4

Apples AppleTalk Data Stream Protocol
Macintosh Operating System Driver Interface
Preliminary Note

Product Marketing

Networking and Communications Publications
AppleTalk Documentation

September 20, 1988

Apple Confidential

& APPLE COMPUTER, INC.
Copyright Apple 1983

L N S

—_—,

Contents

Preface / v

What’s in this note / v

Who should read this note / v
Associated documents / v

About AppleTalk Data Stream Protocol / 1

Using ADSP / 3
Connectionends / 3
Connection control blocks / 4
User routines / 5

ADSP Routines / 7

Create Connection End / 8
Remove Connection End / 10
Open Connection / 11

Close Connection / 13

Create Connection Listener / 14
Remove Connection Listener / 15
Listen For Connection Request / 16
Deny Connection Request / 17
Get Status / 18

Read Bytes / 19

Write Bytes / 20

Send Attention Message / 21

Set Options / 22

Forward Reset / 24

Getnew CID / 25

Example / 26)

3 Summary of ADSP Data Structures / 29

Constants / 30
Data types / 32
Assembly language information / 35

iv ADSP Driver Interface

Preface

THIS PRELIMINARY note describes the driver interface to the AppleTalk
Data Stream Protocol (ADSP), a connection-oriented protocol that guarantees
the ordered delivery of full-duplex streams of bytes between two given sockets
in an AppleTalk internet.

What's in this note
This note is divided into three chapters that contain the following information:
® Chapter 1, “About AppleTalk Data Stream Protoool,” explains concepts
and components used in ADSP.
B Chapter 2, “ADSP Routines,” describes each ADSP function call and its
parameter blocks and result codes, and provides a sample client program.
® Chapter 3 “Summary of ADSP Data Structures,” presents ADSP
constants, data types, and assembly language information.

Who should read this note

This note is intended for software developers writing applications that use ADSP
services. To understand and use this document, developers should already be
familiar with:

® The Device Manager, described in chapter 6 of Inside Macintosh,

Volume I1.

® The AppleTalk Manager, described in chapter 8 of Instde Macintosh,
Volume II.

Associated documents

The following documents supplement the information in this note:

B The AppleTalk Data Stream Protocol Specification, which explains ADSP
in detail (this information will eventually be incorporated into the Inside
AppleTalk manual).

B Inside AppleTalk, which explains the AppleTalk protocols in detail.

vi

ADSP Driver Interface

Chapter1 About AppleTalk Data Stream Protocol

The AppleTalk Data Stream Protocol (ADSP) is a symmetric, connection-oriented protocol that
guarantees the ordered delivery of full-duplex streams of bytes between two given sockets in an
AppleTalk internet. ADSP is a dient of the Datagram Delivery Protocol (DDP) and a peer to the
AppleTalk Session Protocol (ASP).

The client can use ADSP to create and remove connection ends, request connections with remote
ends, wait passively for connection requests from remote ends, read and write on open connections,
and close connections.

ADSP features include:

® A built-in flow control mechanism which ensures that a sender never sends bytes a to a receiver
that has no buffer space.

® An end-of-message mechanism that enables the dient to break streams of bytes into logical
messages.

® Attention messages that allow clients to signal each other outside the normal flow of data.

® A forward-reset mechanism that enables a sender to abort the delivery of all outstanding bytes sent
to the remote client.

2 ADSP Driver Interface

T

Using ADSP

ADSP is implemented as a Macintosh operating system driver. To use ADSP, the client must first
initialize the AppleTalk Manager by opening the .MPP driver and then initialize ADSP by opening the
.DSP driver. ,

A Warning The client should not attempt to close .MPP or .DSP because other processes
may be using these drivers.a

The Device Manager handles communication between the dient and the ADSP driver. Control routines
in the Device Manager are used to access ADSP functions; the client passes a different csCode for each _
function. Calls are provided to create and remove connection ends, request connections with remote
ends, wait passively for connection requests from remote ends, read and write on open connections,
and close connections.

ADSP provides a facility for building connection servers. A set of advanced calls enable a client to
set up a Connection Listener to receive Open Connection Requests from remote clients and distribute
these requests to other connection ends for further processing.

Connection ends

The memory ADSP requires to maintain a connection end is provided by the client. To create a
connection end, the client must allocate a connection control block, a send queue, a receive queue,
and an attention message buffer for ADSP's internal use. Pointers to the required memory are passed
to ADSP in a control call with csCode set to dsplnit. This call creates and initializes the connection end
and returns a refnum that identifies the connection end in subsequent calls to ADSP.

@ Note: The memory allocated and passed to ADSP to maintain a connection end becomes the
exclusive property of ADSP for the life of the connection end. The client must ensure that the
memory remains locked and unaltered until ADSP removes the connection end.

The connection end is initialized to a closed state. A control rall with csCode set to dspOpen is used to
open a connection with a remote connection end or to wait passively for a remote client to open a
connection. The AppleTalk Name Binding Protocol (NBP) is used to register a name for a connection
end or connection server, and to determine the addresses of other NBP registered connections.

Chapter 1: About AppleTalk Data Stream Protocol

Once a connection is open, the client makes control calls to read data from or write data to the
remote connection end. When the client no longer requires the connection, the control call dspClose
returns the connection end to a closed state, and dspRemove closes the connection and deletes the
connection end from ADSP’s internal data structures. The connection end's associated data structures
may be released only after the dspRemove call has completed.

