rl

2

MacAPPC-

Programmer’s Reference
and User’s Guide

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be
copied, in whole or in part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be
made for others, whether or not
sold, but all of the material
purchased (with all backup
copies) may be sold, given,

or loaned to another person.
Under the law, copying includes
translating into another
language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose. '

© Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo,
AppleLink, AppleTalk,
HyperCard, ImageWriter,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

APDA, EtherTalk, HyperCard
APPC, HyperTalk, MacAPPC,

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Ethernet is a registered
trademark of Xerox
Corporation.

IBM is a registered trademark,
and Token Ring is a trademark,
of International Business
Machines Corporation.

MicroVAX is a trademark of

Digital Equipment Corporation.

NuBus is a trademark of Texas
Instruments.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated. Hlustrator is a
trademark of Adobe Systems
Incorporated.

Varityper is a registered
trademark, and VT600 is a
trademark, of AM International,
Inc.

Simultaneously published in the
United States and Canada.

Macintosh Coprocessor Platform,
MCP operating system, MPW, and
Stackware are trademarks of Apple
Computer, Inc.

Preface

Part |

Chapter 1

Chapter 2

Contents

About This Document xxi

Intended audience xxi
Structure of this document xxii
Other documents you may need xxiii
Macintosh computer documents xxiii
Documents related to APPC and LU 6.2 xxiv
Obtaining additional manuals xxv '
Conventions used in this document xxv

Introduction

What Is APPC? 1-1

The SNA network 1-3

Functional layers 1-5

Logical unit type 6.2 1-5

The LU 6.2 protocol boundary 1-6
Resource allocation 1-6

The transaction program 1-7
Distributed transaction processing 1-9

What Is MacAPPC? 2-1

Macintosh user interface 2-5

Server-client architecture 2-5

Security 2-7

Transmission media 2-7

MacAPPC drivers 2-8
MacAPPC Conversation Driver 2-8
MacAPPC Control Operator Driver 2-9
MacAPPC Node Operator Driver 2-9
MacAPPC Transaction Program Driver 2-9

MacAPPC server 2-10

MacAPPC Chooser device 2-10

MacAPPC Configuration program 2-11

MacAPPC Administration program 2-11

MacAPPC software and server relationship 2-11

Partll MacAPPC Programmer’'s Reference

Chapter 3 MacAPPC Drivers 3-1

Using MacAPPC drivers 3-2
Synchronous and asynchronous execution 3-4
MacAPPC driver parameter block 3-4
qlink, qType, and the I/O fields 3-5
appcRefNum 3-6
appcOpCode 3-6
appcHiResult and appcLoResult 3-8
appcConvState 3-8
appcUserRef 3-8
MacAPPC driver control blocks 3-8
Transaction Program Control Block (TPCB) 3-8
Conversation Control Block (CVCB) 3-9
PIP buffer 3-9 :
Mapped conversation buffer 3-9
MacAPPC driver constants 3-10
MacAPPC driver IDs 3-11
Program ID 3-11
Conversation ID 3-11
Session ID 3-11
Executing a MacAPPC driver routine 3-11
MacAPPC driver conventions 3-12

Chapter 4 MacAPPC Conversation Driver 4-1

Using the MacAPPC Conversation Driver 4-2
Buffering 4-2
Conversation states 4-3
Data mapping 4-5
Writing a mapping procedure 4-5
Mapping parameter block 4-5
Default mapping procedure 4-7
MacAPPC conversation routines 4-8
Mapped conversation routines 4-8
MCAllocate 4-9
MCConfirm 4-13
MCConfirmed 4-14
MCDeallocate 4-15
MCFlush 4-17
MCGetAttributes 4-18
MCPostOnReceipt 4-21
MCPrepareToReceive 4-22
MCReceiveAndWait 4-23
MCReceivelmmediate 4-25
MCRequestToSend 4-28
MCSendData 4-29
MCSendError 4-31
MCTest 4-32
Type-independent conversation routines 4-33
CVBackout 4-34
CVGetType 4-35
CVSyncPoint 4-36

iv Contents

Chapter 5

CVWait 4-37

Basic conversation routines 4-38
BCAllocate 4-39
BCConfirm 4-43
BCConfirmed 4-44
BCDeallocate 4-45
BCFlush 4-47
BCGetAttributes 4-48
BCPostOnReceipt 4-51
BCPrepareToReceive 4-52
BCReceiveAndWait 4-53
BCReceivelmmediate 4-55
BCRequestToSend 4-57
BCSendData 4-58
BCSendError 4-60
BCTest 4-62

Summary of theMacAPPC Conversation Driver 4-63
Constants 4-63
Data types 4-65

Mapping parameter block 4-66

Mapped routines 4-67
Type-independent routines 4-72
Basic conversation routines 4-73

MacAPPC Control Operator Driver 5-1

Using the MacAPPC Control Operator Driver 5-2
Security 5-2
MacAPPC control operator routines 5-3
Control operator CNOS routines 5-3
COChangeSessionLimit 5-4
COlnitializeSessionLimit 5-6
COProcessSessionLimit 5-8
COResetSessionLimit 5-9
Control operator session control routines 5-11
COActivateSession 5-12
CODeactivateSession 5-13
Control operator LU definition routines 5-14
CODefineLocalLU 5-15
CODefineMode 5-18
CODefineRemoteLU 5-22
- CODefineTP 5-25
CODelete 5-30
CODisplayLocallU 5-31
CODisplayMode 5-33
CODisplayRemotelU 5-37
CODisplaySession 5-39
CODisplayTP 5-41
Summary of the MacAPPC Control Operator Driver 5-45
Constants 5-45
Data Types 5-47
CNOS routines 5-49
Session control routines 5-51
LU definition routines 5-52

Contents

Chapter 6 MacAPPC Node Operator Driver 6-1

Using the MacAPPC Node Operator Driver 6-2
MacAPPC node operator routines 6-2
Node operator node control routines 6-2
NOActivateLine 6-3
NOActivateLU 6-4
NOActivateNode 6-5
NOActivateStation 6-6
NODeactivateLine 6-7
NODeactivateLU 6-8
NODeactivateNode 6-9
NODeactivateStation 6-10
Node operator node message routines 6-11
NODefineMessageQueue 6-12
NODisplayMessage 6-14
NODisplayMessageQueue 6-15
Node operator node definition routines 6-17
NODefineCP 6-18
NODefineLine 6-20
NODefineNode 6-23
NODefineStation 6-25
NODelete 6-27
NODisplayCP 6-28
NODisplayLine 6-29
NODisplayNode 6-32
NODisplayStation 6-33
Summary of the MacAPPC Node Operator Driver 6-35
Constants 6-35
Data types 6-37
Node control routines 6-39
Node message routines 6-41
Node definition routines 6-42

Chapter 7 MacAPPC Transaction Program Driver 7-1

Using the MacAPPC transaction Program Driver 7-2
Getting the currently selected MacAPPC server 7-2
Attaching and its implications 7-3

MacAPPC transaction program routines 7-4

Transaction program connection routines 7-4
TPAttach 7-5
TPDetach 7-8

Transaction program utility routines 7-9
TPAsciiToEbcdic 7-10
TPEbcdicToAscii 7-11

Summary of the MacAPPC Transaction Program Driver 7-12
Constants 7-12
Data Types 7-13
Connection routines 7-14
Utility routines 7-15

Vi Contents

Chapter 8

Part il

Chapter 9

Chapter 10

Chapter 11

MacAPPC Example TP 8-1

MacAPPC User's Guide

Installation 9-1

Hardware 9-2
Client computer 9-2
Server computer 9-2
Communications card 9-2
Software 9-3
Client computer 9-4
Server computer 9-4
Configuration program 9-5
Administration program 9-5

Selecting a MacAPPC Server 10-1

The MacAPPC Configuration Program 11-1

The Configuration program menu bar 11-3
Conventions used in the Configuration program 11-4
Screen and key conventions 11-4
Character type conventions 11-5
Creating a configuration file 11-5
Local node section 11-6
Exchange ID 11-6
Access Type 11-6
Monitor Timer 11-6
Partner node section 11-7
Creating network components 11-7
Creating local LUs 11-8
Name (Local LU name) 11-8
LUID 118
Max Sess (Maximum number of sessions) 11-8
Max TPs (Maximum number of TPs) 11-9
User ID and password 11-9
Profiles 11-10
Creating transaction programs 11-12
Name (Transaction program name) 11-12
Conv Type (Conversation type) 11-12
Sync Level (Synchronization level) 11-12
Security Required 11-13
UserID 11-14
Profile 11-14
Creating Lines 11-16
Name (Line Name) 11-17
Creating partners 11-18
Name (Partner name) 11-18
Exch ID (Exchange ID) or CPUID 11-18
Exch ID (Exchange ID) 11-18
CPUID 11-18

Contents

vii

ALS Address (Adjacent-link-station address) 11-19

Creating remote LUs 11-20

Name (Remote LU name) 11-20
Parallel Sessions 11-20

Creating modes 11-22

Name (Mode name) 11-22

Sync level (Synchronization level) 11-22

Max Sessions (Maximum number of sessions) 11-22
Min 1st Spkrs (Minimum number of first speakers) 11-22
PB Sessions (Number of prebound sessions) 11-23

Editing network components 11-24
Editing a local LU 11-24

Local LU 11-25

LUID 11-25

Net Name (Local LU network name) 11-25

Net Qual (Local LU network qualifier name) 11-25

Max Sess (Maximum number of sessions) 11-25

LU Security 11-26

Wait Time 11-26

Max TPs (Maximum number of transaction
programs) 11-26

User IDs 11-26

Profiles 11-26

Password 11-27

Editing a transaction program 11-27

TP Name 11-27

Local LU 11-27

Net Name (Transaction program network name) 11-27
Status 11-28

Conv Type (Conversation type) 11-28

Sync Level (Synchronization level) 11-28

PIP (Program initialization parameters) 11-28

PIP Count 11-28

PIP Check 11-28

Data Mapping 11-29

FMH Data 11-29

Privilege 11-29

LUW (logical unit of work) 11-29

Security Required (Security level that is required) 11-29
UserID 11-30

Profile 11-30

Editing a line 11-31

- Line Name 11-32

Line Type 11-32

Line Number 11-32

Role Type 11-32

Connect Type (Connection type) 11-32

Max BTU (Maximum basic transmission unit length) 11-32
Line Speed 11-32

Max Retries (Maximum number of retries) 11-32

Idle Time 11-33

NP Recv Time (Nonproductive receive time) 11-33
Max I-Frames (Maximum number of I-frames) 11-33
NRZI Support 11-33

Duplex Type 11-33
Editing a partner 11-33
Partner Name 11-34
Line Name 11-34
Exch ID (Exchange ID) or CPU ID 11-34
ExchID 11-34
CPUID 11-34
ALS Address 11-35
Phone Number 11-35
Editing a remote LU 11-35
Remote LU 11-35
Local LU 11-35
Net Name (Remote LU network name) 11-36
Net Qual (Remote LU network qualifier) 11-36
CP Name (Control point or partner name) 11-36
Init Q Req (Queue session-initiation requests) 11-36
Parallel Sess (Parallel sessions) 11-36
CNOS ALS (CNOS adjacent-link-station name) 11-36
Password 11-36
Lcl Sec (Local security) 11-37
Editing a mode 11-37
Mode Name 11-37
Local LU 11-37
Remote LU 11-37
Adj Station (Adjacent station or partner name) 11-38
Send Pacing 11-38
Recv Pacing (Receive pacing) 11-38
Max RU UB (Maximum request/response unit upper
bound) 11-38
Max RU LB (Maximum request/response unit lower
bound) 11-38
Sync Level (Synchronization level) 11-38
Session Reinit (Session reinitiation) 11-38
Max Sessions (Maximum number of sessions) 11-39
Min 1st Spkrs (Minimum number of first speakers) 11-39
PB Sessions (Number of prebound sessions) 11-39
Queue Binds 11-39
Blank Mode 11-39
Editing defaults 11-39
Node 11-40
Local LU 11-40
TP 1141
Line 11-41
Partner 11-42
Remote LU 11-42
Mode 11-43
Deleting network components 11-43
Printing a configuration file 11-43

Contents

Contents

Chapter 12 The MacAPPC Administration Program 12-1

The Administration program menu bar 12-2
Conventions used in the Administration program 12-3
Special cursor 12-3
Network display control 12-3
Severity control 12-3
Starting a MacAPPC server 12-4
Server Name 12-5
Memory Size 12-5
Slot 12-5
Displaying network components and sessions 12-5
Exchange ID 12-6
Access Type 12-6
Monitor Timer 12-6
Displaying a local LU 12-9
Local LU 12-10
LUID 12-10
Net Name (Local LU network name) 12-10
Net Qual (Local LU network qualifier) 12-10
LU Sec (LU security) 12-10
Max Sess (Maximum number of sessions) 12-10
Act Sess (Number of active sessions) 12-10
Wait Time 12-10
Max TPs (Maximum transaction programs) 12-11
User IDs 12-11
Profiles 12-11
Transaction Programs 12-11
Displaying a transaction program 12-11
TP Name 12-12
Local LU 12-12
Net Name (Transaction program network name) 12-12
Status 12-12
Conv Type (Conversation type) 12-12
Sync Level (Synchronization level) 12-12
PIP (Program initialization parameters) 12-12
PIP Count 12-12
PIP Check 12-13
Data Mapping 12-13
FMH Data 12-13
LUW (Logical unit of work) 12-13
Privilege 12-13
Security Required 12-13
UserIDs 12-14
Profiles 12-14
Displaying a line 12-14
Line Name 12-14
Line Type 12-15
Line Status 12-15
Line Number 12-15
Role Type 12-15
Connect Type 12-15
Max BTU (Maximum basic transmission unit length) 12-15
Line Speed 12-15
Max Retries (Maximum number of retries) 12-15

Idle Time 12-16

NP Recv Time (Nonproductive receive time) 12-16
Max I-Frames (Maximum number of I-frames) 12-16
NRZI Support 12-16

Duplex Type 12-16

Displaying the station and control point 12-16

Station Name 12-17

Line Name 12-17

Status 12-17

ALS Address (Adjacent-link-station address) 12-17
Phone Number 12-17

CP Name (Control point name) 12-17

Exch ID (Exchange ID) or CPUID 12-17

ExchID 12-17

CPUID 12-18

Displaying a remote LU 12-18

Remote LU 12-18

Local LU 12-18

Net Name (Remote LU network name) 12-18
Net Qual (Remote LU network qualifier) 12-18
CP Name (Control point name) 12-18

Init Q Req (Queue session-initiation requests) 12-19
Parallel Sess (Parallel sessions) 12-19

CNOS Name 12-19

Password 12-19

Lcl Sec (Local security) 12-19

Rmt Sec (Remote security) 12-19

Displaying a mode 12-20

Mode Name 12-20

Local LU 12-20

Remote LU 12-20

Adj Station (Adjacent station name) 12-20

Sync Level (Synchronization level) 12-20

PB Sessions (Number of prebound sessions) 12-20

Max Sessions (Maximum number of sessions) 12-21

Min 1st Spkrs (Minimum number of first speakers) 12-21

Min Bidders (Minimum number of bidders) 12-21

Send Pacing 12-21

Recv Pacing (Receive pacing) 12-21

Max RU UB (Maximum request/response unit upper
bound) 12-21

Max RU LB (Maximum request/response unit lower
bound) 12-21

Term Count (Termination count) 12-21

Session Reinit (Session reinitiation) 12-22

Queue Binds 12-22

Blank Mode 12-22

Drain Local 12-22

Drain Remote 12-22

Displaying a session 12-22

Session ID 12-23

Polar Type (Polarity type) 12-23
Conv ID (Conversation ID) 12-23
Prog ID (Program ID) 12-23

Contents Xi

xii

Appendix A
Appendix B

Appendix C

Appendix D

Contents

Managing network components and sessions 12-23
Updating the server window 12-23
Starting and stopping CNOS 12-24
Activating network components and sessions 12-25
Order of activation 12-25
Lines 12-25
Stations 12-25
Local LUs 12-26
Remote LUs 12-26
Modes 12-26
Sessions 12-26
Deactivating network components and sessions 12-26
Order of deactivation 12-27
Sessions 12-27
Modes 12-27
Local LUs 12-28
Stations 12-29
Lines 12-29
Logging 12-29
Log settings options 12-29
Class 12-30
Type 12-30
Severity 12-30
Check for message every _ seconds 12-30
Log Window 12-31
Stopping a MacAPPC server 12-31

MacAPPC Interface File A-1
MacAPPC Errors File B-1

MacAPPC Result Codes C-1

MacAPPC result codes C-2

Major Code 00—noErr: Function completed normally C-2

Major Code 01—usageErr: Function aborted, usage error C-2

Major Code 02—badComplEr: Function aborted, bad
completion C-13

Major Code 03—stateErr: Function aborted, state error C-13

Major Code 05—allocErr: Function aborted, allocation
error C-13

Major Code 07—progErr: Program error C-14

Major Code 09—deallocErr: Deallocated C-15

Major Code 10—<ctlOpErr: Control operator error C-15

Major Code 11—nodeOpErr: Node operator error C-16

MacAPPC Routine Mapping D-1

Conversation routine mapping D-2
Control operator routine mapping D-3
Node operator routine mapping D-3
Transaction program routine mapping D-4

Appendix E MacAPPC Conversation Parameter Mapping E-1

MC_ALLOCATE is MCAllocate E-2
MC_CONFIRM is MCConfirm E-2
MC_CONFIRMED is MCConfirmed E-2
MC_DEALLOCATE is MCDeallocate E-3
MC_FLUSH is MCFlush E-3
MC_GET_ATTRIBUTES is MCGetAttributes E-3
MC_POST_ON_RECEIPT is MCPostOnReceipt E-4
MC_PREPARE_TO_RECEIVE is MCPrepareToReceive E-4
MC_RECEIVE_AND_WAIT is MCReceiveAndWait E-4
MC_RECEIVE_IMMEDIATE is MCReceivelmmediate E-5
MC_REQUEST_TO_SEND is MCRequestToSend E-5
MC_SEND_DATA is MCSendData E-5
MC_SEND_ERROR is MCSendError E-6
MC_TEST is MCTest E-6
BACKOUT is CVBackout E-6
GET_TYPE is CVGetType E-6
SYNCPT is CVSyncPoint E-7
WAIT is CVWait E-7
ALLOCATE is BCAllocate E-7
~ CONFIRM is BCConfirm E-8
CONFIRMED is BCConfirmed E-8
DEALLOCATE is BCDeallocate E-8
FLUSH is BCFlush E-8
GET_ATTRIBUTES is BCGetAttributes E-9
POST_ON_RECEIPT is BCPostOnReceipt E-9
PREPARE_TO_RECEIVE is BCPrepareToReceive E-9
RECEIVE_AND_WAIT is BCReceiveAndWait E-10
RECEIVE_IMMEDIATE is BCReceivelmmediate E-10
REQUEST_TO_SEND is BCRequestToSend E-10
SEND_DATA is BCSendData E-11
SEND_ERROR is BCSendError E-11
TEST is BCTest E-11

Appendix F MacAPPC Control Operator Parameter Mapping F-1

CHANGE_SESSION_LIMIT is COChangeSessionLimit F-2
INITIALIZE_SESSION_LIMIT is COlnitializeSessionLimit F-2
RESET_SESSION_LIMIT is COResetSessionLimit F-2
PROCESS_SESSION_LIMIT is COProcessSessionLimit F-3
ACTIVATE_SESSION is COActivateSession F-3
DEACTIVATE_SESSION is CODeactivateSession F-3
DEFINE_LOCAL_LU is CODefineLocalLU F-3
DEFINE_REMOTE_LU is CODefineRemotelLU F-4
DEFINE_MODE is CODefineMode F-4

DEFINE_TP is CODefineTP F-5

DISPLAY_LOCAL_LU is CODisplayLocalLU F-6
DISPLAY_REMOTE_LU is CODisplayRemoteLU F-6
DISPLAY_MODE is CODisplayMode F-7

DISPLAY_TP is CODisplayTP F-7

DELETE is CODelete F-8

Contents xiii

Xiv

Appendix G

Appendix H'

Contents

MacAPPC Result Codes Mapping G-1

Conversation return codes G-2
Control operator return codes G-3

HyperCard APPC H-1

Setup H-2
Physical requirements H-2
Software requirements H-2
Starting the MacAPPC server H-2
Overview H-3
Introduction H-3

