
MacAPPCTM
Programmer's Reference
and User's Guide

S APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reseived. Under
the copyright laws, this manual
or the software may not be
copied, in whole or in part,
without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
pennitted copies as were affixed
to the original. This exception
does not allow copies to be
made for others, whether or not
sold, but all of the material
purchased (with all backup
copies) may be sold, given,
or loaned to another person.
Under the law, copying includes
translating into another
language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose. ·

©Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo,
AppleLink, AppleTalk,
HyperCard, ImageWriter,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

APDA, EtherTalk, HyperCard
APPC, HyperTalk, MacAPPC,
Macintosh Coprocessor Platform,
MCP operating system, MPW, and
Stackware are trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Ethernet is a registered
trademark of Xerox
Corporation.

IBM is a registered trademark,
and Token Ring is a trademark,
of International Business
Machines Corporation.

MicroVAX is a trademark of
Digital Equipment Corporation.

NuBus is a trademark of Texas
Instruments.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated. Illustrator is a
trademark of Adobe Systems
Incorporated.

Varityper is a registered
trademark, and VT600 is a
trademark, of AM International,
Inc.

Simultaneously published in the
United States and Canada.

Contents

Preface About This Document xxi

Intended audience xxi
Structure of this document xxii
Other documents you may need xx.iii

Macintosh computer documents xxiii
Documents related to APPC and LU 6.2 xxiv

Obtaining additional manuals xxv
Conventions used in this document xxv

Part I Introduction

Chapter 1 What Is APPC? 1-1

The SNA network 1-3
Functional layers 1-5
Logic'al unit type 6.2 1-5
The LU 6.2 protocol boundary 1-6
Resource allocation 1-6
The transaction program 1-7
Distributed transaction processing 1-9

Chapter 2 What Is MacAPPC? 2-1

Macintosh user interface 2-5
Server-client architecture 2-5
Security 2-7
Transmission media 2-7
MacAPPC drivers 2-8

MacAPPC Conversation Driver 2-8
MacAPPC Control Operator Driver 2-9
MacAPPC Node Operator Driver 2-9
MacAPPC Transaction Program Driver 2-9

MacAPPC server 2-10
MacAPPC Chooser device 2-10
MacAPPC Configuration program 2-11
MacAPPC Administration program 2-11
MacAPPC software and server relationship 2-11

Iii

Iv Contents

Part II MacAPPC Programmer's Reference

Chapter 3 MacAPPC Drivers 3-1

Using MacAPPC drivers 3-2
Synchronous and asynchronous execution 3-4
MacAPPC driver parameter block 3-4

qLink, qType, and the I/O fields 3-5
appcRetNum 3-6
appcOpCode 3-6
appcHiResult and appcLoResult 3-8
appcConvState 3-8
appcUserRef 3-8

MacAPPC driver control blocks 3-8
Transaction Program Control Block (TPCB) 3-8
Conversation Control Block (CVCB) 3-9
PIP buffer 3-9
Mapped conversation buffer 3-9

MacAPPC driver constants 3-10
MacAPPC driver IDs 3-11

Program ID 3-11
Conversation ID 3-11
Session ID 3-11

Executing a MacAPPC driver routine 3-11
MacAPPC driver conventions 3-12

Chapter 4 MacAPPC Conversation Driver 4-1

Using the MacAPPC Conversation Driver 4-2
Buffering 4-2
Conversation states 4-3
Data mapping 4-5
Writing a mapping procedure 4-5

Mapping parameter block 4-5
Default mapping procedure 4-7

MacAPPC conversation routines 4-8
Mapped conversation routines 4-8

MCAllocate 4-9
MCConfirm 4-13
MCConfirmed 4-14
MCDeallocate 4-15
MCFlush 4-17
MCGetAttributes 4-18
MCPostOnReceipt 4-21
MCPrepareToReceive 4-22
MCReceiveAndWait 4-23
MCReceivelmmediate 4-25
MCRequestToSend 4-28
MCSendData 4-29
MCSendError 4-31
MCTest 4-32

Type-independent conversation routines 4-33
CVBackout 4-34
CVGetType 4-35
CVSyncPoint 4-36

' ('·".

CVWait 4-37
Basic conversation routines 4-38

BCAllocate 4-39
BCConfirm 4-43
BCConfirmed 4-44
BCDeallocate 4-45
BCFlush 4-47
BCGetAttributes 4-48
BCPostOnReceipt 4-51
BCPrepareToReceive 4-52
BCReceiveAndWait .4-53
BCReceivelmmediate 4-55
BCRequestToSend 4-57
BCSendData 4-58
BCSendError 4-60
BCTest 4-62

Summary of theMacAPPC Conversation Driver 4-63
Constants 4-63
Data types 4-65

Mapping parameter block 4-66
Mapped routines 4-67
Type-independent routines 4-72
Basic conversation routines 4-73

Chapter 5 MacAPPC Control Operator Driver 5· 1

Using the MacAPPC Control Operator Driver 5-2
Security 5-2
MacAPPC control operator routines 5-3
Control operator CNOS routines 5-3

COChangeSessionLimit 5-4
COinitializeSessionLimit 5-6
COProcessSessionLimit 5-8
COResetSessionLimit 5-9

Control operator session control routines 5-11
COActivateSession 5-12
CODeactivateSession 5-13

Control operator LU definition routines 5-14
CODefineLocalLU 5-15
CODefineMode 5-18
CODefineRemoteLU 5-22

· CODefineTP 5-25
CODelete 5-30
CODisplayLocalLU 5-31
CODisplayMode 5-33
CODisplayRemoteLU 5-37
CODisplaySession 5-39
CODisplayTP 5-41

Summary of the MacAPPC Control Operator Driver 5-45
Constants 5-45
Data Types 5-47
CNOS routines 5-49
Session control routines 5-51
LU definition routines 5-52

Contents v

vi Contents

Chapter 6 MacAPPC Node Operator Driver 6-1

Using the MacAPPC Node Operator Driver 6-2
MacAPPC node operator routines 6-2
Node operator node control routines 6-2

NOActivateLine 6-3
NOActivateLU 6-4
NOActivateNode 6-5
NOActivateStation 6-6
NO Deactivate Line 6-7
NODeactivateLU 6-8
NODeactivateNode 6-9
NODeactivateStation 6-10

Node operator node message routines 6-11
NODefineMessageQueue 6-12
NODisplayMessage 6-14
NODisplayMessageQueue 6-15

Node operator node definition routines 6-17
NODefineCP 6-18
NODefineLine 6-20
NODefineNode 6-23
NODefineStation 6-25
NODelete 6-27
NODisplayCP 6-28
NODisplayLine 6-29
NODisplayNode 6-32
NODisplayStation 6-33

Summary of the MacAPPC Node Operator Driver 6-35
Constants 6-35
Data types 6-37
Node control routines 6-39
Node message routines 6-41
Node definition routines 6-42

Chapter 7 MacAPPC Transaction Program Driver 7-1

Using the MacAPPC transaction Program Driver 7-2
Getting the currently selected MacAPPC server 7-2
Attaching and its implications 7-3

MacAPPC transaction program routines 7-4
Transaction program connection routines 7-4

TPAttach 7-5
TPDetach 7-8

Transaction program utility routines 7-9
TPAsciiToEbcdic 7-10
TPEbcdicToAscii 7-11

Summary of the MacAPPC Transaction Program Driver 7-12
Constants 7-12
Data Types 7-13
Connection routines 7-14
Utility routines 7-15

Chapter 8 MacAPPC Example TP 8-1

Part Ill MacAPPC User's Guide

Chapter 9 Installation 9-1

Chapter 10

Chapter 11

Hardware 9-2
Client computer 9-2
Server computer 9-2
Communications card 9-2

Software 9-3
Client computer 9-4
Server computer 9-4
Configuration program 9-5
Administration program 9-5

Selecting a MacAPPC Server 10-1

The MacAPPC Configuration Program 11-1

The Configuration program menu bar 11-3
Conventions used in the Configuration program 11-4

Screen and key conventions 11-4
Character type conventions 11-5

Creating a configuration file 11-5
Local node section 11-6

Exchange ID 11-6
Access Type 11-6
Monitor Timer 11-6

Partner node section 11-7
Creating network components 11-7

Creating localLUs 11-8
Name (Local LU name) 11-8
LUID 11-8
Max Sess (Maximum number of sessions) 11-8
Max TPs (Maximum number of TPs) 11-9
User ID and password 11-9
Profiles 11-10

Creating transaction programs 11-12
Name (Transaction program name) 11-12
Conv Type (Conversation type) 11-12
Sync Level (Synchronization level) 11-12
Security Required 11-13
UserID 11-14
Profile 11-14

Creating Lines 11-16
Name (Line Name) 11-17

Creating partners 11-18
Name (Partner name) 11-18
Exch ID (Exchange ID) or CPU ID 11-18
Exch ID (Exchange ID) 11-18
CPUID 11-18

Contents vii

viii Contents

ALS Address (Adjacent-link-station address) 11-19
Creating remote LUs 11-20

Name (Remote LU name) 11-20
Parallel Sessions 11-20

Creating modes 11-22
Name (Mode name) 11-22
Sync level (Synchronization level) 11-22
Max Sessions (Maximum number of sessions) 11-22
Min 1st Spkrs (Minimum number of first speakers) 11-22
PB Sessions (Number of prebound sessions) 11-23

Editing network components 11-24
Editing a local LU 11-24

Local LU 11-25
LUID 11-25
Net Name (Local LU network name) 11-25
Net Qual (Local LU network qualifier name) 11-25
Max Sess (Maximum number of sessions) 11-25
LU Security 11-26
Wait Time 11-26
Max TPs (Maximum number of transaction

programs) 11-26
User IDs 11-26
Profiles 11-26
Password 11-27

Editing a transaction program 11-27
TP Name 11-27
Local LU 11-27
Net Name (Transaction program network name) 11-27
Status 11-28
Conv Type (Conversation type) 11-28
Sync Level (Synchronization level) 11-28
PIP (Program initialization parameters) 11-28
PIP Count 11-28
PIP Check 11-28
Data Mapping 11-29
FMH Data 11-29
Privilege 11-29
LUW Qogical unit of work) 11-29
Security Required (Security level that is required) 11-29
User ID 11-30
Profile 11-30

Editing a line 11-31
Line Name 11-32
Line Type 11-32
Line Number 11-32
Role Type 11-32
Connect Type (Connection type) 11-32
Max BTU (Maximum basic transmission unit length) 11-32
Line Speed 11-32
Max Retries (Maximum number of retries) 11-32
Idle Time 11-33
NP Recv Time (Nonproductive receive time) 11-33
Max I-Frames (Maximum number of I-frames) 11-33
NRZI Support 11-33

·(

Duplex Type 11-33
Editing a partner 11-33

Partner Name 11-34
Line Name 11-34
Exch ID (Exchange ID) or CPU ID 11-34
Exch ID 11-34
CPUID 11-34
ALS Address 11-35
Phone Number 11-35

Editing a remote LU 11-35
Remote LU 11-35
Local LU 11-35
Net Name (Remote LU network name) 11-36
Net Qual (Remote LU network qualifier) 11-36
CP Name (Control point or partner name) 11-36
lnit Q Req (Queue session-initiation requests) 11-36
Parallel Sess (Parallel sessions) 11-36
CNOS ALS (CNOS adjacent-link-station name) 11-36
Password 11-36
Lei Sec (Local security) 11-37

Editing a mode 11-37
Mode Name 11-37
Local LU 11-37
Remote LU 11-37
Adj Station (Adjacent station or partner name) 11-38
Send Pacing 11-38
Recv Pacing (Receive pacing) 11-38
Max RU UB (Maximum request/response unit upper

bound) 11-38
Max RU LB (Maximum request/response unit lower

bound) 11-38
Sync Level (Synchronization level) 11-38
Session Reinit (Session reinitiation) 11-38
Max Sessions (Maximum number of sessions) 11-39
Min 1st Spkrs (Minimum number of first speakers) 11-39
PB Sessions (Number of prebound sessions) 11-39
Queue Binds 11-39
Blank Mode 11-39

Editing defaults 11-39
Node 11-40
Local LU 11-40
TP 11-41
Line 11-41
Partner 11-42
Remote LU 11-42
Mode 11-43

Deleting network components 11-43
Printing a configuration file 11-43

Contents Ix

Chapter 12 The MacAPPC Administration Program 12-1

The Administration program menu bar 12-2
Conventions used in the Administration program 12-3

Special cursor 12-3
Network display control 12-3
Severity control 12-3

Starting a MacAPPC server 12-4
Server Name 12-5
Memory Size 12-5
Slot 12-5

Displaying network components and sessions 12-5
Exchange ID 12-6
Access Type 12-6
Monitor Timer 12-6

Displaying a local LU 12-9
LocalLU 12-10
LUID 12-10
Net Name (Local LU network name) 12-10
Net Qual (Local LU network qualifier) 12-10
LU Sec (LU security) 12-10
Max Sess (Maximum number of sessions) 12-10
Act Sess (Number of active sessions) 12-10
Wait Time 12-10
Max TPs (Maximum transaction programs) 12-11
User IDs 12-11
Profiles 12-11
Transaction Programs 12-11

x Contents

Displaying a transaction program 12-11
TP Name 12-12
Local LU 12-12
Net Name (Transaction program network name) 12-12
Status 12-12
Conv Type (Conversation type) 12-12
Sync Level (Synchronization level) 12-12
PIP (Program initialization parameters) 12-12
PIP Count 12-12
PIP Check 12-13
Data Mapping 12-13
FMH Data 12-13
LUW (Logical unit of work) 12-13
Privilege 12-13
Security Required 12-13
UserlDs 12-14
Profiles 12-14

Displaying a line 12-14
Line Name 12-14
Line Type 12-15
Line Status 12-15
Line Number 12-15
Role Type 12-15
Connect Type 12-15
Max BTU (Maximum basic transmission unit length) 12-15
Line Speed 12-15
Max Retries (Maximum number of retries) 12-15

Idle Time 12-16
NP Recv Time (Nonproductive receive time) 12-16
Max I-Frames (Maximum number of I-frames) 12-16
NRZI Support 12-16
DuplexType 12-16

Displaying the station and control point 12-16
Station Name 12-17
Line Name 12-17
Status 12-17
ALS Address (Adjacent-link-station address) 12-17
Phone Number 12-17
CP Name (Control point name) 12-17
Exch ID (Exchange ID) or CPU ID 12-17
Exch ID 12-17
CPUID 12-18

Displaying a remote LU 12-18
Remote LU 12-18
Local LU 12-18
Net Name (Remote LU network name) 12-18
Net Qua! (Remote LU network qualifier) 12-18
CP Name (Control point name) 12-18
Init Q Req (Queue session-initiation requests) 12-19
Parallel Sess (Parallel sessions) 12-19
CNOS Name 12-19
Password 12-19
Lei Sec (Local security) 12-19
Rmt Sec (Remote security) 12-19

Displaying a mode 12-20
Mode Name 12-20
Local LU 12-20
Remote LU 12-20
Adj Station (Adjacent station name) 12-20
Sync Level (Synchronization level) 12-20
PB Sessions (Number of prebound sessions) 12-20
Max Sessions (Maximum number of sessions) 12-21
Min 1st Spkrs (Minimum number of first speakers) 12-21
Min Bidders (Minimum number of bidders) 12-21
Send Pacing 12-21
Recv Pacing (Receive pacing) 12-21
Max RU UB (Maximum request/response unit upper

bound) 12-21
Max RU LB (Maximum request/response unit lower

bound) 12-21
Term Count (Termination count) 12-21
Session Reinit (Sessiori reinitiation) 12-22
Queue Binds 12-22
Blank Mode 12-22
Drain Local 12-22
Drain Remote 12-22

Displaying a session 12-22
Session ID 12-23
Polar Type (Polarity type) 12-23
Conv ID (Conversation ID) 12-23
Prog ID (Program ID) 12-23

Contents xi

Managing network components and sessions 12-23
Updating the server window 12-23
Starting and stopping CNOS 12-24
Activating network components and sessions 12-25

Order of activation 12-25
Lines 12-25
Stations 12-25
Local LUs 12-26
Remote LUs 12-26
Modes 12-26
Sessions 12-26

Deactivating network components and sessions 12-26
Order of deactivation 12-27
Sessions 12-27
Modes 12-27
Local LUs 12-28
Stations 12-29
Lines 12-29

Logging 12-29
Log settings options 12-29

Class 12-30
Type 12-30
Severity 12-30
Check for message every _ seconds 12-30

Log Window 12-31
Stopping a MacAPPC server 12-31

Appendix A MacAPPC Interface Fiie A-1

Appendix B MacAPPC Errors File B-1

Appendix C MacAPPC Result Codes C-1

MacAPPC result codes C-2
Major Code 00-noErr: Function completed normally C-2
Major Code 01-usageErr: Function aborted, usage error C-2
Major Code 02-badComplEr: Function aborted, bad

completion C-13
Major Code 03-stateErr: Function aborted, state error C-13
Major Code 05-allocErr: Function aborted, allocation

error C-13
Major Code 07-progErr: Program error C-14
Major Code 09-deallocErr: Deallocated C-15
Major Code 10-ctlOpErr: Control operator error C-15
Major Code 11-nodeOpErr: Node operator error C-16

Appendix D MacAPPC RouHne Mapping D· 1
Conversation routine mapping D-2
Control operator routine mapping D-3
Node operator routine mapping D-3
Transaction program routine mapping D-4

xii Contents

J)

Appendix E MacAPPC Conversation Parameter Mapping E-1

MC_ALLOCA TE is MCAllocate E-2
MC_CONFIRM is MCConfirm E-2
MC_CONFIRMED is MCConfirmed E-2
MC_DEALLOCA TE is MCDeallocate E-3
MC_FLUSH is MCFlush E-3
MC_GET_A'ITRIBUTES is MCGetAttributes E-3
MC_POST_ON_RECEIPT is MCPostOnReceipt E-4
MC_PREPARE_TO_RECEIVE is MCPrepareToReceive E-4
MC_RECEIVE_AND_WAIT is MCReceiveAndWait E-4
MC_RECEIVE_IMMEDIATE is MCReceivelmmediate E-5
MC_REQUEST_TO_SEND is MCRequestToSend E-5
MC_SEND_DATA is MCSendData E-5
MC_SEND_ERROR is MCSendError E-6
MC_TEST is MCTest E-6
BACKOUT is CVBackout E-6
GET_TYPE is CVGetType E-6
SYNCPT is CVSyncPoint E-7
WAIT is CVWait E-7
ALLOCATE is BCAllocate E-7

..r CONFIRM is BCConfirm E-8
CONFIRMED is BCConfirmed E-8
DEALLOCATE is BCDeallocate E-8
FLUSH is BCFlush E-8
GET_A'ITRIBUTES is BCGetAttributes E-9
POST_ON'""RECEIPT is BCPostOnReceipt E-9
PREP ARE_ TO _RECEIVE is BCPrepareToReceive E-9
RECEIVE_AND_WAIT is BC.ReceiveAndWait E-10
RECEIVE_IMMEDIATE is BCReceiveimmediate E-10
REQUEST_TO_SEND is BCRequestToSend E-10
SEND_DATA is BCSendData E-11
SEND_ERROR is BCSendError E-11
TEST is BCTest E-11

Appendix F MacAPPC Control Operator Parameter Mapping F-1

CHANGE_SESSION_LIMIT is COChangeSessionLimit F-2
INITIALIZE_SESSION_LIMIT is COinitializeSessionLimit F-2
RESET_SESSION_LIMIT is COResetSessionLimit F-2
PROCESS_SESSION_LIMIT is COProcessSessionLimit F-3
ACTIV A TE_SESSION is COActivateSession F-3
DEACTIV ATE_SESSION is CODeactivateSession F-3
DEFINE_LOCAL_LU is CODefineLocalLU F-3
DEFINE_REMOTE_LU is CODefineRemoteLU F-4
DEFINE_MODE is CODefineMode F-4
DEFINE_TP is CODefineTP F-5
DISPLAY_LOCAL_LU is CODisplayLocalLU F-6
DISPLAY _REMOTE_LU is CODisplayRemoteLU F-6
DISPLAY_MODE is CODisplayMode F-7
DISPLAY_TP is CODisplayTP F-7
DELETE is CODelete F-8

Contents xiii

Appendix G MacAPPC Result Codes Mapping G-1

Conversation return codes G-2
Control operator return codes G-3

Appendix H HyperCard APPC H-1

Setup H-2

xiv Contents

Physical requirements H-2
Software requirements H-2

Starting the MacAPPC server H-2
Overview H-3

Introduction H-3
HyperCard APPC Application Programming Interface

(API) H-3
MacAPPC Lab H-4

MacAPPC routine cards H-6
Supplied Values parameters H-7
Returned Values parameters H-7
Other elements H-9
Lab Help H-9

Sample Application H-11
APPC Mail Configuration H-12
Postmaster H-13
Mailbox H-14

Sample session: Stepping through a conversation H-15
Developing HyperCard APPC applications H-20

APPC XCMD H-20
get62Srvr XCMD H-21
xConst XFCN H-22
errStr XCMD H-22
HyperCard APPC scripts and handlers H-23

Staclc script H-23
Script of the first card H-23
Routine cards' background script H-25
Scripts of the routines cards H-25
Background script of the sample application H-26
Postmaster card script H-27
Mailbox card script H-27

XData XCMDs and XFCNs H-28
xDefine H-29
xGlobal H-30
xPut H-31
xGet H-32
xLockH-32
xPtrH-32
xFill H-33
xSize H-33
xDispose H-33
xMove H-34
xResource H-34
Special parameters H-36

fieldSpec parameter H-36
ptrType parameter H-37

Sample handlers H-37
XData errors H-39

•
'
. l

Basic data types H-40
Byte alignment of fields H-41

(Appendix I MacAPPC Option Sets 1-1

Appendix J ASCII/EBCDIC Tables J-1

Appendix K Configuration Worksheets K-1

Glossary Gl-1

Index General Index & Index of Parameters and Constants

(

Contents xv

Figures and tables

Part I Introduction

Chapter 1 What Is APPC? 1-1

Figure 1-1
Figure 1-2
Figure 1-3

SNA network components 1-4
An APPC distributed transaction 1-8
A pair of transaction programs that share SNA
resources 1-9

Chapter 2 What Is MacAPPC? 2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

A hypothetical logical network structure 2-2
The MacAPPC environment 2-3
The MacAPPC server-client relationship 2-6
MacAPPC connection types 2-8
MacAPPC interactions 2-12
MacAPPC programs and server relationship 2-13

Part II MacAPPC Programmer's Reference

Chapter 3 MacAPPC Drivers 3-1

Table 3-1
Table 3-2

MacAPPC drivers and the categories of routines 3-3
MacAPPC drivers and their parameter blocks 3-4

Chapter 4 MacAPPC Conversation Driver 4-1

Table 4-1 States for mapped conversation routines 4-3
Table 4-2 States for type-independent conversation

routines 4-4
Table 4-3 States for basic conversation routines 4-4

Chapter 7 MacAPPC Transaction Program Driver 7-1

Table 7-1 Routines valid for different attach types 7-3

Part Ill MacAPPC User's Guide

Chapter 9 Installation 9-1

Table 9-1
Table 9-2
Table 9-3

AST-ICP communications card jumper settings 9-3
MacAPPC User disk 9-3
MacAPPC System disk 9-4

Chapter 10 Selecting a MacAPPC Server 10-1

Figure 10-1
Figure 10-2

The Chooser 10-2
Selecting a MacAPPC server 10-3

xvii

Chapter 11 The MacAPPC Configuration Program 11-1

xviii Figures and tables

Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9

Figure 11-10

Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19

Figure 11-20
Figure 11-21
Figure 11-22
Figure 11-23
Figure 11-24
Figure 11-25

Figure 11-26
Figure 11-27
Figure 11-28

Figure 11-29
Figure 11-30
Figure 11-31
Figure 11-32
Figure 11-33
Figure 11-34
Figure 11-35
Figure 11-36
Figure 11-37
Figure 11-38
Fi~re 11-39
Figure 11-40
Figure 11-41
Figure 11-42
Figure 11-43
Figure 11-44
Figure 11-45
Figure 11-46
Table 11-1

The File menu 11-3
The Edie menu 11-3
The Creace menu 11-4
Creating a new configuration file 11-5
The configuration file window 11-6
Configuration network components 11-7
Creating a local LU 11-8
The local LU window 11-9
Creating a new user ID and password for a local
LU 11-9
Local LU window wich new user IDs and
password 11-10
Creating a new profile 11-10
Local LU user IDs, profiles, and password 11-11
The local LU in relation to ocher componencs 11-11
Creating a transaction program for a local LU 11-12
The1Pwindow 11-13
Selecting a user ID for a 1P 11-14
Selecting a profile for a 1P 11-15
1P window with user ID and Profile liscs 11-15
The transaction program in relation to other
components 11-16
Creating a line 11-17
The line in relation to other componencs 11-17
Creating a partner node 11-18
The partner in relation to other componencs 11-19
Creating a remote LU 11-20
The remote LU in relation to other
componencs 11-21
Creating a mode 11-22
The mode in relation to other componencs 11-23
The configuration file window for the example
network node 11-24
Editing a local LU 11-25
Editing a user ID 11-26
Editing a profile 11-26
Editing a transaction program 11-27
Creating a user ID 11-30
Creating a profile 11-31
Editing a line 11-31
Editing a partner (control point and station) 11-34
Editing a remote LU 11-35
Editing a mode 11-37
Editing node default settings 11-40
Editing local LU default settings 11-40
Editing 1P default settings 11-41
Editing line default settings 11-41
Editing partner default settings 11-42
Editing remote LU default settings 11-42
Editing mode defaulc settings 11-43
Example of a configuration file printout 11-44
Security options 11-13 (-"·,,,

~ ... /,

Chapter 12 The MacAPPC Administration Program 12-1

Figure 12-1 The File menu 12-2

(Figure 12-2 The Edit menu 12-2
Figure 12-3 The Server menu 12-3
Figure 12-4 The Log menu 12-3
Figure 12-5 Selecting a configuration file 12-4
Figure 12-6 Editing server settings 12-5
Figure 12-7 The server window 12-6
Figure 12-8 Displaying components at the local LU level 12-7
Figure 12-9 Displaying the components at the remote LU

level 12-8
Figure 12-10 Displaying components at the mode level 12-8
Figure 12-11 Displaying components and sessions at the session

level 12-9
Figure 12-12 A local LU display window 12-10
Figure 12-13 A transaction program display window 12-11
Figure 12-14 A line display window 12-14
Figure 12-15 A station display window 12-17
Figure 12-16 A remote LU display window 12-18
Figure 12-17 A mode display window 12-20
Figure 12-18 A session display window 12-22
Figure 12-19 Activating a station 12-25
Figure 12-20 Deactivating a session 12-27
Figure 12-21 Deactivating a mode 12-28
Figure 12-22 Deactivating a station 12-29
Figure 12-23 Log settings selection 12-30
Figure 12-24 The log window 12-31

(Figure 12-25 Stopping a server 12-32

Appendix H HyperCard APPC H-1

Figure H-1 The HyperCard APPC stack title card H-3
Figure H-2 The navigation button pop-up menu H-4
Figure H-3 Navigation cards for the MacAPPC Lab H-5
Figure H-4 TPAttach routine card H-6
Figure H-5 Remote LU Name help field H-10
Figure H-6 Help on error result codes H-11
Figure H-7 APPC Mail title card H-12
Figure H-8 APPC Mail configuration card H-12
Figure H-9 APPC Mail Postmaster H-13
Figure H-10 APPC Mail Mailbox H-14
Table H-1 APPC major errors (APPC Hi Result) H-8
Table H-2 APPC conversation state H-8
Table H-3 HyperCard APPC record types H-24
Table H-4 XData errors H-39
Table H-5 Basic data types H-40

Appendix I MacAPPC Option Sets 1-1

Table 1-1 Supported APPC option sets I-1

Appendix J ASCII/EBCDIC Tables J-1

f TableJ-1 ASCII to EBCDIC J-1
TableJ-2 EBCDIC to ASCII J-2

Figures and tables xix

Appendix K Configuration Worksheets K-1

x x Figures and tables

Figure K-1
Figure K-2

MacAPPC remote configuration worksheet K-2
MacAPPC local configuration worksheet K-3

(

Preface

About This Document

This document introduces MacAPPC™, an advanced communications product that is
Apple's implementation of the IBM LU 6.2 communications protocols on the Apple®
Macintosh® computer. Within the design of Systems Network Architecture (SNA), LU
6.2 permits program-to-program communication on processors that operate on a
peer-to-peer basis. LU 6.2 has become the IBM standard for distributed processing.

The implementation of LU 6.2 is known as Advanced Program-to-Program
Communication (APPC), which provides interprogram communication across
systems that use APPC. With APPC, transaction programs can be written to coordinate
distributed processing across a network of computers and peripheral devices.

This Apple implementation of APPC is called MacAPPC. Programs that use MacAPPC
on a Macintosh computer, or a network of Macintosh computers, are able to
communicate on a peer-to-peer basis with programs on other nodes of an SNA
network and perform distributed transaction processing with those programs.

With MacAPPC, a Macintosh programming environment is provided for additional
extensions of the SNA design, such as SNA Distribution Services (SNADS) and
Document Interchange Architecture (DIA), two major components in the SNA design
of office automation systems. Both of these systems use APPC for their foundation.

Intended audience
This document is intended for third-party software developers, MIS programmers and
managers, government systems integrators, and value-added resellers-anyone who
wishes to use the Apple implementation of APPC to write transaction programs in a
mixed IBM-Macintosh environment.

This document provides complete descriptions of the MacAPPC components, as well
as references to other source documents, to permit you to write APPC transaction
programs.

This document assumes that you have extensive development experience with the
Macintosh computer, or else are able to obtain such information from other
documents (such documents are listed in "Other Documents You May Need," later in
the Preface). It is also assumed that you are familiar with the IBM development
environment. Extensive knowledge is not assumed regarding SNA or APPC.

Intended audience xx i

Structure of this document
This document is divided into three parts and several appendixes that contain the
following information:

o Part I, "Introduction," explains the purpose of the MacAPPC product and briefly
introduces the SNA and LU 6.2 concepts and protocols that are used by MacAPPC.

o Part II, "MacAPPC Programmer's Reference," provides a complete description of
the MacAPPC driver routines and itemizes and defines each parameter for each
routine. This part, intended only for programmers, is divided into a chapter that
describes the general structure of the MacAPPC drivers, and individual chapters
that describe the conversation routines, control operator routines, node operator
routines, and transaction program routines. Within each chapter, the categories of
the routines are further broken down according to function. Finally, a chapter is
provided that shows a sample transaction program.

o Part III, "The MacAPPC User's Guide," is a thorough presentation of the
configuration and operation of MacAPPC, as well as the functions of the server, the
Chooser device, and the device drivers. Part III assumes little or no knowledge of
MacAPPC; it is designed to show anyone how to configure a MacAPPC server, as
long as the proper system information is provided.

o Appendix A, "MacAPPC Interface File," contains a printout of the C language
interface to the MacAPPC drivers.

o Appendix B, "MacAPPC Errors File," contains a printout of the MacAPPC error
values.

o Appendix C, "MacAPPC Result Codes," describes in detail the return code
parameters that the MacAPPC driver issues to indicate the success or failure of a
routine request.

o Appendix D, "MacAPPC Routine Mapping," provides a mapping of the IBM­
defined set of LU 6.2 verbs to the MacAPPC equivalents.

o Appendix E, "MacAPPC Conversation Parameter Mapping," provides a mapping
of the IBM-defined set of parameters for each LU 6.2 conversation verb to its
MacAPPC equivalent.

o Appendix F, "MacAPPC Control Operator Parameter Mapping," provides a
mapping of the IBM-defined set of parameters for each LU 6.2 control operator
verb to its MacAPPC equivalent.

o Appendix G, "MacAPPC Result Code Mapping," provides a mapping of the LU 6.2
conversation and control operator return codes to their MacAPPC equivalents.

o Appendix H, "HyperCard APPC™" provides an introduction to a HyperCard®
stack that helps you program in the MacAPPC environment.

o Appendix I, "MacAPPC Option Sets" provides a list of the LU 6.2 options
supported by MacAPPC.

o Appendix J, "ASCII/EBCDIC Tables" provides tables for translating between ASCII
and EBCDIC and vice versa.

o Appendix K, "MacAPPC Configuration Worksheets" provides worksheets to help
during use of the MacAPPC Configuration Program.

o The glossary provides hrief definitions of important MacAPPC and LU 6.2 terms.

xx ii Preface

Other documents you may need
The following documents are either referred to in this document, or else are
recommended for additional information on LU 6.2 or the Macintosh computer.

Macintosh computer documents
The Apple Technical Library, published by Addison-Wesley, is a set of technical
books from Apple Computer, Inc. It includes books that explain the hardware and
software of the Macintosh family of computers. The descriptions that follow may help
you decide which of the books will be most useful to you.

o Inside Macintosh, Volumes I, II, and III. These books cover the Macintosh
Toolbox and Operating System for the original 64K Macintosh ROM, along with
user interface guidelines and hardware information.

o Inside Macintosh, Volume IV. A delta guide (that is, it covers only what is new) for
the Macintosh Plus and Macintosh 512K enhanced computers (128K ROM).

o Inside Macintosh, Volume V. Also a delta guide. It covers what is different about
the Macintosh SE and Macintosh II computers (256K ROM).

o Technical Introduction to the Macintosh Family. An introduction to the hardware
and software design of the Macintosh family. This book serves as a starting point for
Macintosh technical documentation. It is oriented primarily toward the Macintosh
Plus, Macintosh SE, and Macintosh II computers, but it also touches on earlier
versions of the Macintosh where these differ from the Macintosh Plus.

o Programmer's Introduction to the Macintosh Family. Provides an overview of
software development for the Macintosh family of computers. Tilis book focuses on
the differences between event-driven programming and more traditional
programming techniques. It covers such topics as QuickDraw™ graphics, screen
displays, and the Macintosh User Interface Toolbox.

o Human Interface Guidelines: Tbe Apple Desktop Interface. A description of the
Apple user interface for the benefit of people who want to develop applications.

o Inside Macintosh X-Ref Comprehensive indexes, routine lists, and a glossary for
Inside Macintosh and other Macintosh programming books.

Other books that may be helpful include the following, which are available from the
Apple Programmer's and Developer's Association (APDA™).

o Macintosh Programmer's Workshop Reference: A guide to the Macintosh
Programmer's Workshop (MPWTM) Shell and utilities, including the resource editor
(ResEdit), resource compiler (Rez), Linker, Make facility, and debugger. ·

o MPW Assembler Reference. A guide to preparing source files to be assembled by
the Macintosh Programmer's Workshop Assembler.

o MPW Pascal Reference. Tilis manual provides information about the MPW Pascal
language and the use of the MPW Pascal programming system.

o MPW C Reference. This manual tells how to write C programs that you can link with
programs written in MPW Pascal.

o Macintosh Coprocessor Platform Developer's Guide. This manual is the guide to
the real-time multi-tasking operating system (MCP operating system) for the smart
card on which MacAPPC runs.

Other documents you may need xxlli

The Apple Programmers and Developers Association (APDA ™) provides a wide
range of technical products and documentation, from Apple and other suppliers, for
programmers and developers who work on Apple equipment. For information about
APDA, contact:

Apple Programmers and Developers Association
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299
1-800-282-APDA (1-800-282-2732)
Fax: 408-562-3971
Telex: 171-576
AppleLink®: APDA

If you plan to develop hardware or software products for sale through retail channels,
you can get valuable support form Apple Developer Programs. Write to:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

Documents related to APPC and LU 6.2

The following is a list of IBM documents that are necessary for anyone writing
transaction programs that use LU 6.2 protocols.

o SNA Format and Protocol Reference Manual for LU Type 6.2 (GC30-3084). This
manual, often referred to as the "FAP manual" or "FAPL," describes in detail the
APPC functions, as well as underlying LU 6.2 aspects that are invisible to
transaction programs.

o SNA Format and Protocol Reference Manual for Type 2.1 Nodes (SC30-3422).
The PU 2.1 manual provides detailed information on the PU 2.1 node similar to
that contained in the LU 6.2 FAPL

o SNA Transaction Programmers Reference Manual for LU Type 6.2 (SC30-3269).
This manual, often referred to as the "TPRM manual" or "TPRM," provides a
formal description of the syntax used to define the protocol boundary, as well as
the view of LU 6.2 as seen from the perspective of a transaction program.

The following book may be useful to transaction program writers, or anyone else
interested in an overview of the LU 6.2 protocols.

o An Introduction to Advanced Program-to-Program Communication (APPC)
(GG24-1584-0l). This manual is an introduction to APPC, including overviews of
both the F APL and the TPRM, as well as product implementations.

xx Iv Preface

(

(
~,

~· ./

Obtaining additional manuals
Additional copies of this manual can be obtained through APDA.

Conventions used In this document
In this document, tenns are printed in boldface when they are introduced. These
terms are also included in the glossary.

Program listings, and text that is a tenn used by MacAPPC, is presented in Courier
typeface.

The term verb is used within APPC to describe an APPC routine. In this document, the
more familiar Macintosh term routine is used throughout.

Conventions used In this document xx v

... ,/

(
Part I

Introduction

This part consists of two chapters that introduce the userto Systems Network
Architecture (SNA), Advanced Program-to-Program Communications (APPC), and
MacAPPC, Apple's implementation of APPC on the Apple Macintosh computer.

Chapter 1 provides a brief introduction to SNA and APPC and describes functional
layers, logical unit type 6.2, the LU 6.2 protocol boundary, resource allocation, the
transaction program, and distributed transaction processing.

Chapter 2 introduces the user to MacAPPC and describes the Macintosh user
interface, server-client architecture, security, transmission media, MacAPPC drivers,
MacAPPC Chooser device, MacAPPC Configuration program, MacAPPC
Administration program, and the MacAPPC software and server relationship.

(
Chapter 1

What Is APPC?

1-1

In 1974, IBM introduced its Systems Network Architecture (SNA) for the purpose
of uniting several generations of mainframe computers, operating systems, peripheral
devices, and telecommunications systems within a single global communications
architecture. Prior to SNA, these components were often incompatible; with SNA, the
unification of heterogeneous hardware platforms and operating systems became
possible for the first time.

In 1985, IBM announced Advanced Program-to-Program Communication
(APPC), an enhancement to SNA. APPC enhances SNA by simplifying network
design, improving data handling, reducing network overhead, and providing a single
standard for other vendors. This is accomplished by breaking away from the
hierarchical, master-slave relationship of mainframe to terminal that was an integral
part of SNA.

APPC provides direct program-to-program links and true program-to-program
connectivity. With APPC, intelligent devices such as personal computers and
workstations are able to communicate with each other and initiate tasks on a network
with authority equal to that of the mainframe. In this fashion, APPC permits true
distributed processing; in fact, APPC is now IBM's single strategic architecture for
distributed transaction processing.

The equality provided by APPC is made possible by the design of its software
components, logical unit (LU) type 6.2 and physical unit (PU) type 2.1. LU type 6.2
provides program-to-program communication between transaction programs
(programs that provide transaction processing). PU type 2.1 provides program-to­
program communication between hardware units. These components are designed to
make use of the tremendous power of personal computers that has developed since the
advent of SNA.

Distributed processing allows the intelligence in a network to be shared among the
network's participants. By distributing the intelligence, costs can be reduced and
network traffic can be relieved. With APPC established as a standard interface, you
may have products of various vendors and still be able to unify your heterogeneous
network without duplication of equipment.

Distributed error recovery is part of the control of resources that are distributed across
a network. Distributed error recovery provides for the restoring of resources to their
original states when errors occur.

The management and allocation of resources across the network is a central function
of APPC. An LU may schedule the allocation of resources and provide necessary
services.

A network that implements APPC is able to participate in the following functional
benefits:

o distributed processing of transactions across the network

o distributed error recovery

o distributed resource management across the network in distributed transaction
processing

1-2 Chapter 1: What is APPC?

(

With APPC, a network can fully exploit the capabilities of extensions to SNA that
provide office automation architectures, such as SNA Distribution Services (SNADS)
and Document Interchange Architecture (DIA). Applications already exist that make
use of these designed extensions, such as the Distributed Office Support System
(DISOSS).

The SNA network
An SNA network is divided into physical and logical components. The physical
network consists of actual processors, called nodes, and data iinks between the nodes.
The logical network consists of a set of software components called network
addressable units (NAUs), including logical units (LUs), physical units CPUs), and
system services control points (SSCP). These NAUs are interconnected by a path
control network consisting of the path control, data link control, and physical layers.

The logical connection between two NAUs is a session; although several types of
sessions exist, the end user is aware of only one type, which is LU to LU. When two LUs
establish a session, information flows between them by means of a data stream. Over
the session, LUs exchange information by means of message units called
request/response units (RUs).

Sessions are established when one LU sends another LU an SNA request known as a
bind. Traditionally, the bind determines a primary and a secondary for the session,
usually with the primary LU residing in the host, and the secondary LU residing in a
terminal or other device. With LU type 6.2, either LU may seive as the primary unit;
the decision as to which is primary and which is secondary is made during session
initiation.

The LU provides a connection into SNA for the end user, which may either be an
individual or a transaction program. The LUs provide protocols that allow end users to
communicate with each other and with other NAUs in the network. An LU can be
associated with more than one network address; this allows two LUs to form multiple,
concurrently active sessions between them.

There may be a one-to-one relationship between end users and LUs, but in general,
this is not necessary. The association between end users and the set of LUs is a function
of the implementation design.

Figure 1-1 shows a schematic outline of network components of a configuration. The
illustration provides a visual representation of the SNA network components and their
relationship to each other. The physical level consists of PU nodes linked by a
physical connection. The logical level consists of LUs that link the PUs and the
transaction programs (TPs). The end user level consists ofTPs that communicate with
otherTPs using LUs. The mode, not shown in Figure 1-1, is a single-session
connection or a group of parallel sessions having similar session-level parameters and
path-control characteristics.

. The SNA network 1-3

Figure 1-1

EJ

(LU)
Logical

unit

(PU)
Physical

unit
·node

SNA network components

Physical
level

(Physical
connection)

1-4 Chapter 1: What is APPC?

EJ

(PU)
Physical

unit
node

c:
Functional layers
The SNA network is divided into layers, each corresponding to a particular set of
network functions. Information is passed through the layers of the network by means of
message units (the RU, for example, is one category of message unit).

As a message is passed up and down the SNA functional layers, each layer performs a
set of control functions and may add control information to the message in the form
of message headers. These headers do not change the information in the message, but
merely communicate with the next layer of SNA to ensure that the message reaches its
next destination and is properly understood. As the message passes through layers,
the information headers that were added at one end of the network are stripped off and
read by the receiving end of the network. When the message reaches its destination, it
is back to its original form.

SNA carefully defines the interaction between network layers, including the parameters
that are included in the message headers. The logical communication that takes place

. between corresponding layers is defined as program-to-program communication.
It is the program-to-program protocol specifications that guarantee communication
between nodes that are of different types, are from different hardware manufacturers,
and have different software components.

The layers that make up an SNA network are grouped into two functional categories:

o NAU services, consisting of the transmission control layer, data flow control
layer, and function management layer

o path-control network services, consisting of the path-control and data-link
control layers of the network

As protocols are discussed and explained in this document, their functionality is
described in terms of their relationship to either NAU services or path-control network
services.

Logical unit type 6.2
LU 6.2 is a particular type of SNA logical unit. Several LU types are defined in SNA;
each type provides transmission capabilities and a set of services, such as resource
allocation, for a particular end user. Each hardware or software component on an SNA
network is assigned to an LU type; for example, LU types are defined for various
terminal types and printers. LU 6.2 is the LU type that provides the basis for APPC.
Prior to LU 6.2, remote devices were allowed only limited capability, such as terminal
emulation-that is, they were unable to participate in the processing of actual work.
Intelligent tasks were left to the mainframe host or front-end processor.

With LU 6.2, a program residing in one device is able to access a program in a remotb
device. The set of services that allows programs using LU 6.2 to communicate with "
each other is known as interprogram communication. Because LU 6.2 provides the
basis for this communication, the term LU 6.2 is often used as a synonym for APPC.
The purpose of APPC is to facilitate the development of distributed applications by
providing a set of verbs that are defined by the SNA architecture. Each routine
corresponds to an LU 6.2 service requested by a transaction program.

Logical unit type 6.2 1-5

Interprogram communication permits distribution of the processing of a transaction
among multiple programs within a network. The programs coordinate the distributed
processing by exchanging control information or data. The LU 6.2 protocol
boundary provides the structure for programs to communicate with one another in
order to process a transaction. The LU 6.2 protocol boundary is described in the next
section.

The capabilities provided by APPC are not all derived from the logical unit-much of
the power is provided by the LU's physical counterpart, the PU (physical unit). The
physical unit provides services needed to access and manage hardware units on the
network. Each PU type is assigned a number: for example, PU type 5 defines a
mainframe, PU 4 indicates a controller, and PU 2 defines a user-programmable
terminal node. The counterpart of LU 6.2 is PU 2.1, an enhancement of PU 2.0 that
provides program-to-program communication between PUs.

Unlike other LU types, LU type 6.2 is able to handle various data streams. A data
stream is defined as the characters and control codes that are passed between logical
units. For earlier LU types, the data stream was defined-for example, LU type 2
requires a 3270 data stream. A session of LU type 6 (of which LU 6.2 is a subset) can use
any data stream, thus making it compatible with a wide range of devices.

LU 6.2 provides a connection for its end user to the path-control network. The end
user may be an individual, accessing information via a terminal; in distributed
processing, the end user is a particular kind of application program, known as a
transaction program (TP), that performs a certain task (such as updating a database).

The LU 6.2 protocol boundary
The LU 6.2 protocol boundary is defined by the set of verbs and parameters that make
up the transaction program's logical interface to an SNA network (for MacAPPC
routines and parameters, see Part II, "MacAPPC Programmer's Reference"). The
protocol boundary is generic in the sense that it provides a syntactical representation
of the functions common to all products that implement LU 6.2. The value of a generic
description is that a program designer may plan an application that spans many
different products using a single generic interface, and then map the design to the
individual product-dependent interfaces.

The verbs (called routines in MacAPPC) that make up the protocol boundary may be
used to invoke services (such as synchronization services) by application subsystems
(such as CICS/VS). A subsystem that has its own application programming interface
may use another language or syntax to represent the APPC verbs to its application
programs. For example, a CICS programmer could use CICS commands that would be
translated into LU 6.2 routines. These commands could be communicated to another
CICS system that would translate the LU 6.2 verbs back into CICS commands-the
process is transparent to the end user.

1-6 Chapter l : What is APPC?

(

(" ,,

Resource allocation
In order to assist the transaction program in fulfilling its task, the LU makes a set of
resources available co it. Some resources are local to a transaction program, that is,
attached to the same LU as the program. Other resources are remote, which means
that they are attached to other LUs. Remote is defined in terms of the logical
configuration of the network; the LUs can be within the same physical node.

Resource allocation and control is a central function of APPC. Within APPC,
programs can ask the LU for access to a resource. The LU schedules allocation of
resources, and handles much of the overhead-for example, it creates new copies of
logical resources, such as sessions, when necessary. The LU provides resource control
in order to ensure integrity of the program's access to the resource.

The transaction program
A transaction program (TP) is a program that is executed by or within APPC and
performs services related to the processing of a transaction. A transaction involves a
specific set of input data and triggers the execution of a specific process or job. An
example is the entry of a bank customer's withdrawal or deposit and the updating of the
customer's balance.

TheTPmaybe

0

0

0

an application program that processes a transaction

an application that is one of several programs that make up a transaction
processing application

a system program chat performs system services for an application program
processing a transaction

The purpose of APPC is to provide programmers with the means of writing TPs that
can access nodes across the netw0rk, regardless of the brand or type of equipment
involved. This means that protocols unique to each particular computer or peripheral
device need not be hard-coded into a transat.:tion program. Instead, the TP can
search for and access information from any node, without regard for node model or
manufacturer.

The logical state that exists between two network addressable units to support a
succession of transmissions between the units is called a session. Two LUs may
connect to each other by one LU-LU session, called a single session, or connect to
each other by multiple LU-LU sessions, called paralld sessions. At the initiation of a
single or parallel LU-LU session, only one LU is the contention winner; the other is the
contention loser. This contention between the twoi LUs is called polarity.

i

The logical connection between a pair of transaction programs is called a
conversation. A TP initiates a conversation with its partner with the assistance of the
LUs. While a conversation is active, it has exclusive use of a session, but successive
conversations may use the same session.

The transaction program 1-7

Conversations connect TPs in pairs; however, any TPs directly or indirectly
connected to each other by conversations are participating in the same distributed
transaction. For example, in Figure 1-2, if TP A and TP Care connected by a
conversation, and, concurrently, TP Band TP Care connected by a conversation,
then TPs A, B, and C are all participating in the same distributed transaction.

Transaction
program

A

Figure 1·2

LU

Transaction
program

B

An APPC distributed transaction

LU

In the event of a conversation failure, the session can remain active. The conversation
is seen as a single unit of work, and may be precisely delimited by a data flow control
setvice called bracketing. By keeping the conversation intact as a unit, bracketing
helps guarantee data integrity.

1-8 Chapter 1: What is APPC?

Distributed transaction processing
Distributed processing involves two or more programs, usually at different systems,
cooperating to carry out some processing function. Distributed processing of a
transaction within an APPC network occurs when transaction programs communicate
by exchanging information over the sessions between their LUs. Figure 1-3 illustrates
the connection of two programs to APPC resources, including a session between their
LUs.

Transaction
program

A

A's resources
also available
to program

B

Figure 1-3

Transaction
program

B

B's resources
also available
to program

A

A pair of transaction programs that share SNA resources

The "other resources" shown in the figure may include other sessions as well as local
files and devices. The other sessions allow program A or program B to communicate
with other programs. During the communication between two programs, one
program may send a message over the session to another program, requesting access
to a local resource of the other program. In this way, a local resource of program B,
for example, may become a remote resource of program A.

All communication provided by APPC is program-to-program and accommodates a
variety of distributed processing connections. For example, a distributed parts
inventory could make good use of APPC services. Each warehouse belonging to a
company or division could maintain its individual physical inventory on an LU type
6.2 node. The corporate headquarters inventory could regularly compile inventory
totals from all relevant warehouses. In order to locate a given part, a transaction
programmer could write a program that inquired at each warehouse until the part was
found. This process simplifies the task by reducing the number of inquiries that are
sent to the host; instead, they are sent to each warehouse directly. When necessary,
the host can be accessed for centralized information.

Distributed transaction processing 1-9

~\'

1

(
Chapter 2

What Is MacAPPC?

(

2-1

MacAPPC™ provides communications and administrative utilities that implement the
elements of IBM's APPC architecture, including LU type 6.2 and PU type 2.1, on the
Apple® Macintosh® computer. By conforming to IBM's LU 6.2 protocols, MacAPPC
provides the basis for distributed transaction processing using Macintosh computers.

The task of building the components of a large network requires considerable time,
effort, and expertise. The power designed into LU type 6.2 increases the complexity of
this task by allowing for dynamic network configuration. The purpose of MacAPPC is
to simplify the configuration process by providing sophisticated but easy-to-use tools
that reduce complexity, speed data entry, and present options in a logical and usable
format.

In a large network, the number of configuration options can appear almost infinite; for
example, Figure 2-1 shows a representation of a hypothetical network configuration,
showing resources such as local LUs, remote LUs, modes, and sessions. MacAPPC
accommodates small and simple to extremely large and complex networks with equal
facility.

Session
5

Figure 2-1

Session
2

A hypothetical logical network structure

2-2 Chapter 2: What is MacAPPC?

(

(

(~

MacAPPC provides a programming interface to allow you to provide connectivity to
any other system that uses APPC. It permits the development of a heterogeneous
network of systems using Macintosh computers, IBM Personal Computers and
compatibles, and mainframes and mini-computers of various models and vendors.
With MacAPPC, you can integrate Macintosh computers with the communications
network used by an estimated three-quarters of the major corporations in the United
States, and by a large percentage elsewhere. In addition, because of its distributed
nature, MacAPPC makes these capabilities available to each Macintosh computer on
an AppleTalk® network system connected to a MacAPPC server. Figure 2-2
summarizes the scope of the MacAPPC environment.

UNIX

Figure 2-2

DEC
VAX

IBM 370
DB2

APPC
SNA

network

MacAPPC server

IBM
S/3X

j:

n~,o
~i Apple Talk i~

I: network : i~ . rtl D
I -,I !

~ ~Er
The MacAPPC environment

IBM PS/2
and

IBMPC

D

What Is MacAPPC? 2-3 ·

By making such connectivity possible, MacAPPC provides you (or your transaction
programmers) with the means of writing transaction programs for the Macintosh
computer in a distributed transaction environment. By virtue of the programming
interface provided by MacAPPC, the Macintosh programmer has access to all the
facilities of an SNA network.

MacAPPC includes a set of routines that conform to SNA's LU 6.2 design standards.
These routines, which are implemented in MacAPPC as Macintosh drivers, provide
the programming interface that allows a transaction programmer to use APPC func­
tions on the Macintosh computer. The categories of MacAPPC routines are as follows:

o Conversation routines handle the exchange of data between TPs over basic or
mapped conversations. These functions are accessed via the MacAPPC
Conversation Driver.

o Control operator routines are used in controlling aspects of LU components.
These functions are accessed via the MacAPPC Control Operator Driver.

o Node operator routines control aspects of PU components. These functons are
accessed via the MacAPPC Node Operator Driver.

o Transaction program routines perform connection and utility functions. These
functions are accessed via the MacAPPC Transaction Program Driver.

These routines are explained in detail in Part II, "MacAPPC Programmer's
Reference." Later releases of MacAPPC will include additional functionality that will
build on that provided by the current release of MacAPPC.

In addition, MacAPPC includes applications and utilities that allow for installation
and operation of network components, such as logical units, physical units, sessions,
and modes. The following applications and their respective functions are provided:

o The Administration program and Configuration program, which provide the
means to define resources such as logical units and physical units, establish
sessions, establish modes, and perform numerous other tasks. ·

o The MacAPPC server, which resides on an intelligent communications card in an
expansion slot of a Macintosh II. The MacAPPC server provides full support for LU
6.2/PU 2.1 functions. It also provides network services for other Macintosh
computers on an AppleTalk network system.

o The MacAPPC Chooser device, which permits the user to select any server on an
AppleTalk network.

The functions of these components are further explained in Part III, "MacAPPC User's
Guide."

2-4 Chapter 2: What is MacAPPC?

\

(

.(

Macintosh user interface
MacAPPC provides all of the applications and utilities needed to configure, install,
and activate your network. The Administration program, the Configuration program,
and the MacAPPC Chooser device are the components that provide the Macintosh­
defined user interface.

The usefulness of MacAPPC extends beyond the ability to write transaction programs.
Equally important is the fact that your programming tasks and system access are made
considerably easier by the Macintosh user interface. Through the use of icons,
windows, scroll bars, dialog boxes, and other Macintosh user features, the MacAPPC
administrative utilities provide clear and simple formats for building sessions;
establishing addresses; defining logical units, physical units, and modes (including
parameters); and performing the variety of other tasks that are associated with APPC.

For the MIS programmer, the interface provided by the Macintosh computer offers
ease of use, rapid modification of a network configuration, and a high degree of
visibility for such system features as the logging facility.

For the Macintosh software developer, MacAPPC provides easy connectivity to any
computer that uses APPC. The Macintosh look and feel are the same as in other
Macintosh software, and the Macintosh interface is maintained. In addition, the full
range of Macintosh programming languages and programming flexibility is available.

Server-client architecture
The MacAPPC protocols are implemented by the MacAPPC server, a software utility
that operates on an intelligent communications card residing in a slot on a Macintosh II
computer. This card provides a server-client architecture that extends MacAPPC to
other Macintosh computers--the clients-over an AppleTalk network system.

Because each MacAPPC server runs on a communications card, not on the Macintosh II,
the computer is not dedicated to the server function. Any client on an AppleTalk network
may access the MacAPPC server, permitting a programmer on that client to write and
run transaction programs that use the MacAPPC routines. In fact, any computer that has
access to the AppleTalk network system can function as a client of the MacAPPC server.
See Figure 2-3 for an illustration of the server-client relationship.

Server-client architecture 2-5

Server
Macintosh II

Communications
link

--- ---

Communications---...
cord

AppleTolk network

Client
Macintosh
computers

Figure 2·3
The MacAPPC server-client relationship

2-6 Chapter 2: What is MacAPPC?

/ ',)

(

(

Security
MacAPPC supports two levels of security: session level and conversation level.

Session level LU-LU verification is used to verify the identity of each LU to its session
partner LU during activation of a session. A sesssion between two LUs cannot be
activated unless each LU's view of the other LU is the same. In esssence, each node
must see a mirror image of the other node, both in configuration and in security, in
order for a session to be successfully bound.

Conversation-level access security information is carried on allocation requests in
order for the receiving LU to verify the identity of the user ID, and to control access to
its resources. The security information includes a user ID together with a password or
the already-verified indication. The information may also include a prof"de, which is
used at the conversation level to provide an additional element of structure and
security to the network configuration. Some examples of profiles are department,
store, corporation, section, division, function, building, location, and code
designation.

For more information about security, see Chapter 5.

Transmission media
MacAPPC is device independent, operating-system independent, and medium
independent. At this time, IBM has implemented APPC on Synchronous Data Link
Control (SDLC) and Token Ring. Currently, MacAPPC supports link connections that
use IBM's SDLC protocols. As IBM extends the transmission capability of LU 6.2,
MacAPPC can be expanded to accommodate those media as well.

MacAPPC supports leased, switched, and multipoint connections, as well as multiple
links of these three connection types. A leased connection is a directly connected line.
A switched connection (for example, a telephone line) is established when required
and broken when a session is completed. A multipoint connection is a party line in
which several users share the same line. Multiple links are multiple connections from
one LU to other LUs. These connection types are shown schematically in Figure 2-4.

Transmission media 2-7

Leased

Node
line

Node

c;J Node

l l I . Multipoint line

11
Node

Multiple
lines

Node

~
[Modem]

Modem

Switched
line

Node

Figure 2-4
MacAPPC connection types

MacAPPC drivers
MacAPPC also provides a programming interface for transaction programs to a set of
RAM device drivers. Macintosh programs call the MacAPPC routines that perform
APPC functions by the use of drivers.

MacAPPC Conversation Driver
LU 6.2 defines three types of conversation routines:

o Mapped conversation routines are used by application programs at a high level to
exchange data records.

o Basic conversation routines are a low-level interface used by seivice TPs or by other
specialized application TPs.

o Type-independent conversation routines are used with both mapped and basic
routines to perform certain functions, such as wait for posting.

2-8 Chapter 2: What is MacAPPC?

(

(

When mapped routines are used, the data does not need to be formatted by the
application program. Basic routines are normally used only by service programs-the
specially defined programs which provide common services across the network, such
as the change-number-of-sessions (CNOS) routines.

The difference between mapped and basic conversations is significant. In mapped
conversations, the data must be formatted into General Data Stream (GDS)
variables. GOS variables consist of two bytes containing the length of the variable, two
bytes containing an IBM-assigned code identifying the type of variable, and then
data. In basic conversations the data has less internal fonnatting--only the length and
the data are included. Mapped routines handle all of the formatting for mapped
conversations (making it transparent to the application). BasiC routines handle none
of the formatting; instead, data must be presented to the routine packed in the correct
format. For this reason, mapped routines are usually considered easier to use.

MacAPPC Control Operator Driver

SNA specifies a control operator function for an LU, but does not define it; that is, the
control operator may be an individual or a program. Control operator routines define
the protocol boundary for a control operator transaction program, which petforms
control operator functions for the LU. Control operator routines are divided into the
following categories:

o Change-number-of-sessions (CNOS) routines change, display, initialize, and reset
the number of sessions for a given mode.

o Session-control routines activate and deactivate an LU-LU session.

o LU definition routines define, modify, display and examine operating parameters
for a local LU, remote LU, and mode.

The LU control operator describes and controls the availability of certain resources:
for example, it describes network resources accessed by the local LU, and it controls
the number of sessions between the LU and its partners.

MacAPPC Node Operator Driver

Node operator routines are used to define and control the components of a PU 2.1
node. Their function is not specified by IBM; however, it is implied by the properties
that are assigned to the node by SNA. Node operator routines are divided into the
following categories: ·

o Node control routines are used to activate and deactivate node components.

o Node message routines are used to define and display node message queues and
messages.

o Node definition routines are used to define, display, and delete node components.

MacAPPC Transaction Program Driver

Transaction program routines are used to perform various transaction program tasks.
The connection between a transaction program and a Mac APPC server is known as an
attach. Each attach creates a separate logical instance of a program.

The MocAPPC drivers 2-9

Transaction program routines are divided into the following categories:

o Transaction program connection routines are used to attach and detach to a server
or an LU.

o Transaction program utility routines convert application-specific ASCII data to
EBCDIC, and vice versa.

A transaction program must attach to a server or LU before it can issue any
conversation, control operator, or node operator routines. Multiple attach requests
may be issued so the program can issue routines to more than one MacAPPC server or
LU. Each of these attaches creates a new logical instance of the program.

MacAPPC server
The MacAPPC server provides full support for LU 6.2 and PU 2.1 functions. The
MacAPPC server is data-link independent. It resides on an intelligent
communications card in an expansion slot of a Macintosh II computer. The operating
system of the card is independent of the Macintosh II operating system.

The MacAPPC server is also capable of providing network services for other
Macintosh computers on an AppleTalk network, in a server-client relationship. Each
server (and its clients) is seen as a single node to the SNA network.

The Macintosh II is not dedicated to the MacAPPC server (the communications card
performs this role); rather, it is independent of the server, and in fact may function as
a client of the server.

The MacAPPC server includes the following functions:

o PU 2.1 functions, including multiple sessions (up to 254), parallel sessions (up to
254), and PU 2.0 support (peripheral node).

o AppleTalk request and reply transactions, which provide transport of APPC
messages between the MacAPPC server and transaction programs on the clients.

o Two levels of security: conversation level and session level.

The SDLC functions include primary, secondary, and negotiable roles, multipoint
line support, multiple physical-link support, and leased and switched-line support.

MacAPPC Chooser device
The MacAPPC Chooser device is used to select a particular MacAPPC server from
those that you have loaded onto a communications card on your network. The
Chooser device displays the current selection, which can be either

o intemode (a MacAPPC server residing in a Macintosh II accessed across AppleTalk
network system), or

o intranode (a MacAPPC server residing in the same Macintosh II as the MacAPPC
Chooser device).

2-10 Chapter 2: What is MacAPPC?

(

(

The human interface takes the form of a MacAPPC server icon, along with a list of
active MacAPPC servers in the currently selected zone. You select a MacAPPC server
by clicking the appropriate server icon. See Chapter 10, "Selecting a MacAPPC
Server," for additional information.

MacAPPC Configuration program
The purpose of the Configuration program is to create a configuration file that
describes the components of a MacAPPC network. Components can be created,
edited, and deleted. In addition, you can describe conversation-level security
parameters for local LUs and TPs and session-level security parameters for local and
remote LUs. This file can then be read by the Administration program and used to
configure the server. Thus, the Configuration program does not use MacAPPC driver
routines, but rather builds a description of the network, which the Administration
program can then implement. See Chapter 11, "The MacAPPC Configuration
Program," for additional information.

MacAPPC Administration program
The purpose of the Administration program is to provide you with a ready-made way
to load the MacAPPC server onto the communications card, create a network
configuration using a configuration file created by the Configuration program, and
manage these configured network components. The Administration program uses
MacAPPC control operator and node operator routines to define, display, and
manage the network.

The Administration program does not dynamically modify the MacAPPC server;
therefore, each time you change a component setting in the configuration file, the
MacAPPC server must be restarted. See Chapter 12, "The MacAPPC Administration
Program," for additional information.

MacAPPC software and server relationship
As you plan your use of MacAPPC, it is important to keep in mind the functional
relationships between the MacAPPC software and the server. Figure 2-5 schematically
illustrates the interrelationships between the Administration program, the
Configuration program, the MacAPPC server, and the drivers that are used to call the
MacAPPC routines.

Software and server relationship 2~ 11

Transaction
program

Device
Manager

Administration

MacAPPC drivers
MacAPPC

server

Start

Configuration
program program -----------------.....

Figure 2-5
MacAPPC interactions

Figure 2-6 summarizes the functions and interactions of the Configuration program,
the Administration program, and the server.

2-12 Chapter 2: What is MacAPPC?

0

0

0

0

Configuration
program

Provides u~er interface for
definition and modification
of network component
parameters

Provides user interface tor
definition and modification
of network security
parameters

Provides logic error
checking of formats
and configuration
parameters

Generates configuration
file describing the physical
and logical components
of the network

Figure 2·6

Administration
program

0 Reads configuration
resource tile

Q Downloads the server
to the communications
card

0 Uses MacAPPC control
operators and node
operators to define and
manage the network

Q Starts and stops server

0 Activates and deactivates
LUs. lines. stations. and
sessions

0 Initializes and resets
session limits

0 Provides real-time
network logging

::I

0

MacAPPC server on
communications card

Provides
program-to-program
communication
between transaction
programs

Provides Interface link
to network

MacAPPC programs and server relationship

Software and server relationship 2· 13

\
,''

(

(

Part II

MacAPPC Programmer's
Reference

This part consists of six chapters that provide a detailed programming reference for
MacAPPC, Apple's implementation of APPC on the Apple Macintosh computer.

Chapter 3 describes the general structure of the MacAPPC drivers and explains how to
construct a Macintosh program using the drivers.

Chapter 4 provides a detailed description of each MacAPPC conversation driver
routine and includes a summary of the conversation driver constants, data structures,
and routines at the end of the chapter.

Chapter 5 provides a detailed description of each MacAPPC control operator routine
and includes a. summary of the control operator constants, data structures, and
routines at the end of the chapter.

Chapter 6 provides a detailed description of each MacAPPC node operator routine
and includes a summary of the node operator constants, data structures, and routines
at the end of the chapter.

Chapter 7 provides a detailed description of each MacAPPC transaction program
routine and includes a summary of the transaction program constants, data structures,
and routines at the end of the chapter.

Chapter 8 shows an example of a fragment of a transaction program.

(

Chapter 3

MacAPPC Drivers

3-1

Part of MacAPPC has been implemented as a set of Macintosh device drivers. The
MacAPPC drivers provide the programmatic interface for transaction programs to
perform APPC functions.

This chapter describes the MacAPPC drivers in detail. You should already be familiar
with

o the Memory Manager, including the allocation of memory in the heap and the use
of pointers and handles, as discussed in Chapter 1 of Volume II of Inside
Macintosh

o the Device Manager, including the handling of interrupts and the use of devices and
device drivers, as described in Chapter 6 of Volume II of Inside Macintosh

Using MacAPPC drivers
A device driver can be either opened or closed. After a driver has been opened, an
application can transmit control information to it, read data from it, and write data to
it. Before it is opened, you identify a driver by its driver name; after it is opened, you
identify it by its reference number.

You access the MacAPPC drivers by making Macintosh Device Manager calls. Chapter
6, "The Device Manager," in Inside Macintosh, Volume II will be an important
resource for you as you learn how to use the MacAPPC drivers.

The MacAPPC drivers are:

o the MacAPPC Conversation Driver, .CV62

o the MacAPPC Control Operator Driver, .C062

o the MacAPPC Node Operator Driver, .N062

o the MacAPPC Transaction Program Driver, .TP62

To begin using the MacAPPC routines, you must open the .CV62, .C062, .N062, and
.TP62 drivers by using the PBOpen or OpenDriver routine. You can then make
control calls to any of the MacAPPC drivers requesting a particular MacAPPC routine
to be performed. The interface files specify the data structures and constants you must
use when making control calls to the MacAPPC drivers. Chapters 4 through 7
document this interface, and Appendixes A and B list the interface and error files.

Each driver contains a set of routines, as shown in Table 3-1.

3-2 Chapter 3: MacAPPC Drivers

Table 3-1
MacAPPC drivers and the categories of routines

.CV62
Conversation routines

Mapped routines
MCAllocate

MCConfirm

MCConfirmed

MCOeallocate
MCFlush

MCGetAttributes

MCPostOnReceipt

MCPrepareToReceive
MCReceiveAndWait

MCReceiveimmediate

MCRequestToSend
MCSendData

MCSendError

MCTest
Type-Independent routines
CVBackout

CVGetType

CVSyncPoint
CVWait
Basic routines
BCAllocate

BCConf irm
BCConfirmed

BCDeallocate

BCFlush
BCGetAttributes

BCPostOnReceipt
BCPrepareToReceive
BCReceiveAndWait

BCReceiveimmediate
BCRequestToSend

BCSendData
BCSendError

BCTest

.C062
Control operator routines

CNOS routines
COChangeSessionLimit

COinitializeSessionLirnit

COProcessSessionLimit

COResetSessionLimit
Session control routines
COActivateSession

CODeactivateSession
LU definition routines
CODefineLocalLU
CODef ineMode

CODefineRemoteLU

CODef ineTP

CODelete
COisplayLocalLU
CODisplayMode

CODisplayRemoteLU
CODisplaySession

CODisplayTP

.N062 .TP62
Node operator routine TP routines

Node control routines
NOActivateLine

NOActivateLU

NOActivateNode

NOActivateStation
NODeactivateLine

NODeactivateLU

NODeactivateNode

NODeactivateStation
Node message routines
NoDefineMessageQueue

NODisplayMessage

NoDisplayMessageQueue
Node definition routines

Connection routines
TPAttach

TPDetach

Utlllty routines
TPAsciiToEbcdic
TPEbcdicToAscii

NODefineCP

NODefineLine

NODefineNode
NODefineStation

NODelete
NOOisplayCP
NODisplayLine

NODisplayNode

NODisplayStation

Using MacAPPC drivers 3-3

Synchronous and asynchronous execution
You can execute MacAPPC routines either synchronously or asynchronously.

When your application executes a synchronous MacAPPC routine, the application
will not continue until the MacAPPC routine is completed.

When your application executes an asynchronous MacAPPC routine, an 1/0 request
is placed in the appropriate driver's 1/0 queue, and control returns immediately to
the executing program-possibly even before the actual 1/0 is completed. Requests
are taken from the queue one at a time, and processed; meanwhile, the executing
program is free to work on other things.

Routines that are executed asynchronously return control to the executing program
with the result code noErr as soon as the routine is placed in the driver's queue. This
doesn't indicate that the routine completed successfully; it simply indicates that the
routine was successfully queued to the appropriate driver. To determine when the
routine is actually completed, poll the ioResult field of the routine's parameter
block. The ioResult field, set to appcExec when the routine is executed,
receives the actual result code when the routine is completed.

Your application may specify a completion routine to be executed at the end of an
asynchronous operation by setting the ioCompletion field to a pointer to that
routine.

+ Note: See the Device Manager chapter in Inside Macintosh for information and
restrictions on writing completion routines.

MacAPPC driver parameter blocks
Routine parameters passed by an application to the Device Manager and routine
parameters returned by the Device Manager to an application are contained in a
parameter block, which is a data structure allocated by the application.

You pass a different type of parameter block for each of the MacAPPC drivers, as
shown in Table 3-2.

Table 3·2
MacAPPC drivers and their parameter blocks

Driver Parameter block

.CV62 cvParam

.C062 coParam

.N062 noParam

.TP62 tpParam

3-4 Chapter 3: MacAPPC Drivers

(

The definition for each of those parameter hlocks is contained in the variable-length
data structure APPCParamBlock, as follows:

APPCParamType = (cvParam,coParam,noParam,tpParam);

APPCParamBlock =RECORD
qLink: QElemPtr; {DRVR QElem pointer}
·1Type: INTEGER; {DRVR queue type}
ioTrap: INTEGER; {DRVR IO trap}
ioCmdAddr: Ptr; {DRVR IO command pointer}
ioCompletion: ProcPtr; {DRVR IO completion routine
ioResult: OSErr; {DRVR IO result}
ioNamePtr: StringPtr; {DRVR IO name pointer}
ioVRefNum: INTEGER; {DRVR IO Volume refNum}
appcRefNum: INTEGER: {APPC driver refNum}
appcOpCode: INTEGER; {APPC type of call}
appcHiResult: INTEGER; {APPC major result code}
appcLoResult: INTEGER; {APPC minor result code}
appcConvState: Byte; {APPC conversation state}
appcUserRef: LONGINT; {for your use}

CASE APPCParamType OF
cvParam:

coParam:

noParam:

tpParam:

END;
END;

APPCParamBlockPtr =
APPCParamBlockHandle=

{CV

{CO

{NO

{TP

parameters}

parameters}

parameters}

parameters}

"APPCParamBlock;
"APPCParamBlockPtr;

The particular fields for each type of parameter block are given in the summary at the
end of the corresponding chapter.

The maximum size of an APPCParamBlock data structure in bytes is specified by
one of the following constants:

pointer}

kAPPCSize =
kCVSize
kCOSize
kNOSize
kTPSize

2706;
2706;
192;
108;
1628;

Maximum APPC parameter block size
Conversation parameter block size
Control Operator parameter block size
Node Operator parameter block size
Transaction Program parameter block size

qlink, qType, and the 1/0 fields
The first four fields in each parameter block are handled entirely by the Device
Manager, and you usually don't need to be concerned with them. Those fields, along
with the four additional 1/0 fields, are documented in the Device Manager chapter in
Inside Macintosh.

MacAPPC driver parameter block 3-5

Your application can use the ioCompletion field to specify a completion routine
that will be executed when an asynchronous request is completed.

+ Note: See the Device Manager chapter in Inside Macintosh for information and
restrictions on writing completion routines.

The ioResult field is used to indicate the completion status of the MacAPPC
routine in progress.

The ioNamePtr and ioVRefNum fields are not used by MacAPPC drivers.

appcRefNum
The appcRe fNum field must contain the driver reference number returned when the
device driver is opened. You must supply the appropriate value for every MacAPPC
routine.

appcOpCode
The appcOpCode field specifies the MacAPPC routine to be executed. Use the name
of the routine preceded by a lowercase letter k, as follows:

kMCAllocate = 100; { Mapped conversation routines }
kMCConfirm • 101;
kMCConfirmed • 102;
kMCDeallocate = 103;
kMCFlush - 104;
kMCGetAttributes • 105;
kMCPostOnReceipt• 106;
kMCPrepareToReceive• 107;
kMCRecei veAndWai t • 108;
kMCReceiveimmediate • 109;
kMCRequestToSend = 110;
kMCSendData • lll;

kMCSendError • 112;

kMCTest - 113;

kCVBackout = 114; { Type independent routines }
kCVGet Type • 115;
kCVSyncPoint • 116;
kCVWait • 117;

kBCAllocate .. 118; { Basic conversation routines }
kBCConfirm - 119;
kBCConfirmed • 120;
kBCDeallocate • 121;
kBCFlush • 122;

kBCGetAttributes - 123;
kBCPostOnReceipt • 124;
kBCPrepareToRecei ve - 125;
kBCReceiveAndWait • 126;
kBCReceiveimmediate• 127;

kBCRequestToSend - 128;

3-6 Chapter 3: MocAPPC Drivers

~, j
\!

'"

("

___ ,,

kBCSendData •

kBCSendError =

kBCTest •

kCOChangeSessionLimit=

kCOinitializeSessionLimit =

kCOProcessSessionLimit =

kCOResetSessionLimit =

kCOActivateSession=

kCODeactivateSession =

kCODefineLocalLU =

kCODefineRemoteLU =

kCODefineMode =

kCODefineTP =

kCODisplayLocalLU =

kCODisplayRemoteLU=

· kCODisplayMode =

kCODisplaySession =

kCODisplayTP ..

kCODelete =

kNOActivateLine =

kNOActi vateLU =

kNOActivateNode =

kNOActivateStation=

kNODeactivateLine=

kNODeactivateLU =

kNODeactivateNode =

kNODeactivateStation =

kNODefineMessageQueue=

kNODisplayMessage =

kNODisplayMessageQueue =

kNODefineNode =

kNODefineCP =

kNODefineLine =

kNODefineStation =

kNODisplayNode =

kNODisplayCP •

kNODisplayLine =

kNODisplayStation =

kNODelete =

kTPAttach •

kTPDetach ..

kTPAscii ToEbcdic ..

kTPEbcdicToAscii •

12 9 i

130;

131;

200;

202;

203;

204;

205;

206;

207;

208;

209;

210;

211;

212;

213;

214;

215;

216;

300;

301;

302;

303;

305;

306;

307;

308;

304;

310;
309;

311;

312;

313;

314;

316;

317;

318;

319;
. 320;

400;

401;

403;

404;

{ Control operator CNOS routines }

{ Control operator session control routines }

{ Control operator LU definition routines }

{ Node operator node control routines }

{ Node operator node message routines }

{ Node operator node definition routines }

{ Transaction program connection routines }

{ Transaction program utility routines }

Each routine is described in detail in Chapters 4 through 7 in this guide.

MacAPPC driver parameter block 3-7

appcHiResult and appcLoResult
The values of the appcHiResul t and appcLoResul t fields are inserted by
MacAPPC when the routine is completed. See Appendixes B and C for the meanings
of the result codes.

appcConvState
The value of the appcConvState field is inserted by MacAPPC when the routine is
completed, and is always a member of the following set of constants:

kNullState = O;
kResetState = 1;
kSendState .. 2;

kRecei veState = 3;
kConfirmState = 4;

kConfirmSendState= 5;

kConfirmDeallocState = 6;

kDeallocState = 7;

kDeferState = 8; { not supported}

kSyncPtState = 9; { not supported}

kBackedOutState = 10; { not supported}

appcUserRef
Your application can use the appcUserRef field in any way it wants; the MacAPPC
drivers do not use the field.

MacAPPC driver control blocks
A transaction program is responsible for allocating and maintaining memory that the
MacAPPC device drivers use for their own purposes. This section defines these special
types of memory blocks.

Important
All of the blocks defined In this section are the exclusive property of the device
driver; they must remain locked and may not be altered or moved while being
used ..

Transaction Program Control Block (TPCB)
Your transaction program may need to allocate and maintain a block of memory
called the Transaction Program Control Block (TPCB). The MacAPPC device
drivers use this block to maintain state and control information about an individual
connection to a MacAPPC server.

3-8 Chapter 3: MacAPPC Drivers

(

Once the routine that initiates the connection succeeds, the TPCB becomes the
exclusive property of the device driver and must remain locked and not be altered or
moved until the connection with the MacAPPC server is terminated. When the
connection is terminated, your application may deallocate the TPCB.

Certain MacAPPC routines require you to supply a pointer to a new TPCB when a
connection is initiated. The same TPCB pointer must be supplied to every routine
executed fc r a particular connection once that connection has been established.

Conversation Control Block (CVCB)

Your transaction program may also need to allocate and maintain a block of memory
called the Conversation Control Block (CVCB). The MacAPPC device drivers use
this block to maintain state and control information about an individual conversation
with a partner transaction program.

Once the routine that initiates the conversation succeeds, the CVCB becomes the
exclusive property of the device driver. The block must remain locked and not be
altered or moved until the conversation with the partner TP is terminated. When the
conversation is terminated, your application may deallocate the CVCB.

Certain MacAPPC routines require you to supply a pointer to a new CVCB when a
conversation is initiated. The same CVCB pointer must be supplied to every routine
executed for a particular conversation once that conversation has been established.

PIP buffer

If the transaction program is using PIP data, it must also allocate and maintain a block
of memory called the PIP buffer. The MacAPPC device drivers use this block to hold
any PIP (program initialization parameter) data that may be sent or received from a
partner transaction program.

The PIP buffer is the exclusive property of the device driver. The block must not be
altered or moved for the duration of the conversation. This buffer must be large
enough to hold the largest amount of PIP data expected plus a 4-byte logical length ID
(LLID) per parameter plus one 4-byte LLID for the entire PIP data.

Mapped conversation buffer

If the transaction program is participating in a mapped conversation, it must also
allocate and maintain a block of memory called the mapped conversation buffer.
The MacAPPC device drivers use this block to hold any data sent or received from a
partner transaction program over a mapped conversation before the actual mapping
pf the data is performed.

The mapped conversation buffer is the exclusive property of the device drivers. The
block must not be altered or moved for the duration of the mapped conversation. This
buffer must be large enough to hold the largest complete data record expected plus a
4-byte logical length ID (LLID). The buffer may be any size needed by the transaction
program and may be tuned for performance enhancements.

MacAPPC driver control blocks 3-9

MacAPPC driver constants
The following constants are used in all MacAPPC drivers:

{ Block Sizes

kTPCBSize"'

kCVCBSize =

kLineSize =
kSDLCSize =

kMsqSize •

kMsqFieldSize •

kMaxPIP •

kMaxCVCB •

{ String Sizes

kMaxName •

kMaxTPName •

kMaxSecName ..

kMaxMapName "'

kMaxPhoneNumber •

kMaxLoqData •

kMaxLUWName =

kMaxLUWID •

kMaxLUWCorr •

kMaxLUP swd •

kMaxExch!D •

kMaxCPUID •

kMaxSDLCAddr =

3000;

3500;

17;

17;

44;

2;

256;

256;

8;

64;

10;

64;

20;

200;

17;

6;

8;

16;

8;

12;

2;

{ Define Operation Values

kiqnoreParam •

kFuncNotSupp ..

kFuncSupp •

kReplaceParam =

kDeleteParam •

kAddParam ..

kNextEntry -

(-1);
0;
1;

0;

1;

O;
0;

Transaction Program Control Block size

Conversation Control Block size }

f Maximum Line size

SDLC Line size }

Messaqe Structure size

Message Data Field size

Maximum # of PIPs

Maximum # of CVCB pointers}

Maximum generic string length

Maximum TP Name lenqth }

Maximum Security Field length

Maximum Map Name length }

Maximum phone number length

Maximum log data length }

Maximum LUW name length }

Maximum LUW ID length }

Maximum LUW correlator length

Maximum LU-LU password length (hex)

Maximum Exchanqe ID lenqth (hex) }

Maximum CPU ID length (hex) }

Maximum SDLC address length (hex)

3-10 Chapter 3: MocAPPC Drivers

'\,
)

r

MacAPPC driver IDs
The MacAPPC server allocates and maintains several IDs that your program can use to
identify an attached transaction program, a conversation, or a session. These IDs are
returned by ceratin MacAPPC routines.

Program ID
The program ID identifies a particular attached transaction program; it is a unique
number generated by the MacAPPC server.

Conversation ID
The conversation ID identifies an individual conversation in use by a pair of
transaction programs; it is a unique number generated by the MacAPPC server. A
conversation in use by a pair of transaction programs is represented by two unique
conversation IDs, one from each transaction program's perspective.

Session ID

The session ID identifies an individual session in use by a pair of logical units over a
particular mode; it is a unique number generated by the MacAPPC server. A session in
use by a pair of modes is represented by two unique session IDs, one from each
mode's perspective.

Executing a MacAPPC driver routine
In summary, here are the steps necessary to execute a single MacAPPC routine:

1. Set appcRefNum to the number returned by the PBOpen call.

2. Set appcOpCode to the constant equivalent to the appropriate MacAPPC routine
(for example kTPAttach for the TPAttach routine).

3. Ser ioCompletion and appcUserRef if desired.

4. Supply any necessary additional values for the parameters for the MacAPPC
routine, as detailed in Chapters 4 through 7 of this guide.

5. Call PBControl, supply a pointer to the MacAPPC routine's parameter block, and
set the ASYNC parameter in the PBControl call to TRUE or FALSE.

6. If you executed an asynchronous routine and did not supply your own
ioCompletion routine, poll ioResult in the MacAPPC routine's parameter
block to determine when the MacAPPC routine is completed, as detailed in
"Synchronous and Asynchronous Execution," earlier in this chapter.

7. If ioResul t indicates that an error occurred, examine appcHiResul t and
appcLoResul t to determine the result code.

Executing a MacAPPC driver routine 3- 11

MacAPPC driver conventions
In the following four chapters, each routine description includes a list of the
APPCParamBlock fields affected by the routine. A 4-digit hex number gives the
offset of the field within the parameter block, and its size is specified as byte, word, or
long. When the size is not shown, the parameter is an array, as indicated by the
convention of a pair of brackets ([]) following the parameter name.

The arrow next to each parameter name indicates the following:

Arrow Meaning

Parameter is passed to the MacAPPC routine (described as supplied)
Parameter is returned by the MacAPPC routine (described as returned)
Parameter is passed to and returned by the MacAPPC routine (described as
supplied/returned)
Parameter points to space that is modified by the MacAPPC routine (described as
supplied/modified)

In the parameter descriptions, the term Nil. pointer is used to indicate that the
pointer is set to a value of zero. Similarly, the term NUll value means a value of zero.
The terms TRUE and FALSE are used as Boolean values; the particular values of TRUE
or FALSE depends upon the language being used.

3-12 Chapter 3: MacAPPC Drivers

Chapter 4

MacAPPC Conversation
Driver

4-1

This chapter describes the MacAPPC Conversation Driver (.CV62), explains how to
use the driver, and provides a detailed guide to the programmatic interface for
executing each Conversation Driver routine. For quick reference, a section at the end
of the chapter summarizes the data structures, constants, and routine parameters.

Using the MacAPPC Conversation Driver
The following sections document the Pascal-language interface to MacAPPC routines
that provide support for Advanced Program-to-Program Communication (APPC)
using either basic or mapped conversations. Mapped conversations use mapped
conversation routines, which are more commonly used than basic conversation
routines when programming in a high-level language. When mapped routines are
used, the data does not need to be formatted by the application program. Basic
conversations use basic conversation routines. Basic conversation routines are
normally used only by service TPs, which are the programs that provide common
services across the network, including overhead management, error handling,
simultaneous activation, and security.

In mapped conversations, data is automatically formatted into General Data
Stream (GDS) variables. GOS variables consist of 2 bytes containing the length of the
variable, 2 bytes containing an IBM-assigned code identifying the type of variable,
and then data. Mapped routines handle all of the formatting for mapped
conversations (making it transparent to the application). In basic conversations the
data has less internal formatting (only the length and the data are required). Basic
routines handle none of the formatting-data must be presented to the routine packed
in the correct format. Because mapped routines handle their own formatting, they are
usually considered easier to use.

Buffering
Each LU in a conversation has a buffer for sending and receiving data. When the
transaction program executes a routine that sends data, it specifies an area containing
the data, and the LU moves the data to its send buffer. The LU transmits the data,
(flushes its send buffer) either when a sufficient amount of data is accumulated, or
when the program executes a routine that explicitly causes the LU to transmit the
accumulated data.

As incoming data arrives on a conversation, the LU places the data in its receive
buffer. When the program executes a routine that receives data, it specifies an area in
which the LU is to place the data. The LU moves the requested amount of data from the
front of its receive buffer to the area specified by the program. In this way, the LU can
accumulate incoming data in its receive buffer in advance of the program issuing the
routine, or routines, that receive the data.

Routines that send data place the outgoing data in the send buffer behind any data
from previous routines. Routines that send information other than data place the
outgoing information in front of the information already in the buffer. A receiving LU
accumulates incoming information in its receive buffer in the order in which it is
received. The amount of buffered data that is sufficient for transmission is determined
hy the maximum size request/response unit (RU) that can be sent on the session.

4-2 Chapter 4: MacAPPC Conversation Driver

(

Conversation states

Conversations have states that determine what routines a transaction program can
execute during the conversation. The following states are defined:

D reset

0 send

D receive

D confirm

D confirm/send

D confirm/deallocate

D deallocate

The appcConvState constants are listed in Chapter 3, "The MacAPPC Drivers."
Tables 4-1, 4-2, and 4-3 show the conversation routines and the states from which
these routines can be executed.

Table 4-1
States for mapped conversation routines

Mapped routine Reset Send Receive Confirm Cont/send Conf/dealc

MCAllocate x
MCConf irrn x
MCConf irrned x x x
MCDeallocate•

flush x
confirm x
sync-level x
a bend x x x x x
local

MCFlush x
MCGetAttributes x x x x x
MCPostOnReceipt x
MCPrepareToReceive x
MCReceiveAndWait x x
MCReceiveirnrnediate x
MCRequestToSend x x
MCSendData x
MCSendError x x x x x
MCTestt

posted x
request to send x x

• The state from which the routine can be executed varies depending on the type of deallocation;
see "MCDeallocate," later in this chapter.

t The state from which the routine can be executed varies depending on the type of testing;
see "MCTest," later in this chapter.

Deallocate

x

x

Using the MacAPPC Conversation Driver 4-3

Table 4-2
States for type-independent conversation routines

Type-Independent routine Reset Send Receive Confirm Cont/send Conf/deatc

CVGetType x x x x x
CVWait x

Table 4-3
States for basic conversation routines

Basic routine Reset Send Receive Confirm Cont/send Conf/dealc

BCAllocate x
BCConfirm x
BCConfirmed x x x
BCDeallocate•

flush x
confirm x
sync-level x
a bend x x x x x
local

BCFlush x
BCGetAttributes x x x x x
BCPostOhReceipt x
BCPrepareToReceive x
BCReceiveAndWait x x
BCReceiveimmediate x
BCRequestToSend x x
BCSendData x
BCSendError x x x x x
BCTestt

posted x
request to send x x

• The state from which the routine can be executed varies depending on the type of deallocation;
see "BCDeallocate," later in this chapter.

t The state from which the routine can be executed varies depending on the type of testing;
see "BCTest," later in this chapter.

4-4 Chapter 4: MacAPPC Conversation Driver

Deallocate)

x

Deallocate

x

x

)

Data mapping
Over an APPC mapped conversation, data sent between two transaction programs is a
stream of data bytes that is divided into logical data records. Each time data is sent using
the MCSendData routine, it is packaged into a single data record. The
MCRecei veAndWai t routine can read part or all of this data record. The routine
interface in_poses the structure of individual data records on the data byte stream.

At the data record level, however, the data may still need further transformation before it
can be used by the transaction program. For example, the data may need to be formatted
into a data structure of a high-level language. To insulate the transaction program from
the process of transforming data between the form used by the transaction program and
the transmitted byte stream, the LU 6.2 mapped conversation protocol defines data
mapping in the LU to perform this function.

When data is sent, a map name is specified that identifies a mapping function, which
transforms the data from the form used by the transaction program into the data
stream sent to the remote LU. The current map name is sent to the remote LU, which
uses it to execute a mapping function in the remote LU to transform the received data
stream into the form used by the remote transaction program.

The map name specified by the local program may be different from the map name
received by the remote program. The map name may be translated by the sending LU
from a local map name known to the local transaction program into a global map name
known to the remote LU. The remote LU may in turn translate the received map name into
a map name known locally to the remote transaction program on the remote system.

Data mapping is not required on a mapped conversation. A null map name specifies
no data mapping. A null map name is never translated into a nonnull map name (but a
nonnull map name may be translated to a null map name, thus disabling mapping).

Under the LU 6.2 architecture; map name transmission, as well as data transformation, is
handled by a user-supplied mapping utility, or mapper. At the time of publication, the
MacAPPC mapper is limited to data transformation alone. The transmission of map names
between the local and remote LUs is handled by the MacAPPC Conversation Driver.

Writing a mapping procedure
To write a mapping procedure, you will need to use the mapping parameter block.