Connection control blocks

The connection control block (CCB) is a block of memory, allocated by the client, that ADSP uses to
keep state information about the connection end. Most of the CCB fields are for ADSP’s internal use
and are not visible to the client. With a few noted exceptions, the CCB must not be altered or moved in
memory until ADSP is called to remove the connection end.

Connection control block

ccbLink pointer to next CCB - exclusive use of ADSP

refnum reference number of this CCB

state current state of the connection end

userFlags connection event flags for the client

localSocket DDP socket number for reading/writing this connection end
remoteAddress internet socket address of the remote connection end
attnCode attention code of incoming attention message
attnSize size of incoming attention message

attnPtr pointer to buffer for incoming attention messages
reserved additional fields - exclusive use of ADSP

The client must never alter CCB fields (with the exception of userFlags). However, the client may poll
CCB fields to find out about the state of the connection.

The refnum field is a reference number for the connection end generated by ADSP when the
connection end is created. This refrum is used by the client and ADSP to refer to the connection end.

The client may poll the value of stateto determine the current state of the connection end. The
possible states are listed in Chapter 3, *Summary of ADSP Data Structures.”

When an unsolicited event occurs on the connection end, ADSP sets an appropriate bit in the
userFlags field of the CCB. The client tests the bits to determine what occurred. Events that can occur
include receipt of an attention message, the receipt of a forward reset, the closing of the connection by
the remote end, or the tearing down of the connection because the remote end has become
unreachable. The client must clear the bits in the userFlags field after the cormpondmg event has
been processed.

The localSocket field contains the DDP socket number through which the connection.end transmits
and receives packets. The remoteAddress field contains the intemnet socket addréss of the remote
connection end (if any).

4 ADSP Driver Interface

Jr/' - N

N

The atinPir field points to the client buffer that is to receive attention messages from the remote
connection end. Upon receipt of an attention message, a bit is set in the userFlags field and the
userRoutine is called (if one has been specified in the dsplnit call). The attnSize field contains the size
of the attention message (from 0 to 570 bytes).

User routines

When creating a connection end, the client may specify the address of a user routine to be called
whenever an unsolicited connection event occurs. Unsolicited connection events are those that do not
occur as a direct result of a client control call, for instance, the receipt of an attention message or close
advice from the remote end, or the tearing down of the connection because of a timeout. The various
events are listed in Chapter 3, “Summary of ADSP Data Structures.”

The user routine is called with register A1 pointing to the CCB of the connection end. By
examining the fields of the CCB, the routine can determine the connection (from the refMum field), the
event (by testing bits in the userFlags field), and the resulting state of the connection (from the siate
field). If an attention message is received, the routine can access the message from the atnSize and
atinPtr fields.

@ Note: The user routine is similar to an ioCompletion routine. It is called at interrupt level and
must follow all rules regarding interrupt level routines. Refer to the discussion of the Device
Manager in Inside Macintosh, Volume 11 for details. If the limitations of an interrupt level
routine are unsuitable for your application, use the alternate method of periodically polling the
userFlags field of the CCB for connection events.

Chapter 1: About AppleTalk Data Stream Protocol

>

6 ADSP Driver Interface

Chapter 2 ADSP Routines

This chapter describes each of the ADSP function calls and lists the fields used in parameter blocks
and identifies possible result codes.

Create Connection End

This call creates and initializes a connection end. A cchRefMum is returned that the client can use to
reference the connection end in subsequent calls to ADSP. The caller provides a pointer to a CCB in
the parameter cchPtr. The CCB becomes the exclusive property of ADSP and must not be moved or
altered until the client calls ADSP to remove the connection end. The client passes to userRoutine
the address of a routine to be called in case of a connection event.

An ADSP connection end requires buffer space to hold incoming and outgoing bytes. The send
queue holds all bytes the client has asked ADSP to send over the connection whose delivery to the
remove client has not yet been acknowledged. The receive queue buffers bytes received from the
remote end until the client is able to read them. These queues are allocated by the client and become -
the exclusive property of ADSP; the queues must not be altered or moved until the connection end
is removed. Pointers to the queues are passed in the fields sendQueue and recuQueue. The two
queue size variables (sendQSize, recvQSize) are used to pass the size (in bytes) of these client-
supplied buffers. When allocating the queues, the client should determine the size using the
following rule:

® queue size = desired size + (desired size / 8) + 1

The atinPtr parameter contains the address of a client-supplied buffer that receives attention
messages from the remote connection end. The attention buffer should be the constant
aunBufSize bytes in size. The buffer must remain locked until the connection end is removed.
The localSocket parameter specifies the connection end’s DDP socket. A value of zero causes
DDP to dynamically allocate a socket. The socket number is returned when the call completes.

8 ADSP Driver Interface

Parameter block

- % csCode
— R ccbRefNum
— A ccbPtr
- 3 userRoutine
— 42 sendQSize
— 4 sendQueue
- 48 recvQSize
- 2 recvQueue
- A attnPtr
<—> 8 localSocket
Result codes

word
word
long
long
word
long

word -

long
long
byte

ddpSktErr error opening socket

always dsplnit

returns refnum assigned to connection end
pointer to connection control block

routine to call on connection events

size in bytes of the send queue

pointer to send queue

size in bytes of the receive queue

pointer to receive queue

pointer to buffer for incoming attention messages
DDP socket number for this connection end

Chapter 2: ADSP Routines 9

Remove Connection End

This call closes any open connection and removes the connection end specified by the parameter
ccbRefNum. The DDP socket is closed if it is not in use by another connection end. Upon
completion of this call, the CCB, attention buffer, and queue resources are no longer needed and the
memory may be released by the client. If the abort flag is non-zero, any outstanding client requests
on the connection end are aborted and all data in the send queue is discarded.