HyperCard APPC Application Programming Interface

(API) H-3
MacAPPC Lab H-4
MacAPPC routine cards H-6
Supplied Values parameters H-7
Returned Values parameters H-7
Other elements H-9
Lab Help H-9
Sample Application H-11
APPC Mail Configuration H-12
Postmaster H-13
Mailbox H-14
Sample session: Stepping through a conversation H-15
Developing HyperCard APPC applications H-20
APPC XCMD H-20
get62Srvr XCMD H-21
xConst XFCN H-22
errStr XCMD H-22
HyperCard APPC scripts and handlers H-23
Stack script H-23
Script of the first card H-23
Routine cards’ background script H-25
Scripts of the routines cards H-25

Background script of the sample application H-26

Postmaster card script H-27
Mailbox card script H-27
XData XCMDs and XFCNs H-28

xDefine H-29

xGlobal H-30

xPut H-31

xGet H-32

xLock H-32

xPtr H-32

xFill H-33

xSize H-33

xDispose H-33

xMove H-34

xResource H-34

Special parameters H-36
fieldSpec parameter H-36
ptrType parameter H-37

Sample handlers H-37

XData errors H-39

Basic data types H-40
Byte alignment of fields H-41

(Appendix | MacAPPC Option Sets I-1
Appendix J ASCII/EBCDIC Tables J-1
Appendix K Configuration Worksheets K-1
Glossary Gi-1

Index General index & Index of Parameters and Constants

Contents XV

(Part |

Chapter 1

Chapter 2

Part li

Chapter 3

Chapter 4

Chapter 7

Part 1l

Chapter 9

Chapter 10

Figures and tables

Introduction

What Is APPC? 1-1

Figure 1-1 SNA network components 1-4
Figure 1-2 An APPC distributed transaction 1-8
Figure 1-3 A pair of transaction programs that share SNA

resources 1-9

What Is MacAPPC? 2-1

Figure 2-1 A hypothetical logical network structure 2-2
Figure 2-2 The MacAPPC environment 2-3

Figure 2-3 The MacAPPC server-client relationship 2-6
Figure 2-4 MacAPPC connection types 2-8

Figure 2-5 MacAPPC interactions 2-12

Figure 2-6 MacAPPC programs and server relationship 2-13

MacAPPC Programmer’s Reference

MacAPPC Drivers 3-1

Table 3-1 MacAPPC drivers and the categories of routines 3-3
Table 3-2 MacAPPC drivers and their parameter blocks 3-4

MacAPPC Conversation Driver 4-1

Table 4-1 States for mapped conversation routines 4-3

Table 4-2 States for type-independent conversation
routines 4-4

Table 4-3 States for basic conversation routines 4-4

MacAPPC Transaction Program Driver 7-1
Table 7-1 Routines valid for different attach types 7-3

MacAPPC User’'s Guide

Installation 9-1

Table 9-1 AST-ICP communications card jumper settings 9-3
Table 9-2 MacAPPC User disk 9-3
Table 9-3 MacAPPC System disk 9-4

Selecting a MacAPPC Server 10-1

Figure 10-1 The Chooser 10-2
Figure 10-2 Selecting a MacAPPC server 10-3

xVii

xviii

Chapter 11

Figures and tables

The MacAPPC Configuration Program 11-1

Figure 11-1
Figure 11-2
Figure 11-3
Figure 114
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9

Figure 11-10

Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19

Figure 11-20
Figure 11-21
Figure 11-22
Figure 11-23
Figure 11-24
Figure 11-25

Figure 11-26
Figure 11-27
Figure 11-28

Figure 11-29
Figure 11-30
Figure 11-31
Figure 11-32
Figure 11-33
Figure 11-34
Figure 11-35
Figure 11-36
Figure 11-37
Figure 11-38
Figure 11-39
Figure 11-40
Figure 11-41
Figure 11-42
Figure 11-43
Figure 11-44
Figure 11-45
Figure 11-46
Table 11-1

The File menu 11-3

The Edit menu 11-3

The Create menu 11-4

Creating a new configuration file 11-5

The configuration file window 11-6
Configuration network components 11-7
Creating a local LU 11-8

The local LU window 11-9

Creating a new user ID and password for a local
LU 119)

Local LU window with new user IDs and
password 11-10

Creating a new profile 11-10

Local LU user IDs, profiles, and password 11-11
The local LU in relation to other components 11-11
Creating a transaction program for a local LU 11-12
The TP window 11-13

Selecting a user ID fora TP 11-14

Selecting a profile for a TP 11-15

TP window with user ID and Profile lists 11-15
The transaction program in relation to other
components 11-16

Creating a line 11-17

The line in relation to other components 11-17
Creating a partner node 11-18

The partner in relation to other components 11-19
Creating a remote LU 11-20

The remote LU in relation to other

components 11-21

Creating a mode 11-22

The mode in relation to other components 11-23
The configuration file window for the example
network node 11-24

Editing a local LU 11-25

Editing a user ID 11-26

Editing a profile 11-26

Editing a transaction program 11-27

Creating a user ID 11-30

Creating a profile 11-31

Editing a line 11-31

Editing a partner (control point and station) 11-34
Editing a remote LU 11-35

Editing a mode 11-37

Editing node default settings 11-40

Editing local LU default settings 11-40

Editing TP default settings 11-41

Editing line default settings 11-41

Editing partner default settings 11-42

Editing remote LU default settings 11-42
Editing mode default settings 11-43

Example of a configuration file printout 11-44
Security options 11-13

Chapter 12 The MacAPPC Administration Program 12-1

Appendix H

Appendix |

Appendix J

Figure 12-1
Figure 12-2
Figure 12-3
Figure 124
Figure 12-5
Figure 12-6
Figure 12-7
Figure 12-8
Figure 12-9

Figure 12-10
Figure 12-11

Figure 12-12
Figure 12-13
Figure 12-14
Figure 12-15
Figure 12-16
Figure 12-17
Figure 12-18
Figure 12-19
Figure 12-20
Figure 12-21
Figure 12-22
Figure 12-23
Figure 12-24
Figure 12-25

The File menu 12-2

The Edit menu 12-2

The Server menu 12-3

The Log menu 12-3

Selecting a configuration file 12-4

Editing server settings 12-5

The server window 12-6

Displaying components at the local LU level 12-7
Displaying the components at the remote LU
level 12-8

Displaying components at the mode level 12-8
Displaying components and sessions at the session
level 12-9

A local LU display window 12-10

A transaction program display window 12-11
A line display window 12-14

A station display window 12-17

A remote LU display window 12-18

A mode display window" 12-20

A session display window 12-22

Activating a station 12-25

Deactivating a session 12-27

Deactivating a mode 12-28

Deactivating a station 12-29

Log settings selection 12-30

The log window 12-31

Stopping a server 12-32

HyperCard APPC H-1

Figure H-1
Figure H-2
Figure H-3
Figure H-4
Figure H-5
Figure H-6
Figure H-7
Figure H-8
Figure H-9
Figure H-10
Table H-1
Table H-2
Table H-3
Table H-4
Table H-5

The HyperCard APPC stack title card H-3
The navigation button pop-up menu H-4
Navigation cards for the MacAPPC Lab H-5
TPAttach routine card H-6

Remote LU Name help field H-10

Help on error result codes H-11

APPC Mail title card H-12

APPC Mail configuration card H-12
APPC Mail Postmaster H-13

APPC Mail Mailbox H-14

APPC major errors (APPC Hi Result) H-8
APPC conversation state H-8 _
HyperCard APPC record types H-24
XData errors H-39

Basic data types H-40

MacAPPC Option Sets |-1

Table I-1

Supported APPC option sets I-1

ASCII/EBCDIC Tables J-1

Table J-1
Table J-2

ASCII to EBCDIC J-1

EBCDIC to ASCII J-2

Figures and tables Xix

X X

Appendix K Configuration Worksheets K-1

Figure K-1 MacAPPC remote configuration worksheet K-2
Figure K-2 MacAPPC local configuration worksheet K-3

Figures and tables

Preface

About This Document

This document introduces MacAPPC™, an advanced communications product that is
Apple’s implementation of the IBM LU 6.2 communications protocols on the Apple®
Macintosh® computer. Within the design of Systems Network Architecture (SNA), LU
6.2 permits program-to-program communication on processors that operate on a
peer-to-peer basis. LU 6.2 has become the IBM standard for distributed processing.

The implementation of LU 6.2 is known as Advanced Program-to-Program
Communication (APPC), which provides interprogram communication across
systems that use APPC. With APPC, transaction programs can be written to coordinate
distributed processing across a network of computers and peripheral devices.

This Apple implementation of APPC is called MacAPPC. Programs that use MacAPPC
on a Macintosh computer, or a network of Macintosh computers, are able to
communicate on a peer-to-peer basis with programs on other nodes of an SNA
network and perform distributed transaction processing with those programs.

With MacAPPC, a Macintosh programming environment is provided for additional
extensions of the SNA design, such as SNA Distribution Services (SNADS) and
Document Interchange Architecture (DIA), two major components in the SNA design
of office automation systems. Both of these systems use APPC for their foundation.

Intended audience

This document is intended for third-party software developers, MIS programmers and
managers, government systems integrators, and value-added resellers—anyone who
wishes to use the Apple implementation of APPC to write transaction programs in a
mixed IBM-Macintosh environment.

This document provides complete descriptions of the MacAPPC components, as well
as references to other source documents, to permit you to write APPC transaction
programs.

This document assumes that you have extensive development experience with the
Macintosh computer, or else are able to obtain such information from other
documents (such documents are listed in “Other Documents You May Need,” later in
the Preface). It is also assumed that you are familiar with the IBM development
environment. Extensive knowledge is not assumed regarding SNA or APPC.

Intended audience

xXXi

e ——
e —

Structure of this document

——

This document is divided into three parts and several appendixes that contain the
following information:

C

xxii

Part I, “Introduction,” explains the purpose of the MacAPPC product and briefly
introduces the SNA and LU 6.2 concepts and protocols that are used by MacAPPC.

Part 11, “MacAPPC Programmer’s Reference,” provides a complete description of
the MacAPPC driver routines and itemizes and defines each parameter for each
routine. This part, intended only for programmers, is divided into a chapter that
describes the general structure of the MacAPPC drivers, and individual chapters
that describe the conversation routines, control operator routines, node operator
routines, and transaction program routines. Within each chapter, the categories of
the routines are further broken down according to function. Finally, a chapter is
provided that shows a sample transaction program.

Part III, “The MacAPPC User's Guide,” is a thorough presentation of the
configuration and operation of MacAPPC, as well as the functions of the server, the
Chooser device, and the device drivers. Part Ill assumes little or no knowledge of
MacAPPC; it is designed to show anyone how to configure a MacAPPC server, as
long as the proper system information is provided.

Appendix A, “MacAPPC Interface File,” contains a printout of the C language
interface to the MacAPPC drivers.

Appendix B, “MacAPPC Errors File,” contains a printout of the MacAPPC error
values.

Appendix C, “MacAPPC Result Codes,” describes in detail the return code
parameters that the MacAPPC driver issues to indicate the success or failure of a
routine request.

Appendix D, “MacAPPC Routine Mapping,” provides a mapping of the IBM-
defined set of LU 6.2 verbs to the MacAPPC equivalents.

Appendix E, “MacAPPC Conversation Parameter Mapping,” provides a mapping
of the IBM-defined set of parameters for each LU 6.2 conversation verb to its
MacAPPC equivalent.

Appendix F, “MacAPPC Control Operator Parameter Mapping,” provides a
mapping of the IBM-defined set of parameters for each LU 6.2 control operator
verb to its MacAPPC equivalent.

Appendix G, “MacAPPC Result Code Mapping,” provides a mapping of the LU 6.2
conversation and control operator return codes to their MacAPPC equivalents.

Appendix H, “HyperCard APPC™” provides an introduction to a HyperCard®
stack that helps you program in the MacAPPC environment.

Appendix I, “MacAPPC Option Sets” provides a list of the LU 6.2 options
supported by MacAPPC.

Appendix J, “ASCII/EBCDIC Tables” provides tables for translating between ASCII
and EBCDIC and vice versa.

Appendix K, “MacAPPC Configuration Worksheets” provides worksheets to help
during use of the MacAPPC Configuration Program.

The glossary provides brief definitions of important MacAPPC and LU 6.2 terms.

Preface

Other documents you may need

The following documents are either referred to in this document, or else are
recommended for additional information on LU 6.2 or the Macintosh computer.

Macintosh computer documents

The Apple Technical Library, published by Addison-Wesley, is a set of technical
books from Apple Computer, Inc. It includes books that explain the hardware and
software of the Macintosh family of computers. The descriptions that follow may help
you decide which of the books will be most useful to you.

O Inside Macintosh, Volumes I, II, and III. These books cover the Macintosh
Toolbox and Operating System for the original 64K Macintosh ROM, along with
user interface guidelines and hardware information.

O Inside Macintosh, Volume IV. A delta guide (that is, it covers only what is new) for
the Macintosh Plus and Macintosh 512K enhanced computers (128K ROM).

O Inside Macintosh, Volume V. Also a delta guide. It covers what is different about
the Macintosh SE and Macintosh II computers (256K ROM).

O Technical Introduction to the Macintosh Family. An introduction to the hardware
and software design of the Macintosh family. This book serves as a starting point for
Macintosh technical documentation. It is oriented primarily toward the Macintosh
Plus, Macintosh SE, and Macintosh II computers, but it also touches on earlier
versions of the Macintosh where these differ from the Macintosh Plus.

O Programmer’s Introduction to the Macintosh Family. Provides an overview of
software development for the Macintosh family of computers. This book focuses on
the differences between event-driven programming and more traditional
programming techniques. It covers such topics as QuickDraw™ graphics, screen
displays, and the Macintosh User Interface Toolbox.

O Human Interface Guidelines: The Apple Desktop Interface. A description of the
Apple user interface for the benefit of people who want to develop applications.

O Inside Macintosh X-Ref. Comprehensive indexes, routine lists, and a glossary for
Inside Macintosh and other Macintosh programming books.

Other books that may be helpful include the following, which are available from the
Apple Programmer's and Developer’s Association (APDA™).

O Macintosh Programmer’s Workshop Reference: A guide to the Macintosh
Programmer’s Workshop (MPW™) Shell and utilities, including the resource editor
(ResEdit), resource compiler (Rez), Linker, Make facility, and debugger.

O MPW Assembler Reference. A guide to preparing source files to be assembled by
the Macintosh Programmer’s Workshop Assembler.

O MPW Pascal Reference. This manual provides information about the MPW Pascal
language and the use of the MPW Pascal programming system.

O MPW C Reference. This manual tells how to write C programs that you can link with
programs written in MPW Pascal.

O Macintosh Coprocessor Platform Developer’s Guide. This manual is the guide to
the real-time multi-tasking operating system (MCP operating system) for the smart
card on which MacAPPC runs.

Other documents you may need

xxiii

The Apple Programmers and Developers Association (APDA™) provides a wide
range of technical products and documentation, from Apple and other suppliers, for
programmers and developers who work on Apple equipment. For information about
APDA, contact:

Apple Programmers and Developers Association
Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G

Cupertino, CA 95014-6299

1-800-282-APDA (1-800-282-2732)

Fax: 408-562-3971

Telex: 171-576

AppleLink®: APDA

If you plan to develop hardware or software products for sale through retail channels,
you can get valuable support form Apple Developer Programs. Write to:

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

Documents related to APPC and LU 6.2

The following is a list of IBM documents that are necessary for anyone writing
transaction programs that use LU 6.2 protocols.

O SNA Format and Protocol Reference Manual for LU Type 6.2 (GC30-3084). This
manual, often referred to as the “FAP manual” or “FAPL,” describes in detail the
APPC functions, as well as underlying LU 6.2 aspects that are invisible to
transaction programs.

O SNA Format and Protocol Reference Manual for Type 2.1 Nodes (SC30-3422).
The PU 2.1 manual provides detailed information on the PU 2.1 node similar to
that contained in the LU 6.2 FAPL.

O SNA Transaction Programmers Reference Manual for LU Type 6.2 (SC30-3269).
This manual, often referred to as the “TPRM manual” or “TPRM,” provides a
formal description of the syntax used to define the protocol boundary, as well as
the view of LU 6.2 as seen from the perspective of a transaction program.

The following book may be useful to transaction program writers, or anyone else
interested in an overview of the LU 6.2 protocols.

O An Introduction to Advanced Program-to-Program Communication (APPC)
(GG24-1584-01). This manual is an introduction to APPC, including overviews of
both the FAPL and the TPRM, as well as product implementations.

xXXiv Preface

Obtaining additional manuals

Additional copies of this manual can be obtained through APDA.

Conventions used In this document

In this document, terms are printed in boldface when they are introduced. These
terms are also included in the glossary.

Program listings, and text that is a term used by MacAPPC, is presented in Courier
typeface.

The term verb is used within APPC to describe an APPC routine. In this document, the
more familiar Macintosh term routine is used throughout.

Conventions used In this document XXV

Part |

Infroduction

This part consists of two chapters that introduce the user to Systems Network
Architecture (SNA), Advanced Program-to-Program Communications (APPC), and
MacAPPC, Apple’s implementation of APPC on the Apple Macintosh computer.

Chapter 1 provides a brief introduction to SNA and APPC and describes functional
layers, logical unit type 6.2, the LU 6.2 protocol boundary, resource allocation, the
transaction program, and distributed transaction processing.

Chapter 2 introduces the user to MacAPPC and describes the Macintosh user

interface, server-client architecture, security, transmission media, MacAPPC drivers,
MacAPPC Chooser device, MacAPPC Configuration program, MacAPPC
Administration program, and the MacAPPC software and server relationship.

Chapter 1

What Is APPC?

1-1

In 1974, IBM introduced its Systems Network Architecture (SNA) for the purpose

of uniting several generations of mainframe computers, operating systems, peripheral

devices, and telecommunications systems within a single global communications
architecture. Prior to SNA, these components were often incompatible; with SNA, the S
unification of heterogeneous hardware platforms and operating systems became R
possible for the first time.

In 1985, IBM announced Advanced Program-to-Program Communication
(APPC), an enhancement to SNA. APPC enhances SNA by simplifying network
design, improving data handling, reducing network overhead, and providing a single
standard for other vendors. This is accomplished by breaking away from the
hierarchical, master-slave relationship of mainframe to terminal that was an integral
part of SNA.

APPC provides direct program-to-program links and true program-to-program
connectivity. With APPC, intelligent devices such as personal computers and
workstations are able to communicate with each other and initiate tasks on a network
with authority equal to that of the mainframe. In this fashion, APPC permits true
distributed processing; in fact, APPC is now IBM’s single strategic architecture for
distributed transaction processing.

The equality provided by APPC is made possible by the design of its software
components, logical unit (LU) type 6.2 and physical unit (PU) type 2.1. LU type 6.2
provides program-to-program communication between transaction programs
(programs that provide transaction processing). PU type 2.1 provides program-to-
program communication between hardware units. These components are designed to
make use of the tremendous power of personal computers that has developed since the
advent of SNA.

Distributed processing allows the intelligence in a network to be shared among the o
network’s participants. By distributing the intelligence, costs can be reduced and ;)
network traffic can be relieved. With APPC established as a standard interface, you e
may have products of various vendors and still be able to unify your heterogeneous

network without duplication of equipment.

Distributed error recovery is part of the control of resources that are distributed across
a network. Distributed error recovery provides for the restoring of resources to their
original states when errors occur.

The management and allocation of resources across the network is a central function
of APPC. An LU may schedule the allocation of resources and provide necessary
services.

A network that implements APPC is able to participate in the following functional
benefits:

O distributed processing of transactions across the network
o distributed error recovery

O distributed resource management across the network in distributed transaction
processing

1-2 Chapter 1: What is APPC?

With APPC, a network can fully exploit the capabilities of extensions to SNA that
provide office automation architectures, such as SNA Distribution Services (SNADS)
and Document Interchange Architecture (DIA). Applications already exist that make
use of these designed extensions, such as the Distributed Office Support System
(DISOSS).

The SNA network

An SNA network is divided into physical and logical components. The physical
network consists of actual processors, called nodes, and data links between the nodes.
The logical network consists of a set of software components called network
addressable units (NAUSs), including logical units (LUs), physical units (PUs), and
system services control points (SSCP). These NAUs are interconnected by a path
control network consisting of the path control, data link control, and physical layers.

The logical connection between two NAUs is a session; although several types of
sessions exist, the end user is aware of only one type, which is LU to LU. When two LUs
establish a session, information flows between them by means of a data stream. Over
the session, LUs exchange information by means of message units called
request/response units (RUs).

Sessions are established when one LU sends another LU an SNA request known as a
bind. Traditionally, the bind determines a primary and a secondary for the session,
usually with the primary LU residing in the host, and the secondary LU residing in a
terminal or other device. With LU type 6.2, either LU may serve as the primary unit;
the decision as to which is primary and which is secondary is made during session
initiation.