Mapping parameter block

APPCMCPB = RECORD
mcpbMapCmd SiqnedByte; MC request }

mcpbResult INTEGER; mapper return code
mcpbMapName StrinqPtr; map name pointer
mcpbDataPtr Ptr; data pointer }

mcpbDataSize INTEGER; data length }

mcpbBuffPtr Ptr; buffer pointer
mcpbBuffSize INTEGER; buffer length }

mcpbTransMapName Boolean; map name translation required }

mcpbFMHdrs Boolean; FMH data contains FM headers }

mcpbRcvMode SiqnedByte; receive mode }

END;

APPCMCPBPtr "APPCMCPB;

Using the MacAPPC Conversation Driver 4-5

The following values are constants for mcpbMapCmd:

kSend.Mapping
kRcvMapping

= O;
= l;

The following values are constants for mcpbResul t:

mcNoErr O;
mcErr = l;
mcMapNameErr = 2;
mcDupMapNarneErr = 3;

The following values are constants for rncpbRcvMode :

kTruncMode = O;
kincomplMode = l;

The mapper is executed by the MacAPPC Conversation Driver when send or receive
data mapping is required. The driver passes the address of the APPCMCPB parameter
block as its single argument. The mapper performs the operation as specified by the
APPCMCPB record, updates that record, and returns to the driver.

The mapping function is not required to use the space provided by the mcpbBuffPtr
and rncpbB u ff size parameters to map the data, but the driver reserves 4 bytes
immediately ahead of mcpbBuffPtr and uses them when formatting the data
record to be sent on the conversation. At this time, mappers that pass mapped data
back in a location other than in the space provided by mcpbBuffPtr and
mcpbBuffSize do so at their own risk.

When the driver receives a new map name from the partner LU, it is passed to the
mapper on the next receive mapping request, and the mcpbTransMapName field is
set to TRUE. The mapper is responsible for translating, if necessaiy, the global map
name to a local map name known to the transaction program. When the current map
name has not changed, it is repeatedly passed to the mapper with
mcpbTransMapNarne set to FALSE. The mapper has to translate the original global
name only once, as the translated map name becomes the current map name and is
passed back to the mapper on subsequent receive mapping requests.

When mapping receive data, the mapper selects the receive mode for the data. When
the receive mode is incomplete mode, the transaction program may receive the data
record in more than one receive routine. Data that is not read by the transaction
program on the first receive routine is held by the LU until the record is completely
read. When the receive mode is truncate mode, any data that is not read by the
transaction program on the first receive routine is discarded by the LU. The manner in
which the mapper selects the mode that it is to use is left to the implementor of the
mapper (except when no mapping is performed, in which case incomplete mode is
the default). The LU 6.2 protocol allows the mapping function to select either mode
based on the map name or the individual implementation.

The LU 6.2 protocol allows the optional check by the mapper for duplicate map names
sent by the remote LU. When the mapper receives a request that sets the
mcpbTransMapName parameter to TRUE for the same map name specified in a
previous request, the mapper may optionally return a mapper error indicating a
duplicate map name. ·

4-6 Chapter 4: MacAPPC Conversation Driver

(

(

Default mapping procedure

The following Pascal procedure-the default mapping procedure-illustrates a sample
mapping procedure.

PROCEDURE DefaultMapper (VAR mcParam : APPCMCPB);
{ default mapper }
{ This is the Pascal equivalent of the default mapping procedure that }
{ is used when cvMapProc is set to NIL on an MCAllocate }
{ or when tpMapProc is set to NIL on a TPAttach (kWaitAttach)}
{ Remember, mapping procedures must run at interrupt time. }
{ This means you can't call routines that may move memory, }
{ or reference global data (AS may not be valid) . }

VAR

BEGIN

i: INTEGER;
s,t: ~signedByte;

Since this mapper does not look at the map name, it will
never return mcMapNameErr or mcDupMapNameErr. It also does
not look at mcpbTransMapName, since it never performs any
translation on the map name, nor checks for duplicate map names.

mcParam .mcpbResult : = mcNoErr; { no error }

CASE mcParam.mcpbMapCmd OF
kSendMapping:
BEGIN

END;

send mapping - copy data into buffer
s : = POINTER (mcParam. mcpbDataPtr) ;
t := POINTER(mcParam.mcpbBuffPtr);
FOR i ·= 1 TO mcParam.mcpbDataSize DO
BEGIN

END;

t""' :== s";
s := POINTER(ORD4(s) + l);
t := POINTER(ORD4 (t) + 1);

mcParam.mcpbDataPtr := mcParam.mcpbBuffPtr;

kRcvMapping:
{ receive mapping - since no mapping is done,
{ set truncate data receive mode }
mcPar am. mcpbRcvMode : - kincomplMode;

OTHERWISE
{ map execution failure }
mcParam.mcpbResult :• mcErr;

END; { CASE }

END; DefaultMapper

Using the MocAPPC Conversation Driver 4-7

MacAPPC conversation routines
The next sections describe the MacAPPC conversation routines, which you use to
communicate between a pair of transaction programs over a conversation. A
conversation can be either mapped or basic.

The routines available for communicating over a conversation are divided into the
following categories:

o mapped conversation routines, which are used to communicate over mapped
conversations

o type-independent conversation routines, which can be used over either mapped or
basic conversations

o basic conversation routines, which are normally used only over basic
conversations, but can be used over mapped conversations

Mapped conversation routines
This section describes the MacAPPC mapped conversation routines, which are used
by transaction programs to communicate over mapped conversations. When a
transaction program sends data by way of a mapped routine, the transaction program
does not have to provide the General Data Stream (GDS) length field in front of the
data. Instead, the data placed into the send buffer is dealt with as a complete data
record, and the mapped conversation routines perform the necessary translation of
data formatted as logical records into GDS variables.

In addition, the transaction program has the option of petforming additional
mapping functions on the data.

4-8 Chapter 4: MacAPPC Conversation Driver

... ·~

(Summary

Parameters

(

Description

.,, (----

MCAllocate

The MCAllocate routine allocates a session between the local LU and a remote LU,
and, within that session, a mapped conversation between the local transaction
program and a remote transaction program. The routine also returns a conversation
ID, which is used to identify the conversation.

Important

If the local transaction program is starting a mapped conversation, it must execute a
MCAllocate routine before it executes any other mapped conversation routine.

If the local transaction program is waiting for a remote transaction program to start
the mapped conversation, the local transaction program must execute a TPAttach
routine. See TPAttach in Chapter7 of this manual.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0034 long -+ cvMapEfoffPtr
0038 word -+ cvMapBuffSize
002E long -+ cvPIPBuffPtr
0032 word -+ cvPIPBuffSize
0042 long -+ cvRmtLUName
0052 long -+ cvRmtProgName
004E long -+ cvModeName
0056 long -+ cvUserName
OOSA long -+ cvUserPswd
005E long -+ cvUserProf
007A long -+ cvMapProc
OOSA. byte -+ cvReturnCtl
0089 byte -+ cvSyncType
008F byte -+ cvPIPUsed
0492 -+ cvPIPPtr []
0892 -+ cvPIPSize []
008B byte H cvSecType
003A long +- cvConvID

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is determined by the value of the kCVCBSize constant. You must
supply a new CVCB each time your application executes an MCAllocate routine.

Mapped conversation routines 4-9

cvMapBuffPtr (supplied) specifies a pointer to a mapped conversation buffer.
The length of the buffer is specified by the value of the cvMapBuffSize parameter.

cvMapBuffSize (supplied) specifies the size of the mapped conversation buffer
pointed to by the cvMapBuffPtr parameter. This buffer must be large enough to
hold the largest complete data record expected plus a 4-byte logical length ID (LLID).

cvPIPBuffPtr (supplied) specifies a pointer to a buffer that holds the program
initialization parameters. The length of the buffer is specified by the value of the
cvP IP Buff Size parameter.

cvPIPBuffSize (supplied) specifies the size of the huffer pointed to by
cvPIPBuffPtr. This buffer must be large eoughto hold the largest amount of PIP
data expected plus a 4-byte LLID per parameter plus one 4-byte LLID for the entire PIP
data.

cvRmtLOName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxN ame
constant. The name is any name by which the local LU knows the remote LU for the
purpose of allocating a mapped conversation. This locally known LU name becomes
the LU name that is used by the network if the two names are different.

cvRmtProqName (supplied) specifies a pointer to a string that contains the name
of the remote transaction program at the remote LU specified by the cvRrntLUName
parameter. The string length must not be greater than the value of the kMaxTPName
constant. For mapped conversations, the string cannot specify an SNA service
transaction program.

cvModeName (supplied) specifies a pointer to a string that contains the name of the
mode defining certain properties for the session allocated to the conversation. The
string length must not be greater than the value of the kMaxName constant. The
properties that are defined include, for example, class of service to be used, and
whether data is to be enciphered or translated into ASCII before it is sent. The SNA­
defined mode name SNASVCMG must not be specified for the MCAllocate routine
(whereas the BCAllocate routine can use that mode name; see the description of
that routine in this chapter).

cvUserName (supplied) specifies a pointer to a string that contains the user ID
when the cvSecType parameter has the value of the kProgSec constant
(otherwise, the parameter is ignored). The string length must not be greater than the
value of the kMaxSecName constant. The remote LU uses this value and the
password to verify the identity of the transaction program making the allocation
request. In addition, the remote LU can use the cvUserName parameter for
auditing or accounting purposes, or it can use cvUserName, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access.

cvuserPswd (supplied) specifies a pointer to a string that contains the password
when the cvSecType parameter has the value of the kProgSec constant ·
(otherwise, the parameter is ignored). The string length must not be greater than the
value of the kMaxSecName constant. The remote LU uses this value and the value
specified in the cvU s e rN ame parameter to verify the identity of the transaction
program making the allocation request.

4-10 Chapter 4: MacAPPC Conversation Driver

cvOserProf (supplied) specifies a pointer to a string that can contain a profile to
be used in place of or in addition to the user ID specified in the cvUserlJarr.e
parameter. The string length must not be greater than the value of the ;:,1':a:·:3ecName
constant. The remote LU can use this value, in addition to or in place of the \"alue
specified in the cvUserName parameter, to determine which remote transaction
programs the local transaction program can access, and which resources the remote
transaction program can access.

cvMapProc (supplied) specifies a pointer to a user-supplied mapping function
(see the section "Writing a Mapping Procedure," earlier in this chapter, for a
description of the mapping function). Set the pointer to r>..TJL to use the default
mapping procedure.

cvReturnCtl (supplied) specifies when the local LU is to return control to the
transaction program and what type of session allocation is to be used. If the local LU
fails to obtain a session for the mapped conversation, an allocation error is reported
either on this routine or on a subsequent routine. If the remote LU rejects the
allocation request, an allocation error is reported on a subsequent routine. The
following values are defined:

kWhenAllocReturn allocates a session hefore returning control to the local
transaction program. A session-allocation error is reported upon return from the
MCAllocate routine.

kDelayAllocRet urn allocates a session after returning control to the local
transaction program. A session-allocation error is reported upon return from a
subsequent MacAPPC routine.

kimmedAllocReturn allocates a session only if a session is immediately
availahle and returns control to the local transaction program. A session is
immediately available when it is a free first-speaker session. A session-allocation
error is reported upon return from the MCAllocate routine if a session is not
immediately available.

cvSyncType (supplied) specifies the synchronization level that the local and
remote transaction programs can use for the conversation. The values are defined as
follows:

kNoSync specifies that the transaction programs do not perform confirmation
processing nor sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to confirmation or synchronization functions.

kConfirmSync specifies that transaction programs can perform confirmation
processing but not sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to the synchronization functions.

kSyncPtSync specifies that transaction programs can perform both
confirmation processing and sync-point processing on this mapped
conversation.

+ Note: At the time of publication, sync-point services were not supported.

cvPIPtJsed (supplied) specifies whether or not program initialization parameters
(PIPs) are to be sent to the remote transaction program. A value of TRUE specifies
that PIP data is present; FALSE specifies that PIP data is not present.

Mopped conversation routines 4-11

Notes

Result code

See also

cvPIPPtr (supplied) specifies an array of pointers to program initialization
parameters. The last pointer must be followed by one that is NIL. The maximum
number of parameters is defined by the value of the kMaxP IP constant, with a total
space limitation specifed by the cvPIPBuffSize parameter (see
cvPIPBuffSize for more information about space limitations). This array is
ignored if the cvPIPUsed parameter is set ro FALSE.

cvPIPSize (supplied) specifies an array of sizes that specifies the size for each PIP
in the cvPIPPtr array. The last size must be followed by a size of 0.

cvSecType (supplied/returned) specifies the type of access-security information
that is to be used by the remote LU to validate access to the remote transaction
program and its resources. The following values are defined:

kNoSec specifies that access-security information is not to be used.

kSameSec specifies that the security information to be used is from the local
transaction program executing the MCAllocate routine, so that the security
level remains the same as set by the previous allocation request. The allocation
request carries the user name of the local transaction program and is indicated as
already verified (that is, no password is sent). If the local transaction program was
not previously allocated, the cvSecType parameter is downgraded to the value
of the kNoSec constant.

kProgSec specifies that the security information to be used is contained in the
cvUserName, cvUserPswd, and optionally the cvUserProf parameters.

cvConvJ:D (returned) indicates the conversation ID of the allocated conversation.

Successful completion of the MCAl 1 oca t e routine does not indicate that the
session was successfully allocated. This routine can only return session-allocation
errors (with the cvReturnCtl parameter equal to the value of the
kWhenAllocReturn or kimmedAllocReturn constant). All other allocation
errors are reported on subsequent routines.

When control returns and no error was encountered, the conversation is in send
state.

For IBM equipment, make sure that the PIP data is in the format that the receiving
transaction program expects. For example, you may need to execute the
TPAscii ToEbcdic routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

BCAllocate, MCDeallocate

4-12 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

Description

(
Result code

See also

MC Confirm

The MCConfirm routine flushes the send buffer, transmits a request for
confirmation to the remote transaction program, and waits for a reply. The remote
transaction program replies with either a confirmation or an error. This routine
allows the local and remote transaction programs to synchronize their processing.
This routine is not available on conversations allocated with a synchronization level
of none.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
001A word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0082 byte f- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

BCConfirm, MCConfirmed

Mapped conversation routines 4- 13

Summary

Parameters

Description

Notes

Result code

See also

MCConfirmed

The MCConfirmed routine sends a confirmation reply to the remote transaction
program when a confirmation request is received.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
'0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

When control returns and no error is encountered, the conversation state changes as
follows: if the conversation was in confirm state, it goes to receive state; if the
conversation was in confirm/send state, it goes to send state; if the conversation was
in confirm/deallocate state, it goes to deallocate state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

BCConfirmed, MCConfirm

4- 14 Chapter 4: MacAPPC Conversation Driver

(Summary

Parameters

Description

MCDeallocate

The MCDeallocate routine flushes the send buffer and deallocates the mapped
conversation from the transaction program. It can also include the function of the
MCConfirm routine.

Important

Your transaction program must execute a MCDeallocate routine to end a mapped
conversation. After the MCDeallocate routine has been executed, no more
mapped conversation routines can be executed for that deallocated mapped
conversation.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0085 byte ~ cvDeallocType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB) to be deallocated.

cvDeallocType (supplied) specifies the type of deallocation:

kSyncDealloc specifies that MacAPPC should perform deallocation based on
the synchronization level allocated to this mapped conversation. A
synchronization level of none performs a deallocation as if the
kFlushDealloc constant had been specified. A synchronization level of
confirm performs a deallocation as if the kConfirmDealloc constant had
been specified.

kF 1 ushDealloc specifies that MacAPPC should execute the function of the
MCFlush routine and deallocate the conversation normally.

kConfirmDealloc specifies that MacAPPC should execute the function of the
MCConfirm routine, and if it is successful, deallocate the conversation
normally; if it is not successful, the state of the conversation is determined by the
result code.

kAbendDealloc specifies that MacAPPC should execute the function of the
MCF 1 ush routine when the conversation is in send or defer state, and deallocate
the conversation normally. If the conversation is in receive state, data can be
lost. kAbendDealloc is intended to be used by a transaction program when it
detects an error condition that prevents completion of the transaction.

Mapped conversation routines 4-15

Notes

Result code

See also

kLocalDealloc specifies that MacAPPC should deallocate the mapped
conversation locally. The transaction program should specify this type of
deallocation if, and only if, the conversation is in deallocate state.

When control returns, if no errors were encountered, the conversation enters reset
state. When the cvDeallocType parameter is set to the kSyncDealloc
constant, and the partner sends an error response, the conversation enters receive
state.

The execution of the MCFlush or MCConfirm routine as part of the
MCDeallocate routine includes the flushing of the LU's send buffer. When, instead,
the deallocation is deferred, the LU also defers flushing its send buffer until the
program executes a subsequent routine for this conversation.·

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

BCDeallocate, MCAllocate

4-16 Chopter 4: MocAPPC Conversotion Driver

(
Summary

Parameters

Description

(

Notes

Result code

See also

MC Flush

The MCFlush routine sends the information that is in the LU's send buffer to the
remote transaction program. Information is buffered in the send buffer by the
MCAllocate, MCDeallocate, MCSendData, and MCSendError routines.

The MCF 1 us h routine is useful for optimization of processing between the local and
remote transaction programs. The LU normally buffers the data records from
consecutive MCSendData routines until it has a sufficient amount for transmission.
At that time it transmits the buffered data records. However, the local transaction
program can execute an MCFlush routine in order to cause the LU to transmit the
buffered data records. In this way, the local transaction program can minimize the
delay in the remote transaction program's processing of the data records.

oooc long -+ ioCornpletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block CTPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

When the routine completes without error, no state change occurs. If an error is
detected, the conversation enters either receive state or deallocate state, depending
on the error.

appcNoErr
appcFail
appcExec

BCFlush

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Mapped conversation routines 4-17

Summary

Parameters

Description

MCGetAttributes

The MCGetAttributes routine returns information about the specified mapped
conversation.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
004A long ~ cvFullLclLUName
0042 long ~ cvRmtLUName
0046 long ~ cvFullRmtLUName
004E long ~ cvModeName
0056 long ~ cvUserName
OOSE long ~ cvUserProf
0062 long ~ cvLUWName
0066 long ~ cvLUWID
006A long ~ cvLUWCorr
0089 byte +- cvSyncType
006E word +- cvLUWSeq
003A long +- cvConvID
003E long +- cvProgID

cv'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cVCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFullLclLOName (supplied/modified) specifies a pointer to space where the
fully qualified network name of the local LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name is
returned as two strings concatenated by a period: NETID.NETNAME, where NETID is
the network ID and NE1NAME is the network LU name. When there is no network ID,
only NETNAME is returned. If the pointer is NIL, the name is not returned.

cvRmtLtJName (supplied/modified) specifies a pointer to space where the local
name of the remote LU-that is, where the remote transaction program is
located-can be returned. The space must be at least as large as the value of the
kMaxName constant plus i byte. This is the name by which the local LU knows the
remote LU for the purpose of allocating a conversation. If the pointer is NIL, the name
is not returned.

cvFullRmtLtJName (supplied/modified) specifies a pointer to space where the
fully qualified network name for the remote LU ~ be returned. The space m :Jst be at
least two times the value of the kMaxName constant plus 1 byte. The name has the
same form as that specified in the cvFullLclLUName parameter. If the remote ·
LU's fully qualified name is not known, a NUU. string is returned. If the pointer is 1"1:L,
the name is not returned. ·

4-18 Chapter 4: MacAPPC Conversation Driver

/"',,, ' •.

\.....,~_,JI

,,r·

,)
/

(

cvModeName (supplied/modified) specifies a pointer to space where the mode
name for the session allocated to the conversation can be returned. The space must
be at least as large as the value of the kl1a:-:Name constant plus 1 byte. If the pointer is
NIL, the name is not returned.

cvUserName (suppliecl'modified) specifies a pointer to space where the user ID
can be returned. The space must be at least as large as the value of the kMaxSecNa!ne
constant plus 1 byte. The remote LU uses this value and the password to verify the
identity of the transaction program making the allocation request. In addition, the
remote LU can use the value of the cvUserName parameter for auditing or
accounting purposes, or it can use the value of cvUserName, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is 1'11L, the user ID is not returned.

cvUserProf (supplied/modified) specifies a pointer to space where a profile to be
used in place of or in addition to the user ID specified in the cvUserName
parameter can be returned. The space must be at least as large as the value of the
kMaxSecName constant plus 1 byte. The remote LU can use this value, in addition to
or in place of cvUserName, to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is NIL, the profile is not returned.

cvLUWName (supplied/modified) specifies a pointer to space where the LU name
portion of the logical-unit-of-work (LUW) can be returned. The space must be at least
as large as the value of the kMaxLUWName constant plus 1 byte. The LUW identifier is
created and maintained by the LU, which uses it for accounting purposes. If the
pointer is NIL, the name is not returned.

cvLUWID (supplied/modified) specifies a pointer to space where the unique ID
portion of the logical-unit-of-work can be returned. The space must be at least as long
as the value of the kMaxLUWID constant plus 1 byte. This is not a printable string. If
the pointer is NIL, the LUW ID is not returned.

cvLUWCorr (supplied/modified) specifies a pointer to space where the
conversation correlator can be returned. The space must be at least as long as the
value of the kMaxLUWCorr constant plus 1 byte. The conversation correlator is
created and maintained by the LU. This is not a printable string. If the pointer is NIL,
the name is not returned.

cvSyncType (returned) indicates the synchronization level that the local and
remote transaction programs can use for the conversation. The following values are
defined:

kNoSync indicates that the transaction programs do not perform confirmation
processing on this mapped conversation. The transaction programs do not
execute any routines and do not recognize any returned parameters relating co
these synchronization functions.

kConfirmSync indicates that transaction programs can perform confirmation
processing but not sync-point processing on this mapped conversation. The
transaction programs do not execute any routines and do not recognize any
returned parameters relating to the synchronization functions.

kSyncPtSync indicates that transaction programs can perform both
confirmation processing and sync-point processing on chis mapped
conversation.

+ Note: At the time of publication, sync-point services were not supported.

. Mapped conversation routines 4-19

Result code

cvLOWSeq (returned) is the logical-unit-of-work sequence number assigned to this
conversation.

cvConvID (returned) returns the conversation ID.

cvProgID (returned) returns the program ID.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

See also BCGetAttributes

4-20 Chapter 4: MocAPPC Conversation Driver

Summary

Parameters

Description

Result code

See also

MCPostOnReceipt

The MCPostOnReceipt routine requests a mapped conversation to be posted
when information is available for the transaction program to receive. Execute a
MCTest routine after MCPostOnReceipt to determine if posting has occured.
Execute a CVWait routine after MCPostOnReceipt to wait for posting to occur.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0074 word -+ cvDataSize

cvTPCBPtr (supplied) specifies a pointer to an existing Transactioi;i Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataSize (supplied) specifies the minimum amount of data that will cause
posting to occur. The cvDataSize parameter must be small enough so that the
amount of data that will cause posting does not exceed the size of the LU's receive
buffer. If that buffer is exceeded, posting will never occur. The proper size for the LU's
receive buffer depends upon several factors; you will have to e!llpirically test different
values for cvDataSize to find the correct value.

+ Note: If a small value has been specified for cvDataSize and a large data block
has begun to arrive, you can subsequently use either an MCRecei veAndWai t
routine to receive the entire data block or an MCRecei veimmediate routine to
receive only the data that has been received by the LU.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchron9us request not complete

BCPostOnReceipt, MCTest, CVWait

Mapped conversation routines 4-21

Summary

Parameters

Description

Result code

See also

MCPrepareToReceive

The MCPrepareToRecei ve routine flushes the send buffer and puts the mapped
conversation into receive state. This routine can also include the function of the
MCConfirrn routine, requesting confirmation before entering receive state.

oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0086 byte -+ cvPrepToRcvType
0087 byte -+ cvLockType

cv'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvPrep'l'oRcvType (supplied) specifies the type of request:

kFl ushRcv indicates that the send buffer should be flushed (as in the MCF 1 ush
routine) and the conversation should enter receive state.

kConfirrnRcv indicates that the data in the buffer shoul be sent and that
confirmation will be requested before entering receive state.

cvLockType (supplied) specifies when control is to be returned to the local
transaction program if the function of the MCConfirrn routine is performed. This
parameter is ignored if the mapped conversation does not support confirmation
processing.

kShortLock specifies that control should be returned to the local transaction
program when an affirmative reply is received.

kLongLock specifies that control should be returned to the local transaction
program when data following confirmation is received.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

BCPrepareToReceive

4-22 Chapter 4: MacAPPC Conversation Driver

Summary

Parameters

(Description

MCReceiveAndWait

The MCReceiveA:idWait routine receives information that has arrived for the
mapped conversation. The routine can wait for more information to arrive if the
request is not yet satisfied. The information can be data, conversation status, or a
request for confirmation. The program can execute this routine when the
conversation is in send state, which flushes the buffer and places the conversation in
receive state.

The program receives only one kind of information at a time; that is, it can receive
data or control information, but it cannot receive both simultaneously.

oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0070 long => cvDataPtr
0074 word H cvDataSize
0076 long => cvMapNarne
0084 byte ~ cvWhatRcvd
0082 byte ~ cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDataSize (supplied/returned) specifies the maximum amount of data the
program is to receive. When control returns to the program, this field contains the
length of data received.

cvMapHame (supplied/modified) specifies a pointer to space where the local map
name can be returned. The space must be at least as large the value of the
kMaxMapNarne constant plus 1 byte. A NULL string indicates that no data mapping
occurred. When the program receives information other than data, nothing is placed
in this variable. ·

+ Note: The space pointed to by this parameter is overwritten each time your
application executes an MCReceiveAndWait routine. Your application must save
the name if necessary.

cvWhatP.cvd (returned) indicates what was received.

kDataCornplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received.

Mapped conversation routines 4-23

Notes

Result code

See also

kDataincomplRcvd indicates that an incomplete logical length record was
received, and the LU retained the remainder of the data record. The program can
receive the remainder of the data record by executing one or more additional
MCRecei veAndWai t routines.

kLLTruncRcvd indicates that a complete logical length record was not
received, and the rest of the data was discarded. No data is returned.

kFMHDataComplRcvd indicates that the complete or last portion of the data
record containing FMH data was received.

kFMHDataincomplRcvd indicates that an incomplete data record containing
FMH data was received, and the remainder was retained by the LU. The program
can receive the remainder of the data record by executing one or more additional
MCRecei veAndWai t routines.

kFMHDataTruncRcvd indicates an incomplete data record containing FMH
data was received. The remainder is discarded by the LU.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute an MCSendData
routine.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confirm/send
state.

kConfirmDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The conversation enters confirm/deallocate
state.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When the amount of data requested is less than the length of the data record, whether
or not the remainder of the record is discarded or retained is determined by the
mapping procedure.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending TP is using. For example,
you may need to execute the TPEbcdicToAscii routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

BCReceiveAndWait, MCReceiveimmediate

4-24 Chapter 4: MocAPPC Conversation Driver

(
Summary

(
Parameters

Description

MCReceivelmmediate

The MCRecei veimmediate routine receives information that is available for the
mapped conversation, but does not wait for information to arrive. The information
can be application data, FMH data, or conversation control information. If an error
is detected, the appropriate result code is returned. If there is nothing to receive, the
routine returns a result code indicating an unsuccessful completion (badCornplErr).
Control is returned to the program with an indication of whether any information was
received and, if so, the type of information:

Only data that has been processed by the MacAPPC drivers can be received; that is,
the LU may have received data, but until the MacAPPC drivers process the data, it is
not available to MCRecei veimmediate (this is not the case for the
MCReceiveAndWait routine). The MacAPPC drivers process conversation data
during the MCReceiveAndWait, MCTest, and CVWait routines.

When the MCRecei veAndWai t routine (or a previous MCRecei veimmediate
routine) returns the kDataincornplRcvd or kFMHDataincornplRcvd constant
in the cvWhatRcvd parameter, MCReceiveimmediate can be used to receive
the remaining data. Similarly, when the MCTest routine returns a result code of
dataAvail or ctlAvail, or when the CVWait routine indicates posting for the
conversation, MCReceiveirnrnediate can be used to receive data or control
information (or possibly an error indication).

The program receives only one kind of information at a time; that is, it can receive
data or control information, but it cannot receive both simultaneously.

oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0070 long ~ cvDataPtr
0074 word H cvDataSize
0076 long ~ cvMapNarne
0084 byte +- cvWhatRcvd
0082 byte +- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDataSize (supplied/returned) specifies the maximum amount of data the
program is to receive. When control returns to the program, this field contains the
length of data received.

Mopped conversation routines 4-25

Notes

4-26

cvMapNarne (supplied/modified) specifies a pointer to space where the local map
name can be returned. The space must be at least as large the value of the
kMaxMapName constant plus 1 byte. A NULL string indicates that no data mapping
occurred. When the program receives information other than data, nothing is placed
in this variable.

+:• Note: The space pointed to by this parameter is overwritten each time your
application executes an MCRecei veimmediate routine. Your application must
save the name if necessary.

cvWhatRcvd (returned) indicates what was received, as follows:

kDataComplRcvd indicates that a complete· logical length record (LL) or the
end of a previously incomplete LL was received.

kDataincomplRcvd indicates that an incomplete LL was received, and the LU
retained the remainder of the data record. The program can receive the
remainder of the data record by executing one or more additional
MCReceiveimmediate routines.

kLLTruncRcvd indicates that a complete logical length record was not
received, and the rest of the data was discarded. No data is returned.

kFMHDataCornplRcvd indicates that the complete or last portion of the data
record containing FMH data was received.

kFMHDataincornplRcvd indicates that an incomplete data record containing
FMH data was received, and the remainder was retained by the LU. The program
can receive the remainder of the data record by executing one or more additional
MCRecei veAndWai t routines.

kFMHDataTruncRcvd indicates an incomplete data record containing FMH
data was received. The remainder is discarded by the LU.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute an MCSendData
routine.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirmSendRcvd indicates that the remote transaction program has issued a
prepare-to-receive confirm. The conversation enters confirm/send state.

kConfirmDeallocRcvd indicates that the remote transaction program has
issued a deallocate confirm. The conversation enters confirm/deallocate state.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When the amount of data requested is less than the !ength of the data record, whether
or not the remainder of the record is discarded or retained is determined by the
mapping procedure.

Chapter 4: MacAPPC Conversation Driver

(
Result code

See also

When control returns and no errors are encountered, the conversation is in receive
state unless othenvise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending transaction program is
using. For example, you may need to execute the TPEbcdicToAscii routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

BCReceiveimmediate, MCReceiveAndWait

Mapped conversation routines 4-27

Summary

Parameters

Description

Notes

Result code

See also

MCRequestToSend

The MCRequest ToSend routine is used by the local transaction program to request
to enter send state. A request-to-send indicator is sent to the remote transaction
program which can either honor or ignore the request. If the request is honored, the
conversation enters send state for the local transaction program when a send
indication is received from the remote transaction program.

oooc long ~ ioCompletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

No state change occurs.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

BCRequestToSend

4-28 Chapter 4: MocAPPC Conversation Driver

Summary

Parameters

(

Description

(' "

MCSendData

The MCSendData routine sends one data record to the remote transaction
program.

The data is buffered in the local LU's send buffer and is not transmitted to the remote
transaction program until the send capacity is exceeded. Transmission of the
contents of the send buffer is forced by the MCF 1 ush routine or by routines that
include the flush function (for example, MCPrepareToReceive).

To support the capability of earlier LU 6 types, MacAPPC allows FM headers to be sent
to the partner program. The FM headers are sent using MCSendData with the
cvFMHdrs parameter set to TRUE. This indicates FM data rather than application
data is being sent. This is significant only to the partner transaction program; the
sending and receiving LUs perform no special FM header processing other than
indicating that the data record contains FM headers (see MCReceiveAndWait or
MCRecei veimmediate).

oooc long --+ ioCornpletion
0018 word --+ appcRefNurn
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long --+ cvTPCBPtr
002A long --+ cvCVCBPtr
0070 long --+ cvDataPtr
0074 word --+ cvDataSize
0076 long --+ cvMapNarne
0083 byte --+ cvFMHdrs
0082 byte +- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied) points to the data to be sent. The size of the data is specified
by the cvDataSize parameter. The data is sent as one complete data record,
regardless of actual data format. Thus, no data formatting is required (as it is for data
sent on a basic conversation).

cvDataSiza (supplied) contains the length of the data to be sent. If this parameter
is zero, a null data record is sent.

cvMapNama (supplied) specifies a pointer to a string that contains the local map
name. The string length must not be greater than the value of the kMaxNarne
constant. If a name is specified, the name and the data are passed to the mapping
procedure for mapping before transmission. For more information on mapping, see
the section "Writing a Mapping Procedure," earlier in this chapter. A NIL pointer
indicates that no data mapping should occur.

Mopped conversation routines 4-29

Notes

Result code

cvFMHdrs (supplied) specifies whether FM headers are being sent in the data
record.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When no error is encountered, the conversation remains in send state.

For IBM equipment, be aware of the format that the remote transaction program is
expecting. For example, you may need to execute the TPAsciiToEbcdic routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

See also BCSendData

4-30 Chapter 4: MacAPPC Conversation Driver

(
Summary

Parameters

Description

Notes

Result code

See also

MCSendError

The MCSendError routine sends an error notification to the remote transaction
program, indicating that the local transaction program has detected an application
error. If the conversation is in send state, the send buffer is flushed. When the routine
is completed with no errors, the conversation is in send state and the remote
transaction program is in receive state.

oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
001E word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0082 byte +- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction. program in send state.

MCSendError resets or cancels posting. If posting is active and the conversation has
been posted, posting is reset. If the conversation has not been posted, posting is
cancelled.

If a race condition arises where both the local and remote transaction programs issue
error indications, the program that was in receive state wins the race and the program
that was in send state receives a program-error indication.

appcNoErr
appcFail
appcExec

BCSendData

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

Mapped conversation routines 4-31

Summary

Parameters

Description

Result code

See also

MCTest

The MCTest routine tests the specified mapped conversation to see whether posting
has occurred or whether a request-to-send notification has been received. If a
request-to-send has been received, the routine returns an appcNoErr result code.
If posting has occurred, the routine returns appcNoErr and the appcLoResul t is
set to one of the following constants:

dataAvail indicates that data has arrived ..

ctlAvail indicates that control information has arrived.

When testing for posting, posting must be previously activated for the mapped
conversation with the MCPostOnReceipt routine.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
008E byte ~ cvTestType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvTestType (supplied) specifies the condition to be tested, as follows:

kPostTest specifies to test whether the conversation has been posted.

kReqToSendTest specifies to test whether request-to-send notification has
been received from the remote transaction program.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

BCTest, MCPostOnReceipt

4-32 Chapter 4: MocAPPC Conversation Driver

('

(

Type-independent conversation routines
This section describes the MacAPPC type-independent conversation routines. These
routines can be used for either mapped or basic conversations. In addition, some of
these routines can be executed for multiple conversations of different conversation
types.

Type-independent conversation routines 4-33

CVBackout

Summary CVBackout is currently not supported.

4-34 Chapter 4: MacAPPC Conversation Driver

(Summary

Parameters

Description

Result code

See also

CVGetType

The CVGet Type routine returns the conversation type (basic or mapped). The type
is set when the conversation is allocated.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef .
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
008C byte f- cvConvType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvConvType (returned) is set to the specified conversation's type. The following
values can be returned:

kBasicConv specifies basic conversation type.

kMappedConv specifies mapped conversation type.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

MCAllocate, BCAllocate

Type-independent conversation routines 4-35

CVSyncPoint

Summary CVSyncPoint is currently not supported.

/'"'',.

\.__~A

4-36 Chapter 4: MacAPPC Conversation Driver

(Summary

Parameters

(

Description

Result code

See also

CVWait

The CVWai t routine waits for posting to occur on any of the specified
conversations. Posting for a conversation occurs when posting is active for the
conversation that satisfies the posting request parameters (specified by the
BCPostOnReceipt or MCPostOnReceipt routine). When used with
MCPostOnReceipt or BCPostOnReceipt, CVWait permits the local
transaction program to receive data in synchronous fashion from multiple
conversations.

If posting has occurred, the routine returns appcNoErr and the appcLoResul t
parameter is set to one of the following constants:

dataAvail indicates that data has arrived.

ctlAvail indicates that control information has arrived.

When a specified conversation has already been posted, the CVWait routine
returns immediately.

oooc long _. ioCompletion
0018 word _. appcRefNum
OOlA word ~ appcOpCode
0022 long _. appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcCopvState
0026 long _. cvTPCBPtr
002A long _. cvCVCBPtr
0092 ~ cvCVCBList []
0090 word H cvCVCBindex

cv'?PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvCVCBList (supplied) specifies a list of CVCB pointers that identify the
conversations that must wait for posting to occur.

cvCVCBindex (supplied/returned) specifies the number of entries in the
cvCVCBList parameter, and returns either the index into the cvCVCBList array
of the first conversation that has been posted or 0 to indicate that an error occurred
on the CVWait request.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCPostOnReceipt, BCPostOnReceipt

Type-independent conversation routines 4-3 7

Basic conversation routines
Basic conversation routines are intended for use with LU services programs. The LU
services programs can provide services or protocol boundaries for transaction
programs. For example, the MacAPPC drivers use basic conversation routines to
process the mapped conversation routines. Other types of LU services programs
include IBM-designed programs such as the Document Interchange Architecture
(DIA) and the CNOS (change-number-of-sessions) transaction programs.

Mapped routines handle data records, while basic routines handle logical records.
What this means to you as a programmer is that basic routines require a header to be
sent with each block of data. The header field must contain a 2-byte logical length
record (LL) portion, which specifies the length of the logical record. In addition, ID
information can also be included in the header.

The use of the header permits basic conversation routines to send data in a more
efficient manner, because each logical record does not need to be complete in order
to be sent. In other words, the send buffer can be flushed, even when it contains only
portions of logical records, or it can accumulate a series of small records that it can
send with a single execution of the routine.

Basic routines are also able to transmit and receive data that is formatted in any data
stream, not just General Data Stream (GDS) format. They can process IBM-specified
data streams, such as 3270 and 5250, or SNA data streams, as well as user-defined data
streams.

4-38 Chapter 4: MacAPPC conversation driver

(Summary

Parameters

'(

Description

· BCAllocate

The BCAllocate routine allocates a session between the local LU and a remote LU,
and, within the same session, a conversation between the local transaction program
and a remote transaction program. A conversation ID is returned which is used to
identify the conversation.

Important

If the local transaction program is starting a basic conversation, it must execute a
BCAllocate routine before it executes any other basic conversation routine.

If the local transaction program is waiting for a remote transaction program to start
the basic conversation, the local transaction program must execute a TPAttach
routine. See TPAttach in Chapter 7 of this manual.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
002E long -+ cvPIPBuffPtr
0032 word -+ cvPIPBuffSize
0042 long -+ cvRmtLUName
0052 long -+ cvRmtProgName
004E long -+ cvModeName
0056 long -+ cvUserName
005A long -+ cvUserPswd
005E long -+ cvUserProf
008C byte -+ cvConvType
008A byte -+ cvReturnCtl
0089 byte -+ cvSyncType
008F byte -+ cvPIPUsed
0492 -+ cvPIPPtr []
0892 -+ cvPIPSize [J
008B byte H cvSecType
003A long +- cvConvID

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is determined by the kCVCBSi ze constant. You must supply a new
CVCB each time your application executes a BCAllocate routine.

cvPIPBuffPtr (supplied) specifies a pointer to a buffer that holds the program
initialization parameters. The length of the buffer is specified by the value of the
cvPIPBuffSize parameter.

· Basic conversation routines 4-39

cvPIPBuffSize (supplied) specifies the size of the buffer pointed to by
cvPIPBuffPtr. This buffer must be large eough to hold the largest amoum of PIP
data expected plus a 4-byte LLID per parameter plus one 4-byte LLID for the entire PIP
data.

cvRmtLUName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxN ame
constant. The name is any name by which the local LU knows the remote LU for the
purpose of allocating a basic conversation. This locally known LU name becomes the
LU name that is used by the network if the two names are different.

cvRmtProgName (supplied) specifies a pointer to a string that contains the name
of the remote transaction program at the remote LU specified by the cvRmtLUName
parameter. The string length must not be greater than the value of the kMaxTPName
constant. A transaction program that has the appropriate privilege can specify the
name of an SNA service transaction program.

cvModeName (supplied) specifies a pointer to a string that contains the name of the
mode defining certain properties for the session allocated to the conversation. The
string length must not be greater than the value of the kMaxName constant. The
properties that are defined include, for example, class of service to be used and
whether data is to be enciphered or translated into ASCII before it is sent. The SNA­
defined mode name SNASVCMG is reserved for LU service programs.

cvUserName (supplied) specifies a pointer to a string that contains the user ID
when the cvSecType parameter is set to the kP rogSec constant (otherwise, the
parameter is ignored). The string length must not be greater than the value of the
kMaxSecName constant. The remote LU uses this value and the password to verify
the identity of the transaction program making the allocation request. In addition,
the remote LU can use cvUserName for auditing or accounting purposes, or it can
use cvUserName, together with the profile (see cvUserProf), to determine which
remote transaction programs the local transaction program can access and which
resources the remote transaction program can access.

cvUserPswd (supplied) specifies a pointer to a string that contains the password
when the cvSecType parameter is set to the kProgSec constant (otherwise, the
parameter is ignored). The string length must not be greater than the value of the
kMaxSecName constant. The remote LU uses this value and the value specified in the
cvUserName parameter to verify the identity of the transaction program making the
allocation request.

cvUserProf (supplied) specifies a pointer to a string that contains a profile to be
used in place of or in addition to the user ID specified in the cvUserName
parameter. The string length must not be greater than the value of the kMaxSecName
constant. The remote LU can use this value, in addition to or in place of the value
specified in the cvUserName parameter, to determine which remote transaction
programs the local transaction program can ~ccess, and which resources the remote
transaction program can access.

cvConvType (supplied) specifies the conversation type, as follows:

kBasicConv for basic conversation.

kMappedConv for mapped conversation.

4-40 Chapter 4: MacAPPC conversation driver

(

cvReturnCtl (supplied) specifies when the local LU is to rerum control to the
transaction program and what type of session allocation is to be used. If the local LU
fails to obtain a session for the basic conversation, an allocation error is reported
either on this routine or on a subsequent routine. If the remote LU rejects the
allocation request, an allocation error is reported on a subsequent routine. The
following values are defined:

kWhenAllocReturn allocates a session before returning control to the local
transaction program. A session-allocation error is reported upon return from the
BCAllocate routine.

kDelayAllocReturn allocates a session after returning control to the local
transaction program. A session-allocation error is reported upon return from a
subsequent MacAPPC routine.

kimrnec!Al locRet urn allocates a session only if a session is immediately
available and returns control to the local transaction program. A session is
immediately available when it is a free first-speaker session. A session-allocation
error is reported upon return from the BCAllocate routine if a session is not
immediately available.

cvsync'l'ype (supplied) specifies the synchronization level that the local and
remote transaction programs can use for the conversation. The values are defined as
follows:

kNoSync specifies that the transaction programs do not perform confirmation
processing nor sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to confirmation or synchronization functions.

kConfirmSync specifies that transaction programs can perform confirmation
processing but not sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to the synchronization functions.

kSyncPtSync specifies that transaction programs can perform both
confirmation processing and sync-point processing on this conversation.

+ Note: At the time of publication, sync-point services were not supported.

cvPIPOsed (supplied) specifies whether or not program initialization parameters
(PIPs) are to be sent to the remote transaction program. A value of TRUE specifies
that PIP data is present; F AL5E specifies that PIP data is not present.

cvPIPPtr (supplied) specifies an array of pointers to program initialization
parameters. The last pointer must be followed by one that is NIL. The maximum
number of parameters is defined by the value of the kMaxP IP constant, with a total
space limitation specifed by the cvPIPBuffSize parameter (see
cvPIPBuffSize for more information about space limitations). This array is
ignored if the cvP IPU sed parameter is set to F AL5E.

cvPIPSize (supplied) specifies an array of sizes that specifies the size for each PIP
in the cvPIPPtr array. The last size must be followed by a size of 0.

cv.Sec'l'ype (supplied/returned) specifies the type of access-security information
that is to be used by the remote LU to validate access to the remote transaction
program and its resources. The following values are defined:

kNoSec specifies that access-security information is not to be used.

Basic conversation routines 4-41

Notes

Result code

See also

kSameSec specifies that the security information to be used is from the local
transaction program executing the BCAllocate request, so that the security
level remains the same as set by the previous allocation request. The allocation
request carries the user name of the local transaction program and is indicated as
already verified (that is, no password is sent). If the local transaction program was
not previously allocated, the cvSecType parameter returns the kNoSec
constant.

kProgSec specifies that the security information to be used is contained in the
cvUserName, cvUserPswd, and optionally the cvUserProf parameters.

cvConvID (returned) .indicates the conversation ID of the allocated conversation.

Successful completion of the BCAllocate routine does not indicate successful
allocation. This routine can only return session-allocation errors (with the
cvReturnCtl parameter set to the kWhenSessAllocReturn or
kimmediateReturn constant). All other allocation errors are reported on
subsequent routines.

When control returns and no error was encountered, the conversation is in send
state.

For IBM equipment, make sure that the PIP data is in the format that the receiving
transaction program expects. For example, you may need to execute the
TPAsciiToEbcdic routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCAllocate, BCDeallocate

4-42 Chapter 4: MacAPPC conversation driver

(Summary

Parameters

Description

Result code

See also

(

BCConfirm

The BCConfirm routine flushes the send buffer, transmits a request for
confirmation to the remote transaction program, and waits for a reply. The remote
transaction program replies with either a confirmation or an error. This routine
allows the local and remote transaction programs to synchronize their processing.
This routine is not available on conversations allocated with the synchronization level
of none.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long ~ cvTPCBPtr
002A long' ~ cvCVCBPtr
0082 byte f- cvReqToSendRcvd

cvTl?CBl?tr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBl?tr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvReqToSend.Rcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

MCConf irm, BCConf irmed

Basic conversation routines 4-43

Summary

Parameters

Description

Notes

Result code

See also

BCConfirmed

The BCConfirmed routine sends a confirmation reply to the remote transaction
program when a confumation request is received.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
001A word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
001C word ~ appcHiResult
001E word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

When control returns and no error is encountered, the conversation state changes as
follows: if the conversation was in confirm state, it goes to receive state; if the
conversation was in confirm/send state, it goes to send state; if the conversation was
in confirm/deallocate state, it goes to deallocate state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

MCConfirmed, BCConfirm

4-44 Chapter 4: MacAPPC conversation driver

~'',

'_j)

Summary

Parameters

(Description

BC Deallocate

The BCDeallocate routine flushes the send buffer and deallocates the
conversation from the transaction program. It can also include the function of the
BCConfirm routine. The conversation becomes unassigned when deallocation is
complete.

Important

Your transaction program must execute a BCDeallocate routine to end a basic
conversation. After the BCDeallocate routine has been executed, no more basic
conversation routines can be executed for that deallocated basic conversation.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0085 byte ~ cvDeallocType
0070 long ~ cvDataPtr
0074 word ~ cvDataSize

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB) to be deallocated.

cvDeallocType (supplied) specifies the type of deallocation:

kSyncDealloc specifies that MacAPPC should perform deallocation based on
the synchronization level allocated to this conversation. A synchronization level
of none will perform a deallocation as if the kFlushDealloc constant had
been specified. A synchronization level of confirm will perform a deallocation as
if the kConfirmDealloc constant had been specified.

kFlushDealloc specifies that MacAPPC should execute the function of
MCF 1 us h and deallocate the conversation normally.

kConfirmDealloc specifies that ?-.facAPPC should execute the function of the
BCConfirm routine and, if it is successful, deallocate the conversation
normally; if it is not successful, the state of the conversation is determined by the
result code.

kAbendProgDealloc specifies that MacAPPC should execute the function of
the BCFlush routine when the conversation is in send or defer state, and
deallocate the conversation normally. If the conversation is in receive state, data
c1;1 be lost. kAbendProgDealloc is intended to be used by a transaction
program when it detects an error condition that prevents completion of the
transaction.

Basic conversation routines 4-45

Notes

Result code

See also

kAbendSvcDealloc is intended to be used by a service transaction program
when it detects an error condition that prevents completion of the transaction. Its
specific use and meaning are defined by the service transaction program.

kAbendTimerDealloc is intended to be used by an LU services component,
such as one that processes mapped conversation routines, when it detects an
error condition caused by its peer LU services component in the remote LU. An
example is a format error in control information sent by the peer LU services
component. The specific use and meaning are defined by the transaction
program.

kLocalDealloc specifies that MacAPPC should deallocate the conversation
locally. The transaction program should specify this type of deallocation if, and
only if, the conversation is in deallocate state.

cvDataPtr (supplied) specifies a pointer to error data to be written to the local
and remote LU error logs. Log data is not accepted if error logging support is not
configured for the local and remote LUs. The size of the buffer is specified by the
cvDataSi ze parameter. If log data is not specified, this pointer must be NIL.

cvDataSize (supplied) specifies the size of the log data buffer pointed to by the
cvDa ta Pt r parameter. The maximum size of the buffer is specified by the
kMaxLogData constant.

When control returns, if no errors were encountered, the conversation enters reset
state. When the cvDeallocType parameter is set to the kSyncDealloc
constant and the partner sends an error response, the conversation enters receive
state.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCDeallocate, BCAllocate

4-46 Chapter 4: MocAPPC conversation driver

. , .•... /,

Summary

Parameters

Description

Notes

Result code

See also

('"

.-·r'

BC Flush

The BCFlush routine sends the information that is in the LU's send buffer to the
remote transaction program. Information is buffered in the send buffer by the
BCAllocate, BCDeallocate, BCSendData, and BCSendError routines.

BCFlush is useful for optimization of processing between the local and remote
transaction programs. The LU normally buffers the data records from consecutive
BCSendData routines until it has a sufficient amount for transmission. At that time it
transmits the buffered data records. HoweVer, the local transaction program can
execute BCFl ush in order to cause the LU to transmit the buffered data records. In
this way, the local transaction program can minimize the delay in the remote
transaction program's processing of the data records.

OOOC long -+ ioCom~tion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResul t
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

When the routine completes without error, no state change occurs. If an error is
detected, the conversation enters either receive state or deallocate state, depending
on the error.

appcNoErr
appcFail
appcExec

MCFlush

Routine succeeded
Routine failed; look in appcHiResult and appcLo~esul t
Routine executing; asynchronous request not complete

Basic conversation routines 4·47

Summary

Parameters

Description

BCGetAttributes

The BCGetAttributes routine returns information about the specified
conversation.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvT.Ptr
002A long -+ cvCVCBPtr
004A long => cvFullLclLUName
0042 long => cvRmtLUName
0046 long => cvFullRmtLUName
004E long => cvModeName
0056 long => cvUserName
COSE long => cvUserProf
0062 long => cvLUWName
0066 long => cvLUWID
006A long => cvLUWCorr
0089 byte +- cvSyncType
006E word +- cvLUWSeq
003A long +- cvConvID
003E long +- cvProgID

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFullLclLOName (supplied/modified) specifies a pointer to space where the
fully qualified network name of the local LU can be returned. The space must be at
least two times the value of the kMaxName constant plus 1 byte. The name is
returned as two strings concatenated by a period: NETID.NETNAME, where NETID is
the network ID and NETNAME is the network LU name. When there is no network ID,
only NETNAME is returned. If the pointer is NIL, the name is not returned.

cvRmtLOName (supplied/modified) specifies a pointer to space where the local
name of the remote LU--that is, where the remote transaction program is
located-can be returned. The space must be at least as large as the value of the
kMaxName constant plus 1 byte. This is the name by which the local LU knows the
remote LU for the purpose of allocating a conversation. If the pointer is NIL, the name
is not returned.

cvFullRmtLOName (supplied/modified) specifies a pointer to space where the
fully qualified network name for the remote LU can be returned. The space must be ai
least two times the value of the kMaxName constant plus 1 byte. The name has the
same form as that specified in the cvFullLclLUNarr.e parameter. If the remote
LU's fully qualified name is not known, a NULL string is returned. If the pointer is NIL,
the name is not returned.

4-48 Chapter 4: MacAPPC conversation driver

/"'~

')
j

,,, _

(__7'

(

cvModeName (supplied/modified) specifies a pointer to space where the mode
name for the session allocated to the conversation can be returned. The space must
be at least as large as the value of the kMaxName constant plus 1 byte. If the pointer is
NIL, the name is not returned.

cvOserName (supplied/modified) specifies a pointer to space where the user ID
can be returned. The space must be at least as large as the value of the kMaxSecName
constant plus 1 byte. The remote LU uses this value and the password to verify the
identity of the transaction program making the allocation request. In addition, the
remote LU can use the value of the cvUserName parameter for auditing or
accounting purposes, or it can use the value of cvUserNarne, together with the
profile (see cvUserProf), to determine which remote transaction programs the
local transaction program can access and which resources the remote transaction
program can access. If the pointer is NIL, the user ID is not returned.

cvUserProf (supplied/modified) specifies a pointer to space where a profile to be
used in place of or in addition to the user ID specified in the cvUserNarne
parameter can be returned. The space must be at least as large as the value of the
kMaxSecName constant plus 1 byte. The remote LU can use this value, in addition to
or in place of the cvUserNarne parameter, to determine which remote transaction
programs the local transaction program can access, and which resources the remote
transaction program can access. If the pointer is NIL, the profile is not returned.

cvLtJWName (supplied/modified) specifies a pointer to space where the LU name
portion of the logical-unit-of-work (LUW) can be returned. The space must be at least
as large as the value of the kMaxLUWNarne constant plus 1 byte. The LUW identifier is
created and maintained by the LU, which uses it for accounting purposes. If the
pointer is NIL, the name is not returned.

cvLTJWID (supplied/modified) specifies a pointer to space where the unique ID
portion of the logical-unit-of-work can be returned. The space must be at leascas long
as the value of the kMaxLUWID constant plus 1 byte. This is not a printable string. If
the pointer is NIL, the LUW ID is not returned.

cvLTJWCorr (supplied/modified) specifies a pointer to space where the
conversation correlator can be returned. The space must be at least as long as the
value of the kMaxLUWCorr constant plus 1 byte. The conversation correlator is
created and maintained by the LU. This is not a printable string. If the pointer is NIL,
the name is not returned.

cvSyncType (returned) indicates the synchronization level that the local and
remote transaction programs can use for the conversation. The following values are
defined:

kNoSync indicates that the transaction programs do not perform confirmation
processing on this conversation. The transaction programs do not execute any
routines and do not recognize any returned parameters relating to these
synchronization functions.

kConfirrnSync indicates that transaction programs can perform confirmation
processing but not sync-point processing on this conversation. The transaction
programs do not execute any routines and do not recognize any returned
parameters relating to the synchronization functions.

kSyncPtSync indicates that transaction programs can perform both
confirmation processing and sync-point processing on this conversation.

+ Note: At the time of publication, sync-point services were not supported.

Basic conversation routines 4-49

Result code

See also

cvLOWSeq (returned) is the logical-unit-of-work sequence number assigned to this
conversation.

cvConvID (returned) returns the conversation ID.

cvProgID (returned) returns the program ID.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

MCGetAttributes

4-50 Chapter 4: MacAPPC conversation driver

Summary

Parameters

Description

Result code

See also

(•··.·.

'

BC Poston Receipt

The BCPostOnReceipt routine requests a conversation to be posted when
information is available for the transaction program to receive. Execute a BCTest
routine after BCPostOnReceipt to determine if posting has occured. Execute a
CVWait routine after BCPostOnReceipt to wait for posting to occur.

oooc long __. ioCompletion
0018 word __. appcRefNum
OOlA word __. appcOpCode
0022 long __. appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long __. cvTPCBPtr
002A long __. cvCVCBPtr
0088 byte __. cvFillType
0074 word __. cvDataSize

cv'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFill'l'ype (supplied) specifies whether or not posting for data is to occur for a
logical length record:

kBufferFill specifies that the conversation is to be posted when the specified
amount arrives, regardless of the logical record format.

kLLF i 11 specifies that the conversation is to be posted when a complete or
truncated logical length record arrives, or when at least the specified amount of
data arrives for the logical length record.

cvOataSize (supplied) specifies the minimum amount of data that will cause
posting to occur. This is used with the cvFill Type parameter to determine when
to post the conversation. The cvDataSize parameter must be small enough so that
the amount of data that will cause posting does not exceed the size of the LU's receive
buffer. If that buffer is exceeded, posting will never occur. The proper size for the LU's
receive buffer depends upon several factors; you will have to empirically test different
values for cvDataSi ze to find the correct value.

+ Note: If a small value has been specified for cvDataSize and a large data block
has begun to arrive, you can subsequently use either a BCRecei veAndWai t
routine to receive the entire data block or a BCRecei veimmediate routine to
receive only the data that has been received by the LU.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCPostOnReceipt, BCTest, CVWait

Basic conversation routines 4-51

Summary

Parameters

Description

Result code

See also

BCPrepareToReceive

The BCP repareToRecei ve routine flushes the send buffer and changes the
conversation from send state to receive state. This routine can also include the
function of the BCConfirm routine, requesting confirmation before entering
receive state.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0086 byte -+ cvPrepToRcvType
0087 byte -+ cvLockType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvPrepToR.cvType (supplied) specifies the type of request:

kFlushRcv indicates that the send buffer should be flushed (as in the BCFlush
routine) and the conversation should enter receive state.

kConfirmRcv indicates that the data in the buffer shoul be sent and that
confirmation will be requested before entering receive state.

cvt.ockType (supplied) specifies when control is to be returned to the local
transaction program if the function of BCConfirm is performed. This parameter is
ignored if the conversation does not support confirmation processing.

kShortLock specifies that control should be returned to the local transaction
program when an affirmative reply is received.

kLongLock specifies that control should be returned to the local transaction
program when data following confirmation is received.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCPrepareToReceive

4-52 Chapter 4: MacAPPC conversation driver

('\)
',"' ~)

(Summary

Parameters

(Description

BCReceiveAndWait

The BCRecei veAndWai t routine receives information that has arrived for the
basic conversation. The routine can wait for more information to arrive if the request
is not yet satisfied. The information can be data, conversation status, or a request for
confirmation. The transaction pr• igram can execute this routine when the
conversation is in send state, which flushes the buffer and places the conversation in
receive state.

The transaction program receives only one kind of information at a time; that is, it
can receive data or control information, but it cannot receive both simultaneously.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0088 byte ~ cvFillType
0070 long => cvDataPtr
0074 word H cvDataSize
0084 byte f- cvWhatRcvd
0082 byte f- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFillType (supplied) specifies whether or not data is to be received according
to the logical record format.

kBufferFill receives the specified amount of data independent of its logical
record format.

kLLFill receives one complete or truncated logical record, or up to the
specified amount of the logical record.

cvOataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvOataSize (supplied/returned) specifies the maximum amount of data the
transaction program is to receive. When control returns to the transaction program,
this field contains the length of data received.

cvWhatRcvd (returned) indicates what was received, as follows:

· kDataRcvd indicates that data was received. It is returned only when the
cvFillType parameter is set to the kBufferFill constant.

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received. It is returned only when the
cvF i 11 Type parameter is set to the k LLF i 11 constant.

Basic conversation routines 4-53

Notes

Result code

See also

kDataincornplRcvd indicates that an incomplete U was received. It is returned
only when the cvFill Type parameter is set to the kLLFill constant.

kLLTruncRcvd indicates that a complete logical length record was not received,
and the rest of the data was discarded. No data is returned. It is returned only
when the cvFillType parameter is set to the kLLFill constant.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute BCSendData.

kConfirrnRcvd indicates that the remote transaction program has requested
confumation. No data is returned. The conversation enters confirm state.

kConfirrnSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confinn/send
state.

kConfirrnDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The· conversation enters confinn/deallocate
state.

cvReq'l'oSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the value of the cvWha t Rcvd parameter.

For IBM equipment, be aware of the format that the sending transaction program is
using. For example, you may need to execute the TPEbcdicToAscii routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

MCReceiveAndWait, BCReceiveimmediate

4-54 Chapter 4: MacAPPC conversation driver

(Summary

Parameters

Description

(

BCReceivelmmediate

The BCReceiveimmediate routine receives information that is available for the
conversation. The information can be data, conversation starus, or a request for
confirmation. Control is rerumed to the transaction program with an indication of
what kind of information was received, if any.

The transaction program receives only one kind of information at a time; that is, it
can receive data or control information, but it cannot receive both simultaneously.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0088 byte ~ cvFillType
0070 long => cvDataPtr
0074 word +-+ cvDataSize
0084 byte +- cvWhatRcvd
0082 byte +- cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvFillType (supplied) specifies whether or not data is to be received according
to the logical record format.

kBufferFill receives the specified amount of data independent of its logical
length record format.

kLLFill receives one complete or truncated logical record, or up co the
specified amount of the logical length record.

cvDataPtr (supplied/modified) specifies a pointer to space into which received
data is copied. The size of the space is specified in the cvDataSize parameter.

cvDataSize (supplied/returned) specifies the maximum amount of data the
transaction program is co receive. When control returns to the transaction program,
this field contains the length of data received.

cvWhatR.cvd (returned) indicates what was received, as follows:

kDataRcvd indicates that data was received. It is rerumed only when the
cvFillType parameter is set to the kBufferFill constant.

kDataComplRcvd indicates that a complete logical length record (LL) or the
end of a previously incomplete LL was received. It is rerumed only when the
cvFillType parameter is set to the kLLFill constant.

Basic conversation routines 4-55

Notes

Result code

See also

kDataincomplRcvd indicates that an incomplete LL was returned. It is returned
only when the cvF i 11 Type parameter is set to the kLLF ill constant.

kLLTruncRcvd indicates that a complete logical length record was not received,
and the rest of the data was discarded. No data is returned. It is returned only
when the cvF i 11 Type parameter is set to the kLLF i 11 constant.

kSendRcvd indicates that the remote transaction program has entered receive
state and sent a send indication. No data is returned. The conversation enters
send state. The local transaction program can now execute BCSendData.

kConfirmRcvd indicates that the remote transaction program has requested
confirmation. No data is returned. The conversation enters confirm state.

kConfirrnSendRcvd indicates that the remote transaction program has
executed a prepare-to-receive confirm. The conversation enters confirm/send
state.

kConfirrnDeallocRcvd indicates that the remote transaction program has
executed a deallocate confirm. The conversation enters confirm/ deallocate
state.

cvReqToSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When control returns and no errors are encountered, the conversation is in receive
state unless otherwise indicated by the cvWhatRcvd parameter.

For IBM equipment, be aware of the format that the sending TP is using. For example,
you may need to execute the TPEbcdicToAscii routine.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResult
Routine executing; asynchronous request not complete

MCReceiveirnrnediate, BCReceiveAndWait

4-56 Chapter 4: MacAPPC conversation driver

'

Summary

Parameters

Description

Notes

Result code

See also

BCRequestToSend

The BCRequestToSend routine is used by the local transaction program to request
to enter send state. A request-to-send indicator is sent to the remote transaction
program which can either honor or ignore the request. If the request is honored, the
conversation enters send state for the local transaction program when.a send
indication is received from the remote transaction program.

oooc long -7 ioCompletion
0018 word -7 appcRefNum
OOlA word -7 appcOpCode
0022 long -7 appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -7 cvTPCBPtr
002A long -7 cvCVCBPtr

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

No state change occurs.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCRequestToSend

Basic conversation routines 4-57

Summary

Parameters

Description

Notes

BCSendData

The BCSendData routine transmits data to the remote transaction program. The
data must be formatted into logical records by the local transaction program, but it is
sent independently of the logical record format.

The data is buffered in the local LU's send buffer and is not transmitted co the remote
transaction program until the send capacity is exceeded. Transmission of the
contents of the send buffer is forced by the BCFlush routine or by routines that
include the flush function (for example, BCPrepareToReceive).

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0070 long ~ cvDataPtr
0074 word ~ cvDataSize
0082 byte f- cvReqToSendRcvd

cv'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvDataPtr (supplied) points to the data to be sent. The size of the data is specified
by the cvDataSize parameter. This data must be formatted into logical records by
the local transaction program before it is sent. Each logical record consists of a 2-
byte length field followed by the data. The 2-byte length field contains the 15-bit
length of the record and a high-order bit that is ignored (this bit is used by mapped
conversation routines). The length of the record includes the length of the 2-byte
length field. For example, a 40-byte record would be sent in a 42-byte logical record
with a length field of 42. Logical record lengths of $0000, $0001, $8000, and $8001 are
invalid.

cvDataSize (supplied) contains the length of the data to be sent. This parameter
is independent of the logical record format.

cvR.eq'l'oSendRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

When no error is encountered, the conversation remains in send state.

For IBM equipment, be aware of the format that the remote transaction program is
expecting. For example, you may need to execute the TPAscii ToEbcdic routine.

4-58 Chapter 4: MacAPPC conversation driver

· .•.. ,

Result code

(See also

appcNoErr
appcFail
appcExec

MC Send.Data

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Basic conversation routines 4-59

Summary

Parameters

Description

Notes

BCSendError

The BCSendError routine sends an error notification to the remote transaction
program. If the conversation is in send state, the send buffer is flushed. When the
routine is completed with no errors, the conversation is in send state and the remote
transaction program is in receive state.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
008D byte ~ cvErrorType
007E long ~ cvSenseData
0070 long ~ cvDataPtr
0074 word ~ cvDataSize
0082 byte ~ cvReqToSendRcvd

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cVCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvErrorType (supplied) specifies the type of error, as follows:

kSvcError indicates a service transaction program error.

kProgError indicates a transaction program error.

cvSenseData (supplied) is reserved for use by the MacAPPC drivers.

cvDataPtr (supplied) specifies a pointer to error data to be written to the local
and remote LU error logs. Log data is not accepted if error logging support is not
configured for the local and remote LUs. The size of the buffer is specified by the
cvDataSize parameter. If log data is not specified, this pointer must be NIL.

cvDataSize (supplied) specifies the size of the log data buffer pointed to by the
cvDataPtr parameter. The maximum size of the buffer is specified by the
kMaxLogData constant.

cvReqToSenclRcvd (returned) returns TRUE if the remote transaction program
has issued a request-to-send, thus requesting that the local transaction program enter
receive state and place the remote transaction program in send state.

If no errors are encountered, the program enters send state.

If a race condition arises where both the local and remote transaction programs issue
error indications, the program that was in receive state wins the race and the program
that was in send state receives a program-error indication.

4-60 Chapter 4: MacAPPC conversation driver

Result code

(See also

(

(

appcNoErr
appcFail
appcExec

MCSendError

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request nor complete

Basic conversation routines 4-61

Summary

Parameters

Description

ResuH code

See also

BCTest

The BCTest routine tests the specified conversation to see whether posting has
occurred or whether a request-to-send notification has been received. If a request-to­
send has been received, the routine returns appcNoErr. If posting has occurred, the
routine returns appcNoErr and appcLoResult is set to one of the following
constants:

dataAvail indicates that data has arrived.

ctlAvail indicates that control information has arrived.

When testing for posting, posting must be previously activated for a conversation with
the BCPostOnReceipt routine.

oooc long -+ ioCompletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0020 byte f- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
OOBE byte -+ cvTestType

cvTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

cvCVCBPtr (supplied) specifies a pointer to an existing Conversation Control
Block (CVCB).

cvTest Type (supplied) specifies the condition to be tested, as follows:

kPost Test specifies to test whether the conversation has been posted.

kReqToSendTest specifies to test whether request-to-send notification has
been received from the remote transaction program.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

MCTest, BCPostOnReceipt

4-62 Chopter 4: MacAPPC conversation driver

(

Summary of the MacAPPC Conversation Driver
This section provides a summary of the constants, data structures, and routines for use
with the MacAPPC Conversation Driver.

Constants
The following constants are available for use with the MacAPPC Conversation Driver.

{ cvWhatRcvd values }

kNullRcvd =
kDataRcvd =
kDataComplRcvd =

kDataincomplRcvd =
kLLTruncRcvd =
kSendRcvd =

kConfirmRcvd =
kConfirmSendRcvd =

kConfirmDeallocRcvd =
kDataTruncRcvd =

kFMHDataComplRcvd =

kFMHDataincomplRcvd =
kFMHDataTruncRcvd =
kTakeSyncPtRcvd =
kTakeSyncPtSendRcvd =

kTakeSyncPtDeallocRcvd =

{ cvDeallocType values }

kSyncDealloc = l;

kFlushDealloc = 2;
kAbendProgDealloc = 3;

kAbendSvcDealloc = 4;
kAbendTimerDealloc= 5;
kLocalDealloc = 6;

kConfirmDealloc = 7;
kAbendDealloc = 8;

{ cvPrepToRcvType values

kFlushRcv =

kConfirmRcv =

kSyncLevelRcv =

{ cvLockType values

kShortLock =

kLongLock =

0;
l;

2;

O;
l;

O;
l;

2;
3;
4;

5;
6;

7;

8;

9;

10;
11;
12;
13;
14;
15;

not supported

not supported

not supported

Summary of the MacAPPC Conversation Driver 4-63

{ cvFillType values

kBufferFill =

kLLFill =

{ cvSyncType values

kNoSync •

kConfirmSync "'
kSyncPtSync ..

{ cvReturnCtl values

kWhenAllocReturn •

kDelayAllocReturn -
kimmedAllocReturn =

{ cvSecType values }

kNoSec =
kSameSec •
kProqSec =

{ cVConvType values

kBasicConv •
kMappedConv ..

{ cvErrorType values

kSvcError •
kProqError =
kAllocError •

{ cvTestType values

kPostTest ..
kReqToSendTest •

{ mcpbMapCmd values

kSendMappinq"'
kRcvMappinq •

{ mcpbResult values

mcNoErr •
mcErr •
mcMapNameErr •
mcDupMapNameErr •

{ mcpbRcvMode values

kTruncMode ..

kincomplMode =

}

}

O;
l;

0;

l;

2;

0;

l;

2;

0;

l;

2;

O;
l;

0;

l;

2;

0;

l;

0;

l;

O;
l;

2;

3;

0;
l;

{ not supported

reserved

4-64 Chapter 4: MocAPPC Conversation Driver

,,J ,,

}

"~,,

(

Data types
The following data types are available for use with the MacAPPC Conversation Driver.

cvParam:

cvTPCBPtr
cvCVCBPtr
cvPIPBuffPtr
cvPIPBuffSize
cvMapBuffPtr
cvMapBuffSize
cvConvID
cvl?rogID
cvRmtLUName
cvFullRmtLUName
cvFullLclLUName
cvModeName
cvRmtProgName
cvUserName
cvUserPswd
cvUserProf
cvLUWName
cvLUWID
cvLUWCorr
cvLUWSeq
cvDataPtr
cvDataSize
cvMapName
cvMapProc
cvSenseData
cvReqToSendRcvd
cvFMBdrs
cvWhatRcvd
cvDeallocType
cvPrepToRcvType
cvLockType
cvFillType
cvSyncType
cvReturnCtl
cvSecType
cvConvType
cvErrorType
cvTestType
cvPIPUsed
cvConvIDCount
cvConvIDList
cvl?IPPtr
cvPIPSize
) ;

Ptr;
Ptr;
Ptr;
INTEGER;
Ptr;
INTEGER;
LONGINT;
LONGINT;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
INTEGER;
Ptr;
INTEGER;
StringPtr;
ProcPtr;
LONGINT;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;

Tl?CB pointer)
CVCB pointer }
PIP buffer pointer
PIP buffer size }
mapped conversation buffer pointer
mapped conversation buffer size)
conversation ID }
transaction program ID }
remote LU name pointer }
fully qualified RLU name pointer
fully qualified LLU name pointer
mode name pointer }
remote program name pointer
user name pointer)
user password pointer
user profile pointer }
Logical Unit of Work LU name pointer}
LUW identifier pointer }
LUW conversation correlator pointer }
LUW sequence number
data buffer pointer
data buffer size }
map name pointer }
mapping procedure pointer
reserved }
request to send received }
FM headers in data record
what was received }
deallocation type }
prepare to receive type
prepare to receive lock
logical record receive }
synchronization level }
allocate return control
security type }
conversation type
send error type }
test type }

Byte; program parameters used.}
INTEGER; t of conversation IDs }
ARRAY [1. • kMaxConvID] OF LONG INT; { list of conv IDs
ARRAY[l. .kMaxPIP] OF Ptr; { array of PIP ptrs)
ARRAY[l. .kMaxPIP] OF INTEGER; { array of PIP sizes)

Summary of the MacAPPC Conversation Driver 4-65

Mapping parameter block

APPCMCPB =

mcpbMapCmd

mcpbResult

mcpbMapName

mcpbDataPtr
mcpbDataSize

mcpbBuffPtr

mcpbBuffSize
mcpbTransMapName

mcpbFMHdrs

mcpbRcvMode

mcpbAPPCPBPtr
END;

APPCMCPBPtr =

RECORD

SignedByte;

INTEGER;
StringPtr;

Ptr;
INTEGER;

Ptr;

INTEGER;

Boolean;

Boolean;
SignedByte;

Ptr;

"APPCMCPB;

MC request)

mapper return code
map name pointer

data pointer }

data length }

buffer pointer

buffer length }

map name translation required }

FMH data contains FM headers }

receive mode }

APPC parameter block pointer

4-66 Chapter 4: MacAPPC Conversation Driver

)

Mopped routines

(The following mapped conversation routines are available for use with the MacAPPC
Conversation Driver.

MCAllocate
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long --+ cvTPCBPtr
002A long --+ cvCVCBPtr
0034 long --+ cvMapBuffPtr
0038 word --+ cvMapBuffSize
002E long --+ cvPIPBuffPtr
0032 word --+ cvPIPBuffSize
0042 long --+ cvRrntLUNarne
0052 long --+ cvRrntProgName
004E long --+ cvModeName
0056 long --+ cvUserName
005A long --+ cvUserPswd
005E long --+ cvUserProf

(007A long --+ cvMapProc
008A byte --+ cvReturnCtl
0089 byte --+ cvSyncType
008F byte --+ cvPIPUsed
0492 --+ cvPIPPtr []
0892 --+ cvPIPSize []
008B byte H cvSecType
003A long +- cvConvID

MCConfirm
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long --+ cvTPCBPtr
002A long --+ cvCVCBPtr
0082 byte +- cvReqToSendRcvd

Summary of the MacAPPC Conversation Driver 4-67

MCConfirmed
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr

MCDeallocate
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0085 byte ~ cvDeallocType

MC Flush
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr

MCGetAttributes
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvstate
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
004A long => cvFullLclLUName
0042 long => cvRmtLUName
0046 long => cvFullRmtLUName
004E long => cvModeName

/I
4-68 Chapter 4: MacAPPC Conversation Driver

0056 long => cvUserName
OOSE long => cvUserProf
0062 long => cvLUWName

(' 0066 long => cvLUWID
006A long => cvLUWCorr
0089 byte +- cvSyncType
006E word +- cvLUWSeq
003A long +- cvConvID
003E long +- cvProgID

MCPostOnReceipt
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0074 word -+ cvDataSize

MCPrepareToReceive
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode

;(0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0086 byte -+ cvPrepToRcvType
0087 byte -+ cvLockType

MCReceiveAndWait
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ app~OpCode

0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0070 long => cvDataPtr
0074 word H cvDataSize
0076 long => cvMapNarne

(
0084 byte +- cvWhatRcvd
0082 byte +- cvReqToSendRcvd

/

Summary of the MacAPPC Conversation Driver 4-69

MCReceivelmmediate
oooc long -+ ioCompletion
0018 word -+ appcRefNurn

"l OOlA word -+ appcOpCode
0022 long -+ appcUserRef '·
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0070 long ~ cvDataPtr
0074 word H cvDataSize
0076 long ~ cvMapNarne
0084 byte +- cvWhatRcvd
0082 byte +- cvReqToSendRcvd

MCRequestToSend
oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr (··,.,,

"--. . ./

MCSendData
oooc long -+ ioCornpletion
0018 word· -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0070 long -+ cvDataPtr
0074 word -+ cvDataSize
0076 long -+ cvMapName
0083 byte -+ cvFMHdrs
0082 byte +- cvReqToSendRcvd

MCSendError
oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult

1···,,,

G
4-70 Chapter 4: MacAPPC Conversation Driver

OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState

(0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0082 byte ~ cvReqToSendRcvd

MCTest
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
OOSE byte ~ cvTestType

Summary of the MacAPPC Conversation Driver 4-71

Type-independent routines
The following type-independent routines are available for use with the MacAPPC
Conversation Driver.

CVBackout
At the time of publication, CVBackout was not supported.

CVGetType
oooc long -+ ioCompletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
008C byte +- cvConvType

CVSyncPoint
At the time of publication, CVSyncPoint was not supported.

CVWait
oooc long -+ ioCompletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0092 -+ cvCVCBList[]
0090 word H cvCVCBindex

4-72 Chapter 4: MacAPPC Conversation Driver

\

Basic conversation routines

(The following basic conversation routines are available for use with the MacAPPC
Conversation Driver.

BCAllocate
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +-. appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
002E long ~ cvPIPBuffPtr
0032 word ~ cvPIPBuffSize
0042 long ~ cvRmtLUName
0052 long ~ cvRmtProgName
004E long ~ cvModeName
0056 long ~ cvUserName
005A long ~ cvUserPswd
005E long ~ cvUserProf
000c byte ~ cvConvType
008A byte ~ cvReturnCtl

(~ '

0089 byte ~ cvSyncType
008F byte -~ cvPIPUsed
0492 ~ cvPIPPtr[]
0892 ~ cvPIPSize []
008B byte ++ cvSecType
003A long +- cvConvID

BC Confirm
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long ~ cvTPCBPtr
002A long ~ cvCVCBPtr
0082 byte +- cvReqToSendRcvd

BCConfirmed
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode

("' 0022 long ~ appcUserRef
......,...-·''

Summary of the MacAPPC Conversation Driver 4-73

0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

BCDeallocate
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0085 byte -+ cvDeallocType
0070 long -+ cvDataPtr
0074 word -+ cvDataSize

BCFlush
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult A
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

BC Get Attributes
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ ·appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
004A long => cvFullLclLUName
0042 long => cvRmtLUName
0046 long => cvFullRmtLUName
004E long => cvModeName
0056 long => cvUserName
OOSE long => cvUserProf
0062 long => cvLUWName

'c-.. ,,,
4-74 Chapter 4: MacAPPC Conversation Driver

0066 long => cvLUWID
006A long => cvLUWCorr
0089 byte ~ cvSyncType

(
006E word ~ cvLUWSeq
003A long ~ cvConvID
003E long ~ cvProgID

BCPostOnReceipt
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long --+ cvTPCBPtr
002A long --+ cvCVCBPtr
0088 byte --+ cvFillType
0074 word --+ cvDataSize

BCPrepareToReceive
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult

(~
OOlC word .~ appcHiResult
OOlE word ·~ appcLoResult
0020 byte ~ appcConvState
0026 long --+ cvTPCBPtr
002A long --+ cvCVCBPtr
0086 byte --+ cvPrepToRcvType
0087 byte --+ cvLockType

BCReceiveAndWait
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long --+. cvTPCBPtr
002A long --+ cvCVCBPtr
0088 byte --+ cvFillType
0070 long => cvDataPtr
0074 word H cvDataSize
0084 byte ~ cvWhatRcvd
0082 byte ~ cvReqToSendRcvd

("
-~'"/

summary of the MacAPPC Conversation Driver 4-75

BCReceivelmmediate
oooc long -+ ioCompletion
0018 word -+ appcRefNum

/•'""'~ OOlA word -+ appcOpCode
0022 long -+ appcUserRef '-.,,,./

0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0088 byte -+ cvFillType
0070 long ~ cvDataPtr
0074 word ~ cvDataSize
0084 byte +- cvWhatRcvd
0082 byte +- cvReqToSendRcvd

BCRequestToSend
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC ·word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

;'r' '"
... ·~

BCSendData
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
0070 long -+ cvDataPtr
0074 word ~ cvDataSize
0082 byte +- cvReqToSendRcvd

BCSendError
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult

4-76 Chapter 4: MocAPPC Conversation Driver

0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr

(0080 byte -+ cvErrorType
007E long -+ cvSenseData
0070 long -+ cvDataPtr
0074 word -+ cvDataSize
0082 byte +- cvReqToSendRcvd

BCTest
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ cvTPCBPtr
002A long -+ cvCVCBPtr
COSE byte -+ cvTestType

(:.

(>
Summary of the MacAPPC Conversation Driver 4-77

(Chapter 5

MacAPPC Control Operator
Driver

5-1

This chapter describes the MacAPPC Control Operator Driver (.C062), explains how
to use the driver, and provides a detailed guide to the programmatic interface for
executing each Control Operator Driver routine. For quick reference, a section at the
end of the chapter summarizes the data stmctures, constants, and routine parameters.

Using the MacAPPC Control Operator Driver
Control operator routines permit a control operator to define and control certain
components of a LU 6.2 node. They control session limits, activate and deactivate
sessions, and define and display LUs, modes, and TPs.

To make the programmer's task easier, MacAPPC also provides a control operator
program-the Administration program, described in Chapter 12-that handles all of
the control operator functions. By using the Administration program, you do not
need to access the control operator driver in the programs that you write; however, if
you choose to do so, the control operator routines are fully described in this chapter.

Security
MacAPPC supports two levels of security: session level and conversation level.

Session level LU-LU verification is used to verify the identity of each LU to its session­
partner LU during activation of a session. A session between two LUs cannot be
activated unless each one's view of the other is the same. In essence, each node must
see a mirror image of the other node, both in configuration and in security, in order
for a session to be successfully bound.

Conversation level access security information is carried on allocation requests in
order for the receiving LU to verify the identity of the user ID and to control access to
its resources. The security information includes a user ID together with a password or
the already-verified indication. The information may also include a profile. This level
of security takes place first at the LU level and then at the TP level. At the LU level, there
can be zero or more user IDs, each with a password. For each user ID, there can be
zero or more profiles.

The prof"tle is an optional security feature that provides an additional element of
structure and security to the network configuration. Some examples of profiles are
department, store, corporation, section, division, function, building, location, and
code designation.

If the allocation request passes the LU-level security it must then pass the security
requirement of the TP level. Security checking may be waived at the TP level or consist
of checking any combination of the user ID and the profile.

5-2 Chapter 5: MacAPPC Control Operator Driver

(

At the local LU level, conversation-level security may be turned on and off by radio
bunon selection when you are using the Configuration program. The security consists
of lists of authorized user IDs, passwords, and profiles that are checked and confirmed
before a session bind may occur. These lists are created and edited for a local LU. The
term already verified indicates that the local LU will accept conversation-level access
without password checking as a result of having previously (already) verified the
password during an earlier bind.

At the TP level, the security consists of lists of IDs, passwords, and profiles that are
selected from the local LU lists.

The resource-access authorization list that is verified during security checking consists
of the set of user IDs, passwords, and profiles that are specified for a specific LU or TP.

MacAPPC control operator routines
MacAPPC control operator routines define, display, and control the following LU
components:

o local LU

o remote LU

o mode

o transaction program (TP)

The routines are divided into the following categories:

o change-number-of-session (CNOS) routines, which control session limits for
modes

o session control routines, which activate and deactivate sessions over modes

o LU definition routines, which define, display, and delete LU components

Control operator CNOS routines
This section describes the MacAPPC control operator CNOS routines. These routines
manipulate session limits for modes.

Control operator CNOS routines 5-3

Summary

Parameters

Description

COChangeSessionLimit

The COChangeSessionLirnit routine changes the session limits and polarities for
parallel-session connections between the local LU and the remote LU over the
specified mode. It cannot be used, however, when session limits are 0. To raise limits
from 0, use the COinitializeSessionLirnit routine. As a result of changes
made using this routine, additional LU-LU sessions with the specified mode name can
be activated or deactivated.

oooc long -+ ioCornpletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ coTPCBPtr
002A long -+ coCVCBPtr
0032 long -+ coRmtLUNarne
0036 long -+ coModeName
OOAE word -+ coCurMaxSess
OOB4 word -+ coCurMinFirstSpkrs
OOBA word -+ coCurMinBdrs
0094 byte -+ coRespType

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coCVCBPtr (supplied) specifies a pointer to a Conversation Control Block
(CVCB). The block must be as long as the value specified by the kCVCBSize
constant. You must supply a new CVCB each time your application executes the
COChangeSessionLimit routine.

coRmtLtJName (supplied) specifies~ pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant.

coModeName (supplied) specifies a pointer to a string that contains the name of the
mode to which the change applies. The string length must not be greater than the
value of the kMaxName constant. COChangeSessionLirnit cannot be used to
change the reserved SNASVCMG mode.

coCurMaxSess (supplied) specifies the requested limit for the maximum number
of sessions allowed between the local LU and the remote LU over the specified mode.
It must be greater than 0 and cannot exceed the configured maximum. Also, it cannot
be less than the sum of the values of the coCurMinFirstSpkrs and
coCurMinFirstBdrs parameters. The remote LU can negotiate the value to a lower
value (which still must be greater than 0).

coCurMinFirstSpkrs (supplied) specifies the minimum number of sessions
that can be activated as first-speaker sessions (contention winner) for the local LU.
The remote LU can negotiate this value to some lower number.

5-4 Chapter 5: MocAPPC Control Operator Driver

//'f""~"'-'-'\I

___,,A

(

Notes

Result code

(' ',

coCurMinBdrs (supplied) specifies the minimum number of sessions that can be
activated as bidder sessions (contention loser) for the local LU. The remote LU can
negotiate this value to some lower number.

coRespType (supplied) specifies which LU (local or remote) is responsible for
deactivating any active sessions if the new session limit decreases the number
available. The sessions are deactivated when they are not allocated to conversations.
The following values are defined:

kSrcResp indicates that the local LU (source) is responsible.

kTgtResp indicates that the remote LU (target) is responsible.

If the number of allowed sessions is not befog decreased, this parameter is ignored.

This routine does not terminate active conversations. If a session is to be deactivated
and is allocated to an active conversation, the responsible LU waits until the
conversation is deallocated, and then deactivates the session.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Control C?Perator CNOS routines 5-5

Summary

Parameters

Description

COlnitializeSessionLimit

The COinitializeSessionLimit routine establishes the initial session limits
and the polarities for single-session or parallel-session connections between the local
LU and the remote LU over the specified mode. It can only be executed when the
session limits are 0. As a result of initialization made using this routine, one or more
LU-LU sessions with the specified mode name can be activated.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ coTPCBPtr
002A long -+ coCVCBPtr
0032 long -+ coRmtLUName
0036 long -+ coModeName
OOAE word -+ coCurMaxSess
OOB4 word -+ coCurMinFirstSpkrs
OOBA word -+ coCurMinBdrs

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is equal to the value of the kCVCBSize constant. You must supply a
new CVCB each time your application executes the COinitializeSessionLimit
routine.

coRmtLtJName (supplied) specifies a pointer to a string that contains the name of
the remote LU to which the session limits apply. The string length must not be greater
than the value of the kMaxName constant.

coModeName (supplied) specifies a pointer to a string that contains the name of the
mode to be initialized. The string length must not be greater than the value of the
kMaxName constant. l.Jse COinitializeSessionLimit to initialize the reserved
SNASVCMG mode.

coCurMaxSess (supplied) specifies the requested limit for the maximum number
of sessions allowed between the local LU and the remote LU over the specified mode.
It must be greater than 0 and cannot exceed the configured maximum. Also, it cannot
be less than the sum of the values of the coCurMinFirstSpkrs and
coCurMinFirstBdrs parameters. The remote LU can negotiate the value to a lower
value (which still must be greater than 0).

+ Note: For the SNASVCMG mode, the session limit must be 2.

5-6 Chapter 5: MacAPPC Control Operator Driver

(

Result code

(

coCurMinFirstSpkrs (supplied) specifies the minimum number of sessions
that can be activated as first-speaker sessions (contention winner) for the local LU.
The remote LU can negotiate this value to some lower number.

+ Note: For the SNASVCMG mode, the first-speaker session minimum must be 1.

coCurMinBdrs (supplied) specifies the minimum number of sessions that can be
activated as bidder sessions (contention loser) for the local LU. The remote LU can
negotiate this value to some lower number.

+ Note: For the SNASVCMG mode, the bidder session minimum must be 1.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Control operator CNOS routines 5-7

COProcessSessionlimit

~-

'·' Summary The COProcessSessionLimit routine can only be executed by the CNOS
f

transaction program to initiate a remote LU response to a request to change the
number of sessions.

Parameters oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
002A long ~ coCVCBPtr
0032 long => coRmtLUNarne
0036 long => coModeName

Description co'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is equal to the value of the kCVCBS i ze constant. You must supply a
new CVCB each time your application executes the COProcessSessionLimi t
routine.

coRmtLtJName (supplied/modified) specifies a pointer to space where the name of
the remote LU can be returned. The space must be at least as large as the value of the

,I' ' t kMaxName constant plus 1 byte.

coModeName (supplied/modified) specifies a pointer to space where the name of
~/

the mode can be returned. The space must be at least as large as the value of the
kMaxName constant plus 1 byte. A NULL string indicates that all modes are being
reset.

Result code appcNoErr Routine succeeded
appcFail. Routine failed; look in appcHiResult and appcLoResult
appcExec Routine executing; asynchronous request not complete

5-8 Chapter 5: MacAPPC Control Operator Driver

(Summary

Parameters

Description

'(.

COResetSessionlimit

The COResetSessionLimit routine resets the session limits for a given mode, or
for all modes between the local LU and remote LU. All active sessions with the
specified mode name or all modes are deactivated once conversation activity is over.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ coTPCBPtr
002A long ~ coCVCBPtr
0032 long ~ coRmtLUName
0036 long ~ coModeName
0094 byte ~ coRespType
0072 byte ~ coDrainSrc
0073 byte ~ coDrainTgt
0074 byte ~ coForceRst

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is equal to the value of the kCVCBSize constant. You must supply a
new CVCB each time your application executes the COResetSessionLimit
routine.

coRmtLOName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant.

coModeName (supplied) specifies a pointer to a string that contains the name of the
single mode to be reset. The string length must not be greater than the value of the
kMaxName constant. Use the COResetSessionLimit routine to reset the
reserved SNASVCMG mode. To specify all modes, set coModeName to NIL.

coRespType (supplied) specifies which LU (local or remote) is responsible for
deactivating any active sessions if the new session limit decreases the number
available. The sessions are deactivated when they are not allocated to conversations.
The following values are defined:

kSrcResp indicates that th~ local LU (source) is responsible.

kTgtResp indicates that the remote LU (target) is responsible.

If the number of allowed sessions is not being decreased, this parameter is ignored.
For a single-session connection, or for SNASVCMG, this parameter does not apply.

coDrai.nSrc (supplied) specifies whether or not the local LU (source) is allowed to
honor any pending allocation requests before deactivating sessions. If the value is
FALSE, it must deactivate sessions as soon as the current conversations are
deallocated. If it has a value of TRUE, it can continue to allocate the sessions to
conversations as long as allocation requests are outstanding.

Control operator CNOS routines 5-9

Result code

coDrainTqt (supplied) specifies whether or not the remote LU (target) is allowed
to honor any pending allocation requests before deactivating sessions. If the value is
FALSE, it must deactivate sessions as soon as the current conversations are
deallocated. If the value is TRUE, it can continue to allocate the sessions to
conversations as long as allocation requests are outstanding.

co!'orceRst (supplied) specifies whether or not the local LU (source) is allowed to
force the resetting of the session limits when certain error conditions occur. If the
value is FALSE, the session limit is to be reset only upon successful completion of
CNOS. If the value is TRUE, the session limit is to be reset when CNOS negotiations
are successfully completed or when CNOS negotiations are unsuccessful due to certain
error conditions. This allows the mode to be reset even if the line between the two LUs
has been broken. For a single-session connection, or for SNASVCMG, this parameter
does not apply.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

S.. 1 O Chapter 5: MocAPPC Control Operator Driver ·

(

Control operator session control routines
This section describes the MacAPPC control operator session control routines. These
routines activate and deactivate sessions.

Control operator session control routines 5-11

Summary

Parameters

Description

Result code

See also

COActivateSession

The COActivateSession routine activates a session to the remote LU using the
properties defined by the specified mode. If the maximum number of first-speaker
sessions has not been reached, the session is activated as a first-speaker session
(contention winner). Otherwise, the session is activated as a bidder session
(contention loser).

