1
The sum —(RA) + S| + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying XO-form

addc RT,RA,RB
addc. RT,RA,RB
addco RT,RA,RB
addco. RT,RA,RB

[Power mnemonics: a, a., ao, ao.]

(OE=0 Rc=0)
(OE=0 Rc=1)
(OE=1 Rc=0)
(OE=1 Rc=1)

31 RT RA RB |OE 10 - |Rc
0 6 1 16 21 |22 31

RT « (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO OV (if OE=1)

Subtract From Carrying XO-form

subfc RT,RA,RB
subfc. RT,RA,RB
subfco RT,RA,RB
subfco. RT,RA,RB

[Power mnemonics: sf, st., sfo, sfo.]

(OE=0 Rc=0)
(OE=0 Rc=1)
(OE=1 Rc=0)
(OE=1 Rc=1)

31 RT RA RB |OE 8 Rc
0 6 11 16 21 |22 31

RT ¢« =(RA) + (RB) +1

The sum —(RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:

CA
CRO (if Rc=1)
soov (if OE=1)

Extended Mnemonics:
Example of extended mnemonics for Subtract From
Carrying:

Extended:

subc Rx,Ry,Rz

Equivalent to:
subfc Rx,Rz,Ry

52 PowerPC User iInstruction Set Architecture

IBM Confidential

Add Extended XO-form

adde RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: ae, ae., aeo, aeo.]

Subtract From Extended XO-form

subfe RT,RA,RB (OE=0 Rc=0)
subfe. RT,RA,RB (OE=0 Rc=1)
subfeo RT,RA,RB (OE=1 Rc=0)
subfeo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: sfe, sfe., stfeo, sfeo.]

31 RT RA RB |OE 138 Re
0 6 11 16 21|22 - 31

31 RT RA RB [OE 136 Rc
0 6 11 16 21 |22 31

RT « (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Add To Minus One Extended XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1)

[Power mnemonics: ame, ame., ameo, ameo.]

31 RT RA M JOE| 234 Re
0 6 11 16 21 |22 31

RT « (RA) + CA -1
The sum (RA) + CA + %41 is placed into register RT.

Special Registers Altered:

CA
CRO (if Rc=1)
SO ov (if OE=1)

RT « =~(RA) + (RB) + CA

The sum —(RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Subtract From Minus One Extended
XO-form

subfme RT.RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)

subfmeo. RT,RA (OE=1 Rc=1)
[Power mnemonics: sfme, stme., sfmeo, sfmeo.]

A RT RA /1 |OE 232 Rc
0 6 11 16 21 |22 31

RT « ~(RA) + CA -1

The sum —(RA) + CA + %1 s placed into register
RT.

Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

Chapter 3. Fixed-Point Processor 53

IBM Confidential

Add To Zero Extended XO-form

addze RT.RA
addze. RT,.RA
addzeo RT,.RA
addzeo. RT.RA

[Power mnemonics: aze, aze., azeo, azeo.]

(OE=0 Rc=0)
(OE=0 Rc=1)
(OE=1 Rc=0)
(OE=1 Rc=1)

Subtract From Zero Extended XO-form

subfze RT,RA
subfze. RT,RA
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

[Power mnemonics: sfze, sfze., sfzeo, sfzeo.]

(OE=0 Rc=0)
(OE=0 Rc=1)

31 RT RA /- |J0E| 202 Re
0 8 11 16 21|22 31

31 RT RA /- JOE| 200 Re
0 6 11 16 21 |22 31

RT « (RA) + CA
The sum (RA) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
so ov (if OE=1)

RT « =(RA) + CA
The sum —(RA) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

r— Programming Note

The setting of CA by the Add and Subtract
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended-
precision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

31 RT RA /I |OE 104 Rc
0 6 11 16 21 |22 31

RT « ~(RA) +1
The sum —(RA) + 1 is placed into register RT.

If executing in 64-bit mode and register RA contains
the most negative 64-bit number (0x8000_0000_0000_
0000), the result is the most negative number and, if
OE=1, OV is set. Similarly, if executing in 32-bit
mode and (RA)3,.¢3 CONtains the most negative 32-bit
number (0x8000_0000), the low-order 32 bits of the
result contain the most negative 32-bit number and, if
OE=1, OV is set.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

54 PowerPC User Instruction Set Architecture .

IBM Confidential

Multiply Low Immediate D-form

mulli RT,RA,SI
[Power mnemonic: muli]

07 RT RA Si
0 6 11 16 31

prodg.z9 ¢ (RA) x SI

RT « prodygz

The 64-bit first multiplicand is (RA). The 16-bit second
multiplicand is Sl. The low-order 64 bits of the 80-bit
product of the multiplicands are placed into register RT.