The LU provides a connection into SNA for the end user, which may either be an
individual or a transaction program. The LUs provide protocols that allow end users to
communicate with each other and with other NAUs in the network. An LU can be
associated with more than one network address; this allows two LUs to form multiple,
concurrently active sessions between them.

There may be a one-to-one relationship between end users and LUs, but in general,
this is not necessary. The association between end users and the set of LUs is a function
of the implementation design.

Figure 1-1 shows a schematic outline of network components of a configuration. The
illustration provides a visual representation of the SNA network components and their
relationship to each other. The physical level consists of PU nodes linked by a

physical connection. The logical level consists of LUs that link the PUs and the
transaction programs (TPs). The end user level consists of TPs that communicate with
other TPs using LUs. The mode, not shown in Figure 1-1, is a single-session

connection or a group of parallel sessions having similar session-level parameters and
path-control characteristics.

.The SNA network

1-3

End user End user

ar) Fi ol gE | ap
| Transaction f= : Transaction
i 1 program

(1)) (1))
Logical Logical
unit unit

K] h N

PU) Physical PU)
Physical Physical
unit unit

" node node

1pL 1]l

(Physical
connection)

Figure 1-1
SNA network components

1-4 Chapter 1: What is APPC?

Functional layers

The SNA network is divided into layers, each corresponding to a particular set of
network functions. Information is passed through the layers of the network by means of
message units (the RU, for example, is one category of message unit).

As a message is passed up and down the SNA functional layers, each layer performs a

set of control functions and may add control information to the message in the form

of message headers. These headers do not change the information in the message, but
merely communicate with the next layer of SNA to ensure that the message reaches its
next destination and is properly understood. As the message passes through layers,

the information headers that were added at one end of the network are stripped off and |
read by the receiving end of the network. When the message reaches its destination, it

is back to its original form.

SNA carefully defines the interaction between network layers, including the parameters
that are included in the message headers. The logical communication that takes place

_between corresponding layers is defined as program-to-program communication.

It is the program-to-program protocol specifications that guarantee communication
between nodes that are of different types, are from different hardware manufacturers,
and have different software components.

The layers that make up an SNA network are grouped into two functional categories:

O NAU services, consisting of the transmission control layer, data flow control
layer, and function management layer

O path-control network services, consisting of the path-control and data-link
control layers of the network

As protocols are discussed and explained in this document, their functionality is
described in terms of their relationship to either NAU services or path-control network
services.

Logical unit type 6.2

LU 6.2 is a particular type of SNA logical unit. Several LU types are defined in SNA;
each type provides transmission capabilities and a set of services, such as resource
allocation, for a particular end user. Each hardware or software component on an SNA
network is assigned to an LU type; for example, LU types are defined for various
terminal types and printers. LU 6.2 is the LU type that provides the basis for APPC.
Prior to LU 6.2, remote devices were allowed only limited capability, such as terminal
emulation—that is, they were unable to participate in the processing of actual work.
Intelligent tasks were left to the mainframe host or front-end processor.

With LU 6.2, a program residing in one device is able to access a program in a remote
device. The set of services that allows programs using LU 6.2 to communicate with
each other is known as interprogram communication. Because LU 6.2 provides the
basis for this communication, the term LU 6.2 is often used as a synonym for APPC.
The purpose of APPC is to facilitate the development of distributed applications by
providing a set of verbs that are defined by the SNA architecture. Each routine
corresponds to an LU 6.2 service requested by a transaction program.

Logical unit type 6.2

1-5

Interprogram communication permits distribution of the processing of a transaction
among multiple programs within a network. The programs coordinate the distributed
processing by exchanging control information or data. The LU 6.2 protocol
boundary provides the structure for programs to communicate with one another in
order to process a transaction. The LU 6.2 protocol boundary is described in the next
section.

The capabilities provided by APPC are not all derived from the logical unit—much of
the power is provided by the LU’s physical counterpart, the PU (physical unit). The
physical unit provides services needed to access and manage hardware units on the
network. Each PU type is assigned a number: for example, PU type 5 defines a
mainframe, PU 4 indicates a controller, and PU 2 defines a user-programmable
terminal node. The counterpart of LU 6.2 is PU 2.1, an enhancement of PU 2.0 that
provides program-to-program communication between PUs.

Unlike other LU types, LU type 6.2 is able to handle various data streams. A data
stream is defined as the characters and control codes that are passed between logical
units. For earlier LU types, the data stream was defined—for example, LU type 2
requires a 3270 data stream. A session of LU type 6 (of which LU 6.2 is a subset) can use
any data stream, thus making it compatible with a wide range of devices.

LU 6.2 provides a connection for its end user to the path-control network. The end
user may be an individual, accessing information via a terminal; in distributed
processing, the end user is a particular kind of application program, known as a
transaction program (TP), that performs a certain task (such as updating a database).

The LU 6.2 protocol boundary -

The LU 6.2 protocol boundary is defined by the set of verbs and parameters that make
up the transaction program’s logical interface to an SNA network (for MacAPPC
routines and parameters, see Part II, “MacAPPC Programmer’s Reference”). The
protocol boundary is generic in the sense that it provides a syntactical representation
of the functions common to all products that implement LU 6.2. The value of a generic
description is that a program designer may plan an application that spans many
different products using a single generic interface, and then map the design to the
individual product-dependent interfaces.

The verbs (called routines in MacAPPC) that make up the protocol boundary may be
used to invoke services (such as synchronization services) by application subsystems
(such as CICS/VS). A subsystem that has its own application programming interface
may use another language or syntax to represent the APPC verbs to its application
programs. For example, a CICS programmer could use CICS commands that would be
translated into LU 6.2 routines. These commands could be communicated to another
CICS system that would translate the LU 6.2 verbs back into CICS commands—the
process is transparent to the end user.

1-6 Chapter 1: What is APPC?

Resource allocation

In order to assist the transaction program in fulfilling its task, the LU makes a set of
resources available to it. Some resources are local to a transaction program, that is,
attached to the same LU as the program. Other resources are remote, which means
that they are attached to other LUs. Remote is defined in terms of the logical
configuration of the network; the LUs can be within the same physical node.

Resource allocation and control is a central function of APPC. Within APPC,
programs can ask the LU for access to a resource. The LU schedules allocation of
resources, and handles much of the overhead—for example, it creates new copies of
logical resources, such as sessions, when necessary. The LU provides resource control
in order to ensure integrity of the program’s access to the resource.

The transaction program

A transaction program (TP) is a program that is executed by or within APPC and
performs services related to the processing of a transaction. A transaction inivolves a
specific set of input data and triggers the execution of a specific process or job. An
example is the entry of a bank customer’s withdrawal or deposit and the updating of the
customer’s balance.

The TP may be
O an application program that processes a transaction

O anapplication that is one of several programs that make up a transaction
processing application

C a system program that performs system services for an application program
processing a transaction

The purpose of APPC is to provide programmers with the means of writing TPs that
can access nodes across the network, regardless of the brand or type of equipment
involved. This means that protocols unique to each particular computer or peripheral
device need not be hard-coded into a transaction program. Instead, the TP can
search for and access information from any node, without regard for node model or
manufacturer.

The logical state that exists between two network addressable units to support a
succession of transmissions between the units is called a session. Two LUs may
connect to each other by one LU-LU session, called a single session, or connect to
each other by multiple LU-LU sessions, called parallel sessions. At the initiation of a
single or parallel LU-LU session, only one LU is the contention winner; the other is the
contention loser. This contention between the two LUs is called polarity.

The logical connection between a pair of transaction programs is called a
conversation. A TP initiates a conversation with its partner with the assistance of the
LUs. While a conversation is active, it has exclusive use of a session, but successive
conversations may use the same session.

The transaction program

1-7

Conversations connect TPs in pairs; however, any TPs directly or indirectly
connected to each other by conversations are participating in the same distributed
transaction. For example, in Figure 1-2, if TP A and TP C are connected by a
conversation, and, concurrently, TP B and TP C are connected by a conversation,
then TPs A, B, and C are all participating in the same distributed transaction.

Transaction
program
C
LU LU
Session
J - atiy
L LU
Session
Transaction 0 eatio
program
. 1
Transaction
program
B
Figure 1-2

An APPC distributed transaction

In the event of a conversation failure, the session can remain active. The conversation
is seen as a single unit of work, and may be precisely delimited by a data flow control
service called bracketing. By keeping the conversation intact as a unit, bracketing
helps guarantee data integrity.

1-8 Chapter 1: What is APPC?

Distributed transaction processing

Distributed processing involves two or more programs, usually at different systems,
cooperating to carry out some processing function. Distributed processing of a
transaction within an APPC network occurs when transaction programs communicate
by exchanging information over the sessions between their LUs. Figure 1-3 illustrates
the connection of two programs to APPC resources, including a session between their
LUs.

Transaction Transaction
program program
A B
LU LU
Session
0 prsatio U erSatlv
A's resources B's resources
also available [|_ also available
to program to program
B A
Figure 1-3

A pair of transaction programs that share SNA resources

The “other resources” shown in the figure may include other sessions as well as local
files and devices. The other sessions allow program A or program B to communicate
with other programs. During the communication between two programs, one
program may send a message over the session to another program, requesting access
to a local resource of the other program. In this way, a local resource of program B,
for example, may become a remote resource of program A.

All communication provided by APPC is program-to-program and accommodates a
variety of distributed processing connections. For example, a distributed parts
inventory could make good use of APPC services. Each warehouse belonging to a
company or division could maintain its individual physical inventory on an LU type
6.2 node. The corporate headquarters inventory could regularly compile inventory
totals from all relevant warehouses. In order to locate a given part, a transaction
programmer could write a program that inquired at each warehouse until the part was
found. This process simplifies the task by reducing the number of inquiries that are
sent to the host; instead, they are sent to each warehouse directly. When necessary,
the host can be accessed for centralized information.

1
|
i

Distributed transaction processing

1-9

Chapter 2

What Is MacAPPC?

2-1

MacAPPC™ provides communications and administrative utilities that implement the
elements of IBM’s APPC architecture, including LU type 6.2 and PU type 2.1, on the
Apple® Macintosh® computer. By conforming to IBM’s LU 6.2 protocols, MacAPPC
provides the basis for distributed transaction processing using Macintosh computers.

The task of building the components of a large network requires considerable time,
effort, and expertise. The power designed into LU type 6.2 increases the complexity of
this task by allowing for dynamic network configuration. The purpose of MacAPPC is
to simplify the configuration process by providing sophisticated but easy-to-use tools
that reduce complexity, speed data entry, and present options in a logical and usable
format.

In a large network, the number of configuration options can appear almost infinite; for
example, Figure 2-1 shows a representation of a hypothetical network configuration,
showing resources such as local LUs, remote LUs, modes, and sessions. MacAPPC
accommodates small and simple to extremely large and complex networks with equal
facility.

Mode

Mode

Mode Session
1 6

7

1
Session
2
Figure 2-1

A hypothetical logical network structure

2-2 Chapter 2: What is MacAPPC?

MacAPPC provides a programming interface to allow you to provide connectivity to
any other system that uses APPC. It permits the development of a heterogeneous
network of systems using Macintosh computers, IBM Personal Computers and
compatibles, and mainframes and mini-computers of various models and vendors.
With MacAPPC, you can integrate Macintosh computers with the communications
network used by an estimated three-quarters of the major corporations in the United
States, and by a large percentage elsewhere. In addition, because of its distributed
nature, MacAPPC makes these capabilities available to each Macintosh computer on
an AppleTalk® network system connected to a MacAPPC server. Figure 2-2
summarizes the scope of the MacAPPC environment.

DEC
VAX
I IBM 370
DB2
1BM 370 IBM
DISOSS I $/3X
APPC ;
SNA - L=
network

IBM PS/2
UNIX and
IBM PC
MacAPPC server
;
/‘\ P
| Apple Talk
network
Figure 2-2

The MacAPPC environment

What is MacAPPC? 2-3

By making such connectivity possible, MacAPPC provides you (or your transaction
programmers) with the means of writing transaction programs for the Macintosh
computer in a distributed transaction environment. By virtue of the programming
interface provided by MacAPPC, the Macintosh programmer has access to all the
facilities of an SNA network.

MacAPPC includes a set of routines that conform to SNA’s LU 6.2 design standards.
These routines, which are implemented in MacAPPC as Macintosh drivers, provide
the programming interface that allows a transaction programmer to use APPC func-
tions on the Macintosh computer. The categories of MacAPPC routines are as follows:

o Conversation routines handle the exchange of data between TPs over basic or
mapped conversations. These functions are accessed via the MacAPPC
Conversation Driver. '

O Control operator routines are used in controlling aspects of LU components.
These functions are accessed via the MacAPPC Control Operator Driver.

O Node operator routines control aspects of PU components. These functons are
accessed via the MacAPPC Node Operator Driver.

0 Transaction program routines perform connection and utility functions. These
functions are accessed via the MacAPPC Transaction Program Driver.

These routines are explained in detail in Part II, “MacAPPC Programmer’s
Reference.” Later releases of MacAPPC will include additional functionality that will
build on that provided by the current release of MacAPPC.

In addition, MacAPPC includes applications and utilities that allow for installation
and operation of network components, such as logical units, physical units, sessions,
and modes. The following applications and their respective functions are provided:

0 The Administration program and Configuration program, which provide the
means to define resources such as logical units and physical units, establish
sessions, establish modes, and perform numerous other tasks.

O The MacAPPC server, which resides on an intelligent communications card in an
expansion slot of a Macintosh II. The MacAPPC server provides full support for LU
6.2/PU 2.1 functions. It also provides network services for other Macintosh
computers on an AppleTalk network system.

O The MacAPPC Chooser device, which permits the user to select any server on an
AppleTalk network.

The functions of these components are further explained in Part III, “MacAPPC User’s
Guide.”

2-4 Chapter 2: What is MacAPPC?

|
f

Macintosh user interface

MacAPPC provides all of the applications and utilities needed to configure, install,
and activate your network. The Administration program, the Configuration program,
and the MacAPPC Chooser device are the components that provide the Macintosh-
defined user interface.

The usefulness of MacAPPC extends beyond the ability to write transaction programs.
Equally important is the fact that your programming tasks and system access are made
considerably easier by the Macintosh user interface. Through the use of icons,
windows, scroll bars, dialog boxes, and other Macintosh user features, the MacAPPC
administrative utilities provide clear and simple formats for building sessions;
establishing addresses; defining logical units, physical units, and modes (including
parameters); and performing the variety of other tasks that are associated with APPC.

For the MIS programmer, the interface provided by the Macintosh computer offers
ease of use, rapid modification of a network configuration, and a high degree of
visibility for such system features as the logging facility.

For the Macintosh software developer, MacAPPC provides easy connectivity to any
computer that uses APPC. The Macintosh look and feel are the same as in other
Macintosh software, and the Macintosh interface is maintained. In addition, the full
range of Macintosh programming languages and programming flexibility is available.

Server-client architecture

The MacAPPC protocols are implemented by the MacAPPC server, a software utility
that operates on an intelligent communications card residing in a slot on a Macintosh II
computer. This card provides a server-client architecture that extends MacAPPC to
other Macintosh computers—the clients—over an AppleTalk network system.

Because each MacAPPC server runs on a communications card, not on the Macintosh II,
the computer is not dedicated to the server function. Any client on an AppleTalk network
may access the MacAPPC server, permitting a programmer on that client to write and
run transaction programs that use the MacAPPC routines. In fact, any computer that has
access to the AppleTalk network system can function as a client of the MacAPPC server.
See Figure 2-3 for an illustration of the server-client relationship.

Server-ciient architecture

2-5

Server
Macintosh Il /\l]]
, / I;
; \ /; ;"I
> \%
|

s
’
’

68000
processor

Communications

card

Communications
link

processor

AppleTalk network

Client
Macintosh
computers

Figure 2-3

The MacAPPC server-client relationship

2-6

Chapter 2: What is MacAPPC?

Security
MacAPPC supports two levels of security: session level and conversation level.

Session level LU-LU verification is used to verify the identity of each LU to its session
partner LU during activation of a session. A sesssion between two LUs cannot be
activated unless each LU’s view of the other LU is the same. In esssence, each node
must see a mirror image of the other node, both in configuration and in security, in
order for a session to be successfully bound.

Conversation-level access security information is carried on allocation requests in
order for the receiving LU to verify the identity of the user ID, and to control access to
its resources. The security information includes a user ID together with a password or
the already-verified indication. The information may also include a profile, which is
used at the conversation level to provide an additional element of structure and
security to the network configuration. Some examples of profiles are department,
store, corporation, section, division, function, building, location, and code
designation.

For more information about security, see Chapter 5.

Transmission media

MacAPPC is device independent, operating-system independent, and medium
independent. At this time, IBM has implemented APPC on Synchronous Data Link
Control (SDLC) and Token Ring. Currently, MacAPPC supports link connections that
use IBM’s SDLC protocols. As IBM extends the transmission capability of LU 6.2,
MacAPPC can be expanded to accommodate those media as well.

MacAPPC supports leased, switched, and multipoint connections, as well as multiple

links of these three connection types. A leased connection is a directly connected line.

A switched connection (for example, a telephone line) is established when required
and broken when a session is completed. A multipoint connection is a party line in
which several users share the same line. Multiple links are multiple connections from
one LU to other LUs. These connection types are shown schematically in Figure 2-4.

Transmission media

2-7

Node Node o }

_ Multipoint line
Node
Leased
Node ine Node Muitiple
lines
Node
Modem
Switched
line
Modem

N\

Node

Sar

Figure 2-4
MacAPPC connection types

MacAPPC drivers

MacAPPC also provides a programming interface for transaction programs to a set of
RAM device drivers. Macintosh programs call the MacAPPC routines that perform
APPC functions by the use of drivers.

MacAPPC Conversation Driver

LU 6.2 defines three types of conversation routines:

O Mapped conversation routines are used by application programs at a high level to
exchange data records.

O Basic conversation routines are a low-level interface used by service TPs or by other
specialized application TPs.

o Type-independent conversation routines are used with both mapped and basic
routines to perform certain functions, such as wait for posting.

\ /
N

2-8 Chapter 2: What is MacAPPC?

When mapped routines are used, the data does not need to be formatted by the
application program. Basic routines are normally used only by service programs—the
specially defined programs which provide common services across the network, such
as the change-number-of-sessions (CNOS) routines.

The difference between mapped and basic conversations is significant. In mapped
conversations, the data must be formatted into General Data Stream (GDS)
variables. GDS variables consist of two bytes containing the length of the variable, two
bytes containing an IBM-assigned code identifying the type of variable, and then
data. In basic conversations the data has less internal formatting—only the length and
the data are included. Mapped routines handle all of the formatting for mapped
conversations (making it transparent to the application). Basic routines handle none
of the formatting; instead, data must be presented to the routine packed in the correct
format. For this reason, mapped routines are usually considered easier to use.

MacAPPC Control Operator Driver

SNA specifies a control operator function for an LU, but does not define it; that is, the
control operator may be an individual or a program. Control operator routines define
the protocol boundary for a control operator transaction program, which performs
control operator functions for the LU. Control operator routines are divided into the
following categories:

O Change-number-of-sessions (CNOS) routines change, display, initialize, and reset
the number of sessions for a given mode.
O Session-control routines activate and deactivate an LU-LU session.

O LU definition routines define, modify, display and examine operating parameters
for a local LU, remote LU, and mode.

The LU control operator describes and controls the availability of certain resources:
for example, it describes network resources accessed by the local LU, and it controls
the number of sessions between the LU and its partners.

MacAPPC Node Operator Driver

Node operator routines are used to define and control the components of a PU 2.1
node. Their function is not specified by IBM; however, it is implied by the properties
that are assigned to the node by SNA. Node operator routines are divided into the
following categories:)

o Node control routines are used to activate and deactivate node components.

O Node message routines are used to define and display node message queues and
messages.

O Node definition routines are used to define, display, and delete node components.

MacAPPC Transaction Program Driver

Transaction program routines are used to perform various transaction program tasks.
The connection between a transaction program and a MacAPPC server is known as an
attach. Each attach creates a separate logical instance of a program.

The MacAPPC drivers

2-9

Transaction program routines are divided into the following categories:

O Transaction program connection routines are used to attach and detach to a server
oranlLU.

O Transaction program utility routines convert application-specific ASCII data to
EBCDIC, and vice versa.

A transaction progfam must attach to a server or LU before it can issue any
conversation, control operator, or node operator routines. Multiple attach requests
may be issued so the program can issue routines to more than one MacAPPC server or
LU. Each of these attaches creates a new logical instance of the program.

MacAPPC server

The MacAPPC server provides full support for LU 6.2 and PU 2.1 functions. The
MacAPPC server is data-link independent. It resides on an intelligent
communications card in an expansion slot of a Macintosh II computer. The operating
system of the card is independent of the Macintosh II operating system.