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
0032 long -+ coRmtLUName
0036 long -+ coModeName

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coRmtLOName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant.

coModeName (supplied) specifies a pointer to a string that contains the name of the
mode defining the desired properties of the session. The string length must not be
greaterthanthevalueofthe kMaxName constant. COActivateSession canbe
used to activate a session over single-session or parallel-session connections and
over the reseJ.Ved SNASVCMG mode.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODeactivateSession

5-12 Chapter 5: MacAPPC Control Operator Driver

(Summary

Parameters

Description

(

Result code

See also

CODeactivateSession

The CODeactivateSession routine deactivates the specified session, either
immediately or when the current conversation that was allocated to the session is
deallocated.

oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +-- ioResult
OOlC word +-- appcHiResult
OOlE word +-- appcLoResult
0026 long ~ coTPCBPtr
0032 long ~ coRrntLUNarne
0036 long ~ coModeNarne
006A long ~ coSessID
0092 byte ~ coDeactType

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coRmtLUName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxNarne
constant.

coModeName (supplied) specifies a pointer to a string that contains .the mode name
under which the session is active. The string length must not be greater than the value
of the kMaxN arne constant.

coSessID (supplied) specifies the identifier of the session to be deactivated.

coDeactType (supplied) specifies the type of deactivation. The following values
are defined:

kNorrnalDeact specifies that the session is to be deactivated when the current
conversation that was allocated to the session is deallocated (if there is no
conversation allocated to the session, it is deactivated immediately).

kCleanupDeact specifies that the session is to be deactivated immediately,
regardless of any conversation that may be allocated to the session.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

COActivateSession

Control operator session control routines 5-13

Control operator LU definition routines
This section describes the MacAPPC control operator LU definition routines. These
routines define, display, and delete LU components.

5· 14 Chapter 5: MacAPPC Control Operator Driver

(Summary

Parameters

(~.

Description

CODefineLocalLU

The CODefineLocalLU routine defines a local LU and its various attributes. To use
it for this purpose, the routine should be executed prior to any network activity on the
part of the local LU. CODefineLocalLU defines five areas:

o the local LU name

o theLUID

o a network name and qualifier for the local LU

o a session limit for the LU

o conversation-level security information

This routine is used to initialize and modify operating parameters that are located in
the new or existing local LU. The first time it is executed, this routine initializes the
local LU definition with default values and updates it with the specified operating
parameters. On subsequent executions this routine updates the local LU definition
with the data supplied for the specified operating parameters. If a parameter is not
specified, the value currently defined for that parameter remains unchanged. This
routine can be executed by any transaction program that has the privilege to execute
definition routines.

If the session limits or the session count for any modes defined for this local LU are
greater than 0, the network name, qualifier, and LU ID cannot be updated.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
007E byte -+ coNetNameOp
003E long -+ coNetName
007F byte -+ coNetQualOp
0042 long -+ coNetQual
0081 byte -+ coSecOp
0052 long -+ coUserName
0056 long -+ coUserPswd
005A long -+ coUserProf
0070 word -+ coWaitTime
OOA8 word -+ coDefLUMaxSess
009E word -+ coMaxTP
006E byte -+ coLclLUID
008F byte -+ coConvSecType

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block .CTPCB).

Control operator LU definition routines 5-15

coLclLOName (supplied) specifies a pointer to a string that contains the name of
the local LU being defined or modified. The string length must not be greater than the
value of the kMaxName constant, and the characters in the string must be of symbol­
string type A.

coNetNameOp (supplied) specifies the operation to be performed using the
coNetName parameter. The following values are defined:

kignoreParam indicates that the network name is not specified.

kReplaceParam indicates that the network name replaces the currently defined
network name.

kDeleteParam indicates that the network name is to be deleted.

coNetName (supplied) specifies a pointer to a string that contains the network
name of the local LU. The string length must not be greater than the value of the
kMaxName constant. This is the name by which the local LU is known throughout the
network. If not defined, the local LU name is used as the network name. This
parameter is required if the coNetNameOp parameter specifies the value of the
kReplaceParam or kDeleteParam constant. The characters contained in this
string must be of symbol-string type A with the exception of an asterisk (*), which
indicates that the network name for this remote LU is blank. If the network name is
blank, any name is accepted from the remote LU in a session-activation request. A
name of eight space characters is sent to the remote LU on session-activation
requests.

coNetQualOp (supplied) specifies the operation to be performed using the
coNetQual parameter. The following values are defined:

kignoreParam indicates that the network qualifier is not specified.

kReplaceParam indicates that the network qualifier replaces the currently
defined network qualifier.

kDeleteParam indicates that the network qualifier is to be deleted.

coNetQual (supplied) specifies a pointer to a string that contains the network
qualifier of the network name. The string length must not be greater than the value of
the kMaxName constant. This is an optional parameter that can be defined for
cross-network communication to give uniqueness to the network name. This
parameter is required if the coNetQualOp parameter is set to the
kReplaceParam or kDeleteParam constant.

coSecOp (supplied) specifies the operation to be performed using a combination
of the coUserName, coUserPswd, and coUserProf parameters. The
following values are defined:

kignoreParam indicates that the security parameters are not specified.

kAddParam indicates that the security parameters are to be ad~ed.

kDeleteParam indicates that the security parameters are to bk deleted.

coOserName (supplied) specifies a pointer to a string that contains a user ID. The
string length must not be greater than the value of the kMaxSecName constant. If
any security parameters are to be added or deleted, a user ID must be given. If security
parameters are to be added, see the coUserPswd and coUserProf parameters
for additional restrictions. If the user ID and associated profiles are to be deleted,
provide the user ID with no additional security parameters; that is, you should specify
coUserPswd and coUserProf as NIL pointers.

5-16 Chapter 5: MacAPPC Control Operator Driver

Result code

See also

coOserPswd (supplied) specifies a pointer to a string that contains a password for
the user ID specified in the coUserName parameter. The string length must not be
greater than the value of the kMaxSecName constant. If security parameters are to
be added, a password must be provided when the user ID has not yet been defined. If
the security parameters are to be deleted, no password should be given. If a new
password is given, it replaces the old password.

coOserProf (supplied) specifies a pointer to a string that specifies a profile for the
preceding user ID. The string length must not be greater than the value of the
kMaxSecName constant. If the security parameters are to be added, a profile is
optional. If a profile is given, it is added to the list of profiles for that user ID. If the
security parameters are to be deleted, specify the profile to be deleted; if no single
profile is specified, all profiles are deleted for that user ID.

coWaitTime (supplied) specifies in terms of seconds a value for the amount of
time the LU waits for routine completion. The valid range is 1 to 3600. The default
value for this parameter is 60. The kignoreParam constant indicates that the
parameter is not specified.

coDefLOMaxSess (supplied) specifies the value of the maximum number of
sessions that can be active at the local LU at one time. The valid session limit range is
1 to 254. The value specified must be greater than or equal to the largest session limit
for any modes defined for this local LU. Specifying 0 indicates that this value should
be ignored. The default value for this parameter is 0. The kignoreParam constant
indicates that the parameter is not specified.

•:• Note: Session limits are currently maintained only at a mode level. This value is
stored, but not used.

coMaxTP (supplied) specifies a value for the maximum number of transaction
programs that can be attached at one time. The valid range is between 1 and 255. The
default value for this parameter is 5. The kignoreParam constant indicates that the
parameter is not specified.

coLclLOID (supplied) specifies a value from 1 to 254 that matches the destination
address field (DAF) that is received on the Activate Logical Unit (ACTLU) request sent
from a host. Within a node, each local LU must have this parameter set to a unique
value. This parameter must be specified the first time the routine is executed and the
local LU is initialized. On subsequent executions, kignoreParam indicates that the
parameter is not specified.

coConvSecType (supplied) specifies whether or not conversation-level security is
enabled for the local LU. If users are defined to the local LU, conversational-level
security is performed on incoming allocation requests. The following values are
defined:

kignorePararn indicates that the parameter is not specified.

kFuncNotSupp specifies that LU security is not supported. This value is the
default for this parameter.

kFuncSupp specifies that LU security is supported.

appcNoErr
ap"pcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODisplayLocalLU

Control operator LU definition routines 5-17

Summary

Parameters

CODefineMode

The CODefineMode routine defines a group of session characteristics between a
local LU and a remote LU. These characteristics include the following:

o the send and receive pacing count

o the lower and upper bound for the maximum request/response
unit(RU)

o the synchronization level that can be used over ~his mode

o single-session reinitiation responsibility

o the maximum number of sessions that can be active at one time

o the minimum number of first-speaker and prebound first-speaker
sessions that can be initialized for this mode

This routine is used to initialize and modify operating parameters that are located in
the new or existing mode. The first time it is executed, this routine initializes the mode
definition with default values and updates it with the specified operating parameters.
On subsequent executions this routine updates the mode definition with the data
supplied for the specified operating parameters. If a parameter is not specified, the
value currently defined for that parameter remains unchanged. This routine can be
executed by any transaction program that has the privilege to execute definition
routines.

If the session limits or the session count for the mode is greater than 0, only the
coDefPBFirstSpkrs parameter can be updated.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode·
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0032 long ~ coRmtLUName
0036 long ~ coModeName
004A long ~ coALSName
OOAO word ~ coSendPacing
OOA2 word ~ coRcvPacing
OOAC word ~ coDefMaxSess
OOB2 word ~ coDefMinFirstSpkrs
OOBE word ~ coDef~BFirstSpkrs

OOA4 word ~ coMax~UHiBound
OOA6 word ~ coMaxRULoBound
0090 byte ~ coSyncType
009A byte ~ coReinitType
ooac byte ~ coSessCrypt
0084 byte ~ coQueueBINDs
0080 byte ~ coBlankMode

5-18 Chapter 5: MacAPPC Control Operator Driver

/ '\)
\"'· . . -'/

~----'J

Description

(

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLO'Name (supplied) specifies a pointer to a string that contains the local LU
name for which a mode is being defined or modified. The string length must not be
greater than the value of the kMaxNarne constant, and the characters in the string
must be of symbol-string type A. This name must correspond to that of a previously
defined LU.

co:RmtLO'Name (supplied) specifies a pointer to a string that contains the remote LU
name for which a mode is being defined or modified. The string length must not be
greater than the value of tl,c..: kMaxNarne constant, and the characters in the string
must be of symbol-string type A. This name must correspond to that of a previously
defined remote LU.

coModeName (supplied) specifies a pointer to a string that contains the name of the
mode being defined or modified. The string length must not be greater than the value
of the kMaxName constant, and the characters in the string must be of symbol-string
type A. This name is used to refer to a specific mode when updating its parameters.
SNASVCMG is a resetved name and must not be used.

coALSName (supplied) specifies a pointer to a string that contains either the name
of a previously defined adjacent link station or the character string LOCAL. The string
length must not be greater than the value of the kMaxName constant. Specify LOCAL
to indicate that the local LU and the remote LU are found in the same node. The first
time this routine is executed, it is a required parameter. On subsequent executions, a
NIL pointer indicates that the currently defined value of the ALS Name remains
unchanged.

coSendPacing (supplied) specifies the number of requests the local LU can send
before receiving a pacing response. This is used to determine the send window size
during session activation. The valid range for this field is 0 to 21. The default value for
this parameter is 7. The kignoreParam constant indicates that the parameter is
not specified.

coRcvPacing (supplied) specifies the number of requests the local LU can receive
before sending a pacing response. This is used to determine the receive window size
during session activation. The valid range for this field is 0 to 21. The default value for
this parameter is 7. The kignoreParam constant indicates that the parameter is
not specified.

coDefMaxSess (supplied) specifies the maximum number of sessions that can be
active at a given time for this mode. If a value greater than 1 is specified, parallel
sessions must be supported by the remote LU. The valid range is 1 to 254. The default
value for this parameter is 6. The kignoreParam constant indicates that the
parameter is not specified.

coDefMinFirstSpkrs (supplied) specifies the number of first-speaker sessions
for this mode. The valid range is 1 to the value specified for the coLUMaxSess
parameter. The default value for this parameter is 3. The kignoreParam constant
indicates that the parameter is not specified.

· Control operator LU definition routines 5-19

coDefPBFirstSpkrs (supplied) specifies the minimum number of first-speaker
sessions that are automatically activated when session limits are initialized. The valid
range is 1 to the value specified for the coDefMinFirstSpkrs parameter. The
default value for this parameter is 3. The kignoreParam constant indicates that the
parameter is not specified.

coMaxROHiBound (supplied) specifies the upper bound of the maximum RU size
that can be sent or received across this mode. This field is used in conjunction with
the coMaxRULowerBound parameter to determine the maximum RU size possible
during session activation. The valid range is 256 to 4096. The default value for this
parameter is 1024. The kignoreParam constant indicates that the parameter is not
specified. ·

coMaxROLoBound (supplied) specifies the lower bound of the maximum RU size
that can be sent or received across this mode. This field is used in conjunction with
the coMaxRUHiBound parameter to determine the maximum RU size possible
during session activation. The valid range is 8 to 256. The default value for this
parameter is 256. The kignoreParam constant indicates that the parameter is not
specified.

coSync'lype (supplied) specifies the synchronization levels that can be used by
conversations using sessions over this mode. The following values are defined:

kignoreParam specifies that the parameter is not specified.

kConfirmModeSync specifies that transaction programs can perform either no
confirmation processing or perform confirmation processing, but cannot
perform sync-point processing on conversations using this mode. This value is
the default for this parameter.

kSyncPtModeSync specifies that transaction programs can perform no
confirmation processing, can perform confirmation processing, or can perform
sync-point processing on conversations using this mode.

+ Note: At the time of publication, sync-point selVices were not supported.

coReinit'lype (supplied) specifies responsibility for single-session reinitiation.
It can only be specified when the remote LU does not support parallel sessions. The
following values are defined:

kignoreParam indicates that the parameter is not specified.

kOperini t indicates that an operator from either the local or remote LU
attempts session reinitiation. Neither LU attempts automatic reinitiation.

kPriLUinit indicates that the primary LU automatically attempts the
reinitiation.

kSecLUini t indicates that the secondary LU automatically attempts the
reinitiation.

kEi therLUini t indicates that either the primary or the secondary LU
automatically attempts the reinitiation. This value is the default for this
parameter.

5-20 Chapter 5: MacAPPC Control Operator Driver

Result code

See also

coSessCrypt (supplied) specifies whether or not session-level cryptography is
supported for this mode. The following values are defined:

kignoreParam indicates that parameter is not specified.

kFuncNotSupp indicates that session-level cryptography is not supported. This
value is the default for this parameter.

kFuncNotSupp indicates that the session-level cryptography is supported.

+ Note: At the time of publication, session-level cryptography was not
supported.

coQueueBINDs (supplied) specifies whether or not Bll\TOs sent across this mode
can be queued if the partner is not able to accept them. The following values are
defined:

kignorePararn indicates that the parameter is not specified.

kFuncNotSupp indicates that BINDs cannot be queued.

kFuncSupp indicates that BINDs can be queued. This value is the default for this
parameter.

coBlankMode (supplied) specifies whether a null mode name is sent across the
link. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that the null mode names are not supported. The
actual mode name is sent across the link. This value is the default for this
parameter.

kFuncSupp indicates that the null mode names are supported. The mode name
sent across the link is eight space characters. The kFuncSupp constant can be
provided for only one mode per remote LU.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODisplayMode, CODefineLocalLU, CODefineRemoteLU

Control operator LU definition routines 5-21

Summary

Parameters

CODefineRemoteLU

The CODefineRernoteLU routine defines the parameters for a remote LU that is
configured as a partner for the specified local LU. These parameters include the
following values:

o the name by which the remote LU is locally known

o the network name

o an LU password used for session-level verification

o an indication of whether or not session-initiation requests can be
queued

o an indication of whether or not parallel sessions are supported

o an indication of whether or not access-security information
parameters are accepted on an allocation request

This routine is used to initialize and modify operating parameters that are located in
the new or existing remote LU. The first time it is executed, this routine initializes the
remote LU definition with default values and updates it with the specified operating
parameters. On subsequent executions this routine updates the remote LU definition
with the data supplied for the specified operating parameters. If a parameter is not
specified, the value currently defined for that parameter remains unchanged. This
routine can be executed by any transaction program that has the privilege to execute
definition routines.

If the session limits or the session count for any modes defined for this remote LU are
greater than 0, no parameters can be updated.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
0032 long -+ coRrntLUName
007E byte -+ coNetNameOp
003E long -+ coNetName
007F byte -+ coNetQualOp
0042 long -+ coNetQual
0046 long -+ coCPName
004E long -+ coCNOSALSName
0080 byte -+ coLUPswdOp
OOSE long -+ coLUPswd
008E byte -+ coQueueINITs
0083 byte -+ coParSess
0097 byte -+ coLclSecAcc

5-22 Chapter 5: MacAPPC Control Operator Driver

Description

(

co'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLOName (supplied) specifies a pointer to a string that contains the local LU
name for which a remote LU is being defined. The string length must not be greater
than the value of the kMaxName constant, and the characters in the string must be of
symbol-string type A.

coRmtLOName (supplied) specifies a pointer to a string that contains the name of
the remote LU being defined or modified. The string length must not be greater than
the value of the kMaxName constant, and the characters in the string must be of
symbol-string type A.

coRetNameOp (supplied) specifies the operation to be performed using the
coNetName parameter. The following values are defined:

kignoreParam indicates that the network name is not specified.

kReplaceParam indicates that the network name replaces the currently defined
network name.

kDeleteParam indicates that the network name is to be deleted.

coNetName (supplied) specifies a pointer to a string that contains the network
name by which the remote LU is known throughout the network. The string length must
not be greater than the value of the kMaxName constant. If this parameter is not
defined, the remote LU name is used as the network name. The characters contained
in this string must be of symbol-string type A with the exception of an asterisk(•),
which indicates that ~e network name for this remote LU is blank. This parameter is
required if the coNetNameOp parameter specifies the kReplaceParam or
kDeleteParam constant.

coNetQualOp (supplied) specifies the operation to be performed using the
coNetQual parameter. The following values are defined:

kignoreParam indicates that the network qualifier is not specified.

kReplaceParam indicates that the network qualifier replaces the currently
defined network qualifier.

kDeleteParam indicates that the network qualifier is to be deleted.

coNetQual (supplied) specifies a pointer to a string that contains the network
qualifier of the network name. The string length must not be greater than the value of
the kMaxName constant, and the characters in the string must be of symbol-string
type A. This is an optional field that can be defined for cross-network
communications to give uniqueness to the network name. This parameter is required
if the coNetQualOp parameter specifies the value of the kReplaceParam or
kDeleteParam constant.

coCPName (supplied) specifies a pointer to a string that contains the name of a
previously defined control point where the remote LU is located. The string length
must not be greater than the value of the kMaxName constant. This parameter is
needed only if the control point is a host.

co~OSALSName (supplied) specifies a pointer to a string that contains either the
name of a previously defined adjacent link station or the character string LOCAL. The
string length must not be greater than the value of the kMaxName constant. This is
the name of the adjacent link station that handles CNOS negotiations. Specify LOCAL
to indicate that the local LU and the remote LU are found in the same node. If parallel
sessions are supported, this is a required parameter.

Control operator LU definition routines 5-23

Result code

See also

coLOP swdOp (supplied) specifies the operation to be performed using the
coLUPswd parameter. The following values are defined:

kignoreParam indicates that the LU-LU password is not specified.

kReplacePararn indicates that the LU-LU password replaces the currently
defined LU-LU password.

kDeleteParam indicates that the LU-LU password is to be deleted.

coLOPswd (supplied) specifies a pointer to a string that contains the LU-LU
password defined for the local LU by the remote LU. The string must be exactly as
long as the value of the kMaxLUP swd constant, and must consist of hexadecimal
characters. This parameter is used to provide session-level verification during session
activation. This parameter is required if the coLUP swdOp parameter is set to the
kReplaceParam or kDeleteParam constant.

coQueueINITs (supplied) indicates whether or not the system services control
point (SSCP) should queue session-initiation requests if the remote LU is not able to
accept them. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that the SSCP does not queue session-initiation
requests.

kFuncSupp indicates that the SSCP queues session-initiation requests. This
value is the default for this parameter.

coParSess (supplied) specifies whether or not the remote LU supports parallel
sessions. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that parallel sessions are not supported.

kFuncSupp indicates that parallel sessions are supported. This value is the
default for this parameter.

coLclSecAcc (supplied) specifies the access-security information· the local LU
accepts for the remote LU being defined. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNoSecAcc indicates that no access-security information is accepted. This
value is the default for this parameter.

kConvSecAcc indicates that access-security information is accepted but the
already-verified indication as set by the allocation request is not accepted.

kVerifSecAcc indicates that access-security information is accepted and the
already-verified indication as set by the allocation request is accepted.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODisplayRemoteLU, CODef ineLocalLU

5-24 Chapter 5: MacAPPC Control Operator Driver

/-··,

(_ __)

Summary

Parameters

CODefineTP

The CODefineTP routine defines a transaction program and its characteristics for
the specified local LU. The characteristics that the routine defines include the
following:

o the status of the transaction program

o conversation type

o synchronization level

o security required

o data required for program initialization parameters (PIP)

o an indication of whether or not Function Management Header
(FMH) data support is provided

o the category of control operator routines the transaction program
is allowed to execute

This routine is used to initialize and modify operating parameters that are located in
the new or existing TP. The first time it is executed, this routine initializes the TP
definition with default values and updates it with the specified operating parameters.
On subsequent executions this routine updates the TP definition with the data supplied
for the specified operating parameters. If a parameter is not specified, the value
currently defined for that parameter remains unchanged. This routine can be
executed by any transaction program that has the privilege to execute definition
routines.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
003A long ~ coLclProgName
007E byte ~ coNetNameOp
003E long ~ coNetName
0052 long ~ coUserName
005A long ~ coUserProf
008A word ~ coPIPCount
0088 byte ~ coPIPCheck
0087 byte ~ coPIPReq
0086 byte ~ coFMHDataSupp
0082 byte ~ coLUWSupp
0096 byte ~ coPrivType
0099 byte ~ coSecReq
0081 byte ~ coSecOp
0093 byte ~ coEnableType
0091 byte ~ coConvType
0090 byte ~ coSyncType
00'85 byte ~ coDataMapping

. Control operator LU definition routines 5-25

Description coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLOName (supplied) specifies a pointer to a string that contains the local LU
name for which a transaction program is being defined or modified, The string length
must not be greater than the value of the kMaxName constant, and the characters in
the string must be of symbol-string type A. This name must correspond to that of a
previously defined LU.

coLclProgName (supplied) specifies a pointer to a string that contains the name
of the transaction program being defined or modified. The string length must not be
greater than the value of the kMaxTPName constant. Specify an asterisk (•) to
indicate that any transaction program can attach. ·

coNetNameOp (supplied) specifies the operation to be performed using the
coNetName parameter. The following values are defined:

kignoreParam indicates that the network name is not specified.

kReplaceParam indicates that the network name replaces the currently defined
network name.

kDeleteParam indicates that the currently defined network name is to be
deleted.

coNetName (supplied) specifies a pointer to a string that contains the network
name of the transaction program. The string length must not be greater than the value
of the kMaxTPName constant, and the characters in the string must be hexadecimal.
This field is required for service transaction programs, such as CNOS and DIA. When
a request is received that specifies a program by a network name, the transaction
program specified in the coLclProgName parameter is invoked.

coOserName (supplied) specifies a pointer to a string that contains a user ID. The
string length must not be greater than the value of the kMaxSecName constant. A
user ID must be indicated if the security requires user IDs on the resource-access
authorization list.

coOserProf (supplied) specifies a pointer to a string that contains a profile. The
string length must not be greater than the value of the kMaxSecName constant. A
profile must be indicated if the security requires profiles on the resource-access
authorization list.

coPIPCount (supplied) specifies the number of program initialization parameter
(PIP) subfields that may be required on allocation requests that start this transaction
program. The valid range for this parameter is a number between 0 and 256. The
kignoreParam constant indicates that the parameter is not specified. The default
value for this parameter is 0.

+ Note: Support for parameter number checking is not implemented. This value is
stored, but not used.

5-26 Chapter 5: MacAPPC Control Operator Driver

(

coPIPCheck (supplied) specifies whether or not an allocation request is rejected if
the value specified in the coP IP Count parameter does not match the number of
PIP subfields supplied on the request. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that the request is not rejected. This value is the
default for this parameter.

kFuncSupp indicates that the request is rejected.

+ Note: Support for parameter number checking is not implemented. This value
is stored, but not used.

coPIPReq (supplied) specifies whether or not PIP data is required on allocation
requests designating this transaction program. The following values are defined:

kignorePararn indicates that the parameter is not specified.

kFuncNotSupp indicates that PIP data is not allowed on allocation requests.

kFuncSupp indicates that PIP data is allowed on allocation requests. This value
is the default for this parameter.

coFMHDataSupp (supplied) specifies whether or not Function Management
Header (FMH) data can be received and sent by this transaction program. This
parameter applies only when the coConvType parameter is set to the
kMappedTPConv or kEi therTPConv constant. The following values are defined:

kignorePararn indicates that the parameter is not specified.

kFuncNotSupp indicates that FMH data cannot be transmitted or received by
this transaction program. This value is the default for this parameter.

kFuncSupp indicates that FMH data can be transmitted or received by this
transaction program.

coLOWSupp (supplied) specifies whether or not the transaction program assigns
logical-unit-of-work IDs for each transaction executed by this program. The following
values are defined:

kignorePararn indicates that the parameter is not specified.

kFuncNotSupp indicates that logical-unit-of-work IDs will not be assigned. This
value is the default for this parameter.

kFuncSupp indicates that logical-unit-of-work IDs will be assigned.

coPrivType (supplied) specifies the type of control-operator routines that this
transaction program can execute. Whether the program can execute basic or mapped
routines is determined by the c;:oConvType parameter. The following values are
defined (anyvaluesexcept kignorePararn or kNoPriv canbecombinedina
logical OR operation):

kignoreParam indicates that the par-cillleter is not specified.

kNoP riv indicates that the program is not allowed to execute routines that
require a privilege to do so. This value is the default for this parameter.

kCNOSP riv indicates that the program is allowed to execute CNOS routines.

kSessCtlPri v indicates that the program is allowed to execute session-control
routines.

Control operator LU definition routines 5-27

kDefinePri v indicates that the program is allowed to execiite definition
routines.

kDisplayPriv indicates that the program is allowed to execute display
routines.

kSvcTPP riv indicates that the program is allowed to execute an MCAllocate
or BCAllocate routine with the transaction program name designating a
service transaction program, such as SNADS or DIA.

coSecReq (supplied) specifies the security verification allowed on an allocation
request to start the program. The following values.are defined:

kignoreParam indicates that the parameter is not specified.

kNoSecReq indicates that no security is required. If an allocation request does
contain a user ID and password, conversation-level security is performed. This
value is the default for this parameter.

kConvSecReq indicates that conversation-level security is required. Allocation
requests designating this transaction program must carry a user ID and password.
If the remote LU definition has the coLclSecAcc parameter defined as
kVerifSecAcc, the allocation request can contain the already-verified
indication in place of a password.

kProfSecReq indicates that resource-access security is required. The profile
carried on the allocation request designating this transaction program must
match a profile on the resource-access authorization list.

kUserNarneSecReq indicates that resource-access security is required. The user
ID carried on the allocation request designating this transaction program must
match a user ID defined on the resource-access authorization list.

kBothSecReq indicates that resource-access security is required. The user ID
and profile carried on the allocation request designating this transaction
program must match a user ID and profile on the resource-access authorization
list.

coSecOp (supplied) specifies the operation to be performed on the resource-access
authorization list. For more information on resource-access authorization lists, see
"Security" earlier in this chapter. The following values are defined:

kignorePararn indicates that the parameter is not specified.

kAddPararn indicates that the security parameters are to be added.

kDeletePararn indicates that the security parameters are to be deleted.

coEnab1eType (supplied) specifies the response the LU makes when an allocation
request is received that designates this transaction program. By changing the setting
of this parameter, a program can be temporarily or permanently removed from
network availability. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kEnableTP indicates that the transaction program is available. This value is the
default for this parameter.

kDisableTernpTP indicates that the transaction program is temporarily
unavailable. The response returned by the LU indicates retry is possible.

kDisablePerrnTP indicates that the transaction is permanently unavailable.
The response returned by the LU indicates retry is not possible.

5-28 Chapter 5: MacAPPC Control Operator Driver

Result code

See also

coConv'l'ype (supplied) specifies the conversation type allowed on an allocation
request to start the program. The following values are defined:

kignorePar~m indicates that the parameter is not specified.

kBasicTPConv indicates that the allocation request must specify a basic
conversation.

kMappedTPConv indicates that the allocation request must specify a mapped
conversation.

kEi therTPConv indicates that the allocation request can specify either a basic
or mapped conversation. This value is the default for this parameter.

coSyncType (supplied) specifies the synchronization allowed on an allocation
request to start the program. The following values are defined (any values except
kignoreParam can be combined in a logical OR operation):

kignoreParam indicates that the parameter is not specified.

kNoTPSync indicates that the allocation request can specify no confirmation
processing.

kConfirmTPSync indicates that the allocation request can specify
confirmation processing. This value is the default for this parameter.

kSyncPtTPSync indicates that the allocation request can specify sync-point
processing.

+ Note: At the time of publication, sync-point services were not supported.

coDataMappinq (supplied) specifies whether the transaction program is
provided with data mapping support. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that data mapping is not supported. This value is the
default for this parameter.

kFuncSupp indicates that data mapping is supported.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODisplayTP, CODefineLocalLU

Control operator LU definition routines 5-29

Summary

Parameters

Description

Result code

CO Delete

The CODelete routine deletes LU components as defined by the definition
routines.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
0032 long -+ coRmtLUName
003A long -+ coLclProgName
0036 long -+ coModeName

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLOName (supplied) specifies a pointer to a string that contains a local LU
name. The string length must not be greater than the value of the kMaxName
constant. Specifying this parameter with no other parameters deletes the LU
definition and associated partner definitions, mode definitions, and transaction
program definitions.

coRmtLOName (supplied) specifies a pointer to a string that contains a remote LU
name. The string length must not be greater than the value of the kMaxName
constant. When this parameter is specified,· the coLclLUName parameter must also
be specified. When this parameter is specified in conjunction with the coModeName
parameter, the mode definition is deleted. When specified without the mode name,
the partner definition and all mode definitions associated with the partner definition
are deleted.

coLclProgName (supplied) specifies a pointer to a string that contains a
transaction program name. The string length must not be greater than the value of the
kMaxTPName constant. When this parameter is specified, the coLclLUName
parameter must also be specified, and all parameters associated with this transaction
program name are deleted, including all user IDs and profiles.

coModeName (supplied) specifies a pointer to a string that contains a mode name.
The string length must not be greater than the value of the kMaxName constant.
When specified, it must be indicated in conjunction with the coLclLUName and
coRmtLUName parameters.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

5-30 Chapter 5: MacAPPC Control Operator Driver

·· .. \

'· "

r'' ··.,

(_)

(Summary

Parameters

(

Description

CO Display Local LU

The CODisplayLocalLU routine returns local LU configuration information. This
function can return information for the first LU defined for the node, the next LU, or a
specific LU. For information on the meaning of the returned values, see the
documentation for CODefineLocalLU.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ coTPCBPtr
0078 byte -+ coNextLclLUName
002E long => coLclLUName
003E long => coNetName
0042 long => coNetQual
007C byte -+ coNextUserName
0052 long => coUserName
0056 long => coUserPswd
OOSA long =>. coUserProf
0070 word +- coWaitTime
OOA8 word +- coDefLUMaxSess
OOAA word +- coActLUSess
009E word +- coMaxTP
006E byte +- coLclLUID
008F byte +- coConvSecType
0077 byte +- coLUActive

co'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coNextLclLtJName (supplied) specifies that the information for the next local LU
should be returned. This parameter is used only if the coLclLUName parameter is
specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next LU should be returned.

coLclLtJName (supplied/modified) specifies a pointer to space where the name of
the local LU can be returned. The space must be at least as long as the value of the
kMaxName constant plus 1 byte. If the pointer points to a NULL string, information
on the first LU, including its name, is returned. If the pointer points to a name and the
coNextLclLUName parameter is set to kignoreParam, information for the
specified LU is returned. If the coNextLclLUName parameter is set to
kNextEntry, information for the next LU, including its name, is returned.

coNetName (supplied/modified) specifies a pointer to space where the network
name can be returned. The space must be at least as long as the value of the
kMaxTPName constant plus 1 byte. If coNetName is NIL, the name is not returned.

. Control operator LU definition routines 5-31

Result code

See also

coNetQual (supplied/modified) specifies a pointer to space where the network
qualifier can be returned. The space must be at least as long as the value of the
kMaxName constant plus 1 byte. If this pointer is NIL, the qualifier is not returned.·

coNextOserName (supplied) specifies that information for the next user ID
defined should be returned. This parameter is used only if the coUserName
parameter is specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEnt ry indicates that the information for the next user ID should be
returned.

coOserName (supplied/modified) specifies a pointer to space where a string that
contains the name of a user ID can be returned. The space must be at least as long as
the value of the kMaxName constant plus 1 byte. If the pointer points to a NULL
string, the ID and related information for the first user found are returned. If the
pointer points to a user ID and the coNextUserName parameter is set to the
kNextEntry constant, information for the next user is returned. If the
coNextUserName parameter is set to kignoreParam, information for the
specified user is returned. If this pointer is NIL, the user ID is not returned.

coOserPswd (supplied/modified) specifies a pointer to space where a password
can be returned. The space must be at least as long as the value of the kMaxSecName
constant plus 1 byte. If this pointer is NIL, the password is not returned.

coOserProf (supplied/modified) specifies a pointer to space where a user profile
can be returned. The space must be at least as long as the value of the kMaxSecName
constant plus 1 byte. If the pointer points to a NULL string, the first profile associated
with the returned user ID is returned. If a profile is supplied, the next profile is
returned. If this pointer is NIL, the profile is not returned.

coWait'l'ime (returned) indicates the amount of time, in seconds, that the LU waits
for routine completion.

coDefLtJMaxSess (returned) indicates the value of the maximum number of
sessions that can be active at the local LU simultaneously.

coActLOSess (returned) indicates the value of the number of sessions that are
currently active for this local LU.

coMax'l'P (returned) indicates the maximum number of transaction programs that
can be attached simultaneously.

coLclLOID (returned) indicates the unique ID value for this local LU.

coConvSec'l'ype (returned) indiCates whether or not conversation-level security
is enabled for the local LU. The following values can be returned:

kFuncSupp indicates that security is enabled.

kFuncNotSupp indicates that security is not enabled.

coLOActi ve (returned) indicates whether the LU has been locally activated.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

CODefineLocalLU

5-32 Chapter 5: MacAPPC Control Operator Driver

CODisplayMode

(Summary The CODisplayMode routine returns information for a mode configured between
the specified local LU and the specified remote LU. To display session IDs for a
particular mode, execute the CODisplaySession routine. For more information
on the meaning of the values returned here, see the documentation for
CODefineMode.

Parameters oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
001E word +- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0032 long ~ coRmtLUName
007A byte ~ coNextModeName
0036 long => coModeName
004A long => coALSName
OOAO word +- coSendPacing
OOA2 word +- coRcvPacing
OOA4 word +- coMaxRUHiBound
OOA6 word +- coMaxRULoBound
OOAC word +- coDefMaxSess
OOB2 word +- coDefMinFirstSpkrs

(OOBE word +- coDefPBFirstSpkrs
COBS word +- coDefMinBdrs
OOAE word +- coCurMaxSess
OOB4 word +- coCurMinFirstSpkrs
OOBA word +- coCurMinBdrs
OOBO word +- coActSess
OOB6 word +- coActFirstSpkrs
OOBC word +- coActBdrs
0090 byte +- coSyncType
009A byte +- coReinitType
008C byte +- coSessCrypt
0084 byte +- coQueueBINDs
0080 byte +- coBlankMode
009C byte +- coTermCount
0075 byte +- coDrainLclLU
0076 byte +- coDrainRmtLU

Description coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLtJName (supplied) specifies a pointer to a string that contains the local LU
name for which the mode is being displayed. The string length must not be greater
than the value of the kMaxName constant.

coRmtLtJName (supplied) specifies a pointer to a string that contains the name of

(
the remote LU for which the mode is being displayed. The string length must not be
greater than the value of the kMaxName constant.

Control operator LU definition routines 5-33

coNextModeName (supplied) specifies that information for the next mode should
be returned. This parameter is used only if coModeName is specified. The following
values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next mode should be
returned.

coModeName (supplied/modified) specifies a pointer to space where the name of
the mode can be returned. The space must be at least as long as the value of the
kMaxName constant plus 1 byte. If the pointer points to a NULL string, information
on the first mode for this local LU/remote LU is returned. This information includes
the mode name. If a name is specified and the coNextModeName parameter is set
to kignoreParam, information for the specified mode is returned. If
coNextModeName is set to kNextEntry, information for the next mode,
including its name, is returned.

coALSName (supplied/modified) specifies a pointer to space where the name of the
adjacent-link station used by this mode can be returned. The space must be at least as
long as the value of the kMaxName constant plus 1 byte. If this pointer is NIL, the
name is not returned.

coSendPacinq (returned) indicates the number of requests that the local LU can
send before receiving a pacing response.

coRcvPacinq (returned) indicates the number of requests that the local LU can
receive before sending a pacing response.

coMaxROBi:Sound (returned) indicates the upper bound of the maximum RU size
that can be sent or received across this mode.

coMaxROLoBound (returned) indicates the lower bound of the maximum RU size
that can be sent or received across this mode.

coDefMaxSess (returned) indicates the defined session limit for this mode.

coDefMinl'irstSpkrs (returned) indicates the defined minimum number of
first-speaker sessions for this mode.

coOefp:SJ'irstSpkrs (returned) indicates the defined number of first-speaker
sessions that are automatically activated when sessions limits are initialized.

coDefMinBdrs (returned) indicates the defined minimum number of bidder
sessions for this mode.

coCurMaxSess (returned) indicates the maximum number of sessions that can be
active simultaneously for this mode. This is the current limit, set by way of a CNOS
exchange with the remote LU, or set locally. If it is zero, the mode is unavailable for
conversation use.

coCurMinl'irstSpkrs (returned) indicates the minimum number of first­
speaker sessions that can be active simultaneously for this mode. This is the current
limit, set by way of a CNOS exchange with the remote LU, or set locally.

coCurMinBdrs (returned) indicates the current minimum number of bidder
sessions for this mode. This is the current limit, set by way of a CNOS exchange with
the remote LU, or set locally.

coActSess (returned) indicates the total number of sessions that are currently
active for this mode.

5-34 Chapter 5: MacAPPC Control Operator Driver

,['''•,,,

_ __ A

(

(

coActFirstSpkrs (returned) indicates the number of first-speaker sessions that
are currently active for this mode.

coActBdrs (returned) indicates the number of bidder sessions that are currently
active for this mode.

coSyncType (returned) indicates the synchronization levels that conversations
using sessions over this mode can use. The following values can be returned:

kConfirrnModeSync indicates that transaction programs either cannot
perform confirmation processing or can perform confirmation processing, but
cannot perform sync-point processing on conversations using this mode.

kSyncPtModeSync indicates that transaction programs either cannot perform
confirmation processing, can perform confirmation processing, or can perform
sync-point processing on conversations using this mode.

<• Note: At the time of publication, sync-point services were not supported.

coReinitType (returned) indicates the responsibility for reinitiation of a single
session. The following values can be returned:

kOperinit indicates that an operator from either the local or remote LU
attempts session reinitiation. Neither LU will attempt automatic reinitiation.

kP riLUini t indicates that the primary LU automatically attempts the
reinitiation.

kSecLUinit indicates that the secondary LU automatically attempts the
reinitiation.

kEitherLUinit indicates that either the primary or the secondary LU
automatically attempts the reinitiation.

coSessCrypt (returned) indicates whether session-level cryptography is
supported for this mode. The following values can be returned:

kFuncNotSupp indicates that the session-level cryptography is not supported.

kFuncSupp indicates chat session-level cryptography is supported.

<• Note: At the time of publication, session-level cryptography was not supported.

coQueueBINDs (returned) indicates whether or not BINDs sent across this mode
can be queued. The following values can be returned:

kFuncNotSupp indicates that the BINDs cannot be queued.

kFuncSupp indicates that the BINDs can be queued.

coBlankMode (returned) indicates whether a null mode name can be sent across
the link. The following values can be returned:

kignorePararn indicates that the parytmeter is not specified.

kFuncNotSupp indicates that null mqde names are not supported. The actual
mode name sent across the link is equal to coModeNarne.

kFuncSupp indicates that null mode names are supported. The mode name
.sent across the link is eight space characters. The kFuncSupp constant can be
provided for only one mode per partner.

coTermCount (returned) indicates the number of sessions the local LU is
responsible for deactivating as a result of CNOS negotiations.

Control operator LU definition routines 5-35

Result code

See also

coDrainLclLU (returned) indicates whether or not the local LU is allowed to
drain allocation requests.

coDrainRmtLU (returned) indicates whether or not the remote LU is allowed to
drain allocation requests.

appcNoErr
appcFail
appcExec

CODef ineMode

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

5-36 Chapter 5: MacAPPC Control Operator Driver

.")

(Summary

Parameters

(..
Description

CODisplayRemoteLU

The CODisplayRemoteLU routine returns information for a remote LU configured
for the specified local LU. For more information on the meaning of values returned
by this routine, see the CODefineRemoteLU routine.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0079 byte ~ coNextRmtLUName
0032 long => coRmtLUName
003E long => coNetName
0042 long => coNetQual
0046 long => coCPName
004E long => coCNOSALSName
005E long => coLUPswd
008E byte +- coQueueINITs
0083 byte +- coParSess
0097 byte +- coLclSecAcc
0098 byte +- coRmtSecAcc

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLOName (supplied) specifies the pointer to a string that contains the local LU
name for which the remote LU is defined. The string length must not be greater than
the value of the kMaxName constant.

coNextRmtLtmame (supplied) specifies that information for the next configured
remote LU should be returned. This parameter is used only if the coRmtLUName
parameter is specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next remote LU should be
returned.

coRmtLOName (supplied/modified) specifies a pointer to space where the name of
the remote LU can be specified. The space must be at least as long as the value of the
kMaxName constant plus 1 byte. If the pointer points to a NULL string, information
on the first LU, including its name, is returned. If a name is specified and the
coNextRmtLUName parameter is set to kignoreParam, information for the
specified LU is returned. If coNextRmtLUName is set to the kNextEntry
constant, information for the next LU, including its name, is returned.

coNetName (supplied/modified) specifies a pointer to space where the network
name can be returned. The space must be at least as long as the value of the
kMaxTPName constant plus 1 byte. If this pointer is NIL, the network name is not
returned.

· Control operator LU definition routines 5-37

Result code

See also

coNetQual (supplied/modified) specifies a pointer to space where the network
qualifier can be returned. The space must be at least as long as the value of the
kMaxN ame constant plus 1 byte. If this pointer is NIL, the name is not returned.

coCPName (supplied/modified) specifies a pointer to space where the control point
name can be returned. The space must be at least as long as the value of the
kMaxName constant plus 1 byte. If this pointer is NIL, the name is not returned.

coCNOSALSName (supplied/modified) specifies a pointer to space where the
name of the adjacent link station used for CNOS negotiation can be returned. The
space must be at least as long as the value of the kMaxName constant plus 1 byte. If
this pointer is NIL, the name is not returned.

coLOPswd (supplied/modified) specifies a pointer to space where the LU-LU
password can be returned. The space must be exactly as long as the value of the
kMaxLUP swd constant plus 1 byte. If this pointer is NIL, the password is not
returned.

coQueueINI'l's (returned) indicates whether the system services control point
(SSCP) should queue activation requests. The following values can be returned:

kFuncNotSupp indicates that the SSCP does not queue session-initiation
requests.

kFuncSupp indicates that the SSCP does queue session-initiation requests.

coParSess (returned) indicates whether or not the remote LU supports parallel
sessions. The following values can be returned:

kFuncNotSupp indicates that parallel sessions are not supported.

kFuncSupp indicates that parallel sessions are supported.

coLclSecAcc (returned) indicates the access-security information that the local
LU accepts from the remote LU. The following values can be returned:

kNoSecAcc indicates that no access-security information is accepted. This
value is the default for this parameter.

kConvSecAcc indicates that access-security information is accepted but the
already-verified indication as set by the allocation request is not accepted.

kVerifSecAcc indicates that access-security information is accepted and the
already-verified indication as set by the allocation request is accepted.

coRmtSecAcc (returned) indicates the access-security information that the
remote LU accepts from the local LU. The following values can be returned:

kNoSecAcc indicates that no access-security information is accepted. This
value is the default for this parameter.

kConvSecAcc indicates that access-security information is accepted but the
already-verified indication as set by the allocation request is not accepted.

kVerifSecAcc indicates that access-security information is accepted and the
already-verified indication as set by the allocation request is accepted.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

CODefineRemoteLU

5-38 Chapter 5: MacAPPC Control Operator Driver

Summary

Parameters

Description

(_

CODisplaySession

The CODisplaySession routine returns information about sessions between local
LUs and remote LUs. It returns infonnation about a specific session-about the first
session for a given mode, or about the next session-thus allowing all sessions for a
mode to be displayed.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0032 long ~ coRmtLUName
0036 long ~ coModeName
0070 byte ~ coNextSessID
006A long +-+ coSessID
0062 long +- coConvID
0066 long +- coProgID
0095 byte +- coPolarType

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

coLclLOName (supplied) specifies a pointer to a string that contains the name of
the local LU. The string length must not be greater than the value of the kMaxName
constant.

coRmtLOName (supplied) specifies a pointer to a string that contains the name of
the remote LU. The string length must not be greater than the value of the kMaxName
constant.

coModeName (supplied) specifies a pointer to a string that contains the name of the
mode. The string length must not be greater than the value of the kMaxName
constant.

coNextSessID (supplied) specifies that information for the next established
session should be returned. This parameter is used only if the coSessID parameter
is supplied. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next established session
should be returned.

coSessID (supplied/returned) is the ID of the session for which infonnation is
returned. If 0 is specified, information for the first session established for the mode is
returned, including the session ID.

coConvID (returned) gives the ID of the conversation that has allocated this
session. If the session is not allocated, 0 is returned.

Control operator LU definition routines 5-39

Result code

col?rogID (returned) gives the transaction program ID of the program that is using
the session. If the session is free, 0 is returned.

coPolar'l'ype (returned) gives the session polarity. The following values can be
returned:

kBidderSess indicates that the session is a bidder session.

kFirstSpkrSess indicates that the session is a first-speaker session.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

5-40 Chapter 5: MacAPPC Control Operator Driver

{' Summary

Parameters

(

Description

CODisplayTP

The CODisplayTP routine returns information for a transaction program
configured for the specified local LU. See the documentation for CODefineTP
more information on the meaning of values displayed here.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
007B byte -+ coNextLclProgName
003A long => coLclProgName
003E long => coNetName
007C byte -+ coNextUserName
0052 long => coUserName
OOSA long => coUserProf
008A word f- coPIPCount
0088 byte f- coPIPCheck
0087 byte f- coPIPReq
0086 byte f- coFMHDataSupp
0082 byte f- coLUWSupp
0096 byte f- coPrivType
0099 byte f- coSecReq
0093 byte f- coEnableType
0091 byte f- coConvType
0090 byte f- coSyncType
0085 byte f- coDataMapping

coTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

for

coLclLUName (supplied) specifies a pointer to a string that contains the local LU
name for which the transaction program is defined. The string length must not be
greater than the value of the kMaxName constant.

coNextLclProgName (supplied) specifies that information for the next
configured transaction program should be returned. This parameter is used only if
the coLclP rogName parameter is specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next transaction program
should be returned.

Control operator LU definition routines 5-41

coLclProqName (supplied/modified) specifies the pointer to space where the
name of the transaction program can be returned. The space must be at least as long
as the value of the kMaxTPName constant plus 1 byte. If the pointer points to a NUll
string, information on the first transaction program, including its name, is returned.
If a name is specified and the coNextLclP rogName parameter is set to the
kignoreParam constant, information for the specified transaction program is
returned. If coNextLclProgName is set to the kNextEntry constant,
information for the next transaction program, including its name, is returned. If the
kNextEntry constant is specified and a NULL string is returned, there are no more
transaction programs defined for the specified local LU.

coNetName (supplied/modified) is a pointer to space where a string that is
required only for service transaction programs, such as CNOS and DIA, can be
returned. The space must be at least as long as the value of the kMaxTPName
constant plus 1 byte. The actual network names for such service TPs are found in the
TPRM. If this pointer is NIL, the name is not returned.

coNextOserName (supplied) specifies that information for the next user ID
should be returned. This parameter is used only if the coUserName parameter is
specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEnt ry indicates that the information for the next user ID should be
returned.

coUserName (supplied/modified} specifies the pointer to space where a string that
contains the name of a user ID can be returned. The space must be at least as long as
the value of the kMaxSecName constant plus 1 byte. If the pointer points to a NULL
string, the ID and related information for the first user found are returned. If a user ID
is supplied and the coNext UserName parameter is set to the value of the
kNextEntry constant, information for the next user is returned. If
co Next UserName is set to kignoreP a ram, information for the specified user is
returned. If this pointer is NIL, the user ID is not returned. ·

coUserProf (supplied/modified) specifies the pointer to space where a user
profile can be returned. The space muse be at least as long as the value of the
kMaxSecName constant plus 1 byte. If the pointer points to a NULL string, the first
profile associated with the returned user ID is returned. If a profile is supplied, the
next profile is returned. If this pointer is NIL, the profile is not returned.

coPIPCount (returned) indicates the number of PIP subfields that are required on
allocation requests that start this transaction program.

coPIPCheck (returned) indicates whether allocation requests are rejected if the
value specified in the coPIPCount parameter does not match the number of PIP
subfields supplied on the request. The following values can be returned:

kFuncNotSupp indicates that requests are not rejected.

kFuncSupp indicates that request are rejected.

coPIPR.eq (returned) indicates whether or not PIP data is required on allocation
requests designating this transaction program. The following values can be returned:

kFuncNotSupp indicates that no PIP data is allowed on allocation requests.

kFuncSupp indicates that PIP data is allowed on allocation requests.

5-42 Chapter 5: MacAPPC Control Operator Driver

(

coFMHDataSupp (returned) indicates whether or not FMH data can be received
and sent by this transaction program. The following values can be returned:

kFuncNotSupp indicates that no PIP data is allowed on allocation requests.

kFuncSupp indicates that PIP data is allowed on allocation requests.

coLUWSupp (returned) indicates whether or not the transaction program assigns
logical-unit-of-work IDs for each transaction executed by this program. The following
values can be returned:

kFuncNotSupp indicates that logical-unit-of-work IDs are not assigned.

kFuncSupp indicates that logical-unit-of-work IDs are assigned.

coPrivType (returned) indicates the type of control operator routines that this
transaction program can execute. The following values can be returned (any values
except kNoPriv can be combined in a logical OR operation):

kNoPri v indicates that the program is not allowed to execute routines that
require a privilege to do so.

kCNOSPri v indicates that the program is allowed to execute CNOS routines.

k Se s s Ct 1 Pr iv indicates that the program is allowed to execute session-control
routines.

kDefinePriv indicates that the program is allowed to execute definition
routines.

kDisplayPri v indicates that the program is allowed to execute display
routines.

kSvcTPP riv indicates that the program is allowed to execute an allocation
request that specifies an SNA service transaction program.

coSecReq (returned) indicates the se.curity verification allowed on an allocation
request to start the program. The following values can be returned:

kNoSecReq indicates that no security is required.

kConvSecReq indicates that conversation-level security is required.

kP rofSecReq indicates that resource-access security is required at the profile
level.

kUserNameSecReq indicates that resource-access security is required at the
user ID level.

kBothSecReq indicates that resource-access security is required at both the
profile and user ID levels.

coEnableType (returned) indicates the response that the LU makes when an
allocation request for this transaction program is received. The following values can
be returned:

kEnableTP indicates that the transaction program is available.

kDisableTempTP indicates that the transaction program is temporarily
unavailable.

kDisablePermTP indicates that the transaction is permanently unavailable.

Control operator LU definition routines 5-43

Result code

See also

coConvType (returned) indicates the conversation type allowed on an allocation
request to start the program. The following values can be returned:

kMappedTPConv specifies that the allocation request must specify a mapped
conversation.

kBasicTPConv specifies that the allocation request must specify a basic
conversation.

kEitherTPConv specifies that the allocation request can specify either a basic
or mapped conversation.

coSyncType (returned) indicates the synchronization allowed on an allocation
request to start the program. The following values can be returned (any values can be
combined in a logical OR operation):

kNoTPSync indicates that the allocation request can specify no confirmation
processing.

kConfirmTPSync indicates that the allocation request can specify
confirmation processing.

kSyncPtTPSync indicates that the allocation request can specify sync-point
processing.

+ Note: At the time of publication, sync-point services were not supported.

coDataMapping (returned) indicates whether or not the transaction program is
provided with data mapping support. The following values can be returned:

kFuncNotSupp indicates that data mapping is not supported.

kFuncSupp indicates that data mapping is supported.

appcNoErr
appcFail
appcExec

CODef ineTP

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine eX:ecuting; asynchronous request not complete

5-44 Chapter 5: MacAPPC Control Operator Driver

,--,/

(

(·.".
/

Summary of the MacAPPC Control Operator Driver
This section provides a summary of the constants, data structures, and routines for use
with the MacAPPC Control Operator Driver.

Constants
The following constants are available for use with the MacAPPC Control Operator
Driver.

{ coRespType values

kSrcResp =
kTqtResp •

{ coDeactType values

kNormalDeact •

kCleanupDeact =

{ coSyncType values

kConfirmModeSync •

kSyncPtModeSync =

kNoTPSync •

kConfirmTPSync =

kSyncPtTPSync =

{ coConvType values

kMappedTPConv =

kBasicTPConv =

kEitherTPConv •

}

0;
1;

0;
1;

1;
2;

1;

2;

4;

0;
1;
2;

{ coEnableType values . }

kEnableTP.. 0;

kDisableTempTP • 1;

kDisablel?ermTP = 2;

{ coPolarType values

kBidderSess • O;

kFirstSpkrSess = 1;

{ not supported }

{ not supported }

Control operator LU definition routines 5-45

{ coPrivType values

kNoPriv •

kCNOSPriv ..

kSessCtlPriv =

kDefinePriv =
kDisplayPriv =
kSvcTPPriv •

O;
l;
2;

4;

8;

16;

{ coLclSecAccType and coRmtSecAccType values }

kNoSecAcc =
kConvSecAcc •

kVerifSecAcc •

{ coSecReq values

kNoSecReq •

kConvSecReq =
kProfSecReq •

kUserSecReq =
kBothSecReq •

{ coReinitType values

kOperinit •

kPriLUinit •

kSecLUinit =
kEitherLUinit =

O;
l;

2;

O;
l;

2;
3;
4;

O;
l;

2;
3;

5-46 Chapter 5: MocAPPC Control Operator Driver

(

Data types
The following data types are available for use with the MacAPPC Control Operator
Driver.

coParam:

coTPCBPtr Ptr;
coCVCBPtr Ptr;
coLclLUName StringPtr;
coRmtLUName StringPtr;
coModeName StringPtr;
coLclProgName StringPtr;
coNetName StringPtr;
coNetQual StringPtr;
coCPName StringPtr;
coALSName StringPtr;
coCNOSALSName StringPtr;
coUserName StringPtr;
coUserPswd StringPtr;
coUserProf StringPtr;
coLUPswd S_tringPtr;
coConvID LONGINT;
coProgID LONGINT;
coSessID LONGINT;
coLclLUID SignedByte;
coWaitTime INTEGER;
coDrainSrc Boolean;
coDrainTgt Boolean;
coForceRst Boolean;
coDrainLclLU Boolean;
coDrainRmtLU Boolean;
coLUActive Boolean;
coNextLclLUName SignedByte;
coNextRmtLUName SignedByte;
coNextModeName SignedByte;
coNextLclProgName SignedByte;
coNextUserName SignedByte;
coNextSessID SignedByte;
coNetNameOp SignedByte;
coNetQualOp SignedByte;
coLUPswdOp SignedByte;
coSecOp SignedByte;
coLUWSupp SignedByte;
coParSess SignedByte;
coQueueBINDs SignedByte;
coDataMapping SignedByte;
coFMHDataSupp SignedByte;
coPIPReq SignedByte;
coPIPCheck SignedByte;
coPIPCount INTEGER;
cosesscrypt SignedByte;
coBlankMode SignedByte;

TPCB pointer }
CVCB pointer }
local LU name pointer
remote :i.u name pointer }
mode name pointer }
local TP name pointer
network name pointer }
network qualifier pointer
control point name pointer }
adjacent link station name pointer
CNOS station name pointer }
user name pointer }
user password pointer
user profile pointer }
LU-LU password pointer
conversation ID }
transaction program ID
session ·ID }
local LU ID }
wait time in seconds
reset drain source
reset drain target
force reset }

drain local LU
drain remote LU }
LU activation status
display next local LU }
display next remote LU
display next mode }

display next local TP
display next user }

display next session ID
network name operation

}

}

}

network qualifier operation
password operation }
security operation
LUW support }
parallel session support
queue BINDS }
data mapping support
FMH data support }
PIP required }
check PIP count
PIP count }
session-level cryptography
blank mode option }

Control operator LU definition routines 5-47

coQueueINITS
coConvSecType

coSyncType

coConvType

coDeactType

coEnableType

coRespType

coPolarType

coPrivType

coLclSecAcc
coRmtSecAcc

coSecReq

coReinitType

coTermCount
coMaxTP
coSendPacing

coRcvPacing

coMaxRUHiBound
coMaxRULoBound

coDefLUMaxSess
coActLUSess

coDefMaxSess

coCurMaxSess

coActSess
coDefMinFirstSpkrs

coCurMinFirstSpkrs

coActFirstSpkrs
coDefMinBdrs

coCurMinBdrs
coActBdrs

coDefPBFirstSpkrs

) i

SignedByte;
SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;
SignedByte;

SignedByte;

SignedByte;

INTEGER;

INTEGER;
INTEGER;

INTEGER;

INTEGER;

INTEGER;

INTEGER;
INTEGER;
INTEGER;

INTEGER;

INTEGER;
INTEGER;

INTEGER;

INTEGER;

INTEGER;

INTEGER;
INTEGER;

INTEGER;

initiate type)

conversation-level security
synchronization level

conversation type }

deactivate type)

enable status type

deactivate responsibility

session polarity }

privilege)

local LU security acceptance)

remote LU security acceptance
security required)

single session reinitiation

termination count)

maximum attached TPs
send pacing window }

receive pacing window

maximum RU upper bound }

maximum RU lower bound }

defined max LU sessions
active LU sessions }
defined max sessions

current max sessions

active sessions }
defined min first speakers

current min first speakers

active first speakers

defined min bidders

current min bidders
active bidders

prebound first speakers

5-48 Chapter 5: MacAPPC Control Operator Driver

/)

CNOS routines

(The following change-number-of-sessions routines are available for use with the
MacAPPC Control Operator Driver.

COChangeSessionlimit
oooc long --+ ioCornpletion
0018 word --+ appcRefNurn
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long --+ coTPCBPtr
002A long --+ coCVCBPtr
0032 long --+ coRrntLUNarne
0036 long --+ coModeNarne
OOAE word --+ coCurMaxSess
OOB4 word --+ coCurMinFirstSpkrs
OOBA word --+ coCurMinBdrs
0094 byte --+ coRespType

COlnitializeSessionlimit
oooc long --+ . ioCornpletion
0018 word --+ appcRefNurn

;(..
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long --+ coTPCBPtr
002A long --+ coCVCBPtr
0032 long --+ coRrntLUNarne
0036 long --+ coModeNarne
OOAE word --+ coCurMaxSess
OOB4 word --+ coCurMinFirstSpkrs
OOBA word --+ coCurMinBdrs

COProcessSessionlimit
oooc long --+ ioCornpletion
0018 word --+ appt:RefNurn
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long --+ coTPCBPtr
002A long --+ coCVCBPtr
0032 long => coRrntLUNarne
0036 long => coModeNarne

(
· Control operator LU definition routines 5-49

COResetSessionLimit
oooc long -+ ioCompletion
0018 word -+ appcRefNum

\ OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002A long -+ coCVCBPtr
0032 long -+ coRmtLUName
0036 long -+ coModeName
0094 byte -+ coRespType
0072 byte -+ coDrainSrc
0073 byte -+ coDrainTgt
0074 byte -+ coForceRst

5~50 Chapter 5: MacAPPC Control Operator Driver

Session control routines

~~
The following session control routines are available for use with the MacAPPC Control
Operator Driver.

COActivateSession
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
0032 long ~ coRmtLUName
0036 long ~ coModeName

CODeactivateSession
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult

(/
0026 long ~ coTPCBPtr
0032 long ~ coRmtLUName
0036 long ~ coModeName
006A long ~ coSessID
0092 byte ~ coDeactType

Control operator LU definition routines 5-51

LU definition routines
The following LU definition routines are available for use with the MacAPPC Control . ·~
Operator Driver.

CODefinelocalLU
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
007E byte -+ coNetNameOp
003E long -+ coNetName
007F byte -+ coNetQualOp
0042 long -+ coNetQual
0081 byte -+ coSecOp
0052 long -+ coUserName
0056 long -+ coUserPswd
005A long -+ coUserProf
0070 word -+ coWaitTime
00A8 word -+ coDefLUMaxSess
009E word -+ coMaxTP
006E byte -+ coLclLUID
008F byte -+ coConvSecType)

CODefineMode
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
0032 long -+ coRmtLUName
0036 long -+ coModeName
004A long -+ coALSName
OOAO word -+ coSendPacing
OOA2 word -+ coRcvPacing
OOAC word -+ coDefMaxSess
OOB2 word -+ coDefMinFirstSpkrs
OOBE word -+ coDefPBFirstSpkrs
OOA4 word -+ coMaxRUHiBound
OOA6 word -+ coMaxRULoBound
0090 byte -+ coSyncType
009A byte -+ coReinitType
008C byte -+ coSessCrypt
0084 byte -+ coQueueBINDs
008D byte -+ coBlankMode

··,~.r•')

5-52 Chapter 5: MacAPPC Control Operator Driver

CODefineRemoteLU
oooc long ~ ioCompletion
0018 word ~ appcRefNum

(OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0032 long ~ coRmtLUName ·
007E byte ~ coNetNameOp
003E long ~ coNetName
007F byte ~ coNetQualOp
0042 long ~ coNetQual
0046 long ~ coCPName
004E long ~ coCNOSALSName
0080 byte ~ coLUPswdOp
005E long ~ coLUPswd
008E byte ~ CoQueueINITs
0083 byte ~ coParSess
0097 byte ~ coLclSecAcc

CODefineTP
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode

·:(_ 0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
003A long ~ coLclProgName
007E byte ~ coNetNameOp
003E long ~ coNetName
0052 long ~ coUserName
005A long ~ coUserProf
008A word ~ coPIPCount
0088 byte ~ coPIPCheck
0087 byte ~ coPIPReq
0086 byte ~ coFMHDataSupp
0082 byte ~ coLUWSupp
0096 byte ~ coPrivType
0099 byte ~ coSecReq
0081 byte ~ co Se cop
0093 byte ~ coEnableType
0091 byte ~ coConvType
00'90 byte ~ coSyncType
0085 byte ~ coDataMapping

1(-,,
/

Control operator LU definition routines 5-53

CODelete
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode \

0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
0032 long -+ coRmtLUName
003A long -+ coLclProgName
0036 long -+ coModeName

CODisplaylocalLU
oooc long -+ ioCompletion
0018 word -+ appcRefNum
001A word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
001C word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
0078 byte -+ coNextLclLUName
002E long => coLclLUName
003E long => coNetName
0042 long => coNetQual
007C byte -+ coNextUserName
0052 long => coUserName)

/

0056 long => coUserPswd
005A long => coUserProf
0070 word ~ coWaitTime
OOA8 word ~ coOefLOMaxSess
OOAA word ~ coActLUSess
009E word ~ coMaxTP
006E byte ~ coLclLUID
008F byte ~ coConvSecType
0077 byte ~ coLUActive

CODlsplayMode
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ coTPCBPtr
002E long -+ coLclLUName
0032 long -+ coRmtLUName
007A byte -+ coNextModeName
0036 long => coModeName

,/-··~ ·,,
004A long => coALSName __,A

5·54 Chapter 5: MacAPPC Control Operator Driver

OOAO word ~ coSendPacing
OOA2 word f- coRcvPacing
OOA4 word f- coMaxRUHiBound

c OOA6 word f- coMaxRULoBound
OOAC word f- coDefMaxSess
OOB2 word f- coDefMinFirstSpkrs
OOBE word f- coDefPBFirstSpkrs
OOB8 word f- coDefMinBdrs
OOAE word f- coCurMaxSess
OOB4 word f- coCurMinFirstSpkrs
OOBA word f- coCurMinBdrs
OOBO word f- coActSess
OOB6 word f- coActFirstSpkrs
OOBC word f- coActBdrs
0090 byte f- coSyncType
009A byte f- coReinitType
008C byte f- coSessCrypt
0084 byte f- coQueueBINDs
008D byte f- coBlankMode
009C byte f- coTermCount
0075 byte f- coDrainLclLU
0076 byte f- coDrainRmtLU

CODisplayRemoteLU
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode

(
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0079 byte ~ coNextRmtLUName
0032 long => coRmtLUName
003E long => coNetName
0042 long => coNetQual
0046 long => coCPName
004E long => coCNOSALSName
OOSE long => coLUPswd
008E byte f- CoQueueINITs
0083 byte +- coParSess
0097 byte +- coLclSecAcc
0098 byte +- coRmtSecAcc

CODisplaySession
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult

<~ OOlE word +- appcLoResult

· Control operator LU definition routines 5-55

0026 long ~ coTPCBPtr
002E long ~ coLclLUName
0032 long ~ coRmtLUName
0036 long ~ coModeName
007D byte ~ coNextSessID
006A long H coSessID
0062 long f- coConvID
0066 long f- coProgID
0095 byte f- coPolarType

CODisplayTP
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long ~ coTPCBPtr
002E long ~ coLclLUName
007B byte ~ coNextLclProgName
003A long => coLclProgName
003E long => coNetName
007C byte ~ coNextUserName
0052 long => coUserName
OOSA long => coUserProf
008A word f- coPIPCount
0088 byte f- coPIPCheck
0087 byte f- coPIPReq
0086 byte f- coFMHDataSupp
0082 byte f- coLUWSupp
0096 byte f- coPrivType
0099 byte f- coSecReq
0093 byte f- coEnableType
0091 byte f- coConvType
0090 byte f- coSyncType
0085 byte f- coDataMapping

5-56 Chapter 5: MacAPPC Control Operator Driver

(

C'\
'· ,'

Chapter 6

MacAPPC Node Operator
Driver

6-1

This chapter describes the MacAPPC Node Operator Driver (.N062), explains how to
use the driver, and provides a detailed guide to the programmatic interface for
executing each Node Operator Driver routine. For quick reference, a section at the
end of the chapter summarizes the data structures, constants, and routine parameters.

Unlike conversation and control operator functions, the node operator functions are
not defined by the SNA architecture; it is understood that they must exist, but they are
implementation specific.

Using the MacAPPC Node Operator Driver ·
Node operator routines permit a node operator to define and control certain
components of a PU 2.1 node. They activate and deactivate the node, the lines, the
LUs, and the stations; in addition, they define and display the node, the lines, the
control points, the stations, and the message queues.

To make the programmer's task easier, MacAPPC provides a node operator
program-the Administration program, described in Chapter 12-that handles all of
the node operator functions. By using the Administration program, you do not need
to access the Node Operator Driver in the progr-.ams that you write; however, if you
choose to do so, the node operator routines are fully described in this chapter.

MacAPPC node operator routines
This section describes the MacAPPC node operator routines, which define, display,
and control node components. The following node components are defined:

o Node

o Line

o Control point

o Station

The routines are divided into the following categories:

o Node control routines, which control node components

o Node message routines, which define and display node message queues and
messages

o Node definition routines, which define and display node components

Node operator node control routines
This section describes the MacAPPC node operator node control routines. These
routines activate and deactivate node components.

6-2 Chapter 6: MacAPPC Node Operator Driver

(Summary

Parameters

Description

(
Result code

See also

NOActivateLine

The NOActi vateLine routine activates the line for use by the MacAPPC server.
This routine completely activates the connection when the line is non-switched,
point-to-point. If the line is switched or multipoint, the NOActi vateStation
routine must also be executed to complete the connection.

oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long --+ noTPCBPtr
0032 long --+ noLineName
004E long +- noCorrID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLineName (supplied) specifies a pointer to a string that contains the name of the
line to be activated. The string length must not be greater than the value of the
kMaxName constant.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODeacti vateLine, "NOActi vateStation

Node operator node control routines 6-3

Summary

Parameters

Description

Result code

See also

NOActivateLU

The NOActi vateLU routine locally activates an LU for use by the MacAPPC seiver.
It must be successfully completed before any transaction program can attach itself to
that LU.

oooc long -+ ioCornpletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long -+ noTPCBPtr
002A long -+ noLclLUName
004E long ~ noCorrID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLclL'CName (supplied) specifies a pointer to a string that contains the name of
the local LU to be activated. The string length must not be greater than the value of the
kMaxNarne constant.

nocorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcI,,oResul t
Routine executing; asynchronous request not complete

NODeactivateLU

6-4 Chapter 6: MacAPPC Node Operator Driver

\)

(Summary

Parameters

Description

Result code

See also

<~

NOActivateNode

The NOActi vateNode routine locally activates a MacAPPC server. This is a
prerequisite for all other activity of the MacAPPC server.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ noTPCBPtr
004E long ~ noCorrID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

NODeactivateNode

. Node operator node control routines 6-5

Summary

Parameters

Description

Result code

See also

NOActivateStation

The NOActi vateStation routine instructs the MacAPPC server to execute the
proper corrunands to enable the connection to a particular remote node. It is used to
connect to a particular station on a multipoint line or to enable dial-in or dial-out on
a switched connection. The NOAct i vateLine routine must also be executed for
the line named in this routine.

oooc long ~ ioCompletion
0018 word -+ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
002E. long -+ noALSNarne
OOSA byte -+ noDialType
004E long +- noCorrID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noALSName (supplied) specifies a pointer to a string that contains the name of the
station to be activated. The string length must not be greater than the value of the
kMaxName constant.

noDial Type (supplied) has two possible values:

kConnectDial specifies an attempt to connect for a multipoint line. For a
switched line, it indicates an attempt to dial-out.

kDialinOnDial specifies that the dial-in capability of the line is enabled.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODeactivat"eStation, NOActivateLine

6-6 Chapter 6: MacAPPC Node Operator Driver

(Summary

Parameters

Description

Result code

See also

NODeactivateline

The NODeacti vateLine routine deactivates the named line from use by the
MacAPPC server. NODeacti vateLine completely deactivates the line and cancels
all outstanding requests for that line regardless of the line type.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ noTPCBPtr
0032 long ~ noLineName
004E long +- noCorrID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLineName (supplied) specifies a pointer to a string that contains the name of the
line to be deactivated. The string length must not be greater than the value of the
kMaxN ame constant.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NOActivateLine

Node operator node control routines 6-7 .

Summary

Parameters

Description

Result code

See also

NO Deactivate LU

The NODeacti vateLU routine terminates the use of the named logical unit. Any
sessions that have been activated are terminated. After this routine is successfully
completed, no transaction program can attach itself to this LU until an
NOActi vateLU routine is executed.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
002A long -+ noLclLUName
004E long +- noCorrID

noTPCBPt:r (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLclLOName (supplied) specifies a pointer to a string that contains the name of
the LU to be deactivated. The string length must not be greater than the value of the
kMaxName constant.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

NOActivateLU

Routine succeeded
Routine failed; look in appcHiResult and appcLoResul t
Routine executing; asynchronous request not complete

6·8 Chapter 6: MacAPPC Node Operator Driver

(Summary

Parameters

Description

Result code

See also

NODeactivateNode

The NODeactivateNode routine locally deactivates a MacAPPC seiver. All
MacAPPC seiver activity is cancelled.

oooc long ~ ioCompletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef·
0010 word t- ioResult
OOlC word t- appcHiResult
OOlE word t- appcLoResult
0026 long ~ noTPCBPtr
0059 byte ~ noStopSrvr
004E long t- noCorrID

noTPCBPtr (supplied) is a pointer to an existing Transaction Program Control
Block (TPCB).

noStopSrvr (supplied) specifies one of two possible values: TRUE deactivates the
MacAPPC seiver after the NODeactivateNode routine has completed; FALSE
indicates that the MacAPPC seiver continues to run after the NODeacti vateNode
routine has been completed.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

NOActivateNode

Node operator node control routines 6-9

Summary

Parameters

Description

Result code

See also

NODeoctivoteStotion

The NODeactivateStation routine instructs the MacAPPC server to execute the
proper commands to disable the link connection to a particular remote node. It is
used to disconnect a particular station on a multipoint line or to disable dial-in or
dial-out on a switched connection. To completely terminate the line, the
NODeacti vateLine routine must also be executed for the line named in this
routine.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ noTPCBPtr
002E long ~ noALSName
OOSA byte ~ noDialType
004E long ~ noCorrID

no'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noALSName (supplied) specifies a pointer to a string that contains the name of the
station t.o be deactivated. The string length must not be greater than the value of the
kMaxN ame constant.

noDial Type (supplied) specifies the dial type. The following values are defined:

kDisconnectDial indicates that the connection to the named station is
broken. This parameter is ignored if the line is not switched.

kDialinOffDial indicates that the dial-in is disabled. The current connection
is not dropped.

noCorrID (returned) provides the correlation number of the request that
subsequent NODisplayMessage routines can use. If the request is not accepted,
the value 0 is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NOActivateStation, NODeactivateLine

6-10 Chapter 6: MacAPPC Node Operator Driver

(

(

Node operator node message routines
This section describes the MacAPPC Node Operator node message routines. These
routines define and display internal MacAPPC server message queues and messages.

Node operator node message routines 6- 11

Description noTPCBPtr (supplied) is a pointer to an existing Transaction Program Control
Block (TPCB).

noQueueName (supplied) specifies a pointer to a string that contains the name of
an existing message queue. The string length must not be greater than the value of the
kMaxName constant. At the time of publication, valid names are NOOP and LOG.

noQueueEnable (supplied) specifies one of two possible values: FALSE indicates
that the queue should be disabled; TRUE indicates that the queue should be enabled.

noQueueClass (supplied) is the class of messages to be written to this message
queue. The following values are defined (any values except kNoChangeQClass
can be combined in a logical OR operation):

kNoChangeQClass indicates no change.

kNodeOperMsgsQClass indicates node-operator messages.

kLogMsgsQClass indicates logging messages.

kDevelMsgsQClass indicates development messages.

kTraceMsgsQClass indicates trace messages.

noQueueType (supplied) is the type of messages to be written to this message
queue. The following values are defined (any values except kNoChangeQType can
be combined in a logical OR operation) :

kNoChangeQType indicates no change.

kinfoMsgsQType indicates informational messages.

kNotifMsgsQType indicates notification messages.

kErrorMsgsQType indicates error messages.

kDiagMsgsQType indicates diagnostic messages.

6-12 Chapter 6: MacAPPC Node Operator Driver ·

(

Result code

See also

(

noQueueSev (supplied) is the severity level of messages to be written to this
message queue. The following values are defined:

kNoChangeQSev indicates no change to the current level.

kDevelMsgsQSev indicates development messages.

kLowLevelinfoMsgsQSev indicates low-level informational messages.

kNormalinfoMsgsQSev indicates normal informational messages.

kErrorMsgsQSev indicates error messages.

kProgErrorsQSev indicates programming errors.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODisplayMessageQueue

Node operator node message routines 6- 13

Summary

Parameters

Description

Result code

See also

NODisplayMessage

The NODisplayMessage routine retrieves a message from the named message
queue.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+. appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
003A long -+ noQueueName
0050 long => noDataPtr
0054 word -+ noDataSize
005F byte -+ noWaitForMsg
004E long -+ noCorrID

no'?PCBPtr (supplied) is a pointer to an existing Transaction Program Control
Block (TPCB).

noQueueName (supplied) specifies a pointer to a string that contains the name of
an existing message queue. The string length must not be greater than the value of the
kMaxName constant. At the time of publication, valid names are NOOP and LOG.

noDataPtr (supplied/modified) specifies a pointer to space where this routine is
to copy the message. The size of the space is specified by the noDataSize
parameter. If this pointer is NIL and a message is found, the result codes indicate that
a message exists, but the message is not retrieved.

noDataSize (supplied) is the maximum message length that can be copied. If the
message is longer than this length, it is truncated.

noWaitForMsq (supplied) specifies whether or not the transaction program is to
wait for a message if none are available. TRUE means that the transaction program is
to wait the amount of time specified in the t pwai t Time parameter of the
TPAttach routine; FALSE means that the transaction program is not to wait.

noCorrID (supplied) provides the correlation value that can be used to match a
specific reply. If it is not provided, the first message is returned.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODefineMessageQueue, NODisplayMessageQueue

6-14 Chapter 6: MocAPPC Node Operator Driver

r.,,\}
\,_j

Summary

Parameters

Description

NODisplayMessageQueue

The NODisplayMessageQueue routine sends a request to the MacAPPC server to
display the attributes of a message queue. The queue must already exist.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
003A long -+ noQueueName
OOSB byte +- noQueueEnable
oosc byte +- noQueueClass
OOSD byte +- noQueueType
OOSE byte +- noQueueSev

noTPCBPtr (supplied) is a pointer to an existing Transaction Program Control
Block (TPCB).

noQueueName (supplied) specifies a pointer to a string that contains the name of
an existing message queue. The string length must not be greater than the value of the
kMaxName constant. At the time of publication, valid names are NOOP and LOG.

noQueueEnable (returned) specifies one of two possible values: F AI.SE indicates
the queue is disabled; TRUE indicates the queue is enabled.

noQueueClass (returned) is the class of messages to be written to this message
queue. The following values can be returned (any values can be combined in a logical
OR operation):

kNodeOperMsgsQClass indicates node-operator messages.

kLogMsgsQClass indicates logging messages.

kDevelMsgsQClass indicates development messages.

kTraceMsgsQClass indicates trace messages.

noQueueType (returned) is the type of message to be written to this queue. The
following values can be returned (any values can be combined in a logical OR
operation):

kinfoMsgsQType indicates informational messages.

kNotifMsgsQType indicates notification messages.

kErrorMsgsQType indicates error messages.

kDiagMsgsQType .indicates diagnostic messages.

Node operator node message routines 6- 15

Result code

See also

noQueueSev (returned) is the severity level of messages to be written to this
message queue. The following values can be returned:

kDevelMsgsQSev indicates development messages.

kLowLevel!nfoMsgsQSev indicates low-level informational messages.

kNormalinfoMsgsQSev indicates normal informational messages.

kErrorMsgsQSev indicates error messages.

kProgErrorsQSev indicates programming errors.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODefineMessageQueue

6-16 Chapter 6: MacAPPC Node Operator Driver

(Node operator node definition routines
This section describes the MacAPPC node operator node definition routines. These
routines define, display, and delete node components.

Node operator node definition routines 6-17

Summary

Parameters

Description

NODeflneCP

The NODefineCP routine defines the addressing information for the control point
at the remote node. There are two types of control points: hosts and peers. Host
nodes (PU type 4 or 5) are known by their CPU IDs. Peer nodes (PU type 2.1) are
known by their exchange IDs. You must specify one, but not both. This routine is used
to initialize and modify these parameters.

This routine is used to initialize and modify operating parameters that are located in
the new or existing CP. The first time it is executed, this routine initializes the CP
definition with default values and updates it with the specified operating parameters.
On subsequent executions this routine updates the CP definition with the data
supplied for the specified operating parameters. If a parameter is not specified, the
value currently defined for that parameter remains unchanged. This routine can be
executed by any transaction program that has the privilege to execute definition
routines. ·

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0036 long -+ noCPName
0046 long -+ noExchID
004A long -+ noCPUID

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noCPName (supplied) specifies a pointer to a string that conta~ the name of the
control point. The string length must not be greater than the value of the kMaxName
constant. The string LOCAL is a reserved name designating intra-node flows and must
not be used as the name of a control point. The noCPName parameter is used in the
NODefineStation and NODefineRemoteLU routines to specify the location of
the station or remote LU.

noBxchID (supplied) specifies a pointer to a string that contains the XID of the
remote node if the node is a peer; specifies a NIL pointer if the node is a host. The
string must be exactly as long as the value of the kMaxExchID constant, and the
characters in the string must be hexadecimal.

The string is used in XID exchange at link establishment. In IBM implementations,
the first three characters are set based on the product type (03A for the Displaywri~er,
03E for the System/36, and so on). The next five characters are user-configurable to
give unique exchange IDs throughout the network. If the partner is an IBM product,
check the relevant IBM manuals for restrictions on the exchange ID value. This value
must match the value sent by the remote node in bytes 2-5 of the XID.

6-18 Chapter 6: MacAPPC Node Operator Driver.

(

Result code

See also

noCPOID (supplied) specifies a pointer to a string that contains the CPU ID
of the remote node if the node is a host; specify a NIL pointer if the node is a
peer. The string must be exactly as long as the value of the kMaxCPOID
constant, and the characters in the string must be hexadecimal. The first two
characters of the string (representing the first byte of the CPU ID) are the PU
type (usually 05 for PU type 5). The remaining ten characters of the string
(representing the final 5 bytes) are an implementation-dependent binary
identifier.

On a VI'AM host, the S bytes are set to the subarea identifier of the host,
specified by the SSCPID keyword in the VI'AM ATCSlR definition. This value
must match the value sent by the system services control point (SSCP) in bytes
3-8 of the Activate Physical Unit (ACTPU) request.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODisplayCP, NODefineStation

Node operator node definition routines 6-19

Summary

Parameters

Description

NODefineline

The NODefineLine routine defines the line name, line type, and characteristics of
a line.

This routine is used to initialize and modify operating parameters that are located in
the new or existing line. The first time it is executed, this routine initializes the line
definition with default values and updates it with the specified operating parameters.
On subsequent executions this routine updates the line definition with the data
supplied for the specified operating parameters. If a parameter is not specified, the
value currently defined for that parameter remains unchanged. This routine can be
executed by any transaction program that has the privilege to execute definition
routines.

oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long -+ ·noLineName
0068 long -+ noLinePtr
0066 byte -+ noLineType

byte -+ sdlcLineNum
byte -+ sdlcRoleType
byte -+ sdlcConnType
word -+ sdlcMaxBTU
word -+ sdlcLineSpeed
word -+ sdlcMaxRetry
word -+ sdlcidleTirne
word -+ sdlcNPRcvTirne
word -+ sdlcMaxIFrame
byte -+ sdlcNRZIType
byte -+ sdlcDuplexType

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLineName (supplied) specifies a pointer to a string that contains the name of the
line being defined or modified. The string length must not be greater than the value of
the kMaxN ame constant.

noI.inePtr (supplied) specifies a pointer tc;> a line record (APPCLineRec).
I

noI.ineType (supplied) specifies the type of line. The following values are
defined:

kSDLCLine indicates an SDLC line type.

+ Note: At the time of publication, this is the only line type supported.

6-20 Chapter 6: MacAPPC Node Operator Driver .

~}

(

sdlcLineNum (supplied) specifies the SDLC line number. The following values
are defined:

kignoreParam indicates that the parameter is not specified.

kSDLCLinel indicates SDLC line 1. This value is the default for this parameter.

kSDLCLine2 indicates SDLC line 2.

kSDLCLine3 indicates SDLC line 3.

kSDLCLine4 indicates SDLC line 4.

sdlcRoleType (supplied) specifies the SDLC role. The following values are
defined:

kignoreParam indicates that the parameter is not specified.

kSDLCPrimary indicates that the SDLC role is primary.

kSDLCSecondary indicates that the SDLC role is secondary.

kSDLCNegotiable indicates that the SDLC role is negotiable. This value is the
default for this parameter. ·

sdlcConnType (supplied) specifies the SDLC connection type. The following
values are defined:

kignoreParam indicates that the parameter is not specified.

kSDLCLeased indicates that the connection is leased. This value is the default
for this parameter.

kSDLCMul ti Point indicates that the connection is multipoint. If
kSDLCMultiPoint is selected, the sdlcRoleType parameter must be set to
the kSDLCPrimary constant.

kSDLCSwitched indicates that the connection is switched. If kSDLCSwi tched
is specified, the sdlcDuplexType parameter must be set to
kSDLCHalfDuplex.

sdlcMaxBTO (supplied) specifies the maximum basic transmission unit (BTU)
length that can be received on this line. This value is exchanged with the partner at
link initiation. The valid range is 128 to 265. The default value is 265. The
kignoreParam constant indicates that the parameter is not specified.

sdlcLineSpeed (supplied) specifies the SDLC line speed. The following values
are defined:

kignoreParam indicates that the parameter is not specified.

kSDLC30 0 indicates a line speed of 300 bps.

kSDLC1200 indicates a line speed of 1200 bps.

kSDLC2400 indicates a line speed of 2400 bps.

kSDLC4800 indicates a line speed of 4800 bps.

kSDLC96 0 0 indicates a line speed of 9600 bps. This value is the default for this
parameter.

kSDLC19200 indicates a line speed of 19200 bps.

Node operotor node definition routines 6-21

Result code

See also

sdlcMaxR.etry (supplied) specifies the maximum number of times a frame is
retransmitted after SDLC procedures have detected a discrepancy. When this number
is exceeded, SDLC reports the problem to a higher level of SNA for resolution. The
valid range is 1 to 30. The default value is 3. Specify 0 to indicate there is no maximum
number of retries. The kignorePararn constant indicates that the parameter is
not specified.

sdlcidleTime (supplied) specifies the amount of time that can elapse without a
response before a primary link station will initiate recovery action. The valid range in
milliseconds is 100 to 10000. The default value for this parameter is 800 milliseconds.
The kignoreParam constant indicates that the parameter is not specified.

sdlcNPRcv'rime (supplied) specifies the amount of time that can elapse before
the primary link station reports to a higher level of SNA that a nonproductive receive
condition exists. The valid range in milliseconds is 1000 to 30000. The default value
for this parameter is 10000 milliseconds. The kignoreParam constant indicates
that the parameter is not specified.

sdlcMax.IFrame (supplied) specifies the maximum number of I-frames that can
be sent before polling resumes. The valid range is 1 to 7. The default value for this
parameter is 7. The kignoreParam constant indicates that the parameter is not
specified.

sdlcNRZIType (supplied) specifies the transmission encoding method to be used
when sending signals over this link. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kSDLCNRZ indicates the use of nonretum-on-zero (NRZ) encoding. This value is
the default for this parameter.

kSDLCNRZI indicates the use of nonretum-on-zero inverted (NRZI) encoding.

sdlcOuplexType (supplied) specifies whether or not data can be sent in one or
both directions without turning the line around. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kSDLCHalfDuplex indicates half-duplex transmissions. Data can be sent in
only one direction and then the line must be turned around.

kSDLCFullDuplex indicates full-duplex transmissions. Data can be sent and
received without turning the line around. This value is the default for this
parameter.

appcNoErr
appcFail
appcExec

NODisplayLine
i

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

6-22 Chapter 6: MacAPPC Node Operator Driver

Summary

Parameters

(',
Descriptton

NODefineNode

The NODefineNode routine initializes and modifies the system-wide operating
parameters for an instance of the MacAPPC Server.

This routine is used to initialize and modify operating parameters that are located in
the new or existing node. The first time it is executed, this routine initi3lizes the node
definition with default values and updates it with the specified operating parameters.
On subsequent executions this routine updates the node definition with the data
supplied for the specified operating parameters. If a parameter is not specified, the
value currently defined for that parameter remains unchanged. This routine can be
executed by any transaction program that has the privilege to execute definition
routines.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode ·
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0046 long -+ noExchID
0058 byte -+ noAccessType
0056 word -+ noMonTimer
0063 byte -+ noNodeMsgs
0064 byte -+ noLogMsgs

no'rPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noBxchID (supplied) specifies a pointer to a string that contains the XID of the
local node. The string must be exactly as long as the value of the k.MaxExchID
constant, and the characters in the string must be hexadecimal.

The string is used in XID exchange at link establishment. If the partner is an IBM
product, check the relevant IBM manual for restrictions on exchange ID values. The
default value is 02200001 (equivalent to an IBM System/38). If the pointer is NIL, the
current value is not changed. This value will be sent in bytes 2-5 of the XID.

noAcceaaType (supplied) specifies the type of physical media access. The
following values are defined:

kignoreParam indicates that the parameter is.not specified.

kSDLCAccess indicates SDLC access. This is the default for this parameter.

+ Note: At the time of publication, SDLC access was the only valid access type.

nollonTimer (supplied) specifies in terms of seconds the monitor interval for the
MacAPPC Server. The valid range is 1 to 60. The default value for this parameter is 10.
The kig~oreParam constant indicates that the parameter is not specified.

Node operator node definition routines 6-23

Result code

noNodeMsqs (supplied) specifies whether or not the function of sending node
operator messages is enabled. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that the node operator messages are not supported.

kFuncSupp indicates that the node operator messages are supported. This value
is the default for this parameter.

+ Note: Disabling node-operator message functions inhibits feed-back messages
that report the completion of actions requested by way of node operator routines.

noLoqMsqs (supplied) specifies whether or nofthe function of sending log
messages is enabled. The following values are defined.

kignoreParam indicates that the parameter is not specified.

kFuncNotSupp indicates that log messages are not supported.

kFuncSupp indicates that log messages are supported. This value is the default
for this parameter.

+ Note: Disabling log message functions inhibits feedback messages that report
error and informational status within the MacAPPC server.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

See also NODisplayNode

6-24 Chapter 6: MocAPPC Node Operator Driver·

(·- ..

Summary

Parameters

Description

NODefineStation

The NODefineStation routine defines the station name and other parameters
that pertain to the adjacent-link station (ALS).

This routine is used to initialize and modify operating parameters that are located in
the new or existing station. The first time it is executed, this routine initializes the
station definition with default values and updates it with the specified operating
parameters. On subsequent executions this routine updates the station definition with
the data supplied for the specified operating parameters. If a parameter is not
specified, the value currently defined for that parameter remains unchanged. This
routine can be executed by any transaction program that has the privilege to execute
definition routines. ·

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long -+ noLineName
0036 long -+ noCPName
002E long -+ noALSName
003E long -+ noPhoneNumber
0042 long -+ noALSAddr

noDCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noI.ineHame (supplied) specifies a pointer to a ~tring that contains the name of a
previously defined line. The string length must not be greater than the value of the
kMaxName constant. If the station has already been defined, this pointer can be NIL
to indicate that the line name is to be left unchanged.

noCPHame (supplied) specifies a pointer to a string that contains the name of a
previously defined control point. The string length must not be greater than the value
of the kMaxName constant. If the station has already been defined, this pointer can
be NIL to indicate that the control point name is to be left unchanged.

noJU.SName (supplied) specifies a pointer to a string that contains the name of the
adjacent link station (A.LS) being defined or modified. The string length must not be
greater than the value of the kMaxName constant. The string LOCAL is a reseived
name designating intranode flows and must not be used as the name of an ALS.

noPhoneHumber (supplied) specifies a pointer to a string that contains the phone
number to be displayed on the dial-out message. The string length must not be
greater than the value of the kMaxPhoneNumber constant.