Parameter block
- % csCode word always dspRemove
- R ccbRefNum word refnum of connection end
— % abort byte abort the connection flag
Result codes

errRefNum bad connection refnum

10 ADSP Driver Interface

Open Connection

This call is used to set the opening state for a connection end. The state of the connection end
must initially be closed. The connection end can be set into four opening states by setting the
parameter ocMode to one of the following constants: ocRequest, ocPassive, ocAccept, ocEstablish.

Open mode ocRequest specifies that ADSP should initiate opening a connection with the remote
address specified in the parameter remoteAddress. The filterAddress parameter is used to filter
connection ends responding to the open connection request. A zero in the network number, node
id, or socket number of filterAddress means that a connection may be established with any
connection end on any network, node, or socket, respectively. Setting filterAddress to be the same
as remoteAddress means that a connection will be established only with a connection end on the
specified remoteAddress. An ocRequest Open Connection call completes when either a connection is
established, an open connection denial is received from a remote end, or the maximum retries have
been exceeded.

Open mode ocPassive sets the connection end to a passive opening state. The connection end
starts the connection opening dialog when an open connection request is received from some
remote connection end. The filterAddress may be used to specify the remote addresses with which
the connection end is willing to establish a connection. A zero in the network number, node id, or
socket number of filterAddress means that a connection may be established with any connection
end on any network, node, or socket, respectively. An ocPassive Open Connection call is not
complete until a valid open connection request is received from a remote connection end. When an
open connection request is received, the connection end enters the opening state and completes in
the same manner as in the ocRequest mode.

The third open mode, ocAccept, is used by connection servers to complete an open connection
dialog, establishing a connection with the remote address from which an open connection request
had been received by the server’s connection listener. The remoteAddress, remoteCID, sendSeq,
sendWindow, and attnSendSeq parameters should be filled in using the respective parameters
returned from the connection listener’s listen request. Refer to the section “Listen For Connection
Request” later in this chapter for more details. An ocAccept Open Connection call completes in the
same manner as in the ocRequest mode.

With the last mode, ocEstablish, ADSP considers the connection end established and the
connection state open. This mode allows two peer clients to establish their respective connection
ends based on connection opening information that has been negotiated outside of ADSP. It is the
client’s responsibility to provide values for the parameters remoteCID, remoteAdadress, sendSeq,
sendWindow, recuSeq, atinSendSeq, and attnRecuSeq. The call Get New CID (see the section “Get
New CID” later in this chapter) should be called to assign a-unique /ocalCID on the connection end
prior to opening a connection in this fashion. The ocEstablish Open Connection call completes
immediately.

Chapter 2: ADSP Routines

11

The ocInterval parameter defines the period between retransmission of open connection
requests. The interval granularity is 10 ticks (1/6 second); the client may set the interval to any value
between 1 (1/6 second) and 180 (30 seconds). The default value of 6 (1 second) is used if the
parameter is zero. This parameter should be specified for open connection modes ocRequest,
OCPassive, and ocAccept.

The ocMaximum parameter specifies the total number of times an open connection request is
transmitted. Passing zero for this parameter causes the default value of 3 to be used, but the client
may set the maximum to any value between 1 (only one open connection request is transmitted) to
255 (continuously retransmit open connection requests until an acknowledgement or denial is
received). This parameter should be specified for open connection modes ocRequest, ocPassive, and
ocAccept.

Parameter block

- % csCode word always dspOpen

- R ccbRefNum word refnum of connection end

«— # localCID word connection identifier of this connection end
—> 3% remoteCID word connection identifier of remote connection end
«—> 3 remoteAddress long internet address of remote connection end
- 4L filterAddress long filter for incoming open connection requests
> 4% sendSeq long initial send sequence number to use

<—> % sendWindow word initial size of remote ends receive buffer

- 2 recvSeq long initial receive sequence number to use

<> % attnSendSeq long initial attention send sequence number

- @ attnRecvSeq long initial attention receive sequence number
— H# ocMode byte connection opening mode

- 6 ocInterval byte interval between open connection requests
- &% ocMaximum byte maximum retries of open connection request

Result codes

errRefNum bad connection refnum

errState connection end must be closed
errOpening open connection attempt failed
errAborted request aborted by a Remove or Close call

12 ADSP Driver Interface

Close Connection

This call closes any open connection and retums the state of the connection end to closed. If the
abort flag is non-zero, any outstanding client requests on the connection end are aborted and all

data in the send queue discarded.
Parameter block
— % csCode word
— R ccbRefNum word
- H abort byte
Result codes
errRefNum bad connection refnum

always dspClose
refnum of connection end
abort the connection flag

Chapter 2: ADSP Routines 13

Create Connection Listener

This call creates and initializes a connection listener. The caller passes in a pointer to a CCB to the
parameter ccbPir, which is used by ADSP to maintain the listener. The parameter cchbRefNum is
returned which the client can use to reference the listener in subsequent calls to ADSP. The
localSocket parameter specifies the DDP socket the connection listener will use. A value of zero
causes DDP to dynamically allocate a socket. The socket number is returned when the call
completes.

Parameter block
- % csCode word always dspCLInit
— R ccbRefNum word returns refnum assigned to connection listener
— 3 ccbPtr long pointer to CCB

<> 8 localSocket byte DDP socket number for this connection end

Result codes
ddpSktErr error opening socket

14 ADSP Driver Interface

NS

Remove Connection Listener

This call closes the connection listener specified by refnum. If the abor flag is non-zero, any
outstanding client requests (such as Denv Connection Request calls) are aborted. Upon completion
of this call, the CCB is no longer needed and the memory it occupied can be released.