The MacAPPC server is also capable of providing network services for other
Macintosh computers on an AppleTalk network, in a server-client relationship. Each
server (and its clients) is seen as a single node to the SNA network.

The Macintosh II is not dedicated to the MacAPPC server (the communications card
performs this role); rather, it is independent of the server, and in fact may function as
a client of the server.

The MacAPPC server includes the following functions:

O PU 2.1 functions, including multiple sessions (up to 254), parallel sessions (up to
254), and PU 2.0 support (peripheral node).

O AppleTalk request and reply transactions, which provide transport of APPC
messages between the MacAPPC server and transaction programs on the clients.

O Two levels of security: conversation level and session level.

The SDLC functions include primary, secondary, and negotiable roles, multipoint
line support, multiple physical-link support, and leased and switched-line support.

MacAPPC Chooser device

The MacAPPC Chooser device is used to select a particular MacAPPC server from
those that you have loaded onto a communications card on your network. The
Chooser device displays the current selection, which can be either

O internode (a MacAPPC server residing in a Macintosh II accessed across AppleTalk
network system), or

O intranode (a MacAPPC server residing in the same Macintosh II as the MacAPPC
Chooser device).

2-10 Chapter 2: What is MacAPPC?

o

The human interface takes the form of a MacAPPC server icon, along with a list of
active MacAPPC servers in the currently selected zone. You select a MacAPPC server
by clicking the appropriate server icon. See Chapter 10, “Selecting a MacAPPC
Server,” for additional information.

MacAPPC Configuration program

The purpose of the Configuration program is to create a configuration file that
describes the components of a MacAPPC network. Components can be created,
edited, and deleted. In addition, you can describe conversation-level security
parameters for local LUs and TPs and session-level security parameters for local and
remote LUs. This file can then be read by the Administration program and used to
configure the server. Thus, the Configuration program does not use MacAPPC driver
routines, but rather builds a description of the network, which the Administration
program can then implement. See Chapter 11, “The MacAPPC Configuration
Program,” for additional information.

MacAPPC Administration program

The purpose of the Administration program is to provide you with a ready-made way
to load the MacAPPC server onto the communications card, create a network
configuration using a configuration file created by the Configuration program, and
manage these configured network components. The Administration program uses
MacAPPC control operator and node operator routines to define, display, and
manage the network.

The Administration program does not dynamically modify the MacAPPC server;
therefore, each time you change a component setting in the configuration file, the
MacAPPC server must be restarted. See Chapter 12, “The MacAPPC Administration
Program,” for additional information.

MacAPPC software and server relationship

As you plan your use of MacAPPC, it is important to keep in mind the functional
relationships between the MacAPPC software and the server. Figure 2-5 schematically
illustrates the interrelationships between the Administration program, the
Configuration program, the MacAPPC server, and the drivers that are used to call the
MacAPPC routines.

Software and server relationship

2-11

Transaction
program

Device
Manager

MacAPPC drivers I<::>

Configuration
program

<51

Administration
program

MacAPPC
server

Start

Configuration
file

Figure 2-5

MacAPPC interactions

Figure 2-6 summarizes the functions and interactions of the Configuration program,

the Administration program, and the server.

2-12 Chapter 2: What is MacAPPC?

S

A

Configuration Administration MacAPPC server on
program program communications card

d Provides user interface for < Reads configuration 3 Provides
definition and modification resource file program-to-program
of network component communication
parameters J Downloads the server between transaction
to the communications . programs
3 Provides user inferface for card
definition and modification O Provides interface link
of network security Uses MacAPPC control to network
parameters operators and node
operators to define and
Q Provides logic error manage the network
checking of formats
and configuration Starts and stops server
parameters
0 Activates and deactivates
O Generates configuration LUs, lines, stations, and
file describing the physical sessions
and logical components
of the network 3 Initializes and resets
session limits

3 Provides real-time
network logging

Figure 2-6
MacAPPC programs and server relationship

Software and server relationship 2-13

Part Il

MacAPPC Programmer’s

Reference

This part consists of six chapters that provide a detailed programming reference for
MacAPPC, Apple’s implementation of APPC on the Apple Macintosh computer.

Chapter 3 describes the general structure of the MacAPPC drivers and explains how to
construct a Macintosh program using the drivers.

Chapter 4 provides a detailed description of each MacAPPC conversation driver
routine and includes a summary of the conversation driver constants, data structures,
and routines at the end of the chapter.

Chapter 5 provides a detailed description of each MacAPPC control operator routine
and includes a summary of the control operator constants, data structures, and
routines at the end of the chapter.

Chapter 6 provides a detailed description of each MacAPPC node operator routine
and includes a summary of the node operator constants, data structures, and routines
at the end of the chapter.

Chapter 7 provides a detailed description of each MacAPPC transaction program
routine and includes a summary of the transaction program constants, data structures,
and routines at the end of the chapter.

Chapter 8 shows an example of a fragment of a transaction program.

4

Chapter 3

MacAPPC Drivers

3-1

Part of MacAPPC has been implemented as a set of Macintosh device drivers. The
MacAPPC drivers provide the programmatic interface for transaction programs to
perform APPC functions. Ty

This chapter describes the MacAPPC drivers in detail. You should already be familiar e
with

O the Memory Manager, including the allocation of memory in the heap and the use
of pointers and handles, as discussed in Chapter 1 of Volume II of Inside
Macintosh

O the Device Manager, including the handling of interrupts and the use of devices and
device drivers, as described in Chapter 6 of Volume II of Inside Macintosh

Using MacAPPC drivers

A device driver can be either opened or closed. After a driver has been opened, an
application can transmit control information to it, read data from it, and write data to
it. Before it is opened, you identify a driver by its driver name; after it is opened, you
identify it by its reference number.

You access the MacAPPC drivers by making Macintosh Device Manager calls. Chapter
6, “The Device Manager,” in Inside Macintosh, Volume II will be an important
resource for you as you learn how to use the MacAPPC drivers.

The MacAPPC drivers are:

O the MacAPPC Conversation Driver, .CV62

O the MacAPPC Control Operator Driver, .CO62 o
O the MacAPPC Node Operator Driver, .NO62 4
O the MacAPPC Transaction Program Driver, .TP62 o

To begin using the MacAPPC routines, you must open the .CV62, .CO62, .NO62, and
.TP62 drivers by using the PBOpen or OpenDriver routine. You can then make
control calls to any of the MacAPPC drivers requesting a particular MacAPPC routine
to be performed. The interface files specify the data structures and constants you must
use when making control calls to the MacAPPC drivers. Chapters 4 through 7
document this interface, and Appendixes A and B list the interface and error files.

Each driver contains a set of routines, as shown in Table 3-1.

3-2 Chapter 3: MacAPPC Drivers

Table 3-1

MacAPPC drivers and the categories of routines

.CVé62
Conversation routines

.C062
Control operator routines

.NO62 .TP62
Node operator routine TP routines

Mapped routines
MCAllocate
MCConfirm
MCConfirmed
MCDeallocate
MCFlush
MCGetAttributes
MCPostOnReceipt
MCPrepareToReceive
MCReceiveAndWait
MCReceiveImmediate
MCRequestToSend

~ MCSendData

MCSendError

MCTest
Type-independent routines
CVBackout
CVGetType
CVSyncPoint

CVWait

Basic routines
BCAllocate
BCConfirm
BCConfirmed
BCDeallocate
BCFlush
BCGetAttributes
BCPostOnReceipt
BCPrepareToReceive
BCReceiveAndWait
BCReceiveImmediate
BCRequestToSend
BCSendData
BCSendError

BCTest

CNOS routines
COChangeSessionlimit
COInitializeSessionlimit
COProcessSessionlLimit
COResetSessionLimit
Session control routines
COActivateSession
CODeactivateSession
LU definition routines
CODefinelocallU
CODefineMode
CODefineRemotelLU
CODefineTP

CODelete
COisplayLocallU
CODisplayMode
CODisplayRemoteLU
CODisplaySession
CODisplayTP

Node control routines Connection routines

NOActivateline TPAttach
NOActivatelU TPDetach
NOActivateNode Utility routines
NOActivateStation TPAsciiToEbcdic
NODeactivateline TPEbcdicToAscii
NODeactivatelU

NODeactivateNode

NODeactivateStation
Node message routines
NoDefineMessageQueue
NODisplayMessage
NoDisplayMessageQueue
Node definition routines
NODefineCP
NODefineline
NODefineNode
NODefineStation
NODelete

NODisplayCP
NODisplayline
NODisplayNode
NODisplayStation

Using MacAPPC drivers 3-3

Synchronous and asynchronous execution
You can execute MacAPPC routines either synchronously or asynchronously.

When your application executes a synchronous MacAPPC routine, the application
will not continue until the MacAPPC routine is completed.

When your application executes an asynchronous MacAPPC routine, an I/0O request
is placed in the appropriate driver's /O queue, and control returns immediately to
the executing program—possibly even before the actual 1/0 is completed. Requests
are taken from the queue one at a time, and processed; meanwhile, the executing
program is free to work on other things.

Routines that are executed asynchronously return control to the executing program
with the result code noErr as soon as the routine is placed in the driver’s queue. This
doesn’t indicate that the routine completed successfully; it simply indicates that the
routine was successfully queued to the appropriate driver. To determine when the
routine is actually completed, poll the ioResult field of the routine’s parameter
block. The ioResult field, setto appcExec when the routine is executed,
receives the actual result code when the routine is completed.

Your application may specify a completion routine to be executed at the end of an
asynchronous operation by setting the ioCompletion field to a pointer to that
routine.

% Note: See the Device Manager chapter in Inside Macintosh for information and
restrictions on writing completion routines.

MacAPPC driver parameter blocks

Routine parameters passed by an application to the Device Manager and routine
parameters returned by the Device Manager to an application are contained in a
parameter block, which is a data structure allocated by the application.

You pass a different type of parameter block for each of the MacAPPC drivers, as
shown in Table 3-2.

Table 3-2

MacAPPC drivers and their parameter blocks
Driver Parameter block

.CV62 cvParam

.CO62 coParam
.NO62 noParam
.TP62 tpParam

3-4 Chapter 3: MacAPPC Drivers

\
A

The definition for each of those parameter blocks is contained in the variable-length
data structure APPCParamBlock, as follows:

APPCParamType = (cvParam, coParam, noParam, tpParam) ;
APPCParamBlock = RECORD
glink: QElemPtr; {DRVR QElem pointer}
JType: INTEGER; {DRVR queue type}
ioTrap: INTEGER; {DRVR IO trap}
ioCmdAddr: Ptr; {DRVR IO command pointer}
ioCompletion: ProcPtr; {DRVR IO completion routine pointer}
ioResult: OSErr; {DRVR IO result}
ioNamePtr: StringPtr; ({DRVR IO name pointer}
ioVRefNum: INTEGER; {DRVR IO Volume refNum}
appcRefNum: INTEGER: {APPC driver refNum}
appcOpCode: INTEGER; {APPC type of call}
appcHiResult: INTEGER; {APPC major result code}
appcLoResult: INTEGER; {APPC minor result code}
appcConvState: Byte; {APPC conversation state}
appcUserRef: LONGINT; {for your use}
CASE APPCParamType OF
cvParam:
. {CV parameters}
coParam:
. « « {CO parameters}
noParam:
. {NO parameters}
tpParam:
{TP parameters}
END;
END;
APPCParamBlockPtr = ~“APPCParamBlock;
APPCParamBlockHandle= ~“APPCParamBlockPtr;

The particular fields for each type of parameter block are given in the summary at the

end of the corresponding chapter.

The maximum size of an APPCParamBlock data structure in bytes is specified by
one of the following constants:

kAPPCSize = 2706; {
kCVSize = 2706; {
kCOSize = 192; {
kNOSize = 108; {
kTPSize = 1628; {

Maximum APPC parameter block size
Conversation parameter block size

Node Operator parameter block size

}
}
Control Operator parameter block size }
}
e

Transaction Program parameter block siz

glink, qType, and the 1/0O fields

The first four fields in each parameter block are handled entirely by the Device

Manager, and you usually don’t need to be concerned with them. Those fields, along
with the four additional I/O fields, are documented in the Device Manager chapter in
Inside Macintosh.

MacAPPC driver parameter block

Your application can use the icCompletion field to specify a completion routine
that will be executed when an asynchronous request is completed.

% Note: See the Device Manager chapter in Inside Macintosh for information and e
restrictions on writing completion routines.

The ioResult field is used to indicate the completion status of the MacAPPC
routine in progress.

The ioNamePtr and ioVRefNum fields are not used by MacAPPC drivers.

appcRefNum

The appcRefNum field must contain the driver reference number returned when the
device driver is opened. You must supply the appropriate value for every MacAPPC
routine.

appcOpCode

The appcOpCode field specifies the MacAPPC routine to be executed. Use the name
of the routine preceded by a lowercase letter &, as follows:

kMCAllocate = 100; { Mapped conversation routines }

kMCConfirm = 101;

kMCConfirmed = 102;

kMCDeallocate= 103;

kMCFlush = 104;

kMCGetAttributes = 105; o }
kMCPostOnReceipt = 106; A
kMCPrepareToReceive = 107;

kMCReceiveAndWait = 108;

kMCReceiveImmediate = 109;

kMCRequestToSend = 110;

kMCSendData = 111;

kMCSendError = 112;

kMCTest = : 113;

kCVBackout = 114; { Type independent routines }

kCVGetType = 115;

kCVSyncPoint = 116;

kCVWait = 117;

kBCAllocate = 118; { Basic conversation routines }

kBCConfirm = 119;

kBCConfirmed = 120;

kBCDeallocate= ' 121;

kBCFlush = 122;

kBCGetAttributes = 123;

kBCPostOnReceipt = ' 124;

kBCPrepareToReceive = 125;

kBCReceiveAndWait = 126;

kBCReceiveImmediate= 127; .)
kBCRequestToSend = 128; 7

3-6 Chapter 3: MacAPPC Dirivers

kBCSendData = 129;

Each routine is described in detail in Chapters 4 through 7 in this guide.

MacAPPC driver parameter block

kBCSendError = 130;

kBCTest = 131;

kCOChangeSessionlimit= 200; { Control operator CNOS routines)}
kCOInitializeSessionLimit = 202;

kCOProcessSessionLimit = 203;

kCOResetSessionLimit = 204;

kCOActivateSession= 205; { Control operator session control routines}
kCODeactivateSession = 206;

kCODefineLocallU = 207; { Control operator LU definition routines }
kCODefineRemotelU = 208;

kCODefineMode = . 209;

kCODefineTP = 210;

kCODisplaylocallU = 211;

kCODisplayRemotelLU= 212;

-kCODisplayMode = 213;

kCODisplaySession = 214;

kCODisplayTP = 215;

kCODelete = 216;

kNOActivateline = 300; { Node operator node control routines}
kNOActivateLU= 301;

kNOActivateNode = 302;

kNOActivateStations= 303;

kNODeactivateLine= 305;

kNODeactivatelU = 306;

kNODeactivateNode = 307;

kNODeactivateStation = 308;)

kNODefineMessageQueue = 304; { Node operator node message routines }
kNODisplayMessage = : 310;

kNODisplayMessageQueue = 309;

kNODefineNode = 311; { Node operator node definition routines}
kNODefineCP = 312;

kNODefineLine= 313;

kNODefineStation = 314;

kNODisplayNode = 316;

kNODisplayCP = 317;

kNODisplayLine = 318;

kNODisplayStation = 319;

kNODelete = © 320;

kTPAttach = 400; { Transaction program connection routines }
kTPDetach = 401;

kTPAsciiToEbcdic = 403; { Transaction program utility routines}
kTPEbcdicToAscii = 404;

3-7

appcHiResult and appclLoResult

The values of the appcHiResult and appcLoResult fields are inserted by
MacAPPC when the routine is completed. See Appendixes B and C for the meanings
of the result codes. '

appcConvsState

The value of the appcConvState field is inserted by MacAPPC when the routine is
completed, and is always a member of the following set of constants:

kNullState = 0;

kResetState = 1;

kSendState = 2;

kReceiveState= 3;

kConfirmState= 4;

kConfirmSendState = S;

kConfirmDeallocState = 6;

kDeallocState= 7;

kDeferState = 8; { not supported }
kSyncPtState= 9; { not supported }
kBackedOutState = 10; { not supported}
appcUserRef

Your application can use the appcUserRef field in any way it wants; the MacAPPC
drivers do not use the field.

MacAPPC driver control blocks

A transaction program is responsible for allocating and maintaining memory that the
MacAPPC device drivers use for their own purposes. This section defines these special
types of memory blocks.

Important

All of the blocks defined in this section are the exclusive property of the device
driver; they must remain locked and may not be altered or moved while being
used.

Transaction Program Control Block (TPCB)

Your transaction program may need to allocate and maintain a block of memory
called the Transaction Program Control Block (TPCB). The MacAPPC device
drivers use this block to maintain state and control information about an individual
connection to a MacAPPC server.

3-8 Chapter 3: MacAPPC Drivers

Once the routine that initiates the connection succeeds, the TPCB becomes the
exclusive property of the device driver and must remain locked and not be altered or
moved until the connection with the MacAPPC server is terminated. When the
connection is terminated, your application may deallocate the TPCB.

Certain MacAPPC routines require you to supply a pointer to a new TPCB when a
connection is initiated. The same TPCB pointer must be supplied.to every routine
executed fc r a particular connection once that connection has been established.

Conversation Control Block (CVCB)

Your transaction program may also need to allocate and maintain a block of memory
called the Conversation Control Block (CVCB). The MacAPPC device drivers use

this block to maintain state and control information about an individual conversation
with a partner transaction program.

Once the routine that initiates the conversation succeeds, the CVCB becomes the
exclusive property of the device driver. The block must remain locked and not be
altered or moved until the conversation with the partner TP is terminated. When the
conversation is terminated, your application may deallocate the CVCB.

Certain MacAPPC routines require you to supply a pointer to a new CVCB when a
conversation is initiated. The same CVCB pointer must be supplied to every routine
executed for a particular conversation once that conversation has been established.

PIP buffer

If the transaction program is using PIP data, it must also allocate and maintain a block
of memory called the PIP buffer. The MacAPPC device drivers use this block to hold
any PIP (program initialization parameter) data that may be sent or received from a
partner transaction program.

The PIP buffer is the exclusive property of the device driver. The block must not be
altered or moved for the duration of the conversation. This buffer must be large
enough to hold the largest amount of PIP data expected plus a 4-byte logical length ID
(LLID) per parameter plus one 4-byte LLID for the entire PIP data.

Mapped conversation buffer

If the transaction program is participating in a mapped conversation, it must also
allocate and maintain a block of memory called the mapped conversation buffer.
The MacAPPC device drivers use this block to hold any data sent or received from a
partner transaction program over a mapped conversation before the actual mapping
of the data is performed.

The mapped conversation buffer is the exclusive property of the device drivers. The
block must not be altered or moved for the duration of the mapped conversation. This
buffer must be large enough to hold the largest complete data record expected plus a
4-byte logical length ID (LLID). The buffer may be any size needed by the transaction
program and may be tuned for performance enhancements. '

MacAPPC driver control blocks

MacAPPC driver constants

The following constants are used in all MacAPPC drivers:

{ Block Sizes }

Transaction Program Control Block size }
Conversation Control Block size }

Line size }

SDLC Line size }

kTPCBSize = 3000; {
kCVCBSize = 3500; {
kLineSize = 17; { Maximum
kSDLCSize = 17;

kMsgSize = 44; Message
kMsgFieldSize= 2; Message
kMaxPIP = 256; Maximum
kMaxCVCB = 256; Maximum
{ String Sizes }

kMaxName = 8; { Maximum
kMaxTPName = 64; { Maximum
kMaxSecName = 10; { Maximum
kMaxMapName = 64; { Maximum
kMaxPhoneNumber = 20; { Maximum
kMaxLogData = 200; { Maximum
kMaxLUWName = 17; { Maximum
kMaxLUWID = 6; { Maximum
kMaxLUWCorr = 8; { Maximum
kMaxLUPswd = 16; { Maximum
kMaxExchID = 8; { Maximum
kMaxCPUID = 12; { Maximum
kMaxSDLCAddr = 2; { Maximum
{ Define Operation Values }

kIgnoreParam = (-1);

kFuncNotSupp = 0;

kFuncSupp = 1;

kReplaceParam= 0;

kDeleteParam= 1;

kAddParam = 0;

kNextEntry = 0;

3-10 Chapter 3: MacAPPC Drivers

Structure size }
Data Field size }

of PIPs }
of CVCB pointers}

generic string length }

TP Name length }

Security Field length }

Map Name length }
phone number length
log data length }
LUW name length }
LUW ID length }

}

LUW correlator length }

LU-LU password length

Exchange ID length
CPU ID 1length (hex)
SDLC address length

(hex)
}
(hex)

}

(hex)

}

}

NS

i

MacAPPC driver IDs

The MacAPPC server allocates and maintains several IDs that your program can use to
identify an attached transaction program, a conversation, or a session. These IDs are
returned by ceratin MacAPPC routines.

