[Macintosh®

Allegro Common LISP
Dump LISP

Overview

This documentation describes the dumplisp facility in Allegro CL. This feature lets you save
images (snapshots) of Allegro CL environments. Such images can be restarted very quickly.
Working with images is much faster than loading fasl files.

As an example, you may generally work with the Traps and Records files loaded, and with a
particular extra set of menus and Fred commands. You can arrange your system the way you
like it (by loading files, etc.) and then call dumplisp. dumplisp will produce a heap
image which you can later restart. The heap image will boot faster than Allegro normally
boots, and it will also contain all the information from files you have loaded, etc.

To run Allegro CL with a heap image, double-click the heap image in the Finder, or select
both Allegro CL and the heap image, and choose Open from the Finder’s Flle menu. (If
you use the first method, make sure there is only one copy of Allegro CL on your disk.)

Heap images created with dump1isp cannot be run without a copy of Allegro CL. To create
stand-alone images, you need to use the Allegro Stand-alone Application generator. However,
dumplisp is an excellent way to prototype stand-alone applications. After loading the files
and setting up the menubar of your prototype stand-alone application, do a $set-toplevel
to your toplevel function, then do a dumplisp. When the image file created by the
dumplisp is double-clicked it will behave just like a stand-alone application.

dumplisp pathname &key :compress :toplevel-function [Function]

creates an image of the current Lisp environment and saves it to the file specified by
pathname. If there is not enough room on the selected disk for the image, Allegro CL will
exit to the Finder. In general, heap images with compression are upwards of 200K bytes and
heap images without compression will be upwards of 325K bytes. These numbers will also
be smaller or larger depending on how much has been loaded into the environment and whether
function swapping is enabled.

pathname a pathname for the image to be created. If there is already a file
with that name, it will be deleted before the dump is performed.
The default extension for images is " . image".

:compress if true (the default), then the heap image is compressed as it is
dumped. When it is rebooted, it is uncompressed in memory.
Compressed images are smaller, but they take much longer to
create and restart. .

DumpLisp

:toplevel-function
the toplevel function to be set up when the heap image is
restarted. Toplevel functions are described below. This
argument defaults to the current toplevel function. If supplied,
the toplevel function must be a compiled function object. (It
cannot be a symbol.)

Before dumping a heap image, dump1isp executes all the functions in the list *save-
exit-functions*. This list initially contains a single function which closes all
windows, takes down and stores the current menubar, and disposes of other pointers to the
Macintosh heap. Allegro CL then performs a garbage collection and dumps.

When a heap image is restarted, all the functions in the list *restore-1isp-
functions* are run. This list initially contains a function which restores the menubar,
restores Macintosh pointers used by the system, resets the logical pathnames "cc1; * and
"home; ", and reinitializes some system configuration variables.

You can add functions to the lists *save-exit-functions* and *restore-1lisp-
functions*. You may wish to do this if there is state that you want to save and restore in

- aparticular way. Items added to *save-exit-functions* should be added before the
predefined function. Items added to *restore-1lisp-functions* should always be
added after the predefined function.

save-exit-functions [Variable]

a list of functions to be called when an image is dumped. These functions should perform any
preparation necessary for the dump. The default list contains a single function which closes
windows and performs other actions to remove pointers to the Macintosh heap. If you add
functions to this list, this function should still be called last.

restore-lisp-functions : [Variable]

a list of functions to be called when an image is restarted. These functions should perform
initializations necessary to restore the system. The default list contains a single function. If
you add functions, they should be placed after the predefined function on the list.

Macintosh Pointers

An important restriction on dumplisp is that no data on the Macintosh heap is preserved
across dumps. When you perform a dump, any pointers or handles to the Macintosh heap will
become invalid. For this reason, all Macintosh handles and pointers should be disposed before
the dump occurs. (This is why dumplisp closes all windows before dumping.)

L

R

DumpLisp

If your program maintains pointers to the Macintosh heap, you should deallocate these with a
function included on the list *save-exit-functions*. You can then reinitialize the
pointers and handles with a function you place on the list *restore-1isp-
functions*. .

Left over Macintosh pointers in a heap image can cause system crashes and other erratic
behavior.

The Top Level Function

When Allegro CL is running, there is always a Lisp function running. For example, during
normal programming, the function toplevel-loop runs. This function takes input from
the Listener (and other buffers), evaluates it, and prints out the result.

Whenever the toplevel function returns, the Lisp kernel arranges for it to be called again. In
this way Allegro CL can run indefinitely. To quit Lisp, you simply set the toplevel function
tonil.

There are two ways to set the toplevel function. One is by making an explicit call to the
function ¥set-toplevel. The other is by specifying a toplevel function when you call
dumplisp.

Setting the Toplevel Function

Allegro CL actually has two notions of the toplevel function. One is the function which is
currently running. The other is the function (stored in a variable) which will be called when
the currently running toplevel function returns.