'
Node operator node definition routines 6-25

noALSAdd.r (supplied) specifies a pointer to a string that contains the station
address.· The string must be exactly as long as the value of the kMaxSDLCAddr
constant, and the characters in the string must be hexadecimal. The parameter is
used to specify the address of stations on a multipoint line. The default is Cl. The
values 00 and FF are invalid. If the value of thiS. pointer is NIL, the current value is left
unchanged.

Resultcode appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in. appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

NODisplayStation

6-26 Chapter 6: MacAPPC Node Operator Driver

/·"-~"

. l
\"··---'/,

(Summary

Parameters

Description

NO Delete

The NODelete routine deletes the specified node component from a Mac.APPC
seiver. Defined components must be deleted in the reverse order in which they were
defined; that is, stations must be deleted before lines and control points.
Additionally, stations must not be deleted if they are active or have any modes
defined that refer to them.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC. word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long -+ noLineName
0036 long -+ noCPName
002E long -+ noALSName

noDCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noL.ineRuae (supplied) specifies a pointer to a string that contains the name of a
line to be deleted. The string length must not be greater than the value of the
kMaxName constant. This line must not be specified as the line parameter for a
currently defined adjacent link station {AI.S). The control point LOCAL cannot be
deleted.

noCPBuae (supplied) specifies a pointer to a string mat contains the name of the
control point (CP) to be deleted. The string length must not be greater than the value
of the kMaxName constant. This control point must not be specified as the control
point for a currently defined ALS.

noALSR- (supplied) specifies a pointer to a string that contains the name of an
ALS to be deleted. The string length must not be greater than the value of the
kMaxName constant. This ALS must not be specified as the ALS of a currently defined
mode. The adjacent link station LOCAL cannot be deleted.

Result code appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Node operator node definition routines 6-27

Summary

Parameters

Description

NODisplayCP

The NODisplayCP routine returns addressing information for a control poinc
defined with NODefineCP. See NODefineCP for more information on the
meaning of values returned here, particularly for specific information on the format
of the noExchID and noCPUID parameters.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA ·word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0062 byte -+ noNextCPName
0036 long => noCPName
0046 long => noExchID
004A long => noCPUID

no!'PCBPtr (supplied) specifies a pointer to an.existing Transaction Program
Control Block (TPCB).

noHaxtCPHama (supplied) specifies that information for the next control point
should be returned. This parameter is used only if the noCPName parameter is
specified. The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next control point should be
returned.

noCPHama (supplied/modified) specifies a pointer to space where the control point
name can be returned. The space must be at least as long as the value of the kMaxName
constant plus 1 byte. If the pointer points to a NULL string, information on the first
control point, including its name, is returned. If a name is specified and the
noNextCPName parameter is set to the value ofthe kNextEnt ry constant, informa­
tion for the next control point, including its name, is returned. If the returned name is a
NULL string, there are no more control points. If the noNextCPName parameter is set
to kignoreParam, information for the specified control point is returned.

noExchID (supplied/modified) specifies a pointer to space where the defined XID
can be returned. The space must be at least as long as the value of the kMaxExchID
constant plus 1 byte. If the pointer is NIL, the XID is not returned. Since the XID is
only defined for a peer, a NULL string is returned if the control point is a host.

noCPUID (supplied/modified) specifies a pointer to space where the defined CPU
ID can be returned. The space must be at least as long as the value of the kMaxCPUID
constant plus 1 byte. If the pointer is NIL, the CPU ID is not returned. Since the CPU
ID is only defined for a host, a NULL string is returned if the control point is a peer.

Resutt code appcNoErr Routine succeeded
appcFail
appcExec

See amo NODefineCP

Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

6-28 Chapter 6: MacAPPC Node Operator Driver.

(_ Summary

Parameters

(

Description

NO Display Line

The NODisplayLine routine returns information about a line defined with the
NODefineLine routine. See NODefineLine for more information on the
meaning of values returned here.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long -+ noTPCBPtr
0061 byte -+ noNextLineName
0032 long ~ noLineName
0068 long -+ noLinePtr
0066 byte f- noLineType
0065 byte f- noLineStatus

byte f- sdlcLineNum
byte f- sdlcRoleType
byte f- sdlcConnType
word f- sdlcMaxBTU
word f- sdlcLineSpeed
word f- sdlcMaxRetry
word f- sdlcidleTirne
word f- sdlcNPRcvTirne
word f- sdlcMaxIFrarne
byte f- sdlcNRZIType
byte f- sdlcDuplexType

no'l'PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noNextLineName (supplied) specifies that information for the next line should
be returned. This parameter is used only if the noLineNarne parameter is supplied.
The following values are defined: ·

kignorePararn indicates that the parameter is not specified.

kNextEnt ry indicates that the information for the next line should be returned.

noLineName (supplied/modified) specifies a pointer to space where the name of
the line can be specified. The space must be at least as long as the value of the
kMaxNarne constant plus 1 byte. If the pointer points to a NULL string, information
for the first configured line, including the line name, is returned. If a name is
specified, and the noNext LineNarne parameter is set to the value of the
kNextEntry constant, the name of the next line is returned here. If the returned
string is NULL, there are no more lines. If noNextLineNarne is set to the
kignorePararn constant, information for the named line is returned.

noLinePtr (supplied) specifies a pointer to a line record (APPCLineRec).

Node operator node definition routines 6-29

noLine'l'ype (returned) specifies the type of line. The following values can be
returned:

kSDLCLine indicates an SDLC line type.

+ Note: At the time of publication, this is the only line type supported.

noLinestatus (returned) indicates the status of the line for which data is being
returned. The following values can be returned:

kLineReset indicates the line status is reset.

kLinePend.Acti ve indicates the line status is pending active.

kLineActi ve indicates the line status is active.

kLinePendReset indicates the line status is pending reset.

sdlcLineHum (returned) indicates the SDLC line number. The following values
can be returned:

kSDLCLinel indicates SDLC line 1.

kSDLCLine2 indicates SDLC line 2.

kSDLCLine3 indicates SDLC line 3.

kSDLCLine4 indicates SDLC line 4.

sdlcRole'l'ype (returned) indicates the SDLC role. The following values can be
returned:

kSDLCPrirnary indicates that the SDLC role is primary.

kSDLCSecondary indicates that the SDLC role is secondary.

kSDLCNegotiable indicates that the SDLC role is negotiable.

sdlcConn'l'ype (returned) indicates the SDLC connection type. The following
values can be returned:

kSDLCLeased indicates that the connection is leased.

kSDLCMultiPoint indicates that the connection is multipoint.

kSDLCSwitched indicates that the connection is switched.

sdlcMaxB'l'O (returned) indicates the maximum basic transmission unit (BTU)
length that can be received on this line.

sdlcLineSpeed (returned) indicates the SDLC line speed. The following values
can be returned:

kSDLC300 indicates a line speed of 300 bps.

kSDLC1200 indicates a line speed of 1200 bps.

kSDLC2400 indicates a line speed of 2400 bps.

kSDLC 4 8 0 0 indicates a line speed of 4800 bps.

kSDLC9600 indicates a line speed of9600 bps.

kSDLCl 9200 indicates a line speed of 19200 bps.

sdlcMaxRetry (returned) indicates the maximum number of times a frame is
retransmitted after SDLC procedures have detected a discrepancy.

6-30 Chapter 6: MacAPPC Node Operator Driver

(

Result code

See also

sdlcidleTime (returned) indicates the amount of time (in milliseconds) that can
elapse without a response before a primary link station initiates recovery action.

sdlcNPRcvTime (returned) indicates the amount of time (in milliseconds) that
can elapse before the primary link station reports to a higher level of Sr\A that a
nonproductive receive condition exists.

sdlcMaxIFrame (returned) is the maximum number of I-frames that can be sent
before polling resumes.

sdlcNRZIType (returned) indicates whi<;h transmission encoding method is used
when sending signals over this link. The following values can be returned.

kSDLCNRZ indicates that nonreturn-on-zero (~'RZ) encoding is used.

kSDLCNRZI indicates chat nonreturn-on-zero-inverted (N"RZI) encoding is used.

sdlcDuplexType (returned) indicates whether data can be sent in one direction
or both directions simultaneously without turning the line around. The following
values can be returned.

kSDJ,CHa l fDuplex indicates half-duplex transmissions. Data can be sent in
only one direction at any given time.

kSDLCFullDuplex indicates full-duplex transmissions. Data can be sent and
received without turning the line around.

appcNoErr
appcFail
appcExec

NODefineLine

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

Node operator node definition routines 6-31

.Summary

Parameters

Description

Result code

See also

NODisplayNode

The NODisplayNode routine returns information about an instance of the
MacAPPC server. See NODefineNode for more information on the meaning of

· individual fields that are returned.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0046 long => noExchID
0058 byte +- noAccessType
0056 word +- noMonTimer
0063 byte +- noNodeMsgs
0064 byte +- noLogMsgs

no'?PCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noExc:hID (supplied/modified) specifies a pointer to space where the defined XID
can be returned. The space must be at least as long as the value of the kMaxExchI D
constant plus 1 byte. If the pointer is NIL, the XID is not returned.

noAc:c:essType (returned) indicates the type of physical media access. The
following values can be returned:

kSDLCAccess indicates SDLC access.

+ Note: At the time of publication, SDLC access is the only valid access type.

noMonTimer (returned) indicates in seconds the monitor interval for the
MacAPPC server.

noNodeMsqs (returned) indicates whether or not the function of sending node­
operator messages is enabled. The following values can be returned:

kFuncNotSupp indicates that node-operator messages are not enabled.

kFuncSupp indicates that node-operator messages are enabled.

noLoqMsqs (returned) indicates whether or not the function of sending log
messages is enabled. The following values can be returned:

kFuncNotSupp indicates that log messages are not enabled.

kFuncSupp indicates that log messages are enabled.

appcNoErr
appcFail
appcExec

NODefineNode

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

6-32 Chapter 6: MacAPPC Node Operator Driver .

Summary

Parameters

Description

(:

NODisplayStation

The NODisplayStation routine returns information about a station defined with
NODefineStation. See NODefineStation for information on the meaning of
values returned here.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long ~ noTPCBPtr
0032 long ~ noLineName
0036 long ~ noCPName
0060 byte ~ noNextALSName
002E long ~ noALSName
003E long ~ noPhoneNumber
0042 long ~ noALSAddr
0067 byte ~ noALSStatus

noTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

noLineName (supplied/modified) specifies a pointer to space where the name of
the line for this station can be returned. The space must be at least as long as the value
of.the kMaxName constant plus 1 byte. If the pointer is l\1L, the line name is not
returned.

noCPName (supplied/modified) specifies a pointer to space where the name of the
control point for this station can be returned. The space must be at least as long as the
value of the kMaxN ame constant plus 1 byte. If the pointer is NIL, the control point
name is not returned.

noNextALSName (supplied) specifies that information for the next station should
be returned. This parameter is used only if the noALSName parameter is specified.
The following values are defined:

kignoreParam indicates that the parameter is not specified.

kNextEntry indicates that the information for the next station should be
returned.

noALSNam4!1 (sµpplied/modified) specifies a pointer to space where the name of the
adjacent link station (ALS) can be specified. The space must be at least as long as the
value of the kMaxName constant plus 1 byte. If the pointer points to a NULL string,
information for the first configured station, including the station name, is returned. If
a name is specified, and the noNextALSName parameter is set to kNextEntry,
the name of the next station is returned. If the returned name is NULL, there are no
more stations to display.

noPhoneNumber (supplied/modified) specifies a pointer to space where the
phone number or dialing code defined for this station can be returned. The space
must be at least as long as the value of the kMaxPhoneNumber constant plus 1 byte.
If the pointer is NIL, the phone number is not returned.

Node operator node definition routines 6-33

Result code

noALSAddr (supplied/modified) specifies a pointer to space where the station
address defined for this station can be returned. The space must be at least as long as
the value of the kMaxSDLCAddr constant plus 1 byte.

noALSStatus (returned) indicates the status of the station for which data is
returned. The following values can be returned:

kStationReset indicates that the station status is reset.

kStationPendResp indicates that the station status is active pending response.

kStationPendCont indicates that the station status is active pending contact.

kStationActi ve indicates that the station status is active.

kStationPendReset indicates that the station status is pending reset.

kStationResetPendResp indicates that the station status is reset pending
response.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

See also NODefineStation

6-34 Chapter 6: MacAPPC Node Operator Driver

(

(

Summary of the MacAPPC Node Operator Driver
This section provides a summary of the constants, data structures, and routines for use
with the MacAPPC Node Operator Driver.

Constants
The following constants are available for use with the MacAPPC Node Operator
Driver.

{ noDialType values

kConnectDial =

kDialinOnDial =

kDisconnectDial =

kDialinOffDial =

{ noQueueClass values

kNoChangeQClass =
kNodeOperMsgsQClass=

kLogMsgsQClass -

kDevelMsgsQClass=

kTraceMsgsQClass =

{ noQueueType }

kNoChangeQType =

kinfoMsgsQType =
kNotifMsgsQType =
kErrorMsgsQType =

kDiagMsgsQType =

{ noQueueSevType values }

O;
l;

O;
l;

0;
l;

2;

4;

8;

0;

l;

2;

4;

8;

O; kNoChangeQSev =

kReservedQSev =

kDevelMsgsQSev =

1; { reserved }

10;

kLowLevelinfoMsgsQSev= 20;

kNormalinfoMsgsQSev = 30;

. kErrorMsgsQSev = 4 0;

kProgErrorsQSev = 90;

{ noAccessType values

kSDLCAccess = 0;

Summary of the MacAPPC Node Operator Driver 6-35

{ noLineStatus values)

kLineReset =

kLinePend.Active =

kLineActive =

kLinePendReset =

{ noLineType values

kSDLCLine -

{ noStationStatus values)

l;

2;

3;

4;

O;

kStationReset == l;

kStationPendResp = 2;

kStationPendCont = 3;

kStationActive= 4;

kStationPendReset = 5;

kStationResetPendResp = 6;

{ sdlcLineNum values }

kSDLCLinel =

kSDLCLine2 =
kSDLCLine3 =

kSDLCLine4 =

{ sdlcRoleType values

kSDLCSecondary =

kSDLCPrimary =
kSDLCNegotiable =

{ sdlcConnType values

kSDLCLeased =

kSDLCMultiPoint =

kSDLCSwi tched =

{ sdlcDuplexType values

kSDLCFullDuplex =
kSDLCHalfDuplex =

{ sdlcLineSpeed values

l;

2;

3;

4;

0;

l;

2;

O;
l;

2;

O;
l;

kSDLC300 = 300;

kSDLC1200 = 1200;

kSDLC2400 = 2400;

kSDLC4800 = 4800;

kSDLC9600 = 9600;

kSDLC19200 • 19200;

{ sdlcNRZIType values }

kSDLCNRZ =

kSDLCNRZI =

0;

1;

6-36 Chapter 6: MacAPPC Node Operator DFiver .

' ~

(

Data types •

The following data types are available for use with the MacAPPC Node Operator
Driver.

noParam:

noTPCBPtr

noLclLUName

noALSName

noLineName

noCPName

noQueueName

noPhoneNumber

noALSAddr

noExchID

noCPUID

noCorrID

noDataPtr

noDataSize

noMonTimer

noAccessType

noStopSrvr

noDialType

noQueueEnable

noQueueClass

noQueueType

noQueueSev

noWaitForMsg

noNextALSName

noNextLineName

noNextCPName

noNodeMsgs

noLogMsgs

noLineStatus

noLineType

noALSStatus

noLinePtr
) ;

APPC llne record

APPCLineType ..

APPCLineRec ==

CASE

sdlcLine:

sdlcMaxBTU

Ptr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

StringPtr;

INTEGER;

Ptr;

INTEGER;

INTEGER;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

SignedByte;

Ptr;

(sdlcLine);

RECORD

APPCLineType OF

INTEGER;

TPCB pointer }

local LU name pointer

adjacent link station name pointer

line name pointer }

control point name pointer

queue name pointer }

phone number pointer }

ALS Address pointer }

exchange ID pointer }

CPU ID pointer }

correlation ID }

data buffer pointer

data buffer length }

wakeup timer for monitor

Access Type

halt server
dial type }

queue enabled

queue class }

queue type }

queue severity level }

block if no message in queue }

next adjacent link station name

next line name }

next CP name }

enable node messages

enable logging messages

line status }

line type }

station status
line structure pointer

maximum BTU length }

Summary of the MacAPPC Node Operator Driver 6-3 7

sdlcMaxRetry
sdlcidleTime

sdlcNPRcvTime

sdlcMaxIFrame
sdlcLineSpeed

sdlcLineNum
sdlcRoleType

sdlcConnType

sdlcDuplexType

sdlcNRZIType
) ;

END;

APPCLineRecPtr =

INTEGER;
INTEGER;
INTEGER;

INTEGER;
INTEGER;
SignedByte;

SignedByte;

SignedByte;

SignedByte;
SignedByte;

"APPCLineRec;

maximum retries l
idle time before recovery

non-productive receive time
maximum I-frames before polling
line speed }
Line Number)
SDLC role)

connection type

duplex type }
NRZI support }

6~38 Chapter 6: MacAPPC Node Operator Driver

Node control routines •

(_ The following node control routines are available for use with the MacAPPC Node
Operator Driver.

NOActivateLine
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long -+ noLineName
004E long +- noCorrID

NOActivateLU
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr

(002A long -+ noLclLUNarne
004E long +- noCorrID

NOActivateNode
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
004E long +- noCorrID

NOActivateStation
oooc long -+ ioCompletion
0018 word -+ appcRefNurn
OOlA wo:r;d -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
002E long -+ noALSName

c:~
OOSA byte -+ noDialType
004E long +- noCorrID

Summary of the MacAPPC Node Operator Driver 6·39

NODeactivateLine
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long -+ noLineName
004E long +- noCorrID

NODeactivateLU
oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
002A long -+ noLclLUNarne
004E long +- noCorrID

NODeactivateNode
oooc long -+ ioCornpletion
0018 word -+ appcRefNurn
OOlA word -+ appcOpCode j

0022 long -+ appcUserRef \._~-r-;'",/

0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0059 byte -+ noStopSrvr
004E long +- noCorrID

NODeactivateStation
oooc long -+ ioCornpletion
0018 word -+. appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
002E long -+ noALSNarne
OOSA byte -+ noDialType
004E long +- noCorrID

6-40 Chapter 6: MacAPPC Node Operator Driver

Node message routines

(
The following node message routines are available for use with the MacAPPC Node
Operator Driver.

NODefineMessageQueue
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long -+ noTPCBPtr
003A long -+ noQueueName
005B byte -+ noQueueEnable
005C byte -+ noQueueClass
0050 byte -+ noQueueType
005E byte -+ noQueueSev

NODisplayMessage
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult

(OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long -+ noTPCBPtr
003A long -+ noQueueName
0050 long => noDataPtr
0054 word -+ noDataSize
OOSF byte -+ noWaitForMsg
004E long -+ noCorrID

NODisplayMessageQueue
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word f- ioResult
OOlC word f- appcHiResult
OOlE word f- appcLoResult
0026 long -+ noTPCBPtr
003A long -+ noQueueNarne
OOSB byte f- noQueueEnable
oosc byte f- noQueueClass
0050 byte f- noQueueType
OOSE byte f- noQueueSev

('
Summary of the MacAPPC Node Operator Driver 6-41

Node definition routines
The following node definition routines are available for use with the MacAPPC Node ,r--·,, '

\i

Operator Driver.
"'

NODefineCP
oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
001A word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ noTPCBPtr
0036 long ~ noCPNarne
0046 long ~ noExchID
004A long ~ noCPUID

NODefineLine
oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long ~ noTPCBPtr
0032 long ~ noLineNarne
0068 long ~ noLinePtr
0066 byte ~ noLineType

byte ~ sdlcLineNurn
byte ~ sdlcRoleType
byte ~ sdlcConnType
word ~ sdlcMaxBTU
word ~ sdlcLineSpeed
word ~ sdlcMaxRetry
word ~ sdlcidleTirne
word ~ sdlcNPRcvTirne
word ~ sdlcMaxIFrarne
byte ~ sdlcNRZIType
byte ~ sdlcDuplexType

NODefineNode
oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OClE word +- appcLoResult
0026 long ~ noTPCBPtr ,r'''"-.,

\'c..,/J

6-42 Chapter 6: MacAPPC Node Operator Driver

0046 long --+ noExchID
0058 byte --+ noAccessType
0056 word --+ noMonTimer

(0063 byte --+ noNodeMsgs
0064 byte --+ noLogMsgs

NODefineStation
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long --+ noTPCBPtr
0032 long --+ noLineName
0036 long --+ noCPName
002E long --+ noALSName
003E long --+ noPhoneNumber
0042 long --+ noALSAddr

NO Delete
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult

(OOlE word ~ appcLoResult
0026 long --+ noTPCBPtr
0032 long --+ noLineName
0036 long --+ noCPName
002E long --+ noALSName

NODisplayCP
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0026 long --+ noTPCBPtr
0062 byte --+ noNextCPName
0036 long => noCPName
0046 long => noExchID
004A long => noCPUID

NODisplayline
oooc long --+ ioCompletion
0018 word --+ appcRefNum
OOlA word --+ appcOpCode
0022 long --+ appcUserRef
0010 word ~ ioResult

(' OOlC word ~ appcHiResult
- /

Summary of the MacAPPC Node Operator Driver 6-43

OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0061 byte -+ noNextLineName
0032 long noLineName

·,, l
=> \1

0068 long -+ noLinePtr \-.,j
0066 byte +- noLineType
0065 byte +- noLineStatus

byte +- sdlcLineNum
byte +- sdlcRoleType
byte +- sdlcConnType
word +- sdlcMaxBTU
word +- sdlcLineSpeed
word +- sdlcMaxRetry
word +- sdlcidleTime
word +- sdlcNPRcvTime
word +- sdlcMaxIFrarne
byte +- sdlcNRZIType
byte +- sdlcDuplexType

NODisplayNode
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0046 long => noExchID
0058 byte noAccessType / ·,

+- ,) 0056 word +- noMonTimer
0063 byte +- noNodeMsgs
0064 byte +- noLogMsgs

NODlsplayStation
oooc long -+ ioCornpletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0026 long -+ noTPCBPtr
0032 long => noLineNarne
0036 long => noCPNarne
0060 byte -+ noNextALSNarne
002E long => noALSNarne
003E long => noPhoneNurnber
0042 long => noALSAddr
0067 byte +- noALSStatus

6-44 Chapter 6: MocAPPC Node Operator Driver ·

(

(

Chapter 7

MacAPPC Transaction
Program Driver

7-1

This chapter describes the .MacAPPC Transaction Program Driver (.TP62), explains
how to use the driver, and provides a detailed guide to the programmatic interface for
executing each Transaction Program Driver routine. For quick reference, a section at
the end of the chapter summarizes the data structures, constants, and routine
parameters.

Using the MacAPPC Transaction Program Driver
The transaction program routines are used to establish a connection between a
transaction program and the MacAPPC server, as well as to convert strings from the
ASCII character set to EBCDIC and vice versa.

Getting the currenHy selected MacAPPC server
When a transaction program executes a TPAttach routine, the
tpSrvrEntiryPtr parameter must point to an AppleTalk entity name structure
identifying a particular MacAPPC server. The MacAPPC Chooser device maintains
the currently selected MacAPPC server as an entity name resource inside of the
Chooser device's own resource fork. The following Pascal procedure shows a method
of filling in an entity name strUcture with the information about the currently selected
MacAPPC server.

PROCEDURE GetChosenSrvr(SrvrEntPtr : EntityPtr);
{ Get currently chosen MacAPPC server }
{ It's in resource type SENT, ID 500 in the MacAPPC Chooser file }

VAR

BEGIN

fRefNum:
oldRefNum:
entityHndl:
entityPtr:
theWorld:

INTEGER;
INTEGER;
Handle;
EntityPtr;
SysEnvRec;

refNum of MacAPPC Chooser file)
refNum of current resource file }
handle to entity resource l
pointer to entity resource }
for SysEnvirons }

{ call SysEnvirons to get path to System Folder)
re := SysEnvirons (1, theWorld);
IF (re <> noErr) THEN
BEGIN

END;

ShowError('Error calling SysEnvirons! ');
Exit(PROGRAM);

{ save current resource file }
oldRefNum : • CurResFile;

{ open MacAPPC Chooser file 'MacAPPC' }
fRefNum :• OpenRFPerm('MacAPPC', theWorld.sysVRefNum, fsRdPerm);
IF (fRefNum = -1) THEN
BEGIN

END;

ShowError ('Could not open MacAPPC file! ') ;
Exit (PROGRAM);

{ get the server entity resource)
entityHndl := GetResource('SENT', 500);
IF (entityHndl = NIL) THEN
BEGIN

ShowError ('Could not get currently chose!) server!');
CloseResFile(fRefNurn);
E;:it (PROGRAM);

7-2 Chapter 7: MacAPPC Transaction Program Driver

(

(

END;

HLock(entityHndl);
entityPtr := POINTER(ORD4(entityHndlA));

{ copy it to specified ent::.ty }
SrvrEncPtrA.objStr := entityPtrA.objStr;
SrvrEntPtrh.typeStr := entityPtrA.typeScr;
SrvrEntPtrA.zoneStr := entityPtrA.zoneScr;

Although it's not done here, you may want to check to
make sure the objStr is not null, i.e. there is no currently
chosen server. You can then warn the user of this instead of
having the attach fail later.)

get rid of resource and close file
HUnlock(entityHndl);
ReleaseResource(entityHndl);
CloseResFile(fRefNum);
UseResFile(oldRefNum);

END; { GetChosenSrvr)

Attaching and its implications
When you choose one of the various kinds of attaches, you essentially determine what
kind of MacAPPC routines you will be able to execute for that attach. The routines that
can be executed for the various attaches are shown more precisely in Table 7-1.

Table 7·1
Routines valid for different attach types

Routines

Mapped conversation

Type-independent conversation

Basic conversation

Change-number-of-sessions

Session control

LU definition

Node control

. Node message

Node definition

TP connection

TP utility

Server

x

x
x
x

LU

x

x
x

x

x
x

Attach not required

Attach not required

Wait

x
x
x

x
x
x

MacAPPC Transaction Program Routines 7-3

MacAPPC transaction program routines
This section describes the MacAPPC transaction program routines. The routines are
divided inro the following categories:

o connection routines, which are used to establish and terminate connections to
MacAPPC servers

c utility routines, which are used for general transaction program utility functions

Transaction program connection routines
This section describes the MacAPPC transaction program connection routines. These
routines connect a transaction program to a particular MacAPPC server or a particular
LU within the MacAPPC server, or wait for an allocation request specifying a particular
transaction program and connect to thar conversation.

7-4 Chapter 7: MacAPPC Transaction Program Driver

(Summary

Parameters

(

Description

(

TPAttach

The TP1'.ttach routine initiates communication between the local program and the
MacAPPC server.

Important

The TPAttach routine must he the first MacAPPC routine executed by the local
transaction program.

If the local transaction program is waiting for a remote transaction program to start
the conversation, the local transaction program must execute a TPAttach routine
with the tpAttachType parameter set to the kWaitAttach constant.

If the local transaction program is starting a conversation, it must first execute a
TPAttach routinewiththe tpAttachType parametersettothe kLUAttach
constant and then execute a MCAllocate or BCAllocate routine (depending
on the type of conversation) before it executes any other conversation routine. See
MCAllocate or BCAllocate in Chapter 4 of this manual.

The type of attach, as specified in the tpAttachType parameter, determines the
type of MacAPPC routines that can be used during the attach. See the section
"Attaching and Its Implications," earlier in this chapter, for more information.

oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word ioResult
OOlC word appcHiResult
OOlE word appcLoResult
0020 byte ~ appcConvState
0026 long ~ tpTPCBPtr
002A long ~ tpCVCBPtr
0034 long ~ tpPIPBuffPtr
0038 word ~ tpPIPBuffSize
002E long ~ tpMapBuffPtr
0032 word ~ tpMapBuffSize
0050 byte ~ tpAttachType
003E long ~ tpLclProgName
003A long ~ tpLclLUName
0042 long ~ tpSrvrEntityPtr
004E word ~ tpWaitTime
0052 long ~ tpMapProc
005C => tpPIPPtr []
045C ~ tpPIPSize []
0046 long ~ tpConvID
004A long ~ tpProgID

tpTPCBPtr (supplied) specifies a pointer to a Transaction Program Control Block
(TPCB) whose length is determined by the value of the kTPCBSize constant. You
must supply a new TPCB each time you execute a TPAttach routine.

Transaction program connection routines 7-5

tpCVCBPtr (supplied) specifies a pointer to a Conversation Control Block (CVCB)
whose length is detemtined by the value of the kCVCBSize constant. You must
supply a new CVCB each time you execute a TPAt ta ch routine when the
tpAttachType parameter is set to the kWaitAttach constant.

tpPIPBuffptr (supplied) specifies a pointer to a buffer that holds the program­
initialization parameters. The length of the buffer is specified by the value of the
tpPIPBuffSize parameter. This parameter is required only when the
tpAttachType parameter is set to the kWaitAttach constant and the
conversation will start with PIP data.

tpPIPBuffSize (supplied) specifies the size of the buffer pointed to by
tpP IPBuffPtr. TI1is buffer must be large eough to hold the largest amount of PIP
data expected plus a 4-byte logical length ID (LUO) per parameter plus one 4-byte
LUO for the entire PIP data.

tpMapBuffptr (supplied) specifies a pointer to a mapped conversation buffer.
The length of the buffer is specified by the value of the tpMapBuffSize .parameter.
TI1is parameter is required only when the tpAttachType parameter is set to the
kWaitAttach constant and the conversation will be a mapped conversation.

tpMapBuffSize (supplied) specifies the size of the mapped conversation buffer
pointed to by the tpMapBuffPtr parameter. This buffer must be large enough to
hold the largest complete data record expected plus a 4-byte LUO.

tpAttachType (supplied) specifies the type of attach. The following values are
defined:

kSrvrAttach indicates that an attach is being made to a MacAPPC server.

kLUAttach indicates that an attach is being made to an LU.

kWaitAttach indicates that an allocation is being initiated by another TP, and
that this TP should wait for allocation.

tpLclProgName (supplied) specifies a pointer to a string that contains the name
of the local transaction program. The string length must not be greater than the value
of the kMaxTPName constant. TI1is parameter is required only when the
tpAttachType parameter is set to the kLUAttach or kWaitAttach constant.

tpLclLOName (supplied) specifies a pointer to a string that contains the name of
the local LU that the local transaction program will use. The string length must not be
greater than the value of the kMaxName constant. This parameter is required only
when the tpAttachType parameter is setto the kLUAttach or kWaitAttach
constant.

tpSrvrEntityPtr (supplied) specifies a pointer to an AppleTalk entity name
structure that contains information about the name, type, and zone of a MacAPPC
server.

tpWait'l'ime (supplied) specifies the maximum time in seconds that the MacAPPC
Server should wait for a conversation routine to complete before timing out the
routine. The following additional values are defined:

kMaxWait indicates no maximum wait time.

kConfigWai t indicates that the default value configured for the local LU is to be
used.

7-6 Chapter 7: MacAPPC Transaction Program Driver

(""",,
__ ,,.,

Notes

Result code

(
See also

tpMapProc (supplied) specifies a pointer to a mapping procedure; the mapping
procedure is executed whenever the conversation requires it. This value applies only
when the tpAttachType parameter is set to the kWaitAttach and the
conversation will be a mapped conversation. Set the parameter to NIL to use the
default mapping procedure.

tpPIPPtr (supplied/modified) specifies space for an array of pointers to
program-initialization parameters. The maximum number of parameters is defined
by the value of the kMaxP IP constant, with a total space limitation equal to the value
of the tpPIPBuffSize parameter. This value applies only when the
tpAttachType parameter is set to the kWaitAttach constant.

tpPIPSize (supplied/returned) specifies an array of sizes that specifies the size for
each PIP in the tpPIPPtr parameter. This value applies only when the
tpAttachType parameter is set to the kWaitAttach constant. The actual size
of each PIP is returned in the tpPIPPtr parameter. If the value of tpPIPSize is
smaller than the value for the largest PIP returned, the data is truncated. The last size
is followed by a size of 0. This value applies only when the tpAttachType
parameter is set to the kWaitAttach constant.

tpConvID (returned) indicates the conversation ID. This value applies only when
the tpAttachType parameter is set to the kWaitAttach constant.

tpProqID (returned) indicates the transaction program ID for the local transaction
program.

On successful return from a TPAttach routine when the tpAttachType
parameter is set to the kWaitAttach constant, the conversation is in receive state.

appcNoErr
appcFail
appcExec

TPDetach

Routine succeeded
Routine failed; look in appcHiResul t and appcLoResul t
Routine executing; asynchronous request not complete

Transaction program connection routines 7-7

Summary

Parameters

Description

Result code

See also

TPDetach

The TPDetach routine detaches the current connection from the MacA.PPC server.

Any conversations still open under a detached connection are deallocated by the
MacA.PPC server.

Important

Your transaction program must execute a TPDetach routine to terminate an
existing connection. After the TPDetach routine has been executed, no more
routines can be executed for that detached connection.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word ~ ioResult
OOlC word ~ appcHiResult
OOlE word ~ appcLoResult
0020 byte ~ appcConvState
0026 long -+ tpTPCBPtr
0051 byte -+ tpDetachType

tpTPCBPtr (supplied) specifies a pointer to an existing Transaction Program
Control Block (TPCB).

tpDetachType (supplied) specifies the type of detach. The following values are
defined:

kNormalDetach specifies that the connection to the MacAPPC server is to be
terminated normally. The MacA.PPC server will be notified of the detach and will
be able to take normal clean-up procedures.

kAbortDetach specifies that the connection to the MacA.PPC server should be
terminated immediately without notifying the MacA.PPC server. Use this detach
type to terminate the connection when an asynchronous MacAPPC routine is
outstanding.

appcNoErr
appcFail
appcExec

TPAttach

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

7-8 Chapter 7: MacAPPC Transaction Progmm Driver

. t

(

(

Transaction program utility routines
This section describes the MacAPPC transaction program utility routines. These
routines are used to perform utility functions, such as the conversion of ASCII strings
to EBCDIC and from EBCDIC to ASCII.

Transaction program utility routines 7-9

Summary

Parameters

Description

Result code

See also

TPAsciiToEbcdic

The TPAsciiToEbcdic routine translates an ASCII string into EBCDIC (the IBM
character set). A transaction program can use it to translate application-specific
information for use by partner programs that run on IBM machines.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0056 long => tpDataPtr
OOSA word -+ tpDataSize

tpDataPtr (supplied/modified) is a pointer to the start of the data to be
translated.

tpDataSize (supplied) specifies the number of bytes to be translated.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

TPEbcdicToAscii

7-10 Chapter 7: MacAPPC Transaction Program Driver

(Summary

Parameters

Description

Result code

See also

(

TPEbcdicToAscii

The TPEbcdicToAscii routine translates a string from EBCDIC (the IBM
character set) into ASCII. A transaction program can use it to translate application­
specific information sent by partner programs that run on IBM machines.

oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word r- ioResult
OOlC word r- appcHiResult
OOlE word r- appcLoResult
0056 long => tpDataPtr
OOSA word -+ tpDataSize

tpDataPtr (supplied/modified) is a pointer to the start of the data to be
translated.

tpDataSize (supplied) specifies the number of bytes to be translated.

appcNoErr
appcFail
appcExec

Routine succeeded
Routine failed; look in appcHiResult and appcLoResult
Routine executing; asynchronous request not complete

TPAsciiToEbcdic

Transaction program utility routines 7 ~ 11

Summary of the MacAPPC Transaction Program Driver
This section provides a summary of the constants, data structures, and routines for use
with the MacAPPC Transaction Program Driver.

Constants
The following constants are available for use with the MacAPPC Transaction Program
Driver.

{ tpAttachType values

kLUAttach =

kSrvrAttach"'

kWaitAttach •

{ tpDetachType values

kNormalDetach =

kAbortDetach =

{ tpWaitTime values

kMaxWait =

kConfigWait =

0;
l;

2;

0;

1;

-1;
0;

wait time

wait time

forever }

local LU wait time }

7~ 12 Chapter 7: MocAPPC Transaction Program Driver

__ ./

(
Data types
The following data types are available for use with the MacAPPC Transaction Program
Driver.

tpParam:

(

tpTPCBPtr

tpCVCBPtr

tpPIPBuffPtr

tpPIPBuffSize

tpMapBuffPtr

tpMapBuffSize

tpLclLUName

tpLclProgName

tpSrvrEntityPtr

tpConvID

tpProgID

tpWaitTime

tpAttachType

tpDetachType

tpMapProc

tpDataPtr

tpDataSize

tpPIPPtr

tpPIPSize

) ;

Ptr;

Ptr;

Ptr;

INTEGER;

Ptr;

INTEGER;

StringPtr;

StringPtr;

EntityPtr;

LONGINT;

LONGINT;

INTEGER;

SignedByte;

SignedByte;

TPCB pointer }

CVCB pointer }

PIP buffer pointer

PIP buffer size }

mapped conversation buffer pointer

mapped conversation buffer size

local LU name pointer }

local program name pointer

server entity pointer }

conversation ID }

transaction program ID

wait time in seconds }

attach type }

detach type }

Pr ocPt r; mapping procedure pointer

Ptr; data buffer pointer

INTEGER; data buffer size }

ARRAY[l..kMaxPIP] OFPtr; { array of PIP ptrs }

ARRAY [1 .. kMaxPIP] OF INTEGER; { array of PIP sizes}

Summary of the Transaction Program Driver 7- 13

Connection routines
The following connection routines are available for use with the MacAPPC Transaction
Program Driver.

TPAttach
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ tpTPCBPtr
002A long -+ tpCVCBPtr
0034 long -+ tpPIPBuffPtr
0038 word -+ tpPIPBuffSize
002E long -+ tpMapBuffPtr
0032 word -+ tpMapBuffSize
0050 byte -+ tpAttachType
003E long -+ tpLclProgName
003A long -+ tpLclLUName
0042 long -+ tpSrvrEntityPtr
004E word -+ tpWaitTime
0052 long -+ tpMapProc
oosc => tpPIPPtr[]
045C H tpPIPSize []
0046 long H tpConvID
004A long +- tpProgID

TPDetach
oooc long -+ ioCompletion
0018 word -+ appcRefNum
OOlA word -+ appcOpCode
0022 long -+ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0020 byte +- appcConvState
0026 long -+ tpTPCBPtr
0051 byte -+ tpDetachType

7-14 Chapter 7: MacAPPC Transaction Program Driver

"'-... ~/

\, ___ J/:

(----,

_, __ /j

Utility routines

(The following utility routines are available for use with the MacAPPC Transaction
Program Driver.

TPAsciiToEbcdic
oooc long ~ ioCornpletion
0018 word ~ appcRefNurn
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0056 long ~ tpDataPtr
OOSA word ~ tpDataSize

TPEbcdicToAscii
oooc long ~ ioCompletion
0018 word ~ appcRefNum
OOlA word ~ appcOpCode
0022 long ~ appcUserRef
0010 word +- ioResult
OOlC word +- appcHiResult
OOlE word +- appcLoResult
0056 long ~ tpDataPtr
OOSA word ~ tpDataSize

(,,

c\
Summary of the Tra~actlon Program Driver 7 • 15

Chapter 8

MacAPPC Example TP

(

8-1

This chapter presents Pascal code that shows an example fragment of a MacAPPC
transaction program. This fragment illustrates what a typical set of MacAPPC routines
look like. For a complete example of a working transaction program, see the program
SampleTP.p on your distribution disk.

+ Note: Because of limitations for the line length of this guide, some of the error and
status messages in the following code have been artificially wrapped to the next line
without a continuation symbol.

{--
FILE

NAME

ExampleTP.p
Copyriqht Apple Computer, Inc. 1988
All rights reserved.

ExampleTP

DESCRIPTION
A small example MacAPPC transaction program demonstratinq simple
mapped conversations. It can be used with the LocalConfig
provided with MacAPPC. After starting the server, make sure you activate
the local LUs and user modes. Run this example TP on two client machines.

As an example, here are some parameters that will work with LocalConfig:

ExampleTPl ExampleTP2

Local LU - LU3
Local TP • TP3
Click Wait button

waiting

Local LU .. LUl
Remote LU = LU2
Mode • MODEl
Remote TP • TP 3
Local TP • TPl
Message = Any string to send to ExampleTPl
Click Allocate button *after* ExampleTPl is

From a MacAPPC standpoint, the action looks like:

ExampleTPl

Wait attach

ExampleTP2

LU attach
MCAllocate
MCSendData
MCDeallocate(flush)
Detach LU attach

MCReceiveAndWait for message
MCReceiveAndWait to get deallocation indication
MCDeallocate(local)
Detach Conv attach

--}
{ $R-} { Turn off ranqe checking - you must always do this for MacAPPC }

PROGRAM ExampleTP;

USES

CONST

MemTypes, Quickdraw, OSintf, Toolintf, Packintf,
AppleTalk, APPC, APPCErrors;

TPDialog
QuitButton
AllocateButton
WaitButton
LocalLUText
RemoteLUText

"' 128;
l;

= 2;
- 3;
- 13;
.. 14;

ID of dialog }
items in dialog

8-2 Chapter 8: MacAPPC Example TP

VAR

Mode Text
RemoteTPText
LocalTPText
MessageText
StatusText
Outlineitem
HLineitem
ErrorALRT

theDialog:
itemHit:
itemType:
item:
box:
LocalLUName:
RemoteLUName:
ModeName:
RemoteTPName:
LocalTPName:
MessageStr:
MajorStr:
MinorStr:
StatusStr:
re:
TPPBPtr:
CVPBPtr:
TPCBPtr:
CVCBPtr:
MapBuffPtr:
SrvrEntPtr:
result:

= 15
.. 16
.. 17
= 18;

21;
= 22;

23;
12 9; { id of error alert)

DialogPtr; { dialog box }
INTEGER; { returned from ModalDialog
INTEGER; { used to manipulate dialog items
Handle; { used to manipulate dialog items
Rect; { used to· manipulate dialog items
Str255; { local LU for Allocate }
Str255; { remote LU for Allocate }
Str255; { mode for Allocate }
Str255; { remote TP for Allocate
Str255; { local TP for Allocate and Wait}
Str255; { message for Allocate }
Str255; { string representation of major code
Str255; { string representation of minor code
Str255; { string for current status I
OS Err; { generic OSErr }
APPCParamBlockPtr; { global TPPB }
APPCParamBlockPtr; { global CVPB }
Ptr; { global TPCB - need one more for Wait }
Ptr; { global CVCB }
Ptr; {global map buffer for mapped conversations
EntityPtr; { currently chosen MacAPPC server }
Boolean; { dummy boolean }

PROCEDURE ShowError (errorStr Str255);
{ Put up error alert with specified string

VAR
itemh: INTEGER;

BEGIN

ParamText (errorStr, • • 1 • • •);

i temh : = StopAlert (ErrorALRT, NIL) ;

END; ShowError)

PROCEDURE ShowStatus(statusStr
{ Set status text in dialog }

Str255);

BEGIN

GetDitem(theDialog, StatusText, itemType, item, box);
SetIText(item, statusStr);

END; ShowStatus

PROCEDURE InitMacAPPC;
{ Allocate parameter blocks and other memory, open drivers

VAR

BEGIN

TPRefNum:
CVRefNum:

INTEGER;
INTEGER;

refNum of • TP62 driver
refNum of .CV62 driver

{ open TP and CV drivers to get refnums
re := OpenDriver('.TP62', TPRefNum);
IF (re <> noErr) THEN
BEGIN

END;

ShowError('Could not open .TP62 driver!');
Exit (PROGRAM);

Chapter 8: MacAPPC Example TP 8-3

re := OpenDriver('.CV62', CVRefNum);
IF (re <> noErr) THEN
BEGIN

END;

ShowError ('Could not open . CV62 driver! ') ;
Exit (PROGRAM);

{ allocate TP and CV parameter blocks }
TPPBPtr := APPCParamBlockPtr(NewPtr(kTPSize));
CVPBPtr := APPCParamBlockPtr(NewPtr(kCVSize));

other necessary memory } { allocate
SrvrEntPtr
TPCBPtr :=
CVCBPtr :•

:= EntityPtr(NewPtr(SIZEOF(EntityName)));
NewPtr(kTPCBSize);
NewPtr(kCVCBSize);

{ allocate map buffer for mapped conversation
MapBuffPtr := NewPtr(kMapBuffSize);

{ fill in the parameter blocks with refnums
{ this will be the only field we don't fill in every time }
TPPBPtr". appcRefNum : = TPRefNum;
CVPBPtr".appcRefNum := CVRefNum;

END; InitMacAPPC }

FUNCTION DoLUAttach (LocalLUName, LocalTPName Str255)
{ Attach to a local LU in preparation for an allocate
{ Returns TRUE if successful, FALSE otherwise }

BEGIN

DoLUAttach := TRUE;
ShowStatus ('Doing LU attach ... ');

{ fill in parameter block }
TPPBPtr".appcOpCode := kTPAttach;
TPPBPtr".tpTPCBPtr := TPCBPtr;
TPPBPtr".tpAttachType := kLUAttach;
TPPBPtr".tpLclProgName ·= @LocalTPName;
TPPBPtr". tpLclLUName : = @LocalLUName;
TPPBPtr".tpSrvrEntityPtr := SrvrEntPtr;
TPPBPtr".tpWaitTime := kMaxWait;

re := PBControl (ParmBlkPtr (TPPBPtr), FALSE);

IF (re = noErr) THEN
BEGIN

END
ELSE
BEGIN

END; ,

ShowStatus ('LU attach successful.');

NumToString(LONGINT(TPPBPtr".appcHiResult),
NumToString(LONGINT(TPPBPtr".appcLoResult),
StatusStr :• Concat ('Error doing LU attach,

MajorStr, ' , minor • '
ShowError(StatusStr);
DoLUAttach ·= FALSE;

END; DoLUAttach

Boolean;

MajorStr);
MinorStr);

major • ',
MinorStr, '. ');

FUNCTION DoWaitAttach(LocalLUName, LocalTPName Str255) Boolean;
{ Do a wait attach in preparation }
{ to be allocated. TP will block on wait until allocated.
{ Ret'urns TRUE if successful, FALSE otherwise }

8~4 Chapter 8: MacAPPC Example TP

(

BEGIN

END;

DoWai.tAttach := TRUE;

{ do wait attach
ShowStatus ('Doing wait attach ... ');

fill in parameter block }
TPPBPtrA.appcOpCode := kTPAttach;
TPPBPtrA.tpTPCBPtr ·= TPCBPtr;
TPPBPtrA.tpCVCBPtr ·= CVCBPtr;
TPPBPtrA. tpPIPBuffPtr : = NIL;
TPPBPtrA.tpPIPBuffSize ·= O;
TPPBPtrA.tpAttachType := kWaitAttach;
TPPBPtrA.tpLclLUName ·= @LocalLUName;
TPPBPtrA.tpLclProgName ·= @LocalTPName;
TPPBPtrA.tpSrvrEntityPtr := SrvrEntPtr;
TPPBPtrA.tpWaitTime := kMaxWait;
TPPBPtrA. tpP IPPtr [l] : = NIL;
Tl?PBPtrA.tpPIPSize[l] := 0;
TPPBPtrA. tpMapProc : = NIL;

re ·= PBControl (ParmBlkPtr (TPPBPtr), FALSE);

IF (re = noErr) THEN

ELSE
BEGIN

END;

ShowStatus ('Wait attach successful.' l

NumToString(LONGINT(TPPBPtrA.appcHiResult), MajorStr);
NumToString(LONGINT(TPPBPtrA.appcLoResult), MinorStr);
StatusStr := Concat('Error doing wait attach, major=

Ma jorStr, ', minor = ', MinorStr,
ShowError(StatusStr);
DisposPtr(waitTPCBPtr);
DoWaitAttach := FALSE;
Exit(DoWaitAttach);

DoWaitAttach

FUNCTION DoDetach Boolean;
{ Detach current conv or LU attach
{ Returns TRUE if successful, FALSE otherwise

BEGIN

DoDetach := TRUE;
ShowStatus('Doing detach-');

{ fill in parameter block }
TPPBPtrA.appcOpCode := kTPDetach;
TPPBPtrA.tpTPCBPtr := TPCBPtr;
TPPBPtrA.tpDetachType := kNormalDetach;

re := PBControl (ParmBlkPtr (TPPBPtr), FALSE);

IF (re = noErr) THEN
ShowStatus('Detach 'successful. 'l

ELSE
BEGIN

NumToString(LONGINT(TPPBPtrA.appcHiResult), MajorStr);
NumToString(LONGINT(TPPBPtrA.appcLoResult), MinorStr);
StatusStr : = Concat ('Error doing detach, major = ',

,
I • I) ;

MajorStr, •, minor = ', MinorStr, '.');
ShowError(StatusStr);

DoDetach := FALSE;
END;

END; DoDetach

FUNCTION DoMCAllocate (RemoteLUName, ModeName, TPName Str255) Boolean;

Chapter 8: MacAPPC Example TP 8-5

Allocate a mapped conversation to the specified TP at the }
specified remote LU over the specified mode }
Returns TRUE if successful, FALSE otherwise }

BEGIN
DoMCAllocate := TRUE;
ShowStatus('Doing MCAllocate-');

{ fill in parameter block }
CVPBPtrA.appcOpCode := kMCAllocate;
CVPBPtrA.cvTPCBPtr := TPCBPtr;
CVPBPtrA.cvCVCBPtr :- CVCBPtr;
CVPBPtrA.cvMapBuffPtr := MapBuffPtr;
CVPBPtrA.cvMapBuffSize :• kMapBuffSize;
CVPBPtrA. cvPIPBuffPtr : = NIL;
CVPBPtrA.cvPIPBuffSize := 0;
CVPBPtrA.cvRmtLUName := @RemoteLUName;
CVPBPtrA. cvRmtProgName :• @TPName;
CVPBPtrA.cvModeName := @ModeName;
CVPBPtrA. cvUserName : • NIL;
CVPBPtrA. cvUserPswd : = NIL;
CVPBPtrA. cvUserProf : = NIL;
CVPBPtrA.cvReturnCtl :• kWhenAllocReturn;
CVPBPtrA.cvSyncType := kNoSync;
CVPBPtrA. cvPIPUsed : - FALSE;
CVPBPtrA. cvPIPPtr [l J : - NIL;
CVPBPtr". cvPIPSize [l] : = 0;
CVPBPtrA.cvSecType := kNoSec;
CVPBPtr".cvMapProc := NIL;

re :• PBControl (ParmBlkPtr (CVPBPtr), FALSE);

IF (re = noErr) THEN
BEGIN

END
ELSE
BEGIN

END;

ShowStatus('MCAllocate successful.');

NumToString(LONGINT(CVPBPtr".appcHiResult),
NumToString(LONGINT(CVPBPtr".appcLoResult),
StatusStr := Concat ('Error doing MCAllocate,

MajorStr, ', minor = '
ShowError(StatusStr);
DoMCAllocate := FALSE;

END; { DoMCAl locate

FUNCTION DoMCSendData(MessageStr Str255) Boolean;
{ Send specified message over current conversation
{ Returns TRUE if successful, FALSE otherwise }

VAR

BEGIN

buffer:
mapname:

Str255;
Str255;

DoMCSendData := TRUE;

{ set up buffer
buffer :• MessageStr;

buffer for send data }
map name }

ShowStatus ('Doing MCSendData ... ');

{ fill in parameter block }
CVPBPtr".appcOpCode := kMCSendData;
CVPBPtr".cvTPCBPtr := TPCBPtr;
CVPBPtr".cvCVCBPtr := CVCBPtr;
CVPBPtr". cvDataPtr : = Ptr (@buffer) ;
CVPBPtrA. cvDataSize : = Length (MessageSt.r) + 1;
{ this TP does not use map names }

8-6 Chapter 8: MacAPPC Example TP

MajorStr);
MinorStrJ;
major = ',

MinorStr, '.');

\.\. ,}
/ '

(

END;

mapname ·= '';
CVPBPtrA.cvMapName := StringPtr(@mapnarne);
CVPBPtrA.cvFMHdrs := FALSE;

re := PBControl (ParmBlkPtr (CVPBPtr)' FALSE);

IF (re = noErr) THEN

ELSE
BEG:::N

END;

ShowStatus('MCSendData successful.')

NumToString(LONGINT(CVPBPtrA.appcHiResult),
NumToString(LONGINT(CVPBPtrA.appcLoResult),
StatusStr : = Concat ('Error doing MCSendData,

Ma jorStr, minor =
ShowError(StatusStr);
DoMCSendData : = FALSE;

DoMCSendData

MajorStr);
MinorStr);
major =
MinorStr,

,
' . ') ;

FUNCTION DoMCReceiveAndWait (VAR MessageStr Str255) Boolean;
(Wait for a message over current conversation)
(Does a second receive to get deallocate indication
{ Returns TRUE if successful, FALSE otherwise)

VAR

BEGIN

buffer:
mapname:

Str255;
Str255;

buffer for received data)
map name)

DoMCReceiveAndWait := TRUE;

initialize buffer
buffer := '';

ShowStatus ('.Doing MCReceiveAndWait for data ... ');

{ fill in parameter block)
CVPBPtrA.appcOpCode := kMCReceiveAndWait;
CVPBPtrA.cvTPCBPtr := TPCBPtr;
CVPBPtrA.cvCVCBPtr := CVCBPtr;
CVPBPtrA.cvDataPtr := Ptr(@buffer);
CVPBPtrA. cvDataSize : = 2 56;
{ shouldn't be sent a map name, but we should provide a buffer for it)
CVPBPtrA.cvMapName := StringPtr(@mapname);

re := PBControl (ParmBlkPtr (CVPBPtr), FALSE);

IF ((re = noErr) AND (CVPBPtrA. cvWhatRcvd = kDataComplRcvd)) THEN
BEGIN

END
ELSE
BEGIN

ShowStatus ('MCReceiveAndWait for data successful.');
MessageStr := buffer;

IF (re <> noErr) THEN
BEGIN

END
ELSE
BEGIN

END;

NumToString(LONGINT(CVPBPtrA.appcHiResult), MajorStr);
NumToString(LONGINT(CVPBPtrA.appcLoResult}, MinorStr);
StatusStr := Concat ('Error doing MCReceiveAndWait for
data, major = ', MajorStr, ', minor = ', MinorStr, '. ');

{ got unexpected what received)
NumToString(LONGINT(CVPBPtrA.cvWhatRcvd), MajorStr);
StatusStr := Concat ('Error doing MCReceiveAndWait for

data, cvWhatRcvd MajorStr, '. ');

ShowError(StatusStr);
DoMCReceiveAndWait := FALSE;
Exit(DoMCReceiveAndWait);

Chapter 8: MacAPPC Example TP 8-7

END;

{got the data, now we must do one more receive to see the deallocation }
ShowStatus ('Doing MCReceiveAndWait for deallocate ... ');

(fill in parameter block }
CVPBPtr" .appcOpCode := kMCReceiveAndWait;
CVPBPtr".cvTPCBPtr := TPCBPtr;
CVPBPtr".cvCVCBPtr
CVPEPtr".cvDataPtr
CVPBPtr".cvDataSize

: = CVCB?tr;
·= Ptr (@buffer);
:= 256;

CVPBPtr".cvMapName ·= StringPtr(@mapname);

re : = PBControl (ParmBlkPtr (CVPBPtr), FALSE);

IF ((re <> noErr) AND (CVPBPtr". appcHiResult = deallocErr) AND

BEGIN

END
ELSE
BEGIN

END;

(CVPBPtr".appcLoResult normDeallocErr)) THEN

ShowStatus('MCReceiveAndWait for deallocate successful.');

IF (re <> noErr) THEN
BEGIN

END
ELSE
BEGIN

END;

NumToString(LONGINT(CVPBPtr".appcHiResult), MajorStr);
NumToString(LONGINT(CVPBPtr".appcLoResult), MinorStr);
StatusStr := Concat ('Error doing MCReceiveAndWait for

deallocate, major = ',
MajorStr, ', minor = Minors tr, ' . ');

{ got unexpected no error I
StatusStr : = ., Error doing MCRecei veAndWai t for deallocate,

got no error. ' ;

ShowError(StatusStr);
DoMCReceiveAndWait ·= FALSE;

END; DoMCReceiveAndWait

FUNCTION DoMCDeallocate(deallocType SignedByte) Boolean;
(deallocate current conversation with the specified type)
{ Returns TRUE if successful, FALSE otherwise }

BEGIN
DoMCDeallocate :=
ShowStatus('Doing

TRUE;
MCDeallocate-');

{ fill in parameter block }
CVPBPtr".appcOpCode := kMCDeallocate;
CVPBPtr". cvTPCBPtr := TPCBPtr;
CVPBPtr". cvCVCBPtr : .. CVCBPtr;
CVPBPtr".cvDeallocType := deallocType;

re := PBControl (ParmBlkPtr (CVPBPtr), FALSE);

IF (re • noErr) THEN
ShowStatus('MCDeallocate successful.')

ELSE
BEGIN

END;

NumToString(LONGINT(CVPBPtr".appcHiResult), MajorStr);
NumToString(LONGINT(CVPBPtr".appcLoResult), MinorStr);
StatusStr := Concat ('Error doing MCDeallocate, major =

MajorStr, ', minor = ', MinorStr,
ShowError(StatusStr);
DoMCDeallocate := FALSE;

END; DoMCDeallocate

8-8 Chapter 8: MacAPPC Example TP

,
i • I) i

BEGIN

(__

main program }

{ initialize everything .l
InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent, 0);
InitWindows;
TEinit;
InitDialogs(NIL);
InitCursor;

{ open drivers and allocate needed memory }
InitMacAPPC;

{ get currently chosen server from. MacAPPC Chooser device }
{ the listing for this routine is in a different Chapter
GetChosenSrvr(SrvrEntPtr);

theDialog := GetNewDialog(TPDialog, NIL, POINTER(-1));

{ set up status }
ShowStatus ('Please fill in parameters and choose a function.');
ShowWindow(WindowPtr(theDialog));

WHILE TRUE DO
BEGIN

itemHit := 0;

CASE itemHit OF
QuitButton:
BEGIN

END;

{ just exit }
DisposDialog(theDialog);
Exit (PROGRAM) ;

AllocateButton:
BEGIN

{ allocating a conv - need both LUs, mode, and both TPs}
{ also need message to send }
GetDitem (theDialog, RemoteLUText, i temType, i tern, box) ;
GetIText(item, RemoteLUName);
GetDitem(theDialog, LocalLUText, itemType, item, box);
GetIText(item, LocalLUName);
GetDitem (theDialog, ModeText, itemType, item, box);
GetIText(item, ModeName);
GetDitem (theDialog, RemoteTPText, itemType, item, box);
GetIText(item, RemoteTPName);
GetDitem (theDialog, LocalTPText, itemType, item, box);
GetIText(item, LocalTPName);
GetDitem (theDialog; MessageText, itemType, item, box);
GetIText(item, MessageStr);

{ attach to LU first }
IF (DoLUAttach (LocalLUName, LocalTPName)) THEN

BEGIN
{ allocate conversation }
IF. (DoMCAllocate (RemoteLUName, ModeName,

RemoteTPName)) THEN
BEGIN

{ send message }
result : .. DoMCSendData (MessageStr);

{ deallocate, flushing buffer }
result :• DoMCDeallocate(kFlushDealloc);

END;

{ finally, detach }
result : • DoDetach;

END; { IF DoLUAttach }
END; { AllocateButton }

Chapter 8: MacAPPC Example TP 8-9

8-10

END;
END;
WHILE

END. program)

WaitButton:
BEGIN

{ waiting to be allocated - need local LU name and }
{ local TP name }
GetDitem (theDialog, Local TPText, i temType, item, box);
GetIText (item, LocalTPName);
GetDitem (theDialog, LocalLUText, itemType, item, box);
Get!Text(item, LocalLUName);

{ wait for allocation }
IF (DoWaitAttach (LocalLUName, LocalTPName)) THEN

BEGIN
{ receive data }
IF (DoMCReceiveAndWait(MessageStr)) THEN
BEGIN

END;

{ got message, put in dialog
GetDitern(theDialog, MessageText,

itemType, item, box);
SetIText(itern, MessageStr);

deallocate conversation
result := DoMCDeallocate(kLocalDealloc);

{ detach }
result := DoDetach;

END; { IF Do Wai tAt ta ch }
END; { WaitButton }
CASE itemHit OF }

TRUE)

Chapter 8: MacAPPC Example TP

(Part Ill

MacAPPC User's Guide

This part consists of four chapters that provide step-by-step instructions on how to
serup and run a MacAPPC network. These chapters assume little or no knowledge of
MacAPPC beyond that pro\"ided in Part I, "Introduction."

Chapter 9 describes how to set up the hardware and software necessary for a MacAPPC
installation. Hardware installation sections are provided for the clienc computer, the
server computer, and the communications card. Software installation sections are
provided for the client computer and the server computer, as well as the MacAPPC
Configuration and Administration programs.

Chapter 10 describes the use of the Chooser desk accessory to select MacAPPC
servers.

Chapter 11 describes the Configuration program and how it is used to create a
configuration file that defines the components of a MacAPPC network.

Chapter 12 describes the Administration program and how it is used to monitor and
control MacAPPC servers.

/ ' ' '\

(

~·.

Chapter 9

Installation

9-1

This chapter provides instructions on how to set up the hardware and software
necessary for a MacAPPC installation.

Hardware

MacAPPC is based on a hardware platform that consists of an intelligent
communications card that hosts a particular MacAPPC server, the server computer
that contains the communications card, and client computers that are connected to
the server computer on an AppleTalk network. Since the server computer can also act
as a client computer, AppleTalk connections are not required.

Client computer
The client computer can be a Macintosh Plus, Macintosh SE, or Macintosh II. The
client computers can be connected to a server computer using any type of AppleTalk
connection.

Server computer
The server computer must be a Macintosh II. The server does not need to be dedicated
to the MacAPPC server function and can also be used as a client, if desired.

Communications card
The intelligent communications card is a NuBus™ card that contains a CPU, RAM,
and one or more serial RS-232 ports. This card can be plugged into any of the
available NuBus slots in the server computer. Refer to the Macintosh II owner's guide
for a detailed explanation of how to install NuBus cards in your Macintosh II
computer.

At the time of publication of this guide, the only commercially available card with the
required specifications is the AST-ICP card manufactured by AST Research Inc. The
AST-ICP card provides a Motorola 68000 CPU clocked at 7.3728 MHz, 512K of RAM
with no wait states, and four ports configurable for four RS-232 serial connections. For
serial communications, a four-port cable (AST part #220130-002) is provided.

Before installing an AST-ICP card in the Macintosh II, you must verify that the jumpers
are properly set for serial communications. MacAPPC requires the jumpers to be set
in the configuration described in Table 9-1. Refer to the ASI'-ICP User's Manual for
detailed instructions on how to set the jumpers.

9-2 Chapter 9: Installation

/

(

Table 9-1
AST-ICP communcotions cord jumper settings

Jumper Factory setting MocAPPC

El Left or Right No change required
E.2 Up Down

E3 Up Down
E4 On On

E5 Right Right
E6 On On
E7 Right Right
E8 On On
E9 On On
ElO Right Right
Ell Left Right
E12 Right Right
E13 Left Left
E14 Left Right
E15 Left Right

Software

MacAPPC is based on a software platform consisting of a MacAPPC server process that
operates under the Macintosh Coprocessor Platform™ (MCP™) operating system on an
intelligent communications card. The MacAPPC server is able to communicate with
remote processes via the AppleTalk Data Stream Protocol (ADSP) and the MacAPPC
drivers. Selection of a particular MacAPPC server is accomplished using the MacAPPC
Chooser device. See Chapter 10 for additional information on the MacAPPC Chooser.
The MacAPPC Administration and Configuration programs provide a means for
definition and administration of a MacAPPC server and its services.

The MacAPPC user's files are provided on the MacAPPC User disk and MacAPPC
System disk, as summarized in Tables 9-2 and 9-3, respectively. All computers should
use System version 6.0.2 and Finder version 6.1 or later versions.

Table 9-2
MacAPPC User disk

File

Mac AP PC
APP CD rivers
APPCServer
Admin
Config

Local Config
Remote Config
Admin Log

Description

MacAPPC Chooser device
MacAPPC device drivers
MacAPPC server
MacAPPC Administration program
MacAPPC Configuration program

An example of a local configuration file
An example of a remote configuration file
MacAPPC Administration program log file

Softw'are 9-3

Table 9·3
MacAPPC System disk

File

ADSP
Apple IPC
FWD

Description

AppleTalk ADSP device driver (for client computers)
MCP operating system IPC device driver (for server computers)
MCP operating system ADSP forwarder (for server computers)

ADSP is a symmetric, connection-oriented protocol that makes possible the
establishment and maintenance of full-duplex streams of data bytes between two
sockets in an AppleTalk internet. Data flow on an ADSP connection is reliable and
flow-controlled; ADSP guarantees ordering and delivery.

The MCP operating system is intended to be a base for the development of
communications services on intelligent communications cards. It provides these
services independent of the Macintosh computer hosting one or more of these cards.
The Apple IPC (Inter-process Communications) component provides inter-process
communication services between tasks running under the MCP operating system and
programs running on the host Macintosh. The FWD (Forwarder) component provides
a diem-server interface between services running under the MCP operating system
and clients connected to the server computer via AppleTalk ADSP connections.

Client computer
The following files must be copied to the System Folder of the client computer:

o ADSP

o APPCDrivers

o MacAPPC

Insert the distribution disks, drag these icons to the System Folder, and restart the
client computer. See the sections that follow on the Configuration and Administration
programs.

Server computer
The following files must be transferred to the System Folder of the server computer:

o Apple IPC

o FWD

o APPCServer

o ADSP

o APPCDrivers

o MacAPPC

Insert the distribution disks, drag these icons to the System Folder, and restart the
server computer. See the sections that follow on the Configuration and Administration
programs.

9-4 Chapter 9: Installation

(

(

Configuration program
The MacAPPC Configuration program (Config) may be used on any Macintosh
computer. This program does not require the services of Mac.'\PPC for the creation of
configuration files. Make a copy of the Configuration program before you use it.
Double-click the Config icon to start the application. See Chapter 11 for additional
information.

Administration program
The MacAPPC Administration program (Admin) must be used on the server computer
and may be used on any client computer. Make a copy of the Administration program
before you use it. Double-click the Admin icon to start the application. The MacAPPC
Administration program must be executed from the server computer when starting or
stopping a MacAPPC server, but it can be executed from any client for display and
control of a MacAPPC server. See Chapter 12 for additional information.

Soft\Nore 9-5

(. Chapter 10

Selecting a MacAPPC Server

(

10-1

This chapter explains how to select a MacAPPC server from the list of available servers
on your AppleTalk network.

Selection of a MacAPPC server is made using the Chooser desk accessory under the
Apple menu. MacAPPC extends the use of the Chooser to allow selection of a
particular MacAPPC server from the list of registered servers on your AppleTalk
network. The server may be either in the Macintosh that you are using (intranode) or
in a Macintosh you are connected to via the AppleTalk network (inrernode).

To select a MacAPPC server, choose Chooser from the Apple menu. A chooser
window similar to Figure 10-1 appears.

~o

AppleTeH: Zone·:.
Zone A
Zone B

Zone Ci
Zone E

Figure 10-1
The Chooser

Chooser ----------

AppleTalk
()Inactive 7 -')

·-'-""-

The contents of the Chooser window varies, depending on the type of Chooser files
you have installed in your System Folder. This example shows icons that allow
selection of a number of printer devices and MacAPPC servers. If your network is
divided into AppleTalk zones, the names of the zones appear in a separate list. If your
AppleTalk network is not divided into zones, this list does not appear and the list of
icons extends to the bottom of the Chooser window. MacAPPC requires that
AppleTalk be active.

10-2 Chapter 10: Selecting a MacAPPC Server

(

(

To display the list of MacAPPC servers on your AppleTalk network, select the
MacAPPC icon and AppleTalk zone, if appropriate. A list of available servers appears
under the heading "Select a MacAPPC server:" (see Figure 10-2). Select the server you
want to use. This selection will remain in effect until you select another server.

~~
lrri~91?'w·r;to:-r La.n·r'w'n~@'r ;'.E::

1~••.l!I
''loii -ApplE'Talk Zones

Zone A
Zoroo? E;

Zone [•
Zone E

Figure 10-2

(hooser

5E'1 ec t a t1acAPPC server

System 36 Finance

User Name

AppleTalk
@Active
O Inactive

Selecting a MacAPPC server

3 ".•

For additional information on the Chooser and AppleTalk, see your Macintosh
owner's guide.

Selecting a MacAPPC Server 10-3

(Chapter 11

The MacAPPC
Configuration Program

11-1

This chapter describes the Configuration program and how it is used to create a configuration
file that defines the components of a MacAPPC network.

You must use the Configuration program before the Administration program to create a
configuration file describing your MacAPPC network components. The Configuration program
provides a clear and organized Macintosh user interface to assist in the network configuration
and modification process.

The Configuration program allows you to create components with a predefined set of default
values that reduces the number of options you must select for each component. Before creating
components, you can edit these default values to minimize the number of individual changes
you need to make later. Once components are created, you can edit them to complete the
specification of their functional relationships, roles, and requirements in the network.

After the configuration file is created, you can use the Administration program to start a server
and use the file to create an actual network configuration.

Network components are the elements that make up an SNA node. The Configuration program
consists of facilities that permit you to define, delete, edit, and print out information on the
following seven components:

o Node: This is the local node. There is one per file, that is, one per configuration.

o Local LU: This component holds information on a local LU, including the name by
which it is known to other LUs and TPs across the network, and any conversation­
level security (user IDs, passwords, and profiles) it may support.

o Transaction program: This component holds information on a transaction
program (TP), including the local LU with which it is associated and any
conversation-level security (user IDs, profiles, or both) it may support.

o Line: This component describes a physical link to other nodes.

o Partner: This component describes a partner node. Partner is a MacAPPC term
that consists of both a station and a control point. It is used by the Configuration
program to simplify configuration design and implementation.

o Remote LU: This component describes a remote, or partner, LU, whether it is in the
same server or at a partner node. It is associated with a specific local LU and
partner.

o Mode: This component describes a mode between a specific local LU-remote LU
pair.

Many of these components are interdependent. For example, you must create a local LU before
you can create a TP, because every TP must be associated with a specific local LU.

Each of these components is made up of settings that you must define in order to configure your
system. There is one network configuration per file. To define a configuration, therefore, you
must create a new configuration file or open an existing configuration file.

The following sections detail each component window and explain the settings that you must
define. You first create network components, and then edit their respective settings to complete
the network configuration.

To help you during the configuration process, Appendix K provides remote and local
configuration worksheets.

11-2 Chapter 11: The MacAPPC Configuration Program

(
The Configuration program menu bar
The Configuration program has three menus in addition to the Apple menu: File,
Edit, and Create. With the File menu, illustrated in Figure 11-1, you can create a new
configuration file, open a previously created file, get information about a component,
dose the file, save the file, save the file under a different name, use the components
and configurations that were created and edited in the last saved file, format a page to
be printed, print the configuration file, or quit the configuration program.

The Edit menu, illustrated in Figure 11-2, has the standard Macintosh user interface
commands for editing, plus a command for editing default settings. When you choose
Edit Defaults, a submenu appears from which you can choose Node, Local LU, TP,
Line, Partner, Remote LU, or Mode for default settings editing. When you choose a
command from the submenu, the appropriate dialog box with the current defaults
appears. You may change any or all of the component default settings. See the section
on editing defaults, later in this chapter, for more details.

New... 8€N
Open... 8€0
Get Info 8€1

Close 8€W
Saue 8€S
Saue as •••
Reuert to Saued

Page Setup •••
Print •••

Quit. 8€Q

Figure 11·1
The File menu

)

Undo

Cut 8€H
Copy 8€C
Paste 8€U
Clear 8€8

Edit Defaults .,

Figure 11-2
The Edit menu

Node •••
Local LU •••
TP •••
Line •••
Partner ••.
Remote LU •••
Mode •••

The Configuration program menu bar 11-3

The Create menu, illustrated in Figure 11-3, is used to create nerw-ork components and
security options. Note that there is no command to create a local node. Since each file
corresponds to a single configuration, creating a file implies creating a node.

The Configuration program allows you to choose only the menu items that are
appropriate to the current stage of netw"ork configuration. Menu items that are
dimmed cannot yet be used to create a component-you must first create or select the
component on which it is dependent.

Local LU 3€L
TP 3€1
Line
Partner
Remote LU ~R

Mode 3€M

User 3€U
Profile 3€P

Figure 11·3
The Create menu

Conventions used in the Configuration program
This section describes some conventions used in the Configuration program that you
should know about before proceeding.

Screen and key conventions
Radio buttons are small circles that appear next to options in the windows and dialog
boxes. To select an option, click the radio button next to the text or the text itself of
the option you want. Only one radio button at a time can be selected for a group of
options.

Check boxes are small boxes that appear next to options in windows and dialog boxes.
To select an option, click the check box or the text of the option you want. A cross
mark appears on the check box to indicate that it has been selected. More than one
check box at a time can be selected for a group of options. To tum off a check box,
click the check box. The cross mark will disappear.

The Tab key advances the insertion point to the next option.

The Return or Enter keys may be used as alternatives to clicking OK.

11-4 Chapter 11: The MacAPPC Configuration Program

Character type conventions
Symbol-strings are used to name component settings. Type A is a symbol-string type
consisting of one or more uppercase letters A through Z; numerics 0 through 9; and
special characters $, #, and @; the first character of which is an uppercase letter or a
special character. The following names all use type A characters: local LU name, line
name, partner name, remote LU name, mode name, CNOS adjacent link station
(ALS) name, local LU network name, remote LU network qualifier, local LU network
qualifier, and remote LU network name.

Type AE is a symbol-string type consisting of one or more lowercase letters a through
z; uppercase letters A through Z; numerics 0 through 9; special characters$,#,@, and
the period (.); with no restrictions on the first character. The following names all use
type AE characters: user ID, password, remote LU password, profile, and transaction
program name.

Type hexadecimal (hex) is a character type consisting of numbers in the base-16
system, using the ten digits 0 through 9 and the six letters A through F. The following
fields all use hex characters: node exchange ID, remote LU password, transaction
program network name, ALS address, and partner CPU ID or exchange ID.

Creating a configuration file
To create a new configuration file, choose New from the File menu. A dialog box similar
to the one in Figure 11-4 appears. Notice that a list of names of previously created
configuration files stored on the active disk appears, but the names are dimmed. You
cannot select any of the files in this list; they are displayed to remind you of the names
that you have already used. (If you had chosen Open from the File menu instead of New,
you would select one of the configuration files displayed in the list.)

I fa) Config Disk I
(;~ conn;;
D conn~:ifl
Ci ((~Hf~9H

C1 Uic<!!Conn'.:)

Create configuration:

jNewConfig

Figure 11-4

;Q. fa) Config Disk

Eject]

Dri1.1e

New

Cancel

Creating a new configuration file

You must enter a new configuration file name before proceeding. Configuration file
names have up to 64 characters. The dialog box shows a new configuration file named
NewConfig. Click New to begin the creation of a new MacAPPC configuration file. The
configuration file window in Figure 11-5 appears.

Creating a configuration file 11-5

Figure 11-5 shows a new configuration file window named NewConfig. Notice that
there are lists for six of the seven network components: local LUs, transaction
programs, lines, partners, remote LUs, and modes. Each configuration can have only
one local node; the node information is shown in the file window. You create an
instance of each component by using the Create menu; once a component has been
created, its name appears in the appropriate list.

The configuration file window is divided into two sections, Local Node and Partner Node.

--==-----~ Ne111C on fig

Loc.;.1 Nod.:0

£xcll.1n9• ID: Local LUs

liiiii!iil!H

Acc•ss Typ•:

@SDLC

Monitor T im•r :

l:;;o n1 .__ -----'-"--'~
P arlnor Nod• ·

lin.s Partn•rs R•mote LUs Hod•s

DODD
Figure 11-5
The configuration file window

Local node section
This section contains local node information and lists for local LUs and transaction
programs.

Exchange ID

Exchange ID contains the identifier of the local node if the node is a peer. The ID of
the remote node is stored in the partner. It is used in XID exchange at link
establishment. Exchange IDs have exactly eight hex (0-F) characters representing a 4-
byte binary number. In IBM implementations, the first three characters are set based
on the produce type (03A for the Displaywriter, 03E for the System/36, and so forth).

Access Type

Access Type specifies the type of line being defined. Synchronous Data Link Control
(SDLC) is the only access type currently available.

Monitor Timer

Monitor Timer specifies the wake-up interval for the program monitor in seconds. The
wake-up interval is the time the server waits for a reply from an attached TP. If the
interval is exceeded, the server disconnects. The valid range is 1 to 60. The default
setting is 30.

11-6 Chapter 11: The MacAPPC Configuration Program

, I

(

Partner node section
This section contains lists for lines, partners, remote LUs, and modes. The reserved line
named LOC41 and its associated partner named LOCAL (not shown) are a part of every
configuration file. I\ote that these are not actual lines or partners, but are metaphors for
creating remote LUs and modes that exist within the local node. In other words, there is
no physical link to another node; the nenvork is entirely within the MacAPPC server.

Creating network components
Figure 11-6 shows you a schematic outline of the network components of a configuration, to
help you visualize the resources that need to be created and their relationship to each other.

Transaction
program A

1:1
L.J

Local
node

Figure 11·6

Line
(local or remote)

Configuration network components

Transaction
program B

1::1
L.J

Partner
(station

and control
point)

As you progress through this section, this diagram is repeated to show the components
that have been created and the relationships that are established.

Creating network components 11-7

To create a network component, pull down the Create menu and choose the
component you wish to create. The program displays a dialog box that prompts for
the name of the component, along with the settings that describe it. Other settings are
filled in from default values. As you create and edit components, their names appear
in the lists in the file window. You must enter legal values in each field before the
component can be created.

The Configuration program's error checking routine assists in finding logic and
formatting errors before you enter the incorrect information. Prompts indicate
problems you must correct before you can proceed. This error-checking feature is
provided throughout the Configuration program.

Creating local LUs
Local LUs can be created at any time. One or more local LUs in the local node must be
created before TPs, remote LUs, or modes can be created. To create a local LU,
choose Local LU from the Create menu. The dialog box in Figure 11-7 appears.

Enter information for neu• Loc:al LU:

Name: I LU ti
LU ID: I 1

MaH Sen: I 1

MaH TPs: Js

~- OK J)

Figure 11·7
Creating a local LU

cancel I

Name (Local LU name)

The local LU name is used to associate mode, remote LU, and transaction program
definitions with the local LU. Local LU names have up to eight symbol-string type A
characters. This example uses LU1 for the local LU name.

LU ID

LU ID is the numeric identifier for the local LU. Each local LU must have a unique LU
ID. The value corresponds to the destination address field (DAF). The valid range is 1
to 254. The default setting is 1. ·

Max Sess (Maximum number of sessions)

Max Sess specifies the maximum number of sessions that can be active at the local LU
at one time. Session limits are currently maintained only at a mode leveL The valid
range is 0 to 254. Entering 0 indicates that this setting should be ignored. The default
setting is 1.

11-8 Chapter 11: The MacAPPC Configuration Program

(

Max TPs (Maximum number of TPs)

Max TPs specifies the maximum number of transaction programs that can be attached
to the local LU at one time. The valid range is 1 to 255. The default setting is 5.

Click OK to create a new local LU. The new LU named LUl is added to the
configuration file window. You may now create user IDs for the local LU.

User ID and password

To create a new user ID and password for a local LU, double-dick to select a local LU
from the configuration file window (see Figure 11-5). Alternatively, you may select the
local LU and choose Get Info from the File menu. The window in Figure 11-8 appears.

LU ID:

N•t Nam•:

N•t Ou•I:

Hax S•ssions : 1 .__ ____ ___.

LU S.curit'!I : (iY+s

Us..- IDs ProfilH

DD
Figure 11-8
The local LU window

Choose User from the Create meriu. Note that all of the commands except User are
dimmed. A profile cannot be created until both a user ID and a password are
specified. The dialog box in Figure 11-9 appears. This example shows that a User ID
namedje.ffwith passwordje.ffPWis being created for local LU LUJ.

Enter user ID and password for local
LU "LUl ":

User ID: I Jeff
:=:======::::::

Password: IJeffPW
~-----------'

K OK)J Cancel

Figure 11-9
Creating a new user ID and password for a local LU

User ID: A network security setting. A user ID has up to ten symbol-string type AE
characters.

Password: A network security setting. A password has up to ten symbol-string type AE
characters.

Creating network components 11-9

After creating a new user ID and password, the user ID appears in the local LU User IDs
list. When you select a user ID on the list, the corresponding password is displayed at
the bottom of the window, as shown in Figure 11-10. You may now create one or more
profiles for the local LU user.

~o Loe al LU: LU 1

I Loc<al LU: • I LU ID: 1

N•t N•m•:

N.t Oual:

H.ax S•ssions : 1

LU S.curit\I : •:::iv.:::: ~>Nc1

Y<>it Tim•:
1:0 I M•x TPs:

Us•r IDs Profil•s

D . D
P.assvord: ._li:iffF'"d

Figure 11 • 10
Local LU window with new user IDs and password

Profiles

To create a security profile, select a user ID from the list of user IDs in the local LU
window (see Figure 11-10). Then, choose Profile from the Create menu. The dialog
box in Figure 11-11 appears. The example shows that a profile named]ej]Profl has
been created for local LU LUJ and User ID Jeff.

Enter profile for local LU "LUI" and
user ID "Jeff":

Pro file: 1.-I J_e_ff_P_ro_f_I _____ _,

((OK)J I Cancel

Figure 11 • 11
Creating a new profile

A profile is a security option for a loca~ LU and a specific user ID. Each user ID may
have multiple profiles. A profile has up to ten symbol-string type AE characters.

The new profile is displayed in the Profiles list of the local LU window when the user ID
is selected, as shown in Figure 11-12.

11-10 Chapter 11 : The MacAPPC Configuration Program

(

Local LU:

LU ID:

N•t N;om•:

N•t Qual:

Max Sessions : 1 .____ _____ _,

LU Se-curit'J : C> Yo:.: (!:1 r·fo

I ._.ait Time-: \ t.0
~======i

I M;ox TPs:

Unr IDs

5

Profiles

DD
P ~ssword: .J.;.fff· 'w'

Figure 11-12
Local LU user IDs. profiles. and password

You have now specified the component settings for Local LU, tu ID, Max Sessions,
Max TPs, Pser IDs, Password, and Profiles for your new local LU named LUI. Net
Name, Net Qua!, LP Security, and Wait Time are set to default values and may be
changed by editing, as described in the later section on editing a local LU. Close the
LU option window and return to the configuration file window. Figure 11-13 shows the
local LU in its relationship to the other components.

Transaction
program A

~
L.J

Local
node

Line
(local or remote)

Transaction
program B

Remote
LU

Partner
(station

and control
point)

Figure 11-13
The local LU in relation to other components

Creating network components 11-11

Creating transaction programs
One or more local LUs must be created before transaction programs (TPs) can be
created. To create a transaction program for a local LU, select the appropriate local
LU from the configuration file window Local LUs list (see Figure 11-5) and choose TP
from the Create menu. The dialog box in Figure 11-14 appears. This example shows
that a new TP named TPJ is being created for the selected local LU LUl.

Enter information for new TP for local LU
"LUI":

Name: l._T_P_l _________ _,

Conu Type: O Basit O Mapped ~;. Either

Sync Leuel: 0 None [2] Confirm

n 01< , Cancel

Figure 11-14
Creating a transaction program for a local LU

Name (Transaction program name)

The TP name must be unique for this local LU. TP names have up to 64 symbol-string
type AE characters. The names CNOS and ADMIN are reserved by MacAPPC.

Conv Type (Conversation type)

Conv Type specifies the conversation type allowed on an allocation request to start a
program:

Basic: The TP may be allocated only with a basic conversation.

Mapped: The TP may be allocated only with a mapped conversation.

Either: The TP may be allocated with either a basic or a mapped conversation. The
default setting is Either.

Sync Level (Synchronization level)

None: A synchronization level of none can be used for this TP.

Confirm: A synchronization level of confirm can be used for this TP.

Th~ default settings are both None and Confirm.

11-12 Chapter 11: The MocAPPC Configuration Program

('

Security Required

To select the security level for a TP, double-dick the TP name in the Transaction
Programs list of the configuration file window (see Figure 11-5). Alternatively, you may
select a TP and choose Get Info from the File menu. The TP window in Figure 11-15
appears.

TP:TP1

Loul LU: LU1

N•t N•m•:

St•t•s: @Er.able QTemp QPerm

Coe• Tiy,.: Oeasie QMap @Eith<>r

Siync L•Y• 1 : 121 Nono 121 Confirm

PIP: Qv.. @No

PIP Count: 0

PIP Ch.ck: QYu @r.o

D•t• Happing: QYes @No

FHH D41ta: QYe; @No

PriYil•9• : ISi rioM 0 CNOS 0 Session

0 C-efino 0 C•isp 0 Servie•

LUY: OY•s @No

Figure 11-15
The TP window

S•cur;tiy R•quir•d :

@None Q Conv Q User

Q Prof Q Us•r /Prof

Usw ID

D
Profil•

D
Table 11-1 summarizes the security options available for a transaction program. Note
that if None or Conv is selected for security required, user IDs and profiles cannot be
created. If User is selected, only user IDs can be created. If Prof is selected, only
profiles can be created. If User/Prof is selected, both user IDs and profiles can be
created.

Table 11-1
Security options

Security User ID Profile
setting allowed allowed

None No No
Conv• No No
Usert Yes No
Pro ft No Yes
User/Proft Yes Yes

•Security checked at the LU level only.
tsecurity checked at the LU and TP levels.

To establish the security requirements for this TP, you select the security level to be
implemented, a list of authorized user IDs, and a list of profiles from those created for
the local LU. The following security options are available:

None: No security checking is performed for this TP. Note that if LU security is set to
Yes for the local LU, security is checked at the local LU level, even if Security Required
is None. The default setting is set to None.

Creating network components 11-13

Conv (Conversation): Conversation-level security is required for this TP. If security
parameters are specified on a conversation allocation, they will be checked at the LU
level only.

Prof (Profile): Resource-access-level security is required for this TP. The profile must
match a profile defined on the resource-access authorization list.

User: Resource-access-level security is required for this TP. The user must match a user
ID defined on the resource-access authorization list.

User/Prof (User ID and profile): Resource-access level security is required for this TP.
The user ID and profile must match both a user ID and a profile on the resource-access
authorization list.

User ID

User ID is a network security setting. A user ID is required only when specified on the
resource-access authorization list. User IDs have up to ten symbol-string type AE
characters. If you have selected a security level of None, Conv, or Prof, you cannot
select User from the Create menu. If the selected security level is User or User/Prof,
choose User from the Create menu. The dialog box in Figure 11-16 appears.

The dialog box displays the list of user IDs that were created for the local LU, but have
not previously been chosen to be on the transaction program User ID list. Select a user
ID for the TP. This example shows that the user ID named]Effhas been selected for TP
TPJ. If no user IDs appear on the list or if the desired ID does not appear on the list,
you must first create the user ID required for the local LU. See the earlier section on
creating a local LU.

Choose a user ID for TP
"TP1 ":

Oaue
Dick

K OK '

Figure 11-16

Cancel ·1

Creating o user ID for a TP

Profile

Profile is a network security setting. A profile is required only when specified on the
resource-access authorization list. Profiles have up to ten symbol-string type AE
characters. A profile for a user can be selected only if a profile was created for the local
LU and the transaction program Security Required setting is either Prof or User/Prof. If
the Security Required setting is None, Conv, or User, you cannot choose Profile from
the Create menu.

11-14 Chapter 11 : The MacAPPC Configuration Program

l
'

(

To choose a profile for a TP if the Security Required setting is Prof, first return to the TP
window (see Figure 11-15) and choose Profile from the Create menu. A dialog box
appears with a list of profiles that have been created for every user at the associated
local LU, but have not previously been chosen to be on the transaction program
Profile list for that user ID. If no profiles appear on the list or if the desired profile does
not appear on the list, you must first create the profile required for the associated local
LU and user ID. Then choose a profile from the list and click OK to add the profile to
the Profile list in the TP window.

To choose a profile for a TP if the security required is User/Prof, first return to the TP
window (see Figure 11-15) and select the associated user ID from the list displayed.
Then, choose Profile from the Create menu. The dialog box in Figure 11-17 appears.
The list contains the profiles that have been created for the related local LU for the user
ID selected, but have not previously been chosen to be in the transaction program
Profile list for that user ID. This example shows that the local LU profile named
je.f!Profl is available for selection as a profile for TP TPJ and user ID Jeff If no
profiles appear on the list or if the desired profile does not appear on the list, you must
first create the profile required for the associated local LU and user ID. Choose a
profile from the list and dick OK to add the profile to the Profile list in the TP window.

rr=;'hoose a profile for T~"TP I" and
JI user ID "Jeff":
I i Jeff Prof I ~ .

I

Cancel

Figure 11-17
Selecting a profile for a TP

Figure 11-18 shows the TP settings window for the example TP. Note that User/Prof has
been selected for security required and that a profile is displayed for the selec'ted user ID.

TP:TPl

TP Name:

Local LU: LUI

Nf't N~me:

Si~tus: i:!) Eri~blo:- () Ti:omp () P<?rrn

Cony Ttjpe: ()E:4sk ()M~~· 1~:1 El1:t"1o?r

Sync leoveol: (S]t-fono.:- l:']ci:infirm

PIP: () \'e:; (!) r·fo

PIP Count: 0
'--~~~~~~--'

PIP Check: ()Y"s i'.~:•N•)

Data Happin9: ()Yeo-: @:i NI)

FHH Data: () '1'E-.: C!~1 Ni:•

Privilet•: f21 Nor1eo 0 CNOS 0 ·;o:-::.sl.:1r1

0 [••tm• 0 C•1'p 0 S•r'.'1•:••

LUY: ()Yes l!:1 1fo

Figure 11 - 18

() f·for1oE- () Cr:•nv _() Us.:-r

() F't"•)f i:!_:. Use-r /Pro:•f

Us"r ID

D .
Profile

/~'~"' ~

TP window with User ID and Profile lists

Creating network components 11-15

You have now created a new transaction program and specified TP Name, Conv Type,
Sync Level, Security Required, User ID, and Profile settings. Status, PIP, PIP Count,
PIP Check, Data Mapping, FMH Data, Privilege, and LUW are set to default values and
may be changed by editing, as described in the later section on editing a TP. Close the
TP option window and return to the configuration file window.

Figure 11-19 shows the transaction program in its relationship to the other
components.

Transaction
program A

1::1
L..:J

Local
node

Figure 11-19

Line
(local or remote)

Transaction
program B

~
L..:J

Partner
(station

and control
point)

The transaction program in relation to other components

Creating lines
Lines can be created at any time. For a local configuration, you may use the line
named LOCAL, which is reserved by MacAPPC. For other configurations, you must
create one or more lines before you can create partners, remote LUs, or modes. To
create a line, choose Line from the Create menu. The dialog box in Figure 11-20
appears. This example shows that a new line named IJNElis being created.

11-16 Chapter 11: The MocAPPC Configuration Program

Enter information for new line:

Name: ILINEI

E. OK :~

Figure 11-20
Creating a line

Name (Line name)

f Cancel

Line names have up to eight symbol-string type A characters. The name LOCAL is
reserved by MacAPPC. You have now created a line and specified its name.
Additional default settings have been assigned to this line that may be changed by
editing, as described in the later section on editing a line.

Once you have created a line, you may then create a partner. If the line is multipoint
or switched, you may create multiple partners. Figure 11-21 shows the line in its
relationship to the other components.