Program ID

The program ID identifies a particular attached transaction program; it is a unique
number generated by the MacAPPC server.

Conversation ID

The conversation ID identifies an individual conversation in use by a pair of

" transaction programs; it is a unique number generated by the MacAPPC server. A

conversation in use by a pair of transaction programs is represented by two unique
conversation IDs, one from each transaction program'’s perspective.

Session ID

The session ID identifies an individual session in use by a pair of logical units over a
particular mode; it is a unique number generated by the MacAPPC server. A session in
use by a pair of modes is represented by two unique session IDs, one from each

mode’s perspective.

Executing a MacAPPC driver routine

In summary, here are the steps necessary to execute a single MacAPPC routine:
1. Set appcRefNum to the number returned by the PBOpen call.

2. Set appcOpCode to the constant equivalent to the appropriate MacAPPC routine
(for example kTPAttach forthe TPAttach routine).

3.Set ioCompletion and appcUserRef if desired.

4. Supply any necessary additional values for the parameters for the MacAPPC
routine, as detailed in Chapters 4 through 7 of this guide.

5. Call PBControl, supply a pointer to the MacAPPC routine’s parameter block, and
set the ASYNC parameter in the PBControl call to TRUE or FALSE.

6. If you executed an asynchronous routine and did not supply your own
ioCompletion routine, poll ioResult in the MacAPPC routine’s parameter
block to determine when the MacAPPC routine is completed, as detailed in
“Synchronous and Asynchronous Execution,” earlier in this chapter.

7. If ioResult indicates that an error occurred, examine appcHiResult and
appcLoResult to determine the result code.

Executing a MacAPPC driver routine

3-11

MacAPPC driver conventions

In the following four chapters, each routine description includes a list of the
APPCParamBlock fields affected by the routine. A 4-digit hex number gives the
offset of the field within the parameter block, and its size is specified as byte, word, or
long. When the size is not shown, the parameter is an array, as indicated by the
convention of a pair of brackets ([]) following the parameter name.

The arrow next to each parameter name indicates the following:

Arrow Meaning

Parameter is passed to the MacAPPC routine (described as supplied)

Parameter is returned by the MacAPPC routine (described as returned)
Parameter is passed to and returned by the MacAPPC routine (described as
supplied/returned)

Parameter points to space that is modified by the MacAPPC routine (described as
supplied/modified)

I 1

In the parameter descriptions, the term NIL pointer is used to indicate that the
pointer is set to a value of zero. Similarly, the term NULL value means a value of zero.
The terms TRUE and FALSE are used as Boolean values; the particular values of TRUE
or FALSE depends upon the language being used.

3-12 Chapter 3: MacAPPC Drivers

Chapter 4

MacAPPC Conversation
Driver |

4-1

This chapter describes the MacAPPC Conversation Driver (.CV62), explains how to
use the driver, and provides a detailed guide to the programmatic interface for
executing each Conversation Driver routine. For quick reference, a section at the end
of the chapter summarizes the data structures, constants, and routine parameters.

Using the MocAP;E: Conversation Driver

The following sections document the Pascal-language interface to MacAPPC routines
that provide support for Advanced Program-to-Program Communication (APPC)
using either basic or mapped conversations. Mapped conversations use mapped
conversation routines, which are more commonly used than basic conversation
routines when programming in a high-level language. When mapped routines are
used, the data does not need to be formatted by the application program. Basic
conversations use basic conversation routines. Basic conversation routines are
normally used only by service TPs, which are the programs that provide common
services across the network, including overhead management, error handling,
simultaneous activation, and security.

In mapped conversations, data is automatically formatted into General Data
Stream (GDS) variables. GDS variables consist of 2 bytes containing the length of the
variable, 2 bytes containing an IBM-assigned code identifying the type of variable,
and then data. Mapped routines handle all of the formatting for mapped
conversations (making it transparent to the application). In basic conversations the
data has less internal formatting (only the length and the data are required). Basic
routines handle none of the formatting—data must be presented to the routine packed
in the correct format. Because mapped routines handle their own formatting, they are
usually considered easier to use.

Buffering

Each LU in a conversation has a buffer for sending and receiving data. When the
transaction program executes a routine that sends data, it specifies an area containing
the data, and the LU moves the data to its send buffer. The LU transmits the data,
(flushes its send buffer) either when a sufficient amount of data is accumulated, or
when the program executes a routine that explicitly causes the LU to transmit the
accumulated data.

As incoming data arrives on a conversation, the LU places the data in its receive
buffer. When the program executes a routine that receives data, it specifies an area in
which the LU is to place the data. The LU moves the requested amount of data from the
front of its receive buffer to the area specified by the program. In this way, the LU can
accumulate incoming data in its receive buffer in advance of the program issuing the
routine, or routines, that receive the data.

Routines that send data place the outgoing data in the send buffer behind any data
from previous routines. Routines that send information other than data place the
outgoing information in front of the information already in the buffer. A receiving LU
accumulates incoming information in its receive buffer in the order in which it is
received. The amount of buffered data that is sufficient for transmission is determined
by the maximum size request/response unit (RU) that can be sent on the session.

4-2 Chapter 4: MacAPPC Conversation Driver

\\._,/"

Conversation states

Conversations have states that determine what routines a transaction program can
execute during the conversation. The following states are defined:

reset

send

receive
confirm
confirm/send

confirm/deallocate

0O 0 oo o0 o

deallocate

The appcConvState constants are listed in Chapter 3, “The MacAPPC Drivers.”
Tables 4-1, 4-2, and 4-3 show the conversation routines and the states from which
these routines can be executed.

Table 4-1
States for mapped conversation routines

Mapped routine Reset Send Receive Confirm Conf/send Conf/dealc Deallocate

MCAllocate X
MCConfirm X
MCConfirmed X X X
MCDeallocate*
flush
confirm
sync-level
abend
local X
MCFlush
MCGetAttributes
MCPostOnReceipt X
MCPrepareToReceive X
MCReceiveAndWait X X
MCReceiveImmediate X
MCReguestToSend X
MCSendData X
MCSendError X X X X X
MCTestt
posted X
request to send X X

WX A

o

* The state from which the routine can be executed varies depending on the type of deallocation;
see “MCDeallocate,” later in this chapter.

T The state from which the routine can be executed varies depending on the type of testing;
see “MCTest,” later in this chapter.

Using the MacAPPC Conversation Driver 4-3

Table 4-2
States for type-independent conversation routines

Type-independent routine Reset Send Receive Confirm Conf/send Conf/dealc Deallocate

CVGetType X X X X X X
CVWait X

Table 4-3
States for basic conversation routines

Basic routine Reset Send Receive Confirm Conf/send Conf/dealc Deallocate

BCAllocate X
BCConfirm X
BCConfirmed X X X
BCDeallocate*
flush
confirm
sync-level
abend
local X
BCFlush
BCGetAttributes
BCPostOnReceipt X
BCPrepareToReceive X
BCReceiveAndWait X X
BCReceivelImmediate X
BCRequestToSend X
BCSendData X
BCSendError X X X X X
BCTest!
posted X
request to send X X

Ea R I I

M

* The state from which the routine can be executed varies depending on the type of deallocation;
see “BCDeallocate,” later in this chapter.

1 The state from which the routine can be executed varies depending on the type of testing;
see “BCTest,” later in this chapter.

4-4 Chapter 4: MacAPPC Conversation Driver

C

Data mapping

Over an APPC mapped conversation, data sent between two transaction programs is a
stream of data bytes that is divided into logical data records. Each time data is sent using
the MCSendData routine, it is packaged into a single data record. The
MCReceiveAndWait routine can read part or all of this data record. The routine
interface inposes the structure of individual data records on the data byte stream.

At the data record level, however, the data may still need further transformation before it
can be used by the transaction program. For example, the data may need to be formatted
into a data structure of a high-level language. To insulate the transaction program from
the process of transforming data between the form used by the transaction program and
the transmitted byte stream, the LU 6.2 mapped conversation protocol defines data
mapping in the LU to perform this function.

When data is sent, a map name is specified that identifies a mapping function, which
transforms the data from the form used by the transaction program into the data
stream sent to the remote LU. The current map name is sent to the remote LU, which
uses it to execute a mapping function in the remote LU to transform the received data
stream into the form used by the remote transaction program.

The map name specified by the local program may be different from the map name
received by the remote program. The map name may be translated by the sending LU
from a local map name known to the local transaction program into a global map name
known to the remote LU. The remote LU may in tumn translate the received map name into
a map name known locally to the remote transaction program on the remote system.

Data mapping is not required on a mapped conversation. A null map name specifies
no data mapping. A null map name is never translated into a nonnull map name (but a
nonnull map name may be translated to a null map name, thus disabling mapping).

Under the LU 6.2 architecture, map name transmission, as well as data transformation, is
handled by a user-supplied mapping utility, or mapper. At the time of publication, the
MacAPPC mapper is limited to data transformation alone. The transmission of map names
between the local and remote LUs is handled by the MacAPPC Conversation Driver.

Writing a mapping procedure

To write a mapping procedure, you will need to use the mapping parameter block.

Mapping parameter block

APPCMCPB = RECORD

' mcpbMapCmd : SignedByte; { MC request }.
mcpbResult : INTEGER; { mapper return code }
mcpbMapName : StringPtr; { map name pointer }
mcpbDataPtr : Ptr; { data pointer }
mcpbDataSize : INTEGER; { data length }
mcpbBuffPtr : Ptr; { buffer pointer }
mcpbBuffSize : INTEGER; { buffer length }
mcpbTransMapName : Boolean; { map name translation required }
mcpbFMHdrs : Boolean; { FMH data contains FM headers }
mcpbRcvMode : SignedByte; { receive mode }

END;

APPCMCPBPtr = ~APPCMCPB;

Using the MacAPPC Conversation Driver

4-5

The following values are constants for mcpbMapCmd:

0;
1;

kSendMapping
kRcvMapping

The following values are constants for mcpbResult:

mcNoErr = 0;
mcErr = 1;
mcMapNameErr = 2;
mcDupMapNameErr = 3;

The following values are constants for mcpbRcvMode :

kTruncMode
kIncomplMode

0;

1;

The mapper is executed by the MacAPPC Conversation Driver when send or receive
data mapping is required. The driver passes the address of the APPCMCPB parameter
block as its single argument. The mapper performs the operation as specified by the
APPCMCPB record, updates that record, and returns to the driver.

The mapping function is not required to use the space provided by the mcpbBuffPtr
and mcpbBuffSize parameters to map the data, but the driver reserves 4 bytes
immediately ahead of mcpbBuffPtr and uses them when formatting the data
record to be sent on the conversation. At this time, mappers that pass mapped data
back in a location other than in the space provided by mcpbBuffPtr and
mcpbBuffSize do so at their own risk.

When the driver receives a new map name from the partner LU, it is passed to the
mapper on the next receive mapping request, and the mcpbTransMapName field is
set to TRUE. The mapper is responsible for translating, if necessary, the global map
name to a local map name known to the transaction program. When the current map
name has not changed, it is repeatedly passed to the mapper with
mcpbTransMapName set to FALSE. The mapper has to translate the original global
name only once, as the translated map name becomes the current map name and is
passed back to the mapper on subsequent receive mapping requests.

When mapping receive data, the mapper selects the receive mode for the data. When
the receive mode is incomplete mode, the transaction program may receive the data
record in more than one receive routine. Data that is not read by the transaction
program on the first receive routine is held by the LU until the record is completely
read. When the receive mode is truncate mode, any data that is not read by the
transaction program on the first receive routine is discarded by the LU. The manner in
which the mapper selects the mode that it is to use is left to the implementor of the
mapper (except when no mapping is performed, in which case incomplete mode is
the default). The LU 6.2 protocol allows the mapping function to select either mode
based on the map name or the individual implementation.

The LU 6.2 protocol allows the optional check by the mapper for duplicate map names
sent by the remote LU. When the mapper receives a request that sets the
mcpbTransMapName parameter to TRUE for the same map name specified in a
previous request, the mapper may optionally return a mapper error indicating a
duplicate map name.

4-6 Chapter 4. MacAPPC Conversation Driver

Default mapping procedure

The following Pascal procedure—the default mapping procedure—illustrates a sample
mapping procedure.

PROCEDURE DefaultMapper (VAR mcParam : APPCMCPB);
{ default mapper }
is the Pascal equivalent of the default mapping procedure that

This

e e e

VAR

BEGIN

END; {

Remember,

i: INTEGER;

s,t: ~SignedByte;

mcParam.mcpbResult

is used when cvMapProc is set to NIL on an MCAllocate }

or when tpMapProc is set to NIL on a TPAttach(kWaitAttach)}
mapping procedures must run at interrupt time. }
This means you can't call routines that may move memory, }
or reference global data

(A5 may not be valid). }

Since this mapper does not look at the map name, it will
never return mcMapNameErr or mcDupMapNameErr. It also does
not look at mcpbTransMapName, since it never performs any
transliation on the map name,

CASE mcParam.mcpbMapCmd OF

kSendMapping:

BEGIN

{ send mapping - copy data into buffer }

s :=
t :=
FOR i
BEGIN

END;

POINTER (mcParam.mcpbDataPtr);
POINTER (mcParam.mcpbBuffPtr);
:= 1 TO mcParam.mcpbDataSize DO

t 1= s%;
s := POINTER(ORD4(s) + 1);
t := POINTER(ORD4(t) + 1);

mcParam.mcpbDataPtr := mcParam.mcpbBuffPtr;

END;

kRcvMapping:
{ receive mapping - since no mapping is done, }
{ set truncate data receive mode }
mcParam.mcpbRcvMode := kIncomplMode;

OTHERWISE

{ map execution failure }
mcParam.mcpbResult := mcErr;

END; { CASE }

DefaultMapper }

Using the MacAPPC Conversation Driver

}

nor checks for duplicate map names.
:= mcNoErr; { no error }

4-7

MacAPPC conversation routines

The next sections describe the MacAPPC conversation routines, which you use to
communicate between a pair of transaction programs over a conversation. A
conversation can be either mapped or basic.

The routines available for communicating over a conversation are divided into the
following categories:

O mapped conversation routines, which are used to communicate over mapped
conversations : ’

O type-independent conversation routines, which can be used over either mapped or
basic conversations

basic conversation routines, which are normally used only over basic
conversations, but can be used over mapped conversations

a

Mapped conversation routines

This section describes the MacAPPC mapped conversation routines, which are used
by transaction programs to communicate over mapped conversations. When a
transaction program sends data by way of a mapped routine, the transaction program
does not have to provide the General Data Stream (GDS) length field in front of the
data. Instead, the data placed into the send buffer is dealt with as a complete data
record, and the mapped conversation routines perform the necessary translation of
data formatted as logical records into GDS variables.

In addition, the transaction program has the option of performing additional
mapping functions on the data.

4-8 Chapter 4: MacAPPC Conversation Driver

e

MCAllocate

Summary The MCAllocate routine allocates a session between the local LU and a remote LU,
and, within that session, a mapped conversation between the local transaction
program and a remote transaction program. The routine also returns a conversation
ID, which is used to identify the conversation.

Important

If the local transaction program is starting a mapped conversation, it must execute a
MCAllocate routine before it executes any other mapped conversation routine.

If the local transaction program is waiting for a remote transaction program to start
the mapped conversation, the local transaction program must execute a TPAttach
routine. See TPAttach in Chapter 7 of this manual.

Parameters 000C long = ioCompletion
0018 word = appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult
0o01c word “~ appcHiResult
001E word «— appcLoResult
0020 byte — appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0034 long - cvMapBuffPtr
0038 word - cvMapBuffSize
002E long - cvPIPBuffPtr
0032 word - cvPIPBuffSize
0042 long - cvRmt LUName
0052 long - cvRmtProgName
004E long - cvModeName
0056 long - cvUserName
005A long - cvUserPswd
005E long - cvUserProf
007a long - cvMapProc
oosa byte - cvReturnCtl
0089 byte - cvSyncType
008F byte - cvPIPUsed
0492 ————— - cvPIPPtr (]
0892 -—— - cvPIPSize[]
008B byte « cvSecType
003a long «— cvConvID

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is determined by the value of the kCVCBSize constant. You must
supply a new CVCB each time your application executes an MCAllocate routine.

Mapped conversation routines 4-9

4-10

cvMapBuf£Ptr (supplied) specifies a pointer to a mapped conversation buffer.
The length of the buffer is specified by the value of the cvMapBuffSize parameter.

cvMapBuffSize (supplied) specifies the size of the mapped conversation buffer
pointed to by the cvMapBuffPtr parameter. This buffer must be large enough to
hold the largest complete data record expected plus a 4-byte logical length ID (LLID).

cvPIPBuffPtr (supplied) specifies a pointer to a buffer that holds the program
initialization parameters. The length of the buffer is specified by the value of the
cvPIPBuffSize parameter.

cvPIPBuffSize (Supplied) specifies the size of the huffer pointed to by
cvPIPBuf fPtr. This buffer must be large eough to hold the largest amount of PIP
data expected plus a 4-byte LLID per parameter plus one 4-byte LLID for the entire PIP
data.

cvRmt LUName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant. The name is any name by which the local LU knows the remote LU for the
purpose of allocating a mapped conversation. This locally known LU name becomes
the LU name that is used by the network if the two names are different. ~

cvRmtProgName (supplied) specifies a pointer to a string that contains the name
of the remote transaction program at the remote LU specified by the cvRmtLUName
parameter. The string length must not be greater than the value of the kMaxTPName
constant. For mapped conversations, the string cannot specify an SNA service
transaction program.

cvModeName (supplied) specifies a pointer to a string that contains the name of the
mode defining certain properties for the session allocated to the conversation. The
string length must not be greater than the value of the kMaxName constant. The
properties that are defined include, for example, class of service to be used, and
whether data is to be enciphered or transiated into ASCII before it is sent. The SNA-
defined mode name SNASVCMG must not be specified for the MCAllocate routine
(whereas the BCAllocate routine can use that mode name; see the description of
that routine in this chapter).

cvUserName (supplied) specifies a pointer to a string that contains the user ID
when the cvSecType parameter has the value of the kProgSec constant
(otherwise, the parameter is ignored). The string length must not be greater than the
value of the kMaxSecName constant. The remote LU uses this value and the
password to verify the identity of the transaction program making the allocation
request. In addition, the remote LU can use the cvUserName parameter for
auditing or accounting purposes, or it can use cvUserName, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access.

cvUserPswd (supplied) specifies a pointer to a string that contains the password
when the cvSecType parameter has the value of the kProgSec constant |
(otherwise, the parameter is ignored). The string length must not be greater than the
value of the kMaxSecName constant. The remote LU uses this value and the value
specified in the cvUserName parameter to verify the identity of the transaction
program making the allocation request.

Chapter 4: MacAPPC Conversation Driver

cvUserProf (supplied) specifies a pointer to a string that can contain a profile to
be used in place of or in addition to the user ID specified in the cvUseriiame
parameter. The string length must not be greater than the value of the xMaxSeclame
constant. The remote LU can use this value, in addition to or in place of the value
specified in the cvUserName parameter, to determine which remote transaction
programs the local transaction program can access, and which resources the remote
transaction program can access.

cvMapProc (supplied) specifies a pointer to a user-supplied mapping function
(see the section “Writing a Mapping Procedure,” earlier in this chapter, for a
description of the mapping function). Set the pointer to NIL to use the default
mapping procedure. '

cvReturnCtl (supplied) specifies when the local LU is to return control to the
transaction program and what type of session allocation is to be used. If the local LU
fails to obtain a session for the mapped conversation, an allocation error is reported
either on this routine or on a subsequent routine. If the remote LU rejects the
allocation request, an allocation error is reported on a subsequent routine. The
following values are defined:

kWhenAllocReturn allocates a session before returning control to the local
transaction program. A session-allocation error is reported upon return from the
MCAllocate routine.

kDelayAllocReturn allocates a session after returning control to the local
transaction program. A session-allocation error is reported upon return from a
subsequent MacAPPC routine.

kImmedAllocReturn allocates a session only if a session is immediately
available and returns control to the local transaction program. A session is
immediately available when it is a free first-speaker session. A session-allocation
error is reported upon return from the MCAllocate routine if a session is not
immediately available.

cvSyncType (supplied) specifies the synchronization level that the local and
remote transaction programs can use for the conversation. The values are defined as
follows:

kNoSync specifies that the transaction programs do not perform confirmation
processing nor sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to confirmation or synchronization functions.

kConfirmSync specifies that transaction programs can perform confirmation
processing but not sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to the synchronization functions.

kSyncPtSync specifies that transaction programs can perform both
confirmation processing and sync-point processing on this mapped
conversation.