Parameter block

— % csCode word always dspCLRemove

— R ccbRefNum word refnum of connection listener

— # abort byte abort the connection listener flag
Result codes

errRefNum bad connection refnum

Chapter 2: ADSP Routines 15

Listen For Connection Request

Connection servers use this call to listen for connection requests. The caller specifies the refrnum of
the connection listener in the parameter cchRefNum. The call completes when ADSP receives an
open connection request on the connection listener's socket that satisfies the address requirements
specified in the filterAddress parameter. 'The client must then determine what to do with the
connection request. If a connection can be opened, the client must call Open Connection on an
available connection end and set the ocMode parameter to ocAccept. The values returned in the
parameters remoteCID, remoteAddress, sendSeq, sendWindow, and astnSendSeq from the completed
listener call should be passed in the respective parameters of the Open Connection call. If the
request cannot be honored, the client should advise the remote end by calling Deny Connection
Request, specifying the listener's cchbRefNum.

Several listen requests can be posted to the connection listener and each request can have a
different filter address specification (if desired).

Parameter block
— % csCode word always dspCLListen
- 3 ccbRefNum word refnum of connection end
<— 3% remoteCID word connection identifier of remote connection end
«~— 3B remoteAddress long intemet address of remote connection end
— £ filterAddress long filter for incoming open connection requests
— 4% sendSeq long initial send sequence number to use
“— sendWindow word initial size of remote ends receive buffer
— % attnSendSeq long initial attention send sequence number to use
Result codes
errRefNum bad connection refnum
errState not a connection listener

errAborted request aborted by a Remove call

16 ADSP Driver Interface \\j/

Deny Connection Request

This call is used by the client of a connection listener to advise a remote end that an open
connection request cannot be honored. The caller should specify the connection listener in the
parameter cchbRefNum. The remoteCID and remoteAddress parameters should be filled in using the
corresponding values returned from the completed listener call.

Parameter block
— % csCode word
— R ccbRefNum word
— 3% remoteCID word
— 3 remoteAddress long
Result codes
errRefNum bad connection refnum
errState not a connection listener

errAborted

always dspCLDeny

refnum of connection listener

connection identifier of remote connection end
internet address of remote connection end

request aborted by a Remove call

Chapter 2: ADSP Routines 17

Get Status

This call returns the current state of the connection end specified by the parameter cchRefNum.

Note that the values returned in the parameters sendQPending and recuQPending include any
bytes taken up by logical end-of-message indicators.

Parameter block

csCode word
ccbRefNum word
statusCCB long
sendQPending word
sendQFree word
recvQPending word
recvQFree word

fFrerfll
2R SWRR R

Result codes

errRefNum bad connection refnum

18 ADSP Driver Interface

always dspStatus

refnum of connection end

pointer to the connection control block
bytes waiting to be sent or acknowledged
available buffer in bytes of send queue
bytes waiting to be read from queue
available buffer in bytes of receive queue

L

Read Bytes

This call is used by the client to read bytes from the specified ADSP connection end’s receive queue.
The parameter reqCount specifies the size of the buffer (in bytes) into which data is read. The
parameter actCount is set to the actual number of bytes read. The parameter dataPtr points 10 2
buffer that contains the bytes from the receive queue.
The call completes when the requested number of bytes have been read or an intervening logical
end-of-message is encountered. If the last byte read constitutes the end of a logical message, the
parameter eom will be set to one.
If the connection is closed or torn down, outstanding read requests complete in the normal
manner. Even though the connection is closed, bytes remaining in the receive queue are still valid
data. The client may continue to post Read Bytes calls to ADSP until there are no more bytes left in
the receive queue to be read. The routine Get Status can be called to determine how many bytes
remain, or read calls can be posted until the parameters actCount and eom both retum zero. If there
are fewer than regCount bytes remaining in the receive queue, the read call completes with
actCount set to the actual number of bytes being returned.

@ Note: A remote connection end may close the connection immediately after sending a
stream of bytes to the connection end. By polling the state or userFlags fields of the CCB,
you may find that the connection has been closed before the client has finished reading the
bytes from the receive queue. You must decide whether to continue processing the bytes in
the receive queue.

Parameter block

fFLrLLy
BWRER R

Result codes

errRefNum
errFwdReset
errAborted

csCode word always dspRead
ccbRefNum word refnum of connection end
reqCount word requested number of bytes to read
actCount word actual number of bytes read
dataPtr long pointer to buffer for reading bytes into
eom byte one if end-of-message, zero otherwise
bad connection refnum .
read terminated by forward reset
request aborted by a Remove or Close call

Chapter 2: ADSP Routines

19

Write Bytes

This call is used to write data into the send queue of the ADSP connection end specified by refnum.
The parameter reqCount specifies the number of bytes to be copied to the send queue, while v
actCount returns the number of bytes that were actually copied. If regCount is zero, no bytes are
copied. The parameter dataPir is a pointer to the data to be written to the send queue.

Setting the eom parameter to a non-zero value causes a logical end-of-message to be inserted
just after the last data byte to be written. If regCount is zero, only the end-of-message is added to
the send queue.

If the flush parameter is non-zero, ADSP immediately sends any data that have not been sent
to the send queue. If flush is zero, the data is placed in the send queue but may not be sent
immediately. Details on when data is actually transmitted to the remote connection end can be
found in the section “Set Options” later in this chapter.