Transaction
program A

M
L.J

Local
node

Figure 11-21

Line
(local or remote)

The line in relation to other components

Transaction
program B

~
L.J

Partner
(station

and control
point)

Creating network components 11-17

Creating partners
After you have created one or more lines, you can create partners. A partner consists
of both a station and control point. To create a partner, select the appropriate line
from the Lines list in the configuration file window. Choose Partner from the Create
menu. The dialog box in Figure 11-22 appears. This example shows that a new partner
named PART1 is being created for the selected line named LINE1.

Enter information for new partner for
line "LINE1 ":

Name: ~' P_R_Rr_1_j ______ __.

@ EHth IO:I FFFOOOOO
Q CPU ID: ~. -----------'

ALS Address: ~' c_1 _____ ___,

f OK] Cancel

Figure 11-22
Creating a partner node

Name (Partner name)
The partner name is the name by which the local LU can recognize the partner node
being defined. Partner names have up to eight symbol-string type A characters. The
name LOCAL is reserved by MacAPPC.

ExchlD(ExchangelD)orCPUID
You may specify either an exchange ID or a CPU ID; you may not specify both. The
default setting is Exch ID.

ExchlD(ExehangelD)
Exch ID is used in XID exchange at link establishment. Exchange IDs have exactly
eight hex (0-F) characters representing a 4-byte binary number. They must contain
the ID of the remote node if the node is a peer. In IBM implementations, the first three
characters are set based on the product type (03A for the Displaywriter, 03E for the
System/36, and so forth). The next five characters are user configurable to give unique
exchange IDs throughout the network. The default setting is FFFOOOOO.

If the partner is an IBM product, check the relevant IBM manuals for restrictions on
the exchange ID value (the value that is received in bytes 2-5 of the XID). If the remote
node is a peer, this field is supplied.

CPUID
CPU IDs have exactly twelve hex (0-F) characters. The first two characters (representing
the first byte of the CPU ID) are the physical unit (PU) type (usually 05 for PU type 5).
The remaining ten characters (representing the final 5 bytes) are an implementation­
dependent binary identifier.

11-18 Chapter 11: The MocAPPC Configuration Program

·(

On a vr AM host, the ; bytes are set to the subarca indentifier of the host; specified by
the SSCPID keyword in the VfAM ATCSTR definition. This value must match the value
sent by the SSCP (system services control point) in bytes 3-8 of the Activate Physical
Unit (ACTPlJ) request. If the remote PU is a host, this field is supplied.

ALS Address (Adjacent-link-station address)

ALS Address specifies the adjacent-link-station address. Adjacent-link-station addresses
have exactly two hex (0-F) characters. The default setting is Cl. The values 00 and FF are ·
invalid. For multipoint lines, each partner must have a unique ALS address.

You have now created a partner and specified its Name, Exch ID or CPU ID, and ALS
Address settings. Additional default settings have been assigned to this partner that
may be changed by editing, as described in the later section on editing a partner.
Figure 11-23 shows the partner in its relationship to the other components.

Transaction
program A

~
L.:J

Figure 11-23

Local
node

Une
(local or remote>

The partner in relation to other components

Transaction
program B

~
L.:J

Partner
(station

and control
point)

Creating network components 11-19

Creating remote LUs
You must create one or more local LUs, lines, and partners before you can create a
remote LU. To create a remote LU, select the appropriate local LU, line, and partner
from the lists displayed in the configuration file window. A box is drawn around each
component selected. Choose Remote LU from the Create menu. The dialog box in
Figure 11-24 appears. This example shows that a remote LU named RLUJ is being
created for the local LU LUJ and partner PART1.

Enter remote LU for local LU "LU1"
and partner "PART1 ":

Name: ~IR_L_u1~~~~~~----'
Parallel Sessions: @ Yes O No

I OK ll Cancel

Figure 11-24
Creating a remote LU

Name (Remote LU name)

The remote LU name is the name by which the local LU can recognize the remote LU.
Remote LU names have up to eight symbol-string type A characters.

Parallel Sessions

Parallel Sessions specifies whether or not two LUs may connect to each other by means
of multiple LU-LU sessions over a single mode. Yes indicates that parallel sessions are
supported; No indicates that only single sessions are supported. The default setting is
Yes.

You have now created a remote LU and specified its Name and Parallel Sessions
settings. Additional default settings have been assigned to this remote LU that may be
changed by editing, as described in the later section on editing a remote LU.

11-20 Chapter 11: The MacAPPC Conflgurr.ition Program

(

Figure 11-25 shows the remote LU in its relationship to the other components.

Transaction
program A

1::1
L.:J

Figure 11-25

Local
node

Phyllcal
cor .. "18Cllcn

.: .. ·- .•.. :·.::·
}localor~.:z:

The remote LU in relation to other components

Transaction
program B

~
L.:J

Partner
(station

and control
point)

Creating network components 11-21

Creating modes
To create a mode, select the appropriate local LU, line, partner, and remote LU from
the lists displayed in the configuration file window. A box is drawn around each
component selected. Choose Mode from the Create menu. The dialog box in Figure
11-26 appears. This example shows that a new mode named MODEl is being created
for the local LU LUl and the remote LU RLUl.

Name:

•:!:·Confirm

MaH Sessions: j 1
:====::::

Min I st Spkrs: j 1
;::==~

PB Session~: j~t--~

n OK)J

Figure 11-26
Creating a mode

Name (Mode name)

Cancel I

The mode name specifies the name of the group of sessions that will have the
characteristics defined by the mode's options. Mode names have up to eight symbol­
string type A characters. The name SNASVGHG is a reserved mode name and may not
be used.

Sync Level (Synchronization level)

Sync Level specifies the synchronization levels that conversations using sessions over
this mode may use. Confirm is the only synchronization level currently supported.
The default setting is Confirm.

Max Sessions (Maximum number of sessions)

Max Sessions specifies the maximum number of sessions that can be active at a given
time for this mode. The valid range is 1 to 254. If a setting greater than 1 is specified,
parallel sessions must be supported by the remote LU.The default setting is 1.

Min 1st Spkrs (Minimum number of first speakers)

Min 1st Spkrs specifies the minimum number of first-speaker sessions for this mode.
The valid range is 1 to the value specified for Max Sessions. The default setting is 1.

11-22 Chapter 11: The MacAPPC Configuration Program

(

PB Sessions (Number of prebound sessions)

PB Sessions specifies the number of first-speaker sessions that are automatically
activated (prebound) when session limits are initialized. This setting corresponds to
the Conremion Winner Auto-Activation Limit. The valid range is 1 to the value
specified for Min 1st Spkrs. The default setting is 1.

You have now created a mode and specified its Name, Sync Level, Max Sessions, Min
1st Spkrs, and PB Sessions settings. Additional default settings have been assigned to
this mode that may be changed by editing, as described in the later section on editing
a mode.

Figure 11-27 shows a mode in its relationship to the other components.

Transaction
program A

Figure 11-27

Local
LU

Local
node

Physical
connection

Line
(local or remote>

The mode in relation to other components

Transaction
programB

Remote
LU

Partner
(station

and control
point)

Creating a configuration file 11-23

The network node components have now been created and their relationships to each
other are established. The configuration file window for our example node is shown in
Figure 11-28. The component settings must now be edited to complete a detailed
description of each component, as required for a full characterization of the node·s
operational characteristics.

iiD

' Exchn9• IO :

jliiH!iiiJll

Acc•ss T9p•:

@:iSDLC

Henitor Tim•r:
13(1

Figure 11-28

Ne111Confi

The configuration file window for the example network node

Editing network components
The previous section showed you how to create network components; for most
components, you simply assign a name, and specify settings for that resource. For
some settings, default settings were automatically set by the Configuration program for
each component. Once network components have been created, you can edit the full
range of settings that define each one. Often you may want to use the same setting for a
component option across multiple instances of network components. If this is the
case, it is easier to edit the default settings before creating them instead of editing each
component individually later. There is a section on editing defaults later in this
chapter.

Editing a local LU
To edit a local LU, first return to the configuration file window (see Figure 11-28) and
double-click the local LU to be edited from the Local LUs list. The window in Figure
11-29 appears. This example shows a local LU named LUJ that has been selected for
editing.

Use this window to edit the settings of the selected local LU that were specified when the
local LU was created.

11-24 Chapter 11: The MacAPPC Configuration Program

(

§0 Local LU: LUI

Us.r IDs Profiles

DD
Pusword: .;.ffP'vf

Figure 11-29
Editing a local LU

Local LU

Local LU is the name used to associate mode, remote LU, and transaction program
definitions with a particular local LU. Local LU names have up to eight symbol-string
type A characters.

LUID

LU ID is the local LU ID number. The LU ID setting corresponds to the destination
address field (OAF). Each local LU must have a unique LU ID. The valid range is 1 to
254. The default setting is 1.

Net Name (local LU network name)

Net Name is the name by which the local LU is known throughout the network. l.ocal LU
network names have up to eight symbol-string type A characters. If not specified (left
blank), the local LU name is used as the default value for the network name.

Net Qual (local LU network qualifier name)

Net Qual is an optional field name that may be defined for cross-network
communications to give uniqueness to the local LU network name. Network qualifiers
have up to eight symbol-string type A characters.

Max Sessions (Maximum number of sessions)

Max Sess is the maximum number of sessions that can be active at the local LU at one
time. Session limits are currently maintained only at a mode level. The valid range is 0
to 254. Specifying 0 indicates that this setting should be ignored. The default setting is 1.

Editing network components 11-25

LU Security

LU Security indicates whether or not conversation-level security is enabled. If it is, the
user ID and the password are checked at the conversation level, regardless of the TP­
defined security. Yes specifies that conversation-level security is enabled for the local
LU; No specifies that it is not. The default setting is No.

Wait Time

Wait Time specifies the amount of time in seconds the LU waits for routine
completion. The valid range is 1 to 3600. The default setting is 60.

Max TPs (Maximum number of transaction programs)

Max TPs specifies the maximum number of local transaction programs that can be
attached to the local LU at one time. The valid range is 1 to 255. The default setting is 5.

User IDs

User IDs lists the user IDs that have been created for the local LU. User IDs have up to
ten symbol-string type AE characters. To edit a user ID, double-click it. The dialog
box in Figure 11-30 appears.

Enter user ID and password for lotal
LU "LUt ":

User ID:
I
1Jeff.

Password: .._!J_e_ff_P_ll• _____ ____.

n OK]J

Figure 11-30
Editing a user ID

Profiles

Cancel

Profiles lists the profiles that have been created for the local LU. Profiles have up to ten
symbol-string type AE characters. To edit a profile, select its associated user ID, then
double-click the profile name to be edited. The dialog box in Figure 11-31 appears.

Enter profile for lotal LU "LUt" and
user ID "Jeff":

Profile: ._I J_e_ff_P_ro_f_t ____ ____,

([OK D

Figure 11-31
Editing a profile

Cancel

11-26 Chapter 11: The MacAPPC Configuration Program

:"·· -\,
'-....~._,..,/

/

"" /.I

(,

Password

Password shows the password for a selected user ID. Passwords have up to ten symbol­
string type AE characters. To display a user ID's password, click the user ID from the
User IDs list in the local LU window. To edit a password, double-dick the user ID from
the User IDs list. The dialog box in Figure 11-30 appears.

Editing a transaction program
To edit a transaction program, first return to the configuration file window (see Figure
11-28) and dick the local LU associated with the transaction program. Then, double­
click the name of the transaction program to be edited from the transaction program
list. The window in Figure 11-32 appears. This example shows a TP named 1Pl that has
been selected for editing.

Use this 'Window to edit the settings that were specified when the TP was created.

TP Name:

Local LU: LU1

Net Name:

Status: @'.•Enabl• ()T•mp ()P•rrr•

Conv Tgpe: 1':.) B4s1c. ()Map t§> E1ther

S9nc Level: (S1 Noni!' t2J Conf1rm

PIP: QY•> @)No

PIP Count: 0
'--~~~~~~--'

PIP Check: () '·i.s ~}No

Data Mappin9: () l'•s @:•No
FHH D•ta: () Yo!-s i'~) N"

PriYil•9•: [SJ Non• 0 CNOS D S•ssion

0 D•fin• 0 Disp D S•nic•

LUY: Q '>'•s (!) ffo

Figure 11-32
Editing a transaction program

TP Name

Securit9 Re41uired :

0 Nono 0 Conv 0 Unr

C1 Prof @U:Hr /Prof

User ID

D .

Profile

The TP Name must be unique for this local LU. TP names have up to 64 symbol-string
type AE characters. The names CNOS and ADMIN are reserved by MacAPPC.

Local LU

The local LU name cannot be modified by editing a TP. See the section on editing
local LUs.

Net Name (Transaction program network name)

Net Name is the name by which the TP is known throughout the network. TP network
names have up to 64 hex (0-F) characters. If not specified (left blank), the TP name is
used as the network name.

Editing network components 11-27

Status

Status specifies the response the LU makes when an allocation request is received that
designates this TP. By changing this setting, a program may be temporarily or
permanently removed from network availability.

Enable (Enabled): The TP is enabled. The default setting is Enabled.

Temp (Temporary): The TP is temporarily disabled.

Perm (Permanent): The TP is permanently disabled.

Conv Type (Conversation type)

Conv Type specifies the conversation type allowed on an allocation request to start the
program.

Basic (Basic conversation type): The TP may he allocated only with a basic
conversation.

Map (Mapped conversation type): The TP may be allocated only with a mapped
conversation.

Either (Either conversation type): The TP may be allocated with either a basic or a
mapped conversation. The default setting is Either.

Sync Level (Synchronization level)

Sync Level specifies the synchronization allowed on an allocation request to start the
program.

None: The synchronization level is none.

Confirm: The synchronization level is confirm.

The default settings are both None and Confirm.

PIP (Program initialization parameters)

PIP indicates whether or not this transaction program supports program initialization
parameters. Yes indicates that PIP is supported; No indicates that it is not. The default
setting is No.

PIP Count

PIP Count is the program initialization parameters count. It specifies the number of
PIP subfields that may be required in order to start this transaction program. The valid
range is from 0 to 256. The default setting is 0.

PIP Check

PIP Check indicates whether or not this transaction program supports program
initialization parameter checking. No indicates that an allocation request for the TP is
not rejected, even if the number of PIP subfields in the PIP Count do not match the
number supplied on the request. Yes indicates that an allocation request for the
transaction program is rejected if the number of PIP subfields in the PIP Count do not
match the number supplied on the request. The default setting is No.

11-28 Chapter 11: The MacAPPC Configuration Program

(

()

Data Mapping

Data Mapping indicates whether or not this transaction program is provided with data
mapping support. Yes indicates that data mapping is supported; :Ko indicates that it is
not. The default setting is No.

FMH Data

FMH Data indicates whether or not functional management header (FMH) data can be
transmitted and received by this transaction program. Yes indicates that the
transaction program can transmit and receive this information; No indicates that it
cannot. The default setting is No.·

Privilege

Privilege specifies the type of control operator routines this transaction program may
issue.

None: The TP is not allowed to use routines that require a privilege to do so. The
default setting is None.

CNOS: The TP is allowed to issue change-number-of-session CNOS routines.

Session: The TP is allowed to issue session control routines.

Define: The TP is allowed to issue definition routines.

Dlsp (Display): The TP is allowed to issue display routines.

Service: The TP is allowed to issue an allocation routine with the TP name designating
a service transaction program, such as SNADS or DIA.

LUW (logical unit of.work)

LUW indicates whether or not this transaction program assigns logical-unit-of-work
IDs for each transaction issued by this program. Yes specifies that the TP assigns LUW
IDs; No specifies that it does not. The default setting is No.

Security Required (Security level that is required)

Security Required specifies the security verification allowed on an allocation request to
start the program.

None: No security checking is performed for this TP. Note that if LU security is set to
Yes for the local LU, security is checked at the local LU, even if Security Required is
None. The default setting is None.

Conv (Conversation-level security): Conversation-level security is specified. If
security settings are specified on a conversation allocation, they are checked at the LU
level only.

Prof (Profile): Resource-access-level security is required for this TP. The profile must
match a profile defined on the resource-access authorization list.

User (User ID): Resource-access-level security is required for this TP. The user ID must
match a user ID defined on the resource-access authorization list.

Editing network components 11-29

User/Prof (User ID and profile): Resource-access-level security is required. The user ID
and profile must match both a user ID and a profile on the resource-access
authorization list.

User ID

User ID is a network security setting. A user ID must be included if the resource-access
authorization list requires a user ID. User IDs have up to ten symbol-string type AE
characters. Nothing appears in the User ID list unless User or User/Prof is selected for
Security Required. To delete a user ID, select it, and then choose Clear from the Edit
menu. To add a new user ID, choose User from the Create menu. The dialog box in
Figure 11-33 appears. The list contains the users that have been created for the
associated local LU, but have not previously been chosen to be on the transaction
program User ID list. Select a user ID, and then click OK to add the user ID to the User
ID list in the TP window.

Choose a user ID for TP
"TPI ":

ll . .
Dick
Jeff

f(OK :1J Cancel

Figure 11-33
Creating a User ID

Profile

Profile is a network security setting. A profile must be included if the resource-access
authorization list requires a profile. Profiles have up to ten symbol-string type AE
characters. A profile for a user can be selected only if a profile was created for the local
LU and the transaction program Security Required setting is either Prof or User/Prof. If
the selected Security Required setting is None, Conv, or User, you cannot choose
Profile from the Create menu.

To choose a profile for a TP if the Security Required setting is Prof, first return to the TP
window (see Figure 11-32) and choose Profile from the Create menu. A dialog box with
a list of all the profiles that have been created for the associated local LU, but have not
previously been chosen to be on the transaction program Profile list. If no profiles
appear on the list or if the desired profile does not appear on the list, you must first
create the profile required for the associated local LU. Then, choose a profile from the
list and click OK to add the profile to the Profile list in the TP window.

11-30 Chapter 11: The MacAPPC Configuratiof1 Pro!dram

(

To choose a profile for a TP if the security required is User/Prof, first return to the TP
window (see Figure 11-32) and select the user ID from the list displayed. Then, choose
Profile from the Create menu. The dialog box in Figure 11-34 appears. The list
contains the profiles that have been created for the associated local Lu for the user ID
selected, but have not previously been chosen to be in the transaction program Profile
list for that user ID. This example shows that the local LU profile named]ej]Profl is
available for selection as a profile for TP TPl and user ID Jeff. If no profiles appear on
the list or if the desired profile does not appear on the list, you must first create the
profile required for the associated local LU and user ID. Choose a profile from the list
and click OK to add the profile to the Profile list in the TP window.

Choose a profile for TP "TP I" and
user ID "Jeff":

Ill. iUI

l
(OK :~

Figure 11-34
Creating a profile

Editing a line

I..=!.

fi=i:

(cancel

I
I
I

' I

.1

I

To edit a line, first return to the configuration file window (see Figure 11-28) and
double-click the line to be edited from the Lines list. The window in Figure 11-35
appears. This example shows that a line named LliVEl has been selected for editing.

Use this window to edit the settings that were specified when the line was created.

L1ne Name:

line TOJpe: :::C•L(

Line Number: i:!) 1 C) 2 () 3 () 4

Role Type: () Pr1m () ::..:.:. (~:· No?got

Connect Type: 1:!) L~~s.:- (:_) M•Jltl ()::;-.,.,..~di

Max BTU: l._2_e5 ______ __,
Line Speed: () 300 C:J 1200 () 2400

() 4800 (!.:· 9600 () 19200

M.iix Retries : 3
i======================i

Idle Time- : j soo
i======================i

NP Reocv Time : I 10000
i======================i

Max I-Frames: 7
'------------'

NRZI Support: {:!) NR<: C• NRZI

Duplex T9pe: (!~· H2lf C1 Full

Figure 11-35
Editing a line

Editing network components 11-31

Una Name

Line name specifies the name of the line to be edited. The name can have up to eight
symbol-string type A characters. The name LOCAL is reserved by MacAPPC.

Line Type

Line Type is based on the access type of the local node. Synchronous Data Link
Control (SDLC) is the only line type that is currently available.

Line Number

Line Number specifies the serial port number to which the line is connected. The line
number may be 1, 2, 3, or 4. The default setting is 1.

Role Type

Role Type specifies whether or not the synchronous data link control role is primary,
secondary, or negotiable.

Prim (Primary): The SDLC role is primary.

Sec (Secondary): The SDLC role is secondary.

Negot (Negotiable): The SDLC role is negotiable. The default setting is Negot.

Connect Type (Connection type)

Lease (Leased): A leased connection is a directly connected line. The default setting
is Leased.

Multi (Multipoint): A multipoint connection is a party-line in which several users share ·
the same line.

Switch (Switched): A switched connection is established when required and broken
when a session is completed.

Max BTU (Maximum basic transmission unit length)

Max BTU specifies the maximum basic transmission unit length that can be received
on this line. This value is exchanged with the partner at link initiation. The valid range
is 128to 265. The default setting is 265.

Line Speed

Line Speed specifies the transmission line speed in bits per second (bps). Valid
settings are 300, 1200, 2400, 4800, 9600, and 19200. The default setting is 9600.

Max Retries (Maximum number of retries)

Max Retries specifies the maximum number of times a frame is retransmitted after
SDLC procedures have detected a discrepancy. When the number is exceeded, SDLC
reports the problem to a higher level of SNA for resolution. The valid range is 1 to 30.
The default setting is 3.

11-32 Chapter 11: The MacAPPC Configuration Program

't
'

(,

Idle Time

Idle Time specifies the amount of time in milliseconds that can elapse without a
response before a primary link station's initiate recovery action. The valid range is 100
to 10000 (0.100 to 10.000 seconds). The default setting is 800 (0.800 seconds).

NP Recv Time (Nonproductive receive time)

NP Recv Time specifies the amount of time that can elapse before the primary link
station reports to a higher level of SNA that a nonproductive receive condition exists
for resolution. The valid range is 1000 to 30000 (l.000 to 30.000 seconds). The default
setting is 10000 (10.000 seconds). ·

Max I-Frames (Maximum number of I-frames)

Max I-Frames specifies the maximum number of I-frames that can be sent before
polling resumes. The valid range is 1to7. The default setting is 7.

NRZI Support

NRZI Support specifies the type of transmission encoding method to be used when
sending signals over this line.

NRZ: A nonreturn-to-zero (NRZ) encoding method is used. The default setting is NRZ.

NRZI: A nonreturn-to-zero-inverted (NRZI) encoding method is used.

Duplex Type

Duplex Type specifies whether data can be sent in one or both directions without
turning the line around.

Half: The transmissions are half-duplex. Data can be sent in only one direction and
then the line must be turned around. The default setting is Half.

Full: The transmissions are full-duplex. Data can be sent and received without turning
the line around.

Editing a partner
To edit a partner, first return to the configuration file window (see Figure 11-28), and
double-click the partner to be edited from the partners list. The window shown in
Figure 11-36 appears. This example shows that a partner named PARn has been
selected for editing. Use this window to edit the settings that were specified when the
partner was created. A partner represents both a control point and a station.

Editing network components 11-33

UM N•m•:

•;!:· Exch ID :

CiCPU ID:

ALS Address:

Phone Numb•r : '

Figure 11 ·36
Editing a partner (control point and station)

Partner Name

Partner Name is the name by which the local LU can recognize the partner being
defined. Partner names have up to eight symbol-string type A characters. The name
LOCAL is reserved by MacAPPC.

UneName

Line Name cannot be changed by editing a partner. See the earlier section on editing a
line.

Exch ID (Exchange ID) or CPU ID

Specify either an exchange ID or a CPU ID; you may not specify both.

ExchlD

Exch ID is used in XID exchange at link establishment. Exchange IDs have exactly
eight hex (0-F) characters. They must contain the ID of the remote node if the node is
a peer. In IBM implementations, the first three characters are set based on the product
type (03A for the Displaywriter, 03E for the System/36, and so forth). The next five
characters are user configurable to give unique exchange IDs throughout the network.

If the partner is an IBM product, check the relevant IBM manuals for restrictions on
the exchange ID value. This is the value that is received in bytes 2-5 of the XID. If the
remote node is a peer, this field is supplied.

CPUID

CPU IDs have exactly twelve hex (0-F) characters. The first character of a CPU ID must
be a zero. The first two characters (representing the first byte of the parameter CPU ID)
are the physical unit (PU) type (usually 05, for PU type 5). The remaining ten
characters (representing the final five bytes) are an implementation-dependent
binary identifier. On a VTAM host, the five bytes are set to the subarea identifier of the
host, specified by the SSCPID keyword in the VT AM ATCSTR definition. This value
must match the value sent by the SSCP (system services control point) in bytes 3-8 of
the Activate Physical Unit (ACTPU) request. If the remote PU is a host, this field is
supplied.

11-34 Chapter 11: The MacAPPC ·Configuration Program

(

ALS Address

ALS Address is the adjacent-link-station address. Adjacent-link-station addresses have
exactly two hex (0-F) characters. The default setting is Cl. The values 00 and FF are
invalid. For multipoint lines, each partner must have a unique ALS address.

Phone Number

Phone Number provides reference information to a network user. Phone numbers are
symbol-strings of up to 20 characters of type AE format. If the connect type of the line
is switched and logging is enabled, this phone number is included in a log message
when you activate that station.

Editing a remote LU

To edit a remote LU, first return to the configuration file window (see Figure 11-28) and
double-dick the remote LU to be edited from the Remote LUs list. The window in
Figure 11-37 appears. This example shows that a remote LU named RLUJ has been
selected for editing.

use this v.rindow to edit the settings for the selected remote LU that were specified when
the remote LL' was created.

1=0 Remote LU: ALU! I
Remote LU: I " 11'.

I Local LU: LUI

I Net Name: ~------~

I Net Qual: ~
CP Name: F'AF'T1

lnit Q Req: (!.:>Ye;: () r·fo

ParalJel Sess: 1:!)Y~r () r·fo

CNOS ALS: IF'AF:T! I
PassYord: [J
Lei Sec: (~)Nor,.;. (~) U:::o:or ()ve-r-it

Figure 11-37
Editing a remote LU

Remote LU

Remote LU specifies the name by which the local LU can recognize the remote LU.
Remote LU names have up to eight symbol-string· type A characters.

Local LU

Local LU specifies the name of the local LU for which the remote LU is being defined. A
local LU cannot be changed by editing a remote LU. See the earler section on creating
a local LU.

Editing network components 11-35

·Net Name (Remote LU network name)

Net Name specifies the netw'ork name by which the remote LU is known throughout the
net\Vork. If not specified (left blank), the remote LU name is used as the net\Vork name.
Remote LU network names have up to eight symbol-string type A characters.

Net Qual (Remote LU network qualifier)

Net Qual is an optional field that may be defined for cross-network communications to
give uniqueness to the network name. Network qualifiers have up to eight symbol-string
type A characters.

CP Name (Control point or partner name)

CP Name specifies the name of the control point or partner where the remote LU is
located. A CP Name cannot be changed by editing a remote LU. See the earlier section
on creating a partner.

lnit Q Req (Queue session-initiation requests)

lnit Q Req specifies whether or not session requests are queued by system services
control point (SSCP). Yes indicates thar SSCP queues session-initiation requests if the
remote LU is not able to accept them; No indicates that it does not. The default setting
is Yes.

Parallel Sess (Parallel sessions)

Parallel Sess specifies whether or not the remote LU supports parallel sessions. This
information is used during session activation by BIND requests and responses. Yes
indicates that this function is supported; No indicates that it is not. The default setting
is Yes.

CNOS ALS (CNOS adjacent-link-station name)

CNOS AL5 specifies the name of the adjacent link station (ALS) that handles change­
number-of-sessions (CNOS) requests. If the local LU and remote LU are in the same
node, this name is LOCAL. Otherwise, it's the name of a previously defined adjacent­
link-station control block. If parallel sessions are supported, a name must be
specified. In general, this is the partner name. CNOS adjacent-link-station names
have up to 8 symbol-string type A characters.

Password

Password is defined for the local LU by the remote LU. It is used to provide session­
level verification during session activation. Passwords have up to 16 hex (0-F)
characters.

11-36 Chapter 11: The MacAPPC Configuration Program

(

Lei Sec (local security)

Lei Sec specifies the access-security information that the local LU accepts for the
remote LU being defined.

None: No security is accepted. The default setting is None.

User: Access-security information is accepted. The already-verified indication is not
accepted.

Verlf (Verified): Access-security information is accepted. The already-verified
indication is accepted.

Editing a mode
To edit a mode, first return to the configuration file window (see Figure 11-28) and
select the mode to be edited from the mode list. Then, double-click the selected
mode. The window in Figure 11-38 appears. This example shows that a mode named
MODEJ has been selected for editing.

Use this window to edit the settings that were specified when the mode was created.

i!D

1'1od• •-•=
Local LU:

R•iaot• LU:

Adj Station:

S•nd P acint:

R..,v Pacing:

1'1ax RU UB:

1'1ax RU LB:

Figure 11 ·38

LU1

RLU1

J SIJH L•••I: @Confirm

SHS R•init: ® NoM 0 Optr 0 Prim

Os.e QEi+hor

PART1

3

3

1'1ax S.ssions: 11

F========i 1'1in 1st Spiers: 1=1=-======='ll
PB S•ssi-s : 1

~~~=== ..... ~ ~~~~~~~~~· 

1024 

256 

Ou.a. Binds: @Yes 0No 
!=========~ 

Blant HOd•: OY•• @No 

Editing a mode 

Mode Name 

Mode Name specifies the name of the group of sessions that have the characteristics 
defined by the mode's settings. Mode names have up to eight symbol-string type A 
characters. The name SNASVCMG is a reserved mode name and may not be used. 

Local LU 

Local LU specifies the name of the local LU for which the mode is being defined. A 
local LU name cannot be changed by editing a mode. See the earlier section on 
creating a local LU. 

Remote LU 

Remote LU specifies the name of the remote LU for which a mode is being defined. A 
remote LU name cannot be changed by editing a mode. See the earlier section on 
creating a remote LU. 

Editing network components 11-37 



Adj Station (Adjacent station or partner name) 

Adj Station specifies the name for the adjacent station or partner. An adjacent station 
or partner name cannot be changed by editing a_mode. See the earlier section on 
creating a partner. 

Send Pacing 

Send Pacing specifies the number of requests the local LU can send before receiving a 
pacing response. This is used to determine the send window size during session 
activation. The valid range is 0 to 21. The default setting is 3. 

Recv Pacing (Receive pacing) 

Recv Pacing specifies the number of requests the local LU can receive. This is used to 
detennine the receive window size during session activation. The valid range is 0 to 21. 
The default setting is 3. 

Max RU UB (Maximum request/response unit upper bound) 

Max RU UB specifies the upper-bound of the maximum request/response unit (RU) 
size that can be sent or received across this mode. This field is used in conjunction 
with the maximum RU lower-bound setting to detennine the maximum RU size 
possible during session activation. The valid range is 256 to 4096. The default setting is 
1024. 

Max RU LB (Maximum request/response unit lower bound) 

Max RU LB specifies the lower-bound of the maximum request/response unit (RU) size 
that can be sent or received across this mode. This field is used in conjunction with the 
maximum RU upper-bound setting to detennine the maximum RU size possible during 
session activation. The valid range is 8 to 256. The default setting is 256. 

Sync Level (Synchronization level) 

Sync Level specifies the synchronization levels that conversations using sessions over 
this mode may use. Confirm is the only synchronization level currently supported. 

Session Reinit (Session reinitiation) 

Session Reinit specifies the responsibility for a single-session reinitiation. This can 
only be specified when the partner does not support parallel sessions. 

None: There is no single-session reinitiation. The default setting is None. 

Oper (Operator): An operator from either the local or remote LU attempts session 
reinitiation. Neither LU attempts automatic reinitiation. 

Prim (Primary LU): The primary LU automatically attempts the reinitiation. 

Sec (Secondary LU): The secondary LU automatically attempts the reinitiation 

Either (Either primary or secondary LU): Either the primary or the secondary LU 
automatically attempts the reinitiation. 

11-38 Chapter 11: The MacAPPC Configuration Program 



( 

( 

( .. 

' 
- _/ 

Max Sessions (Maximum number of sessions) 

Max Sessions specifies the maximum number of sessions that can be active at a given 
time for this mode. The valid range is 1 to 2;4. If a setting greater than 1 is specified, 
parallel sessions must be supported by the remote LU. The default setting is 1. 

Min 1st Spkrs (Minimum number of first speakers) 

Min 1st Spkrs specifies the minimum number of first-speaker sessions for this mode. 
The valid range is 1 to the value specified for the Max Sessions setting. The default 
setting is 1. 

PB Sessions (Number of prebound sessions) 

PB Sessions specifies the minimum number of first-speaker sessions that are 
automatically activated (prebound) when session limits are initialized. This setting 
corresponds to the contention winner auto-activation limit. The valid range is 1 to the 
value specified for the Min 1st Spkrs setting. The default setting is 1. 

Queue Binds 

Queue Binds specifies whether binds sent across this mode can be queued if the 
partner is not able to accept them. Yes indicates that the function is supported and 
that binds can be queued. No indicates that the function is not supported, and that 
binds cannot be queued. The default setting is Yes. 

Blank Mode 

Blank Mode specifies whether or not a null mode name is sent across the link. Blank 
mode can be provided for only one mode per partner. Yes indicates that a null mode 
name is sent across a link; No indicates that it is not. The default setting is No. 

Editing defaults 
You may change any or all of the component default settings at any time. To edit 
defaults, choose Edit Defaults from the Edit menu. A submenu appears from which 
you can choose Node, Local LU, TP, Line, Partner, Remote LU, or Mode for default 
settings editing. When you choose one of these commands from the submenu, the 
appropriate dialog box with the current defaults is displayed . 

. . 

Editing defaults 11-39 



Node 
To edit the default settings for nodes, choose ::\ode from the Edit Defaults submenu. 
The dialog box in Figure 11-39 appears. See the "Local Node" section, earlier in this 
chapter, for an explanation of the node settings. 

Acc•ss Tvp•: 

@)SDLC 

He•itor n-r : 

j30 

Figure 11-39 

OK 

I Cancel 1 

Editing node default settings 

Local LU 
To edit the default settings for local LUs, choose Local LU from the Edit Defaults 
submenu. The dialog box in Figure 11-40 appears. See the earlier section on editing a 
local LU for an explanation of the settings. 

Local LU: 

LU ID: 11 
N•t N•m•: I"'! ==-===-==~ 
N•t Qual: 1 

Max S•ssiens: i-1,=======-==l 
LU Snuritv : 0 '!•• ®No 

Yait Tim•: 
1:0 

Max TPs: 

t OK l) Cancel 

Figure 11-40 
Editing local LU default settings 

11-40 Chapter 11: The MacAPPC Configuration Program 

j 

r,,_,..~,--,'-, 

( __ // 



( 

( 

TP 
To edit the default settings for TPs, choose TP from the Edit Defaults submenu. The 
dialog box in Figure 11-41 appears. See the earlier section on editing a TP for an 
explanation of the settings. 

TP Name: 

Local LU: 

Net N<1me: 

Status: 

Cony Tiype: ··:)Barn ()Map ~)Eith..-

s,nc Leve-1: [!]Nc•rio:- (2]C•:or1f1rm 

PIP: (:)'1,g.;: 1;!:'.iNo 

o.t.- H•ppin4.1: () ..,.t?;;- @:1 No:· 

FHH Data: ()·••; ~H~:· 

PriYile9e: 0 Non• D CN(1:;. D Sossion 

0 Do:firi..:- 0 [•1:::p D ::.i:-n•1ci:-

LUY: ()Yo; (!)No 

Figure 11 ·41 
Editing TP default settings 

Line 

S•curihJ R•quired: 

(_!:• N1:.r,.:- () Coriv () Ur.o?r 

() Pr•:of () U!e-r /F't"•)f 

~- OK 

I Cantel 

To edit the default settings for lines, choose Line from the Edit Defaults submenu. The 
dialog box in Figure 11-42 appears. See the earlier section on editing a line for an 
explanation of the settings. 

Une Name: 

Role Tiype: 

Connect Tiype: 

()Prim 

1:!.:1 Lo!-~r.o!-

,---, -
1 •• _} ':;.ti>( 

()S-.,..··~ch 

Line Speed: Owo O 1200 02400 

0 4800 @) %00 0 19200 

Hax Retries : 3 

Idle Time: 800 
!================~ 

H.ax 1-Fr .. me>s: 7 
~~~~~~~~~ 

NRZI Support: @NR<: (lNR<:I

Duplex Tiype: ~)Half ()Full

n OK Cancel

Figure 11 ·42
Editing line default settings

Editing defaults 11-41

Partner
To edit the default settings for partners, choose Partner from the Edit Defaults
submenu. The dialog box in Figure 11-43 appears. See the earlier section on editing a
partner for an explanation of the settings.

Partner Name: "-I _______ _.

Line Name:

@.iExch 10:

()CPU 10:
jFFF1JOOOO

ALS Address: ~C=1 ==========!
Phone Number :

~------~

E OK :~ Cancel

Figure 11-43
Editing partner default settings

Remote LU
To edit the default settings for remote LU, choose Remote LUs from the Edit Defaults
submenu. The dialog box in Figure 11-44 appears. See the earlier section on editing a
remote LU for an explanation of the settings.

Remote LU:

Loc<1l LU:

Net Name:

Net Oual:

CP Name:

ln'it Q Req: (!:i '/.;.,; () N·:.

Parallel Sess: i::!:1 Yi:-! () r·fo

CNOS ALS:

Passvord:

Lei Sec:

([OK :~ ((an eel :1

figure 11-44
Editing remote LU default settings

11-42 Chapter 11 : The MacAPPC Configuration Program

Mode
To edit the default settings for modes, choose Mode from the Edit Defaults submenu.
The dialog box in Figure 11-45 appears. See the earlier section on editing a mode for
an explanation of the settings.

'--------~
Stjnc Level: ~) C.:1rifirm

Loc•1 LU: Sess Reinit: •::!:· No:ine () o~ .. ;or CJ Prim

R•lh•t• LU: ()So?<: Q Elth~r I
Adj st .. tion: H•x Susions: 11 I
S•nd P<1cin9: l========~ Hin 1st Spkrs: i=: '========-=
R•c• P•cin9: .:. PB Sessions: ._1 ______ __.

H;ix RU UB: 1Cl2~ Qu•u• Binds: @Yes QNo
~======~

H;ix RU LB: 256 Blank Hode: Q Yo< @No

n OK)J Cancel

Figure 11-45
Editing mode default settings

Deleting network components
To delete a network component, first select the component from the appropriate list
in the configuration file window (see Figure 11-28). Then choose Clear from the Edit
menu.

Note that deleting components also deletes associated components:

o Deleting a local LU deletes all its TPs, remotes LUs, and modes.

o Deleting a line deletes all its partners, remote LUs, and any modes associated with
the remote LUs.

o Deleting a partner deletes all its remote LUs and any modes associated with the
remote LUs.

o Deleting a remote LU deletes all its modes.

o Deleting security options in a local LU causes corresponding options to be deleted
in any of its TPs.

Printing a configuration file
You can get a printout of a configuration file so that you can see all of the components
and settings at once and refer to them when you are not using the configuration
program.

To print a configuration file, first check Page Setup in the File menu. Then, choose
Print from the File menu. An example of a configuration file printout is shown in
Figure 11-46. ·

Printing a configuration file 11-43

Figure 11-46
Example of a configuration file printout

I 11110188 11:2s
I

Node:
Exchange ID:
Access Type:
Monitor Timer:

Local LU:
LUID:
Network Name:
Network Qualifier:
Max Sessions:
LU Security:
Wait Time:
MaxTPs:

TP Name:
Local LU:
Network Name:
Status:
Conversation Type:
Svnc Level:
PiP Required:
PIP Count:
PIP Check:
Data Mapping:
FMHData:
Privilege:
LUW:
Security Required:

Line Name:
Line Type:
Line Number:
Role Type:
Connect Type:
Max BTU:
Line Speed:
Max Retries:
Idle Time:
NP Recv Time:
Max I-Frames:
NRZI Suppon:
Duplex Type:

Partner Name:
Line Name:
Exchange ID:
ALS Address:
Phone Number:

FFFOOOOl
SDLC
30

LUI
1

4
No
60
10

TPl
LUl

Enabled
Either
None, Confirm
No
0
No
No
No
None
No
None

LINE I
SDLC
2
Negotiable
Leased
265
9600
3
800
10000
7
NRZ
Half

PARTl
LINEl
FFFOOOOO
CI

Remote Config

TP Name:
Local LU:
Network Name:
Status:
Conversation Type:
Sync Level:
PIP Required:
PIP Count:
PIP Check:
Data Mapping:
FMHData:
Privilege:
LUW:
Security Required:

11-44 Chapter 11: The MacAPPC Configuration Program

TP2
LUI

Enabled
Either
None, Confirm
No
0
No
No
No
None
No
None

' Page I [

i
!

I

I
I

I

I
I
I
I
i

I
I

I
;
i

I

I
I

Mac:APPCN Config Ve3icJn 1.0b'2 (

Figure 11 -46
Example of a configuration file printout (continued)

! 11/10/88 11:25

I Remote LL":
i Local LU:
I ".'letwork Name:
I Network Qualifier:

I CP Name:
!nit Q Req:

I Parallel Sessions:
CNOSALS:
Password:
Local Security:

Mode Name:
Local LU:
Remote LU:
Adjacent Station:
Send Pacing:
Receive Pacing:
MaxRUUB:
Max RU LB:
Sync Level:
Session Reinitiation:
Max Sessions:
Min 1st Spkrs:
PB Sessions:
Queue Binds:
Blank Mode:

LU2
LUl

PARTl
Yes
Supported
PARTl

None

MODE I
LUl
LU2
PARTl
3
3
1024
256
Confirm
Not Supported
4
2
1
Yes
No

Remote Config

'
Page 2

MacAfPCTW Cc.uic Version l.Ob2

Printing a configuration file 11-45

c:

Chapter 12

The MacAPPC
Administration Program

12-1

This chapter describes the Administration program and how it is used to monitor and
control a MacAPPC network.

The Administration program simplifies the task of network implementation by
providing a clear, organized Macintosh user interface to assist in the dynamic real­
time management of the network.

The Administration program provides a set of functions for starting and stopping the
MacAPPC seiver, and for displaying, activating, and deactivating network
components and sessions. Specifically, it can

o start a MacAPPC seiver on an intelligent communications card, configuring it using
a file created by the Configuration program

o stop a MacAPPC seiver

o display network components (local node, lines, stations, control points, local LUs,
transaction programs, remote LUs, modes) and sessions

o activate and deactivate individual network components (lines, stations, local LUs)
and sessions

o initialize and reset session limits for individual modes

o log internal MacAPPC seiver log messages to a file according to specified criteria

The Administration program menu bar
The Administration program has four menus in addition to the Apple menu: File,
Edit, Seiver, and Log. The File menu, illustrated in Figure 12-1, pennies you to close
the active window or quit the Administration program.

The Edit menu, illustrated in Figure 12-2, has the standard Macintosh user interface
commands of Undo, Cut, Copy, Paste, and Clear for editing.

Close ~lll

Quit 3€Q

Figure 12·1
The File menu

Undo ~2

Cut ~H

Copy 3€C
Paste 3€U
Clear

Figure 12·2
The Edit menu

The Seiver menu, illustrated in Figure 12-3, has MacAPPC commands that provide
convenient. and efficient interaction and control of the seivers located on the
intelligent communication cards. The commands in the Seiver menu are explained
later in this chapter.

12-2 Chapter 12: The MacAPPC Administration Program

The Log menu, illustrated in Figure 12-4, provides commands that relate to the log, a
detailed chronological record of netv.rork activity. The log may be turned on, turned
off, erased, updated periodically or displayed in real time; and controlled to provide
the level of information detail required. See the section on logging later in this chapter
for explanations of the Log menu commands.

Start Serner. ..
Stop Serner ...

Display
Update ~u

ActiL•ate ~R

Deactiuate ~D

Start CNOS
Stop CNOS

Figure 12-3
The Server menu

Actiue ~L

Settings ••.

Show Log
Clear Log .••

Figure 12-4
The Log menu

Conventions used in the Administration program
This section describes some conventions used in the Administration program that you
should know about before proceeding.

Special cursor
A "spinning beach ball" cursor appears in the screen whenever the Administration
program is talking to the Server. The beach ball cursor spins during the brief periods
of interaction and then disappears when the required information has been
transferred.

Network display control
A network display control is used in the server window to display any of four levels of
the network components and sessions summary. This feature is especially useful for
displaying the variable levels of detail of a complex network configuration. The
network display control is described in the section on displaying network components
and sessions.

Severity control
A severity control is used to select the detail level of logging r:nessages. This control
may be adjusted from messages of low to high detail. The severity control is described
in the section on log settings options.

Conventions used in the Administration program 12-3

Starting a MacAPPC server
Before starting a server, be sure that one or more configuration files have already been
created, and that an intelligent network communications card has been properly
installed in the Macintosh II. See Chapter 9, "Installation," and Chapter 11, "The
MacAPPC Configuration Program," for further information.

To start a MacAPPC server, choose Start Server from the Server menu. The dialog box
shown in Figure 12-5 appears. This dialog box is similar to the standard directory
dialog box, which allows you to move around in the hierarchical file system and select
the file you want to work with. The current list of configuration files is displayed. The
dialog box also displays the current server name, the amount of memory on the
communications card that is reseived for the MacAPPC seiver, and the NuBus slot
number (1, 2, 3, 4, 5, or 6) where the server resides.

Select the desired configuration file and click Start to start the seiver. The watch
appears while the seiver is being downloaded. The spinning beach ball appears when
the server is being configured. The screen then returns to the Administration program
menu bar. If you see the message "The Macintosh has no available communication
cards," it means that no communication cards have been installed.

Select configuration file:
lo APPC#1 I

~j Local (onf1g ~
Cl Remote Config

Seruer Name: MacAPPC Seruer

Memory Size: 90K Slot: 2

Figure 12-5
Selecting a configuration file

c:iHardDisk

Start

Cancel

Settings

If you want to change the name, memory size, or slot number, click Settings before
starting the server. A dialog box similar to the one in Figure 12-6 appears. A dimmed
slot number (1, 2, 3, 4, 5, or 6) indicates that there is no intelligent communications
card in that slot; an active slot number indicates that there is a communications card
in that slot. A seiver name appearing to the right of the slot indicates the seiver that
has been started and is currently running on the communications card in the slot. This
example shows that both slots 2 and 4 have communication cards installed. Slot A has
a server named "MacAPPC Server" running on it. If the current settings are used, a
server named "Slot 4 Server" with a memory size of 90K would be started on the
communications card in slot 4.

12-4 Chapter 12: The MacAPPC Administration Program

(

Serner Name: I Slot 4 Serner
i

Memory Size: ! 90 l K

Slot Serner Name

C> 2 MacAPPC Senoer

()

()

Cancel I: OK :~

Figure 12-6
Editing server settings

Server Name

Server Name specifies the server name that appears in the Chooser. See Chapter 10,
"Selecting a MacAPPC Server," for additional information. The default name is
MacAPPC Server.

Memory Size

Memory Size specifies the amount of memory to be reserved on the intelligent
communications card for the MacAPPC server. The default setting is 90K.

Slot

Slot specifies the NuBus slot number for the intelligent communications card where
the currently active server resides. The default setting is slot 2.

Displaying network components and sessions
The Administration program permits you to display network components and sessions
and their associated settings. First select a MacAPPC server using the Chooser. Then,
choose Display from the Server menu. The server window in Figure 12-7 appears.
Information about the local node is displayed in the upper-left comer. The lists
display component names that are defined for the current network configuration and
their respective session IDs. Note that unlike the Configuration program, all network
components (except for TPs) are displayed at once. Transaction programs are listed
in a specific local LU window described later in this chapter.

Displaying network components and sessions 12-5

10
Excb<tn<J• ID:

FFFOOOOl

Access Tgp•:

·~sac
Monitor Tim•r:

51)

MacRPPC Senier

I~~· I
Local LUs Remot• LUs

St..tions
PART\

S.ssions
Til!!!_@I!ttilliffl_jill!_m111l!lli@11miiIT@_lli!!!lm@TIITTil~Ti1TiumttilTiilillm11~11H11~111t11JJJ~fIT1 1H!1111fJl1ffit_!!!i_I!!!

•LUl LUZ •MODEl 38824
•LU2 LUl •MODE1 38220

CNOS servic• TPs in proc•ss locally : 0

Figure 12-7
The server window

Exchange ID

~

~

Exchange ID contains the identifier of the remote node if the node is a peer. It is used
in XID exchange at link establishment.

Access Type

Access Type specifies the type of line. Synchronous Data Link Control (SDLC) is the
only access type currently available.

Monitor Timer

Monitor Timer specifies the wake-up interval for the program monitor in seconds. The
wake-up interval is the time the server waits for a reply from an attached TP. If the
interval time is exceeded, the server disconnects.

Lines, stations, local LUs, and sessions can be activated or deactivated from the server
window. Session limits can be initialized and reset by activating or deactivating
modes. A dot "•" appears to the left of an activated component and disappears when
a component is deactivated. The number of CNOS TPs in process locally is displayed.
These settings, as well as activation and deactivation of components and sessions, are
described later in this chapter in the section "Managing Network Components and
Sessions."

12-6 Chapter 12: The MacAPPC Administration Program

J /.

(

(

All of the local LUs, remote LUs, modes, and sessions are displayed simultaneously
for a simple network configuration, such as the example shown in Figure 12-7. For a
more complex configuration that cannot be displayed at once, the lists may be moved
up or down with the scroll bar. Alternatively, you may use the network display control
feature located betv;een the titles Local LCs, Remote LUs, Modes, and Sessions and
their respective lists to display any of four levels of the outlined component and
sessions summary. To use the network display control, position the cursor in the right
end of the shaded area. The cursor becomes a double arrow. Then, drag the cursor to
display the level of components and sessions desired. The information displayed is at
a maximum when the cursor is moved to the right end, the Sessions level, as it is in
Figure 12-7.

A more complicated configuration example will demonstrate the usefulness of the
variable levels of detail provided by the network display control. The example in
Figure 12-8 shows a network configuration with the control set at the local LU level of
information. The four local LUs of the network configuration are displayed.

Excllange ID :

FFFCI0001

Access Tgpe:

@SDLC

Monitor Tim•r:

50

i11!1111111111111!111u11111ii111i1111i1

MacAPPC 'i.erner

Lines

CNOS serYice TPs in process local19: 0

Figure 12-8

Sbtions

Displaying components at the local LU level

Displaying network components and sessions 12-7

Figure 12-9 shows the lists of the example configuration at the remote LU level. Both
local LUs and remote LUs are displayed.

Excban,. ID:
FFF00001

Aco•ss TvP•:
®s1>1.c

Monitor TitMr:

50

Looal LUs

MacAPPC seruer

Li ... s

1111~ Ill 11J11111 11111111111111111111iilllill111mmil1iiWuili1111Ulf--- - --------- -

•LU1 LU2
LU3

•LU2 LU1
LU4

9LU3 LU1
•LU4 LU2

Figure 12-9

Stations

- --

- -- ---

]Q

~

Displaying components at the remote LU level

Figure 12-10 shows the lists of the example configuration at the modes level. Local LUs,
remote LUs, and i:nodes that are hidden may be brought into view using the scroll bar.

ID
Excb.,...10:

FFFOOOOI

Aoc•ss Tvp•: ·
@SOLC

Honit•r TU..r :

50

Lecal LUs

MatAPPC Seruer

Stations

11~ffif111111111111~ffiiii11!T1TI111ffiifillffii1~111'11llll111111111111iTiil1111111111ii1111111111111111111TI111111~

•LU1 LU2 •SNASVCMG
MODE12

LU3 •SNASVCMG
MODE13

•LU2 LU1 •SNASVCMG
MODE12

LU4 •SNASVCMG
MODE24

•LU3 LUI •SNASVCMG
MODE13

CNOS s•rvin TPs ill process locally: 1

Figure 12-10
Dlsplaylng compone.nts _at the mode level

12-8 Chapter 12: The MacAPPC Administration Program . .

(

Figure 12-11 shows the_ lists at the sessions level. Local LUs, remote LUs, modes, and
sessions that are hidden from view may be brought into view using the scroll bar.

--. MacRPPC ~erner

Exchan9e ID :
Ff'Fl)(1001

Acc•ss· rqpe:

@)SDLC

Hon;tor Timer :

50

Unes Stations

S•ssions
milmitti111mTiill111111111111!111111!111111lllllllllr•i1llfll'lll«UllllllllllllJlllllJllll11llllllllllllii1

•LIJ1 LIJ:i •SNASVCMG 4;45.;. ~ 451!.88
t!OC•El: h

LU: •SNAS.~!CMG 44060
\liiil 4~:15:

.. ~:<1·£13
LU1 f •BNl'l·:.~/Cl·\C1 44.e.(:2

)!?

4":·1!: 1 MOC•E12 ~ Lll4 •SNA·:.VCMG 465!£.tJ

CNOS service TPs in process loc .. ng : 1

Figure 12-11
Displaying components and sessions at the session level

You may select components or sessions from the lists to display their settings.
Double-dick a line, station, local LU, remote LC', mode, or session. The appropriate
window appears displaying the settings defined by the current configuration. To
display transaction program settings, first double-dick a local LU. A local LU window
appears displaying a list of TPs. Double-dick the TP of interest. ATP-settings display
window appears. See the sections ''Displaying a Local LC'" and "Displaying a
Transaction Program," later in this chapter, for additional details.

Most of the settings displayed are for review only. However, dynamic settings in the
local LU, line, station and control point, mode, and session display windows change
as components and sessions are activated and deactivated and conversations are
allocated and deallocated. ·

Displaying a local LU
To display the settings for a local LU, double-click the local LU in the Local LUs list in
the server window (see Figure 12-7). The local LU display window in Figure 12-12
appears. The local LU settings displayed are for review only. The only exception is Act
Sess. Act Sess is a dynamic setting that changes when sessions are activated or
deactivated for this local LU. To make changes in local LU settings, you must use the
Configuration program to create components and edit their settings (see Chapter 11).

Displaying network components and sessions 12-9

Local LU: LUI - - -

LMal LU: ~Ul Max S.ss: 10

LU ID: 1 Act S•ss: 0

ll•t Nam•: LUl Wait Tim•: 60

N•t Oual: Max TPs: 10

LU S•c: 0'i't! @No

Us..- IDs Profilu Transaction Programs

Figure 12·12
A local LU display window

Local LU

Local LU is the name used to associate mode, remote LU, and transaction program
definitions with a particular local LU.

LU ID

LU ID is the local LU ID number. The setting corresponds to the destination address
field (OAF).

Net Name (Local LU network name)

Net Name is the name by which the local LU is known throughout the network.

Net Qual (Local LU network qualifier)

Net Qual displays the current value for the local LU network qualifier.

LU Sec (LU security)

LU Sec indicates whether or not conversation-level security is enabled for this local
LU. If it is, the user ID and the password are checked at the conversation level,
regardless of the TP-defined security. Yes specifies that conversation-level security is
enabled for the local LU; No specifies that it is not.

Max Sess (Maximum number of sessions)

Max Sess is the maximum number of sessions that can be active at the local LU at one
time. Session limits are currently maintained only at a mode level.

Act Sess (Number of active sessions)

Act Sess specifies the number of sessions currently active for this local LU.

Wait Time

Wait Time specifies the amount of time in seconds the LU waits for routine
completion.

12-10 Chapter 12: The MacAPPC Administration Program

(

(

Max TPs (Maximum transaction programs)

Max TPs specifies the maximum number of remote or local transaction programs that
can be attached to the local LU at one time.

User IDs

User IDs are network security settings. A user ID is required only when the security
permits user IDs on the resource-access authorization list. Double-click a user ID
name to display its security password. User IDs that are not visible can be brought into
view using the scroll bar. Selecting a user ID has no effect.

Profiles

Profiles are network security settings. A profile is required only when the security
permits profiles on the resource-access authorization list. Each user ID is displayed
with its associated profiles. User IDs and profiles that are not visible can be brought
into view using the scroll bar. Selecting a profile has no effect.

Transaction Programs

Transaction Programs displays a list of all of the transaction programs defined for this
local LU. TPs that are not visible can be brought into view using the scroll bar.

Displaying a transaction program
To display the settings for a transaction program, double-click the TP displayed in the
Transaction Programs list in the local LU display window. The window in Figure 12-13
appears. The TP settings displayed are for review only. To change TP settings, you
need to create components and edit their settings using the Configuration program
(see Chapter 11).

~D

TP N•m•:

Loc•l LU:

N•t N•me:

St•tus:
Cony T9pe:

S9nc LeYel:

PIP:

PIP Count:

PIP Check:

D•t41 H41ppin9:

FHHD41b:

LUY:

Figure 12-13

TP: TPI
TP1

LU1

@Enabl• QT•mp QPorm

Oeasie QMap @Either

0Non+ [El confirm

OY•s @No

0

QY.s ®No
OY•s @No

OY•s @No
QY.s @No

- ----- ~ -- --------
-=~-"'""~=-=----:::--==-

Priyii.9•:

0 CNOS 0 Session

Oo;splaiJ Os.rvic•
S.C..,.it9 Re41uir•d:

@Non. 0 Conv 0 Us•r
0 Profile 0 Usor /Prof

Uur IDs Profi1.s

A transaction program display window

Displaying network components and sessions 12-11

TP Name

TP Name specifies the name of this TP; it is unique for this local LU. The names CNOS
and ADMIN are reserved by MacAPPC.

Local LU

Local LC specifies the name of the LU with which the TP is associated.

Net Name (Transaction program network name)

Net Name is the name by which the TP is known throughout the network.

Status

Status specifies the response the LC makes when an allocation request is received that
designates this TP. The program may be enabled, temporarily removed, or
permanently removed from network availability.

Enable (Enabled): The TP is enabled.

Temp (Temporary): The TP is temporarily disabled.

Perm (Permanent): The TP is permanently disabled.

Conv Type (Conversation type)

Conv Type specifies the conversation type allowed on an allocation request to start the
program.

Basic (Basic conversation type): The TP may be allocated only with a basic
conversation.

Map (Mapped conversation type): The TP may be allocated only with a mapped
conversation.

Either (Either conversation type): The TP may be allocated with either a basic or a
mapped conversation.

Sync Level (Synchronization level)

Sync Level specifies the synchronization level allowed on an allocation request to start
the program.

None: The synchronization level is none.

Confirm: The synchronization level is confirm.

PIP (Program initialization parameters)

PIP indicates whether or not this transaction program supports program initialization
parameters. Yes indicates that PIP is supported; No indicates that it is not.

PIP Count

PIP Count is the program initialization parameters count. It specifies the number of
PIP subfields that may be required in order to start this transaction program.

12-12 Chapter 12: The MacAPPC Administration Program

(

PIP Check

PIP Check specifies whether or not this transaction program supports program
initialization parameter checking. No indicates that an allocation request for the TP is
not rejected, even if the number of PIP subfields in the PIP Count do not match the
number supplied on the reque~t. Yes indicates that an allocation request for the
transaction program is rejected if the number of PIP subfields in the PIP Count do not
march the number supplied on the request.

Data Mopping

Dara Mapping specifies whether or not this transaction program is provided with data­
mapping support. Yes indicates that data mapping is supported; No indicates that it is
not.

FMH Data

FMH Data indicates whether or not the functional management header (FMH) data
can be transmitted and received by this transaction program. Yes indicates that the
transaction program can transmit and receive this information; No indicates rhat it
cannot.

LUW (Logical unit of work)

LUW indicates whether or not this transaction program assigns logical-unit-of-work
IDs for each transaction issued by this program. Yes specifies that the TP assigns LUW
IDs; No specifies that it does not.

Privilege

None: No romines that require a privilege are allowed.

CNOS: C:'\05 routines are allmved.

Session: Session-control routines are allowed.

Define: Definition routines are allowed.

Display: Display routines are allowed.

Service: Allocation routines may be issued. The TP name designates a service
transaction program, such as SNADS or DIA.

Security Required

Security Required specifies the security verification provided on an allocation request
to start the program.

None: No security checking is perfom1ed for this TP. Note that ifLU security is set to
Yes for the local LU, security is checked at the local LC level, even if Security Required
is ?\one.

Conv (Conversation-level security): Conversation-level security is specified. If
security parameters are specified on a conversation allocation, they are checked at the
LC level only.

Profile: Resource-access security is required for this TP. The profile must match a
profile defined on the resource-access authorization list.

Displaying network components and sessions 12-13

User (User ID): Resource-access security is required. The user ID must march a user ID
defined on the resource-access authorization list.

User/Prof (User ID and profile): Resource-access security is required. The user ID and
profile must match both a user ID and a profile on the resource-access authorization
list.

User IDs

User IDs are network security settings. A user ID is required only when the security
pennies user IDs on the resource-access authorization list. User IDs th_at are not visible
can be brought into view using the scroll bar. Selecting a user ID has no effect.

Profiles

Profiles are network security settings. A profile is required only when the security
permits profiles on the resource-access authorization list. Each user ID is displayed
with its associated profiles. User IDs and profiles that are not visible can be brought
into view using the scroll bar. Selecting a profile has no effect.

Displaying a line
To display the settings for a line, double-dick the line displayed in the Lines list in the
server window (see Figure 12-7). The window in Figure 12-14 appears. The line settings
displayed are for review only. The only exception is Line Status. Line Status is a
dynamic setting that may change when a line is activated. To change line settings, you
need to create components and edit their settings using the Configuration program
(see Chapter 11).

~O Line: LINE!

Line N<ime: LINEl

Line T11pe: SDLC:

Lin• St.atus: C• ~·•s+t
(~}Ac-hvi:-

C) P-eondA~tlvo:-
0 P•ndR•s•t

Line Number : l!), C12 Q:;;
Role T11pe: C:1 Prim Os•o
Connect T'!JP•: @)LHS• QM•Jlli

H<1x BTU: 265

Line Sp••d: O:;;oo 01200

04900 @9600

Hax R•tr1..s : 3

Idle Ti1n.: 900

NP R•c¥ Tlme: 10000

Hax l-Fr<1m..s: 7

NRZI Support: (~NRZ QNRZI

Dupl•x T9p•.: @H•lf QFull

Figure 12·14
A line display window

Line Name

04

@N•got

Osvttch

02400

019200

Line Name is the name by which the line is known throughout the network.

12-14 Chapter 12: The MacAPPC Administration Program

,,r'A ~""'
/ l

)~"""

(

Line Type

Line Type is based on the access type of the local node. Synchronous Data Link
Control (SDLC) is the only line type that is currently available.

Line Status

Reset: The line status is reset.

PendActive (Pending active): The line status is active pending a response.

Active: The line status is active.

PendReset (Pending reset): The line status is pending reset.

Line Number

Line Number specifies the serial port number to which the line is connected. The line
number may be 1, 2, 3, or 4.

Role Type

Role Type specifies whether or not the Synchronous Data Link Control (SDLC) role is
primary, secondary, or negotiable.

Prim (Primary): The SDLC role is primary.

Sec (Secondary): The SDLC role is secondary.

Negot (Negotiable): The SDLC role is negotiable.

Connect Type

Lease (Leased): The connection is leased.

Multi (Multipoint): The connection is multipoint.

Swtch (Switched): The connection is switched.

Max BTU (Maximum basic transmission unit length)

Max BTU specifies the maximum basic transmission unit length that can be received
on this line. This value is exchanged with the partner at link initiation.

Line Speed

Line Speed specifies the transmission line speed in bits per second (bps).

Max Retries (Maximum number of retries)

Max Retries specifies the maximum number of times a frame is retransmitted after
SDLC procedures have detected a discrepancy. When this number is exceeded, SDLC
reports the problem to a higher level of SNA for resolution.

Displaying network components and sessions 12-15

Idle Time

Idle Time specifies the amount of time in milliseconds that can elapse without a
response before a primary link station initiates recovery action.

NP Recv Time (Nonproductive receive time)

NP Recv Time specifies the amount of time that can elapse before a primary link
station reports to a higher level of SNA that a nonproductive receive exists for
resolution.

Max I-Frames (Maximum number of I-frames)

Max I-Frames specifies the maximum number of I-frames that can be sent before
polling resumes.

NRZI Support

NRZI Support specifies the type of transmission encoding method to be used when
sending signals over this line.

NRZ: A nonretum-to-zero (NRZ) encoding method is used.

NRZI: A nonretum-to-zero-inverred (I\"RZI) encoding method is used.

Duplex Type

Duplex Type specifies whether data can be sent in one direction or both directions
without turning the line around.

Half: The transmissions are half-duplex. Data can be sent in only one direction and
then the line must be turned around.

Full: The transmissions are full-duplex. Data can be sent and received without turning
the line around.

Displaying the station and control point
To display the settings for a station and control point, double-click the station
displayed in the Stations list in the server window (see Figure 12-7). The window in
Figure 12-15 appears. The station and control point settings displayed are for review
only. The only exception is Status. Status is a dynamic setting that may change when
the station is activated. To change other station settings, you need to create
components and edit their settings using the Configuration program (see Chapter 11).

The Administration program assumes that a station is defined for every control point.
This is the case if you configure the server using a configuration file, since a partner in
the Configuration program consists of both a station and control point. If you write a
program to define your own control point without defining a station for it, its
information is not displayed. Note that if you start the server using a configuration file,
the control point name (CP Name) is always the same as the station name, that is, the
partner name in the Configuration program.

12-16 Chapter 12: The MacAPPC Administration Program

/''-'•'1

\... ,/

\
/

(

::0 Station: PARTl
Station NC1ime : ~-AFT 1

Line Name : LINE I

Status: i:!:1 F'o?::i:ot () F'o?ndP.:-:~,
() F'o:-n•K •:or1t () A<:. tr-.•-:-

() F'.;.ridPo:-:r.o:-t () F:J.tF'.;.nF:i:-:::~·
ALS Address: C1

Pllone Number :

CP Name:

(!)Excll ID:

()CPU ID:

Figure 12-15

Pi.F'T1

FFFOOOOO

A station display window

Station Name

Station Name specifies the name by which the station is known throughout the network.
This name is the same as CP Name if the server was configured with a configuration file.

Line Name

Line Name specifies the line name associated with this station.

Status

Reset: The station status is reset.

PendResp (Pending response): The station status is active pending response.

PendCont (Pending contact): The station status is active pending contact.

Active: The station status is active.

PendReset (Pending reset): The station status is pending reset.

RstPenResp (Reset pending response): The station status is reset pending response.

ALS Address (Adjacent-link-station address)

ALS Address is the adjacent-link-station address.

Phone Number

Phone Number specifies the phone number or dialing code for this station.

CP Name (Control point name)

CP Name specifies the name of the control point. This name is the same as the station
name if the server was configured with a configuration file.

ExchlDCExchangelD)orCPUIO

Either the exchange ID or the CPU ID is specified.

Exch ID

Exch ID specifies the exchange ID used in XID exchange at link establishment.

Displaying network components and sessions 12-17

CPUID

CPU ID specifies the CPU identifier.

Displaying a remote LU
To display the settings for a remote LU, double-dick the remote LU displayed in the
Remote LUs list in the server window (see Figure 12-7). The window in Figure 12-16
appears. The settings displayed are for review only. The only exception is Rmt Sec.
Rmt Sec is a dynamic setting that changes after a session is bound. To change remote
LU settings, you need to create components and edit their settings using the
Configuration program (see Chapter 11).

!OE& Remote LU: LU2

R..,oto LU: LU2

Local LU: LU1

ht Na-: LU2

Not Qual:
CPNamo:
lnit 0 Roq: ®"•• QNo

Par allo l Soss : QYes @No

CNOS Namo:
PassYord:

Lei SH: @None Ouser Overifi
Rmt Soc: @Nono QtJ;or Overifi

Figure 12-16
A remote LU display window

Remote LU

Remote LU specifies the name by which the local LU can recognize the remote LU.

Local LU

Local LU specifies the name of the local LU for which the remote LU has been defined.

Net Name (Remote LU network name)

Net Name specifies the name by which the remote LU is known throughout the network.

Net Qual (Remote LU network qualifier)

Net Qual is an optional field that may be defined for cross-network communications to
make the network name unique.

CP Name (Control point name)

CP Name is the name of the control point where the remote LU is located. In a local
configuration, this field is blank.

12-18 . Chapter 12: The MacAPPC Administration Program

(
lnit Q Req (Queue session-initiation requests)

Init Q Req specifies whether or not system services control point (SSCP) should queue
session-initiation requests if the remote LV is not able to accept them. Yes indicates
that SSCP queues session-initiation requests if the remote LU is not able to accept
them; No indicates that it does not.

Parallel Sess (Parallel sessions)

Parallel Sess specifies whether or not the remote LU supports parallel sessions. This
information is used during session activation by BIND requests and responses. Yes
indicates that this function is supported; No indicates that it is not. Note that if parallel
sessions are supported, you must have a CNOS transaction program running to
initialize user modes.

CNOSName

CNOS Name specifies the name of the station that handles change-number-of­
sessions (CNOS) requests. If the local LU and remote LU are in the same node, this
name is LOCAL Otherwise, it's the name of a previously defined station control block.
If parallel sessions are supported, a name must be specified. If parallel sessions are not
supported, this field is blank. In general, the CNOS name is the partner name.

Password

Password specifies the password defined for the remote LU. It is used to provide
session-level verification during session activation.

lei Sec (Local security)

Lcl Sec specifies the access-security information that the local LU accepts for the
remote LU.

None: No security is accepted.

User: Access-security information is accepted. The already verified indication is not
accepted.

Verifi (Verified): Access-security information is accepted. The already verified
indication is accepted.

Rmt Sec (Remote security)

Rmt Sec is a dynamic setting that specifies the remote LU's view of the local security.
This is determined after a session is bound. The remote security setting displayed is
not valid before the session is bound.

None: No security is accepted.

User: Access-security information is accepted. The already verified indication is not
accepted.

Verlfl (Verified): Access-security information is accepted. The already verified
indication is accepted.

Displaying network components and sessions 12-19

Displaying a mode
To display the settings for a mode, double-dick the mode displayed on the Modes list
in the server window (see Figure 12-7). The window in Figure 12-17 appears. Most of
the mode settings displayed are for review only. The exceptions are the current and
active Max Sessions, Min 1st Spkrs, and Min Bidders. These dynamic settings change
as sessions are activated and deactivated and modes are initialized and reset. To
change other mode settings, you need to create components and edit their settings
using the Configuration program (see Chapter 11).

• -~--- =--- -"=-0~- - - Mode: MODEi

t1 .. lh_: MODEi Sond Paoint: :5
Loni LU: LU1 RHY Pacing: :;

R-toLU: LU2 Max RU UB: 1024
Mj Stat;-: LOCAL t1ax RU LB: 256

Sojnc L•••I: @confirm Torm Count: 0

PB Snsions: 1 Sns Roinit: @Oper QPrim

QS•o QEi1ti.r
Dof c..,.r Act g,..,.. Btnds: @Yes QNo

t1ax Sossions : 4 4 Blanlc t1-: Oves @No
t1in 1 st Spkrs : 2 2 1 Dr am Looal: Ovos @No
l1UI Biddors: 2 2 0 Drain Romoto: Ovos @No

Figure 12-17
A mode display window

Mode Name

Mode Name specifies the name of the group of sessions that will have the
characteristics defined by the mode's settings. SNASVCMG is a reserved mode name.

Local LU

Local LU specifies the local LU name for which the mode is defined.

Remote LU

Remote LU specifies the remote LU name for which the mode is defined.

Adj Station (Adjacent station name)

Adj Station specifies the adjacent station name. LOCAL indicates that the local LU and
the remote LU are in the same node.

Sync Level (Synchronization level)

Sync Level specifies the synchronization level allowed on an allocation request to start
a transaction program. Confirm is the only synchronization level currently
supported.

PB Sessions (Number of prebound sessions)

PB Sessions specifies the minimum number of PB first-speaker sessions that are
automatically activated when session limits are initialized.

12-20 Chapter 12: The MacAPPC Administration Program

)

(

(

Max Sessions (Maximum number of sessions)

Def (Defined): The maximum number of sessions that have been defined for this
network configuration.

Curr (Current): The number of currently available sessions.

Act (Active): The number of active sessions.

Min 1st Spkrs (Minimum number of first speakers)

Def (Defined): The minimum number of first speaker sessions that have been defined
for this network configuration.

Curr (Current): The number of currently available first speakers sessions.

Act (Active): The number of active first speaker sessions.

Min Bidders (Minimum number of bidders)

Def (Defined): The minimum number of bidders that have been defined for this
network configuration.

Curr (Current): The number of currently available bidder sessions.

Act (Active): The number of active bidder sessions.

Send Pacing

Send Pacing specifies the number of requests the local LU can send before receiving a
pacing response. This is used to determine the send window size during session
activation.

Recv Pacing (Receive pacing)

Recv Pacing specifies the number of requests the local LU can receive. This is used to
determine the receive window size during session activation.

Max RU UB (Maximum request/response unit upper bound)

Max RU UB specifies the upper bound on the maximum request/response unit (RU)
size that can be sent or received across this mode. This setting is used in conjunction
with the maximum RU lower-bound setting to determine the maximum RU size
possible during session activation.

Max RU LB (Maximum request/response unit lower bound)

Max RU LB specifies the lower bound of the maximum request/response unit (RU) size
that can be sent or received across this mode. This field is used in conjuction with the
maximum RU upper-bound setting to determine the maximum RU size possible during
session activation.

Term Count (Termination count)

Term Count specifies the number of sessions the local LU is responsible for
deactivating as a result of CNOS negotiations.

Displaying network components and sessions 12-21

Session Reinit (Session relnitiation)

Session Reinit specifies the responsibility for a single-session reinitiation.

Oper (Operator reiniHatlon): An operator from either the local or the remote LU
attempts session reinitiation. Neither LU attempts automatic reinitiation.

Prim (Primary LU): The primary LU automatically attempts the reinitiation.

Sec (Secondary LU): The secondary LU automatically attempts the reinitiation.

Either (Either primary or secondary): Either the primary or the secondary LU
automatically attempts the reinitiation.

Queue Binds

Queue Binds specifies whether binds sent across this mode can be queued if the
partner is not able to accept them. Yes indicates that the function is supported and
that binds can be queued. No indicates that the function is not supported, and that
binds cannot be queued.

Blank Mode

Blank Mode specifies whether or not a null mode name is sent across the link. Blank
mode can be provided for only one mode per partner. Yes indicates that a null mode
name is sent across a link; No indicates that it is not.

Drain Local

Drain Local indicates whether or not the local LU is allowed to drain allocation
requests. Yes indicates that it may; No indicates that it may not.

Drain Remote

Drain Remote indicates whether or not the remote LU is allowed to drain allocation
requests. Yes indicates that it may; No indicates that it may not.

Displaying a session
To display the settings for a session, double-click the session displayed in the Sessions
list in the server window (see Figure 12-7). The window in Figure 12-18 appears. Session
ID and Polar Type are defined when the Session is activated and are for review only.
Conv ID and Prog ID are dynamic settings that change when a conversation is
allocated or deallocated.

ID~ Session: 38048

S•ssion ID: 39048

Pol•r T9,. : @ a;ddtr Q 1st Spkr

Cony ID: 0
Prog ID: 0

Figure 12-18
A session display window

12-22 Chapter 12: The MacAPPC Administration Program

,/"'•-J
'"" __ /}

Session ID

Session ID specifies the identifier number of the LU-LC session. This number is
assigned by the Administration program. Each session ID is unique in the network.

Polar Type (Polarity type)

Bidder: The half-session is a bidder, as determined during the bind, and may not
initiate a bracket without requesting permission from the first speaker.

1st Spkr (first speaker): The half-session is a first speaker, as determined during the
bind, and may initiate a bracket.

Conv ID (Conversation ID)

Conv ID specifies the conversation identifier that is using this session. If the session is
not being used by a conversation, this value is 0.

Prog ID (Program ID)

Prog ID specifies the transaction program ID of the program that is using this session.
If the session is free, this value is 0.

Managing network components and sessions
MacAPPC makes managing the network simple by providing a convenient user
interl'ace to assist you in updating the server window, starting and stopping CNOS, and
activating and deactivating components and sessions. ·

Updating the server window
To update the most current information for all network components and sessions,
choose Update from the Server menu. The spinning beach ball appears while the
server is polled and disappears when the current information is displayed. The
Administration program displays the most current information for all network
components and sessions.

Important

The state of the MacAPPC server can change without the Administration program
being aware of it. For example, transaction programs can allocate conversations, or a
remote node can activate a session. In general, it is a good idea to update the server
window before activating or deactivating components.

Managing network components and sessions 12-23

Starting and stopping CNOS

CNOS (change number of sessions) is the SNA service transaction program that
negotiates session limits over modes between LL's that support parallel sessions.
Essentially, it is a TP that is allocated and executes one routine,
COProcessSessionLirnit.

CNOS is invoked whenever a remote node (or local node in the intranode case)
attempts to initialize, change, or reset session limits on user modes between LUs that
support parallel sessions. These three routines are known as CNOS routines. Note that
if the remote node never issues any of these routines (that is, all CNOS routines are
issued locally), CNOS does not need to be present on the local node. The
Administration program considers activating a mode the same as intializing session
limits to their defined maximums. Deactivating a mode is equivalent to resetting
session limits. The Administration program does not issue the change session limits
routine.

The CNOS TP provided with MacAPPC is started and stopped from within the
Administration program, but runs independently from applications. Thus, you can
quit the Administration program while one or more CNOS TPs are still running. A
CNOS TP can only be started from the Macintosh II that the seiver resides in. When a
seiver is stopped, the Administration program first stops all CNOS TPs for the seiver.
If more than one seiver is on a Macintosh II, CNOS TPs can be started for each.

To start a CNOS TP, first display a MacAPPC server from the Macintosh II it resides in.
Then choose Start CNOS from the Server menu. The count of CNOS TPs in process
locally is displayed at the bottom of the server window. The count is incremented by
one when a CNOS TP is started. To stop a CNOS TP, choose Stop CNOS from the
Seiver menu. The count of CNOS TPs in process is decremented by one when a CNOS
TP is stopped. If a CNOS TP is currently processing a CNOS routine, the
Administration program waits for it to complete the processing before stopping.

There is a small delay after CNOS has finished processing before it is reattached to the
server. During this time it is possible for another CNOS routine to arrive for
processing and cause a failure because CNOS is not available. Thus, if you expect
frequent requests to modify session limits, you may wish to start multiple instances of
the CNOS TP so that one is always available.

CNOS is allocated over the SNASVCMG mode. This mode is defined for all remote
LUs that support parallel sessions. Initializing the SNASVCMG mode does not require
CNOS to be present since the session limits for this mode are defined by SNA. This
mode must be initialized before any user modes because it is needed by CNOS to
communicate.

In summary, you need to start one or more CNOS TPs when at least one LU-LU pair has
the SNASVCMG mode defined (implying parallel sessions are supported). Either the
remote node issues CNOS routines or the configuration is intranode, that is, both LUs
reside within the MacAPPC server.

12-24 Chapter 12: The MacAPPC Administratiqn Pr~gram

(

(

Activating network components and sessions
Once a MacAPPC server has been started, network components and sessions need to
be activated from the server window before actual communication can take place.
Activated network components are prefLxed with a dot"•" in the server window.
Active sessions are indicated by the existence of a session number. An activated mode
is a mode that has had session limits initialized, that is, the current number of sessions
is greater than zero. Mode activity may be monitored by updating the mode display
and noting the number of active sessions, first speakers, and bidders.

Order of activation

In general, the order of component and session activation should be as follows:

1. Lines

2. Stations (if multipoint or switched)

3. Local LUs

4. SNASVCMG modes

5. User modes

6. Sessions

Lines

To activate a line, select the line and choose Activate from the Server menu. To
activate all of the lines on the list, click the title of the list (Lines) and choose Activate
from the Server menu., Activate the line before activating the station.

Stations

To activate a station, select the station and choose Activate from the Server menu. To
activate or deactivate all of the stations on the list, click the title of the list (Stations)
and choose Activate from the Server menu. The dialog box in Figure 12-19 appears to
prompt you for the activate type.

You need to activate the station only after activating a switched or multipoint line.
With a dedicated (leased) line, the station is activated when contact with the remote
node is made.

Please select an actiuate type to
actiuate station "PRRTt ". ·

Lconnect Enable Dial In n Cancel B

Figure 12-19
Activating a station

Managing network components and sessions 12-25

Connect: For a multipoint line, an attempt will be made to connect, and for a
switched line, an attempt will be made to dial out. If a phone number has been defined
for the station and logging is turned on, a message indicating that the number should
be dialed will be displayed in the log window.

Enable Dial In: For a switched line, the line will be enabled for dial-in capability.

Local LUs

To activate a local LU, select the local LU and choose Activate from the Server menu.
To activate all of the local LUs on the list, click the title of the list (Local LUs) and
choose Activate from the Server menu.

Remote LUs

Remote LUs cannot be activated. The remote LUs defined by the configuration file are
displayed in the Remote LUs list in the server window.

Modes

Activating a mode in the Administration program means that session limits are
initialized to their defined maximums. To initialize session limits of a mode, select an
unitialized (deactivated) mode and choose Activate from the Server menu.

If the SNASVCMG mode is defined for a remote LU, the remote LU supports parallel
sessions. You must activate the SNASVCMG mode first before any user modes. If the
remote node is going to initialize session limits on any user mode that supports
parallel sessions you muse start a CNOS TP for the server. A mode can be activated
when the current number of maximum sessions is zero. Mode activity may be
monitored by updating and displaying the mode window and noting the number of
active sessions, first speakers, and bidders. Once activated, the current number of
maximum sessions, first speaker sessions, and bidder sessions are updated. When
session limits are initialized, the node tries to bring up the defined number of
prebound first speaker sessions.

Sessions

To activate a session for a mode, select an activated (initialized) mode and choose
Activate from the Server menu. For each session activated, the active number of
sessions and active first speaker sessions are updated in the mode window. When a
session is activated by the remote node, the active number of sessions and active
bidder sessions are updated in the mode window only when you choose the Update
command from the Server menu.

Deactivating network components and sessions
Activated components and sessions are deactivated from the server window.
Components and sessions are generally deactivated in the opposite order that they
were activated.

12-26 Chapter 12: The MacAPPC Administration Program

.. /)

(

c:

Order of deactivation

In general, the order of component and session deactivation should be as follows:

1. Sessions

2. User modes

3. SNASVCMG modes

4. Local LUs

5 . Stations (if multipoint or switched)

6. Lines.

Sessions

To deactivate a session, select the session and choose Deactivate from the server
menu. To deacrivate all of the sessions on the list, click the title of the list (Sessions)
and choose deactivate from the Server menu. The dialog box in Figure 12-20 appears
to prompt you for the deactivate type.

Please select a deactiuate type to
deactiuate session 36156.

Normal Cleanup ([Cancel)J

Figure 12-20
Deactivating a session

Normal: The session is to be deactivated only after any current conversation is
deallocated.

Cleanup: The session is to be deactivated immediately, regardless of whether or not a
conversation is using it.

For each session deactivated, the active number of sessions is updated in the mode
display window. Depending on the polarity of the session, either the active number of
first speaker sessions or of bidder sessions may be updated as well. When a session is
deactivated, it no longer exists, and therefore disappears from the list of sessions in
the server window.

Modes

Deactivate user modes before deactivating the SNASVCMG mode. A mode can be
deactivated when the current number of maximum sessions (as displayed in the mode
window) is greater than zero. Deactivating a mode means that its session limits are
reset to zero. To deactivate a mode, select an activated (initialized) mode and choose
Deactivate from the Server menu. To deactivate all of the modes on the list, click the
title of the list (Sessions) and choose Deactivate from the Server menu. The dialog box
in Figure 12-21 appears to prompt you for mode deactivation parameters. These are
the settings to reset sessions.

Managing network components and sessions 12-27

Please select deactiuation
parameters to deactiuate
mode "MOOE!":

Responsible LU: @::·Loe al ()Remote

Drain Source: ()Yes

Drain Target: ()Yes

Force Reset: ()Yes

[Cancel)

figure 12-21
Deactivating a mode

~:·"'o

(!:No

(!;.No

n OK D

Responsible LU: This setting specifies the LU responsible for deactivating any active
sessions. Either the local or remote LU may be chosen.

Drain Source: This setting specifies whether or not the source LU can drain its
allocation requests. For parallel-session connections, the target LU cannot negotiate
this setting. Yes specifies that the source LU can drain its allocation requests. The
source LU continues to allocate conversations to the sessions until no requests are
awaiting allocation, at which time its draining is ended. No specifies that the source LU
cannot drain its allocation requests. All requests currently awaiting allocation, or
subsequently issued, at the source LU are rejected.

Drain Target: This setting specifies whether or not the target LU can drain its allocation
requests. Yes specifies that the target LU can drain its allocation requests. The target
LU continues to allocate conversations to the sessions until no requests are awaiting
allocation, at which time its draining is ended. All allocation requests issued at the
target LU after draining is ended are rejected. ~o specifies that the target LU cannot
drain its allocation requests. All requests currently awaiting allocation, or
subsequently issued, at the target LU are rejected.

Force Reset: This setting specifies whether or not the source LU is to force the resetting
of its session limits when certain error conditions occur that prevent successful
exchange of the CNOS request and reply. Yes specifies that the session limit is to be
reset upon either successful or unsuccessful completion of the exchange of the CNOS
request and reply, except for certain error conditions. No specifies that the session
limit is to be reset only upon successful completion of the exchange CNOS request and
reply.

Local LUs

To deactivate a local LU, select the local LU and choose Deactivate from the Server
menu. To deactivate all of the local LUs on the list, click the title of the list (Local LUs)
and choose Deactivate from the Server menu.

12-28 Chapter 12: The MacAPPC Administration Program

(

Stations

You need to deactiv<ite the station only for a switched or multipoint line. To deactivate
a station, select the station and choose Deactivate from the Server menu. To
deactivate all of the stations on the list, click the title of the list (Stations) and choose
Deactivate from the Server menu. The dialog box in Figure 12-22 appears to prompt
you for a deactiYate type.

Please select a deac tiuate type to
deactiuate station "PARTl ".

Disconnect

Figure 12-22
Deactivating a station

Disconnect: The connection to the station is broken immediately.

Disable Dial In: The current connection is maintained. Any future dial-in attempt is
not allowed.

Lines

Deactivating a line terminates the connection. To deactivate a line, select the line and
choose Deactivate from the Server menu. To deactivate all of the lines, select the title
of the list (Lines) and choose Deactivate from the Server menu.

Logging
MacAPPC provides a logging facility to record all internal server messages through a
specified MacAPPC server.

Use the Active command from the Log menu to enable the logging functions of the
MacAPPC server according to the settings specified with the Settings command of the
Log menu. The Show Log command may be used to toggle the display of the logging
window on and off. The Clear Log command is used to erase previous MacAPPC server
Jog data. A server must be started for the Active and Settings commands to be active.
The log messages are stored in a text file named "Admin Log." The Administration
program looks for this file in the System folder and in the folder containing the
Administration program. If the Administration program cannot find "Admin Log,"
the program creates the file.

Log settings options
The logging facility permits filter criteria to be used on log data that is collected and
displayed. Criteria include the class, type, and severity of the messages.

Logging 12-29

To specify the criteria, choose the Settings command from the Log menu. The dialog
box in Figure 12-23 appears.

Clan:

Type:

0 Node-operator

O Development

0 Informational

0 Error

0 Logging

OTrace

0 Notification

D Diagnostic

90 $0 70 60 so 40 30 20 10

Seuerity: m11U1111mmlinmmmi11111mn1inm11111U1111m111Um1111mi I ,

Low C>•t•ll L•v•l rt~,

Check for messages every IU!I! second$.

(Cancel

Figure 12·23
Log settings selection

Class

Node-operator: Node-operator messages are logged.

Logging: Logging messages are logged.

Development: Development messages are logged.

Trace: Trace messages are logged.

Type

Informational: Informational messages are logged.

Notification: Notification messages are logged.

Error: Error messages are logged.

Diagnostic: Diagnostic messages are logged.

Severity

A severity control is used to select the detail level of logging messages. This control
may be adjusted for messages of low to high detail. The severity control is moved
similarly to the network display control. To use the severity control, move the cursor
to the right end of the shaded area. Drag the cursor to move the control. The control
will move to the nearest increment of ten on the scale. The detail level of the logging
messages decreases when the control is moved to the left and increases when it is
moved to the right.

Check for messages every _ seconds

The information in the logging window can be periodically updated by the
Administration program. The information update period is specified in seconds. The
default setting is 10.

12-30 Chapter 12: The MacAPPC Administration Program

./I

(
Log Window

To display the log windmv, choose the Show Log command from the Log menu. The
window in Figure 12-24 appears. Log data saved in the current log is displayed and
subsequent log data is displayed as it is received. Log messages that are not visible can
be brought into view using the scroll bar.

Admin Log

e • e START OF tlESSAGES • • •

07/27/88 15 24 27 Logging started for ser..,.•er "MocAPF'C Server"

07/27/8S 15:24:29 3500:;:521 Node-opoirator Informational 30 Server sndnmsg
TEXT: Link LINEt Sl.JC:cess:ful ly activated

07/27/88 15.24.29 35003555 Logging Informational 30 Server pnp3520
TEXT: Lin~. PAATl \ID request sent

07/27/88 15 24 41 Logging ended for :server "MacAPPC Server"

• • • ENO OF MESSAGE~· • • •

Figure 12-24
The log window

To clear the window, choose Clear Log from the Log menu and click OK when the alert
box appears.

Stopping a MacAPPC server
You may terminate the currently displayed server at any time by choosing Stop Server
from the Server menu. You can only stop a server from the Macintosh II it resides in.
The confirmation alert in Figure 12-25 appears.

Important

This command should be used carefully, as it may result in an abrupt termination of
the server. Ideally, all sessions and network components should be deactivated first.
See the earlier section on deactivating network components and sessions.

Stopping a MacAPPC server 12-31

The Adminstration program stops all CNOS TPs for the server automatically.

OK

Are you sure you want to stop the
serner named "MacRPPC Serner"?

(tancel]

figure 12·25
Stopping a server

12-32 Chapter 12: The MacAPPC Administration Program

(

Appendixes

Appendix A

MacAPPC Interface File

This appendix contains the Pascal interface file for the MacAPPC drivers. For the C and
assembly-language interfaces, see APPC.h and APPCEqu.a on the distribution disk.

The information in this file is also available elsewhere in this document. Each routine is
documented in the driver chapters (Chapters 4-7). The relevant data structures and data
types are found at the end of each driver chapter.

A-1

{***}
{ APPC.p -- MacAPPC Interface File
{
{
{
{

Pascal Language Interface to the MacAPPC Drivers
Copyright Apple Compui::er, Inc. 198 7, 198 8
All rights reserved.