< Note: At the time of publication, sync-point services were not supported.

cvPIPUsed (supplied) specifies whether or not program initialization parameters
(PIPs) are to be sent to the remote transaction program. A value of TRUE specifies
that PIP data is present; FALSE specifies that PIP data is not present.

Mapped conversation routines 4-11

Notes

Result code

See also

cvPIPPtr (supplied) specifies an array of pointers to program initialization

parameters. The last pointer must be followed by one that is NIL. The maximum

number of parameters is defined by the value of the kMaxPIP constant, with a total 2
space limitation specifed by the cvPIPBuffSize parameter (see
cvPIPBuffSize for more information about space limitations). This array is
ignored if the cvPIPUsed parameter is set to FALSE.

RN ’

cvPIPSize (supplied) specifies an array of sizes that specifies the size for each PIP
inthe cvPIPPtr array. The last size must be followed by a size of 0.

cvSecType (supplied/returned) specifies the type of access-security information
that is to be used by the remote LU to validate access to the remote transaction
program and its resources. The following values are defined:

kNoSec specifies that access-security information is not to be used.

kSameSec specifies that the security information to be used is from the local
transaction program executing the MCAllocate routine, so that the security
level remains the same as set by the previous allocation request. The allocation
request carries the user name of the local transaction program and is indicated as
already verified (that is, no password is sent). If the local transaction program was
not previously allocated, the cvSecType parameter is downgraded to the value
of the kNoSec constant.

kProgSec specifies that the security information to be used is contained in the
cvUserName, cvUserPswd, and optionally the cvUserProf parameters.

cvConviD (returned) indicates the conversation ID of the allocated conversation.

Successful completion of the MCAllocate routine does not indicate that the

session was successfully allocated. This routine can only return session-allocation e
errors (with the cvReturnCtl parameter equal to the value of the)
kWhenAllocReturn or kImmedAllocReturn constant). All other allocation
errors are reported on subsequent routines.

When control returns and no error was encountered, the conversation is in send
state. :

For IBM equipment, make sure that the PIP data is in the format that the receiving
transaction program expects. For example, you may need to execute the
TPAsciiToEbcdic routine.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCAllocate, MCDeallocate

k/}

4-12 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

Result code

See also

MCConfirm

The MCConfirm routine flushes the send buffer, transmits a request for

confirmation to the remote transaction program, and waits for a reply. The remote

transaction program replies with either a confirmation or an error. This routine

allows the local and remote transaction programs to synchronize their processing.
This routine is not available on conversations allocated with a synchronization level

of none.

000C long - ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word — ioResult

081C word «— appcHiResult
001E word - appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
0082 byte «~ cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program

Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control

Block (CVCB).

cvReqgToSendRevd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter

receive state and place the remote transaction program in send state.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCConfirm, MCConfirmed

Mapped conversation routines

4-13

Summary

Parameters

Description

Notes

Result code

See also

MCConfirmed

The MCConfirmed routine sends a confirmation reply to the remote transaction
program when a confirmation request is received.

gooc
0018
oo1a
0022
0010
001C
001E
0020

‘0026

002a

long
word
word
long
word
word
word
byte
long
long

LiTTTtlildl

ioCompletion
appcRefNum
appcOpCode
appcUserRef
ioResult
appcHiResult
appcLoResult
appcConvState
cvTPCBPtr
cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program

Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB). ‘

When control returns and no error is encountered, the conversation state changes as
follows: if the conversation was in confirm state, it goes to receive state; if the
conversation was in confirm/send state, it goes to send state; if the conversation was
in confirm/deallocate state, it goes to deallocate state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

BCConfirmed, MCConfirm

4-14 Chapter 4. MacAPPC Conversation Driver

MCDeallocate

Summary The MCDeallocate routine flushes the send buffer and deallocates the mapped
conversation from the transaction program. It can also include the function of the
MCConfirm routine.

Important

Your transaction program must execute a MCDeallocate routine to end a mapped
conversation. After the MCDeallocate routine has been executed, no more
mapped conversation routines can be executed for that deallocated mapped
conversation.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word — ioResult
001cC word - appcHiResult
001E word - appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
0022 long - cvCVCBPtr
0085 byte - cvDeallocType

Descriptfion cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB) to be deallocated.

cvDeallocType (supplied) specifies the type of deallocation:

kSyncDealloc specifies that MacAPPC should perform deallocation based on
the synchronization level allocated to this mapped conversation. A
synchronization level of none performs a deallocation as if the
kFlushDealloc constant had been specified. A synchronization level of
confirm performs a deallocation as if the kConfirmDealloc constant had
been specified. '

kFlushDealloc specifies that MacAPPC should execute the function of the
MCFlush routine and deallocate the conversation normally.

kConfirmDealloc specifies that MacAPPC should execute the function of the
MCConfirm routine, and if it is successful, deallocate the conversation
normally; if it is not successful, the state of the conversation is determined by the
result code.

kAbendDealloc specifies that MacAPPC should execute the function of the
MCFlush routine when the conversation is in send or defer state, and deallocate
the conversation normally. If the conversation is in receive state, data can be
lost. kAbendDealloc is intended to be used by a transaction program when it
detects an error condition that prevents completion of the transaction.

Mapped conversation routines 4-15

Notes

Result code

See also

kLocalDealloc specifies that MacAPPC should deallocate the mapped
conversation locally. The transaction program should specify this type of
deallocation if, and only if, the conversation is in deallocate state.

When control returns, if no errors were encountered, the conversation enters reset
state. When the cvDeallocType parameter is set tothe kSyncDealloc
constant, and the partner sends an error response, the conversation enters receive
state.

The execution of the MCFlush or MCConfirm routine as part of the
MCDeallocate routine includes the flushing of the LU's send buffer. When, instead,
the deallocation is deferred, the LU also defers flushing its send buffer until the
program executes a subsequent routine for this conversation.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCDeallocate, MCAllocate

4-16 Chapter 4: MacAPPC Conversation Driver

o

A

MCFlush

Summary The MCFlush routine sends the information that is in the LU’s send buffer to the
remote transaction program. Information is buffered in the send buffer by the
MCAllocate, MCDeallocate, MCSendData, and MCSendError routines.

The MCFlush routine is useful for optimization of processing between the local and
remote transaction programs. The LU normally buffers the data records from
consecutive MCSendData routines until it has a sufficient amount for transmission.
At that time it transmits the buffered data records. However, the local transaction
program can execute an MCFlush routine in order to cause the LU to transmit the
buffered data records. In this way, the local transaction program can minimize the
delay in the remote transaction program’s processing of the data records.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult
001cC word «— appcHiResult
001E word «— appclLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB). :

Notes When the routine completes without error, no state change occurs. If an error is
detected, the conversation enters either receive state or deallocate state, depending
on the error.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
See also BCFlush

Mapped conversation routines 4-17

Summary

Parameters

Description

MCGetAttributes

The MCGetAttributes routine returns information about the specified mapped
conversation.

ooocC long - ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult

001cC word - appcHiResult
001E word — appcLoResult
0020 byte - appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
004A long = cvFullLclLUName
0042 long = cvRmt LUName
00456 long = cvFullRmt LUName
004E long = cvModeName
0056 long = cvUserName
005E long = cvUserProf
0062 long = cvLUWName
0066 long = cvLUWID

006A long = cvLUWCorr
0089 byte — cvSyncType
006E word - cvLUWSeq

003a long «— cvConviD

003E long « cvProglD

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFullLclLUName (supplied/modified) specifies a pointer to space where the
fully qualified network name of the local LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name is
returned as two strings concatenated by a period: NETID.NETNAME, where NETID is
the network ID and NETNAME is the network LU name. When there is no network ID,
only NETNAME is returned. If the pointer is NIL, the name is not returned.

cvRmtLUName (supplied/modified) specifies a pointer to space where the local
name of the remote LU—that is, where the remote transaction program is
located—can be returned. The space must be at least as large as the value of the
kMaxName constant plus 1 byte. This is the name by which the local LU knows the
remote LU for the purpose of allocating a conversation. If the pointer is NIL, the name
is not returned.

cvFullRmtLUName (supplied/modified) specifies a pointer to space where the
fully qualified network name for the remote LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name has the
same form as that specified in the cvFullLclLUName parameter. If the remote
LU’s fully qualified name is not known, a NULL string is returned. If the pointer is NIL,
the name is not returned. '

4-18 Chapter 4: MacAPPC Conversation Driver

\\ j’/’

cvModeName (supplied modified) specifies a pointer to space where the maode
name for the session allocated to the conversation can be returned. The space must
be at least as large as the value of the kMaxName constant plus 1 byte. If the pointer is
NIL, the name is not returned.

cvUserName (supplied modified) specifies a pointer to space where the user ID
can be returned. The space must be at least as large as the value of the kMaxSecName
constant plus 1 byte. The remote LU uses this value and the password to verify the
identity of the transaction program making the allocation request. In addition, the
remote LU can use the value of the cvUserName parameter for auditing or
accounting purposes, or it can use the value of cvUserName, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is NIL, the user ID is not returned.

cvUserProf (supplied/modified) specifies a pointer to space where a profile to be
used in place of or in addition to the user ID specified in the cvUserName

parameter can be returned. The space must be at least as large as the value of the
kMaxSecName constant plus 1 byte. The remote LU can use this value, in addition to
or in place of cvUserName, to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is NIL, the profile is not returned.

cvLUWName (supplied/modified) specifies a pointer to space where the LU name
portion of the logical-unit-of-work (LUW) can be returned. The space must be at least
as large as the value of the kMaxLUWName constant plus 1 byte. The LUW identifier is
created and maintained by the LU, which uses it for accounting purposes. If the
pointer is NIL, the name is not returned.

cvLUWID (supplied/modified) specifies a pointer to space where the unique ID
portion of the logical-unit-of-work can be returned. The space must be at least as long
as the value of the kMaxLUWID constant plus 1 byte. This is not a printable string. If
the pointer is NIL, the LUW ID is not returned.

cvLUWCorr (supplied/modified) specifies a pointer to space where the
conversation correlator can be returned. The space must be at least as long as the
value of the kMaxLUWCorr constant plus 1 byte. The conversation correlator is
created and maintained by the LU. This is not a printable string. If the pointer is NIL,
the name is not returned.

cvSyncType (returned) indicates the synchronization level that the local and
remote transaction programs can use for the conversation. The following values are
defined:

kNoSync indicates that the transaction programs do not perform confirmation
processing on this mapped conversation. The transaction programs do not
execute any routines and do not recognize any returned parameters relating to
these synchronization functions.

kConfirmSync indicates that transaction programs can perform confirmation
processing but not sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to the synchronization functions.

kSyncPtSync indicates that transaction programs can perform both
confirmation processing and sync-point processing on this mapped
conversation.

< Note: At the time of publication, sync-point services were not supported.

Mapped conversation routines 4-19

cvLUWSeq (returned) is the logical-unit-of-work sequence number assigned to this
conversation.

cvConvID (returned) returns the conversation ID.

cvProgID (returned) returns the program ID.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExzec Routine executing; asynchronous request not complete
See also BCGetAttributes

4-20 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

Result code

See also

MCPostOnReceipt

The MCPostOnReceipt routine requests a mapped conversation to be posted
when information is available for the transaction program to receive. Execute a
MCTest routine after MCPostOnReceipt to determine if posting has occured.
Execute a CVWait routine after MCPostOnReceipt to wait for posting to occur.

gooc long - ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word - ioResult
001cC word — appcHiResult
001E word - appcLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0074 word - cvDataSize

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB). '

cvDataSize (supplied) specifies the minimum amount of data that will cause
posting to occur. The cvDataSize parameter must be small enough so that the
amount of data that will cause posting does not exceed the size of the LU’s receive
buffer. If that buffer is exceeded, posting will never occur. The proper size for the LU’s
receive buffer depends upon several factors; you will have to empirically test different
values for cvDataSize to find the correct value.

% Note: If a small value has been specified for cvDataSize and a large data block
has begun to arrive, you can subsequently use either an MCReceiveAndWait
routine to receive the entire data block or an MCReceiveImmediate routine to
receive only the data that has been received by the LU.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCPostOnReceipt, MCTest, CVWait

Mapped conversation routines 4-21

MCPrepareToReceive

Summary The MCPrepareTocReceive routine flushes the send buffer and puts the mapped
conversation into receive state. This routine can also include the function of the
MCConfirm routine, requesting confirmation before entering receive state.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word “«— ioResult
001cC word — appcHiResult
001E word - appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002Aa long - cvCVCBPtr
0086 byte - cvPrepToRcvType
0087 byte - cvLockType

Description cvTPCBPtr (supplied) specifies a pointef to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvPrepToRcvType (supplied) specifies the type of request:

kFlushRcv indicates that the send buffer should be flushed (as in the MCFlush
routine) and the conversation should enter receive state.

kConfirmRcv indicates that the data in the buffer shoul be sent and that -)
confirmation will be requested before entering receive state.

evLockType (supplied) specifies when control is to be returned to the local
transaction program if the function of the MCConfirm routine is performed. This
parameter is ignored if the mapped conversation does not support confirmation
processing.

kShortLock specifies that control should be returned to the local transaction
program when an affirmative reply is received.

kLongLock specifies that control should be returned to the local transaction
program when data following confirmation is received.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
See also BCPrepareToReceive

4-22 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

MCReceiveAndWait

The MCReceiveAndWait routine receives information that has arrived for the
mapped conversation. The routine can wait for more information to arrive if the
request is not yet satisfied. The information can be data, conversation status, or a
request for confirmation. The program can execute this routine when the
conversation is in send state, which flushes the buffer and places the conversation in
receive state.

The program receives only one kind of information at a time; that is, it can receive
data or control information, but it cannot receive both simultaneously.

000cC long - ioCompletion
0018 word - appcRefNum
001a word - appcOpCode
0022 long = appcUserRef
0010 word « ioResult

001c word «— appcHiResult
001lE word «— appclLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0070 long = cvDataPtr
0074 word ¢ cvDataSize
0076 long = cvMapName
0084 byte « cvWhatRcvd
0082 byte “«— cvRegToSendRcvd

evTPCBPtrx (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDatasSize (supplied/returned) specifies the maximum amount of data the
program is to receive. When control returns to the program, this field contains the
length of data received.

cvMapName (supplied/modified) specifies a pointer to space where the local map
name can be returned. The space must be at least as large the value of the
kMaxMapName constant plus 1 byte. A NULL string indicates that no data mapping
occurred. When the program receives information other than data, nothing is placed
in this variable.

% Note: The space pointed to by this parameter is overwritten each time your
application executes an MCReceiveAndWait routine. Your application must save
the name if necessary.

cvWhatRevd (returned) indicates what was received.

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received.

Mapped conversation routines 4-23

Notes

Result code

See also

kDataIncomplRcvd indicates that an incomplete logical length record was
received, and the LU retained the remainder of the data record. The program can
receive the remainder of the data record by executing one or more additional
MCReceiveAndWait routines.

KLLTruncRcvd indicates that a complete logical length record was not
received, and the rest of the data was discarded. No data is returned.

kFMHDataComplRcvd indicates that the complete or last portion of the data
record containing FMH data was received.

kFMHDataIncomplRcvd indicates that an incomplete data record containing
FMH data was received, and the remainder was retained by the LU. The program
can receive the remainder of the data record by executing one or more additional
MCReceiveAndWait routines.

kFMHDataTruncRecvd indicates an incomplete data record containing FMH
data was received. The remainder is discarded by the LU.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute an MCSendData
routine.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confirm/send
state.

kConfirmDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The conversation enters confirm/deallocate
state.

cvRegToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When the amount of data requested is less than the length of the data record, whether
or not the remainder of the record is discarded or retained is determined by the
mapping procedure.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending TP is using. For example,
you may need to execute the TPEbcdicToAscii routine.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCReceiveAndWait, MCReceiveImmediate

4-24 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

MCReceivelmmediate

The MCReceiveImmediate routine receives information that is available for the
mapped conversation, but does not wait for information to arrive. The information
can be application data, FMH data, or conversation control information. If an error
is detected, the appropriate result code is returned. If there is nothing to receive, the
routine returns a result code indicating an unsuccessful completion (badComplErr).
Control is returned to the program with an indication of whether any information was
received and, if so, the type of information.

Only data that has been processed by the MacAPPC drivers can be received; that is,
the LU may have received data, but until the MacAPPC drivers process the data, it is
not available to MCReceiveImmediate (this is notthe case for the
MCReceiveAndWait routine). The MacAPPC drivers process conversation data
during the MCReceiveAndWait, MCTest,and CVWait routines.

When the MCReceiveAndWait routine (or a previous MCReceiveImmediate
routine) returns the kDataIncomplRcvd or kFMHDataIncomplRcvd constant
inthe cvWhatRcvd parameter, MCReceiveImmediate can be used to receive
the remaining data. Similarly, when the MCTest routine returns a result code of
dataAvail or ctlAvail, or whenthe CVWait routine indicates posting for the
conversation, MCReceiveImmediate can be used to receive data or control
information (or possibly an error indication). ‘

The program receives only one kind of information at a time; that is, it can receive
data or control information, but it cannot receive both simultaneously.

ooac long - ioCompletion
0018 word - appcRefNum
001Aa word e appcOpCode
0022 long - appcUserRef
0010 word - ioResult

001cC word «— appcHiResult
001E word — appcLoResult
0020 byte «— appcConvState
0026 long - cvIPCBPtr
0o2a long - cvCVCBPtr
0070 long = cvDataPtr
0074 word © cvDataSize
0076 long = cvMapName

0084 byte - cvWhatRcvd
0082 byte «— cvReqgToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDataSize (supplied/returned) specifies the maximum amount of data the
program is to receive. When control returns to the program, this field contains the
length of data received.

Mapped conversation routines 4-25

Notes

4-26

cvMapName (supplied/modified) specifies a pointer to space where the local map

name can be retumned. The space must be at least as large the value of the
kMaxMapName constant plus 1 byte. A NULL string indicates that no data mapping

occurred. When the program receives information other than data, nothing is placed

in this variable. :

< Note: The space pointed to by this parameter is overwritten each time your

application executes an MCReceiveImmediate routine. Your application must
save the name if necessary.

cvWhatRevd (returned) indicates what was received, as follows:

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received.

kDataIncomplRevd indicates that an incomplete LL was received, and the LU
retained the remainder of the data record. The program can receive the
remainder of the data record by executing one or more additional
MCReceiveImmediate routines.

kLLTruncRcvd indicates that a complete logical length record was not
received, and the rest of the data was discarded. No data is returned.

kFMHDataComplRcvd indicates that the complete or last portion of the data
record containing FMH data was received.

kFMHDataIncomplRcvd indicates that an incomplete data record containing
FMH data was received, and the remainder was retained by the LU. The program
can receive the remainder of the data record by executing one or more additional
MCReceiveAndWait routines.

kFMHDataTruncRcvd indicates an incomplete data record containing FMH
data was received. The remainder is discarded by the LU.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute an MCSendData
routine.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRevd indicates that the remote transaction program has issued a
prepare-to-receive confirm. The conversation enters confirm/send state.

kConfirmDeallocRcvd indicates that the remote transaction program has
issued a deallocate confirm. The conversation enters confirm/deallocate state.

cvReqgToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter

receive state and place the remote transaction program in send state.

When the amount of data requested is less than the length of the data record, whether

or not the remainder of the record is discarded or retained is determined by the
mapping procedure.

Chapter 4: MacAPPC Conversation Driver

o

Result code

See also

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending transaction program is
using. For example, you may need to execute the TPEbcdicToAscii routine,

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

BCReceiveImmediate, MCReceiveAndWait

Mapped conversation routines 4-27

Summary

Parameters

Description

Notes

Result code

See also

MCRequestToSend

The MCRequestToSend routine is used by the local transaction program to request
to enter send state. A request-to-send indicator is sent to the remote transaction
program which can either honor or ignore the request. If the request is honored, the
conversation enters send state for the local transaction program when a send
indication is received from the remote transaction program.

o0oocC long - ioCompletion
0018 word = appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word — ioResult

001cC word - appcHiResult
001E word «— appcLoResult
0020 byte «— appcConvState
0026 long - CcVTPCBPtr
002A long - cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

No state change occurs.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
BCRequestToSend

4-28 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

MCSendData

The MCSendData routine sends one data record to the remote transaction
program.

The data is buffered in the local LU’s send buffer and is not transmitted to the remote
transaction program until the send capacity is exceeded. Transmission of the
contents of the send buffer is forced by the MCFlush routine or by routines that
include the flush function (for example, MCPrepareToReceive).