Special Registers Altered:
None

Multiply Low Word XO-form

mullw RT,RA,RB (OE=0 Rc=0)
muliw. RT,RA,RB (OE=0 Rc=1)
muliwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

[Power mnemonics: muls, muls., muiso, mulso.]

31 RT RA RB |OE| 235 Rc
0 6 11 16 21 |22 31

Multiply Low Doubleword XO-form

mulld RT,RA,RB
mulid. RT,RA,RB
mulido RT,RA,RB
mulido. RT,RA,RB

(OE=0 Rc=0)
(OE=0 Rc=1)
(OE=1 Rc=0)
(OE=1 Rc=1)

31 RT RA RB |OE 233 Re
0 6 11 16 21 |22 31

RT « (RA)3z:63 * (RB)aze3
The 32-bit operands are the low-order 32 bits of RA

and RB. The 64-bit product of the operands is placed
into register RT.

If OE=1, then SO and OV are set to one if the product
cannot be represented in 32 bits.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO ov (if OE=1)

—— Programming Notes

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

The XO-form muitiply instructions may execute
faster on some implementations if RB contains
the operand having the smaller absolute value.

prodg.q57 ¢« (RA) x (RB)
RT ¢ p?‘od“:127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1, then SO and OV are set to one if ihe product
cannot be represented in 64 bits.

Both the operands and the product are interpreted as
signed integers. (However, the result in RT is inde-
pendent of whether the operands are interpreted as
signed or unsigned integers.)

This instruction is defined only for 64-bit impiementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

— Editor’s Note

It is proposed to replace the mull instruction by
two: mullw and mulld. This change has not been
officially adopted by the PAWG. However, it is
included here for early dissemination.

Chapter 3. Fixed-Point Processor 55

IBM Confidential

Multiply High Doubleword XO-form

mulhd RT,RA,RB (Rc=0)

mulhd. RT,RA,RB (Rc=1)
31 RT RA RB |/ 73 Re

0 6 11 16 21 |22 31

prodg.127 ¢ (RA) x (RB)
RT ¢ prodg.gs3
The 64-bit muitiplicands are (RA) and (RB). The high-

order 64 bits of the 128-bit product of the multipli-
cands are placed into register RT.

Both the multiplicands and the product are inter-
preted as signed integers.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

Multiply High Doubleword Unsigned
XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Rc=1)

31 RT RA RB / 9 Rc
0 6 11 16 21 |22 31

prody.qo7 ¢ (RA) x (RB)
RT ¢ prodg.es3

The 64-bit multiplicands are (RA) and (RB). The high-
order 64 bits of the 128-bit product of the muiltioli-
cands are placed into register RT.

Both the multiplicands and the product are inter-
preted as unsigned integers.

This instruction is defined only for 64-bit implementa-
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc=1)

Multiply High Word XO-form

mulhw RT,RA,RB (Rc=0) { ,

mulhw. RT,RA,RB (Rc=1) N
31 RT RA RB / 75 Re

0 6 11 16 21 |22 31

prodoez « (RA)3pe3 X (RB)32e3

RT32:63 ¢ Prodoay

RTg.3¢ ¢ undefined

The 32-bit multiplicands are the low-order 32 bits of

RA and of RB. The high-order 32 bits of the 64-bit
product of the multiplicands are placed into RTgj.¢3.

(RT)q.31 are undefined.

Both the multiplicands and the product are inter-
preted as signed integers.

Special Registers Altered:
CRO (if Rc=1)

Multiply High Word Unsigned XO-form

mulhwu RT,RA,RB (Rc=0)

mulhwu. RT,RA,RB (Re=1)
31 RT RA RB / 11 Re

0 6 1 16 21 |22 31

prodges ¢ (RA)3ze3 * (RB)azes

RT32:63 ¢ Prodg.z,

RTg.37 ¢ undefined

The 32-bit muitiplicands are the low-order 32 bits of
RA and of RB. The high-order 32 bits of the 64-bit
product of the multiplicands are placed into RT3j.g3.
(RT)o.3¢ are undefined.

Both the multiplicands and the product are inter-
preted as unsigned integers.

Special Registers Altered:
CRO (if Re=1)

56 PowerPC User Instruction Set Architecture e

ooy

IBM Confidential

Divide Doubleword XO-form

Divide Word XO-form

divd RT,RA,RB (OE=0 Rc=0) divw RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divw. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divwo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB, (OE=1 Rc=1) divwo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB |[OE| 489 Re 31 RT RA RB JOE| 491 Rc
o 6 11 16 21 |22 31 0 6 11 16 2122 . 31

dividendp.gs ¢ (RA)
divisorggs « (RB)
RT « dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).

The 64-bit quotient of the dividend and divisor is .

placed into RT. The remainder is not supplied as a
result.

Both the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divisor| if the dividend is nonnegative,
and — |divisor| < r <0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0060_06800 + -1
<anything> + ©

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>