{********~**********~*****~***~***}

UNIT

INTERFACE

USES

CONST

{SU
{SU
{SU
{SU
{SU

MemTypes.p}
QuickDraw.pl
OSintf.p}
Toolintf.p}
AppleTalk.p}

.r..PPC;

MemTypes,
QuickDraw,
OSintf,
Toolint.f,
AppleTalk;

{***}
{GENERAL CONSTANTS }
{***}

{ Block sizes

kAPPCSize
kCVSize
kCOSize
kNOSize
kTPSize

kTPCBSize
kCVCBSize

kLineSize
kSDLCSize

kMsgSize
kMsgFieldSize

kMaxPIP
kMaxConvID

String sizes

kMaxName
kMaxTPName
kMaxSecName
kMaxMapName
kMaxPhoneNumber
kMaxLogData
kMaxLUWName
kMaxLUWID
kMaxLUWCorr
kMaxLUPswd
kMaxExchID
kMaxCPUID
kMaxSDLCAddr

Define Operation values

kignoreParam
kFuncNotSupp
kFuncSupp
kReplaceParam
kDeleteParam
kAddParam
kNextEntry

2706;
2706;
192;
108;
1628;

3000;
3500;

17;
17;

44;
2;

256;
256;

8;
64;
10;
64;
20;
200;
17;
6;
8;
16;
8;
12;
2;

(-1);
0;
1;
0;
1;
0;
0;

A-2 Appendix A: MocAPPC Interface File

Maximum APPC Parameter Block size
Conversation Parameter Block size
Control Operator Parameter Block size
Node Operator Parameter Block size }
Transaction Program Parameter Block size

Transaction Program Control Block size
Conversation Control Block size l

Maximum Line size
SDLC Line size} ,.,)

Message Structure size }
Message Data Field size }

Maximum # of PIPs }
Maximum # of ConvIDs

Maximum generic string length
Maximum TP Name length }
Maximum Security Field length
Maximum Map Name length }
Maximum phone number length
Maximum log data length }
Maximum LUW Name length }
Maximum LUW ID length }
Maximum LUW correlator length
Maximum LU-LU password length (hex)
Maximum Exchange ID length (hex)
Maximum CPU ID length (hex) }
Maximum SDLC address length (hex)

{***}
{ APPC CONSTANTS
{**~********************}

appcOpCode values

kMCJl.llocate
kMCConf irm
kMCConfirmed
kMCDeallocate
kMCFlush
kMCGetAttributes
kMCPostOnReceipt
kMCPrepareToReceive
kMCReceiveAndWait
kMCReceiveimmediate
kMCRequestToSend
kMCSendData
kMCSendError
kMCTest

kCVBackout
kCVGetType
kCVSyncPoint
kCVWait

kBCAllocate
kBCConfirm
kBCConf irmed
kBCDeallocate
kBCFlush
kBCGetAttributes
kBCPostOnReceipt
kBCPrepareToReceive
kBCReceiveAndWait
kBCReceiveimmediate
kBCRequestToSend
kBCSendData
kBCSendError
kBCTest

kCOChangeSessionLimit
kCOinitializeSessionLimit
kCOProcessSessionLimit
kCOResetSessionLimit

kCOActivateSession
}

kCODeactivateSession

kCODefineLocalLU
kCODefineRemoteLU
kCODef ineMode
kCODefineTP
kCODisplayLocalLU
kCODisplayRemoteLU
kCODisplayMode
kCODisplaySession
kCODisplayTP
kCODelete

kNOActivateLine
kNOActivateLU
kNOActivateNode
kNOActivateStation
kNODeactivateLine
kNODeactivateLU
kNODeactivateNode
kNODeactivateStation

kNODefineMessageQueue
kNODisplayMessage

100;
101;
102;
103;
104;
105;
106;
107;
108;
10 9;
110;
111;
112;
113;

114;
115;
116;
117;

118;
119;
120;
121;
122;
12 3;
124;
125;
126;
127;
12 8;
12 9;
130;
131;

200;
202;
203;
204;

205;

2 0 6;

207;
208;
2 0 9;
210;
211;
212;
213;
214;
215;
216;

300;
301;
302;
303;
305;
3 0 6;
307;
308;

304;
310;

Mapped Conversaticl'l routines

Type Independent routines

Basic Conversation routines

Control Operator CNOS routines

Control Operator Session control routines

Control Operator LU Definition routines

Node Operator Node Control routines

{ Node Operator Node Message routines

Appendix A: MacAPPC Interface File A-3

kNODisplayMessageQueue

kNODefineNode
kNODefineCP
kNODefineLine
kNODefineStation
kNODisplayNode
kNODisplayCP
kNODisplayLine
kNODisplayStation
kNODelete

kTPAttach
kTPDetach

kTPAsciiToEbcdic
kTPEbcdicToAscii

appcConvState values

kNullState
kResetState
kSendState
kReceiveState
kConfirmState
kConfirmSendState
kConfirmDeallocState
kDeallocState
kDeferState
kSyncPtState
kBackedOutState

309;

311;
312;
313;
314;
316;
317;
318;
319;
320;

400;
4 01;

403;
404;

O;
1;
2;
3;
4;
5;
6;
7;
8;
9;
10;

{ Node Operator Node Definition routines

{ Transaction Program Connection routines

{ Transaction Program Utility routines

not supported
not supported
not supported

{***}
CONVERSATION CONSTANTS

{***}

cvWhatRcvd values

kNullRcvd
kDataRcvd
kDataComplRcvd
kDataincomplRcvd
kLLTruncRcvd
kSendRcvd
kConfirmRcvd
kConfirmSendRcvd
kConfirmDeallocRcvd
kDataTruncRcvd
kFMHDataComplRcvd
kFMHDataincomplRcvd
kFMHDataTruncRcvd
kTakeSyncPtRcvd
kTakeSyncPtSendRcvd
kTakeSyncPtDeallocRcvd

cvOeallocType values

kSyncDealloc
kFlushOealloc
kAbendProgDealloc
kAbendSvcOealloc
kAbendTimerDealloc
kLocalOealloc
kConfirmDealloc
kAbendDealloc

cvPrepToRcvType values

kFlushRcv
kConfirmRcv
kSyncLevelRcv

0;
1;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
14;
15;

l;
2;
3;
4;
5;
6;
7;
8;

0;
1;
2;

A-4 Appendix A: MacAPPC Interface File

not supported
not supported
not supported

/ 'cj

~.~/

cvLockType values

kShortLock 0;
kLongLock 1;

(cvFillType values

kBufferFill 0 ;
kLLFill 1;

cvSyncType values

kNoSync 0;
kConfirrnSync 1;
kSyncPtSync 2; not supported)

cvReturnCtl values

kWhenAllocReturn 0;
kDelayAllocReturn 1;
kirnrnedAllocReturn 2;

cvSecType values

kNoSec 0;
kSarneSec 1;
kProgSec 2;

cvConvType values

kBasicConv O;
kMappedConv l;

cvErrorType values

kSvcError 0;
kProgError 1;
kAllocError 2; reserved }

cvTestType values

kPostTest O;
kReqToSendTest l;

{***}
MAPPING FUNCTION CONSTANTS

{***}

rncpbMapCrnd values

kSendMapping O;
kRcvMapping 1;

{ rncpbResult values

rncNoErr 0;
rncErr 1;
mcMapNarneErr 2;
mcDupMapNarneErr 3;

mcpbRcvMode values

kTruncMode 0;
kincomplMode 1;

Appendix A: MacAPPC Interface File A-5

{**~*********************~~*********************************~*****************}

CONTROL OPERATOR CONSTANTS
{***~******************~**********~************************************~******}

coP.espType values

kSrcResp O;
kTgtResp l;

coDeactType values

kNormalDeact O;
kCleanupDeact l;

coSyncType values

kConfirmModeSync
kSyncPtModeSync

kNoTPSync
kConfirmTPSync
kSyncPtTPSync

coConvType values

kMappedTPConv
kBasicTPConv
kEitherTPConv

coEnableType values

kEnableTP
kDisableTempTP
kDisablePermTF

coPolarType values

kBidderSess
kFirstSpkrSess

coPrivType values

kNoPriv
kCNOSPriv
kSessCtlPriv
kDefinePriv
kDisplayPriv
kSvcTFPriv

1;
2 ;

1;
2;
4 ;

0;
l;
2;

0;
1;
2;

0;
l;

0;
l;
2;
4;
8;
16;

not supported }

not supported }

coLclSecAccType and coRmtSecAccType values

kNoSecAcc 0;
kConvSecAcc 1;
kVerifSecAcc 2;

coSecReq values

kNoSecReq O;
kConvSecReq l;
kProfSecReq 2;
kUserSecReq 3;
kBothSecReq 4;

coReinitType values

kOperinit 0;
kPriLUinit 1;
kSecLUinit 2;
kEitherLUinit 3;

A-6 Appendix A: MacAPPC Interface File

{***~*}

NODE OPERATOR CONSTANTS
{*******~***}

(noDialType values

kConnectDial 0;
kDialinOnDial l;

kDisconnectDial 0;
kDialinOf fDial l;

noQueueClass values

kNoChangeQClass 0;
kNodeOperMsgsQClass l;
kLogMsgsQClass 2;
kDevelMsgsQClass 4;
kTraceMsgsQClass 8;

noQueueType

kNoChangeQType 0;
kinfoMsgsQType l;
kNotifMsgsQType 2;
kErrorMsgsQType 4;
kDiagMsgsQType 8;

noQueueSev values

kNoChangeQSev 0;
kReservedQSev l; reserved }

kDevelMsgsQSev l 0;
kLowLevelinfoMsgsQSev 20;
kNormalinfoMsgsQSev 30;
kErrorMsgsQSev 4 0;
kProgErrorsQSev 90;

(noAccessType values

kSDLCAccess 0;

noLineStatus values

kLineReset 1;
kLinePendActive 2;
kLineActive 3;
kLinePendReset 4;

noLineType values

kSDLCLine 0;

noALSStatus values

kStationReset l;
kStationPendResp 2;
kStationPendCont 3;
kStationActive 4;
kStationPendReset 5;
kStationResetPendResp 6;

Appendix A: MacAPPC Interface File A-7

{***}
{ SDLC LINE CONSTANTS }
{**********~**}

sdlcLineNum values

kSDLCLinel l;
kSDLCLine2 2;
kSDLCLine3 3;
kSDLCLine4 4;

sdlcRoleType values

kSOLCSecondary O;
kSDLCl?rimary l;
kSDLCNeqotiable 2;

sdlcConnType values

kSDLCLeased O;
kSDLCMultil?oint l;
kSDLCSwitched 2;

sdlcDuplexType values

kSDLCFullDuplex 0;
kSDLCHalfDuplex 1;

sdlcLineSpeed values

kSDLC300 300;
kSDLC1200 1200;
kSDLC2400 2400;
kSDLC4800 4800;
kSDLC9600 9600;
kSDLC19200 19200;

sdlcNRZIType values

kSDLCNRZ 0;
kSDLCNRZI l;

{***}
{ TRANSACTION PROGRAM CONSTANTS }
{***}

tpAttachType values

kLtJAttach
kSrvrAttach
kWaitAttach

tpDetachType values

kNormalDetach
kAbortDetach

{ tpWaitTime values

kMaxWait
kConfigWait

TY!?E

O;
l;
2;

0;
1;

(-1) ;
0;

A-8 Appendix A: MacAPPC Interface File

wait time
wait time

forever }
local LU wait time }

(

c

{***}
MAPPED CONVERSATION PARAMETER BLOCK }

{***}

APPCMCPB = RECORD
mcpbMapCmd SignedByte; { MC request
mcpbResult INTEGER; { mapper return code
mcpbMapName StringPtr; { l!\ap name pointer }
mcpbDataPtr Ptr; { data pointer }

mcpbDataSize INTEGER; { data length }
mcpbBuffPtr Ptr; { buffer pointer }
mcpbBuffSize INTEGER; { buff er length }
mcpbTransMapName Boolean; { map name translation required }
mcpbFMHdrs Boolean; { FMH data contains FM headers }

mcpbRcvMode SignedByte; { receive mode }
mcpbAPPCPBPtr Ptr; { APPC parameter block pointer

END;

APPCMCPBPtr = "APPCMCPB;

{***}
{ LINE STRUCTURES }
{***}

APPCLineType =

APPCLineRec =

CASE

sdlcLine:
(
sdlcMaxBTU
sdlcMaxRetry
sdlcidleTime
sdlcNPRcvTime
sdlcMaxIFrame
sdlcLineSpeed
sdlcLineNum
sdlcRoleType
sdlcConnType
sdlcDuplexType
sdlcNRZIType
) ;

END;

APPCLineRecPtr =

APPCLineType OF

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;

(sdlcLine);

RECORD

maximum BTU length }
maximum retries }
idle time before recovery
non-productive receive time }
maximum I-frames before polling
line speed }
Line Number
SDLC role }
connection type
duplex type }
NRZI support }

"APPCLineRec;

{***}
(NODE MESSAGES STRUCTURES }
{***}

APPCNOMsg =
msgDataSize
msgMonth
msgDay
msgYear
msgHour
msgMinute
msgSecond
msgID
msgConst
msgClass
msgType
msgSevType
msgMUType
msgCorrID
msgSenseCode
msgSenseExt

INTEGER;
SignedByte;
SiqnedByte;
SignedByte;
SignedByte;
SiqnedByte;
SiqnedByte;
LONGINT;
SignedByte;
SiqnedByte;
SignedByte;
SignedByte;
SiqnedByte;
INTEGER;
INTEGER;
INTEGER;

RECORD
{ Length of message unit }
{ Month }
{ Day }
{ Year }
{ Hour }
{ Minute }
{ Second }
{ Message ID
{ Structure constant
{ Class of message }
{ Type of message }
{ Severity of message }
{ MU type (kLogMU, kDumpMU)
{ Correlation number }
{ Send Check Sense Code
{ Check Sense Extention

Appendix A: MacAPPC Interface File A-9

msgProcID
msgProcName
msgFieldCount

END;

A?PCNOMsgField =

msgFieldType
msgField~ataSize

END;

APPCNOMsgPtr =
APPCNOMsgFieldPtr =

INTEGER; { Procedure ID }
PACKED AP.RAY [l .. 16] OF CHAR; { Name of source module)
INTEGER; { Length of data fields }

SignedByte;
SignedByte;

RECORD
{ Type of data }
{ :,ength of field that follows

"APPCNOMsg;
"APPCNOMsgField;

{***~************w************}

PROTOCOL STRUCTURES
{********************~**}

{ APPC Parameter Block }

APPCParamType (cvParam,coParam,noParam,tpParam);

APPCParamBlock =
qLink
qType
ioTrap
ioCmdAddr
ioCompletion
ioResult
ioNamePtr
ioVRefNum
appcRefNum
appcOpCode
appcHiResult
appcLoResult
appcConvState
appcUserRef

CASE

cvParam:
(
cvTPCBPtr
cvCVCBPtr
cvPIPBuffPtr
cvPIPBuffSize
cvMapBuffPtr
cvMapBuffSize
cvConvID
cvProgID
cvRmtLUName
cvFullRmtLUName
cvFullLclLUName
cvModeName
cvRmtProgName
cvUserName
cvUserPswd
cvUserProf
cvLUWName
cvLUWID
cvLUWCorr
cvLUWSeq
cvDataPtr
cvDataSize
cvMapName
cvMapProc
cvSenseData
cvReqToSendRcvd
cvFMHdrs
cvWhatRcvd
cvDeallocType
cvPrepToRcvType
cvLockType

RECORD
QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
SignedByte;
LONGINT;

APPCParamType OF

Ptr;
Ptr;
Ptr;
INTEGER;
Ptr;
INTEGER;
LONGINT;
LONGINT;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
INTEGER;
Ptr;
INTEGER;
StringPtr;
ProcPtr;
LONGINT;
Boolean;
Boolean;
SignedByte;
SignedByte;
SignedByte;
SignedByte;

DRVR QElem pointer
DRVR queue type }

DRVR IO trap }

DRVR IO command pointer
DRVR IO completion routine pointer
DRVR IO result }

DRVR IO name pointer }
DRVR IO volume refNum)
APPC driver refNum }
APPC type of call }

APPC major result code
APPC minor result code
APPC conversation state
for your use }

{ TPCB pointer }
{ CVCB pointer }
{ PIP buffer pointer
{ PIP buffer size }
{ mapped conversation
{ mapped conversation
{ conversation ID }

buffer pointer
buffer size }

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{

{
{
{
{
{
{
(

transaction program ID J
remote LU name pointer)
fully qualified RLU name pointer
fully qualified LLU name pointer
mode name pointer }
remote program name pointer
user name pointer }
user password pointer }
user profile pointer }
Logical Unit of Work LU name pointer}
LUW identifier pointer)
LUW conversation correlator pointer }
LUW sequence number }
data buffer pointer)
data buffer size }
map name pointer }
mapping procedure pointer
reserved }
request to send received }
FM headers in data record }
what was received }
deallocation type }
prepare to receive type
prepare to receive lock

A-10 Appendix A: MacAPPC Interface File

(

cvFillType
cvSyncType
cvReturnCtl
cvSecType
cvConvType
cvErrorType
cvTestType
cvPIPUsed
cvCVCBindex
cvCVCBList
cvPIPPtr
cvPIPSize
l ;

coParam:
(

coTPCBPtr
coCVCBPtr
coLclLUName
coRmtLUName
coModeName
coLclProgName
coNetName
coNetQual
coCPName
coALSName
coCNOSALSName
coUserName
coUserPswd
couserProf
coLUPswd
coConvID
coProgID
coSessID
coLclLUID
coWaitTime
coDrainSrc
coDrainTgt
coForceRst
coDrainLclLU
coDrainRmtLU
coLUActive
coNextLclLUName
coNextRmtLUName
coNextModeName
coNextLclProgName
coNextUserName
coNextSessID
coNetNameOp
coNetQualOp
coLUPswdOp
coSecOp
coLUWSupp
coParSess
coQueueBINDs
coDataMapping
coFMHDataSupp
coPIPReq
coPIPCheck
coPIPCount
coSessCrypt
coBlankMode
coQueueINITs
coConvSecType
coSyncType
coConvType
coDeactType
coEnableType
coRespType
coPolarType
coPrivType
coLclSecAcc

SignedByte; logical record receive
SignedByte; synchronization level }
SignedByte; allocate return control
SignedByte; security type }
SignedByte; conversation type
S ignedByt e; send error type }
SignedByte; test type }
Boolean; program parameters used }
INTEGER; { CVCB pointer list index }
ARRAY (1. .kMaxCVCB] OF Ptr; { list of CVCB ptrs }
ARRAY[l. .kMaxPIP] OF Ptr; { array of PIP ptrs }
ARRAY[l..kMaxPIP] OF INTEGER; {array of PIP sizes}

Ptr;
Ptr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
LONGINT;
LONGINT;
LONGINT;
SignedByte;
INTEGER;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
INTEGER;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;

{ TPCB pointer }
{ CVCB pointer }
{ local LU name pointer
{ remote LU name pointer }
{ mode name pointer }
{ local TP name pointer }
{ network name pointer }
{ network qualifier pointer
{ control point name pointer }
{ adjacent link station name pointer
{ CNOS station name pointer }
·{ user name pointer }
{ user password pointer }
{ user profile pointer }
{ LU-LU password pointer
{ conversation ID }
{ transaction program ID
{ session ID }
{ local LU ID }
{ wait time in secs }
{ reset drain source }
{ reset drain target }
{ force reset }
{ drain local LU }
{ drain remote LU }
{ LU activation status }
{ display next local LU }
{ display next remote LU }
{ display next mode }
{ display next local TP }
{ display next user }
{ display next session ID
{ network name operation }
{ network qualifier operation
{ password operation }
{ security operation }
{ LUW support }
{ parallel session support
{ queue BINDS }
{ data mapping support
{ FMH data support }
{ PIP required }
{ check PIP count }
{ PIP count }
{ session level cryptography
{ blank mode option }
{ queue session-initiation requests
{ conversation level security }
{ synchronization level }
{ conversation type }
{ deactivate type }
{ enable status type }
{ deactivate responsibility
{ session polarity }
{ privilege }
{ local LU security acceptance

Appendix A: MacAPPC Interface Ale A-11

coRmtSecAcc
coSecReq
coReinitType
coTermCount
coMaxTP
coSendPacing
coRcvPacing
coMaxRUHiBound
coMaxRULoBound
coDefLUMaxSess
coActLUSess
coDefMaxSess
coCurMaxSess
coActSess
coDefMinFirstSpkrs
coCurMinFirstSpkrs
coActFirstSpkrs
coDefMinBdrs
coCurMinBdrs
coActBdrs
coDefPBFirstSpkrs
) ;

noParam:
(
noTPCBPtr
noLclLUName
noALSName
noLineName
noCPName
noQueueName
noPhoneNumber
noALSAddr
noExchID
noCPUID
noCorrID
noDataPtr
noDataSize
noMonTimer
noAccessType
noStopSrvr
noDialType
noQueueEnable
noQueueClass
noQueueType
noQueueSev
noWaitForMsg
noNextALSName
noNextLineName
noNextCPName
noNodeMsgs
noLogMsgs
noLineStatus
noLineType
noALSStatus
noLinePtr
l ;

tpParam:
(
tpTPCBPtr
tpCVCBPtr
tpPIPBuffPtr
tpPIPBuffSize
tpMapBuffPtr
tpMapBuffSize
tpLclLUName
tpLclProgName
tpSrvrEntityPtr
tpConvID
tpProgID
tpWaitTime

SignedByte;
SignedByte;
SignedByte;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

Ptr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
StringPtr;
INTEGER;
Ptr;
INTEGER;
INTEGER;
SignedByte;
Boolean;
SignedByte;
Boolean;
SignedByte;
SignedByte;
SignedByte;
Boolean;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
Ptr;

Ptr;
Ptr;
Ptr;
INTEGER;
Ptr;
INTEGER;
StringPtr;
StringPtr;
EntityPtr;
LONGINT;
LONGINT;
INTEGER;

A-12 Appendix A: MacAPPC Interface File

remote LU security acceptance
security required }
single session reinitiation
termination count)
maximum attached TPs
send pacing window }
receive pacing windo;; }
maximum RU upper bound }
maximum RU lower bound }
defined max LU sessions }
active LU sessions }
defined max sessions
current max sessions
active sessions }
defined min first speakers
current min first speakers
active first speakers }
defined min bidders }
current min bidders)
active bidders }
prebound first speakers

TPCB pointer l
local LU name pointer
adjacent link station name pointer
line name pointer }
control point name pointer
queue name pointer }
phone number pointer }
ALS Address pointer }
exchange ID pointer)
CPU ID pointer }
correlation ID)
data buffer pointer
data buffer length }
wakeup timer for monitor
Access Type }
halt server }
dial type }
queue enabled
queue class }
queue type }
queue severity level
block if no message in queue }
next adjacent link station name
next line name)
next CP name }
enable node messages
enable logging messages
line status }
line type }
station stat us
line structure pointer

TPCB pointer }
CVCB pointer }
PIP buffer pointer
PIP buffer size }
mapped conversation buffer pointer
mapped conversation buffer size }
local LU name pointer }
local program name pointer
server entity pointer }
conversation ID }
transaction program ID
wait time in seconds }

(_

tpAttachType
tpDetachType
tpMapProc
tpDataPtr
tpDataSize
tpPIPPtr
tpFI?Size
) ;

E" •.
., • ..,, I

APPCParamBlockPtr =
APPCParamBlockHandle=

END.

SignedByte; attach type }
SignedByte; detach type }
ProcPtr; mapping proced'..lre pointer
Ptr; data buffer pointer }
INTEGER; { data buffer size }
ARRAY[l. .kMaxPIP] OF Ptr; { array of PIP ptrs }
ARRAY[l. .kMaxPIP] OF INTEGER; { array of PIP sizes}

"APPCParamBlock;
"APPCParamBlockPtr;

Appendix A: MocAPPC Interface File A-13

(Appendix B

MacAPPC Errors File

This appendix contains the Pascal interface errors file for the MacAPPC drivers. For the
C and assembly-language error interfaces, see APPCErrors.h and APPCErrorsEqu.a on
the distribution disk.

The information in this file is also available elsewhere in this document. Appendix C
"MacAPPC Result Codes~ gives a complete listing of all values for appcHiResult and
appcLoResult and provides a detailed explanation of the meaning of each
combination of codes.

8-1

{***

APPCErro!"s.p MacA?PC Error Values

Pascal Lar:guage Interface to
Copyright A;:iple Computer, Inc.

the MacAPl?C
1986-1988

E'rivers

All rights !"eserved.
{***

UNIT APl?CErrors;

INTERFACE

CONST

{******************************~**

APl?C routine return codes
{*********************************~~*~**

appcNoErr
appcExec
appcFail

0; successful completion
1; { asynchronous execution active }
(-5000); { error, see appcResult field

{***

Major result codes := appcHiResult
{***

{noErr
usageErr
badComplErr
stateErr
allocErr
progErr
deallocErr
ctlOpErr
nodeOpErr

0;
l;
2;
3;
5;
7;
9;
10;
11;

Completed Normally
Aborted, Usage Error
Unsuccessful }
Aborted, State Error
Allocation Error
Program Error }
Deallocated }
Control Operator Error
Node Operator Error

{**~******

Minor result codes := appcLoResult
{***

noErr

normalCompl
negotCompl
dataAvail
ctlAvail
badErr

usageErr

notAttachErr
dupAttachErr
unkConvErr
badAttachErr
tpcbErr
tpNameErr
lookupErr
connectErr
noParamErr
srvrEntityErr
lclLUNameErr
attachTypeErr
unkLclLUNameErr
availLUErr

0;
l;
3;
4;
8 6;

l;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
14;

OK as Specified }
OK as Negotiated)
TEST - DATA }
TEST - NO DATA)
Default/undefined

program not ATTACHed }
duplicate ATTACH attempted
invalid conversation (resource unknown)
routine not valid for ATTACH type
TPCB not set }
Tl? name invalid }
server lookup failed }
server connect failed }
null struc parm passed }
ATTACH: bad server entity }
ATTACH: LU name required }
ATTACH: type invalid)
ATTACH: LU unknown }
ATTACH: LU not available

B-2 Appendix B: MacAPPC Errors File

(

(

(~·

lclProgNameErr
badConvErr
badWaitTimeErr
procSpaceErr
procLimitErr
cvcbErr
dataErr
detachTypeErr
rmtLUNameErr
modeNameErr
rmtProgNameErr
unkRmtLUNameErr
unkModeNameErr
convTypeErr
mapConvErr
basicConvErr
returnCtlErr
delayAllocErr
immedAllocErr
syncTypeErr
badSyncErr
pipErr
badPipErr
badSecTypeErr
secTypeErr
userNameFmtErr
userPswdFmtErr
pipBuffErr
mapBuffErr
badSyncTypeErr
sendReqErr
recvRspErr
verbReqErr
deallocTypeErr
prepToRcvTypeErr
lockTypeErr
fillTypeErr
dataSizeErr
badLLErr
badPSHdrLLErr
errorTypeErr
badErrorTypeErr
logDataErr
cvcbindexErr
cvcbListErr
badPostConvErr
postConvErr
badWaitConvErr
testTypeErr
postActErr
notAuthCOErr
sessLimitErr
modeSVCMGRErr
zeroSessLimitErr
respTypeErr
sessSumErr
deactTypeErr
drainTgtErr
drainSrcErr
forceRstErr
badSessIDErr
nextSessErr
nameErr
lineErr
luErr
puErr
dialTypeErr
queueNameErr
sevTypeErr

invLclLUNameErr
invRmtLUNameErr

15;
18;
19;
20;
21;
25;
2 6;
27;
30;
31;
32;
33;
34;
35;
3 6;
37;
38;
,3 9;
4 0;
41;
42;
4 3;
44;
45;
4 6;
47;
4 8;
4 9;
50;
60;
61;
62;
63;
70;
8 0;
81;
90;
91;
100;
101;
llO;
111;
112;
120;
121;
122;
123;
126;
130;
131;
300;
301;
302;
310;
3ll;
312;
313;
314;
315;
316;
320;
321;
400;
4 01;
402;
403;
404;
405;
411;

501;
502;

ATTACH: TP not configured)
ATTACH: invalid conversation
ATTACH: invalid wait time }
ATTACP.: not enough space)
AT':'ACH: process limit reached
CVCB not set)
data pointer or si;:e not set }
DETACH: type invalid }
ALLOC: RLU required }
ALLOC: MODE required)
ALLOC: TP required }
ALLOC: RLU unknown)
ALLOC: MODE unknown)
ALLOC: type invalid }
ALLOC: mapped conv n/a
ALLOC: basic conv n/a l
ALLOC: when invalid }
ALLOC: delayed ale n/a }
ALLOC: immediate ale n/a
ALLOC: sync invalid)
ALLOC: sync n/a l
ALLOC: PIP n/a l
ALLOC: PIP maxsize exceeded }
ALLOC: sec invalid }
ALLOC: requested security n/a
ALLOC: bad user format l
ALLOC: bad pass format }
ALLOC: bad PIP buffer }
ALLOC: bad mapped conversation buffer }
CONFIRM(ED): bad sync-level }
write to server failed }
read from server failed }
internal verb request failed
DEALLOC: type invalid }
PREP TO RCV: type invalid }
PREP-TO-RCV: lock invalid }
RCV WAIT, POST RCPT: fill invalid
data size is -invalid J
SEND DATA: invalid LL }
SEND-DATA: invalid LL - PS hdr
SEND-ERR: type invalid }
SEND ERR: error type reserved }
SEND ERR, DEALLOC: error log n/a
WAIT: count < 0 or > kMaxCVCB invalid
WAIT: invalid CVCB on list }
WAIT: listed cnv not posting }
WAIT: no posting conv' s }
WAIT: conv posted not in CVCB list
TEST: invalid type l
TEST: posting not active
not authorized for CO routines
Requested Limits are invalid l
SVCMGR Mode not initialized l
Session limit 0 invalid }
Responsible value invalid l
MAX less than MINF + MINB l
Illegal immed param on dctses
Illegal dtrg param on rstsl l
illegal dsrc param on rstsl. l
Illegal force param on rstsl }
Session ID invalid }
no next session found
NO - name too long }
NO - LINE required }
NO - LU required }
NO - PU required }
NO - invalid dial }
NO - bad queue name
NO - bad severity }

DEF - . Invalid Local LU }
DEF - Invalid Remote LU }

Appendix 8: MocAPPC Errors File 8-3

invModeNarneErr
alsNarneErr
sendPacingErr
recvPacingErr
maxRUHiBoundErr
maxRe:.oBoundErr
invSyncTypeErr
reinitTypeErr
sessCryptErr
defMaxSessErr
defMinFirstSpkrsErr
defPBFirstSpkrsErr
queueBINDsErr
blankModeErr
netNameOpErr
netQualOpErr
netNameErr
netQualErr
queueINITsErr
parSessErr
cnosALSNameErr
luPswdErr
secAccErr
luPswdOpErr
defLUMaxSessErr
convSecErr
secOpErr
userNameErr
userPswdErr
userProfErr
waitTimeErr
maxTPErr
luIDErr
tpNameDefErr
luActiveErr
invConvTypeErr
secReqErr
pipReqErr
pipCountErr
pipCheckErr
dataMapErr
fmhDataSuppErr
privTypeErr
luwSuppErr

unkLUErr
unkRmtErr
unkALSErr
defSpaceErr
unkRmtPUErr
unkLineErr
unkLSCBErr
lineActiveErr
unkALCBErr

modeParamErr
maxRUBoundErr
reinitErr
lclStationErr
minFirstSpkrsErr
pbFirstSpkrsErr
badMaxSessErr
badBlankModeErr

cnosALSErr
}
parSessMaxSessErr
lclALSBadNameErr
rmtALSBadNameErr
parSessReinitErr
unkCNOSALSErr
badNetNameErr

503;
504;
505;
506;
507;
508;
509;
510;
511;
512;
513;
514;
515;
516;
517;
518;
519;
520;
521;
522;
523;
524;
525;
526;
527;
528;
529;
530;
531;
532;
533;
534;
535;
536;
537;
538;
539;
540;
541;
542;
543;
544;
545;
546;

550;
551;
552;
553;
554;
555;
556;
557;
558;

560;
561;
562;
563;
564;
565;
566;
567;

570;

571;
572;
573;
574;
575;
576;

DEF - Invalid Mode }
DEF - Invalid ALS }
DEF - Inv Send Pacing Window I
DEF - Inv Rec Pacing Window }
DEF - Inv Max RU Upper Bound }
DEF - Inv Max RU Lower Bound }
DEF - Inv Sync Level Option }
DEF - Inv Reinit Option }
DEF - Inv Crypt Option)
DEF - Inv Max Number Sess
DEF - Inv Min Num Fst Spk }
DEF - Inv Min Num Fst Preb }
DEF - Inv Bind Queue Option)
DEF - Inv Blank Mode Option)
DEF - Inv Network Name Oper }
DEF - Inv Network Qual Oper }
DEF - Inv Network Name }
DEF - Inv Network Qualifier
DEF - Inv Queue Init Option }
DEF - Inv Parallel Ses Opt }
DEF - Inv CNOS ALS)
DEF - Inv LU Password }
DEF - Inv Security Acpt Opt }
DEF - Inv Password Operation }
DEF - Inv LU Session Limits }
DEF - Inv Conversation Sec }
DEF - Inv Security Operation
DEF - Inv User ID }
DEF - Inv Password }
DEF - Inv Profile }
DEF - Inv Wait }
DEF - Inv Max Number of TPs
DEF - Inv LU ID Number }
DEF - Inv Trans Prog Name }
DEF - Inv Status }
DEF - Inv Conversation Type
DEF - Inv Security Required
DEF - Inv PIP Option }
DEF - Inv PIP Number }
DEF - Inv PIP Check }
DEF - Inv Data Mapping
DEF - Inv FMH }
DEF - Inv Privilege }
DEF - Inv LOW Indicator

DEF - LU Unknown }
DEF - Partner Unknown
DEF - ALS Unknown }
DEF - Not enough space }
DEF - Remote PU Unknown }
DEF - Line Unknown }
DEF - LSCB not found
DEF Sta - Associated Line not inactive }
DEF - ALCB not found }

DEF Mode - Invalid Parameter
DEF Mode - Lower Bound > Upper Bound }
DEF Mode - Single Session Reinit error
DEF Mode - lcl station & ptnr ! • lcl }
DEF Mode - minf > maxs }
DEF Mode - mipf > minf }
DEF Mode - maxsess not error
DEF Mode - blank mode already exists

DEF RLU - CNOS ALS and parsess support error

DEF RLU - parsess and maxsess error }
DEF RLU - ALS is lcl and rnam != lnam
DEF RLU - ALS not local & rnam =• lnam }
DEF RLU - bad reinit option for parsess }
DEF RLU - CNOS als unknown }
DEF RLU - null net name already exists }

B-4 Appendix B: MacAPPC Errors File

(

parSessPUTypeErr

lclPUErr
maxSessLimitErr

initNetNameErr
unkLUSecErr
badLUIDErr
initLUIDErr
luIDUpdateErr

badSecReqErr
unkTPSecErr

accessTypeErr
lineNumErr
eaErr
exchIDErr
invDevNameErr
monTimerErr
nodeMsgsErr
logMsgsErr
debugMsgsErr
cpNameErr
cpuIDErr
lineNameErr
lineTypeErr
sdlcRoleErr
connTypeErr
nrziTypeErr
duplexTypeErr
maxBTUErr
maxRetrysErr
idleTimeErr
npRecvTimeErr
maxIFramesErr
lineSpeedErr
alsAddrErr
phoneNumberErr
maxSOTErr
badSDLCRoleErr
!primary }
badLineTypeErr
badLineErr

unkLineNameErr
unkPUErr
badStationErr
badLineNameErr
endLineListErr
noLineListErr
badPUNameErr
endPUListErr
noPUListErr

unkModeNameDelErr
unkProgNameDelErr
objinUseErr
badLclLUNameDelErr
badRmtLUNameDelErr

delNameErr
xidOrCPIDErr
nodeIDErr

badUserNameErr
endSecListErr
unkUserNameErr
badUserProfErr
badLUNameErr
endLUListErr
luNameErr

577;

580;
581;

582;
583;
584;
585;
586;

5 90;
591;

595;
596;
600;
601;
602;
603;
604;
605;
606;
607;
608;
609;
610;
612;
613;
614;
615;
616;
617;
618;
619;
620;
621;
622;
623;
624;
626;

627;
628;

630;
631;
632;
634;
635;
636;
637;
638;
639;

640;
641;
642;
64 6;
647;

648;
650;
651;

660;
661;
662;
663;
664;
665;
666;

DEF RLU - parsess and PU type error }

DEF LLU - drcb for local PU ! exist }
DEF LLU - sess limits > def LU sess limits

DEF LLU - net name spec after initsl
DEF LLU - sec parms to be del !found
DEF LLU - LU id already specified }
DEF LLU - LU id must be specified }
DEF LLU - LU id can't be updated }

DEF TP - sec access parms ! = sec req
DEF TP - sec parms to be del !found }

DEF - Inv Access Type
DEF - Inv Line Number
DEF - no ea available
DEF - Inv Exchange ID
DEF - Inv Master Device
DEF - Inv Monitor Timer
DEF - Inv NOOP Messages
DEF - Inv LOG Messages }
DEF - Inv Debug Messages
DEF - Inv PU Name }
DEF - Inv CPU ID }
DEF - Inv LINE Name
DEF - Inv LINE Type
DEF - Inv SDLC Role
DEF - Inv Connection Type
DEF - Inv NRZI }
DEF - Inv Half Duplex
DEF - Inv Max BTU }
DEF - Inv Max Retries
DEF - Inv Idle }
DEF - Inv Nonprod Rev Time
DEF - Inv Max I-Frames }
DEF - Inv Rate }
DEF - Inv SDLC Address
DEF - Inv Phone Name }
DEF - Exceeded maxsot }
DEF Line - multidrop and role

DEF Sta - 1 sta def for leased line
DEF Line - LINE already exists }

DEF Sta - LINE Not Specified }
DEF Sta - PU Not Specified }
DEF Sta - Station already exists
DSP Line - bad LINE name }
DSP Line - end of LINE list
DSP Line - no LINES defined
DSP RPU - bad PU name }
DSP RPU - end of PU list
DSP RPU - no PUS defined

DEL - MODE unknown
DEL - TP unknown }
DEL - object is in use }

.DEL - local LU name not specified }
DEL - remote LU name not specified

DEL - no parms specified }
DEF RPU - neither xid I cpid specified }
DEF RPU - both xid and cpid specified }

DSP LLU - user ID invalid
DSP LLU - end of security list
No user ID found }
DSP LLU - profile invalid
DSP LLU - bad LU name }
DSP LLU - end of LU list
DSP LLU - no LUs defined

Appendix B: MacAPPC Errors File B-5

badRmtLUNameErr
endRmtLUListErr
noRmtLUListErr
badModeNameErr
endModeListErr
noModeListErr
badTPNameErr
endTPListErr
ncTPListErr
ncNetNameListErr

srvrSpaceErr
srvrNotActiveErr
srvrCrashedErr
timeOutNoRecErr
timeOutRecErr
timeOutQueFullErr
logicErr

{ badComplErr

rcvimmErr
noDataErr
noReqToSendErr

{ stateErr }

convStateErr
logicalRecErr
waitConvStateErr

{ allocErr }

tpNoRetryErr
tpRetryErr
convTypeMatchErr
pipSuppErr
pipSpecErr
secinfoErr
syncTypeSuppErr
unkProgNameErr
allocNoRetryErr
allocRetryErr
immSessErr
rsrcFailErr
badAllocErr
allocSubErr
allocGenErr
unkAllocErr

{ progErr }

progNoTruncErr
progLLTruncErr
progPurgingErr
svcNoTruncErr
svcLLTruncErr
svcPurgingErr
fmhSuppErr
mapSuppErr
mapNameErr
mapl?rocErr
dupMapNameErr

{ deallocErr }

normDeallccErr
abendProgErr
abendSvcErr
abendTimerErr
rsrcErr
abendErr

667;
668;
669;
670;
671;
672;
673;
674;
675;
676;

8 4 0; {
a 5 o; {
860: {
87 c; {
8 8 0; {
890; {
90 0; {

1;
2;
3;

1;
2;
3;

1;
2;
3;
4;
5;
6;
7;
8;
9;
10;
11;
12;
13;
16;
22;
99;

1;
2;
3;
11;
12;
13;
20;
21;
22;
23;
24;

DS? RLU - bad RLU name }
OSI? RLU - end cf RLU list
OSI? RLU - no RLUs defined }
DSl? Mode - bad MODE name }
DSl? Mode - end of MODE list
DSl? Mode - no MODEs defined
DSP TP - bad TP name }
DSP TP - end of TP list }
DSl? Tl? - no Tl?s defined }
DSP TP - no network name }

server out of request space
server is not active }
server has crashed }
Till'.e out - Request not recovered
Time out - Request recovered
Time out - Msgq full }
logic error }

receive immediate unsuccessful
Not posted. No data or info }
No request to send }

Conversation state error }
Logical Record stateerror }
conv for WAIT not RECV state

TP not available - no retry }
TP not available - retry }
Conversation type mismatch }
PIP data not supported }
Error in PIP specification }
Error in Security Information }
Program doesn't support sync }
TP not recognized }
Allocation Failure - no retry }
Allocation Failure - retry l
immediate session not available
local resource failure }
ALLOCATION ERROR }
ALLOCATION-ERROR (subcoded))
Generic allocation failure }
unknown allocation error }

Program Error - No Truncation }
Program Error - LL Truncated }
Program Error - Purging }
Service Error - No truncation }
Service Error - LL Truncated }
Service Error - Purging }
FMH DATA NOT SUPPORTED }
MAPPING NOT SUPPORTED }
MAP NOT -FOUND }
MAP-EXECUTION FAILURE
DUPLICATE_MAP_:NAME }

0;
l;
2;
3;
4;
5;

{ Deallocate - Normal }
{ Deallocate - Abend Program
{ Deallocate - Abend Service
{ Deallcoate - Abend Timer }
{ Resource Failure }
{ Deallocate - Abend

B-6 Appendix B: MacAPPC Errors File

ctlOpErr

limitsNotZercErr
limitsTooBigErr
limitsSumTooBigErr
badSNASVCMGLimitsErr
mcdeSNASVCMG~nitErr

limitsClosedErr
noCNOSErr
userModesErr
raceCNOSErr
unkModeErr
localCNOSErr
allocCNOSErr
rsrcCNOSErr
noSessSpaceErr
rmtLUActErr
modeParmErr
linkActErr
sessActErr
limitsZeroErr
unkCtlOpErr

{ nodeOpErr

procErr
unkProcErr
unkLinkNameErr
unkALSNameErr
unkPUNameErr
activeReqErr
dialErr
unkLUNameErr
unkMsgQueErr
noMsgQueErr
noMsgErr
actPUErr
actLUErr
dctPUErr
dctLUErr
defMsgQueErr
dspMsgQueErr
dspMsgErr

END.

63;
6 4;
6 ~.
~,

6 6;
67;
68;
6 9;
7 0;
71;
72;
7 3;
74;
7 5;
76;
77;
78;
79;
80;
81;
99;

1 ;
2;
10;
11;
12;
13;
14;
15;
16;
17;
18;
100;
110;
120;
130;
140;
150;
190;

Limits are not zero }
Requested limits exceed configuration
Minimums exceed max. session }
Invalid SNAVCMG limits }
SNASVCMG MODE not initialized
Mode limits are closed }
CHGSL not valid }
SNASVCMG MODE can It be reset
CNOS race at remote - they won
Partner doesn't recognize MODE
CNOS is in process locally }
CNOS allocation· error }
CNOS resource failure }
Not enough space for session
Partner LU not active }
Mode configurations don't match
No session, link not active }
session activation failure }
mode limits zero }
unknwon control operator error

Appendix 8: MacAPPC Errors File 8-7

,r""~~-,

\'-)

Appendix C

MacAPPC Result Codes

This appendix gives a complete listing of all values for appcHiResul t and appcLoResul t
and provides a detailed explanation of the meaning of each combination of codes.

C-1

MacAPPC result codes

Mojorcode Name

0 noErr

1 usageErr

2 badComplErr

3 stateErr

5 allocErr

7 progErr

9 deallocErr

10 ctlOpErr

11 nodeOpErr

Description

Function completed normally.

Function aborted, usage error.

Function not completed.

Function aborted, state error.

Function aborted, allocation error.

Program error.

Deallocated.

Control operator error.

Node operator error.

Major Code 00-noErr: Function completed normally

Major code

0

1

3

4

6

Name

normalCompl

negotCompl

dataAvail

ctlAvail

badErr

Description

Function completed normally.

Function completed as negotiated.

MCTest or BCTest routine--data available.

MCTest or BCTest routine--control information available.

Default; undefined.

Major Code O 1-usageErr: Function aborted, usage error

Major code Name

1 notAttachErr

2 dupAttachErr

3 unkConvErr

4 badAttachErr

5

6

tpcbErr

tpNameErr

Description

Not attached. The transaction issued another routine before
issuing a TPAttach routine. The program must attach before
other routines may be called.

Duplicate attach. After a previous TPAttach routine and
before a ·TPDetach routine, the transaction program attempted
to issue tlle TPAttach routine again.

Invalid conversation. The conversation specified in the
cvConvID parameter is not a valid conversation.

~outine not valid for current attach type specified on a previous
TPAttach routine

TPCB not set.

TP name invalid.

C-2 Appendix C: MacAPPC Result Codes

7

8

9

10

11

12

13

14

15

18

19

20

21

lookupErr

connectErr

noParamErr

srvrEntityErr

lclLUNameErr

attachTypeErr

unkLclLUNameErr

availLUErr

lclProgNameErr

badConvErr

badWaitTimeErr

procSpaceErr

procLimitErr

Server lookup failed.

Server connect failed.

Null structure passed. A null parameter structure poincer was
passed.

Server entity name required. The server entity name is required
for TPAttach.

LU name required. The LU name is required when the
tpAttachType parameter is set to the kLUAttach or
kWai tAttach constant.

invalid attach type. Valid attach-type values for a transaction
program are kCVCOAttach and kNOAttach.

LU unknown. The specified LU is not configured.

LU unavailable. The LU specified in the attach is not activated, or
has already reached the configured limit of attached transaction
programs.

Transaction program name unknown. The transaction program
name specified in the request is not configured.

Invalid conversation for remote attach. The conversation
specified in the TPAttach routine is invalid or cannot be
remotely attached.

Invalid tpWaitTime parameter.

Attach rejected. Not enough space to support the transaction
program.

Attach rejected. The SNA server process limit has been reached.

25 cvcbErr Conversation control block not set.

26 dataErr Data pointer or size not set.

27 detachTypeErr Invalid dettach type. Valid detach-type values for a transaction
program are kNormalDetach and kAbortDetach.

30 rmtLUNameErr Remote LU name required.

31 modeNarneErr Mode name required.

32 rrntProgNameErr Remote transaction program name required.

33 unkRmtLUNameErr Remote LU unknown. The specified remote LU is not configured
for the attached LU.

34 unkModeNameErr Mode unknown. The specified mode is not configured between
the remote LU and the attached LU.

35 convTypeErr Invalid cvConvType parameter. Valid conversation-type
values are kBasicConv and kMappedConv.

36 mapConvErr Mapped conversations not available. Either the attached LU or
the remote LU is not configured to support mapped
conversations, or the transaction program name specified in the
previous attach is not configured to support and authorize
mapped conversations.

Appendix C: MacAPPC Result Codes C-3

Minor code Name

37

38

39

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

basicConvErr

ret'..lrnCtlErr

delayAllocErr

imrned.AllocErr

syncTypeErr

badSyncErr

pipErr

badPipErr

badSecTypeErr

secTypeErr

userNameFmtErr

userPswdFmtErr

pipBuffErr

mapBuf fErr

padSyncTypeErr

sendReqErr

recvRspErr

verbReqErr

Description

Basic conversations not available. The transaction program
name specified in the previous attach is not configured to support
and authorize basic conversations.

Invalid session allocation parameter. Valid cvReturnCtl
parameters are kWhenSessAllocReturn,
kDelayAllocPermitReturn, and kimmediateReturn.

No delayed session allocation. The attached LU is not configured
to support delayed session allocation.

No immediate session allocation. The attached LU is not
configured to support immediate session allocation.

Invalid sync-level parameter. Valid cvSyncType parameters
are kNoSync and kConfirmSync.

Requested sync-level not available. The requested sync-level
support must be configured for the attached LU, the remote LU,
the requested mode, and for the transaction program name
specified in the previous attach request.

No program initialization parameter data. PIP data support must
be configured for the attached LU and the remote LU, and for the
transaction program name specified in the previous attach
request.

PIP data too large. Too many PIP parameters were passed in the
PIP data, or the PIP data exceeds the maximum length.

Invalid security-level parameter. Valid cvSecType values are
kNoSec, kSameSec, and kNameAndPswdSec.

Requested security level not available. The requested security
level support is not configured. kSameSec must be specified for
the attached LU and the remote LU. kNameAndP swdSec must
be specified for the attached LU, the remote LU, and for the
transaction program name specified in the previous attach
request.

Mode cannot specify the SNA-defined mode name SNASVCMG
when using a mapped conversation.

Transaction program cannot specify an SNA service transaction
program when using a mapped conversation.

Bad PIP buffer.

Bad mapped conversation buffer.

Sync-level conflict. A BCConfirm or BCConfirmed routine
was attempted on a conversation that was allocated with the
cvSyncType parameter set to the kNoSync constant.

Write to server failed.

Read from server failed.

Internal routine request failed.

C-4 Appendix C: MacAPPC Result Codes ·

(

70 deallocType:::r-r Invalid BC or MC deallocate type. Valid cvSee:llocType
values for BC routines are kSyncDeallcc, kFlus'.!Seallcc,
kAbendProgDealloc, kAbendSvcPrcgDealloc,
kP<.bendTimerDealloc, kLocalDea2.loc. and
k.'1.bendDealloc. Valid cvDeallocType values for IV!C
routines are kSyncDealloc, kFlushDealloc,
kLocalDealloc, and k.?.bendDealloc.

80 prepToRcvTypeErr Invalid prepare-to-receive type. Valid cvPrepToRcvType

81

90

91

100

101

110

110

112

120

121

122

123

126

130

131

300

301

302

lockTypeErr

fillTypeErr

dataSizeErr

badLLErr

badPSHdrLLErr

errorTypeErr

badErrorTypeErr

logDataErr

cvcbindexErr

cvcbListErr

badPostConvErr

postConvErr

badWaitConvErr

testTypeErr

postActErr

notAuthCOErr

sessLimitErr

modeSVCMGRErr

values are kFlushRcv, kConfirmRcv, and
kSyncLevelRcv.

Invalid prepare-to-receive lock parameter. Valid cvLockType
values are kShortLock and kLongLock. This parameter is
significant when the cvPrepToRcvType parameter is set to the
kSyncLevelRcv constant.

Invalid fill parameter. Valid cvF i 11 Type values for receive­
and-wait and post-on-receipt are kBufferFill and
kLLFill.

Invalid length. The cvDataSize parameter is too large.

Invalid logical length field. The data passed to BCSendData
contains an invalid LL field of $0000, $8000, or $8001.

The data passed to the BCSendData routine contains a logical
length field of $0001, which indicates a PS header; PS headers are
not supported.

Invalid send-error type. Valid cvErrorType values for
transaction programs are kSvcError and kProgError.

An error type specified in a BCSendError or MCSendError
routine is reserved.

Error log data not permitted. Either the attached LU or the
remote LU is not configured to support error logging.

WAIT: An index less than 0 or greater than kMaxCVCB is
invalid.

The cvCVCBList parameter passed to CVWait contained an
invalid conversation ID.

WAIT: listed conversation not posting.

No conversations with posting active. If a list of conversations was
passed to CVWait, none of the conversations had posting
active. If no list was passed, then no conversations for the TP had
posting active.

WAIT: conversation posted not in CVCB list.

TEST: invalid type.

TEST: posting not active.

TP not authorized to issue CNOS routines.

Limits requested in CNOS routine are invalid.

CNOS routine issued hefore service manager mode (SNASVCMG)
is initialized.

Appendix C: MacAPPC Result Codes C-5

Minor code

310

311

312

313

314

315

316

320

321

400

401

402

403

404

405

411

501

502

503

504

505

506

507

508

Name

zeroSessLimitErr

respTypeErr

sessSumErr

deactTypeErr

drainTgtErr

drainSrcErr

forceRstErr

badSessIDErr

nextSessErr

nameErr

lineErr

luErr

puErr

dialTypeErr

queueNameErr

sevTypeErr

invLclLUNameErr

invRmtLUNameErr

invModeNameErr

alsNameErr

sendPacingErr

recvPacingErr

maxRUHiBoundErr

maxRULoBoundErr

Description

Session limit must be greater than zero.

Invalid response type parameter.

Sum of the minimum first speaker sessions and the minimum
bidder sessions cannot exceed session limit.

Illegal deactivate type specified for a CODeacti vateSess ion
routine.

Illegal drain target specified fora COResetSessionLimit
routine.

Illegal drain source specified for a COResetSessionLimit
routine.

Illegal force reset specified for a COResetSessionLimi t
routine.

Invalid session identifier.

No next session found.

For a node operater routine, a string parameter was too long.

For a node operater routine, a line name is required.

For a node operater routine, a LU name is required.

For a node operater routine, a PU name is required.

For a node operater routine, an invalid noDialType
parameter was specified. Valid noDialType values are
kConnectDial, kDisconnectDial, kDialinOnDial, and
kDialinOffDial.

For a node operater routine, an invalid queue name was
specified.

For a node operater routine, an invalid severity was specified.

Invalid value for the coLclLUName parameter of a
CODefineLocalLU routine.

The value specified for the coDefLUMaxSess parameter of the
CODefineLocalLU routine is less than the sum of the currently
defined LU-mode session limits.

For a node operator definition or control operator definition, an
invalid mode was specified.

For a node operator definition or control operator definition, an
invalid ALS name was specified.

For a node operator definition or control operator definition, an
invalid send pacing window was specified.

For a node operator definition or control operator definition, an
invalid receive pacing window was specified.

For a node operator definition or control operator definition, an
invalid maximum RU upper bound was specified.

For a node operator definition or control operator definition, an
invalid maximum RU lower bound was specified.

C-6 Appendix C: MacAPPC Result Codes

(

(

509 invSyncTypeErr

510 reinitTypeErr

511 sessCryptErr

512 defMaxSessErr

For a node operator definition or control operator definition, an
invalid sync-levd option was specified.

For a node operator definition or control operator definition, an
invalid reinit option was specified.

For a node operator definition or control operator definition, an
invalid session-level cryptography option was specified.

For a node operator definition or control operator definition, an
invalid maximum number of sessions was specified.

513 defMinFirstSpkrsErr For a node operator definition or control operator
definition, an invalid minimum number of first speakers was
specified.

514 defPBFirstSpkrsErr For a node operator definition or control operator

515 queueBINDsErr

516 blankModeErr

517 netNameOpErr

518 netQualOpErr

519 netNameErr

520 netQualErr

521 queueINITsErr

522 parSessErr

523 cnosALSNameErr

524 luPswdErr

525 secAccErr

526 luPswdOpErr

527 defLUMa:x:SessErr

528 convSecErr

definition, an invalid minimum number of first prebound
speakers was specified.

For a node operator definition or control operator definition, an
invalid bind queue option was specified.

For a node operator definition or control operator definition, an
invalid blank mode option was specified.

For a node operator definition or control operator definition, an
invalid network name operation was specified.

For a node operator definition or control operator definition, an
invalid network qualifier operation was specified.

For a node operator definition or control operator definition, an
invalid network name was specified.

For a node operator definition or control operator definition, an
invalid network qualifier was specified.

For a node operator definition or control operator definition, an
invalid queue init option was specified.

For a node operator definition or control operator definition, an
invalid parallel session option was specified.

For a node operator definition or control operator definition, an
invalid CNOS ALS name was specified.

For a node operator definition or control operator definition, an
invalid LU password was specified.

For a node operator definition or control operator definition, an
invalid security-accepted option was specified.

For a node operator definition or control operator definition, an
invalid password operation was specified.

For a node operator definition or control operator definition, an
invalid LU session limits was specified.

For a node operator definition or control operator definition, an
invalid conversation security was specified.

Appendix C: MacAPPC Result Codes C-7

Minor code Name Description

529 secOpErr For a node operator definition or control operator definition, an
invalid security operation was specified.

530 userNar,eErr For a node operator definition or control operator definition, an
invalid user ID was specified.

531 userPswdErr For a node operator definition or control operator definition, an
invalid password was specified.

532 userProfErr For a node operator definition or control operator definition, an
invalid profile was specified.

533 waitTimeErr For a node operator definition or control operator definition, an
invalid wait period was specified.

534 maxTPErr For a node operator definition or control operator definition, an
invalid maximum number of TPs was specified.

535 luIDErr For a node operator definition or control operator definition, an
invalid LU ID number was specified.

536 tpNameDefErr For a node operator definition or control operator definition, an
invalid transaction program name was specified.

537 luActiveErr For a node operator definition or control operator definition, an
invalid status was specified.

538 invConvTypeErr For a node operator definition or control operator definition, an
invalid conversation type was specified.

539 secReqErr For a node operator definition or control operator definition, an
invalid security-required option was specified.

540 pipReqErr For a node operator definition or control operator definition, an
invalid PIP option was specified.

541 pipCountErr For a node operator definition or control operator definition, an
invalid PIP number was specified.

542 pipCheckErr For a node operator definition or control operator definition, an
invalid PIP check was specified.

543 dataMapErr For a node operator definition or control operator definition, an
invalid data mapping option was specified.

544 fmhDataSuppErr For a node operator definition or control operator definition, an
invalid FMH was specified.

545 privTypeErr For a node operator definition or control operator definition, an
invalid privilege was specified.

546 luwSuppErr For a node operator definition or control operator definition, an
invalid LUW indicator was specified.

550 unkLUErr For a node operator definition or control operator definition, the
Local LU is unknown.

551 unkRmtErr For a node operator definition or control operator definition,
the Remote LU is unknown.

552 unkALSErr For a node operator definition or control operator definition, the
AL.5 is unknown.

553 defSp::aceErr For a node operator definition or control operator definition,
not ~nough server memory space for definition. \.~ ___ .J),

C-8 Appendix C: MacAPPC Result Codes

554 unkRmtPUErr For a node operator definition or control operator definition, the
control point is unknown.

(555 unkLineErr For a node operator definition or control operator definition,
the line is unknown.

556 unkLSCBErr For a node operator definition or control operator definition,
LSCB not found.

557 lineActiveErr For a node operator definition or control operator definition, the
associated line is not inactive.

558 unkALCBErr For a node operator definition or control operator definition,
ALCB not found.

56o modeParamErr For a control operator definition routine, an invalid parameter
was specified.

561 maxRUBound.Err For a control operator definition routine, the lower bound is
greater than the upper bound.

562 reinitErr For a control operator definition routine, there was a single
session reinit error.

563 lclStationErr For a control operator definition routine, the station was local
and the remote LU was not local.

564 minFirstSpkrsErr For a control operator definition routine, the minimum number
of first speakers was greater than the maximum number of
sessions.

565 pbFirstSpkrsErr For a control operator definition routine, the minimum number
of prebound first speakers was greater than the minimum number

(" of first speakers.

566 badMaxSessErr For a control operator definition routine, an invalid number of
maximum sessions was specified.

567 badBlankModeErr For a control operator definition routine, the blank mode already
exists.

570 cnosALSErr For a CODefineRemoteLU routine, there was a CNOS ALS and
parallel session support error.

571 parSessMaxSessErr For a CODefineRemoteLU routine, there was a parallel session
and maximum session error.

572 lclALSBadNameErr For a CODefineRemoteLU routine, the ALS name is local and
the remote name is not the same as the local name.

573 rmtALSBadNameErr For a CODefineRemoteLU routine, the ALS name is not local
and the remote name is the same as the local name.

574 parSessReinitErr For a CODefineRemoteLU routine, an invalid reinit option for
parallel sessions was specified.

575 unkCNOSALSErr Fora CODef ineRemoteLU routine, CNOS ALS unknown.

576 badNetNameErr Fora CODefineRemoteLU routine, null net name already
exists.

577 parSessPUTypeErr Fora CODefineRemoteLU routine, there was a parallel session
and PU-type error.

(~
580 lclPUErr Fora CODefineRemoteLU routine, a local PU structure does

not exist.

Appendix C: MacAPPC Result Codes C-9

Minor code Name

581 maxSessLimitErr

582 initNetNameErr

583 unkLUSecErr

584 badLUIDErr

585 initLUIDErr

586 luIDUpdateErr

590 badSecReqErr

591 unkTPSecErr

595 accessTypeErr

596 lineNumErr

600 eaErr

601 exchIDErr

602 invDevNameErr

603 monTimerErr

604 nodeMsgsErr

605 logMsgsErr

606 debugMsgsErr

607 cpNameErr

608 cpuIDErr

609 lineNameErr

610 lineTypeErr

612 sdlcRoleErr

Description

For a CODefineRemoteLU routine, session limits were greater
than the defined LU session limits.

For a CODefineRemoteLU routine, the initial net name
specified was invalid.

For a CODefineRemoteLU routine, the security parameters to
be deleted were not found.

For a CODefineRemoteLU routine, the LU ID was already
specified.

For a CODefineRemoteLU routine, the LU ID must be
specified.

For a CODefineRemoteLU routine, the LU ID can't be updated.

For a CODefineRemoteLU routine, the security-access
parameters did not correspond to the required security.

For a CODefineRemoteLU routine, security parameters to be
deleted were not not found.

For a node operator definition or control operator definition, an
invalid access type was specified.

For a node operator definition or control operator definition, an
invalid line number was specified.

For a node operator definition or control operator definition, a
resource was not available.

For a node operator definition or control operator definition, an
invalid exchange ID was specified.

For a node operator definition or control operator definition, an
invalid master device name was specified.

For a node operator definition or control operator definition, an
invalid monitor timer value was specified.

For a node operator definition or control operator definition, an
invalid NOOP message was specified.

For a node operator definition or control operator definition, an
invalid message was specified.

For a node operator definition or control operator definition, an
invalid debug message was specified.

For a node operator definition or control operator definition, an
invalid PU name was specified.

For a node operator definition or control operator definition, an
invalid CPU ID was specified.

For a node operator definition or control operator definition, an
invalid line name was specified.

For a node operator definition or control operator definition, an
invalid line type was specified.

For a node operator definition or control operator definition, an
invalid SDLC role was specified.

C-10 Appendix C: MacAPPC Result Codes

613 conn Type Err For a node operator definition or control operator definition, an
invalid connection type was specified.

614 nrziTypeErr For a node operator definition or control operator definition, an

(' invalid NRZI type was specified. ·

615 duplexTypeErr For a node operator definition or control operator definition, an
invalid duplex value was specified.

616 maxBTUErr For a node operator definition or control operator definition, an
invalid maximum BTU was specified.

617 maxRetrysErr For a node operator definition or control operator definition, an
invalid maximum retries value was specified.

618 idleTimeErr For a node operator definition or control operator definition, an
invalid idle time value was specified.

619 npRecvTimeErr For a node operator definition or control operator definition, an
invalid nonproductive time was specified.

620 maxIFramesErr For a node operator definition or control operator definition, an
invalid maximum number of I-frames was specified.

621 lineSpeedErr For a node operator definition or control operator definition, an
invalid line speed was specified.

622 alsAddrErr For a node operator definition or control operator definition, an
invalid station address was specified.

623 phoneNumberErr For a node operator definition or control operator definition, an
invalid phone number was specified.

624 maxSOTErr For a node operator definition or control operator definition, a
value was specified that exceeded the maximum SOT.

(626 badSDLCRoleErr For a node operator definition or control operator definition, a
line value was specified that was multipoint and the role was not
primary.

627 badLineTypeErr For a node operator definition or control operator definition, a
station was already defined for a leased line.

628 badLineErr For a node operator definition or control operator definition, a
line already exists.

630 unkLineNameErr For a node operator definition or control operator definition, a
line was not specified.

631 unkPUErr For a node operator definition or control operator definition, a
CP was not specified.

632 badStationErr For a node operator definition or control operator definition, a
station already exists.

634 badLineNameErr For a node operator display or control operator display routine,
an invalid line name was specified.

635 endLineListErr For a node operator display or control operator display routine,
the end of the line list was reached.

636 noLineListErr For a node operator display or control operator display routine,
no lines were defined.

(~' . '

,_,J

Appendix C: MacAPPC Result Codes C-11

Minor code Name

637 badPUNameErr

638 endPUListErr

639 noPUListErr

Description

For a NODefineCP routine, an invalid CP name was specified.

For a NODefineCP routine, the end of the CP list was reached.

For a NODefineCP routine, no CPs were defined.

640 unkModeNameDelE.:rr For a node operator definition or control operator
definition, a mode to be deleted was unknown.

640 unkModeNameDelErr: For a node operator definition or control operator
definition, a mode to be_ deleted was unknown.

642 objinUseErr For a node operator definition or control operator definition, an
object to be deleted is in use.

640 unkModeNameDelErr For a node operator definition or control operator
definition, a mode to be deleted was unknown.

640 unkModeNameDelErr For a node operator definition or control operator
definition, a mode to be deleted was unknown.

648 delNameErr For a node operator definition or control operator definition, no
parameters were specified in a delete request.

650 xidOrCPIDErr For a NODefineCP routine, neither the XID or the CPUID were
specified.

651 nodeIDErr For a NODefineCP routine, both the XID and the CPUID were
specified.

660 badUserNameErr For a CODisplayLocalLU routine, the user ID was invalid.

661

662

663

endSecListErr

unkUserNameErr

badUserProfErr

For a CODisplayLocalLU routine, the end of the security list
was reached.

For a CODisplayLocalLU routine, no user ID was found.

For a CODisplayLocalLU routine, the profile was invalid.

664 badLUNameErr For a CODisplayLocalLU routine, the LU name was invalid.

665 endLUListErr For a CODisplayLocalLU routine, the end of the LU list was
reached.

666 luNameErr For a CODisplayLocalLU routine, no LUs were defined.

667 badRmtLUNameErr For a CODisplayRemoteLU routine, the remote LU name was
invalid.

668 endRmtLUListErr For a CODisplayRemoteLU routine, the end of the remote LU
list was reached.

669 noRmtLUListErr For a CODisplayRernoteLU routine, no remote LUs were
defined.

670 badModeNarneErr For a CODisplayMode routine, an invalid mode name was
specified.

671 endModeListErr For a CODisplayMode routine, the end of the mode list was
reached.

672 noModeListErr For a CODisplayMode routine, no mode was defined.

673 badTPNameErr For a CODisplayTP routine, an invalid 1P name was specified.

674 endTPListErr For a CODisplayTP routine, the end of the 1P list was reached.

C-12 Appendix C: MacAPPC·Result Codes

(

675 noTPListErr For a CODisplayTP routine, no TPs were defined.

676 noNetNameListErr For a COD.isplayTP routine, no network name was specified.

840 s rvrSpaceErr The server is out of request space.

850 srvrNotActi veErr The MacAPPC server is not active.

860 srvrCrashedErr The MacAPPC server is no longer active. The transaction
program has been detached.

870 timeOutNoRecErr A time-out request was not recovered.

880 timeOutRecErr A time-out request was recovered.

890 timeOutQueFullErr A time out occurred because the message queue was full.

900 logicErr An internal logic error occured while processing the routine.

Major Code 02-badComplEr: Function aborted, bad
completion

Minor code Name

1 rcvimrnErr

2

3

noDataErr

noReqToSendErr

Description

An MCReceiveimrnediate or BCReceiveimrnediate
routine was unsuccessful.

No data or information was available to post.

No request was available to send.

Major Code 03-stateErr: Function aborted, state error

Minor code Name Description

1 convStateErr Request is illegal in the current conversation state.

2 logicalRecErr Request is illegal because the current logical record has not been
completed.

3 wai tConvStateErr A conversation specified in the wait request is not in receive state.

Major Code 05-allocErr: Function aborted, allocation error

Minor code Name

1 tpNoRetryErr

2 tpRetryErr

Description

Transation program could not be started on the remote system
because of a lack of resources which is not temporary. Retry is not
suggested.

Transaction program could not be started on the remote system
because of a temporary resource shortage. Retry is suggested.

3 convTypeMatchErr The remote transaction program does not support the requested
- conversation type.

Appendix C: MacAPPC Result Codes C-13

Minor code Name Description

4 pipSuppEr:r Program initialization parameter data not supported by the
remote.

5 pipSpecErr Program initialization parameter data was specified incorrectly.

6 secinfoErr Security information was not specified correctly.

7 syncTypeSuppErr Remote program doesn't support requested sync level.

8 unkProgNameErr Transaction program requested was not recognized at the remote
LU.

9 allocNoRetryErr An allocation failure occurred; no retry was attempted.

10 allocRetryErr An allocation failure occurred; a retry was attempted.

11 immSessErr A session was not immediately available.

12 rsrcFailErr A local resource allocation failure occurred.

13 badAllocErr An allocation error occurred.

16 allocSubErr An allocation error occurred (subcoded).

22 allocGenErr A generic allocation failure occurred.

99 unkAllocErr An unknown allocation error occurred.

Major Code 07-progErr: Program error

Minor code

1

2

3

11

12

13

20

21

22

23

24

Name

progNoTruncErr

progLLTruncErr

progPurgingErr

svcNoTruncErr

svcLLTruncErr

svcPurgingErr

fmhSuppErr

mapSuppErr

mapNameErr

mapProcErr

dupMapNameErr

Description

Partner has reported a program error; the current logical record
was not truncated.

Partner has reported a program error; the current logical record
was truncated.

Partner has reported a program error; the current logical record
may have been purged.

Service transaction program has reported an error; the current
logical record was not truncated.

Service transaction program has reported an error; the current
logical record was truncated.

Service transaction program has reported a program error; the
current logical record may have been purged.

FMH data is not supported.

Mapping is not supported.

The specified map procedure was not found.

The map procedure failed.

A duplicate map name was specified.

C-14 Appendix C: MacAPPC Result Codes

/F,.~ "ol

(

Major Code 09-deallocErr: Deallocated

Minor code Nome Description

0

1

2

3

4

5

normDeallocErr

abendProgErr

abendSvcErr

abendTimerErr

rsrcErr

abendErr

Normal deallocation. Partner has deallocated the conversation.

Abnormal deallocation of a transaction program. Partner has
terminated the conversation abnormally.

Abnormal deallocation of a service transaction program. A
service transaction program has terminated the conversation
abnormally.

Abnormal deallocation-time out has occured.

A resource failure occurrred.

Session has failed.

Major Code 10-ctlOpErr: Control operator error

Minor code Nome Description

63 limitsNotZeroErr Limits are not zero.

64 limi tsTooBigErr Requested limits exceed configuration.

65

67

limitsSumTooBigErr Sum of the minimum first speaker and bidder exceeds the
requested maximum.

badSNASVCMGLimi tsErr Invalid SNASVCMG limits; must be maximum of two, one
bidder, one first speaker.

modeSNASVCMGinitErr SNASVCMG mode not initalized.

68 limitsClosedErr Mode limits are closed.

69 noCNOSErr Change-session limit not valid for this mode.

70 userModesErr SNASVCMG mode can't be reset because user modes are still open.

71 raceCNOSErr CNOS race at remote-they won.

72 unkModeErr Partner doesn't recognize mode.

73 localCNOSErr CNOS is in process locally.

74 allocCNOSErr CNOS allocation error.

75 rsrcCNOSErr CNOS resource failure. The SNASVCMG session with the partner
LU either could not be started, or failed

76 noSessSpaceErr Not enough space for session.

77 rmtLUActErr The partner LU was not active.

78 modeParmErr Mode configurations don't match.

79 linkActErr No session, link not active.

00 sessActErr Session failed to activate.

81 limitsZeroErr The mode limits were zero.

unkCtlOpErr An unknown conrrol operator error occurred.

Appendix C: MacAPPC Result Codes C-15

Major Code 11-nodeOpErr: Node operator error

Minor code

1

2

10

11

12

13

14

15

16

17

18

100

110

120

130

140

150

190

Name

procErr

unkProcErr

unkLinkNameErr

unkALSNameErr

unkPUNameErr

activeReqErr

dial Err

unkLUNameErr

unkMsgQueErr

noMsgQueErr

noMsgErr

actPUErr

actLUErr

dctPUErr

dctLUErr

defMsgQueErr

dspMsgQueErr

dspMsgErr

Description

Node operator routine failure.

Node operator routine not recognized.

Link name not recognized.

Adjacent link station not recognized.

Control point not recognized.

Earlier request still active.

Dial-in or dial-out required.

Logical unit name not recognized.

Message queue name not recognized.

Message queue not enabled.

No message in message queue.

NOActi vateNode routine failure.

NOActivateLU routine failure.

NODeactivateNode routine failure.

NODeact i vateLU routine failure.

NODefineMessageQueue routine failure.

NODisplayMessageQueue routine failure.

NODisplayMessage routine failure.

C-16 Appendix C: MacAPPC Result Codes

Appendix D

MacAPPC Routine Mapping

This appendix gives a complete listing of the mapping between each LU 6.2 verb and its
corresponding MacAPPC routine. NIA indicates that there is no corresponding LU 6.2 verb.

D-1

Conversation routine mapping
/~',"'

LU 6.2 verb MaeAPPC routine
'"" j

MC_ALLOCATE MCAllocate

MC_ CONFIRM MCConf irm

MC_ CONFIRMED MCConfirmed

MC_DEALLOCATE MCDeallocate

MC_FLUSH MCFlush

MC_GET_ATTRIBUTES MCGetAttributes

MC_POST _ON_RECEIPT MCPostOnReceipt

MC_PREPARE_ TO _RECEIVE MCPrepareToReceive

MC_RECEIVE_AND_ WAIT MCReceiveAndWait

MC_RECEIVE_IMMEDIATE MCReceiveimmediate

MC_REQUEST _ TO_SEND MCRequestToSend

MC_SEND_DATA MCSendData

MMC_SEND_ERROR MCSendError

MC_ TEST MCTest

BACKOUT CVBackout

GET_TYPE CVGetType

SYNC PT CVSyncPoint

WAIT CVWait \,

ALLOCATE BCAllocate

CONFIR.\1 BCConfirm

CONFORMED BCConfirmed

DEALLOCATE BCDeallocate

FLUSH BCFlush

GET_ATTRIBUTES BCGetAttributes

POST_ON_RECEIPT BCPostOnReceipt

PREPARE_TO_RECEIVE BCPrepareToReceive

~E~EIVE_AND _WAIT BCReceiveAndWait

RECEIVE_IMMEDIA TE BCReceiveimmediate

REQUEST_TO_SEND BCRequestToSend

SEND_DATA BCSendData

SEND_ERROR BCSendError

TEST BCTest

D-2 Appendix D: MocAPPC Routine Mopping

(

(' t ,)

Control operator routine mapping

LU 6.2 verb

CHANGE_SESSION_LIMIT

INITIALIZE_SESSION_LIMIT

RESET _SESSION_LIMIT

PROCESS_SESSI 0 N_LIMIT

ACTIVATE_SESSION

DEACTIV ATE_SESSION

DEFINE_LOCAL_L U

DEFINE_REMOTE_LU

DEFINE_MODE

DEFINE_TP

DI SPLAY _LOCAL_LU

DISPLAY _REMOTE_LU

DISPLAY_MODE

DISPLAY_TP

DELETE

MacAPPC routine

COChangeSessionLirnit

COinitializeSessionLimit

COResetSessionLimit

COProcessSessionLimit

COActivateSession

CODeactivateSession

CODefineLocalLU

CODefineRemoteLU

CODefineMode

CODefineTP

CODisplayLocalLU

CODisplayRemoteLU

CODisplayMode

CODisplayTP

CODelete

Node operator routine mapping

LU 6.2 verb MacAPPC routine

NIA NOActivateLine

NIA NOActivateLU

NIA NOActivateNode

NIA NOActivateStation

NIA NODeactivateLine

NIA NODeactivateLU

NIA NODeactivateNode

NIA NODeactivateStation

NIA NODefineMessageQueue

NIA NODisplayMessage

NIA NODisplayMessageQueue

NIA NODefineCP

NIA NODefineLine

NIA NODef ineNode

Appendix D: Node operator routine mapping D-3

LU 6.2 verb MacAPPC routine

NIA NODefineStation

NIA NODelete

NIA NODisplayCP

NIA NODisplayLine

NIA NODisplayNode

NIA NODisplayStation

Transaction program routine mapping

LU 6.2 verb

NIA
NIA

NIA
NIA

MacAPPC routine

TPAttach

TPDetach

TPAsciiToEbcdic

TPEbcdicToAscii

D-4 Appendix D: MacAPPC Routine Mapping

,r '' '.
' J

(

(:

Appendix E

MacAPPC
Parameter

Conversation
Mapping

This appendix gives a complete listing of the mapping between the parameters for each
LU 6.2 conversation verb parameter and its corresponding MacAPPC conversation routine
parameter.

E-1

MC_ALLOCATE is MCAllocate

LU 6.2 parameter

LU_NAME

MODE_NAME

TPN

RETURN_ CONTROL

SYNC_LEVEL

SECURITY

USER_ID

PASSWORD

PROFILE

PIP

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvRmtLUName

cvModeName

cvRmtProgName

cvReturnCtl

cvSyncType

cvSecType

cvUserName

cvUserPswd

cvUserProf

cvPIPUsed

cvPIPPtr[J

cvPIPSize []

cvCVCBPtr

appcHiResult

appcLoResult

MC_CONFIRM is MCConfirm

LU 6.2 parameter

RESOURCE

RETURN_ CODE

REQUEST_TO_SEND_RECEIVED

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

cvReqToSendRcvd

MC_CONFIRMED is MCConfirmed

LU 6.2 parameter

RESOURCE

RETURN_CODE

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

E-2 Appendix E: MacAPPC Conversation Parameter Mapping

,/'

(
MC_DEALLOCATE is MCDeallocate

LU 6.2 parameter

RESOURCE

TYPE

RETURN_ CODE

MC_FLUSH is MCFlush

LU 6.2 parameter

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvDeallocType

appcHiResult

appcLoResult

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResultt

MC_GET_ATTRIBUTES is MCGetAttributes

LU 6.2 parameter MacAPPC parameter

RESOURCE cvCVCBPtr

OWN_FULL Y _QUALIFIED_LU_NAME cvFullLclLUName

PARTNER_LU_NAME cvRmtLUName

PARTNER_FULL Y _QUALIFIED_LU_NAME cvFullRmtLUName

MODE_NAME cvModeName

SYNC_LEVEL cvSyncType

SECURITY _USER_ID cvUserName

SECURITY _PROFILE cvUserProf

LUW _IDENTIFIER cvLUWID

CONVERSATION_CORRELATOR cvLUWCorr

RETURN_ CODE appcHiResult

appcLoResult

Appendix E: MacAPPC Conversation Parameter Mapping E-3

MC_POST_ON_RECEIPT is MCPostOnReceipt

LU 6.2 parameter

RESOURCE

LENGTii

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvDataSize

appcHiResult

appcLoResult

MC_PREPARE_TO_RECEIVE is MCPrepareToReceive

LU 6.2 parameter

RESOURCE

TYPE

LOCKS

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvPrepToRcvType

cvLockType

appcHiResult

appcLoResult

MC_RECEIVE_AND _WAIT is MCReceiveAndWait

LU 6.2 parameter

RESOURCE

LENGTii

RETURN_ CODE

REQUEST_ TO _SEND _RECEIVED

DATA

WHAT _RECEIVED

MAP_NAME

MacAPPC parameter

cvCVCBPtr

cvDataSize

appcHiResult

appcLoResult

cvReqToSendRcvd

cvDataPtr

cvWhatRcvd

cvMapName

E-4 Appendix E: MocAPPC Conversation Porometer Mopping

\ __)

(

(

MC_RECEIVE_IMMEDIATE is MCReceivelmmediate

LU 6.2 parameter

RESOURCE

LENGTH

RETURN_ CODE

REQUEST_ TO_SEND _RECEIVED

DATA

WHAT _RECEIVED

MAP_NAME

MacAPPC parameter

cvCVCBPtr

cvDataSize

appcHiResult

appcLoResult

cvReqToSendRcvd

cvDataPtr

cvWhatRcvd

cvMapName

MC_REQUEST_TO_SEND is MCRequestToSend

LU 6.2 parameter

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

MC_SEND_DATA is MCSendData

LU 6.2 parameter

RESOURCE

DATA

LENGTH

MAP_NAME

FMH_DATA

RETURN_ CODE

MacAPPC parameter

REQUEST_ TO _SEND _RECEIVED

cvCVCBPtr

cvDataPtr

cvDataSize

cvMapName

cvFMHdrs

appcHiResult

appcLoResult

cvReqToSendRcvd

Appendix E: MacAPPC Conversation Parameter Mapping E-5

MC_SEND_ERROR is MCSendError

LU 6.2 parameter

RESOURCE

RETURN_ CODE

REQUEST_ TO_SEND_RECEIVED

MC_TEST is MCTest

LU 6.2 parameter

RESOURCE

TEST

RETURN_ CODE

BACKOUT is CVBackout

LU 6.2 parameter

RETURN_ CODE

GET_TYPE is CVGetType

LU 6.2 parameter

RESOURCE

TYPE
RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

cvReqToSendRcvd

MacAPPC parameter

cvCVCBPtr

cvTestType

appcHiResult

appcLoResult

MacAPPC parameter

appcHiResult

appcLoResult

MacAPPC parameter

cvCVCBPtr

cvConvType

appcHiResult

appcLoResult

E-6 Appendix E: MacAPPC Conversation Parameter Mapping

(

(

(
,'

SYNCPT is CVSyncPoint

LU 6.2 parameter

RETURI'_CODE

REQUEST_ TO_SEND_RECEIVED

WAIT is CVWait

LU 6.2 parameter

RESO URCE_LIST

RETURN_ CODE

RESOURCE_POSTED

ALLOCATE is BCAllocate

LU 6.2 parameter

LU_NAME

MODE_NAME

TPN

TYPE

RETURN_ CONTROL

SYNC_LEVEL

SECURITY

USER_ID

PASSWORD

PROFILE

PIP

RESOURCE

RETURN_ CODE

MacAPPC parameter

appcHiResult

appcLoResult

cvReqToSendRcvd

MacAPPC parameter

cvCVCBList[]

cvCVCBindex

appcHiResult

appcLoResult

cvCVCBPtr

MacAPPC parameter

cvRmtLUName

cvModeName

cvRmtProgName

cvConvType

cvReturnCtl

cvSyncType

cvSecType

cvUserName

cvUserPswd

cvUserProf

cvPIPUsed

cvPIPPtr []

cvPIPSize[]

cvCVCBPtr

appcHiResult

appcLoResult

Appendix E: MacAPPC Conversation Parameter Mopping E-7

CONFIRM is BCConfirm

LU 6.2 parameter

RESOURCE

RETURN_ CODE

REQUEST_ TO_SEND_RECEIVED

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

cvReqToSendRcvd

CONFIRMED is BCConfirmed

LU 6.2 parameter

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

DEALLOCATE is BCDeallocate

LU 6.2 parameter

RESOURCE

TYPE

LOG_DATA

RETURN_ CODE

FLUSH is BCFlush

LU 6.2 parameter

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvDeallocType

cvDataPtr

cvDataSize

appcHiResult

appcLoResult

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

E-8 Appendix E: MacAPPC Conversation Parameter Mapping

~,,

(

(.~··

GET_ATTRIBUTES is BCGetAttributes

LU 6.2 parameter MacAPPC parameter

RESOURCE cvCVCBPt r

OWN_FULL Y _QUALIFIED_LU_NAME cvFullLclLUNarne

PARTNER_LU_NAME cvRmtLUNarne

PARTNER_FULLY _QUALIFIED_LU_NAME cvFullRrntLUNarne

MODE_NAME cvModeNarne

SYNC_LEVEL cvSyncType

SECURITY _USER_ID cvUserNarne

SECURITY_PROFILE cvUserProf

LUW _IDENTIFIER cvLUWID

CONVERSATION_CORRELA TOR cvLUWCorr

RETURN_ CODE appcHiResult

appcLoResult

POST_ON_RECEIPT is BCPostOnReceipt

LU 6.2 parameter MacAPPC parameter

RESOURCE cvCVCBPtr

FILL cvFillType

LENGTH cvDataSize

RETURN_ CODE appcHiResult

appcLoResult

PREPARE_TO_RECEIVE is BCPrepareToReceive

LU 6.2 Parameter

RESOURCE

TYPE

LOCKS

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvPrepToRcvType

cvLockType

appcHiResult

appcLoResult

Appendix E: MocAPPC Conversation Parameter Mopping E-9

RECEIVE_AND_WAIT is BCReceiveAndWait

LU 6.2 parameter

RESOURCE

FILL

LENGTH

RETURN_ CODE

REQUEST_ TO _SEND _RECEIVED

DATA

WHAT _RECEIVED

MacAPPC parameter

cvCVCBPtr

cvFillType

cvDataSize

appcHiResult

appcLoResult

cvReqToSendRcvd

cvDataPtr

cvWhatRcvd
·~

RECEIVE_IMMEDIATE is BCReceivelmmediate

LU 6.2 parameter MacAPPC parameter

RESOURCE cvCVCBPtr

FILL cvFillType

LENGTH cvDataSize

RETURN_ CODE appcHiResult

appcLoResult

REQUEST_TO_SEND_RECEIVED cvReqToSendRcvd

'DATA cvDataPtr

WHAT _RECEIVED cvWhatRcvd

REQUEST_TO_SEND is BCRequestToSend

LU 6.2 parameter

RESOURCE

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

appcHiResult

appcLoResult

E-10 Appendix E: MacAPPC Conversation Parameter Mapping

.,,

\.__ ,.,J

(

(

SEND_DATA is BCSendData

LU 6.2 parameter

RESOURCE

DATA

LENGTH

RETURN_ CODE

REQUEST_ TO_SEND_RECEIVED

MacAPPC parameter

cvCVCBPtr

cvDataPtr

cvDataSize

appcHiResult

appcLoResult

cvReqToSendRcvd

SEND _ERROR is BCSendError

LU 6.2 parameter

RESOURCE

TYPE

LOG_DATA

RETURN_CODE

MacAPPC parameter

REQUEST_ TO _SEND _RECEIVED

cvCVCBPtr

cvErrorType

cvDataPtr

cvDataSize

appcHiResult

appcLoResult

cvReqToSendRcvd

TEST is BCTest

LU 6.2 parameter

RESOURCE

TEST

RETURN_ CODE

MacAPPC parameter

cvCVCBPtr

cvTestType

appcHiResult

appcLoResult

Appendix E: MacAPPC Conversation Parameter Mapping E- 11

(Appendix F

MacAPPC
Parameter

Control Operator
Mapping

This appendix gives a complete listing of the mapping between the parameters for each LU 6.2
control operator verb parameter and its corresponding.MacAPPC control operator routine
parameter. N~4 indicates that there is no corresponding parameter.

F-1

CHANGE_SESSION_LIMIT is COChangeSessionlimit

LU 6.2 parameter

LU_NAME

MODE_NAME

LU_MODE_SESSION_LIMIT

MIN_ CONWINNERS_SO URCE

MIN_CONWINNERS_TARGET

RESPONSIBLE

RETURN_ CODE

MacAPPC parameter

coRmtLUName

coModeName

coCurMaxSess

coCurMinFirstSpkrs

coCurMinBdrs

coRespType

appcHiResult

appcLoResult

INITIALIZE_SESSION_LIMIT is COlnitializeSessionLimit

LU 6.2 parameter

LU_NAME

MODE_NAME

LU_MODE_SESSION_LIMIT

MIN_CONWINNERS_SOURCE

MIN_CONWINNERS_ TARGET

RETURN_ CODE

MacAPPC parameter

coRmtLUName

coModeName

coCurMaxSess

coCurMinFirstSpkrs

coCurMinBdrs

appcHiResult

appcLoResult

RESET_SESSION_LIMIT is COResetSessionLimit

LU 6.2 parameter

LU_NAME

MODE_NAME

RESPONSIBLE

DRAIN_SOURCE

DRAIN_ TARGET

FORCE

RETURN_ CODE

MacAPPC parameter

coRmtLUName

coModeName

coRespType

coDrainSrc

coDrainTgt

coForceRst

appcHiResult

appcLoResult

F-2 Appendix F: MacAPPC Control Operator Parameter Mapping

(
PROCESS_SESSION_LIMIT is COProcessSessionLimit

LU 6.2 parameter

RESOURCE

LU_NAME

MODE_NAME

RETURN_ CODE

Mac:APPC parameter

coConvID

coRmtLUName

coModeName

appcHiResult

appcLoResult

ACTIVATE_SESSION is COActivateSession

LU 6.2 parameter

LU_NAME

MODE_NAME

RETURN_ CODE

Mac:APPC parameter

coRmtLUName

coModeName

appcHiResult

appcLoResult

(~. DEACTIVATE_SESSION is CODeactivateSession

.c· ".
. .

LU 6.2 parameter

SESSION_ID

TYPE

RETURN_ CODE

Mac:APPC parameter

coSessID

coDeactType

appcHiResult

appcLoResult

DEFINE_LOCAL_LU is CODefinelocalLU

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

LU_SESSION_LIMIT

Mac:APPC parameter

coLclLUName

coNetNameOp

coNetName

coNetQualOp

coNetQual

coDefLUMaxSess

Appendix F: MacAPPC Control Operator Parameter Mapping F-3

LU 6.2 parameter

SECURITY

MAP_NAME

RETURN_ CODE

MacAPPC parameter

coConvSecType

coSecOp

coUserName

coUserPswd

coUserProf

NIA
appcHiResult

appcLoResult

DEFINE_REMOTE_LU is CODefineRemoteLU

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

LOCALLY _KNOWN_LP_NAME

UNINTERPRETED _LU_NAME

INITIATE_ TYPE

PARALLEL_SESSION_SUPPORT

CNOS_SUPPORT

LU_LU_PASSWORD

SECURITY _ACCEPTANCE

RETURN_ CODE

MacAPPC parameter

coNetNarneOp

coNetNarne

coNetQualOp

coNetQual

coRmtLUNarne

NIA
coQueueINITs

coParSess

coCNOSALSNarne

coLUPswdOp

coLUPswd

coLclSecAcc

appcHiResult

appcLoResult

DEFINE_MODE is CODefineMode

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

MODE_NAME

SEND_PACING_ WINDOW

RECEIVE_PACING_ WINDOW

SEND_MAX_RU_SIZE_LOWER_BOUND

SEND_MAX_RU_SIZE_UPPER_BOUND

MacAPPC parameter

coRrntLUName

coModeNarne

coSendPacing

coRcvPacing

coMaxRULoBound

coMaxRUHiBound

F-4 Appendix F: MacAPPC Control Operator Parameter Mapping

/,-.-"~'-.._,\

'\.. __ ,f

(

(,

(',,
/

RECEIVE_l\IAX_Rl:_SIZE_LOWER_BOl:ND coMaxRULoBound

RECEIVE_MAX_RU_SIZE_UPPER_BOUND coMaxRUHiBound

SYNC_LEVEL_S CPPORT

SINGLE_SESSIO?_REINITIATION

SESSION_LEVEL_CRYPTOGRAPHY

CONWINNER_AUTO _ACTIV ATE_LIMIT

RETURN_ CODE

coSyncType

coReinitType

coSessCrypt

coDefPBFirstSpkrs

appcHiResult

appcLoResult

DEFINE_TP is CODefineTP

LU 6.2 parameter MacAPPC parameter

TP_NAME coLclProgNarne

coNetNarneOp

coNetNarne

STATUS coEnableType

CONVERSATION_ TYPE coConvType

SYNC_LEVEL coSyncType

SECURITY _REQUIRED coSecReq

SECURITY _ACCESS coSecOp

coUserNarne

coUserProf

PIP coPIPReq

coPIPCount

coPIPCheck

DAT A_MAPPING coDataMapping

FMH_DATA coFMHDataSupp

PRIVILEGE coPrivType

RETURN_ CODE appcHiResult

appcLoResult

Appendix F: MacAPPC Control Operator Parameter Mapping F-5

DISPLAY _LOCAL_LU is CODisplayLocalLU

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

RETURN_ CODE

LU_SESSION_LIMIT

LU_SESSION_COUNT

SECURITY

MAP_NAMES

REMOTE_LU_NAMES

TP_NAMES

MacAPPC parameter

coLclLUName

coNetName

coNetQual

appcHiResult

appcLoResult

coDefMaxSess

coActLUSess

coConvSec

coUserName

coUserPswd

coUserProf

NIA

NIA
NIA

DISPLAY _REMOTE_LU is CODisplayRemoteLU

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

RETURN_ CODE

LOCALLY _KNOWN_LU_NAME

UNINTERPRETED_LU_NAME

INITIATE_ TYPE

PARALLEL_SESSION_SUPPORT

CNOS_SUPPORT

SECURITY _ACCEPT ANCE_LOCAL_L U

SECURITY _ACCEPTANCE_REMOTE_LU

MODE_NAMES

MacAPPC parameter

coNetName

coNetQual

appcHiResult

appcLoResult

coRmtLUName

NIA
coQueueINITs

coParSess

coCNOSALSName

coLclSecAcc

coRmtSecAcc

NIA

F-6 Appendix F: MacAPPC Control Operator Parameter Mapping

(

(..

c:

DISPLAY _MODE is CODisplayMode

LU 6.2 parameter

FULLY _QUALIFIED_LU_NAME

MODE_NAME

RETURN_ CODE

SEND_PACING_ WINDOW

RECEIVE_P ACING_ WINDOW

SEND _MAX_R u _s I ZE_ UPPER_BO UND

SEND_MAX_RU_SIZE_LOWER_BOUND

RECEIVE_MAX_R U _SIZE_ UPPER_ BO UNO

RECEIVE_MAX_RU_SIZE_LOWER_BOUND

SYNC_LEVEL_SUPPORT

SINGLE_SESSION_REINITIATION

SESSION_LEVEL_ CRYPTOGRAPHY

CONWINNER_AUTO_ACTIVATE_LIMIT

LU_MODE_SESSION_LIMIT

MIN_CONWINNERS

MIN_CONLOSERS

TERMINATION_COUNT

DRAIN_LOCAL_LU

DRAIN_REMOTE_LU

LU_MODE_SESSION_COUNT

COl\TWINNERS_SESSION_COUNT

CONLOSERS_SESSION_COUNT

SESSION_IDS

DISPLAY_ TP is CODisplayTP

LU 6.2 parameter MacAPPC

MacAPPC parameter

coRmtLUName

coModeName

appcHiResult

appcLoResult

coSendPacing

coRcvPacing

coMaxRUHiBound

coMaxRULoBound

coMaxRUHiBound

coMaxRULoBound

coSyncType

coSessReinit

coSessCrypt

coDefPBFirstSpkrs

coCurMaxSess

coCurMinFirstSpkrs

coCurMinBdrs

coTermCount

coDrainLclLU

coDrainRmtLU

coActSess

coActFirstSpkrs

coActBdrs

NIA

parameter

TP_NAME coLclProgName

coNetName

RETURN_ CODE appcHiResult

appcLoResult

STATUS coEnableType

CONVERSATION_ TYPE coConvType

SYNC_LEVEL coSyncType

Appendix F: MacAPPC Control Operator Parameter Mapping F-7

LU 6.2 parameter

SECURITY _REQlJIRED

SECURITY _ACCESS

PIP

DATA_MAPPING

FMH_DATA

PRIVILEGE

DELETE is CODelete

LU 6.2 parameter

LOCAL_LU_NAME

REMOTE_LU_NAME

MODE_NAME

TP_NAME

RETURN_ CODE

MaeAPPC parameter

coSecReq

coUserName

coUserProf

coPIPReq

coPIPCount

coPIPCheck

coDataMapping

coFMHDataSupp

coPrivType

MaeAPPC parameter

LclLUName

coRmtLUName

coModeName

coLclProgName

appcHiResult

appcLoResult

F-8 Appendix F: MacAPPC Control Operator Parameter Mapping

''-·.