To support the capability of earlier LU 6 types, MacAPPC allows FM headers to be sent
to the partner program. The FM headers are sent using MCSendData with the
cvFMHdrs parameter set to TRUE. This indicates FM data rather than application
data is being sent. This is significant only to the partner transaction program; the
sending and receiving LUs perform no special FM header processing other than
indicating that the data record contains FM headers (see MCReceiveAndWait or
MCReceiveImmediate).

0o0o0cC long - ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 @ word «— ioResult

001cC word -« appcHiResult
001E word «— appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0070 long - cvDataPtr
0074 word - cvDataSize
0076 long - cvMapName
0083 byte - cvFMHdrs

0082 byte «— cvRegToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied) points to the data to be sent. The size of the data is specified
by the cvDataSize parameter. The data is sent as one complete data record,
regardless of actual data format. Thus, no data formatting is required (as it is for data
sent on a basic conversation).

cvDatasSize (supplied) contains the length of the data to be sent. If this parameter
is zero, a null data record is sent.

cvMapName (supplied) specifies a pointer to a string that contains the local map
name. The string length must not be greater than the value of the kMaxName
constant. If a name is specified, the name and the data are passed to the mapping
procedure for mapping before transmission. For more information on mapping, see
the section “Writing a Mapping Procedure,” earlier in this chapter. A NIL pointer
indicates that no data mapping should occur.

Mapped conversation routines 4-29

Notes

Result code

See also

cvFMHdrs (supplied) specifies whether FM headers are being sent in the data
record.

cvRegToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When no error is encountered, the conversation remains in send state.

For IBM equipment, be aware of the format that the remote transaction program is
expecting. For example, you may need to execute the TPAsciiToEbcdic routine.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
BCSendData

4-30 Chapter 4: MacAPPC Conversation Driver

S A

Summary

Parameters

Description

Notes

Result code

See also

MCSendError

The MCSendError routine sends an error notification to the remote transaction
program, indicating that the local transaction program has detected an application
error. If the conversation is in send state, the send buffer is flushed. When the routine
is completed with no errors, the conversation is in send state and the remote
transaction program is in receive state.

0oocC long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult

001c word « appcHiResult
001E word « appcLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
0082 byte « cvRegToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

MCSendError resets or cancels posting. If posting is active and the conversation has
been posted, posting is reset. If the conversation has not been posted, posting is
cancelled.

If a race condition arises where both the local and remote transaction programs issue
error indications, the program that was in receive state wins the race and the program
that was in send state receives a program-error indication.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
BCSendData

Mapped conversation routines 4-31

MCTest

Summary The MCTest routine tests the specified mapped conversation to see whether posting
has occurred or whether a request-to-send notification has been received. If a
request-to-send has been received, the routine returns an appcNoErr result code.
If posting has occurred, the routine returns appcNoErr and the appcLoResult is
set to one of the following constants:

dataAvail indicates that data has arrived. .
ctlAvail indicates that control information has arrived.

When testing for posting, posting must be previously activated for the mapped
conversation with the MCPostOnReceipt routine.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word « ioResult
0o01cC word - appcHiResult
001E word - appcLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
008E byte - cvTestType

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvTestType (supplied) specifies the condition to be tested, as follows:
kPostTest specifies to test whether the conversation has been posted.

kRegToSendTest specifies to test whether request-to-send notification has
been received from the remote transaction program.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
See also BCTest, MCPostOnReceipt

. /’”)

4-32 Chapter 4: MacAPPC Conversation Driver

Type-independent conversation routines

This section describes the MacAPPC type-independent conversation routines. These
routines can be used for either mapped or basic conversations. In addition, some of
these routines can be executed for multiple conversations of different conversation
types.

Type-independent conversation routines 4-33

Summary

4-34

CVBackout

CVBackout is currently not supported.

Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

Result code

See also

CVGetlype

The CVGetType routine returns the conversation type (basic or mapped). The type
is set when the conversation is allocated.

ooocC long - ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef .
0010 word -~ ioResult
001C word -« appcHiResult
001E word — appcLoResult
0020 byte — appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
008C byte « cvConvType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvConvType (returned) is set to the specified conversation’s type. The following
values can be returmed:

kBasicConv specifies basic conversation type.

kMappedConv specifies mapped conversation type.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCAllocate, BCAllocate

Type-independent conversation routines 4-35

CVSyncPoint

Summary CVSyncPoint is currently not supported. N~

‘\\ R /’

4-36 Chapter 4: MacAPPC Conversation Driver

summary

Parameters

Description

Result code

See also

CVWait

The CVWait routine waits for posting to occur on any of the specified
conversations. Posting for a conversation occurs when posting is active for the
conversation that satisfies the posting request parameters (specified by the
BCPostOnReceipt or MCPostOnReceipt routine). When used with
MCPostOnReceipt or BCPostOnReceipt, CVWait permits the local
transaction program to receive data in synchronous fashion from multiple
conversations.

If posting has occurred, the routine returns appcNoErr and the appcLoResult
parameter is set to one of the following constants:

dataAvail indicates that data has arrived.
ctlAvail indicates that control information has arrived.

When a specified conversation has already been posted, the CVWait routine
returns immediately.

000cC long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word ~ ioResult
001cC word «~ appcHiResult
001E word « appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtrx
0022 long - cvCVCBPtr
0092 ——— - cvCVCBList []
0090 word < cvCVCBIndex

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvCVCBList (supplied) specifies a list of CVCB pointers that identify the
conversations that must wait for posting to occur.

cvCVCBIndex (supplied/returned) specifies the number of entries in the
cvCVCBList parameter, and returns either the index into the cvCVCBList array
of the first conversation that has been posted or 0 to indicate that an error occurred
on the CVWait request.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCPostOnReceipt, B‘CPostOnReceipt

Type-independent conversation routines 4-37

Basic conversation routines

Basic conversation routines are intended for use with LU services programs. The LU
services programs can provide services or protocol boundaries for transaction
programs. For example, the MacAPPC drivers use basic conversation routines to
process the mapped conversation routines. Other types of LU services programs
include IBM-designed programs such as the Document Interchange Architecture
(DIA) and the CNOS (change-number-of-sessions) transaction programs.

Mapped routines handle data records, while basic routines handle logical records.
What this means to you as a programmer is that basic routines require a header to be
sent with each block of data. The header field must contain a 2-byte logical length
record (LL) portion, which specifies the length of the logical record. In addition, ID
information can also be included in the header.

The use of the header permits basic conversation routines to send data in a more
efficient manner, because each logical record does not need to be complete in order
to be sent. In other words, the send buffer can be flushed, even when it contains only
portions of logical records, or it can accumulate a series of small records that it can
send with a single execution of the routine.

Basic routines are also able to transmit and receive data that is formatted in any data
stream, not just General Data Stream (GDS) format. They can process IBM-specified
data streams, such as 3270 and 5250, or SNA data streams, as well as user-defined data
streams.

4-38 Chapter 4: MacAPPC conversation driver

X ,f‘
S

"BCAllocate

Summary The BCAllocate routine allocates a session between the local LU and a remote LU,
and, within the same session, a conversation between the local transaction program
and a remote transaction program. A conversation ID is returned which is used to
identify the conversation.

Important

If the local transaction program is starting a basic conversation, it must execute a
BCAllocate routine before it executes any other basic conversation routine.

If the local transaction program is waiting for a remote transaction program to start
the basic conversation, the local transaction program must execute a TPAttach
routine. See TPAttach in Chapter 7 of this manual.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word - ioResult
001cC word « appcHiResult
001E word « appcloResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
002E long - cvPIPBuffPtr
0032 word - cvPIPBuffSize
0042 long - cvRmt LUName
0052 long - cvRmtProgName
004E long - cvModeName
0056 long - cvUserName
005A long - cvUserPswd
005E long = cvUserProf
008C byte - cvConvType
008a byte - cvReturnCtl
0089 byte - cvSyncType
008F byte - cvPIPUsed
0492 ———— - cvPIPPtr([]
0892 ———— - cvPIPSize[]
008B byte > cvSecType
003A long «— cvConvID

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is determined by the kCVCBSize constant. You must supply a new
CVCB each time your application executes a BCAllocate routine.

cvPIPBuffPtr (supplied) specifies a pointer to a buffer that holds the program
initialization parameters. The length of the buffer is specified by the value of the
cvPIPBuffSize parameter.

" Basic conversation routines 4-39

4-40

cvPIPBuffsSize (supplied) specifies the size of the buffer pointed to by
cvPIPBuffPtr. This buffer must be large eough to hold the largest amount of PIP
data expected plus a 4-byte LLID per parameter plus one 4-byte LLID for the entire PIP
data.

cvRmt LUName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant. The name is any name by which the local LU knows the remote LU for the
purpose of allocating a basic conversation. This locally known LU name becomes the
LU name that is used by the network if the two names are different.

cvRmtProgName (supplied) specifies a pointer-to a string that contains the name
of the remote transaction program at the remote LU specified by the cvRmtLUName
parameter. The string length must not be greater than the value of the kMaxTPName
constant. A transaction program that has the appropriate privilege can specify the
name of an SNA service transaction program.

cvModeName (supplied) specifies a pointer to a string that contains the name of the
mode defining certain properties for the session allocated to the conversation. The
string length must not be greater than the value of the kMaxName constant. The
properties that are defined include, for example, class of service to be used and
whether data is to be enciphered or translated into ASCII before it is sent. The SNA-
defined mode name SNASVCMG is reserved for LU service programs.

cvUserName (supplied) specifies a pointer to a string that contains the user ID
when the cvSecType parameter is set to the kProgSec constant (otherwise, the
parameter is ignored). The string length must not be greater than the value of the
kMaxSecName constant. The remote LU uses this value and the password to verify
the identity of the transaction program making the allocation request. In addition,
the remote LU can use cvUserName for auditing or accounting purposes, or it can
use cvUserName, together with the profile (see cvUserProf), to determine which
remote transaction programs the local transaction program can access and which
resources the remote transaction program can access.

cvUserPswd (supplied) specifies a pointer to a string that contains the password
when the cvSecType parameter is set to the kProgSec constant (otherwise, the
parameter is ignored). The string length must not be greater than the value of the
kMaxSecName constant. The remote LU uses this value and the value specified in the
cvUserName parameter to verify the identity of the transaction program making the
allocation request.

cvUserProf (supplied) specifies a pointer to a string that contains a profile to be
used in place of or in addition to the user ID specified in the cvUserName

parameter. The string length must not be greater than the value of the kMaxSecName
constant. The remote LU can use this value, in addition to or in place of the value
specified in the cvUserName parameter, to determine which remote transaction
programs the local transaction program can access, and which resources the remote

transaction program can access. ¢
cvConvType (supplied) specifies the conversation type, as follows:
kBasicConv for basic conversation.

kMappedConv for mapped conversation.

Chapter 4. MacAPPC conversation driver

cvReturnCtl (supplied) specifies when the local LU is to return control to the
transaction program and what type of session allocation is to be used. If the local LU
fails to obtain a session for the basic conversation, an allocation error is reported
either on this routine or on a subsequent routine. If the remote LU rejects the
allocation request, an allocation error is reported on a subsequent routine. The
following values are defined:

kWhenAllocReturn allocates a session before returning control to the local
transaction program. A session-allocation error is reported upon return from the
BCAllocate routine.

kDelayAllocReturn allocates a session after returning control to the local
transaction program. A session-allocation error is reported upon return from a
subsequent MacAPPC routine.

kImmedAllocReturn allocates a session only if a session is immediately
available and returns control to the local transaction program. A session is
immediately available when it is a free first-speaker session. A session-allocation
error is reported upon return from the BCAllocate routine if a session is not
immediately available.

cvSyncType (supplied) specifies the synchronization level that the local and
remote transaction programs can use for the conversation. The values are defined as
follows:

kNoSync specifies that the transaction programs do not perform confirmation
processing nor sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to confirmation or synchronization functions.

kConfirmSync specifies that transaction programs can perform confirmation
processing but not sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to the synchronization functions.

kSyncPtSync specifies that transaction programs can perform both
confirmation processing and sync-point processing on this conversation.

< Note: At the time of publication, sync-point services were not supported.

cvPIPUsed (supplied) specifies whether or not program initialization parameters
(PIPs) are to be sent to the remote transaction program. A value of TRUE specifies
that PIP data is present; FALSE specifies that PIP data is not present.

cvPIPPtr (supplied) specifies an array of pointers to program initialization
parameters. The last pointer must be followed by one that is NIL. The maximum
number of parameters is defined by the value of the kMaxPIP constant, with a total
space limitation specifed by the cvPIPBuffSize parameter (see
cvPIPBuffSize for more information about space limitations). This array is
ignored if the cvPIPUsed parameter is set to FALSE.

cvPIPSize (supplied) specifies an array of sizes that specifies the size for each PIP
inthe cvPIPPtr array. The last size must be followed by a size of 0.

cvSecType (supplied/returned) specifies the type of access-security information
that is to be used by the remote LU to validate access to the remote transaction
program and its resources. The following values are defined:

kNoSec specifies that access-security information is not to be used.

Basic conversation routines 4-41

Notes

Result code

See also

kSameSec specifies that the security information to be used is from the local
transaction program executing the BCAllocate request, so that the security
level remains the same as set by the previous allocation request. The allocation
request carries the user name of the local transaction program and is indicated as
already verified (that is, no password is sent). If the local transaction program was
not previously allocated, the cvSecType parameter returns the kNoSec
constant.

kProgSec specifies that the security information to be used is contained in the
cvUserName, cvUserPswd, and optionally the cvUserProf parameters.

evConviD (returned) indicates the conversation ID of the allocated conversation.

Successful completion of the BCAllocate routine does not indicate successful
allocation. This routine can only return session-allocation errors (with the
cvReturnCtl parameter set to the kWhenSessAllocReturn or
kImmediateReturn constant). All other allocation errors are reported on
subsequent routines.

When control returns and no error was encountered, the conversation is in send
state.

For IBM equipment, make sure that the PIP data is in the format that the receiving
transaction program expects. For example, you may need to execute the
TPAsciiToEbcdic routine.

appcNoErr Routine succeeded .
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCAllocate, BCDeallocate

4-42 Chapter 4: MacAPPC conversation driver

ey

Summary

Parameters

Description

Result code

See also

BCConfirm

The BCConfirm routine flushes the send buffer, transmits a request for
confirmation to the remote transaction program, and waits for a reply. The remote
transaction program replies with either a confirmation or an error. This routine
allows the local and remote transaction programs to synchronize their processing.
This routine is not available on conversations allocated with the synchronization level
of none.

ioCompletion

000cC long -

0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word — ioResult

001cC word «— appcHiResult
001E word «— appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0082 byte «— cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCConfirm, BCConfirmed

Basic conversation routines 4-43

BCConfirmed

Summary The BCConfirmed routine sends a confirmation reply to the remote transaction
program when a confirmation request is received.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word « ioResult
001cC word « appcHiResult
001E word — appcLoResult
0020 byte <« appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

Notes When control returns and no error is encountered, the conversation state changes as
follows: if the conversation was in confirm state, it goes to receive state; if the
conversation was in confirm/send state, it goes to send state; if the conversation was
in confirm/deallocate state, it goes to deallocate state.

Result code appcNoErr Routine succeeded :
appcFail Routine failed; look in appcHiResult and appcLoResult

appcExec Routine executing; asynchronous request not complete
See also MCConfirmed, BCConfirm

4-44 Chapter 4: MacAPPC conversation driver

Summary

Parameters

Description

BCDeallocate

The BCDeallocate routine flushes the send buffer and deallocates the
conversation from the transaction program. It can also include the function of the
BCConfirm routine. The conversation becomes unassigned when deallocation is
complete.

Important

Your transaction program must execute a BCDeallocate routine to end a basic
conversation. After the BCDeallocate routine has been executed, no more basic
conversation routines can be executed for that deallocated basic conversation.

000C long - ioCompletion
0018 word - appcRefNum
001A word = appcOpCode
0022 long - appcUserRef
0010 word — ioResult

001c word «— appcHiResult
001E word «— appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
0085 byte - cvDeallocType
0070 long - cvDataPtr
0074 word - cvDataSize

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB) to be deallocated.

cvDeallocType (supplied) specifies the type of deallocation:

kSyncDealloc specifies that MacAPPC should perform deallocation based on
the synchronization level allocated to this conversation. A synchronization level
of none will perform a deallocation as if the kFlushDealloc constant had
been specified. A synchronization level of confirm will perform a deallocation as
if the kConfirmDealloc constant had been specified.

kFlushDealloc specifies that MacAPPC should execute the function of
MCFlush and deallocate the conversation normally.

kConfirmDealloc specifies that MacAPPC should execute the function of the
BCConfirm routine and, if it is successful, deallocate the conversation
normally; if it is not successful, the state of the conversation is determined by the
result code.

kAbendProgDealloc specifies that MacAPPC should execute the function of
the BCFlush routine when the conversation is in send or defer state, and
deallocate the conversation normally. If the conversation is in receive state, data
cuit be lost. kAbendProgDealloc is intended to be used by a transaction
program when it detects an error condition that prevents completion of the
transaction.

Basic conversation routines 4-45

Notes

Result code

See also

kAbendSvcDealloc is intended to be used by a service transaction program
when it detects an error condition that prevents completion of the transaction. Its
specific use and meaning are defined by the service transaction program.

kAbendTimerDealloc is intended to be used by an LU services component,
such as one that processes mapped conversation routines, when it detects an
error condition caused by its peer LU services component in the remote LU. An
example is a format error in control information sent by the peer LU services
component. The specific use and meaning are defined by the transaction
program. '

kLocalDealloc specifies that MacAPPC should deallocate the conversation
locally. The transaction program should specify this type of deallocation if, and
only if, the conversation is in deallocate state.

cvDataPtr (supplied) specifies a pointer to error data to be written to the local
and remote LU error logs. Log data is not accepted if error logging support is not
configured for the local and remote LUs. The size of the buffer is specified by the
cvDataSize parameter. If log data is not specified, this pointer must be NIL.

cvDatasSize (supplied) specifies the size of the log data buffer pointed to by the
cvDataPtr parameter. The maximum size of the buffer is specified by the
kMaxLogData constant.

When control returns, if no errors were encountered, the conversation enters reset
state. When the cvDeallocType parameter is settothe kSyncDealloc
constant and the partner sends an error response, the conversation enters receive
state.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCDeallocate, BCAllocate

4-46 Chapter 4: MGcAPPC conversation driver

/‘\"

BCFlush

Summary The BCFlush routine sends the information that is in the LU’s send buffer to the
remote transaction program. Information is buffered in the send buffer by the
BCAllocate, BCDeallocate, BCSendData, and BCSendError routines.

BCFlush is useful for optimization of processing between the local and remote
transaction programs. The LU normally buffers the data records from consecutive
BCSendData routines until it has a sufficient amount for transmission. At that time it
transmits the buffered data records. However, the local transaction program can
execute BCFlush in order to cause the LU to transmit the buffered data records. In
this way, the local transaction program can minimize the delay in the remote
transaction program’s processing of the data records.

Parameters 000C long - ioCom[.getion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word - ioResult
001C word « appcHiResult
001E word « appcLoResult
0020 byte — appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

Notes When the routine completes without error, no state change occurs. If an error is
detected, the conversation enters either receive state or deallocate state, depending
on the error.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
See dlso MCFlush

Basic conversation routines 4-47

BCGetAttributes

summary The BCGetAttributes routine returns information about the specified
conversation.)

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word ¢« 1iloResult
001C word -« appcHiResult
001E word « appcLoResult
0020 byte « appcConvState
0026 long - chI‘Ptr
002A long - cvCVCBPtr
004A long = cvFullLclLUName
0042 long = cvRmt LUName
0046 long = cvFullRmtLUName
004E long = cvModeName
0056 long = cvUserName
005E long = cvUserProf
0062 long = cvLUWName
0066 long = cvLUWID
006A long = cvLUWCorr
0089 byte «— cvSyncType
006E word «— cvLUWSeq
oo3a long — cvConvID
003E long Ll cvProgID

Description evTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFullLclLUName (supplied/modified) specifies a pointer to space where the
fully qualified network name of the local LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name is
returned as two strings concatenated by a period: NETID.NETNAME, where NETID is
the network ID and NETNAME is the network LU name. When there is no network ID,
only NETNAME is returned. If the pointer is NIL, the name is not returned.

cvRmtLUName (supplied/modified) specifies a pointer to space where the local
name of the remote LU—that is, where the remote transaction program is
located—can be returned. The space must be at least as large as the value of the
kMaxName constant plus 1 byte. This is the name by which the local LU knows the
remote LU for the purpose of allocating a conversation. If the pointer is NIL, the name
is not returned.

cvFullRmtLUName (supplied/modified) specifies a pointer to space where the
fully qualified network name for the remote LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name has the
same form as that specified in the cvFullLclLUName parameter. If the remote
LU's fully qualified name is not known, a NULL string is returned. If the pointer is NIL,
the name is not returned.