Note that bytes written to the send queue are not removed until their receipt has been
acknowledged by the remote connection end.

Parameter block
—> 2% csCode word always dspWrite
- R ccbRefNum word refnum of connection end
- # reqCount word requested number of bytes to write
<— % actCount word actual number of bytes written
- 3 dataPtr long pointer to data to write
— 4f eom byte one if end-of-message, zero otherwise
- 4 flush byte one to send data now, zero otherwise
Result codes
errRefNum bad connection refnum
errState connection is not open

errAborted request aborted by a Remove or Close call

20 ADSP Driver Interface

Send Attention Message

This call is used to send an attention message to the remote connection end. The attention
message consists of a two-byte client attention code and up to 570 bytes of client attention data.
The attention code is for the client’s use and may contain any value from [$0000..$EFFF]. Attention
codes in the range [$F000..$FFFF] are reserved by ADSP.

The parameter aitnCode is a client-definable code sent in the attention packet. The parameter
atnSize specifies the number of bytes of attention data and attnData is a pointer to the data.

The parameter attnInterval specifies the interval between retransmissions in 10 tick (1/6
second) increments. The client may specify any value between 1 (1/6 second) and 180 (30 seconds,
the connection probe frequency). The attention is retransmitted indefinitely until & is properly
acknowledged or the connection fails.

Parameter block
- % csCode word always dspAttention
— R ccbRefNum word refnum of connection end
— attnCode word client attention code
- % attnSize word size in bytes of attention data
— 3 attnData long pointer to attention data
— 4L attninterval byte attention retransmit interval
Result codes
errRefNum bad connection refnum
errState connection is not open

errAttention attention message (0o long
errAborted request aborted by a Remove or Close call

Chapter 2: ADSP Routines 21

Set Options

This call allows the client to set options for the connection end specified by the parameter
ccbRefNum. The send timer defines the frequency of connection end maintenance by ADSP. At
each timer interval, any unsent data bytes in the send queue are flushed. The timer granularity is 10
ticks (1/6 second), and the client may set the sendTimer parameter to any value between 1 (1/6
second) and 180 (30 seconds, the connection probe frequency). The default interval is 1 (1/6 second).
Passing zero causes the send timer to remain unchanged.

There are certain conditions that cause the timer interval to temporarily increase by multiples of
itself until it reaches the frequency of the connection probe timer (30 seconds). This behavior is
termed “backing off* and typically occurs when an ACK request goes unacknowledged. This
mechanism prevents the transmission of needless, incessant ACK requests that consume network
resources. The timer returns to its normal frequency when a packet is received from the remote
end.

The send blocking factor allows the client to control when packets are sent based on the
number of unsent bytes waiting in the send queue. This may be useful in some applications where
the client requests single byte writes. By increasing the parameter sendBlocking, the client can
reduce network traffic. Given a send blocking factor of 1, ADSP sends the unsent data bytes only
when:

® The number of unsent data bytes is greater than or equal to the send blocking factor b.
® The connection timer expires and all unsent data are flushed.
* @ The client has requested that all data be flushed in the Write Bytes call.

(]

Some other event, such as the receipt of an ACK request from the remote end, requires that a
packet be sent so the unsent data bytes accompany the acknowledgement packet.

The default blocking factor is 16 bytes, but the client can set the parameter sendBlocking to any
value from 1 to the maximum size of a packet. Setting sendBlocking to zero causes the factor to
remain unchanged.

The retransmit timer determines the number of intervals before sent, unacknowledged data in
the send queue is retransmitted. The client can adjust the retransmit timer to adapt the connection
to network conditions. The AppleTalk Echo Protocol (EP) can be used to estimate round-trip times
and provide a gauge for setting the retransmit timer. The granularity of the timer is 10 ticks (1/6
second) and the default value is 6 (1 second). The client can set the rtm¢Timer parameter to any
value between 1 (1/6 second) and 180 (30 seconds, the connection probe frequency); passmg zero.
causes the retransmit timer to remain unchanged. .

22 ADSP Driver Interface

The badSegMax parameter allows the client to set the threshold for sending retransmit advice
to the remote end. After receiving some 7 consecutive out-of-sequence packets, it may be more
efficient to advise the remote end to retransmit the lost bytes than to wait for the remote end’s
retransmit timer to expire. Setting badSeqgMax to 5 causes retransmit advice to be sent to the
remote end after 5 consecutive out-of-sequence packets have been received. badSegMax may be
set to any value between 1 and 255; passing zero causes the parameter to remain unchanged. The
default value is 3.

The parameter useCheckSum specifies whether DDP should compute and include a checksum in
each packet that is sent to the remote connection end. This feature is enabled only when sending
long DDP header packets (i.e., internet packets). Regardless of the useCheckSum setting, ADSP
automatically validates the checksum of any long-header DDP packet it receives with non-zero
checksum bytes. The default for useCheckSum is FALSE.

Parameter block
- csCode word always dspOptions
- 2 ccbRefNum word refnum of connection end
— 3 sendBlocking word send blocking threshold
— 3% sendTimer byte send timer interval
- 3 rtmtTimer byte retransmit timer interval
— B badSeqMax byte retransmit advice send threshold
- ¥ useCheckSum byte generate DDP checksum on internet packets

Result codes

errRefNum bad connection refnum

Chapter 2: ADSP Routines 23

Forward Reset

The forward reset mechanism allows the client to flush all data that has been delivered to its
connection end but not yet delivered to the remote connection end’s client. The call causes the
connection end to reset its send queue and issue a forward reset packet to the remote connection
end. Upon receipt of the forward reset, the remote connection end resets its receive queue and
informs its client.