"-...

_./
,;

(
Appendix G

MacAPPC Result Codes
Mapping

This appendix gives a complete listing of the mapping between the parameters for each
. LU 6.2 return code and its corresponding MacAPPC result code. NIA indicates that there
is no corresponding MacAPPC result code.

G-1

Conversation return codes
'""--...

LU 6.2 return code MacAPPC result code

ALLOCATION_ERROR allocErr

ALLOCATION_FAILURE_NO_RETRY allocNoRetryErr

ALLOCATION_FAILURE_RETRY allocRetryErr

CONVERSATION_TYPE_MISMATCH convTypeMatchErr

PIP _NOT _ALLOWED pipSuppErr

PIP _NOT_SPECIFIED_CORRECTLY pipSpecErr
SECURITY _NOT_ VALID secinf oErr
SYNC_LEVEL_NOT_SUPPORTED_BY _LU NIA
SYNC_LEVEL_NOT_SUPPORTED_BY _PGM syncTypeSuppErr

TPN_NOT _RECOGNIZED unkProgNameErr

TRANS_PGM_NOT _A VAIL_NO_RETRY tpNoRetryErr

TRANS_PGM_NOT _AVAIL_RETRY tpRetryErr

BACKED_OUT NIA
DEAKKICATE_ABEND abendErr

DEALLOCATE_ABEND_PROG abendProgErr

DEALLOCATE_ABEND_SVC abendSvcErr

DEALLOCATE_ABEND_TIMER abendTimerErr
DEALLOCATE_NORMAL normDeallocErr
FMH_DATA_NOT ..:_SUPPORTED fmhSuppErr

HE URIS TI C_MIXED NIA
MAP _EXECUTION_FAILURE mapProcErr
MAP _NOT_FOUND mapNameErr
MAPPING_NOT _SUPPORTED mapSuppErr

OK noErr
DATA dataAvail
NOT_DATA ctlAvail

PARAMETER_ERROR usageErr

POSTING_NOT _ACTIVE postActErr
PROG_ERROR_NO_TRUNC progNoTruncErr
PROG_ERROR_PURGING progPurgingErr
PROG_ERROR_ TRUNC progLLTruncErr

SVC_ERROR_NO_TRUNC svcNoTruncErr
SVC_ERROR_PURGING svcPurgingErr
SVC_ERROR_ TRUNC svcLLTruncErr

RESOURCE_F AIL URE_NO _RETRY rsrcErr
RESO URCE_F AILURE_RETRY rsrcErr

UNSUCCESSFUL badComplErr
~"""'

~1

G-2 MacAPPC Result Codes Mapping

(
Control operator return codes

LU 6.2 return code MacAPPC result code

ACTIVATION_FAILURE_NO_RETRY sessActErr

ACTIVATION_FAILURE_RETRY noSessSpaceErr

ALLOCATION_ERROR allocErr

ALLOCA TION_F AIL URE_NO _RETRY allocNoRetryErr

ALLOCA TION_FAILURE_RETRY allocRetryErr

TRANS_PGM_NOT _AVAIL_NO_RETRY tpNoRetryErr

COMMAND _RACE_REJECTED raceCNOSErr

LU_MODE_SESSION_LIMIT_CLOSED limitsClosedErr

LU_MODE_SESSION_LIMIT_EXCEEDED limitsTooBigErr

LU_MODE_SESSION_LIMIT_NOT_ZERO limitsNotZeroErr
LU_MODE_SESSION_LIMIT_ZERO limitsZeroErr

LU_SESSION_LIMIT_EXCEEDED NIA
OK noErr

AS_SPECIFIED normalCompl

AS_NEGOTIA TED negotCompl

FORCED NIA
P ARAMETER_ERRO R usageErr

(REQUEST _EXCEEDS_MAX_ALLOWED limitsTooBigErr

RESOURCE_FAILURE_NO_RETRY rsrcCNOSErr
UNRECOGNIZED _MOD E_NAME unkModeErr

Appendix G: MacAPPC Result Codes Mapping G-3

('"'

_,,l

(_ Appendix H

HyperCard APPC

This appendix describes HyperCard APPC™, a HyperCard® stack that is included
with MacAPPC. Some of the information in this appendix is also available in the stack
itself.

HyperCard APPC provides a HyperCard-based MacAPPC

o development environment

o interactive lab with help

o sample application

As a development environment, HyperCard APPC supplies many of the basic
handlers needed to create a HyperCard front end for MacAPPC. You can copy these
handlers and use them in your own HyperCard MacAPPC applications. HyperCard
APPC also supplies the external commands (XCMDs) and external functions (XFCNs)
necessary to pass data between HyperCard and MacAPPC. As with the basic handlers,
you are free to copy and use the XCMDs and XFCNs in your own applications.

The HyperCard APPC stack includes a "laboratory" for experimenting with and
learning about MacAPPC routines. The MacAPPC Lab section is composed of a series
of cards. Each card represents one MacAPPC routine and shows all of that routine's
parameters. Pop-up help fields explain the purpose of the routine and describe each
of the· parameters. You can execute a specific MacAPPC routine handler after setting
the values of the parameters that are passed to the MacAPPC driver (supplied
parameters).

The sample application is an implementation of a HyperCard-based MacAPPC
application called APPC Mail. APPC Mail is actually two applications in one: a server
application called Postmaster and a client application called Mailbox. Postmaster
allows you to select a picture and type in a message. Mailbox lets you request the
current picture and message from the Postmaster. APPC Mail helps you understand
MacAPPC conversation flows by displaying the conversation transactions as they
occur. You can also study the APPC Mail scripts to see how the HyperCard APPC
handlers, XCMDs, and XFCNs were used to implement the APPC Mail application.

This appendix assumes that you already are familiar with HyperCard, HyperTalk™
.programming, and StackwareTM. If you are not, you should read the HyperCard User's
Guide and APDA's HyperCard Script LtJnguage Guide and experiment with some
other HyperCard stacks.

H-1

Setup
Chapter 9, "Installation," explains in derail the hardware and software requirements
for running MacAPPC applications. This section reviews those requirements
specifically related to using HyperCard APPC.

Important
Be sure to use a working copy of HyperCard APPC. Never work with your original
HyperCard APPC stack.

Physical requirements
The sample session and sample application, described later in this appendix, assume
conversations between two Macintosh computers. One of the computers must be a
Macintosh II, with the intelligent communications card (server card) installed.
Although the Macintosh II hosts the MacAPPC server, it is not dedicated to that
process; it can simultaneously host the server and run its own applications. The other
computer can be a Macintosh Plus, SE, or II. Because HyperCard is such a large
application, both computers must have at least 2 megabytes of RAM. The computers
should be connected via an AppleTalk network system.

Software requirements
In order to use the HyperCard APPC stack, you must, of course, have the HyperCard
application.

Important
HyperCard APPC requires version 1.2 (or later) of the HyperCard application.

The MacAPPC product requires that several files be located in the System Folder of the
Macintosh II computer with the server card, and that a subset of those files be in the
System Folder of any other computer acting as a client. See "Software" in Chapter 9.

Starting the MacAPPC server

The MacAPPC server must be started and the session limits activated for at least one
user mode prior to running HyperCard APPC. See "Starting a MacAPPC Server" and
"Displayfng Network Components and Sessions" in Chapter 12.

H-2 Appendix H: HyperCard APPC

,!"''''-,,

'<_ ,/j

(__

Overview
The HyperCard APPC stack consists of the following sections:

o Introduction

o HyperCard APPC API

o MacAPPC Lab

o Sample Application

Figure H-1 shows the title card of the HyperCard APPC stack. The index tabs at the
bottom of the card are buttons that take you to each section.

HyperCard APPC

HyperCard®

Interface to
MacAPPC™

© 1988 Apple Computer Inc.

Applthlk

Hyp•rC.ard APPC API MacAPPC L~ S•mplt Applic•hon ~ C::..

Figure H-1
The HyperCard APPC stack title card

Introduction

The introduction is a set of cards that describe the stack and its various components.
These cards provide a brief introduction to APPC, MacAPPC, and HyperCard APPC
programming. The introduction also tells you how to navigate (move around) the
stack, explains how to get help, and gives overviews of the major sections of the stack.

HyperCard APPC Application Programming Interface (API)
HyperCard APPC supplies the basic handlers you need to create HyperCard-based
MacAPPC applications and the external commands (XCMDs) and external functions
(XFCNs) tl1at pass data betv.reen HyperCard and MacAPPC. The handlers, XCMDs,
and XFCNs are known collectively as the HyperCard APPC Application Programming
Interface (AP!).

Overview H-3

The HyperCard APPC API cards outline the process of creating your own HyperCard
APPC applications using the HyperCard APPC APL "Developing HyperCard APPC
Applications," later in this appendix, discusses the same topic.

MacAPPC Lab
The MacAPPC Lab consists of four groups of cards. Each group contains a related set
of MacAPPC routines, one routine per card. The four groups are

o transaction program routines (TP)

o mapped conversation routines (MC)

o basic conversation routines (BC)

o type-independent conversation routines (CV)

+ Note: The HyperCard APPC Lab does not include control operator or node
operator routine cards or handlers. Control operator and node operator are
supported, however, by the APPC XCMD. (See "APPC XCMD," later in this
appendix.)

The title card at the beginning of the MacAPPC Lab section lists the four groups of
cards. Click one of the buttons to go directly to the named group. You can also go to
one of the groups of routines by using the navigation button in the top-left comer of
each card. When you press the navigation button, a pop-up menu appears from which
you can choose one of the groups of routines. (See Figure H-2.)

Use the novigotion button's
pop-up menu to go to
another cord in the lob

~~~dj dj 

MacAPPC Lab 
~~~~~~~....;.....=.=-"-"-,· 

\ ransaction Program Routines
Mapped Conuersation Routines
Basic conuersation Routines whi·~h yo1l can experiment with and learn
Type-Independent Routines Lat consists of the four ;eroups of routines

llil!l'--n~rcie.!fi:~~~mmn~m~e::ents one routine ar1,J sho'!:t:: all of that
routine's parameters. The lat is an imera•:tive env1ronmen1 in whi·:h you·~ar' set

Figure H-2
The navigation button pop-up menu

Similarly, each group of routines begins with an index of the individual routine cards
contained in that group. Click the button next to a routine name to go directly to its
card. Figure H-3 shows the MacAPPC Lab title card and the four subordinate group­
index cards.

H-4 Appendix H: HyperCard APPC

O Transaction Program Routines (TP

O Mapped Conversation Routines (MC)

O Basic Co nve rsati on Routines (BC)

Transaction
Program Routines

Use these ---l-----< 0 TP Attach
buttons to go to O T P Detach
the individual O TPAsciiToEbcdic
routine cards

O TPEbcdicToAscii

f'."~I Mapped Conversation Routines la
D MCAllocate
0 MCCo nfi rm
0 MCConfi rmed
0 MCDeallocate
0 MCFlush
0 MCGetAttri butes
D MCPostOnReceipt

0 MCRequestToSend
0 MCSendData
0 MCSendError
0 MCTest

D MCPrepareToReceive
O MCReceiveAndWait
O MC Receive! mmediate

f ~l Basic Co nve rsati on Ro uti nes 11)

O Type Independent Conversation Routines (CV)

0 BCAllocate
D BCConfirm
0 BCConfi rmed
0 BCDeallocate
0 BCFlush

0 BCRequestToSend
0 BCSe nd Data
0 BCSendError

Use these buttons to
go to the four
group-index cards

Figure H-3
Navigation cards for the MacAPPC Lab

0 BCTest

0 BCGetAttri butes
0 BCPostOnRecei pt
O BCPrepareToReceive
O BCReceiveAndWait
0 BC Receive! mmediate

Type- Independent
Conversation Routines

0 CVGetType

0 CVWait

Overview H-5

•:• Routines versus verbs: MacAPPC conversation routines correspond directly to
APPC verbs. MacAPPC transaction program routines, however, are unique to the
MacAPPC product, and have no APPC counterparts.

MacAPPC routine cards

The MacAPPC routine cards perform several functions. Each card

o displays the routine's parameters and lets you enter or change the supplied
parameters

o teaches about the parameters through the built-in help system

o displays a script showing the parameter list

o lets you execute the routine

o provides HyperTalk scripts that you can copy for your own HyperCard applications

Figure H-4 illustrates the elements of MacAPPC Lab cards using the TPAttach card as
an example. The name of the routine appears at the top, a little left of center. The
navigation button is in the top-left comer. The help button appears in the top-right
comer. Most of the card is taken up by supplied and returned value fields. The text
field across the bottom of the card displays the call to the HyperCard APPC routine
handler. You execute the routine by dicking the Execute button at the top of the card,
to the right of the routine name. (The Lookup Chooser Server and Zone button is
unique to the TPAttach routine card. See "Other Elements," later in this appendix.)

Get help
ona
parameter
l::1t'
clicking
the
parameter·
name

Figure H-4

Navigation button Routine name
Executes the
MacAPPC routine Help

TPAttach (j) Execute TPAttach

Supplied Values:

ocal Prog Name
erver Name
one Name

Wait Time

LIJ1
TP1

500

J (j) Lookup Chooser Server and Zone

TP CB Ptr $800[•51 FO

CV CB Ptr $00000000
Map Proc $00000000
Map Buff Ptr $00000000
Map Buff Size ._.o _____ _.

{

ocal LU Name

ttach T1ipe kLUAttach Pl P Parameters *

Returned Values: toResult ~1
~ APPC Hi Result 0

APPC Lo Result 0
APPC Conv State 0

Co nve rsati on I D
Program ID

t ,4:onE-Name .. w.al~Time

I~

H•;p•rCard l\PPC API MaoAP C Lab $aMpl• Applio•tion

Call to
HyperCard APPC
routine handler

Press the returned value fields to
display explanations of the result
codes (available only for some
returned values>

Drop-shadowed fields
hove pop-up menus
from which you select
the parameter value

TPAttach routine card

H-6 Appendix H: HyperCard APPC

(

C •..
'

Supplied Values parameters

Supplied Fa/ues are the parameters passed to the MacAPPC driYers when a MacAPPC
routine is executed. The routine cards in the MacAPPC Lab let you set those
parameters, either by entering them in the appropriate text fields or by choosing
items from pop-up menus. Pop-up menus are indicated by the drop-shadowed
parameter fields, as shown in Figure H-4. Press the parameter field· to display the
menu; drag to make a selection.

You can get information about a particular parameter by clicking the parameter name.
See "Lab Help," later in this appendix.

HyperCard APPC provides default values for some of the supplied parameters. You
can accept the default values or enter your own. Other values HyperCard APPC
allocates for you, and cannot be set directly. HyperCard APPC automatically allocates
values for

o control block pointers (TP CB Ptr, CV CB Ptr)

o buffer pointers (Map Buff Ptr, Data Ptr)

o buffer sizes (Map Buff Size, Data Size)

o mapping procedure pointer (Map Proc)

HyperCard APPC supplies two TP CB Ptrs and two CV CB Ptrs that support two
attaches with one conversation each, or one attach with two conversations. Pop-up
menus let you choose between the two conversations.

After you set the supplied values, you can click the Execute button at the top of the card
to execute the routine.

TPAttach card: When you choose kLUAttach (the default) for the Attach Type
parameter on the TP Attach card, the following parameters are ignored:

o CV CB Ptr

o Map Pioc

o Map Buff Ptr

The parameters become active when you choose kWaitAttach for the Attach Type
parameter. Pop-up menus let you choose between two conversations (CV CB Ptr
parameter); no mapping procedure or a sample mapping procedure (Map Proc
parameter); and the supplied map buffer for a 256-byte buffer, plus 4 bytes of
overhead, or no buffer (Map Buffer parameter). Because these parameters are
pointers, HyperCard APPC allocates the actual values.

Returned Values parameters

Returned Falues are the parameters yielded when a MacAPPC routine call is
completed. The returned values provide result codes, the current conversation state,
and other information.

You can get information about a returned value parameter by clicking the parameter
name. You can also get help about specific result codes by pressing the returned value
(moving the pointer over the value and holding the mouse button down). See "Lab
Help," later in this appendix.

Overview H-7

The ioResult field tells you whether or not an error occurred. If 0 (zero) appears, there
was no error; if -5000 appears, an error did occur. When an error occurs, the APPC Hi
Result field tells you the type of error and APPC Lo Result gives you details. Table H-1
lists the major error resulr codes (APPC Hi Result). See also Appendix C, "MacAPPC
Result Codes," ·~vhich lists the major error resulr codes and the minor error result
codes (APPC Lo Result).

Table H-1
APPC major errors (APPC Hi Result)

APPC Hi ResuH value

0

1

2

3

s
7

9

10

11

Description

Function completed normally

Function aborted, usage error

Function not completed

Function aborted, state error

Function aborted, allocation error

Program error

Deallocated

Control operator error

Node operator error

The value returned in the APPC Conv State field gives the current conversation state of
your node. Table H-2 lists the state values and their meanings. (See also
"appcConvState" in Chapter 3 and "Conversation States" in Chapter 4.)

Table H-2
APPC conversation state

APPC Conv State value Description

0 Null

1 Reset

2 Send

3 Receive

4 Confirm

5 Confirm send

6 Confirm deallocate

7 Deallocate

H-8 Appendix H: HyperCard APPC

I
"

Other elements

This section describes the elements found only on one or a few of the routine cards.

Conversation ID and Program ID fields: Program ID and Conversation ID appear on
the TP Attach, BCGetAttributes, and MCGetAttributes cards. Conversation ID also
appears on the MCAllocate and BCA!locate cards.

On the TP Attach card, the Conversation ID is valid only when the attach type is
kWaitAttach.

Send data field with pop-up menu and Save button: The TPAsciiToEbcdic,
TPEbcdicToAscii, MCSendData, BCDeallocare, BCSendData, and BCSendError
cards contain a scrolling field in which you can enter data to translate or send. A pop­
up menu lets you disp\ay the data as text or as hexadecimal code. The Save button lets
you save the data at the location pointed to by the data pointer (TP Data Ptr or Data
Ptr).

Warning

Because $00 (hexadecimal code 00) is the terminator for HyperCard strings. do
not display hexadecimal data as text if it contains $00. All data after $00 is lost
when displayed as text.

Receive date field with pop-up menu: The MCReceiveAndWait,
BCReceiveAndWait, MCReceivelmmediate, and BCReceivelmmediate cards contain
a scrolling field that displays the data currently pointed to by the data pointer (Data
Ptr). (This is the same pointer and buffer used by the TPAsciiToEbcdic,
TPEbcdicToAscii, MCSendData, and BCSendData cards.) A pop-up menu lets you
display the data as text or as hexadecimal code.

•> Note: Because $00 (hexadecimal code 00) is the terminator for HyperCard strings,
text display will not show data after $00.

Lookup Chooser Server and Zone button: Clicking the Lookup Chooser Server and
Zone button on the TPAttach card enters in the appropriate Supplied Values fields
(Server Name and Zone Name) with the MacAPPC server and zone names currently
specified by the Chooser. Or you can enter any other server and zone names of your
choice.

Lab Help

Each card has a help button in the top-right corner. Clicking the button displays a
general description of the routine.

Overview H-9

Each card also contains help fields for each of the routine's individual parameters
(both supplied and returned). To display a parameter's help field, click the parameter
name. For example, on the MCAllocate card, clicking Remote LU Name under
Supplied Values displays the Remote LU Name help field. (See Figure H-5.) Click
anywhere in the help field to close it.

+ Note: The help fields on the routine cards contain the same text as is used in Part II
of this guide.

Clicking a parameter
(Remote LU Nome. for example)
diSploys help for that parameter

Click the help button for
general information

MCAJlocate

Supplied Values:
Remote LU Name
Remote Prog Name
Mode Name
llier Name
U$e r Paw ... ord

User Profile
Return Ctl

Returned Values:

J.ii~J.iiJ.iiJ.lil.H~

Lll2
TP3
MODE!

VW he nil 11 oc Return

f;;I MCAllocate

Supplied Values:

(j) Ex~ute MCAllocate

Cl" CB Ptr
TP CB Ptr
Sync Typ-.
Security Type
CV Map Proc.
Map Buff Ptr
Map Buff Size
Pl P Parameters ~

$80005Ct 4
$Boor•:. t ro
kN(IS1.1r11:

$00000000
$800MA2E
260

c@> Exec•Jte MCAllocale

~--- Remote LU Name Help

Click in
the help
field to
close it

cvRmlLUName (supplied) specifies a pointer to a siring !Mt contains the name oittoe
remote LU. The string length must not be greater than the value of the kMaxName constant
The name h any name by "Whicto the local LU kno"Ws the remote LU for the purpose of
allocating a mapped conversation Tti1s locally kno"Wn LU name becomes the LU name that 1s
•JMd b•J ttie net·work if the t"Wo names are different

11.I

,c,,.,.-n-;-co C!'.:' = =_J CT"V=c!;~_;rr<;t'~ ~"-=~-----'

Returned Values: PIP Parameter$*

Figure H-5
Remote LU Name help field

In addition, descriptions of the actual result codes returned are available for the
following parameters:

o ioResult

0 APPC Hi Result

0 APPC Lo Result

0 APPC Conv State

0 WhatRcvd

0 Req To Send Rcvd

0 Sync Type

0 Conversation Type

H-10 Appendix H: HyperCard APPC

(

To see the explanation of a result code, position the pointer over the value and hold
the mouse button down. The explanation appears at the bottom of the window, as
shown in Figure H-6.

·.; ReturnedValues:
{; ioF'~;;iJll -, _-5-0C-,O--~-~
·~, APPC H1 ~'.e:;.1;1t 1

APP(Lo Re:;ult
APPC Cor.v 3t~\e 0

ioP"sull ap~•(ReQfo1led - error. see APPC Hi and Lo Results
AP PC Hi Result Usc2ge errc•r

F'rOQram not attached

Explanations of result codes
appear at the bottom of the
cord

Figure H-6
Help on error result codes

Sample Application

Sampl• Apphcatioo

Press the returned value fields to display
explanations of the result codes

The sample application-APPC Mail-demonstrates a simple conversation between
two Macintosh computers using HyperCard APPC. This sample application is really
two applications in one: a server application (Postmaster) and a client application
(Mailbox). Postmaster sends messages and pictures to Mailbox. To conduct a
conversation using APPC Mail, one node must be running Postmaster and the other
must be running Mailbox.

APPC Mail lets you learn about MacAPPC conversation flows by displaying a log of the
MacAPPC routines as they are executed. Both server and client routines are listed, as
explained in the sections that follow.

You can also learn about creating HyperCard APPC applications by studying the
background scripts and card scripts used in the sample application. The scripts use the
HyperCard APPC APL (See "HyperCard APPC API," earlier in this appendix.) These
scripts give examples that you can use in your own application.

Before you can use APPC Mail, you must do the following:

1 . Start the server using Admin and the Local Config configuration document. The two
files are on the MacAPPC Userdisk. (See "Starting a MacAPPC Server" in Chapter 12.)

2. Activate the LUs. (See "Activating Network Components and Sessions" in Chapter 12.)

3. Start a CNOS. (See "Starting and Stopping CNOS" in Chapter 12.)

4. Activate the mode limits. (See "Activating Network Components and Sessions" in
Chapter 12.)

5. Select the MacAPPC sexver (with the Chooser) for both clients. (See "Selecting a
MacAPPC Server" in Chapter 10.)

Figure H-7 shows the APPC Mail title card. The three large buttons on the card let you

o configure the local node

o start up Postmaster (server application)

o start up Mailbox (client application)

Overview H-11

You perform these actions by clicking the appropriate button.

Thi: :8Jlli:·1~ ar·Ph·: ;.rrnr: 1: ::;. :u:ui:·le mail
zy:1em Here are the t·a::1-::: :.1-et·: ti:1 1xe 1t

Configure r;r..·o ?•.i1;:..<:1nto:b. ·::omputer2
using APPC 11,i!:;il CorJ.i1gur:~.tion

.... Rur.i. Po:.tm . .,;rer i:1n one l•.•le.<:intc1:h
~lnte a. m.e::=;~;~e. ·::h1J1:1se ;;,. gra,t:·hi-:: ..
an"l the-11 :en-l 1he M.:.11c.n.m

3 F~ un Metilt-1:1x on the either
M;~.<1ntr;i;;h t1:1 reo:::ero:.~ the 1•.i1e1lCTr.:im

Cli·::J: the help i·:::on for mi:1te .:jet;:dlt-·::
1n:.tr1xtic1n~.

Figure H-7
APPC Mail title card

APPC Mail Configuration

I Configure
"
f Postmaster
.,

[Mailbox
'

Clicking the Configure button takes you to the configuration card. APPC Mail comes
preconfigured, as shown in Figure H-8. APPC Mail uses the values on this card for the
names of the logical units, transaction programs, and mode. It also provides the value
for the time-out for a response to the MCP.ecei veAndWai t routine (Wait Time
parameter).

ii~ii~i~~~ii~~~~~i~,~~~~~6ii~~

APPC Mail Configuration

!F'o::trn•~oter LU r·~.:irne: j:::::L=U=I=====~
I F'ostrnast.er F·n:1g Narne. I TP I lMallt1C1>: LU Narne. ;::I L=1_=1;;;=. =======:

·/ ·1ailbc<:·: Prc1g N>:ime lTF'3 :========:
Mode Narne I MODE 1 :========:
Y.iai t Time l~1_5_·c_" -----~

(jj) Lookup Chooser Server and Zone
f<'---------.

Server Name
1-----1

Get help on a
parameter by
clicking the
parameter
name·-

Figure H-8

Server Zone

If these fields 'ore empty and you hove
selected o MocAPPC server from the
Chooser. APPC Moil automatically fills in the
server name and zone when the stock is
ooe·1ea

APPC Mail configuration cara

H-12 Appendix H: HyperCard APPC

11)

These values work
with the ·Local
Config" file

c:

(...

. !

HyperCard APPC automatically looks up the server and zone names when the stack is
opened, provided that you have previously chosen a MacAPPC server and neither
field already had a value. Otherwise, you need to select a server name and zone from
the Chooser, and then click the Lookup Chooser Server and Zone button. Or, type in
the name and zone of the server you wish to use. (:\'ore that case is significant.) You will
also need to click the Lookup Chooser Server and Zone button if, in the future, you
choose a different MacAPPC server.

Thereafter, it is usually not necessary to configure this application-the default values
should work under most conditions. Do not change these values unless you are sure
you need to. Any changes you make will remain until you change the values again. If
you do make changes, first copy the values shown in Figure H-8, or make a new working
copy of the HyperCard APPC stack from your original in case you want to return to the
original settings.

Postmaster

You start Postmaster by clicking the Postmaster button on the APPC Mail title card.
The Postmaster card is shown in Figure H-9.

I Postma~ter c::Jfrj
APPC Mail -vu

I

o:@> Start Deli1.1eries

TPFI". t•::ic.1"1 kWa r tAt. tach. LU 1, TP 1

1 r-1c F;ei:.e 1 •}eHn.jt.J.:11 t
14 81-1 t.e.:: F:e.:e i ·.~e.j

I MCF;~·:e 1 veHndl.J,:,11 t
MCSendOata .::~:. t•utes
nc.::.er·1dClata 167 b1-1+.~::

I MCF'rep•:tr e T ·:iRe,:e 1 ,:.~
t1C Re·:e 1 1._.1eAr-..:j~J1:J 1 t
4 81:1 tes Rec:~ 1 ~·J

MC:Re•:e i eAt·1d~-k~ 1 t

t·1c·:.endO•::it.::i ~:::: t•1,_.1te~

Figure H-9
APPC Mail Postmaster

Circl~s

~ APPC Mail Gram ~~L"-

Triangles.
Thi~. i~. a te·;t of tr1e ernergen(y
broadi::as:t. system

Postmaster lets you create APPC Mail Grams and send them to the Mailbox
application. An APPC Mail Gram consists of a block of text and a picture. You can
send one of three pictures: circles, rectangles, or triangles. Click one of the buttons
above the Mail Grain to make your choice. The picture you are sending appears at the
top of the Mail Gram, and the picture's title appears in the center. You can edit the text
block and create your own message in the usual Macintosh way.

Overview H-13

·when you have chosen a picture and entered your message, you are ready to send the
Mail Gram. Click the Start Deliveries button. Postmaster will wait for a request for data
from the Mailbox. When the request is received, Postmaster sends the picture and tex't
to Mailbox. As MacAPPC routines are called, Postmaster logs the routines and their
responses in the scrolling text field on the left side of the card.

Mailbox

Make sure Postmaster is started first. Then click the Mailbox button on the APPC Mail
title card to start the Mailbox client application. Figure H-10 shows the Mailbox card.
Clicking the Open Mailbox button at the top of the card sends a request for data to
Postmaster. Mailbox will then receive the Mail Gram you created with Postmaster.
(See the previous section.)

~·· ·············••iiii666666
Mailbox
APPC Mail

TPAtt"C~• ~LUAtt"<.~o.LIJ2, TP3
MCA I I oc(lt.e LIJ 1, TF' 1
Client Active
MCSendO"ta 4 bytes
NC'P.e.::e i 1...•ie:Ar.dWcr i 't
.:c::: Sy +.es F:ece 19ed
MC:ReceiveAndWoit.
53 By t.e::: F:ece i •.)ed
MCRece i •JeAndl.f<l it_
MCSendOat.a 4 bytu >'
MCRece i veAndWa i t I';.
38 Sy t. .. s Rece 1 ved !l'·,,,,

!j) Open MailbOK

Rectangles
This is a te;.t of the emergenc1J
tiroaijcast system ...

MC'Reo::e i veAradWo i t ~

~8~7~S~l\y~te~s~R~ec~e~i·~,e~d~~~~~~~,r;.-"'-'' .:;:::in:mi'1i!!l.l\'llllllll!lllllll!llllllll!I~==::~::=

S•mpl• /oipplko•tioro ¢1 ¢ ·:::::> Hyp•rCord llPPC llPI

Figure H-10
APPC Mail Mailbox

As with the Postmaster application, a log of the MacAPPC routines and responses
appears in the scrolling text field on the left side of the card.

H-14 Appendix H: HyperCard APPC

/,,,,-~,,

~1

(
Sample session: Stepping through a conversation
111e following exercise shows how you can use the MacAPPC Lab to conduct a
conversation between two MacAPPC programs. The exercise establishes a
conversation between two clients of a MacAPPC server. Both clients must first attach
to their local LU. One of the clients then allocates a conversation and sends a message
to the other client. That client receives the message and sends a reply. After the first
client receives the second client's reply, both clients deallocate the conversation and
detach from the local LU.

Two 2-megabtye Macintosh computers connected via AppleTalk are required. (See
"Setup" earlier in this appendix.) Before an actual conversation can take place you
must do the following:

1 . Start the server using Admin and the Local Config configuration document. The two
files are on the MacAPPC User disk. (See "Starting a MacAPPC Server" in Chapter
12.)

2. Activate the LUs. (See "Activating Network Components and Sessions" in Chapter
12.)

3. Start a CNOS. (See "Starting and Stopping CNOS" in Chapter 12.)

4. Activate the mode limits. (See "Activating Network Components and Sessions" in
Chapter 12.)

5. Select the MacAPPC server (with the Chooser) for both clients. (See "Selecting a
MacAPPC Server" in Chapter 10.)

After making sure that the above conditions are met, you can use the MacAPPC Lab
routine cards to conduct the conversation. Designate one of the Macintosh computers
Client A (TPl), the other Client B (TP3). Then follow the instructions below.

Sample session: Stepping through a conversation H-15

Client A

• Attach to the local LU and wait to be
allocated

1. Go to the TPAttach card.

2. Set the parameters:

a. Type "Ll;'l" in the Local LU Name
box.

b. Type "TPl" in the Local Prog Name
box.

c. Click the Lookup Chooser Server
and Zone button to fill in the Server
Name and Zone Name fields.

d. Type "180" in the Wait Time box.

e. Choose kWaitAttach from the
Attach Type pop-up menu.

Tbe l1'1acAPPC Lab automatically
allocates the TP CB Ptr, the CV CB Ptr,
and the Map Buff Ptr; sets the Map
Buff Size; and sets the Map Proc to
the default of $00000000.

3 . Click the Execute TP Attach button.

Tbe TPAttach will not return until Client
B executes MCPrepareToReceive, at
which time the returned parameters
will be filled in. (See "Prepare to
Receive Data" under Client B.)

H-16 Appendix H: HyperCard APPC

ClientB

• Attach to the local LU

1 . Go to the TP Attach card.

2. Set the parameters:

a . Type "LU2" in the Local LU Name
box.

b. Type "TP3" in the Local Prog Name
box.

c . Click the Lookup Chooser Server
and Zone button to fill in the Server
Name and Zone Name fields.

d. Typ~ "180" in the Wait Time box.

e . Choose kLUAttach from the Attach
. Type pop-up menu.

Tbe MacAPPC Lab automatically
. allocates the TP CB Ptr, the CV CB Ptr,
and the Map Buff Ptr; sets the Map
Buff Size; and sets the Map Proc to the
default of $00000000.

3 . Click the Execute TP Attach button.

Client B

• Allocate a conversation with the
partner application

1 . Go to the MCAllocate card.

2. Set the parameters:

a. Type "LUl ·· in the Remote LU Name
box.

b. Type "TPl" in the Remote Prog
Name box.

c. Type "MODEl" in the Mode Name
box.

2 . Click the Execute MCA!locate button.

• Send data to Client A

1. Go to the MCSendData card.

Tb ere 's no need to set any
parameters-you can use the def a ult
values.

2 . Type the message you want to send into
the scrolling text field.

(For example: ''Hello TPl, how are
you?")

3. Click the Save Data button.

You must save the text to a buffer
before it can be sent.

4. Click the Execute MCSendData button.

Tbe text won't actually be sent until
some other routine flushes the send
buffer and "turns the conversation
around." Tbe MCPrepareToReceive
routine, executed next, accomplishes
these tasks.

• Prepare to receive data

Flush the send buffer and put Client B into
receive state.

1 . Go to the MCPrepareToReceive card.

Tbere's no need to set any parameters.

2. Click the Execute MCPrepareToReceive
button.

Samt:>le session: Stepping through a conversation H-17

Client A

• Receive the message from Client B

1 . Go to the MCReceiveAndWait card.

There's no need to set any
parameters-you can use the default
values.

2. Click the Execute MCReceiveAndWait
button.

The data sent by Client B appears in the
text box, and the APPC Conv State
value of 3 indicates that Client A is still
in receive state.

• Make sure that there are no more
messages

1. Go to the MCReceiveAndWait card.

There's no need to set any parameters.

2. Click the Execute MCReceiveAndWait
button.

The value of 5 in What Rcvd means
that no data was received, and the
transaction program needs to go into
send state. The APPC Conv State value
of 2 shows that Client A is in send state.

• Send a return message to Client B

1 . Go to the MCSendData card.

There's no need to set any parameters.

2 . Type a message into the scrolling text
field.

(For example: "Fine, thanks, TP3. How
are you?")

3 . Click the Save Data button.

You must save the text to a buffer
before it can be sent.

4. Click the Execute MCSendData button.

• Flush the buffer and wait for response

1 . Go to the MCReceiveAndWait card.

There's no need to set any parameters.

2. Click the Execute MCReceiveAndWait
button.

H-18 Appendix H: HyperCard APPC

Client A

Tbe -5000 code in ioResult is normal
when a conversation is deallocated.
Tbe APPC Hi Result should be 9, and
the APPC Lo Result should be 0 (zero).

• Deallocate the conversation

1 . Go to the MCDeallocate card.

2 . Choose kLocalDealloc from the
Dealloc Type pop-up menu.

3. Click the Execute MCDeallocate
button.

• Detach the client

1 . Go to the TPDetach card.

Tbere s no need to set any parameters.

2. Click the Execute TPDetach button.

ClientB

• Receive Client A's response

1 . Go to the MCReceiveAndWait card.

There's no need to set any parameters.

2. Click the Execute MCReceiveAndWait
button.

Client A's message appears in the
scrolling text field. Tbe APPC Conv
State value of 3 shows that Client B is
in receive state.

• See if there are any more messages
from TPl

1. Go to the MCReceiveAndWait card.

Theres no need to set any parameters.

2. Click the Execute MCReceiveAndWait
button.

Tbe APPC Conv State returned value of
2 shows that Client B is now in send
state.

• Deallocate the conversation

1 . Go to the MCDeallocate card.

Theres no need to set any parameters.

2. Click the Execute MCDeallocate
button.

• Detach the client

1 . Go to the TPDetach card.

Theres no need to set any parameters.

2. Click the Execute TPDetach button.

Sample session: Stepping through a conversation H-19

Developing HyperCard APPC applications
This section describes how to develop your own HyperCard APPC application. It
contains information on the handlers, XCMDs, and XFCNs in the HyperCard APPC
stack that you may use in your own HyperCard APPC application, and gives general
guidelines on how to put it all together.

To start your application, use a copy of the HC APPC Starter Stack, which is included
on the HyperCard APPC disk. The HC APPC Starter Stack contains all the necessary
resources (XCMDs, XFCNs, and so forth) that you need for your own application. The
stack consists of a single card that contains additional help on starting your
application. You can delete this card once you start adding your own cards.

Before you start your application, you should consider the elements of all HyperCard
APPC applications:

• A user interface

Your application should have a standard Macintosh and HyperCard user interface.
See the HJ-perCard User's Guide, H;perCard Stack Design Guidelines, H;perCard
Script Language Guide, and Human Interface Guidelines.

• Application-specific data structures and logic (algorithms)

You must develop the application logic by using the HyperTalk scripting language.
Much of the work has already been done for you. Simply copy the relevant
HyperCard APPC handlers. See "HyperCard APPC Scripts and Handlers," later in
this appendix.

Your application also must be synchronized with its partner applications. You must
define all data structures sent or received over APPC with the HyperCard APPC
XData XCMDs. See "XData XCMDs and XFCNs" later in this appendix.

• The MacAPPC routines

A single HyperCard XCMD, APPC, provides access to all of the MacAPPC
routines, which in turn provide access to the APPC protocol. Handlers for each of
the mapped conversation (MC), basic conversation (BC), type-independent
conversation (CV), and transaction program (TP) routines fill in the required fields
of the corresponding parameter block before calling the XCMD. You can use the
HyperCard APPC routine handlers in your own scripts or have your own handlers
call APPC directly.

The following sections list the XCMDs, XFCNs, and HyperCard handlers that you may
find useful in your application.

APPC XCMD

All of HyperCard APPC's routine handlers access the APPC protocol by calling
APPC, a HyperCard XCMD. (See "Scripts of the Routine Cards," later in this
chapter.) A routine handler passes to the APPC XCMD the routine name, the name
of the record containing the routine parameters, and a Boolean argument allowing or
preventing asynchronous execution.

H-20 Appendix H: HyperCard APPC

The syntax of .?.PPC is

APPC routineSame, routineData, [async]

where

routinei\·ame is the name of the MacAPPC routine to be executed

routineData is the name of the data record (created by the XData XCMDs) that
is used for passing parameters to the MacAPPC routine

async (optional) is either TRUE or FALSE-a value of TRUE permits
asynchronous execution of the routine; a value of FALSE. or no
value. prevents asynchronous execution

Chapter 4, "MacAPPC Conversation Driver,'' describes the mapped, basic, and type­
independent conversation routines. Chapter 5, "MacAPPC Control Operator
Driver," describes the control operator routines. Chapter 6, "MacAPPC Node
Operator Driver,'' describes the node operator routines. Chapter 7, "MacAPPC
Transaction Program Driver," describes the transaction program routines.

get62Srvr XCMD

The get 6 2 S rv r XCMD gets the current MacAPPC server name and zone selected
by the Chooser.

The syntax of get62Srvr is

get 6 2 S rv r enfityPtr

where

entityPtr is a pointer to a variable of type EntityName (see Inside
Macintosh, Volume II)

Note that it is not necessary to use the server selected by the Chooser. If you want, you
may "hard-wire" the server name and zone into your code. Remember, however, that
the server must be running.

The following is an example of how to use the get62Srvr XCMD. See "XData
XCMDs and XFC::'Js," later in this appendix, for descriptions of xDefine,
xGlobal, xLock, and xPtr.

xDefine EntityNameRec
xDefine ObjName,pstring,33
xDefine TypeNarne,pstring,33
xDefine ZoneNarne,pstring,33
xDefine endDef

xGlobal EntityName,EntityNameRec
xLock EntityName, on -- Need to lock the record before calling xPtr
get62Srvr xPtr(EntityNarne)
xLock EntityName, off

•> Note: The defineCVandTP handler, in the script of the first card of the stack,
defines EntityNameRec. You do not need to redefine EntityNameRec if you
use the defineCVandTP handler in your application.

Developing HyperCard APPC applications H-21

If you want your application to have a configuration card that allows users to select the
server and zone, you can use the GetChosenSrvr handler. GetChosenSrver
uses the get 62 Srvr XCMD to lookup the Chooser server name and zone, then
displays those values in fields on the configuration card. GetChosenSrver is
located in the card scripts of both the TPAttach card of the MacAPPC Lab, and the
APPC Mail Configuration card of the Sample Application.

xConstXFCN

The xConst XFC~ looks up the values of constants used in MacAPPC. See Appendix
A, "MacAPPC Interface File," for a list of these constants.

The syntax of xConst is

xConst ("constantName")

where

constantName is the name of the constant whose value you want to look up

Because xConst is a function, you should place the value returned into a HyperCard
container, as in the following example:

put xConst ("kAPPCSize") into pararnBlockSize

errStrXCMD

errStr looks up the major and minor result code error message strings as defined in
Appendix C ("MacAPPC Result Codes") and returns them in HyperCard global
variables. errStr is useful for displaying textual error messages instead of just result
codes. This is the XCMD that gets the text of the result code explanations that appear
when you press the ioResult, APPC Hi Result, or APPC Lo Result returned value fields
on the routine cards in the MacAPPC Lab.

The syntax of errStr is

errStr (majorCode, minorCode, "majorGlobal", "minorGlobal")

where

majorCode

minorCode

is the major return code from the appcHiResult field of the
APPC parameter block

is the minor return code from the appcLoResult field of the
APPC parameter block

majorGlobal is the name of the HyperCard global variable that will be set to the
error message string corresponding to majorCode

minorGlobal is the name of the HyperCard global variable that will be set to the
error message string corresponding to minorCode

The majorGlobal and minorGlobal arguments must be enclosed in quotation
marks or HyperCard passes err St r their values instead of their names.

H-22 Appendix H: HyperCard APPC

HyperCard APPC scripts and handlers

This section lists the scripts and handlers in the HyperCard APPC stack that you are
most likely to need in developing your own applications. You should study them
before you begin programming. Take special note of how the sample application
(APPC Mail) was put together. Although limited in its functionaliry, APPC Mail
illustrates the basic elements of a HyperCard-based MacAPPC front end, and there
are several useful handlers in that part of the stack.

You are free to use any of the handlers and scripts in the HyperCard APPC stack that
you find useful. You can find these handlers in the following places:

o the stack script

o the script of the first card of the stack

o the script of the background for the routine cards (MacAPPC Lab)

o the scripts of each of the routine cards (MacAPPC Lab)

o the background script of the sample application (APPC Mail)

o the Postmaster card script (APPC Mail)

o the Mailbox card script (APPC Mail)

In this section, only HyperTalk language elements such as handler names, XCMDs,
and XFCNs appear in computer voice. MacAPPC terms appear in the normal rype face
even though they appear in computer voice in all other parts of this guide.

Stack script

The impOitant handler in the stack script is openStack, which calls the
defineCVandTP handlerlocated in the script of the first card of the stack. See the
next section, "Script of the First Card."

Script of the first card

The first card of the HyperCard APPC stack contains two important handlers:
defineCVandTP and defineCOandNO. These handlers define data structures, as
described in the following subsections. The handlers also define record types for the
MacAPPC driver parameter block, APPCParamBlock.

deflneCVandTP: defineCVandTP defines the important data structures used by
HyperCard APPC. Specifically, defineCVandTP defines the following data types:

APPCCVRec used for passing parameters to conversation routines•

APPCTPRec

tpStrRec

cvStrRec

CV CB Rec

TPCBRec

used for passing parameters to transaction program routines•

record of strings that will be pointed to by fields in APPCTPRec•

record of strings that will be pointed to by fields in APPCCVRec•

defines the data structure used for conversation control blocks
(CVCBs)•

defines the data structure used for transaction program control
blocks (TPCBs)•

Developing HyperCard APPC applications H-23

EntityNameRec same as the AppleTalk EntityName record-see "get62Srvr XCMD,"
earlier in this appendix

bcRec

dataRec

used to hold data for sending and receiving routines

assorted usages including declaration of MapProc and MapBuff

• L'sed by almost all HyperCard APPC applications.

defineCVandTP also allocates and locks space for TPCBs, CVCBs, MapBuff, and
MapProc, and loads in MapProc. You will probably want to copy the
defineCVandTF handler into your own HyperCard APPC application and then
modify it to suit your needs.

deflneCOandNO: defineCOandNO defines the data structures for the control
operator (CO) and node operator (NO) routines. Specifically, defineCOandNO
defines the following data types:

APPCCORec used for passing parameters to control operator (CO) routines

APPCNORec used for passing parameters to node operator (NO) routines

The HyperCard APPC stack does not actually use the defineCOandNO handler, but
it exists in case your application uses CO or NO routines.

APPCParamBlock: The data structure APPCParamBlock passes parameters to and
from the MacAPPC drivers. (See "MacAPPC Driver Parameter Block" in Chapter 3.)
A variant part of the record allows each of the four MacAPPC drivers to use the same
data structure. Because xDefine does not allow you to define variant records,
however, you must define a different XData record type for each case of the
APPCParamBlock. (See "XData XCMDs and XFCNs," later in this appendix.) The
script of the first card of the stack defines these record types. The defineCVandTF
handler defines APPCCVRec and APPCTPRec. The defineCOandNO handler
defines APPCCORec and APPCNORec. Table H-3 lists the HyperCard APPC record
types and the corresponding Pascal cases of the APPCParamType tag field of the
APPCParamBlock record. The HyperCard APPC record-type field names have the
same names and data types as in the Pascal record.

Table H-3
HyperCard APPC record types

Type name

APFCCVRec

APPCTFRec

APPCCORec

APPCNORec

Pascal case of APPCParamBlock RECORD

CVPararn

TPPararn

COP a ram

NOP a ram

H-24 Appendix H: HyperCard APPC

c:

. Routine cards' background script

The background for the l'vlacAPPC Lab's routine cards contains four important
handlers:

att.achState called by transaction program routines to allocate an APPCTPRec
record type named tpData, if it is not already allocated

allocate State called by conversation routines to allocate an APPCCVRec
record type named convData, if it is not already allocated

setupCVData called by conversation routines to set the following fields in
convData:

setupTPData

o cvTPCBPtr
o cvCVCBPtr

o cvMapProc
o cvI\'1apBuffprr

o cvMapBuffSize

called by transaction program routines to set the following fields
in tpData:
o tpTPCBPtr

o tpCVCBPtr
o tpMapProc
o tpMapBuffPtr
o rpMapBuffSize

Scripts of the routines cards

The scripts of the MacAPPC Lab routine cards contain two types of handlers:

o routine handlers

o exec handlers

For each routine card there is a routine handler that calls the APPC XCMD. The
APPC XCMD is a single HyperCard XCMD that provides access to all of the MacAPPC
routines. (See '"APPC XCMD,"' earlier in this appendix.) The routine handler has the
same name as the card's routine. For example, the MCAllocate routine card script
contains a handler named MCAllocate, which passes the MCAllocate routine
parameters to the APPC XCMD. The APPC XCMD, in turn, calls the
corresponding MacAPPC routine .. l\1ost HyperCard APPC applications will use the
routine handlers.

The name of the exec handler for a routine is execroutineName, where
routineName is the name of the card's routine. For example, the MCA!locate exec
handler is called execMCAllocate. The exec handler is called when the Execute
button on the routine card is pressed. An exec handler calls the setupCVData
handler (or the setupTPData handler for TP routines), and then calls the
appropriate routine handler. ("Routine Cards' Background Script," earlier in this
appendix, describes setupCVData and setupTPData.)

. De.veloping HyperCord APPC applications H-25

Background script of the sample application

The APPC Mail background script contains these important handlers:

define Type defines the following data types:

setupTPData

setupCVData

log

logerror

routine handlers

o responseRec (the record for data sent to Mailbox)
o requestRec (the record for data sent to Postmaster)
o dataRec (used for sending PICT and TEXT data)

and allocates space for the following:
o sampleTPCB (the TPCB)
o sampleCVCB (the CVCB)
o sampleMapBuff (the mapping buffer)

(copied from the background script of the routine card)

(copied from the hackground script of the routine card)

called by routine handlers to log the fact that they were called

called by conversation handlers to log an error message if
there is an error

handlers for each of the routines used (copied from the
routine card scripts), including

D TPAttach
o TPDetach
o MCAllocate
o MCDeallocate
o MCSendData
o MCReceiveAndWait
o MCPrepareToReceive

conversation handlers handlers used to establish a conversation between Postmatser
and Mailbox, send and receive data, and deallocate a
conversation
o closeConvLocal

o closeConv

o localAttach

H-26 Appendix H: HyperCard APPC

calls the MCDeallocate
(kLocalDealloc) and
TPDetach handlers after the
other TP has deallocated the
conversation
calls MCDeallocate
(kSyncDealloc) and
TPDetach (kNormalDetach)
handlers to close the conversation
(done while in the send state)
calls the setupTPData handler
andthen TPAttach
(kLUAttach) -similar to the
execTPAttach handler from the
TP Attach card, but less general

o waitConv

o waitResult

o detach

o receiveData

D sendData

calls the setupTPData handler
and then TPJ.l.ttach
(kWaitAttach)-similar to the
execTPAttach handler from the
TP Attach card, but less general
waits for the async TPAttach
(kWaitAttach) handler to
finish by continually checking the
ioResult

calls the TPDetach
(kNormalDetach) handler
calls the MCReceiveAndWait
handler
calls the MCSendData handler

o prepareToReceive calls the MCPrepareToReceive
handler

Postmaster card script

The Postmaster card script contains the openConvRernote handler that calls the
wai tConv handler to wait for the Mailbox to start a conversation. (The other
handlers in the Postmaster card script are specific to the Postmaster application. They
may be instructive, but it is not likely you will be able to use any of that code in your
applications.)

Mailbox card script

The Mailbox card script contains the openConv handler that calls the
localAttach handler to establish a conversation with the Postmaster server. (The
other handlers in the Mailbox card script are specific to the Mailbox application.
They may be instructive, but it is not likely you will be able to use any of that code in
your applications.)

Developing HyperCard APPC applications H-27

XData XCMDs and XFCNs
The X'Data XCMDs and XFCNs provide the interface between HyperCard APPC and
MacAPPC. Specifically, the XData XCMDs and XFCNs define and use external data
structures that are used to pass data to, and receive data from, MacAPPC routines. The
data structures correspond in type and length to the partner program's data structures,
or to the data structures used to pass parameters to APPC verbs. (The data structures
are similar to the Pascal RECORD and the C struct .) You can use XData XCMDs
and XFCNs to pass data between HyperCard and other applications.

There are four basic XData XCMDs and XFCNs:

o xDef ine

o xGlobal

o xPut

o xGet

defines a data structure

allocates memory for a record

assigns values to the records fields

retrieves values from the records fields

These XCMDs and XFCNs automatically and transparently convert data between
numeric and HyperTalk strings, as well as between ASCII and EBCDIC.

Additional XCMDs and XFCNs perform other necessary functions:

o xLock locks or unlocks a record

o xPtr returns a pointer to a locked record or a field of a locked record

o xF i 11 fills a block of memory with a byte value

o xSi ze determines the size of a record or field (also determines whether or
not a record has been defined-it returns 0 if not defined)

o xDispose frees memory allocated to a record or records

o xMove moves a block of memory

o xResource loads a code or data resource

The following sections describe the XData XCMDs and XFCNs in detail. They are
listed approximately in the order that you would use them in a script. Parameters that
appear in italics indicate that a string or numeric value should be substituted for that
parameter as described. (The fieldSpec parameter is a special case. See "Special
Parameters," following the commands.) Parameters not italicized are X'Data XCMD
keywords that you should type literally. None of the command names or parameters
are case sensitive. Square brackets- [] -indicate optional parameters. A vertical bar
(I) means you should choose only one of the alternatives.

H-28 Appendix H: HyperCard APPC

(Syntax

Description

xDefine

xDefine recordT;pe [, AlignWord IAlignLong]

xDefine fieldName, fieldType [, arraySize]

xDefine endDef

xDefine defines a record type and specifies the names and types
of the fields of the record type.

The first form of the xDefine statement names the record type
(recordType).

By default, xDefine creates fields that align on a byte boundary.
However, you can use one of the optional keywords (AlignWord
or AlignLong) to align fields on a 16- or 32-bit boundary. See
"Byte Alignment of Fields" at the end of this appendix.

After naming the record type, you must use the second form of the
xDefine statement once for each field in the record. fieldName
names the field, andfieldType specifies the field's type. fieldType

· can be one of the basic field types described in "Basic Data
Types," later in this appendix, or can itself be a record type
defined by a previously executed xDefine command. The
optional argument at the end of the statement (arraySize) lets you
specify the size of the array or, if the field type is a string, the length
of the string. Subsequent statements can refer to the elements of the
array with index values ranging from 0 to arraySize- 1. See
"xPut."

End the series of field definitions with xDefine endDef.

XDoto XCMDs and XFCNs H-29

Syntax

Description

xGlobal

xGlobal recordName [, recordType] [,size]

xGlobal opens a record for use by the xPut and xGet
commands. The recordT}pe parameter is optional only if the
named record has already been created by a previous xGlobal
statement. Otherwise you must supply the recordT;pe parameter,
and the xGlobal statement creates (allocates storage for) a
record of type recordT;pe.

The optional size parameter lets you override the default size of the
allocated record.

Warning

If you specify a size In a subsequent xGlobal statement that
Is different from the previously specified size. the size of the
handle to the record will be reset. Note that the statement
may fail altogether if the record is locked.

Subsequent xPut and xGet statements can store values in and
retrieve values from the.fields of the record.

xGlobal returns a handle to the record in the result (the
HyperCard container). You can use xGlobal in conjunction
with other XCMDs and XFCNs that take a handle or a pointer as an
argument.

H-30 Appendix H: HyperCard APPC

(Syntax

Description

Note

xPut

xPut value, [(1peCoercion, [length, llfieldSpec

xP'.lt stores the value of a HyperTalk container or constant
(value) in the field specified by fieldSpec of the record most
recently opened by an xGlobal statement. (The field must be
defined in that record.) The field specification names a field of the
record, but does not include the record name.

See "Special Parameters" later in this appendix for a description of
fieldSpec.

The field specification may be preceded by a type coercion
(typeCoercion) prefix that temporarily forces the type of the field
to a new type. If the new type is a string, then the prefix must
indude an additional parameter (length) specifying the length of
rhe string.

t;peCoercion has the form

"itnewTypeName"

where #newTypeName is any one of the basic field types.

If value is the name of a MacAPPC constant, and fieldSpec
specifies a numeric or Boolean field, then xPut places the value
of the MacAPPC constant into the field, rather than the constant
name. (See Appendix A for a list of MacAPPC constants.) This
allows you to use xPut with a MacAPPC constant name without
looking up the constant's value with xConst.

In the example below, both xPut lines place the value 2 (the value of
the kWaitAttach constant) into the tpAttachType field of
the tpData record. The example assumes that you defined
APPCTPRec (using xDefine) as it is defined by the
def ineCVandTP handler in the script of the first card of the
HyperCard APPC stack.

xGlobal "tpData","APPCTPRec"
xPut "kWaitAttach","tpAttachType"
xPut xConst("kWaitAttach"},"tpAttachType"

XDoto XCMDs and XFCNs H-31

Syntax

Description

Syntax

Description

Syntax

Description

Note

xGet

xGet (jieldSpec)

xGet is a function that returns the value stored in the field
specified by fieldSpec. (See "Special Parameters," later in this
appendix, for information about the fieldSpec parameter. See
"xPut" for information about type coercion.) If the type of
fieldSpec is a string, then xGet will always return an ASCII string
without the length byte or length word, and without space padding.

xlock

xLock recordName, on I off

xLock locks (on) or unlocks (off) the specified record
(recordName). You must lock a record while using the xPtr
function so that the record does not move in memory while
pointers to fields in the record are being accessed. (See "xPtr. ")

xptr

xPtr (recordName [, fieldSpec])

xPt r is a function that returns a pointer to the specified record
(recordName), or to a field within that record (jieldSpec). (See
"Special Parameters," later in this appendix, for information
about the fieldSpec parameter.) The record must have been locked
by a previous xLock statement. (See "xLock.") The returned
pointer value remains valid only as long as the record is locked.

You should unlock the record with the xLock command when the
pointer value is no longer needed.

H-32 Appendix H: HyperCard APPC

Syntax

Description

Note

Syntax

Description

Syntax

Description

xRll

xFill value, recordName [, fieldSpec]

xF ill fills the specified field (jieldSpec) of the specified record
(recordName) with the numeric value of the HyperTalk constant or
container (value). (See "Special Parameters,·· later in this
appendix, for information abour rhe fieldSpec parameter.) If you
do not specify a field, then xF i 11 fills the entire record. value
must be between 0 and 255. The most common values are 0 (for
NULL fields and NIL pointers), 32 (ASCII space), and 64 (EBCDIC
space).

Because rhe value is numeric, there is no conversion between ASCII
and EBCDIC.

xSize

xS i ze (recordName u fieldSpec])

xSi ze is a function that returns the size of the specified record
(recordName) or the size of the specified field within that record
(jieldSpec). (See "Special Parameters," later in this appendix, for
information about thefieldSpec parameter.) You can use xSize
to determine if a record exists: x Size returns 0 if the specified
record does not exist.

xDispose

xDispose [recordName]

xDispose frees the storage allocated to the specified record
(recordName) or to all records allocated by xGlobal
statements if no record is named.

XData XCMDs and XFCNs H-33

Syntax

Description

Note

Syntax

Description

xMove

xMove sourcePtr, destinationPtr, length

xMove moves the number of bytes specified in length from the
location pointed to by sourcePtr to the location pointed to by
destinationPtr.

sourcePtrand destinationPtrshould be values returned by the
xPtr function; length should be a value returned by the xSize
function. You can, however, use any valid pointer values and any
length. Use with care and skill.

The xMove command calls the User Interface Toolbox procedure
BlockMove. See Inside Macintosh, Volume II, for more
information.

xResource

xResource subcommand, parameterlist

xResource loads a code resource to be used as a mapper
procedure for a mapped conversation or as an 1/0 completion
routine. You can also use xResource to load resource data to be
sent to a partner application in a MacAPPC conversation.

xResource has several subcommands (subcommand). They are
listed below with their corresponding parameter lists
(parameterlist).

•!• Note: HyperTalk global variable names must be enclosed by
double quotation marks so that HyperTalk passes the names and
not the values to the xResource command.

• getLockedRes, resType, resName, "resHandle",
"resPointer", "resSize"

xResource getLockedRes loads and locks the resource named
resName of type resType, and returns a handle to the resource in
the HyperTalk global variable res Handle and a pointer to the
resource in the HyperTalk global variable resPointer. If the
resource was successfully loaded, xResource getLockedRes
sets the HyperCard global variable resSize to the size of the
resource.

• getRes, resType, resName, "resHandle", "resSize"

xResource getRes loads the resource named resNameoftype
resType and returns a handle to the resource in the HyperTalk ·
global variable resHandle. If the resource was successfully
loaded, xResource getRes sets the HyperCard global
variable resSize to the size of the resource.

H-34 Appendix H: HyperCard APPC

('

• getResData, resT)pe, resName, xGloba!Name,
"resSize"

xResource getResData loads a resource named res,\'ame of
type resType into a previously declared xGlobal named
xGloba!Name. If the resource was successfully loaded,
xResource getResData sets the HyperCard global variable
res Size to the size of the resource.

After using xResource getResData, a subsequent call to
xGlobal using xGlobalNamewill return the handle to the
resource, which can no longer be purged. You can use xLock
and xPtr to lock and obtain a pointer to the resource data. You
can use xDispose to dispose of the resource handle.

• lock, resHandle, "resPointer"

xResource lock locks the resource specified by resHandleand
returns a pointer to the locked resource in the HyperTalk global
variable resPointer.

• unlock, resHandle

xResource unlock unlocks the resource specified by
resHand/e.

• release, resHandle

xResource release releases the memory occupied by the
resource specified by resHandle. After using xResource
release, you should not refer to resHandleuntil the resource is
reloaded with xResource getRes or xResource
get LockedRes.

XData XCMDs and XFCNs H-35

Special parameters
The following sections detail the syntax of the fieldSpec and ptr1)pe parameters.
fie/dSpec is a special parameter-used by several XData XCMDs and XFCNs-that
describes a record field. It is actually a set of parameters, and has several variations,
depending on the type of record. One variation of fieldSpec uses a pointer field,
described by ptrType. ptrType is, itself, a set of parameters with several variations. See
"XData XCMDs and XFC:-Js" for an explanation of the syntax symbols, and
descriptions of the XData XCMDs and XFCNs that use fieldSpec. See the second
handler in "Sample Handlers" for examples of how to use XData XCMDs and XFCNs
with the fieldSpec and ptrType parameters.

fieldSpec parameter

The following XData XCMDs and XFCNs use the fieldSpec parameter:

o xPut

o xGet

o xPtr

o xFill

o xSize

fieldSpec has three variations. Note that the first form of fieldSpec is recursive.

o recordField, fie/dSpec

where

recordField is a field of a record defined by xDefine

o basicFie/d [, array/ndex]

where

basicField is a field of a basic data type (See "Basic Data Types," later in this
chapter.)

arraylndex is an integer index into the array (when the specified field is an
array)

o ptrFie/d, ptrType

where

ptrField

ptrType

is a field whose basic type is PTR

(See the next section, "ptrType Parameter.")

H-36 Appendix H: HyperCord APPC

\.

ptrType parameter

The ptrTJpe parameter has three variations. Note that the first rwo fonns of ptrTJpe are
recursive.

O "PTR", ptrT)pe

o record7)pe, field Spec

where

recordType is a record type defined by xDefine

field Spec (See the previous section, ''fieldSpec Parameter.")

o basicTJpe

where

basic Type is one of the predefined basic types (See "Basic Data Types," later
in this chapter.)

Sample handlers
The following handler gives an example of how to use the XData XCMDs and XFCNs.

on mouseup
global hMapper, pMapper -- handle and pointer to mapping procedure
global size -- size of mapping procedure

-- Define a record data type called CustomerRec
xDefine CustomerRec -- create the record
xDefine Name, EUString, 20 -- add a string field called "Name"
xDefine NickName, EUString, 20 add a string field called "NickName"
xDefine CustomerID, INTEGER -- add an integer field called

"CustomerID"
xDefine endDef -- end the definition of "CustomerRec"

-- Allocate space for "Customerl" which is of type "CustomerRec"
xGlobal CustomerDatal,CustomerRec

Allocate space for "Customer2" which is also of type "CustomerRec".
Subsequent xPuts and xGets will refer to this record until another
xGlobal is executed to open up a different record.

xGlobal CustomerData2,CustomerRec

-- Put "Smith" converted to EBCDIC uppercase and blank padded into name
-- field
xPut "Smith", Name

-- Put the name (converted back to ASCII) into a hypercard variable
-- theName
put xGet (Name) into theName

put xSize (CustomerData2, Name) into size
size = sizeof (customerData2 .Name)

Copy the "Name" field of CustomerData2 to the "NickName" field of
CustomerDatal

xLock CustomerDatal,on lock the record so it doesn't move in memory
xLock CustomerData2,on lock the record so it doesn't move in memory
xMove xPtr(CustomerData2,Name),xPtr(CustomerDatal,NickName),size
xLock CustomerDatal, off unlock the record
xLock CustomerData2, off -- unlock the record

XData XCMDs and XFCNs H-37

xFill 64, CustomerDatal, Name -- fill the name field wi r.h EBCD:c spaces
xGlobal CustornerDatal Open up the CustomerDatal record
put xGet (NickName) into theName -- put customer name into "theNarne"
xPut theNarne, Name -- put contents of "theName" into the

-- "Name" field
put xSize(CustomerData2)
put xGet(Narne) after msg

"42" will appear in the msg box
"Smith" will appear in the msg box

xDispose CustomerDatal
CustomerDatal

dispose the storage allocated for

xDispose CustomerData2
CustomerData2

dispose the storage allocated for

Load and lock the mapping procedure resource called "SampleMapper"
which is of type PMAP. Note that the handle, pointer, and size
parameters must all be HyperCard globals.

xResource GetLockedRes,"PMAP","SampleMapper","hMapper","pMapper","size"

xResource Unlock,"hmapper"
xResource Release,"hmapper"

end mouseUp

unlock the mapping procedure
release the mapping procedure

The next, more advanced handler, demonstrates how to use XData XCMDs and
XFCNs with pointer and record fields.

on mouseUp
-- Create a record type called "NameRec" with 2 string fields
xDefine NameRec
xDefine FirstName,
xDefine Last Name,
xDefine endDef

STRING,
STRING,

20
20

Create a record type called "EmployeeRec" with 3 fields.
The "Name" field is simply a field of type "NameRec".
The "NamePtr" field is of type PTR and will eventually
point to the "Name" field. The "NameHdl" field is also
of type PTR. It will eventually point to the "NamePtr"
field which "Will make it a handle t·o the "Name" field.

xDefine EmployeeRec
xDefine Name, NameRec
xDefine NamePtr, PTR
xDefine NameHdl, PTR
xDefine endDef

-- Allocate the "employee" record.
xGlobal employee, EmployeeRec

xPut "John", Name, FirstName -- Set "employee.Name.FirstName"
xPut "Doe", Name, LastName -- Set "employee.Name.LastName"

xLock employee, on -- Need to lock the record before you can use xPtr
xPut xPtr (employee, name), NamePtr -- Set "NamePtr"
xPut xPtr(employee, NamePtr), NameHdl -- Set "NameHdl"

-- The following are all ways of accessing the
-- employee's last name.
put xGet (Name, LastName) into msg
put xGet (NamePtr, NameRec, LastName) after msg -
put xGet(NameHdl, PTR, NameRec, LastName) after msg

-- The following are all ways of accessing the
-- employee's first name.
put xGet (Name, FirstName) after msg

H-38 Appendix H: HyperCard APPC

put xGet(NamePtr, STRING, 20) after msg
put xGet (NamePtr, NameRec, FirstName) after msg
put xGet (NameEdl, PTR, NameRec, FirstName) after msg

xI.ock employee, off -- unlock the employee record
xDispose employee dispose of the employee record

end mouseUp

XData errors

If you use a HyperCard APPC XC1v1D incorrectly, HyperCard will display an alert
stating

"Can't understand "
and open the script and place the insertion point at the line that caused the error. The
HyperCard global variable xDataErr will contain an error code defining the
problem. Table H-5 shows the possible error codes and their meanings.

Table H-4
XData errors

Code

0

10000

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

10011

10012

10013

10014

10015

10016

10017

10019

10020

10021

Description

No error found

xDe fine field length is too large

Too few arguments passed to XCMD

Data type not found (undefined)

Incorrect syntax used

Incorrect use of xDefine endDef

No xGlobal records have been defined

xGlobal record not defined

Invalid array index

Field not found

Type already exists

Field already exists

Not currently defining a record

Record not locked

Record already locked

Illegal parameter given

PICT resource not found

Constant not found

Specified type is not a basic type

Memory allocation error

Call to SetHandleSize failed

!'<1Lor0passeclto get62srvr XCMD

XDoto XCMDs and XFCNs H-39

Basic data types
Table H-6 describes the basic MacAPPC data types. The first column contains the
keyv.·ord to be used in place of fte/dTypein the xDefine command. (See "xDefine"
earlier in this appendix.) The Size column specifies the maximum size of the field,
including the length byte or length word.

Table H-5
Basic data types

Type name Size Description

BYTE 1 byte Unsigned

BOOLEAN 1 byte TRUE, FALSE, 1, 0

INTEGER 2 bytes Signed

LONG INT 4 bytes Signed

PTR 4 bytes Pointer

CHAR 1 byte ASCII character

ECHAR 1 byte EBCDIC character

PSTRING <• 256 bytes• ASCII string with length byte

CSTRING <= 256 bytes• ASCII string null terminated

STRING <= 32,768 bytes• ASCII string padded with spaces

ESTRING <= 256 bytes• EBCDIC string padded with spaces

EU STRING <= 256 bytes• EBCDIC string padded with spaces

LSTRING <• 32,768 bytes• ASCII string with length word

ELSTRING <= 32,768 bytes• EBCDIC string with length word

EULSTRING <• 32,768 bytes• EBCDIC string with length word

• Maximum size including length byte(s) or null terminator.

For PSTRING, CSTRING, and LSTRING, the maximum lengths specified by the
arraySize parameter of xDefine and the length parameter of xPut, are as follows:

P STRING maximum length of a Pascal string not including the length byte

CSTRING maximum length of a C string (null terminated) including the
terminating null character

LSTRING maximum length of a string not including the length word

The data types beginning with E provide conversion between ASCII and EBCDIC, for
use when data is to be exchanged with IBM hosts that use the EBCDIC character set.
Fields of type ESTRING and EU STRING store data as EBCDIC characters, padded
to the specified length with spaces. The xPut command converts a string from ASCII
to EBCDIC. The xGet function converts the stored string from EBCDIC to ASCII
and returns the ASCII result.

H-40 Appendix H: HyperCard APPC

(/

Fields of type EUST:\ING and EULS'I'RING store data as EBCDIC characters in all
uppercase. The xPut command converts a string from mixed uppercase and
lowercase ASCII to uppercase EBCDIC. The xGet function does not do any case
conversion.

HyperCard always stores strings in ASCII. The conversion between ASCII and EBCDIC
is automatic and transparent.

Byte alignment of fields

When allocating storage for a record, the xDefine command aligns each field on a
byte boundary. Additional space can be created by inserting dummy fields, or by
using the optional AlignWord keyword or AlignLong keyword in the xDefine
statement. (See "xDefine" earlier in this appendix.) AlignWord causes each field
that is longer than 1 byte in length to align on a 16-bit boundary. AlignLong causes
each field that is longer than 1 byte in length to align on a 32-bit boundary.

XData XCMDs and XFCNs H-41

('""

. •'

Appendix I

MacAPPC Option Sets

The following table shows the APPC option sets supported hy MacAPPC at the time of publication.

Table 1-1
Supported APPC option sets

Option Sets

Conversations between programs located at the same LU

Delayed allocation of a session

Immediate allocation of a session

Sync point services

Session-level LU-LU verification

User ID verification

Program-supplied user ID and password

User ID authorization

Profile verification and authorization

Profile passthrough

Program supplied profile

PIP data

Logging of data in a system log

Flush the LU's send buffer

LUWID

Prepare-to-receive

Long locks

Post on receipt with wait

Post on receipt with test for posting

Receive immediate

Test for request-to-send received

Supported Not supported

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

1-1

Table I· 1 (continued)
Supported APPC option sets

Option Sets Supported Not supported

Data mapping x

Function Management Header (FMH) data x

Get attributes x

Get conversation type x

Mapped conversation LU services component x

CHANGE SESSION LIMIT verb x

MIN COWI:NNERS TARGET parameter x

RESPONSIBLE (TARGED parameter x

DRAIN TARGET (NO) parameter x

FORCE parameter x

ACTIVATE SESSION verb x

DEACTIVATE SESSION verb x

LU-parameter verbs x

LU-LU session limit x

Locally-known LU names x

Uninterpreted LU names x
\,

Single-session reinitiation x

Maximum RU size bounds x

Session-level ·mandatory cryptography x

Contention winner automatic activation limit x

1-2 Appendix I: MacAPPC Option Sets

(
Appendix J

ASCII/EBCDIC Tables

The following tables provide the translation from ASCII to EBCDIC and vice versa. In
both tables, you read the first hexadecimal digit for the character from the vertical row
of digits and the second hexadecimal digit from the horizontal row.

Table J-1
ASCII to EBCDIC

0 2 3 4 5 6 7 8 9 A B C D E F

O 00 01 02 03 37 20 2E 2F 16 05 25 OB OC OD OE OF

2

3

4

5

6

10 11 12 13 3C 30 32 26 lS 19 3F 27 lC 10 lE lF

40 4F 7F 7B 5B 6C 50 70 40 50 5C 4E 6B 60 4B 61

FO Fl F2 F3 F4 F5 F6 F7 FS F9 7 A 5E 4C 7E 6E 6F

7C Cl C2 C3 C4 C5 C6 C7 CS C9 01 02 03 04 05 06

07 OS 09 E2 E3

79 Sl S2 S3 84

E4 E5 E6

85 S6 S7

E7

SS

ES E9

S9 91

4A EO 5A 5F

92 93 94 95

60

96

7 97 9S 99 A2 A3 A4 A5 A6 A7 AS A9 CO 6A DO Al 07

8 20 21 22 23 24 15 06 17 28 29 2A 2B 2C 09 OA lB

9

A

B

c
D

30

41

58

76

9F

31 lA 33 34 35

42 43 44 45 46

59 62 63 64 65

36 OS

47 4S

66 67

3S

49

6S

77 7S SO SA SB SC SD SE

AO AA AB AC AD AE AF BO

39 3A

51 52

69 70

SF 90

Bl B2

3B 04 14 3E El

53 54 55 56 57

71 72 73 74 75

9A 9B 9C 90 9E

B3 B4 B5 B6 B7

E BS B9 BA BB BC BO BE BF CA CB CC CD CE CF DA DB

F DC DD DE OF EA EB EC ED EE EF FA FB FC FD FE FF

J-1

Table J-2
EBCDIC to ASCII

0 2 3 4 5 6 7 8 9 AB C D E F

0 00 01 02 03 9C 09 S6 7F 97 SD SE OB OC OD OE OF

10 11 12 13 9D S5 OS 87 lS 19 92 8F lC lD lE lF

2 SO Sl S2 S3 S4 OA 17 lB SS S9 SA SB SC 05 06 07

3 90 91 16 93 94 95 96 04 9S 99 9A 9B 14 15 9E lA

4 20 AO Al A2 A3 A4 AS A6 A7 AS 5B 2E 3C 2S 2B 5D

5 26 A9 AA AB AC AD AE AF BO Bl 21 24 2A 29 3B 5E

6 2D 2F B2 B3 B4 B5 B6 B7 BS B9 7C 2C 25 SF 3E 3F

7 BA BB BC BD BE BF CO Cl C2 60 3A 23 40 27 3D 22

8 C3 61 62 63 64 65 66 67 68 69 C4 CS C6 C7 CS C9

9 CA 6A 6B 6C 6D 6E 6F 70 71 72 CB CC CD CE CF DO

A Dl 7E 73 74 75 76 77 7S 79 7A D2 D3 D4 DS D6 D7

B

c
D

E

F

DS D9 DA DB DC DD DE DF EO

7B 41 42 43 44 45 46 47 48

7D 4A 4B 4C 4D 4E 4F 50 Sl

5C 9F 53 54 55 56 57 5S 59

30 31 32 33 34 35 36 37 3S

J-2 Appendix J: ASCII/EBCDIC Tables

El E2 E3. E4 E5 E6 E7

49 E8 E9 EA EB EC ED

52 EE EF FO Fl F2 F3

SA F4 F5 F6 F7 FS F9

39 FA FB FC FD FE FF

·(~/

(·· . .

l ~-.

Appendix K

Configuration Worksheets

The worksheets in this appendix are intended to help you use the MacAPPC Configuration
program described in Chapter 11 of this guide. For a remote configuration, use the
worksheets in both Figure K-1 and Figure K-2. For a local configuration, use the worksheet
in Figure K-2 only.

In the worksheets, the default values are placed outside of the screens themselves to
provide those values for quick reference but still allow you to write in the correct value on
the worksheet. The shaded fields represent information that MacAPPC will fill in based
upon earlier entries.

K-1

....

MacAPPC™ Configuration Worksh

Node
Exc••awe ID:

I I FFFOOOOI

Access Ttf•:
@SOLC

Heaitor Tt .. r:

I I .lO

The callouts in the margin are defaults

Multipoint
configuration

Multipoint
Primary

Point-to-point
configuration

Multipoint
Secondary

.....

eet

m~ line
line II.am•: [J
Line T9pe: SDl.C

..... _. __ ---···--······-·······-··· ····•····· ····-··········-······· ... -......... "
Lift• Number: 01 02 03 O•
Role T'Jp•: 0Prim Os•o 0N<qol
Conn.ct Tgpe: QLHst Qt-tum Qswtch
Hax BTU: L J
line Speed: 0300 01200 02•00

O•eoo 09600 Q19200

--"~ Idle Titne:

NP RPCY Time:

Hax 1-Fr,....s::

NRZI Suppert: 0HRZ 0NRZI
Dupl•X Tgpe: OH•lf Orun

line
Lfne Name:

u .. o T9po: SDLC

Lin•-: 01 02 03 O•
R•l• Typo: 0Prtm Os.o QNtqo!

c ,,.,., 0LHSO 0Mu11i Oswlch

H11x BTU:

Lin• Sp .. d: 0 300 0 1200 02400
O•aoo 09600 01noo

HoxRotrios: ~
Idle Time:

NP Recv J;me:

Hax I-Fram••:

NRZI Support: 0NRZ 0NRZI
Dupl•x Typo: OH11f Orun

I
Nc~~d

kasc
2(,5

<)(,()()

.l
000

10000
7

NRZ
Half

'\Cfl<d

Lease

Z6S

9(,00

3
ROO

10000

i'i1!Z
Half

In a Multipoint Secondary configuration, this address matches the Al.S Address defined in the primary partner field
/

~

......

[o~ Partner ~
Partn•r 11•1111•: [:- .--: . -.--. _--. ---- ---- f

t::::::::;:;:;:/:!>>>::1
F.xch II>:

Un••am•:

0£xch ID:

Ocru 10:
,____ ______ __,I FfHXllXXI

ALS Ad•us: E I' Cl
Ph••• Ntllft••r:

Iii~ Partner ~
P•rfn•r Nam•: C_ I

l::;:::;:;:;:;:;::::::::::::::::::::i u ... 11 :

0£xch ID:

Ocru ID:

Exch ID:
Ffl'IXXXXI

ALS , I 1' Cl
Phon• Numhr:

Iii~ Partner ~
Partn•r N..,...: r- -----------]

1::::::;:::::;:::::::::::::::::::::1 Lin• ll•m•:

0Exch ID:

Ocru ID:

Exch ID:
Fff(XUXI

ALS Address: I ---------- -- --1 I Cl

P ... ne,....r:

l!o~ Partner ~
Partn•r llamti: I-. -- ---~-------1

L tu N11m•: Jo;~-=~'":~"':~"'::'"::,.~:.,~:"'~;"'~ :"i ;'°j :'"; ;'"~ :'"~ :'"~ :'"~ :'"~ :"~
0£xch ID:

QcPU ID:

Exch ID:
~------~I HHNXJUO

ALS Addross: f I' U
Pfli•ne Num•tt :

~::!! oco oc
)>$
~~
() .!.
(i)
3
0
<D
0
0
::J

~
c
i3 g-
:>

~

~
en
:J'

~

~
j -c r-1

\.. ,/

MacAPPC™ Confi ~o- lo£DI LU -

gurationWorksheet -~~- ~ ,

I

H•xSosslons:~ I

LUSecuritv: Qv., Orio No

Y•lt Thno: I I ~
H .. x TPs: _

------~oo
- ------·-·--

TP
TPN111M:

1 .. :,:::::., ··: :=:::;.:,·I
Se•urHg Re.,ired:

L•cal LU: QNon• Qconv Qunr

Net Mam•: QProf Ounr/Prof

Status: QEn.t>i. Qr..., QP.,.m
Us•r ID

c-v '••·= Oe111e QM"' 0Eith•r

D S9ac l•Y•I: 0Non• Otonfirm

I PIP: Qv .. QNo

P•C--t:

PF Chck: Qv .. QNo

011t11 H11ppin9: Q Y•s QHo Profile

FHH 011ta: Ov•s QHo D Privi1•9•: 0Non• 0 CNOS 0 S.sston

Oootm• Ootsp Ostrvtc•
LUY: Ovu 0No

--= ' '
m JP ---- ~o JP

TP N11me:

I,.:::::=-:<<< I
SecurH9 Req••f,-ed: TP N11me:

I:::::. .. :::::::::::::::: I loc•I LU: QNono Oconv <)um '\one looo1l LU:

H•f N•m•:

I
0Prof Quser/Prof Net flame:

F.nahlc Status: QEnablt QT•mp QP .. rm User ID
Status: Q£nlbl• OT•mp OP.rm

filhl'r Conv T1Jp•: OB•sle QH.p QElther

I D
Ceav T'Jp•: Qeuic QM1p Q£ither

r\ont.·. Confinn Sgnc Len•I: 0Nono Oconfir'm Sync Level: 0Hon• Oconfirm

Xo PIP: Ov•s 0No PIP: Qv .. QHo
0 PIP Ceunt: I PIP co .. nt:

Xo PIP Check: Qves QNo PIP Che-ck: Qv •• QNo
\o o.1t11 H•pptng: Ov.s QNo I Profile

D•b tt...,ta1: Ov.s QNo

D i\o

i'\onc

i\o

3
3

IO!i
25(1

FHH011b: OY•s QNo

I
FHHDat.:

Privi1•9e: o OcNOs Os•n••• Prl•tl•1•:

LUY:

:~o
Hod• fbmt:

Loc11t LU:

Re•ott LU:

Adj Stalloa:

Stnd PHin1:

R•c• PHin9:

Hax RU UB:

H•x RU LB:

Do.fin• 0Disp Os.rv1c• I
Qv .. 0No

Mode -.

~I"': "': "';:"'::"': ": "": "'::"'= "'::"': '"':'"'::"'::"'::"'::":,ii:::: ~:::i:=, g::rm g:-: ... 0Mn I None a ::,s:.·::t::=,1 ~
PB Sessiotts:

Qu•u• Binds: Qves QNo
monk Hodo: Qv.. QNo

l~O~ Remote LU ~
Remot• LU:

'"" l"u

LUY:

Loc111 LU:

••t Name:

lt•t Qual: ~ Remote LU hox feeds Remote
LU Name into Mode

CPll.,.•:

Yl'S) 1.nOR•41: ov .. QHo

Yl"i I p.,.•ll•I Sus: OY•s QNo

Ov•s QNo

0Hon• OcNOS Osusion

0 o.r1n. D c•••P os.rvk•
Qv .. ON•

~.

-· -- ·--

S•cur-if'J Rl!'quir•d

Qtfoflt' ()c,,,,, c)IJ$er

QF-.of Oustr/Prc.f

Us.r ID

D
Profile

D
~~
oC
)> ...
"U CD

'1J "' ()~

0
0
0

0
0
:J -<()"
c
0
6
:J

~
~
"' :r
<D
<D

Glossary

abend: A condition of a transaction program that
is the result of an error in execution. (The word is a
contraction of the terms abnormal and end).

ACF/VTAM: See Virtual Telecommunications
Access Method.

adjacent link station (AI.S): The hardware and
software within an SNA node that control the link
connection and prepare for communication
transmissions.

Adjacent Link Station Control Block: A block
of memory allocated and maintained by an
adjacent link station to maintain state and control
information about an individual connection to a
MacAPPC server.

ADSP: See AppleTalk Data Stream ProtocoL

Advanced Program-to-Program
Communication (APPC): An enhancement to
SNA that permits nodes on a network to
communicate as equals (peers), in contrast to the
traditional master-slave relationship that exists in
a mainframe-dominated network. Sometimes
called Advanced Peer-to-Peer Communication.

allocated: A conversation is allocated when one
partner program requests that the other be
attached at the appropriate remote LU.

allocate routine: A routine that identifies the
desired type of session by specifying a mode
name, and identifies the target program by
specifying its name and the name of the remote LU
at which the target program is located.

API: See Application Programming Interface.

APPC: See Advanced Program-to-Program
Communication.

APPC Mail: The sample HyperCard APPC
application provided with the HyperCard APPC
stack. APPC Mail is actually two applications in
one: Postmaster and Mailbox.

Apple IPC: A component of the MCP operating
system that provides inter-process communication
(IPC) services to programs or processes on the
Macintosh II computer that communicate with
processes on one or more communication cards.

AppleTalk Data Stream Protocol (ADSP): A
symmetric, connection-oriented protocol for
establishment and maintenance of full-duplex
streams of data bytes between two sockets in an
AppleTalk internet.

AppleTalk Manager: An interface to a set of
device drivers that enable programs to send and
receive information via an AppleTalk network.

AppleTalk network system: The system of
network software and hardware used in various
implementations of Apple's communications
network.

Application Programming Interface: The
handlers, XCMDs, and XFNCs that provide the ·
interface between HyperCard and MacAPPC.

application subsystem: A type of SNA program
that contains part of the code that implements LUs
and provides an interface to other SNA products.
Includes transaction processing systems, such as
CICS/VS, and interactive support systems, such as
time share option (TSO).

ASCII: Acronym for American Standard Code
for Information Interchange (pronounced
ASK-ee). A standard that assigns a unique binary
number to each text character and control
character. Compare EBCDIC.

asynchronous: (adj.) Able to continue
processing while the original request is still
executing. When an application makes an
asynchronous MacAPPC call, control is returned
immediately to the calling program. Compare
synchronous.

GL· l

attach: The connection between a transaction
program and a MacAPPC server. The attach must
be established before a conversation can take
place.

basic conversation: A conversation between TPs
using basic conversation routines. Typically,
service transaction programs use basic
conversations.

basic conversation routine: A type of MacAPPC
routine that allows a programmer maximum
flexibility and control over the conversation.
Compare mapped conversation routines.

basic transmission unit (BTU): An SNA
message unit that includes a request/response
header and a transmission header.

bidding: The initiation of a bracket or a
conversation.

bind: A request that is sent from a primary LU to a
secondary LU to activate an LU-LU session.

bracket: (n.) A time-slice of the session in which
each serial session conversation is mapped. (v.)
To keep together a sequence of related message
units that flow between LUs and constitute a single
logical-unit-of-work.

BTU: See basic transmission unit.

buffer: Temporary data storage used by the LUs at
each end of a conversation to assist with sending
and receiving data.

change-number-of-sessions (CNOS): (1) A
type of control operator routine that permits
modification of sessions between LUs. (2) A
service transaction program that issues CNOS
routines and negotiates with a control operator
transaction program to set session limits.

CICS: See Customer Information Control
System.

client: A computer that has access to services on a
network. The computers that provide services are
called servers. A user at a client may request file
access, remote log-on, file transfer, printing, or
other available services from servers.

CNOS: See change-number-of-sessions.

CNOS routines: Routines that change the LU or
mode session limit, which controls the number of
sessions per mode name that are available
between two LUs for allocation to conversations.

GL-2 Glossary

communication controller: A type of
communication control unit that has its
operations controlled by a program stored and
executed at that unit. For example, the IBM 3704
and 3705 are communication controllers.

component: A key part of an LU 6.2 network.
Components include local nodes, local LUs, TPs,
lines, partners (consisting of stations and control
points), remote LUs, and modes. A session is not
a component. Components can be logical (for
example a local LU) or physical (for example a
line).'

configuration: A specific instance of a MacAPPC
network.

configuration file: A Macintosh resource file
created by the Configuration program that
describes the components making up an instance
of a MacAPPC network.

configuring: The process of defining network
components using MacAPPC definition routines.
The Administration program does this
immediately after downloading the server. The
combination of these two steps is known as starting
the server.

confirm: One level of resource synchronization
that helps to ensure consistency within a
distributed transaction. The LU's only
involvement is to communicate the confirmation
request and reply between the programs. Any
recovery action is conducted at the program level.

connectivity: The presence of compatible
communication protocols.

control block: A block of memory allocated by a
program and used to maintain control
information. Several types of control blocks are
used by MacAPPC. See Transaction Program
Control Block, Conversation Control Block,
Adjacent Link Station Control Block, and
Partner Control Block.

control operator: A set of MacAPPC routines that
control aspects of an LU and its configuration
elements.

control point: The node at which control
information is added and removed by the
functional layers of SNA.

(/

(.·

Control Point Block: A block of memory
allocated by the control point for use by MacAPPC
drivers to maintain state and control information
about an individual connection to a MacAPPC
server.

conversation: A logical connection between rwo
transaction programs over a session.