In practice, these two functions are generally the same.

When you call $set-toplevel, you set the pending toplevel function. This does not,
however, affect the toplevel function which is currently running. The new pending toplevel
function will not be called until the currently executing toplevel function returns or there is a
throw to toplevel (by calling the function toplevel).

¥set-toplevel &optional new-top-function [Function]
if new-toplevel-function is supplied, sets this to be the pending toplevel function and returns
the previous pending toplevel function. If new-toplevel-function is not supplied, $set -
toplevel simply returns the pending toplevel function.

new-top-function a compiled function object or nil. This argument cannot be a
symbol.

If new-top-function is nil, when the current toplevel function returns, Allegro CL will exit
to the Finder.

DumpLisp

toplevel . «[Function] P
7 Y
throws past all pending catches to the Lisp kemel, which then restarts the pending toplevel N
functon. If the pending toplevel function is nil, the Lisp will be exited.
toplevel-loop [Function)]
the Allegro CL function which implements the read loop. During program prototyping, it
may be useful to switch between your own toplevel function and toplevel-loop.
Catching System Throws
You may want your toplevel function to catch errors and aborts. If you don’t, errors will
cause a Listener to appear, containing the error message. Catching aborts is especially
important. If your toplevel loop doesn’t catch them, typing command period will cause the
error "Can’t throw to tag : abort".
The following example sets up a miniature read-eval-print loop to replace the standard toplevel
loop. It also shows what happens if you don’t catch abort.
? (defun new-top (&aux £form)
(setq form (read))
(if (eq form 'done)
(%set-toplevel #'toplevel-loop)
(print (eval form))))
new-top
? (%set-toplevel #'new-top)
#<Compiled Function toplevel-loop> L
? (toplevel) S
(+ 10 10)
20 ;typed command-period here, to abort
> Error: Can't throw to tag :abort .
> While executing: "Unknown"
(* 20 20)
400 done
?
Using *idle*
The variable *idle* lets your toplevel function (or other parts of your
program) Allegro CL when it is idling. If both *idle* and *use-wait-next-
event * are true, Allegro CL will use the trap _WaitNextEvent instead of
_GetNextEvent. This gives the maximum amount of time to background processes.
During normal operation, *idle* is bound to t by the toplevel loop when it is awaiting
input. Be aware that using _WaitNextEvent can degrade response time with older
versions of the Macintosh system software.
Using eval-enqueue
An event (such as a menu-selection or dialog-box click) which begins a long process should
not simply execute the process. If it does, the process will run with interrupts disabled, and
future events will be ignored until the process returns. This is fine for quick actions, but can
be a problem for time-consuming actions. {
'

DumplLisp

The solution to this problem is for event actions to queue up forms. The forms are received
and processed in order by the toplevel loop, which keeps interrupts enabled.

There are many ways you could queue up forms. The simplest would be to just tack them
onto a list, and have the toplevel loop always pop things from the list.

In many cases, you may wish to have a single mechanism which works both with your
toplevel function, and with the standard toplevel function, t oplevel-loop. To do this,
you queue up forms with eval-enqueue. When toplevel-1loop is running, it will
automatically get these forms and evaluate them. Your toplevel loop can do the same thing
by calling the *terminal-io* function get-next-form

get-next-form [Terminal 10 Function]
returns the next form from the list of all forms that have been queued up. During
programming sessions, queued up forms include text entered in the Listener and evaluated from

buffers, as well as forms passed to eval-enqueue.

Because get -next-formisa *terminal-io* object-function, you have to ask
terminal-io to call it. For example:

(ask *terminal-io* (get-next-form))

If there are no pending forms, get -next -form will wait for a form to appear before
returning. While it is awaiting input, get ~next -form will bind *idle* to t, and it will
print a Listener prompt, if necessary. If this behavior is a problem, you should check for the
presence of pending forms by examining the variable select ion-queue, before calling
get-next-form

selection-queue [Terminal IO Variable)
holds a list containing the queued up forms, and streams from which forms should be read. If
this list is ni1, there are no queued up forms. You generally shouldn’t pop things directly
from this list, but should access elements by calling get -next-form.
A program can test for the presence of pending forms with the call

(when (ask *terminal-io* selection-queue)

)

DumpLisp

The following example shows how to replace the Allegro CL toplevel loop with a very
simple read-eval-print loop:

? (defun mini-top (&aux form)
(loop
(catch-error
(catch-abort
(catch-cancel
(print
(eval , :

(ask *terminal-io* (get-next-form)))))))))
mini-top
? (%set-toplevel #'mini-top)
#<Compiled Function toplevel-loop>
? (toplevel)

2 (+ 5 5)

10

2 %

> Error: Unbound variable: * . ;thisisonly bound by

;the built-in toplevel loop
> While executing: "Unknown"
? (%¥set-toplevel #'toplevel-loop)

#<Compiled Function mini-top>
? (toplevel)

2 %

nil

i }
A //