The forward reset is non-deterministic, as all the outstanding data may have already been

delivered to the remote client.
Parameter block

- % csCode word always dspReset

- R ccbRefNum word refnum of connection end
Result codes

errRefNum bad connection refnum

errState connection is not open

errAborted request aborted by a Remove or Close call

24 ADSP Driver Interface

7

Get New CID

This call is useful for clients wanting to open a connection using an alternate means for establishing
the two connection ends. The two clients arbitrate the connection opening parameters using some
alternative protocol outside the scope of ADSP. Each client informs the other of the values of its
localCID, internet socket address, receive sequence number, receive window, and attention receive
sequence number. Each client then calls ADSP to synchronize the two connection ends using the
parameters received from the other client.

ADSP clients that want to utilize this connection opening model should create their connection
ends using the Create Connection End call (see the section “Create Connection End” earlier in this
chapter). The Get New CID call then assigns a unique connection ID to the connection end. This
value is retuned in the newCID parameter so that the client may pass it to the remote client.

Once all open connection parameters have been determined, each dient calls Open Connection,
passing ocEstablish in the ocMode parameter.

Parameter block

- ¥ csCode word always dspNewCID

- 3 ccbRefNum word refnum of connection end

— #H newCID word new connection identifier
Result codes

errRefNum bad connection refnum

errState connection end is not closed

Chapter 2: ADSP Routines 25

Example

In the following example, a client sets up a connection, writes data on it, and then closes the
connection.

CONST ,

QSize =600 {ample space for 512 bytes}

myDataSize =128, {size of my data writes}
VAR

error : OSErr,

drvrRefNum : INTEGER;

connRefNum : INTEGER;

dspPB : DSPParamBlock;

dspCCB : TRCCB;

dspSendQueue : PACKED ARRAY [1..qSize] OF BYTE;
dspRecvQueue : PACKED ARRAY [1..qSize] OF BYTE;
dspAttnBuffer : PACKED ARRAY [1..attnBufSize] OF BYTE;

myData2Write : PACKED ARRAY (1..myDataSize] OF BYTE;

BEGIN

{make sure MPP driver is open}

error := MPPOpen;

IF error <> noErr THEN Abort(error);
{open ADSP driver}

error := OpenDriver(.DSP', drvrRefNum),
IF error <> noErr THEN Abort(error),

26 ADSP Driver Interface

{create a new connection end}
WITH dspPB DO
begin
ioCRefNum := drvrRefNum,
csCode := dsplnit;
ccbPtr := @dspCCB;
userRoutine := NIL;
sendQSize = qSize;
sendQueue := @dspSendQueue;
recvQSize := qSize;
recvQueue := @dspRecvQueue;
attnPtr := @dspAttnBuffer;
localSocket := 0; {dynamically allocate a socket}
end,
error := PBControl(@dspPB, FALSE);
IF error <> noErr THEN Abort(error);
connRefNum:= dspPB.ccbRefNum; {save refnum for this connection end}

{open a connection with a remote end}
WITH dspPB DO
begin
ioCRefNum := drvrRefNum,
csCode := dspOpen;
ccbRefNum := connRefNum;
remoteAddress := remAddress; {probably used NBP to fetch remote address}
filterAddress := AddrBlock(0); f{open connection with whoever responds}
ocMode := ocRequest; {make an open connection request}
ocInterval := 12; ({retry every 2 seconds}
ocMaximum := 5; ({try 5 times before giving up}
end;
error := PBControl(@dspPB, FALSE);
IF error <> noErr THEN Abort(error);

Chapter 2: ADSP Routines 27

{write some data on the open connection}
WITH dspPB DO
begin
ioCRefNum := drvrRefNum,;
csCode := dspWrite;
ccbRefNum := connRefNum;
reqCount := myDataSize; {how many bytes to write}
dataPtr := @myData2Write; (pointer to data to write}
eom := 1; {end-of-message after this data}
flush := 1; {send it now, please}
end;
error := PBControl(@dspPB, FALSE),
IF error <> noErr THEN Abort(error);

{close the connection and remove the connection end}
WITH dspPB DO
begin
ioCRefNum := drvrRefNum,;
csCode := dspRemove;
ccbRefNum := connRefNum,
abort := 0,
end,
error := PBControl(@dspPB, FALSE);
IF error <> noErr THEN Abort(error);
END;

28 ADSP Driver Interface

Chapter 3 Summary of ADSP Data Structures

29

This chapter presents ADSP constants, data types, and assembly language information.

Constants

Driver control ioResults

errRefNum = -1280; {bad connection refNum}

errAborted =-1279; {control call was aborted}

errState =-1278; {bad connection state for this operation}
errOpening =-1277; {open connection request failed or denied}
errAttention =-1276; {attention message data too long}
errfFwdReset =-1275; {read terminated by forward reset}
Driver control csCodes

dsplnit =255, {create a new connection end}
dspRemove =254; {remove a connection end}

dspOpen = 253, {open a connection}

dspClose =252, {close a connection}

dspCLInit =251, {create a connection listener}
dspCLRemove = 250; {remove a connection listener}
dspCLListen = 249, {post a listener request}

dspCLDeny = 248, {deny an open connection request}
dspStatus = 247, {get status of connection end}

dspRead = 246, {read data from the connection}
dspWrite = 245; {write data on the connection}
dspAttention = 244; {send an attention message}
dspOptions = 243, {set connection end options}

dspReset =242, {forward reset the connection}
dspNewCID = 241, {generate a CID for a connection end}
Connection opening modes

ocRequest =1 {request a connection with remote}
ocPassive =2 {wait for a connection request from remote}
ocAccept =3; {accept request as delivered by listener}
ocEstablish =4 {consider connection to be open}