4-48 Chapter 4: MacAPPC conversation driver

cvModeName (supplied/modified) specifies a pointer to space where the mode
name for the session allocated to the conversation can be returned. The space must
be at least as large as the value of the kMaxName constant plus 1 byte. If the pointer is
NIL, the name is not returned.

cvUserName (supplied/modified) specifies a pointer to space where the user ID
can be returned. The space must be at least as large as the value of the kMaxSecName
constant plus 1 byte. The remote LU uses this value and the password to verify the
identity of the transaction program making the allocation request. In addition, the
remote LU can use the value of the cvUserName parameter for auditing or
accounting purposes, or it can use the value of cvUserName, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is NIL, the user ID is not returned.

cvUserProf (supplied/modified) specifies a pointer to space where a profile to be
used in place of or in addition to the user ID specified in the cvUserName

parameter can be returned. The space must be at least as large as the value of the
kMaxSecName constant plus 1 byte. The remote LU can use this value, in addition to
or in place of the cvUserName parameter, to determine which remote transaction
programs the local transaction program can access, and which resources the remote
transaction program can access. If the pointer is NIL, the profile is not returned.

cvLUWName (supplied/modified) specifies a pointer to space where the LU name
portion of the logical-unit-of-work (LUW) can be returned. The space must be at least
as large as the value of the kMaxLUWName constant plus 1 byte. The LUW identifier is
created and maintained by the LU, which uses it for accounting purposes. If the
pointer is NIL, the name is not returned.

cvLUWID (supplied/modified) specifies a pointer to space where the unique ID
portion of the logical-unit-of-work can be returned. The space must be at least as long
as the value of the kMaxLUWID constant plus 1 byte. This is not a printable string. If
the pointer is NIL, the LUW ID is not returned.

cvLUWCorr (supplied/modified) specifies a pointer to space where the
conversation correlator can be returned. The space must be at least as long as the
value of the kMaxLUWCorr constant plus 1 byte. The conversation correlatoris
created and maintained by the LU. This is not a printable string. If the pointer is NIL,
the name is not returned.

cvSyncType (returned) indicates the synchronization level that the local and
remote transaction programs can use for the conversation. The following values are
defined:

kNoSync indicates that the transaction programs do not perform confirmation
processing on this conversation. The transaction programs do not execute any
routines and do not recognize any returned parameters relating to these
synchronization functions.

kConfirmSync indicates that transaction programs can perform confirmation
processing but not sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to the synchronization functions.

kSyncPtSync indicates that transaction programs can perform both
confirmation processing and sync-point processing on this conversation.

% Note: At the time of publication, sync-point services were not supported.

Basic conversation routines 4-49

cvLUWSeq (returned) is the logical-unit-of-work sequence number assigned to this
conversation.

cvConvID (returned) returns the conversation ID.

cvProgID (returned) returns the program ID.

Result code appcNoErr Routine succeeded

See also

4-50

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
MCGetAttributes

Chapter 4: MacAPPC conversation driver

Summary

Parameters

Description

Result code

See also

BCPostOnReceipt

The BCPostOnReceipt routine requests a conversation to be posted when
information is available for the transaction program to receive. Execute a BCTest
routine after BCPostOnReceipt to determine if posting has occured. Execute a
CVWait routine after BCPostOnReceipt to wait for posting to occur.

000cC long - ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult
001cC word «— appcHiResult
001E word «— appcLoResult
0020 byte — appcConvState
0026 leng - cvTPCBPtr
002A long - cvCVCBPtr
0088 byte - cvFillType
0074 word - cvDataSize

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cVvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFillType (supplied) specifies whether or not posting for data is to occur for a
logical length record:

kBufferFill specifies that the conversation is to be posted when the specified
amount arrives, regardless of the logical record format.

kLLFill specifies that the conversation is to be posted when a complete or
truncated logical length record arrives, or when at least the specified amount of
data arrives for the logical length record.

cvDatasize (supplied) specifies the minimum amount of data that will cause
posting to occur. This is used with the cvFillType parameter to determine when
to post the conversation. The cvDataSize parameter must be small enough so that
the amount of data that will cause posting does not exceed the size of the LU’s receive
buffer. If that buffer is exceeded, posting will never occur. The proper size for the LU’s
receive buffer depends upon several factors; you will have to empirically test different
values for cvDataSize to find the correct value.

% Note: If a small value has been specified for cvDataSize and alarge data block
has begun to arrive, you can subsequently use eithera BCReceiveAndWait
routine to receive the entire data block ora BCReceiveImmediate routine to
receive only the data that has been received by the LU.

appcNoErr Routine succeeded
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCPostOnReceipt, BCTest, CVWait

Basic conversation routines 4-51

Summary

Parameters

Description

Result code

See also

BCPrepareToReceive

The BCPrepareToReceive routine flushes the send buffer and changes the
conversation from send state to receive state. This routine can also include the
function of the BCConfirm routine, requesting confirmation before entering
receive state.

000cC long = ioCompletion
0018 word - appcRefNum
oo1a word - appcOpCode
0022 long - appcUserRef
0010 word - ioResult

001cC word « appcHiResult
001E word «— appcLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
0086 byte - cvPrepToRcvType
0087 byte - cvLockType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvPrepToRcvType (supplied) specifies the type of request:

kFlushRcv indicates that the send buffer should be flushed (as in the BCFlush
routine) and the conversation should enter receive state.

kConfirmRcv indicates that the data in the buffer shoul be sent and that
confirmation will be requested before entering receive state.

cvLockType (supplied) specifies when control is to be returned to the local
transaction program if the function of BCConfirm is performed. This parameter is
ignored if the conversation does not support confirmation processing.

kShortLock specifies that control should be returned to the local transaction
program when an affirmative reply is received.

kLongLock specifies that control should be returned to the local transaction
program when data following confirmation is received.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcloResult
appcExec Routine executing; asynchronous request not complete
MCPrepareToReceive

4-52 Chapter 4: MacAPPC conversation driver

\\k P /",

Summary

Parameters

Description

BCReceiveAndWait

The BCReceiveAndWait routine receives information that has arrived for the
basic conversation. The routine can wait for more information to arrive if the request
is not yet satisfied. The information can be data, conversation status, or a request for
confirmation. The transaction program can execute this routine when the
conversation is-in send state, which flushes the buffer and places the conversation in
receive state.

The transaction program receives only one kind of information at a time; that is, it
can receive data or control information, but it cannot receive both simultaneously.

gooc long - ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult

001cC word «— appcHiResult
001E word «— appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002A long - cvCVCBPtr
0088 byte - cvFillType
0070 long = cvDataPtr
0074 word & cvDataSize
0084 byte «— cvWhatRcvd
0082 byte -~ cvRegToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFillType (supplied) specifies whether or not data is to be received according
to the logical record format.

kBufferFill receives the specified amount of data independent of its logical
record format.

kLLFill receives one complete or truncated logical record, or up to the
specified amount of the logical record.

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDataSize (supplied/returned) specifies the maximum amount of data the
transaction program is to receive. When control returns to the transaction program,
this field contains the length of data received. ’

cvWhatRevd (returned) indicates what was received, as follows:

- kDataRcvd indicates that data was received. It is returned only when the
cvFillType parameter is set tothe kBufferFill constant.

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received. It is returned only when the
cvFillType parameter is settothe kKLLFill constant.

Basic conversation routines 4-53

Notes

kDataIncomplRcvd indicates that an incomplete LL was received. It is returned
only when the cvFillType parameteris settothe kLLFill constant.

kLLTruncRcvd indicates that a complete logical length record was not received,
and the rest of the data was discarded. No data is returned. It is returned only
when the cvFillType parameteris settothe kLLFill constant.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute BCSendData.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confirm/send
state.

kConfirmDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The conversation enters confirm/deallocate
state.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the value of the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending transaction program is
using. For example, you may need to execute the TPEbcdicToAscii routine.

Result code appcNoErr Routine succeeded

See also

4-54

appcFail Routine failed; look in' appcHiResult and apchoResﬁlt
appcExec Routine executing; asynchronous request not complete

MCReceiveAndWait, BCReceivelImmediate

Chapter 4: MacAPPC conversation driver

Summary

Parameters

Description

BCReceivelmmediate

The BCReceiveImmediate routine receives information that is available for the
conversation. The information can be data, conversation status, or a request for
confirmation. Control is returned to the transaction program with an indication of
what kind of information was received, if any.

The transaction program receives only one kind of information at a time; that is, it
can receive data or control information, but it cannot receive both simultaneously.

000C long - ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «— ioResult

ooic word L appcHiResult
001E word «— appclLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
coss byte - cvFillType
0070 long = cvDataPtr
0074 word > cvDataSize
0084 byte “— cvWhatRevd
0082 byte - cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFillType (supplied) specifies whether or not data is to be received according
to the logical record format.

kBufferFill receives the specified amount of data independent of its logical
length record format.

kLLFill receives one complete or truncated logical record, or up to the
specified amount of the logical length record.

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDatasSize (supplied/returned) specifies the maximum amount of data the
transaction program is to receive. When control returns to the transaction program,
this field contains the length of data received.

cvWhatRevd (returned) indicates what was received, as follows:

kDataRcvd indicates that data was received. It is returned only when the
cvFillType parameter is setto the kBufferFill constant.

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received. It is returned only when the
cvFillType parameter is setto the kLLFill constant.

Basic conversation routines 4-55

Notes

Result code

See also

kDataIncomplRcvd indicates that an incomplete LL was returned. It is returned
only when the cvFillType parameter issettothe kLLFill constant.

kLLTruncRcvd indicates that a complete logical length record was not received,
and the rest of the data was discarded. No data is returned. It is returned only
when the cvFillType parameteris settothe kLLFill constant.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute BCSendData.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confirm/send
state.

kConfirmDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The conversation enters confirm/deallocate
state.

evReqgToSendRevd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending TP is using. For example,
you may need to execute the TPEbcdicToAscii routine.

appcNoErr Routine succeeded _
appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

MCReceiveImmediate, BCReceiveAndWait

4-56 Chapter 4: MacAPPC conversation driver

eompete

Summary

Parameters

Description

Notes

Result code

See also

BCRequestToSend

The BCRequestToSend routine is used by the local transaction program to request
to enter send state. A request-to-send indicator is sent to the remote transaction
program which can either honor or ignore the request. If the request is honored, the
conversation enters send state for the local transaction program when a send
indication is received from the remote transaction program.

0o0ocC long - ioCompletion
0018 word - appcRefNum
001Aa word - appcOpCode
0022 long - appcUserRef
0010 word ¢ ioResult

001cC word « appcHiResult
001E word - appcLoResult
0020 byte « appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

No state change occurs.

appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
MCRequestToSend

Basic conversation routines 4-57

BCSendData

Summary The BCSendData routine transmits data to the remote transaction program. The
data must be formatted into logical records by the local transaction program, but it is
sent independently of the logical record format.

The data is buffered in the local LU’s send buffer and is not transmitted to the remote
transaction program until the send capacity is exceeded. Transmission of the
contents of the send buffer is forced by the BCFlush routine or by routines that
include the flush function (for example, BCPrepareToReceive).

Parameters 000C long — ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word & ioResult
001cC word «— appcHiResult
001E word «— appcLoResult
0020 byte “« appcConvState
0026 long = cvTPCBPtr
002a long - cvCVCBPtr
0070 long - cvDataPtr
0074 word - cvDataSize
0082 byte - cvReqToSendRevd

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control '
Block (CVCB).

cvDataPtr (supplied) points to the data to be sent. The size of the data is specified
by the cvDataSize parameter. This data must be formatted into logical records by
the local transaction program before it is sent. Each logical record consists of a 2-
byte length field followed by the data. The 2-byte length field contains the 15-bit
length of the record and a high-order bit that is ignored (this bit is used by mapped
conversation routines). The length of the record includes the length of the 2-byte
length field. For example, a 40-byte record would be sent in a 42-byte logical record
with a length field of 42. Logical record lengths of $0000, $0001, $8000, and $8001 are
invalid.

cvDatasSize (supplied) contains the length of the data to be sent. This parameter
is independent of the logical record format.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

Notes When no error is encountered, the conversation remains in send state.

For IBM equipment, be aware of the format that the remote transaction program is
expecting. For example, you may need to execute the TPAsciiToEbcdic routine.

4-58 Chapter 4: MacAPPC conversation driver

°

Result code

See also

appcNoErr
appcFail
appcExec

MCSendData

Routine succeeded

Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Basic conversation routines 4-59

BCSendError

Summary The BCSendError routine sends an error notification to the remote transaction
program. If the conversation is in send state, the send buffer is flushed. When the
routine is completed with no errors, the conversation is in send state and the remote
transaction program is in receive state.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word «~ ioResult
001cC word — appcHiResult
001E word «— appcLoResult
0020 byte - appcConvState
0026 long - cVvTPCBPtrx
002a long - cvCVCBPtr
008D byte - cvErrorType
007E long - cvSenseData
0070 long - cvDataPtr
0074 word - cvDataSize
0082 byte «— cvRegToSendRcvd

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

evCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvErrorType (supplied) specifies the type of error, as follows:
kSvcError indicates a service transaction program error.
kProgError indicates a transaction program error.

cvSenseData (supplied) is reserved for use by the MacAPPC drivers.

cvDataPtr (supplied) specifies a pointer to error data to be written to the local
and remote LU error logs. Log data is not accepted if error logging support is not
configured for the local and remote LUs. The size of the buffer is specified by the
cvDataSize parameter. If log data is not specified, this pointer must be NIL.

cvDataSize (supplied) specifies the size of the log data buffer pointed to by the
cvDataPtr parameter. The maximum size of the buffer is specified by the
kMaxLogData constant.

cvReqToSendRevd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

Notes If no errors are encountered, the program enters send state.

If a race condition arises where both the local and remote transaction programs issue
error indications, the program that was in receive state wins the race and the program
that was in send state receives a program-error indication.

4-60 Chapter 4: MacAPPC conversation driver

°

Result code

See dlso

appcNoErr
appcFail
appcExec

MCSendError

Routine succeeded

Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Basic conversation routines 4-61

BCTest

Summary The BCTest routine tests the specified conversation to see whether posting has
occurred or whether a request-to-send notification has been received. If a request-to-
send has been received, the routine returns appcNoErr. If posting has occurred, the
routine returns appcNoErr and appcLoResult is set to one of the following
constants:

dataAvail indicates that data has arrived.
ctlAvail indicates that control information has arrived.

When testing for posting, posting must be previously activated for a conversation with
the BCPostOnReceipt routine.

Parameters 000C long = ioCompletion
0018 word - appcRefNum
001A word - appcOpCode
0022 long - appcUserRef
0010 word - ioResult
001cC word - appcHiResult
001E word “«— appcLoResult
0020 byte «— appcConvState
0026 long - cvTPCBPtr
002a long - cvCVCBPtr
008E byte - cvTestType

Description cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB). '

cvTestType (supplied) specifies the condition to be tested, as follows:
kPostTest specifies to test whether the conversation has been posted.

kReqToSendTest specifies to test whether request-to-send notification has
been received from the remote transaction program.

Result code appcNoErr Routine succeeded

appcFail Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete
See also MCTest, BCPostOnReceipt

4-62 Chapter 4: MacAPPC conversation driver

Summary of the MacAPPC Conversation Driver

This section provides a summary of the constants, data structures, and routines for use
with the MacAPPC Conversation Driver.

Constants

The following constants are available for use with the MacAPPC Conversation Driver.

{ cvWhatRcvd values }

kNullRcvd =

kDataRcvd =
kDataComplRcvd =
kDataIncomplRcvd =
kLLTruncRcvd =
kSendRcvd =
kConfirmRcvd =
kConfirmSendRcvd =
kConfirmDeallocRcvd =
kDataTruncRcvd =
kFMHDataComplRcvd =
kFMHDataIncomplRcvd =
kFMHDataTruncRcvd =
kTakeSyncPtRcvd =
kTakeSyncPtSendRcvd =
kTakeSyncPtDeallocRcvd =

{ cvDeallocType values }

~.

kSyncDealloc =
kFlushDealloc=
kAbendProgDealloc =
kAbendSvcDealloc =
kAbendTimerDealloc=
kLocalDealloc=
kConfirmDealloc =
kAbendDealloc=

Ne S

~.

~

e

W ~J o UL &b W N P
~.

~

{ cvPrepToRcvType values

kFlushRcv = 0;
kConfirmRcv = 1;
kSynclevelRcv= 2;

{ cvLockType values }

kShortLock = 0;
kLongLock = 1;

9;

10;
11;
12;
13;
14;
15;

{ not supported }
{ not supported }
{ not supported }

Summary of the MacAPPC Conversation Driver

4-63

{ cvFillType values }

kBufferFill = 0;
kLLFill = 1;

{ cvSyncType values 1}

kNoSync = 0;
kConfirmSync = 1;
kSyncPtSync = 2; { not supported }

. { cvReturnCtl values }

kWhenAllocReturn = 0;
kDelayAllocReturn = 1;
kImmedAllocReturn = ;

{ cvSecType values }

kNoSec = ;
kSameSec = 1;
kProgSec = 2;

{ cvConvType values }

kBasicConv = 0;
kMappedConv = 1;

{ cvErrorType values }

kSvcError = 0;
kProgError = 1:
kAllocError = 2; { reserved }

{ cvTestType values }

kPostTest = 0:
kRegToSendTest = 1;

{ mcpbMapCmd values }

kSendMapping = ;
kRcvMapping = 1;

{ mcpbResult values }

mcNoErr = 0:
mcErr = ;
mcMapNameErr = 2;
mcDupMapNameErr = ;

{ mcpbRcvMode values }

kTruncMode = 0;
kIncomplMode = 1;

4-64 Chapter 4: MacAPPC Conversation Driver

Data types

The following data types are available for use with the MacAPPC Conversation Driver.

cvParam:

(

cvTPCBPtrx
cvCVCBPtr
cvPIPBuffPtr
cvPIPBuffSize
cvMapBuffPtr
cvMapBuffSize
cvConvIiD
cvProglID
cvRmtLUName
cvFullRmtLUName
cvFullLclLUName
cvModeName
cvRmtProgName
cvUserName
cvUserPswd
cvUserProf
cvLUWName
cvLUWID
cvLUWCorr
cvLUWSeqg
cvDataPtr
cvDataSize
cvMapName
cvMapProc
cvSenseData
cvReqToSendRevd
cvFMHdrs
cviWhatRcvd
cvDeallocType
cvPrepToRcvType
cvLockType
cvFillType
cvSyncType
cvReturnCtl
cvSecType
cvConvType
cvErrorType
cvTestType
cvPIPUsed
cvConvIDCount
cvConvIDList
cvPIPPtr
cvPIPSize

)i

.

.

e e

Ptr;

Ptr;

Ptr;
INTEGER;
Ptr;
INTEGER;
LONGINT;
LONGINT;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
INTEGER;
Ptr;
INTEGER;
StringPtr;
ProcPtr;
LONGINT;

Byte;

Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
INTEGER;

ARRAY[1l..kMaxConvID]
ARRAY[1l..kMaxPIP]
ARRAY[1l..kMaxPIP]

Summary of the MacAPPC Conversation Driver

Lo T e B I e T T I T I e e e e T e T e T e T s T e T e S S A S G i U0 U O 0 A 0 Ao oy

{

TPCB pointer }
CVCB pointer }

PIP buffer pointer }

PIP buffer size }

mapped conversation buffer pointer }
mapped conversation buffer size }
conversation ID }

transaction program ID }

remote LU name pointer }

fully qualified RLU name pointer }
fully qualified LLU name pointer }
mode name pointer }

remote program name pointer }

user name pointer')

user password pointer }

user profile pointer }

Logical Unit of Work LU name pointer}
LUW identifier pointer }

LUW conversation correlator pointer }
LUW sequence number }

data buffer pointer }

data buffer size }

map name pointer }

mapping procedure pointer }.

reserved }

request to send received }
FM headers in data record }
what was received }
deallocation type }

prepare to receive type }
prepare to receive lock }
logical record receive }
synchronization level }
allocate return control }

security type }

conversation type }
send error type }

test type }

program parameters used .}

of conversation IDs }

OF LONGINT; { list of conv IDs }
OF Ptr; { array of PIP ptrs }

OF INTEGER; { array of PIP sizes}

4-65

Mapping parameter block

APPCMCPB = RECORD .
mcpbMapCmd : SignedByte; { MC request }
mcpbResult : INTEGER; { mapper return code }
m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>