Conversation Control Block (CVCB): A block of
memory used by MacAPPC device drivers to
maintain state and control information about an
individual conversation with a partner tr.at1saction
program. The CVCB is allocated and maintained
by a transaction program.

conversation resource: A resource by which one
transaction program invokes (attaches) another,
and by which the two programs exchange
messages and state information.

conversation states: During a conversation, a
transaction program is in one of several defined
states. The conversation states are reset, send,
receive, confirm, confirm/send,
confirm/deallocate, and deallocate.

Customer Information Control System
(CICS): A teleprocessing monitor for host
computers. CICS is designed to reduce the effort
required for terminal-oriented transaction
programming by providing an interface between
user-written applications and the
telecommunications access method (such as
VTANI) or database manager.

data mapping: The process of transforming data
from the form used by a transaction program into
a data stream that is sent to a remote LU.

data stream: The allowable characters, including
control codes, that flow between two LUs.

delta guide: A description of something new in
terms of its differences from something the reader
already knows about. The name comes from the
way mathematicians use the Greek letter delta (d)
to represent a difference.

Device Manager: The part of the Macintosh
Operating System that supports device input,
output, and control.

DIA: See Document Interchange
Architecture.

DISOSS: See Distributed Office Support
System.

·Distributed Office Support System (DISOSS):
An IBM office automation product that uses DLA..
for document formatting.

distributed transaction: The cooperative
execution of multiple programs at multiple
locations to achieve some user-requested
processing function.

distributed transaction processing: The
capability of a network to allow user-application
processing to be executed cooperatively on
various interconnected, but physically separated,
computing systems.

Document Interchange Architecture (DIA):
An IBM architecture that is designed for
exchanging messages and documents and that
provides library services. DIA is implemented as a
set of service transaction programs.

EBCDIC: Acronym for Extended Binary-Coded
Decimal Interchange Code (pronounced "EB-si­
dik"). A code used by IBM that represents each
letter, number, special character, and control
character as an 8-bit binary number. EBCDIC has
a character set of 256 8-bit characters. Compare
ASCII.

end user services: Services concerned with the
exchange of data between two logical units such as
are used in implementing LU-to-LU sessions.

external comm.and: See XCMD.

external function: See XFNC.

F APL: See SNA Format and Protocol Reference
Manual for LU Type 6.2.

file window: A window displayed in the
Configuration program when a file is opened or
created.

flush: To force an LU to send the information in
its send buff er.

FMH: See Function Management Header.

Forwarder {FWD): The ADSP Forwarder is a
component of the MCP operating system that
provides a client-server interface between services
running under the MCP operating system and
clients connected to the server computer via
AppleTalk ADSP connections.

frame: A data unit used in data link services.

Glossary GL-3

Function Management Header (FMH): A
header on a request/response unit that is used as
part of the end-user services for functions such as
specifying a device to display data or controlling
the way data is processed.

FWD: See Forwarder.

General Data Stream (GDS): A means of
formatting information for transfer over an SNA
network.

handler: A specific portion of a HyperTalk script
that performs some action in HyperCard.
Handlers begin with the co'.mmand line "on
handlerName" and conclude with the command
line "end handlerName" where bandlerName is
the word that causes the handler to be executed.

half-session layer: The layer that controls
session-level communication between LUs.

hexadecimal characters: The representation of
numbers in the base-16 system, using the ten digits
0 through 9 and the six letters A through F.

HyperCard APPC: The HyperCard-based front­
end for MacAPPC. The stack contains the
HyperCard APPC Application Programming
Interface (API), a "lab" for experimenting with
MacAPPC routines, and a sample application
(APPC Mail).

I-frame: One of three types of SDLC control field
formats. This format consists of a receive count
field, poll/final bit, send count field, and frame
identifier.

initiating a conversation: The stepwise process
of allocating a session for the conversation and
attaching the target program.

intelligent device: A device that contains a
microprocessor and a program that allows the
device to interpret data sent to it as commands
that the device is to perform.

internet: Any interconnected group of networks;
for example, an interconnected group of
AppleTalk network systems.

Inter-Process Communication (IPC):
Communication between processes or tasks.
MacAPPC uses Apple IPC to provide inter-process
communication services to programs or processes
on the Macintosh II computer that are used to
communicate with processes on one or more
intelligent communications cards.

GL-4 Glossary

interprogram communication: The set of
services that allows programs using APPC to
communicate with each other.

IPC: See Inter-Process Communication.

jumpers: A type of hardware switch made up of
pins and removable jumper blocks. The switch can
be set using the jumper block to connect specific
pins.

leased: A directly connected line.

line: A network component that provides a
physical link to other nodes.

local LU: The LU that is being used by a given
transaction program in a conversation. The other
LU is the remote LU.

local resources: Transaction program resources
that are created locally (by the product, and
independently of SNA). These include local files,
databases, queues, logs, and terminals.

logging: The process of recording all internal
server messages.

logical unit: A defined software component of
SNA that provides a point of access, or port, to
permit a user to gain access to an SNA network. LUs
provide transmission capabilities and a set of
services for the user. There are several varieties of
LU, including LU type 6.2, which is the LU type that
currently has the most comprehensive set of
defined capabilities. MacAPPC uses LU type 6.2.

logical-unit-of-work (LUW): An identifier
assigned by a transaction program for each
transaction issued by the program.

LU: See logical unit.

LU 6.2 network: A particular type of SNA network
that provides a connection between its transaction
programs and network resources.

LU services manager: Provides management of
the internal allocation of LU resources and invokes
other functions of the node on behalf of end users.

LUW: See logical-unit-of-work.

Macintosh Programmer's Workshop (MPW):
Apple's software development environment for
the Macintosh family.

Mailbox: The part of APPC Mail that receives text
and graphics from the Postmaster.

(··'"·····

' -- ,'

mapped conversation: A protocol boundary
that allows application transaction programs to
exchange data records of arbitrary format,
irrespective of the data streams used by the
underlying products.

mapped conversation buffer: A block of
memory that holds data sent or received from a
partner transaction program before the actual
mapping of the data is performed. The block of
memory is allocated and maintained by a
transaction program.

mapped conversation routine: A type of
conversation routine used by transaction
programs for functions such as data mapping.
Compare basic conversation routine.

mapper: A routine used by MacAPPC when send
or receive data mapping is required to translate
data and map names.

master: The central processor in a network.
Compare slave.

Memory Manager: The part of the Macintosh
Operating System that dynamically allocates and
releases memory space in the heap.

mode: A single-session connection or a group of
parallel sessions having similar session-level
parameters and path-control characteristics.

MPW: See Macintosh Programmer's
Workshop.

multipoint: A party-line network structure in
which several users share the same line.

NAU: See network addressable unit.

network addressable unit (NAU): LUs, PUs,
SSCPs, and the communication links that connect
them. NAUs provide services to move information
through a network from one user to another and
permit the network to be controlled and managed.
Each NAU has a network address.

network ID: The names by which local LUs,
remote LUs, and transaction programs are known
throughout the network.

node: A processor at the endpoint of any branch
of a network.

node operator: A function of APPC that permits
the control operator to define and control
components of a PU 2.1 node.

NuBus: A bus specification implemented in the
Macintosh II computer. NuBus is a trademark of
Texas Instruments.

parallel sessions: Multiple LU-LU sessions taking
place between the same two LUs concurrently.

parameter: A value passed to or from a routine.

parameter block: (1) A data structure used to
transfer information between applications and
certain operating system routines. (2) A set of
contiguous memory locations, set up by a calling
program to pass parameters to and receive results
from an operating system function that it calls.

partner: Partner is a MacAPPC term that consists
of both a station and control point. It is used by
the Configuration program to simplify
configuration design and implementation.

Partner Control Block: The memory location
for the operating parameters of a remote LU that is
configured for a specified local LU.

peer entities: An entity is an active element
within an SNA layer that performs a set of functions
in providing its services. Two entities within the
same layer are called peer entities.

peer-to-peer communication: See Advanced
Program-to-Program Communications.

physical unit (PU): A defined software
component of SNA that provides services for
managing physical devices on a network and
represents those devices to the network. There are
various types of PUs, including PU type 2.0 and
2.1, which are used in MacAPPC.

PIP: See program initialization parameters.

PIP buffer: A block of memory allocated and
maintained by a transaction program. It is used by
MacAPPC device drivers to hold any PIP data that
may be sent or received from a partner transaction
program.

pointer: An item of information consisting of the
memory address of some other item.

polarity: The contention between two LUs when
they both try to allocate a conversation at the same
time; for each single or parallel LU-LU session,
only one LU is the winner of the session; the other
is the loser.

Glossary GL-5

polling: The process by which a control station
invites tributary stations to send messages. The
MacAPPC intelligent communications card is
polled during logging and display functions by the
Administration program.

Postmaster: The part of APPC Mail that sends
text and graphics to the Mailbox.

primary LU (PLU): The bind sender.

profile: A network security setting that may be
used for conversation-level checking at the LU or
TP levels as a criterion of conversation.

program initialization parameters (PIP): Data
consisting of one or more subfields, each of which
is specified by a separate variable, supplied by the
allocating transaction program.

program-to-program communication: See
Advanced Program-to-Program
Communication.

protocol boundary: A set of routines and
parameters, defined as part of SNA, that provides
a common language for all application programs
and application subsystems.

PU: See physical unit.

remote LU: The LU that is the partner of the local
LU of a given transaction program in a
conversation. The remote LU may be in the same
node as the local LU or in a different node.

remote resource: The resources available to
transaction programs attached to an LU other than
the local LU. Remote is defined in terms of the
logical configuration of the network; the LUs can
be within the same physical node.

request buffer: A block of memory allocated and
maintained by the transaction program. It is used
by MacAPPC device drivers to communicate with
MacAPPC servers.

request/response unit (RU): The basic message
unit that is transmitted across the SNA network.

resource: (1) A part of a network, including
physical resources such as printers, keyboards and
terminals, and logical resources such as LUs, PUs,
modes, sessions, queues, and database records.
(2) Data or code stored in a .resource file and
managed by the Macintosh Resource Manager.

resource ID: The name by which a resource is
known to the network.

GL-6 Glossary

resource management: The coordination of
the access of transaction programs to various
resources, including resources that are local to the
LU (such as files, databases, and queues), and
shared resources (such as the LU-LU session). to
which access is provided through a conversation.

resynchronization: Exchange of information
concerning resource states between partner LUs to
resolve a doubtful situation.

return codei System responses that indicate
whether a routine request was successful; if an error
occurs, the return code indicates the type of error.

routine: A formatted function that defines the
protocol boundary. In this book, this term is used
for MacAPPC functions to distinguish them from
APPC verbs.

RU: See request/response unit.

SAA: See Systems Application Architecture.

SDLC: See Synchronous Data Link ControL

secondary LU (SLU): The bind receiver.

security: The process of allowing or disallowing
access to a network via comparison of user IDs,
passwords, and profiles.

server: A software component that operates on an
intelligent processor. MacAPPC protocols are
implemented by the MacAPPC server operating
on an intelligent communications card residing in
a NuBus slot on a Macintosh II computer.

server window: The window displayed by the
Administration program when you choose Display
from the Server menu.

service transaction program: A type of SNA­
defined program that offers services to application
transaction programs, such as translating APPC
routines into commands that are understood by
the application. DIA is implemented as a service
transaction program.

session: The resource that enables one LU to
communicate with another LU via the SNA path
control network. A logical state that exists between
two network addressable units and supports a
succession of transmissions between them.

single-session: The connection of two LUs during
one LU-LU session.

slave: A computer, terminal, printer, or other
peripheral device that responds to being
addressed by another computer acting as a
master.

SNA: See Systems Network Architecture.

SNA Distribution Services (SNADS): An
architecture that allows users on an SNA network to
exchange data in an asynchronous fashion, using a
"store-and-forward" service.

SNADS: See SNA Distribution Services.

SNA Fonnat and Protocol Reference Manual for
LU Type 6.2: IBM's official description of SNA
from a design viewpoint; covers LU type 6.2
protocols. Often called the FAP manual or FAPL.

SNA Fonnat and Protocol Reference Manual for
Type 2.1 Nodes: IBM's formal description of SNA
from a design viewpoint; covers PU type 2.1
protocols.

SNA Transaction Programmer's Reference
Manual for LU Type 6.2: IBM's formal description
of the syntax used to define the APPC protocol
boundary from the viewpoint of the transaction
program. Often referred to as the TPRM manual
or TPRM.

SNA/SDLC: An abbreviation for Systems
Network Architecture/Synchronous Data Link
Control. SNA is a set of rules for controlling the
transfer of information in a data communication
network. SDLC is a communication-line control
protocol that uses commands to control data
transfer over a communication line. IBM
telecommunications products manufactured after
1978 use this protocol.

SSCP: See system services control point.

station: Hardware and software within an SNA
node that control the link connection. This term is
synonomous with link station and adjacent link
station. There are two types of stations: primary
link stations and secondary link stations.

subarea nodes: A node that can communicate
with its own peripheral nodes and also other
subarea nodes in the network. There are two types
of subarea nodes: host (type 5) and controller
(type 4).

subsystem: A logical "processor" providing an
execution environment for transaction programs.

switched: A line that is established when required
and broken when a session is completed.

symbol string type A: A string type consisting of
one or more uppercase letters A through Z,
numerics 0 through 9, and special characters $, #,

@; the first character is an uppercase letter or a
special character.

symbol string type AE: A string type consisting
of one or more lowercase letters a through z,
uppercase letters A through Z, numerics 0 through
9, and special characters the period (.), $, #, and
@; there are no restrictions on the first character.

synchronous: (adj.) Unable to continue
processing while the original request is still
executing. When an application makes a
synchronous MacAPPC call, the application does
not continue until the MacAPPC routine is
complete. Compare asynchronous.

Synchronous Data Link Control (SDLC): A
protocol that specifies the rules that govern the
functions performed in the data link control layer
of SNA.

sync-point: A short term for synchronization
point. A distributed transaction program error
recovery service to "protect" conversations.

system: A coordinated collection of interrelated
and interacting parts organized to perform some
function or achieve some purpose-for example,
a network system comprising a mainframe
computer, several microcomputers, printers,
modems, communications controller, and
serveral disk drives.

system services control point (SSCP): A
network addressable unit that provides the services
needed to manage an SNA network and establish
and control the interconnections needed to
permit users to communicate with each other.

Systems Application Architecture (SAA): A set
of interfaces and protocols developed by IBM and
designed to be used by applications that run under
different operating systems and in different
hardware environments.

Systems Network Architecture (SNA): An IBM
architecture that describes the logical structure,
formats, protocols, and operational sequences for
transmitting information units through networks
and for controlling the configuration and
operation of networks.

TP: See transaction program.

TPN: See transaction program name.

Glossary GL-7

TPRM: See Sl\1A Transaction Programmer's
Reference Manual for LU Type 6.2.

transaction: Two or more processors
communicating in the execution of a unit of
processing. Each time data is transferred over a
network, a transaction occurs.

transaction program (TP): A computer
program that performs transaction processing.
APPC provides services that permit a TP to
communicate with other TPs.

transaction program name (TPN): A unique
name given to a TP for a local LU. The TPN is
carried in the allocation request sent by the
partner program. The names CNOS and ADMIN
are reserved by MacAPPC.

Transaction Program Control Block (TPCB):
A block of memory allocated and maintained by a
transaction program for use by MacAPPC drivers
to maintain state and control information about
an individual connection to a MacAPPC server.

transaction program instance: An execution
instance of a transaction program for a particular
transaction at a particular LU.

user ID: A network security name. used to control
resource access.

User Interface Toolbox: The software in the
Macintosh ROM that helps you implement the
standard Macintosh user interface in your
application.

verb: A formatted function that defines the
protocol boundary. Transaction programs issue a
verb and the LU executes it. In this book, the term
routine is used for MacAPPC functions to
distinguish them from APPC verbs.

VTAM: See Virtual Telecommunications
Access Method.

Virtual Telecommunications Access Method:
A telecommunications access method that
controls the transmission of data to and from local
devices that are attached directly by channels, and
the communication between a host processor and
remote devices via a comunications controller.
Properly called ACF/VTAM for Advanced
Communications Function for the Virtual
Telecommunications Access Method.

XCMD: Abbreviation for external command, a
command that extends HyperTalk's command set.

GL-8 Glossary

XData XCMD: One of the HyperCard APPC
ex-remal commands that creates the data structures
used to pass data between MacAPPC and
HyperCard APPC.

XFNC: Abbreviation for external function, a
function that extends HyperTalk's built-in
functions.

(

Index

A
Access Type 11-6
activating network components

and sessions 12-25 to 12-26
Adj Station setting, mode

configuration 11-38
Administration program

CNOS TP, starting and
stopping 12-24

configuration file, selecting
12-4

control point, display settings
for 12-16 to 12-17

conventions used in 12-3
cursor described 12-3
described 2-4, 2-11
edit server settings 12-4 to

12-5
features of 12-2
lines

activating 12-25
deactivating 12-29
display settings for 12-14 to

12-16
local LUs

activating 12-26
deactivating 12-27 to 12-28
display settings for 12-7,

12-9 to 12-11
logging facility 12-29 to

12-31
and MacAPPC Server 2-12 to

2-13
menus for 12-2 to 12-3
modes

activating 12-26
deactivating 12-27 to 12-28
display settings for 12-8.

12-20 to 12-22

network components
activating 12-25 to 12-26
deactivating 12-26 to 12-29
display settings 12-5 to

12-23
network display control 12-3
remote LUs, display settings

for 12-8, 12-18 to 12-19
server window

display 12-5 to 12-6
updating 12-23

sessions
activating 12-26
deactivating 12-27
display settings for 12-9,

12-22 to 12-23
severity control 12-3, 12-30
start a server 12-4 to 12-5
stations

activating 12-25 to 12-26
deactivating 12-29
display settings for 12-16 to

12-17
stop a server 12-31 to 12-32
transaction programs (TPs),

display settings for 12-11
to 12-14

ADMIN reserved TP name
11-27

ADSP protocol 9-4
Advanced Program-to-Program

Communication. See APPC
allocateState handler

(HyperCard APPC) H-25
allocation errors, result codes

listed for C-13 to C-14
ALS (adjacent link station)

ALS Address for partners
11-19, 11-35

CNOS ALS and remote LC
configuration 11-36

APDA (Apple Programmer's
and Developer's Association)
ix to x, H-1

APPC. See also HyperCard
APPC; MacAPPC

description of 1-2
and distributed transaction

processing 1-9
and LU 6.2 1-5
option sets supported by

MacAPPC I-1 to I-2
PU 2.1 1-6

APPC.p, listing of A-1 to A-13
APPC XCMD H-20 to H-21
appcConvState parameter

block field 3-8
APPCErrors.p, listing of B-2 to

B-7
appcHiResult

parameter block field 3-8
values listed for C-2 to C-16

appcLoResult
parameter block field 3-8
values listed for C-2 to C-16

appcOpCode parameter block
field 3-6 to 3-7

APPCParamBlock dua
structure 3-5 to 3-8

and HyperCard APPC H-24
appcRefNum parameter block

field 3-6
appcUserRef parameter block

field 3-8
Apple IPC (Inter-process

Communications)
component, and the MCP
operating system 9-4

Apple Programmer's and
Developer's Association
(APDA) ix to X, H-1

AppleTalk
ADSP protocol and 9-4

and MacAPPC server 2-5 to
2-6

Apple Technical Library ix
ASCII to EBCDIC string

conversion 7-10 to 7-11
table for J-1 to j-2

AST-ICP communications card
9-2 to 9-3

asynchronous routine execution
3-4

attaching
defined 2-9
routines valid for different

attach types 7-3
attachState handler

(HyperCard APPC) H-25

B
bad completion errors, result

codes listed for C-13
basic conversations 2-9. See

also Conversation Driver
(.CV62)

routines listed 3-3
basic transmission unit length

(BTU), configuration of
11-32

baud rate, for lines 11·32
binds, queuing of 11-39
Blank Mode, mode

configuration 11-39
Boolean values, in parameter

descriptions 3-12
bracketing. a data flow control

service 1-8
BTU (basic transmission unit

length), configuration of
11-32

buffering of data, Conversation
Driver (.CV62) 4-2

c
change-number-of-sessions

routines. See CNOS routines
character type conventions, in

the Configuration program
11-5

check boxes, described 11-4 ·
Chooser desk accessory, select

MacAPPC server 10-2 to 1-3
Clear Log command (Log

menu) 12-31
client computer

2 Index

files needed in System Folder
of 9-4

Macintosh computers
supported as 9-2

CNOS ALS setting, remote LU
configuration 11-36

CNOS routines
and basic conversations 2-9
control operator routines 5-3

to 5-10, 5-49 to 5-50
listing of 3-3
and MacAPPC Control

Operator Driver 2-9
CNOS TP

reserved name 11-27
starting and stopping 12-24

code listings. See listings
communications card

illustrated 2-6
jumper setting for the

AST-ICP 9-3
slot number for 12-5
specifications of 9-2

configuration file. See also
Configuration program

printing 11-43
sample of 11-44 to 11-45
selecting of 12-4

Configuration program
character type conventions

11-5
configuration file

create 11-5 to 11-6
print 11-43
sample file 11-44 to 11-45

defaults, editing of 11-39 to
11-43

delete network components
11-43

described 2-11
error-checking routine 11-8
function described 2-4
key conventions 11-4
lines

creating 11-16 to 11-17
editing defaults 11-41
editing settings 11-31 to

11-33
localLUs

creating 11-8 to 11-11
editing defaults 11-40
editing settings 11-24 to

11-27
and MacAPPC Server 2-12 to

2-13

menus 11-3 to 11-4
modes

creating 11-22 to 11-23
editing defaults 11-43
editing settings 11-37 to

11-39
network components

creating 11-7 to 11-24
delete 11-43
described 11-2
editing settings 11-24 to

11-39
name types 11-5

node setting defaults, editing
11-40

overview of 11-2
partners

creating 11-18 to 11-19
editing defaults 11-42
editing settings 11-33 to

11-35
print a configuration file

11-43
remote LUs

creating 11-20 to 11-21
editing defaults 11-42
editing settings 11-35 to

11-37
screen conventions 11-4
transaction programs

creating 11-12 to 11-16
editing defaults 11-41
editing settings 11-27 to

11-31
worksheets for K-1 to K-3

connection routines, listing of
3-3

connections types, MacAPPC
support of 2-7 to 2-8

Connect Type 11-32
constants

for completion of routine 3-8
for Control Operator Driver

(.C062) 5-45 to 5-46
for Conversation Driver

(.CV62) 4-63 to 4-64
for MacAPPC drivers 3-10
for Node Operator Driver

(.N062) 6-35 to 6-36
for the Transaction Program

Driver (.TP62) 7-12
control blocks 3-8 to 3-9
Control Operator Driver (.C062)

CNOS routines
described 5-3 to 5-10

(

('

summarized 5-49 to 5-50
constants available 5-45 to

5-46
data types 5-47 to 5-48
LU definition routines

described 5-14 to 5-44
summarized 5-52 to 5-56

parameter block for 3-4
parameter mapping F-2 to

F-8
result codes listed for C-15
routines

categories of 2-9, 5-3
functions described 2-4
listed 3-3
and transaction program

configuration 11-29
security and 2-7, 5-2 to 5-3
session control routines

described 5-11 to 5-13
summarized 5-51

control point. See CP Name
Conversation Control Block

(CVCB) 3-9
Conversation Driver (.CV62)

basic conversation routines
description of 4-38 to 4-62
states for 4-4
summarized 4-73 to 4-77

buffering of data 4-2
constants available for 4-63 to

4-64
conversation routine types

defined 2-8 to 2-9
conversation states defined

4-3
conversation types 4-2
data formatting 4-2
data mapping 4-5
data types 4-65
mapped conversation routines

description of 4-8 to 4-32
states for 4-3
summarized 4-67 to 4~ 71

mapping parameter block 4-5
to 4-6, 4-66

parameter block for 3-4
parameter mapping E-2 to

E-11
routines

functions described 2-4
listed 3-3
routine mapping D-2 to D-3

type-independent
conversation routines

description of 4-33 to 4-37
states for 4-4
summarized 4-72

·writing a mapping procedure
4-5 to 4-7

conversation handlers
(HyperCard APPC) H-26 to
H-27

conversation ID 3-11
returned by MCAllocate

routine 4-9
conversation-level security

2-7, 5-2 to 5-3. See also
security

LU Security 11-26
transaction program

configuration 11-14, 11-29
conversation routine mapping

D-2 to D-3
conversations. See also

Conversation Driver (.CV62)
failure of and bracketing 1-8
and MacAPPC Conversation

Driver 2-8 to 2-9
and transaction program (TP)

1-7 to 1-8
Conv Type (conversation

type), transaction program
configuration 11-12, 11-28

.C062 driver. See Control
Operator Driver (.C062)

CP Name setting
display settings for station and

control point 12-16 to
12-18

remote LU configuration
11-36

CPU ID setting, for partner
11-18 to 11-19, 11-34

Create menu
create network components

11-8
for Configuration program

11-3
cursor, display of in

Administration program 12-3
.CV62 driver. See Conversation

Driver (.CV62)

0
data flow control service, and

bracketing 1-8
data formatting, mapped vs.

basic conversations 2-9

Data ~fapping, transaction
program configuration 11-29

data streams
and basic conversation

routines 4-38
defined 1-6

data types
for Control Operator Driver

(.C062) 5-47 to 5-48
for Conversation Driver

(.CV62) 4-65
for HyperCard APPC H-23 to

H-24
MacAPPC data types and the

xDefine command H-40
for Node Operator Driver

(.N062) 6-37 to 6-38
for Transaction Program

Driver (.TP62) 7-13
deactivating network

components and sessions
12-26 to 12-29

deallocation errors, result codes
listed for C-15

defineCOandNO handler
(HyperCard APPC) H-24

defineCVandTP handler
(HyperCard APPC) H-23 to
H-24

delete, network components
11-43

Device Manager, and parameter
block fields 3-5

DIA (Document Interchange
Architecture), APPC and 1-3

DISOSS (Distributed Office
Support System) 1-3

Display command (Server
menu) 12-5

Distributed Office Support
System (DISOSS) 1-3

distributed transaction
processing

description of 1-9
and SNA network 1-2

Document Interchange
Architecture (DIA), APPC
and 1-3

drivers. See MacAPPC drivers
Duplex Type setting 11-33

E
EBCDIC to ASCII string

conversion 7-10 to 7-11
table for J-1 to J-2

Index 3

Edit menu
for Administration program

12-2
for Configuration program

11-3
Enter key, use in Configuration

program described 11-4
error result codes. See result

codes
errors file, for MacAPPC drivers

B-2 to B-7
errStr XCMD H-22
Exchange ID setting

for local node 11-6
for partner 11-18, 11-34

exec handlers (HyperCard
APPC) H-25

F
FALSE, defined 3-12
File menu

for Administration program
12-2

for Configuration program
11-3

New command 11-5
files, provided on disks 9-3 to

9-4
Finder version requirement

9-3
FMH Data setting, transaction

program configuration 11-29
Forwarder (FWD), and the MCP

operating system 9-4
full duplex 11-33
FWD (Forwarder), and the MCP

operating system 9-4

G
General Data Stream (GDS)

variables, and mapped
conversations 2-9

get62Srvr XCMD H-21 to
H-22

H

half duplex 11-33
handlers

for HyperCard APPC H-23 to
H-27

sample use of H-37 to H-39
hardware installation 9-2 to 9-3

4 Index

HyperCard APPC. See also
MacAPPC; XCMDs and
XFC:Ks

APPC Mail sample application
H-11 to H-14

application development
H-20 to H-27

Application Programming
Interface (API) H-3 to H-4

Conversation ID field H-9
data types H-23 to H-24
error result codes H-8
handlers H-23 to H-27
hardware requirements H-2
help for the Lab H-9 to H-11
Lookup Chooser Server and

Zone button H-9
MacAPPC data types and the

xDefine command H-40
to H-41

MacAPPC Lab H-4 to H-11
sample session H-15 to H-19

Mailbox H-14
navigation button H-4
navigation cards for the Lab

H-5
overview of H-3 to H-14
parameters for XData XCMDs

and XFCNs H-36 to H-37
Postmaster H-13 to H-14
Program ID field H-9
Receive data field H-9
record types H-24
returned values parameters

H-7 to H-8
routine cards H-6
scripts H-23 to H-27
software requirements H-2
supplied values parameters

H-7
title card H-3
TPAttach card H-6, H-7
XData errors H-39
XData XCMDs and XFCNs

H-28 to H-36

IBM Corporation
documents about APPC and

LU 6.2 x
history of SNA 1-2

IBM equipment
local node exchange ID for

11-6
partner exchange ID 11-18

IBM 3270 data stream 4-38
IBM 5250 data stream 4-38
Idle Time setting 11-33
IDs, for MacAPPC drivers 3-11
I-frames setting, maximum

number of 11-33
Init Q Req setting, remote LU

configuration 11-36
installation

hardware 9-2 to 9-3
software 9-3 to 9-5

interface file for MacAPPC
drivers A-2 to A-13

International Business
Machines. See IBM
Corporation

interprogram communication,
and LU 6.2 1-5

io parameter block fields 3-5
to 3-6

J
jumper settings for the

AST-ICP communications
card 9-3

K
k (lowercase), to specify

routine name for
appcOpCode parameter
block field 3-6 to 3-7

key conventions, in the
Configuration program 11-4

L
Lei Sec (local security) setting,

remote LU configuration
11-37

leased connection type
configuration of 11-32
MacAPPC support of 2-7 to

2-8
Line ... menu option, described

11-2
Line Name setting 11-32
Line Number setting 11-32
lines

activating 12-25
configuration of 11-16 to

11-17
Connect Type setting 11-32
deactivating 12-29

display settings for 12-14 to
12-16

Duplex Type setting 11-33
editing defaults 11-41
editing settings 11-31 to

11-33
Idle Time setting 11-33
Line Name setting 11-32
Line Number setting 11-32
Line Speed setting 11-32
Line Type setting 11-32
LOCAL name reserved 11-7,

11-17, 11-32, 11-34
Max BTU setting 11-32
Max I-Frames setting 11-33
Max Retries setting 11-32
NP Recv Time setting 11-33
NRZI Support setting 11-33
Role Type setting 11-32

Line Speed setting 11-32
Line Type setting 11-32
link connections, MacAPPC

support of 2-7
listings

default mapping procedure
4-7

errors file B-2 to B-7
examples in a transaction

program 8-2 to 8-10
get currently chosen

MacAPPC server 7-2 to 7-3
interface file for MacAPPC

drivers A-2 to A-13
LOCAL line name reserved

11-7, 11-17, 11-32, 11-34
Local LU ... menu option,

described 11-2
local LUs

activating 12-26
creating 11-8 to 11-11
deactivating 12-27 to 12-28
display settings for 12-7,

12-9 to 12-11
editing defaults 11-40
editing settings 11-24 to

11-27
Local LU name setting 11-25
LU ID setting 11-8, 11-25
LU Security setting 11-26
maximum number of TPs

11-9
Max Sessions setting 11-8,

11-25
Name setting 11-8
Net Name setting 11-25

Net Qua! setting 11-25
Password setting 11-9, 11-27
Profiles setting 11-10, 11-26
transaction programs for

11-12 to 11-16
User ID setting 11-9, 11-26
Wait Time setting 11-26

Local Node. create new
configuration file 11-6

local resources 1-7
logging facility 12-29 to 12-31

settings options 12-29 to
12-30

logical unit of work (LUW) IDs,
transaction program
configuration 11-29

logical units (LUs) 1-3. See also
local LUs; remote LUs

and sessions 1-7
Log menu

Clear Log command 12-31
commands for 12-29
for Administration program

12-3
Settings command 12-30
Show Log command 12-31

log window 12-31
LU definition routines

listing of 3-3
and the MacAPPC Control

Operator Driver 2-9
LU ID setting, for local LUs

11-8, 11-25
LU Security setting, for local

LUs 11-26
LU6.2

control operator parameter
mapping F-2F.8

conversation parameter
mapping E-2 to E-11

description of 1-5 to 1-6
and primary session unit 1-3
protocol boundary 1-6
resource allocation 1-7
return code mapping G-2 to

G-3
routine mapping D-1 to D-4

LUW (logical unit of work)
setting, transaction program
configuration 11-29

M
MacAPPC. See also APPC;

HyperCard APPC

APPC option sets supported
by 1-1 to I-2

applications provided 2-4
connection types 2-8
connectivity and 2-3 to 2-4
drivers described 2-8 to 2-10
environment illustrated 2-3
link connections supported by

2-7
and Macintosh user interface

2-5
network structure, illustrated

2-2
purpose of 2-2
routine categories 2-4
security levels 2-7
server-client architecture and

2-5 to 2-6
software and server

relationship 2-11 to 2-13
and transaction programs

(TPs) 2-4
transmission media 2-7 to 2-8
utilities provided 2-4

MacAPPC Chooser device
function described 2-4
MacAPPC server as an entity

name in resource fork 7-2
MacAPPC drivers 2-8 to 2-10.

See also indivtdual driver
names

constants listed 3-10
control blocks 3-8 to 3-39
errors file (Pascal) B-2 to B-7
executing a driver routine

3-11
IDs for 3-11
interface file for (Pascal) A-2

to A-13
listed 3-2
opening of 3-2
parameter blocks for 3-4 to

3-8
synchronous and

asynchronous program
execution 3-4

typographic conventions used
3-12

MacAPPC routines, specify
execution of 3-6 to 3-7

MacAPPC server
and the AppleTalk network

2-5 to 2-6
card illustrated 2-6
function described 2-4

Index 5

get currently selected
MacAPPC server (procedure
for) 7-2 to 7-3

select using the Chooser
10-2 to 1-3

software and server
relationship 2-11 to 2-13

starting 12-4 to 12-5
stopping 12-31 to 12-32

MacAPPC System disk,
contents of 9-4

MacAPPC User disk, contents
of 9-3

Macintosh computers
documents about ix to x
types supported as client

computers 9-2
types supported as server

computers 9-2
types supported for

HyperCard APPC H-2
Macintosh Coprocessor Platform

operating system 9-3, 9-4
Macintosh user interface, and

MacAPPC 2-5
management of the network.

See Administration program
manual

overview of vii
structure of viii
typographic conventions used

xi
mapped conversation buffer

control block 3-9
mapped conversations 2-9.

See also Conversation Driver
(.CV62)

examples in a transaction
program 8-2 to 8-10

mapped routines listed 3-3
mapper (user-supplied mapping

utility) 4-5
mapping parameter block 4-5

to 4-6, 4-66
mappings

control operator parameter
mapping F-2F.8

conversation parameter
mapping E-2 to E-11

result codes G-2 to G-3
routine mapping D-1 to D-4

Max BTU setting 11-32
Max I-Frames setting 11-33
Max RU LB setting, mode

configuration 11-38

6 Index

Max Rl: UB setting, mode
configuration 11·38

Max Sess (maximum number of
sessions) setting

for local LUs 11-8, 11-25
mode configuration 11-22,

11-39
Max TPs (maximum number of

TPs) setting, for local LUs
11-9, 11-26

memory requirement, for
HyperCard APPC H-2

Memory Size, edit server
settings 12-4 to 12-5

menus
for the Administration

program 12-2 to 12-3
for the Configuration program

11-3 to 11-4
message units,

request/response units (RUs)
1-3

Min 1st Spkrs (minimum
number of first speakers)
setting, for modes 11-22,
11-39

Mode ... menu option,
described 11-2

Mode Name setting 11-37
modes

activating 12-26
Adj Station setting 11-38
Blank Mode setting 11-39
creating 11-22 to 11-23
deactivating 12-27 to 12-28
display settings for 12-8,

12-20 to 12-22
editing defaults 11-43
editing settings 11-37 to

11-39
Max RU LB setting 11-38
Max RU UB setting 11-38
Max Sessions setting 11-22,

11-39
Min 1st Spkrs setting 11-22,

11-39
Mode Name setting 11-37
name for 11-22
PB Sessions setting 11-23,

11-39
Queue Binds settting 11-39
Recv Pacing setting 11-38
Send Pacing setting 11-38
Session Reinit setting 11-38

Sync Level setting 11-22,
11-38

Monitor Timer setting 11-6
multipoint connection type

configuration of 11-32
MacAPPC support of 2-7 to

2-8

N
name

for lines 11-16 to 11-17
for local LUs 11-8
for mode 11-22
for partner 11-18
for remote LU 11-20
for transaction program 11-12

NAUs. See network addressahle
units (NAUs)

negotiable SDLC role 11-32
Net Name setting

local LU configuration 11-25
remote LU configuration

11-36
transaction program

configuration 11-27
Net Qua! setting

local LU configuration 11-25
remote LU configuration

11-36
network addressable units

(NA Us)
components of 1-3
NAU services and the SNA

network 1-5
network display control, in the

Administration program 12-3
network management. See

Administration program
New command (File menu)

11-5
NIL pointer, defined 3-12
Node ... menu option,

described 11-2
Node Operator Driver (.N062)

constants available for 6-35 to
6-36

data types for 6-37 to 6-38
node control routines

described 6-2 to 6-10
summarized 6-39 to 6-40

node definition routines
described 6-17 to 6-34
summarized 6-42 to 6-44

node message routines
described 6-11 to 6-16

(

c·

summarized 6-41
parameter block for 3-4
result codes listed for C-16
routines

categories of 2-9, 6-2
functions described 2-4
listed 3-3

nodes
editing defaults 11-40
and the SNA network 1-3

nonproductive receive time
11-33

nonreturn-on-zero encoding
methods 11-33

.N062 driver. See Node
Operator Driver (.N062)

NP Recv Time setting 11-33
NRZI Support setting 11-33
NuBus card. See

communications card
null mode name, send across a

link 11-39
NULL value, defined 3-12

0
operating system, MCP 9-3,

9-4
option sets supported by

MacAPPC I-1 to I-2

p

pacing response, and mode
configuration 11-38

parallel sessions 1-7
and remote LU configuration

11-20, 11-36
parameter blocks

for MacAPPC drivers 3-4 to
3-8

mapping parameter block 4-5
to 4-6

Partner ... menu option,
described 11-2

Partner Name setting 11-34
Partner Node, create new

configuration file 11-7
partners

ALS address setting 11-19,
11-35

CPU ID setting 11-18 to
11-19

creating 11-18 to 11-19
editing defaults 11-42

editing settings 11-33 to

11-35
Exclunge ID setting 11-18,

11-34
Line Name setting 11-34
name for 11-18
Partner Name setting 11-34
Phone :'\'umber setting 11-35

Pascal procedures. See listings
password setting

and conversation level access
security 2-7

and local LU configuration
11-9, 11-27

and remote LU configuration
11-36

path-control network services,
and the SNA network 1-5

PB Sessions (number of
prebound sessions) setting,
mode configuration 11-23,
11-39

Phone Number setting, partner
configuration 11-35

physical units (PUs) 1-3. See
also PU 2.1

PIP buffer control block 3-9
PIP Check setting, and

transaction program
configuration 11-28

PIP Count setting, and
transaction program
configuration 11-28

PIP (program initialization
parameters) setting, and
transaction program
configuration 11-28

polarity, and LU contention 1-7
prebound sessions for modes

11-23, 11-39
primary SDLC role 11-32
primary session unit 1-3
print, a configuration file 11-43
Privilege setting, and

transaction program
configuration 11-29

procedures. See listings
profile setting

and conversation level access
security 2-7, 5-2

and local LU configuration
11-10, 11-26

and transaction program
configuration 11-14 to
11-15, 11-30 to 11-31

Prof security setting, and
transaction program
configuration 11-1·(11-29

program errors. See also result
codes

result codes listed for C-14
program ID 3-11
program-to-program

communication 1-5
protocol boundary, LC 6.2 1-6
PU 2.1, and APPC 1-6

Q

qLink parameter block field
3-5

qType parameter block field
3-5

Queue Binds setting, mode
configuration 11-39

queue session-initiation
requests 11-36

R
radio buttons, described 11-4
Recv Pacing setting, mode

configuration 11-38
reference materials ix to x

for HyperCard H-1
Remote LU ... menu option,

described 11-2
remote LUs

CNOS ALS setting 11-36
CP Name setting 11-36
creating 11-20 to 11-21
display settings for 12-8,

12-18 to 12-19
editing defaults 11-42
editing settings 11-35 to

11-37
Init Q Req setting 11-36
Lei Sec (local security) setting

11-37
name for 11-20
Net Name setting 11-36
Net Qua! setting 11-36
Parallel Sessions setting

11-20, 11-36
Password setting 11-36
Remote LU setting 11-35

remote resources 1-7
request/response units (RUs)

1-3
and mode configuration

11-38

Index 7

reserved names
ADMIN TP name 11-27
CNOS TP name 11-27
LOCAL line name 11-7,

11-17, 11-32, 11-34
SNASVCMG mode name

11-37
resource-access-level security.

See also security
and transaction program

configuration 11-14, 11-29
resource allocation, and LU 6.2

1-7
result codes

for asynchronous routine
execution 3-4

for control operator errors
C-15

for HyperCard APPC H-8
mapping of G-2 to G-3
for node operator errors C-16
for program errors C-14
for state errors C-13
for usage errors C-2 to C-13
values listed for C-2 to C-16

retries, maximum number of
11-32

return codes (LU 6.2),
MacAPPC result code
mapping G-2 to G-3

Return key, use in
Configuration program
described 11-4

Role Type setting 11-32
routine handlers (HyperCard

APPC) H-25
routine mapping D-1 to D-4
routines. See under tndividual

drivers
RUs. See request/response

units (RUs)

s
screen conventions, in the

Configuration program 11-4
scripts, for HyperCard APPC

H-23 to H-27
SDLC. See Synchronous Data

Link Control (SDLC)
secondary SDLC role 11-32
secondary session unit 1-3
security

levels provided 2-7, 5-2 to
5-3

8 Index

and remote LU configuration
11-37

for transaction programs
11-13 to 11-14, 11-29 to
11-30

Send Pacing setting, mode
configuration 11-38

serial port number, for line
connection 11-32

server-client architecture, and
MacAPPC 2-5 to 2-6

server computer. See also
MacAPPC server

files needed in System Folder
of 9-4

Macintosh II supported as 9-2
Server menu

for Administration program
12-3

Display command 12-5
Start CNOS command 12-24
Start Seiver command 12-4
Update command 12-23

Server Name, edit server
settings 12-4 to 12-5

server window 12-6
updating 12-23

session-control routines, and
the MacAPPC Control
Operator Driver 2-9

session control routines, listing
of 3-3

session ID 3-11
session level LU-LU verification

2-7, 5-2 to 5-3. See also
security

Session Reinit setting, mode
configuration 11-38

sessions
activating 12-26
and conversation failure 1-8
deactivating 12-27
defined 1-3
display settings for 12-9,

12-22 to 12-23
maximum number of sessions

for local LUs 11-8, 11-25
maximum number gf sessions

for modes 11-22, 11-39
parallel sessions and remote

LU configuration 11-20,
11-36

prebound sessions for modes
11-23

Settings command (Log menu)
12-30

setupCVData handler
(HyperCard APPC) H-25

setupTPData handler
(HyperCard APPC) H-25

severity control
in the Administration program

12-3
settings for 12-30

Show Log command (Log
menu) 12-31

single session 1-7
reinitiation and mode

configuration 11-38
Slot, edit server settings 12-4

to 12-5
SNA

components of 1-3 to 1-4
and end user 1-3
functional layers 1-5
IBM's development of 1-2
logical components of 1-3 to

1-4
physical components of 1-3

to 1-4
SNA data streams 4-38
SNA Distribution Services

(SNADS), APPC and 1-3
SNADS (SNA Distribution

Services) 1-3
SNASVCMG mode

activating 12-26
CNOS and 12-24
deactivating 12-27
reserved name 11-37

software installation 9-3 to 9-5
speakers, minimum number of

first speakers for modes
11-22, 11-39

SSCP (system services control
points) 1-3

Start CNOS command (Server
menu) 12-24

Start Server command (Server
menu) 12-4

state errors, result codes listed
for C-13

station display window 12-17
Station Name 12-17. See also

CP Name
stations

activating 12-25 to 12-26
deactivating 12-29

(\

/

Status, and transaction program
configuration 11-28

stop
CNOS 12-24
deactivate network

components and sessions
12-26 to 12-29

MacAPPC server 12-31 to
12-32

switched connection type
configuration of 11-32
MacAPPC support of 2-7 to

2-8
symbol-string character types

11-5
Synchronous Data Link Control

(SDLC)
and APPC 2-7
Local Node configuration

11-6
and Role Type 11-32

synchronous routine execution
3-4

Sync Level (synchronization
level) setting

mode configuration 11-22,
11-38

and transaction program
configuration 11-12, 11-28

System Folder, files needed in
9-4

system services control points
(SSCP) 1-3

Systems Network Architecture.
See SNA

System version 6.0.2
requirement 9-3

T
Tab key, use in Configuration

program described 11-4
technical reference materials ix

to x
about HyperCard H-1

Token Ring, and APPC 2-7
TP ... menu option, described

11-2
TP Name setting 11-27
.TP62 driver. See Transaction

Program Driver (.TP62)
Transaction Program Control

Block (TPCB) 3-8 to 3-9
Transaction Program Driver

(.TP62)
connection routines

described 7-4 to 7-8
summarized 7-14

constants for 7-12
data types 7-13
parameter block for 3-4
routines

categories of 2-9 to 2-10,
7-4

functions described 2-4
listed 3-3
routine mapping D-4

utility routines
described 7-9 to 7-12
summarized 7-15

transaction programs (TPs). See
also Transaction Program
Driver (. TP62)

APPC and 1-7, 1-8
conversations 1-7 to 1-8
Conv Type setting 11-12,

11-28
creating for local LU 11-12 to

11-16
Data Mapping setting 11-29
display settings for 12-11 to

12-14
editing defaults 11-41
editing settings 11-27 to

11-31
example fragments of a TP

8-2 to 8-10
FMH Data setting 11-29
LUW setting 11-29
and MacAPPC 2-4
and the MacAPPC Transaction

Program Driver 2-9 to 2-10
maximum number of for local

LUs 11-9
Name setting 11-12
Net Name setting 11-27
PIP setting 11-28
PIP Check setting 11-28
PIP Count setting 11-28
Privilege setting 11-29
Profile setting 11-14 to

11-15, 11-30 to 11-31
security level 11-13 to 11-14,

11-29 to 11-30
sessions and 1-7
and S"l\'A logical components

1-3 to 1-4
Status setting 11-28
Sync Level setting 11-12,

11-28
TP Name setting 11-27

User ID setting 11-14, 11-30
TRUE, defined 3-12
Type AE symbol-string type

11-5
Type A symbol-string type

11-5
Type hexadecimal

symbol-string type 11-5
type-independent

conversations 2-9. See also
Conversation Driver (.CV62)

routines listed 3-3

u
Update command (Server

menu) 12-23
usage errors, result codes listed

for C-2 to C-13
User ID setting

and conversation level access
security 2-7

local LU configuration 11-9,
11-26

and the profile 11-10
transaction program

configuration 11-14 to
11-15, 11-30

User/Prof security setting. See
also security

and transaction program
configuration 11-14, 11-30

User security setting. See also
security

and transaction program
configuration 11-14, 11-29

utility routines, listing of 3-3

v
VTAM host, partner CPU ID

11-19

w
Wait Time setting, for local LUs

11-26
wake-up interval, for program

monitor 11-6
worksheets for configuration

K-1 to K-3

x
XCMDs and XFCNs

APPC XCMD H-20 to H-21

Index 9

errStr XCMD H-22
get62Srvr XCMD H-21 to

H-22
Ptr H-32
xConst XFCN H·22
xDefine H-29
xDispose H-33
xFill H-33
xGet H-32
xGlobal H-30
xLock H-32
xMode H-34
xPut H-31
xResource H-34 to H-35
xSize H-33

XData XCMDs and XFCNs
H-28 to H-36

fteldSpec parameter H-36
handler sample H-37 to H-39
MacAPPC data types and

xDefine command H-40
to H-41

prtType parameter H-37

10 Index

(

(".
'
'

/

Index of Routines, Parameters, and Constants

b
BCAllocate routine 4-39 to

4-42
summarized 4-73

BCConfirm routine 4-43
summarized 4-73

BCConfirmed routine 4-44
summarized 4-73 to 4-74

BCDeallocate routine 4-45 to
4-46

summarized 4-74
BCF!ush routine 4-47

summarized 4-74
BCGetAttributes routine 4-48

to 4-50
summarized 4-74 to 4-75

BCPostOnReceipt routine 4-51
summarized 4-75

BCPrepareToReceive routine
4-52

summarized 4-75
BCReceiveAndWait routine

4-53 to 4-54
summarized 4-'5

BCReceivelmmediate routine
4-55 to 4-56

summarized 4-76
BCRequestToSend routine

4-57
summarized 4-76

BCSendData routine 4-58 to
4-59

summarized 4-76
BCSendError routine 4-60 to

4-61
summarized 4-76 to 4-77

BCTest routine 4-62
summarized 4-77

co A
coActBdrs parameter

in CODisplayMode 5-35

coActFirstSpkrs parameter
in CODisplayMode 5-35

COActivateSession routine
5-12

summarized 5-51
coActLUSess parameter

in CODisplayLocalLU 5-32
coActSess parameter

in CODisplayMode 5-34
coALSName parameter

in CODefineMode 5-19
in CODisplayMode 5-34

coB
coBlankMode parameter

in CODefineMode 5-21
in CODisplayMode 5-35

coC
COChangeSessionLimit routine

5-4 to 5-5
summarized 5-49

coCNOSALSName parameter
in CODefineRemoteLU 5-23
in CODisplayRemoteLU 5-38

coConvID parameter
in CODisplaySession 5-39

coConvSecType parameter
in CODefineLocalLU 5-17
in CODisplayLocalLU 5-32

coConvType parameter
in CODefineTP 5-29
in CODisplayTP 5-44

coCPName parameter
in CODefineRemoteLU 5-23
in CODisplayRemoteLU 5-38

coCurMaxSess parameter
in COChangeSessionLimit 5-4
in CODisplayMode 5-34
in COinitializeSessionLimit

5-6

coCurMinBdrs parameter
in COChangeSessionLimit 5-5
in CODisplayMode 5-34
in COinitializeSessionLimit

5-7
coCurMinFirstSpkrs parameter

in COChangeSessionLimit 5-4
in CODisplayMode 5-34
in COI nitializeSessionLimit

5-7

coo
coDataMapping parameter

in CODefineTP 5-29
in CODisplayTP 5-44

CODeactivateSession routine
5-13

summarized 5-51
coDeactType parameter

in CODeactivateSession 5-13
CODefineLoca!LU routine 5-15

to 5-17
summarized 5-52

CODefineMode routine 5-18 to
5-21

summarized 5-52
CODefineRemoteLU routine

5-22 to 5-24
summarized 5-53

CODefineTP routine 5-25 to
5-29

summarized 5-53
coDefl.UMaxSes parameter

in CODefineLoca!LU 5-17
in CODisplayLocalLU 5-32

coDetMaxSess parameter
in CODefineMode 5-19
in CODisplayMode 5-34

coDefMinBdrs parameter
in CODisplayMode 5-34

coDeftv1inFirstSpkrs parameter
in CODefineMode 5-19

in CODisplay\!ode 5-34
coDefFBFirstSpkrs par:uneter

in CODefineMode 5-20
in CODisplayl\lode 5-34

CODelete routine 5-30
summarized 5-54

CODisplayLoca!LC routine 5-31
to 5-32

summarized 5-54
CODisplayMode routine 5-33 to

5-36
summarized 5-54 to 5-55

CODisplayRemoteLU routine
5-37 to 5-38

summarized 5-55
CODisplaySession routine 5-39

to 5-40
summarized 5-55 to 5-56

CODisplayTP routine 5-41 to
5-44

summarized 5-56
coDrainLclLU parameter

in CODisplay2'\lode 5-36
coDrainRmtLU parameter

in CODispl:lyMode 5-36
coDrainSrc parameter

in COResetSessionLimit 5-9
coDrainTgt parameter

in COResetSessionLimit 5-10

COE

coEnableType parameter
in CODefineTP 5-28
in CODisplayTP 5-43

coF
coFMHDataSupp parameter

in CODefineTP 5-27
in CODisplayTP 5-43

coForceRst parameter
in COResetSessionLimit 5-10

col
COinitializeSessionLimit routine

5-6
summarized 5-49

col
coLc!LUID parameter

in CODefineLocalLL' 5-17
in CODisplayLocalLU 5-32

coLc!LUName parameter

in CODefineLocalLU 5-16
in CODefineMode 5-19
in CODefineRemoteLU 5-23
in CODefineTP 5-26
in CODelete 5-30
in CODisplaylocalLU 5-31
in CODisplayMode 5-33
in CODisplayRemoteLU 5-37
in CODisplaySession 5-39
in CODisplayTP 5-41

coLc!ProgName parameter
in CODefineTP 5-26
in CODelete 5-30
in CODisplayTP 5-42

coLc!SecAcc parameter
in CODefineRemoteLU 5-24
in CODisplayRemoteLU 5-38

coLUActive
in CODisplayLocalLU 5-32

coLUPswdOp parameter
in CODefineRemoteLU 5-24

coLUPswd parameter
in CODefineRemoteLU 5-24
in CODisplayRemoteLU 5-38

coLUWSupp parameter
in CODefineTP 5-27
in CODisplayTP 5-43

coM
coMaxRUHiBound parameter

in CODefineMode 5-20
in CODisplayMode 5-34

coMaxRULoBound parameter
in CODefineMode 5-20
in CODisplayMode 5-34

coMaxTP parameter
in CODefineLocalLU 5-17
in CODisplayLocalLU 5-32

coModeName parameter
in COActivateSession 5-12
in COChangeSessionLimit 5-4
in CODeactivateSession 5-13
in CODefineMode 5-19
in CODelete 5-30
in CODisplayMode 5-34
in CODisplaySession 5-39
in COinitializeSessionLimit

5-6
in COProcessSessionLimit 5-8
in COResetSessionLimit 5-9

CON

coNetNameOp parameter
in CODefineLocalLU 5-16

2 Index of Routines, Parameters, and Constants

in CODefineRemoteLU 5-23
in CODefineTP 5-26

col\"etl'iame parameter
in CODefineLocalLU 5-16
in CODefineRemoteLl: 5-23
in CODefineTP 5-26
in CODisplayLocalLU 5-31
in CODisplayRemoteLU 5-37
in CODisplayTP 5-42

coNetQua!Op parameter
in CODefineLoca!LU 5-16
in CODefineRemoteLU 5-23

coNetQual parameter
in CODefineLocalLU 5-16
in CODefineRemoteLU 5-23
in CODisplayLoca!LU 5-32
in CODisplayRemoteLU 5-38

coNextLclLUName parameter
in CODisplayLocalLU 5-31

coNextLc!ProgName parameter
in CODisplayTP 5-41

coNextModeName parameter
in CODisplayMode 5-34

coNextRmtLUName parameter
in CODisplayRemoteLU 5-37

coNextSessID parameter
in CODisplaySession 5-39

coNextUserName parameter
in CODisplaylocalLU 5-32
in CODisplayTP 5-42

COP

coParSess parameter
in CODefineRemoteLU 5-24
in CODisplayRemoteLU 5-38

coPIPCheck parameter
in CODefineTP 5-27
in CODisplayTP 5-42

coPIPCount parameter
in CODefineTP 5-26
in CODisplayTP 5-42

coPIPReq parameter
in CODefineTP 5-27
in CODisplayTP 5-42

coPolarType parameter
in CODisplaySession 5-40

coPrivType parameter
in CODefineTP 5-27
in CODisplayTP 5-43

COProcessSessionLimit routine
5-8

summarized 5-49
coProgID parameter

in CODisplaySession 5-40

(

i(·. '\ . ~·

coQ
coQueueBINDs parameter

in CODefineMode 5-21
in CODisplayMode 5-35

coQueueINITs parameter
in CODefineRemoteLU 5-24
in CODisplayRemoteLL' ;-35

coR
coRcvPacing parameter

in CODefineMode 5-19
in CODisplayMode 5-34

coReinitType paramekr
in CODefineMode 5-20
in CODispl:iyMode 5-35

COResetSessionLimit routine
5-9 to 5-10

summarized 5-50
coRespType parameter

in COChangeSessionLimit 5-5
in COResetSessionLimit 5-9

coRmtLUName parameter
in COActivateSession 5-12
in COChangeSessionLimit 5-4
in CODeactivateSession 5-13
in CODefineMode 5-19
in CODefineRemoteLU 5-23
in CODelete 5-30
in CODisplayMode 5-33
in CODisplayRemoteLL' 5-37
in CODisplaySession 5-39
in COinitializeSessionLimit

5-6
in COProcessSessionLimit 5-8
in COResetSessionLimit 5-9

coRmtSecAcc parameter
in CODisplayRemoteLU 5-38

cos
coSecOp parameter

in CODefineLocalLU 5-16
in CODefineTP 5-28

coSecReq parameter
in CODefineTP 5-28
in CODisplayTP 5-43

coSendP:icing parameter
in CODefineMode 5-19
in CODispl:tyMode 5-34

coSessCrypt parameter
in CODefineMode 5-21
in CODisplayMode 'i-35

coSessID parameter

in CODe:1ctivateSession 5-13
in CODisplaySession 5-39

coSyncType parameter
in CODefineMode 5-20
in CODefineTP 5-29
in CODisplayMode 5-35
in CODisplayTP 5-44

COT

coTermCount parameter
in CODisplayMode 5-35

coUserName parameter
in CODefineLocalLU 5-16
in CODefineTP 5-26
in CODisplayLoca!LU 5-32
in CODisplayTP 5-42

coUserProf parameter
in CODefineLocalLL' 5-17
in CODefineTP 5-26
in CODisplayLoca!LU 5-32
in CODisplayTP 5-42

coUserPswd parameter
in CODefineLocalLU 5-17
in CODisplayLocalLU 5-32

coWaitTime parameter
in CODefineLocalLU 5-17
in CODisplayLocalLU 5-32

cvB
CVBackout routine 4-34

eve
cvConvID parameter

in BCAllocate 4-42
in BCGetAttributes 4-50
in MCAllocate 4-12
in MCGetAttributes 4-20

cvConvType parameter
in BCA!locate 4-40
in CVGetType 4-35

cvCVCBindex parameter
in CVWait 4-37

cvCVCBList parameter
in CVWait 4-37

cvD
cvDataPtr parameter

in BCDeallocate 4-46
in BCReceiveAndWait 4-53
in BCReceivelmmecliate 4-55
in BCSendData 4-58
in BCSendError 4-60

in MCRecei,·eAndWait 4-23
in MCReceiveimmediate 4-25
in MCSendData 4-29

cvDataSize parameter
in BCDeallocate 4-46
in BCPostOnReceipt 4-51
in BCReceiveAndWait 4-53
in BCReceiveimmediate 4-55
in BCSendData 4-58
in BCSendError 4-60
in MCPostOnReceipt 4-21
in MCReceiveAndWait 4-23
in MCReceiveimmediate 4-25
in MCSendData 4-29

cvDeallocType parameter
in BCDeallocate 4-45 to 4-46
in MCDeallocate 4-15 to 4-16

cvE
cvErrorType parameter

in BCPostOnReceipt
in BCReceiveAndWait
in BCReceiveimmediate
in BCSendError 4-60

cvF
cvFillType parameter

in BCPostOnReceipt 4-51
in BCReceiveAndWait 4-53
in BCReceiveimmediate 4-55

cvF.MHdrs parameter
in MCSendData 4-30

cvFullLclLUName parameter
in BCGetAttributes 4-48
in MCGetAttributes 4-18

cvFullRmtLlJ:\ame parameter
in BCGetAttributes 4-48
in MCGetAttributes 4-18

cvG
CVGetType routine 4-35

summarized 4-72

cvl
cvLockType parameter

in BCPrepareToReceive 4-52
in MCPrepareToReceive 4·-22

cvLl:WCorr parameter
in RCGetAttrihutes 4-49
in MCGetAttrihutes 4-19

cvLUWID parameter
in BCGetAttrihutes 4-49

Index of Routines. Parameters. and Constants 3

in MCGetAttributes 4-19
cvLUWName parameter

in BCGetAttributes 4-49
in MCGetAttributes 4-19

cvLUWSeq parameter
in BCGetAttributes 4-50
in MCGetAttributes 4-20

cvM
cvMapBuffl>tr parameter

in MCAllocate 4-10
cvMapBuffSize parameter

in MCAllocate 4-10
cvMapName parameter

in MCReceiveAndWait 4-23
in MCReceivelmmediate 4-26
in MCSendData 4-29

cvMapProc parameter
in MC.Allocate 4-11

cvModeName parameter
in BCAllocate 4-40
in BCGetAttributes 4-49
in MCAllocate 4-10
in MCGetAttributes 4-19

cvP
cvPIPBuffFtr parameter

in BCAllocate 4-39
in MCAllocate 4-10

cvPIPBuffSize parameter
in BCAllocate 4-40
in MCAllocate 4-10

cvPIPPtr parameter
in BCAllocate 4-41
in MCAllocate 4-12

cvPIPSize parameter
in BCAllocate 4-12
in MCAllocate 4-12

cvPIPUsed parameter
in BCAllocate 4-41
in MCAllocate 4-11

cvPrepToRcvType parameter
in BCPrepareToReceive 4-52
in MCPrepareToReceive 4-22

cvProgID parameter
in BCGetAttributes 4-50
in MCGetAttributes 4-20

CVR

cvReqToSendRcvd parameter
in BCConfirm 4-43
in BCReceiveAndWait 4-54
in BCReceivelmmediate 4-56

in BCSendData 4-58
in BCSendError 4-60
in MCConfirm 4-13
in MCRecdveAndWait 4-24
in MCReceivelmmediate 4-26
in MCSendData 4-30
in MCSendError 4-31

cvReturnCtl parameter
in BCAllocate 4-41
in MCAllocate 4-11

cvRmtLUName parameter
in BCAllocate 4-40
in BCGetAttributes 4-48
in MCAllocate 4-10
in MCGetAttributes 4-18

cvRmtProgName parameter
in BCAllocate 4-40
in MCAllocate 4-10

CVS

cvSecType parameter
in BCAllocate 4-41 to 4-42
in MCAllocate 4-12

cvSenseData parameter
in BCSendError 4-60

CVSyncPoint routine 4-36
cvSyncType parameter

in BCAllocate 4-41
in BCGetAttributes 4-49
in MCAllocate 4-11
in MCGetAttributes 4-19

cvTestType parameter
in BCTest 4-62
in MCTest 4-32

cvU
cvUserName parameter

in BCAllocate 4-40
in BCGetAttributes 4-49
in MCAllocate 4-10
in MCGetAttributes 4-19

cvUserProf parameter
in BCAl!ocate 4-40
in BCGetAttributes 4-49
in MCAllocate 4-11
in MCGetAttributes 4-19

cvUserPswd parameter
in BCAllocate 4-40
in MCAllocate 4-10

cvW
CVWait routine 4-37

summarized 4-72

4 Index of Routines. Parameters. and Constants

cv\VhatRcvd parameter
in BCReceiveAndWait 4-53
in BCReceiveimmediate 4-55

to 4-56
in MCReceiveAndWait 4-23 to

4-24
in MCReceivelmmediate 4-26

kA
kAbendDealloc constant

in MCDeallocate 4-15
kAbendProgDealloc constant

in BCDeallocate 4-45
kAbendSvcDealloc constant

in BCDeallocate 4-45
kAbendTimerDealloc constant

in BCDeallocate 4-45
kAbortDetach constant

in TPDetach 7-8
kAddParam constant

in CODefineLocalLU 5-16
in CODefineTP 5-28

kB
kBasicConv constant

in BCAllocate 4-40
in CVGetType 4-35

kBasicTPConv constant
in CODefineTP 5-29
in CODisplayTP 5-44

kBidderSess constant
in CODisplaySession 5-40

kBothSecReq constant
in CODisplayTP 5-43

kBufferFill constant
in BCPostOnReceipt 4-51
in BCReceiveAndWait 4-53
in BCReceivelmmediate 4-55

kC
kCleanupDeact constant

in CODeactivateSession 5-13
kCNOSPriv constant

in CODefineTP 5-27
in CODisplayTP 5-43

kConfigWait constant
in TPAttach 7-6

kConfirmDealloc constant
in BCDeallocate 4-45
in MCDeallocate 4-15

kConfirmDeallocRcvd constant
in BCReceiveAndWait 4-54
in BCReceivelmmediate 4-56

(in MCReceiYeAnd\v'ait 4-24
in MCRecei,·eimmediate 4-26

kCon firmJ\-1odeSync constant
in CODefineMode 5-20
in CODisplayMode 5-35

kConfirmRcv constant
in BCPrepareToRecdve 4-52

kConfirmRcvd constant
in BCReceiveAndWait 4-54
in BCReceivelmmedi:lte 4-56
in MCReceiveAndWait 4-24
in MCReceivelmmediate 4-26

kConfirmSendRcvd constant
in BCReceiveAndWait 4-54
in MCReceiveAndWait 4-24
in MCReceivelmmedi:lle 4-26

kConfirmSync constant
in BCAllocate 4-41
in BCGetAttrihutes 4-49
in MCAllocate 4-11
in MCGetAttrihutes 4-19

kConfirmTPSync constant
in CODefineTP 5-29
in CODisplayTP 5-44

kConnectDial constant
in NOActivateStation 6-6

kConvSecAcc constant
in CODefineRemoteLU 5-24
in CODisplayRemoteLU 5-38

kConvSecReq constant
in CODefineTP 5-28
iri CODisplayTP 5-43

kD
kDataComp!Rcvd constant

in BCReceiveAndWait 4-53
in BCReceivelmmediate 4-55
in MCReceiveAndWait 4-23
in MCRec:eivelmmediate 4-26

kDatalncomplRcvd constant
in BCReceiveAndWait 4-54
in BCReceivelmmediate 4-56
in MCRect:h·eAndWait 4-24
in MCReceivelmmediate 4-26

kDataRcvd constant
in BCReceiveAndWait 4-53
in BCReceivelmmediate 4-55

kDataTruncRcvd constant
in BCReceivelmmediate 4-56

kDefinePriv constant
in CODefineTP 5-28
in CODisplayTP 5-43

kDelayAl!ocRetum constant
in BCAllocate 4-41
in MCAllocate 4-11

kDeleteParam constant
in CODefineLoca!LU 5-16
in CODefineRemoteLlJ 5-23,

5-24
in CODefineTP 5-26, 5-28

kDevel!vlsgsQClass constant
in NODefineMessageQueue

6-12
in NODisplayMess:1geQueue

6-15
kDt>\·elMsgsQSev constant

in NODefineMessageQueue
6-13

in NODisplay!\lessageQueue
6-16

kDiagMsgsQType constant
in !\ODefine.MessageQueue

6-12
in .NODisplayMessageQueue

6-15
kDiallnOffDial constant

in NODeactivateStation 6-10
kDia!InOnDial constant

in NOActivateStation 6-6
kDisablePermTP constant

in CODefineTP 5-28
in CODisplayTP 5-43

kDisableTempTP const:mt
in CODefineTP 5-28
in CODisplayTP 5-43

kDisconnectDial constant
in NODeactivateStation 6-10

kDisplayPriv constant
in CODefineTP 5-28
in CODisplayTP 5-43

kE
kEitherLUlnit constant

in CODefineMode 5-20
in CODisplayMode 5-35

kEitherTPConv constant
in CODefineTP 5-29
in CODisplayTP 5-44

kEnableTP constant
in CODefineTP 5-28
in CODisplayTP 5-43

kErrorMsgsQSev constant
in NODefineMessageQueue

6-13
in NODisplayMessageQueue ·

6-16
kErrorMsgsQType constant

in NODefineMessageQueue
6-12

in ::\ODisplay:'llessageQueue
6-15

kF
kFirstSpkrSess constant

in CODisplaySession 5-40
kFlushDealloc constant

in BCDeallocate 4-45
in MCDeallocate 4-15

kFlushRcv constant
in BCPrepareToReceive 4-52

kFMHDataComplRcvd constant
in MCReceiveAndWait 4-24
in MCReceivelmmediate 4-26

kFMHDatalncomp!Rcvd
constant

in MCReceiveAndWait 4-24
in MCReceivelmmediate 4-26

kFMHDataTnmcRcvd constant
in MCReceiveAndWait 4-24
in MCReceivelmmediate 4-26

kFuncNotSupp constant
in CODefineLocalLU 5-17
in CODefineMode 5-21
in CODefineRemoteLl.1 5-24
in CODefineTP 5-27, 5-29
in CODisplayLocalLU 5-32
in CODisplayMode 5-35
in CODisplayRemoteLU 5-38
in CODisplayTP 5-42, 5-43
in NODefineNode 6-24
in NODisplayNode 6-32

kFuncSupp constant
in CODefineLocalL1J 5-17
in CODefineMode 5-21
in CODefineRemoteLt.: 5-24
in CODefineTP 5-27, 5-29
in CODisplayLocalLU 5-32
in CODisplayMode 5-35
in CODisplayRemoteLU 5-38
in CODisplayTP 5-42, 5-43
in NODefineNode 6-24
in NODisplayNode 6-32

kl
kignoreParam constant

in CODefineLocalLU 5-16,
5-17

in CODefineMode ;-20, 5-21
in CODefineRemoteLU 5-23,

5-24
in CODefineTP 5-26, 5-27,

5-28, 5-29

·Index of Routines. Parameters, and Constants 5

in CODisplayLoca!W 5-31,
5-32

in CODisplayMode 5-34, 5-35
in CODisplayRemoteLU 5-37
in CODisplaySession 5-39
in CODisplayTP 5-41, 5-42
in NODefineLlne 6-21, 6-22
in NODefineNode 6-23, 6-24
in NODisplayCP 6-28
in NODisplayLine 6-29
in NODisplayStation 6-33

kimmedAllocReturn constant
in BCAllocate 4-41
in MCA!locate 4-11

kincomp!Mode constant
for mcpbRcvMode 4-6

kinfoMsgsQType constant
in NODefineMessageQueue

6-12
in NODisplayMessageQueue

6-15

kl
kLineActive constant

in NODisplayLine 6-30
kLinePendActive constant

in NODisplayLine 6-30
kLinePendReset constant

in NODisplayLine 6-30
kLineReset constant

in NODisplayLine 6-30
kLLFill constant

in BCPostOnReceipt 4-51
in BCReceiveAnd\X'ait 4-53
in BCReceiveimmediate 4-55

kLLTruncRcvd constant
in BCReceiveAndWait 4-54
in MCReceiveAndWait 4-24
in MCReceiveimmediate 4-26

kLoca!Dealloc constant
in BCDeallocate 4-46
in MCDeallocate 4-16

kLog.ll.1sgsQClass constant
in NODefineMessageQueue

6-12
in NODisplayMessageQueue

6-15
kLongLock constant

in BCPrepareToReceive 4-52
kLowLeve!InfoMsgsQSev

constant
in NQJ)efineMessageQueue

6-13
in NODisplayMessageQueue

6-16

kLUAttach constant
in TP Attach i-6

kM
kL\fappedConv constant

in BCAllocate 4-40
in CVGetTtype 4-35

kMappedTPConv constant
in CODisplayTP 5-44

k.\fa.xWait constant
in TPAttach i-6

kN
kNextEntry constant

in CODisplayLocalLU 5-31,
5-32

in CODisplayMode 5-34
in CODisplayRemoteLU 5-37
in CODisplaySession 5-39
in CODisplayTP 5-41, 5-42
in NODisplayCP 6-28
in NODisplayLine 6-29
in NODisplayStation 6-33

kNoChangeQClass constant
in NODefineMessageQueue

6-12
kNoChangeQSev constant

in NODefineMessageQueue
6-13

kNoChangeQType constant
in NODefineMessageQueue

6-12
kNodeOperMsgsQClass constant

in NODefineMessageQueue
6-12

in NODisplayMessageQueue
6-15

kNoPriv constant
in CODefineTP 5-27
in CODisplayTP 5-43

kNorma!Deact constant
in CODeactivateSession 5-13

kNorma!Detach constant
in TPDetach 7-8

kNorma!InfoMsgsQSev constant
in NODefineMessageQueue

6-13
in NODisplayMessageQueue

6-16
kNoSecAcc constant

in CODefineRemoteLU · 5-24
in CODisplayRemoteLU 5-38

kNoSec constant
in BCA!locate 4-41

6 Index of Routines. Parameters. and Constants

kN'oSecReq constant
in CODefineTP 5-28
in CODisplayTP 5-43

kNoSync constant
in BCA!locate 4-41
in BCGeL.\ttributes 4-49
in MCA!locate 4-11
in MCGetAttributes 4-19

kNotifMsgsQType constant
in NODefineMessageQueue

6-12
in NODisplayMessageQueue

6-15
kNoTPSync constant

in CODefineTP 5-29
in CODisplayTP 5-44

kO
kOperinit constant

in CODefineMode 5-20
in CODisplayMode 5-35

kP
kPostTest constant

in BCTest 4-62
in MCTest 4-32

kPriLUinit constant
in CODefineMode 5-20
in CODisplayMode 5-35

kProfSecReq constant
in CODefineTP 5-28
in CODisplayTP 5-43

kProgError constant
in BCSendError 4-60

kProgErrorsQSev constant
in NODefineMessageQueue

6-13
in NODisplayMessageQueue

6-16
· kProgSec constant

in BCAl!ocate 4-42

kR
kRcvMapping constant

for mcpbMapCmd 4-6
kReplaceParam constant

in CODefineLocalLU 5-16
KReplaceParam constant

in CODefineRemoteLU 5-23,
5-24

kReplaceParam constant
in CODefineTP 5-26

kReqToSendTest constant

(
in BCTest 4-62
in MCTest 4-32

kS
kSameSec constant

in BCAllocate 4-42
kSDLC4800 constant

in NODefineLine 6-21
in NODisplayLine 6-30

kSDLC9600 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLC19200 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLC300 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCl 200 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLC2400 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCAccess constant
in NODefineNode 6-23
in NODisplayNode 6-32

kSDLCFullDuplex constant
in NODefineLine 6-22
in NODisplayLine 6-31

kSDLCHalfDuplex constant
in NODefineLine 6-22
in NODisplayLine 6-31

kSDLCLeased constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCLine constant
in NODefineLine 6-20
in NODisplayLine 6-30

kSDLCLine4 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCLinel constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCLine3 constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCLine2 constant
in NODefineLine 6-21
in NODisplayl.ine 6-30

kSDLCMultiPoint constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCNegotiable constant

in !'\ODdineLine 6-21
in NODisplayLine 6-30

kSDLCNRZ constant
in NODefineLine 6-22
in NODisplayLine 6-31

kSDLCNRZI const:mt
in NODefineLine 6-22
in ~ODisplayLlne 6-31

kSDLCPrimary constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCSecondary constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSDLCSwitched constant
in NODefineLine 6-21
in NODisplayLine 6-30

kSecLL'Init constant
in CODefineMode 5-20
in CODisplayMode 5-35

kSendl\fapping constant
for mcpbMapCmd 4-6

kSendRcvd constant
in BCReceiveAndWait 4-54
in BCReceivelmmediate 4-56
in MCReceiveAndWait 4-24
in MCReceivelmmediate 4-26

kSessCtlPriv constant
in CODefineTP 5-27
in CODisplayTP 5-43

kShortLock constant
in BCPrepareToReceive 4-52

kSrcResp constant
in COChangeSessionLimit 5-5
in COResetSessionLimit 5-9

kSrvrAttach constant
in TPAttach 7-6

kStationActive constant
in NODisplayStation 6-34

kStationPendCont constant
in NODisplayStation 6-34

kStationPendReset constant
in NODisplayStation 6-34

kStationPendResp constant
in NODisplayStation 6-34

kStationReset constant
in NODisplayStation 6-34

kStationResetPendResp
constant

in NODisplayStation 6-34
kSvcError constant

in BCSendError 4-60
kSvcTPPriv constant

in CODefineTP 5-28
in CODisplayTP 5-43

kSyncDealloc constant
in BCDeallocate 4-45
in MCDeallocate 4-15

kSyncPtModeSync constant
in CODefineMode 5-20
in CODisplayMode 5-35

kSyncPtSync constant
in BCAJlocate 4-41
in BCGetAttributes 4-49
in MCA!locate 4-11

kSyncPtTPSync constant
in CODefineTP 5-29
in CODisplayTP 5-44
in MCGetAttributes 4-19

kT
kTgtResp constant

in COChangeSessionLimit 5-5
in COResetSessionLimit 5-9

kTraceMsgsQC!ass constant
in NODefineMessageQueue

6-12
in N'ODisplayMessageQueue

6-15
kTruncMode constant

for mcpbRcvMode 4-6

kU
kUserNameSecReq constant

in CODefineTP 5-28
in CODisplayTP 5-43

kVerifSecAcc
in CODefineRemoteLU 5-24

kVerifSecAcc constant
in CODisplayRemoteLC 5-38

kW
kWaitAttach constant

in TPAttach 7-6
kWhenAllocReturn constant

in BCAl!ocate 4-41
in MCAllocate 4-11

m
MCAllocate routine 4-9 to 4-12

summarized 4-67
MCConfirmed routine 4-14

summarized 4-68
MCConfirm routine 4-13

summarized 4-67
MCDeallocate routine 4-15 to

4-16

Index of Routines. Parameters. and Constants 7

summarized 4-68
mcDupMapNameErr constant

for mcpbResult 4-6
mcErr constant

for mcphResult 4-6
MCFlush routine 4-17

summarized 4-68
MCGetAttributes routine 4-18

to 4-20
summarized 4-68 to 4-69

mcMapNameErr constant
for mcphResult 4-6

mcNoErr constant
for mcpbResult 4-6

MCPostOnReceipt routine 4-21
summarized 4-69

MCPrepareToReceive routine
4-22

summarized 4-69
MCReceiveAndWait routine

4-23 to 4-24
summarized 4-69

MCReceiveimmediate routine
4-25 to 4-27

summarized 4-70
MCRequestToSend routine

4-28
summarized 4-70

MCSendData routine 4-29 to
4-30

summarized 4-70
MCSendError routine 4-31

summarized 4-70 to 4-71
MCTest routine 4-32

summarized 4-71

no A
noAccessType parameter

in NODefineNode 6-23
in NODisplayNode 6-32

NOActivateLlne routine 6-3
summarized 6-39

NOActivateLU routine 6-4
summarized 6-39

NOActivateNode routine 6-5
summarized 6-39

NOActivateStation routine 6-6
summarized 6-39

noALSAddr parameter
in NODefineStation 6-26
in NODisplayStation 6-34

noALSName parameter
in NOActivateStation 6-6
in NODeactivateStation 6-10
in NODefineStation 6-25

in :N"ODelete 6-27
in NODisplayStation 6-33

noALSStatus parameter
in NODisplayStation 6-34

noc
noCorrID parameter

in NOActivateLlne 6-3
in NOActil'ateLL' 6-4
in NOActiY:Jte~ode 6-5
in NOActivateStation 6-6
in NODeactivateLine 6-7
in NODeactivateLU 6-8
in NODeactivateNode 6-9
in NODeactivateStation 6-10
in NODLc;playMessage 6-14

noCPName parameter
in NODefineCP 6-18
in NODefineStation 6-25
in NODelete 6-27
in NODisplayCP 6-28
in NODisplayStation 6-33

noCPUID parameter
in NODefineCP 6-19
in NODisplayCP 6-28

noD
noDataPtr parameter

in NODisplayMess:ige 6-14
noDataSize parameter

in NODisplayMessage 6-14
NODeactiYateLine routine 6-7

summarized 6-40
NODeactivateLU routine 6-8

summarized 6-40
NODeactivateNode routine 6-9

summarized 6-40
NODeactivateStation routine

6-10
summarized 6-40

NODefineCP routine 6-18 to
6-19

summarized 6-42
NODefineLine routine 6-20 to

6-22
summarized 6-42

NODefineMessageQueue
routine 6-12 to 6-13

summarized 6-41
NODefineNode routine 6-23 to

6-24
summarizt>d 6-42 to 6-43

NODefineStation routine 6-25
to 6-26

8 Index of Routines, Parameters, and Constants

summarized 6-43
NODelete routine 6-27

summarized 6-43
noDia!Type parameter

in NOActivateStation 6-6
in NODeactivateStation 6-10

NODisplayCP routine 6-28
summarized 6-43

NODisplayLine routine 6-29 to
6-31

summarized 6-43 to 6-44
NODisplayMessageQueue

routine 6-15 to 6-16
summarized 6-41

NODisplayMessage routine
6-14

summarized 6-41
NODLc;playNode routine 6-32

summarized 6-44
NODisplayStation routine 6-33

to 6-34
summarized 6-44

noE
noExchID par:imeter

in NODefineCP 6-18
in NODefineNode 6-23
in NODisplayCP 6-28
in NODisplayNode 6-32

noL
noLclLUName parameter

in NOActivateLU 6-4
in NODeactivateLU 6-8

noLineName parameter
in NOActivateLine 6-3
in NODeactivateLine 6-7
in NODefineLine 6-20
in NODefineStation 6-25
in NODelete 6-27
in NODisplayLlne 6-29
in NODisplayStation 6-33

noLinePtr parameter
in NODefineLine 6-20
in NODisplayLlne 6-29

poLineStatus parameter
in NODisplayLine 6-30

noLineType parameter
in NOI)efineLine 6-20
in NODisplayLine 6-30

noLogMsgs parameter
in NODefineNode 6-24
in NODisplayNode 6-32

/

(
noM
noMonTimer parameter

in NODefine:\ode 6-23
in NODisplayNoc.le 6-32

noN
noNextALSName parameter

in NODisplayStation 6-33
noNextCPName parameter

in NODisplayCP 6-28
noNextLineName parameter

in NODisplayLine 6-29
noNodeMsgs parameter

in NODefineNode 6-24
in NODisplayNode 6-32

noP
noPhoneNumber parameter

in NODefineStation 6-25
in NODisplayStation 6-33

noQ
noQueueClass parameter

in NODefineMessageQueue
6-12

in NODisplayJ\tessageQueue
6-15

noQueueEnable parameter
in NODefineMessageQueue

6-12
in NODisplayJ\lessageQueue

6-15
noQueueName parameter

in NODefineMessageQueue
6-12

in NODisplayMessage 6-14
in NODisplayMessageQueue

6-15
noQueueSev parameter

in NODefineMessageQueue
6-13

in NODisplayMessageQueue
6-15

noQueueType parameter
in NODefineMessageQueue

6-12
in NODisplayMessageQueue

6-15

nos
noStopSrn parameter

in NODeactivateNode 6-9

now
noWaitForMsg parameter

in NODisplayMessage 6-14

0
OpenDriver routine 3-2

p

PBOpen routine 3-2

sd
sdlcConnType parameter

in NODefineLine 6-21
in NODisplayLine 6-30

sdlcDuplexType parameter
in NODefineLine 6-22
in NODisplayLine 6-30

sd!cidleTime parameter
in NODefineLine 6-22
in NODisplayLine 6-31

sdlcLineNum parameter
in NODefineLine 6-21
in NODisplayLine 6-30

sdlcLineSpeed parameter
in NODefineLine 6-21
in NODisplayLine 6-30

sdlcMaxBTU parameter
in NODefineLine 6-21
in NODisplayLine 6-30

sdlcMaxIFrame parameter
in NODefineLine 6-22
in NODisplayLine 6-30

sdlcMaxRetry parameter
in NODefineLine 6-22
in NODisplayLine 6-30

sdlcNPRcvTime parameter
in NODefineLine 6-22
in NODisplayLine 6-31

sdlcNRZIType parameter
in NODefineLine 6-22
in NODisplayI.ine 6-30

sd!cRoleType parameter
in NODefineLine 6-21
in NODisplayLine 6-30

tP

Tl'AsciiToEbcdic routine 7-10
TPAttach routine 7-5 to 7-7
tpAttachType parameter

in TP Attach 7-6
tpConvID parameter

in TPAttach 7-7
tpCVCBPtr parameter

in TPAttach 7-6
tpDataPtr parameter

in TPAsciiToEbcdic 7-10
TPEbcdicToAscii 7-11

tpDataSize parameter
TPAsciiToEbcdic 7-10
TPEbcdicToAscii 7-11

TPDetach routine 7-8
tpDetachType parameter

in TPDetach 7-8
TPEbcdicToAscii routine 7-11
tpLclLUName parameter

in TPAttach 7-6
tpLc!ProgName parameter

in TPAttach 7-6
tpMapBuffPtr parameter

in TPAttach 7-6
tpMapBuffSize parameter

in TPAttach 7-6
tpMapProc parameter

in TP Attach 7-6
tpPIPBuffPtr parameter

in TPAttach 7-6
tpPIPBuffSize parameter

in TPAttach 7-6
tpPIPPtr parameter

in TP Attach 7-7
tpPIPSize parameter

in TPAttach 7-7
tpProgID parameter

in TPAttach 7-7
tpSrvrEntityPtr parameter

in TPAttach 7-2, 7-6
tpTPCBPtr parameter

in TPAttach 7-5
in TPDetach 7-8

tpWaitTime parameter
in TP Attach 7-6

· index of Routines, Parameters. and Constants 9

(

(/
~

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh™ Plus and
Microsoft® Word. Proof fipages
were created on the Apple
LaserWriter® Plus, and final
pages were created on the
Varityper VT600. POSTSCRIPT™'
the LaserWriter's page­
description language, was
developed by Adobe Systems
Incorporated.

Text type is ITC Garamond®
(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic®.
Bullets are ITC Zapf Dingbats®.
Program listings are set in Apple
Courier, a monospaced font.

(
MacAPPCTM Technical Note

MacAPPC on leased SDLC
multi-point lines

One of the more popular configurations used in MacAPPC™ Beta testing was leased
multi-point SDLC connections. This technical note augments the Apple® MacAPPC
Programmer's Reference and User's Guide in detailing the setup of MacAPPC servers
in these configurations.

Introduction
When IBM developed Synchronous Data Link Control (SDLC), peer-to-peer
communication was not a design criteria. Although this has been addressed with
extensions to the architecture applied in a point-to-point environment, there are
some rules to follow and some restrictions on session support in the SDLC multi-point
environment.

Primary and secondary nodes on a multi-point circuit
The primary-secondary relationship of Physical Units on a multi-point line is still with
us. On multi-point SDLC lines, there MUST be one and only one primary station. This
station controls the line's master modem, and is in essence in control of the
secondary stations on the line.

If the primary station is a Macintosh® with MacAPPC, the UNE definition must be
optioned as Primary and Multi. The secondary stations' UNE definition must be
optioned as Secondary and Lease whenever a Macintosh with MacAPPC is used as a
secondary station (see Figure 1). Always use half duplex on a multi-point SDLC
circuit.

Line: LINEONE Line: l I NE ONE

Lim• N.ame: Lin• N.ame:

Line Type: SDLC Line Typ•: SDLC

Line Numb•r : ®1 02 Q;; 04 Lin• Numb•r: ®1 02 Q;; 04

Role Type: @Prim Os•c ON•9ot Roi• Typ•: QPrim @sec 0Ne9ot

Connect Type: Qt.use @Muit; Oswtch Conn•ct Type: @)I.HS• 0Multi

Max BTU: 1265 Max BTU: 1265

Line Sp••d: 0300 01200 02400 Lin• Speed: 0300 01200

04800 @9600 019200 04800 @9600

Max Retries : 3 Max Retries : 3

Idle Tim•: 000 Idle Tim•: 000

NP Recv Time: 10000 NP Recv Time: 10000

Max 1-Fram•s: 7 Max I-Frames: 7

NRZI Support: @NRZ QNRZI NRZ I Support : @NRZ 0NRZI

Duplex Type: @)Hlll>f QFuU Duplex Type: @H;ilf 0Fu11

Figure 1
Primary Line Definition and Secondary Line Definition

To assist in troubleshooting multi-point problems, the following is a list of symptoms
indicating the attempted use of full-duplex definitions in this environment:

o The first slave modem on the circuit will show a constant transmit.

o The first slave modem will raise request to send and keep it raised.

o If the modem has an anti-streaming feature, it will be activated.

o You will be unable to activate the logical units.

o Transaction Programs will fail with appcHIResult=005 and appcLOResult=009 on
allocate statements.

Oswtch

02400

019200

Insure your modems are properly strapped for multi-point operation by referring to
the user manual supplied by the leased line modem vendor. Some of these modems
can have complex timing and strapping requirements, especially if the line is a tail
circuit off of a multiplexed point to point circuit. In IBM networks, such tail circuits are
quite commonplace, with modem timing being a critical factor. When in doubt,
contact the modem vendor's technical support organization to insure proper modem
strapping.

Multi-point session SDLC restrictions
Using SDLC, Secondaries can ONLY communicate and establish sessions with the
primary station and vice versa. Unless you have a routing transaction program
running in the primary station to redirect traffic, secondaries cannot communicate
with each other. In a mainframe oriented environment, this is not as bad as it sounds.
Most LU 6.2 multi-point circuits connect to a mainframe computer which acts as the
primary, although with MacAPPC a Macintosh can play this primary role.

2 MacAPPC Technical Note

ALS addressing on multi-point circuits
The role of the ALS parameter used to handle addressing changes with the use of SDLC
multi-point circuits. This is another critical area for proper operation in this
environment. If your primary station expects to see secondary stations addressed as
C2 and C3 on a multi-point line, and your primary is a Macintosh, there must be
separate PARTNER definitions for each station with the ALS ADDRESS fields set at C2
and C3 (see Figure 2).

Partner: PARTNER2

Partner Name: ._I P_A_R_T_NE_R_2 ______ _,

Line Bame: LINEONE

@Exch ID:

QcPu ID:
I FFF00002

ALS Address: lc2 l====================t
Phone Rumber:l ... _________ _,

Figure 2

Partner: PARTNER3

Partner Name: ... l P_A_R_T_N_ER_3 ______ _,

Line Name: LINEONE

@)Exch ID:

Qcpu ID:
I FFF00003

ALS Address: rC=3===============t
Phone llumber: .__ ________ __,

Primary's C2 Partner Definition and Primary's C3 Partner Definition

The secondary stations must know their own addresses in order to respond to packets
sent to them by the primary. This is identified to the secondary station in
Secondary/Lease mode is by using the ALS ADDRESS in the PARTNER definition to
define what address the secondary will respond to. Using the above example, the
unit you wish to be identified as C2 would have C2 in this field (see Figure 3), and the
C3 unit would use C3 in this field. Secondary units MUST have unique addresses, and
these addresses MUST be defined to the primary (as outlined earlier) in order to
establish communications.

50 = Partner: PARTNER 1

Partner Name: .. l P_A_R_T_N_E_R_t -------

Line Name : L INEONE

@Exch ID:

QCPU ID:
I FFFOOOOt

ALS Address: lc2 l===============C
Phone Number: .. l _________ __,

Figure 3

Partner: PARTNER 1

Partner Name: l ... P_A_R_T_NE_R_t ______ _

Line Name:

@Exch ID:

QCPU ID:

LINEONE

I FFFOOOOt

ALS Address: 1~C=3============
Phone Number: -------------

Secondary Station C2's Partner Definition and Secondary Station C3's Partner Definition

MacAPPC Technical Note 3

XIDs on multi-point circuits
XIDs are also important in SDLC multi-point lines. Each station must have an unique
XID. This is defined in the Node definition for each unit. Using the example, assign
FFFOOOOl to the primary, FFF00002 to secondary station C2, and FFF00003 to
secondary station C3. If the primary station is a Macintosh, the PARTNER definitions
should reflect the XID's of the secondary units (see Figure 2). In the secondary units,
the PARTNER definition should always contain the XID of the Primary(see Figure 3).

Apple, the Apple logo, and Macintosh are registered trademarks, and MacAPPC is a
trademark of Apple Computer, Inc.

4 MacAPPC Technical Note

/)