N

30 ADSP Driver Interface

Connection end states

sListening =1, {for connection listeners}

sPassive =2; fwaiting for a connection request from remote}
sOpening =3 {requesting a connection with remote}
sOpen = 4; {connection is open}

sClosing =5; {connection is being torn down)
sClosed =6, {connection end state is closed}
Client event flags

eClosed = $80; {received connection closed advice}
eTearDown = $40; {closed due to broken connection}
eAttention = $20; {received attention message}
eFwdReset = $10, {received forward reset advice}
Miscellaneous constants

attnBufSize =570; {size of client attention buffer}

Chapter 3: Summary of ADSP Data Structures 31

Data types
Connection control block
TPCCB = ATRCCB,;
TRCCB = PACKED RECORD
ccbLink : TPCCB; {link to next CCB}
refNum : INTEGER; {user reference number}
state : INTEGER,; {state of the connection end}
userFlags : Byte; {user flags for connection events}
localSocket : Byte; {local socket number}
remoteAddress : AddrBlock; {internet address of remote end}
attnCode : INTEGER; {attention code received}
attnSize : INTEGER, {size of received attention data}
atnPtr : Ptr; {pointer to received attention data}
reserved : ARRAY [1..220] OF Byte; {ADSP internal use}
END;
Driver control call parameter block
DSPPBPtr = ADSPParamBlock;
DSPParamBlock = PACKED RECORD
qLink : QElemPtr;
qType : INTEGER,
ioTrap : INTEGER,;
ioCmdAddr : Pir;
ioCompletion : ProcPtr;
ioResult : OSEr;
ioNamePtr : StringPtr;
ioVRefNum : INTEGER,;
ioCRefNum : INTEGER,; {ADSP driver refNum}
csCode : INTEGER,; {ADSP driver control code}
qStatus : LONGINT; {ADSP internal use}
ccbRefNum : INTEGER,; {refnum of CCB}
CASE INTEGER OF

32 ADSP Driver Interface

dsplnit,

dspCLInit:

(

ccbPtr - TPCCB; {pointer to CCB}

userRoutine : ProcPtr; {dient routine to call on event}
sendQSize : INTEGER,; {size of send queue (0..64K bytes)}
sendQueue : Prr; {dient passed send queue buffer}
recvQSize : INTEGER, {size of receive queue (0..64K bytes)}
recvQueue : Pt ~ {dient passed receive queue buffer}
attnPtr : Pt {dient passed receive attention buffer}
localSocket : Byte; (local socket number}

)

dspOpen,

dspCLListen,

dspCLDeny:

(

localCID : INTEGER; {local connection id}

remoteCID : INTEGER; {remote connection id}
remoteAddress : AddrBlock; {address of remote end}

filterAddress : AddrBlock; {address filter}

sendSeq : LONGINT; {local send sequence number}
sendWindow : INTEGER; {send window size}

recvSeq : LONGINT, {receive sequence number}
attnSendSeq : LONGINT; {attention send sequence number}
attnRecvSeq : LONGINT; {attention receive sequence number}
ocMode : Byte; {open connection mode}

ocinterval : Byte; {open connection request retry interval}
ocMaximum : Byte; {open connection request retry maximum}
);

dspClose,

dspRemove:

(

abort : Byte; {abort connection immediately if non-zero}
)2

Chapter 3: Summary of ADSP Data Structures 33

dspStatus:

(

statusCCB
sendQPending
sendQFree
recvQPending
recvQFree

)2

dspRead,
dspWrite:
(
reqCount
actCount
dataPtr
eom
flush

);

dspAttention:
(

attnCode
attnSize
attnData
attninterval
);

dspOptions:

(
sendBlocking
sendTimer
rtmtTimer
badSeqMax
useCheckSum

)

dspNewCID:
(

newCID

),

END;

: TPCCB;

: INTEGER,;
: INTEGER,;
: INTEGER,
: INTEGER,;

: INTEGER;
: INTEGER,

: Byte;
: Byte;

: INTEGER,;
: INTEGER,

: Byte;

: INTEGER;
: Byte;
: Byte;
: Byte;
: Byte;

: INTEGER,

34 ADSP Driver Interface

{pointer to ccb}

{pending bytes in send queue}
(available buffer space in send queue}
{pending bytes in receive queue}
{available buffer space in receive queue}

{requested number of bytes}
{actual number of bytes}

{pointer to data buffer}

{indicates logical end of message}
{send data now}

{dlient attention code}

{size of attention data}

{pointer to attention data}
{retransmit timer in 10-tick intervals}

{quantum for data packets}

{send timer in 10-tick intervals}

{retransmit timer in 10-tick intervals)
{threshold for sending retransmit advice}
{send checksum in long-header DDP packets}

{new connection id returned}

N

»
7T,
(‘ B

N

Assembly language information

; error codes
errRefNum EQU
errAborted EQU
errState EQU
errOpening EQU
errAttention EQU
errFwdReset EQU
; client control codes
dsplnit EQU
dspRemove EQU
dspOpen EQU
dspClose EQU
dspCLInit EQU
dspCLRemove EQU
dspCLListen EQU
dspCLDeny EQU
dspStatus EQU
dspRead EQU
dspWrite EQU
dspAttention EQU
dspOptions EQU
dspReset EQU
dspNewCID EQU
; open connection modes
ocRequest EQU
ocPassive EQU
ocAccept EQU
ocEstablish EQU
; connection states
sListening EQU
sPassive EQU
sOpening EQU
sOpen EQU
sClosing EQU
sClosed EQU

-1279
-1278
-1277
-1276
-1275

255
254
253
252
251
250
249
248
247
246
245
244
243
242
241

LSS I S

AN N BN

; bad connection refNum

; control call was aborted

; bad connection state for this operation
; open connection request was denied

; attention message too long

; read terminated by forward reset

; create a new connection end

; remove a connection end

; Open a connection

; close a connection

; create a connection listener

; remove a connection listener

; post a listener request

; deny an open connection request
; get status of connection end

: read data from the connection

; write data on the connection

; send an attention message

; set connection end options

; forward reset the connection

; generate a cid for a connection end

; request a connection with remote

; wait for a connection request from remote
; accept request as delivered by listener

; consider connection to be open

; for connection listeners

; waiting for a connection request from remote
; requesting a connection with remote

: connection is open '

; connection is being torn down

; connection end state is closed

Chapter 3: Summary of ADSP Data Structures 35

; client event flags (bit-mask)

eClosed EQU $80 ; received connection closed advice

eTearDown EQU $40 ; closed due to broken connection

eAttention EQU $20 ; received attention message

eFwdReset EQU $10 ; received forward reset advice

; miscellaneous equates

attnBufSize EQU 570 ; size of client attention message

; connection control block equates & size

ccbLink EQU 0 ; link to next CCB

refNum EQU ccbLink+4 ; user reference number

state EQU refNum+2 ; state of the connection end

userFlags EQU state+2 ; flags for unsolicited connection events
localSocket EQU userFlags+1 ; socket number of this connection end
remoteAddress EQU localSocket+1 ; internet address of remote end
attnCode EQU remoteAddress+4 ; attention code received

attnSize EQU attnCode+2 ; size of received attention data

attnPtr EQU attnSize+2 ; pointer to received attention data
ccbSize EQU attnPtr+224 ; total byte size of CCB

; adsp queue element equates

csQStatus EQU CSParam ; ADSP internal use

csCCBRef EQU csQStatus+4 ; refnum of CCB

. dsplnit, dspCLinit

¢sCCBPtr EQU csCCBRef+2 ; pointer to CCB

csUserRtn EQU csCCBPtr+4 ; client routine to call on event
csSendQSize EQU csUserRtn+4 ; size of send queue (0..64K bytes)
csSendQueue EQU csSendQSize+2 ; client passed send queue buffer
csRecvQSize EQU csSendQueue+4 ; size of receive queue (0..64K bytes)
csRecvQueue EQU csRecvQSize+2 ; client passed receive queue buffer
csAttnPtr EQU csRecvQueue+4 ; client passed receiving attention buffer
csLocSkt EQU CsAttnPtr+4 ; local socket number

36 ADSP Driver Interface

; dspOpen, dspCLListen, dspCLDeny

csLocCID EQU csCCBRef+2 ; local connection id
csRemCID EQU csLocCID+2 ; remote connection id
csRemAddr EQU csRemCID+2 ; address of remote end
csFltrAddr EQU csRemAddr+4 ; address filter
csSendSeq EQU csFltrAddr+4 ; local send sequence number
csSendWdw EQU csSendSeq+4 ; send window size
csRecvSeq EQU csSendWdw+2 ; receive sequence number
csAttnSendSeq EQU csRecvSeq+4 ; attention send sequence number
csAttnRecvSeq EQU csAttnSendSeq+4 ; attention receive sequence number
csOCMode EQU csAttnRecvSeq+4 ; open connection mode
csOClnterval EQU csOCMode+1 ; open connection request retry interval
csOCMaximum EQU csOClnterval+1 ; Open connection request retry maximum
; dspClose, dspRemove
csAbort EQU csCCBRef+2 ; abort connection immediately if non-zero
; dspStatus
¢sSQPending EQU csCCBPtr+4 ; pending bytes in send queue
csSQFree EQU csSQPending+2 ; available buffer space in send queue
csRQPending EQU csSQFree+2 ; pending bytes in receive queue
csRQFree EQU csRQPending+2 ; available buffer space in receive queue
; dspRead, dspWrite
csReqCount EQU csCCBRef+2 ; requested number of bytes
csActCount EQU csReqCount+2 ; actual number of bytes
csDataPtr EQU csActCount+2 ; pointer to data buffer
csEOM EQU csDataPtr+4 ; indicates logical end of message
csFlush EQU csEOM+1 ; send data now
; dspAttention
csAttnCode EQU csCCBRef+2 ; client attention code
csAttnSize EQU csAttnCode+2 ; size of attention data
csAttnData EQU csAltnSize+2 ; pointer to attention data
csAttninterval EQU csAttnData+4 ; retransmit timer in 10-tick intervals
; dspOptions

, csSendBlocking EQU csCCBRef+2 ; quantum for data packets
csSendTimer EQU csSendBlocking+2 ; send timer in 10-tick intervals
csRtmtTimer EQU csSendTimer+1 ; retransmit timer in 10-tick intervals
csBadSeqMax EQU csRtmtTimer+1 ; threshold for sending retransmit advice
csUseCheckSum EQU csBadSeqMax+1 ; use DDP packet checksum
; dspNewCID
csNewCID EQU csCCBRef+2 ; new connection id returned

Chapter 3: Summary of ADSP Data Structures

38 ADSP Driver Interface

